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Abstract

In this thesis, we focus on the following topics in graph theory: hamiltonian problem, pancyclicity, chorded pancyclic-

ity in the claw-free graphs, k-fan-connected graphs.

This thesis includes seven chapters. The first chapter introduces definitions and background. Then our main
studies are presented in Chapters Finally, in Chapter [/, we summarize the main results of this thesis and

introduce the future research.

In Chapter [1] we give a short but relatively complete introduction. In the first part, some basic definitions and
notations are given. In the second section, we introduce some background of hamiltonian graphs and generaliza-
tions of hamiltonian problem. And we reviewed the classic results on these topics. In the last section, we show the
motivations and overview of our main topics.

The hamiltonian graph theory has been studied widely as one of the most important problems in graph theory.
In fact, the hamiltonian problem includes also the generalization of hamiltonian cycles such as circumferences,
dominating cycles, pancyclic, cyclability, etc. In this thesis, we will work on the generalizations of hamiltonian graph
theory.

There are four fundamental results that deserve special attention here, both for their contribution to the overall
theory and their effect on the area’s development.

The first result is Dirac’s theorem (in 1952), where the search for sufficient conditions for graphs to become
hamiltonian graphs usually involves some kind of edge density condition. Enough edges are provided for the ex-
istence of a hamiltonian cycles. Dirac’s theorem is the first sufficient condition for a graph to be hamiltonian. It is
shown that if the degree of each vertex is at least half of the order of the graph, then the graph is hamiltonian.

The second result is Ore’s theorem (in 1960), which relaxes Dirac’s condition and extends the methods for
controlling the degrees of the vertices in the graph. This is the first important generalization of Dirac’s theorem.
Ore’s theorem is that if for any two nonadjacent vertices, their degree sum is greater than or equal to n, then the
graph of order n is hamiltonian.

The k-closure Cl(G) is obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum

is at least &, until no such pair remains. The k-closure is independent of the order of the addition of the edges.



The third fundamental result is that a graph G of order n is hamiltonian if and only if C1,,(G) is hamiltonian.

The fourth fundamental result presents a sufficient condition of hamiltonian graphs on the relation between the
independence number and the connectivity of the graphs. If G is a graph with connectivity k such that a(G) < k,
where «(G) is the independence number of G, then G is hamiltonian.

Many achievements have been made in the research related to these four fundamental results, but many ques-

tions remain to be solved. In this thesis, we will focus on a few questions related to the four basic results.

A cycle containing all vertices of a graph G is called a hamiltonian cycle and G is called hamiltonian if it contains
a hamiltonian cycle. A graph G is called pancyclic if it contains cycles of all length & for 3 < k < |V(G)|. Analogously,

a bipartite graph G is called bipancyclic if it contains cycles of all even lengths from 4 to |V (G)].

In Chapters[2]and 3] we study the pancyclicity of a connected graph. Ore showed in 1960 that if the degree sum
of any pair of nonadjacent vertices is at least n in a graph G of order n, then G is hamiltonian. Bondy proved that
under the same condition, G is pancyclic or G = K, /5 /2. Thus, Bondy suggested the interesting “metaconjecture”:
almost any nontrivial condition on graphs which implies that the graph is hamiltonian also implies that the graph is
pancyclic (there may be a family of exceptional graphs).

A vertex-cut of G is a subset V' of V(G) such that G — V" is disconnected. If the vertex-cut V' has only one
vertex {v}, then we call v as a cut-vertex. A k-vertex-cut is a vertex-cut of k elements. If G has at least one pair of
distinct nonadjacent vertices, the connectivity x(G) of G is the minimum & for which G has a k-vertex-cut; otherwise,

we define k(G) to be |V(G)| — 1. G is said to be k-connected if x(G) > k.

The hamiltonian problem also includes the generalization of hamiltonian cycles. Cyclable problem is one of the
most important generalizations of hamiltonian cycles.

Let S be a subset of V(G). We say that G is S-cyclable if G has an S-cycle, i.e., a cycle containing all vertices
of S. In 2005, Flandrin, Li, Marczyk and Wozniak showed the following theorem which is an Ore-type condition for
graphs to be S-cyclable. Let G = (V, E) be a k-connected graph of order n with k¥ > 2, and X;, Xo, ..., Xi be
subsets of the vertex set V, X = X; U X, U ... U X}. If foreachi =1,2,..., k, for any pair of nonadjacent vertices
in X;, their degree sum is at least n, then G is X-cyclable.

From the above result and Bondy’s “metaconjecture”, we propose our conjecture: if G = (V, E) is a k-connected
graph (k > 2) of order n with V(G) = X; U X, U --- U Xy, and for any pair of nonadjacent vertices z,y in X; with

i=1,2,...,k, we have d(z) + d(y) > n, then G is pancyclic or G is a bipartite graph.

In Chapter[2] we prove that our conjecture is true for k = 2. We prove that if G = (V, E) is a 2-connected graph
of order n with V(G) = X UY such that for any pair of nonadjacent vertices z; and z; in X, d(z1) + d(z2) > n
and for any pair of nonadjacent vertices y; and y» in Y, d(y1) + d(y2) > n, then G is pancyclic or G = K,, /2,2 Of
G = K,/2n/2 — {e}. Itis easy to see that our result is stronger than Bondy'’s result.

To prove our result, we present some lemmas.



The first lemma is that let G = (V, E) be a 2-connected balanced bipartite graph of order n and V(G) = X UY,
if for any pair of nonadjacent vertices x; and z2 in X (y1 and y in Y), d(x1) + d(z2) > n (d(y1) + d(y2) > n), then
G=KpnanpofG=Ky,nm2—{e}

The second lemma is as follows. Let P = wjusus---u, be a path in a graph G. If for any vertices z,y €
V(G) — V(P) such that (Np(xz) — {u1})~ N Np(y) = 0, then dp(z) + dp(y) < p+ 1. lf dp(z) +dp(y) = p+ 1,
then (1) V(P) = (Np(z) — {w1})” U Np(y); (2) zu1,yu, € E(G); (3) If u; ¢ Np(z) for some i,2 < i < p, then
u;—1 € Np(y). And if u; ¢ Np(y) for some j,1 < j < p—1, then u;41 € Np(x); (4) If u;,u; ¢ Np(x) U Np(y)
with 2 <4 < j < p— 1 such that {u;41,ui12,...,uj—1} € Np(x) U Np(y), then there exists an exact one k with
i+ 1<k <j—1,suchthat {vt1,uit2,...,ux} € Np(z) and {ug, ug+1,...,uj—1} € Np(y); (5) If Np(z) does
not contain consecutive vertices on P and Np(y) does not contain consecutive vertices on P, then p is odd and
Np(xz) = Np(y) = {u1,us, us, ..., Up_2, Up}.

In Chapter [3] we prove that our conjecture is true for k£ = 3. It is kind of a continuation of the work in Chapter
Our main result is to prove that a 3-connected graph G = (V, E) of order n and V(G) = X; U X, U X3, and any
pair of nonadjacent vertices v; and vy in X;, d(v1) + d(v2) > n with i = 1,2, 3, then G is pancyclic or G is a bipartite
graph.

The main idea and the main tools of the proof of Theorem in Chapter [3]and Theorem in Chapter 2| are similar,
but there are also some differences. To make this chapter complete, we will give the whole proof of the Theorem in
Chapter[3]

In the results of the Chapter [3|of the proof, we give the following lemma. Let G = (V, E) be a 3-connected graph
of order n and V(G) = X3 U Xo U X3. If foreach ¢, i = 1,2,3, G[X,] is a clique, then G = K3 3 or G is pancyclic.

A digraph D is strongly connected if there exists a path from x to y and a path from y to = for every pair of distinct
vertices x,y. A digraph D is k-strongly (k > 1) connected (or k-strong), if |V (D)| > k+1 and D(V(D)\ A) is strongly
connected for any subset A C V(D) of at most & — 1 vertices. A digraph D is bipartite if there exists a partition
X,Y of V(D) into two partite sets such that every arc of D has its end-vertices in different partite sets. It is called
balanced if | X| = |Y.

For two distinct vertices z,y in D, {z,y} dominates a vertex z if x — z and y — z; in this case, we call the pair
{z,y} dominating.

A digraph D is called non-hamiltonian if it is not hamiltonian. A balanced bipartite digraph of order 2m is even

pancyclic (or bipancyclic) if it contains a cycle of length 2k for any k,2 < k < m.

In Chapter [4} we consider pancyclic and hamiltonian problems in digraph or bipartite digraph. In Section 1, we
present a list of hamiltonian results of digraph or bipartite digraph. In Section 2, we give a sufficient condition for a
balanced bipartite digraph to be hamiltonian. We prove that for each dominating pair of vertices when their degree

sum is at least 3a, the strongly connected balanced bipartite directed graph D of order 2a > 10 is hamiltonian. In



Section 3, we show some new sufficient conditions for bipancyclic and cyclability of digraphs.

Chorded pancyclic is one of the generalizations of the hamiltonian problem.

In Chapter 5, we consider chorded pancyclic problems on K; s-free graph. A non-induced cycle is called a
chorded cycle. A graph G of order n is chorded pancyclic if G contains a chorded cycle of each length from 4 to
n. A graph is called K, s-free if it has no induced K 5 subgraph. If a cycle has at least two chords, then the cycle
is called a doubly chorded cycle. A graph G of order n is doubly chorded pancyclic if G contains a doubly chorded

cycle of each length from 4 to n.

Bondy’s metaconjecture was extended as follows. Almost any condition that implies a graph is hamiltonian will
also imply it is chorded pancyclic, possibly with some class of well-defined exceptional graphs and some small order

exceptional graphs.

We study a minimum degree condition for K 3-free graphs to be chorded pancyclic. In 1986, Flandrin, Fournier
and Germa gave a condition of minimum degree for K 3-free graphs to be pancyclic, i.e., a 2-connected K 3-free

graph G of the order n > 35, if §(G) > =2, then G is pancyclic.

3

In Chapter [B] from the above result and the extension of Bondy’s metaconjecture, we obtain the results of the
extension of pancyclic to the chorded pancyclic. We prove the following result: every 2-connected K 3-free graph G
with |V (G)| > 35 is chorded pancyclic if the minimum degree is at least 252. This result supports for the extension of
Bondy’s metaconjecture. Furthermore, we show the number of chords in the chorded cycle of length m (4 < m < n).
Let CH,, be the maximum number of chords in cycle C,, C G with 4 < m < n, and G be a 2-connected K, 3-free
graph with the order n > 35. If §(G) > 252, then we obtain the size of CH,,,: if 4 < m < 5, then CH,,, > W —m;

if 6 <m < %L CH,, >m;if B4 < < 2048 O, > [m];if 205 <y <y, OH,, > 2O=0mm) gy

Moreover, we prove CH,, > 2. So, we can obtain G is doubly chorded pancyclic.

A hamiltonian path of a graph G is a path that contains all vertices of V(G). A graph G is Hamilton-connected if
there is a hamiltonian path connecting every two distinct vertices.

In 1991, Flandrin, Jung and Li proved that if for any three independent vertices 1, 2, x3 in a 2-connected graph
G of order n, Zle degq(zi) — \ﬂle N¢g(z;)| > n, then G is hamiltonian.

As a generalization of Hamilton-connected and hamiltonian path, Lin et al. introduced the k-fan-connectivity of
graphs: for any integer t > 2, let v be a vertex of a graph G and let U = {uy,us,...,u;} be a subset of V(G) \ {v}.
A (v,U)-fanis a set of paths Py, P», ..., P, such that P; is a path connecting v and ; for 1 <¢ <tand P,NP; = {v}
forl<i<j<t.

It follows from Menger theorem that there is a (v, U)-fan for every vertex v of G and every subset U of V(G) \ {v}
with |U| < k if and only if G is k-connected. If a (v,U)-fan spans G, then it is called a spanning (v, U)-fan of G.

G is k-fan-connected if G has a spanning (v, U)-fan for every vertex v of G and every subset U of V(G) \ {v} with



|U| = k. Clearly, the k-fan-connectivity generalizes the Hamilton-connectivity. Thus, if a graph G has order at least
three, it is easy to obtain that G is Hamilton-connected is equivalent to G is 2-fan-connected.

In Chapter |6l we show the proposition: a graph G is k-fan-connected with & > 2, then G is (k + 1)-connected.

In 2009, Lin, Cheng-Kuan, et al. proved that if for any two nonadjacent vertices z,y in a graph G with & > 2,
d(z) +d(y) > |V(G)| + k — 1, then G is k-fan-connected.

In Chapter[6] we improve the above Lin, Cheng-Kuan, et al.s result by showing that the Flandrin-Jung-Li’s degree
sum condition is a new sufficient condition of k-fan-connected graphs. We prove that if for any three independent
vertices xy, x, 3 in a graph G, 27 degq(z;) — | (-, Na(xi)| > [V(G)| +k — 1, then G is k-fan-connected and the
lower bound is sharp.

In Chapter[6] we also give an example that satisfies our main result’s conditions but does not satisfy the degree
sum condition of Lin, Cheng-Kuan, et al’s theorem. And we show Lin, Cheng-Kuan, et al’s theorem can be derived

from our result.

From our result, we can obtain a corollary: if for any three independent vertices x1, x5, x3 in a 3-connected graph
G, Y7 degg(xi) — |N_, Na(x:)| > |[V(G)| + 1, then G is Hamilton-connected.

This corollary is stronger than Ore’s theorem (Let G be a graph. If for any two nonadjacent vertices x,y such
that d(z) + d(y) > |V(G)| + 1, then G is Hamilton-connected.) in the case of 3-connected graphs.

We prove our result of Chapter [6| by contradiction and induction. In the first section, we will present Menger’s
Theorem and give some other related introductions. The lower bound of 3(G) in our result is sharp as shown in
the second section. With some preliminaries introduced in the third section, we prove our result in the last section.

In Chapter|[7] we briefly describe the obtained results. And, we would like to mention several new studies related
to this thesis that is not included in the thesis. Moreover, Chapter [7] also covers other topics that | am interested
in, such as hamiltonian line graphs, fault-tolerant hamiltonicity, graph coloring and so on. These topics are likely to

become my further research fields.

Keywords: Pancyclicity, Hamiltonian cycle, Digraph, Bipartite digraph, Chorded pancyclicity, Claw-free graph,

k-fan-connected.



Réesume

Dans cette these, nous nous concentrons sur les sujets suivants en théorie des graphes : probleme hamiltonien,

panpsychisme, pancyclique a cordes dans les graphes sans griffes, graphes k-fan-connectés.

Cette thése comprend sept chapitres. Le premier chapitre présente les définitions et le contexte. Ensuite, nos
principales études sont présentées dans les Chapitres[2lje] Enfin, dans le Chapitre[7} nous résumons les principaux
résultats de cette thése et introduisons les recherches futures.

Au Chapitre [1} nous donnons une introduction courte mais relativement compléte. Dans la premiére partie,
quelques définitions et notations de base sont données. Dans la deuxieéme section, nous introduisons un apergu
des graphes hamiltoniens et des généralisations du probleme hamiltonien. Et nous avons passé en revue les
résultats classiques sur ces sujets. Dans la derniére section, nous montrons les motivations et un apergu de nos
principaux sujets.

La théorie des graphes hamiltonienne a été largement étudiée comme I'un des problémes les plus importants de
la théorie des graphes. En fait, le probléme hamiltonien inclut également la généralisation des cycles hamiltoniens
tels que les circonférences, les cycles dominants, pancyclique, cyclabilité, etc. Dans cette thése, nous travaillerons
sur les généralisations de la théorie des graphes hamiltonienne.

Il'y a quatre résultats fondamentaux qui méritent une attention particuliere ici, a la fois pour leur contribution a la
théorie globale et leur effet sur le développement de la région.

Le premier résultat est le théoreme de Dirac (en 1952), ou la recherche de conditions suffisantes pour que les
graphes deviennent des graphes hamiltoniens implique généralement une sorte de condition de densité d’arétes.
Suffisamment d’arétes sont fournies pour I'existence d’un cycle hamiltonien. Le théoreme de Dirac est la premiere
condition suffisante pour qu’un graphe soit hamiltonien. On montre que si le degré de chaque sommet est au moins
la moitié de I'ordre du graphe, alors le graphe est hamiltonien.

Le second résultat est le théoreme d’Ore (en 1960), qui assouplit la condition de Dirac et étend les méthodes
de contrdle des degrés des sommets du graphe. C’est la premiere généralisation importante du théoréme de Dirac.
Le théoreme de Ore est que si pour deux sommets non adjacents, leur somme de degrés est supérieure ou égale
an, alors le graphe d’ordre n est hamiltonien.

La k-cléture Cli(G) est obtenue a partir de G en joignant récursivement des paires de sommets non adja-



cents dont la somme des degrés est d’au moins k, jusqu’a ce qu’il ne reste plus une telle paire. La k-cloture est
indépendante de I'ordre d’adjacent des arétes.

Le troisieme résultat fondamental est qu’'un graphe G d’ordre n est hamiltonien si et seulement si C1,,(G) est
hamiltonien.

Le quatrieme résultat fondamental présente une condition suffisante des graphes hamiltoniens sur la relation
entre le nombre d’'indépendances et la connectivité des graphes. Si G est un graphe de connectivité k tel que
a(G) < k, ol «(G) est le nombre d’indépendances de G, alors G est hamiltonien.

De nombreuses réalisations ont été réalisées dans la recherche liée a ces quatre résultats fondamentaux, mais
de nombreuses questions restent a résoudre. Dans cette thése, nous nous concentrerons sur quelques questions

liées aux quatre résultats de base.

Un cycle contenant tous les sommets d’un graphe G est appelé cycle hamiltonien et G est dit hamiltonien s’il
contient un cycle hamiltonien. Un graphe G est dit pancyclique s'il contient des cycles de toute longueur & pour
3 < k < |V(G)|. De maniére analogue, un graphe bipartite G est dit bipancyclique s’il contient des cycles de tous

pairs longueurs de 4 a |V (G)].

Dans les Chapitres 2] et[3} nous étudions la pancyclicité d’'un graphe connecté. Ore a montré en 1960 que si la
somme des degrés d’une paire de sommets non adjacents est d’au moins n dans un graphe G d’ordre n, alors G
est hamiltonien. Bondy a prouvé que sous la méme condition, G est pancyclique ou G = K, 5 /2. Ainsi, Bondy a
suggéré l'intéressante “métaconjecture” : presque toutes les conditions non triviales sur les graphes qui impliquent
que le graphe soit hamiltonien implique aussi que le graphe est pancyclique (il peut y avoir une famille de graphes
exceptionnels).

Un sommet-coupe de G est un sous-ensemble V' de V(G) tel que G — V'’ est déconnecté. Si le sommet-coupe
V' n’a gu’un seul sommet {v}, alors on appelle v comme coupe-sommet. Un k-sommet-coupe est un sommet-
coupe de k éléments. Si G a au moins une paire de sommets distincts non adjacents, la connectivité «(G) de G est
le & minimum pour lequel G a un k-sommet-coupe; sinon, nous définissons «(G) comme étant |V (G)| — 1. G est dit

k-connecté si k(G) > k.

Le probleme hamiltonien comprend également la généralisation des cycles hamiltoniens, le probleme cyclable
est 'une des généralisations les plus importantes des cycles hamiltoniens.

Soit S un sous-ensemble de V(G). On dit que G est S-cyclable si G a un S-cycle, c’est-a-dire un cycle contenant
tous les sommets de S. En 2005, Flandrin, Li, Marczyk et Wozniak ont montré le théoreme suivant qui est une
condition de type Ore pour que les graphes soient S-cyclables. Soit G = (V, E) un graphe k-connecté d’ordre n
avec k > 2, et X1, Xo, ..., X} des sous-ensembles de 'ensemble de sommets V, X = X; U Xs U...U Xj. Sipour
chaque i = 1,2,...,k, pour toute paire de sommets non adjacents dans X, leur somme de degrés est d’au moins

n, alors G est X-cyclable.



A partir du résultat ci-dessus et de la “metaconjecture” de Bondy, nous proposons notre conjecture : si G =
(V, E) est un graphe k-connecté (k > 2) d’ordre n avec V(G) = X; U X, U ---U X, et pour toute paire de sommets
non adjacents z,y dans X; aveci = 1,2,...,k, on a d(z) + d(y) > n, alors G est pancyclique ou G est un graphe

bipartite.

Au Chapitre [2, nous prouvons que notre conjecture est vraie pour £k = 2. On montre que si G = (V, E) est un
graphe 2-connecté d’'ordre n avec V(G) = X UY tel que pour toute paire de sommets non adjacents z; et z, dans
X, d(z1) + d(z2) > n et pour toute paire de sommets non adjacents y; et yo dans Y, d(y1) + d(y2) > n, alors G est
pancyclique ou G = K, /5 /2 0U G = K,, /5 /2 — {e}. |l est facile de voir que notre résultat est plus fort que celui de
Bondy.

Pour prouver notre résultat, nous présentons quelques lemmes.

Le premier lemme est que soit G = (V, E) un graphe biparti équilibré 2-connecté d’'ordre n et V(G) = X UY, si
pour une paire de sommets non adjacents z; et x5 dans X (resp. y; et yo dans YY), d(z1)+d(z2) > n (d(y1) +d(y2) >
n, resp.), alors G = K, /2,72 0U G = K, /9 /2 — {€}.

Le deuxiéme lemme est le suivant. Soit P = ujusus - - - u, un chemin dans un graphe G. Si pour tout sommet
z,y € V(G) — V(P) tel que (Np(z) —{u1})” N Np(y) =0, alors dp(z) + dp(y) < p+ 1. Sidp(z) +dp(y) =p+1,
alors (1) V(P) = (Np(z) —{u1})” UNp(y) ; (2) zui,yu, € E(G); (3) Siu; ¢ Np(x) pour quelque i,2 < i < p, alors
u;—1 € Np(y). Etsiu; ¢ Np(y) pour quelque j,1 < j <p—1,alorsu;11 € Np(x); (4) Siw;,u; ¢ Np(x)UNp(y) avec
2<i<j<p-1telque {u;t1,uito2, - ,uj—1} € Np(x)UNp(y), alors il existe exactement k aveci+1 < k < j—1,
tel que {wiy1, wiys, -, ur} C Np(x) et {ug, uky1, cdots,u;—1} C Np(y); (5) Si Np(x) ne contient pas de sommets
consécutifs sur P et Np(y) ne contient pas de sommets consécutifs sur P, alors p est impair et Np(z) = Np(y) =

{ulau?n Us, - 7up—27up}'

Au Chapitre [3, nous prouvons que notre conjecture est vraie pour k = 3. C’est une sorte de continuation du
travail du Chapitre [2l Notre résultat principal est de prouver qu'un graphe connecté a 3 G = (V, E) d’ordre n et
V(G) = X; U X5 U X3, et toute paire de sommets non adjacents v; et vy dans X;, d(v1) + d(vs) > naveci = 1,2,3,
alors G est pancyclique ou G est un graphe bipartite.

Lidée principale et les principaux outils de la preuve du théoréme du Chapitre [3| et du théoreme du Chapitre
sont similaires, mais il y a aussi quelques différences. Pour compléter ce chapitre, nous donnerons la preuve
compléte du théoreme au Chapitre 3]

Dans les résultats du Chapitre (3| de la preuve, nous donnons le lemme suivant. Soit G = (V, E) un graphe
3-connecté d’ordre n et V(G) = X; U X, U X3. Si pour chaque i, i = 1,2, 3, G[X,] est une clique, alors G = K3 35 ou

G est pancyclique.

Un digraphe D est fortement connecté s’il existe un chemin de = a y et un chemin de y a = pour chaque paire de

sommets distincts z, y. Un digraphe D est k-fortement (k > 1) connecté (ou k-fort), si |V (D)| > k+1 et D(V(D)\ A)



est fortement connecté pour tout sous-ensemble A C V(D) d’au plus k — 1 sommets. Un digraphe D est biparti s'il
existe une partition X,Y de V(D) en deux ensembles partites tels que chaque arc de D a ses extrémités-sommets

dans différents ensembles de partitions. Il est dit équilibré si | X| = |Y].

Pour deux sommets distincts =,y dans D, {z,y} domine un sommet = si + — 2z et y — z; dans ce cas, nous

appelons le couple {z,y} dominant.

Un digraphe D est dit non hamiltonien s’il n’est pas hamiltonien. Un digraphe bipartite équilibré d’ordre 2m est

méme pancyclique (ou bipancyclique) s’il contient un cycle de longueur 2k pour tout k,2 < k < m.

Dans le Chapitre [, nous considérons le probléme pancyclique et hamiltonien en digraphe ou digraphe bipartite.
Dans la section 1, nous présentons une liste de résultats hamiltoniens de digraphe ou de digraphe bipartite. Dans
la section 2, nous donnons une condition suffisante pour qu’un digraphe bipartite équilibré soit hamiltonien. Nous
montrons que pour chaque paire dominante de sommets lorsque leur somme de degrés est d’au moins 3a, le
graphe orienté bipartite équilibré fortement connecté D d’ordre 2a > 10 est hamiltonien. Dans la section 3, nous

montrons quelques nouvelles conditions suffisantes pour la bipancyclique et la cyclabilité des digraphes.

Le pancyclique a cordes est I'une des généralisations du probléme hamiltonien.

Dans le Chapitre [5] nous considérons des problémes pancycliques a cordes sur un graphe K s-libre. Un cycle
non induit est appelé cycle a cordes. Un graphe G d’'ordre n est pancyclique a cordes si G' contient un cycle a
cordes de chaque longueur de 4 a n. Un graphe est dit K 3-libre s'il n’a pas de sous-graphe K ; induit. Si un cycle
a au moins deux cordes, alors le cycle est appelé un cycle a double corde. Un graphe G d’ordre n est pancyclique

a double corde si G contient un cycle a double corde de chaque longueur de 4 a n.

La métaconjecture de Bondy a été étendue comme suit. Presque toutes les conditions qui impliquent qu’un
graphe est hamiltonien impliqueront également qu’il est pancyclique a cordes, peut-étre avec une classe de graphes

exceptionnels bien définis et des graphes exceptionnels de petit ordre.

Nous étudions une condition de degré minimum pour que les graphes K; s-libres soient pancycliques a cordes.
En 1986, E. Flandrin, I. Fournier et A. Germa ont donné une condition de degré minimum pour que les graphes
K 3-libres soient pancycliques, c’est-a-dire un graphe G K 3-libre 2-connecté d’ordre n > 35, si §(G) > %32, alors

G est pancyclique.

Au Chapitre [5] a partir du résultat ci-dessus et de I'extension de la métaconjecture de Bondy, on obtient les
résultats de I'extension du pancyclique au pancyclique a cordes. Nous prouvons le résultat suivant : tout graphe
G K, 3-libre 2-connecté avec |V (G)| > 35 est pancyclique a cordes si le degré minimum est au moins 22. Ce
résultat soutient I'extension de la métaconjecture de Bondy. De plus, nous montrons le nombre de cordes dans le
cycle a cordes de longueur m (4 < m < n). Soit CH,, le nombre maximum de cordes dans le cycle C,, C G avec

n=2 alors on obtient la taille de

4 < m < n, et G un graphe K s-libre 2-connecté avec l'ordre n > 35. Si §(G) >
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De plus, nous prouvons C H,, > 2. Ainsi, nous pouvons obtenir que G soit un pancyclique a double corde.

Un chemin hamiltonien d’'un graphe G est un chemin qui contient tous les sommets de V(G). Un graphe G est
connecté a Hamilton s’il existe un chemin hamiltonien reliant tous les deux sommets distincts.

En 1991, E. Flandrin, H.A. Jung et H.Li ont prouvé que si pour trois sommets indépendants x1, 2, z3 dans un
graphe G 2-connecté d’ordre n, Zf’zl degq(z;) — | ﬁle N¢g(z;)| > n, alors G est hamiltonien.

Comme généralisation du chemin Hamilton-connecté et hamiltonien, Lin et al. ont introduit la k-fan-connectivité
des graphes : Pour tout entier ¢ > 2, soit v un sommet d’un graphe G et soit U = {u1, ua,...,u;} un sous-ensemble
de V(G)\ {v}. Un (v,U)-fan est un ensemble de chemins Py, P», ..., P; tel que P; est un chemin reliant v et u; pour
1<i<tetP,NP;={vipourl<i<j<t.

Il résulte du théoréme de Menger qu'il existe un (v, U)-fan pour chaque sommet v de G et chaque sous-ensemble
U de V(G) \ {v} avec |U| < k si et seulement si G est k-connecté. Si un (v, U)-fan couvre G, alors il est appelé
(v, U)-fan couvrant de G. G est k-fan-connecté si G a un (v, U)-fan couvrant pour chaque sommet v de G et chaque
sous-ensemble U de V(G)\ {v} avec |U| = k. Clairement, la k-fan-connectivité généralise la Hamilton-connectivité.
Ainsi, si un graphe G est d’ordre au moins trois, il est facile d’obtenir que G est Hamilton-connecté équivaut a G est
2-fan-connecté.

Au Chapitre@ nous montrons la proposition : un graphe G est k-fan-connecté avec k > 2, alors G est (k + 1)-

connecté.

En 2009, Lin, Cheng-Kuan et al. ont prouvé que si pour deux sommets non adjacents z,y dans un graphe G

avec k > 2,d(z) +d(y) > |V(G)| + k — 1, alors G est k-fan-connecté.

Au Chapitre [6] nous améliorons le résultat de Lin, Cheng-Kuan et al. ci-dessus en montrant que la condition
de somme des degrés de Flandrin-Jung-Li est une nouvelle condition suffisante des graphes k-fan-connecté. Nous
montrons que si pour trois sommets indépendants z;, x2, x5 dans un graphe G, Zle degq (i) — |ﬂf:1 Ne(zi)| >

|[V(G)|+ k — 1, alors G est k-fan-connecté et la borne inférieure est tranchant.

Au Chapitre [6] nous donnons également un exemple qui satisfait les conditions de notre résultat principal, mais
ne satisfait pas la condition de somme des degrés du théoréme de Lin, Cheng-Kuan et al. Et nous montrons que le

théoréme de Lin, Cheng-Kuan et al. peut étre dérivé de notre résultat.
De notre résultat, nous pouvons obtenir un corollaire : si pour trois sommets indépendants z;, z2, z3 dans un
graphe G 3-connecté, Zle degq(z;) — mf:l Ng(z;)| > |[V(G)| + 1, alors G est Hamilton-connecté.

Ce corollaire est plus fort que le théoréme de Ore (Soit G un graphe. Si pour deux sommets non adjacents z, y
tels que d(z) + d(y) > |V(G)| + 1, alors G est Hamilton-connecté.) dans le cas de graphes 3-connectés.

Nous prouvons notre résultat du Chapitre [6] par contradiction et récurrence. Dans la premiére section, nous



présenterons le théoréme de Menger et donnerons quelgues autres introductions connexes. La borne inférieure
de 73(G) dans notre résultat est tranchant comme indiqué dans la deuxiéme section. Avec quelques préliminaires
introduits dans la troisiéme section, nous prouvons notre résultat dans la derniere section.

Au Chapitre [7} nous décrivons briévement les résultats obtenus. Et, nous aimerions mentionner plusieurs nou-
velles études liées a cette thése qui n’est pas incluses dans la these. De plus, le Chapitre [7| couvre également
d’autres sujets qui m’intéressent, tels que les graphes de ligne hamiltoniens, 'hamiltonicité tolérante aux pannes, la

coloration de graphe, etc. Ces sujets sont susceptibles de devenir mes autres domaines de recherche.

Mots clés : Pancyclicité, Cycle hamiltonien, Digraphe, Digraphe bipartite, Pancyclicité a cordes, Graphe sans

griffe, k-fan-connecté.
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Chapter 1

Introduction

Graph theory originated from the well-known Seven Bridges of Kdnigsberg problem. This problem was proposed
by Leonhard Euler in 1736. Graph theory has experienced tremendous growth in recent decades. There are many
well-known problems on graph theory, e.g., hamiltonian problem, four-color problem, Chinese postman problem,
the optimal assignment problem, etc. Graph theory serves to analyze many concrete real-world problems success-
fully. Certain problems in physics, chemistry, communication science, computer technology, genetics, psychology,

sociology, linguistics, etc. can be formulated as problems in graph theory.

In this thesis, we will focus on the following topics: hamiltonian graphs, pancyclicity, chorded pancyclic in claw-

free graphs, k-fan-connected graphs.

In this chapter, we give a short but relatively complete introduction. In the first part, some basic definitions and
notations are given. In the second section, we introduce some background of hamiltonian graphs and generaliza-
tions of hamiltonian problem. And we reviewed the classic results on these topics. In the last section, we show the

motivations and overview of our main topics.

1.1 Basic definitions and notations

1.1.1 Definitions and notations of graph

A graph G is an ordered triple (V(G), E(G),v¢) consisting of a nonempty set V(G) of vertices, a set E(G), disjoint
from V(G), of edges, and an incidence function 1 that associates with each edge of G an unordered pair of (not
necessarily distinct) vertices of G. If e is an edge and « and v are vertices such that ¢¢(e) = uv, then e is said to
join v and v; the vertices v and v are called the ends of e; the ends « and v are incident with an edge e. Two vertices
x,y are adjacent, if xy is an edge of the graph; Two edges e # f are adjacent if they are incident with a common

vertex.



(a) (b)

Figure 1.1: The seven bridges and the graph of the Kénigsberg bridge problem [24]

An edge with identical ends is called a loop. Two edges e and f (which are not loops) are said to be parallel if
they have the same pair of ends. A graph is simple if it has neither loops nor parallel edges. A graph with parallel
edges and without loops is called a multigraph. All graphs considered in this thesis are finite and without loops or

multiple edges.

The number of vertices of a graph G is its order, written as |G| or |V (G)]|; its number of edges is its size, denoted

by ||G||. Graphs are finite, infinite, countable and so on according to their order.
Isomorphism

Let G and H be two graphs. An isomorphism between G and H is a bijection ¢ : V(G) — V(H) such that
o(u)p(v) € E(H) if and only if uv € E(G) for all u,v € V(G). Two graphs are isomorphic if there exists an
isomorphism between them.

Subgraph

A graph H is a subgraphof Gif V(H) C V(G), E(H) C E(G), and ¢y is the restriction of ¢ to E(H). We write
H C G if H is a subgraph of G. When H C G but H # G, we call H a proper subgraph of G.

Suppose that V' is a nonempty subset of V(G). The subgraph of G whose vertex set is V’ and whose edge set
is the set of those edges of G that have both ends in V'’ is called the subgraph of G induced by V' and is denoted
by G[V']; we say that G[V'] is an induced subgraph of G. The induced subgraph G[V(G)\ V'] is denoted by G — V.
If V! = {v}, we write G — v for G — {v}. A spanning subgraph of G is a subgraph of H with V(H) = V(G).

Suppose that E’ is a nonempty subset of E(G). The subgraph of G whose vertex set is the set of ends of edges
in E' and whose edge set is E’ is called the subgraph of G induced by E’ and is denoted by G[EF’]; G[E’] is an
edge-induced subgraph of G. The spanning subgraph of G with edge set E(G) \ E’ is written simply as G — E’. The
graph obtained from G by adding a set of edges F’ is denoted by G + E’. If E' = {e}, we write G —eand G + e
instead of G — {e} and G + {e}.



Disjoint union of graphs

Given two graphs Gy = (V4, Eq) and Go = (Va, E3) with V1 NV, = () and By N By = 0, the disjoint union of G,
and G», denoted by G; U G», is the graph with vertex set V; U V5 and edge set F; U Es.

Complete join of graphs

Given two graphs G; = (V1, E1) and G, = (Va, Es) with Vi NV, = 0 and E; N Ey = 0, the complete join of G
and G», denoted by G + Go, is the graph obtained by starting with G; U G> and adding edges joining every vertex
of GG; to every vertex of Gs.

Neighbors and degree

Let G = (V(G), E(Q@)) be a (non-empty) graph. The set of neighbors of a vertex v in G is the set of all vertices
adjacent to v, denoted by N¢(v). Put Ng(v) = {u € V(G)|uv € E(G)}. More generally for U C V(G), the neighbors
in V'\ U of vertices in U are called neighbors of U; their set is denoted by N (U). If there is no ambiguity, we also
write N (v) for Ng(v) and N(U) for Ng(U).

For any vertex v of a simple graph G = (V(G), E(G)), the degree of v is the number of vertices adjacent to v
in G, which is equal to the number of neighbors of v. We will use di(v) to denote the degree of v, if there is no
confusion arises, simplified as d(v). So dg(v) = |Ng(v)|. A vertex of degree 0 is isolated. We denote §(G) and
A(G) the minimum and maximum degrees, respectively, of vertices of G, where §(G) := min{d(v)|v € V(G)} and
A(G) :=max{d(v)|v € V(G)}.

If all the vertices of G have the same degree k, then G is k-regular, or simply regular. A 3-regular graph is called
cubic.

Walk, path and cycle

A walk in a graph G = (V(G), E(G)) is a finite non-null sequence W = vgejvieqvs - - - e, v, Whose terms are
alternately vertices and edges, such that, for any 1 < i < k, the ends of ¢; are v;_; and v;. We say that W is a
walk from vy to v, or a (vg, vx)-walk. The vertices vy and vy, are called the initial vertex and terminal vertex of W,
respectively. And vy,...,v;_; are its internal vertices. The integer k is the length of W, i.e., the length of a walk is
the number of its edge. A walk of length & is also called a k-walk.

If W = wvgeqvy - - - epvr, and W’ = vgep1vg41 - - - €v;, are walks, the walk vgegvi—1 - - - e300, Obtained by reversing
W, is denoted by W ! and the walk vye;v; - - - €;v;, Obtained by concatenating W and W’ at vy, is denoted by WWW".
A section of a walk W = wvgejv; - - - eguy, iS @ walk that is a subsequence v;e;;1vi41 - - - ejv; of consecutive terms of
W; we refer to this subsequence as the (v;, v;)-section of W.

In a simple graph, a walk vgejvieavs - - - vy, can be simply expressed as vgv; - - - vg. If the edges eq, e, .. ., ey, Of
a walk W are distinct, W is called a trail.

If the vertices vg, vy, ..., v, of W are distinct, then W is called a path or vy — v -path. Usually, denote the section

V;Vi41 - - - v; of the path P = vgvy - - - vi, by Plu;, v;].



A walk is closed if it has positive length and its initial vertex and terminal vertex are the same. A closed trail

whose terminal vertex and internal vertex are distinct is a circuit; and a closed path is a cycle.

The length of a path or a cycle is the number of its edges. A path or a cycle of length & is called a k-path or

k-cycle, respectively; the path or cycle is odd or even according to the parity of its length.
Girth, circumference and chord

The minimum length of a cycle (contained) in a graph G is the girth of G, denoted by ¢(G). The odd-girth of a
graph is the length of the shortest odd-cycle contained in the graph.

The maximum length of a cycle (contained) in G is its circumference, denoted by ¢(G). If a graph does not

contain any cycle, its girth and circumference are defined to be infinity.
An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that cycle.
Distance and diameter

The distance dg(z,y) in G of two vertices z,y is the length of the shortest + — y path in G; if no such path
exists, we set dg(x,y) = co. Whenever the underlying graph is clear from the context, we will write d(x,y) instead

of dg(z,y).
The greatest distance between any two vertices in a connected graph G is the diameter of G, denoted by diamG.
Acyclic graph and tree
An acyclic graph is one that contains no cycle in the graph.
A tree is a connected acyclic graph. A spanning tree of G is a spanning subgraph of G that is a tree.
Connected and component

Two vertices u and v of G = (V(G), E(G)) are said to be connected if there is a (u,v)-path in G. A graph G is
called connected if any two of its vertices are linked by a path in G. If U C V(G) and G[U] is connected, we also

call U itself connected in G. Instead of not connected we usually say disconnected.

Let G = (V, E) be a graph. A maximal connected subgraph of G is a component of G. Clearly, the components
are induced subgraphs, and their vertex sets partition V. Since connected graphs are non-empty, the empty graph

has no components.
Vertex-cut, connectivity «(G) and k-connected

A vertex-cut of G is a subset V' of V(G) such that G — V' is disconnected. If the vertex-cut V/ has only one
vertex {v}, then call v as a cut-vertex. A k-vertex-cut is a vertex-cut of k elements. If G has at least one pair of
distinct nonadjacent vertices, the connectivity k(G) of G is the minimum & for which G has a k-vertex-cut; otherwise,

we define k(G) to be |V(G)| — 1. G is said to be k-connected if k(G) > k.

Edge-cut, edge-connectivity \(G) and k-edge-connected
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An edge-cut of G is a subset £’ of E(G) such that G — E’ is disconnected. If the edge-cut E' = {e}, then call e
as a cut-edge or bridge. A k-edge-cut is an edge-cut of k& elements. Define the edge-connectivity A\(G) of G to be
the minimum & for which G has a k-edge-cut. G is said to be k-edge-connected if \(G) > k.

Independent set and independence number «(G)

An independent set of a graph G is a subset of the vertices such that no two vertices in the subset induce an
edge of G. The cardinality of a maximum independent set in a graph G is called the independence number of G,
denoted by a(G).

