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Introduction

La théorie des nombres présente I'étrange paradoxe de formuler des questions d’une simplicité
déconcertante a introduire mais d’une difficulté remarquable & résoudre. En dépit de la com-
plexité et de la technicité de toute la machinerie mise en ceuvre pour répondre a ces interroga-
tions, certains énoncés réussissent a demeurer aisés d’acces, d’une élégante sobriété, dissimulant
mieux ainsi leur portée et leur profondeur. Parmi ceux-ci figure le fameux quatre-vingt-dixieme
théoreme du Zahlbericht de Hilbert que nous rappelons ici.

Théoréme (Hilbert, 90). Soit k un corps contenant une racine primitive n-iéme de l'unité &,
et soit K/k une extension cyclique d’ordre n. Soit o un générateur de Gal(K/k), alors il existe
x e K* tel que

Plus d’un siecle apres, de nombreux articles ont pu étre rédigés, ou il est encore mentionné,
non pas uniquement comme un objet de respect mais comme le modéle méme du résultat devant
étre obtenu : il est en effet souvent question de trouver un ersatz a ce théoréme dans des
circonstances un peu plus complexes (voir par exemple [MST14]). Ici, nous sommes cependant
moins ambitieux : notre présomption connaissant ses limites, cette these ne cherche pas a émuler
Hilbert, mais de labourer encore le sillon qu’il a déja tracé.

Mais quel est donc cet ensemble de résultats dont nous nous prétendons les continuateurs et
pourquoi perdurer dans cette tache 7

Les réponses a ces deux questions s’entremélent ; comme il convient de juger un arbre a ses
fruits, il est pertinent de juger une théorie aux résultats qu’elle arrive a fournir et comment ces
derniers s’inserent dans un champ d’études plus vaste. Tentons cependant provisoirement de les
séparer.

Motivations

Commencons par la seconde interrogation. Plus d’un ouvrage ou d’un article a tenté de remettre
dans une perspective historique ’émergence de la théorie du corps de classe (cf. [Con], [Wym72],
[Has67]) ; mais plutét que d’avoir recours aux explications généalogiques en essayant de montrer
I'importance de la théorie de Kummer dans cette genése, contentons-nous d’en citer quelques
accomplissements. Grace a la théorie du corps de classe local, en fait aux théoremes de HASSE-
MINKOWSKI, les formes quadratiques sur Q sont en grande partie comprises, ¢’est-a-dire que

a-z24+b-y>+¢-22=0, a, b ceQ*

admet des solutions rationnelles si et seulement si elle admet des solutions dans toutes les
complétions de Q, c’est-a-dire dans R et les corps p-adiques Q,, ce qui autorise bien plus d’outils.
Et son extension, le trés célebre théoréeme de GRUNWALD-WANG ([NSWO08]), démontre encore
plus de force et de précision dans I'entreprise de lier les problémes globaux aux problémes locaux,
si bien que ces deux accomplissements, plus que des aboutissements, sont des commencements.

La capacité a résoudre des problemes issus de 1’étude des corps de nombres en étudiant les
corps locaux constitue une avancée majeure : comme on le verra par la suite tres rapidement
dissimulé derriere quelques théoremes, la théorie de Galois des corps locaux est en effet beaucoup
plus simple que celle des corps globaux. Aussi, ’étude des corps locaux, tout étranges qu’ils



2 CONTENTS

puissent paraitre, est un outil précieux pour affronter les problémes arithmétiques, et il est méme
légitime qu’on l’ait érigé en principe.

Nous avons cependant ici tu ce pourquoi nous étudions les modules qui sont au coeur de
notre travail. Nous préférons reléguer ceci a plus tard, dans le corps méme du premier chapitre
; plutot done que d’inviter a se fier a notre parole, nous espérons gagner un début de conviction,
en recensant les résultats qui ont précédé les notres, et qui semblent indiquer que, non, 'examen
des modules dont il est question ici n’est pas une lubie, mais une question bien naturelle.

Résultats connus

L’objet de cette these est comme le titre 'indique ’étude de quelques représentations intervenant
en théorie de Galois. Fixons les notations : soit k un corps local tel que &, € k et soit K/k
une extension galoisienne finie de groupe G, ou p est évidemment un nombre premier que 1’'on
supposera sauf mention contraire différent de 2. Nous décrivons la structure de G module
de J(K) = K*/K*P, sous des hypothéses que nous allons progressivement renforcer. Ces
préoccupations ne sont cependant pas inédites.

Précisons immédiatement que pour des raisons qui apparaitront plus tard, tous nos modules
sont des modules d droite.

D’une part, si G est un groupe cyclique, des résultats complets sur la structure de J(K) ont
déja été fournis : en premier lieu, D. K. FADDEEV publia en 1960 un article ([Fad60]) donnant
une présentation par générateurs et relations du module J(K), faisant apparaitre deux cas.’.

Théoréme (Faddeev). Soit K/k une extension cyclique et soit o un générateur de Gal(K/k),
ou k est un corps local tel que &, € k. Posons de plus n = |k*/k*P|. Alors J(K) admet les
présentations par générateurs et relations suivantes

1. si K peut étre plongé dans une extension cyclique d’ordre (n+ 1) -p, (V1,..., 941, 7|7 -
(0 - 1)2 = 0> )

2. sinon il s’agit de (V1,..., Y, 11, 2|71 - (0 —1) =T -(c —1)=0).

Le théoreme de Faddeev ne resta pas lettre morte, cependant il s’inscrivit dans une autre
histoire ; en effet, cing ans plus tard Z. I. BOREVIC sut décrire la structure de Z,[G]-module des
entiers de K*, toujours sous ’hypothese que k était local et K/k cyclique, dans deux papiers
. le premier étant [Bor65a] et requérant que k posséde une racine primitive de I'unité ¢, et le
second étant [Bor65b] et supposant le contraire.

Le résultat de Faddeev fut étendu & toutes sortes de corps par J. MINAC, et J. SWALLOW,
au début des années 2000.

Théoréme (Minac et Swallow). Soit G un groupe cyclique, Lo un corps tel que &, € Ly et soit
L, /Lo une extension cyclique d’ordre p. Posons N = 3 g la norme de ¥,G. Alors J(Ly) se

geG
décompose en tant que F,G module comme

JL)=XaYaZ,
ol

1. X est un module indécomposable de dimension 1 si & € Ly - N et de dimension 2 si
& & LN

2. Y est un module libre,

3. Z est un module trivial (ce qui inclut le cas Z = {0}).

L article n’ayant été traduit du russe, nous ne savons pas exactement comment cela fut démontré.
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Ce théoreme mena & une étude plus fine et plus précise par exemple de la structure de G-
module de la K-théorie de Milnor modulo p d’une telle extension : les deux précédents auteurs
auquel il convient de joindre A. SCHULTZ et N. LEMIRE purent en effet donner une description
de la K-théorie de Milnor en tant que module sous les hypothéses énoncées plus haut. [LMSS10]

D’autre part, les investigations sur les modules non-cycliques ont connu plusieurs développe-
ments au cours des derniéres décennies, on peut notamment citer [AGKMO1] ou I’étude est
menée sur la structure de J(K) lorsque K est la 2-extension élémentaire abélienne maximale.
Ces recherches, il nous semble, sont toujours limitées, en dépit méme des talents des auteurs,
par les outils développés alors pour I’étude des F,G modules : en effet, au-dela du cas ou G
est cyclique ou égal au célebre groupe de Klein Cy x C5y, peu de choses sont connues, a part
la difficulté du probléme (voir par exemple [Benl6]). La cohomologie reste cependant un outil
incontournable (cf. [Ben91]) et longuement éprouvé, malgré sa cécité sur certains phénomenes.

Aussi, le développement de la théorie des modules de type de Jordan constant tels que
définis dans [CFP08] et développée dans [Benl6] représente une opportunité exceptionnelle pour
affronter les problémes issus de la théorie de Galois et étendre les précédents théoréemes.

Résultats contenus dans ce présent mémoire

C’est ici tout 'enjeu de ce mémoire d’appliquer les techniques d’études des modules de type de
Jordan constant aux modules J(K) apparaissant dans I’étude des corps locaux. Notons Gy (p)
le groupe de Galois d’une p-cléture maximale de k, et n le nombre minimal de générateurs
topologiques de ce groupe. Nous démontrons ici

Théoréme (A). Soit k un corps local contenant une racine primitive p-iéme de l'unité, soit K
une extension galoisienne finie de k, et soit G = Gal(K/k). Supposons que G est un p-groupe
tel que son anneau de cohomologie H®*(G,F,) est de Cohen-Macaulay ; posons alors di(G) =
dimp, fli(G, F,). De surcroit, excluons les cas ot G serait un des groupes des quaternions
généralisés. On a alors lalternative suivante

1. si Uinflation inf: H?(Gal(K/k),F,) — H?(Gk(p), F,) est nulle, les isomorphismes suiv-
ant sont vérifiés :
H*(G,J(K)) =~ H***(G,F,)® H*%(G,Fy) s>1
HO(G, J(K)) ~ ng(GH(n—dl(G))

2. si Uinflation inf: H*(Gal(K/k),Fp) — H2(Gk(p),Fp) est non-nulle, les isomorphismes
sutvant sont vérifiés :

HY(G,J(K)) =~ H3G,F,)
HY(G,J(K)) ~ H""*(G,F,) e H*(G,F,) s>2
(G, J(K)) ~ FR@-1Hn-d@)

Ce premier résultat décrit pleinement la cohomologie & coefficients dans J(K) ; pour ce qui
est du type de Jordan et des extensions élémentaires abéliennes, nous prouvons plus loin le
théoreme suivant :

Théoréme (B). Soit k un corps local tel que &, € k et soit K/k une p-extension élémentaire
abélienne. Si K/k n’est pas cyclique, alors J(K) = K*/K*? est un Gal(K/k)-module de type
de Jordan constant. De plus, son type de Jordan stable est [1]2.

En vérité, nous démontrerons un peu plus que ce théoreme, mais préciser les hypothéses
avec exactitude ici-méme ferait perdre en élégance 1’énoncé pour gagner peu. Les méthodes
que nous utilisons nous permettent cependant d’obtenir quelques autres propositions qui ne
sont pas indignes d’attention. Tout d’abord, le résultat suivant, valable pour toute p-extension
galoisienne finie K/k, ot k est toujours un corps local contenant une racine primitive p-iéme de
I’unité, mérite d’étre cité :
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Proposition (C). Soit G = Gal(K/k) ot G est un p-groupe. Pour s € {—1,2}, il existe un
module ws(F)p) stablement isomorphe a Q°(F)) et une suite exacte :

0——w_1(Fp) == wy(F)) J(K) 0.

Cette précédente proposition est I'outil central dans la démonstration des deux théorémes
sus-mentionnés et les conditions figurant dans le théoréme (A) sont en fait équivalentes a des
conditions plus simples & discuter sur x.

C’est pourquoi le chapitre 5 se consacre intégralement a 1’étude de k : nous nous y re-
streignons au cas unique de l'extension p-élémentaire abélienne maximale, certes encore une
fois, puisque nous aurons examiné ceci de trés pres dans le chapitre 4, mais avec des objec-
tifs radicalement différents. Ici, nous tenterons d’étendre notre étude a une classe plus grande
de corps, ou plutét de groupes. Ceci nous amenera a étudier le comportement, relativement
au produit libre de deux groupes, de I'application qui étend proprement la définition de «, ce
qui est fait dans la Proposition 5.2.7 (qui requiert trop de notations pour étre introduite ici).
Cependant, cette proposition sera immédiatement mise a profit pour démontrer I'impossibilité
d’étendre le théoréme (B), en effet nous aboutissons alors au contre-exemple suivant :

Proposition. Soit k un corps (qui ne soit pas local), possédant une racine primitive p-iéme de
lunité et tel que Gy (p) soit le produit libre d’un groupe de Demuskin et d’un groupe libre. Notons
alors K/k la p-extension abélienne élémentaire mazimale de k. Alors J(K) = K* /K*P n’est
pas un Gal(K/k)-module de type de Jordan constant.

La démonstration de ce dernier théoréme nous demandera une étude assez précise de la
structure de certains modules, ce qui nous contraindra a adopter une stratégie de preuve assez
technique, mais conceptuellement simple.

L’approche a partir de calculs explicites, qui nous est permise grace a la classification effectuée
par J. LABUTE des groupes de Demuskin (cf. [Lab67]), nous offre aussi la possibilité d’obtenir
des résultats plus fins, par exemple sur la série socle du module. Ceci n’est pas sans intérét, en
effet, dans le cas ol p = 2, traité in extenso dans [AGKMO1], les auteurs introduisent plusieurs
invariants liés a cette série. Nous tirons donc profit de nos travaux précédents pour proposer,
a partir des corps locaux, comment pourraient s’étendre les-dites formules pour p quelconque.
Plus précisément, nous montrons :

Proposition (D). Soit K la p-extension élémentaire abélienne mazximale d’un corps local k qui
posséde une racine primitive p-iéme de l'unité. Alors le Gal(K/k)-module J(K) a pour longueur

I(J(K)) =n(p-1) -1,

ou n est la dimension de k™ /k*P en tant que Fy-espace vectoriel. De plus sip est impair, alors
[’égalité suivante est vérifiée :
n(n —2)(n+2)

dimp, Soc*(J(K))/ Soc(J(K)) = 3 .

Enfin, cette theése contient quelque petits détours volontaires : au cours de démonstrations
plus longues et plus explicites des résultats figurant plus haut, nous avons donné une présentation
par générateurs et relations des décalages de Heller du module trivial lorsque G est un groupe
élémentaire abélien. Ceci est 'objet du théoreme 3.1.2 : il nous faudrait cependant trop nous
étendre sur les notations pour en préciser les termes exacts.

Cependant si nous nous autorisons a citer ces résultats, c’est qu’outre I'intérét qu’ils peu-
vent avoir en eux-mémes, ils nous permettront d’étudier dans le cas ou K/k est I'extension
p-élémentaire abélienne maximale. Ces considérations nous ameéneront a prouver en fait que
la suite exacte courte de la proposition D est en fait & un décalage pres localement exacte-
ment scindée. Ceci permet alors aisément d’étudier le fibré vectoriel associé au module par les
foncteurs introduits par E. FRIEDLANDER et J. PEvTOSvA (cf. [FP11]).
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Proposition (E). Soit ¢ la caractéristique du corps résiduel de k un corps local tel que &, € k, et
soit K/k la p-extension élémentaire abélienne maximale de k. Notons U le foncteur de Pevtosva
et n = dimk* /k*P. Si { = p, l’égalité suivante est vérifiée

T(J(K)) = O(p) & O(-p),
ot O est le faisceau usuel et O(j) = O% de Py (F)) tandis que si £ # p, on a

B(J(K)=0a0.

Plan de I’étude

Afin de parvenir aux fins que nous nous sommes fixées, nous allons dans un premier temps
rappeler quelques résultats dont nous avons besoin : citons entre autres, la définition des modules
de type de Jordan constant ou la définition de la catégorie des modules stables. Au cours de
cette partie, nous traduirons le probléme qui se pose en théorie de Galois en un probléeme de
théorie des groupes. Ceci est ’objet méme du Chapitre |

Ensuite, dans le chapitre 2, nous démontrerons les théoremes B, A mentionnés plus haut :
au cours de leur démonstration, nous verrons ce en quoi ils peuvent étre en fait étendus, au prix
d’un énoncé moins élégant.

Nous nous focaliserons par la suite dans le calcul de modules - ici par calcul, nous entendons
donner une expression par générateurs et relations - des décalages de Heller du module trivial,
dans le chapitre 3, puisqu’il s’agit la de précieux résultats techniques pour aborder les chapitres
suivants.

Une fois ceci fait, nous étudierons plus en détails la structure du module J(K) obtenu
lorsque K/k est la p-extension élémentaire abélienne maximale dans le chapitre 4, ce qui est
rendu possible par I’étude précédemment donnée.

Par la suite, dans le chapitre 5, nous traiterons un exemple particulier de sorte & montrer
en quoi nos résultats ne peuvent pas s’étendre dans toutes les circonstances que ’on pourrait
souhaiter.

Enfin, nous examinerons deux exemples concrets : ces derniers nous permettrons d’une part
de constater que la disjonction de cas effectuée sur k se produit dans les faits, et d’autre part de
motiver une étude un peu plus détaillée des extensions p-élémentaires abéliennes. En effet, ni le
critére sur xk que nous développerons au cours du chapitre 2, ni celui sur I'inflation ne semblent
vérifiables in concreto ; de surcroit, ces derniers ne semblent pas liés a 'arithmétique du corps,
or ces deux exemples laissent augurer tout-a-fait le contraire. Aussi nous nous permettrons
de mentionner tres brievement 1’ébauche d’une étude en cours permettant de remédier aux
manquements que nous venons de signaler.
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Chapter 1

Background material

In this chapter, we shall introduce the notions which are the core of this thesis, namely the
modules of constant Jordan type and the Kummer extensions. We will immediately take profit
from basic Kummer theory in order to set the stage for our results. Indeed, we shall transform
the arithmetical problem into a group-theoretic one, which will enable us to use some famous
results from Galois theory.

1.1 Modules of constant Jordan type

Here, we quickly recall some basic facts about modules of constant Jordan type. A more general
approach is contained in the fundamental article of J. CARLSON, E. FRIEDLANDER and J.
PeEvTosva ([CFP0§]), treating the case of group schemes and a more exhaustive one about
elementary abelian p-groups in BENSON’s book ([Ben16]). In this chapter, G is a finite p-group
and F an algebraically closed field of characteristic p. All modules are supposed to be finitely
generated.

1.1.1 Modules for the cyclic group

Modules of constant Jordan type were introduced in order to properly extend what was already
known for FCj-modules (here C, stands for the cyclic group of order p). Indeed, in this case, a
module M is completely described by the action of a given generator z; of C),, more precisely
we have the following theorem:

Theorem 1.1.1. The FCy,-modules of dimension n (over F) are in bijection with the partition
of n by parts of size no greater than p, up to isomorphism.

Proof. Let M be an FCp-module. By a slight but classical abuse of notation, we will write
x1 for a generator of (), the associated element in FC), and the associated endomorphism in
EndF (M ) .
Now, remember that, since F is of characteristic p, the beginner’s dream is true in FC):
2l — 1= (z1 — 1)P;

however 2! is zero in Cj, so that 1 — Id is a nilpotent endomorphism; it is commonly known
that such morphisms are classified by their Jordan type. The Jordan form of x; — Id gives a
decomposition of M into cyclic FCj-modules. Remark that the Jordan type of 1 —Id does not

depend upon the choice of x1, so that this is well defined, and we can state that two FCj,-modules

having the same Jordan type are isomorphic. Hence the announced classification.
O

Remark. The Jordan type [1]™ ...[p]™ of the morphism z; is called the Jordan type of the
module M.
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Notation 1.1.2. For such a module M, n;(M) denotes the number of its blocks of length j,
where j verifies the inequalities 1 < j < p.

We can easily relate this block decomposition of a cyclic module to the dimension of the
cohomology groups, by the following lemma.

Lemma 1.1.3. Let M be a finitely generated F E1-module, then

M=
3

o,
=

dim HO(Ey, M) =

=S,
[l
—

dim HY(Ey, M) =

<.
ﬂ‘
S
=

The proof of this innocent lemma is left to the reader; despite its simplicity it will be our
key argument in the proof of theorem A, and in the treatment of one of our examples.

1.1.2 Generalities

In order to adapt the previous method to non-cyclic groups, we will use the language of 7-
points. But first, we have to recall some basic facts: let Ay and As be two F-algebras and
let 3: Ay — As be a morphism of F-algebras. The morphism g induces a functor from the
category of right modules of finite type mod(Asz) to the category of right modules of finite type
mod(A;). It is in fact known by all that every As-module M can be turned into an A;-module
using this external law:

x-a;=x-8(a1), Ve M, Va € Ay,
and it is easily seen that this construction is functorial.

Notation 1.1.4. From now on, 8* will denote the functor induced by a morphism 3 between
two F-algebras.

It should be immediately remarked that this functor verifies multiple properties: it is for
instance additive and exact: two small facts we shall make good use of. Keep in mind that
we made the choice to study right modules and not the usual left modules: the reason for this
rather unconventional choice will be put into light in the second section of Chapter 3.
Definition 1.1.5. A 7-point is a morphism of algebra

p:F[T/(T7) — FG,

which is flat, that is: §*(FG) is a projective F[T']/(T?)-module.

Remarks. Two remarks have to be made.

Module structure It should be noticed that F[T'] /(1) is isomorphic to FE, where E; is the
p-elementary abelian group of rank 1. Let us choose a generator v of £ andset ' = v—1 € FEq,
so that the isomorphism between F[T']/(T?) and FE; is simply given by

=T,

Therefore, according to our previous discussion, every m-point [ enables us to give a structure
of FEi-module to every FG-module.
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Flatness condition The flatness condition shall not be neglected: indeed, thanks to it, the
FE;-module §*(P) is projective if P is a projective FG-module. This simple fact has major
consequences relative to the cohomology: 5* induces a morphism of cohomological functors

resg: H(G,—) — H(FEy,—).

Such map is written like a restriction, because it should be thought of as such: indeed, all
expected properties of the restriction exposed in any textbook (for instance [Guil8, Part III])
remain true.

Definition 1.1.6. Let 31, 82 be two m-points.Then the 7w-points 81 and 5o are said to be equiv-
alent if for every module M, i (M) is projective if and only if 55 (M) is projective.

Example 1.1.7. Let us consider more closely the case where G is an elementary abelian p-group
of rank 7, which will be written E,.

It is well-known that given a basis x1, ..., x, of E, the elements denoted X; = z; — 1 € FE,
form a basis of FE, as an F-algebra (i is obviously between 1 and r); more precisely, FE, ~
F[X1,...,X;]/(XP), where (X?) denotes the ideal generated by the various X'. It could be
shown that in this case every m-point is of the form

g: F[T]/(TP) — FG
[T] +— ~€Rad(FE,) °

Now, according to [Car83, Lemma 6.4.], two m-points (1, 32 on FE, are equivalent if and
only if the image of 81 — 33 lies in I?(E,.) -where I(E,) is the augmentation ideal. Thus a 7-point
-up to equivalence- is simply a morphism

g: F[I)(T?) — FG

T] — > biX;
=1

where (b1,...,b) # (0,...,0).
Now, it is time to introduce the modules of constant Jordan type.

Definition 1.1.8. A finitely generated FG-module M is said to be of constant Jordan type
[a1]™ ... [a;]™, if the Jordan type of 5*(M) is [a1]™ ... [a;]™ for every m-point §. Its Jordan
type is called the Jordan type of M. If we omit the block of length p, we speak of stable Jordan
type.

Remark. If M is an F'G-module where F’ is a field of characteristic p which is not algebraically
closed, we say that M is of constant Jordan type if F/ @@ M is of constant Jordan type, where
F’ is of course an algebraic closure of F’.

Examples 1.1.9. 1. Projective modules are a first example; indeed, FG-projective modules
are just direct sums of copies of FG. Since a m-point f is flat, if P is a projective FG-
module, then f*(P) is a projective FEj-module: thus, it is a direct sum of copies of FFE;
or, in other words, of blocks of size p. Hence a projective module is of constant Jordan
type [p]% Note in this case if G is an elementary abelian group, the converse is true:
it is the famous DADE’s lemma. (see [Benl6, Lemma 1.9.5])

2. Here is an example that foreshadows the proof of theorem B. Let I(G)* be the dual of the
augmentation ideal of FG, and let us show directly that it is a module of constant Jordan
type. Indeed, this module is defined by the short exact sequence:

0 F FG—>1(G)" ——=0 ,
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where € is the norm map. Let 8-be a m-point. Since 8* is an exact functor and sends
projective modules to projective modules, by taking a look at the long exact sequence in
cohomology, we have that

dim H' (By, B*(1(G)*)) = 1.
Using exactly the same trick, but one degree lower, and the well-known dimension of I(G)*,
we can compute the following dimension:

dim H(Ey, B*(1(G)")) = .

