
HAL Id: tel-03417084
https://theses.hal.science/tel-03417084

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Underwater robots for karst and marine exploration : A
study ofredundant AUVs

Huu-Tho Dang

To cite this version:
Huu-Tho Dang. Underwater robots for karst and marine exploration : A study ofredundant AUVs.
Automatic. Université Montpellier, 2021. English. �NNT : 2021MONTS038�. �tel-03417084�

https://theses.hal.science/tel-03417084
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En Systèmes Automatiques et Microélectroniques (SYAM)

École doctorale : Information, Structures, Systèmes (I2S)

Unité de recherche : LIRMM (UMR 5506)

Présentée par Huu Tho DANG

Le 26/05/2021

Sous la direction de Lionel LAPIERRE

 Devant le jury composé de

René ZAPATA, Professeur, LIRMM, Montpellier

Lionel LAPIERRE, Maitre de Conférence, HDR , LIRMM, Montpellier

Luc JAULIN, Professeur, Lab-STICC, Bretagne

Vincent HUGEL, Professeur, COSMER, Toulon

Antonio PASCOAL, Professeur, IST-ID, Portugal

Massimo CACCIA, Professeur, CNR-ISSIA, Italy

Olivier PARODI, IR, Naval Group

Benoit ROPARS, IR, Reeds

Président du jury

Directeur de thèse

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinateur

Examinateur

UNDERWATER ROBOTS FOR KARST AND MARINE

EXPLORATION: A STUDY OF REDUNDANT AUVs

i

Acknowledgments

First and foremost, I would like to thank my supervisor A. Prof Lionel Lapierre
who recruited me more than 3 years ago, introduced me underwater domain and
karst exploration specifically. Thanks for his guidance in underwater robotic field
which was quite new for me in the first time. He not only helps me in sciences but
also in my life in France. Normally, I gained a lot of things after discussing with
him with very interesting questions. I also express my graceful to Prof René Zapata
who always has new ideas in every problem. Personally, he is always a motivation
of young researchers because of his hard working and interesting ideas.

I would like to express my gratitude to Prof Didier Crestani for his administra-
tive works. A. Prof Sebastien Druon, A. Prof Karen Godary-Dejean, A. Prof Jean
Triboulet for their open-mind.

I would like to thank Dr Benoit Ropars, Mr Pascal Lepinay, Mr Eric Dubreuil
of Polytech, Montpellier, for their helps in printing and creating pieces of robot,
carrying out experiments.

I would like to thank other PhD students of Explore team : Andrien Hereau,
Quentin Massone, Rodolfo Villalobos Martinez, Philippe Lambert, and Dr Yohan
Breux for discussions and coffee time.

I would like to thank my Vietnamese friends in Montpellier for their helps in
my daily life and football matches at weekend in which I can release stress and
get more energy for a new week. Especially, I would like thank my closed friend,
Mr Nguyen Tuan Hung, from IST (Instituto Superior Técnico), Portugal, for his
fruitful discussions in underwater robotics.

My sincere appreciation goes to the committee of my thesis, Prof René Zapata,
Prof Luc Jaulin, Prof Vincent Hugel, Prof Antonio Pascoal, Prof Massimo Caccia,
Dr Olivier Parodi, and Dr Benoit Ropars for their acceptance and advices.

And last but not least, I am indebted to my wife, my son, and my small daughter
who always beside me during time in France, my parents, and my younger brother
who always encourage me during PhD journey.

Without these helps, I can not finish this thesis.
I would like to say many thanks to the Labex NUMEV, Montpellier University,

the Region Occitanie and the FEDER funds who sponsored for this work.

Underwater robots for karst and marine exploration : A study of
redundant AUVs

Abstract : Nowadays, underwater environments including ocean and karst sys-
tem with their biodiversity are needed to discover and underwater vehicles are
means to do that. An underwater vehicle can normally be able to classify into an
under-actuated system, a fully-actuated system, or an over-actuated one, also cal-
led redundant system. This depends on the number of actuators and the number
of controllable Degrees of Freedom (DoFs). This property decides other relating
problems such as controller design, kinds of missions, building cost. Although a re-
dundant system has drawbacks, i.e., high building cost, not easy to control, it also
has a lot of merits : a good choice for fault-tolerance control, be more flexible in
operations. Moreover, with redundancy, it is obvious to vary configuration in or-
der to inherit advantages of each kind of configurations. For application speaking,
underwater vehicles have a wide range of employment from civil to military such
as seabed investigation, biological discovery, marine rescue, and coast monitoring.
Among of them, karst exploration is a potential domain and needs to study more
because of the diversity of interior ecological systems and vital role in supplying
and maintaining sweet water resource, especially in European countries.

Motivated by redundant feature and karst exploration, this work focuses on re-
dundant systems in underwater robot field for exploring karst networks. Underwater
vehicles with static configuration and reconfigurable one were studied. In particular,
a method was proposed to determine the static configuration of a robot (position
and direction of thrusters) in order to optimize performance indices : manipulability,
workspace, energy, reactive, and robustness indices. An optimal solution based on
multiobjective optimization was found. Simulation and experimental results were
shown to prove the proposed approach. Considering advantages of a dynamically
reconfigurable robot, a prototype robot, called Umbrella Robot, was built. A locally
optimal approach with respect to energy-like criterion with dynamic configuration
was suggested. In the meanwhile, control allocation methods for this kind of sys-
tems were investigated. Simulation results for two cases, simple guidance in which
desired control vector is given and complex one in which desired control vector is
able to vary in each time step, were illustrated. Our simulation and experiments
validated the proposed method.
Keywords : Underwater robot, configuration matrix, multiobjective optimization,
optimization.

Robots sous-marins pour l’exploration karstique et marine : une
étude des AUVs redondants

Abstract : De nos jours, les environnements aquatiques, considérant l’océan et les
systèmes karstiques noyés sont le lieu d’enjeux sociétaux majeurs, depuis la question
des ressources (alimentaires et en eau) jusqu’à la compréhension des phénomènes
physiques qu’ils hébergent. La difficulté d’accès à ces environnements fait du robot
sous-marin un outil d’exploration efficace.

Les propriétés d’actionnement de ces systèmes robotisés spécifient leur capacité
dynamique et les rendent adaptés à certains types de mission. Ils peuvent être sous-
actionnés, iso-actionnés ou redondants. Cela dépend du nombre d’actionneurs et du
nombre de Degrés de Liberté contrôlables.

Cette propriété de l’actionnement conditionne la stratégie de commande du
système, engendre une certaine complexité au système mais comporte aussi des
avantages : robustesse, tolérance aux pannes, pilotage de la réactivité et optimi-
sation de la consommation énergétique globale. De plus, un système à géométrie
d’actionnement variable permet de couvrir l’ensemble de ces propriétés, rendant
le système versatile et configurable en fonction des contraintes environnementales
et de mission. A l’instar des applications civiles et militaires, ce type de système
présente des avantages majeurs pour la question de l’exploration karstique. En ef-
fet la variabilité des conditions environnementales de ce milieu confiné requiert une
adaptabilité du système d’actionnement et un pilotage fin de sa réactivité. L’exploi-
tation des propriétés de redondance du système d’actionnement, qu’il soit statique
ou dynamiquement reconfigurable, est le sujet de cette thèse. En particulier, une
méthode est proposée pour déterminer la configuration statique d’un robot (po-
sition et direction des propulseurs) afin d’optimiser les indices de performance :
manipulabilité, atteignabilité, énergie, réactivité et robustesse. Une solution basée
sur l’optimisation multi-objectifs est proposée. Cette approche est validée en simu-
lation et expérimentalement sur 2 types de robots : le robot ‘Cube’ (configuration
redondante statique) et le robot ‘Umbrella’ (redondant à géométrie variable). Une
approche localement optimale, en ce qui concerne un critère de type énergie, permet
une adaptation dynamique de la configuration d’actionnement. Une solution de ré-
partition des actions individuelle des moteurs est aussi proposée. Les performances
des solutions proposées sont illustrées en détail en simulation et une validation ex-
périmentale a été effectuée
Keywords : robot sous-marin, matrice de configuration, optimisation.

vii

Résumé de la thèse

Robots sous-marins pour l’exploration karstique et marine : une
étude des AUVs redondants

Ces travaux de thèse ont profité d’un financement issu du Labex Numev (projet
étendard Aleyin) et de la Région Occitanie.

1. Contexte

L’exploration océanique, en général, et l’exploration d’un environnement confiné
tel que le karst pose des défis scientifiques et technologiques difficiles. Les véhicules
autonomes ou semi-autonomes sous-marins sont développés pour répondre à de tels
défis. Un robot sous-marin peut être catégoriser en fonction des propriétés de son
actionnement. Il peut être :

1. Sous actionné, si son actionnement ne permet pas d’agir sur l’intégralité des
(6) degrés de libertés.

2. Iso-actionné, s’il peut agir sur tous les degrés de liberté.
La configuration de ses moteurs peut aussi le rendre redondant, s’il existe plusieurs
manières de réaliser un effort désiré. Ainsi un robot sous-marin peut être à la fois
sous-actionné et redondant. Dans ces travaux nous nous intéressons à des systèmes
redondants, dont la géométrie variable leur confère la possibilité d’évoluer d’un
système iso-actionné à un système sous-actionné.

La gestion de la redondance d’actionnement peut être exploitée pour améliorer
les performances du robot, telles que :

1. la tolérance aux pannes.
2. la réactivité du système.
3. la propriété d’isotropie de l’actionnement.
4. la minimisation de la dépense énergétique.
5. l’optimisation de la génération d’une force maximale dans une direction don-

née.
6. La gestion des non-linéarités (zones mortes) des propulseurs.

Le contexte applicatif particulier de ces travaux de recherche impose de considérer
les particularités de l’environnement confiné dans lequel le robot évolue. En effet le
contexte karstique, décrit ci-après, impose de traiter de la question de l’allocation
de contrôle avec soin.

Le karst, en général, consiste en un réseau de conduits naturels souterrains,
résultant de la dissolution de roches solubles, telles que le calcaire, la dolomie, le
gypse... Il est le lieu de la ressource en eau souterraine et, à ce titre, joue un rôle
fondamental dans l’approvisionnement en eau potable de millions de personnes dans

viii

le monde. Il peut contenir d’énormes quantités d’eau et la dynamique des transferts
de charge peut engendrer des mouvements d’eau imprévisibles et provoquer des
inondations soudaines et dramatiques, en particulier dans notre région sujette aux
épisodes cévenols.

Ainsi, la question de la modélisation de la dynamique de ces réseaux karstique
est un enjeu important qui requiert l’acquisition de données de terrain difficile-
ment accessible par un humain. Ainsi la solution robotique semble être adaptée à
ce contexte difficile, dans la mesure où les verrous scientifiques et technologiques
propres à cet environnement confiné auront été résolus. Les robots permettront
d’acquérir une information fiable, avec des protocoles répétables pour effectuer des
missions de cartographie et de prélèvement saisonniers de manière à fournir aux au-
torités des données éclairant la prise de décision dans le cadre d’une gestion active
de la ressource.

Historique des initiatives d’exploration karstique au moyen de ro-
bots

Les premières explorations karstiques robotisées ont eu lieu dans la légendaire
Fontaine de Vaucluse et les retours d’expérience sont riches d’enseignements. Le
premier robot d’exploration karstique en France est le Télénaute, en 1967, exploité
par l’IFP (Institut Français du Pétrole). Il atteint la profondeur de 106m. En 1983,
une nouvelle génération de robot voit alors le jour avec le Sorgonaute, construit en
collaboration avec Renault. Il atteint les 243 m de profondeur et est arrêté par la
longueur de son câble. Sorgaunote II est alors développé, mais est perdu à 233m,
les moteurs de celui-ci s’étant pris dans une ligne de vie de plongeur. En 1986,
Sorgaunaute III est construit avec pour mission principale la récupération de son
prédécesseur. Il est perdu à 150m, s’étant emmêlé dans le câble de Sorgaunaute
II. Enfin en 1988, Sorgaunote IV est envoyé, mais échoue lui aussi. Des plongeurs
scaphandriers sont finalement envoyés pour désobstruer la source. En 1985, le Mo-
dexa atteint le fond du gouffre, à 315m. D’autres initiatives sont rapportées dans la
littérature (DEPTHX, UNEXMIN. . .), et toutes soulignent la difficulté principale
de ce type d’opération : la gestion du câble ombilical qui vient se prendre dans les
reliefs de l’environnement et cause la perte des engins.

La stratégie du projet Aleyin

L’équipe EXPLORE du LIRMM, Université de Montpellier, porte le projet
ALEYIN qui propose d’aborder la question de l’exploration karstique avec la stra-
tégie suivante :

ix

Figure 1 – Stratégie retenue pour l’exploration karsrtique dans le cadre du projet
Aleyin (Labex NUMEV)

Deux phases sont distinguées (cf. Figure 1) :

1. La phase d’exploration, durant laquelle le robot est téléopéré et muni d’un
trancaneur qui lui permet de déposer sont câble durant la progression. Ses
capteurs acoustiques lui permettent d’acquérir des mesures sur la géomor-
phologie du terrain et la mission est dirigée par l’expert hydrogéologue qui
profite des données acquises par le robot en temps réel.

2. La phase de retour (homing), durant laquelle le robot est libéré de son câble
et exploite la carte construite à l’aller (SLAM) pour naviguer en toute auto-
nomie.

Parmi l’ensemble des défis scientifiques et technologiques que soulève cette stra-
tégie (capteurs, communication, navigation, SLAM, autonomie. . .), cette thèse aborde
la question fondamentale de celle de l’actionnement, à savoir : que doit être une
bonne configuration de l’actionnement d’un robot pour réaliser de manière fiable
des opérations d’exploration karstique.

Du point de vue du contrôle, la géométrie d’actionnement est exprimée sous la
forme d’une matrice de configuration qui est construite à partir de la position et
de la direction des actionneurs. L’étude des propriétés algébriques de cette matrice
permet de contraindre les stratégies de contrôle, mais détermine aussi un ensemble
de qualités (réactivité, manœuvrabilité, robustesse aux pannes, compensation des
non-linéarité des propulseurs, puissance propulsive, réduction de la consommation
énergétique. . .) qui affectent le système global. Deux systèmes sont conçus, réalisés
et expérimentés dans le cadre de cette thèse : le robot redondant statique Cube et
le robot à géométrie variable Umbrella (cf Figure 2).

x

Figure 2 – Le robot Cube et ses deux configurations statiques (gauche). Le robot
Umbrella et ses configurations dynamiques.

2. Organisation et contenu du manuscrit

Le manuscrit se compose de neuf chapitres.

Chapitre 1

Il présente les rôles importants que les systèmes karstique et océaniques et la
nécessité de leur exploration. Une vue d’ensemble et une classification des robots
sous-marins existants est proposée et un historique rapide de l’utilisation de ces
robots pour l’exploration karstique est présentée. Les enjeux robotiques spécifiques
à l’exploration karstique sont présentés.

L’architecture et la configuration des robots sous-marins autonomes sont égale-
ment discutées. Enfin, la motivation et les contributions de la thèse sont établies et
la structure de la thèse est présentée.

Chapitre 2

Ce chapitre aborde les fondamentaux de la robotique sous-marine, des modèles
cinématiques aux modèles dynamiques, les différents formalismes de représentation
des orientations, les stratégies de contrôle non linéaire et l’allocation de contrôle sont
brièvement présentés. Plus précisément, le modèle cinématique des véhicules sous-
marins peut être présenté dans le formalisme d’Euler ou quaternion dans lequel le
blocage du cardan peut être évité. Certaines des méthodes de contrôle non linéaires :
programmation de gain, linéarisation par rétroaction, backstepping et contrôle pré-
dictif sont résumés. Une revue de la littérature sur les méthodes d’allocation de
contrôle, qui jouent un rôle essentiel dans le contrôle des systèmes redondants, est
présentée. Les différentes méthodes d’allocation de contrôle sont : la méthode di-
recte, la méthode en guirlande, la cascade générale inverse (CGI) et les méthodes
de programmation linéaire/non linéaire. Enfin, la fonction d’erreur du contrôle, ba-
sée sur le formalisme des quaternions, qui est un guide pour le contrôleur dans le
chapitre suivant, est présentée et démontrée.

xi

Chapitre 3

Les techniques différentes d’optimisation et d’optimisation multi-objectifs sont
présentées dans ce chapitre. Ce sont les outils de base pour résoudre les problèmes
proposés dans les chapitres suivants. Les principes fondamentaux d’optimisation
sont présentés, tels que les conditions de Karush-Kuhn-Tucker (KKT) et le multipli-
cateur de Lagrange. La programmation quadratique séquentielle pour un problème
nonlinéaire avec la méthode des ensembles actifs, qui est partiellement utilisée dans
le chapitre 7 est exposée et discutée. Pour l’optimisation multi-objectif, les défini-
tions de la solution de Pareto et du front de Pareto sont présentées. Les différentes
variantes des méthodes de résolutions sont présentées : pondération, ε-contrainte,
critère global, ordre lexicographique, etc. Pour les méthodes heuristiques, différents
algorithmes sont considérés : Algorithme génétique multiobjectif, algorithme géné-
tique non dominé, optimisation d’essaim partiel multi-objectif, algorithme évolutif
multi-objectif... Les avantages et les inconvénients de chaque méthode sont discutés.

Chapitre 4

Ce chapitre étudie les propriétés d’une configuration statique pour les robots
sous-marins redondants et différents indices de performance sont proposés et ana-
lysés : manipulabilité, optimisation énergétique, espace de travail et atteignabilité,
réactivité et robustesse.

Plus précisément, l’indice de manipulabilité exprime les propriétés isotropes du
robot. Cela signifie que le robot peut agir de la même manière dans les 6 degrés
de liberté. L’indice énergétique exprime la consommation d’énergie lorsque le robot
doit exercer un effort désiré dans une direction donnée. L’indice relatif à l’espace de
travail montre la possibilité d’atteindre le vecteur de contrôle souhaité. L’indice de
réactivité indique à quelle vitesse le robot peut modifier l’orientation et l’amplitude
de l’effort qu’il exerce sur l’environnement. Enfin, l’indice de robustesse établit si
le robot peut continuer à agir selon les 6 degrés de liberté lorsqu’un ou plusieurs
moteurs sont complètement défaillants. L’analyse mathématique de chaque critère
est illustrée. Le problème est formulé comme un problème d’optimisation multi-
objectif. Une méthode d’optimisation multi-objectifs, appelée objectif atteint, est
choisie et une procédure de recherche d’une solution optimale est proposée. Cette
solution est une solution optimale appartenant à la frontière de Pareto. La classifi-
cation de l’ensemble des solutions de la frontière est encore un sujet ouvert et sera
l’objet d’une étude future.

Chapitre 5

Des simulations et des résultats expérimentaux de différentes conception de
configuration statique, dans lesquels la matrice de configuration est constante, sont
présentés. Une comparaison entre deux configurations est effectuée pour illustrer les
performances de l’approche proposée. En particulier, des simulations réalisées avec
deux configurations sont discutées. Le premier est pour le cas général dans lequel

xii

la position et l’orientation des propulseurs sont inconnues. Le second pour le cas
spécifique dans lequel la position des propulseurs est contraintes sous la forme de
cube.

La conception et la réalisation du robot Cube est présentée et deux configurations
sont testées en simulation et expérimentalement. L’une est appelée configuration
normale dans laquelle les propulseurs sont fixés verticalement ou horizontalement,
suivant les arrêtes du cube. La seconde est la configuration optimale (une solution du
chapitre 4). Tous les indices de performance sont établis, comparés et discutés. On
vérifie ainsi expérimentalement que la configuration optimale donne de meilleures
performances que la configuration normale.

Chapitre 6

Un nouveau prototype de robot sous-marin à géométrie variable, appelé robot
Umbrella, est conçu et construit. La configuration de l’actionnement du robot dé-
pend de deux angles (αF et αB) et peut être modifiée avec deux moteurs à courant
continu supplémentaires. Cet actionnement supplémentaire permet de générer un
système avec de bonnes propriétés de réactivité et de manœuvrabilité en mesure
de maintenir une position dans l’espace (station keeping). La modification de sa
configuration d’actionnement permet alors d’optimiser sa capacité propulsive (at-
teignaibilité dans une direction donnée), perdant sa capacité de se maintenir à
l’arrêt, mais pouvant exercer l’effort maximal dans la direction principale de son
avancement.

Des critères de capacité d’action le long des 6 degrés de liberté sont proposés
et une optimisation géométrique supplémentaire est effectuée, suggérant des mo-
difications du robot qui seront effectuée plus tard. Une analyse comparative des
différents types de robots redondant en fonction des propriétés de leur système
d’actionnement est effectuée.

Chapitre 7

La question de la configuration dynamique d’un robot est présenté dans ce
chapitre. Un algorithme, appelé A-SQP, basé sur la programmation quadratique
séquentielle mentionnée au chapitre 3, est proposé pour résoudre le problème. En
particulier, dans ce chapitre, le robot peut changer sa configuration à chaque ins-
tant d’échantillonnage. Une fonction objectif de type énergie est proposée et un
problème d’optimisation sous contraintes est formulé. Un algorithme est proposé
pour résoudre le problème. De plus, des méthodes d’allocation de contrôle avec
une configuration dynamique sont également étudiées et comparées. Les résultats
montrent que dans certains cas, les méthodes basées sur la pseudo-inverse sont
moins performantes que les méthodes basées sur la programmation nonlinéaire.

xiii

Chapitre 8

Les résultats de simulations et des expériences pour le robot Umbrella sont pré-
sentés dans ce chapitre. Pour la configuration dynamique, les résultats de simulation
sont étudiés en fonction de différentes problématiques, à savoir les missions don-
nées, le suivi de trajectoire et le cas d’observation (maintien d’une position dans
l’espace). Des simulations et des validations expérimentales de la capacité reconfi-
gurable du robot Umbrella sont présentées. Il s’agit en particulier du contrôle de la
tenue de la profondeur, de la régulation de l’attitude et d’une mission intégrée. Avec
la configuration dynamique, différents cas sont simulés. Premièrement, le vecteur
de contrôle souhaité est donné. Deuxièmement, le vecteur de contrôle désiré est issu
du calcul du contrôleur. Ceci est simulé avec des problèmes de suivi de trajectoire et
de maintien d’une position (station keeping). Les résultats de simulations montrent
que l’algorithme proposé est efficace.

Chapitre 9

Les conclusions et de ces travaux futurs sont exposées. Les avantages et les li-
mitations de la thèse sont présentés. Les travaux futurs et étendus sont également
proposés. Les travaux futurs intéressants sont l’étude du front de Pareto du pro-
blème de configuration statique, l’application de la programmation paramétrique
pour trouver un ensemble réalisable de vecteurs de contrôle désirés pour le pro-
blème de configuration dynamique, la mise en œuvre d’expériences réelles pour
le problème de configuration dynamique, et enfin un nouveau mécanisme, hybride
entre le système Cube et le robot Umbrella est proposé.

Contents

Nomenclature 1

1 Introduction 9
1.1 Overview . 9
1.2 Underwater robotics . 11
1.3 The karst stakes . 12
1.4 A rapid history of karst exploration with robots 13
1.5 Concepts for karst exploration and Robotic challenges 17
1.6 Autonomous Underwater Robot Architecture and Configuration . . . 20

1.6.1 Static configuration . 20
1.6.2 Dynamic configuration . 21

1.7 Motivations and Contributions of the thesis 21
1.8 Structure of the thesis . 22

2 Fundamentals in Underwater Robotics 23
2.1 Underwater Robot model . 23

2.1.1 Notation . 23
2.1.2 Kinematic model . 24
2.1.3 Dynamic model . 28

2.2 Nonlinear control methods . 28
2.2.1 Gain-scheduling method . 29
2.2.2 Feedback linerization . 29
2.2.3 Backstepping . 31
2.2.4 Model predictive control . 31

2.3 Error function for control with Quaternion 32
2.4 Control Allocation . 33
2.5 Conclusion . 36

3 Optimization and Multiobjective Optimization 37
3.1 Optimization . 37

3.1.1 Problem definition . 38
3.1.2 Basic definitions and theories 38

3.2 Optimization methods . 38
3.2.1 Quadratic programming with equality constraints 39
3.2.2 Quadratic programming with active set method 39

3.3 Sequential Quadratic Programming 41
3.3.1 Quasi-Newton approximations 43
3.3.2 Merit functions . 43
3.3.3 SQP algorithm . 43

3.4 Multiobjective Optimization . 44

xvi Contents

3.4.1 Problem definition . 44
3.4.2 Basic Definitions . 45

3.5 Multiobjective optimization Methods 46
3.5.1 Non-interactive approaches 46
3.5.2 Interactive approaches . 50
3.5.3 Heuristic approaches . 51

3.6 Conclusion . 52

4 Performance Indices and Static Configuration Design 55
4.1 Introduction . 55
4.2 Problem formulation . 59

4.2.1 Model of actuators configuration 59
4.3 The different indices . 60

4.3.1 Manipulability index . 61
4.3.2 Energetic index . 61
4.3.3 Workspace index . 63
4.3.4 Reactive index . 64
4.3.5 Robustness index . 64

4.4 Configuration matrix design problem 66
4.5 Searching for optimal solution . 67

4.5.1 Mathematical analysis . 67
4.5.2 The optimization process . 73

4.6 Conclusion . 74

5 Static Configuration: Simulations and Experiments 75
5.1 Simulations . 75

5.1.1 General case . 76
5.1.2 Given position case . 79
5.1.3 A comparison of the two configurations of Cube robot (given

position) . 81
5.2 Cube robot prototype . 85

5.2.1 Descriptions of electronic and mechanic system 85
5.2.2 Cube’s characteristics . 86

5.3 Experimental results . 86
5.3.1 Attainability validation . 87
5.3.2 Energetic validation . 91
5.3.3 Robustness and Reactive validation 92

5.4 Conclusion . 95

6 Reconfigurable Robot Design - Umbrella Robot 97
6.1 Introduction . 97
6.2 Principles . 99

6.2.1 General view . 99
6.2.2 Hardware Architecture . 99

Contents xvii

6.2.3 Software architecture . 99
6.3 Reconfigurability . 103
6.4 Prototype . 104
6.5 Configuration evaluation - Acting ability 104
6.6 Configuration optimization - Acting ability 107
6.7 Conclusion . 110

7 Dynamic Configuration-Umbrella Robot 113
7.1 Introduction . 113
7.2 Dynamic Control Allocation-The singularities 114
7.3 Dynamic configuration problem . 115
7.4 Problem solution . 119
7.5 Control Design for a dynamic configuration system 121
7.6 Conclusion . 122

8 Reconfigurable and Dynamic Configuration: Simulation and Ex-
periment Results 123
8.1 Simulations . 123

8.1.1 Reconfigurable configuration 123
8.1.2 Dynamic configuration . 124

8.2 Experiments . 135
8.2.1 Basic missions . 135
8.2.2 Integrated mission . 138

8.3 Conclusion . 139

9 Conclusion, Perspective and future works 141
9.1 Conclusion and Perspective . 141
9.2 Future works . 143

A Appendix 145
A.1 Proofs and Mathematical basics . 145
A.2 Quaternions . 146

A.2.1 Quaternion Operators . 146
A.2.2 Eulers angles to quaternions and vice versa 147

A.3 Configuration matrix for Umbrella Robot 148
A.4 Modeling of Umbrella Robot by numerical simulations 157
A.5 Path following methods . 158

A.5.1 Line of Sight . 158
A.5.2 Virtual frame tracking . 163

B Appendix 169
B.1 Dynamic model of marine robots . 169
B.2 6DOFs dynamics model of AUVs . 170

xviii Contents

C Appendix 175
C.1 IMU calibration . 175

C.1.1 Accelerometer calibration . 175
C.1.2 Gyroscope calibration . 175
C.1.3 Magnetometer calibration . 177

D Appendix 179
D.1 Toolbox of configuration matrix evaluation 179

Bibliography 181

Nomenclature

A Configuration matrix

A+ Moore-Penrose pseudo-inverse of A matrix

Ker(A) Kernel space of A matrix

ui (unit) vector of direction of the ith thruster w.r.t Body frame

ri (unit) vector of position of the ith thruster w.r.t Body frame

Fm,i Force magnitude of the ith thruster

Fm Force vector of m thrusters

Fd
m Desired force vector of m thrusters

F = (Fu Fv Fw)T the vector of force elements in the resulting force FB

Γ = (Fp Fq Fr)T the vector of torque elements in the resulting force FB

FB =
(F
Γ
)

Resulting force vector (force and torque elements) w.r.t Body frame

Fd
B Desired control vector (force and torque elements) w.r.t Body frame

cm Input vector of thrusters (PWM)

⊗ Cross product

� Quaternion product

‖ . ‖ Euclidian norm

‖ . ‖p p-norm

List of Figures

1 Stratégie retenue pour l’exploration karsrtique dans le cadre du pro-
jet Aleyin (Labex NUMEV) . ix

2 Le robot Cube et ses deux configurations statiques (gauche). Le robot
Umbrella et ses configurations dynamiques. x

1.1 Where is Earth’s Water?, from [Gleick 1993] 10
1.2 Karst Topology [Taylor 2008] . 13
1.3 Fontaine de Vaucluse Topology [FontaineDeVaucluse] 14
1.4 Télénaute (left) Sorgonaute (center) Spélénaute (right) [Lapierre 2016] 15
1.5 Mercury (left) Hyball (center) Prometheus (right) [Lapierre 2016] . . 15
1.6 The DEPTHX (left) and the 3D mapping of different cenotes (right) 16
1.7 Unexmin (left) Digital wall mapper (center) Sunfish (right) 17
1.8 Ulysse (left) Underwater scooter (right) 18
1.9 Karst exploration concepts (ALEYIN project): French institutes:

LIRMM, HSM, IMAG, IES . 18

2.1 Notations of marine vehicle’s motion 24
2.2 mapping: vector and quaternion spaces 26
2.3 Rotation with quaternion . 27
2.4 Consecutive rotations with quaternion 32
2.5 A general control loop . 34
2.6 Taxonomy of CA methods . 35

3.1 Multiobjective optimization problem solving process 45
3.2 Pareto front concept . 46

4.1 NGC structure augmented with the Actuation System and Sensorial
Stage [Dang 2019] . 56

4.2 Actuation system scheme . 57
4.3 Actuators configuration mapping . 59
4.4 Actuators configuration model . 60
4.5 Manipulability ellipsoid with mapping 61
4.6 The rotation of unit desired vector in 3D sphere 62
4.7 Space Mapping . 63
4.8 Thruster characteristic approximation 65
4.9 Upper-bound of resulting force space 71
4.10 Goal attainment method with two objective functions 73

5.1 Robot design (general case-unknown positions and directions of thrusters)
(Ball robot) . 78

5.2 Attainable force and torque spaces in general case (unknown posi-
tions and directions of thrusters) . 78

4 List of Figures

5.3 Ball robot with 6 and 12 thrusters in general case 79
5.4 Robot design (given position case) in which 8 thrusters are installed

at vertices of cube shape and directions of thrusters are along red
arrow lines . 81

5.5 Attainable torque space (given position case - Cube shape) 81
5.6 3D model of Cube robot in two configurations C1 and C2 82
5.7 Thruster characteristic(BlueRobotics) [BlueRobotics] 82
5.8 Attainable spaces ((a)-Force space,(b)-Torque space) for two config-

urations (C1 (red) and C2(blue)) . 83
5.9 The simulation of cube rotation about X-axis for C1 and C2 84
5.10 The simulation of cube rotation about Y-axis for C1 and C2 84
5.11 The simulation of cube rotation about Z-axis for C1 and C2 85
5.12 Flow of information in Cube robot: T-Thruster, ESC-Electronic

Speed Controller . 86
5.13 Experiments of Cube robot . 88
5.14 C2 and C1 configurations . 89
5.15 The cube rotates about X-axis for C1 and C2 90
5.16 The cube rotates about Y-axis for C1 and C2 90
5.17 The cube rotates about Z-axis for C1 and C2 91
5.18 Depth control for C1 and C2 with one and two motors stopped . . . 93
5.19 Depth control for C1 and C2 with three motors stopped 93
5.20 PWM evaluation for C1 and C2 with 3 motors stopped 93
5.21 Angular velocity evaluation for C1 and C2: diving, rotating X-axis,

and rotating diagonal-axis . 94
5.22 Angular velocity evaluation for C1 and C2: diving, rotating X-axis,

and rotating Y-axis . 94
5.23 Angular velocity evaluation for C1 and C2: diving, rotating X-axis,

and rotating Y-axis . 94

6.1 The 3D model of Umbrella Robot . 100
6.2 The principle diagram of UR . 101
6.3 The use case diagram of UR . 101
6.4 The object structuring diagram of UR 102
6.5 The Dynamic state machine modeling of Turn on power/automatic

use case . 103
6.6 Definitions of two angles αF and αB 103
6.7 A prototype of Umbrella Robot https://www.youtube.com/watch?

v=yBBCu1z3q-0&feature=youtu.be 105
6.8 Acting abilities along/about each DOFs of Umbrella robot with vary-

ing αF and αB . 106
6.9 Acting abilities along/about each DOFs of Umbrella robot with αF =

αB = 900 . 107
6.10 Acting ability along each DOFs and deviations 108
6.11 variables in configuration optimization problem 108

https://www.youtube.com/watch?v=yBBCu1z3q-0&feature=youtu.be
https://www.youtube.com/watch?v=yBBCu1z3q-0&feature=youtu.be

List of Figures 5

6.12 Optimal acting abilities along/about each DoFs of Umbrella robot
and the comparison with current configuration 111

7.1 Errors of pseudo-based CA methods 115
7.2 Errors of nonlinear programming based CA methods 116
7.3 Definitions of two angles αF and αB 117
7.4 Time line of main processor and DC motors 118

8.1 Manipulability index of Umbrella robot w.r.t two angles 124
8.2 Attainable space ((a)-Force space, (b)-Torque space) with αF =

50◦, αB = 60◦ . 124
8.3 Attainable space ((a)-Force space, (b)-Torque space) with αF =

αB = 90◦ . 125
8.4 Simulated robot . 125
8.5 Fixed-configuration simulation results (desired command vector is

given) (αF = 900, αB = 900) . 127
8.6 Fixed-configuration simulation results (desired command vector is

given) (αF = 600, αB = 700) . 127
8.7 Optimal fixed-configuration simulation results (desired command vec-

tor is given) . 128
8.8 Dynamic configuration simulation results (desired command vector

is given) . 129
8.9 Evolution of energy-like criterion with different cases 129
8.10 Path following for ellipse with over-actuated configuration (αF =

αB = 700) . 131
8.11 Path following for ellipse with over-actuated configuration (αF =

αB = 900) . 131
8.12 Path following for ellipse with dynamic configuration (full/over-actuated

controller) . 132
8.13 Energy-like criteria for Path following problem 132
8.14 Simulation results with fixed configurations 133
8.15 Simulation results with dynamic configuration (Fmincon) 134
8.16 Simulation results with dynamic configuration (A-SQP) 134
8.17 Energy-like criterion and computational time comparison 134
8.18 Umbrella Robot at the swimming pool 135
8.19 Yaw control . 136
8.20 Depth control . 137
8.21 Surge, pitch, and yaw control https://youtu.be/1DzfYrsSaMM and

https://youtu.be/9eFT7h-zX3s . 137
8.22 Integrated Mission of Umbrella Robot 138

A.1 The geometry of thruster 7 and 6 for A matrix 148
A.2 The geometry of thruster 1 for A matrix 149
A.3 Umbrella robot simulation in ANSYS 159

https://youtu.be/1DzfYrsSaMM
https://youtu.be/9eFT7h-zX3s

6 List of Figures

A.4 LoS principle for straight-line path-following 160
A.5 LoS principle for curved-line path-following 161
A.6 LoS principle for curved-line path-following in 3D with µ = 1 162
A.7 Serret-Frenet frame . 164
A.8 Path-following with Serret-Frenet frame 166

C.1 Accelerometer calibration . 176
C.2 Gyroscope calibration in X axis . 176
C.3 Gyroscope calibration in Y axis . 177
C.4 Gyroscope calibration in Z axis . 177
C.5 Magnetometer calibration - Ellipse fit 178
C.6 Magnetometer calibration . 178

D.1 Toolbox for configuration evaluation: main page 179
D.2 Umbrella robot model . 180
D.3 Toolbox for configuration evaluation: comparison page 180
D.4 A comparison between C1 and C2 configurations 180

List of Tables

2.1 Pose, Velocity representations, and Kinematic model with Euler and
Quaternion . 28

3.1 Basic evolutionary algorithm [Branke 2008] 52

5.1 Desired values of indices . 76
5.2 Configuration matrix in general case by solving the problem (4.39) . 76
5.3 Positions and orientations of 8 thrusters in general case (one Pareto

solution) . 77
5.4 Configuration matrix in given position case 79
5.5 Positions and orientations of 8 thrusters in given-position case (one

Pareto solution) . 80
5.6 Comparison between two configurations (Iro shows the maximum

number of thrusters which can be failed to make sure that rank(A) = 6) 83
5.7 Technical details of main devices in Cube’s robot 87
5.8 Energy-like consumption of two configurations 91
5.9 Energy consumption of two configurations with the same time duration 92

6.1 configuration matrix with some cases of two angles αF and αB . . . 105
6.2 Limitations of variables . 109
6.3 Optimal values . 109
6.4 Performance indices and acting abilities of optimal configuration . . 110
6.5 Performance indices and acting abilities of different robots, it shows

[min max] in case of UmRobot, Iro shows the maximum number of
thrusters which can be failed to make sure that rank(A) = 6. 112

8.1 Manipulability index with different configurations 124
8.2 Corresponding optimal angles of desired force 126

A.1 Notations in the umbrella robot scheme 150
A.2 Elements of A matrix . 157

Chapter 1

Introduction

Contents
1.1 Overview . 9
1.2 Underwater robotics . 11
1.3 The karst stakes . 12
1.4 A rapid history of karst exploration with robots 13
1.5 Concepts for karst exploration and Robotic challenges . . . 17
1.6 Autonomous Underwater Robot Architecture and Config-

uration . 20
1.6.1 Static configuration . 20
1.6.2 Dynamic configuration . 21

1.7 Motivations and Contributions of the thesis 21
1.8 Structure of the thesis . 22

This chapter presents important roles of karst system and ocean in human life
and the needs of their exploration. The overview of underwater robot domain is
also investigated with classification of robots and a rapid history of using robot
for karst exploration is presented. The ideas and challenging questions for karst
exploration are discussed. Finally, motivation and contributions of the thesis are
also established.

1.1 Overview

As far as we know, water is an essential element to sustain life. Only 0.023% of
the mass of the Earth is composed with water and is distributed according to Figure
1.1. The most part of this water is salted (96.5%) and forms the Global Ocean.
Only 2.5% of this water is fresh and proper to be used in industry or for human
consumption. However, only 1.2% of this fresh water is accessible at surface and,
as a dramatic consequence, is now highly polluted, 68.7% is captured in glaciers
and ice caps and 30.1% is present underground. This underground water, that
represents 0.76% of the global resource, is of great value. Groundwater is the result
of a natural and long filtration process through the different layers of the soil, and
its quality is generally considered as very good. However, the difficulties to exploit
this resource are important, and due to the lack of knowledge about the location
and dynamic of the underground drainage system.

10 Chapter 1. Introduction

Figure 1.1 – Where is Earth’s Water?, from [Gleick 1993]

Karst is a landscape formed by dissolving soluble rocks such as limestone,
dolomite, and gypsum. It consists of sinkholes, caves, and underground drainage
systems. The dissolution process has created a complex underground water flow
network where rainwater can be stored. Many drinking water supplies for human-
beings are extracted from karst aquifer. Moreover, more than 50% of the world’s
hydrocarbon reserves are hold in porous karst systems [Ford 2007a]. Besides, karst
rocks, specifically carbonate rocks, are main elements of agricultural lime, Portland
cement, fine building stones, and aggregate for highways [Ford 2007b]. Therefore,
understanding karst systems not only plays important role in groundwater manage-
ment but also in keeping biodiversity and maintaining karst structure.

The need to discover ocean, karst system, and underwater is a mysterious story
of human-beings, from curious circumstance to economic issues. In fact, living and
non-living resources of ocean are important parts in our life from food suppliers
to heavy industries, i.e, fishing, mining, oil and gas. Moreover, nowadays, global
warming phenomenon causes tsunami and salinization which thread millions of peo-
ple all over the world, especially in countries bordering by oceans. Necessities of
understanding ocean and sweet water dynamics are more essential than ever. Un-
derwater Robots (URs) are powerful tools to help our to extend our knowledge
of these subaquatic environments. To this end, studies and works in underwater
robot field have been sharply developed in recent years. Many projects have been

1.2. Underwater robotics 11

invested to enhance capabilities of underwater robots in America and European
countries [Huet 2016] [Zereik 2018]. A large amount of underwater robot applica-
tions have been seen in all domains from civil to military sections. A primary survey
of underwater robot employments can be referred to [Lapierre 2006a].

1.2 Underwater robotics

Going back in history, the development of underwater robot has spent for a
long time. Diving bell based on a design of Leonardo da Vinci in 1531 is consid-
ered as the first model of submarine; then the SPURV (Self-Propelled Underwater
Research Vehicle, USA) and the Epaulard (France) are considered to be the first
autonomous underwater vehicles models which were developed during the 60’s and
70’s [Lapierre 2006a]. The outbreak of Autonomous Underwater Robots (AUVs)
happened in 90’s with more than 46 models for various missions [Yuh 2000]. Up to
day, there exists numerous of underwater robots that have been built not only for
commercial market but also for scientific community. Regarding appearances and
functions, underwater robots can be categorized as follows:

1. Unmanned Surface Vehicles (USVs): USVs are deployed on the water
surface and it is easy to receive Global Position System (GPS) signal for
localization and navigation. Moreover, since their domain of evolution is
2-Dimension (2D), the control question may appear simpler. From an actu-
ation point of view, they can optimize propulsion by utilizing wind or wave
energy. However, environment disturbances (wind, waves and current) and
boat traffic impact these surface systems and raise important scientific and
technological challenges.

2. Remotely Operated Vehicles (ROVs): ROVs can operate underwater
and communicate with an operator by umbilical cable which allows for a
real-time connection. Indeed, power supply, data and control commands
may be transferred through this link. The first ROVs models came from
the needs of oil and gas industry for deep sea missions. With expansion of
underwater robot applications and forces in science, numerous smaller ROV
models have been built for shallow water. However, ROVs are also limited
in operating space with the length of umbilical and cumbersome link.