The definitions of ¢,,(G) and 7,,,(G)

For any integer m > 2, if a(G) > m, put

x1,Ta,. .., Ly, are parwisely nonadjacent vertices in G }

om(G) = min { Zdegg(%)

i=1

T (G) = min { ZdegG(xi) — | ﬂ Neg(z;)] ’ x1,T2,...,%, are pairwisely nonadjacent vertices in G }
i=1 i=1

If G does not have m vertices that are independent, we define 0,,,(G) = 7,,,(G) = 0.
Hamiltonian cycle and hamiltonian

A cycle containing all vertices of G is called a hamiltonian cycle and G is called hamiltonian if it contains a
hamiltonian cycle. For two vertices u and v, a (u, v)-path is a path connecting « and v. A path in G containing every

vertex of G is a hamiltonian path. A hamiltonian (u, v)-path is a hamiltonian path connecting v and v.
Traceable, 1-edge hamiltonian and 1-hamiltonian
A graph G is traceable if it contains a spanning path (that is, the path containing all the vertices of G).

A graph G = (V, E) is 1-edge hamiltonian if G — e is hamiltonian for any e € E. Obviously, any 1-edge hamiltonian
graph is hamiltonian. The graph G is 1-node hamiltonian if G — v is hamiltonian for any v € V. A graph G is 1-

hamiltonian if it is 1-edge hamiltonian and 1-node hamiltonian.

In this thesis, we mainly consider simple graphs. We conclude this section by introducing some special classes

of graphs.
Complete graphs and cliques

A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. If there is

just one complete graph on n vertices; it is denoted by K,,.

A clique of a graph G is a complete graph contained in G as a subgraph. The clique number w(G) of a graph G

is the order of a maximum clique in G.

Bipartite graphs and k-partite graphs
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A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y, so that each edge has

one end in X and one end in Y; such a partition (X,Y) is called a bipartition of graph.

A complete bipartite graph is a simple bipartite graph with bipartition (X,Y") in which each vertex of X is joined

to each vertex of Y; if | X| = m and |Y'| = n, such a graph is denoted by K, ,,.

A k-partite graph is one whose vertex set can be partitioned into & subsets so that no edges has both ends in
any one subset; a complete k-partite graph is one that is simple and in which each vertex is joined to every vertex
that is not in the same subset.

Line graphs

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are
adjacent if and only if the corresponding edges in G have at least one vertex in common. From the definition of a
line graph, if L(G) is not a complete graph, then a subset X C V(L(G)) is a vertex cut of L(G) if and only if X is an
essential edge-cut of G.

Planar graphs

A graph is planar if it can be drawn on the plan such that its edges intersect only at their ends. Such a drawing
is called a planar embedding of the graph. Given a planar embedding of a planar graph, it divides the plan into a
set of connected regions, including an outer unbounded connected region. Each of these regions is called a face of
the planar graph. The boundary of a face is the cycle of the graph containing it. A planar graph with a given planar

embedding is called a plane graph.
Pancyclic and bipancyclic graphs

A graph G is called pancyclic if it contains cycles of all length & for 3 < k < |V(G)|. Analogously, a bipartite

graph G is called bipancyclic if it contains cycles of all even lengths from 4 to |V (G)|.
Chorded pancyclic and doubly chorded pancyclic

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say that a cycle is chorded if
the cycle has at least one chord, and we call such a cycle chorded cycle. If a cycle has at least two chords, then the
cycle is called a doubly chorded cycle. A graph G of order n is chorded pancyclic (doubly chorded pancyclic) if G

contains a chorded cycle (doubly chorded cycle) of each length from 4 to n.

In the following, we give some basic terminology and notations of digraphs.

1.1.2 Definitions and notations of digraph

A directed graph D is an ordered triple (V (D), A(D), ¥p) consisting of a nonempty set V(D) of vertices, a set A(D),
disjoint from V' (D), of arcs, and an incidence function ¢, that associates with each arc of D an ordered pair of (not

necessarily distinct) vertices of D. If a is an arc and v and v are vertices such that ¢ p(a) = (u,v), then a is said to
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join w to v; w is the tail of a, and v is its head. For convenience, we shall abbreviate directed graph to digraph. A

digraph is strict if it has no loops and no two arcs with the same ends have the same orientation.
Subdigraph

A digraph D’ is a subdigraph of D if V(D') C V(D), A(D") C A(D) and v p- is the restriction of p to A(D’).

The terminology and notation for subdigraphs is similar to that used for subgraphs.

Directed walks, directed trails, directed paths and directed cycles

A directed walk in D is a finite non-null sequence W = (v, a,v1,...,ax,vx), Whose terms are alternately
vertices and arcs, such that, for i = 1,2,...,k, the arc a; has head v; and tail V;_;. As with walks in graphs, a
directed walk (vg,a1,v1,...,ax,v;) is often represented simply by its vertex sequence (vg,v1,...,vx). A directed

trail is a directed walk that is a trail, i.e., a directed trail is a directed walk in which all edges are distinct.
A directed path is a directed trail in which all vertices are distinct.
A directed circuit is a non-empty directed trail in which the first vertex is equal to the last vertex.
A directed cycle is a directed circuit in which the only repeated vertex is the first / last vertex.
Reachable and diconnected
If there is a directed (u,v)-path in D, vertex v is said to be reachable from vertex w in D.
Two vertices are diconnected in D if each is reachable from the other.

The subdigraphs D[V4], D[V2],--- , D[V;;,] induced by the resulting partition (V3, Vs, ..., V,,) of V(D) are called

the dicomponents of D. A digraph D is diconnected if it has exactly one dicomponent.
In-degree, out-degree and degree

The in-degree d, (v) of a vertex v in D is the number of arcs with head v; the out-degree dj; (v) of v is the number

of arcs with tail v. The degree dp(v) of the vertex v in D is defined as dp(v) = dj;(v) + dp (v).

The number min{d},(x) : * € V(D)} is called the minimum out-degree of D and is denoted by 5+ (D). Minimum
out-degrees, maximum in-degrees and out-degrees are similarly defined. We denote the minimum and maximum
in-degrees and out-degrees in D by 6= (D), A=(D), 67 (D) and A*(D), respectively.

The number min{d* (z) + d~ (z) : z € V(D)} is called the minimum degree of D.

Out-neighborhood and in-neigborhood

The out-neighborhood of a vertex z is the set N*(z) = {y € V(D)|zy € A(D)} and N~ (z) = {y € V(D)|yz €
A(D)} is the in-neighborhood of x. Similarly, if A C V(D), then N*(z,A) = {y € Alzy € A(D)} and N~ (z,A) =
{y € Alyz € A(D)}. The out-degree of z is d () = [N (z)| and d~ (x) = |N~ (z)| is the in-degree of . Similarly,
dt(z,A) = |N*(z,A)| and d™ (z, A) = |[N~(z, A)|.

Tournament
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A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices.
Bipartite digraph

A bipartite digraph D = (X,Y; A) has the vertex set partitioned into two partite sets X and Y of cardinalities a
and b, respectively, where A denotes the set of arcs; each arc has one vertex in X and the otherin Y. If a = b then

D is called balanced. K, denotes a complete bipartite digraph with partite sets of cardinalities « and b.
Matching

A matching M from X to Y is a set of arcs such that any vertex in X UY is incident with at most one arc in A

and moreover each arc in M has its tail in X and a head in Y'; M is perfect if each vertex has incident arc in M.
Hamiltonian, pancyclic and cyclable

A cycle (path) is called hamiltonian if it includes all the vertices of D. A digraph D is hamiltonian if it contains a
hamiltonian cycle and is pancyclic if it contains a cycle of length % for any 3 < k < n, where n is the order of D. A
balanced bipartite digraph of order 2m is even pancyclic if it contains a cycle of length 2k for any k£,2 < k < m. A
set S of vertices in a directive graph D is said to be cyclable (pathable) in D if D contains a directed cycle (path)

through all vertices of S.

1.2 Some background

In 1857, the Irish mathematician Sir William Hamilton (1805-1865) invented a game (Icosian Game, now also known
as Hamilton’s puzzle) of traveling around the edges of a graph from vertex to vertex. Hamilton described the game,
in a letter to his friend Graves, as a mathematical game on the dodecahedron. Each vertex of the dodecahedron
is labeled with the name of a city and the game’s object is finding a (hamiltonian) cycle along the edges of the
dodecahedron such that every vertex is visited a single time, and the ending point is the same as the starting point
(see Figure[1.2). Since then, the hamiltonian problem, determining when a graph contains a hamiltonian cycle, has
been fundamental in graph theory. For a long time, there was no elegant characterization of hamiltonian graphs,

although several necessary and sufficient conditions were known.

Today, however, the constant stream of results in this area continues to supply us with new and interesting

theorems and still further questions. The hamiltonian problem came out to be a fruitful branch of graph theory.

The hamiltonian graph theory has been studied widely as one of the most important problems in graph theory.
In fact, the hamiltonian problem also includes the generalization of hamiltonian cycles such as circumferences,
dominating cycles, pancyclic, cyclability, etc. In this thesis, we will work on the generalizations of hamiltonian graph

theory.
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1.2.1 Some background of hamiltonian problem

Hamiltonian problem is one of the most significant problems in graph theory. Finding its proof has greatly promoted

the development of graph theory.
Determining whether hamiltonian cycles exist in graphs is NP-complete. Therefore, it is natural and interesting to
study sufficient conditions for hamiltonian problems. On the hamiltonian problems, one may find many well-known

theorems in graph theory. Thus, it is not necessary and also impossible to give a detailed survey in this thesis.

Figure 1.2: The Hamilton’s puzzle: the graph of the dodecahedron

There are four fundamental results that | feel deserve special attention here-both for their contribution to the

overall theory and their effect on the area’s development.

The first result is Dirac’s theorem [41] (in 1952), where the search for sufficient conditions for graphs to become
hamiltonian graphs usually involves some kind of edge density condition. Enough edges are provided for the ex-
istence of a hamiltonian cycles. Dirac’s theorem is the first sufficient condition for a graph to be hamiltonian. It is
shown that if the degree of each vertex is at least half of the order of the graph, the graph is hamiltonian. More

precisely see the following,
Theorem 1.2.1 (Dirac’s theorem, [41]) /f G is a graph of order n > 3 such that 6(G) > n/2, then G is hamiltonian.

This original result started a new approach to develop sufficient conditions on degrees for a graph to be hamilto-
nian. A lot of effort has been made by various people in the generalization of Dirac’s theorem, and this area is one

of the core subjects in hamiltonian graph theory and extremely graph theory.

The second result is Ore’s theorem [109] (in 1960), which relaxes Dirac’s condition and extends the methods for

controlling the degrees of the vertices in the graph. This is the first important generalization of Dirac’s theorem.

Theorem 1.2.2 (Ore’s theorem, [109]) Let G be a graph of order n. If d(x) + d(y) > n for any pair of nonadjacent

vertices x and y in G, then G is hamiltonian.
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Any path or cycle problem is really a part of a hamiltonian problem. The founding results of Dirac [41] and Ore
[109] established interest in hamiltonian graphs. Degree condition is the classic method to solve the hamiltonian

problem, and a neighborhood union is an important form of generalized degree condition.

Let

0r(G) = min{d(z1) + - - - + d(zk) |21, . . ., ) are independent in G}.

Graphs satisfying lower bounds on o}, with & = 2 will often be called Ore-type graphs, while if & = 1, they will be

called Dirac-type graphs.

The number of components of a graph G is denoted by w(G). The graph G is t-tough (¢ > 0) if |S| > t- w(G = S)
for every subset S of the vertex set V(G) with w(G — S) > 1. The toughness of G, denoted by 7(G), is the maximum
t for which G is t-tough. Thus, a graph G is called 1-tough if for any subset S of vertices the number of components
in G — S'is at most |.5].

The case where the degree sum is less than Ore’s theorem (Theorem has also been extensively studied.
In 1978, Jung [79] showed that a 1-tough graph G of order n > 11 with 05(G) > n — 4 is hamiltonian. Ainouche and
Christofides [5] showed that all 2-connected maximal non-hamiltonian graphs of order n such that o2 (G) > n—2 are
isomorphic to one of the following graphs: K,,_1)/2 + K (n11)/2, K(n—2)/2 + Kn+2)/2: Kn—2)/2 + (K (n12)/2 U K2),
K> + (2K3 U Ky) and Ks + 3Ko.

However, degree sum conditions that apply to very few graphs have a major shortcoming. To be more applicable,

it is natural to consider changes in such conditions.

In 1980, Bondy [20] also gave a sufficient condition for G to contain a cycle C with G — V(C') contains no clique

K.

Haggkvist and Nicoghossian [68] in 1981 further improved Dirac’s theorem by incorporating the connectivity (k)

of the graph into the degree bound, such as minimum degree 6 > (n + k)/3, 03(G) > n + k and so on.

In 1984, Fan [45] considered a condition on a particular subset of non-adjacent vertices. Fan’s theorem [45]
combines local conditions and density conditions. This raises the question, is it possible to use a sparser set of

vertices? This idea can be used with other adjacency conditions and structures outside the vertex’s neighborhood.

In 1987, Bondy and Fan [22] provided an Ore-type result for finding a dominating cycle, where a dominating
cycle C is such that every edge of the graph has at least one adjacent vertex on the cycle C. Harary and Nash-
Williams [72] showed that the existence of a dominating cycle in G is essentially equivalent to the line graph of G is

hamiltonian.

Dirac’s theorem concerns a degree condition on every vertex. Ore’s theorem concerns a degree sum condition
on any pair of nonadjacent vertices. It is natural to generalize them into degree and neighborhood conditions on

more independent vertices. The results [56] obtained in 1991 use degrees and neighborhood intersection of any set
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of three independent vertices.
Theorem 1.2.3 ([56]) /f G is a 2-connected graph of order n such that 53(G) > n, then G is hamiltonian.

Li in 2000 extended into conditions on degree sum and neighborhood intersection of four independent vertices

in 3-connected graphs.

Theorem 1.2.4 ([83]) Let G be a 3-connected graph of order n. If 57(G) > n + 3, G has a dominating maximum
cycle.

Bondy [20] gave a sufficient hamiltonian condition that relates the degree sum of any & + 1 independent vertices.
Theorem 1.2.5 ([20]) Let G be a k-connected graph of order n > 3. If o, 11(G) > 1/2(k + 1)(n — 1), then G is
hamiltonian.

In 2010, Li, Zhou and Wang [90] developed Theorem[1.2.4]to the degree sum of k + 3 independent vertices.

The Dirac-type condition requires that every vertex has a large degree. However, for some vertices that may
have a smaller degree, we hope to use some large degree vertices to replace the small degree vertices in the
correct position considered in the proof to constructing a longer cycle. This idea leads to the definitions of implicit

degrees given by Zhu, Li, and Deng in 1989.
For any vertex u in a graph G, define Ny (u) = N(u) and Na(u) = {z € V(G) : d(z,u) = 2}, where d(u,v) is the

distance between x and u, i.e., the number of edges in the shortest path between z and w.

Definition 1.2.6 Letd(u) =k + 1, and put

My = max{d(v) : v € Na(u)} and mg = min{d(v) : v € Na(u)}.

Let

be the degree sequence of the vertices of N1 (u) U No(u). If No(u) # ), then we define two kinds of implicit-degrees

of u, denoted by d,(u) and dz(u), as follows:

max{dk+1, k + 1} ifdk+1 > MQ,
d1 (u) =

max{dy, k+ 1} otherwise.

and

max{mq, k + 1} ifmg > dy,
da(u) =

dy (u) otherwise.
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If No(u) = 0, then define dy(u) = da(u) = d(u).
It is clear from the definition that dy(u) > dy(u) > d(u) for every vertex u. Let §; = min{d;(u) : Yu € V(G)} and

fori =1,2
k
0ik(G) = min { Zdi(xj) ’xl, x2,...,x) are k independent vertices of G }
j=1

In 2012, Li, Ning, Cai extended Theorem[1.2.5into condition with implicit degrees.

Theorem 1.2.7 ([92]) Let G be a k-connected graph of order n > 3. If o3 141)(G) > (k + 1)(n — 1)/2, then G is

hamiltonian.

In 1976, Bondy and Chvatal [21] introduced classical results on stability and closure.

The k-closure Cl,(G) is obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum
is at least &, until no such pair remains. The k-closure is independent of the order of the addition of the edges.
Obviously, any graph of order n satisfies G = Cla,,—3(G) C Cla,—4(G) C --- C Cl1(G) C Clp(G) = K.

The third fundamental result is that a graph G of order n is hamiltonian if and only if C1,,(G) is hamiltonian.

The following theorem motivated Bondy and Chvatal to the definition of closure. This developed a powerful tool

that is very useful in the proofs of many results.

Theorem 1.2.8 ([21]) Let v and v be distinct nonadjacent vertices of a graph G of order n > 3 such that dg(u) +

dg(v) > n. Then G is hamiltonian if and only if G + uv is hamiltonian.

Zhu, Li, and Deng [127] obtained the following result on hamiltonian graphs under the condition of implicit degree.

Theorem 1.2.9 ([127]) LetG be a simple graph of ordern. If u and v are nonadjacent vertices with d, (u)+d, (v) > n,

then G is hamiltonian if and only if G + uv is hamiltonian.

The fourth fundamental result due to Chvatal and Erdds [34] gives a sufficient condition of hamiltonian graphs on
the relation between the independence number and the connectivity of the graphs. If G is a graph with connectivity

k such that o(G) < k, where «(G) is the independence number of G, then G is hamiltonian.

A graph G = (V, E) is 1-edge hamiltonian if G — e is hamiltonian for any e € E. Obviously, any 1-edge hamiltonian
graph is hamiltonian. The graph G is 1-node hamiltonian if G — v is hamiltonian for any v € V. A graph G is 1-

hamiltonian if it is 1-edge hamiltonian and 1-node hamiltonian.
Theorem 1.2.10 ([34]) A k-connected graph G is

(1) Traceable if o(G) < k(G) + 1.

(2) Hamiltonian if o(G) < k(G).

18



(3) 1-hamiltonian, 1-edge hamiltonian and hamiltonian connected if o(G) < k(G).

This result also produced many new results.

If G contains no induced subgraph isomorphic to any graph in the set F = {H,, H,, ..., Hy}, we say G is F-free.
If F ={H}, we say G is H;-free.

In 1990, Ainouche et al. [6] showed that K; 3-free graph G can reduce the condition of Theorem The
square G? of G is the graph (V(G), {uv|u,v € V(G);d(u,v) < 2}), where d(u, v) is the distance in G from u to v.

Theorem 1.2.11 ([6]) A k-connected K, 3-free graph G (k > 2) is hamiltonian if o(G?) < k.

Many achievements have been made in the research related to these four fundamental results, but many ques-

tions remain to be solved. In this thesis, we will focus on a few questions related to the four basic results.

1.2.2 Some background of generalization of hamiltonian problem

Many results generalize or reinforce Dirac’s theorems. Some results generalize hamiltonian cycles to the circumfer-
ence of graphs, and some results look for more edge-disjoint hamiltonian cycles. In addition, some results attempt
to construct cycles of all lengths from 3 to the order of the graph, i.e., to prove that the graph is pancyclic, which is

one of the main topics of this thesis.

We will introduce some results which generalize hamiltonian cycles and Dirac’s theorems. In addition to the
results | introduced, there are many results regarding the generalization of the hamiltonian problem. For some
results concerning independence number and connectivity conditions, please refer to [27, [34, [73]; for some results

on pancyclic, please refer to [47, 152, [75]. For more details, we refer to the survey paper by Li [84].
A generalization of Dirac’s theorem is from the parameter of circumferences of graphs.
Circumference

If a graph satisfies the Dirac-type condition or Ore-type condition, then it is hamiltonian. Thus, the circumference

of the graph is its order. Bermond, Bondy and Linial show the following result.

Theorem 1.2.12 ([15], [18] and [98]) Let G be a 2-connected graph of order n. Then the circumference ¢(G) >
min{n, o2(G)}.

One of the necessary conditions for the hamiltonian graph is 1-tough, and the 1-tough graph must be 2-connected.
Therefore, it is natural to want to know the lower bound of the circumference in Dirac-type or Ore-type conditions.

Let G be a 1-tough graph. In 1986, Bauer and Schmeichel [11] proved that ¢(G) > min{n, 02(G) + 2}.

In 1997, Wei [123] generalized Theorem into circumference in the case that the graph is 3-connected.

Theorem 1.2.13 ([123]) /f G is 3-connected graph, then the circumference ¢(G) > min{n,73(G)}.
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Let dif f(G) = p(G) — ¢(G), where p(G) and ¢(G) are the orders of the longest path and the longest cycle,
respectively. There are many studies on dif f(G). In 1995, Enomoto, Van Den Heuvel, Kaneko, and Saito [43]
showed that for a 2-connected graph G of order n, if 03(G) > n+2,then dif f(G) < 1. And in 2009, Ozeki, Tsugaki,
and Yamashita [113] proved that for a 3-connected graph G of order n with 64(G) > n+ 6, dif f(G) < 2.

For the condition of implicit degree, in [127], Zhu, Li, and Deng obtain results about the circumference. See

Definition for the definition of o5 2)(G).
Theorem 1.2.14 ([127]) Let G be a 2-connected graph of ordern. Then the circumference c(G) > min{n, o3 2)(G)}.

When constructing hamiltonian graphs, the transformation of non-hamiltonian graphs into hamiltonian graphs
often produces many spanning cycles. Therefore, sometimes it is in nature to count the number of disjoint cycles
that exist and prove the existence of several edge-disjoint cycles. One of the generalizations of the hamiltonian

problem is edge-disjoint hamiltonian cycles.
Edge-disjoint hamiltonian cycles

Edge-disjoint hamiltonian cycles are important in telecommunication networks. Using the hamiltonian cycle, we
can design a simple protocol for network communications. If a network has k£ edge-disjoint hamiltonian cycles,
then k different messages can circulate independently in the network. And when less than k edges do not work, the
network can still work with some hamiltonian cycles. One of the fundamental results about edge-disjoint hamiltonian

cycles in graphs under Dirac-type condition is due to Nash-Williams who showed in [106] that a graph of order n

5(n+10)

satisfying Dirac-type condition admits at least | >55;

| edge-disjoint hamiltonian cycles. Nash Williams asked if that
number could be improved, and it has been a matter of interest ever since. Nash-Williams [106] gave an example of

a graph on n = 4m vertices with minimum degree 2m having at most | (n + 4)/8] edge disjoint hamiltonian cycles.

Nash-Williams [106] noted that the construction given above depends on the graph being non-regular. He

conjectured [106] the following, which is the best possible, and was also conjectured independently by Jackson [76].

Conjecture 1.2.15 Let G be a d-regular graph on at most 2d vertices. Then G contains |n/2| edge-disjoint hamil-

tonian cycles.

In 1985, Faudree, Rousseau, and Schelp obtained the first results about edge-disjoint hamiltonian cycles in
graphs under the Ore-type condition. But they required n + 2k — 2 instead of n in Ore-type condition. In 1986,
Faudree and Schelp conjectured that if n is sufficiently larger than ¢ and o2(G) > n, then the graph of order n has
L‘Sg—lj edge-disjoint hamiltonian cycles. Their conjecture was confirmed in 1989 by Li. In regular graphs, Nash-
Williams’ result [106] has been extended by Jackson and Li, independently.

Therefore, it is interesting to see if the Ore-type condition 02 (G) > n may ensure more edge-disjoint hamiltonian

cycles. We have the following,
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Theorem 1.2.16 ([88]) Let G be a graph of order n > 20. If 6 > 5 and o2(G) > n, then G has at least two

edge-disjoint hamiltonian cycles.

In regular graphs, the Nash-Williams result [106] has been extended independently by Jackson and Li. A k-

regular graph is a graph in which every vertex has degree k.

Theorem 1.2.17 (Jackson, [76]) Let G be a k-regular graph of order n > 14. If k > ™51, then G has at least

| k=ntl | edge-disjoint hamiltonian cycles.

Theorem 1.2.18 (Li, [82]) Let G be a k-regular graph of order at most 3k — 2. If k > 16 and G — {¢’,e"} is 2-

connected for any two edges ¢’ and ¢”, then G admits two edge-disjoint hamiltonian cycles.

Pancyclicity is one of the most important generalizations of the hamiltonian problem. And pancyclicity is one of

the main topics of this thesis.
Pancyclic, vertex pancyclic and edge pancyclic

A graph G of order n is said to be vertex pancyclic if, for any vertex z, there is a cycle in G of length [ containing
x, foreach [, 3 <1 < n. In 1971, Bondy [19] initiated the study of pancyclic and vertex pancyclic graphs, and he
showed that if 6(G) > (n + 1)/2, then G is vertex pancyclic. Many results concerning pancyclic graphs are based

upon edge density conditions.

For several sufficient conditions, Bondy’s metaconjecture has been verified. This is motivation to examine these
sufficient conditions even for vertex pancyclicity since vertex pancyclicity implies pancyclicity, and pancyclicity im-

plies hamiltonian.

Obviously, when k£ > 3, we cannot place k vertices on the 3-cycle. Therefore, two methods have recently
appeared to adjust the concept of pancyclic meaning. The first method is due to Goddard [62]. For k¥ > 2, we say G
is k-vertex pancyclic if every set S of k vertices is in a cycle of every possible length. Further, G is set-pancyclic if G

is k-vertex pancyclic for all & > 2.

Now by “possible length”, Goddard means at least k+ the path cover number of G[S], where the path cover
number of G[S] is the least number of paths that cover all the vertices of G[S]. This is easily seen to be a reasonable
range, since if G[S] has path cover number ¢, then at least ¢t new vertices will be needed to link the paths (containing

our k vertices) into a cycle. Goddard [62] showed: If G has order n and 6(G) > (n + 1)/2, then G is set pancyclic.

In [51] a second approach is proposed. Let £ > 0, s > 0, and ¢t > 1 be fixed integers with s < ¢ and G be a graph
of order n. For an integer m with k +¢ < m <n, agraph G is (k, t, s, m)-pancyclic if for each (k, ¢, s)-linear forest F,

there is a cycle C,. of length r in G containing F for each m <r < n.

We now switch from the Ore-type condition to a condition on the minimum degree. We investigate the edge

pancyclicity of graphs by considering the vertex pancyclicity of a related digraph.
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Theorem 1.2.19 ([114]) Let G be a graph of order n such that 6(G) > (n + 2)/2. Then G is edge pancyclic.

There are several new strong hamiltonian properties and generalizations of old properties. Brandt [25] proposed

one such generalization as weak pancyclic.
Weakly pancyclic

If a graph contains cycles of all lengths between its girth and circumference, it is called a weak pancyclic. In

1997, Brandt showed the following.

Theorem 1.2.20 ([25]) /f G is a nonbipartite graph of order n and size ¢ > |(n — 1)?/4 + 1], then G is weakly

pancyclic.
Conjecture 1.2.21 ([25]) Every nonbipartite graph of ordern and size at least (n—1)(n—3)/4+4 is weakly pancyclic.

In 1999, Bollobas and Thomason [16] were very close to solving this conjecture. In 2013, Brandt [26] also

considered other degree conditions for weakly pancyclic graphs.

Theorem 1.2.22 ([26]) Let G # C5 be a nonbipatrtite triangle-free graph of ordern. If 5(G) > n/3, then G is weakly

pancyclic with girth 4 and circumference min{2,n — a(G)}, (where o(G) is the independence number of G).

Let S be a subset of vertices. We ask if we may get some properties on cycles under conditions on the subset S of
vertices. Two questions arise: is there a path/cycle containing a maximum number of vertices in S? Does the graph
admit a path/cycle of large length? Another generalization of hamiltonian graphs is the idea of cyclable sets.
Cyclable
A subset S of V(G) is called cyclable in G if all the vertices of S belong to a common cycle in G. If V(G) is
cyclable, then G is hamiltonian. Several set restricted density results imply cyclability. The first extends the well-
known Chvatal-Erdés Theorem. The following result is due independently to Bollobas and Brightwell [17] and Shi

[115]. It uses the classic Dirac-type density condition for the subset S of V(G). Let 6(S) be the minimum degree in

G of a vertex of S.

Theorem 1.2.23 ([17], [115]) Let G be a 2-connected graph and S a subset of V(G). If §(S) > n/2, then S is
cyclable in G.

In 1995, Ota [111] made the natural extension to degree sums of pairs of nonadjacent vertices in S, denoted by

0’2(5).

Theorem 1.2.24 ([111]) Let G be a 2-connected graph and S a subset of V(G). If 52(S) > n/2, then S is cyclable
inG.
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Theorem 1.2.25 ([58]) Let G = (V, E) be k-connected graph, k > 2, of order n. Denote by X, Xo, ..., X\ subsets
of the vertex setV and let X = X, U X, U...UXy. Ifforeachi,i = 1,2,...,k, and for any pair of nonadjacent

vertices x,y € X,;, we have d(x) + d(y) > n, then G is X -cyclable.

The following result generalizes Theorem [1.2.25|into the implicit degree condition. [91] give examples that do
not satisfy the condition of Theorem[1.2.25] and verify the implicit degree condition in the following theorem.

Theorem 1.2.26 Let G be a k-connected graph on n vertices with k > 2. Denote by X1, Xo, ..., X\ subsets of the
vertex set V(G) and let X = X, U XoU... U Xy Ifo 2)(X;) > n foreach j,1 < j <k, then X is cyclable in G.

An extension of the idea of cyclable sets is the following. A graph G is said to be S-pancyclable if for every
integer 1,3 <1 < |S|, there is a cycle in G that contains exactly [ vertices of S. An Ore-type result in this direction is

the following:

Theorem 1.2.27 ([52]) If G is a graph of order n and o5(G) > n, then either G is S-pancyclable or else n is even,

S=V(G)and G = K, /2 n/2, 0r |S| = 4, G[S] = K> > and the structure of G is well characterized.

[1] also, consider bipartite graphs.

Theorem 1.2.28 Let G be a 2-connected balanced bipartite graph of order 2n and bipartition (X,Y’). Let S be a
subset of X of cardinality at least 3. Then if the degree sum of every pair of nonadjacent verticesz € S andy € Y

is at least n + 3, then G is S-pancyclable.

Most of this thesis will focus on the generalization of the hamiltonian problem.

1.3 Motivations and overview

1.3.1 Motivations and overview of pancyclicity

A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n.

“The study of pancyclic graphs arose from the conviction that existing sufficient conditions for a graph to be

hamiltonian are satisfied only by graphs with a much more specific structure.”-J.A. Bondy, 1971.

In 1971, Bondy [118] suggested the following interesting “metaconjecture”: almost any nontrivial condition on
graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of
exceptional graphs).

Pancyclicity is one of the main topics of this thesis. It is NP-complete to test whether a graph is pancyclic.

Let’s recall some results that support the “metaconjecture”.
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Theorem 1.3.1 (Bondy’s theorem, [19]) Let G be a graph of order n. If d(x) + d(y) > n for any pair of nonadjacent

vertices x andy in G, then G is pancyclic or isomorphic to K, /5 ,, /2.

In 1981, Amar, Flandrin Fournier, and Germa [9] showed the following:

Theorem 1.3.2 ([9]) Let G be a hamiltonian, nonbipartite graph of order n. > 162. If 6(G) > (2n + 1)/5, then G is

pancyclic.

In 1982, Mitchem and Schmeichel [104] proposed that the degree bound in theorems that guarantee pancyclic-
ity or bipancyclicity can be reduced if the assumption is hamiltonian. This is clearly a strengthening over simply
assuming G is 2-connected. As it turns out, Faudree, Haggkvist, and Schelp [70] had already asked a question of

this type.

Theorem 1.3.3 IfG is a hamiltonian graph on n vertices with ¢ > |(n —1)?/4] + 1 edges, then G is either pancyclic

or bipartite.

Theorem 1.3.4 ([14]) Let G be a 2-connected graph on n vertices. If for all vertices x and y, dis(z,y) = 2 implies

max {d(x),d(y)} > 5, then G is either pancyclic, K» », K~ n — e, or the graph shown in the following figure.

T 17 17
(o oo o4

Figure of Theorem[1.3.4]
Theorem 1.3.5 ([117]) Let G be a 2-connected graph on n vertices. If for all independent vertices x, y and z, we

have d(x) + d(y) + d(z) > 3* — 1, then G is either pancyclic, K» » , Kz 2 —e, or Cs.

22

If only a pair of consecutive vertices on the hamiltonian cycle is considered, then the edge density can be

reduced. In 1988, Hakimi and Schmeichel [117] showed the following theorem:

Theorem 1.3.6 ( [117]) /f G is a hamiltonian graph of order n with hamiltonian cycle C = xix5...x,21 Such that

d(z1) + d(xy) > n, with say d(z1) < d(zy,), then G is either
(1) pancyclic,
(2) bipartite, or
(8) missing only an (n — 1)-cycle.
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Moreover, if (3) holds, then d(x,,—2), d(x,—1),d(z2), d(xz3) < n/2, and G has one of two possible adjacency structures
near x1 and x,,. In the first structure, vertices x,_s,x,_1,%n, 1, T2, x3 are independent except for edges of C, and
TnTn—3, TnTn—d4, 124, T125 € E(G). The second structure (which can occur only if d(x1) < d(zx,,)) is identical to the

first except that x,,x5 € G and z125 ¢ G.

In 1996, this idea was generalized by Faudree, Favaron, Flandrin, and Li in the case that the graph admits a

hamiltonian path.

Theorem 1.3.7 ( [47]) Let G be a graph of order n. If G has a hamiltonian (u,v)-path for a pair of nonadjacent
vertices v and v such that d(u) + d(v) > n, then G is pancyclic. Moreover, if u (or v) has degree at least %, it is

contained in a triangle and for any m, 4 < m < n, there exists some C,,, in G that contains both v and v.

For the bipartite graph, in 1988, Entringer and Schmeichel [44] gave the following theorem.

Theorem 1.3.8 ([44]) Let G be a hamiltonian bipartite graph on 2n vertices and q > n*/2 edges. Then G is bipan-

cyclic.

This result is also the best possible that can be seen by taking five k-sets of independent vertices and cyclically
joining all vertices in one set to all vertices in the next set. This graph has a degree sum of 4n/5 but lacks triangles.

In 1989, Tian and Zang [120] got the following result.

Theorem 1.3.9 ([120]) /f G is a hamiltonian bipartite graph on 2n vertices where n > 60 and §(G) > 5n/2 + 2, then

G is bipancyclic.
In [46] and [64], they asked the following more general problem.

Problem 1.3.10 Given a result, assuming that G is 2-connected and has properties P, ..., P, to obtain property P,
when does the hamiltonian hypothesis instead of 2-connectivity allow us to reduce the other hypotheses and obtain

the same result?

Then, we have the theorem: a graph with order n and vertex degree sequence d; < dy < --- < d,, such that
di < k < n/2implies d,,_x > n — k is either pancyclic or bipartite.
In 2004, combining Ramsey number conditions gave new results. R(a,b) stands for the standard graph Ramsey

number.

Theorem 1.3.11 ([57]) Let G be a k-connected graph with independence number « such that

E>a+(a+1)R(a+1,a+1).

Then G is pancyclic.
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In 2009, Hu and Li [75] were able to show pancyclic in a graph obtained from a graph with Ore-type condition by

deleting some edges.

We must mention that other important conditions for pancyclic and weakly pancyclic are about the number of
edges. Bondy [19] obtained that every hamiltonian graph of order n and size at least n?/4 is pancyclic. A result
of Haggkvist, Faudree, and Schelp [70] states that a hamiltonian nonbipartite graph of order n and size at least
L%J + 2 is pancyclic. From this, Brandt [25] deduced that every nonbipartite graph of order n and size at least
L@J +2 is weakly pancyclic. He conjectured that it suffices to have the size at least [%21 —n—+5. This conjecture
is proved by Bollobas and Thomason [16]. They showed that every graph of order n and size at least ["{] —n+59

is weakly pancyclic or bipartite.
In [91] and [92], Li, Ning, and Cai get results about cyclable. There are also some results on pancyclicity that

use implicit degrees.

From Bondy’s metaconjecture, we propose the following conjecture.

Conjecture 1.3.12 ([85]) Let G = (V, E) be a k-connected graph (k > 2) of order n. Suppose that V (G) = UF_, X;.
If for any pair of nonadjacent vertices x,y € X; withi = 1,2,...,k, d(x) + d(y) > n, then G is pancyclic or G is

bipartite graph.
In Chapter[2| we prove Conjecture [1.3.12)is true for k = 2. Our main result is the following.

Theorem 1.3.13 ([85]) Let G = (V, E) be a 2-connected graph of order n and V(G) = X UY. If for any pair of
nonadjacent vertices x, and x» in X, d(xz1) + d(z2) > n and for any pair of nonadjacent vertices y, and y, inY,

d(y1) + d(y2) > n. Then G is pancyclic or G = K, /3 /2 0r G = Ky, )9 /2 — {€}.

It is easy to see that Theorem[1.3.13|is stronger than Bondy’s theorem (Theorem [1.3.1).

In Chapter [3] we prove that the conjecture [1.3.12]is true for k = 3. The following is our main result.

Theorem 1.3.14 ([86]) Let G = (V, E) be a 3-connected graph of order n and V(G) = X, U X2 U X3. For any pair

of nonadjacent vertices v; and vy in X;, d(v1) + d(v2) > n withi =1,2,3. Then G is pancyclic or G is bipartite.

1.3.2 Motivations and overview on forbidden graphs

Given a family of graphs F, we say a graph G is F-free if G contains no induced subgraph isomorphic to a graph
in 7. The graphs of F are called forbidden subgraphs. If G contains no induced subgraph isomorphic to any graph
inthe set F = {H,,H>...,Hy}, we say G is F-free. If F = {H,}, we say G is H,-free. Forbidden subgraphs are
a method to the hamiltonian problem, which started with an observation by Goodman and Hedetniemi [63]. The
forbidden subgraph’s problem has been studied for G being traceable, hamiltonian, pancyclic, Hamilton-connected,

and so on.
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§>122 oy3>n—2  Up> 225
Traceability [99](S) [125,128] (S) [12](S)

Table 1.1: 1-connected claw-free graphs

4 g2 g3 Us
Traceability > =2 [49]
Hamiltonicity > 22 [99](S) > 225 [65] > n—2[125,128](S) > 225 [12](5)
PanCYC”City > %_2 [54] > 2n3—2 [49]

Table 1.2: 2-connected claw-free graphs

The complete bipartite graph K ,, is called a star, and the K s is called a claw. A graph is claw-free if it contains

no claw as its induced subgraph.

Many of the results mentioned in this thesis are also included in the survey by Gould [65].

The circumference of 2-connected claw-free graphs was investigated by Broersma et al. [30].

So, first, let’s introduce some of the notation that we're going to use.

For 1 < k < n we denote by Uj(G) the minimum of the neighborhood union |N(z1) U --- U N(xy)|, where the
minimum is taken over all subsets {z1, zs, ...,z } of k independent vertices of V(G).

For the sake of clarity and ease of reference, the results concerning traceability, hamiltonicity and pancyclicity in
claw-free graphs as a function of 6, o, and Uy, have been placed in Tables[1.1][1.2] (depending on the connectivity of
the graph). As S (for sharp) in Table [T.1]indicates that the bound cannot be improved.

The following result gives a minimum degree condition for K 3-free graphs to be pancyclic.

Theorem 1.3.15 ([54]) Let G be a 2-connected K, 3-free graph with the order n > 35. If §(G) > ”T*Q then G is

pancyclic.

The lower bound of Theorem [1.3.15is sharp because there is a graph of order 34, which satisfies the degree sum
condition in Theorem [1.3.15|but is not pancyclic.
For non-hamiltonian 3-connected claw-free graphs, in Table we gave some results regarding traceability,

hamiltonicity and Hamilton-connected. Li Mingchu [100] verified 45 as a lower bound for the circumference.

In the 1980s, some results showed that a 2-connected graph is a hamiltonian graph when specific induced
subgraph pairs are prohibited. Notable among these were the following results (see Figure [1.3|for graphs and note

that Z, is obtained from Z3 by removing the vertex of degree one).

Theorem 1.3.16 (1) [42] If G is a 2-connected { K 3, N }-free graph, then G is hamiltonian.
(2) [29] If G is a 2-connected { K1 3, Ps }-free graph, then G is hamiltonian.
(3) [66] If G is a 2-connected { K1 3, Z> }-free graph, then G is hamiltonian.
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1) g3 U2

Traceability >+ 1 [71]
Hamiltonicity > ot7 [31] > W [71]
Hamilton-connected >n+1[53]

Table 1.3: 3-connected claw-free graphs

(4) [13] If G is a 2-connected { K 3, W }-free graph, then G is hamiltonian.

S

Zs 3

|

)————o

W N(1,1,1)= N

Figure 1.3: The forbidden graphs

The fundamental conjecture of Matthews and Sumner [99] is still open.

In 1979, Oberly and Sumner [107] obtained the following results by associating forbidden subgraphs with local
connectivity: a connected, locally connected, K, s-free graph of order n > 3 is hamiltonian. A graph G is locally

connected if, for each vertex x, the subgraph G[N (z)] is a connected graph.

