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Abstract vii

Hunter drones
Drones cooperation for tracking an intruder drone

Abstract

In the last decade, we have witnessed significant advances in multi-robot systems. Much
attention has been paid to the modeling of coordinated movement, called flocking;
however, some current applications require more than the ability to navigate cohesively
and without collision, for example, the use of drones to intercept a faster intruder. This
application, to which this thesis is dedicated, although it is a subset of collective motion,
has characteristics contrary to flocking, such as dispersion, in place of aggregation, and
capture, instead of keeping desired distance.
To reproduce more efficient and performing group-pursuit behavior in robotic appli-
cations, we propose in this work several behavior-based multi-agent strategies. Along
most of this work, the interaction rules between the pursuers and the target are designed
based on the geometric rules and relative kinematic models, commonly used in missiles’
guidance laws.
Furthermore, we investigate the application of the proposed strategies in real-time
robots. For that, a multilayer motion controller architecture is proposed, allowing the
application of high-level navigation laws in a quadcopter.
Our strategy shares concepts with classical multi-agents methods [49, 77, 58], such as
local sense, limited interaction, and decentralization decision-make. Nevertheless, we
differ from most of them for considering the environment’s perception of polar and
relative coordinates, which is a consistent assumption considering embedded sensors
(LIDAR and camera).
Besides, our work extends known techniques of navigation guidance laws to the multi-
agent problem. In other words, pursuer behavior is given by modified guidance laws,
where the parameters are adapted according to the pursuit’s engagement. As a result,
we have emergent group ambush with non-crossing trajectories between pursuers.

Keywords: group pursuit, multiagents, hunting, drones, flocking.

Laboratoire Heudiasyc UMR 7253
Batiment Blaise Pascal – 67, Avenue de Landshut – CS 60319 – 60203
Compiègne Cedex – France



viii Abstract

Hunter drones
Drones cooperation for tracking an intruder drone

Résumé

Au cours de la dernière décennie, nous avons assisté à des avancées significatives dans
les systèmes multi-robots. Une grande attention a été portée à la modélisation du
mouvement coordonné, appelé flocage ; cependant, certaines applications actuelles
nécessitent plus qu’une navigation cohérente ; comme par exemple, l’utilisation de
drones pour intercepter un intrus plus rapide. Cette application, bien qu’elle soit un
sous-ensemble du mouvement collectif, présente des caractéristiques contraires au
flocage, telles que la dispersion, au lieu de l’agrégation, et la capture, au lieu de garder
la distance souhaitée.
Pour reproduire un comportement de poursuite de groupe plus efficace, nous proposons
dans ce travail plusieurs stratégies multi-agents basées sur le comportement. Dans
la plupart de ces travaux, les règles d’interaction entre les poursuivants et la cible
sont conçues à partir des règles géométriques et des modèles cinématiques relatives,
couramment utilisés dans les lois de guidage des missiles. De plus, nous étudions leurs
applications avec des robots en temps réel. Pour cela, une architecture de contrôle de
mouvement multicouche est proposée.
Notre stratégie partage des concepts avec des méthodes multi-agents classiques, telles
que le sens local, l’interaction limitée et décentralisation. Néanmoins, nous différons de
la plupart d’entre eux pour considérer la perception par l’environnement des coordon-
nées polaires et relatives. Par ailleurs, nos travaux étendent les techniques connues de
lois de guidage de navigation au problème multi-agents.

Mots clés : group pursuit, multiagents, hunting, drones, flocking.
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chi ben comincia è giá a metá

dell’opera

Italian proverb

Introduction

Motivation In the last decades, we have seen an abrupt popularization of

mobile robots around the world. Consecutively, civil authorities have been facing

new challenges, such as the mitigation of criminal robots. In fact, unauthorized

drone flights over protected areas, such as over airports and prisons, have been

common in newspaper headlines.

Although there are preventive solutions, the current technologies have serious

drawbacks, such as high-cost structure required, side effects or inefficiency.

Against this backdrop, an interesting solution has arisen lately: the use of anti-

drone drones, which has proved itself an efficient and less costly solution. A

more detailed discussion about the drone threat and the anti-drone solutions

will be discussed in Section 1.1.

However, the solution discussed in this document aims at a scenario in the

near future in the anti-drone fight, where the intruders can act autonomously,

reactively, and can have superior capabilities than the single pursuer. This new

scenario would require a group effort to accomplish the capture. The group of

robots must perform more than a flight in formation or maintain the group’s

cohesion. They should be able to navigate cooperatively to ambush the most

agile and reactive invaders, such as a group of predators behaves in real life to

chase their prey.

Collective motion Many efforts have been made in the last decades to ana-

lyze and reproduce complex group behavior. Initiatives from different science

areas have been launched to observe, describe, and reproduced group natural

phenomena.

1



2 Introduction

Although countless examples could be listed here, we left to the reader three

special examples to introduce our case: first, a flock of hundreds of starlings

in a complex and fluid movement, splitting in the presence of predators and

smoothly joining again, producing an amazing aerial display. Second, the perfect

synchronization and symmetry of a jets fleet in an airshow, with a breathtaking

maneuver in very high velocities.

Moreover, finally, a wolf-pack’s wit and coordination to take down a stronger

or faster prey, like a bison or a hare. In this last case, the struggle for sur-

vival from both parts provides these amazing spectacles. The preys adopt

unpredictable escape trajectories, and the pursuers execute well-coordinated

teamwork strategies to ambush and capture their prey.

Figure 1 – Examples of collective motions: a) Flocking of starlings b) An aerial
demonstration squadron c) Wolves chasing a hare

Although all of the above examples are part of the collective motion fields,

they have all distinctive features. While planes’ fleets have symmetry and

fixed formations, the flock of birds shows incredible cohesion and a very fluid

formation. In turn, the wolf-pack, although it has similarities to both, represents

a completely new branch, where the individuals do not seem to care much

about the formation or even cohesion of the group. Instead, they trace their

own trajectory towards the prey and adapt it in the neighbors’ presence, which

results in a surprising emergent ambush behavior.

Multi-robots The first two examples of Figure 1, flocking and formations, have

been extensively studied in the literature, and even successful applications in

real robots have also been made. A flock of robots, like in [53, 80] and amazing

fleet formation, like in [81, 82], are becoming common in technology fairs and

entertainment shows.

Work in progress as of 20
th
June, 2021



Introduction 3

Therefore, let us states the distinction between the two definitions: on the one

hand, the term “flocking” refers to agent-based and decentralized approaches,

where the individuals are homogeneous, having no explicitly hierarchy and able

to sense and act locally. It is widespread in natural phenomena. Interacting

units end up moving with about the same absolute velocity. This approach in

multi-robots applications can also be referenced as “behavioral-based,” where

each agent acts based on a set of rules, or laws, such in [53, 58].

On the other hand, by fleet formation, we refer to all the multi-agent strategies

that keep a specific pattern (constellation). It can be referred to as virtual

structures strategies in multi robots, which normalize centralized and leader-

following strategies. Each agent tries to keep a specific relative positioning

towards the neighbors and the leader (physical or virtual). Examples of this kind

of implementation can be seen in [81, 83, 141].

Both techniques, fleet formation and flocking, have been applied to the group

chase evasion problem [35, 46, 47, 51, 84]. Nevertheless, there are several

differences between these distinct problems; and the obtained results fall short

to reproduce the collective hunting phenomena. Formation based strategies,

such as in [46, 47, 84], does not differ much from the case of a single pursuer.

The constellation of robots behaves as a single agent, once their movements are

constrained by the formation. Similarly, flocking-based strategies, such as in

[35, 51], although does not require fixed formation, are still much worried about

group’s cohesion, which goes contrary to spreading out behavior of hunters.

The alignment (or viscous term), frequently used in flocking, actually limits

the action of the individual pursuer and, once more, preventing the necessary

detachment necessary for the ambushing.

These strategies mentioned above do not perform an efficient and realistic

pursuit because they were not designed for this, but rather adapted from flocking

or formation algorithms.

Work in progress as of 20
th
June, 2021



4 Introduction

Group pursuit-evasion One last topic, which could not be left out of this

introductory chapter, is the recent field of group pursuit-evasion. It aims to

describe prey-predators’ complex behavior considering agent-based models,

such as in [34, 51, 52].

Moreover, as pointed by [85], this recent and opened field inherits from two

consolidated literature: pursuit-evasion and collective motion. Firstly, it can be

seen as an extension of the single pursuit-evasion problem, taking advantage of

vast literature involving: analytical solutions of pursuit, differential games, and

missiles guidance studies. Furthermore, it can be considered as extension of the

collective motion, taking advantage of the extensive literature in self-propelled

particles, such as [77], which has been used to model numerous complex systems,

like bacteria, insect, physical particles, etc.

Recent work in escape from group chase [52] proposed modified versions of

Vicsek’s self-propelled particles to adapt the conventional flocking algorithm

into a group pursuit. It was done by adding an extra chase term and modifying

the alignment one. Although interesting behaviors can be exhibited in the simu-

lations and efficient ambush behavior appears during the chase, their model has

many variables, which made more difficult tunning and required optimization.

Furthermore, its applicability in the real world is limited due to its assump-

tions in observation; it relies on the knowledge of position and velocities of

pursuers and targets expressed in the global frame. Although these assumptions

can be partially afforded by considering communications between pursuers, the

evader is not cooperative in real-world applications. Its global position and

velocity are normally not available for the pursuer.

Thesis proposition: To reproduce more efficient and performing group-pursuit

behavior in robotic applications, we propose several behavior-based multi-agent

strategies. Along most of this work, the interaction rules between the pursuers

and the target are designed based on the geometric rules and relative kinematic

models, commonly used in missiles’ guidance laws.

Work in progress as of 20
th
June, 2021



Introduction 5

Furthermore, the application of these group pursuit strategies in robots in

real-time will be studied in this thesis. For that, a multilayer motion controller

architecture is proposed, allowing the application of high-level navigation laws

in a quadcopter.

Our strategy share concepts with classical multi-agents methods [49, 58, 77],

such as local sense, limited interaction, and decentralization decision-make.

Nevertheless, we differ from most of them for considering the environment’s

perception of polar and relative coordinates, which is a consistent assumption

considering embedded sensors (LIDAR and camera).

Besides, our work extends known techniques of navigation guidance laws to

the multi-agent problem. In other words, pursuer behavior is given by modified

guidance laws, where the parameters are adapted according to the pursuit’s

engagement. As a result, we have emergent group ambush with non-crossing

trajectories between pursuers.

Outline of the thesis: In Chapter 1, we review essential literature related to

group-pursuit applied to drones. Firstly, we go deeper into the counter-drone

problem and the current solutions. Then, we present an overview of the collec-

tive motion literature, highlighting behavioral-based approaches and collective

robots. After that, we introduce an overview of the pursuit-evasion problem,

emphasizing navigation guidance laws and reinforcement learning. Finally, we

introduce the emerging field of group pursuit-evasion, and we highlight the

recent works.

In Chapter 2, we study the scenario where a group of pursuer and a single

evader are traveling in a bounded 2-dimensional workspace. To solve the capture

problem, we propose three distinct behavioral-based strategies for the pursuer

team. The first one is based on the Deviated Pure Pursuit guidance, DPP, and the

different values of the offset angle for each pursuer gives them different behavior

in the stalking. The second strategy is an improvement of the previous one,

where a Parallel Navigation term is added to the DPP. This allows the pursuer

to take more efficient paths toward the target and still deviate from each other,

avoiding collisions.

Work in progress as of 20
th
June, 2021



6 Introduction

Finally, we propose a Deep Reinforcement Learning framework to obtain

through simulations close-to-optimal policies for the pursuers.

In Chapter 3, slightly different scenarios or assumptions are studied. Firstly,

we will assume that the target’s global positioning and velocity are available

for the pursuers. With that, a predictor scheme is chosen to foresee the target’s

future position. Secondly, we consider a scenario where just one pursuer real-

izes the target’s stalking; nevertheless, other non-cooperative agents, or mobile

obstacles, are traveling in the same workspace. In a third and last scenario, we

are interested in larger amounts of agents, where not all of them are informed

about the target. In this, we investigate the flocking formation considering only

the relative and polar information about the neighbors.

In Chapter 4, we investigate the application of the proposed strategies into

a group of quadcopters. First, we describe the experimental setup, detailing

the material used for the real-time flights. Then, we describe our work on state

estimation, in which we implemented a Kalman filter algorithm for filtering

and estimating position and velocity. Finally, we present the motion control

architecture for a drone pursuer.

Finally, we propose a careful discussion about the thesis’s proposed strategies,

where criteria such as performance and viability of implementation will be taken

into account. Besides, we will give a general conclusion and the research prospect

of this work.

Work in progress as of 20
th
June, 2021



The best way to defeat a tank is

with another tank.

Popular saying

Chapter1
State of the art
In this state-of-the-art, we review the essential literature related to group-pursuit

applied to drones. First, we present an overview of the counter drones problem

and its current solutions in the civil environment. We evidence the promising so-

lution of anti-drone drone (ADD), and we argue the need to use a group of ADD’s

to contain the coming threats. Then, we delve into the problem of multi-agents,

giving an overview of some key works in the literature on collective motion

and a particular focus on multi-robots in the pursuit. After that, we present an

overview of the classical pursuit-evasion problem, emphasizing the emerging

field of group chase-evasion. Moreover, we summarize the well-established

literature in guidance laws, giving theoretical concepts for its development in

this work.

Contents
1.1 The counter-drone fight . . . . . . . . . . . . . . . . . . . . 8

1.2 Collective motion . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Pursuit evasion . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Guidance Laws (GL) . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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8 CHAPTER 1. State of the art

1.1 The counter-drone fight

The recent boom in the production and marketing of drones has profoundly

affected our society. As reported in [126], the commercial use of drones has a

vast potential, and they have shown themselves as a versatile tool already being

used for mapping, public security, humanitarian aid, among others.

However, their illness is also a reality that has dramatically concerned the

population as a whole [60]. For example, in [125], the authors point out that

drone delivery’s acceptance by the public opinion is divided. From one side

are those who see the drone as a faster and more environmentally friendly

alternative, and on the other side who are reluctant and fearful of the risks. Fur-

thermore, drones’ illegal activities have been the most diverse, such as terrorism,

espionage, drug trafficking, violation of privacy, and airport disruption [72]. For

example, since 2016, at least ten serious worldwide incidents involving drones

in international airports resulted in serious losses [129].

Although legislation has improved in most countries [132], the authorities

have faced enormous difficulties in reinforcing the law, i.e., to mitigate the illegal

use of these machines [59].

Figure 1.1 – Miscellaneous of criminal usage of drones: terrorism, airplanes
accidents, traffic of drugs and flight over nuclear plants.

Work in progress as of 20
th
June, 2021



1.1. The counter-drone fight 9

1.1.1 Anti-drone solutions

In the military world, the combat against drones has been used for several

decades [127], and consolidated techniques have been deployed since then.

Although the Air Forces’ anti-AUV systems may not be directly applied to

the mini-drone neutralization, as exposed in [128], its extensive literature and

know-how have been the starting point for much of the recent civil drone

countermeasures. According to [57], most military techniques can be divided

into the following classes: Jamming, Spoofing, and Mitigation.

While spoofing consists of inducing the drone a landing using false com-

mand signals, jamming, for its turn, disturbs the control with substantial signal

interference, which can carry the drone to an emergency landing [57, 128].

However, these techniques can resent a relatively good efficiency [25]; they

present a drawback of the short-range of actuation since their deployment is

done conventionally by fixed ground stations. Furthermore, still after [25], inter-

ference techniques also present a relatively high cost, resulting in the demanded

structure.

Figure 1.2 – Examples of anti-drone solutions. A) A policeman carrying a drone-
jammer [136]. B) Equipment used for protocol manipulation (spoofing) [137]. C)
Illustration of a net-launcher deployed by a policeman. D) Example of anti-UAV
falconry.

Work in progress as of 20
th
June, 2021



10 CHAPTER 1. State of the art

The techniques of mitigation consist of destroying or intercept the invader

physically [57, 128]. One emblematic example of mitigation was the "Anti-UAV

Falconry" deployed by the Dutch National Police [135]. They studied the use

of eagles and other prey birds to capture invasive drones. Evidently, this was

a temporary exit, which carries numerous disadvantages, such as dependence

on a bird’s master, the animal’s physical integrity, and its short-range actuation.

Other examples of physical neutralization can be net launchers, water cannons,

and projectile shooting [25, 129], which are generally deployed from the ground.

Those techniques usually present the low cost of implementation but also have

limited efficiency. Nevertheless, one particular case of mitigation, the laser

weapons, such as the Boeing’s Compact Laser Weapon System (CLWS), can offer

excellent efficiency and a good range of actuation. But of course, all this in

exchange for a very high installation cost.

The techniques presented so far do not have a viable cost or a good efficiency

or operating range at once. Furthermore, all of these attempts are deficient in

their potential collateral effects, i.e., the possibility of physical damage when the

drone is neutralized. A drone landing forcibly or falling after an intercepting

can cause harmful consequences in a civilian environment.

1.1.2 Anti-drone drone (ADD)

The anti-drone drone (ADD) is a recent technology that has stood out for its low

cost, good efficiency, and potential for capturing the intruder and phase it out in

a safe place. Furthermore, the ADD has an intrinsic advantage since it has the

same "nature" of the threat, having essentially similar features. In this way, the

countermeasure can evolve with similar speed to that of threat.

In recent literature, several works have been dedicated to ADD [3, 25, 27,

28, 62]. In [25], the author proposes a conceptual design of an ADD using a

net launching system to neutralize the target. They considered the intruders’

performance, the capturing system, and the missions’ requirements in its design.

In [3], [27], and [28], the authors dedicated to the trajectory planning for an

ADD. In [27], the author proposed an improvement in the model predictive

control scheme for allowing aggressive trajectories.

Work in progress as of 20
th
June, 2021



1.1. The counter-drone fight 11

Moreover, in [3], the author chooses to compare missile guidance-based

strategies with an optimal control planner. In [28], the author proposed an

optimal controller based on a pursuit-evasion game formulation. They concen-

trated on a case where the target is partially observable, and they investigate the

state-estimation as well.

While in the last examples, the authors considered the quadcopter as ADD

aircraft, in [62], the author considered fixed-wing models. In this work, ADD

behavior was modeled after a human-based model on aircraft combat pilots’

experience. Besides, several ADD solutions are already commercially available.

Companies, such as Theiss [130] and Hertz [131], for example, provide similar

ADD solutions based on the net launch system. Both solutions are no-destructive

and offer a low risk of damage in the civil application.

Figure 1.3 – Examples of anti-drone drone (ADD). A) An ADD equipped with a
net-launcher. Similar solution has been commercialized by [130] and [131]. B)
ADD with a fixed net deployed by the Tokyo police [154]. C) Kamikaze ADD
developed the American startup Anduril [133].

Although an essential advantage of the ADD is the possibility of capturing

the intruder, other kinds of interception have also been considered. For example,

several works [27, 62] consider the kamikaze mode (or kinetic attack), where the

pursuer attempts to crash into the target, disabling it. This attack can also be a

backup mode in case of launch net failure. Another example is the American

startup Anduril, which proposed an anti-drone system in which the kinetic attack

is the means interception. Another possibility of neutralization is the use of

interference guns on the drone. The Boreades project [134], proposes a counter

UAV system where the ADD uses jamming guns to neutralize the intruder.

Work in progress as of 20
th
June, 2021



12 CHAPTER 1. State of the art

Until now, it has been evident the benefits of using the ADD in the counter-

drone fight in civilian environments. However, since the ADD shares the same

"nature" as its prey, i.e., they have virtually similar capabilities, the capture

task could not be easy for the pursuer. The same technology that can allow

autonomous pursuit can also favor autonomous evasion, making the one-vs-one

pursuit a challenging task for the ADD. Nevertheless, to overcome the problem

of a faster or stronger opponent, one recurrent solution observed in nature is

cooperation, the use of a group instead of the single. In fact, group hunting

increases the success rate of predators, as exposed in [45], and [33]. In a multi-

agent system, the perception and the actuation area is significantly augmented,

which can allow even the capture faster or more agile prey [52].

1.2 Collective motion

Collective behavior has been observed as an evolutionary advantage in many

natural systems. Throughout the animal kingdom is evident how the group

phenomena - as flocking, swarm, and pack - increases the rate of success of an

individual living being significantly [44]. Even for the modern and corporate

human being, teamwork is an appreciated characteristic of an individual. In

short, humanity always new about the power of the collective, as the Aristotelian

maxim said: “the whole is greater than the sum of its parts.”

1.2.1 Bio-inspiration

Understanding and modeling the complex behaviors observed in nature has been

the primary motivation for many pioneers in multi-agent systems. Reynolds’

seminal work [49] aimed to graphically reproduce the behavior observed by

flocks of birds and schools of fish. His studies observed that specific "laws"

of behavior at the individual level, considering only local observation, could

reproduce a verisimilar group behavior observed in natural systems. Namely, the

three rules are: separation - a short-range repulsion to avoid crowded neighbors.

Alignment - the tendency to align itself with its neighbors’ average heading. And

cohesion - long-range attraction towards the center of the flock.

Work in progress as of 20
th
June, 2021



1.2. Collective motion 13

Figure 1.4 – One of the most classic flocking models [49] was created to graphi-
cally reproduce the behavior of collective animals, such as fish in a school. In
the left figure, three-dimensional "boids" are represented [146]. On the right, a
picture of a school of fish, from [147].

Universality of flocking Later, with the advancement of data acquisition tech-

niques, observation studies found the flocking property in the most diverse

groups of individuals, from bacteria, through insects to human groups on ves-

sels, as evidenced in the Vicsek and Zafeiris’ survey [50]. Individuals’ tendency

to collectively align their directions seems to indicate a certain universality

of the collective motion. From Vicsek’s seminal work [77], the physical com-

munity would explain this universal behavior as a result of the interaction of

self-propelled particles. This collective movement, where individuals tend to

align themselves fluidly, even in the absence of a leader or centralized coordina-

tion, is also called as flocking.

Models for flocking behavior are numerous in the literature, and they range

from the simplest ones, such as primary Vicsek particle [77], passing through

deterministic models, such as Cucker–Smale [138] and its numerous variation,

and control-theoretical frame-work, such as in [58].

Flocking and hunting Although flocking behavior is present in practically

all living beings moving in group [50], flocking models are not sufficient to

describe all collective behavior types. Group hunting, for example, is a complex

phenomenon that is not fundamentally described by flocking models. The de-

scription of lionesses’ collectively hunting, carried out by Stander [45], indicates

the lionesses’ previous tendency to disperse and then ambush the prey. Disper-
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sion behavior is contrary to the aggregation trend described in most flocking

models. This difference is evident in the work of Janosov [52]; the authors pro-

posed the addition of a dispersion term into the conventional flocking model

[53, 54] to obtain a more realistic hunting modelization.

Furthermore, Reynold’s alignment rule, with its correspondent in the field of

statistical physics, the viscosity term, acts as a force against a reactive hunting

movement. The alignment makes the direction of a stalker tend towards its

neighbors’ average direction, which may be contradictory with the tendency

of a hunter who orientates above all with respect to his prey. Some recent

multi-agents approaches have tried to model group hunting using principles

of collective motion. Later in this chapter, we will make a brief review of the

emerging field of group chase-evasion.

1.2.2 Collective robots

It is possible to highlight several similarities between group animals and col-

lective robots, such as limited sensing and communication and decentralized

decision-make. These similarities explain why flocking models have been widely

integrated into robots, as proposed in [53, 74, 139] and in many other works

[140].

However, as expressed in Viragh [53], real-life conditions, such as delays,

communication failures, and uncertainty, can cause instability among agents.

Consecutively, the design of multi-robots must go beyond the theoretical flocking

model, and the physical characteristics of the robot and its sensors must be taken

into account. Therefore, multi-robots can be seen as an extension of the classic

models of group movement models, as described in the previous section, but

taking into account the robots’ dynamics and observation.

A vast literature collective robot (or swarm of robots) has been formed in the

last two decades, and several efforts have been applied to organize and classify

them, such as in [140, 141]. For the sake of clarity, we consider henceforth a clas-

sification similar to one proposed in [140], which classifies the systems of multi

robots based on their emergent behavior. For example, as a collective behavior,
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we can highlight the following group tasks: reaching consensus, coordinated

motion (flocking), or pattern formation. Next, we will review two of the most

popular behaviors applied to aerial robots and their application to group chase.

Pattern Formation

In the field of aerial robotics, impressive results have been achieved in fixed

and dynamic pattern formation, such as described in Figure 1.5. Autonomous

formation control has been extensively addressed in the control and robotics

literature. This approach aims to create geometrical patterns with the agents by

controlling their relative positioning.

The main control structures used to achieve pattern formation are namely:

Leader-follower [69, 70, 71], Virtual Structure [80, 142] and Behavioral-Based

[58, 83]. Although there are huge differences between the architectures, in this

work, we will stick only to their final results, which are the formation of patterns

themselves. Here, we are interested in whether the formation of patterns is

interesting or not for group persecution.

Figure 1.5 – Examples of real-time applications of pattern formation with quad-
copters. In the left picture, one of the earliest works with dynamic pattern
formation [142]. In the right picture, picture of the Intel Drone Light show at
the Winter Olympics of 2018 [144].

Several attempts have been made to apply pattern-formation techniques to

the group chase problem. In one of the earliest works [30], the author proposed a

feed-back control to regulate a non-holonomic pursuer’s position in a "stalking"

formation around the target. Each agent’s behavior was defined by a "formation

vector," and the resulting pattern was a half-circle around the target. In [32], the
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author proposed a bio-inspired wolf-pack’s model for a multi-robot application.

This proposition involves a hierarchical system, and a finite state machine deter-

mines the robot’s motion; nevertheless, the system relies on a fixed formation

and fixed roles.

Moreover, other commons approaches, such as in [46, 47], the encirclement

is achieved by each pursuer tracking a fixed point around the "virtual target." In

this case, the problem becomes a collision free trajectory generation problem,

which has been solved by genetic algorithms [46] or virtual ranges [47].

Although the previous approaches could provide an encircling formation

around the target, they did not consider the target dynamics. In [31, 48], the

target movement is considered, and the pursuit is made toward a predicted

position target. Nevertheless, both techniques still rely on virtual points around

the predicted position of the target. Once more, the problem becomes the

generation of trajectories toward a virtual position. In a most recent work [84],

the author proposed a motion controller for a group of drones towing a capture

net to intercept an intruder UAV. Here, since the net physically links the agents,

the maintenance of the fixed pattern is needed.

In short, the use of pattern formation in the pursuit, although it can bring

some advantages to groups, such as increased perception, robust and acted area,

is still a very rudimentary technique of pursuit, which reduces the flexibility of

the group in a more challenging pursuit. The formation can be seen as a single

body, and the most advanced techniques of ambush and stalking require more

than the maintenance of the formation. Furthermore, most of the above-cited

techniques require knowledge of the target and neighbors position in the inertial

frame, which requires communication between all the pursuit actors.
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Flocking of robots

Flocking is another prevalent collective behavior for aerial robots. Here, we

consider multi-robots techniques which are based or similar to the "flocking"

models seen previously, such as Reynolds [49] and Vicsek [77] models. We

suppose that the agents do not follow a fixed path or relative positioning in a

pattern formation; instead, they are independent members of a cohesive group,

sensing and acting locally and based on simple rules.

Figure 1.6 – Examples of real-time applications of flocking with quadcopters
done by Vásárhelyi et al [148]. Thirty drones are fly in an virtually confined
space.

As pointed out by [140], flocking behaviors with multi-robots are generally

designed based on virtual physics, where virtual forces of attraction and repul-

sion ensure the distance between agents and the alignment ensures the coherence

of the movement.

One of the first successful attempts to reproduce Reynolds rules with aerial

robots is given in [74]. In this work, ten fixed wings UAVs were deployed, and

they focused on analyzing the effects of communication range and maximum

turning rate in the emergent formation. Other impressive examples of UAV’s

flock are given in [53, 54, 80, 148]. The authors deployed a fleet of over large

numbers of quadcopter flights in an entirely autonomous and decentralized

manner in those works. In those works, the flocking algorithm is based on the

in the Vicsek model [77]. Pictures of the real-time experiment can be seen in

Figure 1.6.

For the best of our knowledge, no flocking based strategies applied to group
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pursuit have been implemented in real-time robots. Nevertheless, several ap-

proaches have been made in simulations, such as [33, 35, 51, 52]. Such ap-

proaches will be better described in subsection Pursuit-evasion.

1.3 Pursuit evasion

Similar to flocking, pursuit-evasion is also a very popular phenomenon in nature,

which can be easily observed in several biological activities, such as foraging,

searching for partners, and disputing territories [37]. As we will see below, per-

secution has a long mathematical tradition; however, the recent computational

advances have allowed a new approach to the problem, allowing more complex

ones, with large numbers of persecutors and evaders.