3. Autonomous Underwater Vehicles (AUVs): Autonomous Underwa-
ter Vehicles are different from ROVs since they do not have umbilical link.
AUVs can operate autonomously and, as a consequence, perform a smaller
number of typical missions. AUVs are often divided into two categories:
torpedo-shaped or cubic-shaped AUV (based on its appearance and dynam-
ics). Torpedo-shaped AUVs are usually under-actuated systems and designed
for long range missions. Otherwise, cubic-shaped AUVs are often fully ac-
tuated or over-actuated systems and useful for short range missions. Some
different properties between two these kinds of AUVs are hovering and pivot
steering capabilities or operating speed range as well.

12 Chapter 1. Introduction

4. Intervention Autonomous Underwater Vehicles (IAUVs): Interven-
tion Autonomous Underwater Vehicles are considered as hybrid vehicles be-
tween ROVs and AUVs but not completely. In fact, IAUVs can carry out
manipulation task of ROVs integrated in AUVs (without tether) but the
poor qualities of acoustic communication link complexifies the teleoperation
process and reduces its performance.

5. Glider Vehicles (GVs): An underwater glider uses buoyancy variation and
’yoyo’ depth control as propulsion mean. Attitude is controlled by adaptive
redistribution of mass or external control surfaces. The advantages of GVs
are long range missions, low-cost operations.

6. Bio-inspired Vehicles (Bio-Vs): The fact that living species show opti-
mal performance through natural selection, therefore, numerous Bio-Vs have
been developed in recent years to follow biological shapes. Inheriting flex-
ibility of natural systems, most of Bio-Vs can maneuver by changing their
shapes.

Generally, control of underwater system raises questions in 6 Degree of Freedoms
(DoFs) (roll, pitch, yaw, surge, sway, and heave), but most of applications just only
require the control of 3+1 DoFs (surge, heave, and pitch, yaw), depending on the
actuation capacity of the system and objectives of missions.

From actuation point of view, an underwater vehicle can be classified into an
under-actuated, iso-actuated, or over-actuated system. This depends on the num-
ber and position of actuators carried by the vehicle and the DoFs that this ac-
tuation system can impact. Note that a system can be under-actuated even if it
carries more actuators than DoFs. This will be detailed in Chapter 4. Among
them, an over-actuated system has some advantages such as explicit management
of the redundancy for robustness, compensation of actuation defaults (dead-zone)
[Ropars 2015], and hybrid systems (AUV/ROV). In this thesis, over-actuated prop-
erties of an AUV are exploited for karst exploration which is a confined environment.

1.3 The karst stakes

As aforementioned, karst generally comprises a network of underground natural
conduits, resulting from the dissolution of soluble rocks, limestone, dolomite and
gypsum (Figure 1.2). These aquifers drain groundwater on a large scale, from their
inland catchment basin to their marine exsurgences. They supply drinking water to
millions of people worldwide and, during heavy rainfall, may host violent transfers
of charge that can cause dramatic and sudden floods in fragile and unpredictable
areas.

The urgent need for management tools of underground resources requires a
precise knowledge of the underlying conduit network, in terms of position, depth,
geomorphology, and seasonal and episodic dynamics. Exploitation of this resource
requires precise drilling which must penetrate these conduits in a region with an
appropriate morphology (pumping chamber), in order to reply to the pumping

1.4. A rapid history of karst exploration with robots 13

demand, also considering the seasonal variability of the resource availability and
quality.

Hydrogeological risk management requires having a precise knowledge of the
hydrosystem dynamics, running models in order to predict floods occurrence, or
afford this underground network with a dam flood control role [Jourde 2007]

It is thus of major importance to get reliable information about the position,
geometry and dynamics of these karstic networks along their entire development,
from inland to marine resurgence. This is a crucial and urgent issue for public
authorities in charge of prospection, protection, and active management of the
groundwater resource in karstic regions.

Figure 1.2 – Karst Topology [Taylor 2008]

1.4 A rapid history of karst exploration with robots

The first document reporting on the use of an underwater robot in karst envi-
ronment is about the Télénaute, in 1967, operated by the IFP (Institut Français
du Pétrole) who pushed the exploration of Fontaine de Vaucluse down to 106m.
This robot was fully teleoperated and initiated the edifying story of the robotic ex-
ploration of this legendary spring, as Roland Pastor reports [FontaineDeVaucluse]
(Figure 1.3), and from which the following description is largely inspired. In 1983,
a new generation of systems, Sorgonaute, was built in collaboration with Renault.
It took over Télénaute, and reached 243m depth, but was stopped by the length
of its cable. The year after, Sorgonaute II was lost at 233m because its thrusters
were trapped in a remaining lifeline. In 1986, Sorgonaute III was built to recover its
predecessor. The mission turned nightmare and the system was lost with 150m of
cumbersome floating cable. Sorgonaute IV, in 1988, tried a rescue mission that also
failed. Finally, the systems were recovered, and the site cleared, by divers. This
raises the question of the appropriateness of such risk taking to recover defective
robots. Besides being a brilliant failure, this adventure is, above all, a highly valu-

14 Chapter 1. Introduction

able experimental feedback. In the meantime, Modexa, from the company MIC,
reached the deepest point at 315m and discovered the entrance of a large horizontal
karst development.

Figure 1.3 – Fontaine de Vaucluse Topology [FontaineDeVaucluse]

These systems were essentially huge teleoperated by video systems, without a
specific sensor suite. But they solved a lot of technological issues (depth, mobility),

1.4. A rapid history of karst exploration with robots 15

Figure 1.4 – Télénaute (left) Sorgonaute (center) Spélénaute (right) [Lapierre 2016]

which now benefit to current systems. In 1989, the Spélénaute was built by COMEX
[Comex], with a higher ambition, benefiting from recent advances in acoustic sensor
technology. It was designed with a complete navigation sensor-suite (compass,
depth-gauge, echosounder, and current meter) to build the first realistic topography
of the chasm, and reached the bottom as Modexa did, 4 years before. Télénaute,
Sorgonaute, and Spélénaute robots are shown in Figure 1.4.

Figure 1.5 – Mercury (left) Hyball (center) Prometheus (right) [Lapierre 2016]

The previous story is centered on Fontaine de Vaucluse, a commune in France,
but similar experiment was made all over Europe. As illustrative example, we
can highlight the exploration of the deepest vertical cave in the world 1, the chasm
"Pozzo del Merro", where the Mercury robot, operated by the Italian MSTD team 2,
made the first exploration in 2000, reaching 210m depth. Few months later, the
Hyball reached 310m, approaching the world record held by Modexa, but without
touching down. Finally, in 2002, the Prometheus, owned by the Milanese Firemen
Corps 3, established the actual record at 392m depth, within this emblematic chasm,
and discovered a narrow horizontal continuation (Figure 1.5).

Previous systems are ROV (Remotely Operated Vehicle) which load a necessary,

1. https://web.infinito.it/utenti/s/simonant/merro-english.htm
2. Mediterranean Sea Technical Divers: https://web.infinito.it/utenti/s/simonant/index.htm
3. http://www.vigilfuoco.it/sitiVVF/milano/notizia.aspx?codnews=14235s=281

16 Chapter 1. Introduction

but highly problematic, umbilical cable. Autonomy is quite difficult to achieve
in such condition. Nevertheless, some AUV (Autonomous Underwater Vehicle)
were developed. Among them, the most advanced system is the DEPTHX (DEep
Phreatic THermal eXplorer) developed, in 2005, by University American Consor-
tium and sponsored by NASA, and dedicated to Cenote 4 exploration [Stone 2007].
DEPTHX is approximately 1.5m tall and 1.9m in length and width for a 1.5 ton
weight. The vehicle has a full suite of underwater navigation sensors and a network
of 46 discrete sonar elements. It was designed to navigate in unexplored envi-
ronments, generate high resolution 3-D maps, collect biological samples, and return
autonomously to its origin. Besides the system integration challenge that represents
the conception of such a complete system, the development focuses on the on-line
3-D mapping and the SLAM navigation question [Fairfield 2006], which provided
in 2007 a complete cartography 5 of the Cenote La Pilita [Fairfield 2007], north-
ern Mexico. Worthwhile noticing, an experimental validation of an autonomous
sample collection was performed, and opened the quite challenging extraterrestrial
microbial life investigation on the Jovian moon Europa [Sahl 2010] (Figure 1.6).

Figure 1.6 – The DEPTHX (left) and the 3D mapping of different cenotes (right)

The DEPTHX system is the result of a very nice integration challenge, but is
almost dedicated to vertical exploration. Moreover, its heavy logistics disqualifies
this system for routinely operations that the karst exploration challenge requires.
Previous work was oriented to patrimonial, depth competition, and of course sci-
ence, but where not facing the current and vital societal challenge of understanding
water resource dynamics.

The Unexmin European Project 6 proposes to design and develop autonomous
systems for exploration and mapping of Europe’s flooded mines, in order to provide
authorities pertinent information to re-active the exploitation of these abandoned
mines. The focus is on the question of miniaturization and adaptation of deep-sea
robotics technology to this new application environment and to the interpretation
of geoscientific data [Lopes 2017]. the main distinguishing feature of this flooded

4. Cenote is a sinkhole formed by volcanic activity eroding the carbonate rock.
5. 3D reconstruction model: https://www.facebook.com/stoneaerospace/videos/1245970192284/
6. https://www.unexmin.eu/

1.5. Concepts for karst exploration and Robotic challenges 17

mine environment, with respect to karst, is the man-made, hence structured condi-
tions of the environment (in some cases known a priori based on historical maps)
and the fact that the spatial dimensions of many galleries allow for some free room
to maneuver without jeopardizing the integrity of the robot. Given the confined
environment of the karst and the quest for autonomous exploration of uncharted un-
derground networks, the results of Unexmin and their contribution to help solving
some of the karst-related exploration problems are eagerly expected. Other systems
dedicated to 3D mapping of underwater caves have been developed, as man-driven
systems, where mapping sensors are mounted on an underwater scooter, such as
the Digital Wall Mapper System developed by B. Stone [Ende 2001], which was
used to prefigure the sensors suite of the DEPTHX and the Sunfish HROV sys-
tems. The latter is announced to be a commercial autonomous underwater cave
mapper, but only some information has been published about the Sunfish HROV
[Richmond 2018].

Figure 1.7 – Unexmin (left) Digital wall mapper (center) Sunfish (right)

Finally, the ROV Ulysse and the manned system Navscoot were developed in
Aleyin Project, a local funded project from the Labex Numev of University of Mont-
pellier. Ulysse is equipped with a profiling sonar, a complete suite of navigation
sensors (IMU and DVL) and carries 12 thrusters. Navscoot is a man-driven sys-
tem obtained by mounting the sensor suite of Ulysse on an underwater scooter.
With these systems, an acoustic 3D topography and a partial photogrammetric
reconstruction have been made [Lasbouygues 2017] (Figure 1.8).

Routine in karst exploration conceals many opened technological and scientific
issues, which are exposed in the sequel.

1.5 Concepts for karst exploration and Robotic chal-
lenges

Karst exploration that we have chosen, in which the present study is included,
is depicted in Figure 1.9 and divided into two phases: exploration phase and return
phase (from ALEYIN project 7 which supports this research activity, including the
funding of this PhD program).

7. ALEYIN project was supported by LabEx NUMEV (ANR-10-LABX-0020) within the I-SITE
MUSE (ANR-16-IDEX-0006) and the Region Occitanie (French FEDER funds)

18 Chapter 1. Introduction

Figure 1.8 – Ulysse (left) Underwater scooter (right)

Figure 1.9 – Karst exploration concepts (ALEYIN project): French institutes:
LIRMM, HSM, IMAG, IES

1. Exploration phase: Because of complexity of karst terrain and low band-
width of underwater acoustic sensors, the presence of the umbilical cable
is mandatory and an expert needs to be in the loop. In this phase, robot
operates in a ROV configuration. However, it is not realistic to imagine
ROV being able to drag an umbilical cable along kilometres of chaotic re-
lief. It drives a interesting question of umbilical cable management which
is discussed in the sequel. In control perspective, in a confined context, the
full teleoperation of a ROV is a difficult task. Hence, a potential solution

1.5. Concepts for karst exploration and Robotic challenges 19

relies on co-control strategy, where the system autonomously performs the
control of given degrees of freedom, while the remaining ones stay under the
operator control. An effective solution, during exploration phase, is that the
robot is autonomously centered, using acoustic or video sensors, insuring its
own safety, while the operator controls its progression and attitude. Note
that this requires reactive control architecture in which a suite of sensors
or techniques can collect environmental data with good enough of sampling
period. Following Figure 1.9, the objectives of this phase are to collect raw
data and build a model which is useful for the return phase. To this end, the
system is driven closer to the environment, in order to precisely observe a
region of interest. In this context, observation sensors can be advantageously
used for safe observation.

2. Return phase: In this phase, the robot release its umbilical cable and
switches to AUV configuration. It will also exploit data collected during
exploration phase. The objective is safely homing. In particular, robot
will use raw data of the exploration phase to extract useful information to
build 3D map in order to home with Simultaneous Localization and Mapping
(SLAM) techniques.

Following these two phases in karst exploration, challenging problems and in-
teresting ideas exploiting a robot safety and effectively are revealed:

1. Umbilical cable management: An onboard motorized secable truncanner
is necessary, but it is also complex and delicate mechatronic device which
requires a particular attention. Moreover, the presence of this umbilical
cable, as reported by previous karst exploration attempts, is the major cause
of failure since the cable is highly subject to things being blocked within the
relief of the environment, specially during the return phase. In this phase,
it has to be noticed that the cable, even unplugged, is equipping to the
environment, and could be advantageously used as the diver’s lifeline. This
implies to develop an active cable that guides the homing navigation.

2. Navigation and Mapping: Navigation and Mapping are quite important
in karst environment where GPS does not work and navigation techniques
for open water (LBL, USBL, GIB, and single beacon navigation) can not
be used. SLAM techniques is suitable to this issue. Nevertheless, efficient
SLAM algorithm with respect to on-board computational limitation of robot
for kast exploration remains an open question.

3. Guidance and Control: Leveraging on techniques that have been de-
veloped for ROVs and AUVs, a co-control architecture should be required.
However, an effective and complete integration system is always a challenging
problem.

4. Robustness: This is one of pivotal requirements for a confined environment
exploration. For minimizing performance degradation and avoiding danger-
ous operational conditions in the case of actuator failures, fault detection

20 Chapter 1. Introduction

and tolerance strategies can be applied. Beyond all, it is redundancy of
robot which can be exploited to compensate actuator limitations or avoid
failures in physical level.

5. Reactivity and adaptable autonomy: Facing with unpredictable issues
(varying current, salinity variation), and the complexity of conduit section
in karst network, reactivity management and adaptable autonomy of robot
are extremely important. Moreover, different modes of observation (local
observation, long course) are carried out during a mission. A varying geom-
etry of actuation system will be a potential solution. Furthermore, energy
consumption can be saved with an adaptive configuration.

As aforementioned discussions, many scientific challenges for robotics are de-
rived in karst exploration with respect to performance and safety of missions. In
fact, confronting with the complexity of conduit section (chaotic topology, closed
space, decreasing and increasing of section) which can yield unforeseeable issues
such as varying frontal current and causes difficulties in robot missions. Another
problem is that the robot has to save its energy as much as possible because of bat-
tery’s limitation. This requires a robust, reactive, and adaptable design of robot’s
configuration and redundant system is a good choice. This thesis focuses on
architecture in propulsion perspective and configuration design of redun-
dant AUVs which optimize objective functions in order to deal with these
requirements.

1.6 Autonomous Underwater Robot Architecture and
Configuration

This section discusses briefly about architectures of AUVs in propulsion perspec-
tive, with static or dynamic configurations. A detailed survey of them is presented
in Chapter 4 and Chapter 6.

1.6.1 Static configuration

Most of current UVs have a static configuration of their actuators (can not
change during missions). Specifically, shape and propulsion system of UVs are
fixed. Static configuration UVs have advantages and drawbacks also. For example,
torpedo-shaped AUVs can be powerful for long range and high speed missions,
however they are not suitable for operations in narrow spaces, low speeds, and
station-keeping. Dynamic configuration UVs can overcome limitations by switching
the configuration of their actuation system. However, a flexible system implies
other challenging questions in control and control allocation, for instance. This
will be discussed in the sequel. Although Bio-Vs have fixed configurations but
we can classify into dynamic configurations because they are able to modify their
shapes during missions. For static configurations, a challenging questions is how to
optimize the design with respect to some ’well-chosen’ performance criteria. The

1.7. Motivations and Contributions of the thesis 21

thesis deals with this problem in some perspectives and more details are presented
in Chapter 4.

1.6.2 Dynamic configuration

UVs with dynamic configurations have many advantages in comparison with
ones with static configurations. Indeed, dynamic configuration UVs are able to
adapt their configuration according to mission requirements. Bio-Vs belong to this
category, as explained in the previous section. However, it is not easy to model and
control such UVs because of their hyper-redundant nature which requires specific
mathematical tools and control strategies [Lapierre 2006b]. There exits numerous
questions for a dynamic configuration system, for example, when and how to change
configuration in order to guarantee control performances, smooth transition between
configurations, optimal configuration for specified mission, etc. This thesis also
addresses this issue in Chapter 6 and Chapter 7.

1.7 Motivations and Contributions of the thesis

This thesis focuses on redundant systems in underwater robot field applied to
karst and marine exploration. This work focuses on configuration design and related
problems: control allocation and control design. In particular, the positions and
orientations of the thrusters are firstly determinated with static configuration in
which performance indices are proposed and multiobjective optimization approach
is used to find a solution. This yields an interesting question when positions and
orientations of thrusters can be changed dynamically. Therefore, a dynamic config-
uration robot is studied by building a prototype and investigating its properties.

The contributions of the thesis are summarized as follows:

• Propose the criteria, manipulability, energetic, workspace, reactive, and ro-
bustness indices, to design an optimal static configuration for over-actuated
underwater robots. Multiobjective optimization methods are investigated and
goal attainment approach is chosen to solve the problem. Simulation and
experiments results show the efficiency of the proposed approach.

• Build a prototype of AUVs with reconfigurable configuration, called Umbrella
Robot. The design procedure from hardware to software and Inertia Measure-
ment Unit (IMU) calibration are presented. Simulations and experiments are
carried out on the robot. And then, an optimal configuration problem w.r.t
geometry distances is proposed to improve the robot’s performances.

• Propose optimal dynamic configuration problem for Umbrella Robot. This
method exploits the advantage of dynamic configuration of the robot with re-
spect to energy-like criterion. In the meantime, control allocation methods
are studied for this case. Simulation results are shown to prove the feasibility
of the method.

22 Chapter 1. Introduction

1.8 Structure of the thesis

The thesis is composed with nine chapters. The main points of each chapter are
shortly presented as follows:

1. Chapter 1: Chapter 1 presents important roles of karst system and ocean
in human life and the needs of their exploration. The overview of underwater
robot domain is also investigated with classification of robots and a rapid
history of using robot for karst exploration is presented. The ideas and
challenging questions for karst exploration are discussed. Finally, motivation
and contributions of the thesis are also established.

2. Chapter 2: Fundamentals in underwater robotics, from kinematic to dy-
namic models, quaternion representation, nonlinear control strategies, and
control allocation are briefly presented in this part.

3. Chapter 3: Optimization and multiobjective optimization techniques are
shown in this chapter. These are basic tools for solving proposed problems
in the following chapters.

4. Chapter 4: This chapter presents static configuration design problem for
over-actuated underwater robots. Performance indices are proposed and
analyzed. A multiobjecitve optimization method is chosen and procedure of
searching for optimal solution is proposed.

5. Chapter 5: Simulations and experimental results of static configuration
design problem are presented. A comparison between two configurations are
shown to prove the proposed approach.

6. Chapter 6: A prototype of an underwater robot with reconfigurable con-
figuration, called Umbrella Robot, is built. The reconfigurable capability is
analyzed. Acting abilities along/about 6 DoFs are proposed and optimiza-
tion problem with respect to geometry distances are suggested.

7. Chapter 7: A problem of robot’s dynamic configuration is presented in this
chapter. An algorithm, called A-SQP which is based on Sequential Quadratic
Programming, is proposed to solve the problem.

8. Chapter 8: Simulation and experiment results for Umbrella Robot were
shown in the chapter. For dynamic configuration, simulation results with
different issues, i.e., given missions, path following, and observation case,
are studied.

9. Chapter 9: Conclusions and future works are drawn.

Chapter 2

Fundamentals in Underwater
Robotics

Contents
2.1 Underwater Robot model . 23

2.1.1 Notation . 23
2.1.2 Kinematic model . 24
2.1.3 Dynamic model . 28

2.2 Nonlinear control methods . 28
2.2.1 Gain-scheduling method . 29
2.2.2 Feedback linerization . 29
2.2.3 Backstepping . 31
2.2.4 Model predictive control . 31

2.3 Error function for control with Quaternion 32
2.4 Control Allocation . 33
2.5 Conclusion . 36

Fundamentals for underwater robotics, from kinematic to dynamic models, quater-
nion representation, nonlinear control strategies, and control allocation review are
briefly presented in this part.

2.1 Underwater Robot model

This section presents background of underwater vehicles, from common nota-
tions to kinematic and dynamics models.

2.1.1 Notation

All common and primary notations in marine vehicle’s motion are given in this
part as in Figure 2.1. Specific ones will be shown when needed. Let’s define the 2
reference frames:

1. {I} denotes the NED (North-East-Down) inertial frame
2. {B} denotes a direct frame attached to the vehicle’s metacenter (Body-

frame)
According to these frames, the following notations will be used:

24 Chapter 2. Fundamentals in Underwater Robotics

Figure 2.1 – Notations of marine vehicle’s motion

1. η = [η1 η2]T denotes the system states within the inertial frame {I},
where:
— η1 = [x y z]T denotes the system’s position in the inertial frame {I}.
— η2 = [φ θ ψ]T denotes the system’s attitude (orientations) w.r.t {I},

using Euler angles.
2. Q denotes the system’s attitude w.r.t {I}, using quaternion formalism.
3. ν = [ν1 ν2]T denotes the system’s velocities expressed in {B}, where:

— ν1 = [u v w]T denotes the system’s linear velocities w.r.t {I} and
expressed in {B}.

— ν2 = [p q r]T denotes the system’s angular velocities around each axis
of {B}.

4. W = [0,ν2
T] denotes the system’s angular velocities expressed in {B} with

quaternion formalism.
5. FB = [F Γ]T denotes the resulting actions of the actuation system, ex-

pressed in {B}, where:
— F = [Fu Fv Fw]T denotes the resulting forces of the actuation system

expressed in {B}.
— Γ = [Γp Γq Γr]T denotes the resulting torques of the actuation system

expressed in {B}

2.1.2 Kinematic model

The kinematic model expresses the kinematic relation between inertial and body
frames, that the system constrains (none in our case since our system is holonomic).

2.1. Underwater Robot model 25

The expression of this model depends, of course, of the chosen formalism. Euler
formalism is known for embedding the ‘Gimbal Lock’ singularity, which occurs for
θ ≈ ±π

2 . Considering that most of the applications can be performed with a small
pitch (for aerial and marine drones) the Euler formalism is largely used. Its principal
interest is to manipulate comprehensive elements: roll, pitch and yaw, as a heritage
from marine science. However, the quaternion formalism relaxes the Gimbal lock
singularity. Both approaches are presented in the following.

2.1.2.1 Euler formalism

For easily following, the kinematic model is divided into two parts: translation
and rotation. First, the relation of time derivative of the position vector η1 and
linear velocity vector ν1 via the following transformation:

η̇1 = J1(η2)ν1 (2.1)

where J1(η2) is a rotation matrix relating to the functions of Euler angles. This
matrix is given by:

J1(η2) =

c(ψ)c(θ) −s(ψ)c(φ) + s(φ)s(θ)c(ψ) s(ψ)s(φ) + s(θ)c(ψ)c(φ)
s(ψ)c(θ) c(ψ)c(φ) + s(φ)s(θ)s(ψ) −c(ψ)s(φ) + s(θ)s(ψ)c(φ)
−s(θ) s(φ)c(θ) c(φ)c(θ)


(2.2)

where c() = cos() and s() = sin().
On the other hand, the relation of time derivative of the Euler angles vector η2

and angular velocity vector ν2 via the transformation:

η̇2 = J2(η2)ν2 (2.3)

where J2(η2) is a transformation matrix (Jacobian matrix) is given by:

J2(η2) =

1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)

c(θ)
c(φ)
c(θ)

 (2.4)

where c() = cos(), s() = sin(), and t() = tan().
Combining (2.1) and (2.3) yields the kinematics mode of ocean vehicles in com-

pact form:

η̇ = J(η)ν (2.5)

where η = [η1 η2]T = [x y z φ θ ψ]T and ν = [ν1 ν2]T = [u v w p q r]T .
The full transformation matrix is as:

J(η) =
(

J1(η2) 03×3
03×3 J2(η2)

)
(2.6)

For avoiding singularities or Gimbal locks phenomena in kinematic model, quater-
nions representation is alternative approach which is presented in the sequel.

26 Chapter 2. Fundamentals in Underwater Robotics

2.1.2.2 Quaternion formalism

Basic definitions[Kuipers 1999]: A quaternion Q is defined as hyper-complex
numbers with one real part and three imaginary parts as:

Q = q0 + q1i + q2j + q3k (2.7)

where q0, q1, q2, q3 ∈ R, and i, j,k denote the orthonormal basic for R3.
An any unit quaternion can be described as:

Q = [cos α2 , sin
α

2 .n
T]T (2.8)

where n is a unit vector, and α is an angle (we can see more details of these two
parameters in quaternion rotation).

Figure 2.2 – mapping: vector and quaternion spaces

Basic operations (add, multiply, conjugate, norm, inverse, and derivative) can
be referred to Appendix A.2.

Quaternion and Rotation

Theorem 2.1.1 [Kuipers 1999] For any unit quaternion, we can describe: Q =
(cos θ2 , sin

θ
2n) and for any vector V ∈ R3, the action of the operator:

LQ(v) = Q�V�Q∗

on V is equivalent to a rotation of the vector through an angle θ about n as the axis
of rotation.

Theorem 2.1.2 [Kuipers 1999] For any unit quaternion, we can describe: Q =
(cos θ2 , sin

θ
2n) and for any vector V ∈ R3, the action of the operator:

LQ(v) = Q∗ �V�Q

on V is equivalent to
∗ a rotation of the coordinate frame about the axis n through an angle θ while

V is not rotated, or,

2.1. Underwater Robot model 27

Figure 2.3 – Rotation with quaternion

∗ an opposite rotation of the vector V w.r.t the coordinate frame through an
angle θ about the axis n.

Note that Theorem 2.1.1 and Theorem 2.1.2 can be considered as the same
belonging the choice of rotation angle θ. The analysis details were presented in
[Kuipers 1999].

Kinematics
Let Q be a unit quaternion, and ω is angular velocity of the rotated frame (ω

is the angular velocity expressed in body frame), and W = [0 ω]T , the derivative
of Q is:

Q̇ = 1
2Q�W (2.9)

Equation 2.9 is considered as rotational kinematic model with quaternion for-
malism. For translational kinematic model, Theorem 2.1.1 is useful, it is given
by:

η̇1Q =
[

0
η̇1

]
= Q�

[
0
ν1

]
�Q∗ (2.10)

Full kinematic model of a marine vehicle with Euler and quaternion formalism
is summarized in Table 2.1.

Unwinding phenomenon

In particular, reaching a desired quaternion, robot can rotate through clockwise
direction or vice versa. This yields undesirable behavior, called unwinding phe-
nomenon, in designing a continuous closed-loop feedback control that stabilize a
rotational motion (topological obstruction) [Bhat 2000] [Chaturvedi 2011].

Finally, transformations between rotation matrix or Euler angles and quater-
nions can be referred to Appendix A.2.

28 Chapter 2. Fundamentals in Underwater Robotics

Pose
Translation η1 = [x y z]T η1Q = [0 x y z]T

Rotation Euler Quaternion
η2 = [φ θ ψ]T Q

Velocities
Translation ν1 = [u v w]T

Rotation Euler Quaternion
ν2 = [p q r]T W = [0 ν2

T]T

Kinematic model Euler Quaternion

η̇ =
[
η̇1
η̇2

]
= J(η2)

[
ν1
ν2

] [
η̇1Q
Q̇

]
=

Q�
[

0
ν1

]
�Q∗

1
2Q�W


Table 2.1 – Pose, Velocity representations, and Kinematic model with Euler and
Quaternion

2.1.3 Dynamic model

Dynamics model presents the relation between derivative of linear and angular
velocities and external forces and torques along/about each axes. For simplicity, we
do not consider ocean current velocity in the following equations. Dynamic model
of a marine vehicle is given by [Fossen 2011]:

Mν̇ = FB + Fwind + Fwave −C(ν)ν −D(ν)ν − g(η) (2.11)

where M = MRB +MA, M is rigid-body mass matrix, MA is hydrodynamic added
mass matrix; C = CRB+CA, CRB is rigid-body Corriolis-Centripetal matrix due to
the rotation of body-frame {B} about inertial frame {I}, CA is Corriolis-Centripetal
matrix of added mass; D = Dl + Dn with Dl and Dn are linear and nonlinear
damping matrix respectively, Fwind and Fwave are environmental forces/moments
(wind and wave). FB is applying forces/moments w.r.t body-frame. Finally, g(η)
is buoyancy forces and torques. For more details, we can refer to Appendix B.

2.2 Nonlinear control methods

As it has been clearly stated in [Brockett 1983] any system which exhibits a non-
holonomic constraint cannot be stabilized with linear controller. This is the case for
the well known ‘unicycle’ which is used as a generic system to address the question
of movement regulation. Considering marine systems, as shown in [Lapierre 2007],
there are many advantages to extend the control solutions for unicycle-type sys-
tems to underactuated (marine) systems. One should note that an iso-actuated
system can be stabilize using linear approaches. However, our concern here focuses
on system with varying capacities of the actuation system. This implies that, ac-
cording to its actuation configuration, the system can evolve from iso-actuation to
under-actuation (and vice versa), visiting during its continuous evolution all the
intermediate states, potentially ill-conditioned. Hence, the appropriate control de-

2.2. Nonlinear control methods 29

sign is nonlinear. We present in the following some nonlinear approaches that can
be adopted to control such a system.

This section presents briefly nonlinear control methods for nonlinear systems.
In general, a nonlinear system is given as:

ẋ = f(x,u) (2.12a)
y = h(x) (2.12b)

where x ∈ Rn is a state vector of the system, u ∈ Rm and y ∈ Rp are control input
and output vectors respectively. f and h are nonlinear functions.

The objective is to design control input, u, to satisfy control performances. In
the following sections, some typical nonlinear control methods are illustrated for
the system (2.12). The author does not have the ambition to survey all nonlinear
control methods for underwater robots and only to present briefly nonlinear control
methods for nonlinear systems.

2.2.1 Gain-scheduling method

Gain-scheduling method is an extension of the linearization approach, which is
often used at one operating point, to a range of operating points. The concept
of gain scheduling stems from flight control system. The method is suitable for
systems which can parameterize the operating points by one or more variables,
called scheduling variables. In this case, a system will be linearized at several
equilibrium points and each linear feedback controller at each point is designed.
A family of linear controllers, in compact form as gain scheduled controller, is
implemented with corresponding scheduling variables. The procedure of designing
a gain scheduled controller as follows [Khalil 2002]:

1. Linearize the nonlinear model about a family of operating points, parame-
terized by the scheduling variables.

2. Design each linear controller to achieve the specified performance at each
operating point.

3. Construct a gain-scheduled controller such that:
(a) for each constant value of the exogenous input.
(b) the linearization of the closed-loop system under the gain-scheduled con-

troller is equivalent to the linearization of the closed-loop system under
the fixed-gain controller.

4. Check the nonlocal performance of the nonlinear closed-loop model.
It is obvious that gain-scheduled method inherits methods from linear systems.

2.2.2 Feedback linerization

The basic idea of feedback linearization is to cancel nonlinearities by lineariza-
tion which employs a change of coordinates and feedback control to tranform a

30 Chapter 2. Fundamentals in Underwater Robotics

nonlinear system to a system whose dynamics are linear. Feedback linearization
is different from the conventional linearization which is a linear approximation of
dynamics. Indeed, an example for input-output linearization case, considering a
class of nonlinear system (2.12) is given by:

ẋ = f(x) + g(x)u (2.13a)
y = h(x) (2.13b)

The derivative of the output y is given by:

ẏ = ∂h

∂x(x)f(x) + ∂h

∂x(x)g(x)u (2.14)

Assuming that ∂h
∂x(x)g(x) = 0, we define:

ψ1(x) = h(x), ψ2 = ∂h

∂x(x)f(x) (2.15)

We have the second derivative of y:

ÿ = ∂

∂x(∂h
∂xf)f + ∂

∂x(∂h
∂xf)gu = ∂ψ2

∂x (x)f(x) + ∂ψ2
∂x (x)g(x)u (2.16)

Similarly, assuming that ∂ψ2
∂x (x)g(x) = 0, we continue the differential procedure to

p times:

yp = ∂ψp
∂x (x)f(x) + ∂ψp

∂x (x)g(x)u (2.17)

If ∂ψp
∂x (x)g(x)u 6= 0 (this relates to relative degree definition of system (2.13)

[Krstic 1995]) and u is chosen as:

u = 1
∂ψp
∂x (x)g(x)

[−∂ψp
∂x (x)f(x) + v] (2.18)

We have:
yp = v (2.19)

Then the dynamics of y and its derivatives are governed by a chain of p inte-
grators. It is clear that the system is input-output linearizable because of the state
feedback control (2.18) which reduces input-output map to (2.19) and new input v
is designed with strategies of linear systems.

Another case is state feedback linearization, readers can refer to [Khalil 2002]
and [Isidori 1989]. With feedback linearization technique, we can inherit control
design methods from linear systems.

2.2. Nonlinear control methods 31

2.2.3 Backstepping

The backstepping method is a recursive design procedure. This method is based
on Lyapunov stability theorem, which derives control Lyapunov function. Consider
a nonlinear state space system as Equation (2.12a) and a virtual control v is given
by:

ẋ = f(x,v) (2.20a)
v̇ = g(v,u) (2.20b)

The backstepping method is designed recursively. Virtual control v, Equa-
tion (2.20a), is designed to satisfy control performances, for example in kinematic
stage. Afterwards, control input u is designed with virtual control v from previous
step. The order of designing complexity depending on kind of feedback systems:
strict-feedback systems, pure-feedback systems, and block-strict-feedback systems,
is increased. General design procedures can be referred in [Krstic 1995], and appli-
cations in marine systems can be found in [Lapierre 2008].

2.2.4 Model predictive control

Model Predictive Control (MPC) is a control method which directly considers
input constraints into design procedure. It stems from optimal control problem,
which optimizes an objective function. The main challenge of MPC is to solve online
optimization problem. Because MPC methods is based on numerical computations,
it is more convenient to express Equation (2.12a) in discrete form as:

xk+1 = f(xk,uk) (2.21a)

For defining the MPC scheme, a stage cost function, l(xk,uk), is defined. It can
be a penalizing function of the distance from equivalent point and control effort,
e.g., l(xk,uk) = ‖xk − x∗‖ + λ‖uk‖. The MPC problem defines an optimization
problem which minimizes objective function, V (x,u, N) as:

min
u
V (x,u, N) =

N−1∑
k=1

l(xk,uk) + V (xN) (2.22a)

s.t xk = f(xk,uk) (2.22b)
x0 = x0 (2.22c)
u ∈ U (2.22d)

where N is the control horizon, x0 is the initial value, and U is the input constraints.
MPC approach has been studies in recent years, especially in 2000’s and has

many applications in industry especially in chemical industry where response time
of system is not too fast. Readers can refer to [Rawlings 2017] and references therein
for more details. A fast and efficient tool for implementing MPC methods is CasADi
[Andersson 2019].

32 Chapter 2. Fundamentals in Underwater Robotics

2.3 Error function for control with Quaternion

Designing controller with quaternion formalism can avoid Gimbal lock and it is
chosen to build controllers of our robots in this thesis. This section shows a primary
theorem in quaternion error which is deployed in quaternion-based controller.

Theorem 2.3.1 Quaternion error between current quaternion Q and desired quater-
nion Qd is defined as:

Qe = Q∗d �Q

then
Q̇e = 1

2(−Wd �Qe + Qe �W)

where Wd = 2.Q∗d� Q̇d is desired angular velocity (in quaternion form), and W =
[0 ω]T .

Proof First, note that all quaterions are unit. Following Theorem 5.3 in [Kuipers 1999]
for two consecutive rotations, we have:

Q = Qd �Qe (2.23)

Figure 2.4 – Consecutive rotations with quaternion

Multiplying both sides by inverse of Qd

Qe = Q−1
d �Q (2.24)

or

Qe = Q∗d �Q (2.25)

2.4. Control Allocation 33

We prove the derivative of quaternion error.

Q̇e = Q̇∗d �Q + Q∗d � Q̇ (2.26)

= Q̇∗d �Qd �Qe + 1
2Q∗d �Q�W (2.27)

= 1
2(W∗

d �Qe + Qe �W) (2.28)

= 1
2(−Wd �Qe + Qe �W) (2.29)

where Wd = 2.Q∗d � Q̇d, and note that W∗
d = −Wd

This completes the proof.

2.4 Control Allocation

In control engineering, a system is designed in order to accomplish one specific
task or more. In general, it is considered as under-actuated system, iso-actuated
system, or over-actuated one. This depends to the numbers of actuators, their geo-
metric structure, and the degree of freedoms (DOFs) of system. The over-actuated
systems are redundant systems (note that vice-versa direction is not completely
right as discussion in Chapter 4, indeed, some over-actuated systems can have
under-actuated behavior.). Redundant systems have been researched and developed
for many years because of their advantages, especially in uncertain and disturbance
environments.

The basic property of a redundant system is that the number of necessary actu-
ators is higher than DOFs. The problem is how to map desired actuation on DOFs
to forces on actuators. In literature, there are two approaches to solve this problem.
The first method is to divide the control design to high level and low level. In the
high level, we consider that a system is fully actuated, this means that we can design
control laws for each DOF. The outputs of high level block, called virtual controls,
are the inputs of low level block. In the low level, a control allocation algorithm is
designed to assign control inputs for actuators in order to optimize one or some cost
functions. This problem is called control allocation problem. The second method is
that the control inputs (normally with constraints) are directly taken into account
in control design process. It is obvious to see this issue in MPC method because
control allocation is considered as constraints in MPC formulation. However, this
yields to computational cost which is the most challenging task in MPC problem.

Control allocation problem is one of the main tasks in control design of re-
dundant systems. Normally, actuators of system are constrained with mechanical
and electrical limitations, thus saturations have to be taken into account in control
design. The role of control allocation in control loop is displayed in Figure 2.5.

There are a lot of control allocation methods, from linear to nonlinear, from un-
constrained to constrained. Without constraints, the problem is easier. However,
unconstrained control allocation problem is the basic ideas for many constrained
control allocation problem. In recent years, probabilistic techniques were also used

34 Chapter 2. Fundamentals in Underwater Robotics

Figure 2.5 – A general control loop

in control allocation problem [Elliott 2016]. Most of the control allocation methods
are based on optimization techniques, explicitly or implicitly. Therefore, compu-
tational cost is also the challenging task in control allocation problem for complex
systems. Depending on applications, suitable control allocation method is chosen.
Sometimes, we have to compromise between the computational cost and perfor-
mances.

There are some survey works on control allocation problem in recent years. In
[Page 2000], the authors compare many control allocation algorithms with closed-
loop and open-loop measures. In [Bodson 2002], the author evaluates the per-
formance and computational cost of optimization methods of control allocation
problem. In [Fossen 2006] and [Fossen 2009], control allocation methods for ships
and underwater vehicles were investigated. A survey paper was published in 2013
[Johansen 2013], in which many control allocation methods and applications were
presented and discussed.

In marine vehicle domain, the principle of control allocation methods (in Figure
2.5) is written as:

FB = A.Fm (2.30)

where FB ∈ Rn is acting vector along/about DoFs in body-frame, A ∈ Rn×m
(n = 6 DoFs) is configuration matrix, and Fm ∈ Rm is force vector on actuators.
Note that, in this case, propulsion system is expressed as a configuration matrix.

The objective is, with a given configuration matrix A, desired actuation demand
Fd
B (output from a controller), and Equation (2.30), how to find the control forces

to be applied by actuators Fm which satisfy constraints of actuators (saturation
and dead-zone) and make FB close to Fd

B as much as possible.
Normally, there are two classes of Control Allocation (CA) methods. The first

one is based on the Moore-Penrose pseudo inverse including Direct method, Daisy-
chain method [Durham 1993], Cascade General Inverse (CGI) [Bordignon 1996],
and the second one is based on optimization techniques such as sequential least
square, minimal least square, and fixed-point method, nonlinear programming method
[Härkegård 2003]. One class of CAmethods based on neural network [Skulstad 2018]
has been proposed recently. Many studies have been published to solve the control

2.4. Control Allocation 35

allocation problem. Readers can refer to [Johansen 2013] and references therein for
more details.

We consider the first class of CA methods. From (2.30), we derive:

Fm = A+Fd
B (2.31)

where A+ denotes as Moore-Penrose pseudo inverse of A matrix.
In order to consider the saturation of actuators, Direct method, Daisy-chain

and CGI method were proposed. A variety of (2.31) proposed in [Ropars 2015] to
avoid dead-zones of thruster’s characteristics (thruster is used as actuator in marine
vehicle) is given as:

Fm = A+Fd
B + rm (2.32)

where rm ∈ Ker(A) is called the common regime.
Basically, the problem of CA methods based on nonlinear programming is for-

mulated as:

min
Fm
‖Fd

B −AFm‖ (2.33a)

s.t Fm ∈ F (2.33b)

where F is the constraint set of actuator forces.
A taxonomy of CA methods is shown in Figure 2.6.

Figure 2.6 – Taxonomy of CA methods

36 Chapter 2. Fundamentals in Underwater Robotics

2.5 Conclusion

This chapter briefly presented fundamentals to study underwater vehicles, espe-
cially for redundant autonomous underwater robots. First, kinematic and dynamic
models in 6 DoFs of underwater vehicles were shown in Euler angles formalism and
quaternion formalism which is mainly used in the thesis. Secondly, nonlinear control
methods, including gain-scheduled, feedback linearization, backstepping, and model
predictive control (MPC), which spread out in wide range of techniques (from inher-
iting control methods for linear systems (gain-scheduled) to applying optimization
in control theory (MPC)) were summarized. Among them, backstepping method
was used in designing controller for our robots. Deploying advantages of designing
a controller with quaternion formalism (avoid gimbal lock, appear in compact form
- SO(3) space), a theorem in quaternion error, which is a guidance of controller
design in the thesis, was presented and proved. Furthermore, control allocation, a
mapping from desired control vector (Fd

B) to desired thruster force vector (Fd
m),

plays important role in studies of redundant systems and then a review of control
allocation approaches was shown in the last of the chapter. These fundamentals
are applied in the next chapters such as kinematic and dynamic models and control
allocation methods for simulations in Chapter 7, Quaternion control for real robot
in Chapter 8.