Therefore, according to the lemma 1.1.3, we get

np(B*(M)) = dim H°(Ey, B*(1(G)*)) — dim H' (Ey, 8*(1(G)")) = 6]

—1.
Furthermore, there is only one block whose size is not p. Because we have the following
equality

dim g*(I(G)*) =dim I(G)* = |G| — 1,
we deduce that the size of this block is p — 1. Thus the module is of constant Jordan

Gl
type [p—1][p] » . We will later state a proposition (1.6.2), which will make obvious that
I(G)* is of constant Jordan type.

Counter-example 1.1.10. Consider the F E3-module given by generators and relations:

M = {afa- XPXE = 0);
this module is not of constant Jordan type. Indeed, consider the following two m-points:

/Blzl“n—>X1, /Bgrl—>Xs

It is easy to see that (31)*(M) has block decomposition [p — 1]P[p]P?~Y), each block of size p
being generated by (x-XgX?f” (with j #p—1and 0 < k < p—1) and the blocks of size p—1 by the
r- X¥ _1X§, whereas 3*(M) has block decomposition [p]pz_l, all those blocks being generated
by the a - X{ X5 where 4,7 € {0,...,p— 1} and (j, k) is different from (p — 1,p — 1). In spite of
it simplicity, this counterexample shall later appear in a more interesting context (see 5.3).

Further elementary examples of modules of constant Jordan type will be given later. The
following proposition from [CFPO0S8| enables us to build more modules of constant Jordan type.

Proposition 1.1.11. The full subcategory ctJH(FG) of mod(FG) whose objects are modules of
constant Jordan type is closed under direct sums, tensor products and taking the linear dual.

Remember that if M is an FG-module, the linear dual M* of M is the module which, as an
F-vector space, is isomorphic to homg (M, F,) and whose module structure is simply given by
the law

frgax—fle-gl), VfeM* Vgeq.

Within only a few lines, it can be proved that the direct sum of two modules of constant Jordan
type is of constant Jordan type. It is less obvious that this class is stable under tensor product
and taking the linear dual (for a proof, see [CFP08, Prop. 1.8, cor. 4.3]). The latest can even
reserve some surprises: M is of constant Jordan type if and only if M* is so, yet the Jordan
type of M is not necessarily the same as the one of M™*!

Counter-example 1.1.12. In [Benl6, Example 1.13.1], for every prime p, Benson gives an
example of an E,-module M of constant Jordan type [2][1], but whose dual M* is of constant
Jordan type [1]3. Furthermore it is not possible to recover the stable Jordan type of M* from
the one of M, indeed set p = 3 and consider the E,-module N = F, ® I(G), where I(G) is
the augmentation ideal. The Jordan type of N is [1][2][3]*""" (according to [Benl6, Theorem
5.4.5]). Always according to the same theorem, the Jordan type of N* is however similar to the
one of N. Hence M and N have exactly the same stable Jordan type but their duals do not.
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This first surprise should give an insight about how unusual the behaviour of the modules
of constant Jordan type can be. There could be no better commentators of this that their own
creators. We quote the introduction of [CFP08]: "The naivety of the approach is somewhat
misleading, for underlying many theorems are somewhat difficult cohomological results."

We hope that what follows in this text is sufficient to convince the reader of the importance of
group cohomology in the study of modules of constant Jordan type. However, the complexity of
modules of constant Jordan type should not be underestimated: we shall only encounter already
well-known modules, but many problems about the modules of constant Jordan type remain
unsolved. For instance, one does not know if, given a stable Jordan type [1]™ ... [p — 1]™»—1,
there exists a module whose stable Jordan type is this peculiar partition. This phenomenon
occurs for very simple Jordan type: in his book [Ben16], D. BENSON points out that the smallest
example of this fact is the stable Jordan type [4][1] for an F1;(C1; x Cy1)-module.

Yet, as we will soon explain, the theory of modules of constant Jordan type for elementary
abelian p-groups may be introduced in fewer words and in an ever more naive way.

1.1.3 An exact structure

The category of modules of constant Jordan type may be seen as an exact category, but not
with the usual short exact sequences. We should consider instead the locally split short exact
sequences.

Definition 1.1.13. A locally split short exact sequence of modules of constant Jordan type is a
short exact sequence of modules of constant Jordan type

!

0 L M—2=N 0,

such that for every m-point 3, the short exact sequence

0 — B*(L) —L= B*(M) —~ B*(N) —=0

is split.

We do not give any example yet. Later, there will be however two noteworthy examples: the
short exact sequence

0——>w_1(Fp) ——w2(Fy) J(K) 0

appearing in Proposition C is not locally split exact, although every module in this short exact
sequence is of constant Jordan type, but if we "shift" it, so that it becomes

00— ws(Fp) —>w(J(K)) —=w_1(F) —=0 ,

we get a locally split short exact sequence.
As mentioned earlier, one of the main interest of those short exact sequences lies in the fact
that we could give a bit more structure to the category of modules of constant Jordan type.

Proposition 1.1.14. The category ctJt(G) endowed with the locally split short exact sequences
is an exact category.

As always, the proof can be read in [Benl6, §5.3].

1.1.4 Another point of view

When G = E,, we could have introduced the modules of constant Jordan type in a more
elementary way, like D. BENSON did in his book ([Benl16]).

Consider (¢;)1<i<n a basis of E,. An FE, module V is but an F-vector space V' endowed
with a group homomorphism ¢: E, — GL(V'). Since ¢ is a group homomorphism, v (e;)? = Id,
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hence 9 (e;) —Id is nilpotent of order at most p. Furthermore this morphism is perfectly defined
by its image on the basis (e;)1<i<n, thus an E,-module V' is just the data of n nilpotent matrices
X1,..., X, whose order is at most p and which commute. Put this together with the description
of m-points that we gave earlier (see the example in §1.1.7), we could have used this definition
instead:

Proposition 1.1.15. The couple (V,{X1,...,X,}) is a module of constant Jordan type if and
only if the Jordan type of the matrix

Xy =3 8X:, B=(Br....B) € FN,...,0)
i=1

1s independent from the choice of 3.

It should be pointed out, that the proposition is not so obvious as one could think at first
glance: indeed numerous choices were made, and it should be proved that they do not affect the
definition at all, which is not trivial. For a complete proof of this, see [Benl6].

Example 1.1.16. Consider V = Fi? on which G = C} acts, let us call X; the matrix of the
action of e; — 1 in a peculiar basis. Those matrices commute and are nilpotent. We then get
that the 10 x 10 matrix

aXq + bXo 4+ cX3 =

b ¢ a ’
a b
c b a
c b
a c

where a,b, ¢ are in an algebraic closure of Fg has constant rank 4, as long as (a, b, ¢) # (0,0,0)
and therefore the module (V, {X1, X2, X3}) is of constant Jordan type.

In fact, this module arise in Galois theory: let K = Qg(\/ﬁ, V-1, \/5), then the module
(V,{X1, X2, X3}) is isomorphic to the Gal(K/Qs)-module K* /K*2.

1.1.5 Associated vector bundles

In [FP11], J. PEvTOSVA and E. FRIEDLANDER associated to every module of constant Jordan
type a vector bundle in a functorial way. Introducing those functors would require a lot of work,
and since they do not play a major role in our study, exhibiting this construction does not seem
useful to the understanding of our results. Therefore we will not explain how they arise, nor
define them: the curious reader may consult [Benl6, Chapter 8|, where the functor called here
7 is called Fo 1.

In this section, we set G = E, for a peculiar r € N. Let PT];1 be the projective space
corresponding to the affine space F[Y1,...,Y,], and let O be its structural sheaf (see [EHOL,
§1.2.4]). We set O(j) = 0%/, and if § is an O-module, we write F(j) = § @0 O(j).

Theorem 1.1.17. There exists a functor U from the category of FE,.-modules of constant
Jordan type to the category of vector bundles over P"I}_l. More precisely, if M is a module of
constant Jordan type [p]™» ...[1]™, then V(M) is a vector bundle of rank my. Furthermore,
this functor has the following properties:

1. U is exact,
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2. it verifies the following relations

B(M*) = B(M),
B(we(M)) = B(M)(-p),

where B(M)" is the dual bundle of G(M).
Example 1.1.18. It could be showed that
V(F) = 0.

1.2 Some basics about the Frattini subgroup

The structure of the pro-p-groups is at the core of our work, we shall recall some facts without
any proof: they will be used along this text, although they will never be explicitly mentioned
after this section. We follow closely [DDSMS99, Chapter 1]: the reader might found the lacking
proofs in it.

Definition 1.2.1. Let G be a pro-p-group. The Frattini subgroup of G is the subgroup
®(G) = ){H|H is a maximal proper open subgroup of G} .
We mention here some of the main interests of the Frattini subgroup.

Proposition 1.2.2. Let G be a pro-p-group. Then its Frattini subgroup verifies the following
properties:

1. the subgroup ®(G) is normal and closed in G.
2. if K is a closed normal subgroup of G contained in ®(G), then ®(G/K) = ®(G)/K.
3. let X be a subset of G then, the following conditions are equivalent:

(a) X generates G topologically;

(b) X J®(G) generates G topologically;
(c) XP(G)/P(G) generates G/P(G) topologically.

The definition above is of little help, we will rather use this useful characterisation:

Proposition 1.2.3. Let G be a pro-p-group, then

®(g) =6r(G,9),

where (G,G) is the derived subgroup of G, which means the normal subgroup generated by the
commutators (x,y), and GP is the subgroup generated by the elements g, where g € G. Further-
more, if G is finitely generated, then GP(G,G) is already closed.

From now on, we shall only consider finitely generated pro-p-groups G, which means that
G/®(G) is finite.

Remark. Let G be a finitely generated pro-p-group. The subgroup ®(G) verifies the following
universal property: let 1 : G — V a morphism of pro-p-groups where V' is an F,-vector space,
then there exists a map ¢ : G/®(G) — V making the following diagram commutative:

G—Y v,
lpr w7
G/9(9)

In other words, G/®(G) is the biggest quotient which is a vector space. Biggest meaning here
that it is of maximal dimension.
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1.3 Local fields

Now, it is time to introduce the extensions which are at the heart of this dissertation. Let k be
a local field which contains a primitive p-th root of unity and let us fix k an algebraic closure of
k. We set K a Galois p-extension of finite type of k whose Galois group called G verifies that
its cohomology ring (with coefficients in F,) is Cohen-Macaulay. Bear in mind that, because of
J. DUFLOT’s theorem ([Duf81]), if G is an elementary abelian p-group which is not cyclic, this
assumption holds. In spite of their ingenuity, such groups play a major role in field theory.

The study of J(K) = K*/K*P will lead us to the study of some other extensions, as we
shall see hereafter. Let us put R = {2 € k|zP? € K} and K® = K[R], so that we have the
following diagram of extensions.

K®

K

k

According to the previous diagram we have the following exact sequence
0 — Gal(K® /K) —— Gal(K®) /k) — Gal(K/k) —=0 .

Therefore it is abundantly clear that G := Gal(K/k) acts on Gal(K® /K) by conjugation.
Furthermore, as an F,G-module Gal(K® /K) is related to J(K) via Kummer theory. Let us
recall the basics.

Remember first that a field extension L/Lg is an n- Kummer extension if it is simply a Galois
extension such that Gal(L/Lg) is an abelian group of exponent dividing n, and if L contains a
primitive n-th root of unity. Like in Galois theory, there is a correspondence theorem.

Theorem 1.3.1 (Kummer tlleory). Let Lo be a field containing a primitive n-th root of unity
and fix an algebraic closure Ly of Lg. The n-Kummer extensions L of Lg contained in Lg are

in 1-to-1 correspondence with the subgroups of L /L{™; moreover the correspondence maps the

subgroup H to the field Lo[a:%, [x] € H|, and is thus order-preserving. Finally, if a field L and
a subgroup H are in correspondence, then hom(Gal(L/Lg),Z/nZ) = H.

See [Guil8, Theorem 1.25]. From this theorem and the previous considerations we can deduce
two key facts (with n = p in both cases).

First, the group Gal(K®) /K) is simply an elementary abelian p-group and in particular an
F-vector space.

Secondly, the theorem applied to the base field K implies, by maximality, that K2 is in
correspondence with J(K) (note that all p-Kummer extensions of K are contained in K(®). It
follows that hom(Gal(K® /K), F,) is isomorphic to J(K), and this is really an isomorphism of
F,G modules: indeed this is the refinement brought by equivariant Kummer theory (see [Guils,
Theorem 1.26]).

A more elaborate result, which we call Tate duality (cf. [Guil8, Theorem 13.21]), states that
J(K) is self-dual, as a module, as long as k contains a primitive p-th root of unity, which is
fortunately the case here.

We summarize this discussion in the following lemma:

Lemma 1.3.2. There is an isomorphism of F,G-modules between Gal(K®) /K), J(K) and
J(K)*.

Notation 1.3.3. From now on, we set J = J(K) = K*/K*?.
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According to the previous lemma and Proposition 1.1.11, instead of trying to study J, we
can turn our attention to its dual namely Gal(K®) /K) and use techniques from group theory.

Let us write L(p) for the largest pro-p extension of the field L, and put G, (p) = Gal(L(p)/L).
Let H the subgroup of Gy, in Galois correspondence with K. It is not hard to see that K®
is in correspondence with ®(H), using the maximality condition defining this extension and the
one defining the Frattini subgroup. We can therefore state the following lemma:

~

Lemma 1.3.4. There is an isomorphism J* = H/®(H), as modules over F,G where G =
Gk(p)/H.

1.4 The main theorems

Thanks to the previous lemma, we have completely translated the problem arising from Galois
theory into a group-theoretic one; not only does this formulation enable us to solve the problem,
but we can now rephrase all major results of this dissertation in the two following theorems.
But before we set the following notation.

Notation 1.4.1. For any p-group G, we set d;(G) = dim H'(G,F,).

Theorem 1.4.2 (First main theorem). Let k be a local field and let Gy (p) be the Galois group
of a mazimal pro-p-extension. Consider a closed normal subgroup of finite index H of Gk (p) and
put J =hom(H/®(H),F,) and G = Gx(p)/H.

We have the following possibilities for the cohomology of G with coefficients in J.

1. Ifk does not contain a primitive pt* root of unity, then for all s € Z:

H(G,J) = H"2(G,F,)
HO(GJ) ~ Fg2(G)+n—d1(G)

2. Suppose that &, € k and H*(G,F)) is a Cohen-Macaulay ring, then we have to distinguish
between two cases

(a) if the inflation map inf: H*(Gal(K/k),F,) — H*(Gx(p),Fp) is zero, the following
isomorphisms hold:

HY(G,J) ~ H*"*(G,F,) e H %G, F,), s>1
HO(G,J) ~ Fg2(G)+(”_d1(G))

(b) if the inflation map inf: H*(Gal(K/k),Fp) — H?*(Gk(p),F,) is non-zero then

Hl(G,J) ~ H3(G,Fp)
H3(G,J) ~ HS+2(G,Fp)®HS_2(G,Fp), s>2
HO(G J) o~ Fg2(G)—1+(n—d1(G)) )

Theorem 1.4.3 (Second main theorem). Under the same hypothesis over k and using the same
notation, the G-module J*

e is of constant Jordan type, and its stable Jordan type is [1], if k does not contain a primitive

p"-root of unity,

e is of constant Jordan type, and its stable Jordan type is [1)* , if k does contain a primitive

p'"-root of unity and G is an elementary abelian p-group.



16 CHAPTER 1. BACKGROUND MATERIAL

Note that in the case where k does not contain a primitive p*-root of unity, there is no such
thing as Kummer theory; therefore there is no isomorphism between K*/K*P and H/®(H),
so that this formulation of the theorem is the only one available. It should be remarked that
J reflects some differences between those fields and their arithmetic. By the bye, note that we
have introduced the following notation:

Remember that for any p-group G, we set d;(G) = dim H*(G, F,,) (see Notation 1.4.1).

The next chapter of the dissertation is devoted to the proof of those theorems (which implies,
in particular, the statements of Theorems A and B from the introduction, of course). Before we
turn to this however, we need to continue with more background material.

1.5 Demuskin groups

The Galois groups of maximal pro-p-extensions of local fields are explicitly known: indeed if L
is a local field such that &, € L, then Gr,(p) is a Demuskin group. A presentation by generators
and relations of such groups was given by J. LABUTE (see [Lab67]), which we recall first for

p#F2 )
Dios = (11, .., as|a] (w1, 22) (w3, 24) ... (w25-1,025) = 1),

where k is the maximal integer such that { x € L and 2s is the dimension of J(L).
When p = 2, the relation in the Demuskin group changes. If the number of generators is
odd, it becomes

2..f _
Difn=2s4+1 = (T1, ..., Tasq1|2705 (T2, 3) (74, T5) . . . (T2s, T2s11) = 1) .
However, if the number of generators is even, the relation is either

f
Diness = (T1,. .., Dos| 27T (21, 22) (23, 24) . . . (T25-1, T25) = 1),

or
!
D} pns = (T, .. ,os|wd (21, w9)xd (w3, 24) . .. (Tos_1,205) = 1).

In each case f is an integer such that f > 2.

We complete this review of the possible descriptions for Gr,(p) with the case when L does not
contain a primitive p-root of unity: in this situation Gr,(p) is just a free prop-p-group ([Ser94,
Theorem 3, II, §5]).

1.6 The stable module category and Heller shifts

We have to introduce some new modules: our key argument is yet very simple (it is just a
short exact sequence), but we have to explain some classical notation and objects. Here we just
follow [CTVEZ03, §2.5 sq.], so we consider a finite group G and a field F (whose characteristic p
typically divides the order of G).

Let M be an FG-module of finite type, let m: P — M an epimorphism from a projective
module onto M. Its kernel denoted Q(M) is called the Heller shift of M; it always exists,
however it is only defined up to a projective summand. That is why we have to introduce
the stable module category mod(FG) whose objects are but FG-modules, and whose hom sets,
written hom, are defined by

hom(M, N) = homga(M,N) /Py .

where Py n is the subspace of morphisms which factor through a projective. Then Q becomes
a well-defined functor on the stable category.

We should immediately remark that we can iterate  and set without ambiguity Q'™(M) =
Q(QY(M)) and so on. Dualizing this construction (i.e. taking the cokernel of a monomorphism
from M into a projective module) gives birth to Q (M) and then we can again iterate such a
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construction. We would like to emphasize the fact that (M) is not well-defined in the category
of modules but in the stable category; usually w(M) will be our notation for some module whose
image in mod(FG) is isomorphic to (M), though we will repeat this for emphasis.

Furthermore the previous construction is natural: 2 is an endo-functor of med(FG) and an
equivalence of category whose quasi inverse is, as expected, 2~ '. We may hope that it adds a
little bit of structure to mod(FG). In fact (mod(FG), Q1) is a triangulated category: given a
short exact sequence in mod(FG)

0 LN 0,

it is possible to build maps (a, B,’y) in the stable module category in such a way the class of
a (resp.f) is & (resp. ) and v: N — Q7 !(L), so that the distinguished triangles are all the
triangles isomorphic to one of the form:

L%y N Lo, (1.1)

We summarize in the following proposition :

Proposition 1.6.1. The additive category mod(FQ), equipped with the functor Q=1 and whose
distinguished triangles are the ones described above, is a triangulated category.

Remarks.

1. One of the main interests of € is the fact that it may give a new definition of Tate
cohomology, namely

H*(G, M) ~ hom(Q**(F,),0%(M)), Vs, ke€Z.

2. Let us consider the following exact sequence in mod(FG) :

0 Loyl nN 0.

Since the cone of a map in a triangulated category is unique up to isomorphism, the module
N is stably isomorphic to the cone of a.

We will consider in particular the stable modules Q71(F) and Q?(F) when G is a p-group,
indeed, when Gy (p) is a Demuskin group, the crucial statement will be the existence of a short
exact sequence of modules

0 ——=w-1(F)) —>wp(Fp) —J*—0, )

which will enable us to compute the cohomology groups H'(E1, 3*(J*)) for every 7-point .
The precise description of those modules will be detailed hereafter (see the discussion in §2.1.)
Indeed it is worth noting that 5*: mod(F,G) — mod(F,£;) induces a functor of triangulated
categories between mod(F,G) and mod(F,E), since it is flat.

It is also noteworthy that the category of constant Jordan type modules is stable under
Heller shifts: to be more precise, we can state the following theorem:

Theorem 1.6.2. A module M is of constant Jordan type, if and only if any module which is
stably isomorphic to Q(M) is of constant Jordan type.

A proof can be found -as for everything dealing with modules of constant Jordan type- in
[CFPO08]. Since the trivial module F,, is obviously of constant Jordan type, the modules wa(F)
and w_1 (F;,) which appear in the previous exact sequence are also of constant Jordan type: even
better, we know their Jordan type, such as stated in the following remark.
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Remark. Every module which is stably isomorphic to wy(F)) is of constant Jordan type and its
stable Jordan type is [1] (see [CFP08, Theorem 5.6]).

For what concerns the module w_;(F,), it is already known to the reader: as it shall be
proved later, it is I(G)* whose stable constant Jordan type is [p — 1] (see Example 1.1.9).

As pointed out earlier, for an object M in mod(F@G), there are many modules in mod(FQ)
whose equivalence class in the stable category is isomorphic to Q(M). Yet, there exists a
module without any projective summand in it and which is stably isomorphic to Q(M). By a
very slight abuse of notation, we denote such a (usual) module verifying both conditions Q(M):
indeed asking the absence of projective summand ensures the uniqueness of a representative
(see[Car96, p.14]). To be precise, in this dissertation if we speak about the module (and not the
stable module) Q!(F,,) we refer to the augmentation ideal of G written I(G) (and Q~1(F,) its
dual), moreover Q?(F,) will be the kernel of the application

(FpyG)lG = (eg,0€ G) — I(G)
eg — Xg=g-1"

We will encounter this module later (see Chapter 3).

1.7 A first half of the theorem

Now we can prove half of the theorems, which is in fact a simple rephrasing of a a well-known
theorem, so well-known among the specialists, that it is hard to know who should take credit
for it. A reader interested by this case in the history of a theorem could refer to one article from
W. MacnNus ([Mag39]), a note on this article by N. BLACKBURN ([Bla69]), a letter in J.-P.
SERRE’s correspondence and an article of W. GAscHUTZ ([Gasb4]).

Proposition 1.7.1. Let F;, be the free pro-p-group of rank n and H be a closed subgroup of Fy,.
Let G = F,/H, then H/P(H) is stably isomorphic as a G-module to Q?(F)).

A conceptual proof of this fact can be found in [Fri95] and a more down-to-earth using Fox
derivatives is implicitly present in [Bla69]. Here, the word "implicitly" means that the reader
has just to add "pro-p" every where it makes sense and read "Frattini subgroup' instead of
"derived subgroup". Later in Chapter 3, we will give a very elementary proof, not exactly of
this proposition, but only of a case covered by it. Yet this peculiar one will be quite useful,
especially in Chapter 4.

This proves the main theorem when Gy (p) is a free pro-p-group. Indeed, by definition

HY (G, Q*(Fy)) ~ H* (G, Fy);

moreover such module is of constant Jordan type and its stable Jordan type is [1], as pointed
out in the remark above (in §1.6, after Theorem 1.6.2). Only one piece of information is missing:
the dimension of the fixed points of (H/®(H))* under the action of G. Thanks to the spectracl
sequence associated to the short exact sequence

1 H Fn G 1

we have the following five term exact sequence ([NSWO08, Cor. 2.4.2]):
0— Hl(Gva) - Hl(]:nv Fp) - Hl(,}:[?Fp)G —>H2(Ga Fp) - Hz(]:’na Fp) .

