
HAL Id: tel-03417110
https://theses.hal.science/tel-03417110

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Analysis for Linux and IoT Malware
Emanuele Cozzi

To cite this version:
Emanuele Cozzi. Binary Analysis for Linux and IoT Malware. Cryptography and Security [cs.CR].
Sorbonne Université, 2020. English. �NNT : 2020SORUS197�. �tel-03417110�

https://theses.hal.science/tel-03417110
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

SORBONNE UNIVERSITE
préparée à EURECOM

École doctorale EDITE de Paris n◦ ED130
Spécialité: «Informatique, Télécommunications et Électronique»

Sujet de la thèse:

Binary Analysis
for Linux and IoT Malware

Thèse présentée et soutenue à Biot, le 14/12/2020, par

Emanuele Cozzi

Président Prof. Aurélien Francillon EURECOM

Rapporteurs Prof. Christian Rossow CISPA Helmholtz Center for
Information Security

Prof. Lorenzo Cavallaro King’s College London

Examinateurs Prof. Martina Lindorfer TU Wien
Dr. Mariano Graziano Cisco Systems Inc.
Prof. Aurélien Francillon EURECOM

Directeur de thèse Prof. Davide Balzarotti EURECOM

Preface

Time flies.
I can still perfectly remember the day I decided to join the S3 group like
it was yesterday. Now I’m here, completing my Ph.D. and ready to climb
another flight of stairs.
If I look back I smile. I’m happy to have met great people, I feel lucky to
have learned from great researchers, I grew up.

First and foremost I deeply want to thank Davide, my supervisor, for leading
me along this journey and showing me how a good researcher is supposed
to be.

I’m extremely grateful to the entire S3 group. They have always been
like a family, from the first person to the last, from the beautiful days spent
together to the moments when I was rather looking for support. I’m not
going to write down a list of names, there would be too many, and I’m sure
I could miss someone.

You, my friend from S3 or office 370, reading this preface, thank you
for your support, the thousand smiles you gave me, the discussions and
exchange of ideas, all the knowledge you shared with me.

I want to thank my parents, Giusi and Maurizio, and my sisters, Serena
and Laura, for their infinite support. Close to me even if far away, always
encouraging me to reach the top, always proud of my achievements.

Last but not least, a special thought to Fabiana, my companion on the
journey of life. You grabbed me by the hair more than ten years ago, you
taught me a lot, we grew up together, you joined me in this adventure. I
will never have enough words to thank you.

Résumé

Au cours des deux dernières décennies, la communauté de la sécurité a lutté
contre les programmes malveillants pour les systèmes d’exploitation basés
sur Windows. Cependant, le nombre croissant de dispositifs embarqués
interconnectés et la révolution de l’IoT modifient rapidement le paysage
des logiciels malveillants. Les acteurs malveillants ne sont pas restés les
bras croisés, mais ont rapidement réagi pour créer des “logiciels malveillants
Linux”.

Par cette thèse, nous naviguons dans le monde des logiciels malveillants
basés sur Linux et mettons en évidence les problèmes que nous devons sur-
monter pour leur analyse correcte. Après une exploration systématique des
défis liés à l’analyse des logiciels malveillants sous Linux, nous présentons
la conception et la mise en œuvre du premier pipeline d’analyse des logi-
ciels malveillants, spécialement conçu pour étudier ce phénomène émergent.
Nous utilisons notre plateforme pour analyser plus de 100 000 échantillons
et recueillir des statistiques et des informations détaillées qui peuvent aider
à orienter les travaux futurs.

Nous appliquons ensuite des techniques de similarité de code binaire
pour reconstruire systématiquement la lignée des familles de logiciels
malveillants de l’IoT, et suivre leurs relations, leur évolution et leurs vari-
antes. Nous appliquons notre approche à un ensemble de données recueillies
sur une période de 3,5 ans, et nous montrons comment la libre disponibilité
du code source a entraîné une grand nombre de variantes, ce qui a souvent
un impact sur la classification des systèmes antivirus.

Enfin et surtout, nous abordons un problème majeur que nous avons
rencontré dans l’analyse des exécutables liés statiquement. En particulier,
nous présentons une nouvelle approche pour identifier la frontière entre le
code utilisateur et les bibliothèques tierces, de sorte que la charge des biblio-
thèques puisse être supprimée en toute sécurité des tâches d’analyse binaire.

Abstract

For the past two decades, the security community has been fighting ma-
licious programs for Windows-based operating systems. However, the in-
creasing number of interconnected embedded devices and the IoT revolution
are rapidly changing the malware landscape. Malicious actors did not stand
by and watch, but quickly reacted to create “Linux malware”, showing an
increasing interest in Linux-based operating systems and platforms running
architectures different from the typical Intel CPU. As a result, researchers
must react accordingly, in order to adapt the techniques and toolchains that
they initially designed to analyze Windows malware. While Linux malware
can reuse well-known patterns and behaviors, the binary analysis of Linux
and IoT binaries requires to tackle specific new challenges.

Through this thesis, we navigate the world of Linux-based malicious
software and highlight the problems we need to overcome for their correct
analysis. After a systematic exploration of the challenges involved in the
analysis of Linux malware, we present the design and implementation of the
first malware analysis pipeline, specifically tailored to study this emerging
phenomenon. We use our platform to analyze over 100K samples and collect
detailed statistics and insights that can help to direct future works.

We then apply binary code similarity techniques to systematically re-
construct the lineage of IoT malware families, and track their relationships,
evolution, and variants. We apply our approach on a dataset collected over
a period of 3.5 years, and we show how the free availability of source code
resulted in a very large number of variants, often impacting the classification
of antivirus systems.

Last but not least, we address a major problem we encountered in the
analysis of statically linked executables. In particular, we present a new
approach to identify the boundary between user code and third-party li-
braries, such that the burden of libraries can be safely removed from binary
analysis tasks.

Contents

1 Introduction 1

1.1 Problem statement . 3
1.2 Contributions . 5
1.3 Thesis outline . 6

2 Background 9

2.1 ELF file format . 10
2.2 Linux malware . 12
2.3 Malware clustering and lineage 15
2.4 Function and library identification 17

3 Understanding Linux Malware 21

3.1 Introduction . 22
3.2 Challenges . 23

3.2.1 Target Diversity . 23
3.2.2 Static Linking . 24
3.2.3 Analysis Environment 25
3.2.4 Lack of Previous Studies 25

3.3 Analysis Infrastructure . 26
3.3.1 Data Collection . 27
3.3.2 File & Metadata Analysis 27
3.3.3 Static Analysis . 28
3.3.4 Dynamic Analysis . 28

3.4 Dataset . 30
3.4.1 Malware Families . 31

3.5 Under the Hood . 32
3.5.1 ELF headers Manipulation 33
3.5.2 Persistence . 35
3.5.3 Deception . 37
3.5.4 Required Privileges . 38

ii ii

3.5.5 Packing & Polymorphism 40
3.5.6 Process Interaction . 42
3.5.7 Information Gathering 43
3.5.8 Evasion . 46
3.5.9 Libraries . 48

3.6 Intra-family variety . 49
3.7 Conclusions . 50

4 The Tangled Genealogy of IoT Malware 51

4.1 Introduction . 52
4.1.1 Why this Study Matters 53

4.2 Dataset . 54
4.3 Features-based Clustering . 57

4.3.1 Feature Extraction . 58
4.3.2 Clustering . 59
4.3.3 Lessons Learned . 61

4.4 Malware Lineage Graph Extraction 66
4.4.1 Code-based Clustering 66
4.4.2 Symbols Extraction 68
4.4.3 Binary Diffing and Symbol Propagation 69
4.4.4 Source Code Collection 71
4.4.5 Phylogenetic Tree of IoT Malware 72

4.5 Results . 72
4.5.1 Code Reuse . 74
4.5.2 Outliers and AV Errors 76
4.5.3 Variants . 77

4.6 Case Studies . 79
4.7 Conclusions . 84

5 User Code Identification in Statically Linked Binaries 91

5.1 Introduction . 92
5.2 Overview . 94

5.2.1 Static Analysis . 94
5.2.2 Binary Layout Analysis 96
5.2.3 Global Variables . 98
5.2.4 User Code Boundary Analysis 98
5.2.5 Boundaries Classification and Selection 100

5.3 Results . 102
5.3.1 Dataset . 102
5.3.2 User Code Identification 103
5.3.3 Classification . 106

Contents

5.4 Case Study . 107
5.5 Limitations . 108
5.6 Conclusions . 111

6 Conclusion and Future Work 113

6.1 Future work . 114
6.2 Conclusion . 116

Appendices 117

A French Summary 119

A.1 Introduction . 120
A.2 Comprendre les logiciels malveillants de Linux 122

A.2.1 Analyse de l’infrastructure 124
A.2.2 Sous le capot . 126

A.3 L’enchevêtrement de la généalogie des logiciels malveillants
IoT . 128
A.3.1 Extraction du graphe de lignage des logiciels malveil-

lants . 129
A.3.2 Résultats . 131

A.4 Identification du code utilisateur dans les binaires liés sta-
tiquement . 132
A.4.1 Analyse des limites de code 133
A.4.2 Collection et classification des caractéristiques 134

A.5 Conclusion . 135

List of Figures

2.1 Structure of an ELF file . 12

3.1 Overview of the analysis pipeline for Linux malware. 26

4.1 Number of samples in our dataset submitted to VirusTotal
over time. 56

4.2 The workflow of our system. 67
4.3 Lineage graph of MIPS samples colored by family. 73
4.4 Appearance of new variants over time. 78
4.5 Lineage graph of Tsunami samples for ARM 32-bit. 81
4.6 Lineage graph of Gafgyt samples for ARM 32-bit. 83
4.7 Lineage graph for ARM 32-bit architecture colored by family. 85
4.8 Lineage graph for MIPS I architecture colored by family. . . 86
4.9 Lineage graph for PowerPC architecture colored by family. . 87
4.10 Lineage graph for SPARC architecture colored by family. . . 88
4.11 Lineage graph for Hitachi SH architecture colored by family. 89
4.12 Lineage graph for Motorola 68000 architecture colored by

family. 90

5.1 An overview of the steps to identify user code in statically
linked binaries. 95

5.2 Examples of adjacency matrices for three binaries. 97
5.3 Cumulative distribution of global variables accesses for tar 1.32 99
5.4 Lineage graph of Tsunami samples for MIPS with BinCut

extension. 109
5.5 Lineage graph of Tsunami samples for MIPS without BinCut

extension. 110

List of Tables

2.1 ELF Header structure . 11

3.1 Distribution of the 10,548 downloaded samples across archi-
tectures . 31

3.2 ELF Header Manipulation . 32
3.3 ELF samples that cannot be properly parsed by known tools 33
3.4 ELF binaries adopting persistence strategies 35
3.5 ELF programs renaming the process 37
3.6 ELF samples getting privileges errors or probing identities . . 38
3.7 Behavioral differences between user/root analysis 39
3.8 ELF packers . 41
3.9 Top ten common shell commands executed 42
3.10 Top ten Proc file system accesses by malicious samples 44
3.11 Top ten Sysfs file system accesses by malicious samples 44
3.12 Top ten accesses on /etc/ by malicious samples 45
3.13 ELF programs showing evasive features 46
3.14 File system paths leading to sandbox detection 47
3.15 Top 20 libraries included by dynamically linked executables . 49

4.1 Breakdown of samples per architecture. 55
4.2 Breakdown of the top 10 IoT malware families in our dataset. 57
4.3 Clustering results: static and dynamic features. 61
4.4 List of features used for static and dynamic clustering. 62
4.5 Common functions across top10 malware families. 74
4.6 Outlier samples and AVClass labels 75
4.7 Number of variants recognized for top 10 families in our

dataset. Malware families with - contained only stripped
samples which prevented any accurate variant identification. . 77

5.1 List of features used for classification. 101

5.2 Dataset of open-source packages. 103
5.3 Heuristics performances grouped by software package. Func-

tions and heuristics are the average over Bins No. 104
5.4 Cut error between user and libraries code. Cut error is

the number of functions between the cut point and the real
boundary. 105

5.5 Classification report for the malware dataset. 106

List of Acronyms

ABI Application Binary Interface

API Application Programming Interface

APT Advanced Persistent Threat

AV Antivirus

C&C Command & Control

CFG Control Flow Graph

CGI Common Gateway Interface

CPU Central Processing Unit

CRT C Runtime

CVE Common Vulnerabilities and Exposures

DB Database

DDoS Distributed Denial of Service

DNS Domain Name System

ELF Executable and Linkable Format

GOT Global Offset Table

HNSW Hierarchical Navigable Small World graphs

IOC Indicator of Compromise

IOT Internet of Things

MST Minimum Spanning Tree

OS Operating System

PCI Peripheral Component Interface

PE Portable Executable

PID Process ID

RAT Remote Access Trojan

UPX Ultimate Packer for eXecutables

VT VirusTotal

Chapter 1

Introduction

1

2 2

The security community has been fighting malware for over two decades.
However, despite the significant effort dedicated to this problem by both
academia and industry, the automated analysis and detection of malicious
software remains an open problem. Historically, the vast majority of mal-
ware was designed to target almost exclusively personal computers running
the Microsoft Windows operating system, mainly because of its very large
market share (currently estimated at 83% [Sta] for desktop computers).
Correspondingly, the security community had been initially focusing its ef-
fort on Windows-based malware—resulting in several hundreds of papers
and a vast knowledge base on how to detect, analyze, and defend from
different classes of malicious programs.

However, the recent exponential growth in the popularity of embedded
devices is causing the malware landscape to rapidly change. Embedded
devices were once manufactured with the logic entirely integrated into the
hardware until they moved to more friendly environments built on top of
microcontrollers and microprocessors. Today, they can either run a tailor-
made software, namely a firmware, or a high-level software layer such as
a fully equipped operating system. Embedded devices have been in use
in industrial environments, mission-critical appliances, and the automotive
industry for many years, but it is only recently that they started to permeate
every aspect of our society, mainly (but not only) driven by the so-called
“Internet of Things” (IoT) revolution. While the analysts’ early projections
for the number of connected devices by 2020 are controversial [Nor16], they
agree that the number of IoT devices is continuously growing and it should
have already surpassed the 20 billion mark.

Companies producing these devices are in a constant race to increase
their market share, thus focusing mainly on a short time-to-market com-
bined with a set of innovative features to attract new users. Too often,
this results in postponing (if not simply ignoring) any security and pri-
vacy concerns. With these premises, it does not come as a surprise that
the vast majority of these newly interconnected devices are routinely found
vulnerable to critical security issues, ranging from Internet-facing insecure
logins (e.g., easy-to-guess hardcoded passwords, exposed telnet services, or
accessible debug interfaces), to unsafe default configurations and unpatched
software containing well-known security vulnerabilities.

Embedded devices are profoundly different from traditional personal
computers. For example, while personal computers run predominantly
on x86 architectures, embedded devices are built upon a variety of other
CPU architectures—and often on hardware with limited resources. To
support these new systems, developers often adopt Unix-like operating sys-

1.1. Problem statement 3

tems, with different flavors of Linux quickly gaining popularity in this sector.

Not surprisingly, the astonishing number of poorly secured devices that
are now connected to the Internet has recently attracted the attention of
malware authors. The first Linux file infectors already appeared in the late
’90s, either as public threats [VLA96] or, more often, as harmless exam-
ples realized by researches [Silc, Ale]. The details of these handicrafts were
published on personal websites and technical zines. With the exception of
few anecdotal proof-of-concept examples, the antivirus industry had largely
ignored malicious Linux programs, and it is only by the end of 2014 that
VirusTotal recognized this as a growing concern for the security commu-
nity [ZDn]. Academia was even slower to react to this change, and to date
it has not given much attention to this emerging threat. In the meantime,
available resources are often limited to blog posts (such as the excellent Mal-

ware Must Die [mala]) that present the, often manually performed, analysis
of specific samples. One of the few systematic works in this area is a recent
study by Antonakakis et al. [Ant17] that focuses on the network behavior
of a specific malware family (the Mirai botnet). However, no comprehen-
sive study has been conducted to characterize, analyze, and understand the
characteristics of Linux-based and IoT malware.

1.1 Problem statement

To date, the analysis of Linux malware samples was largely performed
through many hours of manual reverse engineering work. Both companies
and private researchers have studied specific malware strains and shared
their knowledge through blog posts or through a set of Indicators of Com-
promise (IOC) [Tal18, Bit18, Ble19, Pal19]. These IOCs are then used to
build static signatures, which in turn can be used to detect the presence
of the malicious samples and to flag their corresponding network activity.
However, while the insights gained from these reports are invaluable, they
only provide a very scattered view of a much bigger picture. Little informa-
tion is available on how current static and dynamic analysis techniques apply
in the context of Linux and IoT malware and what the right methodology
is to handle these samples. Therefore, we still lack a good understanding
of how sophisticated Linux malware is as well as of how effectively we can
tackle this raising threat.

In fact, researchers who wants to work on Linux malware must cope with
an incredible diversity of target machines. Thus, we must ask ourselves what
is the right way to work with an executable compiled for an ARM drone or a

4 4

MIPS router. We must consider that the run-time environment the malware
expects may change from device to device. Are we sure that a single sandbox
can satisfy all these very diverse needs? How we explain in this thesis, the
analysis of Linux malware requires to fine-tune many small details, which
are often overlooked. For instance, how does a sandbox successfully run a
dynamically linked sample if a library is missing? And what if the sample
is statically linked but our system calls table does not match the one of the
binary? Malware may also adopt tricks to hinder static analysis, just as it
happens constantly on Windows.

The goal of this thesis is to understand the behavior, techniques, and
properties that characterize Linux and IoT malware. These includes, for
instance, the packing technologies employed by malicious software, their
ability to evade the analysis environment, or the persistence mechanisms
adopted to survive a system reboot. More importantly, we want to investi-
gate whether it is possible to measure all these aspects in a fully automated
way, as our final goal is to scale our study to to cover the entire ecosystem.

Another characteristic of IoT malware is that the source code of some
of its most famous families has been publicly available for years, leaked
or published on underground forums. These releases have paved the way
for myriads of variants and a tangled relationship among malware samples.
The second objective of this thesis is to study the impact of code reuse
by tracking variants of the same family and the appearance of new fami-
lies that originated from multiple codebases. In fact, the dynamics behind
the emergence of new malware strains are still unclear—resulting in the
fact that AV labels are often very coarse-grained, and therefore unable to
capture the continuous evolution that characterizes Linux malware. While
the traditional approach for this purpose is based on static and dynamic
feature-based clustering, the unique characteristics of Linux malware allow
for a tailored solution based on code-based similarity.

Finally, unlike in the Windows world, static linking is much more com-
mon on Linux, as typical developers often opt for a statically linked version
of their applications for portability reasons. However, this bloats the exe-
cutables and it introduces new challenges that the malware analysis com-
munity has never faced before. It is possible to automatically isolate and
distinguish the portion of code written by the malware author from that of
the embedded libraries? This would help to reduce the complexity of static
analysis and it is a required step to perform a fine-grained code comparison
of multiple malware samples.

All these high level questions also introduce technical problems related
to the analysis of Linux executables, problems that this thesis wants to

1.2. Contributions 5

emphasize and wish to address.

1.2 Contributions

This thesis is a journey characterized by low-level binary challenges (both
for static and dynamic analysis), with intermediate stopovers to capture the
global picture by performing large-scale studies on thousands of malware
samples. Overall, this manuscript sheds light on a topic that, to the best of
our knowledge, has not yet received the focus it deserves.

We tackle the challenges of binary analysis for Linux and IoT malware
with a bottom-up approach. First of all, we understand how to properly
process malicious ELF programs, and discuss the challenges involved
when dealing with this particular type of malicious files. We design
and implement padawan [coz18], a multi-architecture pipeline specifically
designed to support the analysis of Linux malware. We use padawan to
conduct the first large-scale empirical study on thousands of Linux malware
samples and uncover and discuss several low-level Linux-specific techniques
employed by real-world malware. Our results show that Linux malware
is already a multi-faced problem. This study allowed us to identify many
interesting behaviors—including the ability of certain samples to properly
run in multiple Unix-based operating systems, or the presence of specific
malicious activities performed only when a sample is executed with certain
user privileges.

Despite the efforts to explore Linux malware at scale, their growth
continues to be relentless, with a plethora of new variants appearing on
VirusTotal day by day. This continuous activity, made worse by the public
availability of malicious source code, demands to consider Linux malware
as a whole and not only as a set of individual samples. We fulfill this
need by proposing a systematic way to compare IoT malware samples and
display their evolution in a set of easy-to-understand lineage graphs. We
rely on code-based similarity to identify various variants of each family and
to capture the intra-family relationships. While our approach allows us
to track the continuous evolution of malware, we discovered that also AV
products are struggling to keep up with this ever-changing environment.
Our code-based similarity system proved that the simple form of the current
IoT malware facilitates static code analysis, which largely outperforms
other feature-based solutions (e.g., based on dynamic sandbox reports.)

While performing the lineage study, we encountered the problem of deal-

6 6

ing with statically-linked (and often stripped) ELF binaries. These samples
introduced limitations in our analysis, and often required special cases to
circumvent and proceed with our research work. Therefore, our last con-
tribution directly addresses the problem of isolating third-party libraries
included at link time. Statically linked binaries are not only difficult to
reverse engineer, but introduce noise in our code similarity pipeline. To
overcome this issue, we present a method to identify the boundary between
user code and library code in statically linked ELF files. Our system lever-
ages the spatial layout of a program defined at link time to extract user code,
and provide the analyst only a restricted subset of functions to look at. The
advantage of this solution is invaluable, as it saves considerable analysis
time and increase the precision of automated code comparison approaches.

1.3 Thesis outline

This thesis is organized into 6 chapters. We start from the basics, with
Chapter 2, by giving the reader the necessary background to understand
the ELF file format—standard for Linux executables and vitally important
to bootstrap all the thesis contributions. We also examine the current
progress and state-of-the-art of binary analysis for Linux and IoT malware
and provide a background of previous works on Linux malware. This
chapter also covers malware clustering (as applied so far on Windows mal-
ware) and recent works dealing with statically linked and stripped programs.

Chapter 3 presents the challenges to overcome when performing binary
analysis on Linux malware. Moreover, in this chapter we present an analy-
sis pipeline specifically tailored for Linux malware, which we designed and
implemented to face the challenges of this new environment. By using this
pipeline, we conduct the first large-scale measurement study and uncover
tricks and techniques used by real-world malware authors.

Chapter 3 is based on the publication Understanding Linux Malware,

IEEE Symposium on Security & Privacy (S&P) 2018 [CGFB18].

In Chapter 4 we enlarge the focus of our investigation to capture the
larger picture of IoT malware. After successfully analyzing and understand-
ing individual samples, we move our focus to study families and variants. In
particular, we present the workflow of our code-based clustering solution to
systematically reconstruct the genealogy and tangled relationships of mal-
ware families. Finally, we describe their evolution, their fragmentation, and
how AV companies perform in their recognition.

1.3. Thesis outline 7

Chapter 4 is based on the publication The Tangled Genealogy of IoT

Malware, Annual Computer Security Applications Conference (ACSAC

2020) [CVD+20].

With Chapter 5 we want to meditate on one of the binary analysis
questions still left unsolved by our pipeline, and that we had to face to
analyze Linux malware. This chapter tackled the challenges of functions and
libraries’ recognition in statically linked ELF files. We present our system
to detect user-defined functions and “cut” benign and malicious binaries
accordingly. This is helpful to remove the noise of library code from binary
and malware analysis jobs.

Chapter 5 is based on an ongoing project under finalization at the time
of writing.

We conclude the thesis with Chapter 6 where we treasure the experience
acquired throughout this journey to suggest ideas for future works. Finally,
we briefly outline how we tackled the challenges of binary analysis for Linux
and IoT malware.

8 8

Chapter 2

Background

9

10 10

This chapter discusses the necessary background to contextualize the
thesis. In particular, we give a brief introduction to the ELF file format
since it is the standard for Linux executables and will follow us through the
remainder of the thesis. Afterward, we will focus on prior works on Linux
malware and the progress of binary analysis in this research field.

2.1 ELF file format

The Executable and Linkable Format (ELF) is the standard for many Unix-
flavor operating systems. Linux, Android, and BSD use it for executables,
libraries, object files, and core dumps. In order to analyze Linux malware,
we first need to understand the ELF structure, its internal details, and all
the information we can extract at our advantage. The importance of this
step is twofold. On the one hand, it is necessary to design a set of tools
and techniques to aid the analysis processes. The dissection of an ELF file
depends on the CPU architecture and requires to operate on 32-bit or 64-
bit structures and little- or big-endian data. On the other hand, we must
be prepared to face all kinds of quirks that are introduced into malicious
ELFs by malware authors to hinder the analysis. For example, pieces of
code overlapping the ELF header, or fields with unusual values that can
break most of the current analysis tools.

The ELF file format and its inner workings are complicated, and it is
difficult to really master them at all degrees. The many aspects of this
topic cannot fit within a single chapter in this thesis and we defer the
interested reader to the ELF Standards [Fou] for a complete cover of the
data structures. We will focus here only on the description of the aspects
that are required to understand the next chapters.

A typical ELF file consists of five key elements: (i) an ELF header, (ii) a
program header table, (iii) a section header table, (iv) a chunk of executable
code, and (v) some data. The ELF header is always located at the beginning
of the file and it contains a map that describes its internal organization. As
described in Table 2.1, the header contains fixed features like the ELF type,
the architecture, the entry point to start the execution, and the offsets of the
program header and section header tables. Despite the ELF format being
a standard, parsers and ELF-compatible operating systems do not adhere
to a unique specification. Moreover, the tools developed over the years to
handle ELF files were not designed to cope with the adversarial nature of
malicious files. As flipping a single bit in the header could be sufficient to
break common analysis routines, in this thesis we had to resort to a custom

2.1. ELF file format 11

Table 2.1: ELF Header structure

Field Description

e_ident Machine-independent data to decode and interpret the files’s contents

e_type Object file type

e_machine Required architecture

e_version Object file version

e_entry Virtual address the system transfers control to

e_phoff Offset of the program header table

e_shoff Offset of the section header table

e_flags Processor-specific flags

e_ehsize ELF header’s size

e_phentsize Size of one entry in the program header table

e_phnum Number of entries in the program header table

e_shentsize Size of one entry in the section header table

e_shnum Number of entries in the section header table

e_shstrndx Section header table index associated with the section name string table

ELF parser specifically conceived for Linux malware.
Figure 2.1(a) illustrates the basic layout of an ELF binary. The section

header table provides information describing the program’s sections used for
linking and debugging purposes (Figure 2.1(b).) The program header table
describes the segments within the binary, as in Figure 2.1(c). The loader
and the kernel setup the process image and the execution environment by
using this information.

The difference between sections and segments often leads to confusion,
with people wrongly mentioning one but referring to the other. Segments
are mandatory to create a process, while sections can be omitted and the
program will continue to work just fine. Therefore, Linux malware samples
can choose to remove the section header table but they are not allowed
to obfuscate the segments. We will see how samples exploit this dual
view to produce errors in debugging tools like GDB, the de-facto standard
debugger for Linux.

The ELF format accounts for more than ten types of segments, some
of them mostly being placeholders for information required by the dynamic
linker and the program interpreter. The Linux kernel itself normally deals
with only three types of segments. The first one is the type PT_LOAD,
which describes areas of the binary that need to be loaded and mapped
into memory. This segment will generally contains the executable code,
data (e.g. global variables), and dynamic linking information. The second
type is PT_INTERP, which points to a string that declares the program

12 12

ELF Header

Program Header Table

Section Header Table

Code

Data

ELF Header

Program Header Table

Section Header Table

Section 1

Section n

...

...

...

ELF Header

Program Header Table

Section Header Table

Segment 1

Segment n

...

(a) Object File (b) Linking View (c) Execution View

Figure 2.1: Structure of an ELF file

interpreter. The last is PT_GNU_STACK that, if present, tells the ker-
nel whether the process stack memory should be executable or not. It is
worth to mention also the segment type PT_DYNAMIC as we will make
an extensive use of it in our analysis. This segment is present if the object
file requires dynamic linking and it contains information such as the list of
shared libraries that must be liked at runtime, the relocation information,
and the pointers to the dynamic string and symbol tables.

As we already mentioned above, sections are not a required component
for the ELF execution. However, they offer better granularity for the overall
inspection of a program. Sections can easily point reverse engineering tools
to the code area (.text), the global offset table (.got), or the read-only
variables (.rodata). Analysts can extract parts of the ELF content either
through segments or sections. With the latter being more fragile in malicious
contexts, it is always a safer choice to base binary analysis on segments
whenever possible.

2.2 Linux malware

In the past two decades, the security community has focused almost ex-
clusively on fighting malware targeting Microsoft Windows or, more re-
cently, Android devices. As a result, hundreds of papers have described
techniques to analyze PE binaries [Wic09, Fer, CJS+05, KRVV], detect
ongoing threats [CJS+05, SWL05, DQG+04], and prevent possible infec-
tion attempts [MKN05, HGS01, LWKS05] on Windows operating systems.
The community also developed many analysis tools for dissecting threats
related to the Windows environment, ranging from dynamic analysis so-

2.2. Linux malware 13

lutions [malb, cws, anu, vts] to dissectors for file formats used as attack
vectors [oleb, pee, olea].

With the exception of mobile malware, non-Windows malicious software
did not receive the same level of attention. While the hacking community
developed—almost two decades ago—interesting techniques to implement
malicious ELF files [Silc, Silb, Sila, Z0m, Ale], rootkits [dar, sd], and tools
to dissect them [May, elfc, elfa], none of them has seen vast adoption. In fact,
the security industry has only recently started looking at ELF files—mainly
driven by newsworthy cases like the Mirai botnet [Nic] and Shellshock [Dav].
Many blog posts and papers were published for the analysis and dissection
of specific families [Cat, MMDc, MMDb, MMDa, WLL+, CKVD10], but
these investigations were mainly conducted by manual reverse engineering.
Recent research by Shazhad et al. [SF12] and by Bai et al. [BYMM13] dis-
cuss the extraction of static features from ELF binaries to train a classifier
for malware detection. Unfortunately, these works are not comprehensive,
do not take into account different architectures, or are easily evaded by
stripping a binary or by using packing.

Researchers have also started to explore dynamic analysis for Linux mal-
ware only very recently. The few solutions that are available at the moment
support a limited number of platforms or provide very limited analysis ca-
pabilities. For example, Limon [Mon15] is an analysis sandbox based on
strace (and thus easily detectable), and it only supports the analysis of x86
binaries. Sysdig [sysa] and PayloadSecurity [Pay] are affected by similar is-
sues and they also only work for x86 binaries. Detux [det] supports instead
four different architectures (i.e., x86, x86-64, ARM, and MIPS). However,
it only performs a very basic analysis by running readelf and collecting net-
work traces. Cuckoo sandbox [cuc] is another available tool that supports
the analysis of Linux samples. However, the Cuckoo project only provides
the external orchestration analysis framework, while the preparation of the
various sandbox images is left to the user. Last, in November 2017 Virus-
Total announced the integration of the Tencent HABO sandbox solution,
which reportedly is able to analyze also Linux-based malware [vir]. Unfor-
tunately, there is no public report on how the system works and it currently
works only for x86 binaries.

One of the first systematic studies of IoT malware was performed by
Pa et al. [MSY+15]. In the paper, the authors present a Telnet honeypot to
measure the current attack trends as well as the first sandbox environment
(IoTBOX) based on Qemu and OpenWRT for the analysis of IoT malware.
The authors also discussed the issue of IoT devices exposing Telnet online
and they collected few families actively targeting this service. Similarly,

14 14

Antonakakis et al. [Ant17] studied in detail a specific Linux malware family,
the Mirai botnet. They measure systematically the evolution and growth
of the botnet, mainly from a network point of view.

These works are invaluable to the community, but only look at limited
aspects of the entire picture: the samples network behavior. We believe
that the work presented in this thesis can complement these efforts and
provide a clearer overview of how Linux malware actually works. Moreover,
the datasets used in these previous studies are not representative of the
overall Linux malware ecosystem, since they were collected via telnet-based
honeypots.

The ELF file format is a standard also for Linux-based mobile op-
erating systems e.g., Android. Android malware has received a lot of
attention over the years with studies focusing on behaviors [TKFC15],
characterization [ZJ12] and evolution [TFA+17]. More recently, the
research around Android malware focused on the study of high-level user
interactions [YLC+19] and the analysis of native components [WLO+18].
However, we believe that Android and Linux malware must be considered
as distinct entities since the first relies more on the Android Framework
(including Java and JNI) than Linux itself.

After we published our first study on Linux malware (described in Chap-
ter 3) many follow-up studies have been published on the topic. For in-
stance, Costin et al. [CZ18] provided a detailed survey of IoT malware sam-
ples extracting meaningful statistics from infection events and reporting on
major vulnerabilities exploited by some families. Other works on the same
line of research analyzed IoT infections leveraging low- and high-interaction
honeypots [VS18] or endpoints reachable from the internet [CAA+19]. Dos
Santos et al. [dSDC20] instead have shown how Linux and IoT malware can
threaten building automation systems (BAS) powering smart buildings.

Recent research also focused on the defensive side. Mudgerikar et

al. [MSB19] worked on an anomaly-based system-level IDS to profile IoT
malware behaviors, while Coltellese et al. [CMM+19] proposed a triage
system using C&C commands to model known attacks and identify new
malware variants. Ding et al. [DLL+20] moved at a lower level using side-
channels over power signals to identify malicious activities on IoT devices.

Meanwhile, the security community is also proposing studies and ad-
vances on the tools to support Linux malware analysis. For example,
Darki et al. [DFAG+19] raised a question on the effectivity of IDA Pro (the
most used disassembler in the field) for the analysis of stripped binaries. On
the other hand, You et al. [YZK+20] compared our sandbox implementing

2.3. Malware clustering and lineage 15

the analysis pipeline for Linux malware (that we present in Chapter 3.3)
with their technique for malware dynamic analysis based on forced exe-
cution. Finally, PANDAcap [SBG20] aims at improving dynamic analysis
by extending the PANDA framework [DGHH+15] to have automated and
selective recording, and used it to implement an SSH honeypot.

2.3 Malware clustering and lineage

Malware clustering has been extensively studied in order to cope with the
increasing sophistication and the rapid increase in the number of observed
samples. As a result, there is a long list of works (of which we summarize
what we believe to be the most relevant ones) that have looked at malware
clustering and typically differ in the features or malware traits they extract
and the clustering algorithm they use. Finally, we will discuss works that
have used clustering to look into malware lineage in an effort to study the
genealogy of malware strains.