Chapter 3

Optimization and
Multiobjective Optimization

Contents
3.1 Optimization . 37

3.1.1 Problem definition . 38
3.1.2 Basic definitions and theories 38

3.2 Optimization methods . 38
3.2.1 Quadratic programming with equality constraints 39
3.2.2 Quadratic programming with active set method 39

3.3 Sequential Quadratic Programming 41
3.3.1 Quasi-Newton approximations 43
3.3.2 Merit functions . 43
3.3.3 SQP algorithm . 43

3.4 Multiobjective Optimization 44
3.4.1 Problem definition . 44
3.4.2 Basic Definitions . 45

3.5 Multiobjective optimization Methods 46
3.5.1 Non-interactive approaches 46
3.5.2 Interactive approaches . 50
3.5.3 Heuristic approaches . 51

3.6 Conclusion . 52

This chapter shows fundamentals in optimization and multiobjective optimiza-
tion techniques. Specifically, Sequential Quadratic Programming (SQP) with active-
set method is presented. A review of multiobjective optimization methods are given
out. These are basic tools for solving proposed problems in the following chapters.

3.1 Optimization

This section introduces backgrounds of constrained nonlinear optimization prob-
lem which are based on [Nocedal 2006] [Boyd 2004]. This is also basic theory in
solving multiobjective optimization problem which is used in Chapter 4. Moreover,
Sequential Quadratic Programming is the baseline of proposed algorithm in Chap-
ter 7. Note that in this chapter, optimization problem is minimization problem and
maximization one can be transformed to minimization problem.

38 Chapter 3. Optimization and Multiobjective Optimization

3.1.1 Problem definition

The general constrained optimization problem is defined as:

min
x
f(x) (3.1a)

s.t ci(x) = 0, i ∈ E (3.1b)
ci(x) ≤ 0, i ∈ I (3.1c)

where x ∈ Rn is vector variable, f(x) ∈ R is scalar objective function, ci(x) is ith
constraint, E and I are index spaces of equality and inequality respectively.

3.1.2 Basic definitions and theories

Definition 1 An inequality constraint ci(x) ≤ 0 is said to be active at x∗ if ci(x) =
0. Otherwise, it is said to be inactive if ci(x) < 0.

Definition 2 The active set A(x) at any feasible x consists of the equality con-
straints indices from E together with the indices of inequality constraints i for which
ci(x) = 0, that is A(x) = E ∪ {i ∈ I|ci(x) = 0}.

Definition 3 A point x is called a regular point if the set of active constraint
gradients ∇ci(x), i ∈ A(x) is linearly independent.

Theorem 3.1.1 (First-order necessary conditions-KKT (Karush-Kuhn-Tucker) con-
ditions) [Nocedal 2006] Let the functions f and ci be continuously differentiable and
x∗ is a regular point and a local minimizer for the problem (3.1). Then, there exists
a vector of Lagrangian multipliers λ∗ with elements λ∗i such that:

∇xL(x∗,λ∗) = 0 (3.2a)
ci(x∗) = 0, i ∈ E (3.2b)
ci(x∗) ≤ 0, i ∈ I (3.2c)

λ∗i ≥ 0, i ∈ I (3.2d)
λ∗i ci(x∗) = 0, i ∈ I (3.2e)

Theorem 3.1.2 (Second-order necessary conditions) [Nocedal 2006] Suppose that
x∗ is a local solution and a regular point of problem (3.1). Let λ∗ be the Lagrangian
multipliers vector for which KKT conditions are satisfied. Then:

wT∇2
xxL(x∗,λ∗)w ≥ 0 for all w ∈ C(x∗,λ∗) (3.3)

3.2 Optimization methods

There exits numerous approaches to solve nonlinear constraint optimization
problem [Nocedal 2006] [Boyd 2004] [Bertsekas 1995]. This section focuses on active-
set method of Sequential Quadratic Programming (SQP), which is efficient for small
and medium problem, because it is used to solve optimization formulation of dy-
namic configuration robot in Chapter 7.

3.2. Optimization methods 39

3.2.1 Quadratic programming with equality constraints

This section presents how to solve quadratic programming problem with equal-
ity constraints. This is the basic in active-set method for SQP. The Quadratic
Programming (QP) problem is defined as:

min
x
f(x) = 1

2xTHx + xT c (3.4a)

s.t Ax = b (3.4b)

where x ∈ Rn is variable vector, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, H ∈ Rn×n.
The Lagrangian function of this problem is L = f(x)+λT (Ax−b) with λ ∈ Rm

is vector of Lagrangian multipliers. The KKT conditions is written as:

∇xL = 0 (3.5)
Ax− b = 0 (3.6)

The KKT conditions can be detailed as:

Hx∗ + c + ATλ∗ = 0 (3.7)
Ax∗ − b = 0 (3.8)

This can be rewritten in matrix form:(
H AT

A 0

)(
x∗
λ∗

)
=
(
−c
b

)
(3.9)

Equation (3.9) can be solved by techniques of nonlinear equations: direct or iterative
methods. For more details, readers can refer into [Nocedal 2006].

If we replace x∗ = xk + p (xk is a value at iteration k and p is a direction) into
Equation (3.9), we have:(

H AT

A 0

)(
p
λ∗

)
=
(
−c− (Hxk + ATxk)

b−Axk

)
=
(

g
h

)
(3.10)

With Equation (3.10), we can find the optimal direction (p) for the problem at
an iteration. Matrix factorization methods are used to solve this Equation.

3.2.2 Quadratic programming with active set method

This section extends the previous part for QP problem in general case, i.e. with
equality and inequality constraints. The problem is written as:

min
x
f(x) = 1

2xTHx + xT c (3.11a)

s.t aTi x = bi, i ∈ E (3.11b)
aTi x ≤ bi, i ∈ I (3.11c)

40 Chapter 3. Optimization and Multiobjective Optimization

where ai ∈ Rn, bi ∈ R. E and I are index sets of equality and inequality constraints
respectively.

The Lagrangian function of this problem L = f(x) +
∑
i∈E∪I λi(aTi x− bi)

KKT conditions for this problem are:

∇xL(x∗,λ∗) = 0 (3.12a)
aTi x∗ − bi = 0, i ∈ E (3.12b)
aTi x∗ − bi ≤ 0, i ∈ I (3.12c)

λi ≥ 0, i ∈ I (3.12d)
λi(aTi x∗ − bi) = 0, i ∈ I (3.12e)

Specializing the KKT conditions with the definition of active set A(x∗), the KKT
conditions can be reformulated as:

Hx∗ + c +
∑

i∈A(x∗)
λiai = 0 (3.13a)

aTi x∗ − bi = 0, i ∈ A(x∗) (3.13b)
aTi x∗ − bi < 0, i ∈ I \ A(x∗) (3.13c)

λi ≥ 0, i ∈ I ∩ A(x∗) (3.13d)
λi = 0, i ∈ I \ A(x∗) (3.13e)

Suppose that at kth iteration, the active set at xk is known in advance, called
Wk. How can we solve the quadratic programming problem (3.11).

To find the direction of line search at kth iteration, p, we replace x = xk + p
into (3.11a):

f(x) = f(xk + p) = 1
2(xk + p)TH(xk + p) + (xk + p)T c (3.14a)

= 1
2pTHp + pT (Hxk + c) + 1

2xTk Hxk + xTk c (3.14b)

= 1
2pTHp + pThk + ρk (3.14c)

where hk = Hxk + c and ρk = 1
2xTk Hxk + xTk c (independent of p, so we can drop

this term)
We define a QP sub-problem:

min
p

1
2pTHp + pThk (3.15a)

s.t aTi p = 0, i ∈ Wk (3.15b)

We can use any techniques in QP problem with equality constraints to solve the
problem (3.15). Assume that the solution of (3.15) is pk, we have aTi x = aTi (xk +
αkpk) = aTi xk = bi for all i ∈ Wk. So the constraint (3.13b) which satisfied at xk
is also satisfied when we move along direction pk.

3.3. Sequential Quadratic Programming 41

We consider if the search direction pk is nonzero, we have to decide how far to
move along this direction. If xk+1 = xk + pk is feasible with all constraints, we set
xk+1 = xk + pk. Otherwise, we set:

xk+1 = xk + αkpk (3.16)

where αk is the step-length parameter is chosen to be the largest value in the range
[0, 1] for which all constraints are satisfied.

Considering constraint (3.12c)(constraints with i /∈ Wk), we have:

aTi xk+1 = aTi (xk + αkpk) = aTi xk + αkaTi pk (3.17)

If aTi pk ≤ 0, the constraint (3.12c) is satisfied for all αk ∈ [0, 1] because aTi xk <
bi. If aTi pk > 0, we choose 0 < αk <

bi−aTi xk
aTi pk

, the constraint (3.12c) will be also
satisfied.

To maximize the decrease of objective function, we want αk to be as large as
possible in [0, 1], so we have a formula to choose step-length parameter as follows:

αk = min
(

1, min
i/∈Wk,aTi pk>0

bi − aTi xk
aTi pk

)
(3.18)

We continue to iterate in this manner, adding constraints to the working set
until we reach an optimal point x̂ which minimizes the quadratic objective function
over its current working set Ŵ. But how to recognize that point?. In fact, at that
point, the QP sub-problem (3.15) has the solution p = 0. Applying KKT conditions
for the problem (3.15) with p = 0, we have:

∑
i∈Ŵ

λ̂iai + hk = 0

∑
i∈Ŵ

λ̂iai + Hxk + c = 0 (3.19)

for some Lagrangian multipliers λ̂i, i ∈ Ŵ. In order to satisfy the constraint (3.13d),
we need λ̂i ≥ 0 with i ∈ I ∩ Ŵ.

The algorithm for QP problem with active set method is presented in Algo-
rithm 1

3.3 Sequential Quadratic Programming

Now, we consider the nonlinear general problem (3.1). We linearize objective
function, equality and inequality constraints to model:

min
p
fk +∇xf

T
k p + 1

2pT∇2
xxLkp (3.20a)

s.t ∇xci(xk)Tp + ci(xk) = 0, i ∈ E (3.20b)
∇xci(xk)Tp + ci(xk) ≤ 0, i ∈ I (3.20c)

42 Chapter 3. Optimization and Multiobjective Optimization

Algorithm 1 Active set algorithm for QP problem [Nocedal 2006]
1: Initialize a feasible starting point x0, maxIter
2: Set W0 to be a active set at x0
3: for k = 0, 1, 2... ≤ maxIter do
4: Solve (3.15) using Algorithms for QP problem with equality constraints to

find pk
5: if pk = 0 then
6: Compute corresponding Lagrangian multipliers, λ̂i, which satisfy (3.19)

with Ŵ =Wk

7: if λ̂i ≥ 0 for all i ∈ I ∩Wk then
8: Stop with solution x∗ = xk
9: else
10: j = arg minj∈I∩Wk

λ̂j
11: xk+1 ← xk
12: Wk+1 ←Wk \ {j}
13: end if
14: else
15: Compute step-length αk from (3.18)
16: xk+1 ← xk + αkpk
17: if there are blocking constraints (αk < 1) then
18: Obtain Wk+1 by adding one of blocking constraints to Wk

19: else
20: Wk+1 ←Wk

21: end if
22: end if
23: end for

3.3. Sequential Quadratic Programming 43

3.3.1 Quasi-Newton approximations

To approximate the Hessian matrix, ∇2
xxLk, we define:

sk = xk+1 − xk (3.21)
yk = ∇xL(xk+1,λk+1)−∇xL(xk,λk+1) (3.22)

With given Bk, we define:

θk =


1 if sTk yk ≥ 0.2sTkBksk

0.8sTkBksk
sTkBksk − sTk yk

if sTk yk < 0.2sTkBksk
(3.23)

Algorithm 2 Hessian matrix update (BFGS update)
Input: Bk

Output: Bk+1
1: sk ← xk+1 − xk
2: yk ← ∇xL(xk+1,λk+1)−∇xL(xk,λk+1)
3: rk ← θkyk + (1− θ)Bksk with θk is defined as (3.23)

4: Bk+1 ← Bk −
BksksTkBk

sTkBksk
+ rkrTk

sTk rk

3.3.2 Merit functions

A merit function is used to decide whether a trial step should be accepted in
SQP method. For computing the step-size, inequality constraints c(x) ≤ 0 are often
converted to the equality constraints with slack variables s ≤ 0 as c̄(x, s) = c(x)−s.

The `1 merit function takes the form:

φ1(x;µ) = f(x) + µ‖c(x)‖1 (3.24)

We choose the penalty parameter µ large enough that:

µ ≥ ∇xf
T
k pk + (σ/2)pTk∇2

xxLkpk
(1− ρ)‖ck‖1

(3.25)

where ρ ∈ (0, 1) and:

σ =

1 if pTk∇2
xxLkpk > 0

0 otherwise
(3.26)

3.3.3 SQP algorithm

A general algorithm for SQP method is presented in Algorithm 3

44 Chapter 3. Optimization and Multiobjective Optimization

Algorithm 3 SQP algorithm [Nocedal 2006]
1: Choose parameters: initial pair (x0,λ0), η ∈ (0, 0.5), τ ∈ (0, 1)
2: Evaluate f0,∇f0, c0,A0 = ∇xc0
3: Initialize symmetric positive definite Hessian approximation B0
4: while convergence conditions are not satisfied do
5: Compute direction pk by solving (3.20) using Algorithm 1; let λ̂ be the

corresponding Lagrangian multipliers
6: Set pλ ← λ̂− λk
7: Choose µk to satisfy (3.25) with σ = 1
8: Set αk ← 1
9: while φ1(xk + αkpk;µk) > φ1(xk;µk) + ηαkD1(φ(xk;µk)pk) do

10: Set αk ← τααk for some τα ∈ (0, τ]
11: end while
12: Set xk+1 = xk + αkpk
13: Set λk+1 = λk + αkpλ
14: Evaluate fk+1,∇fk+1, ck+1,Ak+1 = ∇xck+1
15: Set sk ← αkpk and yk ← ∇xL(xk+1,λk+1)−∇xL(xk,λk+1)
16: Update Bk+1 using Algorithm 2
17: end while

3.4 Multiobjective Optimization

3.4.1 Problem definition

In this section, we present popular methods of a MultiOjective Optimization
(MOO) problem. Normally, MOO problem consists of conflicting objectives and
there are many feasible solutions corresponding with chosen parameters. The fi-
nal decision depends on the choice of decision maker (DM) (see Figure 3.1), which
can be a software or a human. The classification of MOO methods is often based
on the articulation of preference information in the solving process of MOO prob-
lem. If the preference information is used as a prior or a posterior information in
mathematical programming solvers, the MOO methods are called non-interactive
methods. Otherwise, if the preference information is progressively articulated in
mathematical programming solvers, the MOO methods are called interactive meth-
ods. Other methods of MOO problem are heuristic approaches based on nature
observations.

A general multiobjective minimization problem is defined by:

min
x

f(x) = [f1(x)f2(x) . . . fn(x)]T (3.27)

s.t x ∈ X

where x ∈ Rd is the decision variable, X is the feasible set of the decision variable.
f is the objective function vector or decision vector, and fi is the ith scalar objective
function. Note that in multiobjective optimization problem, we have two important

3.4. Multiobjective Optimization 45

Figure 3.1 – Multiobjective optimization problem solving process

sets, namely decision variable set (feasible set) and decision vector set (feasible
objective set). The convexity of each space is important to MOO problem.

3.4.2 Basic Definitions

This part presents fundamental definitions in multiobjective optimization prob-
lem which are based on [Chankong 2008] [Miettinen 1999]

Definition 4 The multiobjective optimization problem is convex if all the objective
functions and the feasible set are convex.

Definition 5 A decision vector z ∈ Rn dominates a decision vector u ∈ Rn if
zi ≤ ui for all i = 1, 2, 3, ...n and zj < uj for at least one j ∈ {1, 2, 3..., n}, j 6= i.

Definition 6 A decision variable x ∈ X with f(x) dominates a decision variable
y ∈ X with f(y) if fi(x) ≤ fi(y) for all i = 1, 2, 3, ...n and fj(x) < fj(y) for at least
one j ∈ {1, 2, 3..., n}, j 6= i.

Definition 7 A decision variable x∗ ∈ X with f(x) is called (global) Pareto opti-
mal (efficient, non-dominated, non-inferior) if and only if there exist no decision
variable x ∈ X such that fi(x) ≤ fi(x∗) for all i = 1, 2, 3, ...n and fj(x) < fj(x∗)
for at least one j ∈ {1, 2, 3..., n} j 6= i.

Definition 8 A decision variable x∗ ∈ X with f(x) is called weakly Pareto optimal
if and only if there exist no decision variable x ∈ X such that fi(x) < fi(x∗) for all
i = 1, 2, 3, ...n.

Definition 9 A decision variable x∗ ∈ X with f(x) is called locally Pareto optimal
if and only if there exist δ > 0 such that x∗ is Pareto optimal in X∩B(x∗, δ), where
B(x∗, δ) is an open ball of radius δ centered at x∗ ∈ X, that is, B(x∗, δ) = {x ∈
Rd, ‖x− x∗‖ < δ}.

46 Chapter 3. Optimization and Multiobjective Optimization

Definition 10 A decision variable x∗ ∈ X with f(x) is called properly Pareto op-
timal if it is Pareto optima and if there is some real number M > 0 such that for
each fi and each x ∈ X satisfying fi(x) < fi(x∗), there exists at least one fj such
that fj(x∗) < fj(x) and fi(x∗)−fi(x)

fj(x)−fj(x∗) ≤M .

Definition 11 The nadir decision vector is defined as znad = (z1, z2, z3, ..., zn)T
with elements zi = supx∈PD fi(x), i = 1, 2, ..., n where PD is the Pareto optimal
decision variable set.

Definition 12 The ideal decision vector is defined as z∗ = (z1, z2, z3, ..., zn)T with
elements zi = infx∈PD fi(x), i = 1, 2, ..., n where PD is the Pareto optimal decision
variable set.

Definition 13 The utopian decision vector is defined as z∗∗ = (z1, z2, z3, ..., zn)T
with elements z∗∗i = z∗i − ε, for all ε > 0, i = 1, 2, ..., n.

Definition 14 The aspiration level vector is defined as the decision vector that is
satisfactory or desirable to the decision maker and denoted as z = (z1, z2, z3, ..., zn)T

Note that every global Pareto optimal decision variable is local Pareto optimal
one but the converse is not always true. Every globally Pareto optimal decision
variable is also weakly Pareto optimal. The illustration of Pareto front is displayed
in Figure 3.2.

Figure 3.2 – Pareto front concept

3.5 Multiobjective optimization Methods

3.5.1 Non-interactive approaches

Non-interactive methods are not really multiobjective optimization. Indeed, the
problem is converted into single objective optimization problem in different ways.

3.5. Multiobjective optimization Methods 47

The simplest way is to use weighted sum. Another one is to solve the problem with
one objective function while others are considered as nonlinear constraints. If we
know the goal of each objective, goal programming or goal attaining technique is
utilized. With these methods, a single solution is found if the problem is convex (all
objectives are convex functions and the feasible set is a convex set). There are many
algorithms for solving convex single objective optimization problem [Boyd 2004].

3.5.1.1 Weighting method

In the weighting method, we convert a MOO problem into a single objective
problem by weighting each objective function. Particularly, with the weighting
method, the original MOO problem can be casted as the following:

min
x

n∑
i=1

ωifi(x) (3.28)

s.t x ∈ X

where x is the decision variable vector, X is the feasible set, fi, i = 1...n is the ith
objective function, and ωi is the weight corresponding with ith objective function,
and ωi ≥ 0,

∑n
i=1 ωi = 1.

The solution of (3.28) can be proven to be weakly Pareto optimal, and strictly
speaking, Pareto optimal if ωi > 0, for all i = 1, 2..., n, or if the solution is unique
[Miettinen 1999], [Chankong 2008]. Then, if the problem (3.28) is convex, one
unique solution can be found and this solution can be proven to be global Pareto
optimal. However, the convexity of the problem is not easy to verify for many real
applications. Note that the magnitude of objectives functions will affect in solving
process and they should be normalized into dimensionless scale before applying the
weighting method.

3.5.1.2 ε-constraint method

In the ε-constraint method, only one of the objective functions is selected to be
optimized, the others are embedded into constraints. Therefore, the original MOO
problem becomes:

min
x
fk(x) (3.29)

s.t x ∈ X
fj(x) ≤ εj , j = 1, ..., n, j 6= k

where k ∈ {1, 2, 3, ...n} and εj are upper bounds for the objective functions, j 6= k.
It is clear that this is also a single objective function optimization problem. The

preference information of decision maker is the upper bounds of objective functions.
Regarding the optimality, a solution of problem (3.29) is proven to always be weakly

48 Chapter 3. Optimization and Multiobjective Optimization

Pareto optimal [Chankong 2008]. Moreover, the unique solution of (3.29) is Pareto
optimal for any given upper bound εj . Theoretically, this method can find all Pareto
optimal solutions by changing the upper bounds of objective functions even though
feasible objective set is non-convex. However, it is not easy to choose these upper
bounds properly.

3.5.1.3 Global criterion method

In global criterion approach, the distance between a desirable point and current
point is optimized. The problem is changed to:

min
x

n∑
i=1
‖fi(x)− z?i ‖p (3.30)

s.t x ∈ X

where z?i is the desirable reference point or ideal decision vector which is selected by
the DM. Note that if the objective functions have different magnitudes, this method
only works properly if we normalize the problem into uniform, dimensionless scale
and the choice of the norm-p affects to the results of the problem. We can prove
that a solution of (3.30) is Pareto optimal.

3.5.1.4 Neutral compromise method

In neutral compromise approach, the problem to solve is:

min
x

max
i=1,...,n

fi(x)− ((z?i + znadi)/2
znadi − z??i

(3.31)

s.t x ∈ X

where z?i is the ideal objective point, znadi is the nadir objective point, z??i is the
utopian objective point.

As can be seen, the nadir and ideal objective point are used for scaling purposes.
The solution of (3.31) is proven to be weakly Pareto optimal [Chankong 2008].

3.5.1.5 Value function method

In the value function method, a value function is defined and maximized as:

max
x

ν(f(x)) (3.32)

s.t x ∈ X

where ν(.) is the value function representing the opinions of the DM.
This method is likely simple to solve (single objective optimization and no addi-

tional constraints in feasible set). Nevertheless, the challenging issue of the method
is how to build the appropriate value function that covers all the preference infor-
mation and easy to solve, for instance, it should be convex function. The solution of
(3.32) is Pareto optimal if the value function is strongly decreasing [Miettinen 1999].

3.5. Multiobjective optimization Methods 49

3.5.1.6 Lexicographic ordering method

In lexicographic ordering method, the objective functions are arranged according
to their absolute importance. Firstly, the most important objective function is
minimized subject to the original constraints. If this problem has a unique solution,
the solution process stops. Otherwise, the second most important is minimized and
the new constraints are introduced in order to guarantee the optimality of the most
important objective function. The process is repeated. However, it is not trivial
to get the unique solution unless solving problem is convex or in the special case.
The solution of lexicographic ordering method can be proven to be Pareto optimal.
Two challenging questions arise that the difficulties of DM to specify the absolute
importance of objective functions and some objective functions do not take into
account in solution process if this process stops before the less important objective
function taken into consideration [Miettinen 1999] [Chankong 2008].

3.5.1.7 Global programming method

In the global programming method, the original MOO problem is rewritten:

min
x

N∑
i=1

ωiδi (3.33)

s.t fi(x)− δi ≤ zi, i = 1, ..., n
δi ≥ 0, i = 1, ..., N
x ∈ X

where x and δi are the variables, zi is the aspiration level of objective vector. There
are several versions of global programming methods such as lexicographic goal pro-
gramming approach, min-max goal programming method, and meta-goal program-
ming. However, the underlying philosophy of all goal programming methods is to
minimize the deviation of objective function vector and its aspiration level vector.
In virtue of many versions of global programming method, the necessary conditions
of Pareto optimal solutions of each method can be found in [Miettinen 1999] and
references therein.

3.5.1.8 Weighted metrics method

The method generalizes the global criterion method, in the weighted metrics
method, the problem is that:

min
x

n∑
i=1

ωi(‖fi(x)− z?‖p) (3.34)

s.t x ∈ X

where z∗ is the ideal objective point. Regarding the optimality, the solution of (3.34)
is proven to be Pareto optimal if either the solution is unique or all the weights are

50 Chapter 3. Optimization and Multiobjective Optimization

positive [Miettinen 1999]. Moreover, if the problem is convex, all Pareto optimal
solutions can be found by altering the weights.

3.5.1.9 Achievement scalarizing function method

In achievement scalarizing function approach, the MOO problem is casted as:

min
x

max
i=1,...,n

[ωi(fi(x)− zi] + ρ
n∑
i=1

(fi(x)− zi) (3.35)

s.t x ∈ X

where z is the reference point, ωi is the normalizing factor, and ρ > 0 is an augmen-
tation multiplier. The solution of problem (3.35) can be proved properly Pareto
optimal and any properly Pareto optimal solution can be found.

3.5.1.10 Goal attainment method

This method was first introduced in [Gembicki 1975]. The MOO problem is
written as:

min
x,γ

γ

s.t x ∈ X
f(x)−wγ ≤ f̄ (3.36)

where w is attainment vector and f̄ is desirable objective vector (goal vector). The
quantity wγ is related to the degree of under- or over-attainment of the goal f̄ .
Different Pareto optimal solutions with different degree of under-attainment can be
found.

3.5.1.11 Approximation methods

In the approximation methods, strategies to approximate the set of Pareto
optimal solutions are introduced. A survey of these methods can be found in
[Ruzika 2005].

3.5.2 Interactive approaches

Interactive approaches are the approaches in which the decision maker provides
preference information in a repeated step of an interactive algorithm. There are
three types of specifying preference information based on trade-off information,
reference points, and classification of objective functions.

3.5.2.1 Trade-off based methods

In trade-off based methods, some trade-off concepts have been introduced, namely
objective trade-off and subjective trade-off. Objective trade-off is a measurement of

3.5. Multiobjective optimization Methods 51

the change in one objective function relating to the change in another one when
the variable moves from one feasible point to another one. Subjective trade-off is a
measurement of how much the desirable sacrifice in the value of some objective func-
tions in order to improve another objective function to a certain quality. Two these
trade-off definitions are integrated in interactive methods to decide the next Pareto
optimal solution. Several trade-off based methods were introduced in literature such
as Z-W (Ziont-Wallenius) method, ISWT (Interactive Surrogate Worth Trade-off)
method, GDF (Geoffrion-Dyer-Feinberg) method, SPOT (Sequential Proxy Opti-
mization Technique) method, and GRIST (GRadient based Interactive Step Trade-
off) method.

3.5.2.2 Reference point methods

The fundamental philosophy of reference point methods is that the decision
maker should learn during the interaction with a Decision Support System (DSS), an
interaction system between an mathematical algorithm and decision maker. Firstly,
the DM give reference points to DSS, DSS responds by maximizing the achievement
function and the DM can be free to modify reference points. This leads to another
aspect, learning perspectives of interactive multi-optimization methods. There are
two general learning methods, namely individual learning and model learning.

3.5.2.3 Classification-based methods

Three popular classification-based methods are STEM method (STep Method),
STOM method (Satisficing Trade-Off Method), and NIMBUS method (Non dif-
ferentiable Interactive Multi-objective BUndle-based optimization System). They
differ in the classification way, the preference information asked from the Decision
maker, and how to generate a new Pareto optimal solution.

This section briefly presents interactive methods in MOO problem. Further
details of these methods can be found in [Branke 2008] and references therein.

Note that, as can be seen, a MOO problem is converted to a single optimization
problem in different ways in all classical methods (non-interactive and interactive
methods). Then, the single optimization solvers play a pivotal role in finding the
solutions of MOO. In practice, numerical solvers of single optimization problem
only find local optimal solutions except for the problem is convex or in a special
case. Therefore, just local Pareto optimal solutions can be expected to be found in
general.

3.5.3 Heuristic approaches

Heuristic approaches include evolutionary methods and swarm-based meth-
ods (particle swarm, ant colony). These methods are based on the natural pro-
cess, or insects and animals observation. The famous and first evolutionary algo-
rithm is the genetic algorithm [Holland 1975]. There are some extended genetic
algorithm for MOO problem, namely vector evaluated genetic algorithm (VEGA)

52 Chapter 3. Optimization and Multiobjective Optimization

[Schaffer 1985], multi-objective genetic algorithm (MOGA) [Fonseca 1993], non-
dominated genetic algorithm (NSGA) [Srinivas 1994], Niched Pareto genetic al-
gorithm (NPGA) [Horn 1994], Non-dominated genetic algorithm II (NSGA-II) as
in [Deb 2002]. With the rapid development of biological-mathematical studies in
recent years, a lot of evolutionary algorithms has been presented such as Strength-
Pareto evolutionary algorithm (SPEA) [Zitzler 1999, Zitzler 2001], multi-objective
particle swarm optimization (MOPSO) [Coello 2004], Multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [Zhang 2007], Pareto archived evo-
lution strategy (PAES) [Knowles 2000], Pareto-frontier differential evolution (PDE)
[Abbass 2001], and multi-objective Grey wolf (MOGO) [Mirjalili 2016]. The main
difference and advantage of heuristic methods comparing to classical approaches
(non-interactive and interactive methods) is that multiple trade-off solutions can
be found in a single simulation run. Moreover, the objective functions can not be
continuous. Because evolutionary and swarm based methods are heuristic based
procedure, they are not guarantee in finding Pareto optimal solutions as provable
optimization methods would do. However, these algorithms have essential operators
to constantly improve the evolving non-dominated points [Branke 2008]. One more
drawback of the heuristic approaches is not easy to consider nonlinear constraints
in solving process. The fundamental philosophy for an evolutionary algorithm is as
in Table 3.1 where Pt is the population at step t, P′t and P′′t are the populations
corresponding with selection and variation operator.

t = 0
Initialization(Pt)
do

Evaluation(Pt)
P′

t=Selection(Pt)
P′′

t =Variation(P′

t)
Pt+1 = Elitism(Pt,P

′′

t)
t = t+ 1

While
Termination (Pt,Pt+1)

Table 3.1 – Basic evolutionary algorithm [Branke 2008]

3.6 Conclusion

In general, optimization algorithms are the key of many strategies and appli-
cations such as model predictive control, communication, operations research, and
machine learning. This chapter presented basic definitions and methods in single-
objective optimization and multiobjective optimization problems. In particular,
for nonlinear programming, sequential quadratic programming based on active-set
method, which is the basic of proposed approach in the chapter 7 and suitable
for medium problem (otherwise, interior-point method is more efficient for large

3.6. Conclusion 53

problem), was described. SQP method sequentially solves equality quadratic pro-
gramming with active-set, which is changed in each step or not, depending on
corresponding Lagrange multipliers. Many approaches for multiobjective optimiza-
tion were reviewed from deterministic to heuristic directions in which one method
was chosen to solve problem in the chapter 4. Heuristic methods, based on nature
rules such as genetic, particle swarm, Grey Wolf algorithms and their variants, can
find a global optimal value but it can not be proved. For deterministic methods
(weighting method, ε constraint method, global criterion method, neutral compro-
mise method, and so on), it is easy to stuck in local optimal value and its global
solution depends the convexity of objective functions. It is clear that most of mul-
tiobjective optimization methods deploy techniques in one-objective optimization.
The choice of which methods depends on the properties of objective functions and
constraints. In multiobjective optimization domain, concept and related definitions
of Pareto solution were described. For continuous space, finding all Pareto points
is a challenging problem. The question of the choice of a suitable Pareto point has
to done by decision maker.

Chapter 4

Performance Indices and Static
Configuration Design

Contents
4.1 Introduction . 55
4.2 Problem formulation . 59

4.2.1 Model of actuators configuration 59
4.3 The different indices . 60

4.3.1 Manipulability index . 61
4.3.2 Energetic index . 61
4.3.3 Workspace index . 63
4.3.4 Reactive index . 64
4.3.5 Robustness index . 64

4.4 Configuration matrix design problem 66
4.5 Searching for optimal solution 67

4.5.1 Mathematical analysis . 67
4.5.2 The optimization process . 73

4.6 Conclusion . 74

This chapter presents static configuration design problem for over-actuated un-
derwater robots. Performance criteria, including manipulability, energetic, workspace,
reactive, and robustness indices, are proposed and analyzed. A multiobjecitve opti-
mization method is chosen and a procedure of searching optimal solution is proposed.

4.1 Introduction

The Actuation System (AS) groups the different actuators carried by the sys-
tem. Following the generic Navigation-Guidance-Control (NGC) control structure,
the AS is in charge of realizing the desired force vector (Fd

B) provided by the con-
trol system (see Fig 4.1). Following Figure 4.1, the Sensorial Stage uses sensors
measurement and prior knowledge of the environment to provide to the navigation
system the necessary information to compute an estimation of system state (η̂).
Then the guidance system uses this estimation and the reference system state (ηd)
provided by the mission controller to compute the error function (ε). The control
system is then in charge of computing the desired force (Fd

B) in order to reduce
the error function to zero. Note that classically this desired force is expressed in

56 Chapter 4. Performance Indices and Static Configuration Design

Figure 4.1 – NGC structure augmented with the Actuation System and Sensorial
Stage [Dang 2019]

the body frame. Afterwards, the Actuation system produces on the environment a
resulting force vector (FB), which should be as close as possible to Fd

B. Note that,
in this thesis, desired force (Fd

B) and resulting force (FB) are (6 × 1) vectors and
include force and torque elements.

Referring to Figure 4.2, the desired force (Fd
B) is the output of the controller.

Then the Dispatcher (D) (see Chapter 2) considers actuator allocation method
(and eventually redundant management) to compute the desired actuators force
(Fd

m) that each actuator has to produce. The inverse actuators characteristics are
then considered in order to compute the actuators input (cm). Once applied, cm
produces actuators forces (Fm). The resulting force FB is produced with respect to
the actuators configuration (modeled as A matrix, called configuration matrix)(see
Chapter 2).

The properties of the AS are indeed dependent of the actuators configuration
(position and attitude with respect to the body frame), actuators dynamics (re-
sponse characteristics), and Dispatcher (control allocation, redundancy manage-
ment) (see Fig 4.2), and afford the system with different properties. Let’s consider
in the following that n is the number of DOFs of the system, and m is the number
of actuators. If the system carries less actuators than Degrees of Freedom (DOFs),
it is said to be under-actuated (in that case, A will be a (n × m) matrix where
n > m). Long-range autonomous underwater vehicles (AUVs) and, for the terres-
trial case, unicycle wheeled vehicles belong this category [Lapierre 2009]. In that
case, specific nonlinear guidance strategies have to be used [Lapierre 2008]. If the

4.1. Introduction 57

Figure 4.2 – Actuation system scheme

system carries more actuators than DOFs, it is said to be redundant (n < m). Then
there are different solutions (cm) to produce an identical resulting force (FB). In-
deed, D is one of the multiple possible inverses of A, classically, D = A+ where
A+ is the Moore-Penrose pseudo-inverse. Note that this property of redundancy
does not systematically afford the system with over (or even iso)-actuated (fully
actuated) condition. Indeed, redundancy has to be studied along each DOF and
a redundant system can be under-actuated if some actuators act along the same
DOF or deliver their action along the system’s center of mass. But if the AS is
configured in order to have an action on all the DOFs, the system is said to be iso-
actuated (if it carries as many actuators as DOFs, then in this case A is a square
matrix (n× n)), or over-actuated (if it carries more actuators than DOFs). In that
case, linearized approaches (for small velocities) hold [Fossen 2011]. The properties
of the AS plays a pivotal role in the system performances, in terms of achievable
dynamics, manoeuvrability, robustness and dependability.

The properties of an over-actuated system have been studied in aerospace con-
trol, where critical safety is required in [Levine 2010], and for marine vehicles in
[Johansen 2013], where the harsh oceanic conditions may easily produce actuator
failure. Redundancy has also been used in [Ropars 2018] in order to compensate
different and unknown actuators responses. The domain of robotic manipulator has
also extensively studied this question of redundancy; especially with recent works
on humanoid robotics, where task function approach [Nakamura 1987] has been
used to achieve concurrently equilibriums [Adorno 2010], walking pattern following
[Agravante 2016] and multi-contact management [Pham 2018].

For a global evaluation of an Actuation System, we should of course consider
many factors, including redundancy management, control allocation method, actu-
ator characteristics (inverse and direct), and actuators configuration. This thesis
focuses on the study of actuators configuration, other problems can be referred to
[Ropars 2018] and references therein.

Different performance criteria related to the actuators configuration design have
been proposed. For mobile manipulation, manipulability index [Yoshikawa 1985a]
measures the manipulation capability of the end-effector. Intuitively, this index

58 Chapter 4. Performance Indices and Static Configuration Design

points the set of all end-effector velocities which is realizable by joint velocities.
This set is called manipulability ellipsoid. This index is quantified by computing
manipulability ellipsoid properties. Based on these properties, there are different
ways to quantify the manipulability index, including the volume of manipulabil-
ity ellipsoid, the ratio of the minimum and maximum radii of the hyper-ellipsoid,
the minimum radius of the hyper-ellipsoid. When the uniformity of manipulating
ability is important, the ratio of two radii of the hyper-ellipsoid is chosen (optimal
value will be closed to 1). Otherwise, the minimum radius of the hyper-ellipsoid
is suited for the case where the minimum manipulating ability might be critical
[Yoshikawa 1990]. Attainability [Kumar 1981], [Paden 1988], [Park 1994] was stud-
ied using workspace volume estimation.

In the marine robotic field, manipulability index, energetic index, and force
index were introduced in [Pierrot 1998] and manipulability index was applied in
[Kharrat 2015]. Specifically, the manipulability index is used to measure the sys-
tem’s ability to exert a desired force with a specific actuator configuration. So, the
closer to 1 this index is, better the robot isotropy is, i.e, the robot can exert the
same forces/torques in any directions. The energetic index is a measurement of
the variation of system energy when the direction of desired force changes. This
is realized by a measurement of energy consumption when the direction of an unit
desired force changes all over a 3D sphere. The basic idea of energetic index is to
keep system’s energy consumption constant and as low as possible when the direc-
tion of action changes. The force index is used to measure the ratio between actual
maximum and minimum realizing forces. However, these studies only consider a
given and fixed actuators configuration.

Regarding the design of actuators configuration of an over-actuated system in
marine robotics, a general problem is: how to achieve an optimal configuration that
considers different indices. This raises two specific questions:

1. how to define general and typical indices to evaluate an actuators configu-
ration of an over-actuated marine system.

2. how to solve the complex optimal problem, which is normally non-convex
and has some conflicting objectives

This thesis focuses on the design of an actuators configuration of an over-actuated
marine robot which optimizes different performance indices. Mathematically, an
actuators configuration is a mapping between an actuators force vector and a re-
sulting force vector. Since we are considering a marine system equipped with
thrusters, the mapping will be from a thrusters force vector (Fm space) to a
body frame force vector (FB space) with a relation FB = AFm, (see Figure
4.3). The mapping is a matrix with some names in the literature such as: con-
trol effectiveness matrix [Johansen 2013], [Stephan 2017] static transformation ma-
trix [Grechi 2016], geometrical distribution of thrusters [Ropars 2015], configuration
matrix [Kharrat 2015]. In this thesis, a mapping of an actuators configuration is
called a configuration matrix, A.

4.2. Problem formulation 59

Figure 4.3 – Actuators configuration mapping

4.2 Problem formulation

The relation of desired force (Fd
B) and resulting force (FB) depends on differ-

ent factors (see Figure 4.2). This paper only focuses on actuators configuration.
Therefore, three assumptions are outlined below:

1. Inverse characteristics and direct characteristics of actuators are perfectly
known, i.e, Fd

m = Fm

2. Dispatcher is the Moore-Penrose pseudo-inverse of actuators configuration,
i.e, if actuators configuration is A matrix, dispatcher is D = A+

3. All actuators have the same characteristics

4.2.1 Model of actuators configuration

This part describes how to model an actuators configuration of an over-actuated
marine robot equipped with thrusters. A thruster is modelled by its position and
direction with respect to body frame of the robot. The position of the ith thruster
is described by an unit position vector ri and distance di to center of mass (CM)
in the body frame. The direction of ith thruster is represented by an unit vector
direction ui with respect to the body frame as in Fig 4.4, and the ith thruster
propels a force with magnitude of Fm,i. The relation of thruster forces vector and
resulting forces vector (note that this space includes forces (f) and torques (Γ) is
described in Equation (4.1).

FB = AFm =
(

F
Γ

)
(4.1)

where resulting vector FB = [Fu Fv Fw Γp Γq Γr]T ∈ R6, A ∈ R6×m, and
thruster force vector Fm = [Fm,1 Fm,2 ... Fm,m]T ∈ Rm, and m is the number
of thrusters, m > 6.

60 Chapter 4. Performance Indices and Static Configuration Design

Figure 4.4 – Actuators configuration model

The configuration matrix A is described:

A =
(

u1 u2 · · · um
d1r1 ⊗ u1 d2r2 ⊗ u2 · · · dmrm ⊗ um

)

=
(

u1 u2 · · · um
τ 1 τ 2 · · · τm

)
=
(

A1
A2

) (4.2)

where A1, A2 ∈ R3×m are sub-matrices of A which involve force and torque ele-
ments respectively. It is obvious to see that τTi .ui = 0. This is one of constraints
of the configuration matrix structure.

In this chapter, we assume that all distances from thrusters positions to the
center of body-frame are the same, di = dj = const, i, j = 1...m, i 6= j. Without
loss of generality, we can assume that di = 1, i = 1, ...,m.

4.3 The different indices

The preliminary condition for the following studies is that the rank of configura-
tion matrix equals six (rank(A) = 6). This section introduces performance criteria
to evaluate a configuration of an underwater robot. They are manipulability, ener-
getic, workspace, reactive, and robustness indices.