It is well known that H?(F,,F,) = 0 ([Ser94]) and that H'(G,F,) = di(G) by definition,
because we set d;(G) = dim H'(G, F,) (see Theorem 1.4.2). Now, let us inspect H(H,F,),
we have indeed

HY(H,F,)“ (hom(#H,F,)) (F, is a trivial module)

G
hom(H /®(H),F,)¢ (by the property of the Frattini subgroup)

~
~
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This litany of isomorphisms will be often used in this dissertation. Therefore we can state the
following equality . .
dim H(G, (H/®(H))*) = d2(G) + (n — di(Q)) .

We then need this basic lemma:

Lemma 1.7.2. Let G be a finite p-group, and let M be a finitely generated FpG-module. Now
set
n = dim H°(G, M) — dim H°(G, M),

then M = M; @ (F,G)" where M, is an F,G-module without any projective summand.

Proof. Let us decompose M as
M=M P,

where P is a projective module and M; has no projective summand: such decomposition may
always be found, since P is a projective FG-module, hence an injective one. In fact, we may
suppose that P = (F,G)™, since projective F,G-modules are free. We would like to show that
m = n. To this end, let us remark

H(G, M) = H°(G, M)).
Since dim fIO(G, Mi) +m = dim H(G, M), it remains to prove that
dim H(G, My) = dim H°(G, M) .

If this were not the case, there would be an element x € M such that 2 - N # 0 (where N is the
norm) so that there would be a projective summand in M; (see [Guil8, Lemma 1.31], which is
absurd. 0

Now, we can properly compute H°(G,H/®(H)). Indeed, since H/®(H) is stably isomorphic
to Q%(F)), its dual is stably isomorphic to Q72(F,), hence

dim H(G, (H/®(H))*) — dim H*(G, (H/P(H))*) = n — di(G) .
where d;(G) = dimp, H'(G,F,). According to the previous lemma
(H/®(H))* = Q2(Fp) @ (F,G)" ",

where Q72(F},) is a module without any projective summand and stably isomorphic to Q~2(F,),
hence its dual is isomorphic to Q%(F,). Since there is no projective summand

dim H%(G, Q7 (F,)*) = dim H°(G, Q" 2(F,)*) = dim H~%(G, F,) = d;(G).
Now, we can easily conclude:
dim HY(G, H/®(H)) = n — di(G) + dim H°(G, Q7*(F,)*)
Hence we obtain the expected result:

dim HY(G, H/®(H)) =n .

Alternatively, we could have used [Gasb4, Satz 2].
It now remains to confront the case where Gy (p) is a Demuskin group.
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Chapter 2

Proof of the main theorems

In this chapter, as in the previous one, p is a prime number, k is a local field and Gy (p) is
the Galois group of a maximal pro-p-extension of k. From now on, we assume that G (p) is a
Demuskin group. In order to simplify our proofs, we will assume below that p # 2, unless we
explicitly write otherwise. All results in this chapter do still remain true when p = 2, with some
slight changes which we will indicate along the text. Let us fix then n and k such that

gk(P) = Dk,n .

We treat this as an equality rather than an isomorphism, which is tantamount to choosing
generators for the group once and for all.

Our objective is the proof of Theorem 1.4.2 and Theorem 1.4.3, in the case when ¢, € Kk,
so that the above group-theoretical hypotheses are in force. As previously mentioned, our key
argument is a short exact sequence: we shall prove it first, and then draw the consequences from
it. No mention of Galois theory will be made, since we have already translated the problem of
studying J(K) = K*/K*? into a problem of group theory.

Throughout this chapter, we fix a finite p-Galois extension K/k, and we denote by G its
Galois group. We assume that G is a quotient of Dy, ,, and we denote by H the normal subgroup
of Dy, such that G = Dy, /H. In section 2.2, we suppose that G is non-cyclic, whereas we
assume the converse in section 2.3.

2.1 The short exact sequence...

As previously recalled, the Demuskin group Dy, is but a quotient of the free pro-p-group on n

nk
generators z1, . . ., T, denoted here F,,, by the normal subgroup generated by z (z1,z2) ... (zn_1,2n).
This element will be denoted d and we set

7 Fn — D,

the canonical projection. If p = 2, then ¢ should be changed, and we have to distinguish multiple
cases (see 1.5), however what follows remains true without any change.
Now, let us construct the epimorphism in the short exact sequence appearing in Proposition
(', which means a map from a module ws(F,) (stably isomorphic to Q?(F,)) onto J*. Remember
that J* = H/®(H). So we set
H=r"1(H).

According to Proposition 1.2.3, there exists an F-linear map from H/®(H) onto H/®(H).
Moreover, this map is a morphism of G-modules.

Indeed, first, note that 7,/ # is isomorphic to G: since ker 7 is equal to the normal subgroup
generated by ¢, denoted here by Gr(d), and § lies in H, we have that 7: F, — Dy, ,, induces an
epimorphism from F,/ H onto Dy /M, and by definition of H it is obviously a monomorphism,
hence it is an isomorphism of groups.

21
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Furthermore, the induced map from H/®(H) onto H/®(H), which is written g, is G-
equivariant, since the action on those modules is but the action by conjugation. Thus 7y is
an epimorphism of modules from H/®(#), which is stably isomorphic to Q?(F,) according to
Proposition 1.7.1, onto J*.

Notation 2.1.1. Since we have fixed an extension K/k, we have fixed the subgroup H (and
consequently ). Therefore from now on, when we speak of the module w(F,) we mean H /®(H)
as an J,,/H-module, unless we explicitly say so.

In order to prove the short exact sequence, it remains to study the kernel of 7w4: it is done
in the following lemma.

Lemma 2.1.2. There ezists a unique cyclic F,G-module of dimension |G| —1 (up to isomor-
phism). It is stably isomorphic to Q_l(Fp), and in fact isomorphic to the following module given
by generators and relations

<O£‘Oé N = 0> )
where N denotes the norm
N:= Z g.
geG

Proof. Let us translate one by one the hypothesis of this lemma: suppose M is a module verifying
the conditions of the lemma; since M is cyclic, there exists an epimorphism F,G — M. Because
of the dimension of M, its kernel is of dimension 1, it is of course F,, both as a vector space
and as a module. Therefore the following sequence is exact

0 F, F,G M 0,
which, by definition, means
M~ Q YF,).
Now, note that the monomorphisms from F), into F,G, are just the f.: 1 — ¢N, where c € F,
and N is the norm. Hence the lemma. O

This module, which is simply I(G)*, will be denoted by w_;(F,) in the rest of the paper.
Now, we would like to verify step by the step the lemma on ker m3,. Let us first address the first
hypothesis of this latter.

Lemma 2.1.3. The kernel of the map from H/®(H) onto H/P(H) is monogenous and it is

generated by 4], the class of & modulo ®(H).

Proof. Consider the canonical projection pr: H — H/®(H) and set 7: H — H/®(H) such
that @ = pr o m. We claim that ker 7 is the normal subgroup of H generated by d and ®(H).

Take = € ker 7, then we have 7(x) € ®(H). Now consider a lift T of this element in H. If it
is zero, since ker m = Gr(9), then = € Gr(d). If this is not the case, then T can be written as a
product of A and (hj, hs) where h;, hj, hs € H, hence x can be written as a product of elements
of the form Bf, (ﬁj, BS) and &, where h;, ﬁj, hy are in H. Hence we have proved the claim.

Note now that ker w3 = ker #/®(#), therefore it is generated by [d].

O

We then have to compute the dimension of J*.

For every finitely generated pro-p-group U, di () denotes the minimal number of topological

generators of U, or equivalently the dimension of H!(U, F,) or the one of U /®(U) (see [Ser94,

4.2]).

According to [Koc02, Example 6.3] and to [Ser94, Exercice 6 p.41], the following formulae
hold: ~ R

{ di(H) = (Fu:H)(n—1)+1 2.1)

di(H) = (Dgp:H)(n—2)+2 ’

Since we have that (F, : H) = |G| = (D, : 1), the dimension of ker 7y, is exactly |G| — 1,
therefore we can use the lemma and conclude. Thus the following proposition holds:
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Proposition 2.1.4. The following sequence is exact:

0——=w_1(F,) —=wy(F, ) s JF——0 . (2.2)

Remark. It should be pointed out that, in the previous exact sequence, wy(F,) does not nec-
essarily verify the minimality condition we have set in §1.6, whereas w_;(F,) always does so.

From now on, we fix k¥ to be the map in the previous short exact sequence: it will play a
major role, before disappearing at the end of this chapter.

2.2 ...and its consequences

Now, we are in possession of the required tools to show the main theorems. We will have to
distinguish between two cases, according as the morphism k in the short exact sequence of
Proposition 2.1.4 is stably zero or not.

2.2.1 When & is stably zero
In mod(F,G) the triangle

QYFp) == Q*(Fp) — J* —= Q7 %(F,) ,

is distinguished according to [HJ10, 3.1.]
If k is stably zero, then, according to [HJ10, 4.4.], in the stable category the following
isomorphism stands

T = QX (Fp) @ Q72 (Fy).

Thus J* is of constant Jordan type and its stable Jordan type is [1]?, without any condition
on the group G. Furthermore, since x = 0 stably, the beginning of the long exact sequence of
cohomology is but

0—s HO(G?W—l(Fp)) - HO(Gv WZ(FP)) - HO(G7 J*(K)) - HI(G7 w—l(Fp)) —0,

hence we get
dim HO(G, J(K)*) = da(G) + (n — d1(Q)),
where d;(G) = dim H(G,F,).
We have therefore shown a little more that we announced:

Proposition 2.2.1. Remember K/k is a finite Galois extension of a local field k such that
& € k. If the map k is stably zero, then J(K) is isomorphic in the stable module category to

J(K) ~ Q*(F,) @ Q(F,) .

Hence J(K) is of constant Jordan type [1]? and the cohomology groups of G with coefficients in
J(K) are in fact

H(G, J(K)) = HYUG.F,) @ H %G, Fy)

HO(G, J(K)) ~ F 2(G)+d1 (G ) (n— ( )

So we have proved (2)(a) of Theorem 1.4.2, and a little more than the second statement
of Theorem 1.4.3 under the current assumption on . Remark that we did not need to make
further assumptions on G in order to prove this proposition: it is an improvement of both main
theorems.
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Let us discuss a bit more the structure of J(K). We certainly know that in the category of
(not stable) modules, we have

J(K)~Q*F,) @ Q *(F,) @ P,

where P is a projective module. Bear in mind that we write Q¥(F,) for a module which is stably
isomorphic to QF (F,) and not containing any projective summand. It is possible to compute
the number of copies of F,G contained in P:

Proposition 2.2.2. When k is zero, the G-module J(K) can be decomposed in the following
way
J(K) = Q2(F,) & Q2(F,) & (F,G)"2h().

Proof. As previously proved, we have a stable isomorphism
J(K) ~ QQ(FP) ® 9_2(Fp) )

it is therefore sufficient to compute the number of copies of the free module in J(K). Using
lemma 1.7.2, we get that this number is equal to

dim H(G, J(K)) — dim A%(G, J(K)) = da2(G) +n — d1(G) — da(G) — di(G),
because we have clearly set that
0 2 ~ f0 2 o Th(@)
0GP (Fy)) ~ HG,0F,) ~ Ty
HY(G.Q%(F,)) =~ HYG.Q2(F,) = F©
Which concludes the proof. O

It should be remarked that this proposition gives us a necessary - but not sufficient - condition
on (7 in order for k to be zero: as it is quite convenient, we promote this small remark to a
corollary.

Corollary 2.2.3. If k is stably zero, then 2d,(G) < n.

For example, note that if K/k is the maximal p-elementary abelian extension, then d;(QG)
is equal to n the minimal number of generators of Gyx(p) = Dk . According to the previous
corollary, it is not possible for x to be stably zero; hence K*/K*P is never stably isomorphic
to Q%(F,) ® Q2(F,), as will be clear from the study of the alternative case, to which we turn
now.

2.2.2 When & is stably non-zero

If x does not vanish in the stable module category, we will proceed in two steps: first, we shall
draw the consequences of the short exact sequence of Proposition 2.1.4 in cohomology, secondly
we shall prove that J(K) is of constant Jordan type. Let us suppose from now on that  is not
stably zero.

Proposition 2.2.4. We have the following equality
dim H°(G, J(K)) = do(G) + (n — d1 (G)) — 1.
Proof. Note that in the long exact sequence in cohomology, the map
HY(G,w-1(Fp)) — H'(G,w2(Fp))

is not zero. Indeed, remark that the following diagram is commutative

—[x]

HI(G7 w—l(Fp)) —H! (G7 4"")2(]?17))
NG, F,

ﬁ?(c‘,‘*, Fy) )
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However, by Tate duality [Bro94, §VI.7], the pairing given by

ﬁi(GvFl)) ® I:I_i_l(Gv FT)) — I:I_I(Gv Fp) = Fp
a®b — a-—b

is non-degenerate. Therefore the previous map is non-zero, and consequently it is an epimor-
phism, for H!'(G,ws(F,)) ~ F,. Thus the beginning of the long exact sequence of cohomology
is just but

0—> H(G,F,) —> H(G,wn(F,)) —> HY(G, F,) —> HX(G,F,) —> [ (G, F,) —0
Hence we obtain the announced equality. O

Now, we have to make further assumptions in order to compute the cohomology groups.

From now on, in this chapter G is a p-group such that H*(G, F)) is a Cohen-Macaulay ring:
since this hypothesis is - as far as we know - quite uncommon among the literature in Galois
theory, we shall sometimes recall this hypothesis in order to lay emphasis on it. Moreover, in
this section, we only study J(K) under the hypothesis that G is not cyclic; when G is cyclic of
order p we refer to §2.3.

Lemma 2.2.5. Let s,j € Z such that j —s > 0 and let v: ws(Fp) — wj(Fp) a map of
modules, where ws(Fp) and w;(Fy) are any modules stably isomorphic to Q°(F,,) and QI (F)).
Then consider the distinguished triangle in the stable module category

O3 (Fp) —— QI(F,) — C,, — Q5 1(F,) . (2.3)

If G is not cyclic and such that H*(G,Fp) is a Cohen-Macaulay ring, then in the long exact
sequence of cohomology the following maps

HY(G,ws(Fp)) — HY (G, wi(Fp)), 1>j+1 or 1<s—1
are zZero.

Proof. Three things shall be remembered. First, bear in mind that w;(F,) denotes a module
which is stably isomorphic to the object Ql(Fp) in the stable category.

Secondly, for every pair of integers nq, no, there exists an isomorphism between H "(G,Fp)
and hom(Q"+"2(F,), Q"2(F,)). If & is an element of hom(Q™"*"2(F,), 2"2(F},)), by [x] we mean
the corresponding class of cohomology in H "(G,Fp).

Thirdly, if a, b are two cohomology classes respectively of degree n; and na such that a = [o]
and b = [] where a: QU2 tn3(F ) — Q213 (F,) and §: Q"21"3(F,) — Q"3(F,), then
a—b=laof]. ([CTVEZ03, §4.5])

Now, the short exact sequence (2.3) gives birth to a long exact sequence in the stable-module
category ([HJ10, Prop. 4.2]), which is but the long exact sequence in cohomology. Let us take
a closer look to it:

My

... = hom(F, 0*7/(F)) hom(Fy, O/ (Fp)) — hom(F), Q7(C,)) —

—— hom(F), Q‘Q_I_I(Fp)) —— hom(F,, Qj_l_l(Fp)) -

However the application defined by

my:  hom(Fy, Q°7(Fy)) — hom(Fp, Q/7(F,))
f— fon

S~
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is simply the cup product by [y] € H*7(G,F,) from H5(G,F,) to HI(G,F,). Now, it is
known [BC92, Thm. 3.1 and Lemma 2.1, under the assumption that H*(G,F)) is a Cohen-
Macaulay ring, that such cup products are zero, as soon as [ < s ([BC92, Thm. 3.1]) or [ > j

([BC92, Lemma 2.1]). Hence we get the proposition.
O

Remarks.

1. If p = 2, in order to apply [BC92, Thm. 3.1 and lemma 2.1}, we have to assume that G is
not a generalized quaternion group.

2. Note that we had to suppose that H*(G,F,) was a Cohen-Macaulay ring in order to
control the behaviour of the cup product by [k].

Corollary 2.2.6. Let G be as in the lemma. If M is an F,G-module fitting in the following
exact sequence
0——w_1(F)) —>ws(F)) — M —0 , (2.4)

then the Tate cohomology groups with coefficients in M wverify

(G, M) = H*T(G,F,) © H72(G,F,) Vs,5>2, ors<—3.

Proof. 1t is sufficient to take a look on the long exact sequence in cohomology and apply the
previous lemma. 0

Therefore, we have already proved another big part of our theorem: the computation of
the cohomology groups of degree higher than 2 (and lower than —4) is done and conform to
what was announced in case (2)(b) of Theorem 1.4.2. Let us now address the case of the first
cohomology group.

Proposition 2.2.7. The groups H' (G, J*) and H3(G, F,) are isomorphic.
Proof. Let us again look at the long exact sequence in cohomology. Remember that
H'(G.w_1(F,)) — H'(G.ws(F,)

is an epimorphism according to Tate duality, since we have supposed that x is not stably zero
([Bro94, §VI.7]). Therefore we may write

0— H'(G, J(K)) — H*(G,w_1(Fp)) —= H*(G,ws(Fp)) — ...
and as stated in lemma 2.2.5 the arrow
H*(G,w-1(Fp)) — H*(G.wa(Fy)).,
is zero, hence the long exact sequence in cohomology gives us
0— HY (G, J(K)) — H*(G,w_1(F))) —=0

which concludes the proof.
O

Now the proof of Theorem 1.4.2 is finally complete, in all cases. It is time to address the
proof of Theorem 1.4.3. Let us recall a proposition due to D. BENSON [Benl6, Proposition
8.12.1]
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Proposition 2.2.8. Let 8 be a w-point and G = E,, where r > 2. If ( € ﬁ_l(Er,Fp) with
1> 0, then resg(C) is zero.

Now, we can prove the promised theorem.

Theorem 2.2.9. Let K/k be an elementary abelian p-extension. If K/k is not cyclic, then
JK)* = K*/K*? is a Gal(K/k)-module of constant Jordan type. Furthermore, its stable
Jordan type is [1)%.

Proof. We recall that if M is an Ei-module, n;(M) denotes the number of blocks of size j in the
decomposition of M (see Notation 1.1.2), furthermore it is known that dim J(K) = 2+ |G|(n—2)
(see (2.1)), where n is the minimal number of generators of Gi(p) = Dy, . Therefore our goal is
to prove that nq(8*(J*)) = 2 and n,(8*(J*)) = (n — 2)'%' for every m-point 3.

Now, remember that in the exact sequence

0——w_1(Fp) L>oug(Fp) —J"——=0,

the map & is in fact a cohomology class in H “3(Ey, F,). We have previously remarked that in
the long exact sequence of cohomology the maps

‘ﬁl(Gaw—l(Fp)) — ‘E’l(G7w2(Fp)) vie Za

is the cup product by [k] € ﬁ_?’(Ek, F,).

So, let 3 be a m-point. Since resg([4]) is zero according to the previous proposition, numerous
morphisms are zero in the long exact sequence in cohomology. To be more precise, it leads to
the following short exact sequence for all [ € Z:

0 —— H'(Ey, 5" (wa(Fy))) — H'(E1, (")) —= H By, B (w-1(Fy))) —0 .

Since a m-point induces a morphism of triangulated category, 5*(2(M)) = Q(B*(M)), so that
the leftmost and rightmost groups in the previous short exact sequence are but F,. Hence we
deduce this precious piece of information:

H'(Ey, B(J%)) = H' (Ey, 8*(J*)) = F}.

Thus by Lemma 1.1.3, we know that for every m-point 3, 8*(J*) has in its decomposition
exactly two blocks whose size is not p. It remains to prove that their size is exactly 1. To this
end, let us compute the dimension of HO(Ey, 8*(J*)).

Knowing the nullity of the map H?(Ey, 8*(Q71(F)))) — H2(Ey, Q*(F,)), the long exact
sequence in cohomology gives us the following exact sequence:

0 ——= HO(Ey, f*(w-1(Fp))) — H(E1, f* (w2 (Fp))) HO(Ey, *(J*))

|

0 — HY(Ey, B(w 1 (Fy)))

Since we know both the dimension of w_;(F,) and wy(F,) and their stable constant Jordan
type (resp. [p — 1] and [1]), we deduce

dim H(Ey, B*(w-1(Fp)) = %
dim HO(Er, 8 (w2(Fy)) = (n—1)- G
dim H' (B, *(w-1(Fp)) = 1

Injecting these piece of information in the previous exact sequence we obtain

—@):2+(n—2)|—G|,

dim HO(Ey, 3*(J%)) = 1+ ((n — 1)'%’ 1=t ;
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hence we get the following equality:
NP G|
np(B*(J7)) = (n — 2)7-

As previously remarked, we know that in the decomposition there are two blocks whose size
is not p. Let #1 and £y be their size; of course, we have

dim J* = ny(8*(J%)) -p+ 41 + Lo
Because we already know the dimension of J* (see (2.1)), this leads to
2=101+10s.
We deduce that /1 = ¢5 = 1, hence ny(8*(J*)) = 2, as expected. O

This completes the proof of Theorem 1.4.3.

Remark. A peculiar case is worth noting: if the absolute Galois group has p-rank two, the
module J* is of dimension 2 according to the previous computation of the dimension, and since
it is of constant Jordan type [1]?, it is simply isomorphic as a module to F,, x F,!

Furthermore such case is not a pathological made-up one, indeed consider k = Q(¢,), with
¢ # p. In this case, according to [Guil8, Theorem 4.8], k™ /k*? is of dimension 2, hence Gy (p)
is generated by two elements.

2.2.3 On the vanishing condition

The condition regarding s, as natural as it can be in this text, is not easy to check nor to express
in few words, therefore we will try to find an equivalent condition and give criteria in order to
distinguish between the two cases.

Proposition 2.2.10. When K/k is a finite non-cyclic p-Galois extension, such that Gal(K/k)
is not a quaternion group neither a cyclic one and the ring H*(Gal(K/k),F)) is Cohen-Macaulay,
the map k: w_1(Fp) — wa(F)p) is stably zero if and only if the following inflation map

inf: H*(Gal(K/k),Fp) — H*(Gi(p), Fy),
is also zero.
Proof. The spectral sequence associated to
l—H——Gk(p) —G——1
yields the five ter exact sequence:
0—— HY(G,Fp) — H'(Gx(p).Fp) —= H' (1, Fp)Y — H*(G,F,) — H?*(Gx(p), F)p) .

Remember here that Gy (p) = D, where the integers k and n are fixed, so we have that
H'(Gk(p), Fp) = FI' and H*(H,F,)¢ ~ H(G,J). Now, let us suppose that « is stably 0, in
this case dim H(G, J) = d2(G) +d1(G) + (n — 2d1(G)) (according to Proposition 2.2.1). Hence
by injecting these piece of information, we have in fact that the inflation

inf: H*(G,F,) — H*(Gx(p),F))

is zero.
The converse is similar.

O

Remark. The previous condition echoes to the one introduced by J. MINAC, J. SWALLOW and
A. ToprAz in [MST14, Theorem 2].
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2.3 When G is cyclic of order p

We suppose here that p # 2.

The techniques we used did not really cover an already well-known case: when K/k is a
cyclic extension. Although the structure of those modules was already described first by D.
K. FADDEEV ([Fad60]) and then by J. MINAC and J. SwAaLLOW ([MS03]), we will give a proof
which uses our techniques. Indeed only few details shall be changed in the previous ones, in
order to achieve this goal.

Note that if in the short exact sequence

0 ——w_1(Fp) L>W2(Fp) J(K) 0

the map & is stably zero, then J(K) is stably isomorphic to Q%(F,) & Q~2(F,): since in Proposi-
tion 2.2.1, we only had to assume that G was a finite p-group. As remarked, the cohomological
condition was first used in the second half of the proof of Proposition 2.2.5.