1.3.1 Single Pursuit-evasion

Pursuit’s curbs Although the problem stated dates from farther away, the first

successful attempt to describe the trajectories of pursuit is attributed to Pierre

Bourger, in Les courbes de Poursuite (1732) [14, 37, 106]. Although the problem

can be stated simply, closed-form analytical solutions are hard to obtain, even

using simplistic assumptions such as constant velocities and linear trajectories.

For example, a generalized extension of the closed-form solution of Bourger was

only obtained late in 1991, as exposed in [106].

Differential game This approach formulates the pursuit-evasion as a two play-

ers game. The players (decision-makers) must maximize or minimize an objective

function, which often is the duration of the episodes. Such formulations have

been extensively studied in modern robotics problems. In [64], the authors

made an interesting survey highlighting game-based approaches applied to

robotics; consequently, the main classes of techniques were Pursuit-Evasion

Games and Probabilistic Search. The authors remarked a tendency to use the

second one in adversarial games, where the optimization expects to maximize

the evader detection probability. In [65], the authors implemented this technique

in a heterogeneous team with ground and aerial vehicles. They demonstrated
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Figure 1.7 – Curbs of pursuit. Left: the classic Bourger’s solution for different
velocity’s ratio between target and pursuer, extracted from [36]. Right: Example
of the generalized closed-form solution for a 2D pursuit, exposed in [106]

empirically that their method could locate a target but with no guaranteed

capture.

Others work using pursuit-evasion games in complex environments are avail-

able in [66], [67], and [68]. In those works, we can find the following con-

figuration consecutively: convex polygons arenas, with obstacles and no-fling

zones.

The multi-pursuer single-evader game is also a scenario extensively studied

in the literature. In [42], the authors used a differential game formulation

for multi pursuers chasing a single evader. In their proposition, each agent

minimizes the evader’s action area, characterized by the Voronoi cells, similarly,

in [43], a cost-function is proposed and computed based on the relative angle

and distance between agents and targets, seeking pursuit and avoid a collision.

Although game-based methodologies guarantee the optimality input for pur-

suit, the large amount of constraint and precise knowledge about the whole

system makes it, for instance, impracticable for real robots application. More-

over, it becomes more challenging to define an appropriate objective function

with increasing problem complexity, such as a larger number of agents or mo-

tion constraints. Finally, as exposed in [52], the apparatus of the differential
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game formulation requires a lot o "unrealistic and biologically questionable

assumptions."

1.3.2 Group pursuit

The emerging "group chase escape" analysis has raised a recent early interest in

the physics and biology communities. This field aims to describe prey-predators’

complex behavior considering agent-based models, such as in [34, 51, 52]. More-

over, as pointed by [85], this recent and opened field inherits from two consoli-

dated literature: pursuit-evasion and collective motion.

Firstly, it can be seen as an extension of the single pursuit-evasion problem,

taking advantage of an extensive literature involving: analytical solutions of

pursuit, differential games, and missiles guidance studies. Secondly, it can

be considered an extension of the collective motion, taking advantage of the

extensive literature in self-propelled particles, such as [77], which has been a

powerful tool model complex systems, such as bacteria, insect, and animals [50].

The first proposal to bring together chase-evasion and multi-particle systems

is possibly from Kamikura et al. [153]. In this work, the authors established

a multi-agent pursuit-evasion problem running in a grid world with periodic

boundary conditions. The pursuers, which have no interactions between them-

selves, had to capture the nearest evaders, while the evader must escape from

the closest pursuer. Despite the simplicity of the model, interesting behaviors

emerged, raising the scientific community’s interest.

Although those earlier works, such as [51, 152, 153], allowed the first analysis

of emergent behavior, such as segregation and encircling, they had elementary

assumptions, which kept it far from real-time applications. Nevertheless, since

then, approaches with more realistic simulations, such as continuous and bound-

ary world representation, were proposed [33, 34, 52], and the group-chase

started to become closer to robotic applications.

In [33], the author implemented an agent-based approach, based on simple

rules, to mimic a wolf-pack hunting strategy. The authors pointed out that there

was no need for communication to mimic encircling behavior. They showed
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Figure 1.8 – Group-chase algorithms and its bio-inspiration. In A a screenshot
from [152], it is illustrating the initial positions of pursuers (wolves) and evaders
(deers) using the algorithm proposed by [153]. B illustrates the motivation of
the previous: modeling the group chase evasion natural phenomenon. In C
a screenshot from [33], where the authors proposed to mimic a wolf-pack’s
behavior, as illustrated in D.

that simple rules of attraction toward the target and regulating distance be-

tween pursuer were enough to reproduce this performance. However, their

algorithm does not describe the complexity of a cooperated pursuit of faster

prey, which requires more sophisticated techniques to stalk and ambush the

prey. In another agent-based approach, [34] constructed the model based on the

Vicsek particle, and [35] modeled a similar multi-agent hunting system but in a

three-dimensional environment.

Recent work in escape from group chase [52] extended the previous particle-

based model [34] to more realistic simulations, where delays, inertial effects,

and three-dimensional work-space were considered. In this work, the pursuer

behavior is calculated by the sum of the virtual interactions: chase (attraction to

the prey), inter-agent repulsion, alignment, and short-range collision-avoidance.
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Furthermore, they considered the prediction of prey’s future position to improve

the verisimilarly of the hunting.

Although impressive behaviors can be exhibited in the simulations, their

model considered many tunable parameters, which increased the difficulty of

tunning and required optimization. Furthermore, its applicability in the real

world is limited due to its assumptions in the agents’ observation; it relies on

the knowledge of position and velocities of pursuers and targets expressed in

the global frame. Although these assumptions can be partially afforded by

considering communications between pursuers, the evader is not cooperative in

real-world applications; consecutively, its global position and velocity usually

are not available for the pursuer.

1.4 Guidance Laws (GL)

Guidance is a crucial part of any autonomous vehicle system. As once defined by

Shneydor [36], guidance can be said: "the process for guiding the path of an object
towards a given point, which in general may be moving". Considering a complex

robotic complex system, which involves several layers in the motion control,

the guidance layer can be considered high-level control, which indicates the

direction to be taken.

Here, "guidance laws" refer to feedback algorithms in which a particular

geometrical rule is implemented. The geometrical rule is the essence of GL

and expresses how the pursuer must behave in geometrical terms. For example:

"head the vehicle towards the target’s current position," which is the rule behind

the Pure Pursuit (PP) law. Since GL is an essential concept in this thesis’s

propositions, we will give more detail in the next subsections.

1.4.1 GL in robotics

As pointed out by [75], possibly the richest literature in guidance can be at-

tributed to the missiles’ community. This fact is not strange considering that
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Figure 1.9 – Guidance laws have been widely applied in guided missiles. Left:
the German TV guided bomb Hs-293D, considered the first PP-bomb. According
to [36], an operator transmits commands to the bomb according to its location
on the screen. Right: Guided Missiles R-27T1, an example of modern air-to-air
missiles, which implements PN based guidance law [151]

missiles were one of the first autonomous vehicles and, in a way, even the prede-

cessor of the current UAV [150].

GL for ground robots Considering ground robot applications, GL’s have been

extensively explored, see [38, 39, 40]. [38] investigated GLs to guide a single

robot towards an evader in an environment with obstacles. They applied two

classical guidance approaches: Velocity Pursuit Guidance (VPG) and the Devi-

ated Pure Pursuit (DPP). In [39], the authors implemented a feedback controller

based on Proportional Navigation Guidance (PNG). Similarly, in [40], the authors

applied a sliding-mode based control to keep a constant line-of-sight, which is

the geometrical rule for the PNG.

GL for UAVs Classic guidance laws application stills pique interests on the

scientific community, and it has been widely used in aerial robotics, such as

in [1, 3, 28, 41]. In [3], the author applied PP and PNG guidance algorithms

into quadcopters for target interception. They compared GLs against optimal

control trajectory planners, analyzing the time and energy required to achieve

the task. Nevertheless, results are only presented in simulations. In [28], the

author analyses three missiles guidance laws applied to interception trajectory in

the case of a partially-observable target. They formulate a pursuit-evasion game

to determine the guarantees of capture under evasive maneuvers, determining

an optimal controller.
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In [41], the authors used the PNG scheme in a drone landing on a moving

platform. Its final solution mixed PNG with PD - proportional derivative -

algorithms, and it showed effectively and carried out less oscillation and small

errors compared to the traditional tracking PD. Moreover, the PNG has also

been used as guidance law in an autonomous drone race in [1]. In that case,

the authors adapted the PNG algorithm to handle the quadrotor’s decoupled

dynamics between roll and yaw to follow visually desired trajectories in a drone

race.

1.4.2 Relative engagement

The analysis of the GL is based on the relative kinematic between pursuer and

target. This kinematics equation can be easily deduced from the geometrical

engagement of pursuer-target, as represented in Figure 1.10.

Figure 1.10 – Geometrical engagement between pursuer and target.

From Figure 1.10, the straight line, also called Line-of-Sight (LOS), connecting

them is denoted by riT . The bearing angle, formed by the LOS and the inertial

axis-x, is denoted here by λiT . The vector vi is the straightforward velocity in

the body frame, and ψi represents the heading (yaw) of the pursuer i.

As explicated in [17, 36], from this engagement a relative kinematic model

can be obtained. For that, lets consider the relative velocity between, ṙiT = ṖT − Ṗi .
The relative velocity can be decomposed along (v‖) and perpendicular (v⊥) to the

LOS :

v‖ = ṙiT = vT ∗ cos(αT )− vi ∗ cos(αi),

v⊥ = riT ∗ λ̇iT = vT ∗ sin(αT )− vi ∗ sin(αi).
(1.1)
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where αT = ψi −λiT and αi = ψT −λiT . In other words, with this equation we

have represented the velocities of target seem by the pursuer along the the LOS.

These equations will be useful to determine conditions of convergence, or

capture, for the proposed pursuit strategies.

1.4.3 Pure Pursuit (PP)

In the most intuitive guidance law, the Pure Pursuit law, the pursuer aims to

align its heading (or velocity vector) towards the present location of the target

(ψi → λiT ). Therefore, assuming this perfect alignment (ψi = λiT ) the relative

kinematics equations 1.1 become:

ṙiT = vT ∗ cosαT − vi ,

riT ∗ λ̇iT = vT ∗ sinαT .
(1.2)

Note that, a sufficient condition for the capture is that vi > vp, once this

condition assures ṙiT < 0, for any values of αT . This statement evidences the

limitation of the use of a single pursuer against a faster target. However, this

problem will be better discussed in Chapter 5.

Finally, considering the kinematic model of an agent (3.16), an intuitive law

to apply the PP (ψi → λiT ) is:

fψi = −Kpp ∗ (ψi −λiT ) (1.3)

where Kp defines a positive constant gain.
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1.4.4 Pure Deviated Pursuit - DPP:

As stated by Shneydor1998, the DPP can be seen as a variation of the classical PP,

it can be a result of manufacturing default or can be intentionally designed in

order to point the missile in position ahead of the target, causing a "lead pursuit."

However, if the offset drives the motile towards a position behind the target, it

causes a "lag pursuit."

Its basic principle relies in driving the heading error not to zero by to a

constant (ψi−λiT → α0). Once considering this principle, the relative kinematics

become:

ṙiT = vT ∗ cos(αT )− vi ∗ cos(α0),

riT ∗ λ̇iT = vT ∗ sin(αT )− vi ∗ sin(α0).
(1.4)

From the above equation, we can established one necessary condition about

the offset angle: |α0| < π/2. Nevertheless, under this strategy the capture cannot

be assured for all vi > vp.

The further interest in applying this technique is not to choose a α0 that

optimizes the pursuer displacement. Instead, the idea is that each agent assumes

different offsets, consecutively, having different degrees of lead, and lag pursuit,

spreading the pursuers around the target. In Chapter 2, one group pursuit

strategy will be established based on this technique.

Finally, as exposed in [36], an intuitive law to apply the DPP (ψi → λiT ) is:

fψi = −Kdpp ∗ (ψi −λiT −α0) (1.5)

where Kdpp defines a positive constant gain.

1.4.5 Proportional Navigation Guidance (PNG)

The Proportional Navigation is maybe the most popular guidance law for mis-

siles. Its basic principle is called Parallel Navigation or constant bearing rule. It

consists of keeping a constant bearing angle (λiT ) with respect to the target, and

since the LOS rate (ṙit) is decreasing, both elements are in the collision route.
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The same principle was observed in animals hunt, as the reputed faster

predator, Falcon peregrine, cited in [22], and also in insects, as described in [19],

where miniature brains predators execute fast maneuvers to catch its prey.

As exposed by Shneydor in [36], for the planar case, the parallel navigation

rule can be stated as:

λ̇iT (t) = 0,

ṙiT (t) < 0.
(1.6)

The above equations are also known as "straight-line collision course con-

ditions". Applying this principle (1.6), to the relative kinetic model (1.1), the

following relation can be obtained:

vT ∗ sin(αT ) = vi ∗ sin(αi),

vT ∗ cos(αT ) < vi ∗ cos(αi).
(1.7)

If the above conditions are satisfied and the velocities remain constant, the

straight-line collision course conditions prevail, and both bodies will converge.

We can see from (1.7) that, contrary to the Pure Pursuit (1.3), solutions can

exist even for vT > vi . In other words, depending on the initial conditions of the

engaged, a faster target can still be in a collision course with a slower pursuer.

This property will be explored in Chapter 2, where the faster evader case will be

studied.

Finally, a logical choice for a controller to implement the PNG can be defined

as:

fψi =N ∗ λ̇iT (1.8)

where N is a positive constant called the navigation gain.

1.5 Conclusion

Nowadays, there is a consistent threat by the unlawful use of civilian drones.

The classic counter-UAV solutions have proven to be insufficient, and there is a

growing trend in the use of anti-drone drones (ADD). However, in a futuristic

Work in progress as of 20
th
June, 2021



28 CHAPTER 1. State of the art

but next scenario, with autonomous intruder drones, the use of a single ADD

may be insufficient, as the intruder may have similar capabilities to the ADD. In

this case, it would be relevant to use a group ADD to cooperate and ambush the

intruder, similarly as predators in nature do.

However, coordinating robots for a chase is not an easy task. Although

group robots are becoming popular and extensive literature exists, the existing

multi-robots techniques are not appropriate for group pursuit problem. On the

contrary, most of the existing techniques are in charge of pattern formations or

flocking navigation, which is very different from a cooperative hunt.

On the other hand, the study of pursuit-evasion has been a topic widely

addressed and implemented in the military community. Although the existing

single-pursuit analysis can serve as insights for group-pursuit, the large degree

of freedom of this second makes the problem practically unfeasible to be solved

analytically with realistic conditions. In this context, group chase-evasion arises,

which uses multi-particle simulation techniques to analyze complex collective

motions.

Finally, our work comes in the context of group chase-evasion strategies and

aims to contribute to this field with an approach more adapted to aerial robots’

real applications.
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“But ask the animals, and they will

teach you, or the birds in the sky,

and they will tell you;

Job

Chapter2
Pursuit in the horizontal plan
In Chapter 2, we study the scenario where a group of pursuer and a single evader

are traveling in a bounded 2-dimensional workspace. To solve the capture prob-

lem, we propose three distinct behavioral-based strategies for the pursuer team.

The first one is based on the Deviated Pure Pursuit guidance, the DPP, and the

different offset values give, for each pursuer, different behavior in the stalking.

The second strategy is an improvement of the previous one, where an Paral-
lel Navigation term is added to the DPP. This allows the pursuer to take more

efficient paths toward the target and still deviate from each other, avoiding

collisions. Finally, we propose a Deep Reinforcement Learning framework to

obtain close-to-optimal policies for the pursuers.
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2.1 Problem statement

Let us consider multi-agents pursuit-evasion problem involving N pursuers

and a single evader moving in a horizontal plane. The pursuit takes place

inside a bounded work-space W in IR2. The final goal for the pursuer team

is riT < Rc , i.e. that at least one of the pursuers has a relative distance (riT )

towards the target inferior than a threshold Rc. The evader paths are described

by PT (t) = [xT (t), yT (t)], where (xT , yT ) is its cartesian coordinates inW . Similarly,

the pursuers path are described as Pi(t) = [xi(t), yi(t)], where iε1,2, ...N .

Figure 2.1 – Group pursuit in a bounded work-place. The pursuer (blue circles)
attemps to capture the evader (red circle). Furthermore, it is in evidence the
relative engagement between the pursuer i and one neighbors j and the target T .

Pursuer and target are moving in the work-space with a linear velocity (vi)

and heading (ψi). The motion model can be given by:

ẋi = vi cosψi ,

ẏi = vi sinψi ,

vi = fvi ,

ψ̇i = fψi

(2.1)

which fi = [fvi , fψi]T the control vector of the particle. The turn-rate and velocity

control are saturated, being fvi < vmax and fvi > 0 and |fψi | < ωmax.
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Note that the non-holonomic equations (2.1) describe only the agents used

in simulation; the quad-copter dynamics under the pursuit will be discussed

further chapters. Nevertheless, it is worthy to lies some advantages of choosing

this kinematic model for pursuer agents:

• It is a model compatible for a large number of vehicles, such as car-like,

airplanes, etc.

• Most of the works dealing with the pursuit problem rely on this hypothesis,

see Chapter 1.

• Even for holonomic robots, which is the case of the quadcopter, these

constraints can be useful to conciliate the perceptions constraints (sense-

and-go), see in Chapter 4.

The assumptions of vmax and ωmax will vary along with this thesis, and it will

be evidenced at the beginning of each experiment. In a similar way, the number

of pursuers N , the initial positions, and the shape of W can vary along with this

document.

2.1.1 Perception

Limited sensing is a common feature between multi-agents solutions [34, 49,

50]. Nevertheless, in this work, we decided to consider the perception of the

environment (neighbors, target, obstacle, and boarders) given in relative and

polar polar coordinates, as illustrated in Figure 2.1. This assumption is justified

mainly for two reasons:

• Considering the robotics application, relative and polar coordinates are an

expected output from commons embedded sensors, such as lidar, sonar,

and camera.

• Most of the pursuit-evasion analysis are done based on this coordinate

system; thereby, we could take advantage of its extensive literature.

Many works on drone’s pursuit, such as [3, 27], or on navigation in a complex

environment, such as [1], rely mainly on the frontal camera for the environment

sensing.
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2.1.2 Target behavior

The ultimate advantage of using multi-agents in pursuit is the possibility of a

cooperative ambushing for intercepting a more agile target. The term "agile" can

mean having superior velocity or having more degrees of freedom. Along with

this thesis, both of these hypotheses will be assumed.

In the following, the intruder will be up to twice as fast as the pursuers.

Furthermore, the intruder will not be constrained to non-holonomic equations

2.1, but by a simple particle model, which gives him locomotion advantages.

This configuration is a very known problem in differential games, and it is called

"the homicidal chauffeur," [79].

Two strategies are assumed in most of the paper regarding the target behavior:

predefined trajectories and reactive evader. First, the trajectories can be off-line

defined; for example, by collecting real-data flights, or functions or algorithms

can give it as circular or square trajectories. In the second, the reactive behavior

is defined by a repulsion model. Each pursuer and the arena border exerts a

repulsive force towards the evader. The forces decrease proportionally to the

distance squared. The instant target’s velocity is calculated as follow :

vi =
∑
j

Pj − PT
r2
jT

+
rarena × (sin(γ), cos(γ))− ~pos

d2
wall

(2.2)

where γ is the direction of the agent to the closest point on the wall.
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2.2 Group Deviated Pursuit

This section presents our first attempts to model the collective hunting phe-

nomenon using Navigation Guidance Laws (NGL). This simplistic strategy bases

on the Deviated Pure Pursuit law (DPP), and it is inspired by the behavior of a

group of lionesses hunting.

The content of this section is currently under the second revision for a journal

publication. The paper is entitled "Local interaction and navigation guidance
for hunters drones." C. de Souza Jr, P. Castillo, B. Vidolov.

Figure 2.2 – Lionesses hunting formation. The left figure, extracted from [45],
illustrates the distribution of a group of lionesses towards the prey. The right
figure shows the final moment of a lionesses group attack.

2.2.1 Opening remarks

Imitation of nature has always been an excellent starting point for many robotics

technologies. With that in mind, we decided to seek collective behaviors in

nature that could be interesting for our problem, multi-agent pursuit. Therefore,

in lions hunting, we find an interesting analogy with robotics’ application; since

lionesses are usually individual hunters but can cooperate in the presence of

same pride individuals. This ability can be a desirable behavior for a fleet of

stalking robots, in the sense that they are not dependent on each other, neither

in the formation itself; however, they can cooperate for the endeavor in the

presence of neighbors.
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[45] analyzed the cooperative hunting of groups of lionesses (Panthera Leo)

in the semi-arid plains in Namibia. The author observed that some individuals

tend to orient themselves directly towards the target, while others tend to take

"indirect routes" or even encircling the prey. He classified the hunting roles

according to its positioning in the formation: wings (right and left) and centers,
alluding to football players’ roles. The "wings" ambush (taking indirect routes)

and drive the prey towards the center. The resulting formation is described in

Figure 2.2. Moreover, in the lioness’ case, the roles are most likely assigned to

the same individual.

In our work, the term "role" will be employed similarly to [45], which refers

to the "trajectory" adopted by the pursuer towards the target. Later on, we will

see that, by using the Deviated Pure Pursuit (DPP), the trajectory’s shape can

be modified by changing an offset value. However, other than the observed by

[45], in our approach, the roles are not assigned to one individual, rather they

are given based on the current engagement with the prey and its neighbors, as

illustrated in Figure 2.3.

Figure 2.3 – Engagement between three pursuer and a target.

Furthermore, in this approach, unlike most other multi-agents techniques,

the agents have no constraints about fleet formation or cohesion. Instead, each

agent goes toward the target and adapt its route in the presence of neighbors.

The absence of repulsive/attractive forces in the formation avoids a common
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oscillation problem (spring effect), accentuated in real-world applications, where

delays, loss of data, or long sample times are present [53].

Finally, our strategy relies, a priori, on bearing-only information about the

target and neighbors, which can be easily obtained from ordinary onboard

sensors, such as a camera or lidar. Furthermore, the assumption of bearing-

angle information solves the recurrent problem of observing the neighbors’

position/velocity, which often requires explicit communication premises.

2.2.2 Group Deviated Pursuit (GDP) algorithm

In order to introduce our strategy, let us consider a conventional form of the

DPP, exposed previously in (3.9). By considering different values offset angle

(for α ∈ R| − π2 < α <
π
2 ), different trajectories can be observed, such as in Figure

2.4. Notice also that the Pure Pursuit (PP) can be described as an especial case of

DPP with α = 0.

Figure 2.4 – Paths of deviated pursuit according to different offsets of the angle α.
The agents begin the trajectory in the bottom part and keep a constant velocity
until they get the target.
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As stated previously, the "roles" in this strategy are related to the pursuer’s

trajectory shape. Therefore, the idea is that each agent can assume different

references of α, causing consecutively different trajectories and increasing the

possibility of capturing the intruder. Thus, let us consider a variable offset angle

of the agent i (αi) given by:

αi = α0 ∗
N∑
j!=i

δi,j(ξi ,ξj)

where N is the number of neighbors of the i-agent, and α0 is a constant offset

step. The δij is a function indicating the positioning of agent j in the Pursuit

frame of the agent i (Pi). Thus, δij can be defined as:

δi,j =
yPij

|yPij |
(2.3)

where δi,j is calculated for each neighbor, and it basically indicates in which

side the neighbors j is in relation to the λiT : left side δi,j = 1 and right side

δi,j = −1. In equation (2.3), yPij represents the lateral position of the agent j in

Pi . The origin of Pi coincides with body frame of i, nevertheless it is rotated in

(λiT −ψi), in such way that its x-axis is always pointing to the target. To obtain

the coordinates, ξPij = [xPij y
Pi
j z

Pi
j ]T , of the agents neighbors j in the Pi frame, the

following relation is used

ξPij = T PiI ∗ ξj (2.4)

where, T PiI is a matrix transformation representing inertial position ξj in the

pursuit plane Pi . Finally by substituting (2.3) in (3.9), the final guidance law for

a multi-agent pursuit can be obtained:

fψi = −Kdpp ∗

ψi −λiT −α0 ∗
N∑
j!=i

δi,j(ξi ,ξj)

 (2.5)
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2.2.3 Numerical Validation

In order to analyze the performance of the algorithm (2.5), we considered the

framework proposed in the section 2.1, where the agents modeled as a particle

with constant velocity and moving in a plane. The guidance law (2.5) was

applied, and the following three scenarios were considered:

Figure 2.5 – Trajectories generated by three agents and a fixed target. The
pursuers start at the bottom of the square, and they pursued the target with
constant velocity. The deviation offset (α0) for this pursuit is 30 degrees.

Fixed target: The first simulation is done for a simple scenario where the

intruder drone stays in a fixed position. It is proposed to illustrate the formation

pattern in a simple case. Notice from Figure 3.7 the patterns of "wings" and

"center" can be determined with three pursuers

Escape trajectories: Several simulations were carried out with a different

number of pursuers (1,2,3 and 4), see Figure 2.6. For these simulations, the in-

truder velocity was set twice as fast as the pursuers. Besides, in this scenario, we

propose reactive escape behavior for the evader. We implemented the repulsive

behavior, as described in subsection 2.1.2.
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Figure 2.6 – Snapshots for pursuits with different numbers of agents (1,2,3 and
4). In all cases, the target does an escape trajectory-based on repulsion forces,
with a velocity of 2 times bigger than the pursuers. The red circles signalize the
end of the target trajectories.

In Figure 2.6, observe that in the two firsts cases (A and B), the target was not

caught. Nevertheless, in the two last cases (C and D), the target was successfully

intercepted before the limit of time, evidencing the importance of the increasing

number of pursuers in the chase’s success.
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Large number of pursuers: Although not being designed for a large number

of agents, the proposed algorithm can be easily scalable due to its decentralized

architecture and local observation. We illustrate that in a pursuit with up to 15

pursuers, see Figure 2.7. Remark from this figure that an emergent "flocking"

pattern appeared, where each agent computes independent trajectories following

the target with no information of neighbors distance.

Figure 2.7 – Case of 15 pursuers and an intruder. Notice the well performance
of the pursuers when tracking the target.

Effect of the offset angle: This qualitative evaluation aims to assess the

effect of the offset (α0) on the total number of catches. To this end, we subject

the GDP strategy to the benchmark with seven different offset values, varying

incrementally from π/32, as indicated in the legend of the Figure 2.8. More

details about the benchmark setup will be given in Section 2.5

Figure 2.5-top shows the number of captures as function of the pursuers’

group size. For its turn, the graph on Figure 2.5-bottom, represents the average

time taken to capture.
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Figure 2.8 – Effects of the offset value in the pursuit.
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Besides, note that the first value (α0 = 0) is equivalent to the classic Pure

Pursuit (PP), where all agents point to the target’s current position. However,

applying this configuration, the cooperative behavior does not emerges, and the

total catches remain practically the same during all the numbers of agents.

Therefore, with the smallest increment of offset (α0 = π/32), the size of the

group starts to affect on the total amount of catches. The number of captures

tends to increase, culminating in a cumulative total of 4233 catches for an offset

of π/4. Please note also that for the offset value α0 = 3π/32, our strategy achieve

full benchmark from 5 pursuers on, showing itself as an efficient strategy for

chasing a faster evader.

For offset values bigger than π/4 the capture’s performance tends to decay.

This behavior was already observed in the experiments, and its justification is

due to the fact that large offset values result in very open trajectories towards

the target, allowing the evader to escape between two pursues.

Due to time constraints, we have not carried out additional work to find

optimal parameters for this pursuit. Most likely, the use of smaller increments

between the two best results (π/4 and 3 ∗π/32) could culminate in even better

results. However, we restrict ourselves to the current results, which seems to be

sufficient to reaffirm the cooperative behavior emerging from the GDP strategy.

Finally, note that for the two bigger offset values (5 ∗ π/32 and 6 ∗ π/32),

although showing average yield in the total number of catches, they perform

well for smaller groups of pursuers (2 and 3). This shows us that the current

way of calculating the offset, which is directly proportional to the number of

neighbors, tends to harm individuals at the extremities, who receive high offset

values. A natural solution to this dilemma could be the use of a nonlinear

function for calculating the offset, which would tend to "saturate" the offset

values from a certain number of pursuers.
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Effect on the collision: The graph on Figure 2.9 clearly illustrates the effect

of the offset on collision avoidance. For offset = 0, collisions tend to grow

exponentially, reaching values up to 52 times higher than using α0 = 3 ∗π/32.