4.3. The different indices 61

4.3.1 Manipulability index

As mentioned before, manipulability index was first introduced for manipulator
mechanisms [Yoshikawa 1985b], and there are different ways to quantify the ma-
nipulability index. This paper focuses on the isotropy property of a marine robot.
Then, the ratio of maximum and minimum radii of the manipulability ellipsoid is
chosen (see Figure 4.5). Because of units consistency, the matrices which involve
force space, A1, and torque space, A2, are investigated separately. However, be-
cause of our assumption of di, the manipulability index is defined as the condition
number of the configuration matrix:

Im = Cond(A) = σmax
σmin

(4.3)

where σmax and σmin are the maximum and minimum singular value of configuration
matrix, A, respectively.

Figure 4.5 – Manipulability ellipsoid with mapping

Following Figure 4.5, manipulability index investigates the resulting force ellip-
soid which is realizable by thrusters forces (Fm) such that ‖Fm‖ ≤ 1 (see Theorem
A.1.1 in Appendix). If Im = 1, the robot is isotropic or if Im =∞, there is at least
one direction in which the actuators are not acting and the rank of configuration
matrix is less than six (6).

4.3.2 Energetic index

Energy is very important for underwater robots in ocean and karst exploration,
and energy consumption of robots depends on a lot of factors such as mechanical de-
signs, environmental effects, and a specific mission. In order to evaluate the energy
performance of a marine robot, energetic index was introduced in [Pierrot 1998].
In this thesis, the norm of thruster force vector, pE = ‖Fm‖2, is used to qualify the

62 Chapter 4. Performance Indices and Static Configuration Design

energy consumption that a marine robot uses to produce forces and torques, and
can be calculated as in Equation (4.4).

pE = ‖Fm‖2 =

√√√√ m∑
i=1

F 2
mi = ‖A+.Fd

B‖2 (4.4)

The energetic index is proposed to measure the variation of energy consumption
of a marine robot when the direction of desired force changes. It is quantified by
computing the energy consumption when an unit desired force vector, (Fd

B), changes
all over hyper-sphere (see Figure 4.6 for 3D sphere). Because of units consistency,
however, force and torque sphere are computed separately.

For the force sphere case, the unit desired force vector includes an unit vector
of force elements and a zero vector of torque elements. For the torque sphere case,
the unit desired force vector includes a zero vector of force elements and an unit
vector of torque elements. Intuitively, this can be expressed as:

Fd
B =

(
Fd

Γd

)
=


(us

0
)
, for force sphere(0

us
)
, for torque sphere.

(4.5)

where us = [cosα cosβ sinα cosβ sinα]T is an unit vector in spherical coordi-
nates with α ∈ [−π, π], and β ∈ [−π/2, π/2].

According to two cases, the norm of thruster force vector is also divided into
two cases as follows:

pE =

pEf = ‖A+(us
0
)
‖, for force sphere case

pEΓ = ‖A+(0
us
)
‖, for torque sphere case.

(4.6)

Figure 4.6 – The rotation of unit desired vector in 3D sphere

The energetic index is defined as:

Ie = 1
S

∫
S

(wefpEf + weτpEΓ)dS (4.7)

4.3. The different indices 63

where S is the area of 3-dimensional sphere; pEf , pEΓ are the sub-vectors of pE
corresponding with force sphere and torque sphere case, respectively; and wef and
weΓ are weighting coefficients.

4.3.3 Workspace index

The term of workspace volume was first introduced in [Paden 1988] for manip-
ulator systems. In this thesis, the workspace index is used to measure the volume
of attainable regions of resulting force space w.r.t body frame. In general, char-
acteristics of thrusters always have limitations, namely saturations and dead-zones
(in this index, dead-zone is neglected). These yield to the polytope of thrusters
force space, Fm space, denoted as M. By properly choosing configuration matrix,
A = (A1 A2)T , the volume of the resulting force space for force, FF space, and the
resulting force space for torque, FT space can be maximized (see Figure 4.7). Note
that resulting spaces for force and torque are studied separately because of units
consistency. In general, the set M of thrusters forces is known (given saturations),

Figure 4.7 – Space Mapping

so M is a polytope and FF and FT are also polytopes through a linear transform,
configuration matrix. We define the workspace index as

Iw = ωwfV ol(FF) + ωwτV ol(FT) (4.8)

where V ol is the volume measure of a space, ωwf and ωwτ are weighting coefficients.
In control perspectives, the larger spaces’s volume are, the less control efforts

are. The design objective is to maximize the workspace index, Iw. Normally, the

64 Chapter 4. Performance Indices and Static Configuration Design

set M is convex and its vertices are known. It is easy to find the vertices of FF and
FT . Of course FF and FT are also convex sets (because of linear transformation).
This problem becomes a volume computation of convex polytopes.

4.3.4 Reactive index

Reactive index quantifies how fast the actuation system is able to change the
orientation of the resulting force FB (ideally Fd

B). Suppose that the robot is trav-
elling in a direction with a set of thrusters forces Fm1 induced from desired force
vector Fd

B1. The robot wants to change to another direction (or the same direction
with the different manigtude) with the desired force vector Fd

B2, so thrusters have
to produce another set of thruster forces Fm2. The 2-norm of deviation of thruster
forces, 4Fm = Fm1−Fm2 = [4Fm14Fm2 · · ·4Fmm]T , is considered as the reactive
capability of the robot. Referring to the approximation of characteristic of thrusters
as Fig 4.8, the moving time from Fm1 to Fm2 is less than the moving time from Fm1
to Fm3 (in linear section, the dead-zone of thrusters charactersistics is neglected in
this thesis). Hence, we have:

4Fm = A+(Fd
B1 − Fd

B2) = A+4Fd
B (4.9)

‖4Fm‖ = ‖A+4Fd
B‖ ≤ ‖A+‖‖4Fd

B‖ (4.10)

‖4Fm‖
‖4Fd

B‖
≤ ‖A+‖ (4.11)

From Equation (4.11), the sensitivity of the thruster forces with respect to desired
forces, in other words the variation of thruster forces w.r.t desired forces, is upper-
bounded by the norm of pseudo-inverse of the configuration matrix, ‖A+‖. We
define the reactive index as:

Ire = ‖A+‖ (4.12)

It is obvious to see that if this index is more less, the robot is more reactive. Then,
the objective of design process is to minimize reactive index.

4.3.5 Robustness index

This criterion measures the robust level the AS of a marine robot. It means that
if any thrusters of the robot fails, the remaining ones can still perform the robot’s
mission. In particular, for any Fd

B vector, there always exists a Fm vector to satisfy
the equation FB = AFm and FB is as close as possible to Fd

B.
We have:

FB = AFm =
m∑
i=1

aiFm,i (4.13)

4.3. The different indices 65

Figure 4.8 – Thruster characteristic approximation

where ai is the ith column of the matrix A, and Fm,i is the force magnitude of ith
thruster.

When one or more thrusters completely fail, the value of Fm,i = 0. Note that in
the case that the ith thruster is partly failed, the value of Fm,i remains small (not
addressed in this thesis). This is equivalent to consider a corresponding column ai
of the configuration matrix A equals to zero vector. Therefore, Equation (4.13) is
equivalent as the equation:

FB = A′Fm (4.14)

where A′ matrix is the A matrix with one or more corresponding columns equal
zero vectors.

We discuss hereafter two questions: conditions of the matrix A′ to guarantee
the robustness, and what is the maximum number of thrusters failure?

For addressing these two questions, supposing that k-thrusters fail, and Equa-
tion (4.14) is a linear equation system with 6 equations (dimension of FB is 6× 1)
and (m − k) variables because the matrix A′ is 6 × m with k columns are zero
vectors. It is obvious to see that if rank(A′) = 6, for given Fd

B, there always exits
Fm such that FB = A′Fm and FB is as close as possible to Fd

B. This can be
interpreted that m−k ≥ 6 or k ≤ m−6. The condition of the configuration matrix
and the maximum number of failure thrusters that guarantee the robustness of a
marine robot are stated as:

1. The maximum of faulty thrusters: m− 6

2. Robust condition: the rank of configuration matrix always equals to 6, i.e,
rank(A) = 6, if any columns, from one (1) to maximum (m − 6), of A

66 Chapter 4. Performance Indices and Static Configuration Design

matrix equal to zero vectors. If rank(A) < 6, the system becomes under-
actuated, the guidance and control have to change to guarantee the robot’s
mission. This problem is not addressed in this thesis.

We define the robustness index as:

Iro = rank(A|≤m−6) = 6 (4.15)

where A|≤m−6 is the A matrix with the maximum number of columns being zero
is (m− 6). This novel index will be verified in the solving process of the problem.

4.4 Configuration matrix design problem

With all performance indices discussed above, we design the problem hereafter:

min
A

V(A) = min
A

[Im, Ie,
1
Iw
, Ire]T (4.16)

s.t A ∈ A

where V(A) is the objective function vector. A is the feasible set of the configuration
matrix (A) including constraints on configuration matrix (A) and robust index.
The inverse of the workspace index, 1

Iw
, is considered in Equation (4.16) because we

want to maximize the workspace index.
It is obvious to see that a multiobjective optimization has unique solution when

it has the convexity of each objective function in the objective vector and of the
feasible set. However, our problem is non-convex and only one local optimal solu-
tion will be found. Note that this optimization problem is with respect to a matrix
variable (matrix optimization), not to a vector variable. However, the optimization
techniques for vector variables (vector optimization) can be applied here because
we do not loose the physical meaning when converting a matrix variable to vector
variable in this optimization problem (because of the independence of each col-
umn in the matrix derived from the independence of positions and orientations of
thrusters).

Specifically, Equation (4.16) can be rewritten:

min
A

V(A) = min
A

[Im, Ie,
1
Iw
, Ire]T (4.17)

s.t ‖ui‖ = 1, i = 1, 2, ...m
‖τi‖ ≤ 1, i = 1, 2, ...m
τTi ui = 0, i = 1, 2, ...m
Iro = rank(A|≤m−6) = 6

The problem (4.17) is to minimize an objective vector V(A), including manipu-
lability index, energetic index, inverse of workspace index, and reactive index, with
respect to configuration matrix, A, satisfies constraints of matrix structure itself
and robust index. It is clear that this is a non-convex and multi-objective optimiza-
tion problem which normally has many solutions. The methods for multiobjective
optimization problem is presented in Chapter 3.

4.5. Searching for optimal solution 67

4.5 Searching for optimal solution

In this section, we find an optimal distribution (position and orientation) of
thrusters of the marine robot. This means that one has to get ui and ri vectors for
i = 1, 2, ...,m. These vectors can be extracted from configuration matrix A which
is the solution of the problem (4.17). Recall that our problem (4.17) is the multi-
objective optimization problem with non-convexity, and theoretically, this problem
has many Pareto optimal solutions. The final choice depends on our choice. Our
objective is to find one Pareto optimal solution for building the robot. Analyzing
the underlying mathematical properties of the problem helps to simplify the solv-
ing process. Thus, the mathematical analysis of the problem is shown in the next
section. In general, performance indices (manipulability, energetic, workspace, and
reactive) will be considered successively and robustness index will be considered at
the end.

4.5.1 Mathematical analysis

The configuration matrix A has the form as:

A =
(

u1 u2 · · · um
τ 1 τ 2 · · · τm

)
(4.18)

Let’s set B = ATA. It is obvious to see that B is a m×m symmetric matrix where
each element is denoted as bij . We have:

Tr(B) =
m∑
i=1

bii

=
m∑
i=1

λi (4.19)

where λi is the ith eigenvalue of matrix B.
Hence,

m∑
i=1

λi =
m∑
i=1

uTi ui + τTi τ i

=
m∑
i=1
‖ui‖2 + ‖τ i‖2

m∑
i=1

λi =
m∑
i=1

(1 + ‖τ i‖2) (4.20)

4.5.1.1 Manipulability index

In the case of manipulability index optimization, the optimal configuration con-
dition of matrix A is cond(A) = 1. This means that the maximum singular value
equals the minimum singular value, σmax = σmin. Note that the matrix A is the

68 Chapter 4. Performance Indices and Static Configuration Design

n×m matrix with n < m (since the system carries more actuators than DOFs). The
matrix A has n non-zero singular values(we have to guarantee that rank(A) = n),
then the matrix B has n non-zero eigenvalues and m − n zero eigenvalues. Note
that the number of non-zero singular values (equivalent to the rank(A)) is also the
number of actuable DoFs. If a system is fully-actuated, then A has to be full-rank.

Considering an optimal configuration w.r.t manipulability index, cond(A) =
1 ⇒ σmax = σmin, we have λi = λmax = λmin = λopt−m (σ =

√
λopt−m). The

Equation (4.20) is rewritten:

nλopt−m = m+
m∑
i=1
‖τ i‖2

λopt−m = m

n
+ 1
n

m∑
i=1
‖τ i‖2 (4.21)

The fact that ‖τ i‖2 ≤ 1 (because of assumption di = 1 in A matrix), we have:

λopt−m ≤ 2.m
n

(4.22)

Therefore, we have λmaxopt−m = 2mn when ‖τ i‖2 = 1.

4.5.1.2 Reactive index

In the singular value decomposition of a matrix, when cond(A) = 1, the matrix
A can be written as:

A = USVT = U[σ]n×mVT (4.23)

where U ∈ Rn×n, V ∈ Rm×m are orthogonal matrices, S = [σ]n×m =


σ 0 · · · 0
... σ · · · 0
0 · · · σ 0

 ∈
Rn×m.

The pseudo-inverse of matrix A is A+ can be written:

A+ = VS+UT (4.24)

where S+ = [1
σ]m×n =


1
σ · · · 0
... 1

σ 0
0 0 1

σ

0 · · · 0

 ∈ Rm×n.

Our objective with reactive index is to minimize the ‖A+‖. From Equation
(4.24), the reactive index Ire = ‖A+‖ = 1

σ , the minimum value of reactive index
is equivalent with the maximum value of σ. This leads to the equality of Equation
(4.22) holds.

4.5. Searching for optimal solution 69

In order to minimize the reactive index and satisfy manipulability index, the
configuration matrix A has the structure:

A = USVT

= U



σ 0 · · · 0 0 0
0 σ 0 · · · 0 0
0 0 σ 0 · · · 0
...

...
...

...
...

...
0 0 0 σ 0 0

VT (4.25)

where S(n×m) is like-diagonal and σ = σmax =
√
λmaxopt−m =

√
2mn ; U(n× n) and

V(m × m) are orthogonal matrices (UUT = I,VVT = I). This results can be
used as initial value of numerical optimization process and useful for solving the
problem.

4.5.1.3 Energetic index

First, we introduce a proposition as follows:

Proposition 4.5.1 : Let M be a p × q matrix (p ≥ q), M ∈ Rp×q. For all
x ∈ Rq, if M = PΣQT , where P ∈ Rp×p,Q ∈ Rq×q are orthogonal matrices,

Σ =



µ 0 · · · 0
0 µ · · · 0
0 · · · µ 0
0 · · · 0 µ
...

...
...

...
0 0 0 0


∈ Rp×q then ‖Mx‖ = ‖M‖‖x‖.

Proof : We have:

‖Mx‖2 = (Mx)T (Mx) = xTMTMx (4.26)

with M = PΣQT

‖Mx‖2 = xT (PΣQT)T (PΣQT)x
= xTQΣTPTPΣQTx
= xTQΣTΣQTx (4.27)

70 Chapter 4. Performance Indices and Static Configuration Design

We have:

ΣTΣ =



µ 0 · · · 0
0 µ · · · 0
0 · · · µ 0
0 · · · 0 µ
...

...
...

...
0 0 0 0



T 

µ 0 · · · 0
0 µ · · · 0
0 · · · µ 0
0 · · · 0 µ
...

...
...

...
0 0 0 0



=


µ2 0 · · · 0
0 µ2 · · · 0
...

...
...

...
0 · · · 0 µ2

 = µ2I (4.28)

where I is q × q identity matrix.
Replacing Equation (4.28) to (4.27), we have:

‖Mx‖2 = xTVµ2IVTx
= µ2xTx = ‖M‖2‖x‖2 (4.29)

Therefore, ‖Mx‖ = ‖M‖‖x‖.

The energetic index is stated as:

Ie = 1
S

∫
S

(wef‖A+(Fd
B(f)‖+ weΓ‖A+Fd

B(Γ)‖)dS (4.30)

Choose wef = weΓ = 1 (because desired force vectors, Fd
B(f),Fd

B(Γ), are unit),
we have:

Ie = 1
S

∫
S

(‖A+Fd
B(f)‖+ ‖A+Fd

B(Γ)‖)dS (4.31)

In case the minimum of reactive index and manipulability index, the configura-
tion matrix A(n×m) has the form as Equation (4.25), therefore the pseudo-inverse
matrix A+(m× n, m > n) has the structure as:

A+ = VS+UT = V



1
σ 0 · · · 0
0 1

σ · · · 0
0 · · · 1

σ 0
0 · · · 0 1

σ
...

...
...

...
0 0 0 0


UT (4.32)

where V,U are orthogonal matrices.
It is clear that matrix A+ satisfies the condition of proposition 4.5.1. Apply-

ing this proposition, we have: ‖A+Fd
B(f)‖ = ‖A+‖‖Fd

B(f)‖ and ‖A+Fd
B(Γ)‖ =

4.5. Searching for optimal solution 71

‖A+‖‖Fd
B(Γ)‖. Therefore, Equation (4.31) becomes:

Ie = 1
S

∫
S

(‖A+‖‖Fd
B(f)‖+ ‖A+‖‖Fd

B(Γ)‖)dS

= 1
S
‖A+‖

∫
S

(‖Fd
B(f)‖+ ‖Fd

B(Γ)‖)dS

= 2‖A+‖ (4.33)

For aforementioned mathematical analysis of the energetic index, we can see
that the energetic index belongs to the norm of pseudo-inverse of configuration
matrix, Ire = 2‖A+‖, when the configuration matrix A has the form of (4.25).

4.5.1.4 Workspace index

We discuss about the upper-bound of workspace index. For units consistency,
the workspace index for force space and for torque space are investigate separately,
denoted as Iwf and Iwτ respectively. Recall that the objective of workspace index
is to maximize the volume of resulting force space (FB space) including resulting
space for force and resulting space for torque with given the thrusters force space
(Fm space).

The fact that for all vector Fm ∈ Rm, ‖AFm‖ ≤ ‖A‖‖Fm‖. The volume of
the resulting force space is maximum when the equality holds. Following Fig 4.9,

Figure 4.9 – Upper-bound of resulting force space

the volume of resulting force spaces (FB)(force and torque spaces) are always less
than the volume of exterior hyper-sphere of FB spaces of force and torque (the

72 Chapter 4. Performance Indices and Static Configuration Design

circumscribed spheres or maybe not). This means that:

IwF ≤ V olume(B(R1))
IwT ≤ V olume(B(R2)) (4.34)

where B(R1) and B(R2) are an Euclidean balls of radius R1 = ‖A(1 : 3, :)‖‖Fm‖ =
‖A1‖‖Fm‖ and R2 = ‖A(4 : 6, :)‖‖Fm‖ = ‖A2‖‖Fm‖ respectively; A(1 : 3, :) is the
A matrix with three first rows, and A(4 : 6, :) is the A matrix with three last rows.

The fact that n-dimensional volume of an Euclidean ball of radius R in n-
dimensional Euclidean space is:

Vn(R) =


πk

k! R
2k, if n = 2k

2k+1πk

(2k+1)!!R
2k+1, if n = 2k + 1.

(4.35)

where (2k + 1)!! = 1.3.5...(2k − 1).(2k + 1).

Proposition 4.5.2 : If the configuration matrix A has the form of (4.25) then
cond(A1) = cond(A2) = 1 and ‖A1‖ = ‖A2‖ = σ.

Proof :
We have:

AAT = (USVT)(USVT)T = USVTVSTUT

= USSTUT = σ2I (4.36)

On the other hand:

AAT =
(

A1
A2

)(
A1
A2

)T
=
(

A1
A2

)
(AT

1 AT
2)

=
(

A1AT
1 0

0 A2AT
2

)
(4.37)

From (4.36) and (4.37), we have:

A1AT
1 = σ2I1

A2AT
2 = σ2I2 (4.38)

where I1 and I2 are partitioned matrices of matrix I.
From (4.38) and the uniqueness of singular value decomposition [Trefethen 1997],

it is obvious to get the structures of A1 and A2 are the same as (4.25) with different
dimensions. Therefore, cond(A1) = cond(A1) = 1 and ‖A1‖ = ‖A2‖ = σ.

From (4.34) and (4.35) and proposition 4.5.2, it is obvious to get the upper-bound
of resulting spaces of force and torque of the system, and then the upper-bound
of workspace index. Normally, the weighting coefficients in workspace index are
chosen as 1 because of our assumption of di.

For robustness index, we have to make sure that configuration matrix, A, has
to be full-rank. Therefore, this will be checked at the final step.

4.5. Searching for optimal solution 73

4.5.2 The optimization process

Based on the above mathematical analyses, goal attainment method is chosen
to solve the problem (4.17) with given desired values. The idea of this method
is to minimize the deviation of desired values and getting values. One advantage
of goal attainment method is that the problem do not need to normalize to di-
mensionless problem. The solution of this method is proven to be Pareto optimal
[Gembicki 1975]. This method is also suitable when the feasible objective set is
non-convex. All Pareto optimal solutions can be found by changing the weighting
vector.

Our problem using goal attainment approach becomes:

min
A,γ

γ

s.t A ∈ Ā
V(A)−wγ ≤ Vgoal (4.39)

where Ā = A \ Iro, i.e, A set without robust index Iro, γ is a slack vector variable,
Vgoal = [Idm Ide

1
Idw

Idre] is the desired objective vector, w is a attainment vector
which can be chosen by ourselves. The goal attainment method with two objective
functions is illustrated in Fig 4.10. By altering attainment vector, w, we get Pareto
optimal solutions. The chosen solution is about choosing this attainment vector.

Figure 4.10 – Goal attainment method with two objective functions

Therefore, the problem solving process includes two phases:
1. Phase 1: Find one Pareto solution (see Definition 7 in chapter 3) of configu-

ration matrix with goal attainment method. Note that finding the set of all
Pareto solutions, called Pareto front, is not considered in the thesis.

2. Phase 2: Check robustness index of the chosen solution in phase 1.

74 Chapter 4. Performance Indices and Static Configuration Design

4.6 Conclusion

A proper configuration design of a robot can optimize its operation ability, save
energy, and reduce building cost as well. A static configuration design problem was
proposed and described in this section with respect to performance indices including
manipulability, energetic, workspace, reactive, and robustness criteria. Specifically,
manipulability index represents isotropy ability of robot, energetic index is con-
sidered as the energy consumption when an unit desired control vector changes
all over hyper-sphere, workspace index represents attainable spaces of desired con-
trol vectors (force and torque spaces), reactive index expresses how fast that the
robot can change the direction of resulting force vector, and finally robustness in-
dex represents the independently acting ability of along 6 DoFs. All indices were
defined and exploited on properties of configuration matrix, A. This is a multi-
objective optimization problem in which objective functions are non-convex. By
mathematical analysis, goal attainment method was suitable and chosen to solve
it because we can know desired or lower-upper bound solutions of each objective
function. A solving procedure including two phases was designed. In the phase
1, goal attainment method is applied to find one Pareto solution with respect to
manipulability, energetic, workspace, and reactive indices. In phase 2, robustness
index will be check with the optimal solution. If it satisfies robustness index, the
procedure stops, if not, return to phase 1 to find another Pareto solution. Note that
just one Pareto solution will be found and chosen for simulation and experiments
in the next chapter. Finding a set of all Pareto solutions, Pareto front, will be a
future direction.

Chapter 5

Static Configuration:
Simulations and Experiments

Contents
5.1 Simulations . 75

5.1.1 General case . 76
5.1.2 Given position case . 79
5.1.3 A comparison of the two configurations of Cube robot (given

position) . 81
5.2 Cube robot prototype . 85

5.2.1 Descriptions of electronic and mechanic system 85
5.2.2 Cube’s characteristics . 86

5.3 Experimental results . 86
5.3.1 Attainability validation . 87
5.3.2 Energetic validation . 91
5.3.3 Robustness and Reactive validation 92

5.4 Conclusion . 95

Simulations and experimental results of static configuration design problem are
presented. Note that the result is just one of Pareto solutions (see Definition 7) and
Pareto front is not considered.

5.1 Simulations

We have designed a marine robot with m = 8 thrusters and n = 6 degrees of
freedom. Two cases are simulated:

1. General case: we have to identify both the positions and orientations of 8
thrusters optimizing the performance indices.

2. Given-position case: the thrusters are installed at the corners of a cube, we
only have to determine the directions of thrusters.

In our solving and simulation, thrusters characteristics are chosen as in [Ropars 2018],
in which the maximum and minimum values of thrusters forces are as Fimax = 1.1N
and Fimin = −0.4N respectively. The desired values of performance indices are
subsequently Im = 1, Ie = 1.2248, IwF = 597.7, IwT = 597.7, Ire = 0.6124 (σmax =√

2mn = 1.6330). See Table 5.1 for more details.

76 Chapter 5. Static Configuration: Simulations and Experiments

Index Optimal formula and condition Desired Value
Im σmax = σmin 1
Ie 2 ‖A+‖ 1.2248
1
Iw

see Equation 4.34 and 4.35 and 1
Iw

= 1
IwF

+ 1
IwT

0.0033
Ire

1
σmax 0.6124

Table 5.1 – Desired values of indices

Configuration matrix Optimal value

A =



−0.8891 −0.3645 0.5438 0.9879 0.3134 0.0148 0.0495 0.6090
−0.0985 −0.3036 −0.5911 −0.0608 −0.9493 0.0515 0.8919 0.7158

0.4471 0.8803 0.5957 0.1429 0.0260 0.9986 0.4495 0.3417
−0.4308 0.4701 −0.8386 0.0379 −0.1336 0.5628 −0.9972 0.4758

0.5107 0.7561 −0.4103 0.9868 −0.0712 −0.8259 0.0690 0.0149
−0.7441 0.4554 0.3583 0.1577 −0.9885 0.0342 −0.0272 −0.8794


Fval =


1.0000
1.2200
0.0050
0.6124



Table 5.2 – Configuration matrix in general case by solving the problem (4.39)

5.1.1 General case

In this case the positions and orientations of thrusters are not known. The
problem (4.39) is solved as follows. Because of assumption di = 1 (in Equation
4.2), all thrusters will be placed in a sphere and it is called Ball robot, that is
virtual robot like a ball and directions and positions of thrusters are determined
to achieve performance indices. The same kind of the robot, called SamoS, in
literature can be seen in [Pierrot 1998], but it is not redundant.

5.1.1.1 Phase 1

Optimization Matlab toolbox is used to solve the problem (4.39) with Vgoal =
[Idm Ide

1
Idw

Idre] = [1 1.2248 0.0036 0.6124], the constraint set Ā = {A ∈
R6×8/‖ui‖ = 1, ‖τ i‖ ≤ 1, τTi ui = 0}, the attainment vector w = [0 0 0 0.0036]T .

The simulation results are shown in Figs 5.1, 5.2(a), and 5.2(b). The configu-
ration matrix A and optimal values are shown in Table 5.2. The robot’s shape is
shown in Fig 5.1, called Ball robot. Position and direction vectors of thrusters are
presented in Table 5.3 (note that directions of thruster are the three first rows of
configuration matrix, and positions of thrusters can be interpolated from three last
rows of the matrix, see Proposition A.1.2 in Appendix A). Furthermore, we can see
that the isotropy property of robot is guaranteed by attainable force and torque
spaces (see Figures 5.2(a), 5.2(b)). From Table 5.2, the actual values of manipula-
bility index, energetic index, and reactive index are almost the same desired values.
However, the actual value of workspace index is under-attainment of desired value
with an attainment factor.

5.1.1.2 Phase 2

In this phase, the robustness index is checked. The optimal configuration matrix
A in Table 5.2 satisfies the robust constraint. It means that if one or two thrusters

5.1. Simulations 77

Thruster No. Position Direction Direction in angles(degree)

1

x = −0.1558
y = −0.8542
z = −0.4961


x = −0.8891
y = −0.0985
z = 0.4471

 (
azimuth = −173.6782
elevation = 26.5564

)

2

x = −0.8043
y = 0.5794
z = −0.1316


x = −0.3645
y = −0.3036
z = 0.8803

 (
azimuth = −140.2083
elevation = 61.6806

)

3

 x = 0.0326
y = −0.6944
z = −0.7188


 x = 0.5438
y = −0.5911
z = 0.5957

 (
azimuth = −47.3866
elevation = 36.5631

)

4

x = −0.1506
y = −0.1504
z = 0.9771


 x = 0.9879
y = −0.0608
z = 0.1429

 (
azimuth = −3.5218
elevation = 8.2154

)

5

 x = 0.9402
y = 0.3064
z = −0.1491


 x = 0.3134
y = −0.9493
z = 0.0260

 (
azimuth = −71.7300
elevation = 1.4898

)

6

 x = 0.8265
y = 0.5615
z = −0.0412


x = 0.0148
y = 0.0515
z = 0.9986

 (
azimuth = 73.9665
elevation = 86.9285

)

7

x = −0.0552
y = −0.4459
z = 0.8934


x = 0.0495
y = 0.8919
z = 0.4495

 (
azimuth = 86.8234
elevation = 26.7118

)

8

x = −0.6346
y = 0.6981
z = −0.3315


x = 0.6090
y = 0.7158
z = 0.3417

 (
azimuth = 49.6090
elevation = 19.9804

)

Table 5.3 – Positions and orientations of 8 thrusters in general case (one Pareto
solution)

78 Chapter 5. Static Configuration: Simulations and Experiments

Figure 5.1 – Robot design (general case-unknown positions and directions of
thrusters) (Ball robot)

0

2

F
z

2

Force space

Fy

2

4

0

Fx

0
-2 -2

(a) Attainable force space

-4

-2

4

0

T
z

2 4

2

Torque space

Ty

2

4

0

Tx

0-2 -2-4 -4

(b) Attainable torque space

Figure 5.2 – Attainable force and torque spaces in general case (unknown positions
and directions of thrusters)

fail, the robot is still able to act along the 6 DoFs independently.

Furthermore, robustness index can be evaluated with two other different con-
figurations, ball robot with 6 thrusters and with 12 thrusters (see Figure 5.3). The
robustness index satisfies in case of 12 thrusters and does not achieve in case of 6
thrusters.

5.1. Simulations 79

(a) Ball robot with 6 thrusters (b) Ball robot with 12 thrusters

Figure 5.3 – Ball robot with 6 and 12 thrusters in general case

Configuration matrix Optimal value

A =



0.0836 0.6616 −0.8122 0.4785 −0.6616 −0.0836 −0.4785 −0.8122
0.7452 0.7452 0.3337 0.3337 0.7452 0.7452 0.3337 −0.3337
0.6616 −0.0836 −0.4785 −0.8122 0.0836 −0.6616 0.8122 −0.4785
−0.8122 0.4785 −0.0836 −0.6616 −0.4785 0.8122 0.6616 −0.0836
−0.3337 −0.3337 0.7452 0.7452 −0.3337 −0.3337 0.7452 −0.7452

0.4785 0.8122 0.6616 −0.0836 −0.8122 −0.4785 0.0836 0.6616


Fval =


1.0000
1.2200
0.0050
0.6124



Table 5.4 – Configuration matrix in given position case

5.1.2 Given position case

In this case the positions of thrusters are given, at corners of a cube. We just
only have to find their orientations. The number of variables in the problem (4.39)
is reduced. The desired vector and attainment vector are the same as in general
case.

5.1.2.1 Phase 1

Similarly, Matlab optimization toolbox is used to solve our problem and simula-
tion results are shown in Figs 5.4, 5.5(a), 5.5(b), and Table 5.4. The robot’s shape
and directions of thrusters are depicted as red arrows in Fig 5.4, and position and
direction vectors of thrusters are displayed in Table 5.5. Similar to the general case,
the isotropy property is also achieved in this case by looking at attainable force and
torque spaces (Figs 5.5(a) and 5.5(b)). We can see that the getting objective values
in Table 5.4 are reached at desired values except workspace index.

80 Chapter 5. Static Configuration: Simulations and Experiments

Thruster No. Position Direction Direction in angles(degree)

1

 x = 0.5773
y = −0.5773
z = 0.5773


x = 0.0836
y = 0.7452
z = 0.6616

 (
azimuth = 83.5991
elevation = 41.4213

)

2

 x = 0.5773
y = −0.5773
z = −0.5773


 x = 0.6616
y = 0.7452
z = −0.0836

 (
azimuth = 48.4008
elevation = −4.7955

)

3

 x = 0.5773
y = 0.5773
z = −0.5773


x = −0.8122
y = 0.3337
z = −0.4785

 (
azimuth = 157.6642
elevation = −28.5877

)

4

x = 0.5773
y = 0.5773
z = 0.5773


 x = 0.4785
y = 0.3337
z = −0.8122

 (
azimuth = 34.8914
elevation = −54.3120

)

5

x = −0.5773
y = −0.5773
z = 0.5773


x = −0.6616
y = 0.7452
z = 0.0836

 (
azimuth = 131.5992
elevation = 4.7955

)

6

x = −0.5773
y = −0.5773
z = −0.5773


x = −0.0836
y = 0.7452
z = −0.6616

 (
azimuth = 96.4009
elevation = −41.4213

)

7

x = −0.5773
y = 0.5773
z = −0.5773


x = −0.4785
y = 0.3337
z = 0.8182

 (
azimuth = 145.1086
elevation = 54.3120

)

8

x = −0.5773
y = 0.5773
z = 0.5773


x = −0.8122
y = −0.3337
z = −0.4785

 (
azimuth = −157.6642
elevation = −28.5877

)

Table 5.5 – Positions and orientations of 8 thrusters in given-position case (one
Pareto solution)

5.1. Simulations 81

Figure 5.4 – Robot design (given position case) in which 8 thrusters are installed
at vertices of cube shape and directions of thrusters are along red arrow lines

-2

0

2 2

F
z

2

Force space

Fy

0

Fx

0
-2-2

-4

(a) Attainable force space

-2

0

2

T
z

Torque space

Ty

2

2

Tx

0 0
-2 -2

(b) Attainable torque space

Figure 5.5 – Attainable torque space (given position case - Cube shape)

5.1.2.2 Phase 2

The optimal configuration matrix A in Table 5.4 satisfies the conditions of
robustness index.

5.1.3 A comparison of the two configurations of Cube robot (given
position)

In this section, a comparison of two configurations is illustrated. The first one
is an arbitrary configuration (denoted as C1) in which the thrusters are distributed
vertically or horizontally. In practice, this configuration is easier to install and
displayed at Figure 5.6(a) (3D model). The configuration matrix of C1, denoted

82 Chapter 5. Static Configuration: Simulations and Experiments

(a) 3D model of Cube robot in C1 configuration (b) 3D model of Cube robot in C2 configura-
tion

Figure 5.6 – 3D model of Cube robot in two configurations C1 and C2

A1, is shown in Equation (5.1).

A1 =


0 1 0 0 0 0 −1 0
1 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 −1

0.27 0 −0.27 0.27 0.27 0.27 0 0.27
0 −0.27 0.27 0 0 0.27 −0.27 −0.27

0.27 −0.27 0 0.27 0.27 0 0.27 0

 (5.1)

The second one (denoted as C2) is an optimal configuration, denoted as A2,
which is the solution of our optimization problem in given position case, and the
optimal configuration matrix is shown in Equation (5.2).

A2 =


0.6616 −0.8122 0.4785 0.0836 −0.0836 −0.4785 −0.8122 −0.6616
0.7452 0.3337 0.3337 0.7452 0.7452 0.3337 −0.3337 0.7452
−0.0836 −0.4785 −0.8122 0.6616 −0.6616 0.8122 −0.4785 0.0836

0.1608 0.0111 −0.2459 −0.3708 0.3642 0.2015 0.0011 −0.1658
−0.0989 0.3556 0.3633 −0.0989 −0.1056 0.3508 −0.3456 −0.1056

0.3906 0.2292 0.0044 0.1583 −0.1649 −0.0254 0.2392 −0.3708

 (5.2)

Note that the configuration matrices A1 and A2 are calibrated with corresponding

Figure 5.7 – Thruster characteristic(BlueRobotics) [BlueRobotics]

geometrical properties of real cube robot built in Polytech and LIRMM Institute,

5.1. Simulations 83

Montpellier University. The attainable force and torque spaces corresponding with
two configurations C1 and C2 are illustrated in Figures 5.8(a) and 5.8(b). It is
obvious to see that the C2 configuration is more isotropic than the C1 configuration.
However, for some specific points of attainable fore and torque spaces, the C1

configuration is larger than the C2 configuration.

-100

100

Force space

0

F
z
(N

)

100

100

Fx(N)

0

Fy(N)

0 -100-100

(a) C1(red), C2(blue)

-50

50

Ty(N.m)

0

0

T
z
(N

.m
)

50

Tx(N.m)

0

Torque space

-50
-50

50

(b) C1(red), C2(blue)
Figure 5.8 – Attainable spaces ((a)-Force space,(b)-Torque space) for two configu-
rations (C1 (red) and C2(blue))

Thanks to the properties of matrices A1 and A2 (Equation (5.1) and (5.2)) and
the thruster characteristic (Figure 5.7), Table 5.6 shows the values of performance
indices for two configurations. The performances of C2 configuration are better
than ones of C1. Because of the calibration (the distance di is different between
motors), the manipulability index (Im) is larger than 1.

No. Indices C1 C2

1 Im 7.12 2.559
2 Ie 3.32 2.09
3 Iw 6511536.45 10919428.13
4 Ire 4.05 1.56
5 Iro 0 2

Table 5.6 – Comparison between two configurations (Iro shows the maximum num-
ber of thrusters which can be failed to make sure that rank(A) = 6)

In order to verify the attainability of two configurations (workspace index), in-
cremental torques are applied about X, Y, and Z axis respectively (Figures 5.9(a),
5.10(a), and 5.11(a)), the corresponding PWM (Pulse Width Modulation) inputs
(cm) of 8 thrusters are computed. The results are shown in Figures 5.9(b), 5.9(c),
5.10(b), 5.10(c), 5.11(b), and 5.11(c) in which the two PWM’s saturation values of
thrusters (upper saturation value: 1900, lower saturation value: 1100) are plotted
with two bold lines. We can see that the performances of the robot with two config-
urations are almost the same with the rotation about X and Y axis. However, the
C2 configuration shows better performance with the rotation about Z-axis. In fact,
the thrusters with C1 configuration reach saturations very earlier in comparison
with the thrusters with C2 configuration (Figures 5.11(b) and 5.11(c)).

84 Chapter 5. Static Configuration: Simulations and Experiments

0 200 400 600 800 1000 1200

time

0

10

20

30

40

50

T
o
rq

u
e

(N
.m

)

Torque applied on X

(a) Applied torque about X-axis (simulation)

0 200 400 600 800 1000

time

1200

1400

1600

1800

2000

P
W

M
 i
n

p
u

ts

Thruster PWM of C1 configuration (X)

(b) PWM inputs of C1 (simulation)

0 200 400 600 800 1000

time

1000

1200

1400

1600

1800

2000

P
W

M
 i
n

p
u

ts

Thruster PWM of C2 configuration (X)

(c) PWM inputs of C2 (simulation)

Figure 5.9 – The simulation of cube rotation about X-axis for C1 and C2

0 200 400 600 800 1000 1200

time

0

10

20

30

40

50

T
o

rq
u

e
(N

.m
)

Torque applied on Y

(a) Applied torque about Y-axis (simulation)

0 200 400 600 800 1000

time

1000

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C1 configuration (Y)

(b) PWM inputs of C1 (simulation)

0 200 400 600 800 1000

time

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration (Y)

(c) PWM inputs of C2 (simulation)

Figure 5.10 – The simulation of cube rotation about Y-axis for C1 and C2

5.2. Cube robot prototype 85

0 200 400 600 800 1000 1200

time

0

10

20

30

40

50

T
o
rq

u
e

(N
.m

)
Torque applied on Z

(a) Applied torque about Z-axis (simulation)

0 200 400 600 800 1000

time

500

1000

1500

2000

P
W

M

Thruster PWM of C1 configuration (Z)

(b) PWM inputs of C1 (simulation)

0 200 400 600 800 1000

time

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration (Z)

(c) PWM inputs of C2 (simulation)

Figure 5.11 – The simulation of cube rotation about Z-axis for C1 and C2

In order to validate the robustness of the optimal configuration (C2) in com-
parison with the normal configuration (C1), the rank of matrices A1 and A2 is
checked when arbitrary one or two columns have been nullified. When the result-
ing matrices are rank deficient, this means that the robustness is not guaranteed
because one DoF is not actuated independently. Therefore, we can not control all 6
DOFs independently. The robustness index in Table 5.6 shows the checking results.
In particular, when the 5th thruster of C1 configuration fails, the robustness is not
guaranteed.

The next sections present experimental results with these two configurations on
real Cube robot.

5.2 Cube robot prototype

5.2.1 Descriptions of electronic and mechanic system

Cube robot is an over-actuated robot consisting of eight thrusters fixed at each
corner of the cube and buoyancy pieces are fixed along its sides. Control and power
electronic systems are set up in waterproof enclosures. It is controlled using quater-
nion formalism (see Chapter 2 and Appendix A.2). It can carry out many missions
such as going straight, diving to predefined depth, and rotating around any axis.
Cube robot is suitable to test our proposed approach. For the normal configura-
tion, C1, thrusters are installed vertically or horizontally as in Figure 5.14(a). For

86 Chapter 5. Static Configuration: Simulations and Experiments

another configuration, C2, thruster’directions follow the optimal solution of our
design problem as in Figure 5.14(b).

5.2.2 Cube’s characteristics

This section summarizes the characteristics of Cube robot. Major components of
the Cube are pressure sensor, electronic speed controller (ECS), thruster, and main
card. Their technical details are shown in Table 5.7. The information diagram
of Cube robot is displayed in Figure 5.12. DroPix card is the main processor
in which IMU (gyroscope, accelerometer, and magnetometer) are integrated. It
receives data from pressure sensor and controls thrusters through power switch
card and electronic speed controller.

Figure 5.12 – Flow of information in Cube robot: T-Thruster, ESC-Electronic Speed
Controller

5.3 Experimental results

Experiments are carried out on Cube robot to compare between two configura-
tions, C1 (see Figure 5.14(a)), C2 (see Figure 5.14(b)), in the swimming pool at

5.3. Experimental results 87

Devices Images Properties

Pressure sensor — Depth resolution: 2mm
— Communicate over I2C

— Measure up to 300m depth
— Include a temperature sensor accu-

rate to ±10C

ECS — robust brushless electronic speed
controller

— Forward/reverse rotation direction

T200 — fully-flooded three-phase brushless
motor

— water-cooled motor
— run at a range of voltages
— use both clockwise and counter-

clockwise propellers

DroPix V2 — Advanced 32 bit ARM Cortex
— Communicate with additional pe-

ripherals (UART, I2C, CAN)
— Integrate gyroscope, accelerome-

ter, and magnetometer

Table 5.7 – Technical details of main devices in Cube’s robot

Montpellier University (see Figure 5.13(b)). The Cube in water and a video link
for Cube’s operations can be seen in Figure 5.13(a).