The only thing which remain unknown is the structure of J(K), when « is not stably zero.
We address this issue in the following proposition.

Proposition 2.3.1. Let K/k be a cyclic extension of degree p. If the map k is not stably zero,
then J(K) has stable Jordan type [2].

Proof. We shall mimic the previous proofs. We claim that in the long exact sequence in Tate
cohomology associated to the short exact sequence

00— w1 (Fp) —ws(Fy) J(K) 0,

the morphisms . '
fir H(Cp,w-1(Fp)) —> H'(Cp, w2 (Fp))

are isomorphisms. Indeed as pointed out earlier in the proof of 2.2.5, according to [CTVEZ03,
§4.5.], those morphisms are but

Ji ﬁi(cpvw—l(Fp)) = FIHl(Cp’Fp — ﬁi(cvaZ(Fp)) = ﬁi_z(cpv (Fp)
a — [k —a '

However, since the cohomology is periodic for a cyclic group, the cup-product by a non-zero
class is an isomorphism ([Bro94, §VI1.9]), hence the claim.

A f N A A~
.= HN(Cp w1 (Fp)) —— HY(Cp, w2 (Fp)) —= H'(Cyp, J(K)) — H*(C), W—I(Fp)ff_> e
by using the definition of w_;(F;), w2(F,) and the claim above we get that
H'(Cp, J(K)) = H*(Cp, Fp)) = Fp,

Now, since for i > 1, we have that H'(Cp, M) =~ I:Ii(C'p,M), we may apply Lemma 1.1.3, as
earlier. Thus J(K) has exactly a block whose length is not p, but according to the computation
of the dimensions made in (2.1), we have

dimJ(K)=2+(n—1)-p,

where n = dim H'(Gk(p), F); therefore the block is of size 2.

This alternative raises again the question of the inflation.

Proposition 2.3.2. Let K/k be a cyclic Galois extension of degree p. Then J(K) has stable
Jordan type [1]? if and only if inf: H*(Gal(K/k),F,) — H?(Gk(p),F,) is zero. Conversely,
the inflation is not zero if and only if J(K) has stable Jordan type [2].
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Proof. Fix K/k a cyclic extension and set H = Gal(k(p)/K). Remember that k(p) stands for
a maximal pro-p-closure of k. We have an obvious short exact sequence

1 M Diom c, 1.

The spectral sequence associated to this short exact sequence yields the five term exact sequence:

0—— HY(Cy. Fy) —= H'(Dyp, F,) —= H(H.F,) — H2(Cy, Fy) — (D Fy) |
Again, the usual litany of isomorphisms, already seen in the proof of Lemma 1.3.4, leads to
HY(H,F,)% = J(K). Therefore, we have the following equality

P
dim H'(H, Fp)? = > ni(J(K)),
i=1
where n;(J(K)) is the number of blocks of size i in J(K).
If k is stably zero, then there exists 2 blocks of size 1 and n — 2 blocks of size p, hence
dim H(H,F,)? = n. So, the five term exact sequence is

0 F, Fl! F! H%(Cp, Fp) — H2(Dy, 0, Fy)

A quick inspection shows that inf is zero.
However if x is stably non-zero, then dim H'(#, Fp)cf’ = n — 1, so that by looking at the
exact sequence

0 Fp Fg Fg_l H2(CP7FP) l16>P12(,Dk,na]~:‘p) )

we know that inf: H?(Cyp, F,) — H?(Djp, F)) is a monomorphism, however since dim H*(C), F,) =
dim H?(Dy ., Fp), it is an isomorphism. O

Remark. Tt should be pointed out that if J(K) has stable Jordan type [2], it has Jordan type
[2][p]" 2, whereas if J(K) has stable Jordan type [1]?, it has Jordan type [1]%[p]" 2.



Chapter 3

The Heller shifts of the trivial
module

In this chapter, p is an odd prime number, E,, is an elementary abelian p-group of rank n, and
we write simply F, for the trivial £,-module. We start by giving a presentation by generators
and relations of certain modules Q“”(Fp), for s € Z, which are stably isomorphic to Q°(F),) and
verify the minimality condition introduced in §1.6. According to our conventions, described
right before §1.7, we should have named them w,(F)), and subsequently Q°(F,): in order to
avoid any confusion however, as long as we have not proved that they are stably isomorphic
to Q°(F,) and that they verify the minimality condition, we call them QS(FP), but as soon
as it is done, we will forget the tilde. Then in the second part, we revisit Q*(F,) from a
completely different viewpoint. Namely, we start from a free pro-p-group of rank n, denoted F,,
and consider M, = ®(F,)/®?(F,) as a module over E,, = F,/®(F,), where we have set
®?)(F,) = ®(P(F,)); working directly with commutators, we find a presentation for M,, which
turns out to be precisely the presentation for Q*(F,) considered earlier. As a result, M, is of
course isomorphic to Q2 (Fp). Note that this is a particular case of Proposition 1.7.1.

Thus we do not make any mention of Galois theory in the next paragraphs. Yet, the material
in this chapter paves the way for a closer study of J(K).

3.1 The modules Q*(F,)

We start with the case n = 1. It is well known that there is a projective resolution of F), as
an F,F, = F,C}, module which is periodic, and indeed of the form

p—1
Tz X)) r—x- X1

. F,B 2N poR L L FUR, F B — -

Let us be more precise. In degree s > 0 we take a copy Ps of the free module of rank 1, we
take P_; = F,, and define Dy: Py — P,_; by Dy(z) = - X if s is odd, and Dy(z) = z- XP™*
if s is even and positive, while Dy is the augmentation.

By definition, we see that for s > 1, Q%(F,) := ker(Ds_1) = Im(D;) = Py/ker(Dy) is a
model for Q°(F,). So Q%(F,) is a submodule of P;_1, but more importantly for us, it is a quotient
of Ps. It is thus “presented” as having one generator (the generator for Ps), and one relation
(the image of the generator of Ps;q under Dy, which generates all of Im(Dg41) = ker(Dy)).

We need some notation. It may appear surprising at first, but will generalize well to other
values of n. So we consider the graded commutative ring P, = FpE1[(,n], where the sub-
ring F\, /1 is concentrated in degree 0, the degrees of ( and 7 are 2 and 1 respectively, and there
are no relations apart from those imposed by graded-commutativity, that is 7> = 0 and n¢ = (n.
In other words, we have

P, = H"(E,Fy) ®f, F, B .

From topological practice, we have acquired the habit of writing either xy or x — y for the
product of two elements x and y of P,.

31
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The degree s summand in Py is free of rank 1 over F,FE;, generated by ¢k if s = 2k and
by n¢* if s = 2k + 1. So we may take it as the module written P, above, and thus we can
consider the combined map

D: P, — P,

obtained from the various boundary maps Ds. We caution that D is not a derivation of the
ring P, as can be verified with the formulae

D(¢Fy =n¢ht X (3.1)

and
D(n¢*)y =¢*- Xy (3.2)

The point of this is to come up with reasonable names for the generators of the mod-
ules QS(Fp). Thus to finish with the case n = 1, we see that Q%(Fp) is generated by (¥; as
the module of relations ker(Dsyy) is also Im(Dgg. 1), it is generated by Doy 1(n¢*) = ¢¥ - X1,
Using the isomorphism Q2* (Fp) = Py, / ker(Dyy,) induced by Dsyy,, we conclude that we have the
following presentation by generators and relations:

OF(F,) 2 (CF | ¢ X1 =0). (3.3)
A similar reasoning leads to
DFH(E,) = (n¢* | nch - X7 =0). (3.4)

We can turn to an arbitrary value of n. Tensoring the resolution P, previously given with
itself n times (over F)), we obtain a resolution A, of F,,, by the Kiinneth theorem. Moreover,
the usual formula for the differential in a tensor product of complexes shows, by an immediate
induction on n, that we really have a resolution by F,E,-modules.

We can identify A, = @, As with the graded ring F, E,[C1, ..., oy W15 - - -, 7). It is equipped
with a self-map D, obtained from the differentials. The module Q%(F,) := As/D(Ag11) is stably
isomorphic to Q°(F,), by definition. Moreover, the F, E,-module Ay is free, its generators being
the monomials in the ¢; and 7; of the appropriate degree. Thus we have a presentation

Agp1 225 A, 225 O5(F,) —— 0.

Hence QS(FP) has a presentation, with generators indexed by the monomials in Ay, and relations
indexed by the monomials in Agy1. The technical point will be to compute the effect of the
map D41, and this is the object of the proposition below. We point out that, in the sequel,
the ring A, will be essentially forgotten, but what will survive is a system of names for the
generators and relations of various modules.

Definition 3.1.1. A multi-indexis a tuple v = (v1, v, . . .) of nonnegative integers (in this paper,
most multi-indices will be of length n, the rank of E,,). The weight of v is then |v| = v1+vo+---.
We define a C-index of weight s to be a pair (h, z) of multi-indices of the same length verifying
the following conditions:

1. h; € {0,1} for each i,

2. 2|z| + |h| = s.

Further, if v is a multi-index, we define supp(v) = {i | v; # 0}.

As elements of A do not commute, we have to specify the following notation
Nt C=at GG

We shall introduce some simple notation, classical in the free differential calculus of Fox (see
[Fox53]). Taking into account the weight of each generator, a basis of A is given by the monomial
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n" — (¢* where (h, 2) is a C-index. Let m be such a monomial, we define the following linear
map:

o .
o A — A

m —

om’ _ | 0 if there is no 7; in m/,
on; m ifm' = n;m

Note those are well defined, since we have defined these F-linear applications on an F,-basis
of A. In the same fashion, we introduce the following operators for every i € {1,...,n},

CZ’_13 Asya — As

m — Ci_l(m):{

m’ if m = {;m’ for a monomial m’

0 otherwise.

It will be easier to write simply ¢; 'm or m¢; ! for ¢;*(m). It should be remarked that ;'
is mot an isomorphism. Indeed we have for instance

Cl_l(nl) = 07

hence its kernel is not reduced to {0}: it may be identified to F[ny,...,n,, (1, .. iy yCnls
where (; means that we have omitted (;. With this notation, the action of D for n = 1 described
above (see (3.1),(3.2)) can be recast as

By _ ka1 xpl gy _ O0mdr)
D(CY) = mGi¢y ™ - Xy (k#0) and D(m()) = 8—771 - X1,
and thus for any monomial m # 1 in n; and ¢; we may state :

0 _ _
D(m):%'Xl-Hthl'Xf t

The next proposition generalizes this to any value of n.

Theorem 3.1.2. Let s > 0. The module Q°(F,), which is stably isomorphic to Q*(F,), has a
presentation of the form 3
Q(F,) = (i — ¢ | Rel*H (i, 2))

with generators n* — (* indexed by the C-indices (h, z) of weight s, and one relation Rel**1(1/, 2)
for each C-index (I, z") of weight s + 1, given by

n h' - z ’ ’
> o —<7) )'Xi+(77177h — G- X =o0.
i=1 oni

Moreover, for s > 1 there is an FpEp,-module Q="' (F,,), which is stably isomorphic to Q=" (F,),
and has a presentation of the form

Q7 (Ey) = (0 — ¢ | Relya (I, 2)

with generators n™ — ¢ indexed by the C-indices (h, z) of weight s, and one relation Rels_1 (K, 2')
for each C-index (I, 2") of weight s — 1, given by

< h' ! ( ~ CZ ) 1

> ) X+ o2 =) ) .

i=1 8?71

Finally, there is a module Q_I(Fp), stably isomorphic to Q_l(Fp), with presentation
QHF,) = (a| a- H xrt =

1<i<n
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Proof. Assume s > 1 first. Let us find an expression of the differential D by induction on the
rank n of the elementary abelian group. It is clear that the proposition holds for n = 1 according
to the equations (3.3) and (3.4).

Let us assume that for every element of the form ¢ = " .. 7]2” LG =0 ¢F ) where

(h, z) is a C-index, we have

n—1
_ 0
D(e)=)" (mcé{l X4 8—;_ ~Xi) : (3.5)

1=1

We now establish that the same formula holds with n — 1 replaced by n.

Continue with the element ¢, and let (hy,, z,) € ({0,1} x N) —{(0,0)}, by using the classical
definition of the differential of the tensor product of two resolutions, and the fact that (, is of
degree 2 we get:

D(n"¢*¢ernlm) = D(enlhmCim)

n—1
> hi
= D(o)ypGir +(=1)i= D)

Since hy, € {0,1}, we shall distinguish two cases according to the possible values of hy,.
If hy, = 0, since ¢, is of weight 2, and using first that D((Z") = 5,z ! - XP~1, second the
equation (3.5), we obtain

n—1
> h
D"y ¢*Gir) = D(eGir) = D()Gir + (=1)=0 i ma¢F ¢yt - XE7

Again, since (, commutes with all elements, the following relations implying the above
operators are immediate, on every monomial m:

¢ om 9(¢nm) _ 9(mén)
{ o, 6m j)lm

i (m)

h;
where i € {1,...,n} and j # n. Now, let us reorder the term (—1)i=t (n"n,(*¢z¢t) - Xp~1

n—1 n—1
> hi Shi
(=)= (n"nuC?¢nyt) - X2t = (—1)1':11 (e Ml Tt B
> hi N I
= (=D (=Dt ) - xR
N n—1 n—1

SUT
= (DE S e X
= (TInCCfrZLnCr?l)'Xgil'

Therefore we have the expected formula:

0 —
D(cGim) = eyt - XETH + Z ( CCn - X A e - XT 1) ’

which is what we expected according to (3.5).
If hy, = 1, some slight changes have to be made:

n—1

> hy
D(cennGyr) = D(e)nnGrre+ (=1)i=t (i - X, .

Furthermore, we have the following equalities:

(7771,—17771 =
~Nnfn-1) -
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om _ Ommm
{ %m = 3?
MG (m) = ¢ (mm)
Again, if we set (h',2") = ((h,1), (2, z,)), then, on one hand, we clearly have:

(" — ¢*) _Oc .
o oot T
so that D(c)(?" is equal to

n

n—1 h' 2/ n—1
a 7’] VC ’ o —
y A<t i LoXo Y — G X
i=1 i i=1

Now, using the graded-commutativity, we obtain
n—1

: : 2 hi
W= = (1) e

Therefore, it is clear that

n—1
h' 2! h;
3(77 — ¢ ) _ (_1); e,
O,
hence the expected formula.

Since ° (Fp) is just but the kernel of D, we can deduce the proposition.

Now, what happens vis-a-vis S~2*5*1(Fp) is quite similar to our argument: we can consider
the dual resolution of the initial one. Using again the Kiinneth formula and doing the same
computation, we can obtain an expression of the differential D; but rather than considering the
kernel of the differential, we compute the cokernel.

We have not given yet a description of Q7!(F,) and Q°(F,). In fact we can extend our
description to QY(F,), because our formulae still make sense in this situation and they give

QF,) =" =" 1 (" —n")-Xi=0, Vie{l,...,n}),

which is only but a pompous notation for F,,.

Finally, it is a well-known fact that I* is stably isomorphic to Q71(F),), where I is the
augmentation ideal in the group algebra F),E,, and it is generated by one element, which should
logically be denoted by (Y — 7n°, but in order to emphasize its specificity we will call it a.

Furthermore it verifies the only relation o~ [[ X7 -l = 0, and this concludes the proof. O
1<i<n

Examples 3.1.3. We shall give a precise description of two modules of those families: Ql(Fp)
and Q_Z(Fp). (The reader who wants a third example can have a glimpse at the last corollary
to Lemma 3.2.11 at the very end of this chapter: its proof starts with a description of Q*(F,).)

The generators of Q'(F,) are simply the 7; for i € {1,...,n}, and the relations are in fact
of two kinds. The first kind consists in the relations Rel?(0,z; = 1) (by (0, z; = 1) we mean in
the obvious way the C-index ((0, ..., 1, ...,0), (0, ...,0)) where the 1 is in i-th position), which are
(forie {1,...,n})

Rel?(0, 2, = 1) n- X =0;

and then, using the same abbreviation, the second kind of relation is in fact (for 1 < i < j <
n)
Rel?(h; = hj = 1): nj - Xi—ni- X;=0.

It should be noticed that QI(F,,) is in fact I, the augmentation ideal: a clear isomorphism is in
fact given by the map sending 7; to Xj.

What about Q_Q(Fp)? The generators are elements of the form 7; and there is a unique
relation denoted Rel_;(0,0) which is

Rel_l(0,0)Z 771'X1+...+T]n‘Xn:O.
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Remarks. The following facts are noteworthy.

1. Remember that ds(Ey,) = dimg, H*(Ey, Fp) (see Notation 1.4.1). Then ds(Ey) is also
the number of generators in our presentation of Q°(F,). It follows that this system of
generators is minimal, which can also be deduced from the fact that all the relations
belong to the radical (of the free module covering Q*(F,)); one has

ﬁs(Em Fp) = QS(FP)/Rad(QS(Fp)) = homeEn(Qs(Fp)’ Fp) .

Therefore from now on, we will refer to them as °(Fp) and conversely if we speak about
the ("unstable") module Q*(F),), we mean Q*(F,).

2. The dimensions of the modules verify

dimg, Q°T1(Fp) = ds(E,)p" — dimp, Q(F,). (3.6)

3. The description of Q~1(F,) is exactly similar to the one given in Lemma 2.1.2.

3.2 The module M,

We shall rediscover the module QQ(FP) in a completely different way. In this section p is an odd
prime.

3.2.1 Notation & conventions.

If G is a finitely generated pro-p-group, ®(G) denotes its Frattini subgroup, which means, ac-
cording to Proposition 1.2.3, that ®(G) = GP(G,G). By (G,G) we mean of course the derived
subgroup which is generated by the commutators

(91,92) = 91 '95 ' 9192, Vg1, 92 € G, (3.7)
Whenever H < G, the group G acts by conjugation on H, and we write
h =g thg, VYheH,Vgeg.

Thus G acts on Mg = ®(G)/®?)(G) by conjugation, and since the action of ®(G) is trivial
modulo ®?)(G) = &(®(G)), we will study the action of G/®(G) = E, for some r. As Mg is an
F, vector space, it is, all in all, an Fj,E,-right module, with the elementary abelian group E,
identified as above.

On Mg we shall use an additive notation, i.e. we write

[aB] = [a] + 8], Vo, B € (G),

where [a] denotes the class of @ modulo ®®)(G) . However, usually the additive notation makes
it unnecessary to use brackets, and we may simply write ao + 8 for a, 5 € ®(G).

As for the action, our convention is to write [a] - = for [a”] (where a € ®(G) and = € §),
and more generally we write [a] - X\ where A € F,E,. Moreover, we extend the convention we
introduced in §1.1: if we have used a letter, say x, to denote an element of GG, then we shall usually
use the same letter x for its image in G/®(G) and the capitalized letter X for z—1 € F,[G/®(G)].

Here is an example of computation with all our conventions at work :

1

a-X=ao"—a=zlaza ' = (2,07 ),

for « € ®(G) and = € G.

This applies in particular to G = F,, the free pro-p-group on n generators. In this case
we write M, := ®(F,)/®?(F,). We shall give a presentation by generators and relations of
M, as an FpE,-module, where E, = F,/®(F,), and then remark that it coincides with the
presentation previously given of Q%(F,,).
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3.2.2 Some classical relations

Let G be a finitely generated pro-p-group. Let us recall some classical formulae about commu-
tators, translated into relations about ®(G)/®®(G) as a module with an action of G. When we
specialize to G = F,, below, we shall see that we have in fact described all the relations, in the
sense that we have a presentation.

Lemma 3.2.1. Let x,v, 2 be three elements of G, then the following relation holds in ®(G)/®?)(G):
(y,2) - Z+ (z,2) Y + (z,y) - X =0, (3.8)
where X = x — 1 (similarly for y and z). Furthermore we have:
Y X = (z,y) YP (3.9)

Proof. We recall the Hall-Witt formula (cf. [DDSMS99] or [Laz54]). Let x, y, z be three elements
of a pro-p-group G, then

(g™ ") 2) (g, 271),2)*((2,271), )" = 1.

Indeed it is clear that

@y ) = y a7 lyzyly
= y a7y = (y,2).
We can deduce the following well-known relation, similar to the Jacobi relation in the realm
of Lie algebras:

(y,2) - Z + (2,2) Y +(2,9)- X =0 (mod 9*(G)).

Indeed using the Hall-Witt relation and the previous remark, we have:

1 = ((zy7),2) (( ), 2)*((z,270),y)" (mod & ( )
= ((z,y™) (=, )Z)y( 1) Ny, 2 (207 ) T 22T (mod @)(G))
= (y,2) "y »’U)Z)(( 2. 9) 1z ) (@, 2) Lz, ) (mod &2)()).

The following equalities, which could be found in [DDSMS99], will be useful:

(l’, yz) = (337 Z)(x» y)z

@0.9) = @22) (3.10)
(" 2) = (z,9)?" (2,9 ... (z,9),
hence
k—1
(v 0) = 3 () - = (2,9) Zy (mod $%(G)) .
i=0

Since in Fp[T] the following polynomial identity holds

p—1
ST =(T -1,
i=0

we get for k = p the following formula:

(ypwr) = (Hf,y) ’ Yp_l :

Given that
Y’ X = (Y)Y —yf =z P — P =y P lyPr = (P, x),

we obtain the expected relation:

y' - X = (z,y) YP L. 0
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3.2.3 The free group

Now we specialize to G = JF,, the free pro-p group on n generators, which will be called
X1s---» Xn- The images of these in F,, = F,/®(F,) will be called z1,...,z,. We write X; =
z,—1¢€ FpEn.

According to the previous relations (3.10), the 2-commutators (i.e. the (x;, x;)) and the x*
form a generating system for M,, as Fj,E,-module. The first thing we note is that

(i x3) = — (x> xi) - (3.11)
Simply because x; commutes with x¥, we certainly have
XP-Xi=0. (3.12)
Next, from the relation (3.9) of the lemma, we have
X - Xi = (Xis X5) -X]p_1 : (3.13)
And finally, from (3.8), we obtain :

Xk X5) - Xi 4+ (X5, xi) - Xie + (i, xe) - X = 0. (3.14)

Ultimately, we shall prove that the four types of relations just given between the generators
provide a presentation for M,,, ie they generate the module of relations.

The strategy is as follows. First we note that it is enough to include the 2-commutators with
i < j, of course, so we have () commutators and n elements of the form x?.

Notation 3.2.2. Let F}, , be the free F E},-module on elements called eq, ..., e, and e; ; for 7 <
j-
There is a short exact sequence

0 y K Fnp —2

M, —— 0,

where

ble) =x7 . Yleiy) = (Xirxy) - (3.15)
We want to show that K = ker(¢)) is generated by the elements above. For this, we shall
determine the dimension of M,, (which is easy), so that we will know the dimension of K
over F;,. The work will consist in exhibiting carefully selected elements of K, all obtained from
the above using the F, F), action, which are linearly independent over F), and numerous enough
for us to conclude that they span K.

3.2.4 A basis for K

The dimension of M,, is well-known: we have already given it in (2.1), but now we make a lemma
of this fact:

Lemma 3.2.3. With our notation:
dimp, My, =1+ (n—1)-p".

Proof. According to [Koc02, Example 6.3], we have that the minimal number of topological
generators of ®(F,,) - denoted d(®(F,,)) - is equal to p"(n — 1) 4+ 1, therefore we can conclude
by definition of the Frattini subgroup. O

When v = (v1,...,1,) is a multi-index, we set
X' =X{"XP2... X,

Note that the family (X"),cz, where Z = {0,...,p — 1}" is an F, basis of the group algebra
F,E,. We will write & for this basis. Now we proceed to introduce distinguished elements of K.

e The relations R(i,m) and R(i,j,m).
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Notation 3.2.4. For each 1 <i<mnandme€ {0,...,p—1}"—{(0,...,0)}, we introduce
6i'X,ZniHX;nS, ifmi;éO,
s#i
eir X[ T X0 ey - XPTUXTPTH T X, if i < j = max(supp(m)),
R(i,m) = s71 574,
$<j
, m; ms p—1y-m;—1 M Yo C
ei- X; 7 I X" —egay - Xi X [I X, ifi> j = max(supp(m)),
s#£i s#£1,J
s<j
(3.16)

In the second and in the third case, we also assumed m; = 0.