The collision between pursuers is clearly undesirable; nevertheless, it is

difficult to practice since all agents tend to have a common point, the evader.

However, when dealing with robotic implementations, we have established a

low-level safety layer that ensured collision avoidance during the experimental

tests (See Experiments Section 4.2).

Figure 2.9 – Effect of the offset value (α0) on the collision between pursuers.
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2.3 Group Mixed Pursuit

In this section, we present our second proposal for collective hunting using

guiding laws. This new algorithm seeks to go beyond ambush behavior and

reproduces a more efficient pursuit, especially in the presence of faster or more

agile prey. The name "mixed persecution" comes from the fact that this new

GL incorporates two customary laws: the Deviated Pure Pursuit (DPP) and the

Proportional Navigation Guidance (PNG).

This section’s content is part of an article, still in the process of preparation,

which will be entitled: Flocking, pursuit, and avoidance: a constant bearing
guidance law for multi-agents C. de Souza, P. Castillo, B. Vidolov.

Figure 2.10 – Predators par excellence in nature use "Parallel Navigation" rule in
their final approach. Left: the Falcon Peregrine, which its hunting trajectory has
been described in [22]. Right: the Dragonfly, excellent insect predators that use
a "camouflage strategy" to deceive their prey [164].

2.3.1 Brief preface and literature review

In the previous section, we could see the interest in using guidance laws in

collective hunting algorithms. The GL was able to produce verisimilar hunting

behaviors, and the use of different deviation angles was responsible for the am-

bushing behavior and avoiding collision at once. Although interesting behaviors

were obtained, we observed that this algorithm does not perform well in the

presence of a faster target.
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In fact, the algorithm used is based on Pure Pursuit (PP), where the predator

always addresses the prey’s current position. This strategy constantly led to a

"tail chase," pursuit, which ultimately gives no chance for the slowest chaser.

The disadvantages of PP towards moving targets are well known, and that is

why it has been constantly replaced by Parallel Navigation (or constant bearing

pursuit). This geometrical rule, apparently known since antiquity, has been

extensively used by mariners to provoke an interception or even avoid a collision

with other ships [15, 36]. Moreover, its principle is straightforward: if the

bearing angle of two bodies is constant, and the distance is decreasing, these

vehicles are on a collision course. Furthermore, this principle guarantees the

optimum trajectory of the pursuer in the event of a non-maneuvering target.

This principle is so simple yet so powerful that it has been the most popular

in handling missiles [36]. The family of guidance laws that implements this rule

is called Proportional Navigation Guidance (PNG). The first flying bombs that

implemented it were fired in the sixties, and today it still arouses interest in

the scientific community in guided munitions [21, 24]. Recently, in addition to

missiles, several robotic systems have used this principle for various applications,

such as autonomous landing [41], navigation in a clustered environment [1], and

intruders’ interception [28].

Furthermore, with the recent image acquisition technologies, scientists have

identified this principle as the attack behavior of several predators, such as

the peregrine falcon [22] and some insects [19]. In this context of natural

predation, the proportional navigation law (PNG) is confused with the concept

of camouflage laws, where the predator moves towards the prey so that it sees it

"static" to the background [124].

Its importance is evidenced by the applications and observations above;

however, Parallel Navigation presents certain disadvantages mainly in the final

stage and through maneuvering targets (changing directions abruptly). Besides,

it requires high values of lead angle when the speed ratio is low (which can be

quite common in the presence of a more agile prey) and can provide loss of sight

of the target, in the case of a field of view sensor limited [36].

Work in progress as of 20
th
June, 2021



2.3. Group Mixed Pursuit 45

To minimize these disadvantages, Shneydor, in [36], devised a "mixed" guid-

ance law of between "Pure Pursuit" and "Parallel Navigation", since this first one,

although less efficient, does not suffer from the low-speed ratio.

With similar motivation, we propose in this work a mixed guidance law,

composed of two terms, one from PN and the other from DPP. The first one is

desired to be predominant in the pursuit, since it has a more efficient trajectory.

In turn, the second term has dual functionality: first, ambushing (as explained in

the previous work), and second limiting the lead angle of the pursuer to target,

preventing the loss of sight of the evader.

2.3.2 Group Mixed Pursuit (GMP) algorithm

Considering the evolution model exposed in (3.16), let us consider the following

guidance law, which composed of two terms, one for the Proportional Navigation

(fpng ) and the other for the Deviated Pursuit (fdpp). Thus the mixed GL will have

the following format:

fψi = σa(fpng) + σb(fdpp) (2.6)

where σx(.) is a saturation function that can be defined by

σa(x) =


a, if x > a

x, if a ≥ x ≥ −a

−a, if x < −a

(2.7)

Therefore, the threshold of σb must be bigger than σa, to allowed the second

term to overcome the first. This is necessary since fdpp is responsible for shot-

range collision avoidance between two pursuer. In the next, we present the

composition for both terms.
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Proportional Navigation term

A simplistic GL, which implements the Parallel Navigation geometrical, can be

defined as follow:

fpng = Kpn ∗ λ̇iT (2.8)

where Kpn is a positive gain. This GL is also called Proportional Navigation

Guidance (PNG), and it is described in Chapter 1.

As stated in the introduction, the PNG carries the drawback of provoking a

large leading angle (ψi−λiT ) from the pursuer to target when the ration (vi/vT ) is

low, which can cause loss of sight of the target, considering limited field-of-view

of the pursuer.

Deviated Pursuit term

In order to avoid the target’s loss of sight, which can be a non-desired effect of

the PNG, we proposing the following modified DPP law:

fdpp = Kdpp(dmin) ∗ tan
(
ψi −λiT −αi
β ∗π−1

)
(2.9)

where β is the opening angle of the pursuer (or perception sensor). The tan(.)

function was chosen for being odd-symmetric and not defined in ψi −λiT = β.

Thus this term provides asymptotic values when the heading error is close to the

limits of the field of vision β.

Furthermore, we introduce the gain Kdpp(.) that is inversely proportional

to the smallest distance between pursuer dmin and is null when the distance is

bigger than a threshold R0. It can be computed as follow:

Kdpp(dmin) =

K0 ∗
(
dmin−R0
R0

)2
, if dmin < R0

0, else
(2.10)

As a result, the DPP term has a short-range performance, being canceled when

two pursuers are not on collision imminence; and evidenced by the proximity of

two pursuers.
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The mixed GL

The first term of (2.6), corresponding to PNG law, is desired to be the predom-

inant during most of the pursuit since it provides a more efficient trajectory.

Nevertheless, there are two situations where the DPP term should overcome the

PNG: first in the eminence of collision with the closest neighbor (dmin < r0), and

second, when the target is getting close to the limit of the field of vision, i. e.,

|ψi −λiT | → β.

2.3.3 Numerical validation

PNG vs PP

In the scenario illustrated in Figure 2.11, we intended to give the reader unfamil-

iar with guidance laws an expository comparison between the two methodologies

covered in this section. Therefore, to illustrate the advantage of the Proportional

Navigation Guidance (PNG) over the Pure Pursuit (PP), the following scenario is

proposed: two identical pursuers are located initially in the bottom coordinates

(x,y) = (2,0)m; while a target (red) starts from the position (x,y) = (−8,10)m.

Figure 2.11 – Comparison between Pure Pursuit (PP) and Proportional Naviga-
tion (PNG). The PNG pursuer (blue circles) and the PP pursuer (pink circles)
are not aware of each other, i.e, there is no cooperation. In the left picture, the
target performs a linear trajectory, while in the right one, the target executes a
maneuvering trajectory.
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The first pursuer (pink circles) implements a PP algorithm while the second

(blue circles), the PNG algorithm. In Figure 2.11-left, observe the pursuer’s

performances when tracking a target with vi = 2 ∗ vT ; note that PNG algorithm

provides a shorter path and prevails at the end of each course.

In Figure 2.11-right, a similar scenario is illustrated; nevertheless, the target

does not have linear movement. Notice that even if the algorithm is not designed

for non-maneuvering targets (red crosses), the PNG (blue circles) succeeds and

provides a shorter path than the pure pursuit (pink circles).

Mixed Pursuit vs Deviated Group Pursuit

In this second example, we will make a qualitative comparison between the

mixed pursuit (2.9) and the methodology presented in the section 2.2.2, the

Deviated Group Pursuit (DPG) (2.5).

Figure 2.12 – Comparison between Deviated Group Pursuit (DGP, left picture)
and Mixed Group Pursuit (MGP, right picture). In both cases the target is
navigating in the same trajectory.
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For this, consider the scenarios shown in Figure 2.12: Three pursuers (red

stars) are initially located at the bottom of the arena, positions (0, -5) (0.5, -5)

(1, -5)m, moving with fixed speed of 0.45 meters/frame. The target performs

a maneuvering trajectory with variable speed, but that is up to 3 times higher

than the pursuer speed. The target behavior was obtained from recording

experimental trajectories with a quadcopter.

Still, in Figure 2.12, the left image represents a group chase where the agents

implemented the DPG. Note that even though the ambush formation is created,

the trajectory is not efficient, and the target is not captured in the course of this

screenshot. As previously discussed, this is since the pursuit is directed towards

the target’s instantaneous position, and no consideration is given of its dynamics.

In Figure 2.12-right, we can see that the target is captured, and the agents

still kept an ambush formation. Note that the "straight line condition course,"

the geometric rule behind PNG, promotes an efficient path even when it comes

to maneuvering trajectories.

Effect of the offset: Similar to the previous section, we submitted the GMP

to the pursuit benchmark, considering the same offset intervals. The results

regarding the number of captures and average time can be seen in the respective

Figure 2.13.

Note that the same performance patterns presented in GDP were repeated

for this strategy. Firstly, the best results in general terms are for the offset values

between 3 ∗π/32 and 4 ∗π/32. Secondly, the highest offset values, 5 ∗π/32 and

6 ∗π/32, have relatively high capture values for 2 and 3 pursuers, but their yield

drops as the number of pursuers increases.

These results reinforce the conclusions of the previous section. Besides, note

that, unlike the last section, the results for offset = 0 do not correspond to the

classic PNG navigation law. This is due to the tangent term (Eq. 2.9), which

restricts the pursuer’s heading movement, differentiating it slightly from the

classic implementation of PNG.
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Figure 2.13 – Effects of the offset value in the pursuit.
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2.4 Reinforcement Learning Pursuit

In this section, we propose an approach for multi-agent pursuit using Deep

Reinforcement Learning (Deep RL). Henceforth, instead of using guidance law

established to model the pursuit, the pursuer behavior is controlled by a neu-

ronal network policy. To determine the policy, we considered a multi-agent

environment, bounded and using the kinematics equations (2.1). In this, the

purser will "learn" its behavior by trial-and-error interaction in a simulated

environment.

This work was done in collaboration with the Robotic Centre of Monash

University, Melbourne, Australia; during an institutional exchange, funded by

the UTC doctoral school and the Heudiasyc laboratory. This section’s content has

been recently organized in a paper entitled: Distributed Multi-Agent Pursuit
using Deep Reinforcement Learning. C. de Souza Jr, R. Newburry, A. Cosgun,

P. Castillo, B. Vidolov, D. Kulić. Accepted to ICRA/RA-L 2021.

Figure 2.14 – Scheme for the Deep Reinforcement Learning.

2.4.1 Brief preface and literature review

Until now, all pursuit strategies have been designed in a bottom-up manner;

the microscopic relationships have been previously established, and then the

emergent behavior was analyzed. Nevertheless, in this section, we will use an

automatic behavior design technique by applying Deep Reinforcement Learning.
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In this, the purser will "learn" its behavior by trial-and-error interaction in a

simulated environment.

In the last decade, with the advances and popularization of Deep Learning,

another recent technology has stolen the spotlight from the robotic community,

Deep Reinforcement Learning. These advances allowed learning of complex

tasks in continuous environments, which has increasingly enabled Reinforce-

ment Learning in robotic applications, such as driving [155], grasping [156] and

manipulation [159].

Deep RL has also proved to be a powerful tool for the complex task of multi-

agents pursuits, such as in [92, 93, 94, 105]. However, most of these works

consider models and hypotheses very distant from real-world applications, such

as local measurement and locomotion restrictions.

In this work, we propose a multi-agent pursuit approach against a faster

evader. We consider it a decentralized system, where the pursuers decide their

own actions based on local observations of the environment. The perception of

the target and the neighbors are given in local and polar coordinates, which are

consistent with commons embedded sensors for autonomous navigation, such as

camera and lidars.

We use Twin Delayed Deep Deterministic Policy Gradient (TD3) [108], a state-

of-the-art deep reinforcement learning algorithm that was successfully applied

to other domains[160, 161], with a state representation that encapsulates relative

positional information of neighboring agents as well as the target, and use

a group reward structure that encourages good formations. During training,

curriculum learning is applied to start with an easier version of the problem,

and gradually learn the task with increasing difficulty.

Related work

The pursuit-evasion game is a highly studied task in multi-agent RL [95, 96, 97].

However, most approaches apply only to omni-directional agents, which cannot

be easily transferred to real robotic applications without a loss in performance.
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Lowe [94] presented an approach for multi-agent reinforcement learning

using an adapted version of an actor-critic algorithm which they extended to

multi-agents. They use their approach on the pursuit-evasion game with omni-

directional agents and showed that it outperformed Deep Deterministic Policy

Gradient (DDPG) [86] on the same scenario. Xu [93] considered pursuit-evader

games with non-holonomic agents, where new agents can join the game. They

adapted Bi-directional Recurrent Neural Networks [163] and DDPG, however,

they only consider a situation with 3 and 5 agents. Furthermore, the observation

also assumes global information about other agents which limits the applicability

to real world situations. Hüttenrauch [92] studied multi-agent pursuit evasion

systems by considering the agents as a swarm. They consider agents in the

swarm as interchangeable and the exact number irrelevant. They create a new

state representation based on mean embedding of distributions. Their work

focuses on scalability and shows that their system can operate with up to fifty

agents.

Curriculum Learning Curriculum learning [102] is a learning paradigm to im-

prove the speed of convergence and reduce local minima by gradually increasing

the complexity of training data. This learning paradigm has been been widely

used for RL[109, 162] and deep learning [107]. Gupta [105] used curriculum

learning in multi-agent RL to solve problems which were previously considered

intractable. They show that Trust Region Policy Optimization (TRPO) [158] has

a better performance compared to Deep Q Networks (DQN) [87] in the discrete

domain and DDPG in the continuous domain.

Our work, while borrowing ideas from both classical methods and learning-

based methods, focuses on using DRL to improve the pursuit performance and

consider operational metrics such as capture success rate and the average time

to capture. Furthermore, we propose a method that is suitable for sim-to-real

policy transfer with realistic observation models and non-holonomic constraints.

To our knowledge, we are the first to demonstrate a real-world multi-agent

pursuit implementation using a DRL policy.
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2.4.2 Methodology

Multi-Agent Deep RL: We consider our task to be a Markov Decision Process

(MDP) defined by tuple {S ,A,R,P ,γ} where st ∈ S , at ∈ A, rt ∈ R are state, action

and reward observed at time t, P represents an unknown transition probability

from st to st+1 taking at, and γ stands for the discount factor. The reinforcement

learning goal is to maximize the sum of future rewards R =
∑T
t=0γ

trt, where rt
is provided by the environment at time t. For continuous control, actions are

sampled from a deep neural network policy at ∼ πθ(st), where at is the angular

velocity of an individual pursuer.

Our approach is based on distributed, in-series learning with parameter

sharing. For learning, we use Twin Delayed Deep Deterministic policy gradient

approach (TD3) [108] using an experience replay buffer. The agents are consid-

ered homogeneous, allowing sharing the same policy and parameters, although

the execution remains decentralized.

State-representation: The observed states of a pursuer i for a total of n

pursuers si = [ψi , ψ̇i , siT , si1, si2, .., sin−1] where ψ represents the heading with

respect to a fixed world frame, siT denotes the state of the target relative to

pursuer i and sij defines the state of pursuer j relative to pursuer i. The relative

state of the target with respect to pursuer i is siT = [riT , ˙riT ,αiT , ˙αiT ] and the

relative state of the pursuer j with respect to pursuer i (i , j) denotes sij =

[rij ,αij], where rij is the Euclidean distance between pursuers i and j and αij
represents the heading error defined in local an polar coordinate frame attached

to pursuer i.

In order to generalize the learning, the neighbors states sij are sorted with

respect to their proximity to the center of the heading of the agent i, i.e., the

first agent j = 1 is the one with smaller heading error αij = ψi − λij . Another

generalization is limiting the number of observed neighbors (NO) and filling up

this sub-group with the NO closest pursuers. This strategy allows the scalability

of the system.
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Reward structure: At each time step, each agent individually receives a

reward designed to incentivize the evader’s capture and encourage an adequate

formation of pursuers. The reward function is:

Rei =


Recaptor , if riT ≤ Rcap
Rehelper , if riT ≤ dcap,∃j , i

−wq q −wd riT , otherwise

At each step that the target is not captured, every agent receives a negative

reward that is a linear combination of an individual reward (its distance to the

target riT ) and a group reward (q score proposed by [106] which encourages the

agents to make a good formation). The q score is a scalar number in the range

[0,2], which provides a metric for evaluating the fitness of the formation of the

pursuers (lower is better). Also, we penalize riT , which helps encourage the

agents to get close to the evader while being in a good formation. The weights

wq and wd can be chosen such that when the agents are close to the target, the

reward is dominated by the q score, encouraging good formation. Therefore, the

formation score (q) is defined as:

q =
1
n

n∑
i=1

(r0T · riT + 1) (2.11)

where riT represents the normalised vector between agent i and the target, and

n is the number of agents. In this equation, the closest agent to the target is

defined as an agent 0. The formation score encourages agents to spread around

the target (i.e., approach the target from different directions). Early experiments

with the formation score as part of the reward function showed that when the

formation is the only component of this reward, pursuers would only form a

good formation but would not attempt to capture the evader. To avoid this

situation, we penalize the distance to the target, which helps encourage the

agents to get close to the evader while being in a good formation. The weights

wq and wd were chosen such that when the agents are close to the target, the

reward is dominated by the formation score, encouraging good formation.
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However, when the agents are far from the target, the reward will be dom-

inated by the target’s distance, encouraging the agents to move closer to the

evader. We analyze the effect of the formation score on pursuit performance in

Sec. 2.4.3.

If the target is captured at a time step, then the pursuer who captures the

evader receives the reward rcaptor , while the rest of the agents receive rhelper , such

that rcaptor > rhelper . This encourages the pursuers to act selfishly and go for the

final capture while encouraging collaboration.

Curriculum Learning We apply a curriculum for learning by starting from a

more accessible version of the task and gradually increasing the difficulty until

the actual difficulty is achieved. There are two main factors in determining the

difficulty of a pursuit-evasion game: the target’s relative speed with respect to

the pursuers and the capture radius dcap. We vary the capture radius by starting

from a large radius (so it is easier to capture the target), then gradually making it

smaller. This encourages agents to not adopt a straightforward chasing tactic at

the beginning of learning but to form more sophisticated behaviors, which could

be transferred to smaller capture radii. We also experimented with reducing the

pursuer speed to reduce the task’s difficulty; however, we found that pursuers

mostly learned to follow the evader directly, and it was harder to explore more

sophisticated behaviors afterward.

Curriculum learning helps exploration, especially during the early stages

of learning because early on, it helps the pursuers to capture the target, which

would take a longer time in the actual and more difficult scenario. This helps

alleviate the sparse reward problem, which is a well-known challenge in rein-

forcement learning [103]. We analyze the effect of curriculum learning on the

pursuit performance in the subsection 2.4.3.
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2.4.3 Numerical results

We use the following simulation parameters: Arena radius Rarena = 430 pixels,

Ttimeout = 500 iterations, rewards rcaptor , rhelper and the weights wq and wd were

set to 10, 100, 0.1, 0.002 respectively. The capture radius Rcap was set to 30

pixels for testing, although this value was varied as part of curriculum learning.

For fixed linear velocity cases, the pursuers’ speed vp was 10 pixels per timestep,

while the target’s speed vT varied from 0 to 20 pixels per timestep. The maximum

angular rate ωmax was fixed at π/10 per timestep. The numbers of pursuers n

varied between 1 and 8, and they were initialized at random positions within a

circular area with radius of 100 pixels around the center, while the evader was

initialized at a random position outside the circular area with a radius of 300

pixels. The rest of this section covers the evader behaviors and baseline methods.

Effect of Curriculum Learning

Figure 2.15 – Comparison of capture success rate with and without curriculum
learning, with respect to the number of training steps. With curriculum learning,
the benchmark scores are much higher and more consistent.
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Figure2.15 compares the effect of using our curriculum learning strategy

described in subsection 2.4.2, for n = 3 agents. The network was trained three

times, and during training, we analyze the evolution success rate trained policy.

At regular intervals, we stop training and evaluate the policy on the repulsive

evader benchmark. The results show that curriculum learning is very helpful for

capture performance: it converges to about 100% success rate after 1.5 million

training steps, whereas without curriculum learning, the average success rate was

below 80% even at 4 million training steps. Furthermore, curriculum learning

performance was much more consistent, as evidenced by the low variance among

the three runs.

Effect of formation score in reward function

Formation Score

No Formation Score Formation Score

No Formation Score

Figure 2.16 – Using a formation score as a dense reward results in more captures,
in less number of timesteps on average.

We provide a partial reward at every timestep in order to encourage good

formations. We analyze the effect of supplying this dense reward component

to each agent. Fig. 2.16 compares the evolution of the capture performance

with and without the formation score, with respect to the number of training

steps. These experiments were conducted with n = 3 agents. As can be seen in

the figure, benchmark scores were slightly higher when the formation score is

used as part of the reward. Furthermore, when the formation score is used, the

average capture time for successful episodes is decreased.

Work in progress as of 20
th
June, 2021



2.4. Reinforcement Learning Pursuit 59

Qualitative analysis of emergent behavior

We observe two interesting learned emergent behaviors that often leads to suc-

cessful captures: ambushing and splitting up.

Figure 2.17 – “Split Up" strategy learned by 3 pursuers. Timestep (T) and
formation scores (Q) are shown at four snapshots. The target is shown as the
black circle. The agents start in a random direction (Top Left), push the agent
towards the wall (Top Right), split into two groups (Bottom Left) before going
for the capture (Bottom Right).

Fig.2.17 shows the splitting up behavior with n = 3 agents. This behavior was

more common with a smaller number of agents. The agents tend to split up in

to two groups, trying to push the evader in to a wall before attempting to block

the two opposite directions.
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Figure 2.18 – “Ambush" strategy learned by 8 pursuers. Timestep (T) and
formation scores (Q) are shown at four snapshots. The target is shown as the
black circle. The agents start in random directions (Top Left), move as a circle
(Top Right), ambush the target (Bottom Left), and capture it (Bottom Right).

Fig.2.18 shows the ambushing behavior with n = 8 agents. This behavior was

more common with a larger number of agents. The agents tend to form a circle,

attempting to move such that they can completely surround the evader and

then approach from all directions. This is similar to pack behaviors observed in

Muro’s work [33]. When the agents execute this strategy to trap the evader, it is

often very difficult for the evader to escape.
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Figure 2.19 – “Stalking" strategy learned by 3 pursuers with velocity. Timestep
(T) and formation scores (Q) are shown at four snapshots. The target is shown as
the black circle. The agents start in random directions (Top Left), move towards
the target (Top Right), slow down and angle themselves such that they can
surround the target (Bottom Left), and capture it (Bottom Right).

Variable linear velocity

Previous sections considered constant linear speed and variable angular speed

for pursuers, primarily because this is an assumption for classical algorithms.

We now consider the more general case, where agents can also vary their linear

velocity between 0 and vp. Therefore, we train the network with two outputs:

linear and angular velocity. We consider the 3 agent scenario, in which the agents

achieve 100% capture rate with and without velocity control, in both the fixed,
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and reactive benchmarks.

The agents often displayed a “Stalking" strategy as illustrated in Figure 2.19.

With this strategy, the agents move towards the target, before slowing down and

waiting, until the opportunity presents itself to attempt to capture the evader.

This behavior may have analogues in nature, where pursuers will stalk their

prey and position themselves such to maximise the likelihood of attack[45].
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2.5 Qualitative comparison

In this section, we propose to evaluate the performance of our propositions

quantitatively, not only among themselves but also with three baseline methods

of the state-of-the-art. Two of them are based on classic multi-agent strategies,

Angelani [34] and Janosov [52], where traditional flocking self-propelled agents

are adapted to carry out a pursuit. The third one, Hüttenrauch [92], is part of

an interesting strategy for applying deep reinforcement learning in swarming

problems. Therefore, we conduct the following performance analysis: effect of

the number of pursuers, arena size, relative evader speed.

Figure 2.20 – Detailed benchmark results for 3 pursuer over 100 repetitions.

2.5.1 Benchmark

To assess our propositions’ performance qualitatively, we have established a

benchmark for pursuit, which will be reported below. A group pursuit environ-

ment was implemented in python, where pursuers and evaders evolve in the 2D

plane. The navigable area is limited by a circular border with a variable radius.

However, the standard size of the arena is Rarena = 430pixels.
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The initial positions of the pursuers and the target are initiated randomly.

However, to avoid initial conditions with the target already at a disadvantage,

two different initialization areas are determined. The pursuers are started within

a circle of radius equal to 100 pixels, concentric with the arena. The evader is

initialized outside of another concentric circle, with a radius of 300 pixels.

The standard pursuit evaluation consists of 700 episodes, where the relative

speed of the target to the pursuers varies incrementally every 100 episodes, i. e.,

vT /vp = 0.8,1.0, . . . ,2. An episode lasts until captured by one of the pursers or

until the limit of interactions 500 is reached.

For most scenarios, pursuers and target move at constant speeds. However,

while the target moves in an omnidirectional manner (and with constant absolute

speed), the pursuer moves according to the Equation (2.1), in its discrete form.

Through this benchmark, the following metrics are being calculated:

• The number of captures: which is equivalent to the number of successful

episodes (Max 700). In this work, the capture radius was set to Rcap = 30

pixels.

• The average time of capture: which corresponds to the average of interac-

tions needed to capture the target.

• Collisions: the number of times that two pursuers had their relative dis-

tance below a collision threshold, Rcol = 30 pixels.

Besides, to test the benchmark repeatability, we propose the following ex-

periment: the same pursuit scenario, with 3 pursuers implementing the GDP,

were repeated 30 times. The total value of the catches is shown in Figure 2.20.

As expected, the variability occurs more at high relative speeds, reaching its

apex at Vt/Vp = 2. However, the total catch’s standard deviation is 6.36, which

corresponds to a variation of 0.90% in the captures.
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2.5.2 Effect of the number of pursuer

The number of captures and the average time of six pursuit strategies are shown

in Figure 2.21. Our RL pursuit strategy surpasses all others presented, reaching

a complete benchmark for all agent numbers from 3 onwards. The other best

results are respectively GMP, Janosov, Hüttenrauch, GDP and Angelani.

Although the GDP has a slightly lower result than Huttenrauch and Janosov,

it is still an interesting option, especially when considering its minimalistic

implementation. Besides the GDP computational simplicity (Equation 2.5), it is

the single one possible to implemented by using only bearing information for

the whole pursuit. Which gives you a good advantage in practical terms since it

can be implemented using only an RGB camera.

GMP fulfills its role of improving GDP, and its results are clearly more

performant. Although more information is required for carrying the pursuit in

GMP, it is still compatible with the implementation in real systems. As shown in

equation (2.9), this strategy requires, besides the bearing, the relative distances,

and the bearing angle rate towards the target. Although more hardware is

needed for implementation, these perception hypotheses are still acceptable in

an actual robot application. They can be provided ideally either by an RGBD

camera or by a fusion of camera + Lidar, thus adding the relative distance to the

bearing information.

However, it should also be noted that the good results of Janosov and Hütten-

rauch are based on hypotheses that are difficult to put into practice in real case

pursuit, where the target is not cooperative. Although both strategies use relative

distance as input (the first in polar coordinates and the second in Cartesian),

both also consider observing the target’s velocity in an inertial frame, which is

an improbable assumption considering the current embedded sensors.
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Figure 2.21 – Comparison between our proposed approaches and the baseline
strategies.
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2.5.3 Effects of the relative velocity

In the following two graphs, we will see the relative velocity (VT /Vp) effect on

the capture quantities. The results still maintain the same pattern presented

in the previous experiments—our RL pursuit with the best yields, followed by

GMP, Janosov, Huttenrauch, GDP, and Angelani. Besides, as expected, increasing

the relative speed reduces the capture rate of all analyzed algorithms.