5.3.1 Attainability validation

Increasing torques about X-axis, Y-axis, and Z-axis are asked on Cube robot,
angular velocities and PWM input values are stored for evaluating these two con-

88 Chapter 5. Static Configuration: Simulations and Experiments

(a) Cubet robot in water https://www.youtube.com/
watch?v=RKiWUOxDKdw

(b) C1 configuration at swimming pool,
Montpellier University

Figure 5.13 – Experiments of Cube robot

figurations. For safety, the experiment will be stopped when one thruster reaches
the saturation values. The experimental results are shown in Figures 5.15, 5.16
and 5.17. For rotating about X-axis, Figure 5.15, attainability of configurations C1

and C2 is almost the same, all thrusters operate in feasible region. Otherwise, for

https://www.youtube.com/watch?v=RKiWUOxDKdw
https://www.youtube.com/watch?v=RKiWUOxDKdw

5.3. Experimental results 89

(a) C1 configuration

(b) C2 configuration

Figure 5.14 – C2 and C1 configurations

rotating about Y-axis and Z-axis, attainability of configuration C2 shows better C1

one. In particular, with Y-axis experiment (Figure 5.16), Cube robot with C1 stops
the mission earlier than with C2 (at time step 771) because one thruster reach its
saturation. The same behavior happens with Z-axis experiment (at time step 451)
(see Figure 5.17).

90 Chapter 5. Static Configuration: Simulations and Experiments

0 200 400 600 800

time

0

10

20

30

40

N
.m

Torque applied to X

C1

C2

(a) Applied torque about X-axis

0 200 400 600 800

time

0

1

2

3

ra
d

/s

Angular velocity about X

C1

C2

(b) Angular velocities

0 200 400 600 800

time

1200

1400

1600

1800

P
W

M

Thruster PWM of C1 configuration

(c) PWM inputs of C1

0 200 400 600 800

time

1200

1400

1600

1800

P
W

M

Thruster PWM of C2 configuration

(d) PWM inputs of C2

Figure 5.15 – The cube rotates about X-axis for C1 and C2

0 200 400 600 800 1000

time

0

20

40

60

N
.m

Torque applied to Y

C1

C2

771

(a) Applied torque about Y-axis

0 200 400 600 800 1000

time

-0.5

0

0.5

1

1.5

2

2.5

3

r
a
d
/
s

Angular velocity about Y

C1

C2

771

(b) Angular velocities

0 200 400 600 800

time

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C1 configuration

(c) PWM inputs of C1

0 200 400 600 800 1000

time

1200

1400

1600

1800

P
W

M

Thruster PWM of C2 configuration

(d) PWM inputs of C2

Figure 5.16 – The cube rotates about Y-axis for C1 and C2

5.3. Experimental results 91

0 200 400 600 800

time

0

10

20

30

40
N

.m

Torque applied to Z

C1

C2

451

(a) Applied torque about Z-axis

0 200 400 600 800

time

0

1

2

3

ra
d

/s

Angular velocity about Z

C1

C2

451

(b) Angular velocities

0 100 200 300 400 500

time

1000

1200

1400

1600

1800

P
W

M

Thruster PWM of C1 configuration

(c) PWM inputs of C1

0 200 400 600 800

time

1200

1400

1600

1800

2000

P
W

M

Thruster PWM of C2 configuration

(d) PWM inputs of C2

Figure 5.17 – The cube rotates about Z-axis for C1 and C2

5.3.2 Energetic validation

In this section, we verify the energy spending during these experiments for two
configurations. An energy-like criterion is proposed:

E =
m∑
i=1

∫ T

t=0
|PWM i(t)− 1500|dt (5.3)

wherem is the number of thrusters, T is the time of experiment, PWM i(t) is PWM
inputs of ith thruster.

Table 5.8 shows the energy-like consumption of robot during three rotations
experiments. For X-axis rotation, the attainability of two configurations is the
same but the the spent energy of C2 configuration is lower. For Y-axis and Z-
axis rotation, the duration of experiments of C2 configuration is longer, the energy
consumption, therefore, is higher.

No. Rotation EC1 EC2

1 X 7.2303e+04 6.9603e+04
2 Y 7.5480e+04 1.0590e+05
3 Z 3.1637e+04 7.4350e+04

Table 5.8 – Energy-like consumption of two configurations

92 Chapter 5. Static Configuration: Simulations and Experiments

Table 5.9 shows the comparison of energy-like consumption of two configurations
with the same time duration. For Y-axis rotation, the energy value of C2 configu-
ration is lower than one of C1 configuration. However, for Z-axis, the energy values
of C2 configuration is higher. This happens because the robot dived deeper for C2

configuration experiments of Z-axis rotation, the robot had to deliver more power
to keep at higher constant depth.

No. Rotation EC1 EC2

1 Y 7.5480e+04 7.2715e+04
2 Z 3.1637e+04 3.3312e+04

Table 5.9 – Energy consumption of two configurations with the same time duration

5.3.3 Robustness and Reactive validation

This section validates the robustness and reactive of the optimal configuration
(C2) in comparison with the normal configuration (C1). For robustness, the robot
performs a mission, and one or two thrusters is turned off. For the configuration C1,
the mission will fail, and for the optimal configuration C2, the mission will continue.
Specifically, for robustness index, we will carry out the following experiments:

1. The Cube robot dives to predefined depth with all motors being in the normal
operating conditions.

2. The Cube robot dives to the same predefined depth with one vertical motor
being stopped.

3. The Cube robot dives to the same predefined depth with two vertical motors
being stopped.

4. The Cube robot dives to the same predefined depth with three motors being
stopped (two vertical motors and one arbitrary motor)

5. The Cube robot simultaneously dive to the same predefined depth and ro-
tates about Z-axis with three motors being stopped (two vertical motors and
one horizontal motor)

For reactive index, we will carry out the following experiments:
1. The Cube robot dives at the predefined depth and goes up to another pre-

defined depth and dives again at the former predefined depth.
2. In the sequence, the Cube robot dives at the predefined depth, rotates about

X-axis, after that, rotates about Y-axis. The rotation time of each axis
should be 60 second or longer.

3. In the next, the Cube robot dives at the predefined depth, rotates about
X-axis, after that, rotates about diagonal-axis (diagonal of the cube robot).
The rotation time of each axis should be 60 second or longer.

The experimental results for robustness validation of C1 and C2 are shown in
Figures 5.18, 5.19, and 5.20. In case of one or two motors stopped, the depth control

5.3. Experimental results 93

performance of C1 and C2 are almost the same (see Figure 5.18). The differences
are clear in case of three thrusters stopped (Figure 5.20), the performance of C1 is
not achieved (Figure 5.19) and violations of PWM values happen (see 5.20(a)).

(a) Depth control of two configurations with
one motor stopped

(b) Depth control of two configurations with
two motor stopped

Figure 5.18 – Depth control for C1 and C2 with one and two motors stopped

Figure 5.19 – Depth control for C1 and C2 with three motors stopped

(a) PWM of C1 configuration (b) PWM of C2 configuration

Figure 5.20 – PWM evaluation for C1 and C2 with 3 motors stopped

The results for reactive validation are shown in Figures 5.21, 5.22, and 5.23.

94 Chapter 5. Static Configuration: Simulations and Experiments

We measure the reactive time of angular velocities when changing the direction of
Cube’s actions. It is clear that reactive time of C2 configuration is faster than C1

configuration. Specifically, reactive time is the region formed by vertical lines in Fig-
ures 5.21, 5.22, and 5.23. It is obvious to see that reactive time of C2 configuration
is smaller than one of C1 configuration (see Figures 5.22, and 5.23).

(a) Angular velocites of C1 configuration (b) Angular velocities of C2 configuration
Figure 5.21 – Angular velocity evaluation for C1 and C2: diving, rotating X-axis,
and rotating diagonal-axis

(a) Angular velocites of C1 configuration (b) Angular velocities of C2 configuration
Figure 5.22 – Angular velocity evaluation for C1 and C2: diving, rotating X-axis,
and rotating Y-axis

Figure 5.23 – Angular velocity evaluation for C1 and C2: diving, rotating X-axis,
and rotating Y-axis

5.4. Conclusion 95

5.4 Conclusion

This chapter presented simulation and experiment results of static configura-
tion problem in Chapter 4. The solving procedure was carried out to find a Pareto
optimal configuration matrix in two case: general case (positions and directions of
thrusters are unknown) and given-position case (positions of thrusters are known
and given in corners of a cube). These solutions showed that performance indices
were obtained except workspace index with attainment factor. A comparison be-
tween two configurations of given-position case, called C1 (normal configuration)
and C2 (optimal configuration), was investigated in simulations and experiments.
The first configuration is that thrusters are installed in vertical or horizontal direc-
tions, the second one is that thrusters are installed with optimal configuration from
founded solution. Simulation results showed that performance indices of configura-
tion C2 are better than ones of configuration C1.

A real robot (called Cube robot) was designed to validate the proposed method
and quaternion formalism was used to design controller. Performances of optimal
configuration (C2) showed better than ones of normal configuration (C1) in most
of performance indices. For robustness index, the objective of mission with C1

configuration is also achieved, however, the behavior of the robot is worse than one
of the robot with C2 configuration. Then robustness index was not satisfied in our
definition. Note that the achievement of mission’s objective not only depends on
the configuration but also on control strategy and localization (path following or
depth control with under-actuated system which can not be able to act along heave
direction), and this is out of the thesis’s scope.

Chapter 6

Reconfigurable Robot Design -
Umbrella Robot

Contents
6.1 Introduction . 97
6.2 Principles . 99

6.2.1 General view . 99
6.2.2 Hardware Architecture . 99
6.2.3 Software architecture . 99

6.3 Reconfigurability . 103
6.4 Prototype . 104
6.5 Configuration evaluation - Acting ability 104
6.6 Configuration optimization - Acting ability 107
6.7 Conclusion . 110

A prototype of an autonomous underwater robot with reconfigurable actuation
system, called Umbrella robot, is built, and its properties are described. The recon-
figurable capability is analyzed and acting abilities along/about 6 DoFs are proposed
to evaluate a configuration. A configuration optimization problem with respect to
geometric distances, in acting ability perspective, is suggested to enhance the robot’s
performances.

6.1 Introduction

In robotic fields, reconfigurable robots have been an attractive area because
of their versatility. They can change their shape or configuration corresponding
to specific mission requirements. Therefore, building cost can be reduced with
one robot doing several works. Moreover, reconfigurable robots can be applied in
complex tasks requiring adaptive configurations such as karst exploration or space
applications. For instance, a clear operational reason of reconfigurable robots is to
minimize power consumption. Robustness is also an advantage of reconfigurable
robots in virtue of its flexibility. Readers can have the overview of questions and
other issues of modular self-reconfigurable robot system in [Yim 2007] [Liu 2016].

In robot manipulators, the idea of reconfigurable robot appeared very early be-
cause of the development of manufacturing industry as shown in [Fukuda 1988a]
[Fukuda 1988b] [Schmitz 1988] [Kereluk 2017]. This has been extended to other

98 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

fields in robotic domain such as land-based and underwater robotic areas. The
prominent idea for reconfigurable robot is modular design concept in which the robot
can connect or disconnect its corresponding modules [Murata 2007] [Stoy 2010].
For instance, a modular reconfigurable robot with perception-driven autonomy was
proposed in [Daudelin 2018]. The robot is able to complete complex tasks by reac-
tively reconfiguring to meet the perceived environmental information. Floor clean-
ing robot with reconfigurable mechanism was introduced in [Prabakaran 2018]. The
robot reconfigures its morphology in response to its perceived environment to max-
imize coverage area. Reconfigurable snake robot was presented in [Thakker 2014].
The snake robot was also designed like modules. However, the robot can transform
to various configurations without rearrangement of modules. Gait planner is used
to switch between gaits: snake gait, transforming gait, and walking gait.

In the underwater field, a guidance and control method for a reconfigurable
unmanned underwater vehicle was introduced in [Caccia 2000]. However, the re-
configurability of the robot is not clear and all thrusters were installed hardly. In
[Low 2007], a reconfigurable robotic fish with undulating fins was developed. But,
it is not a reconfigurable capability during operation, just reconfiguring design pa-
rameters to achieve an another version of the robot. Another reconfigurable robotic
fish was introduced in [Hu 2007]. Tcomputinghe robot was designed in the way of
modules combination. This can help to build robotic fish with different morpholo-
gies. So, this is just a static reconfiguration. Reconfigurable magnetic-coupling
thrusters for AUVs was introduced in [Chocron 2008][Chocron 2013][Vega 2016] and
[Chocron 2018]. The main idea here is based on the coupling of two magnetic parts.
One servo motor is used to change the relative position of one magnet with respect
to another one. Therefore, the more thrusters are in the robot, the more servo
motor to be actuated. This yields the cost of robot being increased. Moreover,
the magnetic filed between coupling magnets is easily disturbed by metal parts of
the robot structure and the force from motor rotor to propeller robot is lost. The
idea using magnetic coupling to build versatile thruster configuration is also used
in [Pugi 2018]. Reconfigurable AUV for Intervention (RAUVI project) was pre-
sented in [De Novi 2009] [Sanz 2010] [Prats 2012]. This is an autonomous under-
water robot equipped with one manipulator which allows to perform manipulation
tasks. The robot, inherited from Girona 500 AUV [Ribas 2011], is statically recon-
figured with respect to different tasks. A prototype of a reconfigurable underwater
robot with bioinspired electric sense was introduced in [Mintchev 2012]. The robot
was designed as modules which can be detached or attached in order to adapt its
configuration. In [Meister 2013], dynamics and a control approach for modular and
self-reconfigurable robotic systems were presented. Several benchmark examples are
used to evaluate different configurations. In robotic systems, the reconfigurability
can be found in any stages of the robotic architecture from software to hardware,
concepts of reconfigurable autonomy can be found in [Dennis 2014]. A static re-
configurable underwater robot, namely SeaDrone, was introduced [Moreno 2014].
Four configurations of the robot corresponding with four underwater tasks were
shown. However, this is done statically before starting missions. A structure of a

6.2. Principles 99

reconfigurable AUV/ROV for man-robot underwater cooperation was depicted in
[Odetti 2017]. This is actually a ROV and is possible to change it into an AUV.
Moreover, it can be mechanically changed to six possible layouts.

6.2 Principles

6.2.1 General view

The first idea of Umbrella Robot stems from [Gourmelen 2018]. The general
view of the Umbrella Robot (UR) is shown in Fig 6.1 in which robot is shown
to be able to modify its configuration, i.e., forward thruster in "open" state in
Figure 6.1(a), "close" state in Figure 6.1(b), and "open-open" state (forward and
backward sides) in Figure 6.1(c). The robot carries seven thrusters, four thrusters
in backward side and three thrusters in forward side. The body of UR is built
by two tubes in which one is used for central processor, the other holds two DC
motors connected to two threaded rods (forward and backward sides) are used to
change configurations. Two battery packages (black tubes in Figure 6.1) are used
for the robot. Waterproof cables are used for communicating between parts of the
robot.

6.2.2 Hardware Architecture

We portrait the hardware architecture of the UR in this section. The processor
of UR is Raspberry Pi 2. Raspberry Pi has many merits in computational capability
and extensibility. The robot is equipped with a pressure sensor and an IMU sensor.
One camera and GPS module will be installed in the future. Thrusters of the
robot are controlled by a PWM module which communicates with Raspberry Pi by
I2C protocol. Two DC motors with encoders are used to change the orientations
and positions of thrusters. Communications between the Umbrella Robot and a
PC/lapop is wireless protocol. The principle architecture of UR is illustrated in
Figure 6.2. Electronic Speed Controller (ESC) is provided for each thruster. Two
DC motors are controlled by DC motor drivers. Battery packages with power
converter card can supply electric power with several voltage levels for the whole
robot.

6.2.3 Software architecture

This section presents the software architecture of the robot from use case di-
agram to dynamic state machine modeling. Because of the limitation of pages,
some diagrams of software design process are not illustrated, for instance, dynamic
interaction modeling, integrated communication diagrams.

100 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

(a) Umbrella robot in open-forward (b) Umbrella robot in close

(c) Umbrella robot in open-forward and open-
backward

Figure 6.1 – The 3D model of Umbrella Robot

6.2.3.1 Use case diagram

Use case diagram depicts all operation cases of the robot in practical uses. The
use case diagram is illustrated in Figure 6.3. For starting missions, an operator
turns on power of the robot, automatic or manual operation, is chosen based on
parameters setting up in the UR’software. The turn off use case is carried out
when finishing missions or stopping the robot for reasonable issues. Upload data
use case is activated when an operator wants to store all data or states of the current
missions.

6.2.3.2 Static and object/class modeling

Object structuring diagram is shown in Figure 6.4. The software system in-
cludes four input classes, two output classes, a proxy class, two entity classes, and
one state dependent class. The input classes, IMU, pressure sensor, and two en-
coders, receive sensory data from sensors. The output classes including DC motors
and thrusters interface communicate with DC motors and thrusters. Two entity
classes, UMSetZero and UmRData, are used to set up zero point (for changing

6.2. Principles 101

Figure 6.2 – The principle diagram of UR

Figure 6.3 – The use case diagram of UR

UR’s configurations) and to store operation data respectively. One proxy class
transfers data to external devices such as personal computer or laptop.

6.2.3.3 Dynamic state machine modeling

The dynamic state machine diagram of state dependent class describes states of
the robot during operations. The state machine follows the states of the robot as its
transitions from idle state to other states. The states are determined by following
the use cases (Turn on power/automatic, turn on power/manual, turn off, upload
data). In the paper, only dynamic state machine of Turn on power/automatic use
case is shown as follows:

102 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

Figure 6.4 – The object structuring diagram of UR

1. Idle: This is the initial state, in which the robot is idle, waiting for a specific
time before starting missions (this time is saved for putting the robot into
the water). In this state, the robot sets umbrella into zero point and checks
all initial conditions.

2. Starting: This state is entered when the waiting time of Idle state is elapsed
and start command is sent to thrusters.

3. Moving: The robot is moving or rotating or keeping position. This depends
the control strategy.

4. ChangeConfig: This state is active when the robot changes its configura-
tions. In this state, the robot just varies the positions and orientations of
thrusters, not doing anything else.

5. Moving/ChangeConfig: The robot enters this state when a command of
changing configuration is received. The robot is still doing current missions
and changing its configurations.

6. Stopping: The robot enters this state when finishing missions.

Figure 6.5 portraits the transitions between states. The notation condition/action
is used to describe the transition arrows.

6.3. Reconfigurability 103

Figure 6.5 – The Dynamic state machine modeling of Turn on power/automatic use
case

6.3 Reconfigurability

The reconfigurability of the robot is expressed by varying two angles αF and αB
(see Figure 6.6). Therefore, the configuration matrix, the A matrix will change ac-
cordingly. The relation between thrusters forces and resulting forces (forces/torques
w.r.t body frame) is usually as follows:

Figure 6.6 – Definitions of two angles αF and αB

FB = A(αF , αB)Fm =
(

F
Γ

)
(6.1)

where FB = [Fu Fv Fw Γp Γq Γr]T ∈ R6 is vector of resulting force in which
F = [Fu Fv Fw]T and Γ = [Γp Γq Γr]T , A(αF , αB) ∈ R6×m, and thruster

104 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

force vector Fm = [Fm,1 Fm,2 ... Fm,m]T ∈ Rm is vector of thrusters forces,
and m is the number of thrusters, m = 7 > 6. From the scheme of Umbrella Robot,
the configuration matrix, A, has a form as:

A =
(

uB1 uB2 · · · uBm
rB1 ⊗ uB1 rB2 ⊗ uB2 · · · rBm ⊗ uBm

)

=
(

uB1 uB2 · · · uBm
τB1 τB2 · · · τBm

)
=
(

A1
A2

) (6.2)

where m = 7; uBi and rBi (i ∈ 1, ..., 7) are directions and positions of thrusters w.r.t
body frame. The operator ⊗ is cross product, and τBi = rBi ⊗ uBi

The uB1 , . . . ,uB7 and rB1 , . . . , rB7 are identified as in Appendix A.3. The geome-
tries for this computation are shown in Figure A.1 and Figure A.2.

From the equations ubi and rbi in Appendix, it is obvious to see that the configu-
ration matrix, A, depends on forward and backward angles, αF and αB, respectively
(we can also see these angles geometrically in Figure A.1 and Figure A.2). By vary-
ing these two angles, the configuration matrix will be changed. Table 6.1 shows
the configuration matrix A corresponding with three cases. If αF = αB = 45◦, the
robot is like a Torpedo robot, and it can act along heave, pitch, and yaw directions.
This configuration corresponds to an under-actuated situation, and the system can
be controlled as a torpedo-like system. Otherwise, if αF = αB = 90◦, the robot can
act along 6 DoFs, it is a fully actuated system (note that in roll direction, the acting
ability is quite small). Therefore, the acting capability of robot is extended. In ar-
bitrary case, for instance αF = 50◦, αB = 60◦, the configuration matrix also shows
that the robot can operate along 6 DoFs, however, the priority is also along u axis,
and then the robot can be considered as a fully actuated system, but with different
capability along specific DoF. It is clear to see this in the simulation results. If
two angles αF and αB vary at each time step, the online adaption of configuration
matrix can be achieved. This will be shown and discussed more in Chapter 7 and
Chapter 8.

6.4 Prototype

The current version of Umbrella Robot at LIRMM, Montpellier University, is
shown in Figure 6.7. For varying configuration, readers can follow a video link in
Figure 6.7

6.5 Configuration evaluation - Acting ability

This section proposes a criterion to evaluate the acting ability along each DoFs
of robot based on configuration matrix. Configuration matrix, A has a general form

6.5. Configuration evaluation - Acting ability 105

Angles A matrix

αF = 45◦
αB = 45◦



1 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0435 0.1909 −0.0435 −0.0600 0.1909 −0.0600 −0.1909
0.1953 −0.0600 −0.1953 0.1909 −0.0600 −0.1909 0.0600



αF = 50◦
αB = 60◦



0.9962 0.9962 0.9962 0.9659 0.9659 0.9659 0.9659
0.0755 0 −0.0755 0.2588 0 −0.2588 0
0.0436 −0.0872 0.0436 0 −0.2588 0 0.2588
−0.0052 −0.0052 0.0052 0.0155 −0.0155 −0.0155 −0.0155
−0.0630 0.2296 −0.0630 −0.0580 0.1417 −0.0580 −0.1417

0.2287 −0.0598 −0.2287 0.1417 −0.0580 −0.1417 0.0580



αF = 90◦
αB = 90◦



0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071
0.6124 0 −0.6124 0.7071 0 −0.7071 0
0.3536 −0.7071 0.3536 0 −0.7071 0 0.7071
−0.0424 −0.0424 0.0424 0.0424 −0.0424 −0.0424 −0.0424
−0.1575 0.3885 −0.1575 −0.0424 0.0566 −0.0424 −0.0566

0.3577 −0.0424 −0.3577 0.0566 −0.0424 −0.0566 0.0424


Table 6.1 – configuration matrix with some cases of two angles αF and αB

Figure 6.7 – A prototype of Umbrella Robot https://www.youtube.com/watch?
v=yBBCu1z3q-0&feature=youtu.be

as:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

...
an1 an2 · · · anm

 (6.3)

The acting abilities along each DoFs belongs to elements of A matrix and are

https://www.youtube.com/watch?v=yBBCu1z3q-0&feature=youtu.be
https://www.youtube.com/watch?v=yBBCu1z3q-0&feature=youtu.be

106 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

defined as:

au =
m∑
k=1

a2
1k (6.4)

av =
m∑
k=1

a2
2k (6.5)

aw =
m∑
k=1

a2
3k (6.6)

ap =
m∑
k=1

a2
4k (6.7)

aq =
m∑
k=1

a2
5k (6.8)

ar =
m∑
k=1

a2
6k (6.9)

where au, av, aw, ap, aq, ar are acting abilities along u, v, w and about p, q, r in body-
frame respectively, under the condition that rank(A) = 6.

For our Umbrella Robot, two angles αF , αB vary from 450 to 900. We can
illustrate variations of these capabilities as in Figure 6.8. We can obviously choose
the maximum value of acting ability of each DoF. However, there exists a large
deviation of acting abilities between DoFs. In particular, acting abilities of 6 DoFs
with αF = αB = 900 are shown in Figure 6.9. It is obvious to see that, about p-axis
(roll direction), the acting ability of robot is too small. This is a disadvantage of
the robot’s current version

Figure 6.8 – Acting abilities along/about each DOFs of Umbrella robot with varying
αF and αB

6.6. Configuration optimization - Acting ability 107

Acting abilities along/about DoFs

au av aw ap aq ar
0

0.5

1

1.5

2

2.5

3

3.5

u

v

w

p

q

r

Figure 6.9 – Acting abilities along/about each DOFs of Umbrella robot with αF =
αB = 900

We propose a configuration optimization problem, in which the deviations be-
tween u, v, w and p, q, r are minimized in the next section.

6.6 Configuration optimization - Acting ability

This section presents configuration optimization problem with respect to geo-
metric distances and initial angles of thrusters. The objective function is:

J =
∑

wiδ
2
i (6.10)

where i = {u, v, w, p, q, r}, δi = ai − m, i = {u, v, w, p, q, r} is the deviation of
acting ability of ith DOF (ai) and acting average value (m =

∑
ai/6), and wi is

corresponding weight. See Figure 6.10 for more details.
The problem is formulated as:

min
x
J =

∑
wiδ

2
i , i = {u, v, w, p, q, r} (6.11)

s.t (6.12)
αF ≤ αF ≤ αF (6.13)
αB ≤ αB ≤ αB (6.14)
0 < d ≤ d (6.15)
0 < de ≤ de (6.16)
0 < dt ≤ dt (6.17)
0 < dc ≤ dc (6.18)
0 < db ≤ db (6.19)
azi ≤ azi ≤ azi, i ∈ {1, ..., 7} (6.20)
eli ≤ eli ≤ eli, i ∈ {1, ..., 7} (6.21)

108 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

Figure 6.10 – Acting ability along each DOFs and deviations

where x = [αF αB d de dt dc db azi eli]T , and () and () are minimum
and maximum value of each variable respectively. See Figure 6.11 for more details.

Figure 6.11 – variables in configuration optimization problem

Global search method is used to find a solution. The limitations of variables are
presented in Table 6.2. The optimal results are shown in Table 6.3.

Optimal configuration matrix A is shown in Equation 6.22 and acting abilities
of this optimal configuration are shown in Figure 6.12(a). A comparison of acting
abilities between current configuration and optimal one (w.r.t geometric distances)

6.6. Configuration optimization - Acting ability 109

No. Variable Lower limit Upper limit
1 αF 45◦ 90◦
2 αB 45◦ 90◦
3 d 0(m) 0.5(m)
4 de 0(m) 0.2(m)
5 dt 0(m) 0.2(m)
6 dc 0(m) 0.15(m)
7 db 0(m) 0.15(m)
8 azi −π π

9 eli −π π

Table 6.2 – Limitations of variables

No. Variable Optimal value
1 αF 90◦
2 αB 45◦
3 d 0.5(m)
4 de 0.2(m)
5 dt 0.2(m)
6 dc 0.0914(m)
7 db 0.15(m)

8 azi, eli(rad)



az1 = 0.6106 el1 = 2.2317
az2 = 1.7060 el2 = 0.4642
az3 = −0.6106 el3 = −0.9099
az4 = −0.3754 el4 = 2.6030
az5 = 0.1261 el5 = −2.5692
az6 = 2.9525 el6 = −1.9817
az7 = 3.0155 el7 = 0.5724


Table 6.3 – Optimal values

110 Chapter 6. Reconfigurable Robot Design - Umbrella Robot

is given in Figure 6.12(b). It is clear to see that the deviation of acting abilities
between 6 DoFs of optimal configuration is smaller than ones of current configura-
tion.

A =



−0.2081 0.1279 −0.2081 −0.7987 0.8339 −0.3923 0.8339
−0.8275 −0.9402 0.8275 0.3149 0.1057 0.0751 −0.1056

0.5215 0.3157 0.5215 0.5128 0.5417 0.9168 −0.5417
−0.5239 0.5332 0.5239 −0.1908 0.0560 0.4688 0.0561
−0.1929 −0.1062 −0.1930 0.3813 0.6468 0.4746 −0.6469
−0.5153 −0.5323 0.5152 −0.5314 −0.2125 0.1617 0.2124


(6.22)

A summary of performance index values and acting abilities for this new con-
figuration is shown in Table 6.4

No. Performance Indices and Acting abilities Value
1 Im 4.56
2 Ie 2.48
3 Iw 7.16.106

4 Ire 2.29
5 Iro 1
6 au 2.28
7 av 2.38
8 aw 2.34
9 ap 1.10
10 aq 1.29
11 ar 1.21

Table 6.4 – Performance indices and acting abilities of optimal configuration

6.7 Conclusion

Reconfigurable robots have been attracted many researchers in recent years
because of amazing mechanic system and flexibility. This chapter presented the
procedure to build a reconfigurable configuration robot, also called Umbrella Robot
in which robot’s configuration depends on two angles (αF - angle of front branch
of thrusters, and αB - angle of rear branch of thrusters). The robot consists of
7 thrusters and their positions and directions can be varied. The main processor
is a small computer, Pi-2, which can easily extend to complex task such as image
processing, SLAM processing. When αF = αB = 450, the robot is like a torpedo-
shape robot which has maximum ability in surge direction, otherwise, if αF = αB =
900, robot can act along 6 DoFs. Moreover, in this chapter, acting abilities of a
configuration matrix was proposed. The fact that current Umbrella Robot also

6.7. Conclusion 111

Acting abilities along/about DoFs

au av aw ap aq ar
0

0.5

1

1.5

2

2.5

u

v

w

p

q

r

(a) Optimal acting abilities along/about each
DoFs of Umbrella robot

Acting abilities between two configurations

au av aw ap aq ar
0

0.5

1

1.5

2

2.5

3

3.5

current config

optimal config

(b) A comparison with current configuration

Figure 6.12 – Optimal acting abilities along/about each DoFs of Umbrella robot
and the comparison with current configuration

shows some limitations, for instance, the acting ability about roll is quite small, the
deviations between DoFs remain large. In order to optimize configuration design,
an optimization problem with respect to geometric distances and initial angles of
thrusters was suggested. A founded solution showed an advanced configuration in
which the acting abilities along u/v/w and about p/q/r are almost the same.

Up to this chapter, we proposed performance indices and acting abilities of an
underwater robot (through configuration matrix) and we designed two real robots
(Cube robot and Umbrella robot) with different configurations. An interesting sum-
mary of these issues are presented in Table 6.5. This is realized by a Matlab-based
Toolbox, which can be referred to Appendix D for more details. Following Table
6.5, we can see that Cube robot with configuration C2 shows better performances
than its configuration C1. A glance of comparison between Ball robot and SamoS
can be considered. It is obvious to see that Ball robot, carrying 8 thrusters, pos-
sesses better acting abilities and several performance indices than SamoS. When
Ball robot carries 6 thrusters, its performances are the same as SamoS.

112
C
hapter

6.
R
econfigurable

R
obot

D
esign

-
U
m
brella

R
obot

No. Photo Name Im Ie Iw Ire Iro au av aw ap aq ar

1 Ball robot (8
thrusters) 1.00 1.22 20307161.00 0.61 2 2.66 2.66 2.66 2.66 2.66 2.66

2 Ball robot (6
thrusters) 1.00 1.41 8268848.73 0.71 0 2.00 2.00 2.00 2.00 2.00 2.00

2 SamoS
[Pierrot 1998] 1.00 1.41 8445163.62 0.70 0 2.00 2.00 2.00 2.00 2.00 2.00

4 Cube (C1) 7.12 3.32 6511536.45 4.05 0 2.00 3.00 3.00 0.43 0.36 0.36

5 Cube (C2) 2.55 2.09 10919428.13 1.56 2 2.66 2.66 2.66 0.42 0.54 0.45

6 UmRobot
[
42.35
∞

] [
2.32

4255.2

] [
5215.4

5.6287.106

] [
3.09

7.14.103

] [
0
1

] [
3.5
7.0

] [
0

1.75

] [
0

1.75

] [
0

0.012

][
0.09
0.34

] [
0.05
0.28

]

7 Ulysse 6.15 2.60 19423247.33 2.51 0 6 2 4 0.16 0.24 0.41

Table 6.5 – Performance indices and acting abilities of different robots, it shows [min max] in case of UmRobot, Iro shows the
maximum number of thrusters which can be failed to make sure that rank(A) = 6.

Chapter 7

Dynamic
Configuration-Umbrella Robot

Contents
7.1 Introduction . 113
7.2 Dynamic Control Allocation-The singularities 114
7.3 Dynamic configuration problem 115
7.4 Problem solution . 119
7.5 Control Design for a dynamic configuration system 121
7.6 Conclusion . 122

A problem of robot’s dynamic configuration is presented in this chapter. In par-
ticular, the robot adapts its configuration corresponding with desired control vector
to minimize an objective function (an energy-like criterion). When desired con-
trol vector (Fd

B) changes in each time step, an algorithm, called A-SQP, based
on Sequential Quadratic Programming method, is proposed to solve the problem.
Moreover, control allocation methods are investigated in this dynamic configuration
problem.

7.1 Introduction

Nowadays, underwater researches have tremendously progressed because of new
technologies, such as sensor techniques, electronic devices, machine learning algo-
rithms. Many models of ROVs, AUVs have been developed in order to discover
underwater environments [Yuh 2000][Zereik 2018], from under-actuated vehicles,
i.e., torpedo shape for long-range missions, to over-actuated vehicles [Ropars 2018]
[Dang 2019], i.e., symmetrical shape for station keeping or local environment ob-
servation. However, all these underwater robots have fixed configurations and their
controllers have been designed to follow specified configurations. To increase the
flexibility, configuration of underwater robots (URs) can be able to vary or be
reconfigurable. A state of art for reconfigurable URs is presented in Chapter 6. Ad-
ditionally, a ROV from SubseaTech [SubseaTech] can modify the actuator’s angles
but this mechanism is not shown clearly. Bio-inspired robots can be also consid-
ered as self-reconfigruable robots (as discussed in Chapter 1), i.e., snake robots
[Transeth 2008]. To reduce the cost of building underwater vehicles (one robot can

114 Chapter 7. Dynamic Configuration-Umbrella Robot

carry out several tasks with different configurations) and to increase the versatility,
a dynamically reconfigurable configuration of robots is needed and attractive.

In general, the control diagram of an underwater robot is shown in Figure 4.1.
The separation of control law and control allocation is useful to exploit advantages
of actuator redundancy [Johansen 2013]. For dynamically reconfigurable robots,
challenging questions arise and concern: control allocation, control law adaptation
and modification of dynamic properties (e.g. modification of the meta-center). For
simplicity, in this chapter, we assume that centers of mass and buoyancy are not
changing during the mission (it can be achieved with a suitable design). The control
system outputs a desired force vector, also called actuation demand (Fd

B, expressed
in the body-frame) which explicitly considers system dynamics and kinematic prop-
erties. It is then the role of control allocation to compute actuators inputs (Fm)
whose resulting action (FB) should realize the actuation demand (FB = Fd

B). The
relation between controller’s output (Fd

B) and the actuation inputs (Fm) of a sys-
tem is described by a mapping block, called control allocation (CA) (a state of art
of CA methods is presented in Chapter 1). This mapping is normally described
by a configuration matrix, denoted as A. This chapter focuses on the question of
optimal adaptation of the actuation configuration with respect to an energy-like
criterion.

7.2 Dynamic Control Allocation-The singularities

As aforementioned, there are many approaches to solve CA problem. However,
in all these cases, a configuration matrix is constant and remains unchanged during
robot’s operation. For our robot, the configuration matrix is varying and prop-
erties of this matrix have to be studied carefully, because it yields to a singular
configuration or nearly-singular configuration, i.e., the actuation system is redun-
dant but results in an under-actuated system (some DOFs are not controllable). In
the case of nearly-singularity, the minimum singular value of configuration matrix
is too small. This yields that the pseudo-inverse is too big (it is easy to see with
the SVD decomposition of the configuration matrix A) and causes the big error if
the pseudo-inverse based CA methods are used. One solution is that we can avoid
the nearly-singular situation by neglecting too small singular values. However, this
causes error and not suitable for dynamic configuration because configuration ma-
trix can move from singular to nearly-singular configuration and it is difficult to
determine conditions to cancel nearly-singularities.

We can verify this phenomena by an example of our robot. At two angles
αF = αB = 450 (see Chapter 6), the robot’s configuration matrix, A1, is singu-
lar and the robot can only go along X-axis (not Y and Z-axes), and at two angles
αF = αB = 45.020 the robot’s configuration matrix changes to A2, a nearly-singular
matrix, and the robot is also controllable along X-axis easily. We investigate the
errors of control allocation problem for these two configurations with different con-
trol allocation methods including pseudo inverse based (pure pseudo-inverse, cas-

7.3. Dynamic configuration problem 115

caded generalized inverse-cgi, direct method-dir) and nonlinear programming based
approaches (sequential least square-sls, weighted least square-wls, minimal least
square-mls, fixed point-fxp, interior point (ip) method) [Härkegård 2003].

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-20

-15

-10

-5

0

5

E
rr

o
rs

Pseudo inverse method

A1 Configuration
A2 Configuration

(a) Errors of pure pseudo-inverse method

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
rr

o
rs

CGI method

A1 Configuration
A2 Configuration

(b) Errors of cgi method

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

0

10

20

30

40

E
rr

o
rs

Direct method

A1 Configuration
A2 Configuration

(c) Errors of dir method

Figure 7.1 – Errors of pseudo-based CA methods

From Figure 7.1, when two angles αF and αB change a small value, the errors
grow significantly for control allocation methods which based on pseudo-inverse for
X-axis particularly (DOFs-1-Fx). The errors also remains for CA methods based on
nonlinear programming (Figure 7.2), however, these values are quite small because
these methods avoid nearly-singularity of configuration matrix by not using pseudo-
inverse of matrix. It is easy to see that the nonlinear programming based control
allocation methods are more suitable for the reconfigurable robot.

7.3 Dynamic configuration problem

A prototype of dynamic configuration AUV, called Umbrella Robot, is presented
in Chapter 6. In this section, we consider a dynamic configuration problem with
respect to an energy-like criterion which is defined as the norm of actuation force
vector, Fm, applied on thrusters. This is reasonable thanks to the nearly-linear

116 Chapter 7. Dynamic Configuration-Umbrella Robot

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-8

-6

-4

-2

0

2

4

6
E

rr
o

rs
×10

-4 IP method

A1 Configuration
A2 Configuration

(a) Errors of ip method

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-4

-2

0

2

4

6

E
rr

o
rs

×10
-4 mls method

A1 Configuration
A2 Configuration

(b) Errors of mls method

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-4

-2

0

2

4

6

E
rr

o
rs

×10
-4 sls method

A1 Configuration
A2 Configuration

(c) Errors of sls method

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-8

-6

-4

-2

0

2

4

E
rr

o
rs

×10
-4 wls method

A1 Configuration
A2 Configuration

(d) Errors of wls method

1 2 3 4 5 6
DOFs:1-Fx,2-Fy,3-Fz,4-Tx,5-Ty,6-Tz

-0.01

0

0.01

0.02

0.03

0.04

0.05

E
rr

o
rs

fxp method

A1 Configuration
A2 Configuration

(e) Errors of fxp method

Figure 7.2 – Errors of nonlinear programming based CA methods

characteristics of thrusters. The problem is formulated as:

min
αF ,αB ,Fm

J = ‖Fm‖2 (7.1a)

s.t 450 ≤ αF , αB ≤ 900 (7.1b)
Fm ∈ F (7.1c)
Fd
B −A(αF , αB)Fm = 0 (7.1d)

where Fd
B is desired force vector (an output from the controller) or actuation de-

mand, F is a feasible set of thrusters forces. The constraint (7.1b) is mechanical
limitations of the Umbrella Robot.

7.3. Dynamic configuration problem 117

Figure 7.3 – Definitions of two angles αF and αB

The objective is to find two angles, αF , αB (see in Figure 7.3), and actuation
force vector Fm in order to minimize an energy-like function J and satisfy con-
straints. This is a nonlinear optimization problem and is solved for each sampling
time (online) because the desired force vector Fd

B is varied in each time step in
general case. In our problem, the configuration matrix A is dynamic and belongs
to two angles, αF and αB (elements of matrix A are detailed in Appendix A.3).

Other perspectives we have to consider are the reactivity of robot (the time for
state propagation/system response) and time-delay of changing configurations. In
fact, if the system response is too fast, we can not apply online optimization. Our
objective is to solve online optimization problem, therefore, we assume that the time
for solving one iteration of optimization problem is smaller the time that system
propagates from current sates to next states. In our case, underwater robots, this
assumption is reasonable.

For time-delay of changing configurations, at time step k, we have two angles
αFk and αBk. At the next time step, k + 1, assume that we get a solution from
optimization problem with two angles αF (k+1) and αB(k+1). Physically, we have
to spend time, 4tα, for changing from αFk to αF (k+1) and from αBk to αB(k+1),
a new optimal configuration. If the changing time is too long, it is not associated
to corresponding time step k + 1. However, this changing time can not be too
fast in virtue of limitations of DC motors. In particular, following Figure 7.4, at
time step k, we have states of system, xk, two angles αFk and αBk, configuration
matrix Ak, PWM (Pulse Width Modulation) input values of thrusters, cmk, force
vector applied on thrusters Fmk, and resulting force vector in DOFs FBk (w.r.t
body-frame)(suppose that Fmk and FBk can be measured or estimated). Starting
the next time step, k+1, the desired control vector Fd

B(k+1) is received from output
of the controller. The solution of dynamic configuration problem gives the two

118 Chapter 7. Dynamic Configuration-Umbrella Robot

desired angles of the step αdF (k+1) and αdB(k+1). From this point, mechanic system
of Umbrella Robot (DC motors) will run to achieve these desired angles (with
speed v). In the meantime, we also get the new desired configuration matrix Ad

k+1,
desired force vector applied on thrusters Fd

m(k+1), PWM vector cm(k+1) which feeds
to thrusters thanks to inverse thruster characteristic and we get Fm(k+1) thanks to
thrusters actuation. It is clear that the changes of two angles must finish before
this moment and we already achieved new configuration of the robot (and also
new configuration matrix). After that, we have resulting vector in DOFs FB(k+1).
Otherwise, these two desired angles of time step k+1 will be achieved after several or
many time steps later. This will cause undesired responses because of unassociated
configuration. In order to solve our problem, two assumptions are described as
follows:

1. Assumption 1: The reactivity of the system is long enough to solve one iter-
ation of optimization problem, control allocation time, and basic operations.