Behavior-based malware clustering. Bailey et al. [BOA+07] treated
user-visible system state changes (e.g., files written, processes created) to
create a fingerprint of the malware’s behavior, and leveraged single-linkage
hierarchical clustering algorithm to automatically classify and analyze ap-
proximately 3.7k malware samples. Bayer et al. [BCH+09] transformed the
augmented malware execution traces of 14K samples into behavioral profiles
and applied a single-linkage hierarchical clustering algorithm to produce 87
clusters.

Perdisci et al. [PLF10] proposed a network-level behavioral malware
clustering based on the analysis of structural similarities among malicious
HTTP traffic traces generated by 25k malware samples. The goal was to
produce high-quality malware network signatures.

Kirat et al. [KV15] proposed MalGene, a system to automatically
identify system call events from evasive malware execution traces to build
concise evasion signatures. The authors employed a complete-linkage
hierarchical clustering algorithm to group 3.1k malware samples based
upon pairwise Jaccard similarity of their evasion signatures.

Static analysis-based malware clustering. Hu et al. [HSBG13]
proposed MutantX-S to exploit a hashing trick to reduce static feature
dimension and leverage a prototype-based clustering algorithm to resolve
the scalability issues faced by previous malware clustering approaches.
On a similar note, Jiang et al. [JBV11] proposed BitShred to use feature

16 16

hashing to reduce the high-dimensional feature spaces that are common in
malware analysis.

Evaluation of malware clustering results. Li et al. [LLGR10] discussed
the challenges in evaluating malware clustering. The authors cautioned
the security practitioners that a biased cluster-size distribution from the
ground truth may lead to spurious high accuracy. Perdisci et al. [PU12]
proposed the VAMO system to provide an automated quantitative analysis
of the validity of malware clustering results. It constructed an AV label
graph based upon the overlapping labels among malware verdicts, then
built a reference clustering of the malware samples from this learned AV
Label Graph to assess the quality of third party clustering results.

Malware lineage. The first notable piece of research looking at the mal-
ware lineage dates back to 1998 from Goldberg et al. [GGPS98]. Inspired by
the study of the evolution of biological species, they transposed this concept
into the malware area and introduced malware phylogenetic trees. Karim et

al.in [KWLP05] presented a code fragment permutation-based technique to
reconstruct malware family evolution trees. In 2011, Dumitras et al. [DN11]
presented some guidance on malware studies and an experimental approach
to study malware lineage. The authors advocated for the use of a combi-
nation of static and dynamic features, such as code fragments and dynamic
control flow graphs, enriched with contextual information on the provenance
of the studied samples. Lindorfer et al. [LDFM+12] developed Beagle, a sys-
tem designed to track the evolution of a malware family. The authors relied
on dynamic analysis to extract the different functionalities – in terms of
API calls – exhibited by a piece of malware. They then tried to map these
functionalities back to disassembled code so they could identify and charac-
terize mutations within a malware family. In 2018, Calleja et al. [CTC18] –
extending their previous work [CTC16] – studied the evolution of 456 Win-
dows malware samples observed over 40+ years and identified code reuse
between different families as well as with benign software. The types of code
reuse they observed include essentially anti-analysis routines, shellcode, data
such as credentials for brute-forcing attacks, and utility functions.

Huang et al. [HYD17] presented BinSequence, a tool to compare the
similarity between functions extracted from binaries. The tool first uses
fuzzy matching to reduce the number of pairwise comparisons. The authors
then computed the similarity of functions at the instruction, basic block, and
CFG levels. They applied their technique to different scenarios, including
the identification of code reuse in two Windows malware families. They

2.4. Function and library identification 17

also claim a function matching accuracy higher than 90%, above state-
of-the-art approaches such as BinDiff or Diaphora. Jang et al. [JWB13]
proposed iLine, a graph-based lineage recovery tool based on a combination
of low-level binary features, code-level basic blocks, and binary execution
traces. The technique was evaluated on a small dataset of 84 Windows
malware, with an accuracy of 72%. Ming et al. [MXW15] also proposed an
optimization for the iBinHunt binary diffing tool, which computes similarity
between binaries from their execution traces. The authors further applied
their optimized tool on a dataset of 145 Windows malware samples from 12
different families.

More recently, Haq et al. [HC19] reviewed 61 approaches from the litera-
ture on binary code similarity – some of which are used for malware lineage
inference – published over the last 20 years. While they purposely focus on
academic contributions rather than binary diffing tools, the authors high-
light the diversity, strengths and weakness of all these techniques. They
also identify several open problems, some of which were faced as well in our
work, such as the scalability and the lack of support of multiple CPU archi-
tectures. We believe that binary-level or basic block-based malware slicing
is likely to be prone to over-specific code reuse identification. Similarly, ex-
ecution traces are likely to be too coarse-grained for variant identification.

Since the packing schemes currently used by IoT malware are simple
and easy to unpack, we propose the use of function-level binary diffing to
identify relevant code similarities between and within IoT malware families.

2.4 Function and library identification

Library and function identification is an open problem in the field of
binary and malware analysis. It plays an important role in many security
applications, such as library function detection, vulnerability re-discovery,
code reuse analysis, malware detection, and authorship attribution. As a
result, even if this problem dates back to the early 90s [VE93], the research
community is still actively developing new solutions.

Function boundaries recognition is a core component of disassemblers
and binary analysis frameworks [BJAS11, SWH+15, rad, Eag11]. While
Kruegel et al. [KRVV04] used typical function prologs to detect the function
start addresses, Rosenblum et al. [RZMH08] introduced machine learning as
a possible solution for function identification. Shin et al. [SSM15] followed
a similar approach but working with recurrent neural networks. In their
experiments they show a drastic speedup in training time and better ac-

18 18

curacy than previous methods. Andriesse et al. [ASB17] preferred to avoid
the intense training phases required by machine-learning approaches, and
proposed a compiler-agnostic function detection algorithm at the CFG-level.

Once each function has been identified in the binary, the next problem
is to recognize whether they are similar to functions in other binaries or
libraries. Several works focused on the generation and matching of func-
tion signatures. Shirani et al. [SWD17] worked on BinShape to identify
library functions using signatures based on CFG features, instruction-level
properties, and statistical characteristics. Similarly, BinSign [NRM+17] uses
tracelets extracted from the CFG and feature min-hashing to generate func-
tion fingerprints. Qiu et al. [QSM15a] also worked on CFGs for function
identification, and introduced the concept of execution dependence graphs
to describe the behavioral characteristics of binary code. Their approach
makes it possible to recognize full library functions but also inline func-
tions. Alrabaee et al. [AWD16]—with BinGold—extended CFGs with data-
flow analysis components into a unique representation called semantic flow

graph. The same authors worked on FOSSIL [ASWD18] to address the prob-
lem of function identification oriented to malware binaries. Specifically, the
authors wanted to recognize—by using Bayesian networks—functions from
open-source libraries compiled into malicious software. Their model relies
on syntactical features of the binary, functions semantics, and the z-score

to extract the behavior of instructions.
On the industry side, IDA FLIRT [Gui] adopts a solution based on a

simple pattern-based recognition algorithm, operating on the instruction
bytes. A limitation of function detection through signatures is that they
involve the generation of a signatures database. This kind of recognition
does not scale with the number of binaries to analyze and the many
compilation flags that can be customized in modern compilers.

Library identification for statically linked binaries can be seen as a
higher-level problem. Even if it can be carried out through multiple func-
tion recognition steps, it is often simplified by using code-based similarity
approaches. Instead of generating a signature database for an entire li-
brary, researchers can look at the code similarity of the (malicious) binary
with a pre-compiled package. One of the most famous tools for this pur-
pose is BinDiff [Zyn]. BinDiff relies on a structural-based approach and
functions isomorphism [DR05, Fla04] to find differences and similarities in
disassembled code. Diaphora [urla] is a very similar but open-source alterna-
tive built around heuristics on graph theory, instructions, and function fea-
tures. Other works instead focus directly on binary clone search. Farhadi et

2.4. Function and library identification 19

al. [FFCD14] developed BinClone to detect code clones in malware. Differ-
ently from BinDiff, this solution compares regions of assembly instructions
to find exact and inexact matches of code fragments. Ding et al.made two
contributions to the same topic. The first one is Kam1n0 [DFC16], which
proposes a variant of local-sensitive hashing to implement an assembly clone
search engine. The second is Asm2Vec [DFC19], which relies on semantic
relationships and the vector representation of assembly functions to match
clones even in the presence of obfuscation techniques. Huang et al. [HYD17]
published BinSequence, a code reuse detector that operates with a fuzzy
matching approach on the instruction, basic block, and control flow levels.

Both function fingerprinting and code similarity can be used to restore
the library identities in stripped binaries. However, most of these solutions
are sensitive to variations in the compilation toolchain and to new library
versions. Jacobson et al. [JRM11] used UNSTRIP to create semantic
descriptors and provide high-level representations of library functions.
However, UNSTRIP only works on wrapper functions containing system
call invocations, thus mostly on C libraries. Debin [HIT+18] overcomes
these limitations using probabilistic models to predict symbol names,
types, and locations in stripped ELF files. Punstrip [PECK20] combines
probabilistic fingerprint of binary code with a probabilistic graphical model
to infer symbol information.

In summary, we are still unable today to recognize libraries without us-
ing signatures or binary similarity tools. In particular, we lack solutions to
automatically detect the boundary addresses of code modules (e.g., to sep-
arate user code and libraries) in statically linked software. The most recent
contribution in this direction is CodeCut [evm]. CodeCut introduces the
concept of local function affinity, a call directionality metric, to detect the
boundaries of object files of embedded operating systems (often compiled in
a single linked program). However, our preliminary tests on Linux binaries
did not produce accurate results as explained in Chapter 5.1, in which we
also present our solution to the problem.

20 20

Chapter 3

Understanding Linux

Malware

21

22 22

3.1 Introduction

This chapter presents the first large-scale empirical study conducted to char-
acterize and understand Linux-based malware (for both embedded devices
and traditional personal computers). We first systematically enumerate the
challenges that arise when collecting and analyzing Linux samples. For
example, we show how supporting malware analysis for “common” archi-
tectures such as x86 and ARM is often insufficient, and we explore several
challenges including the analysis of statically linked binaries, the prepara-
tion of a suitable execution environment, and the differential analysis of
samples run with different privileges. We also detail Linux-specific tech-
niques that are used to implement different aspects traditionally associated
with malicious software, such as anti-analysis tricks, packing and polymor-
phism, evasion, and attempts to gain persistence on the infected machine.
These insights were uncovered thanks to an analysis pipeline we specifically
designed to analyze Linux-based malware and the experiments we conducted
with over 10K malicious samples. Our results show that Linux malware is
already a multi-faced problem. While still not as complex as its Windows
counterpart, we were able to identify many interesting behaviors—including
the ability of certain samples to properly run in multiple operating systems,
the use of privilege escalation exploits, or the custom modification of the
UPX packer adopted to protect their code. We also found that a consid-
erable fraction of Linux malware interacts with other shell utilities and,
despite the lack of available malware analysis sandboxes, that some samples
already implement a wide range of VM-detections approaches. Finally, we
also performed a differential analysis to study how the malware behavior
changes when the same sample is executed with or without root privileges.
In summary, this chapter brings the following contributions:

• We document the design and implementation of several tools we de-
signed to support the analysis of Linux malware and we discuss the
challenges involved when dealing with this particular type of malicious
files.

• We present the first large-scale empirical study conducted on 10,548
Linux malware samples obtained over a period of one year.

• We uncover and discuss a number of low-level Linux-specific tech-
niques employed by real-world malware and we provide detailed statis-
tics on the current usage.

3.2. Challenges 23

We make the raw results of all our analyzed samples available to the
research community and we provide our entire infrastructure as a free service
to other researchers.

3.2 Challenges

The analysis of generic (and potentially malicious) Linux programs requires
tackling a number of specific challenges. This section presents a systematic
exploration of the main problems we encountered in our study.

3.2.1 Target Diversity

The first problem relates to the broad diversity of the possible target envi-
ronments. The general belief is that the main challenge is about supporting
different architectures (e.g., ARM or MIPS), but this is in fact only one
aspect of a much more complex problem. Malware analysis systems for
Windows, MacOS, or Android executables can rely on detailed informa-
tion about the underlying execution environment. Linux-based malware
can instead target a very diverse set of targets, such as Internet routers,
printers, surveillance cameras, smart TVs, or medical devices. This greatly
complicates their analysis. In fact, without the proper information about
the target (unfortunately, program binaries do not specify where they were
supposed to run) it is very hard to properly configure the right execution
environment.
Computer Architectures. Linux is known to support tens of different
architectures. This requires analysts to prepare different analysis sandboxes
and port the different architecture-specific analysis components to support
each of them. In a recent work covering the Mirai botnet [Ant17], the au-
thors supported three architectures: MIPS 32-bit, ARM 32-bit, and x86
32-bit. However, this covers a small fraction of the overall malware land-
scape for Linux. For instance, these three architectures together only cover
about 32% of our dataset. Moreover, some families (such as ARM) are
particularly challenging to support because of the large number of different
CPU architectures they contain.
Loaders and Libraries. The ELF file format allows a Linux program to
specify an arbitrary loader, which is responsible to load and prepare the
executable in memory. Unfortunately, a copy of the requested loader may
not be present in the analysis environment, thus preventing the sample from
starting its execution. Moreover, dynamically linked binaries expect their
required libraries to be available in the target system: once again, it is

24 24

enough for a single library to be missing to prevent the successful execution
of the program. Contrary to what one would expect, in the context of this
work these aspects affect a significant portion of our dataset. A common
example are Linux programs that are dynamically linked with uClibc or
musl, smaller and more performant alternatives to the traditional glibc. Not
only does an analysis environment need to have these alternatives installed,
but their corresponding loaders are also required.
Operating System. This work focuses on Linux binaries. However, and
quite unexpectedly, it can be challenging to discern ELF programs compiled
for Linux from other ELF-compatible operating systems, such as FreeBSD
or Android. The ELF headers include an “OS/ABI” field that, in principle,
should specify which operating system is required for the program to run.
In practice, this is rarely informative. For example, ELF binaries for both
Linux and Android specify a generic “System V” OS/ABI. Moreover, cur-
rent Linux kernels seem to ignore this field, and it is possible for a binary
that specifies “FreeBSD” as its OS/ABI to be a valid Linux program, a
trick that was abused by one of the malware sample we encountered in our
experiments. Finally, while a binary compiled for FreeBSD can be prop-
erly loaded and executed under Linux, this is only the case for dynamically
linked programs. In fact, the syscalls numbers and arguments for Linux and
FreeBSD do not generally match, and therefore statically linked programs
usually crash when they encounter such a difference. These differences may
also exist between different versions of the Linux kernel, and custom mod-
ifications are not too rare in the world of embedded devices. This has two
important consequences for our work: On the one hand, it makes it hard to
compile a dataset of Linux-based malware. On the other hand, this also re-
sults in the fact that even well-formed Linux binaries may not be guaranteed
to run correctly in a generic Linux system.

3.2.2 Static Linking

When a binary is statically linked, all its library dependencies are included
in the resulting binary as part of the compilation process. Static linking
can offer several advantages, including making the resulting binary more
portable (as it is going to execute correctly even when its dependencies are
not installed in the target environment) and making it harder to reverse
engineer (as it is difficult to identify which library functions are used by the
binary).

Static linking introduces also another, much less obvious challenge for
malware analysis. In fact, since these binaries include all their libraries,

3.2. Challenges 25

the resulting application does not rely on any external wrapper to execute
system calls. Normal programs do not call system calls directly, but invoke
instead higher level API functions (typically part of the libc) that in turn
wrap the communication with the kernel. Statically linked binaries are more
portable from a library dependency point of view, but less portable as they
may crash at runtime if the kernel ABI is different from what they expected
(and what was provided by the—unfortunately unknown—target system).

3.2.3 Analysis Environment

An ideal analysis sandbox should emulate as closely as possible the system
in which the sample under analysis was supposed to run. So far we have
discussed challenges related to setting up an environment with the correct
architecture, libraries, and operating system, but these only cover part of the
environment setup. Another important aspect is the privileges the program
should run with. Typically, malware analysis sandboxes execute samples
as a normal, unprivileged user. Administration privileges would give the
malware the ability to tamper with the sandbox itself and would make
the instrumentation and observation of the program behavior much more
complex. Moreover, it is very uncommon for a Windows sample to expect
super-user privileges to work.

Unfortunately, Linux malware is often written with the assumption (true
for some classes of embedded targets) that its code would run with root
privileges. However, since these details are rarely available to the analyst,
it is difficult to identify these samples in advance. We will discuss how we
deal with this problem by performing a differential analysis in Chapter 3.3.

3.2.4 Lack of Previous Studies

To the best of our knowledge, this is the first work that attempts to per-
form a comprehensive analysis of the Linux malware landscape. This mere
fact introduces several additional challenges. First, it is not clear how to
design and implement an analysis pipeline specifically tailored for Linux
malware. In fact, analysis tools are tailored to the characteristics of the
existing malware samples. Unfortunately, the lack of information on how
Linux-based malware works complicated the design of our pipeline. Which
aspects should we focus on? Which architectures do we need to support?
A second problem in this domain is the lack of a comprehensive dataset.
One of the few works looking at Linux-based malware focused only on bot-
nets, thus using honeypots to build a representative dataset. Unfortunately,

26 26

File & Metadata Analysis

AVClass

ELF Anomaly

File
Recognition

Static Analysis

Packing
Identification

Code Analysis

Dynamic Analysis

Emulation

Packer
Analysis

Trace
Analysis

Sandbox
Preparation

Figure 3.1: Overview of the analysis pipeline for Linux malware.

this approach would bias our study towards those samples that propagate
themselves on random targets.

3.3 Analysis Infrastructure

The task of designing and implementing an analysis infrastructure for Linux-
based malware was complicated by the fact that when we started our ex-
periments we still knew very little about how Linux malware worked and
of which techniques and components we would have needed to study its
behavior. For instance, we did not know a priori any of the challenges we
discussed in the previous section and we often had wrong expectations about
the prevalence of certain characteristics (such as static linking or malformed
file headers) or their impact on our analysis strategy.

Despite our extensive experience in analyzing malicious files for Windows
and Android, we only had an anecdotal knowledge of Linux-based malware
that we obtained by reading online reports describing manual analysis of
specific families. Therefore, the design and implementation of an analysis
pipeline became a trial-and-error process that we tackled by following an in-
cremental approach. Each analysis task was implemented as an independent
component, which was integrated in an interactive framework responsible
to distribute the jobs execution among multiple parallel workers and to pro-
vide a rich interface for human analysts to inspect and visualize the data.
As more samples were added to our analysis environment every day, the
system identified and reported any anomaly in the results or any problem
that was encountered in the execution of existing modules (such as new
and unsupported architectures, errors that prevented a sample from being
correctly executed in our sandboxes, or unexpected crashes in the adopted
tools). Whenever a certain issue became widespread enough to impact the
successful analysis of a considerable number of samples, we introduced new
analysis modules and designed new techniques to address the problem. Our
framework was also designed to keep track of which version of each module

3.3. Analysis Infrastructure 27

was responsible for the extraction of any given piece of information, thus al-
lowing us to dynamically update and improve each analysis routine without
the need to re-start each time the experiments from scratch.

Our final analysis pipeline included a collection of existing state-of-the-
art solutions (such as AVClass [SRKC16a], IDA Pro, radare2 [rad], and
Nucleus [ASB17]) as well as completely new tools we explicitly designed
for this work. Due to space limitations we cannot present each component
in details. Instead, in the rest of this section we briefly summarize some
of the techniques we used in our experiments, organized in three different
groups: File and Metadata Analysis, Static Analysis, and Dynamic Analysis

components.

3.3.1 Data Collection

To retrieve data for our study we used the VirusTotal intelligence API to
fetch the reports of every ELF file submitted between November 2016 and
November 2017. Based on the content of the reports, we downloaded 200
candidate samples per day. Our selection criteria were designed to minimize
non-Linux binaries and to select at least one sample for each family observed
during the day. We also split our selection in two groups: 140 samples taken
from those with more than five AV positive matches, and 60 samples with
an AV score between one and five.

3.3.2 File & Metadata Analysis

The first phase of our analysis focuses on the file itself. Certain fields con-
tained in the ELF file format are required at runtime by the operating
system, and therefore need to provide reliable information about the archi-
tecture on which the application is supposed to run and the type of code
(e.g., executable or shared object) contained in the file. We implemented
our custom parser for the ELF format because the existing ones (as ex-
plained in Chapter 3.5.1) were often unable to cope with malformed fields,
unexpected values, or missing information.

We use the data extracted from each file for two purposes. First, to
filter out files that were not relevant for our analysis. For instance, shared
libraries, core dumps, corrupted files, or executables designed for other op-
erating systems (e.g., when a sample imported an Android library). Second,
we use the information to identify any anomalous file structure that, while
not preventing the sample to run, could still be used as anti-analysis routine
and prevent existing tools to correctly process the file (see Chapter 3.5.1 for
more details about our findings).

28 28

Finally, as part of this first phase of our pipeline, we also extract from
the VirusTotal reports the AV labels for each sample and fed them to the
AVClass tool to obtain a normalized name for the malware family. AVClass,
recently proposed by Sebastián et al. [SRKC16a], implements a state-of-the-
art technique to normalize, remove generic tokens, and detect aliases among
a set of AV labels assigned to a malware sample. Therefore, whenever it is
able to output a name, it means that there was a general consensus among
different antivirus on the class (family) the malware belongs to.

3.3.3 Static Analysis

Our static analysis phase includes two tasks: binary code analysis and pack-
ing detection. The first task relied on a number of custom IDA Pro scripts
to extract several code metrics—including the number of functions, their
size and cyclomatic complexity, their overall coverage (i.e., the fractions of
the .text section and PT_LOAD segments covered by the recognized func-
tions), the presence of overlapping instructions and other assembly tricks,
the direct invocation of system calls, and the number of direct/indirect
branch instructions. In this phase we also computed aggregated metrics,
such as the distribution of opcodes, or a rolling entropy of the different
code and data sections. This information is used for statistical purposes,
but also integrated in other analysis components, for instance to identify
anti-analysis behaviors or packed samples.

The second task of the static analysis phase consists of combining the
information extracted so far from the ELF headers and the binary code
analysis to identify likely packed applications (see Chapter 3.5.5 for more
details). Binaries that could be statically unpacked (e.g., in the common
case of UPX) were processed at this stage and the result fed back to be
statically analyzed again. Samples that we could not unpack statically
were marked in the database for a subsequent more fine-grained dynamic
attempt.

3.3.4 Dynamic Analysis

We performed two types of dynamic analysis in our study: a five-minute
execution inside an instrumented emulator, and a custom packing analy-
sis and unpacking attempt. For the emulation, we implemented two types
of dynamic sandboxes: a KVM-based virtualized sandbox with hardware
support for x86 and x86-64 architectures, and a set of QEMU-based emu-
lated sandboxes for ARM 32-bit little-endian, MIPS 32-bit big-endian, and
PowerPC 32-bit. These five sandboxes were nested inside an outer VM

3.3. Analysis Infrastructure 29

dedicated to dispatch each sample depending on its architecture. Our sys-
tem also maintained several snapshots of all VMs, each corresponding to a
different configurations to choose from (e.g., execution under user or root
accounts and glibc or uClibc setup). All VMs were equipped with additional
libraries, the list of which was collected during the static analysis phase,
as well as popular loaders (such as the uClibc commonly used in embedded
systems).

For the instrumentation we relied on SystemTap [sysb] to implement
kernel probes (kprobes) and user probes (uprobes). While, according to its
documentation, SystemTap should be supported on a variety of different
architectures (such as x86, x86-64, ARM, aarch64, MIPS, and PowerPC),
in practice we needed to patch its code to support ARM and MIPS with o32
ABI. Our patches include fixes on syscall numbers, CPU registers naming
and offsets, and the routines required to extract the syscall arguments from
the stack. We designed our SystemTap probes to collect every system call,
along with its arguments and return value, and the instruction pointer from
which the syscall was invoked. We also recompiled the glibc to add uprobes

designed to collect, when possible, additional information on string and
memory manipulation functions.

At the end of the execution, each sandbox returns a text file contain-
ing the full trace of system calls and userspace functions. This trace is
then immediately parsed to identify useful feedback information for the
sandbox. For example, this preliminary analysis can identify missing com-
ponents (such as libraries and loaders) or detect if a sample tested its user
permissions or attempted to perform an action that failed because of in-
sufficient permissions. In this case, our system would immediately repeat
the execution of the sample, this time with root privileges. As explained
in Session 3.5.4, we later compare the two traces collected with different
users as part of our differential analysis to identify how the sample behavior
was affected by the privilege level. Finally, the preliminary trace analysis
can also report to the analyst any error that prevented the sample to run
in our system. As an example of these warnings, we encountered a number
of ARM samples that crashed because of a four-byte misalignment between
the physical and virtual address of their LOAD segments. These samples
were probably designed to infect an ARM-based system whose kernel would
memory map segments by considering their physical address, something that
does not happen in common desktop Linux distributions. We extended our
system with a component designed to identify these cases by looking at the
ELF headers and fix the data alignment before passing them to the dynamic
analysis stage.

30 30

To avoid hindering the execution and miss important code paths, we
gave samples partial network access, while monitoring the traffic for signs
of abuse. Although not an ideal solution, a similar approach has been
previously adopted in other behavioral analysis experiments [vir, Ant17] as
it is the only way to observe the full behavior of a sample.

Our system also record PCAP files of the network traffic, due to space
limitations we will not discuss their analysis as this is the only aspect
of Linux-based malware that was already partially studied in previous
works [Ant17]. Finally, to dynamically unpack unknown UPX variants we
developed a tool based on Unicorn [Ngu]. The system emulates instructions
on multiple architectures and behaves like a tiny kernel that exports the
limited set of system calls used by UPX during unpacking (supporting a
combination of different system call tables and system call ABIs). As we
explain in Chapter 3.5.5, this approach allowed us to automatically unpack
all but three malware samples in our dataset.

3.4 Dataset

Our final dataset, after the filtering stage, consisted of 10,548 ELF exe-
cutables, covering more than ten different architectures (see Table 3.1 for a
breakdown of the collected samples). Note again how the distribution differs
from other datasets collected only by using honeypots: x86, ARM 32-bit,
and MIPS 32-bit covered 75% of the data used by Antonakakis et al. [Ant17]
on the Mirai botnet, but only account for 32% of our samples.

Here we just want to focus on their broad variety and on the large dif-
ferences that exist among all features we extracted in our database. For
example, our set of Linux-based malware vary considerably in size, from a
minimum of 134 bytes (a simple backdoor) to a maximum of 14.8 megabytes
(a botnet coded in Go). IDA Pro was able to recognize (in dynamically
linked binaries) from a minimum of zero (in two samples) to a maximum
of 5685 unique functions. Moreover, we extracted from the ELF header of
dynamically linked malware the symbols imported from external libraries—
which can give an idea of the most commonly used functionalities. Most
samples import between 10 and 100 symbols. Interestingly, there are more
than 10% of the samples that use malloc but never use free. And while
socket is one of the most common functions (confirming the importance
that interconnected devices have nowadays) less than 50% of the binaries
requests file-based routines (such as fopen). Finally, entropy plays an im-
portant role to identify potential packers or encrypted binary blobs. The
vast majority of the binaries in our dataset has entropy around six, a com-

3.4. Dataset 31

Table 3.1: Distribution of the 10,548 downloaded samples across architec-
tures

Architecture Samples Percentage

X86-64 3018 28.61%
MIPS I 2120 20.10%
PowerPC 1569 14.87%
Motorola 68000 1216 11.53%
Sparc 1170 11.09%
Intel 80386 720 6.83%
ARM 32-bit 555 5.26%
Hitachi SH 130 1.23%
AArch64 (ARM 64-bit) 47 0.45%
others 3 0.03%

mon value for compiled but not packed code. However, one sample had
entropy of only 0.98, due to large blocks of null bytes inserted in the data
segment.

3.4.1 Malware Families

The AVClass tool was able to associate a family (108 in total) to 83% of the
samples in our dataset. As expected, botnets, often dedicated to run DDoS
attacks, dominate the Linux-based malware landscape—accounting for 69%
of our samples spread over more than 25 families. One of the reasons for
this prevalence is that attackers often harvest poorly protected IoT devices
to join large remotely controlled botnets. This task is greatly simplified
by the availability of online services like Shodan [sho] or scanning tools
like ZMap [DWH13] that can be used to quickly locate possible targets.
Moreover, while it may be difficult to monetize the compromise of small
embedded devices that do not contain any relevant data, it is still easy
to combine their limited power to run large-scale denial of service attacks.
Another possible explanation for the large number of botnet samples in our
dataset is that the source code of some of these malware family is publicly
available—resulting in a large number of variations and copycat software.

Despite their extreme popularity, botnets are not the only form of Linux-
based malware. In fact, our dataset contains also thousands of samples
belonging to other categories, including backdoors, ransomware, cryptocur-
rency miners, bankers, traditional file infectors, privilege escalation tools,

32 32

Table 3.2: ELF Header Manipulation

Technique Samples Percentage

Segment header table pointing beyond file data 1 0.01%
Overlapping ELF header/segment 2 0.02%
Wrong string table index (e_shstrndx) 60 0.57%
Section header table pointing beyond file data 178 1.69%

Total Corrupted 211 2.00%

rootkits, mailers, worms, RAT programs used in APT campaigns, and even
CGI-based binary webshells. While these malware dominates the number of
families in our dataset, many of them exist in a single variant, thus resulting
in a lower number of samples.

While we may discuss particular families when we present our analysis
results, in the rest of the chapter we prefer to aggregate figures by counting
individual samples. This is because even though samples in the same family
may share a common goal and overall structure, they can be very diverse in
the individual low-level techniques and tricks they employ (e.g., to achieve
persistence or obfuscate the program code). We will return to this aspect
of Linux malware and discuss its implications in Chapter 3.6.

3.5 Under the Hood

In this section we present a detailed overview of a number of interesting be-
haviors we have identified in Linux malware and, when possible, we provide
detailed statistics about the prevalence of each of these aspects. Our goal
is not to differentiate between different classes of malware or different mal-
ware families (i.e., to distinguish botnets from backdoors from ransomware
samples), but instead to focus on the tricks and techniques commonly used
by malware authors—such as packing, obfuscation, process injection, per-
sistence, and evasion attempts. To date, this is the most comprehensive
discussion on the topic, and we hope that the insights we offer will help
to better understand how Linux-based malware works and will serve as a
reference for future research focused on improving the analysis of this type
of malware.

3.5. Under the Hood 33

Table 3.3: ELF samples that cannot be properly parsed by known tools

Program Errors on Malformed Samples

readelf 2.26.1 166 / 211
GDB 7.11.1 157 / 211
pyelftools 0.24 107 / 211
IDA Pro 7 - / 211

3.5.1 ELF headers Manipulation

The Executable and Linkable Format (ELF) is the standard format used
to store (among others) all Linux executables. The format has a complex
internal layout, and tampering with some of its fields and structures provides
attackers a first line of defense against analysis tools.

Some fields, such as e_ident (which identifies the type of file), e_type
(which specifies the object type), or e_machine (which contains the machine
architecture), are needed by the kernel even before the ELF file is loaded
in memory. Sections and segments are instead strictly dependent on the
source code and the compilation process, and are needed respectively for
linking and relocation purposes and to tell the kernel how the binary must
be loaded in memory for program execution.

Our data shows that malware developers often tamper with the ELF
headers to fool the analyst or crash common analysis tools. In particular,
we identified two classes of modifications: those that resulted in anomalous

files (but that still follow the ELF specifications), and those that produced
invalid files—which however can still be properly executed by the operating
system.

Anomalous ELF. The most common example in the first category (5%
of samples in our dataset) consists in removing all information about the
ELF sections. This is valid according to the specifications (as sessions in-
formation are not used at runtime), but it is an uncommon case that is
never generated by traditional compilers. Another example of this category
consists of reporting false information about the executable. For example, a
Linux program can report a different operating system ABI (e.g., FreeBSD)
and still be executed correctly by the kernel. Samples of the Mumblehard

family report in the header the fact that they require FreeBSD, but then
test the system call table at runtime to detect the actual operating system
and execute correctly under both FreeBSD and Linux.

For this reason, in our experiments we did not trust such information

34 34

and we always tried to execute a binary despite the values contained in its
identification field. If the required ABI was indeed different, the program
would crash at runtime trying to execute invalid system calls—a case that
was recognized by our system to filter out non-Linux programs.
Invalid ELF. This category includes instead those samples with malformed
or corrupted sections information (2% of samples in our dataset), typically
the result of an invalid e_shoff (offset of the section header table), e_shnum
(number of entries in the section header table), or e_shentsize (size of
section entries) fields in the ELF header. We also found evidence of samples
exploiting the ELF header file format to create overlapping segments header.
For instance, three samples belonging to the Mumblehard family declared
a single segment starting from the 44th byte of the ELF header itself and
zeroed out any field unused at runtime. Table 3.2 summarizes the most
common ELF manipulation tricks we observed in our dataset.
Impact on Userspace Tools. To measure the consequences of the previ-
ously discussed transformations, in Table 3.3 we report how popular tools
(used to work with ELF files) react to unusual or malformed files. This
includes readelf (part of GNU Binutils), pyelftools (a convenient Python
library to parse and analyze ELF files), GDB (the de-facto standard de-
bugger on Linux and many UNIX-like systems), and IDA Pro 7 (the latest
version, at the time of writing, of the most popular commercial disassembler,
decompiler, and reverse engineering tool).

Our results show that all tools are able to properly process anomalous
files, but unfortunately often result in errors when dealing with invalid fields.
For example, readelf complained for the absence of a valid table on hundreds
of sample, but was able to complete the parsing of the remaining fields
in the ELF header. On the other side, pyelftools denies further analysis
if the section header table is corrupted, while it can instead parse ELF
files if the table is declared as empty. Because of this poor management
of erroneous conditions, for our experiments we decided to write our own
custom ELF parser, which was specifically designed to work in presence
of unusual settings, inconsistencies, invalid values, or malformed header
information.

Despite its widespread use in the *nix world, GDB showed a severe lack
of resilience in dealing with corrupted information coming from a malformed
section header table. The presence of an invalid value results in GDB not
being able to recognize the ELF binary and in its inability to start the
program.

Finally, IDA Pro 7 was the only tool we used in our analysis pipeline
that was able to handle correctly the presence of any corrupted session

3.5. Under the Hood 35

Table 3.4: ELF binaries adopting persistence strategies

Path Samples

w/o root w/ root

/etc/rc.d/rc.local - 1393
/etc/rc.conf - 1236
/etc/init.d/ - 210
/etc/rcX.d/ - 212
/etc/rc.local - 11
systemd service - 2

~/.bashrc 19 8
~/.bash_profile 18 8
X desktop autostart 3 1

/etc/cron.hourly/ - 70
/etc/crontab - 70
/etc/cron.daily/ - 26
crontab utility 6 6

File replacement - 110
File infection 5 26

Total 1644 (21.10%)

information or other fields that would not affect the program execution.