Besides, it is evident the Angelani’s low performance for faster target (VT /Vp
> 1). It is predictable considering that they do not employ any "prediction"

strategy for the target’s pursuit. This implementation basically consists of a Pure

Pursuit towards the target and the repulsion force between pursuers to avoid

collisions.

The need for "prediction" for capturing faster targets had already been indi-

cated in Janosov’s work. However, their solutions rely on knowing the target’s

speed in global coordinates, which is a hard hypothesis considering a non-

cooperative target. However, the GMP shows that good performance can be

achieved when considering parallel navigation. As argued in state of the art, this

phenomenon has optimal properties under certain pursuit conditions.
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Figure 2.22 – Comparison between our proposed approaches and the baseline
strategies.
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2.5.4 Effects of the arena size

As we showed previously, with an increasing number of agents, the task decreases

in difficulty for a fixed arena size. Therefore, with a larger number of agents,

most approaches can perform the task successfully. The pursuit-evasion game is

played in an obstacle-free arena, but the agents can use the arena boundaries

to constrain the evader movements. In this section, we investigate the effect of

larger arena sizes using n = 3 agents.

In the results exposed in Figure 2.23, the only parameter changed between the

evaluations and the arena’s radius size, which is multiplied by a factor (Radius

factor). In the graphs below, we have the performance metrics depending on

the arena’s size, which varies between its standard size (Radius factor = 1) up

to twice this (Radius factor = 2). Note that, although the loss of performance

is common to all strategies, our strategy RL pursuit and GMP are less likely to

suffer from the increase in the arena’s size.
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Figure 2.23 – Comparison between our proposed approaches and the baseline
strategies.
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2.6 Conclusion

In this chapter, we propose three different techniques to model predators’ be-

havior in a planar pursuit. We also consider the case where the prey is faster

than the pursuer, which requires an "intelligent" strategy from the pursuers.

We also consider hypotheses consistent with real-world applications, such as

non-holonomic motion and instantaneous observations in relative and polar

coordinates. In none of the three cases of communication are necessary.

In the first approach, Group Deviated Pursuit, we propose a simple model

using a "guidance law" to describe hunting behavior. We propose a modified

version of the classic Deviated Pure Pursuit (DPP), where the offset angle is re-

sponsible for the different trajectories during an ambush. The offset is calculated

instantly based on the relative engagement between pursuers and targets.

In the second proposition, Group Mixed Pursuit, we explore the use of an-

other "guidance law," which is still very popular in missiles, the Proportional

Navigation Guidance (PNG). Furthermore, its geometric rule, the "Parallel Navi-

gation," is found in several natural predators’ behavior. The PNG term provides

a more efficient pursuit, while a DPP term is still maintained to avoid collisions

and generate different trajectories.

Finally, in the third section, Group Pursuit using RL, we studied Deep

Reinforcement Learning for the multi-agents Pursuit. In this approach, the

hunting behavior is given Multi-Layer Neuronal Networks, in which the weighs

were obtained by try-and-error in a simulated pursuit-evasion environment.

A qualitative analysis of this and other techniques will be present in the last

chapter, Discussion and Conclusion, all the propositions will be submitted to a

Benchmark, and different metrics will be highlighted.
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Chapter3
Improving algorithms: prediction,

avoidance and flocking
In this chapter, we propose extensions for the previous group pursuit on the

plane. We do not propose new models of pursuit behavior but complementary

scenarios with different problem statements. In short, three new scenarios will

be studied. In the first scenario, we will assume that the target’s global position

and velocity are available for the pursuers. With that, a predictor scheme is

chosen to foresee the target’s future position. In the second scenario, just one

pursuer realizes the target’s stalking; nevertheless, other non-cooperative agents,

or mobile obstacles, are traveling in the same workspace. In a third and last

scenario, we are interested in more massive amounts of agents, where not all of

them are informed about the target. In this, we investigate the flocking formation

considering only the relative and polar information about the neighbors.
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3.1 Pursuit with target prediction

In this chapter, we assume that all pursuers have target information within a

global framework. Based on this information and based on a predictive scheme,

the target’s future trajectory is estimated. Henceforth, the whole of pursuit is

based on this collective knowledge of prediction and its uncertainty intervals.

This work is a cooperation between the Laboratory Heudiasyc - UTC and the

Universidad Politecnica de Valencia. The results are in preparation for a close

submission. The paper will be entitled: "Autonomous drone pursuit using a
fleet of drones with target prediction" by C. de Souza Jr, A. Castillo, P. Castillo,

B. Vidolov.

Figure 3.1 – Illustration of a pursuit with prediction. The pursuer (darker quad-
copter) is pointing to the future position of the target (x̂T , ŷT ) instead its current
position (xT , yT ).
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3.1.1 Brief preface and literature review

As seen briefly in Chapter 1, some of the anti-drone drones, such as [84, 134,

165], depend not only on the perception of the ADD itself but also on external

location systems. These external locators can accurately deliver the target’s

location to pursuers and possibly improve the capture task’s performance.

With the recent increase in illicit use of mini-drones, numerous studies have

been dedicated to the problem of location. In [57] and in [166], the authors point

out numerous approaches relevant for their mini-drone detection and tracking.

Some of the most common solutions are audio detection, thermal detection,

radar detection, and RF (radio frequency). Since these attacks require a quick

and precise counter-response, state-of-the-art solutions are usually based on

multi-sensors, such as ADS-ZJU and DroneShield [166], or smart-sensors, such

as the anti-UAV Defense System (AUDS) [57].

In [165], the authors already considered the problem of an intruder’s pursuit

depending on an external target location system. They considered a system of

beacons installed in an area, and the target positioning was obtained through

triangulation techniques. Despite the similarities, this work focused more on

location and less on the pursuit itself. Besides, this work considers a single-

pursuer configuration, and its disadvantages have already been seen in State-of-

the-art.

In [84], the authors consider the target’s location made by a 3D air defense

radar, and the information is transmitted to the pursuers. Although this work

considers a group of drones, they are physically connected by a towed net.

Consequently, as seen in Chapter 1, in the case of fixed formation, the multi-

agent system behaves as a single body, losing the advantages of smart group

strategies, such as ambushing and stalking.

In this work, we assume the deployment of a location system, in such way

that the target position and velocity are delivered to the pursuers without com-

promising on delays. The pursuit rule is similar to the Deviated Group Pursuit,
proposed in 2, where the offset angle provides the desired formation and colli-

sion avoidance for the group.
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However, to enhance the capturability, a predictor scheme for estimating the

target’s future position is chosen, and the ambushing formation is based on the

prediction error.

3.1.2 Problem formulations

Similar to Chapter 2, we also have a multi-agents pursuit-evasion problem

involving N pursuers and a single evader moving in a horizontal plane. The

conditions of capture and the kinematic model of pursuer (see equation 2.1) and

target still are the same.

Figure 3.2 – Problem formulation of the predicted pursuit. All the pursuer knows
the target position and velocity in the global frame and its foresee trajectory.
Based on evader capabilities, the prediction error can be estimated hi .

Nevertheless, while in the previous chapter, the target perception was done

only by relative and polar coordinates, in this section, we suppose the target’s

position and velocity available in the global frame for all pursuers. In a practical

scenario, the global information could be acquired either by beacons localization

systems, such as in [165]; or by 3D radar systems, such as in [84]; or even by any

technology of localization described in [57] and [166].
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Furthermore, in this section, the pursuit will not be towards the instantaneous

position of the target, but for a predicted future position (x̂T ,ŷT ). Details about

the predictor scheme and estimation of the future position are given next.

3.1.3 Target prediction

The simple pursuit, towards the instantaneous target’s position, frequently leads

to a tail pursuit. Nevertheless, one natural behavior for a chaser should be to

take advantage of the target’s known states and by predictions to point towards

its future position, reducing efforts as depicted in Figure 3.1.

In this work, a predictor scheme, initially proposed in [172], is used for

estimating future target positions defined in a prediction horizon. For this, we

consider that all pursuers have information about the current position of the

target and other agents in the inertial frame.

Target position ahead

Denote by xT (m) the target position, by vT (m/s) the target velocity and by mT
(kg) the target mass. Then, using Newton-Euler, its movement is defined as

ẋT (t) = vT (t),

v̇T (t) =
1
mT

F(t) , aT0
(t).

(3.1)

where F(t) defines the external force producing its movement. From (3.1), the

future target-position, xT (t +∆T ), is

xT (t +∆T ) = xT (t) +∆T vT (t) +
∫ t+∆T

T
(t +∆T − s)aT0

(s)ds. (3.2)

Observe that equation (3.2) provides the desired value xT (t + ∆T ), never-

theless it is not possible computed it directly because aT0
(s) is not known for

s ∈ [t, t +∆T ]. However, consider that aT0
(t) and its first i derivatives can be

estimated. Therefore, by Taylor, the function aT0
(s) could be reconstructed, for
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all s ∈ [t, t +∆T ], as

aT0
(s) ≈ âT0

(s) , aT0
(t) + (s − t)ȧT0

(t) + ...+
(s − t)r

r!
a

(i)
T0

(t), (3.3)

with an error, hi(s) , aT0
(s)− âT0

(s), bounded by

hi ≤
(∆T )i+1

(i + 1)!
µ (3.4)

being µ, maxη∈[t,s]{a
(i+1)
T0

(η)}.

From (3.2)-(3.4), the future target-position, xT (t +∆T ), can be estimated by

x̂T (t +∆T ) = xT (t) +∆T vT (t) +
∫ t+∆T

T
(t +∆T − s)âT0

(s)ds. (3.5)

with an error bounded by

xT (t +∆T )− x̂T (t +∆T ) ≤ (∆T )i+2

(i + 1)!
µ (3.6)

Therefore, for estimating the future target position, the drone needs to com-

pute equations (3.3), (3.5) in real-time. The variables aT0
, ȧT0

, ..., a(i)
T0

, are esti-

mated by using
˙̂xt = v̂T + l11(xT − x̂T ) + l21(vT − v̂T ),

˙̂vt = âT0
+ l12(xT − x̂T ) + l22(vT − v̂T ),

˙̂aT0
= âT1

+ l13(xT − x̂T ) + l23(vT − v̂T ),
...

˙̂aTi = l1i(xT − x̂T ) + l2i(vT − v̂T ),

(3.7)

being x̂T , v̂T , estimate values of xT , vT , respectively; and âT0
, âT1

, âT2
, ..., âTi

estimates of aT0
, ȧT0

, äT0
, ..., a(i)

T0
, respectively.
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Interval of prediction (∆T )

The ∆T represents how far in time will be the target’s prediction. For that we

rely in the idea of time-to-interception, considering the current distance riT and

assuming a constant closing rate ṙiT (measured by the pursuer):

∆T =
[
riT
ṙiT
,Tmax

]
min

(3.8)

The up-bound (Tmax) is determined experimentally in order to avoid outliers

errors in the target prediction.

Once obtained ∆T , the predicted position x̂T , xT (t +∆T ) can be determined

and used in the pursuit. Consecutively, in the following sections the pursuit

engagement will be described in relation to the predicted target x̂T , as illustrated

in Figure 3.1.

3.1.4 Pursuit with prediction

Similar to Chapter 2, let us considering the guidance law for implementing a

deviated pursuit (DPP):

fψi = Kp ∗ (ψi −λiT −αi) (3.9)

where fψi is the control input for the heading velocity (ψi), and α0 is the offset

angle. Note that, considering (1.1), with the pursuer under (3.9), one necessary

conditions for convergence of riT are αi < π/2.

The selection of different offsets α can results in different non-crossing trajec-

tories, as can be seen in Figure 2.4. These curvilinear trajectories can be used as

pursuer’s behavior to ambush the prey from different directions. Furthermore,

the paths described in Figure 2.4 can be easily compared to the description of

lionesses chasing trajectories given by [45].

In order to create this ambushing behavior, let consider the following offset

angle’s function:
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αi =

α̂iT0
∗
(∑N

j!=i δij (ξi ,ξj )
N−1

)
N > 1

0, N = 1

where N is the number of neighbors of the i-agent and δij is a summation func-

tion previously described in (2.3). In short, the outcome is similar to repulsive

forces applied in the perpendicular direction of the LOS. Thus, δij can be written

as:

δij

−1, if j is in the left side

1, if j is in right the side

The offset reference (α̂iT0
), is the maximum offset angle that one agent can

assume in a pursuit, and it is based in the prediction error (hi), previously

explained (eq. 3.4) and in the distance to target |riT |.

α̂iT0
=

[
α0, tan−1

(
hi
riT

)]
max

(3.10)

where α0 is the minimum offset kept to avoid collision between two neighbors.

The principle behind this is that the pursuers in the extremities will travel

towards the extremes case in the target prediction, i.e., they will assume the

higher error in the prediction and intercept the target there.

3.1.5 Simulations

One pursuer vs one intruder

Figure 3.3 illustrates the performance when a pursuer tracks one intruder. The

red circle is the predicted target position intersection, and the pink circle is the

estimated error in the prediction. In this scenario, the target starts in the position

(x,y) = (−7,3)m and moves with constant velocity in its positive longitudinal

axis. Observe that the estimation stabilizes and the pursuer is in the intersection

target route after the third frame.
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Figure 3.3 – Single pursuer against an evader. The pursuer (blue circle) heads
towards the future position of the target (red circle) instead of its instantaneous
position (red cross). The violet circle denotes the "error in the prediction".

Comparison with Group Deviated Pursuit

In Figure 3.4, two scenarios with three pursuers’ pursuit are illustrated; one

using the predictor scheme, Figure 3.4-top, and the other using the simple GDP,

Figure 3.4-bottom. Similar to the previous case, the target assumes a constant

positive velocity on its x-axis. Observe that when using the prediction scheme,

the performance is improved, and the total trajectory traveled for each pursuer

is smaller than for the first case.
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Figure 3.4 – Pursuers behaviors when hunting an intruder drone using the DPP
based methodology. Top: without prediction algorithm and bottom- with the
predictor scheme.
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3.2 Pursuit with non-cooperative agents

This section will address a different problem in multi-agents pursuit, where

a single pursuer must track a target in an environment with non-cooperative

agents. From the pursuer point of view, these non-cooperative agents can be seen

as mobile obstacles, and then the problem becomes similar to the traditional

obstacle evasion. In this strategy, instead of using conventional repulsive force to

avoid the obstacles or find a route through an optimization problem, we propose

a simple and reactive solution based on the "straight-line condition course." This

principle is the same for the traditional family of navigation guidance PNG

(Proportional Navigation Guidance).

This work was published in the 23rd IEEE International Conference on

Intelligent Transportation System, under the title of Reactive drone pursuit
and obstacle avoidance based on parallel navigation, in September 2020.

Figure 3.5 – Illustration of a futuristic city, where the autonomous drone would
tracking a target in a crowded and shared air-space.

3.2.1 Brief preface and literature review

Tracking a mobile object in real time is a demanding task in the UAV field; it

can be used in several applications, such as surveillance, cinema recordings,

and sports broadcasting. Although several commercial drones already feature

tracking the desired object autonomously using its on-board sensors, collision

avoidance with mobile obstacles is still a drawback for its applications in more
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complex scenarios, such as navigation in a big city. Besides, drones’ futures

applications will require multiple drones sharing the same aerial space while

attending different tasks. Those non-cooperative agents must make fast decisions

to avoid each other, as vehicles and pedestrians cross each other in a big city.

As reviewed in the Chapter 1, numerous examples of robotic applications

have used GL for tracking. Moreover, its uses are the most varied, from au-

tonomous navigation[17, 1], passing through autonomous landing [41], until

interception of intruder drones by ADDs [3, 28]. However, unlike its original

application, missile guidance, mobile robots’ working area constantly also has

the presence of obstacles, which can be mobile or static. However, for an effective

GL in mobile robotics applications, obstacle avoidance techniques must also be

incorporated into the system.

Many efforts have been made to conciliate the guidance laws to the opposite

case, collision avoidance. One recurrent solution adds the use of changing modes

switching between pursuit and avoidance task. In [20] and [17], the authors

considered an intermediate goal, a collision-free point, for the pursuer to go

until the overcoming of the obstacle. One alternative is the use of the parallel

navigation principle in the collision avoidance [18], [15], and [23]. In [18] the

authors proposed a PNG based method Line of Sight Counteraction Navigation

(LOSCAN) to avoid collision between ships; the algorithm proposes command to

be executed by the sailor in order two avoid a collision.

Similarly, in [23], the author introduces the concept of a virtual plane to

identify the collision based on the rendezvous-course condition. In this plane, the

dynamic moving obstacles are transformed into stationary objects, and through

it, the navigable paths are obtained. In [15] is proposed collision avoidance

guidance laws based on the PNG principles to sense and avoid capabilities in a

UAV, their solution for multiples target is based on objective-based cost functions

to find the optimal path.
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In this work, we propose a navigation guidance-based solution for tracking

and avoiding non-cooperative agents or obstacles. We extended the traditional

Proportional Navigation Guidance (PNG) for collision avoidance of multiples

obstacles, including mobile objects with random movements. This work differs

from the previous in the following aspects:

no need of changing mode between pursuit and avoidance, as in [20], [17], in

our strategy, the pursuit and evasion are components of the same guidance law;

does not rely on the optimization calculation as in [15]; being a computationally

fast solution and easy to implement.

A comparative of the proposed algorithm with respect to the pure pursuit

is presented with numerical simulations. Different scenarios are provided for

verifying the good performance of the proposed algorithm.

3.2.2 Problem statement

The challenge is to propose a solution for a mobile target’s drone tracking

problem in a dynamic environment where non-cooperative agents are evolving.

This signifies that the pursuer drone must reduce its distance to the target (riT )

and avoid the collision with other agents (rij).

The scenario is illustrated in Figure 3.6, the pursuer (blue circle) must track

the target (red circle) while avoiding collision with the non-cooperative agents

(grey circles) flying with unknown movements. The green zone in the picture

illustrates the perception zone where obstacles outside will be ignored. All

agents in this work have equal capacities and the same configuration. Also, the

pursuer will have a velocity equal to or higher than the target and obstacles.

3.2.3 Pursuit and avoidance guidance law

In order to determine the steering law for fψi , let us first consider the PNG

(Proportional Navigation Guidance), previously exposed in Chapter 2. This

basics principle is to keep a constant bearing angle towards the target. Moreover,
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Figure 3.6 – Engagement between the pursuer (blue circle), the target (red circle)
and one non-cooperative agent j (grey circles). The green area represents the
obstacle’s perception area.

a logical choice for a controller to nullify λ̇iT can be defined as:

fψi =N ∗ λ̇iT (3.11)

where N represents the gain navigation constant and λ̇iT is the angular rate of

the bearing angle between pursuer and target. Remark that a constant bearing is

a necessary condition for the collision as stated in (3.1), hence, for assuring the

inequality of this condition, it must be enough to assure the non-convergence

between two bodies, i.e., in a navigation scenario, the avoidance.

Therefore, the function f (x) = x−1 is chosen for assuring the inequality λ̇ij , 0,

and the following avoidance component for a guidance law can be proposed:

fψi =
−k
λ̇ij

(3.12)

where λij is the angular rate of bearing angle and and k denotes a positive gain.

The negative sign assures that the pursuer heading in the opposite direction of

λij .

Work in progress as of 20
th
June, 2021



3.2. Pursuit with non-cooperative agents 87

Although the above equation can assure the non-collision with a single

obstacle, it can be an inconvenient due the fact the distance is not taken into

account, and in a multi-obstacles scenario a closer obstacle will not have priority

over a further one. For overcome this issue a second term is proposed, where the

control output will be weighted based in the inverse of its relative distance (dij).

Thus

fψi =
−k
λ̇ij
∗ σ

(
Rcol − rij
Rper −Rcol

)
(3.13)

For this new term, Rcol and Rper stand for the perception and collision radius,

respectively. σ () function can be described as:

σ (x) =


0, if x > Rper

x, if Rper ≥ x ≥ Rcol
1, if x < Rcol

(3.14)

Observe from (3.13) the second term in the equation expresses a kind of

collision coefficient which has its maximum value for distances smaller than

Rcol and null value if the distance is higher than Rper . Besides, this function

increases the repulsion force for closer objects or to ignore others that are not in

the eminence of collision.

Finally, the complete equation for target tracking and obstacle avoidance is

proposed as

fψi =N ∗ λ̇iT +
−k
λ̇ij
∗
∑
j∈O
∗σ

(
Rcol − rij
Rper −Rcol

)
(3.15)

where O defines the set of all non-cooperative agents (or obstacles) inside the

perception area, see Figure 3.6. This equation combines the PNG (3.11) and the

avoidance (3.13) generalized for the multi-obstacle case.

3.2.4 Simulations

To validate numerically our proposition, we implemented the proposed so-

lution in Matlab, considering the agents modeled as a particle moving in a

two-dimensional space and under the kinematics equations (3.16).
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The sample period, Te in simulations is 0 : 01s. For simulation purposes, the

crosses represent the evader’s path, while the circles illustrate the pursuers’ path.

The black arrows denote the heading orientation of each pursuer. The collision

condition in simulation is the target be in a distance less than the capture radius

Rmin = 0.3 m of one agent.

Fixed obstacles, fixed target In the following scenario, the pursuer must navi-

gate between numerous static targets using the pursuit-avoidance strategy (3.15).

The trajectories can be seen in Figure 3.7.

Figure 3.7 – A pursuer autonomously navigating into an environment with
multiples fixed obstacles for tracking a static target.

In this figure, several episodes were taken considering different initial posi-

tions for the pursuers. Notice that the pursuer does not know the global location

of all obstacles; therefore, the optimal path can not be assured. However, remark

that this approach provides a smooth collision-free path towards the target using

a simple and fast calculation algorithm.

Fixed obstacles, moving target A slightly different scenario is prosed here.

Random obstacles were also placed, but now the target is executing a linear

trajectory; see Figure 3.8. Observe in this figure the successful target capture

and the well-defined obstacle avoidance.
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Figure 3.8 – A pursuer autonomous navigating into an environment with multi-
ples fixed obstacles for tracking a moving target.

Moving obstacles: In this last scenario, the pursuer must track the target

into an environment where non-cooperative agents are evolving. These non-

cooperative agents are moving with different velocities along the way of the

pursuer towards the target, as can be seen in Figure 3.9. For this simulation, the

agents only move in the x-axis; nevertheless, the result can be easily extended

for non-cooperative agents moving in 3D.

In this scenario, the pursuer starts at position (x0, y0) = (0,−6)m and displaces

successfully between the non-cooperative agents toward the target positioning

at (xT , yT ) = (0,5)m. Observe, still from Figure 3.9, the good performance of the

algorithm facing a complex scenario with multiples accelerating non-cooperative

agents.

Observe that the principle is not a pair-wise repulsion force as a function of

the distance from the pursuer to the obstacle. Instead, to avoid the nullification

of bearing-angle rate pursuer-obstacle (λ̇iT ), consecutive, even if an obstacle is

close to the pursuer, it will not change its course if they are not in collision route.
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For example, from the screenshots 4 in Figure 3.9, we can remark easily that

even with the last obstacle passing close to the pursuer, i.e., inside the perception

radio (Rper), it does not affect the route of the pursuer, once they were not in

collision route.

Note also, the pursuer observes only relative and polar based information

(λ̇iT ,diT ) from the obstacles, which can be easier obtained from embedded

sensors, such as camera and lidar.

The simulation results can be observed in the following link:

https://youtu.be/ctrN42mLIUQ.
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Figure 3.9 – Pursuer performance when navigating into an environment with
non-cooperative agents are evolving.
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3.3 Flocking

This last section will tackle a slightly different problem from the previous ones;

we will not study group-pursuit strategies but the collective herd movement.

However, we will see that the flock’s principle is very similar to the used in group-

pursuit, which will lead us to propose a generalized guidance law, addressing

at once the pursuit, obstacle avoidance, and flocking. Our flocking model is

based on the principle of "parallel navigation," where the flock’s individual

tends to maintain a constant bearing angle about the estimated flock’s centroid.

Moreover, we show that a cohesive motion can be obtained with only relative

and polar neighbors’ information.

This section’s content is part of an article, still in the process of preparation,

which will be entitled: Flocking, pursuit, and avoidance: a constant bearing
guidance law for multi-agents. C. de Souza, P. Castillo, B. Vidolov.

Figure 3.10 – Examples of flocking: on the left, a flock of autonomous drones
from [148]. On the Right, Extract from [111], an example of centroid’s identifica-
tion from a bird’s swarm image.

3.3.1 Brief preface and literature review

Flocking is not an exclusive behavior of herd’s and school’s animals, such as

sheep, birds, and fishes. Far from that, Vicsek and Zafeiris’ survey [50] points out

that collective, coordinated, and cohesive movements are present in practically

all moving beings, including physical particles, bacteria, insects, or even humans.

Work in progress as of 20
th
June, 2021



92 CHAPTER 3. Improving algorithms: prediction, avoidance and flocking

Considering this, we propose a flocking model that could be compatible with

the previously proposed group-pursuit models. In this way, the pursuers, even

not being in a pursuit action, could maintain a cohesive collective movement,

and the transition between flocking to the pursuit, and vice-versa, could be done

smoothly.

Before going any further, it is important to remind the distinction assumed in

this thesis about "Flocking" and other collective movements. As pointed out in

the introductory of this thesis, we refer by flocking "the fluid and cohesive motion

promoted by agent-based and decentralized approaches, with homogeneous

individuals, having no explicitly hierarchy and able to sense and act only locally."

Differentiating so from all centralized or pattern formation approaches.

As exposed in the Chapter 1, there are numerous models for flocking in

the literature. They range from the simplest ones, such as primary Vicsek

particle [77], passing through deterministic models, such as Cucker–Smale [138],

and its numerous variation and control-theoretical frame-work, such as in [58].

Furthermore, several successful attempts have implemented into drones, such

as [53, 54, 80, 148], where several dozen quadcopters can display amazing

formations in an opened sky, see Figure 3.10.

Nevertheless, the above implementation relies on communication between

neighbors to share their position and velocities in the global frame. This assump-

tion seems to be not very verisimilar compared to the observed real-life flock.

This phenomenon is observed even in the most simplistic life, where no commu-

nication is identified. One realistic flocking should be obtained, relying only on

relative information that could be easily obtained from embedded sensors, such

as cameras or lidars.

Furthermore, the problem is those classic algorithms, in addition to the

components of attraction and repulsion (attractive/repulsive pairwise potential

forces), also require either term of heading’s alignment, such as [49, 168], or

velocity consensus (viscosity term), such as in [58, 77, 138]. These terms guar-

antee cohesion in the movement since the individual’s velocity or orientation is

decided based on the average of those measures of his neighbors.
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However, measuring the orientation, or the absolute speed of another agent,

is not an easy task. What makes a large part of flocking work is to assume a

communication between agents, sharing this information among themselves.

Therefore, we propose a solution where neighbors’ velocity, or orientation,

does not need to be measured. We rely on the centroid estimation of the perceived

neighbors, and we apply "parallel navigation" towards it. The Flock Centroid

FC is a feature that can be obtained by image processing since it can be stated as

a simple optimization problem, such as exposed in [111]. In short, our approach

proposes that velocity alignment is not a requirement for flock formation. In-

stead, alignment is the outcome when applying simple geometrical rules that

will be described next.

3.3.2 Problem statement

Figure 3.11 – Geometry between one agent i and the rest of the flock. Its closest
neighbors are identified as j, and the flock’s centroid FC is denoted by a green
cross. Note that the FC is estimated based on the neighbors inside the field of
vision (green area). The yellow circles represent the "informed agents."
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Let us consider the flocking problem involving N agents moving in a hori-

zontal plane, such as illustrated in Figure 3.11. The agent’s path is described

by Pi(t) = [xi(t), yi(t)], where (xi , yi) is its Cartesian coordinates in the bounded

work-space W ∈ IR2. The initial goal for each agent is to keep the group’s cohe-

sion while do not collide with each other. The agents are evolving under the

non-holonomic equations (3.16) and their behavior is controlled by the dual

input [fψi , fvi ], which are the angular rate and the linear velocity, respectively.

An agent perceives its environment in polar and relative coordinates, i.e., the

distance rix and a bearing angle λix, between the agent i and the object x. Polar

and relative coordinates seem a coherent assumption since that information

can be obtained from a common robot’s embedded sensors, such as a camera

and lidar. Besides, we suppose that agents can infer their heading (ψi) in the

global frame, which is also a consistent assumption for robotic applications,

considering electronic compass sensors.

To adopt more realistic conditions we also suppose a limited fiel-of-vision

FoV , characterized by an opening angle β and a radius RF . The agent i is able to

perceive only the neighbors inside FoVi . Finally, an individual must also be able

to estimate its perceived flocking centroid FCi , which is the center of mass of all

agents inside the field-of-vision FoVi , i.e., FCi = 1
NF

∑
j∈FoVi Pj , as illustrated in

Figure 3.11.