2. Assumption 2: The time for changing mechanic system between two consec-
utive angles is fast enough in one sampling time.

In practice, the Assumption 1 is reasonable for Umbrella Robot. The Assumption
2 can be satisfied if the derivation between two consecutive angles is small enough.

Figure 7.4 – Time line of main processor and DC motors

7.4. Problem solution 119

7.4 Problem solution

This section proposes an approach to solve online the problem (7.1). The con-
straint (7.1d) is strictly and not easy to solve, therefore we relax this constraint by
adding it to the objective function with weights. This can rise the error of control
allocation embedding in the problem. To enhance the performances, control allo-
cation method is also used in one step of the main algorithm. This problem can be
rewritten as:

min
αF ,αB ,Fm

J = w1‖Fm‖2 + w2‖Fd
B −A(αF , αB)Fm‖2 (7.2a)

s.t 450 ≤ αF , αB ≤ 900 (7.2b)
Fm ∈ F (7.2c)

where w1 and w2 are scaling weights.
By denoting a vector x = [αF αB Fm]T , the problem can be formulated as:

min
x
f(x) = w1‖wx‖2 + w2‖(F

d
B −A(x)x)‖2 (7.3a)

s.t x ∈ X (7.3b)

where X is a box-constraint including limitations of two angles and saturations of
thrusters, w = [0 0 1]T , A(x) = [0n×1 0n×1 A], Fd

B = [0 0 (Fd
B)T]T .

The problem (7.3) can be rewritten in a compact form as:

min
x
f(x) (7.4a)

s.t cTi x ≤ bi, i = 1...m (7.4b)

where ci is a proper vector, m is the number of constraints.
In this part, we propose a A-SQP (Accelerating-Sequential Quadratic Program-

ming) algorithm to solve online our problem. This is based on active-set SQP
approach, an efficient method for small and medium nonlinear problem, with back-
grounds presented in Chapter 3. We recall active-set definition hereafter.

Definition 15 An active set of (7.4) is a set of constraints indices such that cTi x =
bi. Specifically, A = {i|cTi x = bi}

Suppose the active set of (7.4) is given, we consider our problem only with
equality constraints as:

min
x
f(x) (7.5a)

s.t cTi x = bi, i ∈ A (7.5b)

The Lagrangian function of (7.5) is L(x,λ) = f(x) +
∑
i∈A λi(cTi x − bi). The

optimal KKT (Karush-Kuhn-Tucker) condition of this problem at local optimal
point (x,λ) can be written as:

120 Chapter 7. Dynamic Configuration-Umbrella Robot

∇xL(x,λ) = ∇f(x) +
∑
i∈A

λici = 0 (7.6a)

cTi x = bi, i ∈ A (7.6b)

The problem (7.6) is rewritten as a compact form:

F (x,λ) =
[
∇f(x) + CTλ

Cx− b

]
= 0 (7.7)

where C = [cTi], λ = [λi] b = [bi], i ∈ A.
One approach to solve nonlinear equations (7.7) by using Newton’s method.

The Jacobian of (7.7) with respect to (x,λ) is given by:

F ′(x,λ) =
[
∇2L(x) CT

C 0

]
(7.8)

The direction for the next step of problem (7.5) is a solution of (7.7) and is
computed as: [

∇2L(x) CT

C 0

] [
pxk
pλk

]
=
[
−∇f(x)−CTλ

−Cx + b

]
(7.9)

At each iteration of solver, denoted as step k, we have an active set , called a
working set Wk. One constraint can be added or eliminated through the working
set. This can be done by checking the sign of Lagrange multipliers λi ≥ 0 thanks
to KKT conditions of (7.4). If we correctly identify the optimal active set then our
problem will converge rapidly by Newton’s method as the aforementioned analysis.
However, optimal active set is not easy to determine.

Thanks to the efficient and popular of convex quadratic programming which
can converge in milliseconds [Ferreau 2014], at step k with xk, we consider another
quadratic problem:

min
p

1
2pT∇2

xxLp +∇fTp (7.10a)

s.t Cp = −Cxk + b (7.10b)

The optimality conditions of (7.10) with Lagrange multipliers λq:

∇2
xxLp +∇f + CTλq = 0 (7.11a)

Cp− b + Cxk = 0 (7.11b)

This is equivalent with:

∇2
xxLp +∇f + CTλq −CTλ = −CTλ (7.12a)

Cp− b + Cxk = 0 (7.12b)

7.5. Control Design for a dynamic configuration system 121

or: [
∇2L CT

C 0

] [
p

λq − λ

]
=
[
−∇f −CTλ

−Cxk + b

]
(7.13)

It is easy to see that (7.9) and (7.13) are almost the same except that:

pλk = λq − λ (7.14)

In order to find the direction [px pλ]T , instead of solving (7.9), we solve
quadratic problem (7.10) and update Lagrange multipliers as (7.14). Moreover, Hes-
sian matrix ∇2L is approximated by BFGS (Broyden-Fletcher-Goldfarb-Shanno)
formula to make sure it is positive definite or semi-definite and problem (7.10) is
quadratic convex problem which always exits a global optimal solution.

The idea is extended to the problem with inequality (7.4) by solving the sub-
quadratic programming as follows to find the direction:

min
p

1
2pT∇2

xxLp +∇fTp (7.15a)

s.t Cp ≤ −Cxk + b (7.15b)

This is possible because the set of active constraints Ak at the solution of (7.15)
constitutes the guess of the active set at the solution of the nonlinear program (7.4)
[Theorem 18.1 in [Nocedal 2006]]. Algorithm 4 shows our procedure to solve online
dynamic configuration.

Algorithm 4 A-SQP optimal configuration algorithm
Input: desired control inputs Fd

B (from controller)
Output: Optimal angles αF , αB and thruster forces Fm

1: Initialization: primal-dual parameters (x0,λ0), Hessian approximation B0
2: for k = 1 <= 2 do
3: Evaluate f , ∇f at xk
4: Compute direction pk by solving (7.15) and have corresponding Lagrange

multipliers λqk

5: Compute direction pλk = λqk − λ
6: Choose step length αk = 1 (maximize the direction)
7: Update xk = xk + αpk and λk = λk + αpλk
8: Set sk ← αkpk and yk ← ∇xL(xk+1,λk+1)−∇xL(xk,λk+1)
9: Update Bk+1 using BFGS formula (see Algorithm 2 in Chapter 3)

10: end for

7.5 Control Design for a dynamic configuration system

In this part, we investigate effects of dynamic configuration for controller de-
sign. In fact, our system can vary from under-actuated to over-actuated one, the

122 Chapter 7. Dynamic Configuration-Umbrella Robot

corresponding controllers are designed differently. Normally, model-based controller
design belongs a chosen model, however, when the model is changed, the controller
has to be redesigned. For a dynamic configuration robot, two controllers are ready
during its operation: one for under-actuated configuration and one for fully or
over-actuated configuration (the difference between fully and over-actuated system
is control allocation approach). One proper mechanism will be designed to switch
between controllers. For examples, a unified function was derived in [Breivik 2006]
and a switched function was proposed in [Xiang 2015] which belongs to the velocity
of robot as Equation (7.16).

Fi = f(ν)Fu,i + (1− f(ν))Ff,i (7.16)

where Fu,i and Ff,i are resulting forces corresponding with under-actuated and fully-
actuated systems respectively, i ∈ {u, v, w, p, q, r} representing the AUV DOFs,
f(ν) is a function of AUV’s velocity and is chosen to guarantee the smooth transition
between configurations, i.e., sinusoid or tanh function.

In our work, the output of controller (Fd
B) is the input of the problem (7.1) and a

solution of this problem is two angles αF and αB. The properties of system belongs
to these two angles (under/fully/or over-actuated system). So we do not need a
switch mechanism here, and just one controller in 6 DOFs and robot will adjust
configuration with corresponding two angles. However, one challenging question
arises here: it should be have a guidance law of Fd

B for our problem. This relates to
multi-parametric programming and out of scope of this work and will be a future
studies. In the following simulations, we investigate A-SQP with different kinds of
Fd
B.

7.6 Conclusion

This chapter presented a dynamic configuration problem of a robot which can
modify its actuation configurations during its missions. Some questions derives
for this such as dynamic control allocation problem and optimal configuration for
a mission. An investigation of dynamic control allocation was presented and we
can see that nonlinear programming based CA methods are suitable for dynamic
configuration case because of nearly-singularity issue. An optimal problem w.r.t
energy-like criterion of the robot was suggested and an algorithm, called A-SQP
based on Sequential Quadratic Programming with active-set method, was proposed.
The algorithm is carried out in each time step. Note that, for dynamic configuration,
the robot can change from an under-actuated system to over-actuated system. The
controller design for this change was discussed and not considered in this thesis.

Chapter 8

Reconfigurable and Dynamic
Configuration: Simulation and

Experiment Results

Contents
8.1 Simulations . 123

8.1.1 Reconfigurable configuration 123
8.1.2 Dynamic configuration . 124

8.2 Experiments . 135
8.2.1 Basic missions . 135
8.2.2 Integrated mission . 138

8.3 Conclusion . 139

In this chapter, simulation and experiment results for Umbrella Robot are shown.
For reconfigurable capability, manipulability index and force/torque spaces are sim-
ulated to illustrate the varying of these performances when changing robot’s config-
uration. In case of dynamic configuration problem, simulation results with different
issues, i.e., given missions, path following, and observation case, are studied to show
efficiency of proposed method. Experiments with basic missions and an integrated
one are tested on the current prototype of the Umbrella Robot (UR). The results
show the robot’s versatility.

8.1 Simulations

8.1.1 Reconfigurable configuration

The simulation results display the properties of system when modifying the con-
figuration of system. These are attainable force/torque spaces and manipulability
index [Dang 2019] when changing the A matrix. The thrusters characteristics are
from Blue Robotics as shown in Fig 5.7. When the values of these angles go from
45◦ to 90◦, the manipulability index of UR is drawn in Figure 8.1(a). The values
of this index in some configurations are shown in Table 8.1. The minimum value
is achieved at αF = αB = 90◦ and maximum value is at αF = αB = 45◦ (the
UmRobot is like a torpedo-shape robot).

124
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

Angles Manipulability index Value
αF = αB = 45◦ Im ∞

αF = 50◦, αB = 60◦ Im 157.2609
αF = αB = 90◦ Im 48.7762

Table 8.1 – Manipulability index with different configurations

80

Manipulability index

alphaB(degree)

0
60

2

4

6

50

10 17

8

alphaF(degree)

60

10

12

70

14

80 4090

Torpedo-like

shape

(a) Manipulability index of Umbrella robot w.r.t
two angles αF and αB ∈ (45◦ ÷ 90◦)

0

200

400

600

60

800

1000

1200

70

Manipulability index

alphaF(degree)

9080 80

alphaB(degree)
706090

(b) Manipulability index of Umbrella robot w.r.t
two angles αF and αB ∈ (60◦ ÷ 90◦)

Figure 8.1 – Manipulability index of Umbrella robot w.r.t two angles

The attainable spaces (force and torque spaces) with two different configurations
are shown in Figure 8.2 and Figure 8.3 (the units of forces is N and torques is N.m).
It is obvious to see that attainable force space with αF = αB = 90◦ (Figure 8.2(a))
is more isotropic than one with αF = 50◦, αB = 60◦ (Figure 8.3(a)).

200

100

Force space

Fx

0-20
0

-100

20

F
z

Fy

0
-200

(a) Attainable force space

-20

20

0

T
z

Ty

0

20

Torque space

-20

Tx

0

(b) Attainable torque space

Figure 8.2 – Attainable space ((a)-Force space, (b)-Torque space) with αF =
50◦, αB = 60◦

8.1.2 Dynamic configuration

For a dynamically configurable robot, various strategies, which depend on the
mission requirements, can be applied because our robot can vary from an under-

8.1. Simulations 125

-50

0

Force space

50

50

F
z

100

FxFy

0 0
-50

-100

(a) Attainable force space

-20

20

0

T
z

20

Ty

0

Torque space

-20

Tx
0-10

(b) Attainable torque space

Figure 8.3 – Attainable space ((a)-Force space, (b)-Torque space) with αF = αB =
90◦

actuated system to an over-actuated one and vice-versa. For simulations, dynamic
parameters of robot are approximated by numerical software, i.e, ANSYS (see Ap-
pendix A.4). A simulated robot has been built and is shown in Figure 8.4. Note
that in the simulations, external disturbances and model uncertainties are not taken
into account. We know that varying configuration of robot belongs to desired force

Figure 8.4 – Simulated robot

vector, Fd
B, that can be statically given (in case where we know clearly desired

actions on each DoF) or dynamically from output of a controller. We simulate and
investigate the umbrella robot with two cases. In other side, if two angles αF and
αB are chosen before a mission, the robot can operate as under-actuated system or
over-actuated one. In this situation, it should have two controllers for each kind of
systems and a commutation mechanism is needed. This is not studied in this work
and will be a future work as aforementioned.

126
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

8.1.2.1 Static desired force vector (given)

In this part, a given mission consists of three stages which are: i) the robot goes
straight along X-axis, ii) after that goes along X-axis and Y-axis, iii) and finally
dives along Z-axis. The desired force vector, Fd

B, of this mission is given as: Fd
B =

[10 0 0 0 0 0]T , Fd
B = [10 10 0 0 0 0]T , and Fd

B = [0 0 10 0 0 0]T
respectively. Note that this force vector is applied on body-frame, so X-Y-Z axes
are of body-frame. We compare three following cases as:

1. The robot carries out the mission with a fixed-configuration with arbitrary
angles (for example, two angles αF = 90, αB = 90, and αF = 60, αB = 70)

2. The robot carries out the mission with optimal fixed-configurations. It means
that, for each stage of the mission, optimal angles which can be found by
applying Global search methods (see Table 8.2).

3. The robot carries out the mission with dynamic configuration (A-SQP algo-
rithm).

Desired force Optimal Angles(Degree)
Fd
B = [10 0 0 0 0 0]T αF = 45, αB = 45

Fd
B = [10 10 0 0 0 0]T αF = 45, αB = 90

Fd
B = [0 0 10 0 0 0]T αF = 45, αB = 90

Table 8.2 – Corresponding optimal angles of desired force

Note that in case of varying configurations during the mission, the time response
of DC motors is taken into account. It means that the velocity of DC motors satisfies
Assumption 2.

Case 1: In this case, the robot carries out a mission with fixed-configuration.
The simulation results of robot’s trajectory, robot’s positions, PWM inputs of
thrusters are shown in Figure 8.5 with αF = 900, αB = 900 and Figure 8.6 with
αF = 600, αB = 700.

8.1. Simulations 127

15

10

50

5

Z
0

X

trajectoire

Y

150 1050

(a) Robot’s trajectory

0 50 100

time

-10

0

10

20

30

40

50

60

P
o

s
it

io
n

s

X (r), Y (g), Z (b)

(b) Robot’s positions

0 50 100

time

1350

1400

1450

1500

1550

1600

1650

P
W

M

PWM

(c) PWM evolution
Figure 8.5 – Fixed-configuration simulation results (desired command vector is
given) (αF = 900, αB = 900)

15

10

50

5

Z

0

X

trajectoire

Y

0 151050

(a) Robot’s trajectory

0 50 100

time

-10

0

10

20

30

40

50

60

P
o

s
it

io
n

s

X (r), Y (g), Z (b)

(b) Robot’s positions

0 50 100

time

1300

1400

1500

1600

1700

P
W

M

PWM

(c) PWM evolution
Figure 8.6 – Fixed-configuration simulation results (desired command vector is
given) (αF = 600, αB = 700)

128
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

Case 2: The robot carries out a mission with different optimal fixed-configurations.
The simulation results of robot’s trajectory, robot’s position, and PWM inputs of
thrusters are shown in Figure 8.7. In this case, for transition time between two
consecutive optimal fixed-configurations, robot got fluctuation.

15

trajectoire

-8

10

50

Z

5

X

-6

0

Y

-4 -2 0 02

(a) Robot’s trajectory

0 50 100

time

0

20

40

60

P
o

s
it

io
n

s

X (r), Y (g), Z (b)

(b) Robot’s positions

0 50 100

time

1200

1400

1600

1800

P
W

M

PWM

(c) PWM evolution

Figure 8.7 – Optimal fixed-configuration simulation results (desired command vector
is given)

Case 3: In this case, the robot carries out a mission with dynamic configura-
tion. The simulation results of robot’s trajectory, robot’positions, PWM inputs of
thrusters, and evolution of two angles are shown in Figure 8.8.

We compare three cases with respect to an energy-like criterion which is calcu-
lated as norm of actuation vector, ‖Fm‖2. The evolution of energy-like criterion is
presented in Figure 8.9. It is obvious to see that energy-like criterion of optimal
fixed-configuration is lowest in each stage of mission. For dynamic configuration,
it goes lower after each time step except in a transition period. This is also hap-
pen with optimal fixed-configuration. This proves the efficiency of our algorithm to
minimize the energy of robot’s operation. However, in transition time, for optimal-
fixed configuration, the energy-like index is higher because robot spent time to vary
between two consecutive optimal configurations. For transition time of dynamic
configuration, the derivation between two consecutive angles is small enough, and
some of DOFs are not completely controllable. Therefore, some thrusters reach
saturation and energy-like index is quite high.

8.1. Simulations 129

15

10

5

0

30

Z

20

X

trajectoire

10

Y

0 3020100

(a) Robot’s trajectory

0 50 100

time

-5

0

5

10

15

20

25

30

P
o

s
it

io
n

s

X (r), Y (g), Z (b)

(b) Robot’s positions

0 50 100

time

1200

1400

1600

1800

P
W

M

PWM

(c) PWM evolution

0 500 1000

time

50

60

70

80

90

T
w

o
 a

lp
h

a
 a

n
g

le
s

(d) Two angles evolution

Figure 8.8 – Dynamic configuration simulation results (desired command vector is
given)

0 500 1000

sampling instances

0

20

40

60

80

E
n

e
rg

y
-l

ik
e

 c
ri

te
ri

a

E-fix-9090

E-fix--6070

E-fix-Opt

E-dyn

Figure 8.9 – Evolution of energy-like criterion with different cases

8.1.2.2 Dynamic desired force vector (output of a controller)

In general, a robot operates with control loop in which controller derives a
desired force vector Fd

B. In this section, we investigate the problem (7.1) when Fd
B

value is dynamic. We simulate with two missions: path following and observation

130
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

problems which are very important in underwater robotics. Note that, in this case,
desired vector force, Fd

B, can be varied and be different in each time step.

Path-following problem For path following problem, readers can see meth-
ods in Appendix A.5. A Line-of-Sight (LoS) based guidance method is used in this
simulation. We do a comparison of energy-like criterion between a static configura-
tion and dynamic one with this mission. A chosen path is a spatial ellipse which is
parameterized as follows:

x = 60 cos(0.2618t) (8.1)
y = 60 sin(0.2618t) (8.2)
z = sin(0.2618t) + 5 (8.3)

where t is a path parameter.

The desired composite speed Ud = 2m/s. The initial posture of AUV is
[x(0) y(0) z(0) φ(0) θ(0) ψ(0)]T = [64 3 0 0 0 3π/4]T . The initial
speed of AUV is [u(0) v(0) w(0) p(0) q(0) r(0)]T = [1.5 0 0 0 0 0]T .

The controller is designed as in Equations (A.112) to (A.115), we simulate the
following cases:

Case 1: The robot is controlled to follow the predefined path with chosen two
angles and the previous controller. In particular, αF = αB = 700 are chosen.

Case 2: Like the same with Case 1, the robot is controlled to follow the pre-
defined path with chosen two angles and the previous controller controller. How-
ever, αF = αB = 900 are chosen because we want to investigate different fixed-
configurations for path following problem.

Case 3: The robot is controlled to follow the predefined path with dynamic
configuration.

In order to evaluate the efficient of our approach with dynamic configuration,
an energy-like criterion is compared with three cases. The next paragraphs show
simulation results of three cases.

Case 1: Path following for αF = αB = 700: The robot is considered as an
over-actuated system. A controller for under-actuated system does not guarantee
the performances of path following problem. The PID controller considering the
effect of roll angle (Equation A.115) is used. Simulation results for this case with
trajectory, linear velocities, and PWM of thrusters are presented as in Figure 8.10.

Case 2: Path following for αF = αB = 900. The simulation results are
shown in Figure 8.11

8.1. Simulations 131

6

-50

4

Z

2

50

trajectoire

Y

0

X

0

0
50 -50

(a) trajectory of Robot

0 50 100 150 200

time

-0.5

0

0.5

1

1.5

2

2.5

li
n

e
a

r
 v

e
lo

c
it

ie
s

V
B

u

v

w

(b) Linear velocities

0 50 100 150 200

time

1200

1400

1600

1800

P
W

M

PWM

(c) PWM of thrusters

Figure 8.10 – Path following for ellipse with over-actuated configuration (αF =
αB = 700)

6

-50

4

Z

2

50

trajectoire

Y

0

X

0

0
50 -50

(a) trajectory of Robot

0 50 100 150 200

time

-0.5

0

0.5

1

1.5

2

2.5

li
n

e
a

r
 v

e
lo

c
it

ie
s

V
B

u

v

w

(b) Linear velocities

0 50 100 150 200

time

1200

1300

1400

1500

1600

1700

1800

1900

P
W

M

PWM

(c) PWM of thrusters

Figure 8.11 – Path following for ellipse with over-actuated configuration (αF =
αB = 900)

132
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

Case 3 : Controller for dynamic configuration: In this case, the robot
follows a path with dynamic configuration. It means that two angles (αF and αB)
vary to associated desired vector force Fd

B. Simulation results are shown in Figure
8.12

6

-50

4Z

2

50

trajectoire

Y

0

X

0

0
50 -50

(a) trajectory of Robot

0 50 100 150 200

time

-0.5

0

0.5

1

1.5

2

2.5

li
n

e
a

r
 v

e
lo

c
it

ie
s

V
B

u

v

w

(b) Linear velocities

0 50 100 150 200

time

1200

1400

1600

1800

P
W

M

PWM

(c) PWM of thrusters

0 500 1000 1500 2000 2500

time

50

60

70

80

90

T
w

o
 a

lp
h

a
 a

n
g

le
s

(d) evolution of two angles

Figure 8.12 – Path following for ellipse with dynamic configuration (full/over-
actuated controller)

Energy-like criterion evolution for path following problem is shown in Figure
8.13.

0 500 1000 1500 2000

sampling instances

0

10

20

30

40

50

60

70

E
n

e
rg

y
-l

ik
e

 c
ri

te
ri

a

E-fix-7070

E-fix-9090

E-dyn

Figure 8.13 – Energy-like criteria for Path following problem

It is clear to see that the path-following performance is almost guaranteed for all

8.1. Simulations 133

three cases. However, for dynamic configuration, robot’s configuration (A matrix)
goes through bad points in which performance of control allocation is not satisfied.
This can be seen in Figure 8.12(a) and Figure 8.12. It will be an interesting future
work. On energy perspective, dynamic configuration shows better than two others
except two bad points which cause saturation of thrusters.

Observation problem
For observation problem, robot has normally to rotate some DoFs. This can

not be carried out by under-actuated system which has some uncontrollable DoFs.
Thanks to its versatility, our dynamic configuration can perform this mission easily.
In this part, we present the simulation results of observation problem with the Um-
brella robot in which the robot dives to constant depth with desired angular veloc-
ities, i.e., η1des(m) = [x y z]T = [0 0 1]T and ν2des(rad/s) = [p q r]T =
[1 1 1]T . The model of simulation robot is shown in Figure 8.4. The controller is
designed with quaternion techniques[Louis 2017] (see Appendix A.2 for quaternion
backgrounds). The simulations include fixed and dynamic configurations. For dy-
namic case, we compare our algorithm with Fmincon function in Matlab Toolbox.
The simulation results of fixed configurations are shown in Figures 8.14(a) 8.14(b))
in which αF = αB = 900. The simulation results of dynamic configurations are
depicted in Figure 8.15 and 8.16. Note that in simulation, we assume that all states
of robot can be measured/estimated completely. Moreover, warm start technique
is used to accelerate the computational time of ASQP algorithm.

0 50 100

time

0

0.5

1

1.5

P
o

s
it

io
n

s

X (red), Y (green), Z (blue)

(a) Positions of Robot

0 50 100

time

0

0.5

1

1.5

a
n

g
u

la
r

v
e

lo
c

it
ie

s

W
B

 (rad/s)

p

q

r

(b) Angular velocities

Figure 8.14 – Simulation results with fixed configurations

It is obvious to see that the control performances are guaranteed in static and dy-
namic configuration. However, the energy-like criterion is different. Specifically, the
energy-like criteria of simulations cases which guarantee the control performances
is illustrated in Figure 8.17(a). The dynamic configuration cases (with Fmincon
and A-SQP) outperform static configuration one.

Our algorithm shows the same performances in comparison with Fmincon func-
tion. A comparison of computational time between methods including A-SQP,
Fmincon at each sampling time is shown in Figure 8.17(b). Note that the compu-
tational time is not the same at each sampling time because of the properties of
numerical accuracy. With the same energy-like criterion, we can see that A-SQP

134
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

0 50 100

time

0

0.5

1

1.5

P
o

s
it

io
n

s
X (red), Y (green), Z (blue)

(a) Positions of Robot

0 50 100

time

-0.5

0

0.5

1

1.5

2

a
n

g
u

la
r

v
e

lo
c

it
ie

s

W
B

 (rad/s)

p

q

r

(b) Angular velocities

Figure 8.15 – Simulation results with dynamic configuration (Fmincon)

0 50 100

time

0

0.5

1

1.5

P
o

s
it

io
n

s

X (red), Y (green), Z (blue)

(a) Positions of Robot

0 50 100

time

-0.5

0

0.5

1

1.5

2

a
n

g
u

la
r

v
e

lo
c

it
ie

s
W

B
 (rad/s)

p

q

r

(b) Angular velocities

Figure 8.16 – Simulation results with dynamic configuration (A-SQP)

outperforms in computational time and suitable for a real test.

0 5000 10000

sampling instances

100

150

200

E
n

e
rg

y
-l

ik
e

 c
ri

te
ri

a

E-9090

E-Fmincon

E-A-SQP

(a) Energy-like criterion evolution

0 5000 10000

sampling instances

0

0.05

0.1

0.15

0.2

0.25

0.3

C
o

m
p

u
ta

ti
o

n
a

l
ti

m
e

(s
) Fmincon

A-SQP

(b) Computationa time

Figure 8.17 – Energy-like criterion and computational time comparison

Considering the trade-off between the energy criteria and computational time,
our approach can be acceptable for the versatility of the robot.

8.2. Experiments 135

8.2 Experiments

The Umbrella robot is tested at a swimming pool (see Figure 8.18) with basic
missions, such as yaw, depth, and surge control, and a complex mission.

Figure 8.18 – Umbrella Robot at the swimming pool

8.2.1 Basic missions

This section presents basic experiments of the UmRobot such as surge control,
yaw and depth control. PID/backstepping method with quaternion formalism was
implemented.

8.2.1.1 Yaw control

In this experiment, the desired yaw angle is set 930 (initial yaw angle of the
robot) and −930. The UmRobot maintains initial yaw angle and make a turn
to second desired angle (−930). In this test, robot’s configuration is chosen as
αF = αB = 450 (as a Torpedo shape). The experiment results are shown in Figure
8.19. In particular, yaw angle of robot follows desired yaw angle as in Figure 8.19(a).
Applied torques and PWM inputs of thrusters are presented in Figure 8.19(b) and
Figure 8.19(c) respectively.

136
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

0 10 20 30

time(s)

-200

-100

0

100

200

D
e

g
re

e
Yaw angles

real yaw

desired yaw

(a) Yaw angles

0 10 20 30

time(s)

0

1

2

3

4

5

N
.m

Torques on Body-frame

p-roll

q-pitch

r-yaw

(b) Applied torques

0 5 10 15 20 25 30

time(s)

1300

1350

1400

1450

1500

1550

1600

1650

P
W

M

PWM of 7 thrusters

T1

T2

T3

T4

T5

T6

T7

(c) PWM of thrusters

Figure 8.19 – Yaw control

8.2.1.2 Depth control

In this test, robot’s configuration is set as αF = αB = 700 and the desired depth
is a constant. The experiment results are shown in Figure 8.20. The depth error
keeps stable as in Figure 8.20(a).

8.2.1.3 Surge-Pitch-Yaw control

In this experiment, surge control is applied with Fu = 25N and robot’s direction
is maintained (pitch and yaw control). The robot’s configuration is αF = αB =
450. The experiment results are shown in Figure 8.21. Readers can see more with
attached video links. It is obvious to see that Euler angles (roll, pitch, and yaw)
hold stable during the mission (Figure 8.21(a)).

8.2. Experiments 137

0 10 20 30

time(s)

0

0.1

0.2

0.3

0.4
m

Depth error

Depth error

(a) Depth error

0 10 20 30

time(s)

0

2

4

6

8

10

12

N

Forces on body-frame

surge-u

sway-v

heave-w

(b) Applied forces

0 5 10 15 20 25 30

time(s)

1200

1300

1400

1500

1600

1700

P
W

M

PWM of 7 thrusters T1

T2

T3

T4

T5

T6

T7

(c) PWM of thrusters

Figure 8.20 – Depth control

0 5 10 15 20 25

time(s)

-20

0

20

40

60

80

100

D
e

g
re

e

Euler angles

Roll

Pitch

Yaw

(a) Euler angles

0 5 10 15 20 25

time(s)

0

5

10

15

20

25

30

N

Forces on body-frame

surge-u

sway-v

heave-w

(b) Applied forces

0 5 10 15 20 25

time(s)

-1

-0.5

0

N
.m

Torques on Body-frame

p-roll

q-pitch

r-yaw

(c) Applied torques

0 5 10 15 20 25

time(s)

1540

1545

1550

1555

1560

1565

1570

1575

1580

P
W

M

PWM of 7 thrusters

T1

T2

T3

T4

T5

T6

T7

(d) PWM of thrusters

Figure 8.21 – Surge, pitch, and yaw control https://youtu.be/1DzfYrsSaMM and
https://youtu.be/9eFT7h-zX3s

https://youtu.be/1DzfYrsSaMM
https://youtu.be/9eFT7h-zX3s

138
Chapter 8. Reconfigurable and Dynamic Configuration: Simulation

and Experiment Results

8.2.2 Integrated mission

In this test, the robot carries out a complex task. Specifically, it goes straight
(surge-pitch-yaw control) (αF = αB = 450), and then it changes configuration with
αF = 850 and αB = 450 and make a turn 1800. After that, it changes to a new
configuration (αF = 850 and αB = 850) and does a depth control in a determinate
time. Finally, robot holds the same configuration and controls in depth and sway
directions simultaneously. Experiment results are shown in Figure 8.22.

0 20 40 60 80

time(s)

-0.2

0

0.2

0.4

0.6

m

Depth error

depth error

(a) Depth error

0 20 40 60 80

time(s)

-200

-100

0

100

200

D
e

g
re

e

Euler angles
Roll

Pitch

Yaw

(b) Euler angles

0 20 40 60 80

time(s)

-5

0

5

10

15

20

25

N

Forces on body-frame

surge-Fu

sway-Fv

heave-Fw

(c) Forces in body-frame

0 20 40 60 80

time(s)

0

2

4

6

8

N
.m

Torques on Body-frame

Tp-roll

Tq-pitch

Tr-yaw

(d) Torques in body-frame

0 20 40 60 80

time(s)

1200

1400

1600

1800

P
W

M

PWM of 7 thrusters
T1

T2

T3

T4

T5

T6

T7

(e) PWM of thrusters

Figure 8.22 – Integrated Mission of Umbrella Robot

8.3. Conclusion 139

8.3 Conclusion

This chapter presented simulation and experiment results of the Umbrella Robot.
In simulation, we divide into two cases: reconfigurable and dynamic cases. The re-
configurable capability, shown by manipulability index and attainable force and
torque spaces, are illustrated. This is considered as an extension of aforementioned
discussions in Chapter 6. For dynamic configuration, different missions were studied
from given desired control vector to dynamic desired control vector (output from a
controller) which is designed for path following and station-keeping (observation)
problem. Simulation results proved that our algorithm is efficient and feasible to
implement in the real robot.

For experiments, the robot can carry out almost of basic missions such as Euler
angles control, depth control, and surge control. As aforementioned discussions in
chapter 6, the robot can modify its configuration with different missions and the
most advantage is that the robot can go along surge direction like a torpedo robot
which is very popular and has been used in a wide range of marine applications. A
complex task with different configurations was tested and showed that the robot can
accomplish a complex mission requiring an adaptive configuration system especially
in karst exploration. The real test does not include dynamic configuration problem
and it will be a future work.

Chapter 9

Conclusion, Perspective and
future works

Contents
9.1 Conclusion and Perspective 141
9.2 Future works . 143

9.1 Conclusion and Perspective

As aforementioned, underwater robots are very important to discover underwa-
ter environment such as ocean, karst system, and its configuration can be classified
as an under-actuated, fully-actuated, or over-actuated system depending on the re-
lation between the number of actuators and DoFs. Redundant system is a system
that generally speaking has more actuators than DoFs. For redundant systems,
there are not only advantages but also disadvantages. Specifically, a redundant
robot can be able to exploit this property for robust control, but it should yield
higher cost and difficulties in control. For a redundant system, it is necessary to
investigate control allocation method which is a mapping from desired force on each
DoFs (Fd

B) to desired force on each actuators (Fd
m) and other relating perspectives

such as control strategy, proper configuration which can leverage its redundancy.
The thesis exploited properties of redundant systems in propulsion perspective,

particularly for static configuration design and reconfigurable one. For static con-
figuration design, the problem is how to know position and orientation of thrusters
with respect to some criteria. The thesis proposed performance criteria, i.e, ma-
nipulability index, energetic index, workspace index, reactive index and robustness
index, for finding position and orientation of thrusters. A design process to optimize
these criteria based on multiobjective optimization technique was proposed to solve
the problem. Simulation results and experiments have been shown to prove our
approach. Note that it is just one Pareto solution, and Pareto front investigation
is promising and challenging study in the future. For a comparison, two configura-
tions have been chosen for simulations and experiments on Cube robot, a redundant
system with 8 thrusters installed at the corners of a cubic shape. The first one is
a typical configuration in which thrusters are fixed vertically or horizontally, the
second one is the optimal solution of our problem. The performance indices of Cube

142 Chapter 9. Conclusion, Perspective and future works

robot, detailed in Chapter 5, with optimal configuration are better than ones with
typical configuration. Optimal configuration of Cube robot is a good reference for
designing underwater robots which especially carry out missions that require a fine
turning of system reactivity (e.g. confined environments).

Motivated by adaptive robots, an autonomous underwater robot (AUV) with
reconfigurable configuration has been designed from top to toe, called Umbrella
Robot (UmRobot). The robot can be able to modify position and orientation of
thrusters using two added DC motors. In this issue, the configuration matrix is not
constant and can be changed depending on user’s or mission’s requirements. The
details of designing, including hardware and software of AUV, were introduced in
Chapter 6. Moreover, acting abilities along each DoFs, which measure how much
a robot is able to act, were proposed to validate the robot’s configuration. Note
that they are different from performance criteria mentioned in the previous part.
Basic and integrated experiments with the controller in Quaternion formalism were
tested. They showed that UmRobot can be able to accomplish our missions in most
of DoFs. Nevertheless, the robot also holds limitations in roll direction. An optimal
configuration problem for UmRobot, with respect to geometric distances and initial
angles of thrusters, was proposed and the new configuration showed that it is more
isotropic than the previous one (current UmRobot). Furthermore, not only two
robots have been built for simulations and experiments in the thesis, but also there
are several underwater robots in EXPLORE team, a Matlab-based Toolbox was
built to summarize performance indices and acting abilities of these robots.

Another idea of reconfigurable configuration was presented in Chapter 7, a pro-
posed approach to optimize locally energy-like criterion of UmRobot with dynamic
configuration. Our dynamic configuration problem depends on the output of con-
troller, desired control vector Fd

B, which is varying at each time step. This can be
considered as multiparametric programming, however, this direction is out of scope
of this thesis and will be a future work and discussed in the next section. Other-
wise, the thesis proposed an algorithm, called A-SQP which is based on Sequential
Quadratic Programming, to locally optimize energy-like criterion online. Because of
online properties, one iteration is set up in proposed algorithm. Simulation results
were shown to prove the efficiency of the proposed method. Several simulation cases
were investigated. The first one is that the desired control vector Fd

B is given, the
second one is that this vector is output from controller of path-following problem
and observation problem (station-keeping). We can see that the UmRobot with
dynamic configuration was more flexible to carry out missions and showed good
performance w.r.t energy-like criterion. Moreover, for dynamic configuration, con-
trol allocation methods were also investigated and nonlinear programming based
approaches show better performances than pseudo-inverse based methods.

An important perspective that we conclude is how to vary from optimal configu-
ration of Cube robot (C2 configuration in Chapter 5) to Torpedo-like configuration
of Cube robot and vice-versa. Indeed, for Cube robot, with the optimal configura-
tion, performance indices and acting abilities along 6 DoFs are good. Torpedo-like
configuration is very useful in some cases. An interesting idea for varying between

9.2. Future works 143

them can be seen in https://youtu.be/6vv4pxxIcyw. Note that the modification
of robot’s shape is not seriously considered in the video simulation. Beyond all, to
increase robot’s versatility, there exits other ways to improve its propulsion design
and it will be an interesting future studies.

9.2 Future works

In fact, there remains potential directions for future works with redundant sys-
tems. For optimal static configuration design, other multiobjective optimization
techniques can be investigated, especially heuristic methods. Besides, finding the
set of Pareto solutions, Pareto front, is an interesting topic. However, it is not easy
to do that for continuous problem. Other performance indices can be proposed in
the design process and a global criterion, which is able to represent for a "good"
robot, could be derived. A new Umbrella Robot with advanced configuration will
be built to validate acting abilities in 6 DoFs and other control strategies in the
future. Besides, a flexible mechanism for modifying configuration of Cube robot
will be studied carefully.

For dynamic configuration problem, multiparametric programming can be ap-
plied for our optimal dynamic configuration to find the feasible set of desired control
vector Fd

B which is a guidance for designing Fd
B in control layer. For online algo-

rithm, contractivity and robustness will be studied. In case of switching between
different configurations, a mechanism will be studied to make sure a smooth tran-
sition in control performances and other perspectives. Furthermore, an efficient
control allocation method for bad points in configuration variation is also an inter-
esting question. Experiments for dynamic configuration problem will be carry out
to prove proposed approaches.

https://youtu.be/6vv4pxxIcyw

Appendix A

Appendix

A.1 Proofs and Mathematical basics

Theorem A.1.1 The image of an unit hyper-sphere under any n×m matrix is a
hyper-ellipsoid.

Proof Let A be a n × m matrix with rank r. Let A = USVT be a singular
value decomposition of A. The left and right singular vectors of A are denoted as
u1,u2, ...,un and v1,v2, ...,vm, respectively. Since rank(A) = r, the singular values
of A have the properties: σ1 ≥ σ2 ≥ ... ≥ σr > 0 and σr+1 = σr+2 = ... = σm = 0.

Let x =


x1
...
xm

 be an unit vector in Rm. Because V is an orthogonal matrix,

and VT is also, we have VTx is an unit vector (it is easy to see that ‖VTx‖ = ‖x‖).
So, (vT1 x)2 + (vT2 x)2 + ...+ (vTmx)2 = 1.

On the other hand, we have A = σ1u1vT1 + σ2u2vT2 + ...+ σrurvTr . Therefore:

Ax = σ1u1vT1 x + σ2u2vT2 x + ...+ σrurvTr x
= (σ1vT1 x)u1 + (σ2vT2 x)u2 + ...+ (σrvTr x)ur
= y1u1 + y2u2 + ...+ yrur
= Uy (A.1)

where yi denotes the σivTi x, and y =


y1
...
yr

.
From (A.1), we have: ‖Ax‖ = ‖Uy‖ = ‖y‖ (since U is an orthogonal matrix).

Moreover, y has the following property:

(y1
σ1

)2 + (y2
σ2

)2 + ...+ (yr
σr

)2 =

= (vT1 x)2 + (vT2 x)2 + ...+ (vTr x)2 ≤ 1 (A.2)

Specifically:
1. If r = m (of course, we must have m ≤ n), the equality in equation (A.2)

holds, and the image of unit hyper-sphere forms the surface of a hyper-
ellipsoid.

2. If r < m, the image of unit hyper-sphere corresponds to a solid hyper-
ellipsoid.

146 Appendix A. Appendix

This completes the proof.

Proposition A.1.2 For given configuration matrix A, directions of thrusters are
the three first rows of the matrix and their positions can be found by Equation A.4.

Proof Configuration matrix A has a form as:

A =
(

u1 u2 · · · um
τ 1 τ 2 · · · τm

)
(A.3)

It is obvious to see that direction of each thruster is determined by vector ui,
and for each τi, position of each thruster can be interpolated as:

ri = ui ⊗ τi
‖ui‖2

+ kui, k ∈ R (A.4)

with the assumption ‖ri‖ = 1, it is easy to find the coefficient k.

A.2 Quaternions

A quaternion Q is a set of four parameters and can be written in different forms:

Q = q0 + q1i+ q2j + q3k (A.5)
Q = (q0,q) (A.6)
Q = (q0 q1 q2 q3)T (A.7)

A.2.1 Quaternion Operators

Consider two quaternions P = p0 + p1i+ p2j+ p3k = (p0,p) and Q = q0 + q1i+
q2j + q3k = (q0,q), then, we have:

Addition:

P + Q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j + (p3 + q3)k = (p0 + q0,p + q) (A.8)

Multiplication:

P�Q = (p0q0 − p.q, p0q + q0p + p× q) (A.9)

Conjugate:

Q∗ = q0 − q1i− q2j − q3k = (q0,−q) (A.10)

(Q�Q)∗ = Q∗ �P∗ (A.11)

A.2. Quaternions 147

Norm:

‖Q‖ =
√

Q∗Q (A.12)

A quaternion is called a unit quaternion if its norm is 1.
Inverse:

Q−1 = Q∗

‖Q‖2 (A.13)

it is easily to verify that QQ−1 = Q−1Q = 1. If Q is a unit quaternion, the inverse
is its conjugate Q∗.