3.5.2 Persistence

Persistence involves a configuration change of the infected system such that
the malicious executable will be able to run regardless of possible reboot and
power-off operations performed on the underlying machine. This, along with
the ability to remain hidden, is one of the first objectives of malicious code.

A broad and well-documented set of techniques exists for malware au-
thors to achieve persistence on Microsoft Windows platforms. The vast
majority of these techniques relies on the modification of Registry keys to
run software at boot, when a user logs in, when certain events occurs, or to
schedule particular services. Linux-based malware needs to rely on different
strategies, which are so far more limited both in number and in nature. We
group the techniques that we observed in our dataset in four categories,
described next.
Subsystems Initialization. This appears to be the most common ap-

36 36

proach adopted by malware authors and takes advantage of the well known
Linux init system. Table 3.4 shows that more than 1000 samples attempted
to modify the system rc script (executed at the end of each run-level). In-
stead, 210 samples added themselves under the /etc/init.d/ folder and then
created soft-links to directories holding run-level configurations. Overall, we
found 212 binaries displacing links from /etc/rc1.d to /etc.rc5.d, with 16
of them using the less common run-levels dedicated to machine halt and
reboot operations. Note how malicious programs still largely rely on the
System-V init system and only two samples in our dataset supported more
recent initialization technologies (e.g., systemd). More important, this type
of persistence only works if the running process has privileged permissions.
If the user executing the ELF is not root or a user under privileged policies,
it is usually impossible to modify services and initialization configurations.
Time-based Execution. This technique is the second choice commonly
used by malware and relies on the presence of cron, the time-based job
scheduler for Unix systems. Malicious ELF files try to modify, with suc-
cess when running under adequate higher privileges, cron configuration files
to get scheduled execution at a fixed time interval. As for subsystem ini-
tialization, time-based persistence will not work if the malware is launched
by unprivileged users unless the sample invokes the system utility crontab

(a SUID program specifically designed to modify configuration files stored
under /var/spool/cron/).
File Infection and Replacement. Another approach for malware to
maintain a foothold in the system is by replacing (or infecting) applications
that already exist in the target. This includes both a traditional virus-like
behavior (where the malware locates and infect other ELF files without
a strategy) as well as more targeted approaches that subvert the original
functionalities of specific system tools.

Our dynamically analysis reports allow us to observe infection and re-
placement of system and user files. Examples in this category are samples in
the family EbolaChan, which inject their code at the beginning of the ls tool
and append the original code after the malicious data. Another example are
samples of the RST, Sickabs and Diesel families, which still use a 20 years
old ELF infections techniques [Silc]. The first group limits the infection to
other ELF files located in the current working directory, while the second
adopts a system-wide infection that also targets binaries in the /bin/ folder.
Interestingly, samples of this family were first observed in 2001, according
to a Sophos report they were still widespread in 2008 [Sop], and our study
shows that they are still surprisingly active today. A different approach is
taken by samples in the Gates family, which fully replace system tools in

3.5. Under the Hood 37

Table 3.5: ELF programs renaming the pro-
cess

Process name Samples Percentage

sshd 406 5.21%
telnetd 33 0.42%
cron 31 0.40%
sh 14 0.18%
busybox 11 0.14%
other tools 22 0.28%

empty 2034 26.11%
other * 973 12.49%
random 618 7.93%

Total 4091 52.50%
* Names not representing system utilities

/bin/ or /usr/bin/ folders (e.g., ps and netstat) after creating a backup
copy of the original code in /usr/bin/dpkgd/.
User Files Alteration. As shown in the middle part of Table 3.4, very
few samples modify configuration files in the user home directory such as
shell configurations. Malware writers adopting this method can ensure per-
sistence at user level, but other Linux users, beside the infected one, will
not be affected by this persistence mechanism. While the most common,
changes to the shell configuration are not the only form of per-user persis-
tency. Few samples (such as those in the Handofthief family) that target
desktop Linux installations, modified instead the .desktop startup files used
by the windows manager.

Table 3.4 reports a summary of the amount of samples using each tech-
nique. Surprisingly, only 21% of our ELF files implemented at least one
persistence strategy. However, samples that do try to be persistent often
try multiple techniques in a row to reach their objective. As an example, in
our experiments we noticed that user files alteration was a common fallback
mechanism when the sample failed to achieve system-wide persistency.

3.5.3 Deception

Stealthy malware may try to hide their nature by assuming names that
look genuine and innocuous at a first glance, with the objective of tricking

38 38

Table 3.6: ELF samples getting privileges errors or
probing identities

Motivation Samples Percentage

EPERM error 986 12.65%
EACCES error 716 9.19%
Query user identity * 1609 20.65%
Query group identity * 877 11.26%

Total 2637 33.84%
* Also include checks on effective and real identity

the user to open an apparently benign program, or avoid showing unusual
names in the list of running processes.

Overall, we noted that this behavior, already common on Windows oper-
ating systems, is also widespread on Linux-based malware. Table 3.5 shows
that over 50% of the samples assumed different names once in memory, and
also reports the top benign application that are impersonated. In total we
counted more than 4K samples invoking the system call prctl with request
PR_SET_NAME, or simply modifying the first command line argument
of the program (the program name). Out of those, 11% adopted names
taken from common utilities. For example, samples belonging to the Gafgyt

family often disguise as sshd or telnetd. It is also interesting to discuss the
difference between the two renaming techniques. The first (based on the
prctl call) results in a different process name listed in /proc/<PID>/status

(and used by tools like pstree), while the second modifies the information
reported in /proc/<PID>/cmdline (used by ps). Quite strangely, none of
the malware in our dataset combined the two techniques (and therefore
could all be easily detected by looking for name inconsistencies).

The remaining 88% of the samples either adopted an empty name, a
name of a fictitious (but not existing) file, or a random-looking name often
seeded by a combination of the current time and the process PID. This last
behavior, implemented by some of the Mirai samples, results in the fact
that the malicious process assumes a different name at every execution.

3.5.4 Required Privileges

Our tests show that the distinction between administrator (root) and nor-
mal user is very important for Linux-based malware. First, malicious sam-
ples can perform different actions and show a different behavior when they

3.5. Under the Hood 39

Table 3.7: Behavioral differences between user/root analysis

Different behavior Samples Percentage

Execute privileged shell command 579 21.96%
Drop a file into a protected directory 426 16.15%
Achieve system-wide persistence 259 9.82%
Tamper with Sandbox 61 2.31%
Delete a protected file 47 1.78%
Run ptrace request on another process 10 0.38%

are executed with super-user privileges. Second, especially when targeting
low-end embedded systems or IoT devices, malware may even be designed
to run as root—and thus fail to execute if analyzed with more limited priv-
ileges.

Therefore, we first executed every sample with normal user privileges. If,
during the execution, we detected any attempt to retrieve the user or group
identities (which could be used by the program to decide the malware’s next
actions) or to access any resource that returned a EPERM or EACCES

errors, we repeated the analysis by running the sample with root privileges.
This was the case for 2637 samples (25% of the dataset) and in 89% of
them we detected differences in the sample behavior extracted from the two
execution traces.

Table 3.7 presents a list of behaviors that were executed when running as
root but were not observed when running as a normal user. Among these,
privileged shell commands and operations on files are predominant, with
malware using elevated privileges to create or delete files in protected fold-
ers. For instance, samples of the Flooder and IoTReaper families hide their
traces by deleting all log files in /var/log, while samples of the Gafgyt family
only delete last login and logout information (/var/log/wtmp). Moreover,
in few cases malware running as root were able to tamper with the sand-
boxed execution: we found binaries that, upon detection of the emulated
execution environment, would kill the SSH daemon or even delete the entire
file system.

We now look in more details at two specific actions that are determined
by the execution privileges: privileges escalation exploits and interaction
with the OS kernel.
Privileges Escalation. On the one hand, one of the advantages of using
kernel probes for dynamic analysis is its ability to trace functions in the
OS kernel—making possible for us to detect signs of successful exploita-

40 40

tions. For example, by monitoring commit_creds we can detect when a
new set of credentials has been installed on a running task. On the other
hand, the sandboxes built to host the execution of each sample were de-
ployed with up-to-date and fully-patched Linux operating systems—which
prevented binaries from exploiting old vulnerabilities.

According to our trace analysis, there was no evidence of samples that
successfully elevated their privileges inside our machines, or that had been
able to perform privileged actions under user credentials. Regarding older
(and therefore unsuccessful) exploits, we developed custom signatures to
identify the ten most common escalation attacks based on known vulner-
abilities in the Linux kernel1, for which an exploitation proof-of-concept is
available to the public. Our tests revealed that CVE-2016-5195 was the
most frequently used vulnerability, with a total of 52 ELF programs that
tried to exploit it in our sandbox. We also detected five attempts to ex-
ploit CVE-2015-1328, while the remaining eight checks did not return any
positive match.
Kernel Modules. System calls tracing allows our system to track attempts
to load or unload a kernel module, especially when samples are executed
with root privileges. Interestingly, among the 2,637 malware samples we
re-executed with root privileges, only 15 successfully loaded a kernel module
and none of them performed an unload procedure. All these cases involved
the standard ip_tables.ko, necessary to setup IP packet filter rules. We
also identified 119 samples, belonging to the Gates or Elknot families that
attempted to load a custom kernel module but failed as the corresponding
.ko file was not present during the analysis.2

3.5.5 Packing & Polymorphism

Runtime packing is at the same time one of the most common and one of
the most sophisticated obfuscation techniques adopted by malware writers.
If properly implemented, it completely prevents any attempt to statically
analyze the malware code and it also considerably slows down an even-
tual manual reverse engineering effort. While hundreds of commercial, free,
and underground packers exist for Microsoft Windows, things are different
in the Linux world: only a handful of ELF packers have been proposed

1CVE-2017-7308, CVE-2017-6074, CVE-2017-5123, CVE-2017-1000112, CVE-2016-

9793, CVE-2016-8655, CVE-2016-5195, CVE-2016-0728, CVE-2015-1328, CVE-2014-

4699.
2This is a well-known problem affecting dynamic malware analysis systems, as samples

are collected and submitted in isolation and can thus miss external components that were

part of the same attack.

3.5. Under the Hood 41

Table 3.8: ELF packers

Process name Samples Percentage

Vanilla UPX 189 1.79%
Custom UPX Variant 188 1.78%
- Different Magic 129
- Modified UPX strings 55
- Inserted junk bytes 126
- All of the previous 16

Mumblehard Packer 3 0.03%

so far [Tea, elfb, gru], and the vast majority of them are proof-of-concept
projects. The only exception is UPX, a popular open source compression
packer introduced in 1998 to reduce the size of benign executables, which
is freely available for many operating systems.

Automatic recognition and analysis of packers is a subtle problem, and
it has been the focus on many academic and industrial studies [LH07,
UPBSB16, CX10, PLL08, STMF]. For our experiment, we relied on a set
of heuristics based on the file segments entropy and on the results of the
static analysis phase (i.e., number of imported symbols, percentage of code
section correctly disassembled, and total number of functions identified) to
flag samples that were likely packed. Moreover, since UPX-like variants
seem to dominate the scene, we decided to add to our pipeline a set of
custom analysis routines to identify possible UPX variants and a generic
multi-architecture unpacker that can retrieve the original code of samples
packed with these techniques.
UPX Variations. Vanilla UPX and its variants are by far the most preva-
lent form of packing in our dataset. As shown in Table 3.8, out of 380
packed binaries only three did not belong to this category. The table also
highlights the modifications made to the UPX format with the goal of break-
ing the standard UPX unpacking tool. This includes a modification to the
magic number (so that the file does not appear to be packed with UPX any-
more), the modification of UPX strings, and the insertion of junk bytes (to
break the UPX utility). However, all these samples share the same under-
lying packing structure and the same compression algorithm—showing that
malware writers simply applied “cosmetic” variations to the open source
UPX code.
Custom packers. Linux does not count on a large variety of publicly
available packers and UPX is usually the main choice. However, we detected

42 42

Table 3.9: Top ten common shell commands ex-
ecuted

Shell command Samples Percentage

sh 400 5.13%
sed 243 3.12%
cp 223 2.86%
rm 216 2.77%
grep 214 2.75%
ps 131 1.68%
insmod 124 1.59%
chmod 113 1.45%
cat 93 1.19%
iptables 84 1.08%

three samples (all belonging to the Mumblehard family) that implemented
some form of custom packing, where a single unpacking routine is executed
before transferring the control to the unpacked program [M.L]. In one
case, the malware started a separate process running a perl interpreter and
then used the main process to decrypt instructions and feed them into the
interpreter.

3.5.6 Process Interaction

This section covers the techniques used by Linux malware to interact with
child processes or other binaries already installed or running in the system.
Multiple Processes. 25% of our samples consists of a single process,
9% spawn a new process, 43% involves three processes in total (largely
due to the “double-fork” pattern used to daemonize a program), while the
remaining 23% created a higher number of separate processes (up to 1684).

Among the samples that spawn multiple processes we find many pop-
ular botnets such as Gafgyt, Tsunami, Mirai, and XorDDos. For instance,
Gafgyt creates a new process for every attempt to connect to its command
and control (C&C) server. XorDDos, instead, creates parallel DDos attack
processes.
Shell Commands. 13% of the samples we analyzed inside our sandbox
executed at least one external shell command. In total, we registered the
execution of 93 unique command-line tools—the most prevalent of which
are summarized in Table 3.9. Commands such as sed, cp, and chmod are

3.5. Under the Hood 43

often executed to achieve persistence on the target system, while rm is used
to unlink the sample itself or to delete the bash history file. Several malware
families also try to kill previous infections of the same malware. Hijami,
the counter-malware to “vaccinate” Mirai, uses iptables to close and open
network ports, while Mirai tries to close vulnerable ports already used to
infect the system.
Process Injection An attacker may want to inject new code into a running
process to change its behavior, make the sample more difficult to debug, or
to hook interesting functions in order to steal information.

Our system monitors three different techniques a process can use
to write to the memory of another program: 1) a ptrace syscall
that requests the PTRACE_POKETEXT, PTRACE_POKEDATA, or
PTRACE_POKEUSER functionalities; 2) a PTRACE_ATTACH request
followed by read/write operations to /proc/<TARGET_PID>/mem; and
3) an invocation to the process_vm_writev system call.

It is important to mention that the Linux kernel has been hardened
against ptrace calls in 2010. Since then it is not possible to use ptrace

on processes that are not direct descendant of the tracer process, unless
the unprivileged user is granted the CAP_SYS_PTRACE capability. The
same capability is required to execute the process_vm_writev call, a new
system call introduced in 2012 with kernel 3.2 to directly transfer data
between the address spaces of two processes.

We found a sample performing injection by using the first technique
mentioned above. It injects a dynamic library in every active process that
uses libc (but excludes gnome-session, dbus and pulseaudio). In the in-
jected payload the malware uses the libc function __libc_dlopen_mode

to load dynamic objects at run-time. This function is similar to the well-
known dlopen, which is less preferable because implemented in libdl, not
already included in the libc. After the new code is mapped in memory, the
malware issues ptrace requests to backup the registers values of the vic-
tim process, hijack the control flow to execute its malicious behavior, and
restore the original execution context.

3.5.7 Information Gathering

Information gathering is an important step of malware execution as the
collected information can be used to detect the presence of a sandbox, or
to control the execution of the sample. Data stored on the system can
also be exfiltrated to a remote location, as it often happens with programs
controlled by a C&C server. In this section we look at which portions of

44 44

Table 3.10: Top ten Proc file system accesses by ma-
licious samples

Path Samples Percentage

/proc/net/route 3368 43.22%
/proc/filesystems 649 8.33%
/proc/stat 515 6.61%
/proc/net/tcp 498 6.39%
/proc/meminfo 354 4.54%
/proc/net/dev 346 4.44%
/proc/<PID>/stat 320 4.11%
/proc/cmdline 278 3.57%
/proc/<PID>/cmdline 259 3.32%
/proc/cpuinfo 226 2.90%

Table 3.11: Top ten Sysfs file system accesses by malicious samples

Path Samples Percentage

/sys/devices/system/cpu/online 338 4.34%
/sys/devices/system/node/node0/meminfo 26 0.33%
/sys/module/x_tables/initstate 22 0.28%
/sys/module/ip_tables/initstate 22 0.28%
/sys/class/dmi/id/sys_vendor 18 0.23%
/sys/class/dmi/id/product_name 18 0.23%
/sys/class/net/<interface>tx_queue_len 9 0.12%
/sys/firmware/efi/systab 3 0.04%
/sys/devices/pci0000:00/<device> 3 0.04%
/sys/bus/usb/devices/<device> 2 0.03%

3.5. Under the Hood 45

Table 3.12: Top ten accesses on /etc/ by mali-
cious samples

Path Samples Percentage

/etc/rc.d/rc.local 1393 17.88%
/etc/rc.conf 1236 15.86%
/etc/resolv.conf 641 8.23%
/etc/nsswitch.conf 453 5.81%
/etc/hosts 423 5.43%
/etc/passwd 244 3.13%
/etc/host.conf 201 2.58%
/etc/rc.local 170 2.18%
/etc/localtime 165 2.12%
/etc/cron.deny 101 1.30%

the file system are inspected by malware and discuss security-relevant paths
analysts should monitor when inspecting new malware strains.
Proc and Sysfs File Systems. The proc and sysfs virtual file systems
contain, respectively, runtime system information on processes, system and
hardware configurations, and information on the kernel subsystems, hard-
ware devices, and kernel drivers. We divide the type of information collected
by malware samples in three macro categories: system configuration, pro-
cesses information, and network configuration. The network category is
the most common in our dataset with more than 3000 samples, as shown
in Table 3.10, which accessed /proc/net/route (system routing table) to
get the list of active network interfaces with their relative configuration.
Additional information is extracted from /proc/net/tcp (active TCP sock-
ets) and /proc/net/dev (sent and received packets). Moreover, 111 sam-
ples in our dataset read /proc/net/arp to retrieve the system ARP table.
For the sysfs counterpart, reported in Table 3.11, we found accesses to
/sys/class/net/ to get the transmission queue length, a relevant informa-
tion for DDoS attacks.

The system configuration category is the second most common, with
hundreds of samples that extracted the amount of installed memory, the
number of available CPU cores, and other CPU characteristics. The files
used for sandbox detection and evasion also fall into this category (see Chap-
ter 3.5.8) as well as the lists of USB and PCI connected devices. This cat-
egory also includes accesses to /proc/cmdline to retrieve the name of the
running kernel image.

46 46

Table 3.13: ELF programs showing evasive features

Type of evasion Samples Percentage

Sandbox detection 19 0.24%
Processes enumeration * 259 3.32%
Anti-debugging 63 0.81%
Anti-execution 3 0.04%
Stalling code 0 -
* Not used for evasion but candidate behavior

Another common type of information gathering focuses on processes enu-
meration. This is used to prevent multiple executions of the same malware
(e.g., by the Mirai family), or to identify other relevant programs running
on the target machine. As reported in Table 3.9, we found 131 samples
executing the shell command ps, used as a fast interface to get the list of
running processes. For example, 67 samples of the BitcoinMiner family in-
voke ps and then try to kill other crypto-miner processes that may interfere
with their malicious activity.
Configuration Files. System configuration files are contained in the /etc/
folder. As reported in Table 3.12, configuration files required to achieve
persistence are the ones accessed more often. Network-related configuration
files also appear to be popular, with /etc/resolv.conf (the DNS resolver) or
/etc/hosts (the mapping between hosts and IP addresses). Among the top
entries we also find /etc/passwd (list of registered accounts). For instance,
Flooder samples use it to check for the presence of a backdoor account
on the system. If not found, they add a new user by directly writing to
/etc/passwd and /etc/shadow.

3.5.8 Evasion

The purpose of evasion is to hide the malicious behavior and remain unde-
tected as long as possible. This typically requires the sample to detect the
presence of analysis tools, or to distinguish whether it is running within an
analysis environment or on a real target device. We now present more de-
tails about the different evasion techniques, whose prevalence in our dataset
is summarized in Table 3.13.
Sandbox Detection. Our string comparison instrumentation detected a
number of programs that attempted to detect the presence of a sandbox by
comparing different pieces of information extracted from the system with

3.5. Under the Hood 47

Table 3.14: File system paths leading to sandbox detection

Path Detected Environments #

/sys/class/dmi/id/product_name VMware/VirtualBox 18
/sys/class/dmi/id/sys_vendor QEMU 18
/proc/cpuinfo CPU model/hypervisor flag 1
/proc/sysinfo KVM 1
/proc/scsi/scsi VMware/VirtualBox 1
/proc/vz and /proc/bc OpenVZ container 1
/proc/xen/capabilities XEN hypervisor 1
/proc/<PID>/mountinfo chroot jail 1

strings such as “VMware” or “QEMU.” Table 3.14 reports the files where the
information was collected. Ten samples who tested the sys_vendor file were
able to detect our analysis environment when executed with root privileges
(as we restricted the permissions to files exposing the motherboard DMI
zone information reported by the kernel). We also identified samples at-
tempting to detect chroot()-based jails (by comparing /proc/1/mountinfo

with /proc/<malware PID>/mountinfo), OpenVZ containers [ope], and
even one binary (from the Handofthief family) trying to evade IBM main-
frames and IBM’s virtualization technology. It is also interesting to note
how some samples simply decide to exit when they detect they are run-
ning in a virtual environment, while other adopt a more aggressive (but less
stealthy) approach, such as trying to delete the entire file system.
Processes Enumeration. It is common in Windows to evade analysis by
verifying the presence of a particular set of processes, or inspecting the good-
ness and authenticity of companion processes that live on the system. We
investigated whether Linux malware samples already employ similar tech-
niques and found 259 samples that perform a full scan of the /proc/<PID>
directories. However, none of the samples appeared to perform these scans
for evasive purposes but instead to test if the machine was already infected
or to identify target processes to kill (as we explain in Chapter 3.5.6).
Anti-Debugging. The most common anti-debugging technique is based
on the ptrace system call that provides to debuggers the ability to “attach”
to a target process to programmatically inspect and interact with it. As
a given process can only have at most one debugger attached to it, one
common evasion technique used by malware consists of invoking the ptrace
system call with flags PTRACE_TRACEME or PTRACE_ATTACH on
themselves to detect if another debugger is already attached or prevent it

48 48

to do so while the sample is running. We found 63 samples employing
this mechanism. We also identified one sample checking the presence of
the LD_PRELOAD environment variable, which is often used to override
functions in dynamically loaded libraries (with the goal of dynamically in-
strumenting their execution).

It is important to note that the tracing system we use in our sandbox
is based on kernel probes (as described in Chapter 3.3.4), and it cannot be
detected or tampered with by using anti-debugging techniques.
Anti-Execution. Our experiments detected samples belonging to the
DnsAmp malware family that did not manifest any behavior, except from
comparing their own file name with a hardcoded string. A closer look at
these samples showed that the malware authors used this trick as an evasive
solution, as many malware collection infrastructures and analysis sandboxes
often rename the files before their analysis.
Stalling Code. Windows malware is known to often employ stalling code

that, as the name suggests, is a technique used to delay the execution of
the malicious behavior – assuming an analysis sandbox would only run each
sample for few minutes. We investigated whether Linux malware is already
using simple variants of this technique by scanning our execution traces for
samples using time- or sleep-related functions. We found that 64% of the
binaries we analyzed make use of the nanosleep system call, with values
ranging from less than a second to higher than three hours. However, none
of them appear to use these delays to stall their execution (in fact, our
traces contained clear signs of their behavior), but rather to coordinate
child processes or network communications.

3.5.9 Libraries

There are two main ways an executable can make use of libraries. In the
first (and more common) case, the executable is dynamically linked and
external libraries are loaded at run-time, permitting code reuse and local-
ized upgrades. Conversely, an executable that is statically linked includes
the object files of its libraries as part of its executable file—removing any
external dependency of the application and thus making it more portable.

More than 80% of the samples we analyzed are statically linked. Nev-
ertheless, we note that only 24% of these samples have been stripped from
their symbols, with the remaining ones often including even functions and
variables names used by developers. Similarly for dynamically linked sam-
ples in our dataset, only 33% of them are stripped. We find this trend very
interesting as apparently malware developers lack motivation to obfuscate

3.6. Intra-family variety 49

Table 3.15: Top 20 libraries included by dynamically linked executables

Library Percentage Library Percentage

glibc 74.21% libscotch 1.23%
uclibc 24.24% libtinfo 0.75%
libgcc 9.74% libgmp 0.75%
libstdc++ 7.12% libmicrohttpd 0.64%
libz 5.24% libkrb5 0.64%
libcurl 3.64% libcomerr 0.64%
libssl 2.35% libperl 0.59%
libxml2 1.44% libhwloc 0.59%
libjansson 1.39% libedit 0.54%
libncurses 1.28% libopencl 0.54%

their code against manual analysis—which is in sharp contrast with the
complexity of evasive Windows malware.
Common Libraries. Table 3.15 lists the dynamic libraries that are most
often imported by malware samples in our dataset. This lists shows two
important aspects. First, that while the GNU C library (glibc) is (expect-
edly) the most requested library, we found that 24% of samples link against
smaller implementations like uClibc, often used in embedded systems. It is
also interesting to see how almost 10% of the dataset links against libgcc, a
library used by the GCC compiler to handle arithmetic operations that the
target processor cannot perform directly (e.g., floating-point and fixed-point
operations). This library is rarely used in the context of desktop environ-
ments, but it is often used in embedded devices with architectures that do
not support floating point operations. The second interesting aspect is that,
while in total we identified more than 200 different libraries, the distribu-
tion has a very long tail and it drops very steeply. For instance, the tenth
most popular library is only used by 1% of the samples.

3.6 Intra-family variety

In the previous section we described several characteristics of Linux-based
malware. For each of them, we presented the number of samples instead of
the count of families that exhibited a given trait. This is because we noted
that samples belonging to the same family often had very different char-
acteristics, probably due to the availability of the source codes for several
classes of Linux malware.

50 50

As an example of this variety, we want to discuss the case of a popular
malware family, Tsunami, for which we have 743 samples in our dataset.
Those samples are compiled for nine different architectures, the most com-
mon being x86-64, and the rarest being Hitachi SuperH. In total, 86%
of them are statically linked and 13% are stripped. Dynamically linked
Tsunami samples rely on different loaders, and their entropy varies from
1.85 to 7.99. Out of the 19 samples with higher entropy, one is packed with
vanilla UPX while the other 18 use modified versions of the same algorithm.

This variability is not limited to static features. For instance, looking at
our dynamic traces we noted the use of different persistence techniques with
some samples only relying on user-level approached and other using run-level
scripts or cron jobs for system-wide persistence. Concerning unprivileged
and privileged execution, only 15% of the Tsunami samples we analyzed
in our sandboxes tested the user privileges or got privileges-related errors.
Differences arise even in terms of evasion: 17 samples contain code to evade
the sandbox while all the others did not include evasive functionalities.

3.7 Conclusions

This chapter presents the first comprehensive study of Linux-based mal-
ware. We document the design and implementation of the first analysis
pipeline specifically tailored for Linux malware, and we discuss the results
of the first large-scale empirical study on how Linux malware implements
its malicious behavior. While the complexity of current Linux malware is
not very high, we have identified a number of samples already adopting
techniques borrowed from their Windows counterparts. We believe these
insights can be the foundation for more systematic future works in the area,
which is, unfortunately, bound to have an ever-increasing importance.

Chapter 4

The Tangled Genealogy of

IoT Malware

51

52 52

4.1 Introduction

Little is still known about the dynamics behind the emergence of new mal-
ware strains and today IoT malware is still classified based on the labels
assigned by AV vendors. Unfortunately, these labels are often very coarse-
grained, and therefore unable to capture the continuous evolution and code
sharing that characterize IoT malware. For instance, it is still unclear how
many variants of the Mirai botnet have been observed in the wild, and
what makes each group different from the others. We also have a poor un-
derstanding of the inner relationships that link together popular families,
such as the Mirai and Gafgyt botnets and the infamous VPNFilter malware.

This chapter aims at filling this gap by proposing a systematic way
to compare IoT malware samples and display their evolution in a set
of easy-to-understand lineage graphs. While there exists a large cor-
pus of works that focused on the clustering of traditional malware
[BOA+07, BCH+09, PLF10, KV15, JBV11] and exploring their lineage
[JWB13, MXW15, KWLP05, DN11, LDFM+12, HYD17] proving the com-
plexity of these problems, in this chapter we show that the peculiarities of
IoT malware require the adoption of customized techniques. On the other
hand, to our advantage, the current number of samples and the general lack
of code obfuscation make possible, for the first time, to draw a complete
picture that covers the entire ecosystem of IoT malware.

Our main contribution is twofold. First, we present an approach to
reconstruct the lineage of IoT malware families and track their evolution.
This technique allows identifying various variants of each family and also
the intra-family relationships that occur due to the code-reuse among them.
Second, we report on the insights gained by applying our approach on the
largest dataset of IoT malware ever assembled to date, which include all ma-
licious samples collected by VirusTotal between January 2015 and August
20181.

Our lineage graphs enabled us to quickly discover over a hundred misla-
beled samples and to assign the proper name to those for which AV products
did not reach a consensus. Overall, we identified and validated over 200
variants in the top families alone, we show the speed at which new vari-
ants were released, and we measured for how long new samples belonging
to each variant appeared on VirusTotal. By looking at changes in the func-
tions, we also identify a constant evolution of thousands of small variations
within each malware variant. Finally, our experiments also emphasize how

1As explained in Chapter 4.2, we included in our analysis only samples detected as

malicious by at least five AV systems.

4.1. Introduction 53

the frequent code reuse and the tangled relationship among all IoT fami-
lies complicate the problems of assigning a name to a given sample, and to
clearly separate the end of a family and the beginning of another.

We make the full dataset and the raw results available to researchers 2.
We also share the high resolution figures of the lineage graphs made by
architecture for ease of exploration.

4.1.1 Why this Study Matters

IoT malware is an important emerging phenomenon [PSY+15], not just be-
cause of its recent development but also because IoT devices might not be
able to run anti-malware solutions comparable to those we use today to
protect desktop computers. However, to be able to design new solutions, it
is important for the security community to precisely understand the char-
acteristics of the current threat landscape. This need prompted researchers
to conduct several measurement studies, focused for instance on the impact
of the Mirai botnet [AAB+17] or on the techniques used by Linux-based
malicious samples [CGFB18].

This work follows the same direction, but it is over one order of mag-
nitude larger than previous studies and includes all malicious samples sub-
mitted to VirusTotal over a period of 3.5 years. A consequence of the scale
of the measurement is that the manual analysis used in previous studies had
to be replaced with fully automated comparison and clustering techniques.

Our findings are not just curiosities, but carry important consequences
for future research in this field. For example, static analysis was the
preferred choice for program analysis, until researchers showed that the
widespread use of packing and obfuscation made it unsuitable in the mal-
ware domain [MKK07]. Our work shows that this is not yet the case in
the IoT space, and that today static code analysis provides more accurate
results than looking at dynamic sandbox reports or static features. The
fragmentation of IoT families also casts some doubts on the ability of AV
labels to characterize the complex and tangled evolution of IoT samples.

Finally, while not our main contribution, our work also reports on the
largest clustering experiments conducted to date on dynamic features ex-
tracted from malicious samples [BOA+07, BCH+09, JBV11].

2Dataset and figures: https://github.com/eurecom-s3/tangled_iot/

54 54

4.2 Dataset

To study the genealogy of IoT malware, our first goal was to collect a large
and representative dataset of malware samples. For this purpose, we down-
loaded all ELF binaries that have been submitted to VirusTotal [urlb] over
a period of almost four years (from January 2015 to August 2018) and that
had been flagged as malicious by at least five anti-virus (AV) vendors. Since
our goal is to analyze malware that targets IoT devices, we purposely dis-
carded all Android applications and shared libraries. Furthermore, we also
removed samples compiled for the Intel and AMD architectures because it is
very difficult to distinguish the binaries for embedded devices from the bina-
ries for Linux desktop systems. This selection criteria resulted in a dataset
of 10,548 samples, one order of magnitude larger than any other study con-
ducted on Linux-based malware. As a comparison, the largest measurement
study to date was performed on 10,548 Linux binaries [CGFB18], of which
a considerable fraction (64.56%) were malware targeting x86 desktop com-
puters. Moreover the purpose of this dataset was to study the general be-
havior of modern Linux malware and not the tangled relationships between
them.

We could have easily extended our dataset to Linux malware for desktops
and servers. On the other hand, we preferred to focus specifically on IoT
malware, given their high infection rate on real devices and the variety
of the underlying hardware architectures. This possibly requires platform
customizations implemented as ad-hoc malware variants. Moreover, less
known architectures are more likely to show those small bits which tend to
be ignored on more comfortable and extensively studied counterparts e.g.,
x86.

Figure 4.1 shows the volume of samples in our dataset submitted to
VirusTotal over the data collection period and the dramatic increase in
the number of IoT malware samples after the outbreak of the infamous
Mirai botnet in October 2016. Before that, the number of malicious IoT
binaries was very low. For instance, only 363 of our 93K samples were
observed in that period. This number progressively increased to reach an
average of 7.8k new malicious binaries per month in 2018. This trend
can be attributed to several factors, including the evolving IoT threat land-
scape [Sym18, Sym19, VS18, JMM18], the source code availability of several
popular families [JMM18], and the proliferation of IoT honeypots that al-
lowed researchers to rapidly collect a large number of samples spreading in
the wild [VS18].

Table 4.1 reports the compilation details of the samples in our dataset.

4.2. Dataset 55

Ta
bl
e

4.
1:

B
re
ak

do
w
n
of

sa
m
pl
es

pe
r
ar
ch
ite

ct
ur
e.