Finally, to realize more complex collective behaviors, we borrow the concepts

of "informed individuals" from [169], which consist of specific individuals who

have the flock’s mission. In a certain sense, they can be considered "leaders," but

we kept its original homogeneity concepts, where one agent can not distinguish

from whom is informed or not.
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3.3.3 Flocking model

Simplistic model

In this flocking strategy, the agent i regulates its orientation to keep a constant

bearing angle to respect to FCi , i.e., λ̇FCi = 0. For its turn, the linear velocity of

i is regulated to keep a safety distance toward the closest agent. The simplest

form for this flocking is stated below:

fψi = Kf ∗ λ̇FCi (3.16a)

fvi = umax ∗ σa
(
rmin −Rsaf
Rper −Rsaf

)
(3.16b)

where Kf defines a positive gain and λ̇FCi is the bearing angle rate between

pursuer and its observed centroid (FCi). Also, Rsaf denotes the closest safety

distance between two agents, and Rper is the perception radius, which is the limit

to how far the neighbor an agent will be perceived by another. This function

makes the pursuer start to break from Rper linearly until to achieve Rsaf . The

σa(x) is a function defined in x ∈ IR | x ≥ 0:

σ (x) =

0, if x > Rper

x, if Rper ≥ x ≥ Rsaf
(3.17)

Note that at this point, each agent tends toward the perceived center of mass,

since under the PNG, if vi > vFCi then ṙFCi < 0.

Alignment In order to illustrate how the alignment of heading can be achieved

using the law (3.16), let us consider two agents, a target T , and a follower i. The

target, which can be seen as the informed agent, is executing a non-maneuvering

trajectory with vT positive and constant. The follower i, is operating under

the flocking law (3.16), and since T is the only member of the flocking, λFCi =

λiT . Now, considering the relative kinematic equations described in (1.1), and

considering that under (3.16), λ̇iT → 0 and ṙiT → 0, thus, the system (1.1)

becomes:
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vi ∗ cos(αi) = vT ∗ cos(αT ),

vi ∗ sin(αi) = vT ∗ sin(αT ).
(3.18)

where the clear solution are vi = vT and αi = αT , which indicates the alignment,

i.e., same linear velocity and same heading for i and T .

Generalization: pursuit, avoidance and flocking

We proposed a unified guidance law responsible for the behavior of tracking,

flocking and collision avoidance. The steering control input is given by the sum

of the components:

fψi = f trackψi
+ f avoidψi

+ f f lockψi
(3.19)

The track component f trackψi
can be given by (2.9) or by other guidance law,

such as in Sections 3 or 4. The avoidance component f avoidψi
is stated in (3.12),

and finally, the flocking component f f lockψi
can be given by (3.16).

Leadership strategies can be established to conciliate the conflict between

"flocking" and "tracking" tendencies. For example, just the closest agents can

see the target, while others attempt to maintain cohesion with the group. Alter-

natively, heterogeneous weights can be given for the agents. Making in some

agents a stronger track impulse(f trackψi
)over the cohesion impulse (f f lockψi

), thus

making predetermined leaders.

3.3.4 Simulations

Next, three scenarios are proposed to demonstrate the capabilities of our propo-

sition. The simulations were done through Matlab, and the agents are imple-

mented by using the kinematic equation (3.16).

Consensus achievement In this scenario, 50 agents are placed randomly inside

a square arena of 100x100. The agents have their velocity and turning rate

controlled by the flocking law (3.16). In this first example, there are no informed
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Figure 3.12 – Paths for aggregation under different opening angle (β): β = π/4 in
A, β = π/2 in B, β = π in C and β = 2 ∗π in D.

agents, and all agents are equally tuned. In order to show the effect of the

field-of-view, we proposed three episodes for three values of opening angle

β = π/4,π/2,π,2 ∗π, while the FoV radius keeps the same, RF = 30 .
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In Figure 3.12, note that for smaller values of the field-of-vision (A and B), the

transitory phase is longer, and we can see that agents travel longer trajectories

until settling in the aggregation (more dense paths). However, for bigger values

of opening angle (C and D), a consensus can be achieved faster since the agents

traveled less (more sparse paths ). Nevertheless, we can see that more segregated

groups are formed for bigger values, as pointed out by the blue circles in Figure

3.12-D. This segregation can be explained by the fact that increasing the opening

angle also increases the influence of the closest neighbors. With that, even a

neighbor even located in the "back" of the agent would interfere in its behavior.

With smaller opening angles, the agent tends to "ignore" the neighbors more.

Figure 3.13 – Screenshots for a simulation with 15 flocking agents and one
informed.
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Informed agents In this scenario, we illustrate the influence of a single agent

over the whole. For that, 15 agents are also placed randomly initially; neverthe-

less, one of the agents is informed about the target position and follow it. The

informed agent is the same along with all this episode.

In the first screenshot from Figure 3.13, the flocking agents are all aggregated,

while the informed agent is following the target (red cross). In the second

screenshot, we can see that some of the agents started to be influenced by

the informed one, and gradually all the agents start to migrate. In the last

screenshots, they all stop in a new aggregation. This pattern was observed

several times in this simulation.

Note that, although the group movement is not uniform, one agent alone is

enough to influence the positioning of the whole flock. We will see in the next

simulation that the presence of more informed agents are sufficient to obtain a

more uniform flocking movement.

Figure 3.14 – Screenshots for generalized scenario: target tracking (red cross),
obstacle avoidance (grey square) and flocking.
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Cruising trajectory and obstacle avoidance In this last scenario, we propose

to validate the generalized guidance law (3.19), where all agents have the same

tendency of flocking, avoidance and pursuit. For that, 25 agents have been

initialized in the bottom left part of the arena, with the following configuration

of field-of-vision: β = 1.2π and RF = 25. The target is traveling in a linear

trajectory with a constant velocity. Figure 3.14 shows the target (red cross)

starting at the center of the arena and moving towards the up-right corner.

Henceforth, there are no chosen informed agents, but all agents tend to

pursue the target if it is inside their field-of-view. Furthermore, target and

obstacle (grey square) are also perceived inside only when inside the FoV .

Figure 3.14 we can see in screenshots 1 and 2 that the flock is cohesively

following the target. Once the target overtakes the obstacles, screenshot 3, the

agents progressively split into two groups. The two groups keep segregated until

the obstacle does not interfere anymore in the formation, and gradually the two

groups start to join again (screenshot 11 and 12).
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3.4 Conclusion

In this chapter, we went beyond the classical pursuit, and we investigated

three complementary scenarios. We have tried different assumptions on the

target’s observation and different missions as well. Following a summary of the

propositions of this chapter.

In the section Pursuit Target Prediction: we suppose that all agents knew

the target’s position and velocity during the pursuit. With that, we proposed

implementing a predictive scheme to foresee the future location of the target.

Furthermore, all the pursuit was then based on the prediction, and the posi-

tioning of the agents was based on the error estimated prediction error. We saw

a consistent improvement in the performance compared to the simple Group

Deviated Pursuit (Chapter 2). Although the need for target’s global information

is hard to implement in real-life, this methodology can be used as "ground-

truth" to evaluate the previous pursuit approach, from Chapter 2. Furthermore,

qualitative analysis in the pursuit’s approaches will be provided in Chapter 5.

In the section, Pursuit with non-cooperative agents: a reactive algorithm

for pursuit and collision avoidance for non-cooperative agents was proposed.

We considered the scenario where a single pursuer had to track a target in an

environment shared with non-cooperative agents. The navigation algorithm was

obtained using the geometrical rule of parallel navigation and the pursuer target

tracking and obstacle avoidance properties. The algorithm was validated in

simulations for three different scenarios, including when the pursuer navigates

into an environment where non-cooperative agents are evolving.

Finally, in the section, Flocking: we investigated the cohesive collective

movement, and we conciliate it with the pursuit and avoidance previously seem.

This new flocking approach is based on parallel navigation and dispenses the use

of "alignment" or velocity consensus terms, which is one advantage for real-time

implementation since the neighbors’ velocity is not easy to be measured by

ordinary onboard sensors. We validate our proposition through simulations,

where the scenarios of aggregation, independent traveler, and cruising with

obstacles were analyzed.
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Chapter4
Implementation and Experiments
This chapter describes the experiments and the implementation of the pursuit

strategies, from the previous chapters, into real time robots. Firstly, we present

the quadcopter model, which will be used along with the chapter. Then, we pro-

pose a motion control hierarchy for a drone pursuer. This multi-layer controller

is responsible for transforming the high-level command from the guidance law

(GLs) into the low-level quadcopter inputs. Following, we discuss the hard-

ware platform, exposing the used robots, the software architecture, and the

installations. Next, we describe our work on state estimation, in which we imple-

mented a Kalman filter scheme for improving position and velocity estimation.

Finally, we expose proof-of-concept results for group-pursuit with quadcopters,

implementing several proposed strategies in real time.
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4.1 Drone model

For the experimental validation, we choose the conventional quadcopter configu-

ration, as illustrated in Figure 4.1. Due to its simplistic mechanics and capability

to hover and perform indoor flying, the quadcopter has been a frequent proto-

typing choice in UAV research. Although the high-level guidance law’s output

could be applied into a vast range of vehicles, we have specially dedicated to

quadcopter once it has been the source of criminal usage, as reported in Chapter

1 Furthermore, this configuration is also a recurrent choice for an anti-drone

drone (ADD), as we pointed out in section 1.1.2.

Figure 4.1 – Body frame of the quadcopter.

As exposed in [171], the quadcopter dynamical model can be obtained by

representing it as a solid body evolving in a three-dimensional space under

the action of the main thrust and three torques, see Figure 4.1. Therefore, two

simplified drone models will be used along with this chapter, one in the inertial

frame and the other in the body frame. The first one will be used in the task

positioning estimation, where we are interested in the drone location in an

inertial frame. The second one will be used in the drone’s motion control since

the inputs from the GLs are given in the body frame.
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4.1.1 Inertial Frame

Let us consider the following dynamical model:

ẍ = −sin(θ)
1
m
u

ÿ = cos(θ) sin(φ)
1
m
u

z̈ = cos(θ)cos(φ)
1
m
u − g

φ̈ = θ̇ψ̇

(
Iy − Ix
Ix

)
− Ir
Ix
θ̇Ω+

l
Ix
τφ

θ̈ = φ̇ψ̇

(
Iz − Ix
Iy

)
− Ir
Iy
φ̇Ω+

l
Iy
τθ

ψ̈ = θ̇φ̇

(
Ix − Iy
Iz

)
+
l
Iz
τψ

where the position coordinates are x, y, z and the orientation is given by the

Euler angles; roll (φ), pitch (θ) and yaw (ψ). The distance between each motor

to the gravity center of the vehicle is denoted by `. The inertia of the vehicle in

each axis is defined by Ix, Iy and Iz while the inertia of the motor is represented

by Ir , the speed of the rotor is defined by Ω and u is the main thrust, τi defines

the torque control input.

Chain of integrators Therefore, the main dynamics in its linear form to be

studied are the altitude, the longitudinal, and the lateral movements. Without

loss of generality, it is well known that the altitude dynamics can be represented

by two integrators in cascade and the longitudinal/lateral dynamics by four.

This is a very common simplification, and it is justified since considering smalls

values for the orientation; where the trigonometric function can be simplified as

follow: sin(x) ≈ 1 and cos(x) ≈ x. Thus, the longitudinal drone’s dynamic can be

expressed as

ẍ =−θ, (4.1a)

θ̈ =u2 (4.1b)
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In this cascade representation the control input u2 is equivalent to τθ. Simi-

larly, the lateral dynamics of a quadcopter can be described as a chain of four

integrators:

ÿ =φ, (4.2a)

φ̈ =u3 (4.2b)

In this cascade representation the control input u3 is equivalent to τφ.

Finally, the vertical dynamic can be described by a chain of two integrators,

z̈ = u, where u is equivalent to the main thrust.

4.1.2 Body frame

Considering the conventional quadcopter configuration showed in Figure 4.1.

We use the Newton-Euler approach, where, the mathematical equations for the

quadcopter in the body frame can be written as:

mv̇ = F +RT Fg
η̇ = B(η)Ω

JΩ̇ = τ − [Ω]×JΩ
(4.3)

The bold letters represent vectors. F denotes the thrusts generated by the

motors, Fg is the vector force of gravity. η = [φi θi ψi] is the vector of Euler

angles, Ω = [ωx ωy ωz] means the angular velocity in the body frame. m indicates

the mass of the drone and v = [v u w]T defines the velocity vector of the aerial

robot in the body system, R describes the rotation matrix generated in the order

yaw-pitch-roll. B(η) represents the matrix that relates the angular velocity and

the derivative of the Euler angles. J is the inertia matrix of the drone. [Ω]×

means the skew symmetric matrix of angular velocity and τ defines the torques

applied to the vehicle.
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4.2 Motion control hierarchy

4.2.1 Introduction

In Chapters 2 and 3 we proposed several multi-agent strategies in a planar

environment. in this initial setup, for simplicity, we considered very simple

the kinematics model, also known as the uni-cycle model. Simplified setups

are very common in multi-agents, navigation guidance, and differential game

analysis. Nevertheless, they do not provide a straightforward implementation

into real-systems once they do not consider the robots’ dynamic and robots’

dimensions.

In this section, we will discuss the extension of the agent behavior into an

aerial vehicle, considering the application of a quadcopter. In a few words, the

robot behavior is given by a multi-layer controller, as illustrated in Figure 4.2.

Figure 4.2 – Motion control hierarchy of a quadcopter using guidance laws.
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This multi-layer control has a similar composition with the motion control

hierarchy used by marine surface vessels, as the one described in [75]. In the

higher level is located the Guidance Law, which gives the velocities and turn

rates inputs fvi , fui , fwi and fψ̇i . Following, we have the Safety constraints level,

which are responsively to add virtual constraints such as delimited workspace,

maximal velocities and close-range collision avoidance. The command from this

level are expressed by f safvi , f safui , f safwi , and f saf
ψ̇i

. Next, the Motion constraints level

is a crucial component which will provide drone’s compatible commands, fθi ,

fφi , fψi and fżi , which in this case are the expressed in angular position. Finally,

the Attitude control is the lower level control, which gives the thrust and torques

inputs to the physical system u1, u2, u3 and u4. in the following, more detailed

description about each layer is given.

4.2.2 Higher layer - GL

The pursuit algorithms (or the guidance laws) are responsible for the high-level,

or navigational control. It is basically composed by four command laws: fvi ,

fui , fwi and fψ̇i , which are, respectively, the references for forward, and lateral

velocities, vertical acceleration and angular rate in yaw. Nevertheless, the planar

guidance proposed in Chapters 2 and 3, proposes only guidance law for the

turn rate fψ̇i , since they consider linear velocity constant fvi = constant, and

non-holonomic constraints in the 2D plan, resulting in fui = 0 and fẇi = 0.

One exception is for the pursuit strategy based on Reinforcement Learning,

where besides the turn rate, law for forwarding velocity fvi is also provided.

Furthermore, as will see further in the section 4.2.4, an extension for the vertical

plane pursuit will be proposed, and a law for the vertical displacement fẇi will

given.

4.2.3 Safety layer

This layer is responsible for the material’s integrity during the experimental

validation and under laboratory conditions. Therefore, additional assumptions

are considered, such as knowledge of all agents’ position and velocity in the
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inertial frame. With this complete knowledge of the system, we can assure

collision avoidance by adding several virtual constraints, such as delimited

workspace, maximal velocities, and close-range collision repulsion. Although

the ambushing trajectory, generated by the pursuit algorithms (higher layer),

has collision avoidance term, they can not guarantee full collision-free once they

do not consider all degrees of freedom, dynamic, and dimensions of the robot

application.

Figure 4.3 – Scheme of the safety level. On the left side, a representation of a
drone, with its velocities and its safety radii Rsaf and Rcol. On the right side,
three drones and their position vectors are represented inside a virtual arena of
radius Rare with the thickness of Rwall.

Before going into details, let us consider the illustration from Figure 4.3. In

the right picture is illustrated three drones inside a circular arena of radius Rare,

and the origin of the inertial frame is the center of the arena. Also, ri and rj are

the position vector of the the agents i and j. Furthermore, in the left picture, a

drone with its body velocities (vi and ui) and two concentric areas are illustrated.

The inner circle is the "collision imminence area," characterized by the radius

Rcol . If a neighbor is inside this area, the repulsion will be maximized. The outer

circle is the "safety area," characterized by the radius Rsaf . The safety layer will

ignore all neighbors outside this zone once they propose no collision risk.

The Safety layer is composed by the following laws: f safvi , f safui , f safwi , and
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f
saf

ψ̇i
. For computing the law for the velocities, f safvi = [f safvi f

saf
ui ]T we borrow the

concepts of [53] and [54], where their "flocking law" was given by the sum of

several virtual forces: repulsion, friction, and virtual barriers. Nevertheless, in

our case, the virtual forces are active only when objects are inside the safety area,

such as indicated in Figure 4.3.

Without further ado, the safety law for the velocities is computed as follow-

ing:

f
saf
vi = f puri + f walli +

∑
j,i

(
f
rep
ij + f f ricij

)
θ
(
Rsaf − |rij |

)
(4.4)

where f purvi = [fvi fui] is the velocity reference from the higher level (guidance

law). It is important to notice that as in the guidance law consider non-holonomic

constraints, there is no lateral velocity, consequently fui = 0. Besides, f repij and

f
f ric
ij denote the repulsion and friction components for each neighbors. The

therm f wallvi is the component of repulsion from the virtual limits, the "virtual

walls", as illustrated in Figure 4.3-Right. Also, rij is the vector connecting agents

i and j. And finally θ(x) is a function that the output is 1 if x ≥ 0 and 0 if x < 0.

The repulsion component from an agent j towards another agent i is com-

puted as follow

f
rep
ij =

D(rij −Rsaf )

|rij |
θ(Rsaf − |rij |), (4.5)

where D is a coefficient for strength of the repulsion.

For its turn, the friction component from two agents is calculated as follow

f
f ric
ij = C

(vj − vi)
(max{Rcol , |rij |})2 , (4.6)

where C is the coefficient of alignment, which tends to align the agents’ velocity

as explicated in Chapter 1. In [53], the authors pointed out the importance of

the alignment term to "damp" the agents’ response for the repulsion forces in

interaction. In contrast with the upper layer (GL), this layer requires knowl-

edge of neighbor velocity in the inertial frame, which is justifiable considering

experimental validation laboratory conditions.
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Finally, the "virtual wall" component are given by:

f walli = sig
(
|rij |,Rare,Rwall

)( ri
|ri |

)
, (4.7)

where Rare is the radius of the arena, and Rwall is the thickness of the virtual

barrier, as illustrated in Figure 4.3-Right. Besides, sig(.) is a Sigmoid function,

which can be defined as

sig (x,R,d) =


0, if x ∈ [0,R]
sin π

2 (x−R)−π2 +1
2 if x ∈ [R,R+ d]

1, if x > R+ d

(4.8)

Please notice that the safety velocity, such as calculated in (4.4) is only

a requirement for experimental validation in laboratory conditions, where

workspace is limited, and the drones travel very close to each other. In a real-

world application, this safety velocity based on flocking will be much less needed

since the pursuer’s runnable area is much greater than its "safety area."

4.2.4 Motion constraints

The third level is responsible for transforming the safety velocity input from

the upper levels into commands compatible with the robotic platform, which in

this case are commands for the angular position: fθi , fφi , fψi and acceleration in

z − axis fżi .

However, the robot may have more degree of freedom than the GL’s output,

which is clearly the case of the quadcopter equations (4.3), and the the kinematics

model (3.16) considered in Chapters 2 and 3. Therefore, to adapt the quadcopter

to the GL commands, two motion constraints model are proposed: non-holonomic
and heading-to-target constraints.
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Figure 4.4 – Representation of the two proposed quadcopter’s motion constraints:
a) non-holonomic b) heading-to-target

Non-holonomic constraints

Possibly the most intuitive way to apply the GL commands into quadcopter

configuration would be to impose the non-holonomic constraints into it. It can

be done by nullifying the drone’s lateral velocity and forcing it to act only in

turn around the z-axis (ψ) and in the forward velocity. With that, the quadcopter

states, exposed in (4.3) will have the following tendency:

vi → f
saf
vi , ui → f

saf
ui , wi → 0, ωzi → fψi (4.9)

Considering the quadcopter’s simplified model (4.2), and applying the same

simplification into the the model 4.3, we can see that v̇i ≈ −θi and u̇i ≈ −φi .
Then, a simple law to assure the condition 4.9 can be:

fθi = Kθ(f safvi − vi),

fφi = Kφ(f safui −ui),

fψi =
∫ t

0
fψ̇idt,

(4.10)

Note that, for instance, we are not yet considering the vertical displacement.
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A section dedicated to the vertical pursuit plan will be given further, see section

4.2.4. For the moment, we consider that the quadcopter is already stabilized in

altitude and its vertical velocity is null (vz = 0).

This motion constraint has an interesting property while considering the

frontal camera as a navigation sensor: the drone will displace only in the di-

rection of the field of vision, the sensed area, tightly coupling the perception

to the movement. For the same reason, this kind of drone motion is commonly

observed in FPV piloting, where the only information for the pilot is the frontal

camera image, Figure 4.5. In this case, the remote-pilot tends to cancel the

drone’s lateral drift by combining a roll movement while turning the drones

heading.

Figure 4.5 – Illustration of an FPV drone race: once the pilots (left picture)
have only the front camera information as perception, they tend to drive the
quadcopters in a non-holonomic way.

Heading-to-target

In this second motion type, the drone will regulate its heading always toward

the target (ψi → λiT ) and will keep a positive velocity (vi) in that direction. The

NGL command will be given as lateral acceleration fa, perpendicular to the LOS.

In the quadcopter, the lateral acceleration in the body frame is represented by

the state u̇.

v1→ f
saf
vi , u̇i → fa, wi → 0, ψi → λiT (4.11)
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This technique’s advantage is to improve the target’s perception once it is

always in the center of the image plane. Furthermore, it allows a straightfor-

ward implementation for GL that provides the command in terms of normal

acceleration of fa, rather than the turn rate of fψ.

Considering the application of the PNG in terms of fa (3.11), once the lateral

acceleration of the drone is already perpendicular with the line-of-sight (LOS),

this configuration allowed a direct implementation of the law, which is also

called True Proportional Navigation (TPN) [36].

Altitude controller

In order to establish a guidance controller for the vertical plane, let us at first

consider the three-dimensional engagement between a pursuer and an evader

as proposed in Figure 4.6. The straight line connecting them, the Line-of-sight

(LOS), is denoted by riT . The angle formed by the LOS and the inertial axes

x and y are denoted here by λviT and λhiT , respectively. The vectors vi and ui
are the straightforward velocity and the upward velocity in the body frame. ψi
represents the yaw of the drone i, and θ̂i is a virtual pitch determined by the

composition of the vi and wi .

Therefore, let us consider a Deviated Pure Pursuit (DPP) guidance law for

the vertical plan:

fθ̂i = Kp ∗
(
θ̂i −λviT − β

)
, (4.12)

where θ̂i defines a pitch angle and Kp a positive gain. The LOS angle now is

defined in the vertical plane (λiT ) and the offset angle is called β.

Since for a quadcopter, the displacement in the vertical plan is function of

the thrust F (see Eq. 4.3) it is necessary a function to relate F to the turning rate

output fθ̂i from (4.12). For that, we consider a virtual pitch that is equivalent to

the angle between the vector v and the horizontal plane. It can be given by

θ̂i = tan−1
(
vi
wi

)
(4.13)
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Figure 4.6 – Three dimensional geometry between two quadcopters.

For safety navigation, we consider that the straightforward velocity of the

pursuer vi is changing so slowly that can be considered constant by some time

instants; therefore, the derivative of the expression the above becomes

˙̂θi =
1

1 + (wivi )2
∗
(
ẇi
vi

)
(4.14)

where ẇi is the vertical acceleration of the pursuer i. Therefore, from (4.14), and

considering fθ̂i as the virtual pitch rate, it is clear to write

fẇi =
(
vi +

w2
i

vi

)
∗ fθ̂i , (4.15)

where, fẇi is the control input for the vertical acceleration.

For avoiding singularity, vi is imposed to have a minimum value in the

interception part. Note from the above that the thrust control is not based on

regulation with the target altitude, but with its relative polar coordinates, which

can be easier obtained from an on-board camera.
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4.2.5 Attitude Controller

The lower-level control is responsible to generate control inputs for thrust (u1)

and torques (u2, u3 and u4) for the quadcopter, following the reference given by

the upper level control. This level requires high-frequency processing and is the

one most dependent on the vehicle’s dynamics.

Therefore, we choose a non-linear controller based on saturation function,

proposed in [170], to stabilize the lateral dynamic of the quadcopter 4.2 and

follow the angular references. The control law for longitudinal dynamic is given

by:

u2i = −σ1(k1(θi − fθi))− σ2(k2θ̇i), (4.16)

where, u2i is the control input for τθ, and k1 and k2 are positive gains. Besides,

σ (.) is a saturation function, previously defined in (2.7).

In a similar manner a control law for lateral dynamic can be given by:

u3i = −σ3(k3(φi − fφi))− σ4(k4φ̇i), (4.17)

where k3 and k4 are positive gains.

The control input for the thrust can be directly obtained from from (4.15),

u1i = fẇi . However, for a pursuit in a fixed plan, we can given an altitude

reference (zrefi ) and apply a similar non-linear controller such as:

u1i = −σa(ka(zi − z
ref
i ))− σb(kbżi), (4.18)

where ka and kb are positive gains.

Finally, control law for the turn around the z-axis is given by:

u4i = −σ5(k5(ψi − fψi))− σ6(kbψ̇i) (4.19)

where k5 and kb are positive gains.

The proof of convergence of the above control laws and more details about

its implementation can be checked in [170].
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4.3 Material

In this section, we described the hardware used for the experimental validation.

We describe firstly the indoor flight arena, the localization system, and the used

drones. Finally, we briefly explain the adopted framework, and we expose the

software architecture.

4.3.1 Hardware

Flight arena For real time validation, we had at disposal two flight arenas,

one indoor and another outdoor. However, except for a few experiments with

data-fusion, most of the results exposed here were done in the indoor flight

arena. Figure 4.7 shows a picture of four drones inside the indoor arena, also

called "volière."

Figure 4.7 – Picture of a group-pursuit experiment in the indoor flight arena.

The volière area is about 100 m2 with 6m in height. Besides, it is equipped

with 24 infrared cameras, which composes the motion capture system (Opti-

Track), allowing a precisely drone’s localization during the flight tests.
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AR Drone 2 It is a commercial quadcopter developed by Parrot, Figure 4.8-left.

It was chosen due to several advantages, such as low-price, robustness, and

easy maintenance. The prototype has already several sensors embedded from

the factory. It supports an average of 400g of payload, which can be used by a

GPS receiver for some applications. In this work, the drones had the original

firmware erased, and they have been "flashed" with FL-Air compatible firmware,

developed at Heudiasyc. This operation allowed low-level operations once we

could have access, for example, to raw data from the sensors and write PWM

signal directly to the motors.

Figure 4.8 – Parrot AR Drone 2 (left) and Parrot Bebop 2 (right). The two
commercial quadcopters used for the experimental validations.

Bebop 2 It is another commercial quadcopter also manufactured by Parrot,

Figure 4.8-right. It weighs 500 g and offers 25 minutes of flight time. It has an

interesting configuration: an onboard computer (a dual-core processor with CPU

quad-core), ultrasound and pressure sensors, 3-axis gyroscope, accelerometers,

and magnetometer GNSS chip-set. Similar to the previous one, it is also compat-

ible with FL-Air. However, along with this thesis, we have used the Bebop under

two configurations, using FL-Air and using its original set-up. For this last one,

original firmware and communicating with a remote computer using the bebop
autonomy SDK [110], which support ROS (Robotic Operating System) [112].

4.3.2 FL-Air

The Framework libre Air, available in [113], is a framework written in C++

for the development of UAV applications. This tool is composed of different

applications running in a Linux system and communicating via socket.

Work in progress as of 20
th
June, 2021



4.3. Material 119

Figure 4.9 – Screenshot of the FL-Air simulator in an outdoor environment.

One important application is the World Simulator, which allow a reliable

evaluation before using the robotic platform. Furthermore, it has a customizable

ground-station, which allows on-line parameters tuning and real time flight data

checking. More details about the platform can be found in the web-page [113]

or in [114].

Although this frame-work is sufficient for most applications, some high-level

projects (involving Neuronal Networks, for example) were not supported by FL-

Air. Therefore, since we had different design needs, we chose to use alternatives

hardware architectures.