Differentiation:

d

dt
(P�Q) = Ṗ�Q + P� Q̇ (A.14)

A.2.2 Eulers angles to quaternions and vice versa

Rotation matrix from quaternions:

R =

q
2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 − q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 (A.15)

Quaternions from Rotation matrix: The mapping from a rotation matrix to
a quaternion is slightly complicated. This is found by solving a system of equations
which may produce complex results. To avoid such an event, several composite
functions, depending on the parameters of the rotation matrix, are defined to select
the best of quaternion’s four element. We can referred to [Diebel 2006] for more
details.

Euler angles from quaternions:

φ = arctan −2(q2q3 − q0q1)
q2

0 − q2
1 − q2

2 + q2
3

(A.16)

θ = arcsin(2(q0q2 + q1q3)) (A.17)

ψ = arctan −2(q1q2 − q0q3)
q2

0 + q2
1 − q2

2 − q2
3

(A.18)

Quaternion from Euler angles: The order of rotation is ZYX

Q =


cos(ψ/2) cos(θ/2) cos(φ/2) + sin(ψ/2) sin(θ/2) sin(φ/2)
cos(ψ/2) cos(θ/2) sin(φ/2)− sin(ψ/2) sin(θ/2) cos(φ/2)
cos(ψ/2) sin(θ/2) cos(φ/2) + sin(ψ/2) cos(θ/2) sin(φ/2)
sin(ψ/2) cos(θ/2) cos(φ/2)− cos(ψ/2) sin(θ/2) sin(φ/2)

 (A.19)

148 Appendix A. Appendix

A.3 Configuration matrix for Umbrella Robot

This section presents how to determine the configuration matrix, A, of Um-
brella Robot. The notations used in the part is displayed in Table A.1 and Fig-
ures A.1 and A.2. Note that all elements u, r of configuration matrix are ex-
pressed in Body-frame. The method used is to rotate and to translate through
points (A, B, C, D) consequently. Several temporal coordinate systems are
denoted: XiYiZi, i = 1, 2, 3. A notation D3

7 is point D of thruster 7 model expressed
in X3Y3Z3 frame (B for Body-frame). A rotation matrix 3RB

y is rotating action
about Y axis (Body-frame) from X3Y3Z3 frame to Body-frame (XY Z).

Figure A.1 – The geometry of thruster 7 and 6 for A matrix

A.3. Configuration matrix for Umbrella Robot 149

Figure A.2 – The geometry of thruster 1 for A matrix

uB7 = 3RB
y D3

7 =

cosαB 0 −sinαB
0 1 0

sinαB 0 cosαB




1√
2

0
− 1√

2

 (A.20)

=


cosαB+sinαB√

2
0

−cosαB+sinαB√
2

 (A.21)

This step computes the vector rB7 :

rB7 = CB
7 = 2RB

y C2
7 + BB

7

=

cosαB 0 −sinαB
0 1 0

sinαB 0 cosαB


 0
−dt

0

+

x
B
B7
yBB7
zBB7


=

 0
−dt

0

+

x
B
B7
0
zBB7

 =

x
B
B7
−dt
zBB7

 (A.22)

where (xBB7 yBB7 zBB7)T is coordinate vector of point B of thruster 7 in Body-
frame.

150 Appendix A. Appendix

No. Notation Description Units
1 αF the forward angle degree
2 αB the backward angle degree
3 d the length of a rib of the

umbrella
mm

4 de the geometric distance of
part holding thruster

mm

5 dt the geometric distance of
part holding thruster

mm

6 dF the distance from ori-
gin of body frame to
notch(fixed point)

mm

7 LF the forward distance
from notch(fixed point)
to runner(moving point)

mm

8 LB the backward distance
from notch(fixed point)
to runner(moving point)

mm

9 βi(i = 1, ..., 7) the auxiliary angle degree

Table A.1 – Notations in the umbrella robot scheme

We have:

xBB7 = −OBcosφ7 = −OH
= −(OF ± FH) = −(dF ±BF.cos(αB + β7))

= −(dF ±
√
d2
e + d2.cos(αB + β7))

zBB7 = −OBsinφ7 = −BH = −BF.sin(αB + β7)

= −
√
d2
e + d2.sin(αB + β7) (A.23)

From (A.22) and (A.23), we have:

rB7 =

−(dF ±
√
d2 + d2

ecos(αB + β7))
−dt

−(
√
d2 + d2

esin(αB + β7))

 (A.24)

In case of β7 ≈ 0 and de ≈ 0, the (A.24) becomes:

rB7 =

−(dF ± dcosαB)
−dt

−dsinαB

 (A.25)

A.3. Configuration matrix for Umbrella Robot 151

In similarity, the vector uB6 and rB6 are computed as follows:

uB6 = 3RB
z D3

6 =

 cosαB sinαB 0
−sinαB cosαB 0

0 0 1




1√
2

1√
2

0



=


cosαB+sinαB√

2
cosαB−sinαB√

2
0

 (A.26)

The vector rB6 is computed as:

rB6 = CB
6 = 2RB

z C2
6 + BB

6

=

 cosαB sinαB 0
−sinαB cosαB 0

0 0 1


 0

0
−dt

+

x
B
B6
yBB6
zBB6


=

 0
0
−dt

+

x
B
B6
yBB6
0

 =

x
B
B6
yBB6
−dt

 (A.27)

We have:

xBB6 = −OBcosφ6 = −OH
= −(OF ± FH) = −(dF ±BF.cos(αB + β6))

= −(dF ±
√
d2
e + d2.cos(αB + β6))

yBB6 = OBsinφ6 = BH = BF.sin(αB + β6)

=
√
d2
e + d2.sin(αB + β6) (A.28)

From (A.27) and (A.28), we have:

rB6 =

−(dF ±
√
d2 + d2

ecos(αB + β6))√
d2 + d2

esin(αB + β6)
−dt

 (A.29)

In case of β6 ≈ 0 and de ≈ 0, the (A.29) becomes:

rB6 =

−(dF ± dcosαB)
dsinαB
−dt

 (A.30)

152 Appendix A. Appendix

The vector uB4 and rB4 are computed as follows:

uB4 = 3RB
z D3

4 =

cosαB −sinαB 0
sinαB cosαB 0

0 0 1




1√
2

− 1√
2

0



=


cosαB+sinαB√

2
−cosαB+sinαB√

2
0

 (A.31)

The vector rB4 is computed as:

rB4 = CB
4 = 2RB

z C2
4 + BB

4

=

cosαB −sinαB 0
sinαB cosαB 0

0 0 1


 0

0
−dt

+

x
B
B4
yBB4
zBB4


=

 0
0
−dt

+

x
B
B4
yBB4
0

 =

x
B
B4
yBB4
−dt

 (A.32)

We have:

xBB4 = −OB.cosφ4 = −OH
= −(OF ± FH) = −(dF ±BF.cos(αB + β4))

= −(dF ±
√
d2
e + d2.cos(αB + β4))

yBB4 = −OB.sinφ4 = −BH = −BF.sin(αB + β4)

= −
√
d2
e + d2sin(αB + β4) (A.33)

Therefore:

rB4 =

−(dF ±
√
d2 + d2

ecos(αB + β4))
−(
√
d2 + d2

esin(αB + β4))
−dt

 (A.34)

In case of β4 ≈ 0 and de ≈ 0, the equation (A.34) becomes:

rB4 =

−(dF ± dcosαB)
−dsinαB
−dt

 (A.35)

The vectors uB5 , rB5 are computed as follows:

uB5 = 3RB
y D3

5 =

 cosαB 0 sinαB
0 1 0

−sinαB 0 cosαB




1√
2

0
1√
2

 (A.36)

=


cosαB+sinαB√

2
0

cosαB−sinαB√
2

 (A.37)

A.3. Configuration matrix for Umbrella Robot 153

We have:

rB5 = CB
5 = 2RB

y C2
5 + BB

5

=

 cosαB 0 sinαB
0 1 0

−sinαB 0 cosαB


 0
dt
0

+

x
B
B5
yBB5
zBB5


=

 0
dt
0

+

x
B
B5
0
zBB5

 =

x
B
B5
dt
zBB5

 (A.38)

In OXY Z coordinate system:

xBB5 = −OB.cosφ5 = −OH = −(OF ± FH)
= −(dF ±BF.cos(αB + β5))

= −(dF ±
√
d2
e + d2.cos(αB + β5))

zBB5 = OB.sinφ5 = BH = BF.sin(αB + β5)

=
√
d2
e + d2.sin(αB + β5) (A.39)

Therefore:

rB5 =

−(dF ±
√
d2 + d2

ecos(αB + β5))
dt√

d2 + d2
esin(αB + β5)

 (A.40)

In case of β5 ≈ 0 and de ≈ 0, the equation (A.40) becomes:

rB5 =

−(dF ± dcosαB)
dt

dsinαB

 (A.41)

The following section presents the calculations of forward side of the umbrella
robot.

The vector uB2 and rB2 are computed as:

uB2 = 3RB
y D3

2 =

 cosαF 0 sinαF
0 1 0

−sinαF 0 cosαF




1√
2

0
1√
2



=


cosαF+sinαF√

2
0

cosαF−sinαF√
2

 (A.42)

154 Appendix A. Appendix

The vector rB2 is computed as follows:

rB2 = CB
2 = 2RB

y C2
2 + BB

2

=

 cosαF 0 sinαF
0 1 0

−sinαF 0 cosαF


 0
dt
0

+

x
B
B2
yBB2
zBB2


=

 0
dt
0

+

x
B
B2
0
zBB2

 =

x
B
B2
dt
zBB2

 (A.43)

We have:

xBB2 = OB.cosφ2 = ON = OM ∓NM
= (dF + LF)∓BM.cos(αF + β2)

= (dF + LF)∓
√
d2
e + d2.cos(αF + β2)

zBB2 = OB.sinφ2 = BN = BM.sin(αF + β2)

=
√
d2
e + d2.sin(αF + β2) (A.44)

Therefore:

rB2 =

(dF + LF)∓
√
d2 + d2

ecos(αF + β2))
dt√

d2 + d2
esin(αF + β2)

 (A.45)

In case of β2 ≈ 0 and de ≈ 0, the equation (A.45) becomes:

rB2 =

dF + LF ∓ dcosαF
dt

dsinαF

 (A.46)

The vector uB1 and rB1 are computed as follows:

uB1 = 3RB
zxD3

1 = 3RB
x (300)3RB

z (ϕ1)D3
1

=
(1 0 0

0 cos(300) −sin(300)
0 sin(300) cos(300)

)(
cosϕ1 sinϕ1 0
−sinϕ1 cosϕ1 0

0 0 1

)
1√
2

1√
2

0



=

 cosϕ1 sinϕ1 0
−
√

3
2 sinϕ1

√
3

2 cosϕ1 −1
2

−1
2sinϕ1

1
2cosϕ1

√
3

2




1√
2

1√
2

0



=


1√
2(cosϕ1 + sinϕ1)

√
3

2
√

2(−sinϕ1 + cosϕ1)
1

2
√

2(−sinϕ1 + cosϕ1)

 (A.47)

A.3. Configuration matrix for Umbrella Robot 155

where ϕ1 = 900 − αF
Therefore, the vector uB1 becomes:

uB1 =


1√
2(sinαF + cosαF)

√
3

2
√

2(−cosαF + sinαF)
1

2
√

2(−cosαF + sinαF)

 (A.48)

The vector rB1 is calculated as follows:

rB1 = 2RB
zxC2

1 + BB
1

=

 cosϕ1 sinϕ1 0
−
√

3
2 sinϕ1

√
3

2 cosϕ1 −1
2

−1
2sinϕ1

1
2cosϕ1

√
3

2


 0

0
dt

+

x
B
B1
yBB1
zBB1



=

 0
−dt

2√
3

2 dt

+

x
B
B1
yBB1
zBB1

 =

 xBB1(αF)
−dt

2 + yBB1(αF)√
3

2 dt + zBB1(αF)

 (A.49)

We have:

xBB1 = OB.cosψ.cosφ1 = ON = OM ∓NM
= (dF + LF)∓BM.cos(αF + β1)

= (dF + LF)∓
√
d2
e + d2.cos(αF + β1)

yBB1 = −OB.cosψ.sinφ1 = −NH = −BN.cos300

= −BM.sin(αF + β1)
√

3
2 = −

√
3(d2

e + d2)sin(αF + β1)
2

zBB1 = −OB.sinψ = −BH = −BN.sin300

= −BM.sin(αF + β1).12 = −
√
d2
e + d2sin(αF + β1)

2 (A.50)

So, the vector rB1 becomes:

rB
1 =


(dF + LF)∓

√
d2
e + d2.cos(αF + β1)

−dt
2 −
√

3(d2
e+d2)sin(αF+β1)

2√
3

2 dt −
√
d2
e+d2sin(αF+β1)

2

 (A.51)

In case of β1 ≈ 0 and de ≈ 0, the equation (A.51) becomes:

rB
1 =

(dF + LF)∓ d.cosαF
−dt

2 −
√

3d.sinαF
2√

3
2 dt −

d.sinαF
2

 (A.52)

156 Appendix A. Appendix

In similarity, the vector uB3 and rB3 are computed as follows:

uB3 = 3RB
zxD3

3 = 3RB
x (300)3RB

z (ϕ3)D3
3 (A.53)

=
(1 0 0

0 cos(300) sin(300)
0 −sin(300) cos(300)

)(
cosϕ3 −sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1

)
1√
2

− 1√
2

0



=

 cosϕ3 −sinϕ3 0√
3

2 sinϕ3
√

3
2 cosϕ3

1
2

−1
2sinϕ3 −1

2cosϕ3
√

3
2




1√
2

− 1√
2

0



=


1√
2(cosϕ3 + sinϕ3)
√

3
2
√

2(sinϕ3 − cosϕ3)
1

2
√

2(cosϕ3 − sinϕ3)

 (A.54)

where ϕ3 = 90− αF
Therefore, the vector uB3 becomes:

uB3 =


1√
2(sinαF + cosαF)
√

3
2
√

2(cosαF − sinαF)
1

2
√

2(sinαF − cosαF)

 (A.55)

The vector rB3 is computed as:

rB3 = 2RB
zxC2

3 + BB
3

=

 cosϕ3 −sinϕ3 0√
3

2 sinϕ3
√

3
2 cosϕ3

1
2

−1
2sinϕ3 −1

2cosϕ3
√

3
2


 0

0
dt

+

x
B
B3
yBB3
zBB3



=

 0
dt
2√
3

2 dt

+

x
B
B3
yBB3
zBB3

 =

 xBB3
dt
2 + yBB3√
3

2 dt + zBB3

 (A.56)

We have:

xBB3 = ON = OM ∓NM = (dF + LF)∓BM.cos(αF + β3)

= (dF + LF)∓
√
d2
e + d2.cos(αF + β3) (A.57)

yBB3 = NH = BN.cos(300)
= BM.sin(αF + β3).cos(300)

=
√

3(d2
e + d2)
2 .sin(αF + β3) (A.58)

zBB3 = −BH = −BN.sin(300)
= −BM.sin(αF + β3).sin(300)

= −
√
d2
e + d2

2 sin(αF + β3) (A.59)

A.4. Modeling of Umbrella Robot by numerical simulations 157

So, the vector rB3 is:

rB3 =


(dF + LF)∓

√
d2
e + d2.cos(αF + β3)

dt
2 +
√

3(d2
e+d2)
2 .sin(αF + β3)

√
3

2 dt −
√
d2
e+d2

2 sin(αF + β3)

 (A.60)

In case of β3 ≈ 0 and de ≈ 0, the equation (A.60) becomes:

rB3 =

(dF + LF)∓ d.cosαF
dt
2 +

√
3

2 .d.sinαF√
3

2 dt −
d
2sinαF

 (A.61)

In summary:

uB1 =


1√
2

(sinαF+cosαF)
√

3
2
√

2
(−cosαF+sinαF)

1
2
√

2
(−cosαF+sinαF)

 rB
1 =


(dF+LF)−

√
d2
e+d2.cos(αF+β1)

− dt2 −
√

3(d2
e+d2)sin(αF+β1)

2
√

3
2 dt−

√
d2
e+d2sin(αF+β1)

2


uB2 =

 cosαF+sinαF√
2

0
cosαF−sinαF√

2

 rB2 =

(
(dF+LF)−

√
d2+d2

ecos(αF+β2))
dt√

d2+d2
esin(αF+β2)

)

uB3 =


1√
2

(sinαF+cosαF)
√

3
2
√

2
(cosαF−sinαF)

1
2
√

2
(sinαF−cosαF)

 rB3 =


(dF+LF)−

√
d2
e+d2.cos(αF+β3)

dt
2 +
√

3(d2
e+d2)
2 .sin(αF+β3)

√
3

2 dt−
√
d2
e+d2

2 sin(αF+β3)


uB4 =

 cosαB+sinαB√
2

−cosαB+sinαB√
2

0

 rB4 =

(
−(dF+

√
d2+d2

ecos(αB+β4))
−(
√
d2+d2

esin(αB+β4))
−dt

)

uB5 =

 cosαB+sinαB√
2

0
cosαB−sinαB√

2

 rB5 =

(
−(dF+

√
d2+d2

ecos(αB+β5))
dt√

d2+d2
esin(αB+β5)

)

uB6 =

 cosαB+sinαB√
2

cosαB−sinαB√
2

0

 rB6 =

(
−(dF+

√
d2+d2

ecos(αB+β6))√
d2+d2

esin(αB+β6)
−dt

)

uB7 =

 cosαB+sinαB√
2

0
−cosαB+sinαB√

2

 rB7 =

(
−(dF+

√
d2+d2

ecos(αB+β7))
−dt

−(
√
d2+d2

esin(αB+β7))

)

Table A.2 – Elements of A matrix

A.4 Modeling of Umbrella Robot by numerical simula-
tions

For dynamic parameters of the underwater robot, we can have the mass by
weighting the robot. For moments of inertia, SOLIDWORKS is used to estimate.
In our simulation, a simple model was considered: M (rigid-body mass matrix),
D (damping matrix) are diagonal matrices. C (Corriolis-Centripetal matrix) and

158 Appendix A. Appendix

g (hydrostatic matrix) are neglected. Note that added mass and external forces
(current, wind and so on) are also not considered in the simulations.

The damping coefficients are estimated by ANSYS-CFX software which is used
for Computational Fluid Dynamics (CFD). As most of CFD softwares, ANSYS-
CFX solves a system of partial differential equations by discreting or transforming
into a set of algebraic equations which can be solved digitally. Three most popular
methods for this discretization are: Finite Element Method (FEM), Finite Volume
Method (FVM), and Finite Difference Method (FDM). In general, FDM method
is suitable for simple geometries, and FEM and FDM are chosen for more complex
geometries. ANSYS-CFX uses FVM for computing fluid dynamics. The principle
of CFD simulation can be summarized as:

1. A CAD model is first divided into very small but finite-sized elements of
geometrically simple shapes (Meshing).

2. Partial differential equations and boundary conditions are set up for each
small element.

3. Iterative methods are used to solve these equations (Convergence condi-
tions).

4. Post-process for results.
Therefore, the procedure of estimating hydrodynamics parameters of the um-

brella robot is divided into five steps:
1. Create a simplified 3D model the robot as well as the water tank for hydro-

dynamic analysis.
2. Mesh the robot model and the water tank for the FVM (Finite Volume

Method) computation.
3. Set the boundary and stop conditions for the FVM computation.
4. Execute iterative FVM calculation until the convergence.
5. Post-process the FVM data to obtain the damping coefficients.
Figure A.3 shows the umbrella robot in ANSYS-CFX simulation with simplified

3D model, water tank, and velocity of fluid.

A.5 Path following methods

Recall that {NED}-frame is also denoted as {I}-frame.

A.5.1 Line of Sight

This part shows the principles of line of sight method for path following which
could be straight-line path or curved one. We investigate the first case for straight-
line path.

Straight-line path following: A straight-line is modeled by way-points. Sup-
pose that we have a straight-line defined by two way-points Ppk(xpk , ypk) and

A.5. Path following methods 159

Figure A.3 – Umbrella robot simulation in ANSYS

Ppk+1(xpk+1 , ypk+1) (expressed in {I}-frame) as in Figure A.4. The objective of
guidance system is to find ψd (desired yaw angle/desired heading angle) which al-
lows the vehicle following a path (assume that the velocity U of vehicle is constant).
The key term of path following is cross-track error (ye) which is shown to converge
to zero.

We have angle of the path defined by the waypoints can be computed by:

χp = atan2(ypk+1 − ypk , xpk+1 − xpk) (A.62)

The coordinates of the kinematic vehicle in the path frame can be computed
by:

e = (xe ye)T = R(χp)(Q−Ppk) (A.63)

where R(χp) =
(

cos(χp) sin(χp)
− sin(χp) cos(χp)

)
is the rotation matrix from {I}-frame to

Path-frame ({P}-frame) and e consists of along-track error xe and cross-track error
ye. For straight-line path following purpose, only cross-track error is considered and
is written clearly as:

ye = − sin(χp)(x− xpk) + cos(χp)(y − ypk) (A.64)

The objective of straight-line path following is to make sure that limt→∞ ye(t) =
0. Normally, we have two classes of steering laws that ensure stabilization of

160 Appendix A. Appendix

Figure A.4 – LoS principle for straight-line path-following

ye(t) converges to zero: enclosure-based steering and lookahead-based one. Only
lookahead-based scheme is presented in this part. The desired course angle (χd) is
divided into two parts:

χd = χp + χlook (A.65)

where χlook , arctan(−ye(t)
4x) is a velocity-path relative angle that makes sure that

the velocity directed toward a point on the path and the minus sign in definition
corresponds with the sign of desired course angle. 4x > 0 is a lookahead distance.

For a path formed with n-waypoints, a switching criterion is proposed as in
[Morten Breivik 2009].

Curved-line path following:
A curved-path is parameterized, C(x(ζ), y(ζ)). Consider an arbitrary path point

Pp(ζ), a path-frame ({P}-frame) is defined such that X-axis is tangent with the
path at point Pp and Y-axis directs to right-hand side of an observer following
the path (see Figure A.5). The relative angle between {P}-frame and {I}-frame is
computed by:

χp = atan2(y′p(ζ), x′p(ζ)) (A.66)

where y′p(ζ) = dy′p
dζ , x′p(ζ) = dx′p

dζ .

A.5. Path following methods 161

Figure A.5 – LoS principle for curved-line path-following

The coordinates of vehicle expressed in path-frame is computed by:

e(t) = (xe ye)T = R(χp)(Q(t)−Pp(ζ)) (A.67)

where R(χp) =
(

cos(χp) sin(χp)
− sin(χp) cos(χp)

)
is rotation matrix from {I}-frame to {P}-

frame.
The objective is limt→∞ e(t) = 0 to reduce e(t) to zero.
Steering law:

χd = χp + χlook (A.68)

where χlook , arctan(−ye(t)
4x).

By assigning:
ζ̇ = U cosχlook(ye) + γxe

‖P′p(ζ)‖ (A.69)

where γ > 0 and ‖P′p(ζ)‖ =
√
x′p(ζ)2 + y′p(ζ)2.

Path-following in 3D:
This section extends to curved path following in 3D. A path in 3D can be

expressed by the set:

P = {Pp ∈ R3|Pp = Pp(ζ),∀ζ ∈ R} (A.70)

Defining a path-frame at arbitrary path point Pp(ζ). Two consecutive rotations
can be deployed for rotating {NED}-frame to path-frame ({P}-frame). The first

162 Appendix A. Appendix

Figure A.6 – LoS principle for curved-line path-following in 3D with µ = 1

is about Z-axis:
χp(ζ) = atan2(y′p(ζ), x′p(ζ)) (A.71)

where y′p(ζ) and x′p(ζ) are derivative of positions w.r.t parameter. This rotation
can be represented by a rotation matrix as:

R(χp) =

 cosχp sinχp 0
− sinχp cosχp 0

0 0 1

 (A.72)

The second one is about Y-axis:

υp(ζ) = atan2(−z′p(ζ),
√
x′p(ζ)2 + y′p(ζ)2) (A.73)

This rotation can be represented by a rotation matrix as:

R(υp) =

 cos υp 0 sin υp
0 1 0

− sin υp 0 cos υp

 (A.74)

Errors (along-track, cross-track, and vertical-track), coordinate systems ex-
pressed in path-frame, is computed by:

e(t) = [xe ye ze]T = R(χp, υp)(Q−Pp(ζ)) (A.75)

A.5. Path following methods 163

where R(χp, υp) = R(υp)R(χp).
The objective is to force limt→∞ e(t) = 0.
The steering laws for XY-plane:

χlook(ye) = arctan(−ye(t)
4x

) (A.76)

where 4x is a chosen variable and called looking-ahead distance.
The steering laws for XZ-plane:

υlook(ze) = arctan(ze(t)
4z

) = arctan(ze(t)
µ
√
y2
e +42

x

) (A.77)

where µ > 0.
The derivative of parameterize variable of path:

ζ̇ = Ucos(χlook(ye))cos(υlook(ze)) + γxe(t)
‖P′p(ζ)‖ (A.78)

where γ > 0 and ‖P′p(ζ)‖ =
√
x′p(ζ)2 + y′p(ζ)2 + z′p(ζ)2.

Finally, steering assignments:

χd(χp, χlook, υp, υlook) = atan2(f, g) (A.79)
υd(χp, χlook, υp, υlook) = arcsin(sin υlook cosχlook cos υlook + cos υp sin υlook) (A.80)

where

f = cosχp sinχlook cos υlook − sinχp sin υp sin υlook + sinχp cos υp cosχlook cos υlook
(A.81)

and

g = − sinχp sinχlook cos υlook− cosχp sin υp sin υlook + cosχp cos υp cosχlook cos υlook
(A.82)

A.5.2 Virtual frame tracking

Serret-Frenet frame for path-following: This section, based on [Taylor 1972]
and [Martins-Encarnação 2002], presents Serret-Frenet frame for path-following
problem, denoted as {SF}, it departs from conventional Serret-Frenet frame. Con-
sider a parameterized path in a fixed-frame as follows:

Pp(ζ) = [xp(ζ) yp(ζ) zp(ζ)]T (A.83)

The length of a smooth arc from ζ = a to ζ = b is given by:

L =
∫ b

a

√
(dx
dζ

)2 + (dy
dζ

)2 + (dz
dζ

)2dω (A.84)

164 Appendix A. Appendix

Figure A.7 – Serret-Frenet frame

Arc-length is defined as the length from ζ = a to a variable point on that arc
(replacing the upper limit b in (A.84) and differentiating derives):

s =
∫ ζ

a

√
(dx
dζ

)2 + (dy
dζ

)2 + (dz
dζ

)2dζ (A.85)

ds

dζ
= ±

√
(dx
dζ

)2 + (dy
dζ

)2 + (dz
dζ

)2 (A.86)

Note that the minus sign if s and ζ vary in different directions.
So, we have:

ds2 = dx2 + dy2 + dz2 (A.87)

Along the arc, choose a defined direction as the positive direction. At arbitrary
point of the path, define a vector T as an unit-length vector along the tangent to
the curve in the positive direction.

It is easily to prove that if F is a vector of constant length, then F.dFds = 0, and

thus conclude that dF
ds is perpendicular to F unless dF

ds (
d(F.F)
ds

= 2FdF
ds = 0 since

it is a vector of constant length).
From preceding fact, we see that vector dT

ds is perpendicular to vector T and
a unit vector in its direction is called the principal normal to C at the point in
question.

Now, we derive the definition of Serret-Frenet frame which is used in the path-
following problem because the principal normal is not suitable. In fact, considering
in the case of planar curves, the principal normal lies in the plane of the curve and
points towards the concave side of the curve. Thus, if the curve is a sinusoid, the
direction of the principal normal would be discontinuous, jumping by 1800 at the
inflection points of the curve. So, for overcoming this difficulty, a normal, denoted

A.5. Path following methods 165

by N, is defined that "always points to the right side of the curve" and can be
computed as:

dT
ds

= κN (A.88)

where κ is called the curvature of C and is positive if the curve turns right and
negative otherwise.

In summary, in path-following problem, N is a vector parallel to the horizontal
plane, perpendicular to the tangent vector, and pointing to the right of an observer
travelling along the positive direction of the path. The plane defined by T and N
at a given point P is called as the osculating plane of C at P.

Now,
B = T⊗N (A.89)

denotes the binormal vector of C at point P. We see that T, N, and B are mutually
perpendicular unit vectors forming a right-handed system and the frame formed by
these vectors is called as the Serret-Frame and will be denoted {SF}. Note that
it is different from conventional Serret-Frenet frame in which the vector N is the
principal normal.

To define torsion, considering dB
ds , From Equation (A.89),

dB
ds

= T⊗ dN
ds

+ dT
ds
⊗N (A.90)

From Equation (A.88), we have:

dT
ds
⊗N = κN⊗N = 0 (A.91)

Therefore,
dB
ds

= T⊗ dN
ds

(A.92)

As aforementioned fact, since B is an unit vector,

BdB
ds

= 0 (A.93)

If dBds 6= 0, Equations (A.92) and (A.93) show that dB
ds is perpendicular to both

B and T and is therefore a multiple of N. So, it can be written as:

dB
ds

= −τN (A.94)

The scalar quantity τ is called the torsion of C at the point under consideration.
If dB

ds = 0, τ is defined as zero such that (A.94) still holds. In the case of planar
curves, B is a constant and unit vector perpendicular to the plane and τ = 0 at all
points. A curve which does not lie in a single plane is called a twisted curve and
its torsion computes the amount by which the curve is twisted.

We investigate the derivative of N vector:

dN
ds

= −τB− κT (A.95)

166 Appendix A. Appendix

It is easy to prove the following useful relations:

dψ

dζ
= κ

ds

dζ
(A.96)

dφ

dζ
= τ

ds

dζ
(A.97)

where ψ is the rotation angle of the {SF} frame about B and φ is the rotation
angle of the one about T.

How to compute κ and τ?.

κ =
‖P′p ⊗P′′p‖
‖P′p‖3

(A.98)

τ =
(P′p ⊗P′′p).P′′′p
‖Pp ⊗P′′p‖2

(A.99)

where primes denote differentiation w.r.t ζ.
Path-following:
Consider a reference path, P(ζ) with parameters s, k, and τ and consider a

{SF} frame associated to a point p moving along that curve with fixed speed ṡ.

Figure A.8 – Path-following with Serret-Frenet frame

The linear velocity of {SF} measured in {I} and expressed in {SF} is given by:
SFνSF = [ṡ 0 0]T (A.100)

A.5. Path following methods 167

The angular velocity of {SF} measured in {I} and expressed in {SF} is given
by:

SFωSF = [τ ṡ 0 κṡ]T (A.101)

Using roll-pitch-yaw convention, we can express linear and angular velocity in NED-
frame as:

IνSF =

ẋSFẏSF
żSF

 =I RSF (φSF , θSF , ψSF)SFνSF (A.102)

IωSF =

φ̇SFθ̇SF
ψ̇SF

 =I QSF (φSF , θSF , ψSF)SFωSF (A.103)

where IRSF and IQSF are rotation matrix from {SF} frame to I frame as follows:

IRSF =
(
c(ψSF)c(θSF) −s(ψSF)c(φSF)+s(φSF)s(θSF)c(ψSF) s(ψSF)s(φSF)+s(θSF)c(ψSF)c(φSF)
s(ψSF)c(θSF) c(ψSF)c(φSF)+s(φSF)s(θSF)s(ψSF) −c(ψSF)s(φSF)+s(θSF)s(ψSF)c(φSF)
−s(θSF) s(φSF)c(θSF) c(φSF)c(θSF)

)
(A.104)

IQSF =

1 s(φSF)t(θSF) c(φSF)t(θSF)
0 c(φSF) −s(φSF)
0 s(φSF)

c(θSF)
c(φSF)
c(θSF)

 (A.105)

where c() = cos(), s() = sin(), and t() = tan().
Therefore, the kinematic model of {SF} frame is expressed in compact form as:

ẋSF
ẏSF
żSF
φ̇SF
θ̇SF
ψ̇SF


=



ṡ cos(ψSF) cos(θSF)
ṡ sin(ψSF) sin(φSF)

ṡ− sin(θSF)
τ ṡ+ κṡ cos(φSF) tan(θSF)

−κṡ sin(φSF)
κṡ cos(φSF)

cos(θSF)


(A.106)

The underlying idea of using {SF} frame kinematic for path-following problem
is to coincide Body frame of vehicle and {SF} frame at a point of the reference
curve.

The coordinates of Q expressed in I-frame is: IQ = [x y z]T and in {SF}-
frame is: SFQ = [xe ye ze]T (see Figure A.8). Then, the relative velocity between
the wind (Body-frame if wind is neglected) and the Serret-Frenet frames is dSFQ

dt =
[ẋe ẏe że]T . Now, we find the evolution of these errors?.

Following Figure A.8, it is straightforward to compute the linear velocity of Q
in I-frame as [Lapierre 2006c]:

I(dQ
dt

) =I (dP
dt

) +SF RT
I
SF (dr

dt
) +SF RT

I (ω ⊗SF r) (A.107)

168 Appendix A. Appendix

where SFRI =I RT
SF is the rotation matrix from {I}-frame to {SF}-frame, ω is

the angular velocity of {SF} frame with respect to {I} frame.
Multiplying both sides of Equation (A.107) with R yields:

SFRI
I(dQ
dt

) =SF (dP
dt

) +SF (dr
dt

) + (ω ⊗SF r) (A.108)

This is expanded as:

SFRI(φSF , θSF , ψSF)

ẋẏ
ż

 =

ṡ0
0

+

ẋeẏe
że

+

φ̇SFθ̇SF
ψ̇SF

⊗
xeye
ze

 (A.109)

On the other hand, the kinematic model of the vehicle is given by:ẋẏ
ż

 =I RB(φ, θ, ψ)

uv
w

 (A.110)

where IRB is the rotation matrix from {B}-frame (Body-frame) to {I}-frame.
By introducing φe = φ − φSF , θe = θ − θSF , and ψe = ψ − ψSF , from above

Equations, we can get the "kinematic model" of the vehicle expressed in {SF}-frame
as: 

ṡ

ẋe
ẏe
że
φ̇e
θ̇e
ψ̇e


= f(s, u, v, w, φe, θe, ψe, xe, ye, ze, κ, τ) (A.111)

The control objective is to force errors to converge. Nonlinear control methods,
i.e, back-stepping, gain-scheduling, MPC, can be applied to solve path-following
problem.

The controller of path-following problem is as follows:

Fu = −m22vr +m33wq + d11u+m11(Kpueu +Kiu

∫ t

0
eudt+Kdu

deu
dt

) (A.112)

Fp = (m33 −m22)vw + (m66 −m55)qr + d44p+m44(Kppeφ +Kip

∫ t

0
eφdt+Kdu

deφ
dt

)

(A.113)

Fq = (m11 −m33)uw + (m44 −m66)pr + d55q +m55(Kpqeθ +Kiq

∫ t

0
eθdt+Kdq

deθ
dt

)

(A.114)

Fr = (m22 −m11)uv + (m55 −m44)pq + d66r +m66(Kpreψ +Kir

∫ t

0
eψdt+Kdr

deψ
dt

)

(A.115)

where mii, dii are dynamic parameters of the robot. K∗ is control gain.

Appendix B

Appendix

B.1 Dynamic model of marine robots

Following [Fossen 2011], rigid-body inertia matrix MRB is unique and has the
form:

MRB =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz
mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz


(B.1)

where m is the mass of the robot, [xg yg zg]T is the coordinates of Center of
Gravity (CG) expressed in {B}, Ix, Iy, Iz are the moments of inertia about xB,
yB, zB axes respectively; Ixy = Iyx, Ixz = Izx, Iyz = Izy are the products of inertia.

The added inertia matrix is given by:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(B.2)

where hydrodynamic derivatives are used in this equation; for instance the hydro-
dynamic added mass force X along the x axis due to the acceleration u̇ in the x
direction is written as:

X = −Xu̇, Xu̇ := ∂X

∂u̇
(B.3)

Corriolis-Centripetal matrices are as follows:

CRB =


0 0 0 m(ygq+zgr) −m(xgq−w) −m(xgr+v)
0 0 0 −m(ygp+w) m(zgr+xgp) −m(ygr−u)
0 0 0 −m(zgp−v) −m(zgq+u) m(xgp+ygq)

−m(ygq+zgr) m(ygp+w) m(zgp−v) 0 −Iyz−Ixzp+Izr Iyzr+Ixyp−Iyq
m(xgq−w) −m(zgr+xgp) m(zgq+u) Iyzq+Ixzp−Izr 0 −Ixzr−Ixyq+Ixp
m(xgr+v) m(ygr−u) −m(xgp+ygq) −Iyzr−Ixyp+Iyq Ixzr+Ixyq−Ixp 0


(B.4)

170 Appendix B. Appendix

CA =



0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0


(B.5)

where

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr (B.6)

Damping matrices have the forms:

Dl = −



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr
Zu Zv Zr Zp Zq Zr
Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr


(B.7)

Dn =


X|u|u|u| 0 0 0 0 0

0 Y|v|v |v|+Y|r|v |r| 0 0 0 Y|v|r|v|+Y|r|r|r|
0 0 Z|w|w|w| 0 0 0
0 0 0 K|p|p|p| 0 0
0 0 0 0 M|q|q |q| 0
0 N|v|v |v|+N|r|v |r| 0 0 0 N|v|r|v|+N|r|r|r|

 (B.8)

where Xu is linear damping force along x-axis and X|u|u are nonlinear damping
coefficient along x-axis. Readers can refer to [Fossen 2011] for more details.

Hydrostatics of a marine vehicle is given by:

g(η) =



(W −B) sin(θ)
−(W −B) cos(θ) sin(φ)
−(W −B) cos(θ) cos(φ)

−(ygW − ybB) cos(θ) cos(φ) + (zgW − zbB) cos(θ) sin(φ)
(zgW − zbB) sin(θ) + (xgW − xbB) cos(θ) cos(φ)
−(xgW − xbB) cos(θ) sin(φ)− (ygW − ybB) sin(θ)


(B.9)

B.2 6DOFs dynamics model of AUVs

This section shows the simplified model of 6-DOFs AUVs. We assume that
Center of Gravity(CG) coincides with Center of Origin of body-frame (CO). The

B.2. 6DOFs dynamics model of AUVs 171

robot has three planes of symmetry, no wind and wave, and the robot is designed
with buoyancy natually. There are no couplings in the matrices M, Dl, and Dn.
All matrices in dynamic model are described as follows:

MRB =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz


(B.10)

MA = −



Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 Kṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ


(B.11)

Therefore, M matrix is written by:

M =



m−Xu̇ 0 0 0 0 0
0 m− Yv̇ 0 0 0 0
0 0 m− Zẇ 0 0 0
0 0 0 Ix −Kṗ 0 0
0 0 0 0 Iy −Mq̇ 0
0 0 0 0 0 Iz −Nṙ


(B.12)

or

M =



m11 0 0 0 0 0
0 m22 0 0 0 0
0 0 m33 0 0 0
0 0 0 m44 0 0
0 0 0 0 m55 0
0 0 0 0 0 m66


(B.13)

where m11 = m−Xu̇,m22 = m−Yv̇,m33 = m−Zẇ,m44 = Ix−Kṗ,m55 = Iy−Mq̇

and m66 = Iz −Nṙ

The Corriloris-Centriputal matrices:

CRB =



0 0 0 0 mw −mv
0 0 0 −mw 0 mu

0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq
−mw 0 mu −Izr 0 Ixp

mv −mu 0 Iyq −Ixp 0


(B.14)

172 Appendix B. Appendix

CA =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(B.15)

Therefore, the matrix C is written by:

C =



0 0 0 0 (m− Zẇ)w −(m− Yv̇)v
0 0 0 −(m− Zẇ)w 0 (m−Xu̇)u
0 0 0 (m− Yv̇)v −(m−Xu̇)u 0
0 (m− Zẇ)w −(m− Yv̇)v 0 (Iz −Nṙ)r −(Iy −Mq̇)q

−(m− Zẇ)w 0 (m−Xu̇)u −(Iz −Nṙ)r 0 (Ix −Kṗ)p
(m− Yv̇)v −(m−Xu̇)u 0 (Iy −Mq̇)q −(Ix −Kṗ)p 0


(B.16)

or

C =



0 0 0 0 m33w −m22v

0 0 0 −m33w 0 m11u

0 0 0 m22v −m11u 0
0 m33w −m22v 0 m66r −m44q

−m33w 0 m11u −m66r 0 m44p

m22v −m11u 0 m44q −m44p 0


(B.17)

Damping matrices:

Dl = −



Xu 0 0 0 0 0
0 Yv 0 0 0 0
0 0 Zr 0 0 0
0 0 0 Kp 0 0
0 0 0 0 Mq 0
0 0 0 0 0 Nr


(B.18)

Dn =



X|u|u|u| 0 0 0 0 0
0 Y|v|v|v| 0 0 0 0
0 0 Z|w|w|w| 0 0 0
0 0 0 K|p|p|p| 0 0
0 0 0 0 M|q|q|q| 0
0 0 0 0 0 N|r|r|r|


(B.19)

B.2. 6DOFs dynamics model of AUVs 173

The damping matrix D is written by:

D =



X|u|u|u| −Xu 0 0 0 0 0
0 Y|v|v|v| − Yv 0 0 0 0
0 0 Z|w|w|w| − Zr 0 0 0
0 0 0 K|p|p|p| −Kp 0 0
0 0 0 0 M|q|q|q| −Mq 0
0 0 0 0 0 N|r|r|r| −Nr


(B.20)

or

D =



d11 0 0 0 0 0
0 d22 0 0 0 0
0 0 d33 0 0 0
0 0 0 d44 0 0
0 0 0 0 d55 0
0 0 0 0 0 d66


(B.21)

where d11 = X|u|u|u| −Xu, d22 = Y|v|v|v| − Yv, d33 = Z|w|w|w| − Zr, d44 = K|p|p|p| −
Kp, d55 = M|q|q|q| −Mq and d66 = N|r|r|r| −Nr.