C
P

U
A

r
c
h

it
e
c
tu

r
e

S
a

m
p

le
s

N
o

.
(%

)
D

y
n

a
m

ic
a

ll
y

L
in

k
e
d

S
ta

ti
c
a

ll
y

L
in

k
e
d

S
tr

ip
p

e
d

U
n

s
tr

ip
p

e
d

T
o

ta
l

S
tr

ip
p

e
d

U
n

s
tr

ip
p

e
d

T
o

ta
l

A
R
M

3
2
-b
it

3
6
,5

74
(3

9
.0

5
)

3
,0

12
6

4
5

3
,6

5
7

16
,0

4
9

16
,8

6
8

3
2
,9

17

M
IP

S
I

2
5
,2

0
1
(2

6
.9

1)
3

2
5

3
4
5

6
7
0

12
,7

14
11
,8

17
2

4
,5

3
1

P
o
w
er
P
C

3
2
-b
it

10
,9

16
(1

1.
6

6
)

10
0

2
5

8
3

5
8

5
,1

8
0

5
,3

7
8

10
,5

5
8

S
P
A
R
C

8
,4

12
(8
.9

8
)

10
0

11
9

2
19

3
,4

8
9

4
,7

0
4

8
,1

9
3

H
it
a
ch
i
S
H

6
,4

7
7
(6
.9

2
)

6
3

10
7

17
0

2
,1

9
0

4
,1

17
6
,3

0
7

M
o
to
ro
la

6
8

0
0

0
5
,9

8
2
(6
.3

9
)

5
2

8
2

13
4

2
,1

3
0

3
,7

18
5
,8

4
8

T
il
er
a
T
IL
E
-G

x
2

7
(0
.0

3
)

0
1

1
2

6
0

2
6

A
R
C

In
te
rn
a
ti
o
n
a
l
A
R
C
o
m
p
a
ct

2
7
(0
.0

3
)

16
2

18
7

2
9

In
te
ri
m

V
a
lu
e
tb
a

9
(0
.0

1)
2

7
9

0
0

0

S
P
A
R
C

V
er
si
o
n

9
8
(0
.0

1)
1

6
7

1
0

1

P
o
w
er
P
C

6
4
-b
it

6
(0
.0

1)
1

4
5

1
0

1

O
th

e
rs

13
(0
.0

1)
4

8
12

1
0

1

T
o

ta
l

9
3
,6

5
2

3
,6

7
6

1,
5

8
4

5
,2

6
0

4
1,

7
8

8
4
6
,6

0
4

8
8
,3

9
2

56 56

Jan
2015

Jan
2016

Jan
2017

Jan
2018

Date

101

103

105
Nu

m
be

r o
f s

am
pl

es

Figure 4.1: Number of samples in our dataset submitted to VirusTotal over
time.

The first two architectures, ARM 32-bit and MIPS I, account together for
two thirds of all samples. This can be explained by the large popularity of
these processor architectures for popular consumer IoT devices commonly
targeted by these malware, such as home routers, IP cameras, printers, and
NAS devices. Another interesting aspect is the fact that almost 95% of
the ELF files in our dataset were statically linked. Additionally, as already
noted by Cozzi et al. [CGFB18], a large fraction of them (roughly 50% in
our dataset) have not been stripped from their symbols.

In addition to downloading the binaries, we also retrieved the VirusTotal
reports. We then processed them with AVClass [SRKC16b], a state-of-the-
art technique that relies on the consensus among the AV vendors to deter-
mine the most likely family name attributed to malware samples. Table 4.2
lists the top ten AVClass labels, with Gafgyt and Mirai largely dominating
the dataset. However, there is a long tail of families (90 in total) that con-
tain only a small number of samples. Finally, it is interesting to note that
AVClass was unable to find a consensus for a common family name for only
3.7K samples. While this might seem very small (especially compared with
figures obtained on Windows malware), if we remove Mirai and Gafgyt, a
common label was not found for one third of the remaining samples.

4.3. Features-based Clustering 57

Table 4.2: Breakdown of the top 10 IoT malware families in our dataset.

Rank
Label

Samples No. (%)
(AVClass)

1 Gafgyt 46,844 (50.02)

2 Mirai 33,480 (35.75)

3 Tsunami 3,364 (3.97)

4 Dnsamp 2,235 (3.59)

5 Hajime 1,685 (2.39)

6 Ddostf 840 (0.90)

7 Lightaidra 360 (0.38)

8 Pnscan 212 (0.23)

9 Skeeyah 178 (0.19)

10 VPNFilter 135 (0.14)

Total 89,935 (96.03)

Unlabelled 3,717 (3.97)

4.3 Features-based Clustering

The field that studies the evolution of malware families and the way mal-
ware authors reuse code between families as well as between variants of
the same family is known as malware lineage. Deriving an accurate lin-
eage is a difficult task, which in previous studies has often been performed
with help from manual analysis and over a small limited number of sam-
ples [LDFM+12, HYD17]. However, given the scale of our dataset, we need
to rely on a fully automated solution. The traditional approach for this
purpose is to perform malware clustering based on static and dynamic fea-
tures [DN11, KWLP05, JBV11, LDFM+12]. When also the time dimension
is combined in the analysis, clustering can help to derive a complete time-
line of malware evolution, also known as phylogenetic tree of the malware
families. However, studying malware lineage based on AV labels is prone
to errors (due to AV errors or inconsistencies among labels) and it can only
provide a very coarse-grained clustering as AV labels tend to only identify
macro-families (e.g., all Mirai samples). We, on the other hand, are inter-
ested in a more fine-grained classification that would allow us to study the
differences among different sub-families and the overall intra-family evolu-
tion and relationship. Therefore, by building upon previous work in this
area, in our first attempt we decided to cluster samples based on a broad
set of both static and dynamic features that capture different aspects of
malware samples.

Despite our multiple attempts, while this approach provided interest-

58 58

ing results, it also always resulted in a large number of noisy clusters –
therefore requiring a substantial amount of manual adjustments and val-
idation. While this could be done as a one-time effort, our goal was to
obtain an automated solution that could be continuously run as new sam-
ples get collected. Thus, as explained in Chapter 4.4, we eventually adopted
a different solution to perform our clustering process. However, as features-
based clustering is often used in malware studies, we believe there is a value
in reporting the results of this attempt and discuss the reasons behind its
failure.

4.3.1 Feature Extraction

To analyze each sample, we leverage a free ELF binary analysis service3

based on a recent work [CGFB18]. The service relies on a combination of
static and dynamic analyses to comprehensively evaluate ELF binaries. It
provides runtime behavioral reports via its multi-architecture sandboxing
environment, from which we extract 146 features that belong to five groups.
We refer the reader to Table 4.4 for the complete list of extracted features.

1. ELF and byte-level features capture low-level characteristics of the
binary, such as its architecture, whether it is statically or dynamically
linked, stripped or unstripped, the number of ELF sections, its file
size, the entropy of each section and its most common bytes, etc.

2. Binary disassembly features report numerical statistics extracted
with IDA Pro, such as the number of functions, their complexity, the
number of instructions, etc.

3. Strings includes printable strings extracted from the binary, grouped
into IP addresses, URLs, and UNIX paths.

4. Runtime behavior covers the information extracted from the exe-
cution of the binary in a sandbox, including whether the sample was
executed correctly, the list of issued system calls, the different files
opened, modified or deleted, whether the binary has attempted to
achieve persistence on the system, etc.

5. Network traffic features provide a detailed breakdown of all network
connections observed while the binary was running, as extracted by
the Zeek (formally Bro) IDS, including contacted IP addresses, files
transferred, domain name resolved, etc.

3Padawan: https://padawan.s3.eurecom.fr

https://padawan.s3.eurecom.fr

4.3. Features-based Clustering 59

4.3.2 Clustering

Our dataset is large and very complex, containing 93K samples and 146
features, several of them categorical. We converted categorical features to
numeric ones with the standard one-hot encoding technique, whereby each
categorical feature becomes a set of n boolean representing whether each
item belongs to each of the n categories for that feature. For categori-
cal features, we ended up with a sparse matrix having tens of thousands
of columns: such a large dimensionality is generally very problematic in
terms of scalability for generic clustering algorithms. To deal with it, we
use FISHDBC [Del19], a density-based clustering algorithm designed for
scalability for complex datasets and arbitrary/non-metric distance func-
tions. This algorithm outputs hierarchical clustering results in a top-down
approach—from the most coarse-grained to the most fine-grained—and al-
lows to identify the level that yields the best classification.

We consider numeric and categorical features for each group separately;
for categorical features we pre-process the dataset using tf-idf and the Co-

sine distance, while we use the Euclidean distance for numerical features.
To empirically assess the impact of feature groups, we performed 25 rounds
of clustering including different combinations of feature groups, i.e., by in-
cluding or discarding some of the five categories.

To get a rough estimation of the quality of the clustering we use AV
labels as a provisional ground truth. In fact, even if some errors in the label
may exist, we still expect to find samples in the same cluster to largely
come from the same family. By using the output of AVClass, we flag each
cluster as one of four categories: (i) Pure if it contains all samples with the
same AV label, (ii) Single if it contains a combination of samples with the
same AV label and unlabelled samples, (iii) Majority if more than 90% of
samples in the cluster have the same AV label, and (iv) Mixed if it does
not fit any of the previous categories. Table 4.3 provides a summary of the
results of the 25 rounds of clustering. For the sake of conciseness, we only
provide the best results obtained per combination of feature groups across
all tested weights. Note that the clustering on the IDA Pro features could
only be performed on a restricted set of the 4,960 samples dynamically
linked samples, to avoid introducing noise in the IDA Pro features due to
the large amount of embedded library code. Moreover, the table does not
contain results for the network features alone because network features were
too sparse and could not be used by themselves to build our hierarchical
clusters.

Table 4.3 shows that individual sets successfully identify several groups
of samples belonging to the same family (i.e., pure clusters), but then also

60 60

cluster together many samples that have little or nothing in common (e.g.,
mixed clusters). The results do not improve much by combining all features,
as the limitation of each group tends to increase the noise in the overall
classification. Out of all combinations we tried in our experiments, the ELF
and bytes features alone produced the best clustering results with a total of
44,491 samples in pure clusters and only 14,204 samples in mixed clusters.
However, even in this case roughly one third of our dataset was placed in
majority clusters which erroneously contained samples of different families.

We then performed an investigation on the resulting clusters produced
by the different feature group combinations. Here we wanted to understand
whether these clusters could be directly used to group together samples that
belong to the same variant or sub-family and, if the answer is affirmative,
what exactly was changed between one version and the other. We first
looked at the pure clusters. We noticed that all medium-to-large size mal-
ware families were broken down by our system in many pure clusters. If we
consider the combination that produced the best clustering results, i.e., the
ELF and bytes combination, 20,027 Gafgyt samples were clustered in 1,071
different pure clusters. Also, as many as 13,391 Mirai samples populated a
total of 654 pure clusters. Initially, this would make them good candidates
for our sub-family investigation. As expected, indeed different clusters of-
ten captured different common features of the samples. For example, they
separated dynamically vs statically linked binaries, or those samples that
successfully executed in our VM from those that did not (and therefore re-
sulted in an empty dynamic behavior profile). However, our goal was not
to distinguish Mirai samples that were dynamically or statically linked, but
rather identify its evolution over time. Unfortunately, the resulting clusters
did not capture our need to isolate sub-families but rather samples that pro-
duced similar features (e.g., two samples that immediately terminate with
an error message are not necessarily similar, despite the common behavior).
During the manual investigation of the clustering results, we also noticed
that the captured runtime and network behavior of different variants of the
same family, when not missing, were often identical or so similar that the
clustering algorithm would hardly differentiate them. For example, most
variants of Mirai would follow the same high-level process after the device
is compromised: (i) reach out to the C&C server, (ii) retrieve some target
IP addresses to scan for worm-like replication, (iii) launch scanning, (iv) re-
ceive DDoS attack target(s), and (v) launch DDoS attack(s). This hinders
the identification of variants from such a trace. Additionally, considering
finer-grained features is likely to introduce overly specific clusters.

We also manually investigated those clusters that contained samples

4.3. Features-based Clustering 61

Table 4.3: Clustering results: static and dynamic features.

Feature groups Clusters (# samples)

E
L
F

ID
A

P
ro

st
ri
n
g
s

b
eh

a
v
io
u
r

n
et
w
o
rk

pure single majority mixed

3 44,491 4,657 31,649 14,204

3 3,677 45 316 1,082

3 18,141 3,120 23,412 50,328

3 27,889 1,097 5,726 60,289

3 3 3 3 3 34,313 2,337 12,741 45,610

3 3 3 3 38,825 3,062 24,234 27,531

3 3 3 39,904 2,495 17,667 33,586

3 3 42,427 2,587 34,118 14,520

3 3 3 20,822 983 12,964 58,883

with different AV labels. In particular, we looked at those that had a
predominant number of samples with a consistent AV label, and a small
number of samples with a different one (majority clusters), e.g., (gafgyt:
33), (aidra:2). While intuitively this could have been the result of errors in
AV classifications, after dozens of manual investigations we could not find a
single mis-labeled sample. Please remember that this does not mean there
were no errors in individual AV labels (we did find several of those), but
that by applying the majority voting provided by AVclass the result (when
a consensus was reached) was always correct. Errors in the majority voting
also existed, as explained in more details in Chapter 4.5.2, but we needed
a more precise clustering to successfully isolate them from the noise.

4.3.3 Lessons Learned

After several weeks of experimentation, by adding and removing individual
features and manually investigating why different samples always ended
up clustered together (sometimes even by pure chance, like when samples
had the same file size, same sections entropy, and many strings in common
due to some persistence mechanisms), we had to conclude that traditional
clustering based on static and dynamic features did not satisfy our needs.
In particular, when applied to a large dataset, the number of errors largely
exceeded the ability to manually investigate and correct the results.

It was also interesting to note that features related to runtime behavior
and network traffic tended to introduce more noise in the clustering and
failed to accurately classify samples even into coarse-grained malware fam-

62 62

ilies. On the other hand, we observed that ELF and bytes features would
produce very compact micro clusters sensitive to very fine-grained changes
in the binary representation of malware samples. While this was more suc-
cessful to group together samples belonging to the same family, such over-
sensitive classification turned out to be inappropriate for the identification
of malware variants. Given that the notion of a variant varies between one
family and another, it is difficult to transfer such a fuzzy concept into a
clustering algorithm. We therefore concluded that if we wanted to reliably
identify variants of malware families we had to perform a deeper investiga-
tion by looking at their code.

Table 4.4: List of features used for static and dynamic clustering.

Feature name: Description

bytes.common_bytes: List of the three most common bytes (with counter)
bytes.entropy: The entropy of the binary
bytes.header: First 16 bytes of the file
bytes.footer: Last 16 bytes of the file
bytes.longest_sequence.length: Longest sequence of the same byte (byte,
offset, length)
bytes.min_entropy: Lowest entropy among 16K bytes blocks
bytes.max_entropy: Highest entropy among 16K bytes blocks
bytes.null_bytes: Number of null (0) bytes
bytes.printable: Number of printable bytes
bytes.rarest_bytes: List of the three rarest bytes (with counter)
bytes.unique_bytes: Number of unique bytes (0-255)
bytes.white_spaces: Number of white-spaces (0x32,\n,\r,\t) bytes

elf.anomalies.ehph_diff: Difference between segment virtual address and
file offset
elf.anomalies.entrypoint.permission: Anomalous entrypoint: Permission
elf.anomalies.entrypoint.section: Anomalous entrypoint: Section
elf.anomalies.entrypoint.segment: Anomalous entrypoint: Segment
elf.anomalies.sections.cpp_prelink: Anomalous sections: C++ prelink
section
elf.anomalies.sections.grub_module: Anomalous sections: Grub module
elf.anomalies.sections.headers: Anomalous sections: Wrong number of sec-
tion headers
elf.anomalies.sections.high_entropy: Anomalous sections: High entropy
elf.anomalies.sections.kernel_object: Anomalous sections: Kernel object
elf.anomalies.sections.section_header_null: Anomalous sections: Null
section headers
elf.anomalies.sections.shentsize_empty: Size of section header table’s en-
try null

4.3. Features-based Clustering 63

elf.anomalies.sections.shnum_empty: Anomalous sections: Number of
section headers empty
elf.anomalies.sections.shnum_pastfile: Anomalous sections: Section
header table beyond file
elf.anomalies.sections.shoff_empty: Anomalous sections: Section header
table offset empty
elf.anomalies.sections.shoff_pastfile: Anom. sec.: Section header table
offset beyond file
elf.anomalies.sections.uncommon: Anomalous sections: Uncommon sec-
tions
elf.anomalies.sections.wrong_shstrndx: Anom. sec.: Wrong section
name string table index
elf.anomalies.segments.error: Error in segments table
elf.anomalies.segments.headers: Anomalous segments: Wrong number of
program headers
elf.anomalies.segments.high_entropy: Anomalous segments: High en-
tropy
elf.anomalies.segments.high_mem: Segment memory size much bigger
than physical size
elf.anomalies.segments.wx: Anomalous segments: W&X permission
elf.class: ELF file’s class
elf.comment: .comment section of the ELF, if present
elf.data: Data encoding of the-specific data
elf.debug: If the binary contains debug information (compiled with -g)
elf.dynfuncs: Dynamic symbols being used, of type FUNC in particular
elf.entrypoint: Binary entrypoint
elf.e_phentsize: Size in bytes of one entry in the program header table
elf.e_phnum: Number of entries in the program header table
elf.e_phoff: Program header table’s file offset in bytes
elf.e_shentsize: Size in bytes of one entry in the section header table
elf.e_shnum: Number of entries in the section header table
elf.e_shoff: Section header table’s file offset in bytes
elf.e_shstrndx: Index of section header table containing section names
elf.gdb: Error raised by gdb
elf.interpreter: ELF’s declared interpreter
elf.link: Statically or dynamically linked
elf.machine: Required architecture for the file
elf.malformed.entrypoint: Malformed ELF: Wrong entrypoint
elf.malformed.pastload: Malformed ELF: Beyond LOAD segment
elf.malformed.pastphnum: Malformed ELF: Beyond program header table
elf.malformed.pastsegment: Malformed ELF: Beyond segment
elf.needed: DT_NEEDED entries for dynamic ELF files
elf.note: .note.* sections of the ELF, if present
elf.nsections: Number of sections
elf.nsegments: Number of segments

64 64

elf.osabi: Operating system/ABI identification
elf.pyelftools: Exception raised by pyelftools, if any
elf.readelf: Error raised by readelf
elf.soname: PT_SONAME entry for dynamic ELF files
elf.stripped: Whether the binary has been stripped or not
elf.stripped_sections: Whether the sections table of the binary has been
stripped or not
elf.type: Object file type

strings.ip: Potential IPs (v4 and v6) found in the binary
strings.path: Potential UNIX paths found in the binary
strings.url: Potential URLs found in the binary

idapro.average_bytes_func: Average size in bytes of a function
idapro.avg_basic_blocks: Average number of basic blocks respect to func-
tions
idapro.avg_cyclomatic_complexity: Average cyclomatic complexity re-
spect to functions
idapro.avg_loc: Average lines of code respect to functions
idapro.branch_instr: Number of branch instructions
idapro.bytes_func: Total size in bytes of the functions
idapro.call_instr: Number of call instructions
idapro.func_loc: Percentage of instructions belonging to functions
idapro.indirect_branch_instr: Number of indirect branch instructions
idapro.loc: Explored lines of code
idapro.max_basic_blocks: Max basic blocks
idapro.max_cyclomatic_complexity: Max cyclomatic complexity
idapro.nfuncs: Number of functions detected
idapro.percent_load_covered: Percentage of covered load segment
idapro.percent_text_covered: Percentage of covered text section
idapro.syscall_instr: Number of syscall instructions

behavior.user.argv0_rename: Procs renaming argv0
behavior.user.askroot: Wheter the execution got permission related errors
behavior.user.checkgid: If gid is checked
behavior.user.checkuid: If uid is checked
behavior.user.cmds: System cmds
behavior.user.compare: strcmp or memcmp comparison
behavior.user.cve: Possible CVEs exploited
behavior.user.dropped.create: Dropped files: Create
behavior.user.dropped.link: Dropped files: Link
behavior.user.dropped.linkfrom: Dropped files: Link from
behavior.user.dropped.modify: Dropped files: Modify
behavior.user.empty: Empty or no trace
behavior.user.errors.enosys: Errors from execution: Syscall not imple-
mented
behavior.user.errors.execfault: Errors from execution: Execution fault

4.3. Features-based Clustering 65

behavior.user.errors.illegal: Errors from execution: Illegal instruction
behavior.user.errors.missinglibs: Errors from execution: Missing library
behavior.user.errors.segfault: Errors from execution: Segmentation fault
behavior.user.errors.sigbus: Errors from execution: Bus error
behavior.user.errors.wronginterp: Errors from execution: Wrong inter-
preter
behavior.user.ioctl.fail: Ioctls: Fail
behavior.user.ioctl.success: Ioctls: Success
behavior.user.ioctl.total_no: Ioctls: Total number
behavior.user.libccalls.total_no: Libc calls from execution: Total number
behavior.user.libccalls.unique: Libc calls from execution: Unique
behavior.user.libccalls.unique_no: Libc calls from execution: Unique
number
behavior.user.lineslost: Amount of trace lines not correctly parsed
behavior.user.persistence.create: Sample persistence: Create
behavior.user.persistence.link: Sample persistence: Link
behavior.user.persistence.linkfrom: Sample persistence: Link from
behavior.user.persistence.modify: Sample persistence: Modify
behavior.user.proc_rename: Procs renaming
behavior.user.procs: Number of processes spawned
behavior.user.ptrace_request: Ptrace requests
behavior.user.read_only: Files being read
behavior.user.rooterr.EACCES: EACCES type of permission related error
behavior.user.rooterr.EPERM: EPERM type of permission related error
behavior.user.sleep_max: Max sleep
behavior.user.syscalls.total_no: Syscalls from execution: Total number
behavior.user.syscalls.unique: Syscalls from execution: Unique
behavior.user.syscalls.unique_no: Syscalls from execution: Unique num-
ber
behavior.user.unlink: Unlink files
behavior.user.unlink_itself: Unlink itself

dynamic.error: Errors encountered during sandboxing
dynamic.stderr: Standard output during analysis
dynamic.stdout: Standard error during analysis

nettraffic.conn.avg_duration: Average duration of connections
nettraffic.conn.bytes: Number of bytes exchanged
nettraffic.conn.conns: Number of connections
nettraffic.conn.ips: List of unique IP addresses contacted
nettraffic.conn.pkts: Number of packets exchanged
nettraffic.conn.ports: List of unique destination ports
nettraffic.dns.qry_resp: List of unique DNS queries and their responses
nettraffic.dns.queried_domains: List of unique domains resolved through
DNS
nettraffic.files.dropped_files_hash: List of unique hashes (SHA-256) of
dropped files

66 66

nettraffic.files.dropped_files_mimetype: List of unique MIME types of
dropped files
nettraffic.files.dropped_files_source_ips: List of unique IP addresses
from which dropped files have been downloaded
nettraffic.files.dropping_protos: List of unique protocols used to drop files
nettraffic.ssl.ssl_domains: List of unique domains contacted over SSL/TLS

4.4 Malware Lineage Graph Extraction

The field that studies the evolution of malware families and the way mal-
ware authors reuse code between families as well as between variants of
the same family is known as malware lineage. Deriving an accurate lin-
eage is a difficult task, which in previous studies has often been performed
with help from manual analysis and over a small limited number of sam-
ples [LDFM+12, HYD17]. However, given the scale of our dataset, we need
to rely on a fully automated solution. The traditional approach for this
purpose is to perform malware clustering based on static and dynamic fea-
tures [DN11, KWLP05, JBV11, LDFM+12]. When also the time dimension
is combined in the analysis, clustering can help derive a complete timeline of
malware evolution, also known as phylogenetic tree of the malware families.

A common and simple other way to do that would be to rely on AV
labels, more oriented to only identify macro-families.

We, on the other hand, work towards a finer-grained classification that
would enable us to study differences among sub-families and the overall
intra-family evolution and relationships.

In our first attempt we decided to cluster samples based on a broad set
of both static and dynamic features. This approach not only required a
substantial amount of manual adjustments and validation, it also always
resulted in noisy clusters.

4.4.1 Code-based Clustering

We decided to resort to a more complex and time consuming solution based
on code-level analysis and function similarity. The advantage is that code
does not lie, and therefore can be used to precisely track both the evolution
over time of a given family as well as the code reuse and functionalities
borrowed among different families.

The main drawback of clustering based on code similarity is that the
distance among two binaries is difficult to compute. Binary code similarity
is still a very active research area [HC19], but tools that can scale to our

4.4. Malware Lineage Graph Extraction 67

Symbol extraction

Unstripped

Stripped

xyz

def
abc

ELF

1000

0101
10

ELF

Cut abc
ELF

Filter

Symbols DB

A Binary diffing and symbol propagation

HNSW-based binary
diffing (diaphora)

Similarity graph

Source code collectionD

B

Web scraping

Source
code DB

Symbol propagation

C

Function-level
similarity DB

1000
0101
abcELF

Stripped

abc
ELF

Unstripped

Figure 4.2: The workflow of our system.

dataset size are scarce and often in a prototype form. Moreover, to be able
to compare binaries, three important conditions must be satisfied: 1) each
sample needs to be first properly unpacked, 2) it must be possible to cor-
rectly disassemble its code, and 3) it must be possible to separate the code
of the application from the code of its libraries. The first two constitute ma-
jor problems that had hindered similar experiments on Windows malware.
However, IoT malware samples are still largely un-obfuscated and packers
are the exception instead of the norm [CGFB18]. While this is a promising
start, the third condition turns out to be a difficult issue (ironically this is
the only one not causing problems for traditional Windows malware).

Figure 4.2 shows the workflow of our code-based clustering. The process
is divided in three macro phases. A First we process unstripped binaries
and we analyze the symbols to locate library code in statically linked files.
B Then we perform an incremental clustering based on the code-level sim-
ilarity, while propagating symbols to each new sample. C Finally, we build
the family graphs (one for each CPU architecture) and D and we use avail-
able symbols to pin samples and clusters to code snippets we were able to
scrape from online code repositories to obtain more detailed understanding
about the evolution of malware families.

Recall that our goal is not to provide a future-proof IoT malware analysis
technique. We rather seek to identify a scalable approach that enables us
to reconstruct the lineage for the 93K samples in our 3.5 year-long dataset
so we can report on their genealogy. We thus take advantage of the current
sophistication of IoT malware, which is currently rudimentary enough to
enable code-based analysis, aware that malware authors could easily employ
tricks to hinder such analysis in the future.

68 68

4.4.2 Symbols Extraction

IoT malware is often shipped statically linked. The fact that 88,392 samples
out of 10,548 (94.3%) in our dataset are statically linked tend to confirm
this assumption. This is most likely due to an effort to ensure the samples
can run on devices with various system configurations. However, performing
code similarity on statically linked binaries is useless, as two samples would
be erroneously considered very similar simply because they might include
the same libc library. Therefore, to be able to identify the relevant functions
in such binaries, we first need to distinguish the user-defined code from the
library code embedded in them. Unfortunately, when dealing with stripped
binaries, this is still an open problem and the techniques proposed to date
have large margins of errors, which are not suitable for our large-scale,
unsupervised experiments.

We thus start our analysis by extracting symbols from unstripped bina-
ries and leveraging them to add semantics to the disassembled code. Luckily,
as depicted in Table 4.1, 53% of statically-linked and 30% of dynamically
linked samples contain symbol information. We used IDA Pro to recognize
functions and extract their names. We then use a simple heuristic to cut
the binary in two. The idea is to locate some library code, and then simply
consider everything that comes after library code as well. While it is pos-
sible for the linker to interleave application and library objects in the final
executable, this would simply result in discarding part of the malware code
from our analysis. However, this is not a common behavior, and lacking
any better solution to handle this problem, this is a small price to pay to
be able to compute binary similarity on our dataset.

We therefore built a database of symbols (symbols DB in Figure 4.2)
extracted from different versions of Glibc and uClibc and use the database
to find a “cut” that separates user from library code. After extracting the
function symbols from unstripped ELF samples, we start scanning them
linearly with respect to their offsets. We move a sliding window starting
from the entry point function _start and define a cutting point as soon
as all of the function names within that window have a positive match in
the symbols DB. Using a window instead of a single function match avoids
erroneous cases where a user function name may be wrongly interpreted as
a library function. We experimentally set this window size to 2 and verified
the reliability of this heuristic by manually analyzing 100 cases. Once the
cutting point is identified, all symbols before this point are kept and the
remaining ones are discarded.

We chose to operate only on libc variants for two reasons. First, because
libc is always included by default by compilers into the final executable when

4.4. Malware Lineage Graph Extraction 69

producing statically linked files. Moreover, we observed that less than 2%
of the dynamically linked samples in our dataset require other libraries on
top of libc.

Finally, after removing the library code, we further filter out other spe-
cial symbols, including __start, _start and architecture-dependent helpers
like the __aeabi_* functions for ARM processors.

4.4.3 Binary Diffing and Symbol Propagation

Binary diffing constitutes the core of our approach as it enables us to as-
sess the similarity between binaries at the code level. However, given the
intrinsic differences at the (assembly) code level between binaries of differ-
ent architectures, we decided to diff together only binaries compiled for the
same architecture – therefore producing a different clustering graph, and a
different malware lineage, for each architecture. While this choice largely
reduces the number of possible comparisons, our datasets still contains up
to 36,574 files per architecture (ARM 32-bit), making the computation of
a full similarity matrix unfeasible.

To mitigate this problem we adopt Hierarchical Navigable Small World
graphs (HNSW) [MY18], an efficient data structure for approximate nearest
neighbor discovery in non-metric spaces, to overcome the time complexity
and discover similarities in our dataset. The core idea that accelerates
this and similar approaches [DML11, FXWC19] is that items only get com-
pared to neighbors of previously-discovered neighbors, drastically limiting
the number of comparisons while still maintaining high accuracy. While
adding files to the HNSW, our distance function will be called on a limited
number of file pairs (on average, adding an element to the HNSW requires
only 244 comparisons in our case) while still being able to link it to its
most similar neighbors. We configured the HNSW algorithm to take advan-
tage of parallelism and provide high-quality results as suggested by existing
guidelines in the clustering literature [Del19].

We use Diaphora [urla] to define our dissimilarity function for HNSW.
This function is non-metric as the triangle inequality rule does not necessar-
ily hold. However, in the following we will call it distance function without
implying it is a proper metric. This has not consequences on the precision of
our clustering, as the HNSW algorithm is explicitly designed for non-metric
spaces. One of the advantages of using Diaphora is that the tool works
with all the architectures supported by IDA Pro, which covers 11 processors
and 99.9% of the samples in our dataset, while other binary code similarity
solutions recently proposed in academia handle only few architectures and
do not provide publicly available implementations [HC19]. When two bina-

70 70

ries are compared, Diaphora outputs a per-function similarity score ranging
from 0 (no match) to 1 (perfect match). To aggregate individual function
scores in a single distance function we experimented with different solutions
based on the average, maximum, normalized average, and sum of the scores.
We finally decided to count the number of functions with similarity greater
than 0.5, which is the threshold suggested by Diaphora’s authors to discard
unreliable results. This has the advantage of providing a symmetric score
(e.g., if the similarity of A to B is 4 then the similarity of B to A is also
4) that constantly increase as more and more matching functions are found
among two binaries. For HNSW we then report the inverse of this count to
translate the value into a distance (where higher values mean two samples
are further apart and lower values mean they share more code).

Before running HNSW to perform pairwise comparison on the whole
dataset, we unpacked 6,752 packed samples. Since they were all based on
variations of UPX, we were able to easily do that by using a simple generic
unpacker. We then add each sample to HNSW one by one, in two rounds,
sorted by their first seen timestamp on VirusTotal (to simulate the way an
analyst would proceed when collecting new samples over time).

In the first round we added all dynamically linked or unstripped samples,
which account for 55% of the entire dataset. By relying on the symbols
extracted in the previous phase, we only perform the binary diffing on the
user-defined portion of the code, and omit comparisons on library code.
In the second round we then added the statically linked stripped samples.
Being without symbols, there is no direct way to distinguish user functions
from library code. Attempts to recover debugging information from stripped
binaries, such as with Debin [HIT+18], only target a limited set of CPU
architectures.

We tackle this problem by leveraging the binary diffing itself to iter-
atively “propagate” symbols. When a function in a stripped sample has
perfect similarity with an unstripped one, we label it with the same sym-
bol. This methodology enables us to perform similarity analysis also for
stripped samples, which would otherwise be discarded. However, this step
comes with some limitations. While we are able to discard library functions
we also potentially discard user functions that didn’t match any function
already in the graph. For instance, if two stripped statically linked sam-
ples share a function that is never observed in unstripped or dynamically
linked binaries, this similarity would not be detected by our solution. We
add the stripped samples to HNSW only after the unstripped ones have all
been added to contain this problem as much as possible, but the probabilis-
tic nature of HNSW can decrease this benefit as not all comparisons are

4.4. Malware Lineage Graph Extraction 71

computed for each sample.
This means that our graph is an under-approximation of the perfect

similarity graph (we can miss some edges that would link together different
samples, but not create false connections) with over 18.7M one-to-one binary
comparisons and 595,039 function symbols propagated from unstripped to
stripped binaries.

4.4.4 Source Code Collection

The symbols extracted from unstripped malware and propagated in the
similarity phase also helps us locate and collect snippets of source codes
from online sources. In fact, the source code for many Linux-based IoT
malware families has been leaked on open repositories hosting malicious
packages ready to be compiled and deployed. This has resulted in a very
active community of developers that cloned, reused, adapted, and often
re-shared variations of existing code.

We took advantage of this to recognize open source and closed source
families, split our dataset accordingly and, more importantly, to assign la-
bels to groups of nodes in the similarity graph. While we also use AV la-
bels for this purpose, those labels often correspond to generic family names,
while online sources can help disambiguate specific variants within the same
bigger family.

To locate examples of source code, we queried search engines with the
list of user-defined function symbols extracted in the previous phase. We
were able to find several matches on public services as GitHub or Paste-
bin, both for entire code bases (e.g., on GitHub) and for single source files
(e.g., on Pastebin). Interestingly, on GitHub we found tens of repositories
forked thousands of times (not necessarily for malicious purposes, as often
security researchers also forked those repositories). Moreover, we found a
Russian website hosting a repository regularly populated with several mal-
ware projects, exploits, and cross-compilation resources. From this source
alone we were able to retrieve the code of 76 variants of Gafgyt, 50 vari-
ants of Mirai, 19 projects generically referred as “CnC Botnet” and “IRC
Sources” (which resemble Tsunami variants) and a number of exploits for
widely deployed router brands. Some variants contained changelog infor-
mation that made us believe these projects had been collected from leaks
and underground forums.

72 72

4.4.5 Phylogenetic Tree of IoT Malware

As a preamble to the function level similarity analysis of IoT malware we
post-processed the sparse similarity graph G obtained by running HNSW
and using the distance function as weight. Since we store in a database
the detailed comparisons, the actual weight on the similarity graph can be
tuned depending on the purpose of the analysis.

For instance, the analyst can use only best matches if the goal is to
highlight perfect similarity (e.g., code reused as is) between two binaries,
or a combination of best and partial matches if we want to capture more
generic dependencies between two binaries, including minor variations and
“evolutions” of the code.

Another problem with the similarity graph is that it contains a large
number of edges, with many samples being variations (or simple recompi-
lation) of the same family. Therefore, to make the output more readable
and better emphasize the evolution lines, in our graphs we visualize the
Minimum Spanning Tree (MST) G′ of G that shows the path of minimum
binary difference among all samples. This approach to cluster binaries is
inspired by the works in clustering literature that are based on the min-
imum spanning tree (MST) of the pairwise distance matrix between ele-
ments [ABKY88, CMS13].