Lemma 3.2.5. The elements R(i,m), where 1 <i <mn and m =€ {0,...,p—1}"—{(0,...,0)},

are in kery and their number is
n-(pt—1).

(3.17)

Proof. Let us prove that R(i,m) is in the kernel of ¢ for i € {1,...,n} and m € {0,...,p —
1} —{(0,...,0)}. First suppose m; # 0, then R(i,m) = e; - X]"" [ XI"s according to (3.16).

s#i
Let us apply then ¢ to it. We get

Y(R(i,m)) = x¥- X" ] X  (because of (3.15))

)

= 0- Ximi_1 [T X" (because of (3.12))

SF#1
= 0.

Second assume that ¢ < max(supp(m)). In this case, the computation is as follow

-1

Y(RGi,m) = XX T X+ (s xg) - XPTIXGYTIT X
s#£i $#£1,j
5 _ .
= X+ (anxg) - XPTIXY )1;[)(;“5
SF£1
= 0-J] X™ I
S#£1 s
s<j

= 0.

Third assume that i > max(supp(m)). We shall proceed in this way

U(R(i,m)) = X0 XY TT X — (woxa) - XX I X

s#i T sty
<9
X 1 1

= O X = (o) - XPTIXTYT) QX?“

SF1L,
= 0] x™ v
s#irj
-0

(because of (3.15))

(because of (3.13))

(because of (3.15))

(because of (3.13))

Hence by virtue of (3.9), we have deduced that R(i,m) is in the kernel of ). We have

therefore found exactly
n-(p*—1)

vectors in the kernel of v so far.

By virtue of the same relation, we obtain that
—1yp—1
= (axg)  XP X =X XP =0.

Thus, the following lemma is obvious:

(3.18)
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Lemma 3.2.6. Vectors of the form

R(i.j.m) = ey - X5 XP [ X0
k<i

where
maxsupp(m) <i, 1<i<j<n (3.19)

are in the kernel of ¥, for a total amount of
n .
Z(n —i)-pi! (3.20)
i=1

vectors of this form.

Proof. Let us apply ¢ to R(i,7,m).

Y(R(i,j,m)) = Y(euy 'Xf_le_l IT X;™)

k<i

= (xoxg)  XV'XPTUIT X (because of (3.15))
k<i

= 0[] X" (because of (3.18))

k<i
=0
Hence, R(i,j,m) is in ker¢. Furthermore if we fix i, we have p'~! choices for m, since
max(supp(m)) < i, and n — i choices for j, because this latter is strictly greater than i, so

that we have the announced amount of vectors.
O

e Relations of Jacobi type.

Let xi, xj, Xx be three elements of our generating system of F,, with i < j < k. Because of
(3.8) and the elementary properties on the commutators, we get:

(xin x5) - Xk = (X, xx) - X5 — (x5, xx) - X - (3.21)

Thus elements of the form e; jy - X — € x) - Xj + € ) - Xi, where 1 <i < j <k <n, lie in
the kernel of ). More generally, by multiplying the previous relation by X" | where m is such
that

k = max(supp(m)), mr#p—1, (3.22)

we deduce that vectors of the following form lie also in the kernel of :

ey Xp T TT X0 + ey - X T X0 — e - X7P T [T X0 (3.23)
s<k sF#1 s#£j
s<k s<k

Notation 3.2.7. Such vectors are denoted jacy(i,j,k,m), for 1 < i < j <k <nand k =
max (supp(m)).

Lemma 3.2.8. The number of vectors jacy (i, j, k,m) is
n
k—1 _
(p_l).z< 5 ),pk 1
k=0
Proof. Indeed if we fix the integer k, then there is (p — 1) - p* ! possible choices for m, because
myg # p — 1 and k = max(supp(m)). Furthermore, there is

2
have supposed 1 <i < j < k. O

-1 Loy
) choices for {i,j}, since we
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By multiplying (3.21) by X,f_l, we obtain the relation

(i xk) - X271 X5 = (xgoxa) - XE' X (3.24)
Therefore, by multiplying by X™ where m is such that

mj #p—1, j=max(supp(m)), (3.25)
we get again vectors of the form

ey XX T XM — e - XPI X ] XM whered < j < K,
s<j §<j
s#£i

which are in the kernel of ¢: they are denoted by jaca(i, j, k, m).
Lemma 3.2.9. We claim that we have added in the kernel of 1 a total amount of
n
(p—1) Z j—1(n—)p !

j=1
vectors of this form
Proof. Fix j. Since we have required that & > j, we have n—j possible choices for k. Furthermore
the condition on 7 implies that there is (j — 1) possible choices for i. Now, consider m, note that

the condition on m implies that m; # 0, hence there is p — 1 choices for it. Moreover we have
required that j = max(supp(m)), thus we have (p — 1)p’~! choices for m. O

Notation 3.2.10. From now on, we set

F = {R(Zh m)7 R(i27j27 m/),jacl(i37j3, k3,m,/),ja02(i47j4, k‘4,m”/)},
Wlth the Conditions on i$7j87 kS’m, m/7 m//, m/// glVen in (31())7 (319) (52 ) and ( :)-))
Lemma 3.2.11. The system F is a basis of ker .

Proof. All vectors contained in F are in ker ¢ by definition; we shall prove that they are linearly
independent and that their number is equal to dim F}, , — dim M,,.

Linear independence. Bear in mind that £ is the basis of F}, , consisting of the ¢; - X* and
the e(; ;) - X* where v and p are elements of {0,...,p — 1}". Let us define an F-linear map
f: Fnp — F,,p given on the vectors of £ by

flei-X™) = R(i,m), if m#(0,...,0)

fleay - X™) = jaci(i,j,k,m), if 1 <i<j<k=max(supp(m)) <n
flegry - X™) = jaca(i,j, k,m), if1<i<j<k=maxsupp(m)<n, (3.26)

andmy=p—1,m; #0, m; #p—1

flo)y = v otherwise

Note that among the fixed vectors of £ are the R(i,j,m)’s for instance, or e;’s. In order to
number the vectors of the basis, we will use an order relation rather than cumbersome formulae
from combinatorics.

We define a total order relation on the vectors of £ by imposing the following conditions:

n
Loe- ] X <ej- H XHs if and only if ¢ < j or i = j and either |v] < |u| or if [v| = ||
s=1

then we use the leX1cographlc order.

n n
2. €@y - 1_[1 Xy <eqy - [ XI* if and only if one of the following condition is true
sS=

s=1

(a) i<k
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(b) if i = k then one of the following must be true:
ig <l
it ] < Jul,
iii. v =< p where < is the lexicographic order
n mn
3. € H XSVS < e(j,k) . H Xf:”’.
s=1 =1
The matrix associated to f in the basis £, thus ordered, is lower triangular with 1’s on
the diagonal, as is readily checked (when defining the elements of f, we have always given the
formulae so that the leftmost term is the lowest for the order relation).
So f is invertible, and the image of the canonical basis under f is another basis for F,,,.

This proves in particular that the elements of F are linearly independent.
Cardinality. By using the formula previously given, we can get: dimp, kerv¢ = (3)p™ — 1.

However
n=1 (L n—1 n—1 .
(p—1)- P <2> o= ( 5 > P — k;(k —1)-p*, (3.27)
in the same fashion
n . . q 1 n_l . 7
(p—1)- Zl(n -G = 21(23 —n)p’, (3.28)
j= Jj=
by adding the previous equalities we get:
‘ o on ‘ § n—1 n n—1 i n—1 1 n—1 i1 n—1 ; n—1 &
(3.20) + (3.27) + (3.28) = o |P + Xk =Y kT A P T = Y P+ Yp
k=0 k=0 i=1 i=1 k=0
n—1 n—1 n—2 n—2 n—1
= |y P+ Z k= Xk )pF +n(l-p) X PP+ X pF
k=0 = k=0 k=0
n—1 _ n—1 n—2
= | 5 Pt n@-p 4+ Xt - X
k=1 k=0
n—1Y) .
= 9 |P +n—1.
If we add this to (3.17), we obtain the desired cardinality. O

From this lemma we can deduce the following proposition.

Proposition 3.2.12. The system formed by the vectors (Xf)ie{l,...,n} and the vectors (xi, x;) X"
such that v verifies the following conditions

I.vi#Fp—lorvi#p—1

2. max(supp(v)) = max{s|vs # 0} < j

3. ifvi=p—1, thenvyy, =0 forke {i+1,...,j—1}.
forms a basis of M.

Proof. Let
B = f(g) -,

where £ is our usual basis for F, ;, and f is the endomorphism defined in the proof of the Lemma
3.2.11. Then t(B) is a basis for M,, where 1 is the morphism defined in (3.15). However, a
vector of v € € is in f~1(F) if and only if one of the following condition is true:

1. if v is equal to
ei- X", v#(0,...,0), (3.29)

because f(e; - X¥) = R(i,v) according to (3.26).
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2. if v is equal to
—1yp-1
ey XPXT T X, (3.30)
s¢{i.j}
because f(v) = R(i, 7, m) according to (3.19) and (3.206).

3. if v is equal to

ey - Xp* T X (3.31)
s<k
where my, # 0, because f(v) = jacy(i,7, k,m = (mq,...,mg_1,mp — 1)) according to
(3.26).
4. if v is equal to
ey - Xp X I X, 1<i<j<k<n (3.32)
s<i<g
where m; # 0, because f(v) = jaca(i, j, k,m = (m1,...,mj_1,m; — 1))

Let us negate this conditions and prove how they imply the corollary:

1. thanks to (3.29),we get that ¢)(f(e; - X)) is in the basis ¢(B) if and only if v = (0,...,0),
hence only remains the 1(¢;)’s which are the x’s according to (3.15).

2. thanks to (3.30) and the definition of ¢ (see (3.15)) which sends e; ; to (xi, x;), we get the
first condition on v, which means v; #p —1or v; #p— 1.

3. thanks to (3.31), we get the second condition on v, which means max supp(v) < j.

4. thanks to (3.32), we get the third condition on v, which means: if v; = p—1, then v}, =0
forke {i+1,...,5—1}.

O

Notation 3.2.13. From now on, the above basis will be denoted By, .

Corollary 3.2.14. The module M, admits the following presentation by generators and rela-
tions:

e its generators are the x¥ and the (xi, x;) where i and j are in {1,...,n} and i < j.
e The relations are given by

1. Xf : Xi = 0,

2. X8 X5 = (xjox) - XPTHifi > g,

3xX8 - Xy = —(xaxg) - XEPTHifi <,

4- (Xir x5) - Xie + (G xw) - Xi = (i xw) - X =0, where i < j < k.

Notice that, alternatively, we could have used generators (x;,x;) for i # j (rather than
just i < j), add the relation (xs, xj) = —(xj,Xi), and then delete relation (3) which is now
redundant with (2). Also (4) can then be re-written in a more symmetrical form.

Proof. Let R,, be the module defined by the presentation of the corollary. It should be remarked
that there exists an obvious map of modules from R,, onto M,,, for the relations verified in R,
are verified in M, too: therefore it is clear that

dime ]Wn S dime Rn .

By looking closer to the proof of Propositon 3.2.12, we see that we only used the relations
mentioned in the corollary in order to construct F, therefore we can show exactly by re-writing
the proof of Proposition 3.2.12 that

dime Rn S dime ]\4,1 .

So the dimensions are equal, and the obvious epimorphism is an isomorphism. O
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Corollary 3.2.15. The module M, is isomorphic to Q*(F,).

Proof. The presentations of these two modules are in fact the same. Indeed, 92(Fp), as intro-
duced in the previous chapter, is generated (Proposition 3.1.2) by elements of the form

Longg—mfor1<i<ji<n
2. G forie{l,...,n}.

The relations which are verified are in fact

1. If 0 <i < n then Rel(h; =1,2z =1): G-Xi=0,
2. If j <i then Rel(h; = 1,2 = 1): G- Xj— (n; — m) .Xf_l =0,
3. If j >4, then Rel(hj = 1,2; = 1): G- X5+ (s vnj)-Xf_l =0,

4. Ifi < j < k,thenRel(h; = hj = hy = 1): (n; — nj)- X+ — nx)-Xi— (s — n)-X; = 0.

Therefore the map sending ¢; on ¥ and 7; — n; on (X, ;) is a map of modules and in fact an
isomorphism. O

Notation 3.2.16. This isomorphism will be used silently: from now on, we denote by Baz(p,)
the image of the basis By, by the isomorphism introduced in the previous proof. Note that it
is sufficient to read (; instead of x¥ and (n; — n;) - X" instead of (xi,x;) - X” in Proposition
3.2.12, in order to describe this basis.

3.3 Q*F,) and its restrictions

Notation 3.3.1. Let G be a finite group and H be a subgroup of G. If V is an F,G-module, we
denote by V % the module obtained by restriction of scalars from F,G to F,H. (see [Bro94,
§II1.5]) If there is any ambiguity about the subgroup H (and there will be), we shall rather

consider the inclusion
P

0—H—G
and write V' |y, instead of V ig.

It is well-known that if P is a projective F;,G-module and H is a subgroup of G, then P |y
is again a projective module. Therefore it is not hard to see that for every F,G-module M, we
have

QM) L= QM L) & P,

where P is a projective module.

Notation 3.3.2. As we are going to work with restrictions, we would like to keep track of the
groups with which we are working, therefore we will write Q2 (F),) for the E,-module previously
described in Theorem 3.1.2.

Let r be an integer (with » < n): our goal here is, not only to find the copy of the E,-module
Q2(F,) inside the E,-module Q2 (F,), but to study the action of E, on this linear subspace of
Q2 (F,) and to find another copy of Q2_ (F,) and, again, study the action of E,-on it.

n

Notation 3.3.3. For convenience, we will put v’ = n — r.

Since there are more than one copy of E, (or E,/) in E,,/, we shall specify the ones we are
considering. Remember that (x;)1<i<s is the canonical basis of Eg = C’; .

Notation 3.3.4. We set "*"'¢: E, — E, s, which verifies 7" ¢(x;) = a; for i € {1,...,r}
and ¢/, B,y — B,y such that ¢/ (2;) = 24
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It is not hard to see that, in the module QEJFT,(FP) i"‘“’w’ the copy of Q2(F,) is simply

generated as a module by the vectors (; for 1 <i<randn, —mfor 1 <k <l <.

Notation 3.3.5. Therefore let us set N the E,,~submodule of Q2, ,(F,) generated by these

r+r’
vectors. In a similar fashion, and for the same reasons, put Ny = Spaan 5 (G, e — m),

!
wherer +1 <i<r+randr+1<k<i<r+7.

Lemma 3.3.6. A basis B,» of Ny over F, is given by the following vectors
o (i forr+1<i<r+r,

o (ni—m;) XY wherer+1<i<j<r+r" and (n; — ny) - X" is in the basis Boz(p,) (see
Proposition 3.2.12),

o (1, — 77j) -XVXf_1 where 1 < i <r andr+1 < j, and such that this vector is in the basis
Baz(r,) (which means vy, =0 if k> j orj >k >1i, andv; #p—1).

Proof. Note that those vectors are linearly independent, since they are a subset of the previously
found basis. It remains to prove that they do generate N5 as a vector space. Since N» is generated
as a module by the union of the families ({;)r+1<i<r+r and (mk — M)r+1<k<i<r4r, it is sufficient
to check that for every multi-index v (such that v; < p), ¢;- X¥ or (n; — ;) - X¥ may be written
as a sum of those vectors.

Fix v. If v; # 0, then (; - X¥ = 0, so we may as well suppose that v; = 0. Now set
k = max{jlv; # 0}. If £ > i, then we have according to the relation (3.13)

G- XV = —(n — ) - XPTI XY
where v/ = (11, ..., 51,V — 1, Vgy ..., Vpyy ) . Furthermore if £ < i, then we have
G XV = (e —m) - XPTXY

where v/ = (v1, ... v 1,06 — L Vs ooy Vi)

Now, let us look at what happens to the vectors 7; — 7; under the action of F,E, 1,/ (so we
do not suppose that v; = 0). It is known that if v; = v; = p — 1, then (1, — n;) - X = 0. If
max{j|v; # 0} > j, according to (3.21), we get that

I/"

(i —mj) - XV = (i — m) - XV — (g — mg) - XV,

/ /!
where v/ = (v1,...,v;+1,...,vp — 1, vpyp) and v/ = (v, .., v+ 1, v — 1, gy
O

For Ni, we have a similar lemma.
Lemma 3.3.7. A basis B, (over F,) of N1 is given by the following vectors
o (jfor1<i<r,
o (mi—m;) X" where 1 <i < j <r and v verifies the conditions of Proposition 3.2.12,
o (mi—mg) X" —(nj — k) - XV such that the following conditions are verified

Lr+1<k<r+r andl<i<j<r,

2. (i — mg)- XY and (n; — i) - XV are in the basis B2 (F,) (see Proposition 3.2.12),
r+r!

8. vg—vs=0 forall s ¢ {i,j}, but vi —v; = —1 and v; —v; = 1,

4. Vg <p—2

o (n;— nj) -X”Xf_1 where 1 <i <7 andr+1<j<r+1, and such that this vector is in
the basis Boz(w,), which excludes the case vj =p —1.
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Proof. Because the proof is similar to the previous one, we will only explain how the vectors
(ni — nk)- XV —(n; — mi.)- X appear. Consider (1; — n;)- X" and set again k = max{i|v; # 0}.
If £ > j, then according to 3.21, we have

(i —mj)- X" = (i —m)- X" —(n; —m) - X7 .

Note that in this case v}, = v}/ = v — 1 < p — 2. Furthermore v}’ —v; = —1 and v/ —v; = 1.

Note that if those vectors are non-zero, they are in the basis of Bo2 (g, - O
r+r/

Proposition 3.3.8. In the E, . -module Q*(F,), we have that

NN Na = {0}

Proof. Rather than considering Ny, let us consider W = Spang, (B'), for a certain subset B’ of
the basis Bz (g, introduced in Proposition 3.2.12. Remember that according to our conventions,
we write ¢; instead of x¥ and n; — n; instead of (xi, ;) (see Notation 3.2.16).

The subset B’ contains

e the vectors (; for i € {1,...,r},

e the vectors (1; — ny) - X” where i < r. Furthermore if £ > r+ 1, we impose the condition
that vy, # p—1. Note that requesting that this vectors be in B2 (g, implies some conditions
on v properly described in see Proposition 3.2.12.

It should be remarked that Ny C Spaan(B’ ), indeed every vector appearing in the basis of
N, given in Lemma 3.3.6 is a linear combination of vectors in B'.

However, as pointed out earlier the basis of N7, given in Lemma 3.3.7, written B, is also
a subset of Bo2p,). Now, we have that, as subsets of Bo2(g,), By N B" = (). Indeed in B,
the vectors of the form (1; — 7;)X" where i < r are always such that j > r 4+ 1 (of course
j = max(supp(v)) according to Proposition 3.2.12) and v; = p — 1, which is never the case for
a vector of B’. Hence as F-linear subspaces

W = Span(B’) ©F, N2 .

Since N7 C W, the Proposition is proved.



Chapter 4

More about the maximal elementary
abelian extension

Let us now return to the study of Galois-related problems. The maximal p-elementary abelian
extension has already drawn attention, such has in [AGKMO1], when p = 2. Let us resume the
notation of the previous chapters:

Notation 4.0.1. k is a local field, p is an odd prime number, and k contains a primitive p-
th root of unity &,; as usual Gx(p) is the Galois group of a maximal pro-p-extension of k; the
field K will now be specialized to be the maximal p-Kummer extension of k. Observe that K is in
Galois correspondence with ®(Gk(p)), the Frattini subgroup; the Galois group G = Gal(K/k)
is elementary abelian of rank n, and this number is also the number of generators for the
Demuskin group Gi(p) = Dy,. We write J = J(K) = K*/K*P, and recall that J = J*,
according to Lemma 1.3.2: this isomorphism will be used along the following sections silently
(we may prefer to mention .J or J*, depending on the context, mostly for subjective reasons).

Recall the exact sequence of Proposition 2.1.4 :

0—=w 1(Fp) > wy(Fp) s J* ——0

where w;(F,) is stably isomorphic to Q(F,). Under our current assumptions however, the
module w;(F,) is isomorphic to the minimal model Q%(F,) which is discussed in §1.6 and ex-
plicitly described in Theorem 3.1.2. Indeed, when establishing Proposition 2.1.4, we have used
for wy(F,) a module which is now none other than M,,, and we can appeal to Corollary 3.2.15.
As for w_1(F)), the proof of Proposition 2.1.4 shows that it is the unique module described in
Lemma 2.1.2, and this is Q7 (F,).

In §4.1, we give a presentation of J by generators and relations, and as a result, we are
able to describe an F-basis for it. We exploit this and compute some invariants introduced in
[AGKMO1], in §4.2. Finally, we “shift” the short exact sequence of Proposition 2.1.4, in order
to describe the vector bundle associated to J, in §4.3.

4.1 From M, to J*

Since we have a presentation by generators and relations of M,,, we can find one for J without
any difficulty. In order to simplify the exposition we assume that k contains a primitive p?-th
root of unity denoted &,2; when it does not, only small changes have to be made, which will be
pointed out along the text.

We recall that we have obtained a presentation of M,, in Corollary 3.2.14. The generators
are in bijection with a basis of H%(E,, F,) while the relations are in bijection with a basis of
H3(E,, F,), a phenomenon which was explained at the beginning of Chapter 3. Here we shall
employ a simplified notation.

47
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Notation 4.1.1. The generators for M, are written x? (for 1 <4 < n) and (x;, x;) (for 1 <
i < j <n), while the relations are labelled in the following way :

G—mn = xi-Xi=0

Civ'f]j : X?-Xj—l-(xi,Xj)-Xip:izo 1< j
G—mnj = xi-Xj— X)X =0 i> ]
=1 =0  (XisXj) Xs+ (G xs) Xi — (Xirxs) - X; =0 1<i<j<s<n

Lemma 4.1.2. The module J can be presented as:
~ 2 !
J = QX(F,)/ Spang, 1, (7
= <Xf7 (XZ*XJ) | CS ~ N, Nig ~— MNip ~—~ 771'275/ = O>

where 1 <1< j<mn,sle{l,....n}and 1 < iy < iy <iy < n;asford, it stands for the
element
" = (x1,x2) + (X3, Xa) + -+ + (Xn—1, Xn) -

Proof. As pointed out earlier, we shall use the isomorphism J = J*: hence our goal is to find
this presentation for J*. Remember that the Demuskin group Gx(p) = Dy p is the quotient of
the free pro-p-group JF,, by the relation § = 1 where

k
§ = o (x1,22)(x3,24) .. (Tp—1,2n),

and k > 2 from our assumption that &, € k (see §1.5). It is clear that 6 € ®(F,).

We recall that if G is a pro-p-group and K C ®(G) is a closed subgroup of G, then ®(G/K)
can be identified with ®(G)/K according to Proposition 1.2.2. If Gr(d) denotes the smallest
closed, normal subgroup containing 0, we have Gr(d) C ®(F,) and so there is an exact sequence

1 —— Gr(0) —— ¢(F,) —— ¢(Dyp) —— 1.

Now by the same reasoning, we see that ®?)(F,,) = ®(®(F,)) maps onto &2 (Dy,); it follows
easily that there is another exact sequence

1 —— Gr(6)/(Gr(0) N®A(F,)) —— ®(Fn)/®P(F,) —— ®(Dyn)/®P(Dyp) — 1.