The restoring forces and moments:

g(η) =



0
0
0

−BGyW cos(θ) cos(φ) +BGzW cos(θ) sin(φ)
BGzW sin(θ) +BGxW cos(θ) cos(φ)
−BGxW cos(θ) sin(φ)−BGyW sin(θ)


=



XG(η)
YG(η)
ZG(η)
KG(η)
MG(η)
NG(η)


(B.22)

The simplified dynamic model of AUVs is written as:

Fu = (m−Xu̇)u̇+ (m− Zẇ)wq − (m− Yv̇)vr + (X|u|u|u| −Xu)u+XG(η)
(B.23)

Fv = (m− Yv̇)v̇ − (m− Zẇ)wp+ (m−Xu̇)ur + (Y|v|v|v| − Yv)v + YG(η) (B.24)
Fw = (m− Zẇ)ẇ + (m− Yv̇)vp− (m−Xu̇)uq + (Z|w|w|w| − Zw)w + ZG(η)

(B.25)
Γp = (Ix −Kṗ)ṗ+ (Yv̇ − Zẇ)vw + (Iz − Iy −Nṙ +Mq̇)qr + (K|p|p|p| −Kp)p+KG(η)

(B.26)
Γq = (Iy −Mq̇)q̇ + (Zẇ −Xu̇)uw + (Ix − Iz +Nṙ −Kṗ)pr + (M|q|q|q| −Mq)q +MG(η)

(B.27)
Γr = (Iz −Nṙ)ṙ + (Xu̇ − Yv̇)uv + (Iy − Ix +Kṗ −Mq̇)pq + (N|r|r|r| −Nr)r +NG(η)

(B.28)

174 Appendix B. Appendix

or

Fu = m11u̇+m33wq −m22vr + d11u+XG(η) (B.29)
Fv = m22v̇ −m33wp+m11ur + d22v + YG(η) (B.30)
Fw = m33ẇ +m22vp−m11uq + d33w + ZG(η) (B.31)
Γp = m44ṗ+ (m33 −m22)vw + (m66 −m55)qr + d44p+KG(η) (B.32)
Γq = m55q̇ + (m11 −m33)uw + (m44 −m66)pr + d55q +MG(η) (B.33)
Γr = m66ṙ + (m22 −m11)uv + (m55 −m44)pq + d66r +NG(η) (B.34)

In some cases, it is reasonable to ignore the roll model and nonlinear damping
terms, the kinematic and dynamic models are simplified more and written as:

1. Kinematic model:

ẋ = ucos(ψ)cos(θ)− vsin(ψ) + wsin(θ)cos(ψ) (B.35)
ẏ = usin(ψ)cos(θ) + vcos(ψ) + wsin(θ)sin(ψ) (B.36)
ż = −usin(θ) + w cos(θ) (B.37)
θ̇ = q (B.38)

ψ̇ = r

cos(θ) (B.39)

2. Dynamic model:

u̇ = m22
m11

vr − m33
m11

wq − d11
m11

+ 1
m11

X (B.40)

v̇ = −m11
m22

ur − d22
m22

v (B.41)

ẇ = m11
m33

uq − d33
m33

w (B.42)

q̇ = m33 −m11
m55

uw − d55
m55

q − MG

m55
+ 1
m55

M (B.43)

ṙ = m11 −m22
m66

uv − d66
m66

r + 1
m66

N (B.44)

Appendix C

Appendix

C.1 IMU calibration

This section briefly presents the basic theories of Inertial Measurement Unit
(IMU) calibration and results of robot’s IMU calibration. The attitude estimation
(roll, pitch, and yaw or quaternion) is based on [Madgwick 2011].

In general, the relation between the calibrated measurement, c, and un-calibrated
measurement, u, can be assumed as:

c = Ku− b (C.1)

where K is a matrix defining the sensor gain and b is the sensor bias.
The objective is to find K and b to avoid disturbances and measurement errors.

C.1.1 Accelerometer calibration

Accelerometer measures the acceleration forces and it is useful for determining
the direction of Earth’s gravity. We know the fact that the magnitude of Earth’s
gravity field is constant in everywhere and every direction. For a calibrated sensor,
the measured magnitude will be constant for all orientations of the sensor. That is
Equation C.2 will be hold and K and b can be found as the solution of Equation
C.3.

m = ‖Ku− b‖ (C.2)

Therefore, the principle of accelerometer calibration is to solve optimal problem as
follow:

min
K,b

∑
i

(m− ‖Kui − b‖2) (C.3)

where m is the magnitude of Earth’s gravity field, ui represents the un-calibrated
sensor measurement at the i’th orientation.

The calibration result of robot’s IMU is shown in Figure C.1.

C.1.2 Gyroscope calibration

Gyroscope is a device to measure angular velocities. The principle of gyroscope
calibration is to solve the following problem:

min
ka

[
r − T

n∑
t=0

(kaua,t − ba,t)
]2

, a = x, y, z (C.4)

176 Appendix C. Appendix

0 50 100 150 200 250 300 350 400 450

-1

0

1

2
S

e
n

s
o

r
u

n
it

s

Accelerometer calibration

X

Y

Z

0 50 100 150 200 250 300 350 400 450

Sample

0

1

2

S
e

n
s
o

r
u

n
it

s

Feild magnitude

Mean feild magnitude

Figure C.1 – Accelerometer calibration

where ba,t is the bias at time t, ka is sensor gain, T is the sampling period, r is the
known angle of rotation, ua,t is the un-calibrated gyroscope measurement at time
t.

The calibration results of gyroscope for X, Y, and Z axes are shown in Figure
C.2, Figure C.3, and Figure C.4, respectively.

0 10 20 30 40 50 60

Sample

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

A
n

g
u

la
r

u
n

it
s

Gyroscope calibration in X axis

Angular velocity

Calculated angle

Bias

Target angle

Figure C.2 – Gyroscope calibration in X axis

C.1. IMU calibration 177

0 10 20 30 40 50 60 70

Sample

-20

0

20

40

60

80

100
A

n
g

u
la

r
u

n
it

s

Gyroscope calibration in Y axis

Angular velocity

Calculated angle

Bias

Target angle

Figure C.3 – Gyroscope calibration in Y axis

0 5 10 15 20 25 30 35 40 45

Sample

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

A
n

g
u

la
r

u
n

it
s

Gyroscope calibration in Z axis

Angular velocity

Calculated angle

Bias

Target angle

Figure C.4 – Gyroscope calibration in Z axis

C.1.3 Magnetometer calibration

Magnetometer is a device which measures magnetism-direction, strength of mag-
netic field and it is useful for determining the magnetic north direction. The cali-
bration of magnetometer can be carried out by two methods. The first one is to use

178 Appendix C. Appendix

the optimal problem as in accelerometer calibration and the second one is to use
ellipse fit. Note that, magnetometer has to be rotated to collect good un-calibrated
data. In this thesis, ellipse fit method has been used to calibrate magnetometer.
First of all, un-calibrated data are stored by rotating magnetometer in all direc-
tions. The calibration results of magnetometer (ellipse fit method) are shown in
Figure C.5 and Figure C.6. Following Figure C.5, original data (un-calibrated data)
are red points. An ellipse is found by ellipsoid fit algorithm. Finally, compensated
coefficients are interpolated and calibrated data are shown in Figure C.6.

Figure C.5 – Magnetometer calibration - Ellipse fit

-40

60

-20

40

0

40

20

20 200 0
-20 -20

Original data

Compensated data

Figure C.6 – Magnetometer calibration

Appendix D

Appendix

D.1 Toolbox of configuration matrix evaluation

The toolbox is used to evaluate different configurations of different kinds of
robots and was built in Matlab environment. The main page of the toolbox is
displayed in Figure D.1. We can choose different kinds of robot (Ball robot, SamoS
robot, Cube robot, Umbrella Robot) and also different configurations of the same
robot (Umbrella Robot with different angles). For Umbrella robot, we can see
clearly the directions of thrusters as Figure D.2. The performance indices and
acting abilities are displayed on the main screen and configuration matrix, A, as
well. We can plot acting abilities of a configuration in bar graph by ’Plot Act-Ability’
button. By clicking on ’Compare’ button, we go into comparison screen (Figure

Performance indices and Acting ability of different robot

please choose kind
of robots

UmRobot

Front angle

90

Rear angle

90

A matrix

1

2

3

4

5

6

1 2 3 4 5 6 7

 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

 0.6124 0.0000 -0.6124 0.7071 0.0000 -0.7071 0.0000

 0.3536 -0.7071 0.3536 0.0000 -0.7071 0.0000 0.7071

 0.0424 -0.0424 -0.0424 0.0424 -0.0424 -0.0424 -0.0424

-0.2297 0.3860 -0.2297 -0.0424 0.0424 -0.0424 -0.0424

 0.3130 -0.0424 -0.3130 0.0424 -0.0424 -0.0424 0.0424

Performance indices

Im-Manipulability

47.226

Ie-Energy

14.45

Iw-Workspace

5628748.9807

Ire-Reactive

25.2196

Iro-Robust

OK

Acting Ability

along U

3.5

along V

1.75

along W

1.75

about P

0.0126

about Q

0.26171

about R

0.20498

Quit ComparePlot Act-Ability

Figure D.1 – Toolbox for configuration evaluation: main page

D.3). Two configurations will be chosen to make a comparison of performance
indices and acting abilities in bar graphs as in Figure D.4 for Cube robot.

180 Appendix D. Appendix

-0.5

0

0.5

0.5

4

1

1

0

2
5

7

3

6

-0.5
10.50-0.5

Figure D.2 – Umbrella robot model

Please choose two robots
Config1

Please choose ro...

Config2

Please choose ro...

Plot

Front angle

Rear angle

Front angle

Rear angle

Figure D.3 – Toolbox for configuration evaluation: comparison page

Performance indices between two configs

Im Ie Ire
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cube(C1)

Cube(C2)

Figure D.4 – A comparison between C1 and C2 configurations

Bibliography
[Abbass 2001] Hussein A Abbass, Ruhul Sarker and Charles Newton. PDE: a

Pareto-frontier differential evolution approach for multi-objective optimiza-
tion problems. In Evolutionary Computation, 2001. Proceedings of the 2001
Congress on, volume 2, pages 971–978. IEEE, 2001. (Cited on page 52.)

[Adorno 2010] Bruno Vilhena Adorno, Philippe Fraisse and Sébastien Druon. Dual
position control strategies using the cooperative dual task-space framework.
In IROS’10: International Conference on Intelligent Robots and Systems,
pages 3955–3960. IEEE, 2010. (Cited on page 57.)

[Agravante 2016] Don Joven Agravante, Alexander Sherikov, Pierre-Brice Wieber,
Andrea Cherubini and Abderrahmane Kheddar. Walking pattern gener-
ators designed for physical collaboration. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 1573–1578. IEEE,
2016. (Cited on page 57.)

[Andersson 2019] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings
and Moritz Diehl. CasADi – A software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation, vol. 11,
no. 1, pages 1–36, 2019. (Cited on page 31.)

[Bertsekas 1995] Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific,
1995. (Cited on page 38.)

[Bhat 2000] Sanjay P. Bhat and Dennis S. Bernstein. A topological obstruction
to continuous global stabilization of rotational motion and the unwinding
phenomenon. Systems & Control Letters, vol. 39, no. 1, pages 63 – 70, 2000.
(Cited on page 27.)

[BlueRobotics] BlueRobotics. BlueRobotics. https://bluerobotics.com/. (Cited on
pages 4 and 82.)

[Bodson 2002] Marc Bodson. Evaluation of optimization methods for control allo-
cation. Journal of Guidance, Control, and Dynamics, vol. 25, no. 4, pages
703–711, 2002. (Cited on page 34.)

[Bordignon 1996] Kenneth A Bordignon. Constrained control allocation for systems
with redundant control effectors. PhD thesis, Virginia Polytechnic Institute
and State University Blacksburg, 1996. (Cited on page 34.)

[Boyd 2004] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004. (Cited on pages 37, 38 and 47.)

[Branke 2008] Jürgen Branke, Kalyanmoy Deb and Kaisa Miettinen. Multiobjec-
tive optimization: Interactive and evolutionary approaches, volume 5252.
Springer Science & Business Media, 2008. (Cited on pages 7, 51 and 52.)

[Breivik 2006] Morten Breivik and Thor I Fossen. A unified control concept for
autonomous underwater vehicles. In 2006 American Control Conference,
pages 7–pp. IEEE, 2006. (Cited on page 122.)

182 Bibliography

[Brockett 1983] Roger W Brockettet al. Asymptotic stability and feedback stabiliza-
tion. Differential geometric control theory, vol. 27, no. 1, pages 181–191,
1983. (Cited on page 28.)

[Caccia 2000] M Caccia and G Veruggio. Guidance and control of a reconfigurable
unmanned underwater vehicle. Control engineering practice, vol. 8, no. 1,
pages 21–37, 2000. (Cited on page 98.)

[Chankong 2008] Vira Chankong and Yacov Y Haimes. Multiobjective decision
making: theory and methodology. Courier Dover Publications, 2008. (Cited
on pages 45, 47, 48 and 49.)

[Chaturvedi 2011] N. A. Chaturvedi, A. K. Sanyal and N. H. McClamroch. Rigid-
Body Attitude Control. IEEE Control Systems, vol. 31, no. 3, pages 30–51,
June 2011. (Cited on page 27.)

[Chocron 2008] Olivier Chocron and Hervé Mangel. Reconfigurable magnetic-
coupling thrusters for agile AUVs. In 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3172–3177. IEEE, 2008.
(Cited on page 98.)

[Chocron 2013] Olivier Chocron, Urbain Prieur and Laurent Pino. A validated
feasibility prototype for AUV reconfigurable magnetic coupling thruster.
IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pages 642–650,
2013. (Cited on page 98.)

[Chocron 2018] Olivier Chocron, Emanuel P Vega and Mohamed Benbouzid. Dy-
namic reconfiguration of autonomous underwater vehicles propulsion system
using genetic optimization. Ocean Engineering, vol. 156, pages 564–579,
2018. (Cited on page 98.)

[Coello 2004] Carlos A Coello Coello, Gregorio Toscano Pulido and M Salazar
Lechuga. Handling multiple objectives with particle swarm optimization.
IEEE Transactions on evolutionary computation, vol. 8, no. 3, pages 256–
279, 2004. (Cited on page 52.)

[Comex] Comex. Comex. https://comex.fr/. (Cited on page 15.)
[Dang 2019] Huu-Tho Dang, Lionel Lapierre, Rene Zapata, Pascal Lepinay and

Benoit Ropars. Configuration Matrix Design of Over-Actuated Marine Sys-
tems. In OCEANS 2019-Marseille, pages 1–10. IEEE, 2019. (Cited on
pages 3, 56, 113 and 123.)

[Daudelin 2018] Jonathan Daudelin, Gangyuan Jing, Tarik Tosun, Mark Yim,
Hadas Kress-Gazit and Mark Campbell. An integrated system for perception-
driven autonomy with modular robots. Science Robotics, vol. 3, no. 23, page
eaat4983, 2018. (Cited on page 98.)

[De Novi 2009] G De Novi, Claudio Melchiorri, JC García, PJ Sanz, Pere Ridao and
Gabriel Oliver. A new approach for a reconfigurable autonomous underwater
vehicle for intervention. In 2009 3rd Annual IEEE Systems Conference,
pages 23–26. IEEE, 2009. (Cited on page 98.)

Bibliography 183

[Deb 2002] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
transactions on evolutionary computation, vol. 6, no. 2, pages 182–197, 2002.
(Cited on page 52.)

[Dennis 2014] Louise A Dennis, Michael Fisher, Jonathan M Aitken, Sandor M
Veres, Yang Gao, Affan Shaukat and Guy Burroughes. Reconfigurable auton-
omy. KI-Künstliche Intelligenz, vol. 28, no. 3, pages 199–207, 2014. (Cited
on page 98.)

[Diebel 2006] James Diebel. Representing attitude: Euler angles, unit quaternions,
and rotation vectors. Matrix, vol. 58, no. 15-16, pages 1–35, 2006. (Cited
on page 147.)

[Durham 1993] Wayne C Durham. Constrained control allocation. Journal of Guid-
ance, Control, and Dynamics, vol. 16, no. 4, pages 717–725, 1993. (Cited on
page 34.)

[Elliott 2016] Christopher Michael Elliott. A Stochastic Distributed Control Allo-
cation Method Using Probability Collectives. PhD thesis, 2016. (Cited on
page 34.)

[Ende 2001] Barbara Anne Ende. 3D mapping of underwater caves. IEEE Com-
puter Graphics and Applications, vol. 21, no. 2, pages 14–20, 2001. (Cited
on page 17.)

[Fairfield 2006] Nathaniel Fairfield, George Kantor and David Wettergreen. To-
wards particle filter SLAM with three dimensional evidence grids in a flooded
subterranean environment. In Proceedings 2006 IEEE International Confer-
ence on Robotics and Automation, 2006. ICRA 2006., pages 3575–3580.
IEEE, 2006. (Cited on page 16.)

[Fairfield 2007] Nathaniel Fairfield, George Kantor and David Wettergreen. Real-
time SLAM with octree evidence grids for exploration in underwater tunnels.
Journal of Field Robotics, vol. 24, no. 1-2, pages 03–21, 2007. (Cited on
page 16.)

[Ferreau 2014] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka,
Hans Georg Bock and Moritz Diehl. qpOASES: A parametric active-set
algorithm for quadratic programming. Mathematical Programming Compu-
tation, vol. 6, no. 4, pages 327–363, 2014. (Cited on page 120.)

[Fonseca 1993] Carlos M Fonseca, Peter J Fleminget al. Genetic Algorithms for
Multiobjective Optimization: FormulationDiscussion and Generalization. In
Icga, volume 93, pages 416–423. Citeseer, 1993. (Cited on page 52.)

[FontaineDeVaucluse] FontaineDeVaucluse. Fontaine De Vaucluse.
http://www.plongeesout.com/sites/provence/vaucluse/vaucluse (Cited
on pages 3, 13 and 14.)

[Ford 2007a] Derek Ford. Jovan Cvijić and the founding of karst geomorphology.
Environmental Geology, vol. 51, no. 5, pages 675–684, 2007. (Cited on
page 10.)

184 Bibliography

[Ford 2007b] Derek Ford and Paul D Williams. Karst hydrogeology and geomor-
phology. John Wiley & Sons, 2007. (Cited on page 10.)

[Fossen 2006] T. I. Fossen and T. A. Johansen. A Survey of Control Allocation
Methods for Ships and Underwater Vehicles. In 2006 14th Mediterranean
Conference on Control and Automation, pages 1–6, June 2006. (Cited on
page 34.)

[Fossen 2009] Thor I Fossen, Tor Arne Johansen and Tristan Perez. A survey of
control allocation methods for underwater vehicles. INTECH Open Access
Publisher, 2009. (Cited on page 34.)

[Fossen 2011] Thor I Fossen. Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011. (Cited on pages 28, 57, 169 and 170.)

[Fukuda 1988a] Toshio Fukuda and Seiya Nakagawa. Approach to the dynamically
reconfigurable robotic system. Journal of Intelligent and Robotic Systems,
vol. 1, no. 1, pages 55–72, 1988. (Cited on page 97.)

[Fukuda 1988b] Toshio Fukuda and Seiya Nakagawa. Dynamically reconfigurable
robotic system. In Proceedings. 1988 IEEE International Conference on
Robotics and Automation, pages 1581–1586. IEEE, 1988. (Cited on page 97.)

[Gembicki 1975] F Gembicki and Y Haimes. Approach to performance and sensitiv-
ity multiobjective optimization: The goal attainment method. IEEE Trans-
actions on Automatic control, vol. 20, no. 6, pages 769–771, 1975. (Cited on
pages 50 and 73.)

[Gleick 1993] Peter H Gleick. Water in crisis. Pacific Institute for Studies in Dev.,
Environment & Security. Stockholm Env. Institute, Oxford Univ. Press.
473p, vol. 9, 1993. (Cited on pages 3 and 10.)

[Gourmelen 2018] Guillaume Gourmelen. Conception de un robot sous marin a
geometrie variable, 2018. (Cited on page 99.)

[Grechi 2016] Simone Grechi and Andrea Caiti. Comparison between Optimal Con-
trol Allocation with Mixed Quadratic & Linear Programming Techniques.
IFAC-PapersOnLine, vol. 49, no. 23, pages 147 – 152, 2016. 10th IFAC Con-
ference on Control Applications in Marine SystemsCAMS 2016. (Cited on
page 58.)

[Härkegård 2003] Ola Härkegård. Backstepping and control allocation with applica-
tions to flight control. PhD thesis, Linköpings universitet, 2003. (Cited on
pages 34 and 115.)

[Holland 1975] John H Holland. Adaptation in natural and artificial systems. An
introductory analysis with application to biology, control, and artificial intel-
ligence. Ann Arbor, MI: University of Michigan Press, pages 439–444, 1975.
(Cited on page 51.)

[Horn 1994] Jeffrey Horn, Nicholas Nafpliotis and David E Goldberg. A niched
Pareto genetic algorithm for multiobjective optimization. In Evolutionary
Computation, 1994. IEEE World Congress on Computational Intelligence.,

Bibliography 185

Proceedings of the First IEEE Conference on, pages 82–87. Ieee, 1994. (Cited
on page 52.)

[Hu 2007] Yonghui Hu, Long Wang, Wei Zhao, Qi Wang and Le Zhang. Modular
design and motion control of reconfigurable robotic fish. In 2007 46th IEEE
Conference on Decision and Control, pages 5156–5161. IEEE, 2007. (Cited
on page 98.)

[Huet 2016] Cécile Huet and Franco Mastroddi. Autonomy for underwater robots
- A European perspective. Autonomous Robots, vol. 40, no. 7, pages 1113–
1118, 2016. (Cited on page 11.)

[Isidori 1989] Alberto Isidori. Nonlinear control systems design. Elsevier, 1989.
(Cited on page 30.)

[Johansen 2013] Tor A. Johansen and Thor I. Fossen. Control allocation‚ÄîA sur-
vey. Automatica, vol. 49, no. 5, pages 1087 – 1103, 2013. (Cited on pages 34,
35, 57, 58 and 114.)

[Jourde 2007] Hervé Jourde, Axel Roesch, Vincent Guinot and Vincent Bailly-
Comte. Dynamics and contribution of karst groundwater to surface flow
during Mediterranean flood. Environmental Geology, vol. 51, no. 5, pages
725–730, 2007. (Cited on page 13.)

[Kereluk 2017] Jason A Kereluk and M Reza Emami. Task-based optimization of
reconfigurable robot manipulators. Advanced Robotics, vol. 31, no. 16, pages
836–850, 2017. (Cited on page 97.)

[Khalil 2002] Hassan Khalil. Nonlinear systems, volume 3. Prentice hall Upper
Saddle River, NJ, 2002. (Cited on pages 29 and 30.)

[Kharrat 2015] Houssem Kharrat. Optimization of thruster configuration for swim-
ming robots. Master’s thesis, Rice University, 2015. (Cited on page 58.)

[Knowles 2000] Joshua D Knowles and David W Corne. Approximating the non-
dominated front using the Pareto archived evolution strategy. Evolutionary
computation, vol. 8, no. 2, pages 149–172, 2000. (Cited on page 52.)

[Krstic 1995] Miroslav Krstic, Petar V Kokotovic and Ioannis Kanellakopoulos.
Nonlinear and adaptive control design. John Wiley & Sons, Inc., 1995.
(Cited on pages 30 and 31.)

[Kuipers 1999] Jack B Kuipers. Quaternions and rotation sequences: a primer with
applications to orbits, aerospace, and virtual reality. Princeton university
press, 1999. (Cited on pages 26, 27 and 32.)

[Kumar 1981] A Kumar and KJ Waldron. The workspaces of a mechanical manip-
ulator. Journal of Mechanical Design, vol. 103, no. 3, pages 665–672, 1981.
(Cited on page 58.)

[Lapierre 2006a] Lapierre. Underwater robots part I: Current systems and prob-
lem pose. In Mobile Robots: towards New Applications. IntechOpen, 2006.
(Cited on page 11.)

186 Bibliography

[Lapierre 2006b] Lapierre. Underwater robots part II: Existing solutions and open
issues. In Mobile Robots: towards New Applications. InTechOpen, 2006.
(Cited on page 21.)

[Lapierre 2006c] Lionel Lapierre, D Soetanto and Antonio Pascoal. Nonsingular
path following control of a unicycle in the presence of parametric modelling
uncertainties. International Journal of Robust and Nonlinear Control: IFAC-
Affiliated Journal, vol. 16, no. 10, pages 485–503, 2006. (Cited on page 167.)

[Lapierre 2007] Lionel Lapierre and Didik Soetanto. Nonlinear path-following con-
trol of an AUV. Ocean engineering, vol. 34, no. 11-12, pages 1734–1744,
2007. (Cited on page 28.)

[Lapierre 2008] Lionel Lapierre and Bruno Jouvencel. Robust nonlinear path-
following control of an AUV. IEEE Journal of Oceanic Engineering, vol. 33,
no. 2, pages 89–102, 2008. (Cited on pages 31 and 56.)

[Lapierre 2009] Lionel Lapierre. Robust diving control of an AUV. Ocean Engineer-
ing, vol. 36, no. 1, pages 92–104, 2009. (Cited on page 56.)

[Lapierre 2016] Lionel Lapierre. Aleyin: An underneath robotic journey - robotic
systems for karst exploration. 2016. (Cited on pages 3 and 15.)

[Lasbouygues 2017] Adrien Lasbouygues, Silvain Louis, Benoît Ropars, Luc Rossi,
Herve Jourde, Hélène Délas, Pierre Balordi, Rémi Bouchard, Mehdi Digh-
outh, Marc Dugrenotet al. Robotic mapping of a karst aquifer. 2017. (Cited
on page 17.)

[Levine 2010] William S Levine. The control systems handbook: Control system
applications. CRC press, 2010. (Cited on page 57.)

[Liu 2016] Jinguo Liu, Xin Zhang and Guangbo Hao. Survey on research and de-
velopment of reconfigurable modular robots. Advances in Mechanical Engi-
neering, vol. 8, no. 8, page 1687814016659597, 2016. (Cited on page 97.)

[Lopes 2017] Luís Lopes, Norbert Zajzon, Balázs Bodo, Stephen Henley, Gorazd
Žibret and Tatjana Dizdarevic. UNEXMIN: developing an autonomous un-
derwater explorer for flooded mines. Energy Procedia, vol. 125, pages 41–49,
2017. (Cited on page 16.)

[Louis 2017] Silvain Louis, Lionel Lapierre, Karen Godary-Dejean, Yadpiroon On-
mek, Thomas Claverie and Sebastien Villéger. Quaternion based control
for robotic observation of marine diversity. In OCEANS, 2017. (Cited on
page 133.)

[Low 2007] KH Low and Junzhi Yu. Development of modular and reconfigurable
biomimetic robotic fish with undulating fin. In 2007 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 274–279. IEEE,
2007. (Cited on page 98.)

[Madgwick 2011] Sebastian OH Madgwick, Andrew JL Harrison and Ravi
Vaidyanathan. Estimation of IMU and MARG orientation using a gradient
descent algorithm. In 2011 IEEE international conference on rehabilitation
robotics, pages 1–7. IEEE, 2011. (Cited on page 175.)

Bibliography 187

[Martins-Encarnação 2002] P Martins-Encarnação. Nonlinear path following con-
trol system for ocean vehicles. PhD thesis, Tese (Doutorado) Universidade
Técnica de Lisboa, 2002. (Cited on page 163.)

[Meister 2013] Eugen Meister, Alexander Gutenkunst and Paul Levi. Dynamics
and control of modular and self-reconfigurable robotic systems. Int. J. Adv.
Intell. Syst, vol. 6, no. 1, 2013. (Cited on page 98.)

[Miettinen 1999] K. Miettinen. Nonlinear multiobjective optimization. Kluwer Aca-
demic Publishers, 1999. (Cited on pages 45, 47, 48, 49 and 50.)

[Mintchev 2012] Stefano Mintchev, Cesare Stefanini, Alexis Girin, Stefano Mar-
razza, Stefano Orofino, Vincent Lebastard, Luigi Manfredi, Paolo Dario and
Frederic Boyer. An underwater reconfigurable robot with bioinspired electric
sense. In 2012 IEEE International Conference on Robotics and Automation,
pages 1149–1154. IEEE, 2012. (Cited on page 98.)

[Mirjalili 2016] Seyedali Mirjalili, Shahrzad Saremi, Seyed Mohammad Mirjalili and
Leandro dos S Coelho. Multi-objective grey wolf optimizer: a novel algorithm
for multi-criterion optimization. Expert Systems with Applications, vol. 47,
pages 106–119, 2016. (Cited on page 52.)

[Moreno 2014] Eduardo Moreno and Shu-Yun Chung. SeaDrone: A modular and
reconfigurable underwater robot for task optimization. In OCEANS 2014-
TAIPEI, pages 1–7. IEEE, 2014. (Cited on page 98.)

[Morten Breivik 2009] Thor I. Fossen Morten Breivik. Underwater vehicles. InTe-
chOpen, 2009. (Cited on page 160.)

[Murata 2007] Satoshi Murata and Haruhsa Kurokawa. Self-reconfigurable robots.
IEEE Robotics & Automation Magazine, vol. 14, no. 1, pages 71–78, 2007.
(Cited on page 98.)

[Nakamura 1987] Yoshihiko Nakamura, Hideo Hanafusa and Tsuneo Yoshikawa.
Task-priority based redundancy control of robot manipulators. The Interna-
tional Journal of Robotics Research, vol. 6, no. 2, pages 3–15, 1987. (Cited
on page 57.)

[Nocedal 2006] Jorge Nocedal and Stephen Wright. Numerical optimization.
Springer Science & Business Media, 2006. (Cited on pages 37, 38, 39, 42, 44
and 121.)

[Odetti 2017] Angelo Odetti, Marco Bibuli, Giorgio Bruzzone, Massimo Caccia,
Edoardo Spirandelli and Gabriele Bruzzone. e-URoPe: a reconfgurable
AUV/ROV for man-robot underwater cooperation. IFAC-PapersOnLine,
vol. 50, no. 1, pages 11203–11208, 2017. (Cited on page 99.)

[Paden 1988] Brad Paden and Shankar Sastry. Optimal kinematic design of 6R
manipulators. The International Journal of Robotics Research, vol. 7, no. 2,
pages 43–61, 1988. (Cited on pages 58 and 63.)

[Page 2000] Anthony B Page and Marc L Steinberg. A closed-loop comparison of
control allocation methods. In Proc. of AIAA Guidance, Navigation, and
Control Conference, pages 1760–1770, 2000. (Cited on page 34.)

188 Bibliography

[Park 1994] Frank C Park and Roger W Brockett. Kinematic dexterity of robotic
mechanisms. The International Journal of Robotics Research, vol. 13, no. 1,
pages 1–15, 1994. (Cited on page 58.)

[Pham 2018] Tu-Hoa Pham, Stéphane Caron and Abderrahmane Kheddar. Multi-
contact Interaction Force Sensing From Whole-Body Motion Capture. IEEE
Transactions on Industrial Informatics, vol. 14, no. 6, pages 2343–2352, 2018.
(Cited on page 57.)

[Pierrot 1998] F. Pierrot, M. Benoit and P. Dauchez. Optimal thruster configuration
for omni-directional underwater vehicles. SamoS: a Pythagorean solution. In
OCEANS ’98 Conference Proceedings, volume 2, pages 655–659 vol.2, Sep
1998. (Cited on pages 58, 61, 76 and 112.)

[Prabakaran 2018] Veerajagadheswar Prabakaran, Mohan Rajesh Elara, Thejus
Pathmakumar and Shunsuke Nansai. Floor cleaning robot with reconfig-
urable mechanism. Automation in Construction, vol. 91, pages 155–165,
2018. (Cited on page 98.)

[Prats 2012] Mario Prats, David Ribas, Narcís Palomeras, Juan Carlos García,
Volker Nannen, Stephan Wirth, José Javier Fernández, Joan P Beltrán,
Ricard Campos, Pere Ridaoet al. Reconfigurable AUV for intervention
missions: a case study on underwater object recovery. Intelligent Service
Robotics, vol. 5, no. 1, pages 19–31, 2012. (Cited on page 98.)

[Pugi 2018] Luca Pugi, Benedetto Allotta and Marco Pagliai. Redundant and re-
configurable propulsion systems to improve motion capability of underwa-
ter vehicles. Ocean Engineering, vol. 148, pages 376–385, 2018. (Cited on
page 98.)

[Rawlings 2017] James Blake Rawlings, David Q Mayne and Moritz Diehl. Model
predictive control: theory, computation, and design, volume 2. Nob Hill
Publishing Madison, WI, 2017. (Cited on page 31.)

[Ribas 2011] David Ribas, Pere Ridao, Lluís Magí, Narcís Palomeras and Marc
Carreras. The Girona 500, a multipurpose autonomous underwater vehicle.
In Oceans 2011 IEEE-Spain, pages 1–5. IEEE, 2011. (Cited on page 98.)

[Richmond 2018] Kristof Richmond, Chris Flesher, Laura Lindzey, Neal Tanner
and William C Stone. SUNFISH®: A human-portable exploration AUV for
complex 3D environments. In OCEANS 2018 MTS/IEEE Charleston, pages
1–9. IEEE, 2018. (Cited on page 17.)

[Ropars 2015] Benoit Ropars, Adrien Lasbouygues, Lionel Lapierre and David An-
dreu. Thruster’s dead-zones compensation for the actuation system of an
underwater vehicle. In Control Conference (ECC), 2015 European, pages
741–746. IEEE, 2015. (Cited on pages 12, 35 and 58.)

[Ropars 2018] B. Ropars, L. Lapierre, A. Lasbouygues, D. Andreu and R. Zapata.
Redundant actuation system of an underwater vehicle. Ocean Engineering,
vol. 151, pages 276 – 289, 2018. (Cited on pages 57, 75 and 113.)

Bibliography 189

[Ruzika 2005] Stefan Ruzika and Margaret M Wiecek. Approximation methods in
multiobjective programming. Journal of optimization theory and applica-
tions, vol. 126, no. 3, pages 473–501, 2005. (Cited on page 50.)

[Sahl 2010] Jason W Sahl, Nathaniel Fairfield, J Kirk Harris, David Wettergreen,
William C Stone and John R Spear. Novel microbial diversity retrieved by
autonomous robotic exploration of the world’s deepest vertical phreatic sink-
hole. Astrobiology, vol. 10, no. 2, pages 201–213, 2010. (Cited on page 16.)

[Sanz 2010] Pedro J Sanz, Mario Prats, Pere Ridao, David Ribas, Gabriel Oliver
and Alberto Ortiz. Recent progress in the RAUVI project: A reconfigurable
autonomous underwater vehicle for intervention. In Proceedings ELMAR-
2010, pages 471–474. IEEE, 2010. (Cited on page 98.)

[Schaffer 1985] J David Schaffer. Multiple objective optimization with vector evalu-
ated genetic algorithms. In Proceedings of the First International Conference
on Genetic Algorithms and Their Applications, 1985. Lawrence Erlbaum As-
sociates. Inc., Publishers, 1985. (Cited on page 52.)

[Schmitz 1988] Donald Schmitz. The CMU reconfigurable modular manipulator sys-
tem. 1988. (Cited on page 97.)

[Skulstad 2018] Robert Skulstad, Guoyuan Li, Houxiang Zhang and Thor I Fossen.
A Neural Network Approach to Control Allocation of Ships for Dynamic Po-
sitioning. IFAC-PapersOnLine, vol. 51, no. 29, pages 128–133, 2018. (Cited
on page 34.)

[Srinivas 1994] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimiza-
tion using nondominated sorting in genetic algorithms. Evolutionary com-
putation, vol. 2, no. 3, pages 221–248, 1994. (Cited on page 52.)

[Stephan 2017] J. Stephan and W. Fichter. Fast Exact Redistributed Pseudoinverse
Method for Linear Actuation Systems. IEEE Transactions on Control Sys-
tems Technology, vol. PP, no. 99, pages 1–8, 2017. (Cited on page 58.)

[Stone 2007] WC Stone. Design and deployment of a 3D autonomous subterranean
submarine exploration vehicle. In Proceedings UUST07, Conference on Un-
manned, Un-tethered Submersable Technology, Durham, NH, 2007. (Cited
on page 16.)

[Stoy 2010] Kasper Stoy, David Brandt and David Johan Christensen. Self-
reconfigurable robots: an introduction. Mit Press, 2010. (Cited on page 98.)

[SubseaTech] SubseaTech. Tortuga Robot. (Cited on page 113.)
[Taylor 1972] Taylor and Mann. Advanced calculus. John Wiley & Sons, 1972.

(Cited on page 163.)
[Taylor 2008] Charles J Taylor and Earl A Greene. Hydrogeologic characterization

and methods used in the investigation of karst hydrology. Field techniques for
estimating water fluxes between surface water and ground water, edited by:
Rosenberry, DO and LaBaugh, JW, US Geological Survey, Reston, Virginia
(EUA), pages 71–114, 2008. (Cited on pages 3 and 13.)

190 Bibliography

[Thakker 2014] Rohan Thakker, Ajinkya Kamat, Sachin Bharambe, Shital Chid-
darwar and Kishor M Bhurchandi. Rebis-reconfigurable bipedal snake robot.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 309–314. IEEE, 2014. (Cited on page 98.)

[Transeth 2008] Aksel Andreas Transeth, Remco I Leine, Christoph Glocker,
Kristin Ytterstad Pettersen and Pål Liljebäck. Snake robot obstacle-aided
locomotion: Modeling, simulations, and experiments. IEEE Transactions on
Robotics, vol. 24, no. 1, pages 88–104, 2008. (Cited on page 113.)

[Trefethen 1997] Lloyd N Trefethen and David Bau III. Numerical linear algebra,
volume 50. Siam, 1997. (Cited on page 72.)

[Vega 2016] Emanuel Pablo Vega. Task-based design and optimization of reconfig-
urable propulsion systems for autonomous underwater vehicles. PhD thesis,
Université de Bretagne occidentale-Brest, 2016. (Cited on page 98.)

[Xiang 2015] Xianbo Xiang, Lionel Lapierre and Bruno Jouvencel. Smooth tran-
sition of AUV motion control: From fully-actuated to under-actuated con-
figuration. Robotics and Autonomous Systems, vol. 67, pages 14–22, 2015.
(Cited on page 122.)

[Yim 2007] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll,
Hod Lipson, Eric Klavins and Gregory S Chirikjian. Modular self-
reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics &
Automation Magazine, vol. 14, no. 1, pages 43–52, 2007. (Cited on page 97.)

[Yoshikawa 1985a] T. Yoshikawa. Dynamic manipulability of robot manipulators.
In Proceedings. 1985 IEEE International Conference on Robotics and Au-
tomation, volume 2, pages 1033–1038, Mar 1985. (Cited on page 57.)

[Yoshikawa 1985b] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The
international journal of Robotics Research, vol. 4, no. 2, pages 3–9, 1985.
(Cited on page 61.)

[Yoshikawa 1990] Tsuneo Yoshikawa. Foundations of robotics: analysis and control.
Mit Press, 1990. (Cited on page 58.)

[Yuh 2000] Junku Yuh. Design and control of autonomous underwater robots: A
survey. Autonomous Robots, vol. 8, no. 1, pages 7–24, 2000. (Cited on
pages 11 and 113.)

[Zereik 2018] Enrica Zereik, Marco Bibuli, Nikola Mišković, Pere Ridao and An-
tónio Pascoal. Challenges and future trends in marine robotics. Annual
Reviews in Control, 2018. (Cited on pages 11 and 113.)

[Zhang 2007] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary
algorithm based on decomposition. IEEE Transactions on evolutionary com-
putation, vol. 11, no. 6, pages 712–731, 2007. (Cited on page 52.)

[Zitzler 1999] Eckart Zitzler. Evolutionary algorithms for multiobjective optimiza-
tion: Methods and applications. 1999. (Cited on page 52.)

Bibliography 191

[Zitzler 2001] Eckart Zitzler, Marco Laumanns and Lothar Thiele. SPEA2: Im-
proving the strength Pareto evolutionary algorithm. TIK-report, vol. 103,
2001. (Cited on page 52.)

	Nomenclature
	Introduction
	Overview
	Underwater robotics
	The karst stakes
	A rapid history of karst exploration with robots
	Concepts for karst exploration and Robotic challenges
	Autonomous Underwater Robot Architecture and Configuration
	Static configuration
	Dynamic configuration

	Motivations and Contributions of the thesis
	Structure of the thesis

	Fundamentals in Underwater Robotics
	Underwater Robot model
	Notation
	Kinematic model
	Dynamic model

	Nonlinear control methods
	Gain-scheduling method
	Feedback linerization
	Backstepping
	Model predictive control

	Error function for control with Quaternion
	Control Allocation
	Conclusion

	Optimization and Multiobjective Optimization
	Optimization
	Problem definition
	Basic definitions and theories

	Optimization methods
	Quadratic programming with equality constraints
	Quadratic programming with active set method

	Sequential Quadratic Programming
	Quasi-Newton approximations
	Merit functions
	SQP algorithm

	Multiobjective Optimization
	Problem definition
	Basic Definitions

	Multiobjective optimization Methods
	Non-interactive approaches
	Interactive approaches
	Heuristic approaches

	Conclusion

	Performance Indices and Static Configuration Design
	Introduction
	Problem formulation
	Model of actuators configuration

	The different indices
	Manipulability index
	Energetic index
	Workspace index
	Reactive index
	Robustness index

	Configuration matrix design problem
	Searching for optimal solution
	Mathematical analysis
	The optimization process

	Conclusion

	Static Configuration: Simulations and Experiments
	Simulations
	General case
	Given position case
	A comparison of the two configurations of Cube robot (given position)

	Cube robot prototype
	Descriptions of electronic and mechanic system
	Cube's characteristics

	Experimental results
	Attainability validation
	Energetic validation
	Robustness and Reactive validation

	Conclusion

	Reconfigurable Robot Design - Umbrella Robot
	Introduction
	Principles
	General view
	Hardware Architecture
	Software architecture

	Reconfigurability
	Prototype
	Configuration evaluation - Acting ability
	Configuration optimization - Acting ability
	Conclusion

	Dynamic Configuration-Umbrella Robot
	Introduction
	Dynamic Control Allocation-The singularities
	Dynamic configuration problem
	Problem solution
	Control Design for a dynamic configuration system
	Conclusion

	Reconfigurable and Dynamic Configuration: Simulation and Experiment Results
	Simulations
	Reconfigurable configuration
	Dynamic configuration

	Experiments
	Basic missions
	Integrated mission

	Conclusion

	Conclusion, Perspective and future works
	Conclusion and Perspective
	Future works

	Appendix
	Proofs and Mathematical basics
	Quaternions
	Quaternion Operators
	Eulers angles to quaternions and vice versa

	Configuration matrix for Umbrella Robot
	Modeling of Umbrella Robot by numerical simulations
	Path following methods
	Line of Sight
	Virtual frame tracking

	Appendix
	Dynamic model of marine robots
	6DOFs dynamics model of AUVs

	Appendix
	IMU calibration
	Accelerometer calibration
	Gyroscope calibration
	Magnetometer calibration

	Appendix
	Toolbox of configuration matrix evaluation

	Bibliography