Furthermore, we observed that MSTs—which are in general used as an
intermediate representation of the clustering structure—faithfully convey
information about the relationships between items in our dataset which is
not always preserved when converting the MST to a set of clusters. For this
reason, we base our analysis on minimum spanning trees.

The tree can be further colored according to AV labels (to get an
overview of the relationships among different families and spot erroneous
labels assigned by AV engines) or to the closest source file we downloaded
using the symbol names (thus leading to a more clear picture of the geneal-
ogy of a single malware family). In the next sections we will explore these
two views and present a number of examples of the main findings.

4.5 Results

We used the workflow for code-based clustering presented in the previous
section to plot phylogenetic trees for the six top architectures in our dataset.
We found that the current IoT malware scene is mainly invaded by three
families tightly connected to each other: Gafgyt, Mirai and Tsunami. They
contain hundreds of variants grouped under the same AV label and are the

4.5. Results 73

A
B

G
af
gy
t

M
ir
ai

Ts
un
am
i

D
ns
am
p

Fi
gu

re
4.

3:
Li
ne

ag
e
gr
ap

h
of

M
IP

S
sa
m
pl
es

co
lo
re
d
by

fa
m
ily

.

74 74

Table 4.5: Common functions across top10 malware families.

VS

G
a
fg
y
t

M
ir
a
i

T
su
n
a
m
i

D
n
sa
m
p

H
a
ji
m
e

D
d
o
st
f

L
ig
h
ta
id
ra

P
n
sc
a
n

S
k
ee
y
a
h

V
P
N
F
il
te
r

Gafgyt 115 189 3 1 2 18 - - -

Mirai 63 1 1 - 2 - - -

Tsunami 4 - 3 1 - - -

Dnsamp - 65 - - - -

Hajime - - - - -

Ddostf - - - -

Lightaidra - - -

Pnscan - -

Skeeyayh -

VPNFilter

ones with longer persistence on VirusTotal. All three started to present
fused traits over time and they still hit on VirusTotal. On the other hand,
more specialized IoT malware targets specific CPU architectures and have
a much shorter appearance. Today IoT malware code is not as complex as
the one found in Windows malware, yet AVs may lose robustness when it
comes to identifying widely reused functions and packed samples.

As described in Chapter 4.4.5, the distance function we used for the
HNSW algorithm is based on the number of functions with binary similar-
ity ≥ 0.5 (as suggested by Diaphora). The analyst can then adjust this
threshold when plotting the graphs to either display even uncertain similar-
ities among families (at 0.5 threshold) or highlight only the perfect matches
of exact code reuse (at 1.0 threshold).

4.5.1 Code Reuse

Figure 4.3 shows the lineage graph for MIPS samples plotted at similarity ≥
0.9 and with node colored according to their AVClass labels. For all other
architectures, miniaturized graphs are reported in Figures 4.7 - 4.12 at the
end of the chapter.

Overall, MIPS samples include 39 different labels. However, the graph is
dominated by few large families: Gafgyt, Tsunami and Mirai. These three
families cover 87% of the MIPS samples and they are also the ones that
served as inspiration for different groups of malware developers, most likely

4.5. Results 75

Table 4.6: Outlier samples and AVClass labels

Architecture
Number of samples

Wrong label Without label Total

ARM 32-bit 19 9 28

MIPS I 25 41 66

PowerPC 1 4 5

SPARC 2 0 2

Hitachi SH 7 0 7

Motorola 6800 8 2 10

Total 62 56 118

because of the fact their source code can be found online. It is interesting
to note how this tangled dependency is reflected in the fact that the most
of the Tsunami variants are located on the left side of the picture close to
Gafgyt, but some of them appear also on the right side due to an increased
number of routines borrowed from the Mirai code.

Besides these three main players, the graph also shows samples without
any label or belonging to minor families. For example, the zoom region [A]

contains a small connected component of 283 Dnsamp samples with a tail
of 4 samples: 1 with label Ganiw and 3 with label Kluh. All together are
linked to ChinaZ, a group known for developing DDoS ELF malware. The
very high similarity between Ganiw and Kluh seems to be more interesting,
since Kluh could be seen as an evolution of the first (and appeared 3 months
after on VirusTotal), yet AVs assign them different labels.

Table 4.5 reports the number of shared functions (at 0.9 similarity)
across the top 10 families in our dataset and takes into account the full pic-
ture of the six main architectures. The code sharing for Mirai, Gafgyt and
Tsunami is once again confirmed to play a fundamental role in IoT mal-
ware with hundreds of functions shared across the three. However, we can
see their incidence in minor families like Dnsamp, which borrows functions
for random numbers generation and checksum computations, or Lightaidra,
reusing 18 functions from Gafgyt. Less widespread families such as Dnsamp

and Ddostf also show high similarity with a total of 65 shared functions.
Instead, targeted campaigns like VPNFilter do not overlap with main com-
ponents of the famous families.

76 76

4.5.2 Outliers and AV Errors

One of the analysis we can perform on the phylogenetic trees is the detection
of anomalous labels, by looking for outlier nodes. We define as outlier a (set
of) nodes of one color which is part of a cluster that contains only nodes of
a different color. Outliers can correspond to samples that are misclassified
by the majority of AV scanners or to variants of a given family that have
a considerable amount of code in common with another family (and for
which, therefore, it is difficult to decide which label is more appropriate).
But outlier can also be used to assign a label, based on its neighbors, to
samples for which AVClass did not return one.

Although the number of mislabelled samples is not significant in our
dataset, we can use our automated pipeline to promptly detect suspicious
cases in newly collected data. The outliers discussed in this section also
show that a very high ratio of code similarity can often confuse several AV
signatures.

Based on a manual inspection of each group of outliers, Table 4.6 re-
ports a lower bound estimation of the mislabelling cases broken down by
architecture. Overall we found 118 cases with 62 samples we believe to have
a wrong AVClass label and 56 for which AVClass was not able to agree
on the AV labels. ARM and MIPS (which cover 66% of our dataset) are
responsible for over 80% of the errors, with MIPS samples being apparently
the most problematic to classify. The pattern is reversed for less popular
architectures, like Hitachi SH and Motorola 68000 (13.3% of the dataset)
that account for 17 mislabelled samples, while PowerPC and SPARC (20.6%
of the dataset) had only 7 cases.

Looking closer, all cases of wrong labels seemed to be due to a high
portion of code reuse between two or more families. The zoom region [B]

in Figure 4.3 is an example of this type of errors. A Tsunami variant
that borrows a number of utility functions from Mirai resulted in few of its
samples being misclassified as Gafgyt by many AV vendors.

Another example, this time related to a smaller family, is a set of 12
Remaiten samples that AVClass reported as Gafgyt (Remaiten is a botnet
discovered by ESET that reuse both Tsunami and Gafgyt code, that extend
with a set of new features). We also observed that in some cases AVs assign
different labels for samples with an almost full code overlap. For example,
under PowerPC, a binary is assigned the label Pilkah, thus giving birth to
a new family, even if it is only a very minor variation of Lightaidra.

Finally, we found examples of how an extremely simple and well known
packer like UPX can still cause troubles to AV software. For instance, 29
packed samples for MIPS did not get an AVClass label even if their code

4.5. Results 77

Table 4.7: Number of variants recognized for top 10 families in our dataset.
Malware families with - contained only stripped samples which prevented
any accurate variant identification.

Family Candidate Validated Number of samples Persistence (days)

Variants
Variants
(Source

code)

Min. Max. Avg. Max. Avg.

Gafgyt 1428 140 1 4499 285.59 1210 283.21

Mirai 386 57 1 776 39.05 661 103.35

Tsunami 210 27 1 544 93.59 1261 421.63

Dnsamp 48 4 3 1394 362.75 1444 691.25

Hajime 1 1 1 1 1 1 1.00

Ddostf 11 3 2 755 260.00 483 308.33

Lightaidra 7 7 1 4 1.43 299 43.57

Pnscan 1 1 2 2 2.00 1 1.00

Skeeyah - - - - - - -

VPNFilter - - - - - - -

Total 240 2091

was very close to Gafgyt.

4.5.3 Variants

The phylogenetic trees produced by our method can also be used to identify
fine-grained modifications and relationships among variants within the same
malware family.

In order to bootstrap the identification of variants we decided to take
advantage of the binary similarity-based symbol propagation described in
Chapter 4.4.3. As a first step we identify candidate variants by grouping all
malware samples based on their set of unique symbols. These symbols were
either present in the binary (in case of an original unstripped binary) or were
propagated from other unstripped binaries (in case of an original stripped
binary). While this symbol-based variant identification technique is subject
to errors – noise from symbol extraction, incomplete symbol propagation –
it gives a first estimate of the number of variants by capturing fine-grained
differences such as added, removed or renamed functions. Table 4.7 provides
the number of identified variants for the top 10 largest malware families
in our dataset. We can see that Gafgyt, and to a less extent Mirai and
Tsunami appear to have spurred more than 2,000 variants all together.
This phenomenon is supposedly fueled by the availability of the source code
online for these three major malware families. It is important to note that

78 78

Jan
2015

Jan
2016

Jan
2017

Jan
2018

Date

0

50

100

150
Nu

m
be

r o
f v

ar
ian

ts gafgyt
mirai
tsunami
dnsamp

Figure 4.4: Appearance of new variants over time.

given that this step relies on symbols it excludes all stripped samples for
which symbols could not be propagated, e.g., all samples of the VPNFilter
malware were stripped hindering the identification of variants.

As a second step we rely on the leaked source code collected from online
repositories, as described in Chapter 4.4.4 to validate previously identified
variants. By matching symbols found or propagated in the binaries with
functions found in the source code we were able to validate more than 200
variants. It is interesting to see that as much as 50.3% of the samples had
at least a partial match to our collected source code – but only 740 samples
resulted in a perfect match of the entire code. This suggests that many mal-
ware authors take inspiration from leaked source code, yet they introduce
new modifications, thus creating new independent variants. The surpris-
ingly high number of variants having their source code online is a great
opportunity for us to validate and better study them. Validating the others
unfortunately require time-consuming manual analysis. From Table 4.7 we
can see that the collected source code enabled us to validate 240 variants
with Gafgyt taking a slice equal to 58% of the total, followed by Mirai with
a lower share of almost 24%. The source code we collected matched also mi-
nor families. For example Hajime, known to come with stripped symbols,
was found to have one sample referring to the Gafgyt and Mirai variant
Okane, actually suggesting the Hajime sample was misclassified by AVs. In
a similar way, two samples of Pnscan partially matched with a port scanner
tool named like the family and available on GitHub. However, the authors
of these samples introduced new functionalities to the original code. While

4.6. Case Studies 79

the availability of IoT malware source code online facilitates the develop-
ment of variants, it can also be leveraged to identify and validate them.
Finally, in order to evaluate the accuracy of the source code matching we
took an extra step and manually verified and confirmed some of the variants
that matched source code.

Another important aspect to understand the genealogy of IoT malware
is the combination of binary data with timing information. By measuring
the first and last time associated to each variant we can get a temporal
window in which the samples of each variants appeared in the wild (shown
in the last two columns of Table 4.7). Here we can notice how quickly-
evolving families like Gafgyt and Mirai tend to result in short-lived variants.
For instance, Gafgyt variants appeared in VirusTotal for an average of 10
months, andMirai variants for four. Instead, Tsunami and Dnsamp variants
persisted for longer periods: respectively one year and two months the first
and almost two years for the second. Figure 4.4 shows, in a cumulative
graph, the number of new variants that appeared over time for the three
main families. It is interesting to observe the almost constant new release
of Gafgyt variations over time, the slower increase of Tsunami variants, and
the rapid proliferation of Mirai-based malware in 2018.

4.6 Case Studies

After showing our automated approach for systematic identification of code
reuse in Chapter 4.4 and presenting an overview of the phylogenetic tree
in Chapter 4.5, we now discuss in more details two case studies. We use
these examples as an opportunity to provide a closer look at two individual
families and discuss their evolution and the multitude of internal variants.

It is important to note that the exact time at which each sample was
developed is particularly difficult to identify as malware could remain unde-
tected for long periods of time. Since ELF files do not contain a timestamp
of when they were compiled, we can only rely on public discussions and
on the VirusTotal first submission time as source for our labeling. Some
families are only discussed in blog posts by authors that did not submit
their samples to VirusTotal. Previous research also found that for APT
campaigns the initial VirusTotal collection time often pre-dates the time
in which the samples are “discovered” and analyzed by human experts by
months or even years [GCB+15]. Therefore, in our analysis we simply report
the earliest date among the ones we found in online sources and among all
samples submitted for the same variant to VirusTotal. However, this effort
is only performed for presentation purpose, as we believe that detecting the

80 80

similarities and changes among samples (the goal of our analysis) is more
important than determining which ones came first.

Example I – Tsunami (medium-sized family)

Tsunami is a popular IRC botnet with DDoS capabilities whose samples
represent almost 4% of our dataset. Its code is available online and gives
birth to a continuous proliferation of new variants, sometimes with minimal
differences, other times with major improvements (i.e., new exploits and
new functionalities). Tsunami’s main goal is to compromise as many devices
as possible to build large DDoS botnets. Therefore, we obtained samples
compiled also for less common architectures such as Motorola 68K or Su-
perH. Overall, 76% of its samples are statically linked but with the original
symbols in place. When constructing the genealogy graph of Tsunami, we
not only took advantage of the extracted symbols from the binaries but we
also cross-correlated them with available source code of multiple variants
we scraped from online forums, as explained in Chapter 4.4.4. This way we
were able to color the graph and assign a name to different variants.

The top part of Figure 4.5 shows the mini-graph for six different ar-
chitectures. The main part of the figure further zooms in on the evolution
of a group of 748 ARM 32-bit binaries. These samples all share the main
functionality of Tsunami and therefore the functions for DDoSing and con-
tacting the CnC remained the same across all of them.

On the most right of Figure 4.5, there is a visible section in which the
vast majority of samples are labeled as Kstd according to the AV labels.
With only two flooders, Kstd represents one of the oldest and most famous
sub-family which acted as a skeleton and inspiration for newer malware
strains. By moving left on the graph, we meet a fairly high dynamic area
with binaries very similar to each other but with new features such as fre-
quent updates and new flooders. The first samples in this group correspond
to the Capsaicin sub-family, for which we performed a manual investigation
to identify the new functionalities. Capsaicin includes 16 flooders based on
TCP, UDP and amplification attacks. It uses gcc directly on the infected
device, taking its presence for granted. Some Tsunami variants are also
examples of inter-family code reuse, with code borrowed from both Mirai

and Gafgyt. For example, Capsaicin borrows from Mirai the code for the
random generation of IP addresses that is used to locate candidate victims
to infect. Some Tsunami samples also perform horizontal movement reusing
Mirai’s Telnet scanner or SSH scanners also found in Gafgyt, while others
use open source code as inspiration (e.g., the Uzi scanner).

Moving left we then encounter the Weebsquad and Uzi variants. The

4.6. Case Studies 81

C
ol

or
s

re
pr

es
en

t
a

va
ri

an
t

St
ri

pp
ed

 s
am

pl
es

B
in

ar
y

si
m

ila
ri

ty

ca

ps
ai

ci
n

-
fr

eq
ue

nt
 u

pd
at

es
-

ne
w

 fl
oo

de
rs

-
up

gr
ad

e
it
se

lf
us

in
g

lo
ca

l g
cc

-
M

ir
ai

 I
P

 g
en

er
at

or

uz

i
-

"u
zi

"
Te

ln
et

 s
ca

nn
er

-
ne

w
 C

nC
 c

om
m

an
ds

ka

ite
n

-
su

pp
os

ed
ly

 u
se

d
to

 n
am

e

th
e

fa
m

ily
T

su
na

m
i

 "

w
ee

bs
qu

ad
"

-
in

it
ia

lv
er

si
on

si
m

ila
r

to

 k
ai

te
n

-
hi

gh
co

de
re

us
e

af
te

r
-

SS
H

 s
ca

nn
er

-
Te

ln
et

sc
an

ne
r

 k

st
d

-
ve

ry
 b

as
ic

-
on

ly
 a

 c
ou

pl
e

of
 fl

oo
de

rs

 a

m
ne

si
a

-
C

C
T

V
 e

xp
lo

it
-

V
M

 d
et

ec
ti
on

-
V

M
 w

ip
e

-
ro

ot
/u

se
r

pe
rs

is
te

nc
e

M
IP

S
I

Su
pe

rH

M
ot

or
ol

a
68

k

A
R

M
 3

2-
bi

t

SP
A

R
C

P
ow

er
P

C

zb

ot
-

in
it
ia

lly
 k

ai
te

n-
lik

e
-

th
en

 r
eu

se
 fl

oo
de

rs

Fi
gu

re
4.

5:
Li
ne

ag
e
gr
ap

h
of

T
su
n
a
m
i
sa
m
pl
es

fo
r
A
R
M

3
2
-b
it
.

82 82

first is a branch spreading over Telnet and SSH, for which we could not
find any online source code that matched our samples. We named these
variants based on the fact that they all included their name in the binaries.
Interestingly some AVs on VirusTotal mislabeled these samples as Gafgyt,
possibly because of the code-reuse between Tsunami and Gafgyt we men-
tioned earlier.

In the left side of Figure 4.5 we encounter Kaiten, another popular
variant from which many malware writers forked their code to create their
own projects. For instance, Zbot (bottom-left on the graph) is a Kaiten fork
available on GitHub, in which the authors added two additional flooder
components.

Our similarity analysis also recognizes Amnesia, a variant which was
discovered by M. Malík of ESET in January 2017. This sub-family includes
exploits for CCTV systems and it is one of the rare Linux malware adopting
Virtual Machine (VM) detection techniques. Unlike most of the samples
in the graph, Amnesia is stripped and dynamically linked. However, our
system detected very high code similarity with another unstripped sample
which uses the same CCTV scanner and persistence techniques, but without
VM detection capabilities. Thanks to our symbol propagation technique we
also managed to connect the Amnesia samples to the rest of the family
graph.

Example II – Gafgyt (large family)

Gafgyt is the most active IoT botnet to date. It is comprised of hundreds of
variants and is the biggest family in our dataset with 50% of the samples.
It targets home routers and other classes of vulnerable devices, including
gaming services [Hao].

We visualize the code-similarity analysis of samples for ARM 32-bit in
Figure 4.6. Our system identified more than 100 individual variants. Like
the Tsunami case study, we were often able to leverage available source code
snippets to validate the identified variants.

The graph is clearly split into two main areas, with binaries compiled
with THUMB mode support on the left, and with ARM mode only on the
right. Since the two halves are specular we label variants separately on one
or the other side of the graph to improve readability. Bashlite is believed
to be one of the first variants of Gafgyt. Its samples are often mistaken for
the Qbot variant (the two are frequently presented as a synonym) but their
code presents significant differences. For example, Qbot uses two additional
attack techniques (e.g., DDoS using the GNU utility wget). Our method

4.6. Case Studies 83

Colors represent a variant

Stripped samples

Binary similarity

qbot

lovesec

galaxy v4

"remastered"

prometheus v4

prometheus

angels

razor

"dankmeme"

ARM Mode
THUMB Mode

bashlite

Figure 4.6: Lineage graph of Gafgyt samples for ARM 32-bit.

84 84

rightfully recognizes them as belonging to the same family but as distinct
variants.

The next cluster in our genealogy refers to Razor, which fully reuses
the previous source code but adds an additional CnC command to clear
log files, delete the shell history, and disable iptables. Prometheus, for
which we crawled two bundles, is an example of malware versioning. Among
the features of Prometheus, we see self upgrade capabilities and usage of
Python scripts (served by the CnC) for scanning. Its maintainer added
a Netis4 scanner in V4 to reinforce self propagation through exploitation.
Self propagation and infection is further enhanced in Galaxy with a scanner
dubbed BCM and one called Phone suggesting it targets real phones. Next
to Galaxy we find an almost one-to-one fork we call Remastered which does a
less intrusive cleanup procedure, cleaning temporary directories and history
but without stopping iptables and firewalld.

Finally, in the top left-hand corner of Figure 4.6 we uncover Angels,
reusing some of Mirai’s code for random IP generation (like other variants)
and targeting specific subnets hard-coded in the binaries.

4.7 Conclusions

We have presented the largest study known to date over a dataset consisting
of 93K malicious samples. We use binary similarity-based techniques to
uncover more than 1500 malware variants and validate more than 200 of
them thanks to their source code leaked online. AV signatures appear to
be not robust enough against small modifications inside binaries. As such
rewriting a specific function or borrowing it from another family can be
enough to derail AVs often leading to mislabeling or missed detections.

4Netis (a.k.a. Netcore in China) is a brand of routers found to contain an RCE

vulnerability in 2014 [Yeh].

4.7. Conclusions 85

Figure 4.7: Lineage graph for ARM 32-bit architecture colored by family.

86 86

Figure 4.8: Lineage graph for MIPS I architecture colored by family.

4.7. Conclusions 87

Figure 4.9: Lineage graph for PowerPC architecture colored by family.

88 88

Figure 4.10: Lineage graph for SPARC architecture colored by family.

4.7. Conclusions 89

Figure 4.11: Lineage graph for Hitachi SH architecture colored by family.

90 90

Figure 4.12: Lineage graph for Motorola 68000 architecture colored by fam-
ily.

Chapter 5

User Code Identification in

Statically Linked Binaries

91

92 92

5.1 Introduction

Reverse engineering for binary and malware analysis is a tedious and time-
consuming task often burdened by the lack of crucial information. The
availability of symbols and debug information in the executable image can
significantly help reverse engineering. When binaries do not provide this
advantage, they must be tackled in their stripped version. In this case,
the analyst cannot rely on function names to understand the semantic of
a routine, there is no knowledge of data types, and variables do not have
the same name assigned by the original developer. Moreover, while stati-
cally linked programs are self-contained to promise good portability across
different machines, they pose an additional challenge: there is no explicit
boundary between user-defined code and third-party library code. As a
consequence, the analyst is overwhelmed by a pre-analysis phase to discern
library routines from user-defined functions. Libraries can provide utility
functions or control the interaction with the operating system (e.g., the C
library). On the other hand, reverse engineering user-defined code gives the
analyst a high-level understanding of the overall execution flow.

Knowing the boundary between user and library code has direct conse-
quences also in code similarity tasks. In fact, the binary comparison of two
statically linked files can produce a large number of spurious matches. If bi-
naries are stripped from their debug information, there is no way to preserve
the distinction of individual code objects (e.g., a user function erroneously
compared with a library function). The same problem holds when un-
stripped and stripped binaries are compared for resymbolication purposes,
thus an unknown function can be assigned the wrong name. This is ex-
tremely unfavorable in the field of malware analysis, especially on Linux-
based operating systems, where static linking is much more common than on
Windows. Recent studies on Linux and IoT malware reported that usually
more than 8 samples out of 10 are statically linked [CGFB18, CVD+20].

Both academy and industry research made a considerable effort to iden-
tify functions and libraries in statically linked and stripped files. Many
works have explored this problem, mostly focusing on pattern-based func-
tion signatures [Gui], control flow analysis [SWD17, NRM+17, QSM15b],
and re-labeling of stripped binaries [JRM11, HIT+18, PECK20]. On the
code similarity side, we have seen contributions for pure similarity compar-
isons [Zyn], or involving code clone detectors [FFCD14, DFC19, HYD17].
However, some of these works rely on databases of function fingerprints
which are difficult to generate in real use-cases (and in particular on em-
bedded systems, due to the diversity of libraries and compiler toolchains).

5.1. Introduction 93

Others approaches require ground-truth information such as an unstripped
library to compare with a target binary.

The most recent contribution with a similar goal is CodeCut [evm], a
tool measuring the call directionality within code modules to detect the
boundaries of object files. In particular, while functions at the beginning
of a module should call higher addresses, the directionality of function calls
switches in the opposite direction towards the end of the module. CodeCut
has been designed to aid the analysis of embedded operating systems linked
into a single executable. However, we tested CodeCut on statically linked
ELF binaries and noticed that its assumption on the call directionality tends
to produce more boundaries than the actual ones, often resulting in many
virtual object files of few functions each.

To the best of our knowledge, we still lack a technique that can be used
to automatically recognize user-defined code in arbitrary statically linked
programs. To cover this gap, in this chapter we present a novel approach to
identify the boundary between user-defined code and library code in stat-
ically linked ELF files. We implemented our approach in a tool named
BinCut, which works on the functions call graph to extract code module
dependencies from the spatial layout of a binary. It then employs a search
algorithm to find all the possible boundaries (cut points) and then employ
an extendable set of heuristics to select only the most suitable cuts. Finally,
we build a classification model to pre-select the heuristic that provides the
best result on each target binary. We are aware that our approach does not
yet provide the perfect solution to the problem of function and library iden-
tification, but it rather gives insights based on the internal characteristics
of a statically linked file.

In this chapter we make the following contributions:

• We present binary layout analysis to explore (in)dependencies across
code modules.

• We present BinCut, our system to identify the boundary between user
and libraries code in statically linked programs.

• We provide an evaluation of BinCut on a dataset made of 222 open-
source binaries for x64 (from generic tools to complex packages) and
a collection of 11,471 IoT malware for MIPS.

• We present a case study of a real BinCut use-case involving code
similarity of malicious statically linked samples.

BinCut can find the boundary function between user and library code
with an average deviation error of less than 2% from the real function.

94 94

Finally, we will talk about some known limitations of the technique and
present our concluding remarks.

5.2 Overview

In this section we present our code boundaries recognition system, with
an overview of the main components involved. Our method is illustrated
over five main steps in Figure 5.1. We start by disassembling the binary as
shown in Figure 5.1(a) to identify its functions. The detection of the function
entry points is a necessary building block, since the functions are used to
reconstruct the call graph represented in Figure 5.1(b). At the same time,
we capture the address of themain function (the red elements in the figures)
and use it as a hint later in the analysis, since main most likely belongs to
user code. Later on, in Figure 5.1(c) we represent the call graph as an
adjacency matrix. The core idea is that functions belonging to the same
object file (and library) will usually call more neighboring functions than
code from other modules. As a consequence of spatial locality, if we look at
the adjacency matrix, each code module should be naturally clustered in a
limited area of the program address space. We detect localized regions of
code using a reverse approach. We scan the adjacency matrix to discover the
empty largest regions or, in other words, we mark the sets of function not
doing any localized calls. This step is represented in Figure 5.1(d). Finally,
we use a set of heuristics to pinpoint candidate cut points and choose the
most relevant among them through a classification process. The cut point
given as output will be the boundary between user-defined code and library
code, as illustrated in Figure 5.1(e).

5.2.1 Static Analysis

Given a statically linked program, it is important to detect as many func-
tions start addresses as possible to minimize the loss of precision in the
following analysis steps. Our system relies on the function detection algo-
rithm of IDA Pro, even though other disassemblers may perfectly fit into
our system. We use IDA Pro to extract three types of information: the
address of main, the call graph, and the list of data references.

When a binary is both stripped and statically linked—the worst case for
binary analysis—the analyst can only rely on a limited set of information.
For example, the entry point (commonly named as _start) is the initial
trampoline to user code for the binary execution. Developers are free to
define their own customized start routine, but the one provided by libc

5.2. Overview 95

...

804004bd: xor eax,eax

804004bf: jrcxz 804004cf

804004c1:	inc rax

804004c4:	mov rdx,rcx

804004c7:	dec rdx

804004ca:	and rcx,rdx

804004cd:	jmp 804004bf

804004cf:	mov rdi,0x0

...

(a) Disassembled binary code. (b) Function call graph.

(c) Adjacency matrix. (d) Discovery and analysis
of empty regions.

(e) Identification of
user code area.

Figure 5.1: An overview of the steps to identify user code in statically linked
binaries.

has long been the de-facto standard for the compilation of Linux software.
In particular, the C Runtime objects (CRT) provide bootstrap code that
is executed before jumping to main. We follow the disassembly of _start
until we reach __libc_start_main and extract the address ofmain from its
arguments. Other flavors of C libraries work similarly e.g., uClibc, mostly
used in embedded devices, thus we are not limited to Glibc only. While the
bootstrap code is normally linked at lower addresses, the location of main

(thus the user-defined code) depends on the order in which the object files
have been linked statically. It is important to note that we cannot assume
that the user code is always linked before the libraries, since their actual
order in the context of the linking process can be controlled in a fine-grained
manner.

IDA Pro is also used to construct the call graph of the functions detected
in the binary. When the sections’ information of the ELF is available, we
consider only the functions belonging to .text and discard the executable
code possibly discovered elsewhere (e.g. .plt, .init, .fini or data.) On the
other hand, if the binary is fully stripped—thus there is no knowledge of
sections—we extract all the functions of the segment having the execute
permission bit set. We then scan the cross-references of every function to
build the final call graph of the program under analysis. The graph is stored
as an adjacency matrix indexed by caller (rows) and callee (columns) with
1s where there is an edge between the two and 0s where such edge does not

96 96

exist in the code.
Finally, we use static analysis to collect specific data references. We

consider only the data references matching the following three conditions:

• the data address is referenced by at least one function in our graph;

• the address is not flagged as code by IDA Pro;

• the address is part of a segment with write permissions.

In other words, we do not consider the variables containing function pointers
and those which are in read-only areas. We give more details about the
limitations of the latter and how we use the data references in Chapter 5.2.3.

5.2.2 Binary Layout Analysis

The intuition behind the method we use to isolate user-defined code from
statically linked libraries can be visualized graphically. Figure 5.2 contains
the plots of the adjacency matrix computed on the famous Linux malware
Mirai, busybox, and Python. All the binaries are compiled and statically
linked respectively with gcc 7.5.0 and ld 2.30. In each figure, we draw a red
line to show the position of main, and black lines representing the bound-
aries of the libraries linked into the final executable. The green squares
highlight the region that we want to recognize and extract with our tool,
as they correspond to the areas of user-defined code. The linker can place
specific object files even before the user-defined code e.g., libc initialization
routines. This case can be recognized by the presence of sparse edges below
the green squares. The three binaries in Figure 5.2 differ in size, ranging
from about 1,000 functions to more than 6,000, and in their linking prop-
erties. Mirai and Python have the user code at lower addresses, but the
first covers less than 5% of the all functions in the binary, while the second
covers more than 50% of the binary. In contrast, the user code of busybox
has been linked at higher addresses—after the embedded libraries.

The geometric layout of the call graph represented as adjacency matrix,
made us refer to this analysis phase as binary layout analysis. We can
recognize from the plots that functions within the same module tend to
be naturally clustered together in square shapes arranged on a staircase
pattern. However, these regions do not have perfectly well-defined and
dense square shapes, because it is never the case that all the functions in a
module call each other. A statically linked program can indeed have many
pairs of functions without any relationship. For this reason, we consider
the opposite problem: The layout analysis step is based on the research

5.2. Overview 97

(a) Mirai (b) Busybox 1.31.1 (c) Python 3.8.5

Figure 5.2: Examples of adjacency matrices for three binaries.

of sets of contiguous functions that are not calling any other contiguous
portion of code. We scan the adjacency matrix by row and columns to
look for the biggest empty regions with a corner on the diagonal. By empty

we mean that there are no edges between the functions on the rows and
columns. We define the corner found on the diagonal as a cut point. This
condition allows us to divide the adjacency matrix into four sub-matrices:
the region we already marked as blank, the same area flipped across the
diagonal, and the two complementary regions which cover one or more code
modules each. The first two regions group together inter-module function
calls, whereas the other two also include intra-module function calls. In
addition to this, the empty region can be either on the lower triangular
matrix or on the upper part, as a result of the linking process. If most of
the function calls are towards higher addresses the lower triangular matrix
will be less dense. Instead, the upper triangular matrix will be less dense if
most of the calls are towards lower addresses.

We continue the research of empty regions recursively over the two sub-
matrices defined along the diagonal. The analysis continues until no more
new cut points are found. A cut point (and the relative blank area) is valid
only if it respects the following restrictions:

• the lower or upper triangular matrix (depending on the linking direc-
tionality) must contain at least one edge;

• the area of the empty region mirrored across the diagonal must contain
more edges (to satisfy and respect the directionality of function calls).

• the empty region must expand for at least 1/2 of the maximum area
that can be covered from the cut point (to deal with code modules
making intensive use of both backward and forward calls);

When a cut point is invalid, we continue the research on the same recursion

98 98

level. We will talk more about these heuristics and how they affect our
results in Chapter 5.3.

We store all the cut points in a binary tree where the root node contains
the point related to the biggest blank area in the adjacency matrix (the first
ever found), while the leaves represent the points for the smallest regions.

5.2.3 Global Variables

The linker usually places data and global variables after the code section and
grouped by library, unless the user provides specific customizations. The
way code sections access data (in particular global variables) can suggest
whether two pieces of code belongs to the same code unit or not. Variables
are generally tied to the module using them and not shared across libraries
and user-defined code. But while most of the data references happen in-
ternally to each module, there are some exceptions. The linker can reduce
multiple declarations of the same read-only variables to unique instances.
In other cases, constant values can be exported to library end-user or spe-
cial variables may control particular actions of a program, e.g., the I/O
streams in libc. However, a variable with write permissions should not be
shared unless it is protected for concurrent access from external sources.

We traverse all the data references collected by IDA Pro and for each
variable, we first extract its first and last access over the binary address
space, and then draw a line between each couple. Finally, we sum all the
lines to obtain a cumulative distribution in terms of possible accesses to
global variables. Figure 5.3 is an example of the cumulative distribution
of global variables for the compression utility tar. The black lines on the
function axis represent the boundaries across the user and all the libraries
linked into the executable. The references to global variables reach the high-
est values for the initial 500 functions approximately (the user code) to then
quickly decrease as we reach libtar. The distribution has strong variations
also across libraries except between libtar and libgnu, meaning that the first
does not introduce new references to global variables. This analysis step is
one of the heuristics we use for the user code boundary analysis. Curves
like the one in Figure 5.3 may assist the boundary identification process
depending if the user code makes higher (or lower) usage of global variables
respect to libraries.

5.2.4 User Code Boundary Analysis

The challenging nature of statically linked binaries does not give any
insights on the semantic of the libraries being used, their size, and the order

5.2. Overview 99

0 500 1000 1500 2000 2500
Function

0

20

40

60

80

100

120

G
lo

ba
l v

ar
ia

bl
es

libgc
c_eh

.a

libc.
a

libgn
u.a

libta
r.auser

code

Figure 5.3: Cumulative distribution of global variables accesses for tar 1.32

in which they are located in the final executable. Therefore, our system
needs to work without any knowledge of the binary under analysis. To
overcome this limitation, we rely on four heuristics to select candidate cut
points out of all the ones identified by the binary layout analysis. We call
this task user code boundary analysis since it gives as output the functions
that most likely represent the boundary between user and library code. We
discuss below the implementation details of the heuristics and then report
about their accuracy in Chapter 5.3.2.