4.3.3 Architectures

The following two software architectures were used along with this thesis. The

first one, onboard computation, has all the control architecture levels implemented

inside the drone. The second one, remote computation, has its high-level guidance

is calculated by a remote computer.

On-board computation

In this configuration, all layers of the motion control, described in Figure 4.2, are

implemented in the embedded processor of the drone. This configuration is a fast

solution for simple algorithms, which does not require too much computational

resource. Furthermore, it is the standard configuration by using the framework
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Fl-Air, and all the code was implemented in C++.

Most of the validation using guidance laws based in geometrical rules (such

as in sections 2.2 and 2.3 were implemented in this configuration. Nevertheless,

the embedded processor was not sufficient to implement the neuronal network

policies for section 2.4, which required the next architecture development.

Remote computation

In this configuration, the high-level motion control is calculated in a remote

computer and transmitted to the drone by wireless, using UDP protocol. A ROS

node is responsible for managing the Optitrack server and the NN policies. A

scheme of this implementation can seem in Figure 4.10.

Figure 4.10 – Scheme for the remote computation architecture.

The guidance law based in the Reinforcement Learning (see section 2.4)

was implemented by using this configuration. It was chosen considering the

embedded processor’s low capacity to implement the Neuronal Network (NN)

policies generated by the Deep RL algorithm.
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4.4 State Estimation

To deal with the state measurement’s recurrent problems, such as loss and

degradation of data, we implemented a Kalman Filter (KF) scheme to state-

estimation. The objective is to have a reliable position estimation considering

degraded data from a GPS or motion capture system. In this section, we describe

the filter design, discussing the models and the composition of the matrices. We

propose a dynamic observation matrix C, which would vary according to the

data’s availability.

These results were published in our work entitled: Enhanced UAV pose
estimation using a KF: experimental validation. C. de Souza Jr, P. Castillo, B.

Vidolov, R. Lozano. Presented in the International Conference on Unmanned

Aircraft Systems, Dallas - US, 2018.

4.4.1 Related work and problem statement

One of the main problems for outdoor navigation is to locate with reasonable

precision the aerial vehicle. In diverse conditions, such as a vehicle is hovering

or close to the buildings, the GPS may not offer the desired precision [120].

Furthermore, the GPS signal can be degraded or lost (non-available) due to a

series of reasons as boarded in [121]. Currently, drone applications demand

a high precision level of sensory because it is an unstable natural system that

demands a high frequency of closed-loop control.

A very popular approach for improving vehicle pose estimation is the Kalman

Filter algorithm (KF). Its intensive uses in robotics navigation go from land

vehicles, marine robots to spacecraft. The use of KF for attitude estimation in

aerospace applications has been extensively explored since the Apollo project

(1960) to nowadays. In [119] an interesting review that boarded the evolution

and maturation of this application in the aerospace scenario is presented.

For UAV’s application in an urban environment, the Kalman Filter has been

implemented mainly to improve localization estimation. In [118], the authors

implemented a KF together with a complementary filter to lead with the discon-

tinuity in the GPS output while navigating in a big city.
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They got interesting results in the pose estimation; however, they only applied

it in an open-loop experiment. In [116] and [117], the authors implemented

an outdoor navigation controller using an Out-of-sequence KF to deal with the

problem of GPS latency. They validated their experiments with outdoors closed-

loop flights, although the control architecture is computed in a ground station

and not into the drone (on-board).

In this work, a Kalman filter is used for improving UAV pose estimation.

Two real cases were studied: loss and degradation of data. The solution is

based on fusing data from an INS and a localization system with a linear and

low computational cost KF applied to the quadcopter kinematics equations.

Several flight tests were realized using a camera motion system emulating some

commons problem of a GPS.

The localization problem is pragmatically boarded in this work. We consider

low power signals arriving at the drone, consecutively being attenuated and

shadowed by buildings or vegetation. For more details about this problem, see

[6], where the authors described a detailed overview of propagation problems in

GPS.

Hereafter, the degradation is the nomination for the diminution of precision

in the data. It is still available meanwhile, in this case, having normal noise. The

loss is the non-availability of the data. In our study, it is considered momentarily

loss, typically an issue of communication. Both problems are firstly added in

simulation using Matlab, and then they are implemented in real time. In this

last case, a data problem routine was implemented into the drone firmware, and

the ground-station provides its activation with the joystick.

4.4.2 Evolution model

As exposed in section 4.1, the dynamic model of a quadcopter (4.1.1) can be

simplified by decoupled chains of integrators. Let us consider the simplified

drone’s longitudinal dynamic (4.2), which can be represented by chain four

integrators. Therefore, (4.2) can be expressed in a state-space representation in

a discrete domain:
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Ẍk+1 = AẊk +Bu2k (4.20)

where X = [x, ẋ,θ, θ̇]. The discretizated state-space model was done using Ho-

Kalman methods as described in [115]. The transition matrix A can be checked

bellows:

A =


1 Ts −T 2

s /2 −T 3
s /6

0 1 −Ts −T 2
s /2

0 0 1 Ts
0 0 0 1

 .
Similarly the control matrix can be seen below:

B =
[
−T 4

s /24 −T 3
s /6 −T 2

s /2 Ts
]T
.

In both matrices, the terms concerned with derivatives with order superior to

1 (as T 2
s /2 and T 3

s /6) are neglected in real time implementation. Since the sample

time is short (Ts = 0.05), those terms become insignificant in the final results.

We consider u2k = 0; nevertheless, the input for the translational movement

considered here will be the angular acceleration, which is not measured.

4.4.3 Kalman filter equations

The KF filter is a recursive predictor/estimator of optimal gain primarily used

in many engineering sectors. The algorithm is divided into two steps, estimation

and prediction. The first stage computes the estimation of the states, Xk|k, and

the covariance error, Pk|k. The mains equations of this step are

Xk|k =Xk|k−1 +K(Yk −C ∗Xk|k−1), (4.21a)

Pk|k =(I −K ∗C)Pk|k−1(I −K ∗C)T +K ∗R ∗KT (4.21b)

Using (4.21) the estimation vector Xk|k can be estimated taking account the

last prediction Xk|k−1 and the current measurement Yk. It takes the weighted

average based on the Kalman gain K .
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For the error covariance estimation Pk|k it was used the Joseph’s form (4.21)b.

For calculating it, the equation takes into account the last value Pk|k−1, the matrix

R (sensor noise covariance), the matrix C (observation), and the Kalman gain.

The second step is characterized by the calculation of the predictions (Xk|k+1

and Pk|k+1) and the new updated Kalman gain. Basically, it takes into account

the updated estimation (Xk|k and Pk|k) and predicts the next sample step, as the

equations below :

Xk+1|k =A ∗Xk|k1 +B ∗Uk , (4.22a)

Pk+1|k =A ∗ Pk|k1 +Q, (4.22b)

K =Pk|k−1 ∗CT ∗ (C ∗ Pk|k−1 ∗CT +R)−1 (4.22c)

In (4.22), the next step prediction for the states Xk|k+1 and error Pk+1|k are

calculated. Besides, the Kalman gain K is updated.

4.4.4 KF matrices and tuning

The complete states vector applied to this filter are X = [x, ẋ,θ, θ̇,y, ẏ,φ, φ̇,z, ż],

where (x, y, z) denotes the three dimensional position, (ẋ, ẏ, ż) defines its veloc-

ities and (θ, φ, θ̇, φ̇) corresponds to the Newton’s angles of pitch, roll and its

consecutive rates. The yaw angle is considered previously controlled and aligned

to the inertial frame.

Evolution model matrix: A describes the drone dynamics in a discrete state-

space representation. Details about its development can be checked in the

section 4.1. For our dynamics, this matrix has the following form

The states measurements matrix Y is the input of the KF, composed by the

state’s measurements. For knowledge, in the following experimental validation,

the localization system’s positions and velocities are given by the OptiTrack;

besides, the angles and angular rates are provided by the Inertial Measurement

Unit (IMU).
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A =



1 Ts 0 0 0 0 0 0 0 0

0 1 −Ts 0 0 0 0 0 0 0

0 0 1 Ts 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 Ts 0 0 0 0

0 0 0 0 0 1 −Ts 0 0 0

0 0 0 0 0 0 1 Ts 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 Ts
0 0 0 0 0 0 0 0 0 1



.

The observation matrix C, describes the observability of the system. For

instance, all the states are considered observable, which results in an identity

matrix C10×10. Dynamic changes in this matrix are going to be exposed in the

case of data loss.

The measurements covariance matrix R is a diagonal matrix (since the sen-

sor errors must be not correlated) composed by measurement variance of each

sensor. For example, when using an OptiTrack for positioning, the variance was

set as 0.1 m, the orientation angles (using an IMU) to 0.1 rad, and the altitude

(using an ultrasound) to 1 m due to its noisy behavior.

The noisy covariance matrix Q is harder to determine, and normally its

definition is subject to trial and error. Therefore, the covariance for the positions

(x,y,z) and the angles (θ,φ) were set to a small values (such as 0.1), because in

the model, they are results of a simple derivative. The covariance for the velocity

(ẋ and ẏ) were set higher values like 10, dues their linearization that gives less

reliability in the model. The angular rates were set to a high value as the system’s

input is unknown by the predictor.

The initial values of X (states estimation) were set all to 0 and the initial

values of P (error covariance matrix) were set to 100, making P an identity matrix

(10x10) multiplied by 100.

Work in progress as of 20
th
June, 2021



126 CHAPTER 4. Implementation and Experiments

4.4.5 Altitude estimation

The following section, which is not present in the original work, presents an

alternative for the altitude estimation when barometer and ultrasound sensors

are available. It comes from the need to have precise estimation when flying over

irregular surfaces and conciliate the measure of two very distinguished sensors.

Figure 4.11 – Schema for the altitude estimation, evidencing the states of relative
altitude (z) and the ground altitude zg .

Measurements: The barometer gives a pressure measurement that can be easily

converted to an absolute altitude measure (z̃bar). The output of altimeter sensors

(z̃son), commonly based in sonar, provides a measurement of the relative altitude

zk. Furthermore, if available, we can also use vertical acceleration measurements

from the common accelerometers as the system’s input uzk .

Model: Now, let us consider the following evolution model for the vertical

dynamics of a drone:

zk+1 = zk + żk∆t +
∆t2

2
uzk ,

z
gnd
k+1 = zgndk ,

żk+1 = żk +uzk∆t

(4.23)
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where zgndk denotes the ground altitude and zk denotes the relative altitude. From

this model, the matrices A and B can be obtained, similarly to section 4.4.4.

For its turns, the sensor model can be expressed as:

ỹson = zk ,

ỹbar = zk + zgndk .
(4.24)

From that, the matrix C for the Kalman scheme can be easily determined.

Note that, the relative altitude zk is being measured explicit by z̃son and

implicit by z̃bar . Allowing the system to have redundancy of an information by

considering an intermediate state zgndk , which is not relevant for the control of

system.

4.4.6 Experimental results

The proposed methodology was applied in real time in our prototype. Several

flight tests were carried out with different scenarios. All those experiments

were realized in an indoor environment assisted by a motion capture system

(OptiT rack). It is well known that this kind of sensor measures an object’s

pose; nevertheless, our idea was to emulate a GPS sensor. Thus, the measures

coming from the OptiTrack system were degraded with noise and data lost. Also,

the data frequency information was modified to approximate the frequency

measurement of a GPS.

The algorithms were implemented in our framework, FLAir, and all the

code was written in C + +. In this architecture, all the algorithms are computed

on-board, keeping the ground station just in charge of analyzing the system and

acting in emergency cases. The closed-loop system’s sample time is on average

5.2ms, and it is transmitted to the ground station by a local WiFi network also in

the same frequency. Three scenarios were boarded: data lost, data degradation,

and low-frequency information.
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In all cases, four way-points were given as desired coordinates, the sequence

is given by (−3,−3)m, (−3,3)m, (3,3)m, (3,−3)m forming a square in the horizontal

plane, as one can check in Figure 4.12. In this figure, the first test is showed;

here, the quadcopter tracks the desired coordinates in ideal conditions (a good

measurement of the position).

0

4

0.5

2 4

1

20
0

1.5

-2
-2

-4 -4

Figure 4.12 – Quadcopter response when tracking the desired points in ideal
conditions (no disturbances).

Data lost

In this first scenario, the drone losses for some periods its position information.

As explained in the previous section, the loss is detected, and the observation

matrix was adapted for a while. For our experiment, the indoor system is

"advertised" by a flag (UAV lost) in the complete loss of the camera tracking,

then it was used as criteria to modify the system.

As results of this scenario, the two following graphs expose the filtering

estimation in Figures 4.13 and 4.14. The first one, Figure 4.13, successive loss

of 1 second on average were applied to the drone while it was flying. The data

loss was applied manually through the ground station. During that, the filter

tends to estimate those not observable states more based on the model. We can

observe its linear behavior of velocity and position estimated. For brevity, only

graphs in the x coordinate are introduced; nevertheless, similar performance is

obtained for the other coordinates.
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Figure 4.13 – Quadcopter performance with a KF when applying simulated data
lost.

The following graphs in Figure 4.14 exposes results of the same case but

with a real complete fail from Optitrack. A tunnel was improvised, seeking to

deteriorate and cause a complete loss of the cameras’ target. Observe in graphs

that the positioning system keeps the last possible position till the object recovers

it. It is also clear to verify the overshoot caused by the velocity provided by the

system. It happens since the positioning system does not measure the velocity

but provides it by a discrete derivative of the position. Notice that even if the

quadcopter lost its position, the KF can estimate it and ensure a stable behavior

in the closed-loop.

Position degradation

This second scenario considers the degradation only in the position data. Al-

though the Optitrack system also provides an estimation of velocity, in this case,

it was not degraded. Gaussian noise with a mean of 0 and a standard deviation of

5mwas added to the OptiTrack position measurement, see Figure 4.15. The noise

was implemented using a standard class template distribution for C + +, and the

ground station activates it. As explained previously, the noise was applied while

the drone was following the desired coordinates.
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Figure 4.14 – Quadcopter performance with a KF crossing a tunnel. The local-
ization system is totally obstructed for 1.5s in average (equivalent to 300 sample
time).

Observe from Figure 4.15 that when adding the noise, the data coming from

the positioning system is severally degraded (solid gray line), and when applying

the filter, the position is recovered.

The strategy for dealing with data degradation was identifying the signal’s

quality and adapting the covariance matrix. In real applications, this quality

information can be provided by the quantity of camera (in the OptiTrack case)

or, in the GPS case, by another quality indicator.

Figure 4.16 illustrates three quadcopter performances: The first one, the

vehicle response in ideal conditions and non-KF (solid red line). The second

one, the black dotted line indicates the quadcopter response when tracking the

desired coordinates with data degradation and without KF. Finally, the blue

dashed line presents aerial vehicle behavior with data degradation and using the

KF. Notice here that the performance is recovered. Finally, the blue dashed line

presents aerial vehicle behavior with data degradation and using the KF. Notice

here that the performance is recovered.
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Figure 4.15 – Quadcopter performance with a KF applied to degraded position
data.
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Figure 4.16 – Quadcopter response using KF for position data degradation. The
solid red line is the standard performance (no disturbance), black dotted, and
blue dashed lines respond in case of degradation. The first one without KF, and
the second one is applying the algorithm.

Low frequency information

In this scenario, a non-synchronized measurement Kalman Filter is proposed.

The idea is to emulate a GPS performance in real applications since the arrival

time, and the frequency of the sensors (GPS and IMU) are not synchronized.

Being the GP S frequency from 5 to 10Hz and the IMU close to 200Hz.
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Our strategy was to set pose as non-observable in matrix C, when there is no

GPS available. With that, the system keeps the estimation basing on the IMU

input and the evolution model. The position information given by the OptiTrack

system is upgraded with a frequency of 3Hz. This frequency value is normally

even lower than a standard one provided by a low-cost GPS for drones.

Note in Figure 4.17 how the KF recovers the position in a case of low fre-

quency and no synchronized GPS data.

Some experiments of this work are available in a video in the following link:

https://youtu.be/k0FobmF7Fv0

Figure 4.17 – Quadcopter response in a case of low frequency data information.
The position provided with 50Hz by the OptiTrack was reduced 3Hz.

Altitude estimation

In this last scenario, we expose the results obtained by implementing the KF

scheme exposed in Figure 4.18. The experiments were conducted in the outdoor

arena, and the quadcopter had to take over, staying in a position hold for a

few seconds and then landing again. The plot with the measurements and the

estimation are available in Figure 4.18.
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Figure 4.18 – Quadcopter taking over and landing after few seconds of hover.
The altimeter measurements z̃son are very imprecise when the quadcopter is
flying above two meters.

In Figure 4.18 we can see that the altimeter provides a very noisy measure-

ment when the drone is flying above 2 meters approximately. In contrast, the

barometer, although less precise, does not suffer from this altitude effect. Finally,

we can see by the fusion of these two sensors that a smooth estimation can be

obtained by applying the KF scheme section 4.2.4.
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4.5 Experiments with Pursuit

In this section, we present an experimental validation - proof of concept - for

several group-pursuit strategies. The validated strategies namely are Group
Deviated Pursuit from Chapter 2, Three dimensional Pursuit from section 4.2.4

and Reinforcement Learning Pursuit from Chapter 2. However, all of those high-

level guidance law were applied in the the real time quadcopter by using the

multi-layer control scheme, proposed in section4.2.

4.5.1 Group Deviated Pursuit - GDP

Three scenarios are proposed to validate experimentally the DPG (2.5). In the

first one, the intruder drone remains in a fixed position, and three pursuers

drones track it. In the second scenario, a single evader travels toward the target,

passing by two static obstacles. Finally, in the last scenario, the target, moving

with a user’s random movements, is tracked by three pursuers aerial drones.

Three pursuers and one static target

In this first experiment, a target is placed in the ground with a distance of 6m

from the pursuers. The pursuers are placed in an initial triangular formation

with a distance of approximately 2m from their closest neighbors. This experi-

ment aims to reproduce the simulation pattern (see Figure 3.7). The parameters

used in this test are presented in Table 4.1.

Parameters Scenarios 1 and 3 Scenario 2
α 20o 10o

umax 1.3 1.3
Rcap 1.6 1.6
Field − vision 360o 120o

Rint 5 2
Rcol 1.5 0
a0 1 0

Table 4.1 – Control parameters used in the real time scenarios.
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From Figure 4.19, the obtained result for this scenario can be observed. It

is clear that the hunting pattern described in Figures 2.4 and 4.19 is reached.

Nevertheless, the irregular trajectories observed in the pursuer’s agents are

caused by the airflow produced by the drones’ proximity and the absence of

control position of each one.

Figure 4.19 – real time performance when three aerial drones pursuit a fixed
target. The first image (left) shows the displacement of the drones in the flight
arena. The second one is a picture of the experiment.

One pursuer, two obstacles, and one static target

In this scenario, we consider just one drone in the bottom-left side of the flight

arena and a fixed target located in the upper-right position, as can be seen in

Figure 4.20. Two static obstacles were placed in the trajectory from the drone

to the target. The goal of this experiment is to highlight the obstacle avoidance

properties included in the proposed algorithm. The parameters used in this

experiment are done in Table 4.1. The agents "detect" the obstacles when they are

located inside an interaction radius, Rint < 2m and inside of its field-of-vision of

120o. These parameters are different from those used in the cooperative pursuit,

where the range-of-interaction is bigger, and no limitation of the field of vision

(360o) is imposed.

The difference in scenario 2 concerning the others is due for two reasons;

firstly, the idea is to use onboard cameras to detect the obstacles with a limited

vision and range field. Second, impose a small deviation angle, α, is enough to
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reproduce a collision-free trajectory in a pure obstacle avoidance case, while

in the cooperated pursuit, bigger deviation angles are necessary to increase the

covered area by the fleet. In Figure 4.20, the algorithm performance, when

tracking a static target with obstacle avoidance, is illustrated. Notice here the

good performance of the control scheme.

Figure 4.20 – real time behavior when an aerial drone pursuits an aerial intruder
drone in presence of static obstacles.

Three pursuers and one faster intruder

In this last scenario, an operator manually controls the target, trying to get away

from the three pursuers. In contrast to the scenario presented in simulations,

here, the goal for the pursuers is not to intercept the target but to keep a safe

distance from it. Besides, to ensure our drones’ security and for limitations of

the workspace, the target will fly in a different plan than the pursuers, choosing

zd = 0.8m for the intruder and zdi = 1.7m to the pursuers. The parameters for

this flight are also exposed in Table 4.1.

In Figure 4.21, some snapshots are introduced to illustrate aerial drones’

performance pursuing the faster intruder. This figure was done using real data

coming from the experiment; the figure is composed of 9 screen-shots taken

with an interval of 2.75s from one to the other.
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Figure 4.21 – real time performance when three aerial drones pursuit an aerial
intruder drone with random movements.

Each agent’s position was plotted ten times for each screen-shot, with a

sample time of 0.275s. The evader’s superior velocity (2m/s) is highlighted by

the distance traveled by it in each screen-shot.

The collision avoidance property was implemented only in the pursuers.

Since the evader was piloted manually, there were no guarantees of free-collision,

and for this reason, the target flew in a different plane from the pursuer. Never-

theless, the virtual wall was the only property implemented into the evader to

avoid crashes and plotting purposes. These flight tests can be appreciated in :

https://youtu.be/Kr3UFtZ-dd8
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We can appreciate the evident cooperative hunting pattern that emerged

during these flight tests. Therefore, even facing a complex pursuit, the pursuer’s

drones could track and intercept the evader’s movements with a faster and

reactive target. Note that none formation is intended to be kept; instead, the

drones re-arrange between themselves to corral the intruder. Observe that the

roles of positioning (center, left, and right-wings; as exposed in Chapter 2 are

constantly changing in the function of the fleet’s relative position to the target.

Moreover, taking into account the size of the virtual arena (imposed to 6×6m)

and the presence of 4 drones flying inside, this approach has demonstrated a

robust, practical performance in the disturbances produced by the airflow of the

aerial vehicles.

4.5.2 3D Pursuit

The 3D pursuit is implemented using two decoupled GLs: the GDP, from section

2.2 for the horizontal navigation, and the Vertical DPP, from section 4.2.4, for

the navigation in the vertical plane.

Three experiments were proposed to validate these strategies. In the first two

ones, we aimed to validate the vertical guidance law (4.15) alone, and in the last

one, we proposed a three-dimensional pursuit with two pursuers and an evader.

Altitude control

This first real time experiment was carried-out to verify the performance of

the vertical guidance law (4.15) with only one pursuer and one intruder in

two different scenarios, one for fixed and other for variable offset angles. For

both cases, the initial position of the pursuer and target is given by: (xi , yi , zi) =

(−2,0,0.8)m and (xt, yt, zt) = (5,0, ztd )m, where ztd will change for each case.

In the first test, see Figure 4.22, the target (red crosses) was placed with

three different altitudes, ztd1 = 0.2, ztd2 = 1 and ztd3 = 1.7 all in meters. The

black crosses indicate the pursuer’s traveled trajectory, and the green circle with

an arrow is its final position and virtual pitch θ̂i . We can see that in all cases,

the pursuer traveled towards the target interception. For security reasons, the
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pursuer stops at 1.5 m before the target.

Figure 4.22 – Validation of vertical guidance law (4.15): the black crosses indicate
the path traveled by the pursuer (quadcopter) towards the target placed in three
different altitudes.

Varying offset

In the second experiment, see Figure 4.23, the target altitude was fixed at ztd =

1.8m, and the control goal is to test the displacement in the vertical plan for

different values of αiT angles. Observer that, similar to Figure 2.4, the ambushing

behavior also emerged in the vertical plane.

3D pursuit

Once validated the pursuit algorithm’s performance for different altitudes, the

proposed algorithm is evaluated in real time in a 3D environment. In this

scenario, two drones were used as pursuers acting autonomously when applying

the altitude control (4.15) and the pursuit algorithm (3.9) with a fixed offset,

αiT = π/6. The target is controlled manually by the user.

In Figure 4.25, the experimental results obtained during the flight tests

are presented. The three screenshot samples represent the agents’ traveled

trajectories in three sequential instants. In this figure, the first line of graphs

represents the vertical plane displacement in the x,z-axes, and the second line,
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Figure 4.23 – Ambushing behavior in the vertical plan: the black crosses indicates
the path followed by the pursuer (quadcopter) towards a fixed target under
different values of offset αiT .

the horizontal performance in the x,y-axes. A green circle denotes the pursuer’s

last position and a black star symbol. Similarly, their last orientation in yaw

angle is denoted by the arrows. The red cross denotes the target or intruder.

Finally, the reduced size of their symbols represents the trail of the traveled

trajectory for all agents.

Notice in these screen-shots that the pattern of ambushing forming in the

space is again presented. A video of this experiment is available at:

https://youtu.be/8CUZZIrBBqA

4.5.3 Reinforcement Learning

An extract from the real time experiment can be seen in Figure 4.25. In these

four sequential pictures, we can see clearly the emergence of the ambushing

behavior: the pursuers once close to each other (frame 1), spread toward the

target (frames 2 and 3), and finally, they regroup by cornering the target (frame

4).

The results are satisfactory, and they seem even more promising once consid-

ering the simplistic conditions of training. Remember that the considered model

(3.16) does not consider the non-linear dynamic of the quadcopter during the
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Figure 4.24 – real time three-dimensional pursuit with quadcopters: The path of
two pursuers (denoted black star and green circle) and the target(red crosses) are
given in these screenshots. The columns denotes three sequential timestamps,
while in the each line is exposed the traveled path along x − y and x − z planes

training. However, this evidenced the importance of multi-layer control archi-

tecture, where the RL policies can take the high-level decisions of navigation,

and a lower-level control can control the vehicle’s attitude and assure safety

navigation.

This result also arouses the interest in proposing more complex scenarios.

The capacity of having a large number of inputs into a Neuronal Network leaves

the possibility of including a larger observation vector, which could consider, for

example, multi-forms obstacles and no-go zones.

Finally, although pursuit strategies have also been identified, training in a

more realistic environment is required for a real application of this technique.

For example, the fact that there is a security layer and that the capture does

not occur generates the pursuers situations not experienced during the training,

which results in inappropriate actions.
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Figure 4.25 – Screenshot for the real time experiment.

4.6 Conclusion

This chapter exposes a complete framework for implementing guidance laws in

a group of real time drones. Besides, real time flight trajectory recordings were

shown, enabling a qualitative analysis of the pursuit strategies. In the following,

we leave to the reader a summary of each section’s achievements.

In this first section, we went deeper into the drone model in question, the

quadcopter. Consequently, we expose two mathematical representations of a

drone’s dynamics, one in the inertial frame and the other in the body frame.

These models are useful to understand how to apply the guidance laws on this

specific robot platform and estimate states.

In section Motion Control Hierarchy, we propose a multi-layered control

system that aims to take the GL inputs and transforms them into control inputs

for the robot platform. To do this, we went first through the safety layer, where

collision-avoidance criteria was added to safe the experiment. Next, we propose

a layer of "motions constraints" aiming to adapt GL’s inputs with the quadcopter

model. Finally, we chose an attitude control to generate the thrust and touch

commands for the quadcopter.
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In section Hardware, we expose which materials were used throughout this

validation process. Starting from the flight arena and localization system, then

exposing the used drones, and finally, giving details of the software architecture.

In section state-estimation, we aimed to face a practical problem, where the

positioning of drones in outdoor navigation was inaccurate. We studied KF

filtering schemes to filter and estimate quadcopter states through inaccuracies

and data loss.

Finally, in Experiments with Pursuit section, we show results from three im-

plementations of pursuit strategies. In Group Deviated Pursuit, one can see

the algorithm’s efficiency and the formation of ambush trajectories. Similarly,

these results were extended to the three-dimensional space, and similar pat-

terns were also observed in the three-dimensional trajectories. Finally, we have

the preliminary results of the implementation of the Reinforcement Learning

algorithms.
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Conclusions

The intriguing phenomenon of collective motion has been progressively unveiled

by the scientific community. Fascinating examples of flocking with autonomous

drones and impressive aerial choreographies are already realities, and it has

become a common activity in entertainment shows. However, the numerous

previous efforts to reproduce the collective motions fail to reproduce the equally

fascinating collective hunting phenomenon. Although the last one can be seen as

a subgroup of the first, striking differences distinguish between flocking behavior

and collective hunt behavior.

As discussed in the introduction, the characteristics of cohesion and align-

ment, so common in flocking, give rise to dispersal and ambush in collective

hunting activity. In view of this theoretical gap, this thesis proposes to model

the collective hunting behavior differently, not only seeking to describe the given

behavior but also concerning applying such models in real robots.