In 1988, Zhang [128] considered degree sums in K, 3-free graphs. He showed that if G is a k-connected,

K, s-free graph of order n such that 04,41 (G) > n — k, then G is hamiltonian.

Conjecture 1.3.17 ( Matthews-Sumner conjecture ) Every 4-connected claw-free graph is hamiltonian.

In 2001, Broersma, Kriesell, and Ryjacek [31] showed that the above conjecture is true for some graphs.

For the hamiltonian problem, there are still some special problems. Such as alternating hamiltonian cycles,

making weighted graphs hamiltonian, and so on.

Theorem 1.3.18 ([80]) Every 5-connected line graph with minimum degree at least 6 is hamiltonian.

To solve the problems of the Matthews-Sumner conjecture and the completeness of the general theory, the

3-connected case is generally considered. There are a lot of new results here.

Theorem 1.3.19 ([81]) Every 3-connected claw-free graph with minimum degree 6 and order at most 66 — 7 is

hamiltonian.
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Theorem 1.3.20 ([95]) Every 3-connected claw-free graph with minimum degree 6 and ordern < 56 —8 is Hamilton-

connected.
In [67], it described the pancyclicity of 3-connected graphs with forbidden pairs.

Theorem 1.3.21 ([67]) /f X and Y are connected graphs of order at least 3 with X,Y # P; andY # K, 3, then a
3-connected XY -free graph G is pancyclic if and only if X = K, 3 andY is a subgraph of a member of the family

{P7,L1,N(4,0,0), N(3,1,0), N(2,2,0), N(2,1,1)}.
In 2011, Ryjacek and Vrana [116] proposed the following conjecture.
Conjecture 1.3.22 ([116]) Every 4-connected claw-free graph is Hamilton-connected.
For more results of claw-free graphs, we refer to the survey paper by Faudree et al. [48].

Chorded pancyclic on claw-free graphs is one of the main topics of this thesis. We study a minimum degree
condition for K 3-free graphs to be chorded pancyclic in this thesis.

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say that a cycle is chorded if
the cycle has at least one chord, and we call such a cycle chorded cycle. If a cycle has at least two chords, then the
cycle is called a doubly chorded cycle. A graph G of order n is chorded pancyclic (doubly chorded pancyclic) if G
contains a chorded cycle (doubly chorded cycle) of each length from 4 to n.

Bondy’s metaconjecture was extended into almost any condition that implies a graph is hamiltonian will imply it
is chorded pancyclic, possibly with some class of well-defined exceptional graphs and some small order exceptional
graphs. As support for the extension of Bondy’s metaconjecture, there are the following results. For graphs G and

H, let GOH denote the Cartesian product of G and H.

Theorem 1.3.23 ([35]) Let G be a graph of order n > 4. If d(z) + d(y) > n for any two nonadjacent vertices in G,
then G is chorded pancyclic, or G = K 22, 0rG = K;3UK>

Theorem 1.3.24 ([60]) A hamiltonian graph G of order n > 4 with |[E(G)| > in® is chorded pancyclic unless
G = K%’%, orG = K3Ks.

Theorem 1.3.25 ([36]) Let G be a 2-connected graph of order n > 10. If G is {K, 3, Z2}-free then G = C,, or G is

chorded pancyclic, where C,, be a cycle with n vertices.

Theorem 1.3.26 ([36]) Let G be a 2-connected graph of order n > 13. If G is {K1 3, Fs}-free then G is chorded

pancyclic.

In Chapter [5 we obtain the results which the extension of the pancyclicity to the corded pancyclicity from Theo-

rem[d.3.15l Our main results are as follows:
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Theorem 1.3.27 ([93]) Let G be a 2-connected K, s-free graph with the order n > 35. If §(G) > %2 then G is

chorded pancyclic.

Let CH,, be the maximum number of chords in cycle C,,, C G with 4 < m < n. We obtain the following theorem.

Theorem 1.3.28 ([93]) Let G be a 2-connected K 3-free graph with the order n > 35. If §(G) > 252, then

W—m if4 <m <5,
m IfGSmS"T“,
CHy, >
4 2n+8
2] P < < 28
71”(6_(2"_7”)) -m ifLL;r11 <m<n.

Moreover, by Theorem|[1.3.28, C H,,, > 2. Therefore, we can obtain that G is doubly chorded pancyclic.

Corollary 1.3.29 ([93]) Let G be a 2-connected K, 3-free graph with the order n > 35. If §(G) > ”T*Q then G is
doubly chorded pancyclic.

In the previous part of this section, we gave several theorems for forbidden graphs, from which we can generalize

the conditions of Theorem|[1.3.27|to obtain chorded pancyclic.

1.3.3 Motivation and overview of hamiltonicity in digraphs

Let D be a digraph. A cycle (path) is called hamiltonian if it includes all the vertices of D. A digraph D is hamiltonian
if it contains a hamiltonian cycle and is pancyclic if it contains a cycle of length k for any 3 < k < n, where n is
the order of D. A balanced bipartite digraph of order 2m is even pancyclic if it contains a cycle of length 2k for any
k,2<k<m.

In [77], Jackson pointed out that for undirected regular graphs, the degree condition of Dirac’s theorem can be
greatly reduced by adding the connectivity condition. He got the result that every 2-connected d-regular graph on n
vertices with d > n/3 contains a hamiltonian cycle. In addition to the Petersen graph, Hilbig [74] and Zhu et al. [126]
raised the degree condition to n/3 — 1. There is an example to prove that the degree condition cannot be reduced

further and that the connectivity condition is necessary. For directed graphs, the following conjecture is obtained.

Conjecture 1.3.30 Every strongly 2-connected d-regular digraph on n vertices with d > n/3 contains a hamiltonian

cycle.

The conjecture of Bang-Jensen et al. [10] would strengthen Meyniel’s theorem (A strongly connected directed
graph of order n whose degree sum of any pair of nonadjacent vertices is at least 2n — 1 is hamiltonian.) by requiring

the degree condition only for dominated pairs of vertices (a pair of vertices is dominated if there is a vertex which
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sends an edge to both of them). Nash-Williams [105] proposes a conjecture about degree sequence conditions in

directed graphs similar to Chvatal’'s theorem.
Another sufficient hamiltonian condition in undirected graphs is the Chvatal-Erdds theorem [34]. The connectivity

x(G) of a digraph is defined to be the size of the smallest set of vertices S so that G — S is either not strongly
connected or consists of a single vertex. Let a2(G) be the size of the largest set S so that S induces no cycle of

length 2. Jackson and Ordaz [78] got the following conjecture.
Conjecture 1.3.31 ([78]) If G is a digraph with k(G) > as(G) + 1, then G contains a hamiltonian cycle.

In 1960, Ore [109] generalized Dirac’s [41] well-known theorem about hamiltonian cycles in graphs. Bondy
[19] extended this result and proved that a graph satisfying the Ore-type condition is not only hamiltonian but even
pancyclic, unless the graph is regular, completes bipartite. Ghouila-Houri [61] and Woodall [124] generalized Dirac’s
theorem and Ore’s theorem to digraphs, respectively.

One can use Ghouila-Houri’s theorem [61] to deduce that every digraph on n vertices with a minimum semide-
gree greater than n/2 is pancyclic.

We say that a digraph with n vertices satisfies the condition (c;) if, for each pair of nonadjacent vertices, the
degree sum is at least 2n — 2 + 3.

In 1973, Meyniel [103] generalized the results of Ghouila-Houri and Woodall ([61] and [124])) by showing that a
strongly connected digraph satisfying ¢; is hamiltonian. Overbeck-Larisch [112] and Bondy and Thomassen [119]
gave a short proof of Meyniel's theorem. In 1976, Haggkvist and Thomassen [69] generalized Ghouila-Houri’s
theorem by showing that a strongly connected digraph D with n vertices and minimum degree at least n is pancyclic

unless n is even and G = K, /3 /2.

Theorem 1.3.32 ([69]) If a strongly connected digraph D with n vertices has minimum degree at least n, then D is

pancyclic, orn is even and G = K, /3 /2-

In 1971, Bondy [19] proved that the number of edges in an undirected hamiltonian nonpancyclic graph with
n vertices is less than or equal to n?/4 and conjectured that the number of edges in a hamiltonian nonpancyclic
digraph with n vertices is less than or equal to n?/2.

Every hamiltonian digraph with n vertices and n/2(n + 1) — 1 or more edges is pancyclic.

Another natural way to generalize Dirac’s theorem is to require finding a certain set of vertex-disjoint cycles in
G that together cover all vertices of G. For directed and oriented graphs, factors with specified cycles length and
k-ordered hamiltonian cycles are also taken into account.

A graph G is k-ordered if for every sequence sy, so, . . ., i Of distinct vertices of G there is a cycle which encoun-

ters s1, so, ..., si in this order. G is a k-ordered hamiltonian if it contains a hamiltonian cycle with this property.
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In 1977, Thomassen [119] proved that the Ore-type condition implies that every digraph with minimum in-degree
and minimum out-degree > n/2 is pancyclic. In 1997, Alon and Gutin [7] observed that one can use Ghouila-
Houri’s theorem [61] to show that every digraph G with minimum in-degree and minimum out-degree > n/2 is even

vertex-pancyclic.

A digraph D is strongly connected (or, just, strong) if there exists a path from x to y and a path from y to « for
every pair of distinct vertices z,y. A digraph D is k-strongly (k > 1) connected (or k-strong), if |[V(D)| > k+ 1 and
D(V (D) \ A) is strongly connected for any subset A C V(D) of at most k — 1 vertices.

Recently, there has been a renewed interest in various Meyniel-type hamiltonian conditions in bipartite digraphs.
Let us recall the following well-known degree conditions that guarantee that a balance bipartite digraph is hamilto-

nian.

We begin with the following theorem due to Adamus Janusz.

Theorem 1.3.33 ([2]) Let D be a strong connected balanced bipartite digraph of order 2a > 6. Suppose that
d(x)+d(y) > 3a for each pair of distinct vertices x,y with a common out-neighbor or a common in-neighbor, then D

is hamiltonian.

The following theorems are generalizations of Theorem[1.3.33

Theorem 1.3.34 ([121]) Let D be a strongly connected balanced bipartite digraph of order 2a > 4. Suppose that,
for every dominating pair of vertices {x,y}, either d(z) > 2a — 1 and d(y) > a+1 ord(y) > 2a— 1 and d(x) > a + 1.

Then D is hamiltonian.

Before starting the following theorems, we need to introduce additional notation.

Let D(8) be the bipartite digraph with partite sets X = {xg,z1,22,23} and Y = {yo,v1,¥2,y3}, A(D(8)) contains
exactly the arcs yox1, y120, 22ys3, z3y2 and all the arcs of the following 2-cycles: z; + y;,7 € [0,3],y0 < x2,y0 <

x3,y1 > T2 and y; <> x3, and it contains no other arcs.

Theorem 1.3.35 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a > 4. Suppose that, for
every dominating pair of vertices {z, y}, either d(z) > 2a — 1 ord(y) > 2a — 1 (max{d(z),d(y)} > 2a—1). Then D is

hamiltonian or isomorphic to the digraph D(8).

Theorem 1.3.36 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a > 8. Suppose that

d(x) + d(y) > 4a — 3 for every pair of vertices x,y with a common out-neighbour. Then D is hamiltonian.

In 1971, Bondy suggested [19] “metaconjecture”. There are many results that support this “metaconjecture” in

digraph. Let us cite for examples the followings:
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Theorem 1.3.37 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a > 8 with partite sets
X andY. If D is not a directed cycle and max{d(x),d(y)} > 2a — 1 for every pair of distinct vertices {z,y} with a
common out-neighbor, then either D contains cycles of all even lengths less than or equal to 2a or D is isomorphic

to the digraph D(8).

Theorem 1.3.38 ([102]) Let D be a balanced bipartite digraph of order 2a > 4 with partite sets X andY. Suppose
that d(z) + d(y) > 3a + 1 for each two vertices x,y either both in X or both inY. Then D contains cycles of all even

lengths 4,6, ..., 2a (i.e., D is bipancyclic).

Theorem 1.3.39 ([3]) Let D be a strongly connected balanced bipartite digraph of order 2a > 6. Suppose that
d(x) 4+ d(y) > 3a for every pair of vertices x,y with a common in-neighbour or a common out-neighbour. Then D is

either bipancyclic or D is a directed cycle of length 2a.

In view of the next theorem we need the following definition.

Definition 1.3.40 Let D be a balanced bipartite digraph of order 2a > 10, and let k. be an integer. We say that D

satisfies the condition ¥, if for every dominating pair of vertices {x,y}, d(x) + d(y) > 3a + k.
In Chapter [4] we prove the following theorem which improves the result of Theorem[1.3.33

Theorem 1.3.41 ([87]) Let D be a strongly connected balanced bipartite digraph of order 2a > 10. Suppose that D

satisfies the condition R, i.e., d(x) + d(y) > 3a for every dominating pair of vertices {x,y}, D is hamiltonian.
We also proved some new sufficient conditions for bipancyclic of digraphs.

Theorem 1.3.42 ([87]) Let D be a strongly connected balanced bipartite digraph of order 2a > 8 with partite sets
X andY. Suppose that D contains a cycle of length 2a — 2 and d(x) + d(y) > 4a — 4 for every dominating pair of

vertices {x,y}. Then D is even pancyclic.

Theorem 1.3.43 ([87]) Let D be a strongly connected balanced bipartite digraph of order 2a > 10 other than a
directed cycle of length 2a. If D contains a cycle of length 2a — 2 and D satisfies the condition ¥y, i.e., d(x) + d(y) >
3a + 1 for every dominating pair of vertices {x,y}, then D contains a cycle of length 2k for all k, where 1 < k < a

(i.e., D is even pancyclic).

Let D be a digraph and let S be a nonempty subset of vertices of D. We say that a digraph D is S-strongly connected
if, for any pair x, y of distinct vertices of S, there exists a path from « to y and a path from y to x.

A set S of vertices in a directive graph D is said to be cyclable (pathable) in D if D contains a directed cycle
(path) through all vertices of S.

Many well-known conditions guarantee the cyclability of a set of vertices in an undirected graph. In 2007, Li,

Flandrin and Shu [89] proved the following theorem which gives a sufficient condition for cyclability of digraphs.
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Theorem 1.3.44 ([89]) Let D be a digraph of ordern and S C V(D). If D is S-strong and if d(z) + d(y) > 2n — 1 for

any two nonadjacent vertices x,y € S, then S is cyclable in D.

Theorem 1.3.45 ([89]) Let D be a digraph of ordern and S C V(D). If D is S-strong and if d(x) + d(y) > 2n — 3 for

any two nonadjacent vertices x,y € S, then S is pathable in D.
In this thesis, we show the following theorem.

Theorem 1.3.46 ([87]) Let D be a 2-strong digraph of order n and S C V(D). If D is S-strong and if d(x) + d(y) +
d(w) + d(z) > 4n — 3 for all distinct pairs of non-adjacent vertices x,y and w, z in S, then S is cyclable in D or D

contains a cycle through all the vertices of S except one.

The proof of Theorem[1.3.46]is in Chapter[4]

1.3.4 Motivation and overview of i-fan-connected graphs

To facilitate the reading, we state again the definitions and notations here.

A vertex cut is a set S C V(G) such that G — S has more components than G. A graph is k-connected if every
vertex cut has at least k vertices. The connectivity of G, x(G), is the minimum size of a vertex cut, i.e., x(G) is the

maximum k such that G is k-connected.

One of these subclasses of hamiltonian graphs is the family of Hamilton-connected graphs introduced by Ore
[110] in 1963. A graph G is said to be Hamilton-connected if each pair u,v of distinct vertices are joined by a

u, v-path containing all the vertices of G.

If G is a Hamilton-connected graph, then G is hamiltonian. It is well known that the complete bipartite graph is
not Hamilton-connected.

In 1963, Ore [110] gave a sufficient condition for a graph to be Hamilton-connected: a graph whose degree
sum for each pair of nonadjacent vertices is at least its order plus one is Hamilton-connected. In 1969 and 1970,
Chartrand, Kapoor, and Kronk [59] and Lick [32] found another sufficient condition for Hamilton-connected graphs,
that is, G is a graph of order n > 3 such that for every j with 2 < j < n/2, the number of vertices of degree
not exceeding j is less than j — 1, then G is Hamilton-connected. In 1970, Lick [96] proposed a sufficient condition
about the degree sequence for hamiltonian connectivity. In 1972, Chvatal and Erdds [34] considered the relationship
between the independent number and the connectivity as a condition to get the hamiltonian connectivity of graphs.

Faudree et al. [50] and Wei [122] studied sufficient degree and/or neighborhood union conditions for Hamilton-

connected graphs.

In 1979, Chartrand, Gould, and Polimeni [33] proved that if a graph G is connected, locally 3-connected, and

contains no induced subgraph isomorphic to K 3, then G is Hamilton-connected.

The following theorem is a well-known result due to Ore.
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Theorem 1.3.47 ([110]) Let G be a graph of ordern > 3. If 05(G) > n + 1, then G is Hamilton-connected.

Theorem [1.3.47]is generalized into a sufficient condition on any three independent vertices. In 1991, Flandrin,

Jung and Li proved the followings:
Theorem 1.3.48 ([56]) Let G be a 2-connected graph of order n such that 55(G) > n, then G is hamiltonian.
When 53(G) > n — 1, we have the following theorem:

Theorem 1.3.49 ([Flandrin, Jung and Li [56]) Let G be a connected graph of order n such that 55(G) > n — 1,

then G has a hamiltonian path.

As a generalization of Hamilton-connected and hamiltonian path, Lin et al. introduced the k-fan-connectivity of
graphs in [97]. For any integer t > 2, let v be a vertex of a graph G and let U = {uy,us,...,u;} be a subset of
V(G)\ {v}. A (v,U)-fanis a set of paths P,, P, ..., P; such that P; is a path connecting v and w; for 1 <i <t and
PNnPj={viforl<i<j<t.

It follows from Menger Theorem [101] that there is a (v, U)-fan for every vertex v of G and every subset U of
V(G)\ {v} with |U| < k if and only if G is k-connected. If a (v, U)-fan spans G, then itis called a spanning (v, U)-fan
of G. If G has a spanning (v, U)-fan for every vertex v of G and every subset U of V(G) \ {v} with |U| = k, then G

is k-fan-connected.

Theorem 1.3.50 ([40]) A graph G is k-connected if and only if |G| > k + 1 and for any k-set U C V(G) and
x € V(G) — U, there is an xU -fan.

Let k£ be a positive integer. In 2009, Lin et al. [97] established some results about k-fan. A hamiltonian path P is
nothing but a spanning 1-fan rooted at the endpoints of P. A graph G is spanning k-fan-connected if it has at least
k + 1 vertices and contains a spanning k-(x, U)-fan for every choice of z € V(G) and U ¢ (Z(G)/{I}); In [97], it is
an easy observation that a graph with at least three vertices is spanning 1-fan-connected if and only if it is spanning

2-fan-connected. More generally, if G is spanning (k + 1)-fan-connected, then it must be spanning k-fan-connected.

Theorem 1.3.51 ([97]) Assume that k is a positive integer. Let G be a graph with order n. If w and v be two

non-adjacent vertices with d(u)+d(v) > n+k—1, then G is k-fan-connected if and only if G +uv is k-fan-connected.
Lin et al., in [97], obtained an Ore-type condition for graphs to be k-fan-connected.

Theorem 1.3.52 ([97]) Let k > 2 be an integer and G be a graph. If 02(G) > |V(G)| + k — 1, then G is k-fan-

connected.
In Chapter[6] we studied the k-fan-connected graphs. Our main theorem is as follows:

Theorem 1.3.53 ([94]) Letk > 2 be an integer and G be a (k + 1)-connected graph. Ifo3(G) > |V (G)|+k —1, then

G is k-fan-connected.

The lower bound of 5(G) in Theorem [1.3.53]is sharp as shown in Chapter|[6]
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Chapter 2

Pancyclicity in hamiltonian graphs

In this chapter, we will discuss the result related to Conjecture[1.3.12
Let S be a subset of V(G). We say that G is S-cyclable if G has an S-cycle, i.e., a cycle containing all vertices

of S. The following theorem is an Ore-type condition for a graph to be S-cyclable.

Theorem 2.0.1 ([58]) LetG = (V, E) be a k-connected graph, k > 2, of ordern. Denote by X1, X, ..., X\ subsets
of the vertex setV and let X = X, U X, U---UXy. Ifforeachi,i = 1,2,...,k, and for any pair of nonadjacent

vertices x,y € X;, we have d(z) + d(y) > n, then G is X -cyclable.

Bondy suggested the following interesting “metaconjecture”: almost any nontrivial condition on graphs which
implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of exceptional
graphs).

From Bondy’s “metaconjecture” and Theorem[2.0.1] we propose Conjecture[1.3.12] We recall Conjecture[1.3.12]

here.

Conjecture 2.0.2 Let G = (V, E) be a k-connected graph, k > 2, of order n. Suppose that V (G) = U¥_, X; such
thatforeachi,i=1,2,...,k, and for any pair of nonadjacent vertices x,y € X;, d(x)+d(y) > n. Then G is pancyclic

or G is bipartite graph.

The main result of this chapter is to prove that the above conjecture is true for £ = 2. Our main result is the

following theorem.

Theorem 2.0.3 ([85]) Let G = (V, E) be a 2-connected graph of order n and V(G) = X UY. If for any pair of
nonadjacent vertices x1 and x2 in X, d(x1) + d(z2) > n and for any pair of nonadjacent vertices y, and y, inY,

d(y1) + d(y2) > n, then G is pancyclic or G = K, /3 nj2 0 G = K, /3 5,72 — {€}.

It is easy to see that Theorem is stronger than Bondy’s result in Theorem For ease of reading, we
reiterate Theorem here.
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Theorem 2.0.4 (Bondy’s theorem, [19]) /f a graph G satisfies the Ore-type condition that the degree sum of any

pair of nonadjacent vertices is at least the order of G, then G is pancyclic or isomorphic to K, /5 ,, /2.

We will prove Theorem in Section Section [2.1] contains two lemmas with their proofs.

2.1 Preliminaries

2.1.1 Some definitions, notations and theorems

Now, we introduce some definitions, notations and theorems which can be used in the proof of Theorem

All graphs considered in this chapter are finite, undirected and without loops or multiple edges. Given a graph

G, we write G as the complement of G. Let

02(G) = min{d(x) + d(y) | z,y € V(G),z # y,zy ¢ E(G)}.

A cycle containing all vertices of G is called a hamiltonian cycle and G is called hamiltonian if it contains a
hamiltonian cycle. For two vertices v and v, a (u,v)-path is a path connecting « and v. A hamiltonian (u, v)-path is
a hamiltonian path connecting « and v. For any integer m, denote by C,, a cycle of length m. Other notations and

terminology not defined in this chapter can be found in section [1.1] of Chapter([i]

For a cycle C' = cica - - - cpeq in G with a given orientation, the order 1,2, ... p following the orientation of C, we
denote by ¢; = ¢;—1 the predecessor of ¢; and by cj = ¢;+1 the successor of ¢;. For a subset X of V(C), Xt and
X~ denote the set of the successors and the predecessor of the vertices of X in C, respectively. For any = € V(G),
we put

Ng(z) ={cj| e; € CNN(x)}, Ni(z) ={c}|ci € CNN(z)}.

We define similarly for the predecessor and the successor of a vertex on a path Ppi, p,] = pip2 - - - pg. We denote
by Plpg, p1] = pgpg—1--- 1.

The following theorems play an important role in the proof of Theorem |2.0.3

Theorem 2.1.1 ([117]) /f G is a hamiltonian graph of order n with hamiltonian cycle C = zyxs...xnx1 Such that

d(z1) + d(z,,) > n, with say d(z1) < d(z,,), then G is either
(1) pancyclic,
(2) bipartite, or
(3) missing only an (n — 1)-cycle.
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Moreover, if (3) holds, then d(x,,—2), d(x,—1),d(z2), d(xz3) < n/2, and G has one of two possible adjacency structures
near x1 and x,,. In the first structure, vertices x,_s,x,_1,%n, 1, T2, x3 are independent except for edges of C, and
TnTn—3, TnTn—d4, 124, T125 € E(G). The second structure (which can occur only if d(x1) < d(zx,,)) is identical to the

first except that x,,x5 € G and z125 ¢ G.

Theorem 2.1.2 ([47]) Let G be a graph of order n. If G has a hamiltonian (u,v)-path for a pair of nonadjacent
vertices v and v such that d(u) + d(v) > n, then G is pancyclic. Moreover, if u (or v) has degree at least 3, it is

contained in a triangle and for any m, 4 < m < n, there exists some C,,, in G that contains both v and v.

2.1.2 Lemmas

In this section, we present some lemmas which will be used in the proof of Theorem|2.0.3

Lemma 2.1.3 Let G = (V, E) be a 2-connected balanced bipartite graph of order n and V(G) = X UY. If for any
pair of nonadjacent vertices x1 and x5 in X (resp., y1 andys inY), d(x1) + d(xz2) > n (resp., d(y1) + d(y2) > n), then

G = Kn/g’n/g orG = Kn/2,n/2 - {6} .

Proof of Lemma @ Suppose that G # K,/ ,/2. Let Vi and V; be the bipartitions of G. Clearly n > 6.
Let v; € V4 and vy € V5 be a pair of non-adjacent vertices. Then d(v;) < n/2 and d(v2) < n/2. Without loss
of generality, we assume v; € X. Since the maximum degree of G is n/2, v; must be adjacent to every ver-
tex in X. Hence (Vi — {v1}) U {ve} C Y. Similarly, (Vo — {v2}) U {v1} € X. Since for any pair of vertices
x1,x9 € Vi — {v1}, d(z1) + d(z2) > n, then Ng(z1) = Ng(z2) = V2. And for any pair of vertices yi1,y2 € Vo — {va},
Ne(y1) = Na(y2) = Vi. So, we deduce that G = K, /5.,,/2 — {e}. [

Lemma 2.1.4 ([85]) Let P = wququs---u, be apath in G and x,y € V(G) — V(P) such that (Np(z) — {w1})™ N

Np(y) =0. Thendp(z) + dp(y) <p+1andifdp(z) +dp(y) =p+1,
(1) V(P) = (Np(x) = {us})” UNp(y),
(2) zu1,yu, € E(G);

(3) If u; ¢ Np(x) for some i,2 < i < p, thenu,_1 € Np(y), and ifu; ¢ Np(y) for some j,1 < j < p—1, then

ujy1 € Np(z);

(4) Ifu;,u; ¢ Np(x) UNp(y) with2 <i < j < p—1 such that

{tit1,%it2,...,uj_1} € Np(z) UNp(y), then there exists exactone k, i+ 1 < k < j — 1, such that
{wit1,wit2, ..., ur} € Np(x) and {ug, upy1,...,uj—1} € Np(y);
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(5) If Np(x) does not contain consecutive vertices on P and Np(y) does not contain consecutive vertices on P,

thenp is odd and Np(z) = Np(y) = {u1,u3, us, ..., up—2,up}.

Proof of Lemma|2.1.4] Since (Np(z) — {u1})~ N Np(y) = 0, we deduce that

dp(z) +dp(y) = [Np(z)| + [Np(y)|
<|(Np(x) = {ua})” |+ 1+ [Np(y)]
= [(Np(x) ={wm})” UNp(y)| +1

<p+1 (2.1)

It follows that if dp(x) +dp(y) =p+ 1, (Np(x) —{u1})~ UNp(y) = V(P) ((1) is proved.) and u; € Np(z). Since
up, € V(P)— Np(z)~, then u, € Np(y). ((2) is proved.) If u; ¢ Np(z) for some i with 2 <i < p, then u;_1 ¢ Np(z)~
and hence u;,—1 € Np(y). If u; ¢ Np(y) for some jwith1 < j <p—1,thenu; € Np(z)~ and u;41 € Np(z). ((3) is
proved.) Suppose V(P) — (Np(x) UNp(y)) = {ti,, Uiy, - -, us, }. L8t Py = uqug - - - wi, —1, Ps = Ui 41U 42 Uiy, —1
with1 < s <t —1, P, = uj, 41U, +2 - - - up. By the same argument with on every Py, 0 < k < t, it follows that

dp, (I) +dp, (y) < |Pk‘ + 1 and

p+1 = dp(z)+dp(y)

S (dr, (@) + dp, (3)
k=0

> (1P| +1)=|P|+ 1.
k=0

IN

IN

This implies that dp, (z) + dp,(y) = |Px| + 1 with 0 < k& < ¢. Since P, C Np(xz) U Np(y) and (Np(x) — {u1})~ N
Np(y) = 0, then there exists a vertex u;, € Py forany k, 0 < k < ¢, such that Np,(z) = {u1,us,...,u;,} and
NPo(y) = {ujo’ujo-‘rl’ s ’uh—l}’ NPk(‘r) = {uik+1’uik+2’ T ’ujk} and NPk (y) = {ujkvuik-‘rla s ’U’ik+1_1} with

1<k<t-1, Npt(l‘) = {uit+1,uit+2, s ,th} and Npt (y) = {th,uit+1, .. .,up}. ((4) is proved.)

If there are two consecutive vertices in Np(z) U Np(y), by (4), either 2 or y must contain consecutive neighbors,

a contradiction. By (2), we deduce that p is odd and Np(x) U Np(y) = {u1,us, us, . .., up—2, up, }.((5) is proved.) [

2.2 The proof of main result

Now we prove the Theorem

To the contrary, we assume that G is a counterexample, i.e. G is not pancyclic, G # K, 2,2 and G # Ky, /3., /2 —
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{e}, such that |V (G)| is minimum among all counterexamples. Without loss of generality, let XNY = @ and | X| > |Y].

2.2.1 The connectivity of G is at least 3

First, we get an important result.
Claim 2.2.1 The connectivity of G is at least 3.

To prove Claim[2.2.1] we assume that the connectivity of G is 2. Let {w’, w"} be a cut-set which cuts G into H;
and Hs. Let |H1| =n; and |H2| = No.

Suppose first that H; N X # @ and HoN X # (. Forany u € Hy N X and v € H, N X, we have

n<d(u)+dv) <|Hi|—-14+2+|Hs| —1+2<n,

which implies N(u) = (Hy — {u}) U{w',w"} and N(v) = (Hs — {v}) U {w’,w"}. If moreover H; NY # { and
H,NY # 0, by similar reason, we obtain that both H; and H, are cliques and clearly G is pancyclic or G = K 5.
Thus, without loss of generality, we may assume that H; NY =), hence Y C Ho U {w',w”} and V(H;) C X is a
clique such that each vertex in H; is adjacent to both w’ and w”. By Theorem[2.0.1] G has a hamiltonian cycle C,,.
{w’,w"} is a 2-cut which cuts C,, into two parts such that all vertices H, must lie on the same part of C,, and that of

H, on the other part. Soitiseasytogetall C,,,n >m >n—ny + 1.

Define a new graph D as follows:

G- H if ww” € E(G),
D=

(G — Hy)U{ww"} ifw'w” ¢ E(G).

Let X’ = XNV(D)and Y =Y NV(D). Then D is 2-connected, and D(X’) is a cliqgue. Clearly any vertex
u € X' — {w'w"} forms a triangle with w’ and w” and hence D is not bipartite. For any pair of nonadjacent vertices
v1,v2 €Y', at least one of v; and vq is in Hy and dp(vy) + dp(ve) > dg(vi) + dg(ve) — |H1| > n— |Hy| = |D|. Since
G is a minimum counterexample and D is not bipartite, there exists a cycle Cj, in D for any k ,3 < k < |D|. When
w'w” ¢ Ci, C, C G. When w'w” € C, letzy € HoNX C D(X')and 25 € Hy. For k > 4 and 21 ¢ Cy, since
is adjacent to every vertex in Cy, it is easy to construct a path P,_; of k — 1 vertices in D connecting w’ and w”.
Put C}, := zow'P,_1w" x4 that is a cycle of length k in G. For k > 4 and z; € Cy, since z is adjacent to every vertex
in Cy, similarly it is easy to construct a path P;_, of k — 1 vertices in D connecting w’ and w”, which gives a cycle
of length k, C}/ = zow'P]_,w" x5 in G. When k = 3, we may deduce directly that w'w"” ¢ E(G) and |H;| = 1 since
otherwise we have a Cs. Let x € X N Hy. If |Hy| > 2, we have u € Hy — {«} which is adjacent to w’ or w”. Now

zuw'z (or zuw’z) is a triangle in G. So |Hz| =1and G = Cy = Ko 5.
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Suppose, without loss of generality, that H; NY = and H, N X = (. If there exist uy,v1 € Hy and ug, vy € Hy

such that uyv, ¢ E(G) and ugve ¢ E(G), then

2n < d(ur) +d(v1) + d(ug) + d(ve)

IN

2(|Hi| —24+2)+2(|Ha2| —2+2)

IN

2(|Hy| + |Hal),

a contradiction. So, without loss of generality, we assume H is a clique.
Since Hs is clique and with the cycle C,, define above, it is easy to get all C,,,, n —ny +2 < m < n. Let
P = xox129%3 - -+ T, Ty 41, With g = w’ and z,,, 11 = w”, be a hamiltonian path of G(H; U {w’, w"}). We first prove

the followings:

Fact 2.2.2 Eijther G(H, U {w',w"}) contains a path P* connecting w’ and w" such that|P*| =ny + 1, orny, =1 and

foranyi, 1 <i<nj —2,suchthatz;z;1 2 ¢ E(G) and o2, 22,41 € E(G).

Proof. Forsomei, 1 <i <nj—2,if z;z,40 € E(GQ), then put P* = w'xixy - ;7 2@i13 - - - p, w”. Suppose for
any i, 1 <i<mng —2 x;zi+2 ¢ E(G). Ifthereisa j, 0 < j <i—2,suchthat z;z; € E(G) and z;11zi+2 € E(G),
then pUt P* = xqxq--- TjTiTi—1 "  Tj41Ti42Ti+3 "  Tpq Tpq41- It follows that P[l‘o, l‘i—l] N N(l‘i)+ N N($i+2) = 0. By

Lemma[2.7.4]

dplzg,zi1](Ti) + dplog .z, 1) (Tiv2) < [Plro,zio1]] +1
and the equality implies zgz;42 € E(G). Similarly, we have
APlziis.en, 41)(Ti) T AP0, ) (@iv2) < |P[Tits, Tpy ]l +1
and the equality implies z;z,,+1 € E(G). Thus, we obtain that
n < dg(;) + da(ziv2) < |Plro, zi]| + 14 [Plivs, @ny ]| + 1+ 2{zipa } = n1 + 3,

which implies that no = 1 and the equality implies zox; 2, z;x,,+1 € E(G). The Fact is proved. [

Whenthereisay € HoNN (w')NN(w”), we have a cycle yw’ Pw’y of length n;+3. When HoNN (w')NN (w”) = 0,
we get y; € Ho N N(w') and yo € Hy N N(w”) such that 4192 € E(G). And by Fact and since |Hs| > 2, we
have a path P* in G — H, connecting w’ and w” such that | P*| = ny + 1. It follows that y;w’ P*w”y2y, is a cycle of

length ny + 3. Therefore, we have obtained all cycles C,,,, n1 +3 < m < n.

To prove that G contains a C,,, 12, We suppose first that there isa y € H, N N(w') N N(w”). If G(H, U {w',w"})
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contains a path P* connecting v’ and w” such that |P*| = ny + 1, then the cycle yw'P*w"y is of length nq + 2. If
no such path exists, by Fact|2.2.2] w'z; 0, z;w"” € E(G) forany i, 1 < i < n; — 2. It follows that w'z3, w”z2 € E(G)

when n; > 4. It gives a cycle w'zsxy - - -, w”xoz1w" Of length ny + 2.
We may directly deduce that when n; < 3, either there is C),, 12 or G = K5 of G = K33 — {e}.

Suppose that H, N N(w’) N N(w”) = (. Clearly we have a cycle of length n; + 2 if w'w” € E(G). We assume
ww” ¢ E(GQ). fw',w" €Y (orw',w” € X), since dg(w') + da(w”) > n, dg, (W) + da, (w”) > ni + 2. By Lemma
[2.1.4 and with the path P define above, it exists an i, 1 < 1 < n; —1 such that w'z;;1, w"z; € E(G). Hence, we have
acycle wz;11xiyo - xp,w"xwi—q - - - zqw’ with length ny + 2. without loss of generality, we consider the case that
weXandw” €Y .PutG) = G(HU{w' ,w"}) with X; = V(H;)U{w'} and Y1 = {w”}. If N(w')NH; = {2}, then
forany 2/ € V(H;) — {z}, n < d(w')+d(z") < ni +nga+ 1, acontradiction. So |N(w')NHy| > 2. If [N(w")NH;y| > 2,
we can see that G, is 2-connected, and it satisfies that condition of the theorem with a smaller order.

So, G; has a cycle of length ny + 2. If N(w”) N Hy = {«}, then {w’, x} is a 2-cut. By the above argument, we

may have that G(H, U {w"}) is a clique in Y and hence H, N N(w') N N(w") # 0, a contradiction.
Therefore, we obtain a cycle C,,, 12 in G.
We will show the existence of C,, 3 <m <ny +10rG = K,,j3.,/2 0 G = K,/ /2 — {e}.

When |N(w') N Hy| > 2, we define G2 = G(H; U {w'}) with Xy = V(H;) and Y> = {w’'}. If 2/ and 2" are

nonadjacent vertices in X,

dG2 (1‘/) + dGQ(IN) Z dg(xl) —1 + dg(.r”) -1 Z n—2 Z |V(G2)|,

which implies that G is 2-connected. Since |V (G2)| < V(G)|, by the minimality assumption, G5 is pancyclic or
G2 = K(n,+1)/2,(n1+1)/2 OF G2 = K, +1)/2,(n,+1)/2 — 1€} In the last two cases, for any pair of nonadjacent vertices
2 and 2" in Go — {w'}, dg, (¢') + dg, (") <ny+1and hence n < dg(a’) +dg(2”) < ny +3. It follows that |H>| =1,
ny is odd and 2’'w”,z"w” € E(G). When ny > 5, V(H;) C N(w"). It is easy to see now that G(H; U {w',w"})

contains all cycles C,,, for 3 < m < n; + 2. When n; = 3, we deduce that G = K3 3 — {e}.

Without loss of generality, we assume that N(w') N H; = {2’} and N(w") N Hy = {z"}. If w'w” € E(G), let
G1 = G(H, U {w',w"}) with X; = V(H;) and Y7 = {w’,w"}. It is easy to verify that G; satisfies the condition of
the theorem and |G1| < |G/|. By the minimality assumption of G, we have G is pancyclic or G1 = K, 12)/2,(n,+2)/2
or Go = K, 42y/2,(ni42)2 — 1e}. If 1 = 2, by degree sum condition, then G is pancyclic. If n; > 3, from
da,(w') = dg, (w") = 1, we get that G; is pancyclic and hence G has all cycles C,,, for 3 < m < ny + 2. So we

assume that w'w” ¢ E(G).

Clearly {z/,2"} is a 2-cuts of G. By the above argument, either H, U {w’,w"”} C Y is a clique (which is not

possible because w'w” ¢ E(G)) or Hy — {z’, 2"} C X is a clique. If there are two nonadjacent vertices =, and z;, in
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X, we obtain

2n < dg(zq) + dg(xp) + dg(w') + dg(w”) < 2(ny — 1) + 2(ne + 1) = 2(|G| — 2),

a contradiction. So H; is a clique and there are all cycles ¢, for 3 < m < n;. Since

ni+ne+2=n<dgw)+dew") <2+ny+|HyNN(w') N Nw"),

it follows that |Hy N [N (w’) N N(w)| > ny. Clearly there is a cycle C,,, 11 in G.

Claim is proved. O

2.2.2 Constructing the desired hamiltonian cycle

By Claim we assume that G is 3-connected. If both G[X] and G[Y] are cliques, clearly G is pancyclic or

G = K3 . It follows that we may assume that there exists a pair of nonadjacent z; and x5 in X or Y.

Let P = vyvous - - - v, be a path in G such that
(1) viv, ¢ E(G) and vy, v, € X Or v1,v, € Y, 88y 1,0, € X;

(2) subject to (1), p is as large as possible.

When V(P) = V(G), by Theorem G is pancyclic. So there is a vertex w® € V(G) — V(P). Since G is
3-connected, there are three internal disjoint paths P*[w®, v4], P?[w°,v;] and P3[w®, v,,] connecting w® and three
distinct vertices {vg, v, v} C V(P) with d < I < m. It follows that w°,vai1(= v]),vit1(= v;7) are pairwisely
nonadjacent (otherwise there would be a path longer than P that connects v; and v, a contradiction). Then two of

the three vertices w°, vay1(= v] ), viy1(= v;") should be in the same part of X and Y.