Root cut point. The larger the empty region we found during the binary
layout analysis is, the more likely its cut point falls between user and
library code or between two libraries. While small regions can be less
accurate and eventually fall within the same code module (since our search
algorithm is recursive), our experiments show that the largest empty region
found with our algorithm, normally represents a true separation between
independent modules. This heuristic performs the best when the size of
the user code is comparable with the total size of the libraries.

High-impact cut point. Similar to the previous heuristic, here we
consider the regions found by the first two levels of recursion, and select as
candidate cut point the one that is closer to main. This heuristic suffers
when the user portion of code is negligible compared to the overall number
of functions in the binary. We address this case with the following heuristic.

Main-closest cut point. As we said, sometimes the user-defined code

100 100

only covers a small percentage of the entire executable. For example, the
SSH daemon sshd from the openssh suite counts 6,571 compiled functions.
However, the user functions represent roughly 5% of the total. We found
that in these situations the candidate cut point would be the one that
is closer to the function main. Selecting the main-closest cut point does
not involve any considerations on the size of the annexed empty region.
Thus, we prefer to discard all the regions with an area below the median
of all the areas found in the binary layout analysis. As already explained
in the previous heuristics, regions that are too small correspond mostly to
false-positive cut points.

Data-based cut point. This heuristic is based on the global variables
analysis we described in Chapter 5.2.3, and we proceed as follows. First,
we apply a Savitzky–Golay filter [SG64] on the curve of the cumulative
distribution computed on the number of references to global variables (i.e.,
Figure 5.3). While the purpose of this filter is to smooth the curve, we
also want to make sure that the most important variations on its trend are
preserved. After that, we extract the subcurve delimited by the cut point
of the first empty region (found by the binary layout analysis module), and
consider only the portion where main is included. We do this since the user
code boundary will fall in this restricted area. At this point, we compute the
median of the subcurve and find the function that is between the longest
sequences above and below the median. Finally, we consider the empty
region closest to this function and declare it the respective candidate cut
point. This heuristic is designed to cope with binaries where the user code
makes an intensive use of global variables.

5.2.5 Boundaries Classification and Selection

The analysis modules described above give strong feedback about where the
binary is to be cut to discard the libraries. An analyst can look at the plot of
the binary layout to understand where is the user code, and she can get more
rational suggestions by using the user code boundary analysis module. This
makes sense in the context of reverse engineering and manual inspection of
unknown binaries. However, we believe there is value in having an easy-
to-use tool that takes a binary and provides a fully automated answer that
does not involve any manual expertise.

For this reason, the last module of our system implements a data classi-
fication model to output only a single cut point. The classification process
is based on numerical features which are static characteristics of the binary
(e.g., number of functions and number of backward and forward calls), or

5.2. Overview 101

features collected upon the first three levels of recursive search of cut points.
We report a detailed list of features in Table 5.1.

For example, we use as features the overall number of cut points, metrics
on the empty regions tied to them, or the depth of the cut points in the
tree which stores them. In total, we extract 43 features, which we then use
to train a Random Forest classifier to predict the most-likely cut point.

The choice of the classifier is based on three considerations:

• The domain of our features is the set of real numbers IR, and we need
a classifier that is robust to high numerical variations (e.g., a binary
can have 100 or 10,000 functions).

• Feature normalization can be an issue on volatile numbers.

• The training phase on large datasets should be parallelizable.

We evaluate the model using K-fold cross-validation and report on both
its performances and results in the following section.

Table 5.1: List of features used for classification.

Feature name: Description

num_functions: Number of functions recognized
back_forw_calls: If the binary has mostly backward for forward calls
tree_nodes: Nodes found during the recursive search
tree_levels: Maximum level of recursion
fp: Number of empty areas recognized as false positive
min_area: Area of the smallest empty region
max_area: Area of the biggest empty region
mean_area: Average surface area of empty regions
med_area: Median surface area of empty regions
std_area: Standard deviation of empty regions
var_area: Variance of empty regions
node_cut*: Cut point of the region
node_area*: Area of the region
node_global*: Number of globals crossing the region
node_level*: Level of recursion
*Features computed for each node on the first three recursion levels (total 32)

102 102

5.3 Results

In this section we present an overview of the results obtained with our
system. We tested BinCut on over 200 statically linked ELF files containing
hundreds to many thousands of functions, some of them with more complex
compilation customizations. Overall, our tool was able to identify the exact
cut point between code and libraries for 13 binaries, and it made an average
error below 2% in the function boundaries in the remaining cases.

We also performed an additional experiment on more than 10k malicious
samples from the dataset described in Chapter 4.2. In this second exper-
iment, BinCut achieved a mean error below 1% and found the perfect cut
for over 35% of the samples in the dataset. Finally, we used the malicious
dataset to evaluate the automated usage of BinCut through a multi-class
classifier.

5.3.1 Dataset

BinCut supports all executable ELF files regardless of the underlying archi-
tecture. We collected some of the most used software packages for Linux-
based distributions in order to keep our experiments as much realistic as
possible. We further enlarged the dataset with complex binaries and tested
BinCut under circumstances which are normally more difficult to handle.
Our final dataset consists of 222 ELF programs for x64 architecture stat-
ically compiled with their default building scripts. Moreover, we produced
the linker map file for each binary and used it as ground truth to measure
how far our tool diverges from the real boundary between user code and
libraries.

Our dataset needed to be compiled manually, thus limiting the number
of programs we could use in this first experiment. In fact, we needed to
satisfy all the static dependencies and edit the makefiles to add support for
the generation of the map files. This operation was often time-consuming,
especially for packages that did not offer direct support for static linking.

Table 5.2 reports the programs included in the dataset and gives an
overview of their characteristics (e.g., number of functions, number of li-
braries, and the percentage of user functions). The binaries range from
588 functions for mirai to almost 21k for ffmpeg and are spread over six
libraries on average. Another feature that may affect the behavior of our
system—independently from the number of functions and libraries—is the
percentage of user code in a binary. For this reason, we compiled binaries
like vim where the portion of user code covers up to 76.6% of the entire
binary.

5.3. Results 103

Table 5.2: Dataset of open-source packages.

Package Bins No.
Functions Libraries User Code(%)

Min Max Min Max Min Max

Mirai 2 588 589 4 12.9% 12.93%

coreutils 8.32 107 865 1530 4 7 3.4% 10.6%

sysvinit 2.97 14 861 1096 4 5 4.02% 7.12%

gzip 1.10 1 1082 5 10.72%

diffutils 3.7 4 966 1372 5 4.87% 9.84%

debianutils 4.11.1 3 1060 1221 3 2.77% 3.19%

findutils 4.6.0 6 982 1736 5 7 3.87% 17.51%

sed 4.8 1 1269 5 9.69%

tar 1.32 2 1167 2530 4 5 3.17% 21.46%

dropbear 2020.80 4 1821 2419 6 9 13.95% 21.24%

binutils 2.34 18 860 3464 4 10 1.92% 21.91%

busybox 1.31.1 1 4703 7 37.3%

openssh 7.6p1 8 1388 6538 7 12 0.89% 8.05%

vim 8.2.0736 1 6503 7 76.63%

Python 3.8.5 1 6653 9 74.01%

qemu 5.0.0 36 3869 14741 9 11 28.2% 69.66%

radare2 1.6.0-git 11 2355 17313 8 0.29% 5.35%

ffmpeg 4.2.2 2 20536 20575 14 8.95% 9.05%

Total 222

We also evaluated BinCut on malicious samples and tested its usability
in the field of malware analysis. The second dataset counts 11,471 unstripped
IoT malware compiled for MIPS. Given that the unavailability of the source
code makes it impossible to generate the map files, this time we identified
the true user boundary using the debug symbols, as already described in
Chapter 4.4.2.

5.3.2 User Code Identification

Our approach uses a search algorithm to inspect the geometric layout of a
binary and four heuristics that allow the analyst to only focus on the most
probable cut points. To evaluate the performances of BinCut, we measured
the error of each heuristic taken separately. We define as error the distance
between the cut point observed with a heuristic and the true user-libraries
boundary, thus we count the number of functions between the two.

104 104

Table
5.3:

H
euristicsperform

ancesgrouped
by

softw
are

package.
Functionsand

heuristicsare
the

average
overB

ins
N
o.

P
a

c
k

a
g

e
F

u
n

c
tio

n
s

D
-c

u
t

(%
)

M
-c

u
t

(%
)

H
-c

u
t

(%
)

R
-c

u
t

(%
)

M
ira

i
5

8
8

4
1
(6
.9

7
%
)

6
(1

.0
2
%
)

6
(1

.0
2
%
)

6
(1

.0
2
%
)

sy
sv
in
it

2
.9

7
9

9
3

3
4
8
(3

5
.11%

)
6
(0

.6
5
%
)

2
4
1
(2

4
.2

7
%
)

8
18

(8
2
.6

9
%
)

co
reu

tils
8
.3

2
10

5
9

4
4
(4
.0

9
%
)

1
6
(1

.4
5
%
)

3
8
(3
.3

8
%
)

12
3
(11.5

3
%
)

g
zip

1.10
10

8
2

2
4
(2

.2
2
%
)

7
7
(7
.12

%
)

7
7
(7
.12

%
)

4
7
(4
.3

4
%
)

d
iff
u
tils

3
.7

10
9

2
3

5
(3
.16

%
)

2
4
(1

.8
5
%
)

4
0
(3
.8

5
%
)

118
(10

.0
2
%
)

d
eb

ia
n
u
tils

4
.11.1

112
1

15
7
(13

.8
4
%
)

9
(0

.7
7
%
)

3
5

6
(3

1.2
8
%
)

4
3

2
(3

7
.9

9
%
)

fi
n
d
u
tils

4
.6
.0

117
6

3
2
(2
.8

5
%
)

5
6
(3
.7

3
%
)

2
4
(2

.2
6
%
)

117
(9
.4

2
%
)

sed
4
.8

12
6

9
1
(0

.0
8
%
)

74
(5
.8

3
%
)

4
8
(3
.7

8
%
)

2
3

2
(18

.2
8
%
)

ta
r

1.3
2

18
4
8

3
0
(1.6

4
%
)

2
5

4
(10

.2
5
%
)

2
6
(1

.2
2
%
)

2
6

8
(12

.3
%
)

d
ro
p
b
ea
r

2
0

2
0
.8

0
2

10
6

4
6
(2

.4
1
%
)

3
4
1
(15

.7
2
%
)

9
0
(4
.3

9
%
)

4
8

0
(2

2
.8

%
)

b
in
u
tils

2
.3

4
2

5
6

6
6

11
(2

3
.8

5
%
)

1
3

3
(4

.6
1
%
)

6
6

6
(2

5
.5

7
%
)

12
4
8
(4

8
.12

%
)

b
u
sy
b
o
x

1.3
1.1

4
7
0

3
16

7
1
(3

5
.5

3
%
)

2
9
(0
.6

2
%
)

0
(0

.0
%
)

0
(0

.0
%
)

o
p
en

ssh
7
.6
p

1
4
8

3
3

16
2

0
(2

7
.9

9
%
)

6
2
(1

.5
1
%
)

5
2

4
(10

.2
7
%
)

3
4
7
8
(6

0
.7

1%
)

v
im

8
.2
.0

7
3

6
6

5
0

3
12

8
7
(19

.7
9
%
)

4
8

9
3
(7

5
.2

4
%
)

5
2

8
(8
.12

%
)

0
(0

.0
%
)

P
y
th
o
n

3
.8
.5

6
6

5
3

19
3

8
(2

9
.13

%
)

4
8

2
7
(7

2
.5

5
%
)

10
5

3
(15

.8
3
%
)

0
(0

.0
%
)

q
em

u
5
.0
.0

8
6

8
4

18
8

0
(18

.4
4
%
)

3
7
8

3
(4

1.7
6
%
)

5
6

3
(5

.0
3
%
)

14
7
8
(17

.9
3
%
)

ra
d
a
re2

1.6
.0
-g
it

15
9

4
3

2
8

2
3
(17

.9
2
%
)

2
1
(0

.2
2
%
)

7
5

0
9
(4

5
.0

%
)

115
8

3
(7

0
.3

%
)

ff
m
p
eg

4
.2
.2

2
0

5
5

5
10

2
8
(5
.0

%
)

1
0

6
(0

.5
2
%
)

2
3

7
0
(11.5

3
%
)

4
9

17
(2

3
.9

2
%
)

5.3. Results 105

Table 5.4: Cut error between user and libraries code. Cut error is the
number of functions between the cut point and the real boundary.

Dataset Bins No.
Perfect Cut error(%)

Cut Mean Median Std

Benign 222 13 (5.86%) 71.54 (1.43%) 9 (0.84%) 205.93 (1.74%)

Malware 11471 4241 (36.97%) 0.94 (0.29%) 1 (0.39%) 5.52 (0.49%)

Table 5.3 shows the results obtained on the dataset of open-source pro-
grams. We group the results by software package and report the numbers
as the average over the number of binaries. From the table we can notice
that there is no strict relationship between the results found by BinCut and
features like the number of functions or the libraries linked into the exe-
cutable image. For example, M-cut (main-closest cut point) is among the
best heuristics for mirai with a boundary error of 6 functions, but it is also
the one achieving the smallest error on ffmpeg. However, while the latter
has 20k more functions, they both have the user code extending for roughly
10% of the binary. On the other hand, R-cut (root cut point) appears to be
the best method when either the binary layout is really simple (e.g., mirai),
or the user code takes a considerable space of the binary. R-cut found a
perfect boundary match on binaries like vim or python with the user code
extension of about 75%. D-cut (data-based cut point) instead improves the
cut point when the usage of global data is unbalanced between user code
and libraries, like in sed and gzip. In these two cases, the heuristic scoring
as second is H-cut (high-impact cut point), which would otherwise return a
cut point including the user code and a library perfectly aligned with it.

Overall, by considering the best cut point heuristic, our system proposes
a boundary with an average distance from the real cut point of about
71 functions and 1.43% of the total number of functions in the binary.
BinCut found the real cut point on 13 binaries out of 222. In table 5.4 we
report also the median of the errors and the standard deviation to account
for packages like coreutils—representing the 50% of the dataset with 107
binaries.

Finally, we repeated the same measurements over the malware dataset
(Table 5.4). BinCut was able to find the correct cut point for 4,241 samples
(37% of the dataset) and a total mean error of less than 1%. Moreover, the
standard deviation of the error went down to 5 functions, and shows how
the behavior of BinCut is more stable despite the increase in the number

106 106

Table 5.5: Classification report for the malware dataset.

Heuristic Precision Recall F1 Support

D-cut 0.93 0.95 0.94 243

M-cut 0.99 0.99 0.99 3109

R-cut 1.00 0.94 0.97 86

H-cut 1.00 0.67 0.80 3

of ELF files. We give credit for this higher success rate to two factors.
First of all, most of the IoT malware is more rudimentary than the binaries
we compiled from open-source bundles. For instance, families like mirai,
tsunami or gafgyt are only statically linked with libc and libgcc. Second, the
malware dataset is dominated (in terms of number of samples) by few big
families, thus reducing the diversity of compiler options and toolchains in
the group.

5.3.3 Classification

The experiments conducted on the malware dataset give insights on the
efficiency of BinCut over a real use-case. In this situation, our tool must be
able to work autonomously without the analyst’s intervention.

We split the malware dataset into a training set (70%) and a test set
(30%) to build a classification model based on a Random Forests classi-
fier. Moreover, we observed that the dataset contains minority classes e.g.,
heuristics rarely considered as the best option. We cannot know in advance
the heuristic that will perform better for a specific sample, thus we address
this unbalance by using class weighting. Specifically, we place a heavier
penalty on misclassifying the minority classes.

Table 5.5 shows the classification report using 10-fold cross-validation.
From a detailed review of the results, the binary layout analysis of BinCut
can correctly characterize the malware samples with an accuracy of 0.99.
The class with the fewer misclassification errors is M-cut, suggesting that
this heuristic is well suited for IoT malware. However, being M-cut also the
class with the largest support in the test set, we believe that the accuracy
of the model points out how BinCut performs on this particular dataset,
rather than a unique way to represent its usability.

5.4. Case Study 107

5.4 Case Study

BinCut can have many applications, one of them being to aid in code sim-
ilarity tasks of stripped binaries. Malware analysis for variants recognition
falls into this category. The problem with stripped malware is that we
cannot prevent the binary comparisons of third-party libraries, normally
without any special value to the analyst.

In Chapter 4.4 we used debug symbols to filter unwanted functions,
rather than a solution to cut the user portion of code from the malware. This
required to use code similarity to propagate symbols from the unstripped to
stripped samples. However, this means that we could only compare stripped
binaries when the symbol propagation succeeded. Moreover, this approach
was able to discard the libraries but also all the user-based functions that
remained unnamed.

We now show that BinCut can help to overcome these limitations,
effectively enabling us to discover new malware relationships that would
remain otherwise undetected. Our experiment is based on the methodology
described in Chapter 4.4, that we extend by taking advantage of BinCut to
automatically recognize the user code also in the stripped malware.

We selected from the malware dataset all the samples labeled as tsunami,
counting for a total of 952 binaries. After that, we generated the phylo-
genetic tree based on their code similarity. Figure 5.4 displays the lineage
graph of tsunami samples for the MIPS architecture. We color the graph
according to whether the samples are unstripped (in pink) or stripped (in
green). From a first overview of the figure, the stripped samples immedi-
ately show similarities not appearing among them in previous lineage graphs
(see Figure 5.5)—since stripped/stripped similarity was only possible in the
presence of propagated symbols.

Thanks to BinCut the lineage graph of tsunami now reveals new clusters
of stripped samples, and can correctly show relationships among binaries
that were packed with UPX (but unpacked for the analysis). In particular,
the regions marked as [A] and [B] in Figure 5.4 contain stripped samples
of the muhstik family. Muhstik is a Linux botnet known to infect GPON
routers, which recently started to attack also web services. It is made of
two components: a scanner to attack vulnerable devices (variant [A]) and
an implant to execute malicious actions on the infected machine (variant
[B]). After a detailed manual analysis of these samples, we can confirm that
the lineage graph can precisely differentiate between the scanner and the
implant components, recognizes different time-frames of development, and

108 108

spots new functionalities introduced over time.
We also believe that current Antivirus Softwares classify these malware

samples with the wrong label. Most of them use tsunami probably because
muhstik implants ([B]) are known to reuse its code. Indeed these samples
are connected to our lineage graph because the implant shares common code
with tsunami. Other AVs instead use the label PNScan, especially for the
scanner component ([A]). We believe this is a consequence of the fact that
some muhstik samples integrate the open-source network scanner tool called
PNScan. However, the scanner has a weak connection to the lineage graph
for a BinCut inaccuracy, and not because it shares code with tsunami. We
found only 3 functions with a similarity match but all of them belonging to
uClibc code. On the contrary, we can correctly separate the two modules
and aggregate similar samples.

5.5 Limitations

Our solution to identify the boundary between user and library code com-
bines information extracted from function dependencies with the functions
spatial layout in the binary object. Since a stripped statically linked binary
does not offer any information about the number and location of library
code, we had to resort to a set of heuristics to aid the user code boundary
analysis.

In particular, our binary layout analysis step tries to detect independent
code modules by making assumptions based on the number of backward and
forward calls in the binary. In fact, in our experiments we saw that the call
directionality depends on the linking order. While our approach cannot
work in the extreme case of symmetric directionality, we believe that a
binary completely based on circular dependencies would be impractical.
Similarly, our approach would not handle correctly cases in which the user
code objects are manually linked as both head and tail of a third-party
library (in this situation the result provided by our tool for user code would
include also the library in between). Even though such configurations are
technically possible, we never encountered them in any of our experiments.

Another fundamental part of our analysis is based on the intra-module
density of function calls. Functions that are defined but remain unreferenced
decrease the density, thus lowering the precision of the boundary point. We
incur a similar issue when the user portion of the code is very small compared
to the size of the linked libraries. One example could be a statically linked
executable with only a unique user routine.

Automated binary analysis is a key element when working on several

5.5. Limitations 109

Stripped samples

Unstripped samples

A

B

Figure 5.4: Lineage graph of Tsunami samples for MIPS with BinCut ex-
tension.

110 110

Stripped samples

Unstripped samples

Figure 5.5: Lineage graph of Tsunami samples for MIPS without BinCut
extension.

5.6. Conclusions 111

binaries. We used BinCut with a multi-class classifier so that the analyst
is given only a unique cut point out of all the possibilities. The classifica-
tion model that we trained on the malware dataset gives promising results.
However, these binaries cannot be considered complex pieces of software
nor representative of an average statically linked program. Even though we
think that a more comprehensive dataset could allow building a generic clas-
sification model, unfortunately the nature of our classes (the heuristics for
boundary identification) makes this a difficult task. Having balanced classes
in the train set would require the analyst to compile several programs and
manually inspect all the cut points returned by BinCut.

5.6 Conclusions

In this chapter we presented a novel approach to identify the boundary
between user-defined and library code statically linked into the same exe-
cutable image. We implemented our technique in a tool named BinCut that
we believe can provide a useful support for both reverse engineering in gen-
eral and malware analysis in particular. BinCut operates at the call graph
level in order to recognize code modules dependencies by making consider-
ations on their spatial locality. At the core of our approach, we analyze the
geometric layout of function calls to find a set of cut points, and employ an
extensible set of heuristics to reduce the false positives. Finally, we use a
Random Forests classifier to select the most promising result among those
returned by the different heuristics.

We evaluated BinCut on 222 statically linked ELF executables and over
10K malware samples (for which we had ground-truth information) and
discuss both the results and the limitations. We then show how the use of
Bincut can improve on the results of our previous lineage analysis study, by
replacing the symbol propagation phase described in Chapter 4.4.

112 112

Chapter 6

Conclusion and Future Work

113

114 114

6.1 Future work

Linux and IoT malware are continuously evolving. It is undeniable that
their current footprint is by no means comparable to the threat landscape
of ten years ago.

If we combine the fact that interconnected devices will not be turned
off any time soon with the recent interest from malware authors, we be-
lieve that the analysis of Linux-based malware will soon become an estab-
lished research area, alongside the more traditional studies focusing on the
Windows and Android ecosystems. Nowadays, Linux malware has also at-
tracted the focus of nation-states and private intelligence agencies, often
related to the development of debatable surveillance suites. For instance,
in 2020 Amnesty International published a full report on FinSpy [amn20],
a German-made spyware targeting Egyptian human rights defenders and
supporting Windows, macOS, and Linux operating systems. This malware
uses some of the persistence techniques we already covered in Chapter 3.

This thesis does not offer any final solution but wants instead to serve
as a starting point for future research works in both academia and indus-
try. Our experiments show that the analysis of Linux and IoT malware is
a challenging task, even on today’s rudimentary samples. Unfortunately,
the ELF file format tells us the required CPU architecture but it remains
agnostic about any other detail of the underlying system. To make things
worse, when an analyst downloads samples from VirusTotal, she has no way
of knowing their origin or intended targets and the binary themselves are
not telling whether the analyst is dealing with desktop programs or with
binaries designed to run on a smart speaker.

This problem remains open and in our study we had to resort to a
number of best effort heuristics to filter unwanted programs like Android
executables and detect the platform needed to run the remaining samples.
Furthermore, there is still plenty of room to improve our dynamic analysis
pipeline. While it is hard to properly configure the right execution envi-
ronment of unknown devices, we can follow an iterative approach to create
ad-hoc sandboxes. Our analysis pipeline already goes in this direction but
only collects the dynamic libraries required to execute the sample. We can
think of a malware which absolutely needs systemd for persistence, or a
particular hardware peripheral attached to the emulator. If any of the two
is not available, then the malware could fail to execute properly, and thus
remain unexplored.

Throughout our work, we observed the rise of script-based malware,
usually under the form of a bash, python, or perl scripts. These scripts

6.1. Future work 115

initially served as droppers for multi-stage executions, until they started
to implement malicious behaviors directly. To the best of our knowledge,
currently there are no works designed to comprehensively analyze script-
based malware. Dynamically tracing the script interpreters would offer a
quick and straightforward solution, but this approach would also introduce
a significant amount of ‘noise’ to the results. Instead, we think it is possible
to design systems that provide a single unified behavioral reports which only
tracks the malicious behavior, as we did with our analysis pipeline for ELF
malware.

The work presented in this thesis on the genealogy of IoT malware raised
questions on the current effectiveness of AV products for Linux. In particu-
lar, we observed how a high ratio of code similarity can induce errors in AV
signatures. The same holds for packed malware. While it is true that we did
not see complex packers at the moment, an extremely simple compressor
based on UPX can still cause troubles for automated systems. Unfortu-
nately, the high volume of ELF malware is prohibitive to manually inspect
potentially mislabelled or unclassified samples. Following this line of re-
search, future contributions may want to look into systematic approaches
to evaluate the precision of Linux-based AV software.

Moving to the code similarity, we had to tackle specific challenges to
succeed in the analysis of statically linked and stripped ELF files. In the
beginning we completely relied on symbol-based heuristics to exclude li-
brary code, and then proposed a new system to automatically identify user-
code boundaries. Our goal was to give insights to the analyst about where
the user-code and the libraries are located. However, our approach looks
promising for future extensions. For example, it would be incredibly helpful
to recognize the boundaries between the libraries themselves. Our binary
layout analysis stage already work in this direction, even if a complete solu-
tion would require to address additional challenges. One interesting idea in
this direction could be to convert the adjacency matrix of a call graph into
a machine-learning assisted image processing problem.

116 116

6.2 Conclusion

This thesis presents the first comprehensive study of the feasibility and
challenges of binary analysis for Linux and IoT malware.

First, in Chapter 3 we propose an automated analysis pipeline specifi-
cally tailored to the analysis of this emerging threat. The pipeline served as
a basis to characterize, analyze, and understand the behavior of Linux mal-
ware samples. While the average complexity is still low, we already found
samples that adopt more complex techniques borrowed from their Windows
counterpart.

After studying how Linux malware implements malicious behaviors, in
Chapter 4 we investigated their evolution over time and the myriads of vari-
ants that are created at a very fast pace. In particular, we systematically
reconstruct the lineage of IoT malware families by using binary code simi-
larity to show their tangled relationships and the difficulty for AVs to track
them down correctly.

Last but not least, in Chapter 5 we focus our attention to the static
analysis of Linux programs and we propose a method to extract and
recognize user-defined code in statically linked binaries. Our experiments
show that discarding third library functions highly improves both binary
code similarity and reverse engineering efforts of malware.

I hope that my thesis will bring better visibility into malware infecting
Linux-based operating systems and IoT devices, and will assist researchers
and industries to further counteract this rapidly-increasing threat.

Appendices

117

Appendix A

French Summary

119

120 120

A.1 Introduction

Les systèmes d’exploitation Linux ont cessé d’être la plate-forme de niche
comme le penserait l’utilisateur moyen d’un ordinateur. Le monde dans
lequel nous vivons est également soutenu par les noyaux Linux, malgré la
façon dont Windows est naturellement répandu sur la grande majorité des
machines. Notre ère de l’“Internet des objets” pousse à l’adoption de ma-
chines à la sauce Linux, ce qui représente un grand pas en avant. Les
dispositifs embarqués, dont la logique était autrefois entièrement intégrée
au matériel, peuvent maintenant bénéficier d’une plus grande flexibilité et
d’une réduction des coûts de production. La tendance est à l’utilisation
d’une unité de traitement générique avec une couche logicielle de haut
niveau - un système d’exploitation - par-dessus. D’autre part, la course
à l’armement des systèmes IoT et Linux n’a pas pris la scène des logiciels
malveillants au dépourvu.

Les auteurs de logiciels malveillants ont récemment manifesté leur in-
térêt pour une plus grande variété de systèmes d’exploitation (par exemple
Linux) et pour des plateformes généralement construites sur un ensemble
d’hypothèses et de propriétés qui n’existent pas dans les ordinateurs per-
sonnels (par exemple les systèmes embarqués et les dispositifs IoT.) De
nos jours, les logiciels malveillants n’infectent pas seulement les ordinateurs
personnels et les serveurs, mais se répandent par le biais de millions de dis-
positifs connectés en permanence, par exemple les routeurs ou les caméras
IP. Alors que nos ordinateurs de bureau fonctionnent sur des architectures
x86, les systèmes embarqués s’appuient sur des processeurs ARM, MIPS
ou plus exotiques. Pire encore, il est de plus en plus fréquent de voir ap-
paraître la même famille de logiciels malveillants sous Windows, mais aussi
sous Linux et MacOS.

Les premiers virus et infecteurs Linux sont déjà apparus à la fin des
années 90, sous forme de menaces publiques ou souvent réalisées dans le
cadre de recherches privées. Les détails de bas niveau ont surtout vu le jour
sur des sites web personnels et des zines techniques. Ce type de contenu a
fasciné les responsables de la sécurité pendant des années, mais n’a jamais
réussi à percer le marché et les sociétés informatiques.

Les échantillons de logiciels malveillants sont historiquement connus
pour cibler le système d’exploitation Windows. C’est pourquoi nous nous
sommes engagés dans la recherche sur les logiciels malveillants Windows
au cours des deux dernières décennies, laissant un certain terrain libre aux
personnes désireuses d’exploiter d’autres plateformes à leur avantage. La
communauté des chercheurs a déployé de grands efforts dans l’analyse des

A.1. Introduction 121

logiciels malveillants Windows : de l’analyse statique de fichiers binaires
complexes aux méthodologies d’une analyse dynamique aussi exhaustive que
possible. Toutefois, nous pourrions nous inspirer des connaissances acquises
autour de Windows pour commencer enfin à nous attaquer au problème
des logiciels malveillants de Linux. Cette transition n’est pas gratuite et
nécessite de relever plusieurs défis spécifiques.

Mes recherches sont principalement basées sur l’étude d’échantillons bi-
naires téléchargés sur VirusTotal1 [urlb] entre 2015 et 2018, années où les
logiciels malveillants de Linux ont commencé à exploser et où l’opinion
publique a commencé à se comporter et à réagir en conséquence. Une fois
que nous avons un flux d’échantillons de Linux, nous devons faire face à
de multiples architectures et environnements d’exécution pour pouvoir les
analyser. Nous devons gérer des échantillons, des chargeurs et des bib-
liothèques liés dynamiquement, mais aussi les binaires liés statiquement
et dépouillés les plus exigeants. Nous voulons comprendre les comporte-
ments, les techniques, les propriétés qui les caractérisent, l’état actuel de
l’empaquetage, de l’évasion ou de la persistance. Pouvons-nous mesurer tout
cela ? Pouvons-nous l’automatiser ? De plus, le code source des familles
de logiciels malveillants les plus célèbres est accessible au public depuis des
années, parfois même avec des fuites. Quel est l’impact de la réutilisation
du code dans les logiciels malveillants de Linux et de l’IoT sur les scanners
antivirus (AV) ? Est-il possible de suivre les variantes d’une même famille
ou les nouvelles familles provenant de plusieurs bases de code ? Alors que
l’approche traditionnelle à cet effet est basée sur une mise en grappe statique
et dynamique basée sur les caractéristiques, l’essence simpliste des logiciels
malveillants Linux observée jusqu’à présent peut nécessiter des solutions sur
mesure comme la mise en grappe basée sur le code. Cependant, pour réaliser
la similarité du code dans un système où les programmes liés statiquement
sont la norme plus qu’une exception, il faut répondre à des questions en-
core ouvertes. Le programme lié statiquement analysé comporte-t-il des
bibliothèques de code intégrées ? Peut-on isoler la partie du code écrite par
l’utilisateur (ou l’auteur du malware) du code de la bibliothèque ?

Tout cela a déclenché des problèmes en cours de route, des problèmes
que cette thèse veut énoncer et souhaite aborder.
Ma thèse se veut un voyage à travers les questions soulevées ci-dessus. Un
voyage qui se caractérise par des défis binaires de bas niveau (par exemple,
l’analyse binaire) tout en passant par des études à grande échelle de milliers
de logiciels malveillants. Les contributions rapportées dans ce manuscrit

1service en ligne où les utilisateurs peuvent télécharger des éléments à inspecter avec

plus de 70 antivirus.

122 122

espèrent apporter un éclairage sur un sujet qui, à notre connaissance, n’a
pas encore reçu l’attention qu’il mérite.

Nous commençons par les bases, avec le chapitre 2, en donnant au lecteur
quelques informations sur le format de fichier ELF, utilisé dans les exécuta-
bles Linux, d’une importance vitale pour amorcer l’analyse. Nous prenons
en compte les progrès actuels et l’état de l’art de l’analyse binaire et des
logiciels malveillants sous Linux. Au chapitre 3, nous présentons un pipeline
d’analyse des logiciels malveillants sous Linux. Nous utilisons ce pipeline
pour mener la première étude de mesure à grande échelle et découvrir les as-
tuces et les techniques utilisées par les logiciels malveillants du monde réel.
Au chapitre 4, nous parlons de la reconstruction systématique de la généalo-
gie des familles de logiciels malveillants de l’IoT grâce à l’utilisation de la
similarité des codes binaires. Nous décrivons la fragmentation des familles
IoT et les performances des étiquettes antivirus dans leur reconnaissance.
Le chapitre 5 est une contribution au problème de la reconnaissance des
fonctions et des bibliothèques dans les binaires dépouillés. Nous décrivons
notre approche pour détecter les fonctions définies par l’utilisateur dans des
échantillons liés statiquement et “découper” les binaires bénins et malveil-
lants en conséquence, ce qui permet de supprimer le bruit du code de la
bibliothèque dans les travaux d’analyse binaire et des logiciels malveillants.
Enfin, nous apportons au chapitre 6 les conclusions, les leçons apprises et
les suggestions pour les travaux futurs.

A.2 Comprendre les logiciels malveillants de

Linux

Linux est une plate-forme majeure pour les ordinateurs de bureau et les
serveurs, mais il fait l’objet d’un grand consensus, même en ce qui con-
cerne les appareils de réseau et de nombreux petits appareils connectés. La
révolution de l’IoT pousse les entreprises à adopter des solutions faciles à
déployer, c’est-à-dire Linux, et le paysage des logiciels malveillants à réagir
en conséquence. Le nombre étonnant de dispositifs mal sécurisés connectés à
l’internet a récemment attiré l’attention des auteurs de logiciels malveillants.
Des services comme VirusTotal, utilisé par la communauté pour partager et
analyser des fichiers suspects, contiennent déjà des milliers et des milliers
de binaires Linux potentiellement malveillants. L’industrie des antivirus
a largement ignoré les programmes Linux malveillants et ce n’est qu’à la
fin de 2014 que VirusTotal a reconnu qu’il s’agissait d’une préoccupation
croissante pour la communauté de la sécurité [ZDn]. Pendant ce temps, les
ressources disponibles sont souvent limitées aux articles de blog publiés par

A.2. Comprendre les logiciels malveillants de Linux 123

des entreprises ou des chercheurs indépendants, et se limitent généralement
à l’analyse manuelle d’échantillons spécifiques. Le monde universitaire a
même été lent à réagir à ce changement, proposant peu de travaux systé-
matiques comme l’étude d’Antonakakis et al. [AAB+17] qui se concentrent
sur le comportement en réseau d’une seule famille, le botnet Mirai.