The interest in artificially reproducing collective hunting is an actual demand

from different areas. For example, in biology, ethologists seek to understand

and model animal behavior to propose strategies for handling and preserving

species. In robotics, the understanding of collective hunting can help perform

tracking tasks that would be very complex for a single robot, such as the pursuit

and interception of a faster and more agile intruder.

As discussed in Chapter 2, the anti-drone drone has already proved to be

a handy tool in combat against civilian drones’ unlawful use. However, the

pursuit made by a single stalker is already disadvantageous due to a faster or

more agile target.
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Our approach: The mainline of this thesis tries to reproduce the collective

behavior through geometric rules and laws of orientation. We propose multi-

agent solutions to the conventional virtual physical laws, common in much of the

literature in the area. We show that the ambush behavior can emerge from simple

geometric rules such as Deviated Pursuit and Parallel Navigation with offset.

Besides, we also investigate multi-agent persecution with deep reinforcement

learning techniques.

Furthermore, following this thesis’s main methodological line, we investi-

gated problems complementary to the collective pursuit, such as the evasion of

dynamic obstacles and different navigation approaches in flocks. Following, a

summary of the work carried out in this thesis.

Summary of the chapters

In chapter 1, we carried out a brief but careful review of the main work related

to the drone’s group chase. First, we present an overview of the current civilian

problem with drones, the difficulties of enforcing the law, and the current

containment solutions. Among those solutions, we point out the drone anti-

drone as a promising one, but holding in its great advantage also its weakness:

having the same nature and the threat.

Then, we review the current collective motion literature. We emphasize the

importance of bio-inspiration, which was the motivation for the main models of

collective movements, and we also reviewed the main multi-agent techniques ap-

plied to robots. Then, we introduced the vast pursuit-evasion field, highlighting

remarkable works in the area involving the pursuit curves. Besides, we expose

the recent group-pursuit field, which tries to reconcile the flocking with classic

pursuit analyses.

Finally, we study the classic guidance laws, which are extensive literature

deeply related to bellicose navigation but recently extensively applied to robotic

navigation. Further, we expose the kinematic models and the geometric engage-

ment used in their analysis, as well as some of the main classic models used in

this text.
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In Chapter 2, we studied the problem of the group-pursuit of a single-evader

in 2D. We propose three different approaches to solve this problem. The first

GDP, the simplest of all, is based on the classic deviated pursuit (DPP), where

pursuers choose different offsets, depending on their current engagement toward

the target and its neighbors. These different angles provide different routes that

reproduce ambush trajectories.

The second approach is based on the Parallel Navigation principle, where

each of the pursuers aims to maintain a constant bearing angle to the target,

which allows for more efficient trajectories. Similar to the previous approach, the

offset angle concept was also maintained here, which avoids collision between

two pursuers and allows different ambush routes.

Our third methodology aims to build collective hunting behavior based on

an automatic mechanism, reinforcement learning, where Neuronal Networks

are trained to describe an individual’s behavior. In this approach, the pursuers

interacting initially at random will discover by trial and error the optimal

behavior in this pursuit in a simulated environment.

In Chapter 3, we went beyond the planar group pursuit, and we explored three

different scenarios. First, we start with a different pursuit hypothesis, where

all agents can know the target’s position in the global frame. From this global

information, it was possible to use a predictor scheme to estimate the target’s

future trajectory. Then, we adapted our first deviation chase algorithm (GDP),

making each individual chase the target in a future position, and finally, the

chase angles are based on estimated prediction errors.

In the second part of this chapter, still a different hypothesis, we study a sce-

nario where a single-pursuer tends to chase a dynamic target with an unknown

trajectory in an environment with non-cooperative agents (or mobile obstacles).

In this case, we also use the Parallel Navigation principle; the geometric rule,

once used in the interception, was now used for collision avoidance.

Finally, we went beyond the pursuit itself, and we presented an approach to

reproducing generalized collective motions, such as focusing or flocking, but

also through geometric laws.
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We propose that from estimating the centroid of the perceived neighborhood

and the geometric rule of constant angle, a collective movement’s verisimilar

behavior can be obtained.

Chapter 4 presents the implementation of the previous algorithms on a robotic

platform, the quadcopter. To do this, we first studied the model of the quadcopter

dynamic; both defined in the inertial frame and the body frame. Then, we

introduced our hierarchical control of movement, composed of four layers.

The highest level is responsible for the orientation law and gives commands

at linear and angular velocity. Right after, we have the safety layer, responsible

for maintaining the physical integrity of the vehicle. In indoor experimental

tests, where collision is not desired, additional safety measures, such as repulsion

forces and virtual barriers, have been implemented.

In the sequence, motion control is then implemented to adapt the high-level

(and non-holonomic) commands to the drone model (holonomic). Finally, we

present some experimental results of the proposed guidance laws implemented

in real-time drones. We present screenshots of the pursuers and evaders’ trajec-

tories and provide a qualitative analysis of the chase.

Discussion

Pursuit: large vs. small groups This work aims to add a small contribution

to the emerging field of group-pursuit, which according to [106], is a fusion

between the fields of collective movements (flocking) with classic pursuit tech-

niques. Although the concept of group pursuit has been in place for more than a

decade, most work considers predators’ behavior to be very minimalist, which

differs little from flocking behavior. These models’ simplicity aims to apply and

analyze the pursuit on a large scale, as in [34] and [153], where teams of hunters

of the order hundreds are used. Indeed, these models have great value when

analyzing and describing individual organisms’ behavior, which in short have a

similar order of magnitude.
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However, as explained in Chapter 3, this minimalism in the predatory model

does not correspond, for example, with the collective hunting behavior of supe-

rior mammals, such as the groups of lions or packs of wolves. The differences

occur both in terms of the strategy itself and in the number of agents. For ex-

ample, in several initial works, such as in [153] and [34], the pursuit behavior

is purely in aligning its velocity (or orientation) directly to the prey’s instant

location (Pure Pursuit). In contrast, our proposal focuses on the agent and its

interaction with its close neighbors. Furthermore, the pursuit’s efficiency is

taken into account, along with the formation of an ambush pattern.

Efficiency in pursuit: Similar to our approach, Janosov’s work [52] is also

concerned with the efficiency of the pursuit. In this case, the model parameters

were subjected to optimization processes to improve catch rates. However, the

strategy requires knowledge of the prey in global coordinates, which is not

ordinarily applicable to the pursuit of non-cooperative targets. Furthermore,

this approach is based on virtual forces (attraction and repulsion) and velocities

alignment (similar to Vicsek’s flocking models [77]) and additional components

for the pursuit behavior. Moreover, this large number of parameters also makes

tuning work difficult.

As pointed out in Chapter 3, our work has an efficiency very similar to

Janosov’s work, yet dispensing with hypotheses of knowledge of the target

in global coordinates: in the three approaches proposed in this chapter, the

target is perceived only in relative and polar coordinates. Besides being realistic

and compatible with natural predators, such hypotheses also allow for a more

reliable implementation in robotic systems since polar and relative coordinates

are consistent with sensors commonly embedded in robots, such as a camera or

a Lidar.

Flocking and collision avoidance: Besides the group persecution, this thesis

also proposes mild additions to the broader term of collective behavior. The

results presented in Chapter 4, although preliminary, point to a possible alterna-

tive for reproducing the flocking phenomenon, not based on the sum of artificial

physical forces but based on guidance laws and geometric relations.
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Once our approach relies only upon local and polar information, our work at-

tempts to contribute to the field of vision-based or communication-less flocking.

One of the main challenges for applying flocking in real-robots is measuring

neighbors’ orientation or measuring their velocity, which is required in most of

the flocking algorithms, such as [49, 58, 77]. Usually, works ignore these two

states’ measurements, consider robotic systems with very slow dynamics, such

as in [139]. In the case of applications with UAVs, as pointed out by [53], the

quadcopter’s reactivity and dynamics lead very easily to system instability, and

knowledge of speeds and orientation is necessary to dampen the system.

In our approach, the alignment is not calculated by the average of the neigh-

bor’s velocity, but it naturally occurs when applying the constant bearing and

constant range rule, which can be obtained through the range and bearing

measurements.

In the field of navigation with uncooperative agents (or avoiding dynamic ob-

stacles), most strategies are also based on the sum of virtual forces, of attraction

and repulsion, such as [10], which can work even well under the condition of

action of non-dynamic obstacles. However, as they do not consider the dynamics

(and kinematics) of the obstacles, and consecutively these techniques do not per-

form well with mobile obstacles. Another line, such as [15], considers the agents’

dynamics/kinematics and predicts the trajectories to determine the imminence

or not of collisions. However, these consist of computationally costly approaches.

Our strategy aims at a reactive and straightforward way to avoid collisions with

dynamic objects, not requiring global knowledge, the position requiring opti-

mization techniques. Again, our hypotheses are based on the relative and polar

perception of obstacles, implementing real robots more feasible.

Applicability In addition to this thesis’s main problem, the use of drones in

defense of civil air space against intruder drones, the models proposed here can

be applied in several other tasks. Still, in the field of surveillance, any other

task that requires the tracking of a more agile and fast target can be solved with

techniques similar to this one.
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Another possible area could be the ethological studies in Biology, where

models describe animal behavior and better understand a specific animal popu-

lation’s dynamic.

Future work

Perception: For more practical applications, it is necessary to work more

deeply with questions of perception—for example, the acquisition and pro-

cessing of data obtained by camera how to deal. In addition to the challenge of

identifying a quadcopter in a moving image, the difficulty is also linked to the

distinction between cooperative and non-cooperative agents.

A clue to solve the perception problem would be the fusion of data between

position information to be communicated between individuals and the informa-

tion obtained by the individual’s own perception.

Low Level Control: As this is not the main focus of this study, the low-level

control part was conducted simplistically. However, to obtain more reactive

results, it would be interesting to analyze the low-level reference segment and

study more effective and robust control laws for tracking velocities references.

Reinforcement Learning In the RL experiments, the considered agent’s model

in simulation was pretty straightforward. Certain restrictions on practical appli-

cations, such as repulsion due to avoidance of obstacles, were not considered in

training and may cause effects not previously known by behavioral policies. A

future direction would be to take into account more realistic dynamic models

with robotic platforms.

Multi-agent: The works with obstacle avoidance and flocking are still in a

very preliminary phase. Deepening in the theoretical field, using metrics and

comparisons with previous works are necessary. Besides, more real-time imple-

mentations must be made to analyze the capabilities and deficiencies of these

approaches.

Work in progress as of 20
th
June, 2021



152 Conclusions

Work in progress as of 20
th
June, 2021



Bibliography

[1] Sunggoo Jung et al. “Perception , Guidance , and Navigation for Indoor”.
In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2539–2544.

[2] Christoph Briese, Andreas Seel, and Franz Andert. “Vision-based detec-
tion of non-cooperative UAVs using frame differencing and temporal
filter”. In: 2018 International Conference on Unmanned Aircraft Systems,
ICUAS 2018 (2018), pp. 606–613.

[3] Robert L Allen. “Quadrotor intercept trajectory planning and simula-
tion”. PhD thesis. Naval Postgraduate School, Monterey, CA, USA, 2017.

[4] Divya Agarwal and Pushpendra S Bharti. “A Review on Comparative
Analysis of Path Planning and Collision Avoidance Algorithms”. In: 12.6
(2018), pp. 608–624. doi: 10.5281/zenodo.1316879.

[5] Thomas Statheros, Gareth Howells, and Klaus McDonald-Maier. “Au-
tonomous ship collision avoidance navigation concepts, technologies
and techniques”. In: Journal of Navigation 61.1 (2008), pp. 129–142. issn:
03734633. doi: 10.1017/S037346330700447X.

[6] Ruben Nuredini. “Bio-inspired Obstacle Avoidance: From Animals to
Intelligent Agents”. In: Journal of Computers (2018), pp. 146–153.

[7] Juan I. Giribet, Ignacio Mas, and Patricio Moreno. “Vision-based Inte-
grated Navigation System and Optimal Allocation in Formation Flying”.
In: 2018 International Conference on Unmanned Aircraft Systems, ICUAS
2018 (2018), pp. 52–61. doi: 10.1109/ICUAS.2018.8453429.

[8] Jae H. Lee et al. “Autonomous target following with monocular camera on
UAS using Recursive-RANSAC tracker”. In: 2018 International Conference
on Unmanned Aircraft Systems, ICUAS 2018 (2018), pp. 1070–1074. doi:
10.1109/ICUAS.2018.8453285.

[9] Erwin Perez et al. “Autonomous Collision Avoidance System for a Multi-
copter using Stereoscopic Vision”. In: 2018 International Conference on
Unmanned Aircraft Systems, ICUAS 2018 91768 (2018), pp. 579–588. doi:
10.1109/ICUAS.2018.8453417.

153

https://doi.org/10.5281/zenodo.1316879
https://doi.org/10.1017/S037346330700447X
https://doi.org/10.1109/ICUAS.2018.8453429
https://doi.org/10.1109/ICUAS.2018.8453285
https://doi.org/10.1109/ICUAS.2018.8453417


154 Bibliography

[10] Igor Henrique Beloti Pizetta, Alexandre Santos Brandao, and Mario
Sarcinelli-Filho. “Control and Obstacle Avoidance for an UAV Carry-
ing a Load in Forestal Environments”. In: 2018 International Confer-
ence on Unmanned Aircraft Systems, ICUAS 2018 (2018), pp. 62–67. doi:
10.1109/ICUAS.2018.8453399.

[11] Jose Luis Sanchez-Lopez et al. “Towards trajectory planning from a given
path for multirotor aerial robots trajectory tracking”. In: 2018 Inter-
national Conference on Unmanned Aircraft Systems, ICUAS 2018 (2018),
pp. 1342–1351. doi: 10.1109/ICUAS.2018.8453428.

[12] Ema Falomir, Serge Chaumette, and Gilles Guerrini. “A 3D mobility
model for autonomous swarms of collaborative UAVs”. In: 2019 Inter-
national Conference on Unmanned Aircraft Systems, ICUAS 2019 (2019),
pp. 196–204. doi: 10.1109/ICUAS.2019.8798199.

[13] Lili Ma. “Cooperative target tracking by altering UAVs’ linear and an-
gular velocities”. In: 2019 International Conference on Unmanned Aircraft
Systems, ICUAS 2019 (2019), pp. 69–78. doi: 10.1109/ICUAS.2019.
8797882.

[14] N.A. Shneydor. Missile Guidance and Pursuit: Kinematics, Dynamics and
Control. Chichester: Horwood Publishing, 1998, p. 286. isbn: 1898563438.

[15] Matthew J Clark. “Collision Avoidance and Navigation of UAS Using
Vision-Based Proportional Navigation”. PhD thesis. Embry-Riddle Aero-
nautical University, Daytona Beach, Florida, 2017.

[16] Stephen A. Murtaugh and Harry E. Criel. “Fundamentals of proportional
navigation”. In: IEEE Spectrum 3.12 (1966), pp. 75–85. issn: 00189235.

[17] Fethi Belkhouche, Boumediene Belkhouche, and Parviz Rastgoufard.
“Parallel navigation for reaching a moving goal by a mobile robot”. In:
Robotica 25.1 (2007), pp. 63–74.

[18] PA Wilson, CJ Harris, and X Hong. “A line of sight counteraction naviga-
tion algorithm for ship encounter collision avoidance”. In: The Journal of
Navigation 56.1 (2003), pp. 111–121.

[19] Samuel T Fabian et al. “Interception by two predatory fly species is
explained by a proportional navigation feedback controller”. In: Journal
of The Royal Society Interface 15.147 (2018), pp. 1–13.

[20] Fethi Belkhouche and Boumediene Belkhouche. “A method for robot
navigation toward a moving goal with unknown maneuvers”. In: Robotica
23.6 (2005), pp. 709–720.

Work in progress as of 20
th
June, 2021

https://doi.org/10.1109/ICUAS.2018.8453399
https://doi.org/10.1109/ICUAS.2018.8453428
https://doi.org/10.1109/ICUAS.2019.8798199
https://doi.org/10.1109/ICUAS.2019.8797882
https://doi.org/10.1109/ICUAS.2019.8797882


Bibliography 155

[21] Haim Weiss, Ilan Rusnak, and György Hexner. “Adaptive proportional
navigation guidance”. In: Haifa, Israel, 2018, pp. 365–393.

[22] Caroline H Brighton, Adrian LR Thomas, and Graham K Taylor. “Termi-
nal attack trajectories of peregrine falcons are described by the propor-
tional navigation guidance law of missiles”. In: Proceedings of the National
Academy of Sciences 114.51 (2017), pp. 1–6.

[23] Fethi Belkhouche. “Reactive path planning in a dynamic environment”.
In: IEEE Transactions on Robotics 25.4 (2009), pp. 902–911. issn: 15523098.

[24] Yadong Chen et al. “A modified cooperative proportional navigation
guidance law”. In: Journal of the Franklin Institute 356.11 (2019), pp. 5692–
5705.

[25] Thierry Lefebvre and Thomas Dubot. “Conceptual design study of an
Anti-Drone Drone”. In: In: 16th AIAA Aviation Technology, Integration,
and Operations Conference (June 2016), pp. 1–14.

[26] David Solinger, Patrick Ehlert, and Leon Rothkrantz. “Creating a Dog-
fight Agent”. In: Technical Report DKS05–01/ICE 10 (Apr. 2005).

[27] Daniel Hert. “Autonomous Predictive Interception of a Flying Target by
an Unmanned Aerial Vehicle”. PhD thesis. Prague, Czech Republic: Czech
Technical University in Prague, May 2018. doi: 10.1115/1.4003863.
arXiv: arXiv:1703.06870.

[28] Jasper Thomas Arneberg. “Guidance Laws for Partially-Observable UAV
Interception Based on Linear Covariance Analysis”. PhD thesis. Mas-
sachusetts, USA: Massachusetts Institute of Technology, June 2018.

[29] Hu Yulan, Zhang Qisong, and Xue Pengfei. “Study on multi-robot coop-
eration stalking using finite state machine”. In: Procedia Engineering 29
(2012), pp. 3502–3506.

[30] Hiroaki Yamaguchi. “A cooperative hunting behavior by multiple non-
holonomic mobile robots”. In: SMC’98 Conference Proceedings. 1998
IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.
98CH36218. Vol. 4. IEEE. 1998, pp. 3347–3352.

[31] Zhiyong Wu et al. “A multi-robot cooperative hunting approach based
on dynamic prediction of target motion”. In: 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE. Macau, China,
Dec. 2017, pp. 587–592.

Work in progress as of 20
th
June, 2021

https://doi.org/10.1115/1.4003863
https://arxiv.org/abs/arXiv:1703.06870


156 Bibliography

[32] Alfredo Weitzenfeld, Alberto Vallesa, and Horacio Flores. “A biologically-
inspired wolf pack multiple robot hunting model”. In: 2006 IEEE 3rd
Latin American Robotics Symposium. IEEE. Santiago, Chile, Oct. 2006,
pp. 120–127.

[33] Cristian Muro et al. “Wolf-pack (Canis lupus) hunting strategies emerge
from simple rules in computational simulations”. In: Behavioural processes
88.3 (2011), pp. 192–197.

[34] Luca Angelani. “Collective predation and escape strategies”. In: Physical
review letters 109.11 (2012), pp. 1–5.

[35] Yuan Lin. “Bat swarming as an inspiration for multi-agent systems :
predation success , active sensing , and collision avoidance”. PhD thesis.
Blacksburg, Virginia, USA: Faculty of the Virginia Polytechnic Institute
and State University, USA, Feb. 2016.

[36] Neryahu A Shneydor. Missile guidance and pursuit: kinematics, dynamics
and control. Elsevier, 1998.

[37] Paul Nahin. Chases and Escapes The Mathematic. Princeton, New Jersey:
Princeton University Press, 2007.

[38] Fethi Belkhouche and Boumediene Belkhouche. “A method for robot
navigation toward a moving goal with unknown maneuvers”. In: Robotica
23.6 (2005), pp. 709–720.

[39] Fethi Belkhouche, Boumediene Belkhouche, and Parviz Rastgoufard.
“Parallel navigation for reaching a moving goal by a mobile robot”. In:
Robotica 25.1 (2007), pp. 63–74.

[40] Hamid Teimoori and Andrey V Savkin. “A biologically inspired method
for robot navigation in a cluttered environment”. In: Robotica 28.5 (2010),
pp. 637–648.

[41] Ruoyu Tan and Manish Kumar. “Proportional navigation (PN) based
tracking of ground targets by quadrotor UAVs”. In: ASME 2013 Dynamic
Systems and Control Conference. American Society of Mechanical Engi-
neers. Palo Alto, CA, USA, Oct. 2013, pp. 157–173.

[42] Haomiao Huang et al. “Guaranteed decentralized pursuit-evasion in the
plane with multiple pursuers”. In: 2011 50th IEEE Conference on Decision
and Control and European Control Conference. IEEE. Orlando, FL, USA,
Dec. 2011, pp. 4835–4840.

[43] Jie Li et al. “Coordinated multi-robot target hunting based on extended
cooperative game”. In: 2015 IEEE International Conference on Information
and Automation. IEEE. Lijiang, Yunnan, China, Aug. 2015, pp. 216–221.

Work in progress as of 20
th
June, 2021



Bibliography 157

[44] Anna Zafeiris and Tamás Vicsek. Why We Live in Hierarchies?: A Quanti-
tative Treatise. Springer, 2017.

[45] Philip E Stander. “Cooperative hunting in lions: the role of the individ-
ual”. In: Behavioral ecology and sociobiology 29.6 (1992), pp. 445–454.

[46] Jianwei Gong et al. “A GA based combinatorial auction algorithm for
multi-robot cooperative hunting”. In: 2007 International Conference on
Computational Intelligence and Security (CIS 2007. IEEE. Heilongjiang,
China, Dec. 2007, pp. 137–141.

[47] Wei Wang et al. “A rapid hunting algorithm for multi mobile robots
system”. In: 2007 2nd IEEE Conference on Industrial Electronics and Appli-
cations. IEEE. Harbin, China, May 2007, pp. 1203–1207.

[48] Yong Duan, Xiao Huang, and Xia Yu. “Multi-robot dynamic virtual poten-
tial point hunting strategy based on FIS”. In: 2016 IEEE Chinese Guidance,
Navigation and Control Conference (CGNCC. IEEE. Nanjing, China, Aug.
2016, pp. 332–335.

[49] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model.
Vol. 21. 4. ACM, 1987.

[50] Tamás Vicsek and Anna Zafeiris. “Collective motion”. In: Physics reports
517.3-4 (2012), pp. 71–140.

[51] Takuya Saito, Tomomichi Nakamura, and Toru Ohira. “Group chase
and escape model with chasers’ interaction”. In: Physica A: Statistical
Mechanics and its Applications 447 (2016), pp. 172–179.

[52] Milán Janosov et al. “Group chasing tactics: how to catch a faster prey”.
In: New Journal of Physics 19.5 (2017), pp. 1–16.

[53] Csaba Virágh et al. “Flocking algorithm for autonomous flying robots”.
In: Bioinspiration & biomimetics 9.2 (2014), pp. 1–15.

[54] Gábor Vásárhelyi et al. “Outdoor flocking and formation flight with
autonomous aerial robots”. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. Chicago, Illinois, Sept. 2014,
pp. 3866–3873.

[55] C De Souza et al. “Enhanced UAV pose estimation using a KF: experimen-
tal validation”. In: 2018 International Conference on Unmanned Aircraft
Systems (ICUAS. IEEE. Dallas, Texas, June 2018, pp. 1255–1261.

[56] Daigo Shishika, Justin K Yim, and Derek A Paley. “Robust Lyapunov
control design for bioinspired pursuit with autonomous hovercraft”. In:
IEEE Transactions on Control Systems Technology 25.2 (2016), pp. 509–520.

Work in progress as of 20
th
June, 2021



158 Bibliography

[57] Guoru Ding et al. “An Amateur Drone Surveillance System Based on the
Cognitive Internet of Things”. In: IEEE Communications Magazine 56.1
(2018), pp. 29–35. issn: 01636804. doi: 10.1109/MCOM.2017.1700452.
eprint: 1711.10738.

[58] Reza Olfati-Saber. “Flocking for multi-agent dynamic systems: Algo-
rithms and theory”. In: IEEE Transactions on Automatic Control (2006).
issn: 00189286. doi: 10.1109/TAC.2005.864190.

[59] J M Loffi. “Examining Unmanned Aerial System Threats & Defenses: A
Conceptual Analysis”. In: International Journal of Aviation, Aeronautics,
and Aerospace 2.4 (2015), pp. 10–11. doi: 10.15394/ijaaa.2015.1084.
url: https://doi.org/10.15394/ijaaa.2015.1084.

[60] By James Rogers. The dark side of our drone future. 2019.

[61] Ana Holligan. Eagles trained to take down drones. 2016.

[62] Leon Rothkrantz. “SURVEILLANCE AND PROTECTION BY DRONES”.
In: International Conference on Information Technologies (InfoTech-2017)
(2017).

[63] Chen Ke et al. “A survey on guidance law with impact time constraint”.
In: 2 (2016), pp. 5711–5715.

[64] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. “Search and
pursuit-evasion in mobile robotics”. In: Autonomous robots 31.4 (2011),
p. 299.

[65] René Vidal et al. “Probabilistic Pursuit – Evasion Games : Theory , Im-
plementation , and Experimental Evaluation”. In: TRANSACTIONS ON
ROBOTICS AND AUTOMATION. Vol. 18. 5. 2002, pp. 662–669.

[66] Selina Pan et al. “Pursuit , Evasion and Defense in the Plane”. In: Ameri-
can Control Conference. 2012, pp. 4167–4173. isbn: 9781457710940.

[67] Dave Wilson Oyler. “Contributions to Pursuit-Evasion Game Theory”.
PhD thesis. University of Michigan, 2016. url: https://deepblue.lib.
umich.edu/bitstream/handle/2027.42/120650/dwoyler%7B%5C_

%7D1.pdf?sequence=1%7B%5C&%7DisAllowed=y.

[68] Alyssa Pierson et al. “Cooperative multi-quadrotor pursuit of an evader
in an environment with no-fly zones”. In: Proceedings - IEEE International
Conference on Robotics and Automation. 2016. isbn: 9781467380263. doi:
10.1109/ICRA.2016.7487151.

[69] Jose Alfredo Guerrero et al. “Mini rotorcraft flight formation control
using bounded inputs”. In: Journal of intelligent & robotic systems 65.1-4
(2012), pp. 175–186.

Work in progress as of 20
th
June, 2021

https://doi.org/10.1109/MCOM.2017.1700452
1711.10738
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.15394/ijaaa.2015.1084
https://doi.org/10.15394/ijaaa.2015.1084
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/120650/dwoyler%7B%5C_%7D1.pdf?sequence=1%7B%5C&%7DisAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/120650/dwoyler%7B%5C_%7D1.pdf?sequence=1%7B%5C&%7DisAllowed=y
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/120650/dwoyler%7B%5C_%7D1.pdf?sequence=1%7B%5C&%7DisAllowed=y
https://doi.org/10.1109/ICRA.2016.7487151


Bibliography 159

[70] Jossué Cariño Escobar, Moisés Bonilla Estrada, and Rogelio Lozano. “Co-
operative control for load transportation using two PVTOL vehicles with
a passivity approach”. In: 2017 International Conference on Unmanned Air-
craft Systems, ICUAS 2017 (2017), pp. 1385–1391. doi: 10.1109/ICUAS.
2017.7991470.

[71] Zhicheng Hou et al. “Distributed leader-follower formation control for
multiple quadrotors with weighted topology To cite this version : Dis-
tributed Leader-Follower Formation Control for Multiple Quadrotors
with Weighted Topology”. In: 10th IEEE System of Systems Engineering
Conference. San Antonio, TX, United States, 2015, pp. 256–261.

[72] Grand View Reasearch. Commercial UAV Market Analysis by Product (Fixed
Wing, Rotary Blade, Nano, Hybrid), by Application (Agriculture, Energy,
Government, Media & Entertainment) and Segment Forecasts to 2022. 2016.

[73] Cristino de Souza Jr, P Castillo, and B Vidolov. “Reactive pursuit and
obstacle avoidance based in parallel navigation”. In: ITCS (2020), pp. 1–
7.

[74] Sabine Hauert et al. “Reynolds flocking in reality with fixed-wing robots:
communication range vs. maximum turning rate”. In: 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2011,
pp. 5015–5020.

[75] Morten Breivik and Thor I Fossen. “Guidance laws for planar motion
control”. In: 2008 47th IEEE Conference on Decision and Control. IEEE.
2008, pp. 570–577.

[76] Enrica Soria, Fabrizio Schiano, and Dario Floreano. “The influence of
limited visual sensing on the reynolds flocking algorithm”. In: 2019 Third
IEEE International Conference on Robotic Computing (IRC). IEEE. 2019,
pp. 138–145.