If these two vertices are w° and vy, 1,

put Py [vy,w’] = Pluy, vd]ﬁ(vd, w'] = vyvg -+ vdﬁ(vd, w'] and Py = Plvgsi1,vp] = Vat1Vat2 - Up;
If these two vertices are w° and v, 1,
put Py [vy,w’] = Plvy, vl]ﬁ(vl, w?) = vyvg -+ vlﬁ(vh w'] and Py = Pluj1,vp] = U414 - - - Up;
If these two vertices are vgy 1 and vy, 1,
put Pi[v1, vg1] = vive - - 'vdﬁ(vd»wo] P2(w®, v))vvi—1 - vg41 and Py = vy 1042 - “ Up.
In all the above cases, these two paths P, and P, satisfy |P;|+|P2| > p+ 1, one endpoint of P; and one endpoint
of P, are not adjacent and both belong to X, the other endpoint of P, and the other endpoint of P, are not adjacent

and both belong to X or Y. We assume that Q' = ujusug---uq and Q" = ugi1uqg42 - - - u, are two disjoint paths

such that ¢ (t > p + 1) is maximum, subject to uy, u; € X, ug, ug+1 € X O ug, ugr1 € Y and uyuy, uqug41 ¢ E(G).
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If there exists a vertex w* € (G — (Q" U Q")) N N(uq) N N(ug41), then there is a new path P* := Q'w*Q" =
ULl - - - UgW U1 U2 - - - uy WhiCh contradicts the maximality of P. So (G — (Q' U Q")) N N(uy) N N(ug1) = 0.
Similarly (G — (Q"U Q")) N N (uy) N N(us) = 0.

Forany i, 2 <i < ¢q—1, if ujus, uir1ur € E(G), then Q = ugqug_1 -+ Ujp1u1uaus « - - UUplp—1 - - - Ugt1 IS & NEW
path. Since u,, u4+1 are nonadjacent and both belong to X or Y and ¢t > p + 1, @ contradicts with the choice of P.

So Ng/(u1)™ N Ngr(ug) = 0. Similarly, Now (ug)™ N N (ur) = 0. It follows that

n < dg(u1) + dg(u)
<G =V(QUQ") 4 dg—fuyy(u1) + dgr—fu, 3 (ue)
+ dor— fuyy (1) + dgr— 4,y (ur)
<IG=V(QUQ| +1Q — {ur}] +1+1]Q" — {us}| +1

<n—t+t=n. (2.2)

It implies that sz_{ul}(ul) + dQ/_{ul}(ut) =1Q" —{u1}|+1and dQn_{ut}(’UJl) + dQ”—{ut}(Ut) =|Q" — {u}| + 1.
Therefore Q' — {u1}, Q" — {u:}, u1 and u, satisfy Lemma So ujug1,uque € E(G). Hence, we have a cycle

C = ujug -+ UgUtUp—1 -+ Ug1U1-

Now, we constructed a hamiltonian cycle C. Next, we will give the properties of the hamiltonian cycle C.
Claim 2.2.3 N¢(u1) C V(C), Ng(ur) € V(C), Na(ug) € V(C) and Ng(ug+1) € V(C).

Proof. Suppose that there is w € Ng(u1) — V(C). It follows that w € Y since otherwise when wu; € E(G), the
path ugug—1 - - - urwugue—1 - - - ug41, contradicts with the choice of P, and when wu; ¢ E(G), w,u; € X, the two paths
wQ'[u1, uq) = wuiug - - - ug @and Q" contradict with the property of @’ and Q".

Since G is 3-connected, there are two internal disjoint paths Fi[w,w;] and Filw, ;] between w and w;,u; €
V(C)—{u1}. Ifu; = wy, then a path ugug—1 - - - wrwFy (w, ug)ugu—1 - - - ug41 contradicts the choice of P. So i # t and
J#t

Similarly, we may show that at least one of u; and u;, say u;, ¢ {uq,uq+1}. Hence, we may assume u; ¢
{u1,ug, ug, ugt1}. If ug = uy, we put Q) = ugwkFy (w, ug)ugus - - - u, and QF = Q”, which contradict the definitions of
Q" and Q". So uy # u; and us # uj, in particular, wu, ¢ E(G).

If uy € Y, then a path uaus - - - ugupup—1 - - - ugr1urw contradicts the maximality of P. So u, € X. Suppose

g+2<i<t—1 lfwu,—1 € E(G) (resp. uyu;—2 € E(G) whent—1>i > g+ 3), then

Ug1Ug2 * - Ui 2Ui— 1 UgUp—1 - - - U F (wg, w)wug ug - - - uyg

(resp. Ug1Ugra - - Ui—3Ui—oUrthp—1 - - - U (U, w)wugug - - - ug)
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is a path of length at least ¢t > p, a contradiction. Hence, w;u;,—1 ¢ E(G)whent —1>i > ¢+ 2 and u,u;—2 ¢ E(G)
whent—1>i>qg+ 3.

By and Lemma[2.1.4|(3), uiu; € E(G)whent —1>i>g+2and uju;—1 € E(G)whent—1>i>q+3.
From uiuq11 € E(G), i # q + 1,q + 2. Therefore, we always obtain uiu,—1 € E(G).

If uou, € E(G), then there is a path ugyiugya - - 1w WF (W, u;)u;uis - - - wugus - - - ug4+1 Whose length is at
least t + 1 > p, a contradiction.

If uouy ¢ E(G), two paths ugug - - - ug and ug41ugta - - - wi—1uiwF (w, u;)uzui4q - - - ue, contradict with the choice of
Q' and Q".

Thus, we may assume u; € Q' (3 <i < q—1).
If wu; 11 € E(G) (resp. usu;+1 € E(G)), two paths
U U F (U, W)W g1 Uige -+ ug(respawF (W, w)uiti—1 « + - Ul 1 Uisa -+ - Uq)

and Q" contradict the choice of Q" and Q”. So wu;+1 ¢ E(G) and ugu;+1 ¢ E(G). It follows that a path

Q = WF(w, w;)Uithi—1 - - UUgg1Ugt2 * - - UpUgUg—1 - - Uip1 1T Ujp1 €Y or

Q = ugusz - - U F (U, W) WU UG 1 Ug g2+ - UpUgUg—1 -+ - U1 If Uj1 € X

contradicts the maximality of P.
Thus, Ng(u1) C V(C). Similarly, Ng(u;) C V(C), Na(uq) € V(C) and Ng(uq+1) C V(O).

The proof of Claim is completed. I

Claim 2.2.4 C is a hamiltonian cycle of G.

Proof. In (2.2), by Claim[2.2.3] we have

n < dg(ur) +da(ug)

IN

A/ —fury (ur) + dgr—fuyy (us)
+dQ”—{ut} (Ul) + dQ”—{ut} (Ut)

|Q — {ui}|+ 14+ |Q" — {u}| +1 < ¢,

IN

which implies ¢ = n and hence C is a hamiltonian cycle. [
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2.2.3 The rest of the proof of Theorem [2.0.3]

C is a hamiltonian cycle, in which «; and w4+, are consecutive and u, and u; are consecutive. Since dg(u1) +
da(ue) +da(ug) +da(ug+1) > 2n, we have either dg(u1) + dg(ug+1) > nordg(uy) +da(ug) > n. By Theorem|2.1.1]

G is either pancyclic or bipartite or missing only an (n — 1)-cycle.
Case 1 G is bipartite.

Let A and B be the bipartitions of G. Without loss of generality, we assume |A| > |B|. If |[A] = 2, G = K. If
|A] > 3, every pair of vertices in X N A (resp., Y N A) have degree sum at most 2| B|. Hence, they must be adjacent
to all vertices of B and |A| = |B| = 2.

2

By Lemma[2.1.3] it follows that G = K, /3 /2 OF G = Ky /5072 — {€}.
Case 2 G is missing only an (n — 1)-cycle.

If do(u1) +da(ug+1) > n+1, from the proof of Theorem|2.0.4, G is pancyclic. So we assume dg(u1)+da(ug+1) =n
and similarly dg(u:) + da(uq) = n.

If uius € E(G), then there is a (n — 1)-cycle: ujusuy - - uguitiy—1 - - - ugr1u1, @ contradiction. So ujus ¢ E(G)
and from Lemma|2.1.4} usu; € E(G).

Without loss of generality, assume ¢ > ¢ —¢. When ¢ = 2 and t = 4, clearly G = K;,. When ¢ = 3,
UTULUUp—1 - - Ug1U1 §S A (n — 1)-cycle. When ¢ = 4, by Theorem 2.1.1} u,u,+1 € E(G) which is a contradiction.
So we assume that ¢ > 5. Similarly, we may assume thatt — ¢ > 5.

From Theorem[2.1.1] we obtain d(uz) < n/2, d(us) < n/2, d(ug+2) < n/2, d(ug+s) < n/2 and
UgUgt2, U2lgts, Uslgta, Ustgrs ¢ E(G). It follows that uqs,us belong to one of X and Y, say X, and wug42, ugts
belongto Y.

Similarly, d(ug—1), d(ug—2), d(ui—1), d(ui—2) < n/2, ug_1,uq—2 belong to one of X and ¥ and w;_1, u;—» belong
to the other one of X and Y. If uou;—1 € E(G), we get a (n — 1)-cycle: ujuqus - - - uquioy—1Us—g - - - Ugy1U1, @
contradiction. Thus wsu,—1 ¢ E(G), which implies u;_1,u—2 € Y and hence uy_1,uq—2 € X. We have u, €
N(ug—1) N N(ug—2). The (n — 1)-cycle C,_1 = wiuaus - - - Ug—oUolq—1UqUsUs—1 - - - Ug+1U1 IS @ CONtradiction.

The proof of Theorem[2.0.3|is complete. O

2.3 Open problems

In 1960, Ore [109] showed that if the degree sum of any pair of nonadjacent vertices is at least n in a graph G of

order n, then G is hamiltonian (Theorem [1.2.2). Bondy proved that under the same condition, G is pancyclic or
G = K, )2,n/2 (Theorem .
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In this chapter, we prove that if G = (V, E) is a 2-connected graph of order n with V(G) = X UY such that for
any pair of nonadjacent vertices x; and =5 in X, d(z1) + d(z2) > n and for any pair of nonadjacent vertices y; and
Y2 INY, d(y1) + d(y2) > n, then G is pancyclic or G = K, 3 /2 OF G = K, /2 5,72 — {€}.

Note that the main result of this chapter is to prove that the conjecture[2.0.2]is true for k = 2. For all other cases
(k > 3) of Conjecture [2.0.2] we haven't given proof. In the next chapter (Chapter [3), we will prove that Conjecture
is true for k = 3.

We try to prove Conjecture [1.3.12)with k£ > 4, but unfortunately, we did not succeed yet. This will be one of our
further works.

For Conjecture it is natural to generalize them into degree and neighborhood conditions on more inde-

pendent vertices. Therefore, this is our other further work.
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Chapter 3

Pancyclicity in 3-connected graphs

In this chapter, we give the proof of Conjecture [1.3.12|for graphs of k£ = 3. It is kind of a continuation of the work in
Chapter[2] To facilitate reading, we reiterate Conjecture[1.3.12 here.

Conjecture 3.0.1 Let G = (V, E) be a k-connected graph, k > 2, of order n. Suppose that V (G) = U¥_, X; such
that foreachi,i =1,2,...,k, and for any pair of nonadjacent vertices z,y € X;, d(xz)+d(y) > n. Then G is pancyclic

or G is a bipartite graph.
The main result of this chapter is to prove that the above conjecture is true for k = 3.

Theorem 3.0.2 Let G = (V, E) be a 3-connected graph of order n and V(G) = X1 U Xy U X3. For any pair of

nonadjacent vertices v; and v, in X;, d(v1) +d(ve) > n withi = 1,2,3. Then G is pancyclic or G is a bipartite graph.

3.1 Introduction

In Chapter 2| we gave proof of Conjecture[1.3.12]for a 2-connected graph, i.e., k = 2 in Conjecture [1.3.12

Theorem 3.1.1 (Theorem 2.0.3) Let G = (V, E) be a 2-connected graph of order n and V(G) = X UY. If for any
pair of nonadjacent vertices x1 and x5 in X, d(x1) + d(x2) > n and for any pair of nonadjacent vertices y, and ys in

Y, d(y1) + d(y2) > n. Then G is pancyclic or G = K, /3,72 0r G = Ky, /2 /2 — {e}.

Here we will prove that Conjecture|1.3.12]is true for k¥ = 3 by showing Theorem|[3.0.2

The main idea and the main tools of the proof of Theorem and Theorem are similar, but there are
also some differences. To make this chapter complete, we will give the whole proof of Theorem We will follow
all notations, such as hamiltonian (u, v)-path, the predecessor and the successor of a vertex, S-cyclable etc., as in

Chapter 2]
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3.1.1 Well-known results

In our proof of Theorem(3.0.2, we will use some well-known results.

Theorem 3.1.2 (Theorem [2.1.2) Let G be a graph of order n. If G has a hamiltonian (u,v)-path for a pair of
nonadjacent vertices u and v such that d(u) + d(v) > n, then G is pancyclic. Moreover, if u (or v) has degree at least

5, It is contained in a triangle and for any m, 4 < m < n, there exists some C,, in G that contains both v and v.

Theorem 3.1.3 ([47]) LetC = x125 - - - x,21 be a hamiltonian cycle in a graph G. If d(x1) + d(z,) > n+ 1, then G

is pancyclic.

Theorem 3.1.4 ([117]) /fG is a hamiltonian graph of ordern with hamiltonian cycle x1, s, ..., x,,, x1 such thatd(z1)+
d(z,,) > n, then G is either pancyclic or bipartite or missing only an (n — 1)-cycle. Moreover, if G is missing only
an (n — 1)-cycle, then d(x,,—2),d(zn_1),d(z2),d(xz3) < n/2, and G has one of two possible adjacency structures
near x1 and x,,. In the first structure, vertices x,_s,x,_1,%n, 21, T2, 3 are independent except for edges of C, and
TnTn—3, TnTn_4, 124, 2125 € E(G). The second structure (which can occur only if d(z1) < d(z,,)) is identical to the

first except that x,,x3 € G and z1z5 ¢ G.

3.1.2 Outline of the proof

In our proof for Theorem [3.0.2, we will use Menger’s Theorem (see section [6.1]in Chapter|6).
In Theorem[3.0.2 let V(G) = X; U X2 U X3. We first consider the situation for each ¢, i = 1,2, 3, G[X;] is a clique
(Lemma(3.2.2).

Next, we can find a path P. There is a vertex w® € V(G) — V(P), and there are (at least) three internal disjoint
paths Pw® vg,], P?[w®, vg,], and P3[w", va,] connecting w® and three distinct vertices {vy, , va,,va, } € V(P) with
dy < dp < ds. Then we talk about it in two cases: non-extremal case (vq, # v1 OF vg, # vp) and extremal case

(vg, = v1 @nd vg, = vp).

In section 3.3} we will talk about non-extremal case. First, we show the existence of a cycle
C = ujug - - ugupuy—1 - - - Ugp1ug. Such that |C| > |P| + 1 and |C| # n. So, there exists a vertex w € V(G — C).
And there are three disjoint paths P{[w,w;, ], Pjlw,wu;,] and Pjlw,u;,] between w and w;,,u,,w, € V(C). With
that, according to the relationship between {u;, , u;,, w;, } and {u1, us, ug, ugt1}, it is proved that G is pancyclic or a

bipartite graph in this non-extremal case.

Let the component where w° is located be H. In section let’s first show some properties of H. In the end,

we have proved Theorem with the extremal case based on the number of vertices in H.
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3.2 Some lemmas

Some lemmas in our proof are the same as in Chapter[2] We will give these lemmas without proof here.

Lemma 3.2.1 (Lemma[2.1.4) Let P = ujuous---u, be a path in G and x,y € V(G) — V(P) such that (Np(z) —
{u1})" N Np(y) =0. Thendp(xz) +dp(y) <p+1andifdp(z) +dp(y) =p+1,
(1) V(P) = (Np(x) —{us})” UNp(y),
(2) zu1,yu, € E(G);
(3) If u; ¢ Np(z) for some i,2 < i < p, thenu,_, € Np(y), and ifu; ¢ Np(y) for some j,1 < j < p—1, then
uj1 € Np();
(4) Ifu;,u; ¢ Np(x) UNp(y) with2 <i < j <p—1 such that
{twit1,Uit2,...,uj—1} € Np(z) U Np(y), then there exists exactone k, i+ 1 < k < j — 1, such that
{ui+17ui+27 e auk:} g NP(.%') and {uka Uk+1,y-- - 7uj—1} g NP(y)a
(5) If Np(x) does not contain consecutive vertices on P and Np(y) does not contain consecutive vertices on P,
then p is odd and Np(z) = Np(y) = {u1, us, us, ..., up—2,Up}.
If V(G) = X; UX,U X3 and for each i, i = 1,2, 3, G[X,] is a clique, we have the following lemma:
Lemma 3.2.2 Let G = (V, E) be a 3-connected graph of ordern andV (G) = X1 UX, U X3. Ifforeachi,i=1,2,3,

G[X;] is aclique. Then G = K3 3 or G is pancyclic.

Proof of Theorem [3.2.2 Suppose, on the contrary, that G is not pancyclic. By Theorem[2.0.7] G is hamiltonian.

Suppose there exists i € {1,2,3} such that |X;| = 1. Since G is 3-connected graph, then G[V — X,] is 2-
connected graph. By Theorem|2.0.3) G[V — X;] is pancyclic or isomorphic to K5 ». Since G is a 3-connected graph,

then G is pancyclic. This is a contradiction.

Suppose X; = {u;,v; } for any i, i = 1,2, 3. We obtain the following proposition:
Proposition 3.2.3 N(z) N X; # 0 forany « € {u;,v;} witheachi # j € {1,2,3}.

Proof. Without loss of generality, let N(v;) N X3 = 0. Since G is 3-connected graph, then vyvy,v1us € F and
G[V — X4] is 2-connected graph. So, v;vauqv; is a cycle of length 3, and we have a cycle C of length 4 in G[V — X/ ]
such that usvs € C. Then C" = (C — {uqvs2}) U {viva, v1us} is a cycle of length 5 in G. It follows G is pancyclic from

G is hamiltonian. This is a contradiction. By the symmetry of G[X;], we obtain this proposition. [

By the Proposition[3.2.3] then G|V — X3] is 2-connected graph. It follows that G is pancyclic or G isomorphic to
K3 3 from Theorem and Proposition|3.2.3
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Suppose there exists i € {1,2,3} such that | X;| > 3. We assume e¢; = ujv; € G[X1] and ez = ugvy € G[X5]
such that ujuqs,vivy € E. Let es = ugvs € G[X3] and u,v € G[V — X3] such that usu,vsv € E. Since G[X,] is a
clique for any i € {1,2,3}, foreach k, 1 < k < |X;| — 1, there is a (u;, v;)-path P} in G[X;] of length k. So, we have

cycles of all lengths from 4 to | X; U X5|. Since G is 3-connected, without loss of generality, we assume u, v € X5.

If u ¢ {ua,v2} or v ¢ {ug,v2}, there is (u,v)-paths @ in G[V — Xs] of all lengths from 1 to |X; U X5| — 1.
When |G[X1]| > 3 or |G[X3]| > 4, since G[X;] and G[X,] are cliques, we can find a (u,v)-paths @ such that
[V(Q)] = | X1 UXs| — 1. Then C" = Q U {ugvs,uzu,v3v} is a cycle of length | X; U X5| + 1. Also, we can find a
(u,v)-paths @ such that [V (Q)| = | X1 UXz|, then Ciy = PRUQU{usu, vsv} are cycles of all lengths from | X; U X5|+2
to n. Thus, G is pancyclic, a contradiction.

When |X;| = 2 and |X3| = 3, if | X3| > 3, we choose (u,v)-paths @ such that |V (Q)| = 3,thenC’ = QU P is a
cycle |C’| = 6. And We can find (u, v)-paths @ such that |V (Q)| = |X; U X»|, then Cy» = P? U Q are cycles of all
lengths from 7 to n. Then G is pancyclic, a contradiction. If | X3| = 2, since G is 3-connected, it is easy to construct

G is pancyclic.

If u =wug,v =19 If | X3] >3and |X,| =2, since G[X;] is a clique for any ¢ = 1,2, 3, it is easy to construct cycles
of all lengths from 3 to n in G. Then G is pancyclic. This is a contradiction. So, |X5| = 2 or |[X2| > 3. If | X3| > 3,
since G is 3-connected, there is a vertex w € X5 /{us,v2} such that N(w) N (X3 U X7) # . When N(w) N X3 # 0,
from the same argument with u ¢ {us,v2} Or v ¢ {us, v2}, it follows that G is pancyclic. When N(w) N X; # 0, by
the symmetry between G[X;] and G[X3], G is pancyclic. So |X2| = 2. Also, by the symmetry between G[X;] and
G[X3], then | X;| = | X3| = | X3| = 2. This is a contradiction.

The proof of this lemma is complete. O

Lemma 3.2.4 Let G be a 1-connected graph with the order n and V(G) = X; U X,. Suppose that for any pair of
nonadjacent vertices x1 and x4 in X; withi = 1,2, d(z1) + d(z2) > n. Ifw cuts G into Gy and Gq, then V(G;) C X;

andV(G2) C X; withi # j € {1,2}. Moreover, G, is a clique or G is a clique.

Proof: Suppose that G; N X; # 0 and G2 N X; # 0 with i = 1,2, then

n<d(z)+dy) <|Gi|-14+1+|G2] -1+1<n

for any vertex z € X; N G1 and y € X; N G4, a contradiction. So, V(G1) C X; and V(G2) C X; with i # j € {1,2}.

If there exist uy,v; € V(G1) and ug, vo € V(Gs2) such that uv, ¢ E(G) and usvy ¢ E(G), then

2n < d(up) +d(v1) + d(ug) + d(va) <2(]G1] =2+ 1) + 2(|G2| =2+ 1) < 2n,

a contradiction. Thus, G; is a clique or Gs is a clique. O
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Lemma 3.2.5 Let G be a 2-connected graph with the order n and V(G) = X; U X5. Suppose that for any pair of
nonadjacent vertices x1 and x5 in X; withi = 1,2, d(z1) + d(z2) > n. If {w, w1} cuts G into Gy and G2, G1 N X; #

and Go N X; # 0 withi = 1,2, then G, and G+ are cliques. Moreover, G is pancyclic.

Proof: Forany vertex x € X; NGy andy € X; NGy withi = 1,2, n < d(z) + d(y) < |G1| + |G2| + 2 < n. So,

N(z) =Gy U{w,w;} and N(y) = G2 U{w,w;}. G; and G5 are cliques. Thus, G is pancyclic. O

3.3 Non-extremal case

To the contrary, we suppose that G is not pancyclic graph or a bipartite graph. And |V (G)| is minimum among all
counter example. By Lemma [3.2.2] there exists ¢ € {1,2,3} such that G[X,] is not a clique. Therefore, we may

assume that there exists a pair of nonadjacent vertices in X, for some i € {1,2,3} .

Let P = vyvvs - - - v, be a path in G such that
(1) viv, ¢ E(G) and vy,v, € X;, 1 € {1,2,3};
(2) subject to (1), p is as large as possible.

If V(P) =V(G), by Theorem|2.1.2| G is pancyclic. So, there is a vertex w® € V(G)—V (P). Since G is a 3-connected
graph, there are (at least) three internal disjoint paths P1[w®, vy, ], P3[w®, v4,], and P3[w°, v,,] connecting w® and

three distinct vertices {vq,, v4,,va, } C V(P) with dy < d2 < ds.

We will prove it in two cases: vq, # v1 Of vg, # v, (say Non-extremal case) and vq, = v and vq, = v, (say

extremal case). Let’s start with the non-extremal case.

P PJ
e ° Udj—O—l °
Ul Ud; Vg, 41 Uy V1 Vg 7 v
] p
P P
(a) when wo'Udi+1 € E(G) (b) when Vd;+1Vd;+1 € E(G)

Figure 3.1: A path is longer than P if {w°, v4, +1,v4,+1,va,+1} iS Not independent vertex set

Case 1 vq, # v1 Or v, # vUp.
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3.3.1 The existence of cycle longer than |P| + 1

Without loss of generality, we assume vq, # v,. It follows that w®, va, +1,va,+1,va,+1 are pairwisely nonadjacent
otherwise there would be a path longer than P that connects v, and v, (see Figure , a contradiction. Then two

of these four vertices w°, v4, 11, va,+1,v4,+1 Should be in the same part X; for i € {1,2,3}. Thus,

- if these two vertices are w° and vy, 1 Where i € {1,2,3} (see figure , put Pi[vy, w°] = Pluy,vg, ) Pi(vg,, w°

and P, = Plvg,+1,vp);

- if these two vertices are vq, 1 and vg, 1 (see Figure[3.3), put Pi[v1, va,41] = Plur, va, ] P (va,, w®]PI (w°, va, )

Plvg,,va,+1] and Pyvg, 1 1,v,] = Plva,41,v,], Where 4,5 € {1,2,3}

In all above cases, the two paths P, and P, satisfy |P1| + |P»| > p + 1, one endpoint of P; and one endpoint of P,
are not adjacent and both belong to X;, the other endpoint of P, and the other endpoint of P, are not adjacent and

both belong to X;, where i, 5 € {1,2,3}.

w°
Pi
P V4.
[ 1 Cdl+1 @ [ 4
U1 Ud Py Up U1 U, Ud; Py U
P P

Figure 3.2: w° and vq, 41 are both belong to the same X;  Figure 3.3: v4, 41 and vg, 41 are both belong to the
same X

We assume that Q' = ujugusz---ug and Q" = ugi1ug42 - - - u, are two disjoint paths such that ¢ (t > p+ 1) is

maximum, subject to uq,u; € X;, ug, ugr1 € X; With 4, j € {1,2,3}, and uiuy ¢ E, uqug+1 ¢ E(G).

By the choice of P, then (G — (Q' U Q")) N N(uq) N N(ug+1) = 0, (G — (Q' U Q")) N N(u1) N N(uy) = 0,
Ng(u1)™ N Ner(ug) = 0 and Negr (u)* N N (ur) = 0. It follows from Lemma|[3.2.1]that

n < dg(u1) + dg(ue)
<G =V(QUQ")| +dg—fuyy (ur) + dr—uyy (ur) +dgr—gu,y (wr1) + dgr— fu,y (we)
<IG-V(QUQ"|+1Q — {ur}| +1+[Q" — {u}| +1

<n—t+t=n. (3.1)

ThIS ImplleS that dQ/,{ul}(’Ull) =+ dQ'—{ul}(Ut) = |Q/ — {’U/l}‘ + 1 and dQ//,{ut}(ul) + sz/,{ut}(ut) = |QH — {Ut}| + 1.

By Lemma|3.2.1} ujuqt1,uqus € E(G). Hence, we have a cycle C' := ujug - - - ugsty—1 - - - Ug1Us.
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When |C| = n, C is a hamiltonian cycle, where v, and u,1 are consecutive vertices on C, and u, and u, are
consecutive vertices on C. Since dg(u1) + de(u) + da(ug) + da(ug+1) > 2n, we have either dg(u1) +da(ug1) > n
or dg(ui) + da(uq) > n. Then dg(ur) + dg(ug+1) = n and deg(ug) + da(uq) = n otherwise by Theorem 3.1.3] G is

pancyclic, a contradiction. By Theorem[3.1.4] we assume G is missing only an (n — 1)-cycle.

Then uyug ¢ E(G) otherwise ujusuy - - - ugupup—1 - - - ug+1u1 18 @ (n— 1)-cycle, a contradiction. Similarly ug_su, ¢
E(G), ugt1ugys ¢ E(G) and uyuy—o ¢ E(G). By Lemma [3.2.1] it follows that uou; € E(G), ug—1uq+1 € E(G),
w1 € E(G) and ugugt2 € E(G).

Suppose that u; has two consecutive neighbor u; and w11 in Q'. Then ugusg - - - U Uip1Ui42 - - - Uglgra -+ - Ul
is a (n—1)-cycle, a contradiction. So, u; does not have two consecutive neighbors in Q’. Similarly, u; does not have

two consecutive neighbors in Q" and u,, (resp., uq+1, u:) does not have two consecutive neighbors in Q" and Q"

By Lemma[3.2.7] we deduce that g and ¢ — ¢ are even, and suppose
A1 = Ng/(u1) = Nor(uy) = {ug, ua, ug, - . ., Ug—2, Ug },
Ay = Ngr(u1) = Nor(ug) = {ugs1,Ugt3, -, U—3,us—1 and A = A; U As.
B =V(Q') — A1 = Ng/(ug) = Ng(ugr1) = {ur, us, us, ..., ug—3,ug—1},
By, =V(Q") — Ay = N (ugq) = Nor(Uugs1) = {Ug+2, Ugta, - - -, U—2,u } @and B = By U Bs.

When there are u;,u; € A; such that u,u; € E(G), if j = ¢, then u,_1,u;11 € Ng/(ugq). It contradicts that u, has

no two consecutive neighbors in Q’. So, we have j < ¢ — 2. Then u;41,uj4+1 € Ng/(uq), and

UU3 - UUjUj—1 = Ui 1 UqUj1Uj42 * * * Ug—1Ug+1Ug+2 * * * UtU2

is a (n — 1)-cycle, a contradiction.
When there are u; € A, and u; € A, such that u,u; € E(G), then u;_1 € Ng/(uq), uj+1 € Nov(ug1). It follows
that

UU3Z * * * Uj—1UqUg—1 = UgUjUj—1 - Ugp1Ujp1Uj42 * - UgU2

is a (n — 1)-cycle, a contradiction. Thus, similarly, A and B are independent sets, independently. Hence, G a is a
bipartite graph.

When |C| # n, there exists a vertex w € V(G — C). Since G is a 3-connected graph, there are three internal
disjoint paths Pj[w,u,], Pslw,w;,] and Pi[w,u;,] between w and wy, , u;,,u;, € V(C). By the maximality of P, then
there does not exist two vertices uy,, ui; € {w,, ur,,u, } such that uy, = uy,uy, = us OF wy, = ug, uy; = Ugy1-

Thus, we have two cases: at most one vertex in {u;,, u,, w, } belong to {u1, us, ug, ugt1}. And there exists only

two vertices of {uw;, , u,,u, } belong to {u1, us, ug, ugr1}. First, we analyze the first case.
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3.3.2 At most one vertex in {u;,, u;,,w,} belong to {u, u:, ug, ug1}

Without loss of generality, it follows that w, ui, +1(= u;'), w1, 11 (= ), w, +1(= ;) are pairwisely nonadjacent since
otherwise there would be two paths which contradict with the choice of Q’ and Q” (see Figures[3.4/and[3.5]). Then

two of four vertices w, u;, 41, ui,+1, ui,+1 Should be in the same parity X; with i € {1, 2, 3}.

wull+1 € E(Q) (b) Ul +1U5+1 € E(G)

Figure 3.4: w, uy, +1(= u;), w11 (= w)), wi,+1(= u;)) are pairwisely nonadjacent with u;, € Q'

Uy

Uy Uy Ug+1

Uly+1
(@) wury +1 € B(G) (©) w1141 € B(G)

Figure 3.5: w, uy, 4+1(= u;), wi,11(= ), w, +1(= ;) are pairwisely nonadjacent with u;, € Q”

If these two vertices are w and wu;, 1 where i € {1,2,3} (see Figure [3.6(a)), put Q1 = Q'[uy,u,] P! (u,,w], Q2 =
Q'[ur;41,uq) and Q3 = Q"; or put Q1 = Q" [ug 1, i, }F(Ul” w)], Q2 = Q" [uy, 11,u) and Q3 = Q'.

If these two vertices are wu;, 11 and u;, .1, where u;, 1 and u;, 1 in the same path Q'( Q") (see Figure 3.6(b)), put

Q1 = Q'[ux, i, 1P (uy,, w] Pj(w, g, ) Q'[ur, , ug,11], Q2 = Q'[ug, 41, ug) and Qs = Q"

or pUt Ql = Q//[uq+1; Ul ]P (ul ) ]Pj(w) ulj)Q//[ulj7uli+1]l QQ = Q//[ulj+laut] and Q?) = Q/'
If these two vertices are u;, 11 € Q" and u;; 1 € Q" (see Figure (3.6(c)), put
Q1 = Q'[ux, g, 1P (uy,, w] P (w, g, ]Q (u, , tgia], Q2 = Q'[ur,41,uq) and Qs = Q" [ug, 11, ue).-

In all above cases, three paths @, Q2 and Qs satisfy |Q1] + |Q2] + |Q3| > t + 1, one endpoint of ; and one

endpoint of @) are not adjacent and both belong to X, the other endpoint of @; and the endpoint of Q)3 are not
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adjacent and both belong to X; and the other endpoint of > and the other endpoint of Q5 are not adjacent and
both belong to X, with ¢, j, k € {1,2.3}.

We assume that S; = wiwaws - - wgq, S2 = Wer1Wqet2---wy @and Sz = wyy1wiyo - - - wy are three disjoint paths
suchthat#' (¢ > t+1) is maximum, subjectto wy, wy € X1, wq, wey1 € Xo, wy, wi+1 € Xz and wiwy , WeWqt1, WwWi41 ¢
E(G).

By the choice of Q" and Q”, (G — (S1US2US3)) NN (wq) NN (wgt1) = 0, (G—(S1US2US3)) NN (wi) NN (wy) =0
and (G — (S1 U Sy U S3)) N N(wy) N N(wp1) = 0.

(a) these two vertices are w and u;; +1 (b) these two vertices are u;+1 and (c) these two vertices are w;, ., € Q'
U 41 n Ql) and UL, +1 eqQ”

Figure 3.6: Two of four vertices w, u;, 1, ui,+1,u,+1 Should be in the same parity X; with i € {1,2,3}

Suppose 2 < i < g — 1. If wywgi1,wi—1w, € E, two paths Si[wr, w;—1]wyS1(wy, wilwy+1S2 and Sz, which
contradict the choice of Q' and Q”. So, by Lemma [3.2.1] then dg, (wg) + ds, (wgt1) < [S1]. Similarly, ds, (w,) +
ds, (wg+1) < |S2| and dg, (wq) + ds, (we+1) < |S3| + 1. It follows that:

n < dG(wq) + dG(qurl)
< |G = V(S1US2US3)| +ds, (wy) + ds, (wgt1) + ds, (wy)

+ dSz (wq+1) + ng (wq) + d53 (wq+1) <n+1 (32)

Suppose that d(w,) + d(ws+1) = n + 1, it implies that ds, (w,) + ds, (wgt1) = |S1], ds,(wg) + ds, (we+1) =
|S2| and dg,(wy) + ds, (wg+1) = |Ss] + 1. By Lemma [3.2.1} w,w;, € E and wyyiwi41 € E. Hence, path P/ =
S [wr, welwySa (wy, wet1)wi+1S5 (w1, wy ] contradicts the choice of P. So d(w,) + d(wg+1) = n.

If ds,(wq) + ds;(wgs1) = [S3| + 1, then dg, (wg) + ds, (wgt1) = [S1| O ds, (wq) + ds, (wgt1) = |S2. We as-
sume dg, (wq) + dg, (wg+1) = [S1]. It follows that wywgi1, wewy € E from Lemma Then there is a path

So[wi, wei1]w1 St (w1, wy|wy Ss(wy, wi+1] Which contradicts the choice of P. Thus, ds, (w,) + ds, (wg+1) < |Ss)-
It follows that dg, (wq) + ds, (wet1) = |S1] and dg, (wy) + ds, (we+1) = |S2|. By Lemma[3.2.1) wiwg41, wew; € E.

The same argument with wg, w41, it follows that dg, (w1) + ds, (wy) = |S1| and dgs, (w1) + ds,(wy) = |Ss].
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When dsl (wl) + dS1 (wt/) = |Sl‘, by Lemma , WqWy € E. Then path E[wl,wq+1]w151 (wl,wq]wt/g(wt/, W41

contradicts the choice of P. So, G is pancyclic or a bipartite graph.

3.3.3 There exists only two vertices of {u;,, u,, w,} in {uy, us, ug, ugi1}
Without loss of generality, we assume u;, = u1, then there are four subcases:
Subcase 1.1 u;, = u, and v, € Q'.

It follows that w, ua, w11, uq+1 are pairwisely nonadjacent by the choice of @', Q" and P. Then two of these four

vertices w, ug, vi, 41, vg+1 Should be in the same parity X, for some ¢ € {1,2,3}. Let j € {2, + 1},

P j=2
pl=¢ (3.3)
Py j=ly+1.

By the choice of Q' and Q", wu; ¢ E and uqu;,+1 ¢ E. By the maximality of P, then w,u,11 ¢ E and wuy11 ¢ E.

If wu; € E, then two paths Q'[u1, uj_1]P!{u;—1, wlu; Q' (u;, us] and Q" contradict with the choice of Q" and Q”. If

ujugy1 € E, then there is a path Q'[uy, uj—1]P{u;j—1, w] P{(w, ug| Q' [ug, u;lug+1Q" (ug+1, us) whose length is at least
t +1 > |P|, a contradiction. If wu,y; € E, then there is a path Q'[us, uy|Pj(uq, w]tg+1Q" (ug+1,u] longer than
P. If ugu;,41 € E, two paths Pj[uy, w]Py(w,u,]Q (u,, us]ur, +1Q’ (ui,+1,u,] and Q" contradict with the choice of

Q" and Q". If w,u; € X;, there is a (w, u;)-path C' — {u;_1u;} U P.[w,u;_1] which contradicts the choice of P. If

% Uqg+1

Figure 3.7: When v, = u, and u;, € Q’

uj, ug+1 € X;, then two paths Q'[uq, uj—1]Pluj—1, w]Pjlw, uy]Q’ (us, u;] and Q" contradict the choice of Q" and Q”.

If w,u.41 € X5, then two paths Q'[uq, u,4] Pilug, w] @and Q" contradict the choice of Q' and Q”. If w41, us € X;, then

there is a (ug, ui,+1)-path C — {u,u,+1,u1us} U P U PS which contradicts the choice of P.
Subcase 1.2 u;, = u, andu;, € Q" — {ugs1, ui}.

It follows that w,us, u;,—1,uq—1 are pairwisely nonadjacent. And two of these four vertices w, u;, ui,—1,uq—1

should be in the same parity X, for some i € {1, 2, 3}.
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The proof of Subcase [1.2)is similar to the proof of Subcase [T.1] If w,u; € X; or ug_1,u; € X; or uy,u,—1 € X,

Figure 3.8: When u;, = u, and wy, € Q" — {ug41,ut}

then there are two paths longer than @’ and @”, a contradiction. If w,u;,_1 € X; or w,u,—1 € X, there is a
(w, uj)-path C/{uju;q1} U Pllw,u;41] longer than P, where j € {l3 —1,¢ — 1} and
P3/ ] = l3 - 17

P = (3.4)
Py j=q-1

This is a contradiction. If u,_1,u;,—1 € X;, there are two paths wu,u:Q" (u, ;] P4 (uiy, w] P{[w, u1]Q’ (u1,u,—1] and

Q" [wi,—1,uq+1] longer than Q' and Q”, a contradiction.
Subcase 1.3 u;, = ug+1, w, € Q' — {u1,uq}-

It follows that w, ua, ui,+1, uq42 are pairwisely nonadjacent by the choice of Q" and Q.
If wus € E Of ugqow € E Of wuy,41 € E Or uguy,41 € E, then there are two paths which contradict with the
choice of @’ and Q". If uyu,.» € E, there are two paths P][uy, w]Pj(w, ug41] and Q' [uy, us]ug2Q" (ugt2, us] which

contradict with the choice of Q" and Q”. If w,11uq2 € E, there are two paths Q'[uq, uy,| Py, , w] Pi(w, ugt1]

and Q'[ug, Ui, +1]ug+2Q" (ug+2, ut] Which contradict with the choice of @’ and Q”. Then two of these four vertices

Ut Q” Ug4-2

Figure 3.9: When w;, = ugq1, w, € Q" — {u1,uq}

w, Uz, U, 41, Ug+2 Should be in the same parity X;, for some i € {1, 2, 3}.
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If w,us € X; O ugyo, w € X; Or w,ug, 41 € X5, there is (w, u;)-path C — {u;_1u;} U P/[w,u;_1] which contradicts

the choice of P, where j € {2,1s + 1,q + 2},

P =2,
Pl=% P,  j=l+1, (3.5)
P,  j=q+2.

If ug, wi, 1 € X, thereis (ug, u,+1)-path C—{uyug, ur, 41, ur, }UP] [w, uy]UPS[w, u,] which contradicts the choice
of P. If ug,u,12 € X;, there are three paths Q; = P [u1, w]Pi[w, ugi1], Q2 = Q'[uz, uy) and Q3 = Q" uy, ug 2], by
Section , a contradiction. If uj,41,u,42 € X;, there are three paths Q1 = Q'[u1, w,| Py (ur,, w) P (w, ugs1],
Q2 = Q'[ut,+1,uq] and Q3 = Q" [uy, uq+2). It follows that G is pancyclic from Sectionm

Subcase 1.4 u;, = ugi1, w, € Q" — {ugy1, we}

It follows that w, ug, ug+2, ui,4+1 are pairwisely nonadjacent by the choice of @’ and Q”.

The proof of Subcase is similar to the proof of Subcase So again, let’s skip the proof step. Thus, in

Uyt Ul +1

Q//

Figure 3.10: When wj, = ug41, w, € Q" — {ugs1,ut}

Case[](in non-extremal case), G is pancyclic or G is a bipartite graph. Now let’s talk about the extreme case, which

is Case

3.4 Extremal case

Case 2 vy, = v1 and vg, = vp.