With a different notation, using our identification of M,, with Q*(F,) (see Corollary 3.2.15) and
the identification of ®(Dy,,)/®? (Dy.,) with J* (see Lemma 1.3.4), this says that the kernel
of Q*(Fy) — J* is generated, as F,E,-module, by &', the class of § modulo ) (F,). O

Remarks.

1. If k does not contain 2, then the element ¢’ becomes
& = x5+ (x1,x2) + (3: xa) + -+ (Xn—1, Xn) -

2. If n = 2, then the module J is simply isomorphic to F), x F,, because its presentation is
just

1 1
(X0 X5 (X1, x2) [ X7 X1 = x5-Xa = 0, xi-Xo = —(x1,x2)- X7 x5 X1 = (x1,x2)- X5, (x1,x2) =0),
or in a shorter way
OB I X Xi=x - Xo=xb-X1i=x2-X2=0).

This occurs when k has a residue field of characteristic ¢ different from p (see [Guil8,
Theorem 4.8]).
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We can even go a little deeper into the computations: to achieve our goal of studying some
invariants, we would like in fact to find a basis of J*. Bear in mind that the projection from the
free pro-p-group F, onto Dy, induces an epimorphism me(p, ,): Mp —> J* (see §2.1), hence
the image of the previously found basis By, of M, is a generating system of J* (for a definition
of By, see Proposition 3.2.12). Nevertheless we have to get rid of some vectors in order to have
a basis: those vectors can be found through the study of the kernel of

W‘I’(}—n): (I)(}—n)/q)@)(]:n) — @(Dk,n)/(D(Z)(Dk,n)

which is generated by ¢’. In order to do so, we need to introduce the following two families of
maps on multi-indices

0;: 7" — 7"
(V1yeestn) — (1, i — 1,00 0)
and
~i: 7Z" — Z"
(V1yooostn) — (Vi,. i+ 1,000, 10)

Now we can state a technical lemma - the reader can skip its proof, for it is a silly and
tedious computation.

Lemma 4.1.3. For any multi-index v € {0,...,p— 1}" with v # (0,...,0), we set

n
I(v)={1<s<g | #p—lorm#p-1},

and
p(v) = max(supp(v)) = max{s € N|vs # 0} .

Then the following equality holds in M, :

[ -1 3
5 XV = Z ((X2s—17Xu(u)) - X 2500y (V) (X285 Xpu(v)) - X725—1°5N<")(”))+ Z (x25-1, X2s)- X"
ST s=H521
sel(v)

(4.1)

Here the point is that each term on the right hand side either belongs to the basis By, , or
is zero, as we will point out during the course of the proof.

Proof. First note that, with the understanding that 1 < s < &, we have

§ XY = Z (X2s—1, X2s) - X¥ + Z (X2s—1. Xx2s) - X¥
sel(v) s¢I(v)

and since (xi, x;j) - le_le_l = 0 according to (3.18), we have the following equality
(x2s—1,x2s) - X" =0,

if s ¢ I(v). Therefore, it is sufficient to sum upon the integers which are in I(r). Now, let us
split the sum in two:

> (xas-1x2s) - XY= > (Xas—1,x2s) - XY+ D (X2s-1,X26) - X"
sel(v) sel(v) sel(v)

s<[L)] s> 401
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Remark that the vectors in the second sum are all in the basis By, , whereas those on the first
sum are not. To address this issue, we will use in fact the Jacobi relation (the one denoted

M2s—1 = T2s ~ M) in (4.1.1)), hence

(X2s-1,X25) - X = (X25-1,X2s) 'Xu(u)X5u<v>(V)
= (X25-15 Xp(n) - Xas X — (xag, X)) - Xog—1 Xm0 W),

Note that the vector (x2s—1, X)) - Xgs X O (@) (resp. (X2s; Xu(v)) ng_lX‘SH(V)(”)) is zero if
ves = p— 1 (resp. vos—1 = p — 1). Otherwise, let us check that it belongs to the basis Byy,,
because it satisfies the conditions of Proposition 3.2.12.

Indeed, it is easy to see that v,,) —1 < p—2 < p—1, hence the first and the third conditions
of Proposition 3.2.12 are verified. Furthermore, by definition of u(r) = max(supp(v)), the
second condition is obviously verified.

The formula in the lemma is now a simple rearrangement. O

Remark. If &§p2 is not in k, then it is necessary to add a term le - XV, If the latter is non zero,
it is equal to — (X1, Xu()) - X7 XOuw ),

We can now find a basis for J*. The next proposition holds regardless of whether k does or
does not contain &y2.

Proposition 4.1.4. Remember that p is an odd prime. Let By, be the basis obtained for
M, = Q*(F,) in Proposition 5.2.12. A basis B' of J* is given by the image (by the projection
W@(Dk,n)) of Bar,, — V', where V' is the set consisting of the vectors (xi, xn) - XV verifying one of
the following conditions:

Cl. i=n-—1.
C2. i#n—1and:

(a) vo =p—2,
(b) if i is even
(i) vi1 # 0.
(ii) vi=vip1 = =vp1=p— 1.

(c) if i is odd
(i) vig1 #0.

(i) Vira =Viyz = =vp1=p— 1.
Proof. Let us at once count the vectors in the set V. There are p” — p"~2 vectors satisfying C1
(recall that we consider elements of By, , so it is required that v,,_1 # p—1 or v, # p— 1 here).
As for C2, when i is even, with of course 1 < i < n — 2, we count (p — 1)p*~2 choices, and we
may as well record (p — 1)p’ choices for each even number i with 0 < i < n —4 ; for i odd, there
are (p — 1)p’ choices, so in total we have

n—3

z_:pi] :p"—l

pn _ pn—2 + (p _ 1) [
1=0

vectors in V. Writing 7 = mg(p, ,) and K = ker(m), we note that we also have dimg, K = p"—1,
since K = Q1(F)).
We claim that for each v € V, it is possible to find b in the F,-linear span of By;, — V such
that
v=bmod K. *)

Clearly, if we can prove the claim, then 7 (B, — V') generates J*, and comparing dimensions
this set will be seen to be a basis, which is what the proposition states.
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Our strategy will be to define an order relation < on By, , and to establish, using the previous
lemma, that for each v € V there exists an element w which is a linear combination of elements
of By, which are strictly smaller than v with respect to <, and such that

v=w mod K . (**)

The claim easily follows from this. Indeed, a minimal counter-example v to (*) (again, with
respect to <) would lead to a contradiction with (**).

We turn to the definition of =<, first on the vectors of the form (x;, x;) - X* which are in
B, . We set (x4, x;5) - X¥ = (xir, xj¢) - X* if one of the following conditions is verified:

Lo O xg) - XY = O xg) - X2
n n
2. vl =Y v <l|ul= X
i=1 1=1
3. if |v] = |p|, but v # u, we set m = max(supp(u — v)), and the condition is (4 — v)my, > 0,
4. if v = pand (xi, x5) # (Xir> Xj7), We require that (i, ) < (¢, j') for the lexicographic order.

We complete the definition of our order relation on By, by requiring

X2 = 2k = (s xe) -

Let v/ be a multi-index. We shall prove that, if (x4, x») - X" belongs to V, then it is the
largest vector (in the sense of <) among the terms on the right hand side of equation (4.1)
expressing &' - X”, for some v. This technical fact, when established in all cases, will conclude
the proof of (**), keeping in mind that ¢’ - X € K, and thus the proposition will be proved as
well.

We start with vectors satisfying C1. Note indeed that if (xp—1, xn) X " is in the basis B M,
then either v),_; #p—1 or v}, # p — 1, hence we may use Equation (4.1) from Lemma 4.1.3 as

§ X =
521 o R = ,
> ((XZs—laX,u(u’))'sto WD) — (Yo, Xpry) - X721 W/)(v)>+ > (x2s—1, x28) - XV
10 s=[£ED]

sel(v)

B
"‘(Xn—la Xn) : XVI .

The vector (xn—1,Xn) - X v g greater than every vector in the sum A because of the third
condition introduced for <, whereas it is greater than every vector in the sum B because of the
fourth condition.

Now we continue with a vector (y;, xn)- X" satisfying C2. We claim that the vector (x;, xn)-
X" is the greatest appearing in ¢’ - X”"O‘sa(i)(”/), where o is the permutation

o=(1,2)(3,4)...(n—1,n).

First suppose that ¢ is odd, so that i + 1 = o(i). Since we have supposed V{H # 0, we are
allowed to consider §,¢;) ('), and since v;, = p — 2, we set

V="0 5a(i)(V,) )

so that
V= Yi+1 © 5n(V) .
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Of course we are going to rely on (4.1) expressing ¢’ - X¥, but it is useful to remark that the
latter will simplify quite a bit. First, the simple fact that X? = 0 removes about half the terms
from the first sum. Also, the second sum reduces to a lone term (xn—1, xn) X" ; however, recall
that

(Xs: Xs) - XPTI XD =0,

according to (3.18), and note that we have v,y = v, = p — 1 (since we are considering v =
Yn © 0 ;) (V') where 1/ satisfies C2).
In the end what remains is :

itl
2
(S/ XY = E <(X28—17 X?’l) . X’Y2505n(l/) _ (X287 Xn) . X’ygs_lo(sn(v))

s=1
sel(v)
i—1
2 .
= Zl <(X25—1»Xn) - X 72500m (V) (x2s, Xn) XW25—106n(V)) + (Xis Xn) - X Vi+100n(v)
s=
sel(v)

_(Xi+1, X") . X%‘O%(u)

Hence the greatest term in this sum is (i, xn) - X 7i+190n(¥) " ag announced, because of the
third condition in the definition of <.
In the very final case when i is even, the computation is similar. This concludes the proof.
O

Remarks.

1. We start with a computational remark which prepares what follows. We would like to
point out a particular case of a formula just obtained. Take ¢ = 1, assume as above
that v = v, 0 d(v') where (x1, xn) - X satisfies C2, and assume further that v, = p — 1,
or equivalently v; = p — 1; now the the last displayed equation, in the above proof, reads

o' X" = (X1, Xn) - X
This shows that the element (x1, xn) - X" " belongs to the kernel K in this particular case.

2. We will sketch the argument for case when &> ¢ k. First we note that the strategy of the
above proof would be equally sound if we relaxed condition (**) to state that each v € V'
satisfies v = w mod K with w a linear combination of elements of the basis By, , each
of which either is strictly lower than v or does not belong to V. (That is, a minimal
counter-example to (*) would again lead to a contradiction with this.)

Now, when §,2 ¢ k, the relation ¢’ becomes

X+ (asxe) + (X3 xa) + -4 (Xn—1, Xn) »

and we have to take into account, when computing §" - X”, the extra term x} - X”. This
term is zero if 1 # 0. As a result, the observation of remark (1) applies also in the case

£o ¢ k.

However when v; = 0 and v # (0,...,0), according to (3.9) the extra term is equal to :
—(x1, Xm) XP T X0 (1 = max supp(v)).

Now, this term may very well be (up to a sign!) an element of V. However, we are lucky
indeed, for this happens only when m = n, and in this situation, it is also in K, as follows
from remark (1).

Allin all, the extra term is always either in By, —V or in K, and this allows us to establish
the amended version of (**). The rest of the proof is identical.
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4.2 Computing some invariants

In their article ([AGKMO1]), the authors introduce some invariants for various fields, including
local fields and C-fields; here we focus only on local fields, and we will show how their results,
obtained for p = 2, might be extended when p is an odd prime number. Note that the following
results mostly depend upon Proposition 4.1.4 which holds in all cases, provided that p # 2:
therefore what follows is true if {,» ¢ k. Nevertheless, for simplicity of exposition, we will
assume from now on that 2 € k. The proof in the alternative case only requires minor
changes, which are left to the reader.

We recall that the socle Soc(M) of the FG-module M is the largest semisimple submodule
of M. When G is a finite p-group, the only simple F,G-module is the trivial one, and it follows
easily that M = M%, the submodule of elements fixed under the action of G.

The socle series of M is defined by

Soc®(M) = {0}
Soc!(M)/Soc? Y (M) = Soc(M/Soc! 1 (M))

Therefore we have
Soc’(M) c Soc' (M) c Soc*(M) C ---

If M is of finite type, there exists a minimal integer £(M) such that Soc!™) (M) = M (this is
because Soc(M) is nonzero when M is nonzero, as M certainly contains a simple submodule).
This integer is called the length of M.

Similarly, the radical Rad(M) is the smallest submodule of M with semisimple quotient.
The radical series is defined by Rad’*!(M) = Rad(Rad’(M)), and Rad’(M) = M. We have

Rad’(M) > Rad' (M) D Rad*(M) O - --

Again, if M is of finite type, then there is a smallest integer, say ¢'(M), such that Rad? M) (M) =
{0}.

However, here are a couple of classical facts : first Soc’ (M) is comprised of the elements
of M which are killed by Rad’(F,G) ; second, we have Rad’(M) = M - Rad’ (F,G). From this,
it follows easily that ¢'(M) = ¢(M).

From now on, Notation 4.0.1 is in force again. In particular, the integer n is defined, and
the above definitions will be specialized to G = E,. We shall use that Rad(F,E,) is the
augmentation ideal, which is the linear span of our elements X;. As a result, Rad’ (Fp L) is the
linear span of the elements X" with |v| = j.

In [AGKMO1, Theorem 5.2,5.3,5.15], a formula is proved, which relates the length of the
module ®(Gy(2))/®2(Gi(2)) to the 2-cohomological dimension cda(Gy(2)) of G (2), the Galois
group of a maximal 2-closure of the local field k :

0(®(G(2))/9%(G(2))) + cd2(Gi(2)) = dimp, H' (Gi(2), F2) + 1.

The authors establish the same formula for C-fields, and indeed ask whether it holds in
general. Our goal is to provide a similar expression for p odd, when k is a local field. Please
note that the following proposition does not require k to contain a primitive p-th root of unity.

Proposition 4.2.1. When k is a local field, the following identity holds:
U(D(Gk(p)/P*(G(p))) + cdp(Gi(p)) = (p — 1) dim H' (Gic(p), Fp) + 1,
where cdy(Gk(p)) is the p-cohomological dimension of Gy (p).

We have stated the formula so that it could be easily compared to its counterpart for p = 2.
Recall of course that ®(Gy(p))/®%(Gk(p)) is denoted by J* elsewhere in this thesis, including
the following proof.
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Proof. Let n = dimg, H'(Gk(p), Fp). There are only two possibilities for Gk(p): the free pro-p-
group F,, (when k does not contain a primitive p-th root of unity) or a Demuskin group Dy,
(when &, € k): see §1.5. Let us distinguish between both cases.

First, let us assume that Gk (p) is a free pro-p-group, so that cd,(Gk(p)) =1 (see [Ser94, §3,
Proposition 16]). We must prove that the length of J* = M, is in fact equal to n(p — 1).

On the one hand, remark that M, -Rad"®~Y(F,E,) = {0}. Bear in mind that Rad"®~Y(F,E,) =

n
Spang (N), where N= 3 g =] XP~'. But we have:
=1

geE, i=
N = 0 (because XY - X; =0 (3.12))
(Xia X]) N =10 (because (Xla X]) : Xé'p_lX;)_l =0 ())l8

On the other hand, M, - Rad"®~Y=Y(F,E,) # {0}, for (x1,xn)XE~2 [I Xffl is non-zero: it
i<n—1
is a vector of the basis By, , since it verifies all the conditions required in Proposition 3.2.12.

This concludes the argument in the first case.

Secondly, let us suppose that Gy (p) is a Demuskin group (now Notation 4.0.1 is in force, as
in the rest of this chapter). By definition c¢d,(Gk(p)) = 2, and we must prove that the length of
J is equal to

W(J)=p-1)n—1.

Remember that we have set
oc=1(1,2)(3,4)...(n—1,n) € &,,

note that the permutation o is meant to send an integer i to the integer j such that (x;, z;) or
(2, ;) appears in the Demuskin relation. Now, let us compute the length of J.

The first step is to remark that J - Rad®~Y"~1(F,E,) = {0}. Consider indeed the presen-
tation that we have given in Lemma 4.1.2. Take X € Rad®~Y"~Y(F,), that is, with |v| =
(p —1)n — 1: then obviously for every i € {1,...,n}, we have v; > p —2 # 0 (bear in mind that
p is odd).

Therefore, it is easy to see that x? - X¥ = 0, since v; > 0 and X! - X; = 0 (cf (4.1.1)).
Furthermore, take (x;,x;) and set v=(p—1,..., p—2 ,...,p—1). Note that if s ¢ {i, j},

s—t}:gs-i;ion
since (x4, X;5) -Xf_le_l =0, it is obvious that (x;, x;)- X" = 0. We now turn to the cases s =i
with j odd.

We have (with the notation of (4.1.1))

v (00 (j) (V)
(i x5) - XY = (Xjs Xo(j)) Xn oW (i = 1j = No(5))
n_y
2
- 20 (X511, X2s42) - X020 () (@)
2511

= 0

The last equality comes again from the fact that (x2s+1, X2s+2) -X§;_11X§;+12 = 0, according to
(3.18).
We leave it to the reader to treat similarly the case when j is odd and the case s = j. This
concludes the first step.
n—1
It remains to see that J-Rad® V" =2(F,E,,) # {0}, since for instance (x1, xn)-X2% ] Xf_l
j=1
is in the basis of J described in Proposition 4.1.4: hence it is non-zero.
This finishes the proof. O

Another noteworthy statement of the paper [AGKMO1] is the following proposition, which is
only proved when p = 2, but which could be established mutatis mutandis for p odd (although
we shall not use this, and mention the result for motivation only).



4.2. COMPUTING SOME INVARIANTS 95

Proposition 4.2.2 ([AGKMO1] 3.10). In the mod p Lyndon-Hochschild-Serre spectral sequence
for the group extension

1—®(Gk(p)) —= Gk(p) —Ep, ——1,

we have EL! = Soc?(.J)/ Soc(.J).

After a concrete computation of the dimension of EL!, the authors deduce the dimension of
Soc?(.J)/ Soc(J), when p = 2 (JAGKMO1, Example 5.6]). In this case they obtained:

3
dimg, Soc?(.J)/ Soc(J) = n(n—2)(n+2)

{ dimp, Soc* (2*(F2)")/ Soc (Q*(Fy))r) = =iyl
3

This is what we propose to generalize for p odd, by direct arguments.
In fact when p is even, a particular phenomenon occurs, as a consequence of the relation

X7 X5 =—(xixg) - XFEh

As long as p is an odd prime p — 1 will be different from 1, hence the proof is slightly different
from the previous one, because we have to take account of terms x? - X;, as we shall soon see.

Proposition 4.2.3. With the notation as in 4.0.1, we have on the one hand

n+1)(n—1)
3 9

dime, Soc (3 (F, ")/ Soc(Q3(F,)") = "t

and on the other ) 5
dimg, Soc*(J)/ Soc(J) = nn = ;(n +2) ,

where the modules considered are FpE,-modules.

Proof. Rather than working with the socle series, we will study the radical series; recall indeed
that
(Sock (M) / Soc*~H(M))* = Rad*~(M*)/Rad®(M*).

(For example see [Web16, Exercise 6.7].) Since we seek to compute the dimensions, we may as
well work with Rad(M*)/ Rad?(M*).

Let us put R = Rad"(Q?(F,)) for all i > 0, and compute the dimension of R'/R?. We shall
use a partition of the basis By, from Proposition 3.2.12 : let us put S = {}? | 1 < i < n},
To={(xixj) [ 1<i<j<n}, Tt ={(xisxj) - Xs | 1 <i<j<n,s<j}, and finally

Ty = {(xi» xj5) - X¥ € By, with |v] > 2}.

Then By, is the disjoint union SUTHUT; UT5, and we make a series of observations, culminating
with the fact that the dimension of R!/R? is the cardinality of 7. We shall also see that R? is
the linear span of T5.
The first observation is that 73 C R! and 7o C R? C R!, so that S U T}, generates R°/R".
As a result, the elements x - X for x € SUTy and 1 < s < n generate R'/R? as a vector space.
A second observation, however, is that for x¥ € S, the element y? - X lies in R2?, for all j.
Indeed, if j =4, we have x¥ - X; = 0, however if i # j, we have

e

PLX, — —(xi, xj) - XPT it i<
Xi J . p—1 . .
(x5 xi) - X] if j<i

Since p > 3, we have that x? - X; € R? as announced. (In fact x? - X; is in the linear span of T3,
and we use this below.)

We also need to point out that, if x € Ty and 1 < s < n, then = - X € (T1), the linear span
of T1. While this is clear if s < j, for 1 <7 < j < s < n we use the relation 7; — 7n; — ns, that
is

(Xi: X5) - Xs = (X Xs) - Xj — (x5 xs) - Xi (4.2)
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At this point, we deduce that the classes of the elements of Ty generate R'/R?. It remains
to show that (T1) N R? = {0}.

To see this, we make our final observation: the linear span (73) is in fact a submodule, that
isifz € Ty and 1 < s < n, we have x - X5 € (T»). In order to establish this, the reader will
complete the following sketch. Let z = (x;, xj) - X” € T>. The element x - X, satisfies condition
(1) from Proposition 3.2.12 unless it is zero, from (3.18); if it does not satisfies condition (3) from
the same proposition, apply (3.24) to reduce to the case when it does ; and if it does not satisfies
condition (2), apply (4.2) above. These steps allow us to rewrite x- X as a linear combination of
elements from the basis Bj/,, and we check immediately that the terms appearing are actually
in T5. This completes the sketch.

A similar remark is that, if x € 77 and 1 < s < n, then x - X € (T3). Together, the facts we
have collected imply that for any x € By, and any indices i, j, we have z - X; X; € (Ty).

We can conclude that R? C (1), and thus that R? = (Tz). As By, is a basis, we certainly
know that (%) N (T2) = {0}, and this concludes the proof of our claim, according to which the
dimension of R'/R? is the cardinality of 7T}.

Let us count the vectors (xs, xj) - Xs in 77. If we fix j, we have j choices for s and j — 1
choices for i, hence

5

dimp, Rad(Q2(F,))/ Rad*(Q(F,)) = ]é:o(j 1))
= %n(n—k H2n+1)— M '

= gn(n+1)(n-1)

Now, let us address the case of J = J*. The homomorphism m = 7g(p, ,): Q*(Fy) — J*
certainly maps Rad®(Q?(F,)) into Rad®(J*) for all s > 0, and since 7 is an epimorphism,
we have in fact 7(R*) = Rad®(J*) for all s. From the above, we deduce that Rad?(.J*) =
7((Ty)), and that Rad!(.J*)/Rad?(J*) is generated by m({(T1)). What is more, we certainly
have 7((T1)) N7 ({T2)) = {0}, as follows from Proposition 4.1.4 (the latter states that a basis
for J* is obtained from our basis for Q?(F)) by discarding some elements and applying 7).

We conclude that the dimension of Rad'(J*)/Rad?(J*) is also that of 7((71)). Now the
set m(711) is no longer linearly independent, as follows from the Demuskin relation: we may
suppress the vectors (xn—1,Xn) - X for k € {1,...,n}. The remaining vectors however, which
are

(Xirxj) Xk, 1<i<k<j<n, i<n-1,

are indeed linearly independent, as follows from Proposition 4.1.4.

Hence
dimg, Soc*(.J)/Soc(J) = dimp, Rad(J*)/Rad?(J*)
= dimp, Rad(Q*(F,))/ Rad*(Q?(Fp)) — n
= In(n—2)(n+2)
The proof is complete. O

4.3 The associated vector bundle

Since J(K) is of constant Jordan type, we would like to describe the associated vector bundle
denoted U(J(K)), where U is the functor introduced in §1.1.5. In order to do so, we shall work
with a module w(J) which is stably isomorphic to €(J), and which fits into an exact sequence

00— O3(F,) —— w(J) QY(F,) —=0 . (4.3)

This has independent interest. Indeed, this exact sequence must be locally split exact, as
follows from Remark 5.3.5 in [Benl6]. As a result, we see that w(J), and thus J itself, must be
of constant Jordan type, and thus we have a completely different, alternative proof of this fact
(in the case of the maximal Kummer extension!).
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We turn to the definition of w(J). Corresponding to the presentation of Lemma 4.1.2 is a
short exact sequence

1 —— kermg LU AN 1,

where F is a free F, I/, module of rank da(E,) (recall that we write dg(E,) = dimg, H*(Ey,, Fp)).
By definition, the module ker 7y is stably isomorphic to €(J). The lemma gives a system of
generators for ker g, and our task, of course, is to find the “relations between the relations”.