Nous souhaitons combler cette lacune en présentant la première étude
empirique à grande échelle menée pour caractériser et comprendre les logi-
ciels malveillants basés sur Linux, pour les appareils embarqués et les ordina-
teurs personnels. L’étude est basée sur un ensemble de données constitué de
fichiers ELF exécutables malveillants de 10,548 pour Linux collectés auprès
de VirusTotal entre novembre 2016 et novembre 2017, et couvrant plus de
dix architectures différentes. Nous avons utilisé AVClass [SRKC16a] pour
trouver un consensus sur les étiquettes des antivirus et pouvoir associer une
famille (108 au total) à 83% des échantillons de notre ensemble de données.

L’analyse des programmes Linux nécessite de relever des défis qui sont
un nouveau respect de l’analyse binaire de Windows :

• Target diversity - Il est généralement admis que le principal défi con-
siste à soutenir différentes architectures. Le fait que les logiciels
malveillants basés sur Linux puissent cibler un ensemble très diver-
sifié d’appareils complique grandement leur analyse. L’analyste doit
porter différents composants spécifiques à l’architecture pour pren-
dre en charge chaque architecture et doit tenir compte des informa-
tions intrinsèques contenues dans l’en-tête ELF. Par exemple, un pro-
gramme Linux lié dynamiquement peut spécifier un chargeur arbi-
traire et s’attendra à ce que certaines bibliothèques soient disponibles
dans le système cible. Une partie importante de notre ensemble de
données est liée avec uClibc ou musl. Le format de fichier ELF est
également utilisé dans d’autres systèmes d’exploitation compatibles
ELF, tels qu’Android ou FreeBSD. En principe, nous pourrions dis-
tinguer les programmes ELF pour Linux en regardant le champ “OS-
/ABI” dans leur en-tête. En pratique, cela n’aide que rarement et les
noyaux Linux actuels ignorent même ce champ.

• Static linking - Dans un binaire lié statiquement, toutes les dépen-
dances de la bibliothèque sont incluses dans celui-ci à la suite du pro-
cessus de compilation. La liaison statique offre une portabilité car
l’environnement cible n’a pas besoin d’installer les dépendances de la
bibliothèque, mais rend les programmes difficiles à désosser. Il in-
troduit également un autre défi beaucoup moins évident. Comme les
appels API vers le système de niveau supérieur sont intégrés dans le

124 124

binaire, les programmes Linux peuvent planter en cours d’exécution
si l’ABI du noyau est différente de ce qu’ils attendent (ou de ce qui a
été fourni par le système cible).

• Analysis environment - Un bac à sable d’analyse idéal devrait imiter
le plus fidèlement possible le système dans lequel l’échantillon analysé
était censé fonctionner. La diversité des cibles ne couvre qu’une par-
tie de la configuration de l’environnement. Un autre aspect est celui
des privilèges avec lesquels le programme doit s’exécuter. Si les sand-
boxes typiques exécutent les échantillons en tant qu’utilisateur non
privilégié, également pour empêcher un programme malveillant de
modifier le sandbox, un malware IoT peut avoir besoin des privilèges
root pour accéder à un périphérique particulier. En fait, les logiciels
malveillants pour Linux sont souvent écrits en supposant que leur code
s’exécutera avec les privilèges de l’utilisateur root.

• L’absence d’études antérieures - Ce domaine manque d’informations
sur le fonctionnement des logiciels malveillants basés sur Linux et d’un
ensemble de données complet non biaisé par rapport aux réseaux de
zombies typiques capturés par les honeypots. Il n’est pas clair com-
ment concevoir et mettre en œuvre un pipeline d’analyse spécifique-
ment adapté aux logiciels malveillants basés sur Linux. De plus, les
outils d’analyse construits jusqu’à présent sont adaptés aux caractéris-
tiques des échantillons de logiciels malveillants existants.

La conception et la mise en œuvre de notre pipeline d’analyse sont de-
venues un processus de suivi et d’erreur pour surmonter les défis décrits
ci-dessus. Notre pipeline comprend un ensemble de solutions de pointe ex-
istantes (telles que AVClass, IDA Pro, radare2 et Nucleus [ASB17]) et est
basé sur trois modules : analyse des fichiers et des métadonnées, analyse
statique et analyse dynamique. À notre connaissance, il s’agit du premier
travail d’analyse complète du paysage des logiciels malveillants sous Linux.

A.2.1 Analyse de l’infrastructure

L’analyse commence par l’inspection de l’en-tête de l’ELF. Nous mettons
en œuvre notre analyseur personnalisé pour le format ELF car les solutions
existantes étaient souvent incapables de traiter un en-tête malformé. Nous
extrayons un ensemble d’informations de chaque fichier pour comprendre
tout d’abord l’architecture matérielle. Nous excluons ensuite les fichiers
non pertinents pour notre analyse comme les bibliothèques partagées,
les fichiers corrompus ou les exécutables compilés pour d’autres systèmes

A.2. Comprendre les logiciels malveillants de Linux 125

d’exploitation. En même temps, les structures de fichiers anormales
peuvent être utilisées comme des routines d’anti-analyse ou empêcher les
outils existants de traiter correctement le malware. Enfin, nous avons
inséré AVClass dans le cadre de ce module. Nous avons collecté chaque
rapport VirusTotal pour chaque échantillon de l’ensemble de données afin
d’extraire toutes les étiquettes AV pour obtenir un nom normalisé pour la
famille de logiciels malveillants.

Le module d’analyse statique comprend deux tâches : l’analyse du code
binaire et l’identification de l’emballage. La première tâche s’appuie sur
des scripts IDA Pro personnalisés pour extraire plusieurs mesures de code,
des astuces d’assemblage et des mesures agrégées telles que l’entropie glis-
sante des différentes sections de code et de données. Ces informations sont
utilisées à des fins statistiques, mais aussi dans d’autres composantes de
l’analyse, par exemple pour identifier les comportements anti-analytiques
ou les échantillons emballés. La deuxième tâche de cette phase d’analyse
combine toutes les informations extraites jusqu’à présent pour identifier les
binaires ELF probablement emballés. Nous avons procédé à un déballage
statique de tous les échantillons pour lesquels cela était possible, par ex-
emple des fichiers compressés avec UPX. Les nouveaux fichiers obtenus à
ce stade ont été renvoyés au module d’analyse statique. Les échantillons
que nous n’avons pas pu décompresser ont été marqués pour une tentative
dynamique plus fine.

Le module d’analyse dynamique est divisé en deux tâches principales.
D’une part, nous effectuons une analyse personnalisée de l’emballage et une
tentative de déballage, tandis que d’autre part, nous effectuons une exé-
cution complète du logiciel malveillant à l’intérieur d’un émulateur instru-
menté. Nous avons préparé des sandboxes virtualisés KVM pour les archi-
tectures x86 et x86-64 et des sandboxes émulés basés sur QEMU pour les
programmes ARM, MIPS et PowerPC. Chaque machine dispose de plusieurs
snapshots correspondant à une configuration différente au choix (par exem-
ple, exécution par l’utilisateur ou par le super-utilisateur, configuration des
chargeurs). Ces cinq sandboxes ont été imbriqués à l’intérieur d’une VM ex-
terne dédiée à l’envoi de chaque échantillon en fonction de son architecture
et de l’environnement nécessaire. Toutes les sandboxes s’appuient sur Sys-
temTap pour mettre en œuvre les sondes du noyau (kprobes) et les sondes de
l’utilisateur (uprobes) et collecter chaque appel système, avec ses paramètres
et son résultat, ainsi que des informations supplémentaires sur les fonctions
de manipulation des chaînes et de la mémoire lorsque cela est possible.

Chaque sandbox renvoie une trace complète qui rend compte du com-

126 126

portement du malware qui est analysé pour en extraire des informations
en retour. Nous pouvons identifier les composants manquants, détecter si
un échantillon a testé la permission de l’utilisateur ou tenté d’effectuer une
action qui a échoué en raison de permissions insuffisantes. Dans ce cas,
le module dynamique répète immédiatement l’analyse en sélectionnant la
machine avec la configuration racine.

Enfin, nous avons développé à partir de zéro un minuscule émula-
teur pour décompresser dynamiquement les variantes inconnues d’UPX.
L’émulateur—multi-architecture–mimique un ensemble limité d’appels sys-
tème utilisés par UPX pendant le processus de déballage. Cette approche
nous a permis de décompresser automatiquement tous les échantillons de
logiciels malveillants, sauf trois, dans notre ensemble de données.

A.2.2 Sous le capot

Nous fournissons des statistiques détaillées et une discussion des comporte-
ments intéressants que nous avons identifiés pour mieux comprendre com-
ment fonctionnent les logiciels malveillants basés sur Linux. Nous espérons
que les informations que nous offrons serviront de référence pour de futures
recherches visant à améliorer l’analyse de ce type de logiciels malveillants.

Les développeurs de logiciels malveillants manipulent souvent les en-
têtes ELF pour tromper l’analyste ou faire planter les outils d’analyse
courants. Nous avons identifié deux catégories de modifications : Les fichiers
anomaux (mais qui suivent toujours les spécifications ELF), et les fichiers
invalides–qui peuvent cependant toujours être exécutés correctement. La
première classe est représentée par 5% des échantillons de notre base de
données, la seconde par 2%. Si les outils d’analyse peuvent traiter des
fichiers anormaux, ils entraînent souvent des erreurs lorsqu’ils traitent des
fichiers non valides.

Les binaires malveillants peuvent modifier la configuration du système
infecté afin de pouvoir fonctionner indépendamment des éventuelles opéra-
tions de redémarrage et de mise hors tension. Nous appelons ce comporte-
ment persistance, vu dans 21% de l’ensemble des données. L’approche pré-
dominante adoptée par les auteurs de logiciels malveillants est l’initialisation
du sous-système (plus de 1000 échantillons), en utilisant le système Linux
init ou systemd. Le deuxième choix couramment utilisé pour la persistance
est l’exécution basée sur le temps lorsqu’un malware modifie les fichiers
de configuration cron pour obtenir une exécution programmée à un inter-
valle de temps fixe. Une autre approche pour maintenir une emprise sur
le système consiste à remplacer les applications qui existent déjà dans la

A.2. Comprendre les logiciels malveillants de Linux 127

cible. Très peu d’exemples modifient à la place les fichiers de configuration
utilisateur, comme les configurations shell.

Nous appelons deception la technique par laquelle un malware tente de
cacher sa nature en assumant des noms qui semblent authentiques au pre-
mier abord. Ce comportement, déjà courant sur les systèmes d’exploitation
Windows, est également répandu sur les logiciels malveillants basés sur
Linux. Plus de 50% des échantillons ont pris des noms différents lors de
leur exécution. Parmi ceux-ci, 11% ont adopté des noms tirés d’utilitaires
courants et les autres ont adopté soit un nom vide, soit le nom d’un fichier
fictif, soit un nom d’apparence aléatoire.

Nous avons doublement exécuté les 25% des échantillons de l’ensemble
de données, d’abord dans un bac à sable non privilégié, puis dans un bac
à sable privilégié avec des autorisations de base. Nous avons détecté des
différences dans le comportement des échantillons dans 89% d’entre eux.
Les commandes et les opérations privilégiées sur les fichiers sont prédomi-
nantes, les logiciels malveillants utilisant la racine pour créer ou supprimer
des fichiers dans des dossiers protégés. De plus, nous avons trouvé des
binaires qui, en cas de détection de l’environnement d’exécution émulé,
tueraient le démon SSH ou même supprimeraient l’ensemble du système
de fichiers.

Le runtime packing est une technique d’obscurcissement courante qui
rend plus difficile toute tentative d’analyse statique d’un malware. Vanilla
UPX et ses variantes sont de loin la forme de conditionnement la plus ré-
pandue dans notre ensemble de données. Sur les 380 binaires de condi-
tionnement, seuls trois ont mis en œuvre une forme de conditionnement
personnalisé ne se référant pas à UPX. Près de 200 échantillons ont plutôt
apporté des modifications au format UPX dans l’intention de casser l’outil
de déballage UPX standard.

Une autre technique importante très courante dans les logiciels malveil-
lants Windows est l’évasion, pour cacher le comportement malveillant et
rester non détecté aussi longtemps que possible. Les logiciels malveillants
sous Linux ne font pas exception à la règle. Nous regroupons quatre types
de techniques d’évasion : la détection par bac à sable, l’énumération des
processus, l’anti-débogage et l’anti-exécution. Nos sondes de l’espace util-
isateur détectent les programmes qui tentent de s’échapper des environ-
nements VMware et QEMU en lisant les informations de la zone DMI de la
carte mère. Les logiciels malveillants peuvent également détecter les prisons
basées sur chroot, les conteneurs OpenVZ ou l’hyperviseur XEN à partir du
système de fichiers procfs. Notre système de traçage est basé sur des son-
des de noyau, il ne peut donc pas être détecté ou altéré par l’utilisation de

128 128

techniques anti-débogage. Nous avons vu des logiciels malveillants utiliser
l’appel système ptrace pour détecter si un autre débogueur est déjà attaché.
Un échantillon vérifie même la présence de la variable d’environnement
LD_PRELOAD, qui est souvent utilisée pour remplacer des fonctions dans
des bibliothèques chargées dynamiquement.

A.3 L’enchevêtrement de la généalogie des logi-

ciels malveillants IoT

Les botnets traditionnels et les outils DDoS cohabitent désormais avec les
crypto-mines, les logiciels espions, les logiciels de rançon et les échantillons
de cibles conçus pour mener le cyber-espionnage. Pour aggraver les choses,
la disponibilité publique du code source associé à certaines des principales
familles de logiciels malveillants de l’IoT a ouvert la voie à des myriades
de variantes et d’enchevêtrements de similarités et de réutilisation du code.
On sait encore peu de choses sur la dynamique qui sous-tend l’émergence de
nouvelles souches de logiciels malveillants et, aujourd’hui encore, les logiciels
malveillants de l’IoT sont classés en fonction des étiquettes attribuées par
les éditeurs de logiciels audiovisuels. On ne sait pas exactement combien
de variantes du botnet Mirai ont été observées ni quelles sont les relations
internes qui relient les familles populaires entre elles. Nous cherchons à
combler cette lacune en proposant un moyen systématique de comparer des
échantillons de logiciels malveillants de l’IoT et d’afficher leur évolution dans
un ensemble de graphiques de lignage faciles à comprendre.

Tout d’abord, nous présentons notre approche pour reconstituer la lignée
des familles de logiciels malveillants de l’IoT et suivre leur évolution. Nous
avons identifié les variantes de chaque famille ainsi que les relations intra-
familiales qui se produisent en raison de la réutilisation du code. Nous
rendons ensuite compte des connaissances acquises en appliquant notre ap-
proche à des milliers d’échantillons binaires. Les graphiques de lignage nous
ont permis de découvrir plus d’une centaine d’échantillons mal étiquetés et
d’attribuer le nom propre à ceux pour lesquels les produits AV n’ont pas
fait l’objet d’un consensus.

Pour étudier la généalogie des logiciels malveillants de l’IoT, nous avons
téléchargé tous les binaires ELF qui ont été soumis à VirusTotal pendant
près de quatre ans (de janvier 2015 à août 2018) et signalés comme malveil-
lants par au moins cinq antivirus. Après avoir filtré les programmes non
pensés pour les appareils IoT, tels que les ordinateurs de bureau Android
ou Linux, notre ensemble de données a donné 93 652 échantillons prêts à
être analysés.

A.3. L’enchevêtrement de la généalogie des logiciels malveillants

IoT 129

Déterminer un graphique de lignage précis est une tâche difficile, qui,
dans les études précédentes, a souvent été réalisée à l’aide d’une analyse
manuelle et sur un petit nombre limité d’échantillons [LDFM+12, HYD17].
Étant donné l’échelle de notre ensemble de données, un ordre de grandeur
plus grand que les études précédentes, nous devons nous appuyer sur une so-
lution entièrement automatisée. Nous profitons de la sophistication actuelle
(rudimentaire) des logiciels malveillants de l’IoT et de l’absence générale
d’obscurcissement du code pour recourir à une analyse plus précise basée
sur la similarité au niveau du code et le regroupement des codes. Notre
processus d’analyse peut être divisé en quatre macro-zones. Tout d’abord,
nous traitons les binaires non dépouillés et nous analysons les symboles
pour localiser le code de la bibliothèque dans les fichiers liés statiquement.
Ensuite, nous effectuons une mise en grappes progressive basée sur la sim-
ilarité au niveau du code tout en propageant les symboles à chaque nouvel
échantillon. Enfin, nous construisons les graphiques de famille et nous util-
isons les symboles disponibles pour épingler les échantillons et les grappes
pour coder les bribes que nous avons pu extraire des sites web en ligne afin
d’obtenir une compréhension plus détaillée de l’évolution des familles de
logiciels malveillants.

A.3.1 Extraction du graphe de lignage des logiciels malveil-

lants

Les logiciels malveillants IoT sont souvent expédiés en liaison statique, une
hypothèse confirmée par notre jeu de données avec plus de 94% des échan-
tillons en liaison statique. Cela est très probablement dû à un effort pour
s’assurer que les échantillons peuvent fonctionner sur des appareils ayant des
configurations système différentes. En même temps, il est difficile de réaliser
la similarité du code sur ces binaires, car deux échantillons seraient consid-
érés comme très similaires simplement parce qu’ils pourraient inclure une
bibliothèque de code. Si les programmes sont dépouillés, l’analyse devient
encore plus difficile.

Nous commençons notre analyse en extrayant des symboles de binaires
non dépouillés et utilisons une heuristique simple pour couper le binaire en
deux. L’idée est de localiser un code de bibliothèque, puis de considérer
également tout ce qui vient après le code de bibliothèque. Nous avons con-
struit une base de données de symboles extraits de différentes versions de
Glibc et uClibc, puisque le libc est toujours inclus par défaut par les compi-
lateurs et que moins de 2% des échantillons liés dynamiquement nécessitent
d’autres bibliothèques tierces. Après avoir extrait les symboles de fonc-

130 130

tion des binaires ELF non dépouillés, nous commençons à les analyser de
manière linéaire à l’aide d’une fenêtre coulissante. Le point de découpage
est défini dès que tous les noms de fonctions dans cette fenêtre ont une
correspondance positive dans la base de données des symboles.

La diffraction binaire est au cœur de notre approche car elle nous permet
d’évaluer la similarité entre les binaires au niveau du code. Malheureuse-
ment, étant donné la taille de notre ensemble de données, le calcul d’une
matrice de similarité complète est impossible. Nous atténuons ce problème
grâce aux graphiques HNSW (Hierarchical Navigable Small World graphs)
[MY18], une structure de données efficace pour la découverte approximative
du plus proche voisin dans des espaces non métriques. L’idée de base qui ac-
célère cette approche est que les objets ne sont comparés qu’aux voisins des
voisins précédemment découverts, ce qui limite considérablement le nombre
de comparaisons tout en maintenant une grande précision.

Nous utilisons Diaphora [urla] pour définir notre fonction de dissimilarité
pour HNSW. De plus, Diaphora fonctionne avec toutes les architectures
supportées par IDA Pro, alors que d’autres outils de dissimilitude également
proposés par le monde universitaire ne gèrent que quelques architectures.
Nous agrégeons les scores des fonctions individuelles en comptant le nombre
de fonctions dont la similarité est supérieure à 0,5, ce qui est le seuil suggéré
par les auteurs de Diaphora pour écarter les résultats non fiable. Pour
HNSW, nous indiquons l’inverse de ce comptage pour traduire la valeur en
une distance.

Les échantillons sont ajoutés à HNSW un par un, en deux tours, triés
selon leur premier horodatage vu sur VirusTotal. Dans le premier cycle,
nous avons ajouté tous les échantillons liés ou non dynamiquement, qui
représentent 55% de l’ensemble des données. Nous nous sommes appuyés
sur la phase précédente d’extraction des symboles pour effectuer la diffrac-
tion binaire sur la partie du code définie par l’utilisateur, et nous avons
omis les comparaisons sur le code de la bibliothèque. Dans la deuxième
phase, nous avons ensuite ajouté tous les échantillons dépouillés liés sta-
tiquement. À ce stade, nous utilisons la diffraction binaire elle-même pour
propager itérativement les symboles. Lorsqu’une fonction dans un échan-
tillon dépouillé présente une similitude parfaite avec un échantillon non
dépouillé, nous l’étiquetons avec le même symbole.

La dernière étape de notre analyse de similarité implique la généra-
tion d’arbres phylogénétiques des logiciels malveillants de l’IoT. Nous avons
post-traité le graphique de similarité épars obtenu en exécutant HNSW et
en utilisant la fonction de distance comme poids. Comme le graphe de simi-
larité contient un grand nombre d’arêtes, nous visualisons dans notre graphe

A.3. L’enchevêtrement de la généalogie des logiciels malveillants

IoT 131

l’arbre à portée minimale (MST) du graphe HNSW. Cette approche nous
permet de rendre le résultat plus lisible et de mieux mettre en évidence les
lignes d’évolution.

L’arbre peut être coloré selon les étiquettes AV (pour avoir une vue
d’ensemble des relations entre les différentes familles et repérer les étiquettes
erronées) ou selon le fichier source le plus proche que nous avons téléchargé
en utilisant les noms des symboles.

A.3.2 Résultats

Nous avons utilisé le flux de travail pour le regroupement basé sur le code
afin de tracer des arbres phylogénétiques pour les six principales architec-
tures de notre ensemble de données. La scène actuelle des logiciels malveil-
lants de l’IoT est principalement envahie par trois familles étroitement liées
: Gafgyt, Mirai et Tsunami. Leurs centaines de variantes sont regroupées
sous la même étiquette AV, partageant parfois des traits provenant de deux
familles ou plus. Les familles mineures empruntent également des codes
aux trois principaux acteurs. Par exemple, DnsAmp réutilise le code pour
la génération de nombres aléatoires et les calculs de checksum, ou Lightaidra

réutilise 18 fonctions de Gafgyt. Les campagnes ciblées comme VPNFilter ne
chevauchent pas, au contraire, les principaux éléments des familles célèbres.

Nous pouvons utiliser les arbres phylogénétiques pour détecter les éti-
quettes anomalie, en recherchant les nœuds aberrants dans le graphique.
Les valeurs aberrantes peuvent correspondre à des échantillons mal classés
par la majorité des scanners AV ou à des variantes d’une famille donnée qui
ont une quantité considérable de code en commun avec une autre famille.
Au total, nous avons trouvé 118 cas avec 62 échantillons dont nous pensons
qu’ils ont une étiquette AVClass erronée et 56 pour lesquels AVClass n’a
pas pu se mettre d’accord sur l’étiquette AV.

Les arbres phylogénétiques aident à identifier les modifications fines et les
relations entre les variantes au sein d’une même famille de logiciels malveil-
lants. Dans un premier temps, nous identifions les variantes candidates en
regroupant tous les échantillons de logiciels malveillants en fonction de leur
ensemble de symboles uniques. Cela a permis de suivre plus de 2000 vari-
antes de Gafgyt, et dans une moindre mesure de Mirai et Tsunami. Dans
un deuxième temps, nous nous appuyons sur le code source collecté à partir
de dépôts en ligne pour valider plus de 200 variantes précédemment iden-
tifiées. Enfin, nous avons combiné les résultats de notre analyse avec des
informations sur le calendrier pour mesurer la première et la dernière fois
que chaque variante est apparue dans la nature. Alors que les familles à évo-
lution rapide comme Gafgyt et Mirai ont tendance à donner des variantes

132 132

de courte durée, les variantes Tsunami et DnsAmp ont persisté pendant des
périodes plus longues.

A.4 Identification du code utilisateur dans les bi-

naires liés statiquement

L’ingénierie inverse des fichiers binaires est une tâche difficile qu’il n’est
pas toujours possible d’automatiser. Dans le contexte des fichiers ELF et
du code binaire, le degré de difficulté dépend des choix du programmeur
pendant les phases de développement et de compilation. Les compilateurs
optimisent le code, le transforment ou appliquent des couches d’obfuscation
pour entraver l’analyse statique. Les compilateurs génèrent également des
structures de données spécifiques contenant des informations de débogage
(DWARF) pour aider au débogage et faciliter l’inspection du programme ré-
sultant. Les outils de sécurité comme IDA Pro utilisent les informations de
débogage pour obtenir une décompilation presque parfaite du code. En re-
vanche, les développeurs choisissent souvent de supprimer les symboles et les
noms de fonctions pour réduire la taille du fichier ELF final ou pour masquer
son identité. Les programmes ELF liés statiquement ajoutent un certain de-
gré de difficulté à la rétro-ingénierie, surtout lorsqu’ils sont dépouillés. Dans
ce cas, l’analyste traite souvent d’énormes morceaux de code sans en con-
naître les limites sous-jacentes. Tout indice permettant de reconnaître des
fonctions liées à des bibliothèques externes, isolant ainsi le code défini par
l’utilisateur, accélérerait certainement les travaux d’analyse binaire.

Les techniques actuelles visant à récupérer les informations ne permet-
tent pas de résoudre directement le problème de la séparation du code de la
bibliothèque et du code de l’utilisateur. Elles peuvent plutôt être utilisées
indirectement à cette fin, parfois avec une faible précision ou un coût élevé
en termes de complexité et d’évolutivité. Nous avons vu des efforts pour la
reconnaissance de fonctions basées sur des signatures [Gui], des approches
d’apprentissage machine [HIT+18], et des techniques d’analyse basées sur
des graphes [SWD17, AWD16, DR05]. L’un des travaux les plus récents
s’appuie plutôt sur la directivité des appels de fonction pour récupérer les
limites des objets

Avec ce travail, nous présentons notre approche d’analyse binaire pour
déduire un point cut entre le code défini par l’utilisateur et le code de la
bibliothèque dans les exécutables ELF liés statiquement. Nous avons implé-
menté notre système dans un outil et évalué sa précision et ses performances
sur un large éventail de binaires du système d’exploitation Debian et sur des

A.4. Identification du code utilisateur dans les binaires liés

statiquement 133

projets complexes comprenant des milliers de fonctions de plusieurs biblio-
thèques.

Notre technique tente de réduire les relations entre fonctions en un prob-
lème de reconnaissance de la mise en page et s’appuie sur un ensemble
d’heuristiques pour définir les points de coupure les plus probables dans un
binaire lié statiquement. Nous recueillons finalement les caractéristiques ex-
traites lors de l’analyse du programme pour alimenter un algorithme de clas-
sification et obtenir les limites du code utilisateur à partir de l’heuristique
qui se comporte le mieux.

A.4.1 Analyse des limites de code

Notre système de reconnaissance des limites de code est basé sur deux
modules principaux. Premièrement, nous décompilons le binaire pour re-
construire son graphe d’appel et capturer l’adresse de la fonction main.
Ensuite, nous construisons une matrice de contiguïté avec les fonctions
caller et callee. Nous effectuons notre analyse des fonctions en étudiant
la “géométrie” des programmes. L’idée de base est que les fonctions appar-
tenant au même module (ou bibliothèque) appelleront plus de fonctions
voisines que les fonctions des autres modules. En conséquence, chaque
module de code doit être naturellement regroupé dans une zone limitée
de l’espace d’adressage du programme.

Nous utilisons IDA Pro pour décompiler les fichiers ELF et détecter les
adresses de début de fonction. Nous analysons ensuite les références croisées
de et vers chaque fonction pour construire le graphe d’appel du binaire.
Comme un programme pourrait être compilé avec du code exécutable dans
les sections de données, et considérant que nous voulons analyser le binaire
de manière statique, nous ne considérons que les fonctions détectées dans
la section .text. En outre, nous récupérons l’adresse de la fonction main

et l’utilisons comme indice sur l’endroit où se trouve le code défini par
l’utilisateur.

L’analyse cut part de la matrice de contiguïté du graphe d’appel. Nous
indexons les lignes et les colonnes de la matrice avec un numéro pour chaque
fonction au lieu de leurs adresses. Les adresses apportent la connaissance de
la taille des fonctions, mais nous voulons considérer de la même manière une
petite zone de code utilisateur et une grande bibliothèque (ou le contraire).
De plus, si nous considérons que le graphe d’appel est dirigé, nous pouvons
extraire la directivité des appels de fonction de la matrice de contiguïté.
Lorsque la matrice triangulaire supérieure comporte plus d’entrées que la
matrice triangulaire inférieure, alors le binaire fait surtout des appels de
fonction dirigés. En d’autres termes, les fonctions appellent principalement

134 134

des adresses plus élevées. Au contraire, une matrice triangulaire inférieure
plus dense signifie que les appels de fonction en arrière sont plus fréquents.

L’analyse est basée sur la recherche d’ensembles de fonctions contiguës
n’appelant aucune autre partie contiguë du code. Nous analysons la matrice
de contiguïté par ligne et par colonne pour rechercher la plus grande région
vide avec un coin sur la diagonale. Nous définissons ce coin comme un point
de coupe candidat. Les fonctions appartenant à un même module ont ten-
dance à être plus localisées, ce qui signifie que - dans une situation idéale - les
modules sont représentés dans la matrice sous la forme d’un motif en escalier
le long de la diagonale. Nous poursuivons l’analyse de manière récursive en
effectuant les recherches suivantes sur les deux sous-matrices définies par le
point de coupe candidat précédent. Une région vide (et son point de coupe
candidat) n’est valable que si elle respecte certaines restrictions que nous
imposons, comme la densité des sous-matrices, la zone qu’elle couvre, ou si
la matrice triangulaire supérieure ou inférieure est vide. Lorsqu’une région
est invalide, nous poursuivons la recherche au même niveau de récursivité.

L’algorithme stocke tous les points candidats dans un arbre binaire où le
nœud racine contient le point lié à la plus grande zone vide dans la matrice
de contiguïté, tandis que les feuilles représentent les points des plus petites
régions.

Enfin, nous définissons quelques heuristiques pour obtenir les trois fonc-
tions les plus probables où le binaire devrait être coupé pour diviser le code
utilisateur des bibliothèques en conséquence. Par exemple, nous avons con-
staté que dans certains binaires ELF, le point de coupure se trouve dans
la plus grande région vide après la fonction main. Au lieu de cela, nous
sélectionnons le premier point à côté de main lorsque le code utilisateur est
très court. Dans certains cas, nous avons sélectionné le point de coupure en
fonction des accès aux variables globales : l’idée est que chaque module de
code fonctionne souvent sur son espace de données restreint. Nous avons
testé notre système sur plus de 200 fichiers ELF liés statiquement et con-
tenant des centaines, voire des milliers de fonctions, dont certaines avec des
personnalisations de compilation plus complexes. Dans l’ensemble, notre
outil a pu trouver les limites du code utilisateur avec une distance moyenne
par rapport à la fonction réelle inférieure à 2%.

A.4.2 Collection et classification des caractéristiques

En fonction de la manière dont un programme ELF a été compilé, de la
quantité d’appels en avant et en arrière, et de ses caractéristiques internes,
une heuristique retournera un résultat plus précis que les autres. C’est
pourquoi nous utilisons l’apprentissage machine pour classer un binaire en

A.5. Conclusion 135

fonction des caractéristiques que nous avons recueillies, et nous ne pro-
duisons que le point de coupure donné par l’heuristique qui se comporte le
mieux.

Nous utilisons comme caractéristiques le nombre de fonctions, des
métriques sur la géométrie du binaire, et des informations dérivées d’un
nombre limité de nœuds de l’arbre binaire construit pendant la recherche
récursive. Nous prenons en considération le point de coupe candidat et la
zone de la région vide associée, la hauteur du nœud dans l’arbre binaire et
le nombre maximum de variables globales utilisées dans la zone adjacente à
la région vide. Les caractéristiques alimentent un classificateur d’arbre de
décision formé avec 70% des échantillons, et finalement testé avec les 30%
restants. Nous évaluons le modèle en utilisant la validation croisée K-fold
et rendons compte des résultats, de l’exactitude et de la précision de l’outil.

A.5 Conclusion

Dans ma thèse, j’explore les us et coutumes de Linux et des logiciels malveil-
lants de l’IoT et je propose des moyens de les analyser de manière statique
et dynamique. Tout d’abord, je propose un pipeline d’analyse automatisé
spécifiquement adapté aux logiciels malveillants de Linux. Ce pipeline a
servi de base pour les caractériser, les analyser et les comprendre. Après
avoir étudié comment les logiciels malveillants Linux mettent en œuvre des
comportements malveillants, j’ai étudié leur évolution dans le temps. Je re-
construis systématiquement la lignée des familles de logiciels malveillants de
l’IoT et leurs relations enchevêtrées en utilisant la similarité du code binaire.
Enfin, je me concentre sur l’analyse statique des programmes Linux et pro-
pose une méthode pour reconnaître et extraire le code défini par l’utilisateur
dans des binaires liés statiquement. L’élimination des fonctions des biblio-
thèques système améliore considérablement la similarité du code binaire et
les efforts de rétro-ingénierie des logiciels malveillants.

J’espère que ma thèse apportera une meilleure visibilité sur les logiciels
malveillants qui infectent les systèmes d’exploitation basés sur Linux et les
dispositifs IoT, et qu’elle aidera les chercheurs et les industries à contrer
cette menace toujours croissante.

136 136

References

[AAB+17] Manos Antonakakis, Tim April, Michael Bailey, Matt Bern-
hard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J Alex
Halderman, Luca Invernizzi, Michalis Kallitsis, et al. Under-
standing the mirai botnet. In USENIX Security, 2017.

[ABKY88] T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering
algorithms based on minimum and maximum spanning trees.
In Proceedings of the Fourth Annual Symposium on Compu-

tational Geometry, SCG ’88, pages 252–257, New York, NY,
USA, 1988. Association for Computing Machinery.

[Ale] Alexander Bartolich. The ELF Virus Writing HOWTO. http:
//www.linuxsecurity.com/resource_files/documentation/

virus-writing-HOWTO/_html/index.html.

[amn20] German-made finspy spyware found in egypt, and mac and
linux versions revealed. https://www.amnesty.org/en/

latest/research/2020/09/german-made-finspy-spyware-

found-in-egypt-and-mac-and-linux-versions-revealed/,
2020. Accessed: 2020-09-26.

[Ant17] Antonakakis et al. Understanding the Mirai Botnet. In Pro-

ceedings of the USENIX Security Symposium, 2017.

[anu] Anubis. https://anubis.iseclab.org.

[ASB17] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-
Agnostic Function Detection in Binaries. In IEEE European

Symposium on Security and Privacy, 2017.

[ASWD18] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Deb-
babi. Fossil: a resilient and efficient system for identifying foss
functions in malware binaries. ACM Transactions on Privacy

and Security (TOPS), 21(2):1–34, 2018.