So, {v1, vp, v, } is cut-set of G and let the component where w? is located be H.

Let’s first show some properties of H.
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3.4.1 Some properties of H

Claim 3.4.1 For any two vertices z,y in H, then x,y € X; for some i € {1,2,3}. And there does not exist other

components apart from H and P.

Proof. Without loss of generality, we assume w° € X;. Suppose that there is a vertex u € (H — w") N X; with
i € {2,3}. It follows that w°,vs,v4,11 are pairwisely nonadjacent by the choice of P. Similarly, u,vs,v4,+1 are
pairwisely nonadjacent. If there are at least two vertices of w°, vq,v4,+1 in the same parity X;, by Case [1} we are
done. So, w, vy, v4,+1 Should be in different parity X;. Then there are two of u,vs,v4,11 Should be in the same

parity. By Case[l] we are done. So, for any two vertices of H in the same X;.
Suppose that there is another component H’ apart from H and P, then H and H' are disconnected.

By the same argument with H, every vertex in H’ should be in the same parity of X; withi € {1,2,3}. Forv € H’,
there are three internal disjoint paths P;[w", v;,] connecting v and three distinct vertices v;, € P with i = 1,2,3. If
there are two vertices in {v,,vs,, v, } that are not {v1,v,}, by Case [1] we are done. We assume v; = v,, and
vy = vp. Since w®, vy and v, are in different parity X; fori = 1,2,3. Let vy € X5 and vq, 11 € X3. Similarly, the
vertices v, v2 and vy, +1 should be in different parity X; withi = 1,2, 3. If v € X3, then path P [w®, v1] P[vy, vp] P1 (vp, v]
contradicts the choice of P. So v € X3 and vy, 11 € Xy, then path P w®, v1]P(v1, vi, | Pa(vey, v] Ps(v, vp) P(vp, Vey41]

contradicts the choice of P by w’v, 1 ¢ E. So, there does not exist another component apart from H and P. [

Claim 3.4.2 H is a clique.

Proof. Suppose V(H) = {u,v}, and uv ¢ E(G), by Claim[3.4.1]and the choice of P, a contradiction. Thus, sup-
pose |H| > 3. Since G is a 3-connected graph, then there are three vertices z,y, z in H such that zv, vpy, 2v4,41 €
E. Then zy € E otherwise there is a (z,y)-path which contradicts the choice of P by Claim Let C; =
P U {zy, zv1, yvp}.

If there is a vertex «’ € H such that zz’ ¢ E, then there are three internal disjoint paths F;[z’, x;] connecting
x' and three distinct vertices z; € V(C;) with i = 1,2,3. Since {v1,va,,v,} is cut-set of G, there is a vertex
z; € {x1,22,23} such that z; € {y,vi,v,}. When z; = y or z; = v, there is a (z,2')-path v, Pv,z;F;z’ which
contradicts the choice of P. If z; = vy, there is a (z, 2’)-path xyv, Pvy F;2’, which contradicts the choice of P. By the

symmetry between z and y, so every vertex in H connects with z and y.

If there are two vertices v/, v’ € H such that v/v" ¢ E, then zu/,yv’ € E and there is a (v/,v')-path v’ zv, Pu,yv’

which contradicts the choice of P. So, H is a clique. I

By Claims and[3.4.2, let V(G) = V(HUP), P =vivy---v, and Np(V(H)) = {v1,vq4,vp}.
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Claim 3.4.3 IfV(H) C Xy, then V(P) \ {”Ul,?)d,Up} C XoU X3,

Proof. Suppose there exists v; € (V(P) \ {v1,vq4,vp}) N X1 , then d(z) + d(v;) > n forany = € V(H). So, there
exists at most one vertex on V(P) \ {v;} which does not adjacent to v;. If v; adjacent to every vertex in V(P) \ {v;},

then it is easy to prove that G is pancyclic. So, we assume v; € V(P) \ {v;} such that v;v; ¢ E(G).

Suppose |V (H)| > 2, let u,v € V(H) such that uv,,v,v € E. By Claim[3.4.2, there are (u, v)-paths Py of each
length ¥/, 1 < k' < |V(H)| - 1,in H.

If i = 2, then there is a path vovs - - - v,vu Which contradicts the choice of P.

f3<i< p# — 1 where pisodd (3 <i < £ —1where pis even). Suppose thati +2 < j < p — 1, then there are

CyCIeS Ch with 3 <k<n in G: let (3 = 0;0;_10;_20; and Cy = ViUj—1V;5Vj 4105, for 1 < k' < ‘V(H)| —1,

VU2 * * + Vk—4ViVp UL when 5 < k <i+ 3,

VU2 -+ ViVUp—ktit3Vp—ktitd * * * VpUUVY wheni+4<k<p—j+i+2,
Cy =

VIV - Vi—2ViUp— kit 2Up—ktit3 - Vpuvs Whenp—j+i+3 <k <p+1,

PuU{viu,vpv} U Py whenp+2 <k <n.

Suppose j = p, then there are cycles C, with3 <k <ninG,for1 <k’ < |V(H)| - 1.

UiVig1 " Vktio1Vi when 3 <k <p—1,
Cyr = VIV - Vilp—fyits - Upvuvy Whenp—i+1 <k <p+ 2,
P U {viu,v,v} U Py whenp+2 <k <n.

Similarly, if 1 < j <14 — 2, then G is pancyclic.
If &21 +1<i<p—1wherepisodd (5 +1<i<p—1wherepis even), by the symmetry, G is pancyclic.

If i = p—;l where p is odd. Suppose that 2 < j < i — 2, there are cycles Cy with 3 < k < n in G, for

1<K <|V(H) -1

ViVig1 " Viph—1V; when 3 < k < &£

UV Vi Vp—ft5 - - - UpUU when % +1<k< p—gl + 3,
Cp =

UVIVg -+ - ViVp_ft+3+i - - - Vpvu  When pTH +4<k<p+2,

P U {viu,v,v} U Py whenp+2 <k <n.

Suppose thati + 2 < j < p — 1, by the symmetry, G is pancyclic.
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Suppose that j = 1, there are cycles C, with3 <k <ninG,for1 <k <|V(H)| -1

1
ViVig1 " Viph—10; when 3 < k < 2HL

V1V - - - Up— 4V Vp VUYL when % +1<k< p—gl + 3,
Cp =

UVIVg - -+ ViVp—k43+4i - Vpvu  When pTH +4<k<p+2,

P U {viu,v,v} U Py whenp+2 <k <n.

Similarly, when j = pand i = £ if p is even, G is pancyclic.
Suppose that |V(H)| = 1, let u € H. By the choice of Q" and Q" in Case[l], i # 2and i # p— 1. ltis
a similar argument with |V (H)| > 2, there are cycles Cj, with3 < k < p—1and k = p+ 1. There is a cycle C,

inG: If] 75 1+2, Cp = VU2 * * ViVj42Vi43 * * - VpUV1; |fj =1+2, let Cp = V1U2 * Vi —2ViVi41 t UpUV, @ contradiction. I

By Claim[3.4.3} let V(H) C X; and V/(P) \ {v1,va,v,} C X2 U X3. By the choice of P and Case|[i] we have the

following fact:
Fact 3.4.4 vovgy1,vp_1v4—1 ¢ E, v2,v441 are in different part X, X5 and v,_1,vq—1 are in different part X, Xs.

If |V (P[va, v4—1])| < 4 and |V(Plvgs1,vp—1])| < 4, by the maximality of P, then |H| < min{d —2,p —d — 1} < 4.
Then n < 15. And d(v1) + d(v,) > n, we can obtain G is pancyclic or G is a bipartite graph. In Appendix A} we will

give a detailed proof of the following claim|3.4.5
Claim 3.4.5 If|V(P[va,vq-1])| < 4 and |V (Plva+1,vp—1])| < 4, then G is pancyclic or a bipartite graph.

In the following, we prove that if two vertices with a distance of 2 on P[vy,v4_3] or a distance of 3 on Plvg, v4—_4]
are adjacent, and any two vertices on Plvgy1,vp—1] are adjacent, then G is pancyclic or a bipartite graph. So, we

got the following result.
Claim 3.4.6 If for any v; € V(P[vs,vq—3]) andvj € V(P|vg,vq—4]) Such that v,v, o € E(G) andv,v;is € E(G). And

for any v, v; € V(P[vas1,vp-1]), vy € E(G). Then G is pancyclic or a bipartite graph.

Proof. If d > 7and p — d > 3. Then, we can construct all cycles Cy with3 < k <ninG.
Let C3 = v9U3V4V2 and Cy = V2U3V4V5V2.
When5 <k <d-2,let Cl = vav4vg * - - ViVi42 ** " Vg1V Vg—2 * * -~ VjVUj—2 * * V2 (If kis Odd)

or C, = vov4vg - - "ViVj42 - VgUk41Vk—1 """ UjVj—2 " - V2 (lf kis even).
According to the number of vertices in H, we construct all cycles Cy withd — 1 <k < n.
Suppose |H| > 3. we may assume u,v,a € V(H) such that viu, v,v,v5a € E(G). By Claim3.4.2) there are

(u,v)-paths P, of each length [, 1 <! < |H| -1, in H.
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When k = d -1, if d > 8, let Cy = vivavsvrvs - --vgauvr; if d = 7, let Cp = vvpvp_1vg41v5av. When
k = d, let C, = vivavsvg---vgauvy;. When k = d + 1, let Cr = vivovavs - - -vgauv:. When & = d + 2, let
Cr = vvavz---vgauvi. When k = d + 3, let C = v1020506 - - - VgVa+1Vp—1vpvuv. When k = d + 4, let C), =
V1V2U4V5 -+ VgU4+1Vp—1Vpvuv1. When k = d + 5, let O, = v1vavs - - - vqVa1Vp—10pvuvs. Whend +6 < k < p+ 2,
let Cr = wv1v9U3 -+ - VgUd4+1Vptd—k+aUptrd—kt5 - - Upvu. When p+3 < k < n, let C, = P U {uvy,v,v} U P, for

2<I<|H|-1.
If |H| = 2, since G is a 3-connected graph, without loss of generality, we may assume w,v € V(H) such that
viu, vpv, vau € E(G) and vug € E or vuy € E. By Claim(3.4.2, the uv € E(G).

When d + 3 < k < n, we can construct all cycles Cy, which are the same as when |H| > 3. When k =d — 1, let
Cr = v1v204v607 - - - vguvr. When k = d, let C), = vivavavs - - - vgquvi. When k = d + 1, let C, = v1vav3v4 - - - vquvs .

When k = d + 2, let Cx, = vivavavs - - - vgvuvy (if vog € E(G)) or let C, = vivavavs - - - vguvw; (if voy € E(QG)).

Suppose V(H) = {u}. Since G is 3-connected graph, then vy u, v,u, vqu € E(G).

V1VaU5Vg * * - VgU1 whenk =d -1,
V1UVU4Vs * * * UgUU] when k =d,
V1U2V3 * + + VgUV whenk =d+1,

Cr =  viv9v506 - - - VgVd41Vp—1UpUV1 when k =d + 2,
V1U2V4V5 * * * UgUd41Up—1UpU1 when k = d + 3,
V1V2V3 * * - VgUd4+1Vp—1VpUl1 when k =d + 4,
UVIVQU3 - - * VgUd4+1Vptd—k+3Up+d—k+4 - - - Upvu Whend+5 <k <mn.

If d > 7 and p — d = 2, by the maximality of P, then |H| = 1. The same argument with above, it is easy to

construct G is pancyclic.

lfd<6andp—d>6,thenp— (d—1) > 7. Since for any v; € V(P[va,v4—3]) and v; € V(P[va,vq—4]) such that
vviy2 € E(G) and vjv;43 € E(G). It follows from d < 6 that for any v;,v; € V(P[v2,v4-1]) such that v,v; € E(G).
Because for any vy, v; € V(P[vay1,vp—1]) such that vyv; € E(G), so the same argument with d > 7. Thus, we can

construct all cycles Cy, for3 < k < n, in G.

Ifd <6andp—d <5, byClaim , then G is pancyclic or G is a bipartite graph. I

According to the number of vertices in V(H), we go ahead and prove the rest of the proof.
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3.4.2 H has at least three vertices
In this section, we will show that if |V (H)| > 3, then G is pancyclic or G is a bipartite graph.

Let G’ = G—(HU{v1,vq,v,}) be a subgraph of G. We may assume u, v, w’ € V(H) such that uv,, vv,, w'vg € E.
By Claim then V(G’') C X, U X3. For any two nonadjacent vertices z,y € X; with i € {2,3}, we get
der () + der (y) = d(z) +d(y) — 6 = |G7].

When G’ is a 2-connected graph, by Theorem[2.0.3} G" is pancyclic or G’ = K\g/|/2,jcr|/2 OF G’ = K\gr|/2,)c7)/2 —
{e}.

Suppose G’ = K|qrj/2,ja1/2 OF G' = K| 2,jcr 12— e} Let X and Y be the bipartitions of G'. If vo,v411 € X, then
V3Vg+1 € E Or vavgyo € E. If vy € X and vgyq € Y, then vzugso € E. Inthe both cases, there is a (v1, v,)-path which
contradicts the choice of P. So, G’ is pancyclic, and we assume there are cycles C, 3 < k < p — 3, in G. Suppose

there does not exist cycles C,,, withp —2 < m < nin G. By Claim[3.4.5 we can assume |V (P[v2,v4-1])| > 5.

If va,v,—1 € X, by Fact[3.4.4] then vy_1,va41 € X3. Since |H| > 3, then vg_1vas1 € E otherwise there is
a (vg—1, va+1)-path vgri1vaqs - - - vpvuvive - - - v4—1 Which contradicts the choice of P. By the maximality of P, then
[V(Plvatr, vp-1])] = 4.

Then vyvgq1 ¢ E(G) otherwise path Py = viuvwvgug—1v4—2 - - - VaVay1va+2 - - - vp contradicts with the choice of
P. If vy € X3, then there are two paths Q1 = viwvw'vgug_1 - - - vs @Nd Q2 = V41442 - - - vp SUCh that Q1] + |Q2| >
p + 1. By Case [l we have done. So, vy € X, then vvy € FE by the choice of P. Similarly, v,_» € X3 and

Vd—2Vd+1, Vp—1Up—3 € E. Then let
Cp—2 = V10204 - Vg—2Vd41 * * * Vp—3Vp—10pVUV1, Cp1 = V10204 ** Vg—2VUg41 * * * UpUULY,

Cp = v1v2 -+ - Vg—2Vqt1 - - - Vpouvy, Cpy1 = P — {vg} U {vg—1v441, v1u, vvp,, v}

By Claim [3.4.2] then there are cycle C,,, with n > m > p + 2, a contradiction. So, we assume vz, v4-1 € X5 and

Vd41,Vp—1 € X3.

By the choice of P and Case([T] then vsvay1 ¢ E, v4 € X5 and vpvy € E. Similarly, v,_svp,_1 € E, vg_3vq—1 € E
and vg43v4+1 € E (vp—1vq41 € E). In the same argument with v, v,—1 € X5, we can construct all cycles Cy, with

n >m > p— 2. Then G is pancyclic, a contradiction. So, the connectivity of G’ is 1. Let w; cuts G’ into G; and Gs.

It follows that [V (P[vz, va—1])| > 5 or [V (P[vay1,vp—1])| > 5 from Claim[3.4.5] By Lemma(3.2.4/and Fact[3.4.4] we
can assume V(G1) C X, V(G2) C X3, w; € X3 and Gy isaclique, and vy € Xy and vgy1 € X3. Whenvav; € E (i <
d—1and i is as large as possible), then v;,_jv4+1 ¢ E otherwise path viuw'vgvg_1 - - V;V2V3 - - - Vi—1Vg4+1Vd4+2 - - - Up
contradicts the choice of P. If v;_; € X3, there are two paths Q' = v;_1v;_o - V200411 - - - vqw'uvy; and Q? =

Vdt1Vat2 - - vp such that [Q'| +|Q?| > p + 2, by the Case[1] we have done. So v;—1 € X5 and G[Plvs, v;—1]] is a
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clique.

If vov; € E(d+2 < j <p-—1andjis as small as possible), similarly G[P[v;+1,v,-1]] is a clique. Since w;
is a cut-vertex of G, then G[P[v;41v4-1]] and G[P[v4+1,v;—1]] are disconnected. So, vq_1v4+1 ¢ E. By the choice
of P, then v4_1 € Xs. So, G[P[vs,vq—1] U Plvj+1,v,—1]] is a clique. However, v4_1v,—1 ¢ E, then v,_1 = v;. By
the choice of P, for any vertex v; € Plvgt+1,vj—3] such that vjvi12, vivi4s € E. By Claim G is pancyclic or a
bipartite graph. So, vev; ¢ E (forany j > d + 2) and Plvgy1,v,—1] € X3. And for any vertex v; € Plvg41,vp—1] such
that vjv; 42, vvi3 € E.

If Plviy1,v4—1] C X3, by the choice of P, then vy_1v441,v4-1va4+2 € E and V(Plv;11,v4-1]) C N(vas1). For any
vertex v; € Plvi41,v4—1] U P[vgs1, vp—1] such that vyviio, vivigs € E, by the same argument with Claim [3.4.6] this is
a contradiction. Then V(Plva,v4—1]) € X2 and G[Pva,v4—1]] is a clique. By Claim then G is pancyclic or a
bipartite graph.

When G’ is disconnected, let G1 = G[P[va,v4-1]] and G2 = G[P[vg41,vp-1]]. By the degree sum condition, we
assume V(G1) C X, V(G2) € X3 and Gs is a clique. By the choice of P, then v;v,12 € E(G) and v;v;43 € E(G)
for v; € V(P[va,v4—3]). By Claim then G is pancyclic or a bipartite graph.

Thus, if [V(H)| > 3, then G is pancyclic or G is a bipartite graph.

3.4.3 H has two vertices

In this section, we will show that if |V (H)| = 2, then G is pancyclic or G is a bipartite graph.

In this case, let V(H) = {u, v}, uvy,vv, € Eand G' = G — (H U {v1,v,}). Put Wy = {vg}, Wo = Xo — {vg} and

W5 = X5 — {vq}. For any two nonadjacent vertices z,y € W; with < = 1,2, 3, we can obtain

de(z) + de (y) > d(z) +d(y) — 4 > |G| (3.6)

When G’ is a 3-connected graph, by the minimality of G, then there are cycles Cj, with3 < k <n —4in G’ (or

G). By Theorem|[2.0.1] there is a cycle C,, in G.

Let C" = ujus - - - uy and P’ = vyvs - - - vp—1 be hamiltonian cycle and hamiltonian path of G’, respectively, where
u; € V(G') and p’ = p —2. So, u; is a certain v; in V(G’'). Next, we will show that there are cycles Cj, with
n—-3<k<n-1indG.

If dpi(v1) +dp(vp) > |P'| + 2. Let G* = G — H, then P is hamiltonian (v1, v,)-path in G*. By Theorem [2.1.2]
there are cycles C,_; (i.e., C,,—3) and C, (i.e., C,,_2) in G.

Suppose there does not exist a cycle Cp,11. Then uv,, vv1, vg_1v441 ¢ E and forany v; € V(Plva, vp—2]), vivita ¢

E. Then v; and v; are in different part W; with j € {1, 2, 3}, otherwise there is a path v;v;_1 - - - viuvvLVp_1 - - - Vi12
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which contradicts the choice of P. Without loss of generality, we may assume vy_1 € W5 and vy € W3. So, by
Fact[3.4.4 v, € W, and v,_; € Ws. Since G is 3-connected, then uvg,vvgy € E. By the choice of P and Case ]
then vz € W5. By Claim[3.4.5] we can assume |V (Plvgy1,vp—1])| > 5.

If d —1 > 8, since v; and v, are in different part W; with j € {1,2, 3}, then vs, vs € W> and vzvs € E otherwise
Q = vgur - - - VYUV VY3 SUCh that |P| = |Q| and V(H) = {vy, vs}, this contradicts CIaim Similarly, vsvs € F.
By the choice of P, then v;v3 € E. S0, Cpy1 = 0102030706508V « - - VpUUV1 .

If d — 1 = 7, the same argument with vzvs € E, vqr1vs € E. By the choice of P, vyv3 € E. Then Cppq =
V1 V2U3V7VUeVs V410442 - - - UpVquvr. If d — 1 = 6, the same argument with vsvs € E, vsvgy1 € E. Then Cppy =
V1V2U3VeV5 V44142 - - - VpUvquvy. SO, this contradicts that G is not pancyclic.

So, |P'| < dp/(v1)+dp(vp) < |P'|+1. We can assume uvy, uv, € E. Then there is cycle C,,_; = P U {uv1, uv,}
in G. Suppose there does not exist cycle C,, withm =n —2,n — 3.

Suppose that m = n—3. If p’ is odd, it follows that w;v1, u;41v1 € E Of u;vp, uir1v, € Efromdes (v1)+de (vp) > 1/,
then it is easy to construct the cycle C,,_3 in G. So p’ is even. When dg (vy) > % +1orde(vy) > % + 1, we also

obtain w;v1,u;11v1 € E Of uvp, uip1vp, € E. S0, dev(v1) = der(vp) = &, exactly one of the two edges ;v and

2 3
U101 does exist. If Ncl(’Ul) = NCI(UP) = {ul,u;>,,...,up/_1} or Ncﬂ(?ﬂ) = NC/(’Up) = {UQ,U4,...,up/}, then
Cr—s = ujug - - - U1 UVVRU14 - - - Upuq. Without loss of generality, No/(v1) = {u1,us,...,up—1} and Ng(vp) =
{ug,uq, ..., up}, then Cp_3 = ugug - - - Up _301UVRUp U7 .

So, m = n—2. Since G is a 3-connected graph and Claim[3.4.5] we can assume vv; € E and |V (P[va, v4—1])| > 5.
There does not exist cycle C,,_o, then for any v; € V(P[ve, vp_2]), vivi+2 ¢ E. By the choice of P, v; and v;;5 are in
different part W; with j € {1,2,3}, |V(P[va+1,vp—1])| > 2. So, we can assume vg_1,v2 € Wy and vg41,vp—1 € W.
The same argument with Fact then vs,v6 € Wy and vzvg € E otherwise Q) = vgvr - - - vpvuv1 V203 Such that
|P| = |Q| and H = {v4, v5}, this contradicts CIaim So, Cy,, = v1vav3v6v7 - - - Vpuvy, this is a contradiction.

Suppose that the connectivity of G’ is 2 and {v;, v; } is a cut-set that cuts G’ into G; and Gs. Let P’ = vovz - - - vp_q
be a path of G’. Assume |G| = n1 and |Gz| = no.

Suppose that G; N W; # 0§ and Go N W; # 0 for any i = 2, 3. The similar with Lemma[3.2.5 ¢ is pancyclic. The

same argument with G’ is 3-connected, G is pancyclic.

Suppose that G1 NW» # @ and G1 N W5 # 0, GaNWs # 0 and G2 NW3 = 0. By (3.6), then we have the following:
Fact 3.4.7 Forany vertexx € Wo NGy andy € Wo NGy, N(z) = Go U {v;,v;} and N(y) = G1 U {v;,v;}.

Next, we will show if |G2| > 2 and G; is pancyclic graph, then G is pancyclic.
Proposition 3.4.8 If|G2| > 2 and G, is pancyclic graph, then G is pancyclic.

Proof. Let C' = ujusz---u,,u; be a hamiltonian cycle of G;. Assume u; € Wo NGy and u;v; € E. We will show

that there exists a hamiltonian cycle C” in G; such that u;u; € E(C”). Suppose there does not exist a hamiltonian
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cycle C” in Gy such that uyu; € E(C”). Then usu,, ¢ E(G) otherwise C” = uiujuj_1- - Uolpn, Un,—1 - - Ujp1U1.
So, by Fact[3.4.7, uz,un, € Ws. If ugv; € E (un,v; € E(G)), then u; = uy (un, = u;). This is a contradiction.
Thus, by (3.6), dg, (u2) + dg, (un,) > |G1| + 2. Let Py = Clus, u;] and P, = Clujj1, un, —1]. If 3u; € P, such that
Uiln, , Uir1U2 € B, then C” = wqujuj—1 -+ - UgUjp1Uiga - - Un, Wlli—1 - - - U411 ThiS iS @ contradiction. By Lemma
dp,(u2) + dp,(un,) < |Po| + 1. Similarly, dp, (u2) + dp, (un,) < |P1] + 1. So, dg, (u2) + da, (un,) < |G1|+ 1, @
contradiction. So, there exists a hamiltonian cycle C” in G, such that uiu; € E(C").

Then, by Fact , it is easy to construct cycles Cj, of length 3 < k <ninG. I

If vg € Go, then |G3| > 2 and dg, (z) + dg, (y) > |G'| — 4 > |G| for any pair of nonadjacent vertices z,y € G;.

By Theorem[2.0.4] Fact[3.4.7]and Proposition[3.4.8] G is pancyclic.

If vy € G1. When Wy NGy = {2’} is cut-set and cuts G; into G} and G%. If W3 N G # 0 with a = 1,2, by (3.6),

then |Gs| = 1. Forany z € W3 N GY, N(z) = V(G§) U {z’,v;,v;} with a = 1,2, and G} and G? are cliques. Assume
G* = G[V(G1) U{v;}], then {v;, 2’} cuts G* into G} and G%. So, G* is pancyclic. By (3.6), G is pancyclic. Under the

definition of G, G1 and G2, 2/, W, W3, we obtain the following:
Proposition 3.4.9 IfW; N GY # 0 witha = 1,2, G is pancyclic.

If V(G1) = {va}. When vy_; = v; and vg41 = v;, by the choice of P and Fact v2,vp—1 € W3, this contradicts
the definition P. When 2’ € {v4_1,v411}, this contradicts Fact[3.4.4]

When G is a 2-connected graph, let My = (W2 N V(Gy)) U {va} and M, = Ws5. By Fact[3.4.7]and Theorem
G, is pancyclic. When |G2| > 2, by Proposition [3.4.8] we can obtain G is pancyclic. Under the definition of

G1, Wa, Ws,v;, 05, we obtain the following:
Proposition 3.4.10 /f|V(G2)| =1, let V(G2) = {w1 }, then G is pancyclic.

Proof. Assume: < jand w € {u,v} or w = uw.

When v,_; € G, suppose vs # wi. We can assume d > j + 1. By Factsand then vy = v;. Similarly,
Vj = Vg1 = V4, w1 = v3 ANd vgy1,vp—1 € W3. By Fact there exists a vertex v; € Plvgsa, vp—2] N Wa N Gy such
that vivg, viv; € E. If vgy1v41 ¢ E, then vy € W3 and path vgp1vaqz - - - 0jvgva—1 - - - v1wupvp_1 - - - V41 contradicts
the choice of P. So, vg11v41 € E. Then path viwvgvjwiv;vv;—1 - - - Vap1v410142 - - - Up CONtradicts the choice of P.

So, v = wy. If j > d + 1, by Facts [3.4.4)and v; = vg—1 € W and vgy1,vj41 € Ws. Then vgi1v,41 € E
otherwise R = vg41v442 - - vjwiv;vqwopvp—1 - - - vj41, When |R| > |P|, a contradiction. When |R| = |P| and v; €
V(H), since G is 3-connected, by Case (1, we are done. So, path viwvqv;wivjvj_1 - - V4410541 - - - v, coONtradicts
the choice of P. If j < d — 1, it follows that v; = vq—; from Facts and If there exists a vertex v; €
Plvgy2, vp—2)NWaNGy, the same with above, then vy 1v;41 € E. S0, Ry = viwugvj - - U001 -+ UVg41V141V142 - - * Up,

similarly argument with R, a contradiction. So, by G; N W5 # ), then there exists a vertex vy € Plvg, v4—2] NWo NGy
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such that vpvp_1, vpvaye € E. If up_q = v, then path T = vywivjvj_2 - - - vvp_1vp—2 - - - vqwp, SiMilarly argument
with R, a contradiction. Then vy_jvq+1 € E otherwise vy_; € W3 and path vy_q - - viwvp - - - Va2 vy 41 -+ Vag1
contradicts the choice of P. So, there is a path vivs - - - vy _1v441 - - - vp—_1vp - - - vqwo, Which contradicts the choice of
P.

When v,_; = wy or v; = v,_1, the proof is similar to the proof of v,_; € G;. So the proof of this proposition is

complete. l

When vy = v; or vg = vy, if |G2| > 2, by (3.6), Theorem and Proposition [3.4.8, G is pancyclic. If |G| = 1,
the same argument with Proposition[3.4.10} G is pancyclic.

Suppose that V(G1) € Wa U {vg} and V(G2) C W3 U {vg}. When |G1 N Wa| > 2 and |Ge N W3] > 2, by (3.6), we

can assume G, is a clique.

If vg € Gi. When vy,v,_1 € Gy, then vg_1 € Wy or vg1 € Way. By Fact a contradiction. When
vy € Gp and v,_1 = v; Or v, = wv;, by Fact then Plvs,vq_1] C Wa, Plvgs1,vp—2] € W3 and vgi1 €
{vi,v;}. So, G(V(P[vay1,vp—2])) is a clique. By the choice of P, then viviyo,vvi43 € Eforany 2 <1 < d -2,
and yv;,yv; € E(G) for any y € V(Plvgs2,vp—2]). Since G is 3-connected graph, then there is a vertex v, €
Plvgt2,vp—2] such that vyu, € E(G) or vyv1 € E(G). We can assume v,v, € E(G). SO, vgr1vp—1 € E(G)
otherwise v,_1Up_2 - - - Up41Va+2V4+3  * - UhUpVUV1V2 - - - Vg41 IS @ path which contradicts the maximality of P. Hence,

G[V (Pva+1,vp—1])] is a clique. By Claim|[3.4.6| G is pancyclic. So, we can obtain the following fact:

Fact 3.4.11 /f’l}d+1 = V;, Up—1 = Vj, V(P[Ud+1, Upfl]) C Ws andV(P[vd+2, ’Up,Q]) = V(Gg), then G[V(P[Ud+1, Upfl])}

is a clique.

When v, € G1 and v,_1 € G2, we can assume there exists v, € Plvgy1, vp—1] such that Plvg, vg—1]UP[vg42,v.] C
Wy and Plvg41,vp—1] € Ws. By the choice of P, for v; € Plvg, vg—3] U Plvgy1, va—2), then viui o € E and vjuyy3 € E
otherwise a (v;, vi4+3)-path P, such that |P1| = |P| and H = {v;41,v142}, by Claim and vj41,vi42 € Wa, a
contradiction. Similarly, for any v, € Plvgi2,v,] and v, € Plvg,vq—1] such that vyv, € E(G). The similar to Claim
G is pancyclic.

Similarly, when v, € G2 and v,—1 = v; (vp—1 = v;), or when v, v,_1 € G», then G is pancyclic.

The same argument with vg € Gy, if vg = v;, then G is pancyclic. When |Gy NW,| =1 or |GaNWs| = 1, by Claim
G is pancyclic.

When z cuts G’ into G; and G». By Lemma([3.2.4] we assume G; C Wy U {vg}, Go € W3 U {vs} and G, is a
clique. Suppose that v, € Gy, v,—1 € G2. When z # v, let vy € G1. By Fact z =wvgqy1 € W3. By the choice of
P, zvgy3 € E and for any vertex v; with 2 < i < d — 2, v;v;42,v;v;43 € E. By Claim G is pancyclic. Similarly, if

vqg = z, G is pancyclic.
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3.4.4 H has only one vertex
In this section, we will prove if |H| = 1, assume V(H) = {w}, then G is pancyclic or G is a bipartite graph.

First, we show that there is a cycle C, in G. Suppose there does not exist a cycle C,, then vivs, vyv,—o ¢
E. Let P! = wyvz---vp_1, then (Np/(v1) — {v2})” N Np:(v,) = 0. Since d(vi) + d(v,) > n, by Lemma 3.2.1}
dpr(v1) +dp/(vp) = |P'| + 1 and vivp_1,vpv2 € E.

If viv;,1v;41 € Ewith3 < i < p—1, then C, = vavsg- - v;v1V;41Vi+2 - - - VU2, @ contradiction. Similarly,
viv, ¢ E or vyvi41 ¢ E. By lemma (5), |P’'| is odd and Np:(v1) = Np/(vp) = {v2,04,...,vp_1}. Let B =
{v3,vs5,...,vp—2}. Ifthere exist v;,v; € B suchthatv,v; € E,then Cp, = vpvj11 -+ Vp_ 10105 410Viq2 - - - V001 - - - VU
So, B is an independent set. By CIaim we can assume |B| > 4, So, there exist v;, v; € B such that v;,v; € X;

with i = 1,2,3. So, n < d(v;) +d(v;) < 25+ + 25 + 1 = n— 1, this is a contradiction. Thus, there exist the cycle C,.

Next, we suppose v is adjacent to at least one of v; and v, then we will show G is pancyclic or G is a bipartite
graph. Without loss of generality, we assume vyvy € E.
Put G = G — {w,v,} and W1 = {v1,v4}, Wo = Xo — {v1,v4}, W3 = X3 — {v1,vq}. For any two nonadjacent

vertices x,y € W;
de/(z) + da (y) > d(x) +d(y) —2 > |G'. (3.7)

When G’ is 3-connected, by the minimality of G, then G is pancyclic. If = is a cut-set of G’, by v1v4 € F, then
{vp, x} is a 2-cutset of G. This contradicts G is 3-connected. So, we assume the connectivity of G’ is 2 and {v;,v;}

cuts G’ into G; and Gs.

Suppose G1 NW; # O and Go N W; # (§ with ¢ = 2,3, by Lemma|3.2.5] then G is pancyclic.

Suppose G1 N Wy # and G1 N W3 #  and Ga N Wa # ( and G N W3 = (.

If vi,v4 € G1, when G is 1-connected, let {z'} = V(G1) N W, be a cut-set and cuts G, into G} and G%. If
W3NGY # 0 with a = 1,2, by Proposition[3.4.9] then G is pancyclic. If G} = {v1, va}, then vy_1,vai1,v2 € {2/, v;,v;}.
By Facts and z' ¢ {v2,v411}, ¥’ = vq—1 and v,_1 € W3. By the definition of P, this is a contradiction.
When G is 2-connected, let My = V(G1) — {v1,va} and My = {v1,vq}. When |G»| > 2, by Fact[3.4.7] Theorem
[2.0.3]and Proposition[3.4.8] G is pancyclic. When V(G2) = {w }, by the Proposition[3.4.10] G is pancyclic.

If v; € G; and vy = v;, when G is 1-connected, let 2’ = G; N W5 be a cut-set and cuts G into G1 and G%. If
W3NG # 0 with a = 1,2, by Proposition[3.4.9] G is pancyclic. If V(G1) = {v1}, then v, € {2/, v;}. By Facts[3.4.4]
and vy = vj. Since G’ is a 2-connected graph, then there is v; € V(P[v442,vp—2]) such that vv; € E and
vi41va+1 € F otherwise vii1,vq11 € Wy OF vig1,v441 € Wa, then path vgpi1vgye - - - vivavs - - - VgV WVRVE_1 - - - V141

contradicts the choice of P. So, path viwvgvg_1 - - - v2vv;—1 - - - Va11V141 - - - v, CONtradicts the choice of P. When G,
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is 2-connected and |G»| > 2, by Proposition[3.4.8] G is pancyclic. When V (G2) = {w:}, it follows that G is pancyclic
from the similar proof to Proposition|(3.4.10

If {v1,v4} = {vi,v;}, when |G5| > 2, by (8.7), Theorem [2.0.4] and Proposition G is pancyclic. Suppose
V(G2) = {w1}. We may assume v,_;1 € G1, let P, = viwvgug41 - - - v, Such that |Py| = |P|and V(H) = {w1} C Wy,
this contradicts Claim

If v1,vq € Ga, then |G,| > 2, by (3.7), Theorem [2.0.4]and Proposition[3.4.8} G is pancyclic.

Suppose G1 C Wa U {vy,v4} and G2 € W3 U {v1,v4}, we can assume G- is a clique by (3.7).

When vy, v,_1 € Gy, if vg € Gy, then vp_1,v4—1 € Ws Or vy, vq4+1 € Wo which contradicts Fact So, vy = v;
(or va = v;). lf vg = v; (Or vg = v;), then V(Plvz,vq—1]) € W3 and V(Plvgs1,vp-1]) € Wa. So, by Fact[3.4.11]
G[P[v2,v4-1]] is a clique.

By Claim we assume |V (Plvgt+1,vp—1])] > 5. Then vgii1v4rs € E, otherwise there is a path P, =
Vd4+3Vd44 - - UpWU1V2 - - - Vg+1 SUch that |P1| = |P| and vgye € H N Wa, which contradicts Claim Similarly,
for any vy, € Plugt1,vp—3] such that vyvgie € E and vgvgis € E(G). By Claim G is pancyclic. Similarly, if
vq € G1, this is a contradiction.

When vy,v,_1 € G2 or when v; € Gy, vp—1 = v; or when v; € G; and v,_1 € G», the same argument with

v1,vp—1 € G1, SO, G is pancyclic or a bipartite graph.

Last, suppose vivg ¢ E and vyvg ¢ E. Put G = G — {w,vq} and Wy = {v1,v,}, Wo = X5 — {v1,v,} and
W3 = X3 — {v1,v,}. For any two nonadjacent vertices z,y € W; with < = 1,2, 3, then we can obtain (3.7).

If G’ is 3-connected, by the minimality of G, then G is pancyclic. If 2’ cuts G’ into G; and G2. When v1,v, € G4
orvy,v, € Gy Or v, € Gy, v, = ', then {uvg, '} is cutset of G, this contradicts that G is 3-connected. When v; € Gy
and v, € Go, then |G| < dg/(v1) + de (v,) < |G1| + |Ge|, a contradiction. So, we assume the connectivity of G’ is 2

and {v;,v;} cuts G’ into G; and Ga.

Suppose that G; N W; # 0 and G, N W; # 0 with i = 2,3. If vy, v, € V(G;), by Lemma8.2.5, G; — {v1,v,} is a
clique and G’ — {v1,v,} is pancyclic. Since V(G;) — {vp} C Ner(v1), V(Gi) — {v1} € Ner(vp) and (3.7), then G is
pancyclic. If vy ¢ V(G;) or v, ¢ V(G;) with i = 2,3, by Lemma(3.2.5, G’ is pancyclic.

Suppose that Gy N Wy A Pand G1 N W3 £ 0, GoNWa # 0, Go N W3 = 0.

When vy, v, € Gy, we assume that {2} = V(G1) N W, cuts G into G} and G3. If v; € G} and v, € G3, by (3.7),
it is easy to know that G is pancyclic. If vi,v, € G} (v1,v, € G3), by (8.7), then G} N W3 # 0, |G2| = 1 and G} is a
clique. And (G} — {v1,v,}) U {2’} C N(v1), (G — {v1,v,}) U {2’} C N(v,), we can obtain that G is pancyclic. So,
G is 2-connected, when |G»| > 2, by Theorem [2.0.3]and Proposition[3.4.8] G is pancyclic.

Suppose that V(G3) = {w;} and i < j.
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If vg_1,v441 € G1, by Facts[3.4.4][3.4.7|and the definition of P, this is a contradiction. If vs_; = v; and va41 € Gy,
by Factsand then v; = ve and vgy41,v,—1 € Ws. There exists a vertex v; € Plvgya, vp—2] N W N Hy such
that vjvs, viv1 € E. Then vgpqvi41 € E otherwise vg41,vi41 € Xz and apath vgrivgo - - 0v1v2 - - vqWUpvp—1 - - - Vi1
contradict with the choice of P. So, path viwvgvg—1v4—2 - - - Vovyv;_1 - - - Va1 V1410142 - - - U, CONtradicts the choice of
P. If vg_1 = wy and vg41 = vy, then vg_1v441 € E and path vivs - - - vg_1v441v442 - - - vp iS @ hamiltonian path of G'.
By Theorem it follows that G is pancyclic from . Similarly, if vg11 = wy and vg_1 = v; orifvg_; = wy and

vg+1 € Gy orifvgy1 = wy and vg—1 € G4, then G is pancyclic.

When v; € G; and v, = v;. When 2/ € W, N G cuts Gy into G} and G, if W5 N G§ with a = 1,2, by Proposition

3.4.9, G is pancyclic. If V(G}) = {v1}, then de(v1) = 2. By (3.7), then N(v,) = V(G) — {v1,v4,v,}. SO, G is
pancyclic. If G; is 2-connected, when |G| > 2, by Proposition [3.4.8] G is pancyclic. Suppose {w;} = V(G3). The

same argument with v, v, € G1, G is pancyclic.

When v, € G and v, € G, by Fact[3.4.7} (3.7), Theorem[2.0.4} G| is pancyclic. Since |G| > 2 and Proposition
G is pancyclic. Similarly, when v, v, € G2 or when v; = v; and v, = v;, by the choice of P and , Gis
pancyclic.

Suppose that V(G1) € W7 U W, and V(G2) C W3 U W;. We assume GG N W3] is a clique.