Here is what the answer will be. In order to make the formulae less cumbersome, we recall
the following notation for the norm:

N= ] xt"'= Y =,
1<i<n z€E,
and the following one for a "restricted" norm:
N =[x
i#]
We then define w(J) to be the module
CU(J) = <77] ~ Civnil ~ MNiy ~ ni375/ | Rel4(h,z),(5l N = Z N2 ~ CQi—l . N

1<i<2

2i—1

> 9y

where (h,z) runs through the C-indices of weight 4, the indices i,j are in {1,...,n}, and
1 <1 < iy < iz < n. Here we revert to the notation of Theorem 3.1.2.

As announced, we shall establish that w(J) is stably isomorphic to €(J), and we shall
accomplish this by showing that w(J) is (genuinely) isomorphic to ker .

We start by gathering basic information.

Lemma 4.3.1. Let the modules w(.J) and kermy be as above.
1. The dimension of J over Fp, is 2+ (n —2) - p".
2. There is an exact sequence

Y

00— Q3(F,) ——w(J) QY F,) —0,

where o maps 0" — ¢* € Q3(F) to the element with the same name in w(J), while v maps
n" — ¢* € w(J) to 0 and maps &' to o (with notation as in Proposition 3.1.2).

3. We have
dime w(J) = dime ker my = dime Q3(Fp) Tt 1.

Proof. (1) We have opened the chapter by recalling the existence of an exact sequence
00— QY(F,) —= Q3(F,) D ——0 .

The dimension of Q?(F,) is 1 + (n — 1)p™ (see Lemma 3.2.3), and that of Q~1(F,) is p" — 1,
as Q71(F,) = I*, the dual of the augmentation ideal.

(2) From the definitions of the modules involved, it is clear that ¢ and 1 are well-defined
and that ¢ is surjective. That ¢ is injective follows easily by inspection, as the new relation
in w(.J) involves the new generator &'. It is clear that ¢(Q3(F,)) C ker, and the induced map
w(J) /(3 (Fp)) — Q1(F,) has an inverse mapping « to &, so Q3(F,) = ker ¢.

(3) From (2) we see that the dimension of w(J) is dimg, Q*(F)) 4+ dimg, Q~1(Fp), and
dimp, Q'(F,) = p"—1. On the other hand, (1) shows that dimg, ker 7 = dimp, F —dimg, J =
dimp, F' — (24 (n — 2)p"), and as the rank of the free module F' is d2(Ey), we have dimp, ' =
da(ER)p". Now we recall that

dimg, Q*(Fp) = do(E,)p" — dimp, Q*(F,),

from equation 3.6 at the end of §3.1; also dimp, Q*(Fp) = 1+ (n — 1)p" as already mentioned
in this proof. Rearranging terms, we get the announced result. O



58CHAPTER 4. MORE ABOUT THE MAXIMAL ELEMENTARY ABELIAN EXTENSION

Proposition 4.3.2. The module w(J) is isomorphic to ker gy, and thus is stably isomorphic
to Q(J).

Proof. We return to the surjective map mg: F' — J. Let the generators of the free module F
be labelled X! and (i, X;), so that mo(X}) = xi and mo((Xi, X)) = (Xian)- According to

Lemma 4.1.2, the module kermy is generated by the element e5 := Z(XQL 1,X2i) and the
=1

elements which we now call €, -, obtained from Notation (4.1.1) by addmg bars”. For example,
as the relation (9;_1 — 10; reads

_Xgi_l - Xoi + (X2i—15 x2i) - Xg 11 =0,

we have
EnaiCai1 = _Xgi—l - Xoj + (X2i-1, X2i) - Xgi_—ll :
We attempt to define a map
60: w(J) — kerm

which satisfies 8(n" — ¢*) = ync= and 0(6") = eg . If we can merely prove that it is well-defined,
then it will be surjective, and hence an isomorphism since we have computed above that the
dimensions of the two modules are equal. Hence our task is to show that the elements Eghee
and ey satisfy the relations described in our definition of w(.J).

Part of this has already been done, of course, since J is a quotient of 92(Fp). More precisely,
we have the following commutative diagram :

0 —— Q3(F,) F Q%(F)) — 0
Prom e | -| |
0 —— kermy F - J=0%F,)/(0)) —— 0.

We see that the submodule generated by the elements £, .- is a homomorphic image of Q3(F,)
within ker 7. Since the relations Rel*(h’, 2') hold in Q3(F,), as established in Chapter 3, they

must also hold in ker 7.
The nontrivial work occurs with the relation involving §’: we must prove that

21 1
N Z 67721421 0 :

Indeed:
2 < 2i—1 2 2 <21, _ _1 2i—1
ey - N— Zl iGN = ZI(XZz 1, X2i) - N — 21( Xbiy - XoN"T 4 (i1, Xoa) - X5 AN
1= 1= 1=
= Zl()(m 1,X2i) - N— Zl(Xm 1, X2i) - N
1= 1=
- 0,
nsing Xo;N"' " =0 and X2 KN T =N, O

Remember that we have introduced in §1.1.5 a functor U from the category of E,-modules of
constant Jordan type to the category of vector bundles over PTF_I. Furthermore, O denotes the
structural sheaf of Pj ! (see [EHO1, §1.2.4]), and we have set O(j) = 0%/ and O(—j) = (0*)%J
for j > 0.

Proposition 4.3.3. Set K/k the mazimal elementary abelian extension of a local field k. If
the characteristic of the residue field of k is equal to p, we have the following isomorphism:

B(J(K)) =0(p) D O(-p);
however if the residue field of k is of characteristic prime to p, we have the isomorphism:

BJIK) =05 0.
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Proof. If the residue field of k has characteristic prime to p, then according to the remarks
following Lemma 4.1.2, it appears that J(K) = F, x F),. Therefore U(J) =0 ¢ O.

If the residue field of k is not prime to p, then we shall remark that Gal(K/k) is not an
elementary abelian p-group of rank 2: its rank is at least 3, according to [Guil8, Theorem 4.8].
Therefore according to [Benl6, Theorem 8.12.2], the sequence that we obtain by applying the
exact functor U,_; (denoted in [Benl6, §8.4] by F,_1) to the exact sequence (4.3), which is

0 ——Bp 1 (V(F)) —= Bp1(w(J)) —= Vp1 (A (F)) —0 ,

splits, hence
By (w(J)) = O(1 — 2p) & O(1),

according to [Benl6, Corollary 8.5.3]. Therefore if we apply [Benl6, Theorem 8.5.1], we have
that
U(J) =O(=p) ® O(p).

We have therefore established Proposition E.
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Chapter 5

Some (non)-results for groups of
elementary type

Since it seems the Galois module structure of J(K) = K*/K*P, where K/k is an elementary
abelian extension of a local field k containing a primitive p*"-root of unity, is relatively un-
der control according to Theorems 1.4.2 and 1.4.3, the reader probably wonders whether both
theorems hold for an arbitrary field. Unfortunately, this is not the case.

Remember that we have set Gy (p) for the Galois group Gal(k(p)/k), where k(p) is a maximal
p-extension of k. We shall focus here exclusively on the Galois-module structure of the maximal
p-elementary abelian extension, in order to provide a counterexample. According to Lemma
1.3.2, this arithmetical question can be rephrased as a group theoretic one: we will in fact
consider ®(Gi(p))/®P (G (p)) as an E, ~ Gi(p)/®(Gk(p))-module. The main result of the
chapter is this: we will consider a free product G = Gi * Go where Gy is free and Gy is a
Demuskin group, so that (for certain values of the parameters at least) each of them is of the
form Gy (p) for some local field k, but we shall establish that ®(G)/®®)(G) is not of constant
Jordan type, when viewed as a G/®(G)-module. It is a well-known result that G must be itself
of the form Gy (p) for some field k, so that there are fields not enjoying the properties of local
fields discussed in this thesis.

There are good reasons to consider free products, and this is why we open, in §5.1, by
recalling what groups of elementary type are, for motivation (this explains the title of the present
chapter). Second, in §5.2, we will introduce some tools to study free products, in somewhat more
generality than is needed for the counterexample, which appears in §5.3.

5.1 Groups of elementary type

In this section we give background information about the beautiful elementary type conjecture,
for motivation. Strictly speaking, this is not used in the sequel.

Here, we follow closely [QW21]. It was conjectured by I. EFRAT that if k is a field such
that Gy (p) is finitely generated, then the latter can be built from two families of pro-p-groups,
the Demuskin groups and the free pro-p-groups, by applying to them two operations: the free
product and the oriented semi-direct product. In order to introduce the second operation, we
have to consider oriented pairs rather than mere groups. Throughout this section, we assume
that the prime p is odd, unless we explicitly assume the converse.

Definition 5.1.1. An oriented pair (G, x) consists in a pro-p-group G and a continuous homo-
morphism y: G — Z;;.

Remark. The vocabulary of group theory extends to the oriented pairs’ one: an oriented pair
(G, x) is said to verify "a group theoretic property" if G verifies it.

Example 5.1.2. Oriented pairs arise in a very natural way in Galois theory: consider a field
k, whose characteristic is different from p and such that &, € k. The group Gi(p) acts on

61
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fhoo = li_;nuk, where 1 = {€ € k | &t = 1}. Since poe =~ Z[}%]/Z, the action of Gi(p) on it

induces a continuous monomorphism x from G(p) into Aut(Z[%]/ Z).
Furthermore, under the action of Gy (p) a primitive p*-th root of unity is sent into another
primitive p*-th root of unity, hence we have that for every g € Gy (p) :

1) 1
) =k
ok e

x(9)( )

where a;, is prime to p and 1 < a5 < p* — 1. Thus the sequence (ak)g>1 clearly defines an

element of 11(111(Z/ka)X ~ Z), and by a slight abuse of notation, we set x(g) = (ax)r>1 € Z, .
k
Such a morphism x: Gy (p) — Z; is called a cyclotomic character, since it describes the
action of Gi(p) on p~. The oriented pair (Gx(p), x) is then called a cyclotomic pair.

For Demuskin groups, we mention the following result by Labute (given here without details):

Theorem 5.1.3 (Labute [Lab67]). If Dy, is a Demuskin group, there exists a unique cyclotomic
character x: Dy n — Z, satisfying a certain (mild and natural) cohomological condition. If p
is odd it is defined by

X(@2) = (1 =P x(@i) =1.

We shall now define the oriented semi-direct product. This operation arises in a natural way
by studying the p-Henselian fields, however we shall remain silent about them. Yet, their study
leads to the following lemma (see [EH94]):

Lemma 5.1.4. Let k be a field whose characteristic is different from p, such that k contains &,
and such that Gal(k/K) is a pro-p-group. Let m be a cardinal number. There exists a field K/k
such that the degree of transcendence of K/k is m, and for which there is a short exact sequence

l—=Z) — Gal(K/K) — Gal(k/k) —1

This way of building up an absolute Galois group which is pro-p from Z;' and another
absolute Galois group leads us to consider in fact the following operation on groups.

Definition 5.1.5. The oriented semidirect product of an oriented pair (G, x) with Z;', where
m € N\{0}, is the oriented pair (Z;' x G, xo), where 7 is the canonical projection from Z;* x G
onto G and the conjugation action of G on Z;" is defined by

(‘Th s 7‘rm)g = (X(g)xlv o 7X(g)xm) .

Now, since it is known that the free product of two absolute Galois groups remains an
absolute Galois group, it makes sense to consider the following class of groups.

Definition 5.1.6. The class €, of elementary type pro-p-groups is the smallest class of oriented
pairs verifying the following conditions:

1. Every oriented pair (F,, x) where F,, is a free pro-p-group and Y is an arbitrary morphism
from F, — Z) isin €.

2. Every oriented pair (D, xp) where D is a Demuskin group and xp is Labute’s cyclotomic
character (as in Theorem 5.1.3) is in &,.

3. If (G1, x1) and (Ga, x2) are two oriented pairs in &, then (Gi * Go, x1 * x2) is also in &, .

4. If (G, x) is in €, then for every m € N, the oriented semi-direct product (Z;* x G, x o)
is also in €.
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Conjecture (Efrat). Let k a field and Gy (p) be the Galois group of a maximal pro-p-extension.
Suppose Gy (p) is finitely generated, then (G, x: G — Aut(jc) = Z,) is an element of €.

The converse of this conjecture (stating that every group which is an object of &, is the
absolute pro-p-Galois group of some field) is even more mysterious: indeed it is not known if
every Demuskin group is the Galois group of a maximal pro-p-closure.

Efrat’s conjecture remains open, which means that to this day every finitely-generated group
of the form Gy (p) ever discovered is in fact of elementary type. This certainly means that the
class of elementary type groups is a natural one to test a conjecture against. This is why we have
investigated whether modules of constant Jordan type could always be obtained from elementary
type groups; however, in this chapter we provide a counterexample, showing that the situation
may be specific to local fields after all.

5.2 Free products

The goal of this section is to provide tools to better understand the following question: suppose
you form the free product G = Gy %G of two pro-p-groups, how does ®(G)/®?)(G), as a G/®(G)-
module, relate to the two modules ®(G;)/®3)(G;) for i = 1,2 ? Our main result, Proposition 5.2.7
below, produces an exact sequence which involves induced modules. A fair amount of notation
is necessary, however, before we can state it.

5.2.1 Notation & Setup

Definition 5.2.1. For r a positive integer, we consider the category of weak presentations of
pro-p-groups of rank r denoted pres,.. Its objects are pairs (G, ¢) where G is a pro-p-group of rank
rand ¢: E, — G/®(G) is an isomorphism, whereas a morphism ¢: (G, v1) — (H, ¢2) is but a
(continuous) morphism v¢: G — H of pro-p-groups such that the induced map V: G /®(G) —
H/®(H) makes the following diagram commutative:

/ E, \ (5.1)
©1 P2
G/2(G) — " /a(H)

Note that this requirement implies that ¢ is an epimorphism.
Now, of course E, = C’; has a canonical basis: we will denote it (e;)1<i<r, in this chapter.

Examples 5.2.2. By a slight abuse of notation previously mentioned in §3.2) if z is an element
of a pro-p-group G, we also write z for the class of z in G/®(G).
Take the free group F, generated by r elements x1,...,x,; we may set

or(e)) =z, Vie{l,...,r}.

It is quite obvious that (F;, ¢,) is an object of pres, (this simplified notation obviously suppresses
the fact that we need to choose the generators z1,...,z,).

If Dy, , is a Demuskin group, according to our own definition (see §1.5), there exists a minimal
set of r generators denoted z; verifying a particular relation, hence we may consider

orrei) =xi, Vie{l,...,r}.

Again (Dy,, pk.r) is an object of pres,., and the map which we used to write m: 7 — Dy,
and which is the canonical presentation of Dy ,, is obviously a morphism between (F;, ¢,) and

(Dk,’m (zOk,T’) .

Remarks.
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1. As we have just seen in the case of Demuskin groups and free groups, as soon as we have
a presentation by generators and relations of a group G, there is an obvious isomorphism
¢ between E, and G/®(G). Therefore, in those cases, we may not bother to make the
distinction between e; € E, and ¢(e;) = z;, which leads us to make again an abuse of
notation.

2. Instead of studying weak presentations, we could have considered the category of pro-p-
groups of rank r with generators, whose objects are pairs (G, S) where G is a pro-p-group
of rank r and S is a set of r generators, however this category contains more information
than required.

Now, let us build the family of functors J,: pres, — mod(E,) : as expected it is simply
defined on the objects by
3:(G.0) = 2(9)/2?(G).
The action of E, is given by the action by conjugation of G/®(G) through ¢, which means, for
y € ®(G), we put
) e =[]
= lple) " typ(es)]
where [y] is but the class of y modulo ®?)(G). It is quite obvious that this defines an action of
E,.
For every morphism f: (G, pg) — (H, x) of pro-p-groups, we have f(®@(G)) c &) (H)
for every i € N, so that f induces a map of abelian groups

Jr(f): 3r(Gr0g) — Ir(H, o1) -

Furthermore the map J,(f) is E,-equivariant: indeed for every x € E, and [g] € J,(G, ¢g),
we have the following equalities:

I (f)gl-x) = [f (g“og(x )] (definitions)
= [f(g)f¥e(@)) (f is a group homomorphism)
= [f(g)""=)] (commutativity of (5.1))

= [f(@] - z=3(f)g]) - =.
Example 5.2.3. The module J,,(Fy, ¢,) is none other than M,,, as in §3.2.

Definition 5.2.4. For every morphism p of weak presentations, we set:

r(p) = ker(Jr(p)) -

This is naturally an E,.-module.

Examples 5.2.5. We certainly have x(Idz.) = {0}, while we have discovered with Proposi-
tion 2.1.4 that

K7 (Froor) = (Do) ) = 271 (F).
Let pf®tp, denote the category of pro-p-groups of rank r. It is well known that the free

products of pro-p-groups induces a bi-functor from pf&tp, X pf&rp,., to pf&rp,.,,..: we would like
to extend it to the weak presentations.

Definition 5.2.6. Let (G, ¢g) and (H, ¢y ) be objects respectively of pres, and pres,,. We set
©wg * O to be
wg * o Erp — GxH/P(G*H)

e;) for 1<i<r
e @Q*@H(‘ii):{ wolei) -

onlei—y) for r4+1<i<r+7

The object (G * H, pg * ¢ ) is called the free product of (G, pg) with (H, p3).
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5.2.2 Main result

The next proposition is the main technical result of the chapter. The statement uses the following
notation: the morphisms ¢ : E, — E, and ¢, : E,v — E,,, when n = r + 1, were defined in
Notation 3.3.4; and whenever ¢y: H — G is a monomorphism between finite groups, and for
an F,H-module M, the notation M 1, refers to the usual induced module M ®,, F,G.

Proposition 5.2.7. Let p: (Fr,pr) — (G, 0g) and p': (Fpr, ) — (H, p3) be morphisms in
pres,. Assume that ker(p) C ®(F;) and ker(p’) C ®(F,»). Put n =r+1'. Then there exists a
short exact sequence of Ey-modules

0 —— li(p) Tﬁw EB”(/)/) Tll)f, — 377,(-7:77,:‘7071) M Jn(g * HaSOQ * ‘PH) — 0

In other words,
K(p*p') = k() Tpy B6(P) Ty, -

Here of course J,(Fn, pn) = M, ~ Q?(Fp) as an E,-module.

The rest of the subsection is dedicated to the proof. We shall rely on material and notation
from §3.3. Note that we shall identify F, * F,» with F,,; in fact, in this proof, we are going to
assume that the generators for the group F,~, which appears as the source of the morphism p’,
are called xpy1,Tr10,...,Ty.

We have already pointed out that p: F, — G is surjective, as is p': F,v — H, and it
follows that p % p': F,, — G x H is also surjective. It is a general fact that the induced
map ®(F,) — ®(G = H) must be surjective as well, and so there is an exact sequence of the
form

0_>K_>Jn(]:n790n) _>Jn(g * 7'l,<Pg * SOH) —0.

Our task is to identify the kernel K. We start with a general lemma.

Lemma 5.2.8. 1. Let p1: G — G and pa: H' — H be surjective morphisms between pro-
p-groups. Then the kernel of p1 * pa: G' * H' — G * H is the closed, normal subgroup
generated by ker(p1) and ker(ps).

2. Let p: G — G be a surjective homomorphism between pro-p-groups, and assume that
ker(p) C ®(G'). Let K denote the kernel of the induced map

®(G)/2P(G) — @(G)/2P(G).
Then K is the image of ker(p).

Proof. (1) We identify G with G’/ ker(p1), and similarly we identify H with H'/ ker(p2). Let N be
the closed, normal subgroup generated by ker(p;) and ker(pz). It is clear that N C ker(p; * p2),
so that there is an induced map

(G'*H)/N — GxH *)

and we wish to show that it is an isomorphism (it is obviously surjective). Consider then the
composition of canonical maps

g/ — g/*Hl — (g/*H,)/N,
it must factor through G’/ ker(p;) = G. Likewise, there is a map H — (G’ « H')/N.
We can combine these into a map
GxH — (G"+H')/N. (**)

(This uses that N is closed, so (G’ « H')/N is a pro-p-group, and we may use the universal
property of free products.) Now it follows from the definitions that (*) and (**) are inverses to
each other.

(2) Let [2] € K, with = € ®(G’), so that p(x) € ®@(G). The induced map @) (G") —
®3)(G) is surjective, so there is ¢ € ®?)(G') such that zc € ker(p), and [z] = [zc]. O
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Back to the situation at hand, part (1) of the lemma tells us that ker(p x p’) is generated,
as a closed, normal subgroup of F,, by ker(p) and ker(p’). Combined with part (2) of the same
lemma, this implies that K is generated, as an E,-module, by k(p) and &(p’).

More notation from §3.3 will be borrowed, in order to clarify things. We shall write Q2 (F,)
for the module J,,(Fy, ¢n) = My, with its generators written (i,...,(, and 1, — n; for 1 <i <
j < n; the module Q2(F)) is the sub-E,-module of Q2 (F,) generated by (1,...,( and n; — 1,
for 1 < i < j < r (it is of course isomorphic to the Fj, E,-module written simply Q?(F,) elsewhere
in this thesis, but it is important to see it inside Q2(F))) ; and finally Q2 (F,) is the sub-E,.-
module of Q*(F,) generated by (41,...,(, and 7, — n; for r +1 < i < j < n (with similar
comments).

By definition there are exact sequences

0 — r(p) — Q2(Fp) — 3:(G, pg) — 0

and
0 — k(p)) — Q4(Fp) — I (H, o) — 0.

Thus we see k(p) as a sub-E,-module of Q2(F,), and the F,E,-module generated by x(p)
is the image of a morphism
A (p) Ty R2(Fy)

(One way to define A is by Frobenius reciprocity from the inclusion x(p) — Q2(F,) lg,.)
Moreover, this applies to Q%(Fp) as well, and so for the same reason there is a morphism

972« (Fp) TMJ—> Q%(Fp)

whose image was studied in §3.3 and called Ny there. Thus we see that the image of )\ is
contained in NVj.
Symmetrically, there is a map

N k(p') Tom— Q2(F,)

whose image is contained in the module Ny studied earlier, which is itself the image of a homo-
morphism
Q%’(Fp) Tiﬂf/ - Q%(Fp) .

Together, A and X can be combined into a map

K(p) g ®E(p") Tyn,— Q5 (Fp)

whose image, we have argued, is just K. We need to show that it is injective, and the proof will
be complete.

However, we have N1 N Ny = {0}, which was Proposition 3.3.8. As a result, it suffices to
show that A and ) are injective. We do this for X' (by symmetry, this give the result for A, even
though the technical, intermediate results of §3.3 do not put r and ' in symmetrical positions!).

In fact, we now show that the map Q2 (F)) T¢:/—> Ny is an isomorphism. It will follow
that, for any sub-F,,-module M C Q?,(Fp), the corresponding homomorphism M tyn — Na is
also injective. Thus the proposition will be proved at the same time as the next lemma.

Lemma 5.2.9. We have dim Ny = dim Q2 (F,) tyn . As a result, the surjective homomorphism
Q% (Fp) tyn — Ny is an isomorphism.

Proof. The dimension of Q2 (F,) is 1 + (' — 1)p” by Lemma 3.2.3, so the dimension of the
induced module Q2,(F,) tyn is p' (1 + (' — 1)p™), as the index of E,s in E,, is p'.