[77] Tamás Vicsek et al. “Novel type of phase transition in a system of self-
driven particles”. In: Physical review letters 75.6 (1995), p. 1226.

[78] Tucker Balch and Ronald C Arkin. “Behavior-based formation control for
multirobot teams”. In: IEEE transactions on robotics and automation 14.6
(1998), pp. 926–939.

[79] RUFUS Isaacs. Differential Games, SIAM Series in Applied Mathematics.
1965.

[80] Boldizsár Balázs, Gábor Vásárhelyi, and Tamás Vicsek. “Adaptive leader-
ship overcomes persistence–responsivity trade-off in flocking”. In: Journal
of the Royal Society Interface 17.167 (2020), p. 20190853.

Work in progress as of 20
th
June, 2021

https://doi.org/10.1109/ICUAS.2017.7991470
https://doi.org/10.1109/ICUAS.2017.7991470


160 Bibliography

[81] Matthew Turpin, Nathan Michael, and Vijay Kumar. “Trajectory design
and control for aggressive formation flight with quadrotors”. In: Au-
tonomous Robots 33.1-2 (2012), pp. 143–156.

[82] Chih-ming Kung et al. “The fast flight trajectory verification algorithm for
Drone Dance System”. In: 2020 IEEE International Conference on Industry
4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE.
2020, pp. 97–101.

[83] Osamah Saif, Isabelle Fantoni, and Arturo Zavala-Río. “Real-time flock-
ing of multiple-quadrotor system of systems”. In: 2015 10th System of
Systems Engineering Conference (SoSE). IEEE. 2015, pp. 286–291.

[84] Jonghoek Kim. “Three-dimensional discrete-time controller to intercept
a targeted UAV using a capture net towed by multiple aerial robots”. In:
IET Radar, Sonar & Navigation 13.5 (2018), pp. 682–688.

[85] Atsushi Kamimura and Toru Ohira. “Group Chase and Escape”. In: Group
Chase and Escape. Springer, 2019, pp. 43–75.

[86] Timothy P Lillicrap et al. “Continuous control with deep reinforcement
learning”. In: arXiv preprint arXiv:1509.02971 (2015).

[87] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”.
In: arXiv preprint arXiv:1312.5602 (2013).

[88] Neryahu A Shneydor. Missile guidance and pursuit: kinematics, dynamics
and control. Elsevier, 1998.

[89] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information
processing systems. 2017, pp. 3391–3401.

[90] Philip Arthur Johnson. “Numerical solution methods for differential
game problems”. PhD thesis. Massachusetts Institute of Technology,
2009.

[91] CODING A DEEP Q NETWORK IN PYTORCH. https://www.neuralnet.
ai/coding-a-deep-q-network-in-pytorch/. Accessed: 2020-04-19.

[92] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Deep
Reinforcement Learning for Swarm Systems. Tech. rep. 2019, pp. 1–31. url:
http://jmlr.org/papers/v20/18-476.html..

[93] Lin Xu et al. “Multi-agent Deep Reinforcement Learning for Pursuit-
Evasion Game Scalability”. In: Lecture Notes in Electrical Engineering.
Vol. 592. Springer Verlag, 2020, pp. 658–669. isbn: 9789813296817. doi:
10.1007/978-981-32-9682-4_69.

Work in progress as of 20
th
June, 2021

https://www.neuralnet.ai/coding-a-deep-q-network-in-pytorch/
https://www.neuralnet.ai/coding-a-deep-q-network-in-pytorch/
http://jmlr.org/papers/v20/18-476.html.
https://doi.org/10.1007/978-981-32-9682-4_69


Bibliography 161

[94] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments”. In: Advances in Neural Information Processing Systems
2017-December (June 2017), pp. 6380–6391. arXiv: 1706.02275. url:
http://arxiv.org/abs/1706.02275.

[95] Mostafa D. Awheda and Howard M. Schwartz. “The residual gradient
FACL algorithm for differential games”. In: Canadian Conference on Elec-
trical and Computer Engineering. Vol. 2015-June. June. Institute of Elec-
trical and Electronics Engineers Inc., June 2015, pp. 1006–1011. doi:
10.1109/CCECE.2015.7129412.

[96] Sameh F. Desouky and Howard M. Schwartz. “Q(λ)-learning adaptive
fuzzy logic controllers for pursuit-evasion differential games”. In: In-
ternational Journal of Adaptive Control and Signal Processing 25.10 (Oct.
2011), pp. 910–927. issn: 08906327. doi: 10.1002/acs.1249. url: http:
//doi.wiley.com/10.1002/acs.1249.

[97] Lionel Jouffe. “Fuzzy inference system learning by reinforcement meth-
ods”. In: IEEE Transactions on Systems, Man and Cybernetics Part C: Ap-
plications and Reviews 28.3 (1998), pp. 338–355. issn: 10946977. doi:
10.1109/5326.704563.

[98] David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. issn:
14764687. doi: 10.1038/nature16961.

[99] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 14764687.
doi: 10.1038/nature14236.

[100] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”.
In: Arxiv (Apr. 2015), p. 6922. arXiv: 1504.00702. url: http://arxiv.
org/abs/1504.00702.

[101] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540
(2016).

[102] Yoshua Bengio et al. “Curriculum learning”. In: Proceedings of the 26th
annual international conference on machine learning. 2009, pp. 41–48.

[103] Ashvin Nair et al. “Overcoming exploration in reinforcement learning
with demonstrations”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 6292–6299.

[104] Lu Jiang et al. “Self-paced curriculum learning”. In: Twenty-Ninth AAAI
Conference on Artificial Intelligence. 2015.

Work in progress as of 20
th
June, 2021

https://arxiv.org/abs/1706.02275
http://arxiv.org/abs/1706.02275
https://doi.org/10.1109/CCECE.2015.7129412
https://doi.org/10.1002/acs.1249
http://doi.wiley.com/10.1002/acs.1249
http://doi.wiley.com/10.1002/acs.1249
https://doi.org/10.1109/5326.704563
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702


162 Bibliography

[105] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. “Cooperative
multi-agent control using deep reinforcement learning”. In: International
Conference on Autonomous Agents and Multiagent Systems. Springer. 2017,
pp. 66–83.

[106] Atsushi Kamimura and Toru Ohira. Group Chase and Escape: Fusion of
Pursuits-Escapes and Collective Motions. Springer, 2019.

[107] Alex Graves et al. Automated Curriculum Learning for Neural Networks.
2017. arXiv: 1704.03003 [cs.NE].

[108] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function
Approximation Error in Actor-Critic Methods. 2018. arXiv: 1802.09477
[cs.AI].

[109] Rémy Portelas et al. Automatic Curriculum Learning For Deep RL: A Short
Survey. 2020. arXiv: 2003.04664 [cs.LG].

[110] Bebop Autonomy ROS Driver for Parrot Bebop Drone (quadrocopter) 1.0
2.0. http://https://bebop-autonomy.readthedocs.io/en/latest/.
Accessed: 2020-10-01.

[111] Object feature extraction shape descriptors. http://ojskrede.github.io/
inf4300/notes/week_05/. Accessed: 2020-09-20.

[112] ROS (Robot Operating System) - Documentation. http://wiki.ros.org/.
Accessed: 2020-10-01.

[113] ROS (Fl-AIR - Framework libre AIR. https://devel.hds.utc.fr/
software/flair. Accessed: 2020-10-01.

[114] Nicola Roberto Zema et al. “CUSCUS: An integrated simulation archi-
tecture for distributed networked control systems”. In: 2017 14th IEEE
Annual Consumer Communications & Networking Conference (CCNC). IEEE.
2017, pp. 287–292.

[115] BL Ho and Rudolf E Kálmán. “Effective construction of linear state-
variable models from input/output functions”. In: at-Automatisierungstechnik
14.1-12 (1966), pp. 545–548.

[116] Lucas Vago Santana, Alexandre Santos Brandao, and Mario Sarcinelli-
Filho. “Outdoor waypoint navigation with the AR.Drone quadrotor”. In:
2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015
(2015), pp. 303–311. doi: 10.1109/ICUAS.2015.7152304.

Work in progress as of 20
th
June, 2021

https://arxiv.org/abs/1704.03003
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/2003.04664
http://https://bebop-autonomy.readthedocs.io/en/latest/
http://ojskrede.github.io/inf4300/notes/week_05/
http://ojskrede.github.io/inf4300/notes/week_05/
http://wiki.ros.org/
https://devel.hds.utc.fr/software/flair
https://devel.hds.utc.fr/software/flair
https://doi.org/10.1109/ICUAS.2015.7152304


Bibliography 163

[117] Lucas Vago Santana, Alexandre Santos Brandão, and Mário Sarcinelli-
Filho. “An automatic flight control system for the AR. Drone quadrotor
in outdoor environments”. In: 2015 Workshop on Research, Education
and Development of Unmanned Aerial Systems (RED-UAS). IEEE. 2015,
pp. 401–410.

[118] Ben Yun, Kemao Peng, and Ben M Chen. “Enhancement of GPS signals
for automatic control of a UAV helicopter system”. In: 2007 IEEE Inter-
national Conference on Control and Automation. IEEE. 2007, pp. 1185–
1189.

[119] Mohinder S Grewal and Angus P Andrews. “Applications of Kalman
filtering in aerospace 1960 to the present [historical perspectives]”. In:
IEEE Control Systems Magazine 30.3 (2010), pp. 69–78.

[120] David Orton Wheeler. “Relative Navigation of Micro Air Vehicles in
GPS-Degraded Environments”. In: (2017).

[121] Achim Hornbostel. “Propagation problems in satellite navigation”. In:
URSI Radio Science Bulletin 2009.329 (2009), pp. 21–30.

[122] Michele Ballerini et al. “Interaction ruling animal collective behavior
depends on topological rather than metric distance: Evidence from a field
study”. In: Proceedings of the national academy of sciences 105.4 (2008),
pp. 1232–1237.

[123] Eric W Justh and Perinkulam S Krishnaprasad. A simple control law for
UAV formation flying. Tech. rep. MARYLAND UNIV COLLEGE PARK
INST FOR SYSTEMS RESEARCH, 2002.

[124] Ermin Wei, Eric W Justh, and PS Krishnaprasad. “Pursuit and an evo-
lutionary game”. In: Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 465.2105 (2009), pp. 1539–1559.

[125] Wonsang Yoo, Eun Yu, and Jaemin Jung. “Drone delivery: Factors af-
fecting the public’s attitude and intention to adopt”. In: Telematics and
Informatics 35.6 (2018), pp. 1687–1700.

[126] Gordon D Hoople and Austin Choi-Fitzpatrick. “Drones for Good: How to
Bring Sociotechnical Thinking into the Classroom”. In: Synthesis Lectures
on Engineers, Technology, and Society 9.1 (2020), pp. i–148.

[127] Joseph John Beel. “Anti-UAV defense for ground forces and hyperve-
locity rocket lethality models”. PhD thesis. Monterey, California. Naval
Postgraduate School, 1992.

[128] Dinakar Peri. “Expanding Anti-UAVs Market to Counter Drone Technol-
ogy”. In: CLAWS Journal Winter (2015), pp. 152–158.

Work in progress as of 20
th
June, 2021



164 Bibliography

[129] Georgia Lykou, Dimitrios Moustakas, and Dimitris Gritzalis. “Defend-
ing Airports from UAS: A Survey on Cyber-Attacks and Counter-Drone
Sensing Technologies”. In: Sensors 20.12 (2020), p. 3537.

[130] Theiss - UAV solutions). http://www.theissuav.com/counter-uas.
Accessed: 2020-10-23.

[131] Hertz - anti-drone systems). https://www.hertzsystems.com/. Accessed:
2020-10-27.

[132] Master List of Drone Laws (Organized by State & Country)). https://
uavcoach.com/drone-laws/. Accessed: 2020-10-27.

[133] Anduril. https://www.anduril.com/work. Accessed: 2020-10-27.

[134] Boreades: CIVILIAN DRONE NEUTRALIZER SYSTEM. http://boreades.
fr/. Accessed: 2020-10-27.

[135] Slavimir S Nikolić. “An innovative response to commercial UAV menace:
Anti-UAV falconry”. In: Vojno delo 69.4 (2017), pp. 146–167.

[136] Turkish anti-drone technology rolled out against ‘aerial threats’. https:
//www.hurriyetdailynews.com/turkish-anti-drone-technology-

rolled-out-against-aerial-threats-140908. Accessed: 2020-10-27.

[137] Counter Drone Solutions & Technology. https://counterdronesolutions.
com.au/technology/counter-drone/. Accessed: 2020-10-27.

[138] Felipe Cucker and Steve Smale. “Emergent behavior in flocks”. In: IEEE
Transactions on automatic control 52.5 (2007), pp. 852–862.

[139] Eliseo Ferrante et al. “Flocking in stationary and non-stationary envi-
ronments: a novel communication strategy for heading alignment”. In:
International conference on parallel problem solving from nature. Springer.
2010, pp. 331–340.

[140] Manuele Brambilla et al. “Swarm robotics: a review from the swarm
engineering perspective”. In: Swarm Intelligence 7.1 (2013), pp. 1–41.

[141] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. “A survey of
multi-agent formation control”. In: Automatica 53 (2015), pp. 424–440.

[142] Alex Kushleyev et al. “Towards a swarm of agile micro quadrotors”. In:
Autonomous Robots 35.4 (2013), pp. 287–300.

[143] Osamah Saif. “Reactive navigation of a fleet of drones in interaction”.
PhD thesis. 2016.

[144] Intel Drone Light Show at The Olympics. https://www.dandad.org/
awards / professional / 2018 / media / 27058 / intel - drone - light -

show-at-the-olympics/. Accessed: 2020-11-02.

Work in progress as of 20
th
June, 2021

http://www.theissuav.com/counter-uas
https://www.hertzsystems.com/
https://uavcoach.com/drone-laws/
https://uavcoach.com/drone-laws/
https://www.anduril.com/work
http://boreades.fr/
http://boreades.fr/
https://www.hurriyetdailynews.com/turkish-anti-drone-technology-rolled-out-against-aerial-threats-140908
https://www.hurriyetdailynews.com/turkish-anti-drone-technology-rolled-out-against-aerial-threats-140908
https://www.hurriyetdailynews.com/turkish-anti-drone-technology-rolled-out-against-aerial-threats-140908
https://counterdronesolutions.com.au/technology/counter-drone/
https://counterdronesolutions.com.au/technology/counter-drone/
https://www.dandad.org/awards/professional/2018/media/27058/intel-drone-light-show-at-the-olympics/
https://www.dandad.org/awards/professional/2018/media/27058/intel-drone-light-show-at-the-olympics/
https://www.dandad.org/awards/professional/2018/media/27058/intel-drone-light-show-at-the-olympics/


Bibliography 165

[145] Milán Janosov et al. “Chasing strategies of a flock of drones”. In: ().

[146] Boids 3D. https://vvvv.org/contribution/boids- 3d. Accessed:
2020-11-02.

[147] 27 Incredible Underwater Pictures of Schooling Fish. https://allthatsinteresting.
com/schooling-fish. Accessed: 2020-11-02.

[148] Gábor Vásárhelyi et al. “Optimized flocking of autonomous drones in
confined environments”. In: Science Robotics 3.20 (2018).

[149] Jason Welsby, Chris Melhuish, and Coldharbour Lane. “Autonomous
minimalist following in three dimensions: A study with small-scale di-
rigibles”. In: Proceedings of Towards Intelligent Mobile Robots Manchster
(2001).

[150] John F Keane and Stephen S Carr. “A brief history of early unmanned
aircraft”. In: Johns Hopkins APL Technical Digest 32.3 (2013), pp. 558–571.

[151] Guided Missiles R-27T1 / R-27ET1. http://eng.ktrv.ru/production/
military_production/air-to-air_missiles/r-27t1_-_r-27et1.

html. Accessed: 2020-11-02.

[152] Tamás Vicsek. “Closing in on evaders”. In: Nature 466.7302 (2010),
pp. 43–44.

[153] Atsushi Kamimura and Ohira Toru. “Effective construction of linear state-
variable models from input/output functions”. In: New Journal of Physics
12.5 (2010), p. 053013.

[154] How do you catch a drone? With an even BIGGER drone and a giant net:
Tokyo police reveal bizarre ’UAV catcher’. https : / / www . dailymail .
co.uk/sciencetech/article-3356746/How-catch-drone-BIGGER-

drone-giant-net-Tokyo-police-reveal-bizarre-UAV-catcher.

html. Accessed: 2020-11-06.

[155] David Isele et al. “Navigating occluded intersections with autonomous
vehicles using deep reinforcement learning”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). 2018, pp. 2034–2039.

[156] Sergey Levine et al. “End-to-end training of deep visuomotor policies”.
In: The Journal of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[157] OpenAI: Marcin Andrychowicz et al. “Learning dexterous in-hand ma-
nipulation”. In: The International Journal of Robotics Research 39.1 (2020),
pp. 3–20.

[158] John Schulman et al. “Trust region policy optimization”. In: International
conference on machine learning. 2015, pp. 1889–1897.

Work in progress as of 20
th
June, 2021

https://vvvv.org/contribution/boids-3d
https://allthatsinteresting.com/schooling-fish
https://allthatsinteresting.com/schooling-fish
http://eng.ktrv.ru/production/military_production/air-to-air_missiles/r-27t1_-_r-27et1.html
http://eng.ktrv.ru/production/military_production/air-to-air_missiles/r-27t1_-_r-27et1.html
http://eng.ktrv.ru/production/military_production/air-to-air_missiles/r-27t1_-_r-27et1.html
https://www.dailymail.co.uk/sciencetech/article-3356746/How-catch-drone-BIGGER-drone-giant-net-Tokyo-police-reveal-bizarre-UAV-catcher.html
https://www.dailymail.co.uk/sciencetech/article-3356746/How-catch-drone-BIGGER-drone-giant-net-Tokyo-police-reveal-bizarre-UAV-catcher.html
https://www.dailymail.co.uk/sciencetech/article-3356746/How-catch-drone-BIGGER-drone-giant-net-Tokyo-police-reveal-bizarre-UAV-catcher.html
https://www.dailymail.co.uk/sciencetech/article-3356746/How-catch-drone-BIGGER-drone-giant-net-Tokyo-police-reveal-bizarre-UAV-catcher.html


166 Bibliography

[159] Robert Lee et al. “Learning Arbitrary-Goal Fabric Folding with One Hour
of Real Robot Experience”. In: arXiv preprint arXiv:2010.03209 (2020).

[160] J. Matas, Stephen James, and A. Davison. “Sim-to-Real Reinforcement
Learning for Deformable Object Manipulation”. In: CoRL. 2018.

[161] J. Chen, B. Yuan, and M. Tomizuka. “Model-free Deep Reinforcement
Learning for Urban Autonomous Driving”. In: 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). 2019, pp. 2765–2771.

[162] Brendan Tidd, Nicolas Hudson, and Akansel Cosgun. “Guided Curricu-
lum Learning for Walking Over Complex Terrain”. In: arXiv preprint
arXiv:2010.03848 (2020).

[163] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural
networks”. In: IEEE transactions on Signal Processing (1997).

[164] Sudeshna Pal. “A Review of Target Pursuit Strategies in Aerial Species”.
In: Dynamic Systems and Control Conference. Vol. 46186. American Society
of Mechanical Engineers. 2014, V001T05A004.

[165] Rolif Lima and Debasish Ghose. “Target localization and pursuit by
sensor-equipped UAVs using distance information”. In: 2017 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2017,
pp. 383–392.

[166] Xiufang Shi et al. “Anti-drone system with multiple surveillance tech-
nologies: Architecture, implementation, and challenges”. In: IEEE Com-
munications Magazine 56.4 (2018), pp. 68–74.

[167] Fotografo registra foto rara de uma murmuracao, apelidada de ‘uma em um
milhao. https://catiororeflexivo.com/fotografo-registra-foto-
apelidada-uma-um-milhao/. Accessed: 2020-11-18.

[168] Iain D Couzin, Jens Krause, et al. “Self-organization and collective be-
havior in vertebrates”. In: Advances in the Study of Behavior 32.1 (2003),
pp. 10–1016.

[169] Iain D Couzin et al. “Effective leadership and decision-making in animal
groups on the move”. In: Nature 433.7025 (2005), pp. 513–516.

[170] G. Sanahuja, P. Castillo Garcia, and A. Sanchez. “Stabilization of n in-
tegrators in cascade with bounded input with experimental applica-
tion to a VTOL laboratory system”. In: Int. J. Robust Nonlinear Control
20.10 (2010). dx.doi.org/10.1002/rnc.1494, pp. 1129–1139. url: http:
//hal.archives-ouvertes.fr/hal-00448201/en/.

Work in progress as of 20
th
June, 2021

https://catiororeflexivo.com/fotografo-registra-foto-apelidada-uma-um-milhao/
https://catiororeflexivo.com/fotografo-registra-foto-apelidada-uma-um-milhao/
http://hal.archives-ouvertes.fr/hal-00448201/en/
http://hal.archives-ouvertes.fr/hal-00448201/en/


Bibliography 167

[171] Pedro Castillo-Garcia, Laura Elena Munoz Hernandez, and Pedro Garcia
Gil. Indoor navigation strategies for aerial autonomous systems. Butterworth-
Heinemann, 2016.

[172] Alberto Castillo and Pedro Garcia. “Predicting the future state of dis-
turbed LTI systems: A solution based on high-order observers”. In: Auto-
matica 124 (2021), p. 109365.

Work in progress as of 20
th
June, 2021



168 Bibliography

Work in progress as of 20
th
June, 2021



Contents

Abstract vii

Publications ix

Contents xi

Introduction 1

1 State of the art 7
1.1 The counter-drone fight . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Anti-drone solutions . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Anti-drone drone (ADD) . . . . . . . . . . . . . . . . . . . 10

1.2 Collective motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Bio-inspiration . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Collective robots . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Pursuit evasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Single Pursuit-evasion . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Group pursuit . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Guidance Laws (GL) . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 GL in robotics . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Relative engagement . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3 Pure Pursuit (PP) . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.4 Pure Deviated Pursuit - DPP: . . . . . . . . . . . . . . . . 26
1.4.5 Proportional Navigation Guidance (PNG) . . . . . . . . . 26

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Pursuit in the horizontal plan 29
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Target behavior . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Group Deviated Pursuit . . . . . . . . . . . . . . . . . . . . . . . 33

169



170 Contents

2.2.1 Opening remarks . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Group Deviated Pursuit (GDP) algorithm . . . . . . . . . . 35
2.2.3 Numerical Validation . . . . . . . . . . . . . . . . . . . . . 37

2.3 Group Mixed Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 Brief preface and literature review . . . . . . . . . . . . . . 43
2.3.2 Group Mixed Pursuit (GMP) algorithm . . . . . . . . . . . 45
2.3.3 Numerical validation . . . . . . . . . . . . . . . . . . . . . 47

2.4 Reinforcement Learning Pursuit . . . . . . . . . . . . . . . . . . 51
2.4.1 Brief preface and literature review . . . . . . . . . . . . . . 51
2.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Qualitative comparison . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.2 Effect of the number of pursuer . . . . . . . . . . . . . . . 65
2.5.3 Effects of the relative velocity . . . . . . . . . . . . . . . . . 67
2.5.4 Effects of the arena size . . . . . . . . . . . . . . . . . . . . 69

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Improving algorithms: prediction, avoidance and flocking 73
3.1 Pursuit with target prediction . . . . . . . . . . . . . . . . . . . . 74

3.1.1 Brief preface and literature review . . . . . . . . . . . . . . 75
3.1.2 Problem formulations . . . . . . . . . . . . . . . . . . . . . 76
3.1.3 Target prediction . . . . . . . . . . . . . . . . . . . . . . . . 77
3.1.4 Pursuit with prediction . . . . . . . . . . . . . . . . . . . . 79
3.1.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Pursuit with non-cooperative agents . . . . . . . . . . . . . . . . 83
3.2.1 Brief preface and literature review . . . . . . . . . . . . . . 83
3.2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.3 Pursuit and avoidance guidance law . . . . . . . . . . . . . 85
3.2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Flocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.1 Brief preface and literature review . . . . . . . . . . . . . . 91
3.3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.3 Flocking model . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Implementation and Experiments 103
4.1 Drone model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 Inertial Frame . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1.2 Body frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Work in progress as of 20
th
June, 2021



Contents 171

4.2 Motion control hierarchy . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.2 Higher layer - GL . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.3 Safety layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.4 Motion constraints . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.5 Attitude Controller . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3.2 FL-Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.1 Related work and problem statement . . . . . . . . . . . . 121
4.4.2 Evolution model . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.3 Kalman filter equations . . . . . . . . . . . . . . . . . . . . 123
4.4.4 KF matrices and tuning . . . . . . . . . . . . . . . . . . . . 124
4.4.5 Altitude estimation . . . . . . . . . . . . . . . . . . . . . . 126
4.4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Experiments with Pursuit . . . . . . . . . . . . . . . . . . . . . . 134
4.5.1 Group Deviated Pursuit - GDP . . . . . . . . . . . . . . . . 134
4.5.2 3D Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . 140

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Conclusions 145
Summary of the chapters . . . . . . . . . . . . . . . . . . . . . . . . . 146
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

Contents 169

Work in progress as of 20
th
June, 2021



172 Contents

Work in progress as of 20
th
June, 2021


	PDT DE SOUZA JUNIOR Cristino
	Soutenue le 19 avril 2021

	Thèse STAR DE SOUZA Cristino
	Abstract
	Publications
	Contents
	Introduction
	1 State of the art
	1.1 The counter-drone fight
	1.1.1 Anti-drone solutions
	1.1.2 Anti-drone drone (ADD)

	1.2 Collective motion
	1.2.1 Bio-inspiration
	1.2.2 Collective robots

	1.3 Pursuit evasion
	1.3.1 Single Pursuit-evasion
	1.3.2 Group pursuit

	1.4 Guidance Laws (GL)
	1.4.1 GL in robotics
	1.4.2 Relative engagement
	1.4.3 Pure Pursuit (PP)
	1.4.4 Pure Deviated Pursuit - DPP: 
	1.4.5 Proportional Navigation Guidance (PNG) 

	1.5 Conclusion

	2 Pursuit in the horizontal plan
	2.1 Problem statement
	2.1.1 Perception
	2.1.2 Target behavior

	2.2 Group Deviated Pursuit
	2.2.1 Opening remarks
	2.2.2 Group Deviated Pursuit (GDP) algorithm
	2.2.3 Numerical Validation

	2.3 Group Mixed Pursuit
	2.3.1 Brief preface and literature review
	2.3.2 Group Mixed Pursuit (GMP) algorithm
	2.3.3 Numerical validation

	2.4 Reinforcement Learning Pursuit
	2.4.1 Brief preface and literature review
	2.4.2 Methodology
	2.4.3 Numerical results

	2.5 Qualitative comparison
	2.5.1 Benchmark
	2.5.2 Effect of the number of pursuer
	2.5.3 Effects of the relative velocity
	2.5.4 Effects of the arena size

	2.6 Conclusion

	3 Improving algorithms: prediction, avoidance and flocking
	3.1 Pursuit with target prediction
	3.1.1 Brief preface and literature review
	3.1.2 Problem formulations
	3.1.3 Target prediction
	3.1.4 Pursuit with prediction
	3.1.5 Simulations

	3.2 Pursuit with non-cooperative agents
	3.2.1 Brief preface and literature review
	3.2.2 Problem statement
	3.2.3 Pursuit and avoidance guidance law
	3.2.4 Simulations

	3.3 Flocking
	3.3.1 Brief preface and literature review
	3.3.2 Problem statement
	3.3.3 Flocking model
	3.3.4 Simulations

	3.4 Conclusion

	4 Implementation and Experiments
	4.1 Drone model
	4.1.1 Inertial Frame
	4.1.2 Body frame

	4.2 Motion control hierarchy
	4.2.1 Introduction
	4.2.2 Higher layer - GL 
	4.2.3 Safety layer
	4.2.4 Motion constraints
	4.2.5 Attitude Controller

	4.3 Material
	4.3.1 Hardware
	4.3.2 FL-Air
	4.3.3 Architectures

	4.4 State Estimation
	4.4.1 Related work and problem statement
	4.4.2 Evolution model
	4.4.3 Kalman filter equations
	4.4.4 KF matrices and tuning 
	4.4.5 Altitude estimation
	4.4.6 Experimental results

	4.5 Experiments with Pursuit
	4.5.1 Group Deviated Pursuit - GDP
	4.5.2 3D Pursuit
	4.5.3 Reinforcement Learning

	4.6 Conclusion

	Conclusions
	Summary of the chapters 
	Discussion
	Future work

	Bibliography
	Contents