When v; € Gy and v, € Gy, by (8.7), then Ne/(v1) = G1 \ {v1} U {vi,v;} and Ng/(vp) = G \ {vp} U {vs,v;}.
We assume vq_1,va+1 € Gi. By Fact[3.4.4] then vy € W3, vo = v; and V(P[vs, vg—1]) € G1. And viv3 € E(G). If
Va—1Va+1 & E, so path vg_1v4-2 - - - v301020,0p—1 - - - va41 IS @ hamiltonian path of G’. By and Theorem[2.1.2, G
is pancyclic. So, vg_1v4+1 € E and path P — {vg} U {vg_1v4+1} is @ hamiltonian path of G’. By and Theorem
G is pancyclic. Then we can obtain the following:

Fact 3.4.12 I[fvy_1vq1 € E, G is pancyclic.

We give the following result for the rest of proof of Theorem

Proposition 3.4.13 If there exists a vertex v; € V(P[vs,vq—1]) such that vyv; € E(G) and vj_1,v4—1 € W; with

i = 2,3, where v, € V(P[vgy1,vp—2]) and vi11va+1 € E(G), then G is pancyclic.

Proof. If vi_ju4_1 ¢ E(G), then P/ = v4_1v4_2 - 0jUkUK_1 - - - Vg+1Vk41 - - - VpWUIV2 - - - vj—1 IS @ path such that
|P’| = |P|and V(H) = {va}, by case[i] a contradiction. So, v;_1v4_1 € E(G).
Then vivs - - v 1V4—1Vg—2 - - - VVRVE—1 - - - Va4+1Vk+1 - - - Up IS hamiltonian path of G'. By (3.7) and Theorem2.1.2, G

is pancyclic. |

If vg—1 € G1 and vg11 € Ga (vg—1 € G2 and vg41 € Gi), we may assume Plva,v;—1] U Plvi11,vj-1] U

Plvj41,v4-1] € G and G[Plvat1,v,]] is a clique. Since G’ is 2-connected, v,v, € E with v, € Plvgy1, vp—1].
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By Proposition [3.4.13] G is pancyclic. If vg—1 € G1 and vg11 = v; (va41 = v5), or if vgy1 € Gy and vg_1 = v;

(vg—1 = v;), or if vg_1 = v; and vgy1 = v;, the same argument with vg_; € G1 and vg11 € Go, G is pancyclic.

When V1,Vp € Gy (’Ul,’Up S Gg) If Vd—1,Vd+1 € G, by Fact , V2,Vp—1 € Ws. By the definition of path P,
this is a contradiction. If vy_1,v4+1 € Ga, since G[G2 N W3] is a clique, by Fact(3.4.12] G is pancyclic. If vg_1 € Gs
and vgy1 = v;, then v; € V(Plva,v4-1]) and V(P[vj41,v4-1]) = V(G2). So, there is v, € Plvji2,v4-1] such that

vv; € F, by Proposition|3.4.13} G is pancyclic. Similarly, if v4_1 = v; and vg11 € G, G is pancyclic.

If vg_1 = v; and vgy1 € G1, by Facts 3.4.4| and [3.4.11] then v, = v; € W3, V(P[us,vq—2]) = V(G2) and

G[Pv2,vq-1]] is a clique. If there is v, € Plvgi1,vp—2] such that vyvy € E, then vgiivp41 € E otherwise P =
Vd41Vd4a - - U203 - - - VqWwupUp_1 - - - U1 SUch that | Py| = | P|, by case[T|and vy vz, v1w € E, a contradiction. So, path
VIWUqUG—1 - - - VaURVK—1 - - - Va4+1Vk+1Vk42 - - - Up lONger than P, a contradiction. Thus, for any vertex vy, € Plvgi1, vp—2]
such that vovi, ¢ E. Similarly, for any vertex v, € Plvgy1, vp—2] such that vg_ivi, ¢ E.

If v,_1vp—3 ¢ E, then S' = v,_1v,wvivs - - - vp_g such that |S’| = |P|. If |Plvgy1, vp—3]| > 3, by Claim a
contradiction. If |P[vgi1,vp—3]| = 2, if vay1v,—2 ¢ E, by Claim[3.4.3] a contradiction. So, vg41v,—2 € E and path
Up—1UpWU1 V2 - - - Vg41Vp—2Up—3 CONtradicts the choice of P. If | Plvgy1, vp—3]| = 1, since G is 3-connected, if viv,_o €
E, then path v,_3v,_sv1v2 - - - vqwvpv,—1 cONtradicts the choice of P. If v,_sv, € E, then v,_1v,_svpwvivs -+ - vp_3
contradicts the choice of P. If vqu,—o € E, then vgy1v,_2vquq—1 - - - v1wvpv,—1 contradicts the choice of P. So,
Vp—1Vp—3 € E.

Then v,_v,_4 € E otherwise path v,_sv,_3v,_1vpwv Vs - - - v,_4 contradicts the choice of P. Similarly, for
any vertex v; € Plvgy1,vp—3] such that vyuipe € E. Suppose vgyivara ¢ E, then vgyy = v,_; otherwise path
V4104 * * + V1WURVp_1 -+ Va+5Vd+3Vd+2V4+4 lONGer than P. Since G is 3-connected, assume N (vg42)N{v1,v4, vp} # 0.
If vgrovr € E, then there is a path vgy1vg4+3vV442v102 - - - VqaWVRUL_1 - - - V444 lONger than P, a contradiction. If vgugis €
E, path vg41v4430V4+20404—1 - - - v1wuy - - - vg44 lOnger than P. If vyvgio € E, then path vg1avgysvgrovpwoive - - - vg41
contradict with the choice of P. So, vgt1vara € E. Similarly, for any vertex v; € Plvgt1,vp—4] SUch that viuys € E.
It follows that G is pancyclic from Claim [3.4.6] Similarly, if vs_; € G2 and va41 € G1, then G is pancyclic.

If vgr1 € Gp and vg_; € Gy, when V(Plvg,vi_1] U Plvit1,v4-1]) € Wy, the same argument with above, we
can get a contradiction. When V (P[vz,v4-1]) € Gy and V(P[vas1, vi—1] U Plvig1, vp—2]) € G2, by Fact[3.4.4) and
Proposition[3.4.13] then v,_1; = v; and there does not exist v; € P[va, vq—1] such that v;v; € E or vv; € E. Since G’
is 2-connected, so, we can assume viv; € E(G). If v; € Wy, then v;viwupvp—1 -+ - 4102109 - - - v2 IS @ path which
contradicts the choice of P. So, v; € W3. The similar proof to Fact[3.4.11] G[v441,v,-1] is a clique. By Claim[3.4.6]
G is pancyclic or a bipartite graph.

The same argument with v,,v, € G1, when v; € G; and v, = v; or when v; = v; and v, = v;, G is pancyclic or

a bipartite graph.

Thus, G is pancyclic or G is a bipartite graph. The proof of the theorem is complete.
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3.5 Concluding remarks and further work

In this chapter, we prove that if G = (V, E) is a 3-connected graph of order n with V(G) = X; U X, U X3, for any pair

of nonadjacent vertices v; and v in X;, d(v1) + d(v2) > n with i = 1,2, 3, then G is pancyclic or a bipartite graph.

Note that the main result of this chapter is to prove that the conjecture is true for k = 3. For all other cases

(k > 4) of Conjecture [2.0.2, we haven't given proof. Thus, this is our other further work.
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Chapter 4

Pancyclicity and hamiltonicity in digraphs

or bipartite digraphs

In this chapter, we consider the hamiltonian properties of a digraph or bipartite digraph.

Let D be a strongly connected balanced bipartite directed graph of order 2a > 10. Let z, y be distinct vertices in
D, {z,y} dominates a vertex z if z — z and y — z; in this case, we call the pair {x, y} dominating.

In this chapter, we show that if for every dominating pair of vertices whose degree sum is at least 3a in a strongly
connected balanced bipartite directed graph D, then D is hamiltonian. More precisely, we prove the following.

Before we go any further, we need the following definition.

Definition 4.0.1 Let D be a balanced bipartite digraph of order 2a > 10, and let k be an integer. We say that D

satisfies the condition Xy, if for every dominating pair of vertices {z, y}, d(z) + d(y) > 3a + k.

Theorem 4.0.2 Let D be a strongly connected balanced bipartite digraph of order 2a > 10. If D satisfies the

condition Ny, i.e., d(x) + d(y) > 3a for every dominating pair of vertices {z,y}, then D is hamiltonian.

We will prove this theorem by contradiction and Kénig-Hall theorem. In Section 4.1} we will present a list of
hamiltonian results of a digraph or bipartite digraph. In Section we proposed some lemmas to prove Theorem
Also, we give the proof of Theorem [4.0.2l In Section We show some new sufficient conditions for
bipancyclic and cyclability of digraphs.

4.1 Introduction and notations

We start with some terminology and notations.
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In this chapter, we consider finite digraphs without loops and multiple arcs. Terminology and notations not

described below follow Section

For a digraph D, we denote by V(D) the vertex set of D and by A(D) the set of arcs in D. The order of D is
the number of its vertices. The arc of a digraph D directed from « to y is denoted by xy or x — y (we also say
that  dominates y or y is an out-neighbour of x and x is an in-neighbour of y), and = < y denotes that x — y
and y — x (x < y is called 2-cycle). If x — y and y — 2z we write z — y — z. If there is no arc from z to y,
we shall use the notation zy ¢ A(D). For disjoint subsets V; and V5 of V(D), we define A(V; — V3) as the set
{zy € A(D)|x € V1,y € Vo} and A(V1,Va) = A(V; = Vo) U A(Va — V). Ifx € V(D) and V; = {z}, we sometimes
write = instead of {z}. If V; and V4 are two disjoint subsets of V(D) such that every vertex of V; dominates every

vertex of V4, then we say that V; dominates V5, denoted by V; — V5. Vi +» V, means that V; — V5 and Vo — V4.

The out-neighborhood of a vertex z is the set N*(z) = {y € V(D)|zy € A(D)} and N~ (z) = {y € V(D)|yx €
A(D)} is the in-neighborhood of x. Similarly, if U C V(D), then N*(z,U) = {y € Ulzy € A(D)} and N~ (z,U) =
{y € Ulyx € A(D)}. The out-degree of x is d* (z) = |[N*(z)| and d™ (z) = |N~(z)| is the in-degree of =. Similarly,
dt(z,U) = [IN*(z,U)| and d~ (z,U) = [N~ (x,U)|. The degree of the vertex x in D is defined as d(z) = d*(z) +
d~(x) (similarly, d(z,U) = d*(z,U) + d~(x,U)). The subdigraph of D induced by a subset U of V(D) is denoted by
D{(U) or (U) brevity.

The path (respectively, the cycle) consisting of the distinct vertices z1, zo, ..., z,, (m > 2) and the arcs z;z; 1,7 €
[1, m — 1] (respectively, z;z; 1,7 € [1,m — 1], and z,,,z1), is denoted by x5 - - - z,,, (respectively, 125 - - - x,,21). The
length of a cycle or a path is the number of its arcs. We say that z,25---z,, is a path from z; to z,, or is a
(z1,xm)-path. The length of a cycle or a path is the number of its arcs.

If P is a path containing a subpath from z to y, we let P[z,y] denote that subpath. Similarly, if C is a cycle
containing vertices x and y, C[z, y] denotes the subpath of C from = to y. Given a vertex z of a path P or a cycle C,
we denote by =T (respectively, by =) the successor (respectively, the predecessor) of = (on P or C), and in case

of ambiguity, we use P or C as a subscript (thatis =} - - -).

A digraph D is strongly connected (or, just, strong) if there exists a path from z to y and a path from y to x for
every pair of distinct vertices z,y. A digraph D is k-strongly (k > 1) connected (or k-strong), if |[V(D)| > k+ 1 and
D(V (D) \ A) is strongly connected for any subset A C V(D) of at most k — 1 vertices.

A digraph D is bipartite if there exists a partition X, Y of V(D) into two partite sets such that every arc of D has
its end-vertices in different partite sets. It is called balanced if | X| = |Y|. The underlying graph of a digraph D is

denoted by UG(D). It contains an edge zy if z — y or y — x (or both).

A cycle (path) is called hamiltonian if it includes all the vertices of D. A digraph D is hamiltonian if it contains
a hamiltonian cycle and is pancyclic if it contains a cycle of length & for any 3 < k < n, where n is the order of

D. A digraph D is called non-hamiltonian if it is not hamiltonian. A balanced bipartite digraph of order 2m is even
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pancyclic if it contains a cycle of length 2k for any £,2 < k < m.
For general digraphs, there are not in the literature as many sufficient conditions as for undirected graphs that
guarantee the existence of a hamiltonian cycle in a digraph. The more general and classical ones is the following

theorem of M. Meyniel:

Theorem 4.1.1 (M. Meyniel [103]) /f D is a strongly connected digraph of order n > 2 and d(z) + d(y) > 2n — 1 for

all pairs of nonadjacent vertices x and y of D, then D is hamiltonian.

Notice that Meyniel’s theorem is a common generalization of well-known classical theorems of Ghouila-Houri

[61] and Woodall [124]. A beautiful short proof Meyniel's theorem can be found in [23].

Recently, there has been a renewed interest in various Meyniel-type hamiltonian conditions in bipartite digraphs

(see, e.g., [4,12,137,[121]). The following theorem due to Adamus Janusz.

Theorem 4.1.2 ([2]) Let D be a strong connected balanced bipartite digraph of order 2a > 6. Suppose that d(x) +
d(y) > 3a for each pair of distinct vertices x,y with a common out-neighbor or a common in-neighbor, then D is

hamiltonian.

The following theorems are the generalization of Theorem|4.1.2

Theorem 4.1.3 ([121]) Let D be a strongly connected balanced bipartite digraph of order 2a > 4. Suppose that, for
every dominating pair of vertices {z,y}, either d(x) > 2a — 1 and d(y) > a+ 1 ord(y) > 2a — 1 and d(z) > a + 1.

Then D is hamiltonian.

Before starting the following theorems, we need to introduce additional notation.

Let D(8) be the bipartite digraph with partite sets X = {xo, z1, 22,23} and Y = {yo, y1, y2, y3}, A(D(8)) contains
exactly the arcs yox1,y120, T2ys3, z3y2 and all the arcs of the following 2-cycles: x; < y;,i € [0,3],y0 < 22,y0 <

x3,Yy1 < T2 and y; <> x3, and it contains no other arcs.

Theorem 4.1.4 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a > 8. Suppose that

d(z) + d(y) > 4a — 3 for every pair of vertices x,y with a common out-neighbour. Then D is hamiltonian.

There are many results that support Bondy’s “metaconjecture” in digraph. Let us cite for example the following:

Theorem 4.1.5 ([102]) Let D be a balanced bipartite digraph of order 2a > 4 with partite sets X andY. Suppose
that d(x) + d(y) > 3a + 1 for each two vertices x,y either both in X or both inY. Then D contains cycles of all even

lengths 4.6, ..., 2a (i.e., D is bipancyclic);

Next, we will give a sufficient condition for the existence of hamiltonian cycles in balance bipartite digraph.
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4.2 The hamiltonicity of balance bipartite digraph

This section mainly presents the proof of Theorem First, we propose some lemmas to prove Theorem

4.21 Lemmas

Throughout this section, we assume that D is a strongly connected balanced bipartite digraph with partite sets of

cardinalities a > 5, which satisfies the condition d(z) + d(y) > 3a for every dominating a pair of vertices {z, y}.

Lemma 4.2.1 Suppose that D is non-hamiltonian. Then, for every vertex uw € V (D), there exists a vertex v €

V(D) \ {u} such thatu and v have a common out-neighbour.

Proof of Lemma[4.2.1] Suppose, on the contrary, that D contains a vertex z, which has no common out-neighbor
with any other vertex in D. Let P = xgx; ---y be the largest path in D. Then d=(z;) = 1 and d(z1) < a+ 1. If
there exists a vertex w € V(D) such that {z;,w} is a dominating pair, then d(w) > 2a — 1. If d(w) = 2a, then z,
would have w as a common out-neighbor with some vertices, a contradiction. So d(w) = 2a — 1, d(z1) = a + 1 and
xow ¢ A(D).

By strong connectedness of D, for any = € V(D), d*(z) > 1. Thus, d*(z1) = a and z; would have a common
out-neighbor with any vertex v from its partite set. The same argument with w, d(v) = 2a — 1 and zgv ¢ A(D).
So. D[V(D) — {=xo,z1}] be a complete bipartite digraph. Since D is a strongly connected digraph, then it is easy
to construct a hamiltonian cycle of D. This contradicts D is non-hamiltonian. It follows that z; has no common
out-neighbor with any other vertex in D. Repeating the above argument for all vertices on P, so, y has no common
out-neighbor with any other vertex in D. Since P be the largest path in D, it follows from the strong connectedness

of D that D is a cycle of length 2a, i.e., D is hamiltonian, a contradiction. O

Similarly, we can obtain the following lemma:

Lemma 4.2.2 Suppose that D is not a cycle of length 2a. If d(x) +d(y) > 3a+ 1 for every dominating pair of vertices
{z,y}, then, for every vertex u € V (D), there exists a vertex v € V(D) \ {u} such that v and v have a common

out-neighbour.

The next lemma is the key of the proof of Theorem

Lemma 4.2.3 ([4]) Suppose that D is non-hamiltonian, and let {C1,Cs, ..., C;} be a cycle factor in D with a minimal

number of elements, and |C1| < |Cq|--- < |Cy|. Then,

|A(V(CL), V(D) \ V(Cy))| < W

Now, we are ready to prove Theorem
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4.2.2 The proof of Theorem

Now, let D be a balanced bipartite satisfying the conditions of Theorem Let X and Y denote its partite sets.

For a proof by contradiction, suppose that D is not hamiltonian.

By Lemmaand condition X, for every vertex z € V(D), d(z) < 2a. Then, we have the follow claim:
Claim 4.2.4 For every vertexu in D, d(u) > a.
To complete the proof, we now will prove the following claim.
Claim 4.2.5 D contains a cycle factor.

Proof. D contains a cycle factor if and only if there exist both a perfect matching from X to Y and a perfect
matching from Y to X. By the Kdnig-Hall theorem [108], it suffices to show that |V *(S)| > |S| for every S ¢ X and
INT(T)| > |T| forevery T C Y.

Suppose, on the contrary, that a nonempty set S C X such that [N *(9)| < |S].

By the strong connectedness of D, d*(x) > 1 for every vertex = in D. Then |S| > 2. It follows from |[N*(S)| < | S|
that there exist vertices =1, x5 € S suchthat N*(z1)NN*(z3) # 0. Thus, {z1,x2} be a dominating pair. By condition

Ny, we can obtain
3a < d(z1) +d(w2) = (dF (1) + d* (z2)) + (d™ (21) +d ™ (z2)) < 2(|S] - 1) + 2a,

and so, 2|S| > a + 2.
Since S C X and |[NT(S)| < |S|, then |S| <aand |Y \ NT(S)| > 1.

If there exist y1,y2 € Y \ N*(S) such that {y1,y2} is a dominating pair, then
3a < d(y1) +d(y2) < 2(2a — [5]) < da— (a +2),

a contradiction. So, no two vertices of Y\ N*(S) form a dominating pair. Thus, [INT(Y \ N*(S) — {y})| > |V \
NT(S) — {y}|. Forevery vertexy € Y \ N*(S5),

d'(y) <a—(YANT(S)| -1 =a— Y \NT(S)[+1=|N"(S)+1<]S]

By Claim a <dly) =d"(y)+d (y) <|S|+ (a—1S]) = a. So, d(y) = a and d*(y) = |S|. If there
are two vertices y1, yo in Y \ NT(S), then d*(y;) = d*(y2) = |S|. Since {y1,y2} is not a dominating pair, then
NTt(y1) N Nt(y2) = 0. Thus, 2|S| = d(y1) +d¥(y2) = |[NT(y1) U N*(y2)| < a, which contradicts 2|S| > a + 2.
Hence S = X. However, Y\ NT(S)| > 1,s0y” € Y \ N*(S) such that d~(y") = 0, which contradicts the strong

connectedness of D.
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This Claim is proved. [

By Claim[4.2.5] D contains a cycle factor {C1,C5,...,C;}. Now suppose [ is the minimum possible, since D is
not hamiltonian, so I > 2. We assume |C1| < |Co| < --- < |Cf] and |C4| = 2t, then 1 < ¢ < 2. Now, we have the

following claim:
Claim 4.2.6 ¢ > 2.

Proof. For a proof by contradiction, suppose ¢t = 1. Then C is a 2-cycle, and let C; = z1y;21. By Lemma4.2.3]

then dee (1) + des (41) < 2(a — 1). And by Claimf2.4]
2a < d(x1) + d(y1) = doy (21) + de, (1) + dog (v1) + dog (y1) < 20+ 2.

Without loss of generality, assume d(z;1) < d(y1). We distinguish the following four cases.
Case 1 d(xz1) =d(y1) = a.

By Lemma[4.2.1] there exists a vertex 2’ € X \ {z1} such that {z;, 2’} is a dominating pair. It follows from condition
Ry that d(2’) = 2a. So 2y, € A(D) and y12’ € A(D). Let 2’ € C; for some 1 < j <[ and y’ be the successor of z’
on the cycle C;. Then {y;,y'} is a dominating pair and d(y’) = 2a. So, z1y" € A(D) and cycle C, can be merged

into C;. This contradicts the minimality of /.
Case 2 d(z;) =aandd(y;) =a+ 1.

By Lemma there exists a vertex 2’ € X \ {z1} such that {z1,2'} is a dominating pair. By condition X,
d(z') = 2a. Let 2’ € C; and y’ be the successor of 2’ on the cycle C; with 2 < i <. Then {y1,y’} is a dominating
pair and d(y’) > 2a — 1. By the minimality of [, d(v') = 2a — 1, 1y’ ¢ A(D) and 'z, € A(D). If |C;| = 2, then Cy
can be merged into C;, a contradiction. So, |C;| > 4. Let 2"y" 2’y C C;, by d(z') = 2a, then {y1,y"”} is a dominating
pair and d(y") > 2a — 1. If "2, € A(D), then C; can be merged into C;, a contradiction. So, y"z; ¢ A(D). By
d(y") > 2a — 1, then z1y” € A(D) and {x1,2"} is a dominating pair. Hence, d(z") = 2a and 2"y, € A(D). Then
the cycle C; can be merged into C; by replacing the arc z”y” on C; with the path "y, x13”. This contradicts the

minimality of /.
Case 3 d(x1) =aandd(y;) = a+2.

The same argument with Case [2, {z’,z:} and {y,y'} are both dominating pairs, and z'y’ € A(C;). By Rg, d(y') >
2a — 2. It follows from the minimality of [ and d(z’) = 2a that x13’ ¢ A(D). If |C;] = 2, by the minimality of [, then
y'z1 ¢ A(D). Since a > 5 and d(y') > 2a — 2, then there is Cy, with £ # 1,4. Let wv € A(Cy), then z'v, uy’ € A(G).

So, C; can be merged into Cy, a contradiction. Thus, |C;| > 4. The definitions of ¢ and 2 are the same as Case
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By the minimality of I and d(z') = 2a, y"z1 ¢ A(D). If z1y” € A(D), then {z”,z,} is a dominating pair. So
"y, € A(D) by Xy. Cy can be merged into C;, a contradiction. So z1y” ¢ A(D). By d(z') = 2a, then {y",y1 } is a
dominating pair and d(y"”) > 2a — 2.

If there exists C; with j # 1,4. Let yz € A(C)), since d(y”) > 2a—2and y"z1,z1y" ¢ A(D), theny"z,yz" € A(D).

So, C; can be merged into C;. This contradicts the minimality of .

It follows from a > 5 that |C;| > 6. Let a"y"2'y'z"'y"" C C;. Since d(y”) > 2a — 2 and d(2’) = 2a, then
y'e" 'y x'y" € A(D). Suppose v’z € A(D), if 2"y’ € A(D), then
C — Cz \ {yl/xl x y y/m/// " ///} U {yll " x///yl y x1’$1y17y1x x/y///}

is a hamiltonian cycle, a contradiction. By d(y’) > 2a — 2, then 2’y € A(D). Similarly, we can find a hamiltonian
cycle

C — C,L \ {:I://yll y :E x y y/I/”} U {x//yl y I17I1y17ylx [17 y y I/”}

a contradiction. So, y'x; ¢ A(D).
By d(z1) = a > b, there exists y € C; such that y connects with z;. Let = be the successor vertex of y on cycle
Cj, then y'xz € A(D) by d(y') > 2a — 2. If yz1 € A(D), then C = C; \ {yx,y"a',y'x""} U{yx1, x1y1, 2’y z, y" ="'}

is a hamiltonian cycle, a contradiction. So =1y € A(D). Similarly, we can find a hamiltonian cycle, a contradiction.
Case 4 d(x1) =d(y1) =a+1.

By Lemmal4.2.1] there exists a vertex 2’ € X \ {z1} such that {z1, 2’} is a dominating pair. It follows from condition
N that d(z') > 2a — 1. Let 2’ € C; for some 1 < i <! and y’ be the successor of 2’ on the cycle C;.

If {y1,y'} is not a dominating pair, then y,2’ ¢ A(D) or y'z’ ¢ A(D). By d(z') > 2a — 1, ¥z, ¢ A(D). When
|C;| = 2, then y'z' € A(D), y12’ ¢ A(D) and z'y; € A(D). By the minimality of [, z1¢’ ¢ A(D). By Claim
then d(y’) > a > 5, so there exists '/ € C; with j # 1,4 such that 2"y’ € A(D) or y'z"” € A(D). If 2"y € A(D),
let 4" be the successor vertex of 2”7 on C;. Then 2'y” € A(D) since d(z’) > 2a — 1. So, C; can be merged into
cycle Cj, a contradiction. Similarly, if y'z” € A(D), a contradiction. So |C;| > 4. Without loss of generality, let
C; = viuy - - vsugvy, Where forany 1 <i <s,v; € Y, u; € X and 2’ = ;.

When yyuy ¢ A(D), by d(u;) > 2a — 1, we have uy; € A(D). Then, we obtain the following fact:
Fact 4.2.7 If2'y, € A(D) (u1y1 € A(D)), then D would be hamiltonian.

Proof. If there exists u; € C; such that y,u, € A(D), then {vg,y1} is a dominating pair. So, d(vx) > 2a — 1. By the
minimality of I, vyz1 ¢ A(D). Since d(vg) > 2a — 1, then zyv, € A(D), and {z1,ui—_1} is @ dominating pair. Thus,
d(ug—1) > 2a — 1. By the minimality of [, then u,_1y1 ¢ A(D) and yyur—1 € A(D). Repeating the above argument

for all the subsequent vertices on C;, then y1u; € A(D). So C; an be merged into C;, a contradiction. Hence,
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Nt (y1) NV (C;) = 0. Similarly, N*(z1) N V(C;) = 0. By the strong connectedness of D, then there exists C; with
j # 1,i. Without loss of generality, let zy € A(C;) such that z1y € A(D). Then {z1,z} is a dominating pair, and
d(xz) > 2a — 1 by Ry. It follows from the minimality of  that zy, ¢ A(D). So zy’ € A(D). Then

Ci\A{zy} UC \{z'y'} U{z1y, 2y, 2"y1, 121 }

is a cycle that contradicts the minimality of I. Thus, D is hamiltonian. [

By Fact[4.2.7] since D is not hamiltonian, then 'y, ¢ A(D). And by d(z') > 2a — 1, y12’ € A(D) (y1u1 € A(D)).
Then {v1,y1} is dominating pair, d(v1) > 2a — 1. Since y'z’ ¢ A(D) and d(z’') > 2a — 1, then u1y1 € A(D). By
the minimality of I, vizy ¢ A(D). So, z1v1 € A(D). Similarly, {us,z1} is dominating pair and d(us) > 2a — 1. By
the minimality of , then u,y1 ¢ A(D). So, yius € A(D) and vaus € A(D) (i.e., y'us € A(D)). Then {y1,y'} is a

dominating pair, a contradiction.

Hence, {y1,y'} is a dominating pair, then d(y') > 2a — 1.

If |C;] = 2, assume z'y; € A(D) by d(z’) > 2a — 1, it follows that 13/, y12" ¢ A(D) and y'zy € A(D) from
the minimality of . Since a > 5, there exists C; with j # 1,7 and z""y" € A(Cj). So, 2"y, 2'y"” € A(D) and C;
can be merged into Cj, a contradiction. Hence, |C;| > 4. If 2’y € A(D), by Fact[4.2.7} D is hamiltonian. This
is a contradiction. So z'y; ¢ A(D) and y12’ € A(D) by d(2') > 2a — 1. Let y, be a predecessor vertex of =’ on
C; and x5 be a predecessor vertex of y, on C;. Then {y1,32} is a dominating pair, and d(y2) > 2a — 1. By the
minimality of [, yo21 ¢ A(D). So, z1y2 € A(D). Repeating the above argument for all vertices on C;, we can obtain
N=(V(Cy)) N V(C;) = 0. Since D is strongly connected, then there exists C; with j # 1,7 and zy € A(C;). By
d(z') > 2a—1,d(y") > 2a—1and N~ (V(C1)) NV (C;) =0, so 2'y,zy’ € A(D). Then C; can be merged into C,
which contradicts the minimality of .

Hence, t > 2. I

By Lemma [4.2.3] without loss of generality, assume
[AV(C1) N X, V(D) \ V(Ch))| < t(a—1). (%)

By Claim 4.2.6) assume dc<(21) < -+ < doe(z¢) and dee(y1) < -+ < doe(yi), where z1,a,...2, € V(C1) N X

and y1,y2,...y: € V(C1) NY. By (), dce(z1) < a — t. Then, we have the following claim.
Claim 4.2.8 When dc:(x1) = a —t, then D would be hamiltonian.

Proof. Forall 1 <i <t,by (), dce(z;) = a —t. If there exist x;,2; € X N V(Cy) such that {z;, z;} is a dominating
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pair, then

3a S d(xl) + d(IEJ) = dcl (l’l) + dC’1 (x]) + dclr(zliz) + dcf (SC]) S 4t + 2(& — t) S 3a

by t < a/2. So d(z;) + d(x;) = 3a, t = a/2, do,(x;) = dc, (z;) = a, | = 2 and dee () = a/2 forall 1 < k < t. Let
C¢ = Cy. Then, every two vertices in V(C7) N X can form a dominating pair. By X, then D[V (C})] is a complete

bipartite digraph.

If existing z4 € V(Cy) and y € V(Cs) such that z,y € A(D), let = be a predecessor of y on Cs. Then {z, x4} is a
dominating pair. So, d(z) > a + a/2 by Rg and d¢, (z) > a/2.

We will show N*t(z) N V(Cy) = 0. If existing y, € V(C4) such that 2y, € A(D), since D[V (C})] is a complete
bipartite digraph, C; can be merged into C», a contradiction. So, N*(x) N V(Cy) = 0. Let zqyq € A(Cy), then
yax € A(D) by de, (x) > a/2. Let ¢y’ be the predecessor of 2 on Cs, then {y4,y”} is a dominating pair.

If there is z, € V(C4) such that y"x, € A(D), the same argument with above, a contradiction. So N*(y”) N
V(Cy) = 0. We can assume z. € V(C;) such that z.y” € A(D) by d(yq) + d(y”) > 3a. Repeating the above

argument for all the vertices on Cs, so N*(V(C3)) N V(Cy) = ). This contradicts the strong connectedness of D.

For all z;, € V(C1) N X such that N*(z,) N V(Cy) = 0 and for all y € V(C3) NY such that y € N~ (xy). By y
and xz, were arbitrary and the strong connectedness of D, there exist y;z; € A(Cy) and y'z! € A(Cs) such that
yra! € A(D) and y'z; € A(D). So, C; can be merged into C3, a contradiction. Hence, no two vertices z; and z; in
V(C1) N X form a dominating pair. So d, (y;) = 1forall 1 <i <t. In particular, da (x1) = 1. Since d(z1) > a and
doe(x1) = a —t, d(z1) = df (1) + dg, (21) + doe (21), then dg (z1) >t — 1.

When ¢ > 3, without loss of generality, assume {y2,y3} is a dominating pair. By (x) and Lemma then
|[A(V(C1)NY, V(D)\V(C1))| < t(a—t)and dcg(y1) +des (y2) +des (y3) < 3(a—1t). So, dee(y2) +deog (y3) < 3(a—1),
and

3a < d(ye) +d(ys) = dc, (y2) + de, (y3) + dog (y2) + dog(y3) < 2(t+ 1) + 3(a — 1).
Then t < 2, a contradiction. So, ¢t = 2.
If {y1,y2} is @ dominating pair, then dc<(y1) + dc: (y2) < 2(a — 2), and

3a <d(y1)+d(y2) <2(2+1)+2(a—2) =2a+2,

which contradicts a < 3. So d¢, (z1) = de, (z2) = 2 and d(z1) = d(z2) = a, d(y1) < a.

If there is y € C; with j # 1 such that 2,y € A(D), let  be a predecessor vertex of y on C;. So, {z,z} is a
dominating pair. By R, d(z) = 2a, C; can be merged into C;, a contradiction. Thus, N (z1) N V(C§) = (. Similarly,
NT(V(Cy)) NV (Cg) =0, which contradicts D is strongly connected. Hence, D is hamiltonian. |
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By Claim suppose that dc¢ (z1) = a — t — ay for some a1 > 0. Then
df (z1) = d(x1) — dg (x1) — dee(z1) > a—dg (v1) —a+t+ar > o (M)
by d(x1) > a. So 1 dominates at least «; vertices on (4.
If 2;, z; satisfy doe (7;) + dee(v) < 2(a—t) —2for1 <i < j <t {x;,z;} is adominating pair. Then
3a < d(x;) +d(x;) <4t +2(a—t) —2 < 3a — 2,
a contradiction. So, {z;, z;} is not a dominating pair.

By Lemma |4.2.1} for all above z;, z;, if there exist 2,2 € C, such that {z;,2'} and {z;,2"} are dominating

pairs, then

d(@')+d(z") > 6a—d(z;)— d(x )
= 6a—[(dZ, (z:) + df, (27)) + (dg, (z:) + dg, (x5)) + (deg () + deg (w5))]
> 6a—t—2t—2(a—1t)+2

= 4da—-t+2.
Sod(z')>4a—t+2—-2a=2a—t+2and
dcf(:c/) 2a—t+2. (Ml)

Lets>1,foralll1 <i<s,doe(r;)) =a—t—a;withl <a, <---<aog,andforall s +1<j <t doe(x) >a—t.

In the same argument with x4, by (M), for each 1 < i < s, z; dominates at least «; vertices on C;. Denote by S;
the vertex set of the predecessors of z; which dominates at least «; vertices and apart from z;. Forall 1 <i < j <s,

it follows from dge (z;) + dee (w5) < 2(a —t) — 2 that {z;, z;} is not a dominating pair. So S; N S; = (. Let
R=UZ5S;

and

R=V(C1)n X\ (UZi{zi} UR),

I’ denotes all i that =; dominates at least «; vertices apart from its own on C4, and I denotes all 7 that 2; dominates

exactly a; — 1 vertices apart from its own on Cy. Then [R| = (t — ", ai — Yy — 1) = s). By (M), for any
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vertex z € R, d(zx) > a — t + 2. So, by (%), we obtain:

tla—t) > > deg(z) = deg(mi)+ Y des(z)+ Y dee(ar)
i=1 i=1

z;€ER 2LER
> Y la—t—a)+ O i+ Y (aj—1)(a—t+2)
i=1 el jer
+(t — Zai — Z(aj —1)—s)(a—t)
il jer”
= t(a—t)—i—Zai—QH"\. ()

So, Zie[’ a; + Zje]” aj = Zi=1 oy < 21"

If there is © € I" such that a; = 1, by the definition of I”, then
dél (l‘l) =1. (Mg)

By Claim[4.2.4] then
a<d(z;)= da(mi) +d51(xi) +doe(r;)) <1+t+a—t—1=a,

and dC{ (331) =a—t—1. So, d61 (ch) =t.
Next, we will show N*(z;) N V(C¥) = 0.

Suppose there exists y € A(C;) with j # 1 such that z;y € A(D), then {z, z;} is a dominating pair, where z be a
predecessor vertex of y on C;. By d(z;) = a and R, we obtain d(x) = 2a. Let y; be a successor vertex of z; on C;.

So, zy; € A(D) and C; can be merged into C;. This contradicts the minimality of I. Hence,
N*t(z) NV (CE) = 0. (M3)

Suppose there exists z; € V(C1) N X such that {z;,z;} is a dominating pair, by d(z;) = @ and Xy, then d(z;) = 2a.
Since t > 2, let y’ and y” are predecessor and successor of z; on C4, respectively. If there exists yz € A(C;) with
j # 1suchthat y'z € A(D), by d(x;) = 2a, then yz; € A(D). So, C; can be merged into C}, a contradiction. Thus,
NT YNV (CE) = 0. Similarly, N~ (y" )NV (C§) = 0. By (M), then d¢, (v') +de, (") < 4t —1. It follows that {3, "}

is a dominating pair from d(x;) = 2a. So,

3a < d(y') +d(y") = de,(y') + do, (") + dos(y') + des (y") <4t —1+2(a —t) = 2a + 2t — 1,

we obtain ¢ > ’“2”1, which contradicts ¢ < §. Hence, there does not exist any vertex z; in V(C1) N X such that z;

and z; have a common out-neighbour.
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By Lemmal[4.2.1] let +' € V(C;) such that {x;,2'} is a dominating pair. Then d(z) = 2a by d(z;) = a. Let y; be
a predecessor vertex of z; on C1, y’ be a predecessor vertex of 2’ on C;.

If there exists z € V(C1) N X such that y'z € A(D). By d(z’) = 2a, then C; can be merged into C;. This
contradicts the minimality of I. So df (y') = 0. By (M3), then z;y/ ¢ A(D). So, dg, (y') < t—1. Anddee(y') < 2(a—t).
Thus, d(y') < 2(a—t) +t — 1.

By (Ma), then dg (y;) <t — 1. And df (y;) < t. If there exists z” € V(C;) \ {2} such that y;2”" € A(D), by
(Ms), da (y') = 0, and dce(x;) = a —t — 1, then y"x; € A(D), where y" be a predecessor vertex of =" on Cj.
So, ¢4 can be merged into C;, a contradiction. Thus, da\{m/}(%) = 0. Similarly, for any k& # 1,7, dgk (y;) = 0.
And by d(a') = 2a, then y,a’ € A(D). Thus, N¢.(y;) = {z}, i.e., dfe(v;) = 1. And dge(y;) < a —t. So, d(y;) =
d&, (yi) +dg, (i) + dée (yi) + doe (yi) < a+t.

It follows that {y;,%’} is a dominating pair from d(«’) = 2a. Thus,
d(y;) +d(y’) <2(a—t)+t—1+a+t=3a—1,

which contradicts d(y;) + d(y’) > 3a.

Hence, for all i € I”, o; > 2 and the (xx) inequalities are equal. Then |I'| = 0 and «; = 2 with ¢ € I". Let

x € V(C1) N X such that {x, x;} is a dominating pair. Since
d(z;) = da(xi) +dg, (@) +dog(zi) <2+t+a—-t—-2=a,

sod(z) =2aand dce(z) =a—t+2by Rg. Then2a =d(z) <a—t+2+2t =a+t+2andt = a— 2. It follows from

t <a/2andt > 2thatt =2 and a = 4. This contradicts a > 5.

Hence, D is hamiltonian.

The proof of Theorem is completed.

4.3 The bipancyclicity and cyclability of digraph

In this section, first, we proved some new sufficient conditions for bipancyclic of digraphs.

From Theorem 4.1.4] we obtain the following theorem.

Theorem 4.3.1 Let D be a strongly connected balanced bipartite digraph of order 2a > 8 with partite sets X and
Y. Suppose that D contains a cycle of length 2a — 2 and d(x) + d(y) > 4a — 4 for every dominating pair of vertices

{z,y}. Then D is even pancyclic.
To prove Theorem |4.3.1], we use the following theorem:
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Theorem 4.3.2 ([38]) Let D be a strongly connected balanced bipartite digraph of order 2a > 10 which contains a
pre-hamiltonian cycle (i.e., a cycle of length 2a — 2). Assume that max{d(x),d(y)} > 2a — 2 for every dominating

pair of vertices {x,y}. Then forany k,1 < k < a — 1, D contains cycles of every length 2k.

Proof of Theorem[4.3.1: On the contrary, we suppose D is not bipancyclic. By Theorem[4.0.2/and a > 4, let C be
a cycle of length 2a and for any u € V(D) such that d*(u) <a—1and d~ (u) < a—1,i.e., d(u) < 2a —2. By Lemma
forallz € V(D),2a —2>d(x) > 4a—4— (2a —2) = 2a — 2, i.e., d(x) = 2a — 2. For any u,v € V(D) from the
same partite set of D,

2(2a — 2) < d(u) +d(v) = (dt(u) +dT(v)) + (d” (u) +d~ (v)).
And d~(u) +d~(v) < 2a — 2, then d* (u) + d* (v) > a+ 1. So {u,v} is a dominating pair. By Theorem 4.3.2} for any
k,1 < k < a, D contains cycles of every length 2k. O

The next theorem is our second theorem which improves the result of Theorem[4.1.5

Theorem 4.3.3 Let D be a strongly connected balanced bipartite digraph of order 2a > 10 other than a directed
cycle of length 2a. If D contains a cycle of length 2a — 2 and D satisfies the condition Xy, i.e., d(z) + d(y) > 3a + 1
for every dominating pair of vertices {x, y}, then D contains a cycle of length 2k for all k, where 1 < k < a (i.e., D is

even pancyclic).
To prove Theorem [4.3.3] we need the following lemma.