137

http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
http://www.linuxsecurity.com/resource_files/documentation/virus-writing-HOWTO/_html/index.html
https://www.amnesty.org/en/latest/research/2020/09/german-made-finspy-spyware-found-in-egypt-and-mac-and-linux-versions-revealed/
https://www.amnesty.org/en/latest/research/2020/09/german-made-finspy-spyware-found-in-egypt-and-mac-and-linux-versions-revealed/
https://www.amnesty.org/en/latest/research/2020/09/german-made-finspy-spyware-found-in-egypt-and-mac-and-linux-versions-revealed/
https://anubis.iseclab.org

138 138

[AWD16] Saed Alrabaee, Lingyu Wang, and Mourad Debbabi. Bingold:
Towards robust binary analysis by extracting the semantics of
binary code as semantic flow graphs (sfgs). Digital Investiga-

tion, 18:S11–S22, 2016.

[BCH+09] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,
Christopher Kruegel, and Engin Kirda. Scalable, behavior-
based malware clustering. In NDSS, 2009.

[Bit18] BitDefender. New Hide ‘N Seek IoT Botnet using
custom-built Peer-to-Peer communication spotted in
the wild. https://labs.bitdefender.com/2018/01/new-

hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-

communication-spotted-in-the-wild/, January 2018.

[BJAS11] David Brumley, Ivan Jager, Thanassis Avgerinos, and Ed-
ward J Schwartz. Bap: A binary analysis platform. In In-

ternational Conference on Computer Aided Verification, pages
463–469. Springer, 2011.

[Ble19] BleepingComputer. Cr1ptT0r Ransomware Infects D-
Link NAS Devices, Targets Embedded Systems. https:

//www.bleepingcomputer.com/news/security/cr1ptt0r-

ransomware-infects-d-link-nas-devices-targets-embedded-

systems/, February 2019.

[BOA+07] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao,
Farnam Jahanian, and Jose Nazario. Automated classification
and analysis of internet malware. In RAID, 2007.

[BYMM13] Jinrong Bai, Yanrong Yang, Shiguang Mu, and Yu Ma. Mal-
ware detection through mining symbol table of Linux executa-
bles. Information Technology Journal, 2013.

[CAA+19] Jinchun Choi, Afsah Anwar, Hisham Alasmary, Jeffrey Spauld-
ing, DaeHun Nyang, and Aziz Mohaisen. Iot malware ecosys-
tem in the wild: a glimpse into analysis and exposures. In
Proceedings of the 4th ACM/IEEE Symposium on Edge Com-

puting, pages 413–418, 2019.

[Cat] Cathal, Mullaney and Sayali, Kulkarni. VB2014 paper:
Linux-based Apache malware infections: biting the hand that
serves us all. https://www.virusbulletin.com/virusbulletin/

https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
https://www.bleepingcomputer.com/news/security/cr1ptt0r-ransomware-infects-d-link-nas-devices-targets-embedded-systems/
https://www.bleepingcomputer.com/news/security/cr1ptt0r-ransomware-infects-d-link-nas-devices-targets-embedded-systems/
https://www.bleepingcomputer.com/news/security/cr1ptt0r-ransomware-infects-d-link-nas-devices-targets-embedded-systems/
https://www.bleepingcomputer.com/news/security/cr1ptt0r-ransomware-infects-d-link-nas-devices-targets-embedded-systems/
https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/
https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/
https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/

References 139

2016/01/paper-linux-based-apache-malware-infections-

biting-hand-serves-us-all/.

[CGFB18] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and
Davide Balzarotti. Understanding Linux Malware. In IEEE

S&P, 2018.

[CJS+05] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn
Song, and Randal E. Bryant. Semantics-aware malware detec-
tion. In Proceedings of the 2005 IEEE Symposium on Security

and Privacy, SP ’05, 2005.

[CKVD10] Pavel Celeda, Radek Krejci, Jan Vykopal, and Martin Drasar.
Embedded malware-an analysis of the chuck norris botnet. In
Computer Network Defense (EC2ND), 2010 European Confer-

ence on, pages 3–10. IEEE, 2010.

[CMM+19] Simone Coltellese, Fabrizio Maria Maggi, Andrea Marrella,
Luca Massarelli, and Leonardo Querzoni. Triage of iot attacks
through process mining. In OTM Confederated International

Conferences" On the Move to Meaningful Internet Systems",
pages 326–344. Springer, 2019.

[CMS13] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander.
Density-based clustering based on hierarchical density esti-
mates. In PAKDD, 2013.

[coz18] Padawan - platform for multi-architecture elf analysis. https:
//padawan.s3.eurecom.fr/, 2018. Accessed: 2020-09-26.

[CTC16] Alejandro Calleja, Juan Tapiador, and Juan Caballero. A Look
into 30 Years of Malware Development from a Software Metrics
Perspective. volume 9854, pages 325–345, 09 2016.

[CTC18] Alejandro Calleja, Juan Tapiador, and Juan Caballero. The
MalSource Dataset: Quantifying Complexity and Code Reuse
in Malware Development. 11 2018.

[cuc] Cuckoo Sandbox 2.0 Release Candidate 1. https://

cuckoosandbox.org/blog/cuckoo-sandbox-v2-rc1.

[CVD+20] Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico,
Yun Shen, Leyla Bilge, and Davide Balzarotti. The tangled
genealogy of iot malware. In Proceedings of the 36th Annual

Computer Security Applications Conference (ACSAC), 2020.

https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/
https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/
https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/
https://www.virusbulletin.com/virusbulletin/2016/01/paper-linux-based-apache-malware-infections-biting-hand-serves-us-all/
https://padawan.s3.eurecom.fr/
https://padawan.s3.eurecom.fr/
https://cuckoosandbox.org/blog/cuckoo-sandbox-v2-rc1
https://cuckoosandbox.org/blog/cuckoo-sandbox-v2-rc1

140 140

[cws] CWsandbox. http://www.mwanalysis.org.

[CX10] Silvio Cesare and Yang Xiang. Classification of malware us-
ing structured control flow. In Proceedings of the Eighth Aus-

tralasian Symposium on Parallel and Distributed Computing-

Volume 107, pages 61–70. Australian Computer Society, Inc.,
2010.

[CZ18] Andrei Costin and Jonas Zaddach. Iot malware: Comprehen-
sive survey, analysis framework and case studies. BlackHat

USA, 2018.

[dar] darkangel. Mood-NT. http://darkangel.antifork.org/codes/

mood-nt.tgz.

[Dav] Dave Lee. Shellshock: ’Deadly serious’ new vulnerability
found. http://www.bbc.com/news/technology-29361794.

[Del19] Matteo Dell’Amico. FISHDBC: Flexible, incremental, scal-
able, hierarchical density-based clustering for arbitrary data
and distance, 2019.

[det] Multiplatform Linux Sandbox. https://detux.org/.

[DFAG+19] Ahmad Darki, Michalis Faloutsos, Nael Abu-Ghazaleh, Manu
Sridharan, et al. Idapro for iot malware analysis? In 12th

{USENIX} Workshop on Cyber Security Experimentation and

Test ({CSET} 19), 2019.

[DFC16] Steven HH Ding, Benjamin CM Fung, and Philippe Charland.
Kam1n0: Mapreduce-based assembly clone search for reverse
engineering. In Proceedings of the 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Min-

ing, pages 461–470, 2016.

[DFC19] Steven HH Ding, Benjamin CM Fung, and Philippe Charland.
Asm2vec: Boosting static representation robustness for binary
clone search against code obfuscation and compiler optimiza-
tion. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 472–489. IEEE, 2019.

[DGHH+15] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek,
and Ryan Whelan. Repeatable reverse engineering with panda.
In Proceedings of the 5th Program Protection and Reverse En-

gineering Workshop, pages 1–11, 2015.

http://www.mwanalysis.org
http://darkangel.antifork.org/codes/mood-nt.tgz
http://darkangel.antifork.org/codes/mood-nt.tgz
http://www.bbc.com/news/technology-29361794
https://detux.org/

References 141

[DLL+20] Fei Ding, Hongda Li, Feng Luo, Hongxin Hu, Long Cheng,
Hai Xiao, and Rong Ge. Deeppower: Non-intrusive and deep
learning-based detection of iot malware using power side chan-
nels. In Proceedings of the 15th ACM Asia Conference on Com-

puter and Communications Security, pages 33–46, 2020.

[DML11] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest
neighbor graph construction for generic similarity measures.
In Proceedings of the 20th international conference on World

wide web, pages 577–586. ACM, 2011.

[DN11] Tudor Dumitraş and Iulian Neamtiu. Experimental Challenges
in Cyber Security: A Story of Provenance and Lineage for
Malware. In CEST, 2011.

[DQG+04] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julian
Grizzard, John Levine, and Henry Owen. Honeystat: Local
worm detection using honeypots. In RAID, volume 4, pages
39–58. Springer, 2004.

[DR05] Thomas Dullien and Rolf Rolles. Graph-based comparison of
executable objects (english version). Sstic, 5(1):3, 2005.

[dSDC20] Daniel Ricardo dos Santos, Mario Dagrada, and Elisa
Costante. Leveraging operational technology and the inter-
net of things to attack smart buildings. Journal of Computer

Virology and Hacking Techniques, pages 1–20, 2020.

[DWH13] Zakir Durumeric, Eric Wustrow, and Alex Halderman. ZMap:
Fast Internet-wide Scanning and Its Security Applications. In
Proceedings of the USENIX Security Symposium, 2013.

[Eag11] Chris Eagle. The IDA pro book. no starch press, 2011.

[elfa] elfmaster. ECFS. https://github.com/elfmaster/ecfs.

[elfb] elfmaster. ELF Packer v0.3. http://www.bitlackeys.org/

projects/elfpacker.tgz.

[elfc] elfmaster. ftrace. https://github.com/elfmaster/ftrace.

[evm] evm. A code pirate’s cutlass - recovering software architecture
from embedded binaries. https://recon.cx/2018/montreal/

schedule/events/109.html. Accessed: 2020-09-16.

https://github.com/elfmaster/ecfs
http://www.bitlackeys.org/projects/elfpacker.tgz
http://www.bitlackeys.org/projects/elfpacker.tgz
https://github.com/elfmaster/ftrace
https://recon.cx/2018/montreal/schedule/events/109.html
https://recon.cx/2018/montreal/schedule/events/109.html

142 142

[Fer] Ferrie, Peter and Peter, Ször. Hunting for metamorphic. http:
//vxer.org/lib/apf39.html.

[FFCD14] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Char-
land, and Mourad Debbabi. Binclone: Detecting code clones in
malware. In 2014 Eighth International Conference on Software

Security and Reliability (SERE), pages 78–87. IEEE, 2014.

[Fla04] Halvar Flake. Structural comparison of executable objects.
In Detection of intrusions and malware & vulnerability assess-

ment, GI SIG SIDAR workshop, DIMVA 2004. Gesellschaft
für Informatik eV, 2004.

[Fou] Linux Foundation. Elf and abi standards. https://refspecs.

linuxfoundation.org/. Accessed: 2020-11-03.

[FXWC19] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast
approximate nearest neighbor search with the navigating
spreading-out graph. Proceedings of the VLDB Endowment,
12(5):461–474, 2019.

[GCB+15] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi,
and Davide Balzarotti. Needles in a Haystack: Mining Infor-
mation from Public Dynamic Analysis Sandboxes for Malware
Intelligence. In Proceedings of the 24rd USENIX Security Sym-

posium (USENIX Security), August 2015.

[GGPS98] Leslie Ann Goldberg, Paul W Goldberg, Cynthia A Phillips,
and Gregory B Sorkin. Constructing Computer Virus Phylo-
genies. J. Algorithms, 26(1), 1998.

[gru] grugq and scut. Armouring the ELF: Binary encryption on the
UNIX platform. http://phrack.org/issues/58/5.html.

[Gui] Ilfak Guilfanov. Ida f.l.i.r.t. technology: In-depth. https://

www.hex-rays.com/products/ida/tech/flirt/in_depth/. Ac-
cessed: 2020-10-07.

[Hao] M. Hao. A Look into the Gafgyt Botnet Trends from the Com-
munication Traffic Log. https://nsfocusglobal.com/look-

gafgyt-botnet-trends-communication-traffic-log/.

[HC19] Irfan Ul Haq and Juan Caballero. A Survey of Binary Code
Similarity, 2019.

http://vxer.org/lib/apf39.html
http://vxer.org/lib/apf39.html
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
http://phrack.org/issues/58/5.html
https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
https://nsfocusglobal.com/look-gafgyt-botnet-trends-communication-traffic-log/
https://nsfocusglobal.com/look-gafgyt-botnet-trends-communication-traffic-log/

References 143

[HGS01] David Harley, Urs E Gattiker, and Robert Slade. Viruses re-

vealed. McGraw-Hill Professional, 2001.

[HIT+18] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev,
and Martin Vechev. Debin: Predicting debug information in
stripped binaries. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, pages
1667–1680. ACM, 2018.

[HSBG13] Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Griffin.
Mutantx-s: Scalable malware clustering based on static fea-
tures. In USENIX ATC, 2013.

[HYD17] He Huang, Amr M. Youssef, and Mourad Debbabi. BinSe-
quence: Fast, Accurate and Scalable Binary Code Reuse De-
tection. In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, ASIA CCS ’17,
pages 155–166. ACM, 2017.

[JBV11] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bit-
Shred: Feature Hashing Malware for Scalable Triage and Se-
mantic Analysis. In ACM CCS, 2011.

[JMM18] Rommel Joven, Jasper Manuel, and David Maciejack. Mi-
rai: Beyond the Aftermath. https://www.botconf.eu/wp-

content/uploads/2018/12/2018-R-Joven-Mirai-Beyond-

the-Aftermath.pdf, December 2018.

[JRM11] Emily R Jacobson, Nathan Rosenblum, and Barton P Miller.
Labeling library functions in stripped binaries. In Proceedings

of the 10th ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools, pages 1–8, 2011.

[JWB13] Jiyong Jang, Maverick Woo, and David Brumley. Towards Au-
tomatic Software Lineage Inference. In 22nd USENIX Security

Symposium (USENIX Security 13), pages 81–96, Washington,
D.C., 2013. USENIX.

[KRVV] Christopher Kruegel, William Robertson, Fredrik Valeur, and
Giovanni Vigna. Static disassembly of obfuscated binaries.

[KRVV04] Christopher Kruegel, William Robertson, Fredrik Valeur, and
Giovanni Vigna. Static disassembly of obfuscated binaries. In
USENIX security Symposium, volume 13, pages 18–18, 2004.

https://www.botconf.eu/wp-content/uploads/2018/12/2018-R-Joven-Mirai-Beyond-the-Aftermath.pdf
https://www.botconf.eu/wp-content/uploads/2018/12/2018-R-Joven-Mirai-Beyond-the-Aftermath.pdf
https://www.botconf.eu/wp-content/uploads/2018/12/2018-R-Joven-Mirai-Beyond-the-Aftermath.pdf

144 144

[KV15] Dhilung Kirat and Giovanni Vigna. Malgene: Automatic ex-
traction of malware analysis evasion signature. In ACM CCS,
2015.

[KWLP05] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and
Laxmi Parida. Malware phylogeny generation using permuta-
tions of code. Journal in Computer Virology, 1, 11 2005.

[LDFM+12] Martina Lindorfer, Alessandro Di Federico, Federico Maggi,
Paolo Milani Comparetti, and Stefano Zanero. Lines of Ma-
licious Code: Insights into the Malicious Software Industry.
In Proceedings of the 28th Annual Computer Security Applica-

tions Conference, ACSAC ’12, pages 349–358. ACM, 2012.

[LH07] Robert Lyda and James Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEE Security & Privacy,
5(2), 2007.

[LLGR10] Peng Li, Limin Liu, Debin Gao, and Michael K Reiter. On
challenges in evaluating malware clustering. In RAID, 2010.

[LWKS05] Michael E Locasto, Ke Wang, Angelos D Keromytis, and Sal-
vatore J Stolfo. Flips: Hybrid adaptive intrusion prevention.
In RAID, pages 82–101. Springer, 2005.

[mala] Malware Must Die! http://blog.malwaremustdie.org/.

[malb] malwr. https://www.malwr.com/.

[May] Mayhem. The Cerberus ELF Interface. http://phrack.org/

issues/61/8.html.

[MKK07] A. Moser, C. Kruegel, and E. Kirda. Limits of static analy-
sis for malware detection. In Twenty-Third Annual Computer

Security Applications Conference (ACSAC 2007), pages 421–
430, 2007.

[MKN05] Peter Mell, Karen Kent, and Joseph Nusbaum. Guide to mal-

ware incident prevention and handling. US Department of
Commerce, Technology Administration, National Institute of
Standards and Technology, 2005.

[M.L] M.Léveillé, Marc-Etienne. Unboxing Linux/Mumblehard.
https://www.welivesecurity.com/wp-content/uploads/

2015/04/mumblehard.pdf.

http://blog.malwaremustdie.org/
https://www.malwr.com/
http://phrack.org/issues/61/8.html
http://phrack.org/issues/61/8.html
https://www.welivesecurity.com/wp-content/uploads/2015/04/mumblehard.pdf
https://www.welivesecurity.com/wp-content/uploads/2015/04/mumblehard.pdf

References 145

[MMDa] MMD. MMD-0025-2014 - ITW Infection of ELF
.IptabLex and .IptabLes China DDoS bots malware.
http://blog.malwaremustdie.org/2014/06/mmd-0025-

2014-itw-infection-of-elf.html.

[MMDb] MMD. MMD-0030-2015 - New ELF malware on Shell-
shock: the ChinaZ. http://blog.malwaremustdie.org/2015/

01/mmd-0030-2015-new-elf-malware-on.html.

[MMDc] MMD. MMD-0062-2017 - Credential harvesting by
SSH Direct TCP Forward attack via IoT botnet.
http://blog.malwaremustdie.org/2017/02/mmd-0062-

2017-ssh-direct-tcp-forward-attack.html.

[Mon15] KA Monnappa. Automating Linux Malware Analysis Using
Limon Sandbox. Black Hat Europe 2015, 2015.

[MSB19] Anand Mudgerikar, Puneet Sharma, and Elisa Bertino. E-
spion: A system-level intrusion detection system for iot de-
vices. In Proceedings of the 2019 ACM Asia Conference

on Computer and Communications Security, pages 493–500,
2019.

[MSY+15] Yin Pa Minn, Shogo Suzuki, Katsunari Yoshioka, Tsutomu
Matsumoto, and Christian Rossow. IoTPOT: Analysing the
rise of IoT compromises. In 9th USENIX Workshop on Offen-

sive Technologies (WOOT). USENIX Association, 2015.

[MXW15] Jiang Ming, Dongpeng Xu, and Dinghao Wu. Memoized
Semantics-Based Binary Diffing with Application to Malware
Lineage Inference. In IFIP Advances in Information and Com-

munication Technology, volume 455, pages 416–430, 05 2015.

[MY18] Y. A. Malkov and D. A. Yashunin. Efficient and robust ap-
proximate nearest neighbor search using hierarchical navigable
small world graphs. IEEE Transactions on Pattern Analysis

and Machine Intelligence, pages 1–1, 2018.

[Ngu] Nguyen Anh Quynh. Unicorn Emulator. https://github.com/

unicorn-engine/unicorn.

[Nic] Nicky Woolf. DDoS attack that disrupted internet
was largest of its kind in history, experts say. https:

http://blog.malwaremustdie.org/2014/06/mmd-0025-2014-itw-infection-of-elf.html
http://blog.malwaremustdie.org/2014/06/mmd-0025-2014-itw-infection-of-elf.html
http://blog.malwaremustdie.org/2015/01/mmd-0030-2015-new-elf-malware-on.html
http://blog.malwaremustdie.org/2015/01/mmd-0030-2015-new-elf-malware-on.html
http://blog.malwaremustdie.org/2017/02/mmd-0062-2017-ssh-direct-tcp-forward-attack.html
http://blog.malwaremustdie.org/2017/02/mmd-0062-2017-ssh-direct-tcp-forward-attack.html
https://github.com/unicorn-engine/unicorn
https://github.com/unicorn-engine/unicorn
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

146 146

//www.theguardian.com/technology/2016/oct/26/ddos-

attack-dyn-mirai-botnet.

[Nor16] Amy Nordrum. The internet of fewer things [news]. IEEE

Spectrum, 53(10):12–13, 2016.

[NRM+17] Lina Nouh, Ashkan Rahimian, Djedjiga Mouheb, Mourad Deb-
babi, and Aiman Hanna. Binsign: fingerprinting binary func-
tions to support automated analysis of code executables. In
IFIP International Conference on ICT Systems Security and

Privacy Protection, pages 341–355. Springer, 2017.

[olea] oledump-py. https://blog.didierstevens.com/programs/

oledump-py/.

[oleb] oletools - python tools to analyze OLE and MS Office files.
https://www.decalage.info/python/oletools.

[ope] OpenVZ, a container-based virtualization for Linux. https:

//openvz.org/Main_Page.

[Pal19] PaloAlto Networks. Home & Small Office Wire-
less Routers Exploited to Attack Gaming Servers.
https://unit42.paloaltonetworks.com/home-small-office-

wireless-routers-exploited-to-attack-gaming-servers/,
November 2019.

[Pay] PayloadSecurity. VxStream Sandbox Linux. https://www.

payload-security.com/products/linux.

[PECK20] James Patrick-Evans, Lorenzo Cavallaro, and Johannes
Kinder. Probabilistic naming of functions in stripped bina-
ries. In Proceedings of the 36th Annual Computer Security

Applications Conference (ACSAC), 2020.

[pee] peepdf - PDF Analysis Tool. http://eternal-todo.com/tools/

peepdf-pdf-analysis-tool.

[PLF10] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral
Clustering of HTTP-based Malware and Signature Generation
Using Malicious Network Traces. In NSDI, 2010.

[PLL08] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Mcboost:
Boosting scalability in malware collection and analysis using

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://blog.didierstevens.com/programs/oledump-py/
https://blog.didierstevens.com/programs/oledump-py/
https://www.decalage.info/python/oletools
https://openvz.org/Main_Page
https://openvz.org/Main_Page
https://unit42.paloaltonetworks.com/home-small-office-wireless-routers-exploited-to-attack-gaming-servers/
https://unit42.paloaltonetworks.com/home-small-office-wireless-routers-exploited-to-attack-gaming-servers/
https://www.payload-security.com/products/linux
https://www.payload-security.com/products/linux
http://eternal-todo.com/tools/peepdf-pdf-analysis-tool
http://eternal-todo.com/tools/peepdf-pdf-analysis-tool

References 147

statistical classification of executables. In Computer Security

Applications Conference, 2008. ACSAC 2008. Annual, pages
301–310. IEEE, 2008.

[PSY+15] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu
Matsumoto, Takahiro Kasama, and Christian Rossow. IoT-
POT: analysing the rise of IoT compromises. In WOOT, 2015.

[PU12] Roberto Perdisci and ManChon U. VAMO: Towards a Fully
Automated Malware Clustering Validity Analysis. In ACSAC,
2012.

[QSM15a] Jing Qiu, Xiaohong Su, and Peijun Ma. Library functions
identification in binary code by using graph isomorphism test-
ings. In 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), pages 261–
270. IEEE, 2015.

[QSM15b] Jing Qiu, Xiaohong Su, and Peijun Ma. Using reduced exe-
cution flow graph to identify library functions in binary code.
IEEE Transactions on Software Engineering, 42(2):187–202,
2015.

[rad] radare2, a portable reversing framework. http://www.radare.
org/.

[RZMH08] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and
Karen Hunt. Learning to analyze binary computer code. In
AAAI, pages 798–804, 2008.

[SBG20] Manolis Stamatogiannakis, Herbert Bos, and Paul Groth. Pan-
dacap: a framework for streamlining collection of full-system
traces. In Proceedings of the 13th European workshop on Sys-

tems Security, pages 1–6, 2020.

[sd] sd and devik. Linux on-the-fly kernel patching without LKM.
http://phrack.org/issues/58/7.html.

[SF12] Farrukh Shahzad and Muddassar Farooq. Elf-miner: Using
structural knowledge and data mining methods to detect new
(linux) malicious executables. Knowledge and Information Sys-

tems, 2012.

http://www.radare.org/
http://www.radare.org/
http://phrack.org/issues/58/7.html

148 148

[SG64] Abraham Savitzky and Marcel JE Golay. Smoothing and dif-
ferentiation of data by simplified least squares procedures. An-
alytical chemistry, 36(8):1627–1639, 1964.

[sho] Shodan, the world’s first search engine for Internet-connected
devices. https://www.shodan.io/.

[Sila] Silvio Cesare. Runtime kernel kmem patching. https:

//github.com/BuddhaLabs/PacketStorm-Exploits/blob/

master/9901-exploits/runtime-kernel-kmem-patching.txt.

[Silb] Silvio Cesare. Shared Library Redirection via ELF PLT Infec-
tion. http://www.phrack.org/issues/56/7.html#article.

[Silc] Silvio Cesare. Unix ELF parasites and virus.
https://web.archive.org/web/20150713122748/http:

//vxer.org/lib/vsc01.html.

[Sop] SophosLabs. Botnets, a free tool and 6 years of
Linux/Rst-B. https://nakedsecurity.sophos.com/2008/02/

13/botnets-a-free-tool-and-6-years-of-linuxrst-b.

[SRKC16a] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan
Caballero. AVclass: A Tool for Massive Malware Labeling. In
RAID, 2016.

[SRKC16b] Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan
Caballero. AVclass: A Tool for Massive Malware Labeling. In
RAID, 2016.

[SSM15] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing functions in binaries with neural networks. In
24th {USENIX} Security Symposium ({USENIX} Security

15), pages 611–626, 2015.

[Sta] StatCounter. Desktop Operating System Market Share World-
wide. http://gs.statcounter.com/os-market-share/desktop/

worldwide.

[STMF] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Mud-
dassar Farooq. Pe-miner: Mining structural information to
detect malicious executables in realtime. Springer.

https://www.shodan.io/
https://github.com/BuddhaLabs/PacketStorm-Exploits/blob/master/9901-exploits/runtime-kernel-kmem-patching.txt
https://github.com/BuddhaLabs/PacketStorm-Exploits/blob/master/9901-exploits/runtime-kernel-kmem-patching.txt
https://github.com/BuddhaLabs/PacketStorm-Exploits/blob/master/9901-exploits/runtime-kernel-kmem-patching.txt
http://www.phrack.org/issues/56/7.html#article
https://web.archive.org/web/20150713122748/http://vxer.org/lib/vsc01.html
https://web.archive.org/web/20150713122748/http://vxer.org/lib/vsc01.html
https://nakedsecurity.sophos.com/2008/02/13/botnets-a-free-tool-and-6-years-of-linuxrst-b
https://nakedsecurity.sophos.com/2008/02/13/botnets-a-free-tool-and-6-years-of-linuxrst-b
http://gs.statcounter.com/os-market-share/desktop/worldwide
http://gs.statcounter.com/os-market-share/desktop/worldwide

References 149

[SWD17] Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape:
Scalable and robust binary library function identification using
function shape. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, pages
301–324. Springer, 2017.

[SWH+15] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. Firmalice-automatic
detection of authentication bypass vulnerabilities in binary
firmware. In NDSS, 2015.

[SWL05] Salvatore J Stolfo, Ke Wang, andWei-Jen Li. Fileprint analysis
for malware detection. ACM CCS WORM, 2005.

[Sym18] Symantec. Symantec internet security threat report (istr).
https://www.symantec.com/content/dam/symantec/docs/

reports/istr-23-2018-en.pdf, March 2018.

[Sym19] Symantec. Symantec internet security threat report (istr).
https://www.symantec.com/content/dam/symantec/docs/

reports/istr-24-2019-en.pdf, February 2019.

[sysa] Sysdig. https://www.sysdig.org/.

[sysb] SystemTap. https://sourceware.org/systemtap/.

[Tal18] Talos. New VPNFilter malware targets at least 500K network-
ing devices worldwide. https://blog.talosintelligence.com/

2018/05/VPNFilter.html, May 2018.

[Tea] Team TESO. Burneye ELF encryption program.
https://packetstormsecurity.com/files/30648/burneye-

1.0.1-src.tar.bz2.html.

[TFA+17] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh,
and Lorenzo Cavallaro. The evolution of android malware
and android analysis techniques. ACM Computing Surveys

(CSUR), 49(4):1–41, 2017.

[TKFC15] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and
Lorenzo Cavallaro. Copperdroid: Automatic reconstruction
of android malware behaviors. In Ndss, 2015.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.sysdig.org/
https://sourceware.org/systemtap/
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://packetstormsecurity.com/files/30648/burneye-1.0.1-src.tar.bz2.html
https://packetstormsecurity.com/files/30648/burneye-1.0.1-src.tar.bz2.html

150 150

[UPBSB16] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and
Pablo G. Bringas. RAMBO: Run-time packer Analysis with
Multiple Branch Observation. July 2016.

[urla] Diaphora, a free and open source program diffing tool. http:

//diaphora.re/.

[urlb] VirusTotal. https://www.virustotal.com/.

[VE93] Mike Van Emmerik. Signatures for library functions in exe-
cutable files. 1993.

[vir] Malware analysis sandbox aggregation: Welcome Ten-
cent HABO. http://blog.virustotal.com/2017/11/malware-

analysis-sandbox-aggregation.html.

[VLA96] VLAD. Staog linux virus. http://www.wiw.org/~meta/

vlad.php?read=ARTICLE.2_4&issue=7&desc=STAOG%

20Linux%20Virus, 1996. Accessed: 2020-09-20.

[VS18] Pierre-Antoine Vervier and Yun Shen. Before Toasters Rise
Up: A View into the Emerging IoT Threat Landscape. In
RAID, 2018.

[vts] VirusTotal += Behavioural Information. http:

//blog.virustotal.com/2012/07/virustotal-behavioural-

information.html.

[Wic09] Georg Wicherski. pehash: A novel approach to fast malware
clustering. In Proceedings of the 2Nd USENIX Conference on

Large-scale Exploits and Emergent Threats: Botnets, Spyware,

Worms, and More, LEET’09, 2009.

[WLL+] Aohui Wang, Ruigang Liang, Xiaokang Liu, Yingjun Zhang,
Kai Chen, and Jin Li. An Inside Look at IoT Malware.

[WLO+18] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xi-
aosong Zhang. Jn-saf: Precise and efficient ndk/jni-aware
inter-language static analysis framework for security vetting
of android applications with native code. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 1137–1150, 2018.

http://diaphora.re/
http://diaphora.re/
https://www.virustotal.com/
http://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html
http://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html
http://www.wiw.org/~meta/vlad.php?read=ARTICLE.2_4&issue=7&desc=STAOG%20Linux%20Virus
http://www.wiw.org/~meta/vlad.php?read=ARTICLE.2_4&issue=7&desc=STAOG%20Linux%20Virus
http://www.wiw.org/~meta/vlad.php?read=ARTICLE.2_4&issue=7&desc=STAOG%20Linux%20Virus
http://blog.virustotal.com/2012/07/virustotal-behavioural-information.html
http://blog.virustotal.com/2012/07/virustotal-behavioural-information.html
http://blog.virustotal.com/2012/07/virustotal-behavioural-information.html

References 151

[Yeh] T. Yeh. Netis Routers Leave Wide Open Back-
door. https://blog.trendmicro.com/trendlabs-security-

intelligence/netis-routers-leave-wide-open-backdoor/.

[YLC+19] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson,
Tianyin Xu, Ennan Zhai, Yong Li, and Yunhao Liu. Under-
standing and detecting overlay-based android malware at mar-
ket scales. In Proceedings of the 17th Annual International Con-

ference on Mobile Systems, Applications, and Services, pages
168–179, 2019.

[YZK+20] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei
Peng, Yu Shi, Carson Harmon, and Xiangyu Zhang. Pmp:
Cost-effective forced execution with probabilistic memory pre-
planning. In 2020 IEEE Symposium on Security and Privacy,

SP 2020, Proceedings, pages 18–20, 2020.

[Z0m] Z0mbie. Injected Evil. http://z0mbie.daemonlab.org/infelf.

html.

[ZDn] ZDnet. Google’s VirusTotal puts Linux malware un-
der the spotlight. http://www.zdnet.com/article/googles-

virustotal-puts-linux-malware-under-the-spotlight/.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting android malware:
Characterization and evolution. In 2012 IEEE symposium on

security and privacy, pages 95–109. IEEE, 2012.

[Zyn] Zynamics. Bindiff - a comparison tool for binary files. https:

//www.zynamics.com/bindiff.html. Accessed: 2020-10-20.

https://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
https://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
http://z0mbie.daemonlab.org/infelf.html
http://z0mbie.daemonlab.org/infelf.html
http://www.zdnet.com/article/googles-virustotal-puts-linux-malware-under-the-spotlight/
http://www.zdnet.com/article/googles-virustotal-puts-linux-malware-under-the-spotlight/
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html

	Introduction
	Problem statement
	Contributions
	Thesis outline

	Background
	ELF file format
	Linux malware
	Malware clustering and lineage
	Function and library identification

	Understanding Linux Malware
	Introduction
	Challenges
	Target Diversity
	Static Linking
	Analysis Environment
	Lack of Previous Studies

	Analysis Infrastructure
	Data Collection
	File & Metadata Analysis
	Static Analysis
	Dynamic Analysis

	Dataset
	Malware Families

	Under the Hood
	ELF headers Manipulation
	Persistence
	Deception
	Required Privileges
	Packing & Polymorphism
	Process Interaction
	Information Gathering
	Evasion
	Libraries

	Intra-family variety
	Conclusions

	The Tangled Genealogy of IoT Malware
	Introduction
	Why this Study Matters

	Dataset
	Features-based Clustering
	Feature Extraction
	Clustering
	Lessons Learned

	Malware Lineage Graph Extraction
	Code-based Clustering
	Symbols Extraction
	Binary Diffing and Symbol Propagation
	Source Code Collection
	Phylogenetic Tree of IoT Malware

	Results
	Code Reuse
	Outliers and AV Errors
	Variants

	Case Studies
	Conclusions

	User Code Identification in Statically Linked Binaries
	Introduction
	Overview
	Static Analysis
	Binary Layout Analysis
	Global Variables
	User Code Boundary Analysis
	Boundaries Classification and Selection

	Results
	Dataset
	User Code Identification
	Classification

	Case Study
	Limitations
	Conclusions

	Conclusion and Future Work
	Future work
	Conclusion

	Appendices
	French Summary
	Introduction
	Comprendre les logiciels malveillants de Linux
	Analyse de l'infrastructure
	Sous le capot

	L'enchevêtrement de la généalogie des logiciels malveillants IoT
	Extraction du graphe de lignage des logiciels malveillants
	Résultats

	Identification du code utilisateur dans les binaires liés statiquement
	Analyse des limites de code
	Collection et classification des caractéristiques

	Conclusion