Now, consider the basis of Ny given in Lemma 3.3.6 (notice that the vectors listed in this
lemma, are obviously linearly independent, and by counting them as we are about to do, one

obtains an alternative proof that they form a basis). There are, first and foremost, ' vectors
called (; for r+1 <i <n.
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Next, we have a vector (n; — n;) - X" for r+1 < i < j < n whenever it belongs to the basis
described in Proposition 3.2.12. Reasoning according as v; = p — 1 or not, we count

n—1 n
Yo X -1+

i=r+1j=i+1

of these vectors. Let us rewrite this. First we turn our attention to

n—1 n n—1
A= > -p " =m-1) Y (-0 =@-1)(A - A),
i=r+1 j=i+1 i=r+1
where we have put
n—1 ) pnfl _ pr
Av=n Y pl=n"——"—,
i=r+1 p—
and
n—1 )
Ay= Y ip™t = fp),
i=r+1
using the polynomial
n—1
. X" — Xr+1
e )(Z = —_—
/=2 X1
i=r+1

Write (X —1)f = X" — X"+ differentiate with respect to X, evaluate at X = p and rearrange
terms to get

1 B pn_pr—l—l
Ay = — n—1 1 (A S
S np (r+1p P
In the end, we obtain
/ p"—p !
A=—0"=1)p" .
(r' =1)p" + -

Next we rewrite

n—1 n
B=Y > -
i=r+1j=i+1
n—1
= > " =)

i=r+1

n
=(n-rp - > 7
i=r+1

_ r/pn B pn+1 _ pr+l
p—1
In the end, there are A + B vectors of the “second type”.

We move to vectors of the “third type”, still according to Lemma 3.3.6. There is one such
vector (1; ~— 1) - X”Xf_1 for each choice of 1 < i < r,r+1 < j < n, and of a multiindex v
with v, =0 for i < k < j and j < k, and with v; # p — 1. The number of these vectors is thus

T n T
DD - ==Y =00 - 1).
i=1j=r+1 i=1

The grand total number of vectors which we have counted so far is

r r'+1

/ p —Dp / ! r! p —-p
— (=1 I R 4

+ pr— (r )+7'p p—

=p (14 (" = 1)p").

P+ A+B+(p 1) =p" |r
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This is also the dimension of the induced module Qg,(Fp) tyn , as noted above, so the proof
is complete. O

Remark. The hypothesis ker(p) C ®(F,), in the above proposition, has a simple interpreta-
tion. If x1,...,z, are free generators for F,, then (given that p is surjective) the condition
ker(p) C ®(F,) is equivalent to requiring that p(x1), ..., p(z,) be a minimal system of topologi-
cal generators for G (that is, not proper subset generates G topologically). This is a consequence
of Proposition 1.2.2.

5.3 A counterexample

Now we are equipped to consider our counterexample.

Proposition 5.3.1. Let G = F, * Dy v equipped with the obvious isomorphism ¢g: Eyyp —
G/®(G), withr > 1 andr’ > 2. Putn=r+7r". Then J,(G,¢g) is not an E,-module of constant
Jordan type.

Proof. Let m: Fv — Dy, the usual presentation of a Demuskin group (see §1.5). The group
G has an obvious presentation

k
G= (W1, U, Ty oy | 2 (w1, 22) (23, 24) ... (1, ) = 1) .

Note that this presentation is just Idz, *m: F;, — F, * Dy, identifying F,, with F,. x F,.. This
defines g in an obvious way, as mentioned in the proposition, so that (G, pg) is an object of
pres,, but we shall suppress it from the notation and write J,(G) for Jn(G, ¢g).

We have an exact sequence of Fj, E,,-modules

0 —— Q\F,) —— QF,) 2 3.(Dp) — 0:

this is the usual exact sequence from Proposition 2.1.4, with the notation from the current
chapter employed (see also the remarks at the beginning of Chapter 4). Let us write Q;I(Fp)
and Q2 (F,) for the first two modules in this exact sequence, in order to make it clear that they
are Fp,E,,-modules.

This means that () = SZT_,I(Fp). From Proposition 5.2.7, there is an exact sequence

In(IdE,. *m
0 M O%(F,) Inldzy *m)

In(G) —=0 ()

where M = Q;,I(Fp) Tyn . Let us write My, resp. Mp, for the restriction of M to the subgroup E;,
resp. to the subgroup E:«/. Then it is clear that M; is isomorphic to d copies of F(,E,., where d is
the dimension of Q;I(Fp), and in particular Mj is free ; whereas the module Ms, as is equally
clear, is isomorphic to p” copies of Q:,l(Fp).

In order to prove that J,(G) is not of constant Jordan type, we will compute the stable block
decomposition of its restriction to two different m-points and observe that they are different. We
will denote ¢ a generator of Eqy and of course 7' =t — 1 € F,E;. The two m-points we have
chosen are

51 : FpEl — FpEn
T — Y1 =Y — 1’
and
522 FpEl — FpEn
T — Xr+1:.1}1—1 ’

We start with the stable block decomposition of 3;(M), which is easy. Indeed, the de-
scriptions we have given of M; and My make it clear that the stable Jordan type of 8} (M) is
empty, since M is free, and that of 53(M) is [p — 17", since the (constant) stable Jordan type
of Q1 (F,) is [p — 1] (see Example 1.1.9).
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Now, since §f(M) is a projective module, the module §;(J,(G)) is stably isomorphic to
Q?(F,), hence its stable block decomposition is [1] ([Benl6, Proposition 5.4.3]). Now, if J,(G)
were of constant Jordan type, then (5 (J,(G)) would also have this block decomposition. Let us
assume so and find a contradiction.

Let us take a look at the following portion of the long exact sequence in cohomology associ-
ated with the restriction of (*) along [ :

e F(E, B3 (30(9)) — HA (B, B3 (M) — (1, B5(Q2(F,)) — -

Since the cohomology of a cyclic group is periodic [Bro94, Theorem 9.1] and according to
Proposition 1.1.3 which links the block decomposition to the cohomology groups, we have that
HY(Ey, 3(Q%*(Fp))) = Fp and that H*(Ey, 85(M)) = F5'. Furthermore, our assumption on the
Jordan type of 33(3,(G)) leads to H?(E1, 85(In(G))) = Fp. Thus the exact sequence tells us
that

ditm H(Ey, B3(M)) = ' < 2,

which is absurd given that p > 3 and r > 1. O
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Chapter 6

Current investigations around «

The criterion that we have established on the map x (Proposition 2.2.10) is not so easy to
check in the context of Galois extensions; furthermore it does not link the structure of the
Galois module structure to the arithmetic of the field. Finally, we have not showed that the
two cases, that we had to distinguish after Proposition 2.1.4, actually occur. We shall give here
two concrete examples addressing the latter issue and which motivate the development of new
results concerning elementary abelian p-extensions, which are currently under investigation.

Remember that p is an odd prime, k is a local field such that &, € k, where ¢, is a primitive
p-th root of unity.

6.1 Some examples through computation

6.1.1 Setting
Here we shall exhibit two concrete extensions K; /k and Ko /k, such that
Gal(Kl/k) ~ Gal(Kg/k) ~ E2 y

and such that J(Kj) is stably isomorphic to Q*(F,) & Q~2(F,), whereas J(K3) is not. For the
sake of clarity, we set p = 3, but, for every (odd or even) prime p, other examples may be found
without any difficulty, by mimicking the given ones.

Consider k = Q3(&3): since the extension Qs(€3)/Qs3 is of degree 2, we have

k* /K = F3,

according to [Guil8, Theorem 4.10]. Moreover, Q3(&3) does not contain any primitive 9-th root
of unity — in fact [Qp(&m) : Qp] = p™ (p—1) by [Guils, Proposition 2.48], so Q3(&3) # Qs(&o).
Hence the following isomorphism holds according to [Lab67, Theorem 7]:

Gi(3) ~ Gal(k(3)/k) =~ Dy 4 =~ (w1, T2, 23, 24|} (71, 29) (3, 74) = 1).
Notation 6.1.1. Now, set

Hl = Gr(@(pl,4),$1,$3)
HQ = Gr((I)(DlA),:L'l,:L'Q)

where Gr(S) denotes the closed normal subgroup generated by S.
Let us then write K; = k(3)* for i € {1,2}.

As promised the Galois groups Gal(K;/k) and Gal(Ks/k) are isomorphic. Indeed we have
the following lemma:

Lemma 6.1.2. Fori e {1,2}, the following isomorphism holds

71
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Proof. Certainly D 4/®(D;4) is elementary abelian, with a basis consisting of the classes
of x1,x2,23,24. For Gal(K;/k), we further kill the classes of z; and x3, so this group is
generated by the classes of xo and z4. Similarly the group Gal(Ksy/k) is generated by the
classes of x3 and 4. O

According to Proposition 2.1.4, for i € {1,2}, there exists a short exact sequence

Ki

0——QY(F,) —=wy(Fp) —= J(K;) —=0 .

In order to establish the behaviour of k;, we shall in fact take a closer look at the module
structure of wy(Fy).

6.1.2 The module structure of wy(F))

Remember that, thanks to the presentation we use for a Demuskin group, there exists a canonical
epimorphism
m: Fy = (T1,%2,%3,T4) — D14

sending Z; to ;.
Notation 6.1.3. We set H; = 7~ (H;), for i € {1,2}.

Lemma 6.1.4. The Ey-module Hy/®(H1) (resp. Ha/®(Ha)) is generated by the equivalence
classes of the following elements:

jl» i'37 jgvilia (:Z'27 :i'4) )
(resp. T1,%o, T35, %5, (T3,74)).

Proof. Since, in Fy, the elements %1, T2, Z3 and T4 play a symmetric role, we shall only write an
extensive proof for H/®(H1).

Note that H; / <I>(7—~l1) is generated, as a module, by a family of generators of H; as a closed,
normal subgroup. The latter, by definition, is generated by ®(Fy) together with #; and Z3. As
a result, 7:11/'11)(7:[1) is generated by Z1, T3 and the image of the natural map

M4 = (I)(f4)/q)(2)(.7:4) — 7:[1/(13(7:[1) .

Keep in mind that this is a map of Fy;/®(Fy)-modules, with Fy/P(Fy) ~ E4, where the action
on the target module factors through F,/ Hy ~ Es.

Now in My, we have the generators (%;,7;) ( where 1 <i < j <4) and &} (with 1 <i <4),
and we use the same names for their images in H;/®(H;). It is clear that #7 and I3 are
redundant, as they now belong to <I>(7-11).

Because Gal(Ky,k) ~ (i3, %4) acts on Hy/®(H1), we have for instance

. cla—lz = a—lod
(T1,Z4) =07 Ty T1Tq = T 7"

This translates to
(5}1,574) = —i’l . X4 mod @(Hl) .

Therefore we can get rid of (#1,Z4), and in a similar fashion any commutator implying #; or
Z3. Note in fact that in H;/®(H1) the commutator (Z1, Z3) is simply zero. We are left with the
generators proposed in the lemma. O

As things become a little technical, we specialize the notation to J(Kj), even though the
results may be, and will be, applied to J(K2) after obvious changes in the indices (specifically,
Corollary 6.1.8 below will be applied to Hs / @(7:(2)) The differences between the two will only
appear in the next subsection.
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Notation 6.1.5. Let 1 < i < j < 4: the class of (#;,%,) modulo ®(#;) will be denoted (xi, x;),
whereas ! denotes that of #} (for 1 <1 < 4). In the same fashion, we write x; for the class of
Zy, for 1 =1,3.

Since the module H; / @(7:[1) contains a homomorphic image of My, the relations proven in
Chapter 3 can be used. Which means that the following relations hold:

;- Xi = 0 (ie{2,4})
X3 Xa+ (xooxa) - X3 = 0 (6.1)
Xi-Xo—(x2,x4)- X = 0

Furthermore, according to (2.1),
dimp, H1/®(H1) =3* (4 —1)+1,
whereas dim Q%(F,) = 32 + 1, so that
Hi/®(H1) = Q*(F3) @ (F3E»)?. (6.2)

We now aim to find some explicit generators of a free module of rank 2 in Hi/®(H;): we
claim that the generators y; and y3 generate a free module of rank 2 over F3FE5. In order to do
so, we will need this lemma, which we may as well state for every prime p and every p group G:

Lemma 6.1.6. Let M a finitely generated F,G-module, where G is a finite p-group. Remember
that we have put
N= Z g.

geG

Suppose that there exist some elements of M, called X1, ..., Xxr such that the family (xi-N)i<i<r
is linearly independent. Then the F,G-module generated by the family (xi)i1<i<r is free of rank r.

Proof. Let us prove this lemma by induction. When r = 1, the reader can refer to [Guil8,
Lemma 1.31].
Now, suppose that the lemma holds for an r > 1 et let us prove it for r + 1. We set

Ll = SpaanG(X17"'7X’I‘)
Ly = SpaanG(Xr—H)

According to our hypothesis L; and Ly are both free with respective rank r and 1. It remains
to prove that
LiNLy= {0} .

Assume the converse. Therefore, there exists z € (L1 N L)% — {0}, for G is a p-group and F,, is
of characteristic p. Hence x € LQG and x € L?. Because L1 and Lo are free modules, we deduce
that

T
{ z = > xiai N  (a; € Fp)
=1
T = Xrg1@rg1 N (ar41 € Fp)

Hence we get
T
> xiai -N=xrs10,41 - N =0,
i=1
which is absurd, since, by hypothesis, the family (x; - N)1<i<r+1 is linearly independent. O

Lemma 6.1.7. The elements x1 and x3 generate a free module of rank 2 in 7:[1/<I>(7:[1).
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Proof. As pointed out in (6.2), we have that
Hi/®(H1) = Q*(F3) @ (F32)° .

Since there is no projective summand in Q?(F3) according to the first remark after 3.1.2, the
last lemma for r = 1 shows that Q?(F3) - N = 0, and thus

dimp, H1/®(H1) -N = 2.
It follows that
dimp, Spang, ((x2, x4) - N, x3 - N, x3-N, x1 - N, x3-N) = 2.
Since N = X2X?, according to the relations recalled in (6.1) we have
(x2,x4) - N=xj- X2X3 =0,

as well as:
X5 N=0=xi-N.

Hence, we have the following equality

Spang, ((x2, x4) * N, x5 - N, x4 - N, x1 - N, x3N) = Spang, (x1 - N, x3 - N),

hence the vectors y1-N and y3-N are linearly independent. Therefore, according to Lemma 6.1.6,
we may conclude. O

Corollary 6.1.8. Let W denote the quotient of 7:[1/@(7:[1) obtained by factoring out the submod-
ule generated by x1 and x3. Then the quotient map 7:[1/<I>(7-{1) — W is a stable isomorphism,
and W 1is isomorphic to the minimal model Q2(Fp). More precisely, there is an isomorphism
from My to W mapping X3, x5 and (x1,x2) to the classes of X3, x3 and (xa, x4) respectively.

Proof. The first two statements are direct consequences of the lemma. Now let V' denote the
submodule of ®(F)/®?) (F,) generated by &3, 73, and (2, 74). Then V and W are both isomor-
phic to Q%(F,), and for V, there is a specific isomorphism My — V taking x3, x5 and (x1, x2)
to 3,73, and (¥, 74) respectively. Moreover, the induced map V — W is obviously surjective,
S0 it is an isomorphism. O

This is all we are going to need to elucidate the structure of J(Kj). As for J(Kjz), we will
require the following lemma, which we establish for every prime p and every n.

Lemma 6.1.9. Let n € N — {0}. The homomorphisms of F,E, -modules given by

¢ QYFy) =(ala-N=0) — M, ~Q*F,)
a — ( ’
forie{l,...,n}, together with
(ni—mn)": QN (Fp) = (ala- N =0) M, ~ Q*(F))

i

—
o = N
for 1 <i < j<n, form a basis of hom(Q~(F,), Q*(F))).

Recall that hom refers to the group of stable maps between the given F,[E,-modules, and
that

ho_m(Q_l(Fp), QQ(FP)) = lm_m(Q_3(Fp), Fy) = Hy(Ey, Fp) = HQ(Em Fp).
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Proof. First, note that those maps are well-defined, since (/*(a) - N = 0, because ¢/ - X; = 0
according to Equation (3.12) and (5, — n;)"(a) - N = 0, because 1; — 1n; -X;-D_le_l 0
according to Equation (3.18).

Furthermore, those maps are linearly independent in h()_meEn(Q_l(Fp),Q2(Fp)). Indeed
suppose that there exists a linear combination of the form

b= ¢+ Y (=) (6.3)
i=1

1<i<j<n

which factors through a projective module, which means there exist morphisms f and g and a
projective module P such that the following diagram is commutative

Since a-N = 0, we know that Im(f) C Rad(P), therefore Im(go f) C Rad(Q*(F,)). However,

n
o) =D G+ > pi(mi—nj),

i=1 1<i<j<n
and the right-hand-side is a linear combination of elements form our favourite basis for M,, =
O?(F,). Moreover, this linear combination can only lie in the radical when it is zero, as follows
from the observations in the proof of Proposition 4.2.3. We conclude that the coefficients p;
and p; ; are all zero.

Hence the maps ¢/* and (7; — 7;)" are indeed linearly independent in homp_ (QYF,), My,);

since we have the equalities

dime, home, i, (27 (Fy). My) = dim, H*(Ey, Fy) = n+ @ |

this family is a basis of homeEn(Q_l(Fp), M,). O

6.1.3 The image of «

Now we are ready to draw the conclusion that we have announced:
Proposition 6.1.10. The map k1 s stably zero, whereas the map ko is not.
Proof. The map x; sends the generator « of Sl_l(Fg) to the class of

§ = &3 (&1, 39) (T3, T4) € Fy

in H;/®(H;). Let [0]; denote the class of 6 modulo ®(H;) for i € {1,2}. On the one hand we
have
Pl = [23(21,22)(23,74)]
= —x1- X2 —x3- Xy’
whereas on the other hand, we have
[0]2 = [(£3,24)] -

Therefore according to Lemma 6.1.7, the image of k1 lies in a projective submodule, hence
it is stably zero.

We turn to ky. Here we will require Corollary 6.1.8, applied to Ha / @(7:[2). Accordingly, we
have a stable isomorphism 6: H / <I>(7-l2) — W, and an isomorphism My — W mapping x3, 3
and (x1, x2) to 0(£3),0(&3) and 0((Z3,74)) respectively. It is enough to show that 6 o ks is non-
zero ; however, under the identification between W and Ms, the map 6 o k2 is none other than
(m — n2)". According to Lemma 6.1.9, the latter is non-zero. O

Corollary 6.1.11. The Ez-module J(K1) is stably isomorphic to Q?(F3) ® Q. 2(F3), whereas
J(Kz2) is not.
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6.2 Current studies

As examplified in the previous computations, our goal is mainly to know how to write k(«)
in wy(Fp). We have succeeded because we have chosen some very particular extensions which
behave nicely with the choices of generators given by Labute (in fact, we have started from
Labute’s presentation, and chosen the extensions afterwards!). But in a more generic situation,
we shall need the help of the following theorem, which can be proved by using the same techniques
as the ones in [Lab67]. This is work under progress, so we do not provide a proof.

Theorem 6.2.1. Let 7q,...,7, be a symplectic basis of (H (Dgn,Fp),—). Then there exist
t1,...,tn, which are lifts in Dy, of the predual basis of T1,...,7,, and integers ay,...,a, in
{0,...,k — 1} such that

Dy = (1, ooy tn | (E %) (41, 82) (E3, ) - (bneta ) = 1) . 0

This helps us work with more general generators than merely those provided by the initial
presentation.

Now a recollection, as cup-products seem to be of some importance: remember that we have
HY Dy, Fp) ~ kX /k*P and that the cup-product has a nice interpretation in Galois theory
thanks to Hilbert’s symbol:

Proposition 6.2.2. Let k be a field such that & € k™. Let a,b € k*. Let {/a and b denote
the classes of a and b in k* /k*P. Then the cup product {/a — b is zero if and only if b is a
norm from k(¥/a)/k.

As the reader might have guessed, the term (¢" .. .tf“ln)pk above might cause some issues, as
soon as k = 1; that is why, in order to avoid this difficulty, we shall suppose that k > 2, which
translates into §,2 € k, in order to express our next result in a clean-cut way:

Theorem 6.2.3. Let K = k(y/ai, ..., ¢a,) be an elementary abelian extension of a local field
k such that &2 € k*. Then J(K) is stably isomorphic to Q*(F,) & Q~2(F,) if and only if for
every i,j such that 1 <i < j <r the elements a; is a norm from k(¢/a;)/k. O

Again, this is work in progress.



Notation

In the text we have put:
e p for a prime number.
e (), for the cyclic group of order p.
e E, = () for the elementary abelian p-group of rank r.
e F for a field of characteristic p.
e F, for the finite field with p-elements.

e 1;(M) for the number of block of length j in the decomposition in irreducible modules of
M, if M is an F'Eq1-module.

e mod(R) for the category of finitely generated R-modules.
e mod(FG) the category of stable FG-modules, endowed with the Heller shift functor €.
e w(M) for a module stably isomorphic to the Heller shift Q(M).

e N for the norm, which means N = Y g¢.
geG

o & for a primitive s-root unity.

e k for a field. From Chapter 2, it is a local field.
e k(p) for a maximal pro-p-extension of k.

* Gk(p) = Gal(k(p)/k).

e F,. for the free pro-p-group on r-integers.

o Dy, o5 for the Demuskin group, which means, when p # 2
k
Dk725 = (331, e ,.I‘Qslel) (3:1, 372)(%3, 1'4) “e (3:25_1, ZQS) = 1> .

e ) for the Demuskin relation

k
o (@1, 22) (23, 24) . . . (T25-1, T2s)

e &(G) for the Frattini subgroup of G a pro-p-group, and ®@(G) = &(@0-D(G))
e n and k for two integers, such that in Chapters 2, 4, Gx(p) = D n.

e G for a finite p-group.

e §; for the following function:

5i: Zn — 7"
(V1o ytp) — (v, =100 0,)
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e ~; for the following function:

i 7" — Z"
(V1 eooyy) — (v1,.co v+ 10000

e [(M) for the length of the module M.

e cd, for the p-cohomological dimension.
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Soient p un nombre premier et k un corps local contenant une racine primitive p-iéme de l'unité
notée &,. Donnons-nous alors K/k une p-extension galoisienne finie de groupe de Galois G. Notre
objectif premier est d’étudier la structure de G-module de J(K) = K*/K*P. Pour ce faire, nous
utilisons les outils donnés par la théorie des modules de type de Jordan constant mais nous calculons
aussi les groupes de cohomologie avec des coefficients dans J(K), sous certaines hypothéses.

De surcroit, lorsque K/k est l'extension p-élémentaire abélienne maximale, nous tirons profit de
notre étude pour calculer quelques invariants pertinents précédemment introduits pour p = 2.

Let p be a prime number and k a local field such that k contains a primitive p-th root of unity
denoted ¢,. Set K/k a finite Galois p-extension. Let G denote its Galois group. Our main goal is to
study the G-module structure of J(K) = K*/K*?. To do so, we use the theory of modules of constant
Jordan type and we also compute the cohomology groups of G with coefficients in J(K) under some
hypothesis.

Furthermore, when K/k is the maximal p-elementary abelian extension, we take profit of our study
in order to compute some invariants which were previously introduced for p = 2.

INSTITUT DE'-RECHERCHE MATHEMATIQUE AVANCEE

UMR 7501

Université de Strasbourg

CNRS

|AM IRMA, UMR 7501
et tor de Rechercne 7-rue René Descartes

Mathématique Avancée

F-67000 STRASBOURG

Tél. 03 68 850129
irma.math.unistra.fr
irma@math.unistra.fr

Université

f

|| de swrasbourg

IRMA 2021/008
http:/tel.archives-ouvertes.fr/tel-03418647