Lemma 4.3.4 ([8]) Let D be a bipartite digraph of order n which contains a cycle C of length 2b, where 2 < 2b <
n — 1. Let x be a vertex not contained in C. If d(x,V(C)) > b+ 1, then D contains cycles of every even length m,

2 < m < 2b, through x.

Proof of Theorem [4.3.3} By Theorem D contains a Hamilton cycle.

Without loss of generality, let C' = z1y122y2 - - - 24—1y.—121 be a cycle of length 2a — a, where z; € X and y; € Y
foralll1<i<a-1.

Suppose = and y are not on C with x € X and y € Y. The remainder of the proof splits into two cases depending

on the degrees of vertices = and y.
Case1 d(z)>a+2o0rd(y) >a+2.

Without loss of generality, we assume that d(x) > a + 2. Since d(x) = dg,y(v) + dc(r) > a+ 2 and dg,y (v) < 2,

thende(z) >a+2-2=a>a—1.

By Lemmal4.3.4] D contains a cycle of all even lengths less than or equal to 2a — 2.

Case2 d(z) <a+1landd(y) <a+1.
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Since D is a strongly connected balance bipartite digraph and by Lemma [4.2.1} we assume, without loss of
generality, zy; € A(D). So {z,z;} is a dominating pair and d(z) + d(z1) > 3a + 1.

Then d(z1) > 3a+ 1 — a — 1 = 2a. Hence, z; together with every vertex y; forms a 2-cycle.

So, we can obtain that D contains a cycle of all even lengths 2k with 1 < k < a. The proof of this theorem is
completed. O

Before proceeding further, we give more notations.

Let D be a digraph and let S be a nonempty subset of vertices of D. We say that a digraph D is S-strongly
connected if, for any pair z, y of distinct vertices of S, there exists a path from x to y and a path from y to x.
A set S of vertices in a directive graph D is said to be cyclable (pathable) in D if D contains a directed cycle

(path) through all vertices of S.

There are many well-known conditions which guarantee the cyclability of a set of vertices in an undirected graph.
H. Li, E. Flandrin and J. Shu [89] proved the following theorem which gives a sufficient condition for cyclability of

digraphs.
Theorem 4.3.5 ([89]) Let D be a digraph of ordern. and S C V(D). If D is S-strong and if d(x) + d(y) > 2n — 1 for
any two nonadjacent vertices x,y € S, then S is cyclable in D.

In this section, we will show the following theorem.

Theorem 4.3.6 Let D be a 2-strong digraph of ordern and S C V(D). If D is S-strong and if d(z) + d(y) + d(w) +
d(z) > 4n — 3 for all distinct pairs of nonadjacent vertices z,y and w, z in S, then S is cyclable in D or D contains a

cycle through all the vertices of S except one.
Proof of Theorem[4.3.6; Since for all distinct pairs of nonadjacent vertices z,y and w, z in S, d(z) + d(y) + d(w) +
d(z) > 4n — 3. Then S contains at most one pair of nonadjacent vertices u, v such that d(u) + d(v) < 2n — 2.

If for any pair of nonadjacent vertices z,y in S such that d(x) + d(y) > 2n — 1, by Theorem 4.3.5] we obtain S is

cyclable in D. So, we assume that there is a pair of nonadjacent vertices u, v in S such that d(u) 4+ d(v) < 2n — 2.

Let S’ = S — {u}, then D is clearly S’-strongly connected and for two nonadjacent vertices of S’ have degree
sum in D greater or equal to 2n — 1. It follows that S’ is cyclable in D from Theorem Let C be a cycle which

contains all vertices of S, i.e., C contains a cycle through all the vertices of S except one vertex w.

Theorem has completed. O

4.4 Concluding remarks and further work

In this chapter, we gave sufficient conditions for a balanced bipartite digraph to be hamiltonian. And we show some

sufficient conditions for a digraph to be even pancyclic and cyclable.
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Note that our result show that a balance bipartite digraph with order 2a, if d(z) + d(y) > 3a for every dominating
pair of vertices {z,y}, we can find a hamiltonian cycle. We also show that if a digraph D of order 2a is not a directed
cycle and D contains a cycle of length 2a — 2, if d(x) + d(y) > 3a + 1 for every dominating pair of vertices {z, y},
then D contains a cycle of length 2k for all k£, where 1 < k < a.

We get the following question:

Problem 4.4.1 Let D be a strongly connected balanced bipartite digraph of order 2a > 10 other than a directed
cycle of length 2a. If D satisfies the condition X1, i.e., d(x) + d(y) > 3a for every dominating pair of vertices {x,y},

then D is even pancyclic?

Also, we have a question to know if Theorem [4.0.2| (or the sufficient hamiltonian condition of digraphs) has a

cyclable version. These will be our further works.
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Chapter 5

Chorded pancyclicity in claw-free graphs

Chorded pancyclic is one of the generalizations of the hamiltonian problem. In this chapter, we study a new sulfficient

condition of chorded pancyclic graphs.

We study a minimum degree condition for K s-free graphs to be chorded pancyclic. Theorem|[1.3.15|gives a

condition of minimum degree for K s-free graphs to be pancyclic. We reaffirm this theorem here.

Theorem 5.0.1 ([54]) Let G be a 2-connected K, 3-free graph with the order n > 35. If 6(G) > %2 then G is

pancyclic.

The lower bound of Theorem is sharp because there is a graph of order 34, which satisfies the degree sum
condition in Theorem but is not pancyclic.
From Theorems|5.0.1] we obtain the results of the extension of pancyclic to the chorded pancyclic. The following

theorems are the main results of this chapter.

Theorem 5.0.2 Let G be a 2-connected K, 3-free graph with the order n > 35. If §(G) > “32, then G is chorded

pancyclic.
Let CH,, be the maximum number of chords in cycle C,, C G with4 < m <n.

Theorem 5.0.3 Let G be a 2-connected K 3-free graph with the ordern > 35. If §(G) > 252, then

W—m if4 <m <5,
m ifGSmS"T“,
CH,, >
nrd 2n+8
5] if 2t <m < 2
mO=(n=m)) _ p, jf2ntll <y <y
2 3 Sm=n.

Moreover, by Theorem|[5.0.3] CH,,, > 2. So, we can obtain G is doubly chorded pancyclic.
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Corollary 5.0.4 Let G be a 2-connected K, 3-free graph with the order n > 35. If §(G) > 52, then G is doubly

chorded pancyclic.

5.1 Terminology and notations

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say that a cycle is chorded if the
cycle has at least one chord, and we call such a cycle chorded cycle. If a cycle has at least two chords, then the
cycle is called a doubly chorded cycle. A graph G of order n is chorded pancyclic (doubly chorded pancyclic) if G
contains a chorded cycle (doubly chorded cycle) of each length from 4 to n.

Bondy’s metaconjecture (see Chapter [1] or Chapter [2) was extended into almost any condition that implies a
graph is hamiltonian will imply it is chorded pancyclic, possibly with some class of well-defined exceptional graphs
and some small order exceptional graphs. As support for the extension of Bondy’s metaconjecture, there are many
results (see Section in Chapter ).

For a vertex set S of V(G), we denote by G[S] the subgraph of G induced by S.

Given a family £ = {H,, H,, ..., Hy} of graphs, we say that a graph G is £-free if G has no induced subgraph
isomorphic to any H; withi =1,2,... k. In particular, if £ = {H}, we simply say G is H -free.

From Theorem we got our main result (Theorem[5.0.2). Theorem [5.0.2] supports for extension of Bondy’s
metaconjecture.

When G is chorded pancyclic, it is in nature to consider how many chords in a cycle of length [, forany 1 <1 < n,
where n is the order of G. Thus, we obtain Theorem

It is necessary to introduce the followings.

We say that a graph G is traceable if it contains a spanning path (that is, the path containing all the vertices of G

). For any integer m, denote by C,,, a cycle of length m.

5.2 The proof of main results

5.2.1 Preparation for the proof

To prove main results, we use the following theorem:

Theorem 5.2.1 ([34]) Let G be a graph with at least three vertices. For some s, if G is s-connected and contains no

independent set of more than s vertices, then G has a hamiltonian cycle.

From Theorem|[5.2.1] we obtain the following lemma:
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Lemma 5.2.2 Let G be a K, 3-free graph. For any x € V(G), then G[Ng(x)] is either traceable, or two disjoint

cliques.

Proof. We assume that x is any vertex in V(G). Suppose that G[Ng ()] is disconnected, then there are only two

components G; and G in G[Ng(z)] since G is K; s-free.

For the sake of contradiction, suppose that there are two nonadjacent vertices v and v in V(G;). Let z be a
vertex in V(Gs). Then {z, u, v, z} induces a K; 3 in G, which contradicts that G is K 3-free. Hence, G[Ng(z)] is two

disjoint cliques.

If G[Ng(x)] is 1-connected, then let u be a vertex-cut of G[N¢(z)]. Since G is K s-free, then let u cuts G[Ng ()]
into two components G’ and G”. The same argument as when G[N¢(z)] is disconnected, then G’ and G are

cliques. It follows that G[Ng(x)] is traceable.
If G[N¢(x)] is 2-connected, since G is K 3-free, it follows from Theorem that G[N¢(z)] is traceable.

The proof of this lemma is completed. ]

5.2.2 Proof of Theorem[5.0.2

In this section we prove Theorem|[5.0.2

Note that 6(G) > 252 > 11 since n > 35. For the sake of a contradiction, we suppose that G is not chorded

pancyclic. Let m be the largest value with 4 < m < n such that G has no chorded cycle of length m. By Theorem

5.0.1] there exists a chorded cycle of length n, and so m # n.

By Theorem|5.0.1} G is pancyclic. We divide the proof into some cases according to the value of m.
Case1 m > 9.

Let C = vyvavs - - - v, be such a cycle in G. For any two vertices v,w € V(C) with vw ¢ E(C), since C is not a

chorded cycle, then vw ¢ E(G). We will show that N(vy) N N(vs) = 0.

Suppose that there exists a vertex = € N (v1)NN (v4). Since §(G) > 22 > 11, thereis avertex y € V(G—C)—{z}
such that vsy € E(G). As G is K; 3-free and vsvr ¢ E(G), then y is adjacent to either vs or v7.

If y is adjacent to vs, then vy zv vsyvevr - - - Vw1 IS @ Cycle of length m with the chord v5vg.
Otherwise, vy xvivsvgyvy - - - vnvy IS @ cycle of length m with the chord vgv7. This is a contradiction.

Similarly, N(vs) N N(v7) = (). We show that N(vy) N N(v7) = 0. If v1g = v1, the similar to N(v1) N N(vq) = 0, we

are done.
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We may assume that v1o # v1. Suppose that there is a vertex z € N(v1) N N(v7). Since §(G) > 252 > 11 and
G is K 3-free, there must exist four vertices x1, 2, x3, 24 € N(vg) such that zz2x324 is @ path in G. Since G is
Klvg'free, then T4v8 € E(G) or x,vig € E(G)

Let
) U1 ZV7U8 X 4T3 LTI VU1 - - - U1 If Tavg € E(Q),
C =
V12V708V9X 12X 3XL4V10 * * - Um U1 if T4V10 € E(G)

Then C" is a cycle of length m with the chord z5v9, a contradiction.

Hence, N(v1) N N(v7) = 0. Since N(v1) N N(vs) = N(vg) N N(v7) = N(vy) N N(v7) = 0, we obtain that

n—2 < d(vy)+d(vs) + d(vr7)

IN

6+ |V(G-0C)
= n—m-+6.

So, we obtain m < 8, which contradicts that m > 9.

Case2 4<m<8.

First, we give the following result.

Claim 5.2.3 If there exists a cycle C; = vyvs ---vjv1 Of length | in G for some 3 <1 < 7 and there does not exist a
chorded cycle C of length 1 + 1 in G, then for any two vertices v;,v; € V(C}), v; and v; has no common neighbor in

V(G)\V(C).

Proof. Without loss of generality, let « € Ng_¢, (v1). Since there exists no chorded cycle of length I + 1 in G, then

2 is not adjacent to two consecutive vertices in C;.

To the contrary, we assume v;z € E(G) with 3 < j < [L]. Note that 3 < j < 4 since 3 <! < 7. Since G is

Klvg'free, Vj—1Vj+1 € E(G) Let

) Cy — {vrv, vovs} U {vrz, v3z, vovy } if vz € E(G),
C =

Cy — {v1v;, v203, V405 } U {v12, 204, 0201, 0305} Otherwise.
Then C" is a cycle of length [ + 1 with the chord vyv3. This is a contradiction.

By the symmetry, this claim is proved. [

Now, we have two subcases.
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Subcase 2.1 m = 8.

Let C7 = vyve - - -7y is a cycle of length 7 in G. By Claim[5.2.3| for any v;,v; € V(C7), Ng—c.(v;) N Ng—c. (v;) = 0.
And |Ng_c, (v;)] > 6 — 6 for any v; € V(C7). Thus, since 6(G) > 52,

n—=7 > Y |Nag-c(v)|
1<i<7
> 7(5—6)
L T,

So, we obtain n < 30, which contradicts that n > 35.

Subcase22 4 <m <7
The following property which is important for our work, is that:

Claim 5.2.4 If there exists a cycle C; of length | in G for some 3 < | < 6, then there exists a chorded cycle C of

lengthl +1inG.

Proof. Let C; = vyvqe---vv1 is a cycle of length I in G with 3 < < 6. To be contrary, we assume that there does

not exist a chorded cycle C of length [ + 1 in G. Since §(G) > 32 > 11, then [Ng_¢, (vi)| > 6 foreach 1 <i < 1.

Since G is K 3-free, it follows from Claim[5.2.3|and Lemmal5.2.2Jthat G[N¢_c, (v;)] is a clique foreach 1 < i < 1.
When 3 < I < 6, |[Ng—c,(v;)| > 6 since §(G) > 52 > 11. Hence, there is a chorded cycle with length I + 1 in

G[Ng—_¢,(v;) U{v;}] foreach 1 < i <. The proof of Claim is completed. ]

Since G is pancyclic, it follows from Claim that G has a chorded cycle of length m with 4 < m < 7. This is

a contradiction. Hence, this theorem holds. O

Next we will prove Theorem[1.3.28|(i.e., Theorem[5.0.3).

5.2.3 Proof of Theorem 5.0.3|

By Theorem[5.0.2] G is chorded pancyclic. Let C,,, be a chorded cycle in G with 4 < m < n. We have the following

cases.
Case1 4 <m<5.

When m = 4. For any vertex x € V(G), let y € N(z). If there are 3 vertices uy,us,us € N(z) — {y} such that

u, uz,ug ¢ N(y). Since G is K s-free, then G[{z, u1,us,us}] is clique, we are done. It follows from ¢ > ”52 > 11

93



that there exist 3 vertices vy, v2,v3 € (N(z) — {y}) N N(y). Since G is K, 3-free, then we may assume vyv2 € E(G).
Hence, G[{v1, ve, z,y}] is clique, we are done.

m(m—1)

When m = 5. We suppose that there does not exist chorded cycle C5 in G such that CH5 > 5— —m = 5.

For any vertex z € V(G), let y € N(z).
Subcase 1.1 |N(y) N (N(z) — {y})| < d(z) — 5.

There are 4 vertices uq,ug,us,uqs € N(x) — {y} such that ui,us,us,us ¢ N(y). Since G is K, s-free, then

G[{u1,uz,us, ug, z}] is clique. We have done.
Subcase 1.2 |N(y) N (N(z) — {y})| > d(z) — 4.

Since § > 222 > 11, then |[N(y) N (N(z) — {y})| = d(z) — 4 < 7. By R(3,3) = 6, since G is K1 3-free graph, then
there are vy, v, v3 € (N(z) — {y}) N N(y) such that v1vev3v; is a cycle. Hence, G[{v1,v2,vs, z,y}] is clique. This is

a contradiction.
Case2 6 <m < ™.

We prove this case by induction on m.

When m = 6, by Case |1} let C5 = vjvuzv4v5v1 be a chorded cycle, and G[{v1, vs, vs,v4,v5}] be a clique.
Suppose there exists v; € V(Cs \ {v1}) such that Ng_c, (v1) N Ng—c,(v;) # 0. We assume z € Ng_¢,(v1) N
Ng_c,(vi), then C = zvive - - v;_1v5v4 - - - vz IS @ cycle of length 6 with CHg > 6 chords. Hence, for any v;,v; €

V(C5), Ng—c5(vi) N Nea—c; (vj) = 0. And [Ng_c, (v;)| > 6 — 4 for any v; € V(Cs5). Thus, since §(G) > 252,

n—=5 > Y |Nag_c(v)|
1<i<5
> 55— 4)
on — 10
> — 20.
- 3

So, we obtain n < 28, which contradicts that n > 35.

Next, we suppose there is a cycle C,, with CH,, > m chords for any m < 1. We will show there is a cycle
Cpt1 With CH,, 1 > m + 1 chords. Let C,,, = viv9 - - - v,,,v1 b€ such cycle with CH,,, > m chords. For the sake of a

contradiction, we suppose that G does not exist a cycle C,, 11 with CH,,,.1 > m + 1 chords.

If m = 6, then |[Ng_¢,(v;)] > § —5 > 6. Since Cs is a chorded cycle with 6 chorded, and G is K; s-free,
then for any vertex © € V(Ng_¢,(vi)) such that zv; ¢ E(G), where v; € V(Cs \ {v;}). By Lemma[5.2.2, then

G[Ng—c,(v;) U{v;}] is clique. So, there is a cycle C7 with chords C'H7 > 7, a contradiction. So, m > 7.
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Suppose there exists v; € V(Cy,) such that v;_1v;41 ¢ E(G). Since d(v;) > ¢ > 52, it follows from G is

K, 3-free that there exists x € Ng_¢,, (v;) such that zv;,_; € E(G) or zv, 41 € E(G). Let

TUVi41 " UV - - V1T if TV;—1 € E(G),
C =

TV " U1+ - V3T if zv,11 € E(QG).

Then C'is a cycle of length m + 1 with CH,,,; > m + 1 chords, a contradiction.

So, for any v; € V(Cy,) such that v;_1v;41 € E(G) (vo = U, Um+1 = v1). Suppose there exists u € Ng_c¢,, (vi)

m

such that v; € N(u) N Cy,. Without loss of generality, assume v; = v;. Let

UVV; V54 ** VpVk—2 - * VaU3UsUT = = - VU142 -+ Vi— 1041042 - - - v1u  if 7 IS even,

C' =

UV;V;—2V;—4 * * - VU —2 * - - V3V2V4 * * - VjV]42 * - Vj—1Vj41Vi42 - - V1U if 7 is odd.

Then C’ is a cycle of length m + 1 with CH,,,.1 > m + 1 chords, a contradiction. So N(u) NV (Cy, \ {v;}) = 0 for

any u € Ng_c¢,, (v;) and v; € Cy,.

We will show dc,, (v;) = m — 1 with any v; € V(Cy,). Since m < 232 < 4, Ng—¢,,(v;) # 0 for any v; €
Cy,. Assume v € Ng_c,, (vi—2), then {v,_2,v,v,_3,v;} induces K; 3 in G unless v;,_3v; € E(G). Assume v’ €
Ne—c,, (vi—3), {vi—3,v",v;_4,v;} induces K 3 in G unless v;_4v; € E(G). So v;v; € E(G) forany v; € V(Cy, — {v;})
and G[V(C,,)] is clique.

Next, we will show that for any € Ng_¢,, (v;) and y € Ng_c,, (vi+1), we have zy ¢ E(G).

To the contrary, suppose = € Ng_¢,, (v;) and y € Ng_¢,, (v;4+1) such that zy € E(G).

Let C" = xv;v;,-2v;_3v;—4 - - - viy1yx, then C” is a cycle of length m + 1 with the chords CH,,,11 > 2(m —4)+ 1+
(m —5) > m+ 1 with m > 7. This is a contradiction. So, for any = € Ng_¢,, (v;) and y € Ng_¢,, (v;+1) such that

xy & E(G).
Further, we will prove that for any vertex z1 € Ng—_¢,, (v;) and y1 € Ng—_¢,, (vi+1) such that N(z1) N N(y1) = 0.
Suppose x € Ng_¢,, (v;) and y € Ng_¢,, (viy1) such that z € N(x) N N(y).

When m > 8. Since d¢,, (v;) = m — 1 with v; € V(C,,), then C* = zzvv;_3v;_4 -+ - v;41yz iS a cycle of length
m + 1 with chords CH,, 1 > w — (m—2)+4+1>m+ 1, a contradiction.

When m = 7. If [Ng_c,(v;)| > 7, then G[Ng_c,(v;) U {v;}] is clique, we are done. So |Ng_c,(v;)| < 6. It
follows from 252 < § < d(v;) < 12 that n < 38. Since (_, Ng—c,(v;) = 0 and |[Ng_c, (v;)| > 6 — 6 > 5, then

n>"_ |Na_c,(v;)| + 7 > 42. This is a contradiction.

Thus, for any vertex z; € Ng_c¢,, (v;) and y; € Ng_c,, (v;11) such that N(xz1) N N(y1) = 0. Since G[V(Cy,)] is
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clique, then for any vertex z; € Ng_¢,, (vit2), N(y1) " N(z1) = 0 and N(z1) N N(z1) = 0. Then

n—2 < d(z)+dy)+d(z)

IN

3+ |V(G - Cr)l

n—m+ 3.

Thus, we obtain m < 5, which contradicts that m > 7.
Case 3 4 < < 2nt8,

For the sake of a contradiction, we suppose that GG does not exist a cycle C,,, with chords CH,,, > [¢]. By Theorem
5.0.2} let C,;, = vyv2 - - - v, 01 be a chorded cycle with chords CH,,, <[] — 1.

4m 2
2x 34 3x 2

Assume S = {v; € V(Cn)|dc,, (v;) = 2}, then |S| > 42 4+ 1 otherwise CH,, > iy

-m > [%], a

contradiction.

Now we show N¢g_¢ (Ul) N NG—C,,,L (’U2+[%]) = () with [%] > 3. SUppOSG x € NGme (Ul) N NGfC,,,L (U2+[%]).

m

Assume 51 = SNV(Cp,(vay[m, v1)), then [S1] > 3 1. If for any vertex v; € Sy such that v;_1v; 41 € E(G), then
there are CH,,, > 3* —1 > [%] chords in Cy,,, a contradiction. So, there exists v; € S1 such that v;_1v,11 ¢ E(G).
Let T = Ng_c,, (vi) N Ng—c,, (vi1). Without loss of generality, assume |T| > 252, It follows from m < 26 + 4 and

i)
5> 11that 7| > [2] - 1.

By Lemmal5.2.2, when G[T] is traceable, let P be a path in G[T'] such that |P| =[] — 1, then

C' = V1TV [m)V34[m] -+ 0; P41 - - - vpv1 IS @ cycle of length m with CH,, > [%] chords.

When G[T] is two disjoint cliques. It follows from G is K; 3-free that there exists a vertex v € T such that
;1 € E(G). So, we can find two paths P, and P, in G[T'] such that v is the endpoint of P, and | Py |+ || = [§]—1.
Then C” = V1TV 4 [m V34 [m] - -+ Vj—1 Pov; Prvjg1 - - vy is @ cycle of length m with CH,,, > [%] chords. This is a

contradiction.

So, Ng_c,, (7)1) N Ng_c,, (UQ_H%]) = (. Similarly, Ng_c,, (’U3+[2m]) N Ng_c,, (?}2+[%]) = (), where [%] > 3.

6
Next, we will show NG—Cm (Ul) N NG—Cm, (US'HZTM]) = (. SUppOSG e NG—Cm (Ul) n NG—Cm (U3+[27m]). Let
SQ =5N V(Cm,(v3+[sz],U1)), then ‘SQ| > QTm — 2.
Suppose for any vertex v; € S, such that v;_jv,.1 € E(G), then there are CH,,, > %’” —2>[%]chordsin C,,, a

contradiction.

So, there exists v; € S, such that v;_ v;41 € E(G). Let Ay = {z; € Ng_c,, (vi)|vi—1zj € E(G),viq12; ¢ E(G)}

and A; = Ng_c,, (v;) — A1. Then |A;] + |As| > 6 — 2 > [22]. By Lemma5.2.2] G[A,] is a clique or 4; = (). So,

m

there is a hamiltonian path @ in G[4,].
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By Lemma [5.2.2, suppose G[A,] is traceable, then there is a path @ such that [Q:] + |Q| = [%2*]. Then

Ccl = UlI/U3+[QTm]U4+[2%] <0 1QUiQ1vigy - - vy is @ cycle of length m with CH,,, > [7] chords.

Suppose G[A;] is two disjoint cliques. If A; # 0, since G is K; 3-free, there exist v € Ay and v € A; such that
wv’ € E(G). So, we can find two paths Q2 and @3 in G[A42] such that v is the endpoint of Q3 and |Q2| +|Qs| + Q| =
[2?’"] Then C? = le’vg_i_[sz]vle%] <01 Quu'Q3v;Q2vi41 - - - vy IS @ cycle of length m with CH,,, > [ ] chords.
This is a contradiction. If A; = 0, since G is K; 3-free, then there exist v € Ay such that v"v;_1 € E(G). So,
we can find two paths Q4 and Qs in G[A,] such that v” is the endpoint of Qs and |Q4| + |Qs| = [2]. Then
C? = le'v3+[sz]v4+[sz] < 10" Qsv;Quuiye - - - vy IS a cycle of length m with CH,,, > [%] chords. This is a
contradiction.

So Ng—c,, (v1) N Ne-c,, (vsy[2m)) = 0. Then

n—2 < d(v1)+ d(vay(z)) + d(vg 2m)

< IV(G—Om)\+6+6+[%]—4
= n—m—&—[%]—i—&

Thus, we obtain m < 12, which contradicts that m > "4 > 13, where [%] > 3.

Suppose [2] = 2, by Theorem|1.3.27| C,, is a cycle with a chord. Since G is K 3-free, without loss of generality,

6

we assume vyvs € E(G). Now we show Ng_¢,, (v1) N Ng_c,, (v4) = 0. Suppose u € Ng_c,, (v1) N Ng—_c,, (v4).

Since there does not exist 2 chords in C,,,, we can assume w € Ng_¢,, (v;)"\Ng—c,, (vi+1) With v; € V(C, [v5, Uim]).
Let C = vjuvgus - - - v;wviqq - - - v1. If uv,, € E(G), then C is a cycle of length m with the chords uv,, and v;v;41, @
contradiction. It follows from G is K; 3-free that uwvs € E(G). Then, C* = viuvsvy - - - v,v1 is @ cycle of length m with

the chords v;v3 and uwy, a contradiction. So Ng_¢,, (v1) N Ng—c,, (v4) = 0. Similarly, Ne_¢,, (v4) " Ng_c,, (v7) = 0.

It follows from N¢—c,, (v1) N Na-c,, (v34(21) = 0 that Ne—c,, (v1) N Ng—c,, (v7) = 0. Hence, we obtain that

n—2

IN

d(vy) + d(vq) + d(v7)

IN

T+ V(G- Cp)

n—m+7.

So, we obtain m < 9, which contradicts that m > "%4 > 13.
Case4 2t < <n.

Assume C,,, = vivs - - - v be a cycle in G with CH,,, chords. For any vertex v; € V(C,,), dg—c,, (v;) < n —m and

de, > 6 — (n—m). So, CH,, > ™0=tn=ml) _
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Hence, the theorem holds. O

5.3 Open problems

A non-induced cycle is called a chorded cycle. A graph G of order n is chorded pancyclic if G contains a chorded

cycle of each length from 4 to n. A graph is called K s3-free if it has no induced K 3 subgraph.

In this chapter, we prove that the following result: every 2-connected K, s-free graph G with |V(G)| > 35 is
chorded pancyclic if the minimum degree is at least %2 We show the number of chords in the chorded cycle of

length [ (4 <1 < n). Moreover, G is doubly chorded pancyclic.

At present, there are not many types of research on chorded pancyclic. So, there’s a lot of room for research.
Can we find more necessary and sufficient conditions for a graph to be chorded pancyclic? That's what we’re going

to work on.
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Chapter 6

k-fan-connected graphs

In this chapter, we will show the result of k-fan-connected graph by improving the degree sum condition of Theorem

We recall Theorem [3.7]by Lin, Tan, et al. here.

Theorem 6.0.1 (Lin, Tan, et al. [97]) Letk > 2 be an integer and G be a graph. If o5(G) > |V(G)| + k — 1, then G

is k-fan-connected.

Our main result is Theorem We reaffirm this theorem here.

Theorem 6.0.2 Let k > 2 be an integer and G be a (k + 1)-connected graph. If53(G) > |V(G)| + k — 1, then G is

k-fan-connected.
We can obtain the following corollary that is stronger than Theorem in the case of 3-connected graphs.
Corollary 6.0.3 Let G be a 3-connected graph. If53(G) > |G| + 1, then G is Hamilton-connected.

In this chapter, we use some new notations. Let T" be a tree and let r € V(T'). The outdirected tree concerning
(T, r) is the directed tree obtained from T' in which all the edges are directed away from . For X C V(T') and
Y C V(T), X, and Y;i , denote the set of the predecessors and the successors of the vertices of X and Y in
(T, r), respectively. Similarly, for z € V(T'), z1,. denote the predecessor of z in (T',r), respectively. If there is no

ambiguity, we write X7, Y;*, and z, for X, , Y;{r, and z ., respectively.

We shall prove Theorem (i.e., Theorem by contradiction and induction. In section |6.1} we will
present Menger’s Theorem and give some other related introductions. The lower bound of 73(G) in Theorem
(i.e., Theorem[6.0.2) is sharp, as shown in Section In section to prove the theorem [1.3.53| (i.e., Theorem
[6.0.2), we're going to introduce some preliminaries. In section we will prove Theorem (i.e., Theorem
6.0.2).
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6.1 Menger’s Theorem and introduction

6.1.1 Menger’s Theorem

We start with Menger’s Theorem which is one of the cornerstones of graph theory.

We first give some definitions about Menger’s theorem.

Let G = (V,E) be a graph and A,B C V,wecall P = zg---2 an A — B pathif V(P)nN A = {x0} and
V(P)N B = {zx}. We write a — B path rather than {a} — B path. If X C V U FE are such that every A — B path in G
contains a vertex or an edge from X, we say that X separates the sets A and B in G.

Menger’s theorem takes many versions. A simple, very general versions of Menger’s Theorem is as follows:

Theorem 6.1.1 (Menger 1927 [101]) Let G = (V, E) be a graph and A,B C V. Then the minimum number of

vertices separating A from B in G is equal to the maximum number of disjoint A — B paths in G.
From this Theorem, we get the following Corollaries:

Corollary 6.1.2 For B C V and a € V' \ B, the minimum number of vertices #+ a separating a from B in G is equal

to the maximum number of paths forming an a — B fan in G.
Corollary 6.1.3 Leta and b be two distinct vertices of G.

1. Ifab ¢ E(G), then the minimum number of vertices #+ a,b separating a from b in G is equal to the maximum

number of independent a — b paths in G.

2. The minimum number of edges separating a from b in G is equal to the maximum number of edge-disjoint a — b

paths in G.
The following is a global Version of Menger’s Theorem.
Theorem 6.1.4 (Global Version of Menger’s Theorem)
1. A graph is k-connected if and only if it contains k independent paths between any two vertices.
2. A graph is k-edge-connected if and only if it contains k edge-disjoint paths between any two vertices

This version of Menger’s Theorem is the one we usually use the most. In section (6.4} our proof of Theorem|[1.3.53

uses a global version of Menger’s Theorem.

6.1.2 Introduction and notations

We will use standard notations and terminology of graph theory. To make it easier to read, in this section we again
introduce some definitions and notations. For a vertex z € V(G), we denote the degree of z in G by deg.(z) and

the set of neighbors of the vertex z in G by N (z), where Ng(z) = {v € V(G)|zv € E(G)} and dg(x) = |Ng(z)).
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A vertex cut is a set S C V(G) such that G — S has more than one component. A graph is k-connected if every
vertex cut has at least k vertices. The connectivity of G, x(G), is the minimum size of a vertex cut, i.e., x(G) is the
maximum k such that G is k-connected. Let a(G) be the number of the vertices of a maximum independent set in

G. For any integer m > 2, if «(G) > m, put

m

0 (G) = min { 3 degg ()

i=1

T1, T, ..., T,y are pairwisely nonadjacent vertices in G }

7 (G) = min { > degg (i) — | () Na(:))| ’ T1,%, ..., x,, are pairwisely nonadjacent vertices in G }

i=1 i=1
If G does not have m vertices that are independent, we define o,,(G) = 7,,(G) = co. By the definition of ¢,,,(G)

and 7,,,(G), we obtain the following proposition.

Proposition 6.1.5 For a graph G, 0,,(G) < 7,,11(G).

The proof of Proposition[6.1.5|is easy. Now | will prove it briefly.
Proof. Let{z1,z2,...,2,} be anindependent set of vertices in G such that o,,,(G) = }_.~ | degs(x;). And assume
{y1, Y2, - -.,ym+1} be independent set of vertices in G such that 7,, 1 7(G) = >+ degg (vi) — | Nt Na(vi)]-
From the definition of o,,,(G), we can obtain 0,,,(G) < >, deg(y;). And it is easy to know that deg; (y;) >

[N+ N (yi)|- 1t follows that degg (yms1) > [N Na(yi)|. Thus 0, (G) < mii(G). |

The related definition of hamiltonian was introduced in the section[1.1]of the chapter([T] here | will explain it again.
A hamiltonian path of a graph G is a path that contains all vertices of V(G). A graph G is Hamilton-connected
if there is a hamiltonian path between every two different vertices. A cycle containing all vertices of G is called a
hamiltonian cycle and G is called hamiltonian if it contains a hamiltonian cycle. Let K,,, and C,,, denote the complete

graph of m vertices and the cycle of length m, respectively.

One of the core subjects in hamiltonian graph theory is to develop sufficient conditions for a graph to have a
hamiltonian path/cycle (refer to [84] for a survey). Some further sufficient conditions related to degrees of vertices

with distance exactly two for hamiltonian graphs can be found in Chapters|f]and

We begin with a well-known result due to Ore.
Theorem 6.1.6 (Ore [109]) Let G be a graph of order n > 3 such that oo(G) > n. Then G is hamiltonian.

The following result gives the degree sum condition for graphs to be Hamilton-connected by Ore [110] in 1963.
Theorem 6.1.7 (Ore [110]) Let G be a graph. If 05(G) > |V(G)| + 1, then G is Hamilton-connected.

Theorem [109] is generalized into a sufficient condition on any three independent vertices. In 1991, Flandrin,

Jung and Li proved the followings:
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Theorem 6.1.8 (Flandrin, Jung and Li [56]) Let G be a 2-connected graph of order n such thatas(G) > n, then G

is hamiltonian.

When 55(G) > n — 1, we have the following theorem:

Theorem 6.1.9 (Flandrin, Jung and Li [56]) Let G be a connected graph of order n such that 55(G) > n — 1, then

G has a hamiltonian path.

As a generalization of Hamilton-connected and hamiltonian path, Lin et al. introduced the k-fan-connectivity of

graphs in [97]. Now we again introduce the concept of k-fan-connected which was mentioned in section|1.3.4

For any integer ¢ > 2, let v be a vertex of a graph G and let U = {uj,us,...,u;} be a subset of V(G) \ {v}. A
(v,U)-fanis a set of paths Py, P, ..., P, such that P; is a path connecting v and u; for 1 <i < tand P,N P; = {v}
forl <i<j<t.

It follows from Menger Theorem [101] that there is a (v, U)-fan for every vertex v of G and every subset U of
V(G)\ {v} with |U| < k if and only if G is k-connected. If a (v, U)-fan spans G, then it is called a spanning (v, U)-fan
of G. If G has a spanning (v, U)-fan for every vertex v of G and every subset U of V(G) \ {v} with |U| = k, then G
is k-fan-connected.

If a graph G has order at least three, it is easy to obtain that “G is Hamilton-connected” is equivalent to “G is
2-fan-connected”.

We show the followings.
Proposition 6.1.10 Let k > 2 be an integer. If a graph G is k-fan-connected, then G is (k + 1)-connected.

Proof. Suppose that G is not (k + 1)-connected. There exists a cut-set S with size at most k. Let U be a subset
of V(@) with S C U such that |U| = k. It follows that there exists no spanning (v, U)-fan in G for any vertex v of

V(G) \ U, contrary to the k-fan-connectivity of G. |

In this chapter, we improve Theorem [6.0.7] by showing that the Flandrin-Jung-Li’s condition in Theorem[6.1.8]is

a new sufficient condition of k-fan-connected graphs. We get our main result Theorem|[6.0.2

6.2 Sharpness of the lower bound

The lower bound of 73(G) in Theorem[6.0.2]is sharp as shown in this section.

The following example gives many graphs which satisfy the conditions of Theorem|6.0.2] but does not satisfy the

degree sum condition of Theorem[6.0.1

Example: let n be a large integer and a graph G = (K1 U C(,,—k43)/2) + Kn+k—5)/2 (see Figure . Then
|V(G)| = n, G is (k 4 1)-connected, and 73(G) = n + k — 1. The degree sum of z € V(K1) and y € V(C(y_j43)/2)
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is n+ k — 3. It follows that G satisfies all conditions of Theorem[6.0.2 but does not satisfy the degree sum condition
of Theorem

If 02(G) > |V(G)| + k — 1 with k£ > 2, then it is easy to verify that G is k-connected. By proposition|6.1.5} we got

73(G) > |V(GQ)| + k — 1. It follows that G is k-fan-connected from Theorem Thus, the result of Theorem|[6.0.1
can be derived from Theorem

%

G = (Kl U Cn—];+3) =+ Knﬂzc—s

Figure 6.1: The graph of G = (K1 U C(p—j43y/2) + Kntk—s5)/2

Let us see the following example that shows the lower bound of 73(G) in Theorems is sharp.
In the sense that we cannot replace the lower bound |V (G)| + k — 1 by |[V(G)| + k — 2.

Let n be a sulfficiently large integer, and let £ > 2 be an integer. Let G := K, 1—2)/2 + Km—_k42)/2 (See Figure

6.2). Then 75(G) = |V(G)| + k — 2. Let U be a subset of V(K ;4 _2)/2) With size k and v € V(K (;,_j42)/2). We wil

show that G has no spanning (v, U)-fan.

Suppose that G has a spanning (v,U)-fan T. Then the number of the edges of T having one end vertex in

V(K (n4k—2)/2) and the other in V(K (,,_p12)/2) is
E+2x(n—k+2)/2—-1)=n

since degy(w) = 2 for each w € V(K (,_r12)/2) \ {v} and degr(v) = k. On the other hand, the number of the edges
of T'is

S degrw)=k+2x ((n+k—2)/2—k)=n—2.
WEV (K (ntr—2)/2)

This is a contradiction. So, the lower bound of 53(G) in Theorems is sharp.
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Figure 6.2: The graph of G = Kn+§—2 + angﬂ

6.3 Preliminaries

In this section, We introduce some lemmas which are used in the proof of Theorem [6.0.2

The first lemma has already been introduced in Chapter 2| and now we reintroduce it under new notation.

Lemma 6.3.1 [85] Let P = wjusus---u, be a path in a graph G. Let w, and w, be two vertices in V(G) — V(P)
such that (Ng(w1) N (V(P) \ {u1}))y, N Ng(w2) = 0. Then [Ng(w1) NV (P)|+ [Na(w2) NV (P)| < p+ 1. Moreover,
if INg(w1) NV (P)| + |Ng(w2) NV (P)| =p+ 1, then

(i) wiur, wou, € E(G),
(ii) ifw, is not adjacent to consecutive two vertices on P, then weu, € E(G), and

(iii) ifw< is not adjacent to consecutive two vertices on P, then wyu, € E(G).

Now, let’s state this lemma briefly. When | Ng (w1)NV (P)|+|Ng(w2)NV (P)| = p+1, we have (i) wiuq, wou, € E(G).
If w; is not adjacent to consecutive two vertices on P and wou; ¢ E(G), then |Ng(w1) N (V(P) — {u1})| + |Ng(w2) N
(V(P) —{u1})| = p = |V(P) — {u1}|. By using the conclusion of (i) again, we can get wius € E(G). Then w; is
adjacent to consecutive two vertices on P, a contradiction. So (ii) holds. Similarly, if ws is not adjacent to consecutive

two vertices on P, then wiu, € E(G).

Lemma 6.3.2 Let P = uyuqus - --u, be a path in graph G. Let wi, wq, and ws be three vertices in V(G) — V(P)
such that (Ng(w1) N (V(P)\{u1}))s, N Na(w2) = 0 and Ng(ws) NV (P) C {u,}. Ifws is not adjacent to consecutive

two vertices on P, then

if uywy ,
S Nolw)nV(P) —| () Gew)nvep <y’ ¢ E(G)

1<i<3 1<i<3 p+1 otherwise.

Proof. First, we consider the case v w;: ¢ E(G). By Lemma|6.3.1] then |N¢(w:) N V(P)| + |[Ng(w2) NV (P)| < p.
If INg(w1) NV (P)| + |[Nag(w2) NV (P)| <p—1, since Ng(ws) NV (P) C {u,}, so the lemma holds.
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Hence, we may assume that |[Ng(wi) N V(P)| + |Ng(w2) N V(P)| = p. If ws is not adjacent to u,, then the
lemma holds. So, we assume wjs is adjacent to w,. If uvyws ¢ E(G), by applying Lemma to P — {u1},

wi Uy, wau, € E(G) and so we obtain

> INa(wi)nV(P)| = | [ (Na(w)NV(P)|=p+1-1=p.

1<i<3 1<i<3

We may assume that uyw, € E(G). Since (Ng(wi) N (V(P) \ {u1})),, N Na(w2) = 0 and wy is not adjacent to
consecutive two vertices on P, wyus, wous ¢ E(G). Let P’ := P — {u1,us}, then |[Ng(w1) N V(P')| + |Ng(wz) N

V(P")| = p — 1. By applying Lemma|6.3.1|to P’, wiu,, wou, € E(G). So

Y INa(wi) NV(P)| =] [ (Ne(w)nV(P))

1<i<3 1<i<3
= > INa(w)nV(P) =] [ (Na(w)nV(P))
1<i<3 1<i<3

<p+1—-1=np.

This completes the case uyw; ¢ E(G).

Next, we consider the case uyw; € E(G). If [Ng(w1) NV (P)| 4 |Ng(ws2) NV (P)| < p, then we obtain the desired
inequality since Ng(ws) N V(P) C {u,}. We may assume that |[Ng(w1) N V(P)| + |Ng(w2) N V(P)] = p+ 1 and
wiuy, wau, € E(G) by Lemmal[6.3.1} If ws is not adjacent to u,, then the lemma holds. If w3 is adjacent to ,, then

we obtain
> INa(w)nV(P) =] [] (No(w) NV(P)|<p+2—-1=p+1.
1<i<3 1<i<3
Hence, the lemma holds. [

6.4 Proof of Theorem[6.0.2

In this section, we will prove Theorem[6.0.2]
The sketch of the proof:
Firstly, to prove this theorem, we introduce the segment insertion operation. An important Claim derived

from this operation is also given. It will be shown in section 6.4.1

Secondly, because Theorem is based on 73(G), so in section [6.4.2 we're going to find three independent

vertices wy, wo and ws. At the same time, we get some relationships among their neighborhood sets.

105



Thirdly, in Section we divide the vertex set of the graph G into several partitions. And then we find the

degree sum of the three independent vertices w1, w, and ws in each partition.

Lastly, according to whether w, belongs a segment to discuss, then we get contradiction. Thus, the theorem is

further proved.

6.4.1 Segment insertion operation

On the contrary, suppose that G is not k-fan-connected, then there exists a vertex v and a subset U = {uy, ua, ..., ux}
of V(G)\{v} such that G has no spanning (v, U)-fan. Since G is (k+1)-connected, it follows from Menger’s Theorem

that G has a (v, U)-fan. Let T be an order maximum (v, U)-fan of G and H be a component of G — T

For two vertices a and b of T, PJa,b] denotes the path in T' connecting a and b. If P is a path in T' connecting
vertices « and y of T such that (Ng(V(H)) NV (P)) = {z,y} and v ¢ V(P) \ {z,y}, then we call the path P a

segment of T. By the maximality of T', then |V (P)| > 3.

Let @ be a segment of T' and w be an internal vertex of Q. If there are two vertices a,b € N¢(w) such that

ab € E(T)\ E(Q), then w is called an insertible vertex of Q).

Segment insertion operation: Suppose that wy,ws, ..., w, are insertible vertices of @) in order along Q. Let

hi := max{i: w; can be inserted in an edge which w; can be inserted in}

and suppose that w; and wy,, can be inserted in an edge a1b;. Let

he := max{i: w; can be inserted in an edge which wy,, 11 can be inserted in}

and suppose that wy,, 11 and wy, can be inserted in an edge a2b,. Continuing in the same manner, we will have h; =
sforsomet¢ > 1. Then we insert Q[wy, wy, ] between a; and by, Q[wp, +1, wn,] between az and by, . .., Qwp, _, +1, wh,]

between a, and b,. We call such an operation a segment insertion and denote it by SI[Q[w1,ws]].

It's easy to get the following claim, which plays an important role in the whole proof of Theorem[6.0.2
Claim 6.4.1 Every segment of T contains a non-insertible vertex.

Proof. On the contrary, we assume that there exists a segment P = wyws ... ws not containing a non-insertible
vertex. Let @ be a path connecting w; and w; such that V(Q) \ {wi,ws} C V(H). We use a segment insertion
SI[P[ws,ws—1]] and let T’ be the resulting graph. Then 7" U Q is a (v, U)-fan with the order of at least |V (T')| + 1.

This contradicts the maximality of T'. [
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T4
T2

Uk

Figure 6.3: The definition of w; and w,, where black vertices are insertible vertices.

6.4.2 The relationships among three independent vertices

Since G is (k + 1)-connected, |[Ng(V(H))NV(T)| > k+ 1. Then |Ng(V(H)) NV (P[v,u;])| > 2 forsome 1 < i < k.
Without loss of generality, we may assume that V(P[v, u]) has the most vertices in No(V(H)) among V(P[v, u;])
forall 1 < i < k. And assume that there is a segment of T in P[v,u;]. Let z; and z5 be the end vertices of the
segment of T in Plv,us] such that V(P[x1,u1]) " Ng(V(H)) = {z1}. Let w; be the non-insertible vertex of Pz, x2]

such that |V (P[z1,w1])| is as small as possible. Write P[z1,w1] = yoy1 - - - ym Where yo = 21 and y,,, = wy.

If there is a segment Plx3,z4] of T other than P[z1, 23], we choose the segment P[z3, x4] so that if there is a
segment of T other than P[xy, z5] in Plv, u;], then we assume a3 = x5 (see the graph in the left of Fig. otherwise
without loss of generality, we may assume that the segment P[z3, 4] is in P[v, us] such that |V (PJv, z3])| is as small
as possible (see the graph in the right of Fig.[6.3). Now let w, be the non-insertible vertex of P[xz3,x4] such that
|V (P[z3,ws])| is as small as possible. Then w,, is in a segment, and wy € V(P[v,u1]) or wy € V(P[v,us]). Write
Plzs, wo] =y, - ..y, Where yj = z3 and y, = w,.

If there is only one segment Pz, x2] in T, let wy € Np(z2) \ V(P[z1, 22]). Now ws is not in a segment, and w-

is in V(P[v,uy]). In this case, let y} = w- (see Fig.[6.4).

Let w3 be an arbitrary vertex of V(H). For two vertices a and b, we denote aHb a path connecting a and b

through H if such a path exists.

The relationship among three vertices w1, wo, and w3 be as following claims.
Claim 6.4.2 The vertex w3 is not adjacent to wy; and w.

Proof. Suppose that wiws € E(G). We use a segment insertion SI[P[y:,ym—1]] and let 77 be a resulted graph.

Then T' + wyws UwsHzy is a (v, U)-fan with the order of at least |V (T')| + 1. This is a contradiction.

Suppose that wows € E(G). From the maximality of T', wexo ¢ E(T). Thus, ws is in @ segment of T. Then we

deduce a contradiction by the similar argument of the above one.
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Figure 6.4: The definition of w; and w,, where black vertices are insertible vertices.

Therefore, ws is not adjacent to w; and wo. I

Claim6.4.3 Foranyl <i<mandl<j</{,y; and y;- are not adjacent.

Proof. We prove this claim by induction on i 4+ j with 1 <7 <m and 1 < j < ¢. Suppose that yjy; € E(G). Then
T+ yiy1 —x1y1 —yiza Uz Has is a (v, U)-fan with the order of at least |V (T')| + 1, a contradiction. Suppose that this
claim holds for 2 <4’ +5" <i+j withi+j > 3. Suppose that y;y; € E(G). We use segment insertions SI[P[y1, yi—1]]
(ifi > 2) and SI[Ply;,y;_4]] (if j > 2). Let T" be a resulted graph. According to the induction hypothesis of this
claim, for each 1 < i’ <i — 1, y, is not inserted into any edge of P[zs,y}], and for each 1 < j' < j — 1, y’, is not
inserted into any edge of P[z1,y;]. Then 7" + yiy; U 1 Hzs is @ (v, U)-fan with the order of at least [V/(T)| + 1, a

contradiction.

Hence, Claim holds. |

By Claims and the set {w, w2, w3} is an independent set of G.
Claim 6.4.4 The following statements hold foreach1 <i<mand1 < j < /.
(i) Ne(yi) N (Ne(ws) NV(T)), =0,
(ii) ifwy is in V(Plv,w]), then Ng(y;) N (Na(ws) N V(T)) =0,
(iii) ifws is in V(P[v, us]), then Na(y;) N (Na(ws) N V(T)),, =0,
(iv) ifws is in V(P[v,u1l), then Ng(y;) N (Nea(y;) 0 (V(T) \ V(Plwy, x2]))),, =0,

(v) ifws is in V(P[v,us]), then Ne(y;) N (Ne(y:) N (V(T) \ V(Pv,w1] U Plas, v)))),, = 0,

(vi) ifwsy is in V(P[v,uz]), then Ng(y;) N (Ng(yi) NV (Plv,w1] U Plzs,v])),, = 0. And if wy is in V(Plv,u1]), then
NG(?J;') N (Na(yi) N V(P[whmg]));l = 0.
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Proof. (i) We show that N (y;) N (Ng(ws) NV(T))f = 0 for each 1 < i < m by induction on i with 1 < i < m.
Suppose that there is a vertex w € Ng(ws) N V(T) such that there is a vertex w™ € Ng(y;) N {w};, for some
1<i<m Ifi=1,thenT +wry; —ww™ — 2191 UwHz, is a (v, U)-fan with the order of at least |V (T)| + 1, a
contradiction. We assume that this claim holds for 1 < j < i with i > 2. We use a segment insertion SI[P[y1,vi—1]]
and let T" be a resulted graph. It follows from the induction hypothesis of this claim that for each 1 < j < 1, y; is not

inserted in ww™. Then T + y;w™ —ww™ Uz, Hw is a (v, U)-fan with the order of at least |V (T')| + 1, a contradiction.

(i) We show Ng (y;) N (Na(ws) NV(T))S, = 0 foreach 1 < j < {. If wy is in a segment of T, then we can deduce
a contradiction by the similar argument of the above one. If ws is not in any segments of T', then we can also deduce

a contradiction by the similar argument of the above one in the case i = 1.

(iii) We can show Ng(y;) N (Na(ws) N V(T')),, = 0 by induction on j with 1 < j < . The proof is similar to the

. =

proof of (i).

(iv) We show this claim by induction on i + j with 1 < i < mand 1 < j < ¢. Suppose that there is a vertex
w € Na(y1)NV(T)\ V(Plwy, x2]) such that wy y1 € E(G). Then T +yiw,,, +yjw —x1y1 — ¥ 22 —ww,, Uz Has is a
(v, U)-fan with the order of at least |V (T)| + 1, a contradiction. We assume that this claim holds for 3 < i’ +j' < i+j.
Suppose that there is a vertex w € Ng(y;) N V(T) \ V(P[w, z2]) such that w,, y; € E(G) for some 1 <i < m and
1 < j < (. We use segment insertions SI[P[y1,y;-1]] (if i > 2) and SI[P[y},y;_,]] (if j > 2). Let T" be a resulted
graph. It follows from Claim [6.4.3] and the induction hypothesis of this claim that y;- is not inserted into an edge in
Plza, wp] U{ww,, } foreach 1 <4’ <iandy/, is notinserted into an edge in Pz, wi]U{ww,, } foreach 1 < j’ < j.

Hence, T’ + y;w,, + yjw — ww,, Uz Hay is a (v, U)-fan with the order of at least |V (T))| + 1, a contradiction.

(v) We can show this claim by induction on i 4+ j with 1 <i <mand 1 < j < ¢. The proof is similar to the proof

of (iv).

(vi) We show this claim by inductionon i + j with 1 < ¢ <mand 1 < j < ¢. If wq is in V(P[v,uz]). Suppose
that there is a vertex w € (Ng(y1) NV (P[v, w1] U Plz3,v]))., such that wy v} € E(G). Then T + yyw + yjw,, —
T — Y13 — ww,, Ux Hrs is a (v, U)-fan with the order of at least [V (T')| + 1, a contradiction. We assume that
this claim holds for 3 < ¢’ + j' < i + j. Suppose that there is a vertex w € (Ng(y;) N V(Plv,w1] U Plxs,v]))u,
such that w y; € FE(G) forsome 1 < i < mand 1 < j < (. We use segment insertions SI[P[y1,y;—1]] (if
i > 2) and SI[Ply;,y;_4]] (if j > 2). Let T’ be a resulted graph. It follows from Claim and the induction
hypothesis of this claim that for each 1 < j' < j, ¥/, is not inserted in an edge into Pz, w:1] U {ww,, }. Then
T+ yow + yjw,, —ww,, UriHzzis a (v, U)-fan with the order of at least [V (7')| + 1, a contradiction. Similarly, if ws

is in V(P[v,u1]), then Ne(y)) N (Na(yi) NV (Plwy, z2]))y, = 0. i

109



6.4.3 The rest of the proof of Theorem[6.0.2]
Note that each vertex of H satisfies the property of ws in Claims and since ws is an arbitrary vertex of
H.

For the path P contained in T, the first vertex of P in order along (7', r) is denoted by s,.(P), where r is a vertex
of T. Let v; be the vertex in Np(v) N V(P[v,w;]) foreach 1 < i < k. If V(P[v,u;]) N Na(V(H)) # 0 for 1 < i <k,
then let s; (resp. t;) be the vertices of V(P[v, u;]) N Ng(V (H)) such that |V (Plv, s;])| (resp. |V (P[t;, u;])|) is as small

as possible.

So first, let’s calculate 3(G) on a segment of T — V(P[x1, x2]) and path P[t;,u;]. Then we have the following

claim.

Claim 6.4.5 Let P be either a segment of T — V (P|x1, x2]) or Plt;,u;] for2 <i < k. Then

> INa(w) V(P =54, (P)| = | () (Na(wi)W (P —s,,(P))| < [V(P)| - 1L
1<i<3 1<i<3

Proof. Suppose P = Plx3,z4], then ws is a non-insertible vertex. By Claim[6.4.3] then
|Ng(w1) NV (P[zs, ws] — z3)| + | Ng(wa) NV (Plxs, ws] — x3)| < |V (Plzs, wa] — z3)| — 1.
By Claim (iv), then Ng(w1) N (Ng(w2) N V(P)),, = 0. By Lemma|6.3.2]

Y INa(wi) NV (Plwz, a] —w2)| =| (1) (Ne(wi) NV (Plws, x4] —w2))|
1<i<3 1<i<3

S |V(P[’UJ2,1‘4] — w2)| + 1.

Thus, we obtain the desired inequality.

Suppose P # Plzs, z4]. If wy is in V/(P[v,u4]), by Claim[6.4.4](i), (i) and (iv), then wy sy, (P — sy, (P)), wasy, (P —
54, (P)) ¢ E(G) and Ng(wy) N (Na(w2) NV(P)),, = 0. Since w; is not adjacent to consecutive two vertices on P,
it follows from Lemma([6.3.2)that we obtain the desired inequality.

If we is in V(Pv,us]), then wy is a non-insertible vertex. When P C P[v, us], by CIaim (v), then Ng(wq) N
(Ng(w2) NV (P)),, = 0. It follows from Lemmathat we obtain the desired inequality. When P ¢ Plv,us], by
Claim (v), then Ng(ws) N (Ng(w1) NV (P)),, = 0. It follows from Lemmal6.3.2and w; is non-insertible vertex

that we obtain the desired inequality. |

Next, the following claim is to calculate 53(G) on path Pty u;].
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Claim 6.4.6 The following inequality holds.

> INa(wi) NV (Plty,un))| = | () (Ne(w)nV (Plty, w]))| < [V(P[ty, ua])| + 1
1<i<3 1<i<3

Proof. By Claim (iv), (v), then Ng(w1) N (Ne(w2) NV (Plty, u1])),, = 0. We obtain the desired inequality from

Lemmam i

The following claims calculate 73(G) on V(Pv;, s;]) with 2 < j < k, V(P[v, s1] — s1) and V(P[zy, z2] — 1),

respectively.

Claim 6.4.7 Suppose thatvws ¢ E(G). Foreach 2 < j < k, the following inequality holds.

> INg(wi) NV (Plug,s5]) =1 [ (Na(w:) N V(Ploy, s5))]

1<i<3 1<i<3
[V (Plvj,s;DI+ 1 ifow ¢ E(G)

|V (Plvj, s;])| otherewise.

Proof. First, we consider the case vw, ¢ E(G). If wo in Plv, uy], itfollows that N (w1)N(Ng(w2) NV (Plvj, 55]))a, =
() from Claim (iv). Since w; is a non-insertible vertex, by Lemma|6.3.2] we obtain the desired inequality in the
case that vw; ¢ E(G). If wy in P[v,us], then w, is a non-insertible vertex. By Claim [6.4.4] (v) and (vi), then
Ng(w2) N (Na(wi) N V(Plvy, s5])),, = 0. We obtain the desired inequality from Lemma

Next, we consider tha case vw; € E(G). Since w; is a non-insertible vertex, w; is not adjacent to v; for each
2 <j <k.Whenw; € V(P[v,u1]), by Claim|6.4.4{(iv), then foreach 2 < j < k, wov; ¢ E(G) and N¢(w1)N(Ng(w2)N
V(P[v;,s;])),, = 0. It follows from Lemma [6.3.2|that we obtain the desired inequality. When w, € V(P[v, us]), then

wy is a non-insertible vertex. By Claim v) and (vi), then Ng(w2) N (Ng(w1) NV (Plvy,55])),, = 0. We obtain
the desired inequality from Lemmal6.3.2] |

Claim 6.4.8 Suppose thatvws ¢ E(G). The following inequality holds.

Y INa(w)nV(Plo,si]=si)l = | [} (Ne(w) NV(Plo,s1] = s1)

1<i<3 1<i<3

|[V(Plv,s1] —s1)|—1 ifow; ¢ E(G)
<

|V (Plv, s1] — s1)] otherewise.

Proof. It follows that w; and w, are not adjacent to s, (P[v, s1] — s1) from Claim [6.4.4] (i), (i) and (iii). By Claim
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[6.4.4](iv), (vi) and Lemma[6.3.2] we obtain the desired inequality in the case that vw; € E(G).

Suppose that vw; ¢ E(G). By Claim[6.4.4|(iv), (vi) and Lemma[6.3.1] we obtain
|Ng(w1) NV (P[v, s1] — s1)| + [Na(w2) NV (P[v, s1] — s1)| < |[V(P[v, s1] — s1)].

If wy € V(P[v,u4]), by Claim[6.4.4](iv) and Lemma[6.3.1] (i), then this claim holds in the case that vw; ¢ E(G). We
may assume ws € V(P[v, uz]). Then wy is a non-insertible vertex. By Claim (vi) and Lemma (i), hence,
this claim holds in the case that vw, ¢ E(G). [

Claim 6.4.9 The following inequality holds.

> INg(wi) NV(Plzy,x] — 1) = | [ (Na(wi) NV (Play, 2] — 21)]
1<i<3 1<i<3

|V (Plzy,x2) — x1)| ifwsy is in a segment

|V (P[z1,22) —x1))| +1 otherwise.
Proof. By Claim|[6.4.3] then

|Ng(wy) N V(P[zy,w1] — x1)|+|Ne(we) NV (Plzy, w] — x1)]

< |V(Plz1,wi] — z1)] = 1. (6.1)

By Claim (vi), then Ng(w2) N (Ng(w1) NV (Plwy, 22])),, = 0. By Lemma and (6.1), we obtain

‘Ng(’wg) N V(P[l’l,ibg] - .’E1)| + |Ng(’u)1) N V(P[l’l,l'g] - $1)|

= |Ng(w2) NV (Plz1,m2] — 1) + [(Ng(w1) NV (P[z1, 22] — 71))

|

< |V(Plz1,22] — 1)

Suppose that ws is in a segment. Then ws is a non-insertible vertex. By Lemma [6.3.1](ii) and (iii), w; and wy are
adjacent to z5. Since Ng(ws) NV (P[x1,z2] — x1) C {x2}, we obtain the desired inequality. Hence, we may assume

that ws is not in a segment. By Ng(ws) NV (P[x1,x2] — x1) C {z2}, we obtain the desired inequality. [

By Claim[6.4.2] (N (w1) U Ng(w2)) NV (H) = 0 and so
|(Ne(w1) U Ng(wz) U Na(ws)) NV (H)| < [V(H)| = {ws}| < [V(G)] = [V(T)] - 1. (6.2)
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Let P be the set of segments of T' and paths P[t;, ;] for 2 <i < k.

The discussion is then classified according to whether vws is an edge of G. So let’s first look at the case where

vwsg IS an edge.

Suppose that vws € E(G), since G is k + 1 connected, then there are at least two segments. So w; and ws

are non-insertible vertices. Then V(T') = Upep(V(P) — s(P)) U V(P[t1,u1]). By Claims|6.4.5| |6.4.6|and |6.4.9] we

obtain

> INa(w)nV(T)| = | () (Ne(w:) nV(T)|

1<i<3 1<i<3

= ( Y Na(w) NV(P—su, (P) =] ) (Nc(wi)ﬂV(P—sul(P))l)

PeP \1<i<3 1<i<3

+ > INe(w) NV (Plt,w))l = | (7] (Ne(wi) NV (Plt,w)))l

1<i<3 1<i<3
<> (VP = 1)+ |V(Pltr,u])| + 1
PP
=|V(T)| + 1. (6.3)

By and (6.2), we obtain
Y Nl = (] Ne(w)l < [V(G)].

1<i<3 1<i<3
Since k > 2, this contradicts to 73(G) > |[V(G)| + k — 1.
Let’s talk about the case where vws is not an edge in G.
Suppose that vws ¢ E(G). Let Q be the set of paths P[v, s;] for 2 < i < k. Then

V()= |J (V(P)=su,(P)UV(P,s1] = s1) UV(Pt1, ua]).
PcPUQ

By Claims and|6.4.8] we obtain

> (Z [Ne(wi) NV(Q = su, (@)= (Na<wi>mV<Q—sul(Q>)|)

QeQ \1<:i<3 1<i<3
+ 30 INa(w) NV (Plo,si] =)l = () (Na(ws) 1 V(Plo,si] = 51))]
1<4i<3 1<i<3

20eoV @I =1 +k =1+ [V(Plv,s1] = s1)[ =1 ifows ¢ E(G)

Y 0eo(V(Q) = 1) + [V(Pv, s1] — s1) otherwise
< (V@] = 1)+ [V(Pv,s1] — s1)| + & — 2. (6.4)
Qeo
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Under the condition that vws is not an edge in G, we separately discuss and analyze whether ws is in a segment.

Suppose w, is in a segment, then by Claims[6.4.5] [6.4.6] [6.4.9]and (6.4), we obtain

Y New)nV(T) = | () (Ne(w)NV(T)

1<:i<3 1<i<3
= > (Z | Ne(w:) N V(P =54, (P))| = | ) (Nc(w»ﬂV(P—sul(P))l)
PePUQ \1<i<3 1<4i<3

+ Y INa(wi) N V(Plo,s1] = s)l = | [ (Na(wi) NV(P[v,s1] = 1))l

1<i<3 1<i<3

+ > INa(w) N V(Pltr, )l = | [ (Ne(wi) NV (Plty,w]))l

1<i<3 1<i<3
<SS (VP =D+ D (V@] = 1) + V(P s1] = s1)| + k — 2+ [V(P[tr,w]| + 1
PeP QeQ
< V()| +k—1. (6.5)

By (6.2) and (6.5), we obtain

S INe(w)| =1 [ Nelw) < [V(G)|+k -2

1<i<3 1<i<3

This contradicts to 75(G) > |[V(G)| + k — 1.

Suppose ws is notin a segment, since G is (k+1)-connected, then forany 2 < i < k, |[Ng(V(H))NV (Pv,u;])| =

1. By Claims|[6.4.5] [6.4.6} [6.4.9]and (6.4), we obtain

Y New)nV(T) = | () Ne(w)NV(T)

1<i<3 1<i<3
= > ( > INa(w) V(P —s,,(P)| = | () (Ne(w)NV(P- Sul(P))I)
PePUQ \1<i<3 1<i<3

+ Y INa(wi) N V(Plo,s1] = s))l = | () (Na(wi) NV(P[v,s1] = 1))l

1<i<3 1<i<3

+ > INa(w) N V(Pltr, )| = | [ (Ne(wi) NV (Plty,w]))l

1<i<3 1<i<3
<SS (VP =D+ D (V@] = 1) + [V(Plo,s1] — s1)| + k — 1+ [V(P[tr,w]| + 1
PeP QeQ
< [V(D)[ + k. (6.6)
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Figure 6.5: The definition of z1, 22, and z3 where black vertices are insertible vertices.
By (6.2) and (6.6), we obtain

ST INa(w)| =1 [ Nelw) < V(G| +k—1.

1<i<3 1<i<3

Since 753(G) > |V(G)| + k — 1, the above inequalities are equal. By Claim[6.4.5]

> INa(wi) NV (Pt ug] — t2)| = | (1) (Na(wi)WV(Plta,us] — t2))]
1<i<3 1<i<3

= |V(Plt2, u2] — t2)|.

Since wy sy, (Plta, ug] — t2), wasy, (Plt2,uz] — t2) ¢ E(G), and wy is a non-insertible vertex, it follows from Claim
(iv) and Lemma that wous, wiug € E(G). This implies Ng(w1) N Ng(we) N V(P (t2,ue]) # 0. Let
z € Ng(w1) N Ne(wz) NV (Plta, ug) — t2) such that |V (Plt2, 2])| is as small as possible. By Claim[6.4.4] (i), then the

set {w1,ws, 2, } is an independent set of G since w is a non-insertible vertex.

For convenience, let z; = w1, 22 = z,, and z3 = ws (see Fig.. By Claim (iv), forany 1 < i < m, y; and
zo are not adjacent, where y,, = w; = z;. We consider the degree sum of {z1, 23, 23} to divide T into some parts.

Fig.[6.6]illustrates how to divide 7" and when we consider the parts.

Now we will show that for 1 < i < m,

Ne(22) N (Nes () 0 (VD) \ (V(Plug, 25]) UV (Plo, 21]))), = 0. 6.7)

We prove this equation by induction on ¢ with 1 < i < m. Suppose that there is a vertex y € V/(T')\ (V (P][vs, 22]) U
V(P[v,z1]))) such that y1y € E(G) and zy} € E(G). T + w2z + 22y, + y1y — waky — 222 — yyi UxHas is a
(v, U)-fan (see Figure [6.7) with the order of at least |V (T))| + 1, a contradiction. We assume that this equation
holds for 1 < j < i. Suppose that there is a vertex w € Ng(y;) N (V(T) \ (V(P]va, 22]) U V(P]v, 21]))) such that
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ClaimB.4A41 (6.11)
Claim[6.4.10] e/ o~ oy~ Tou

X

©.70) / ©9)

Vg

U

(6.10) (6.9)

Figure 6.6: Summary of the following proofs.

wi 7 € E(G) for some 1 < i < m. We use segment insertion SI[P[y;,y;—1]] (if ¢ > 2) and let 7" be a resulted
graph. It follows from the induction hypothesis that y; is not inserted into an edge in {ww; ,z2z, w2} for each
1 < j <i. Hence, T" + znw} + yiw + waz — wwyf, — 220 — waxy Uz Hry is @ (v, U)-fan with the order of at least
|V (T)| + 1, a contradiction. Similarly, we obtain that for 1 < i < m,

Ne(z2) N (Ne(yi) 0 (V(Pluz, 22]) UV(Pv, 21]))),,, = 0. (6.8)

1

For 3 < i <k, then s,, (P[t;,u;] \ {t:})z2 ¢ E(G). Otherwise, there is a (v,U)-fan T + waz + 2284, (Plts, ui] \
{t;}) — wawo — 229 — t;sy, (Pti, ui] \ {t;}) Ut;Hzo which contradicts the maximality of 7. By Lemma and (6.7),

we obtain the following, for 3 <i < k,

>IN (z:) NV (Pl ul \{t )= | () (Na(zi) NV (Pl w] \ {t:))] < [V (Plti, w] \ {t:})] (6.9)

1<i<3 1<i<3

By (6.7), for 3 < i < k, then (Ng(z2) N (V(Plvs, t:]) \ {vi}))n, N Na(z1) = 0. Since z; is a non-insertible vertex
and Ng(V(H)) NV (P, t;]) C {t:}, it follows from Lemma that we obtain the following, for 3 < i < k,

> INa(z:) NV (Pl )l = | () (Na(z:) NV (Plus, i) < [V(Plog, t)| + 1 (6.10)
1<i<3 1<i<3
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Figure 6.7: The construction of a larger (v, U)-fan

Similarly, we have

> INg(z:) NV (Pltr,us))l = | () (Na(z:) NV (Plty, )| < [V(Pltr, ua])] + 1. (6.11)
1<i<3 1<i<3
and
> INa(z) N V(Plz,ua))| — | [ (Na(zi) NV(Plz,ua]))] < [V(Pz,ua])| + 1. (6.12)
1<i<3 1<i<3
and
> INa(z:) N V(Pltz, z2]) = | () (Ne(zi) NV(Pltz, 22]))| < |[V(P[t2, 22))]. (6.13)
1<i<3 1<i<3

Claim 6.4.10 The following inequality holds.

Z NG (zi) N (V(Plog, ta] \ {ta} U Plv, wa]))| | ﬂ (N (zi) N (V(Plog, ta] \ {t2} U Plo, ws]))]

< [V (Plog, to] = {ta})| + [V (Plo, wa])| = 1

Proof. Letz = s,,(P[ve, ta] — {ta}). If 202 € E(G), then T 4+ waz + 200 — woxe — xty — 225 UtaHxg is a (v, U)-fan
(see Figure[6.8) with the order of at least |V (T')| + 1, a contradiction. So zz ¢ E(G). By and Lemma i),

we obtain
NG (21) NV (Pl to] = {t2})] + [Na(22) N V(Pluz, ta] = {t2})| < [V(Ploz, ta] = {t2})]. (6.14)
Suppose vz € E(G), since z; is a non-insertible vertex, then vsz; ¢ E(G). When

ING(21) NV (Plvg, ta] — {t2})| + | Ng(22) NV (Plva, ta] — {t2})| = [V (Plva, ta] — {t2})],

117



let P = P['UQ,tQ] — {’Ug,tg}. If 29U ¢ E(G), then ‘Ng(zl) n V(P1)| + ‘NG(ZQ) n V(P1)| = |V(P1)| + 1. By and
Lemma [6.3.1fi), 22z € E(G). This is a contradiction. So, zyvs € E(G). By (6.8), su,(P1)z1 ¢ E(G). The similar

argument of the above, zox € E(G), a contradiction. Thus, we obtain the following inequality:

INa(21) NV (Plog, ta] = {t2})] + [Na(22) NV (Plog, to] = {t2})] < [V(Plvg, to] — {t2})| — 1.

By Claim iV), wez1 ¢ E(G). It follows from and Lemma [6.3.1(i) that

[Na(21) NV (Plo, wa])| + [Na(z2) NV (Pv, wa])| < [V(Pv, wal)|- (6.15)

Hence, we obtain the desired inequality and may assume that vz; ¢ E(G).

If either inequality (6.14) or inequality (6.15) is not equal, then we obtain the desired inequality. Therefore, we
assume that the equal signs of inequalities (6.74) and (6.15) are both true.

Suppose that zov ¢ E(G). Then |Ng(z1) NV (Plvy,wsa])| + |[Na(z2) N V(Plv1, we])| = |V (Pv,w2])|. By Lemma
6.3.1| (i), z1w2 € E(G), a contradiction. So, zv € E.

When zv, ¢ E(G) Suppose 29V ¢ E(G) By 1' we obtain |Ng(21)mV(P1)|+|NG(ZQ)QV(P1)| = |V(P1)H’1
This together with Lemma6.3.7] (i), zz2 € E(G), a contradiction. So zv, € E(G). Then s, (P1)21 ¢ E(G) by (6.8),
the similar argument of the above, s, (P1)z2 € E(F). Repeating the above argument for all vertices on Plvg, to] —ta,

we get xz20 € E(G), a contradiction. So, z1vs € E(G).

Figure 6.8: The construction of a larger (v, U)-fan with zz, € FE in Claim|[6.4.10

Thus, zv € E(G) and z1v, € E(G). This contradicts to . Hence, the claim holds. [

Claim 6.4.11 The following inequality holds for.

Y INa(zi) NV (Pley,ea)) \ a1} = | [ (Ne(z) NV (Pley, ) \ {21} < [V (Ple, 22]) \ {21}

1<i<3 1<i<3
Proof. Since for1 <i <m, 20y; ¢ E(G), then [Ng(z1)NV(Plz1,21])\{z1, 21 }|+|Na(22) NV (P[z1, 21]) \ {z1, 21 }| <
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\V(Pz1,21]) \ {21, 21 }|. By Lemmal[6.37] and z12, ¢ E(G), then
|Na(21) NV (P21, 22])| + [Na(22) N V(Plzr, @2])| < [V(Plz1, 22])]- (6.16)

If the inequality (6.16) is not equal, then we obtain the desired inequality since N¢(z3) NV (P[z1,x2]) \ {z1} C {x2}.
If No(z3) N V(P[z1,22]) \ {z1} = 0, then we also obtain the desired inequality by (6.16). Hence, we may assume
that the equal sign of the inequality (6.16) holds and N¢(z3) NV (P[z1, 22]) \ {z1} = {x2}.

Suppose that z;25 € E(G). Then z; and 2, are adjacent to 25 by Lemma [6.3.1| (i). This together with 2525 €
E(G), we obtain the desired inequality. Hence, we may assume that z;25 ¢ E(G). Then |Ng(z1) N (V(Pz1,x2]) \
{z2})| + |Na(22) N (V(Plz1,x2]) \ {z2})| = |[V(P[z1,22])| — 1. Let 2/ = s,,(Plx2,21] — x2). By Lemma [6.3.1] (i),
zox' € E(G). We use a segment insertion SI[P[y1,ym—1]] and let T’ be a resulted graph. So, T" + z2’ + 212 —
20z — xox’ Uz Hao is a (v, U)-fan with the order of at least |V (T")| + 1, a contradiction. Hence, we obtain the desired
inequality. I
By and (6.10), we obtain

> ( > INa(z:) NV (P, u)l =1 () (Na(z) ﬁV(P[’Uja“jM)

3<j<k \1<i<3 1<i<3

= |V(T)\ (V(P[v,u1] U Plv,us]))| + k — 2 (6.17)

By Claims[3.4.12,[6.4.70] (6.17), (6.12), and (6.13), we obtain

Z |[Ng(z;) NV (Plv,u1] U Plv, us])| — | ﬂ (Ng(z;) NV(P[v,u1] U Plv, usg))]|

1<i<3 1<i<3

= > INa(z)NV(Pltr,wma)l = | [ (Na(z:) NV(P[tr, w]))]
1<i<3 1<i<3

+ Y INa(z:) NV(Play, ) = | (] (Na(z:) NV (P(ar,22])]
1<i<3 1<i<3

+ Y INa(z:) N V(Plog,t2))| = | () (Na(z:) NV (Plog, ta))]
1<i<3 1<i<3

+ Y INa(z) NV(Plzuz))l = | () (Ne(zi) NV(Plz,us)))]

1<i<3 1<i<3
+ > INa(z) N V(Pltz, z2))| = | (1) (Na(z) NV (Pltz, 2)))]
1<i<3 1<i<3
+ > INa(z) NV (Plo,wa])| = | (1) (Na(z) NV (Plo,wa)))|
1<i<3 1<i<3
< V(P[v,u1] U Plv,us]) + 1. (6.18)
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Therefore, by (6.2), (6.17), and (6.18), we obtain

ST INez)l =1 () Nel) < IVG) + k-2

1<i<3 1<i<3

This contradicts to 75(G) > |[V(G)| + k — 1.
The proof of Theorem (i.e., Theorem|[1.3.53) is complete. O

6.5 Concluding remarks and further work

For any integer t > 2, let v be a vertex of a graph G and let U = {uy,us,...,u:} be a subset of V(G) \ {v}. A
(v,U)-fanis a set of paths Py, P, ..., P; such that P; is a path connecting v and u; for 1 <i < tand P,NP; = {v}
for1 <i < j <t Ifa(v,U)fan spans G, then it is called a spanning (v,U)-fan of G. G is k-fan-connected if
G has a spanning (v, U)-fan for every vertex v of G and every subset U of V(G) \ {v} with |[U| = k. Clearly, the
k-fan-connectivity generalizes the Hamilton-connectivity.

In this chapter, we prove that if for any three independent vertices z1, 2,23 in a graph G, Zle degq(z;) —
| ﬂle Neg(z;)| > |[V(G)| + k — 1, then G is k-fan-connected and the lower bound is sharp.

Note that the conditions for our results are better than those previously obtained. Is there any other better
condition for a graph to be k-fan-Connected? Such as Chvatal and Erdés condition («(G) < x(G) + 1) and so on.

This will be one of our further works.
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Chapter 7

Conclusions and future research

In this thesis, we (mainly) studied hamiltonian graph theory. We briefly describe the obtained results here. In

addition, we would like to mention several new studies that are relevant but not included in this thesis.

7.1 Results obtained and open questions

In Chapter 2] we proved that if G = (V, E) is a 2-connected graph of order n with V(G) = X UY such that for any
pair of nonadjacent vertices z; and x5 in X, d(z1) + d(z2) > n and for any pair of nonadjacent vertices y; and y- in

Y, d(y1) +d(y2) > n, then G is pancyclic or G = K,, /3 /2 OF G = Ky, /2 572 — {e}.
Note that the main result of Chapter[2is to prove that the conjecture [2.0.2]is true for k = 2.

In Chapter [3] we proved that Conjecture [2.0.2]is true for k = 3.
We showed that if G = (V, E) is a 3-connected graph of order n with V(G) = X; U X U X3, for any pair of

nonadjacent vertices v; and vy in X;, d(v1) + d(v2) > n with i = 1,2, 3, then G is pancyclic or a bipartite graph.

We haven'’t given a proof for Conjecture[1.3.12|with & > 4. That’'s what we’re going to do next.

Conjecture 7.1.1 Let G = (V, E) be a k-connected graph (k > 4) of order n. Suppose that V (G) = UX_, X;. If for
any pair of nonadjacent vertices z,y € X; withi =1,2,... k, d(z) + d(y) > n, then G is pancyclic or G is a bipartite

graph.

This Conjecture is still open.

For Conjecture [1.3.12] it is natural to generalize them into degree and neighborhood conditions on more inde-
pendent vertices. So, this is our other further work. When we consider the topic above, we posed the following

problem:
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Question 7.1.1 Let G = (V, E) be a 2-connected graph of order n. Suppose thatV(G) = X UY. If53(X) >n+c¢

anda3(Y) > n + ¢, where c be an integer, then G is hamiltonian.

The symbols 73(X) and 73(Y") that appear in Question can be found in section of Chapter[i} From

Bondy’s “metaconjecture”, we further ask the following questions:

Question 7.1.2 Let G = (V, E) be a 2-connected graph of order n. Suppose thatV(G) = X UY. If53(X) >n+c¢

anda3(Y) > n + ¢ where ¢ be an integer, then G is pancyclic or a bipartite graph.

Question 7.1.3 Let G = (V, E) be a k-connected graph, k > 2, of order n. Suppose that V (G) = UY_, X; such that

foreachi,i=1,2,...,k, and53(X;) > n + c where ¢ be an integer, then G is pancyclic or G is bipartite graph.

In Chapter [} we defined implicit degree (Definition [1.2.6). For the condition of implicit degree, Li proposes the

following conjecture:

Conjecture 7.1.2 Let G = (V, E) be a 2-connected graph of ordern. S be a subset of V(G). If 0,2 > n, then G is

S-pancyclic or G is exceptional graph.

If we change the degree condition to the implicit degree condition in Conjecture [2.0.2} is there the same conclu-
sion? What is the lower bound after changing to the implicit degree condition? Can it be characterized? These are

the questions we will continue to study next.

In Chapter |4} we gave sufficient conditions for a balanced bipartite digraph to be hamiltonian. And we show
some sufficient conditions for a digraph to be even pancyclic and cyclable.
We showed that in a balance bipartite digraph with order 2a, if d(z) + d(y) > 3a for every dominating pair of

vertices {x, y}, we can find a hamiltonian cycle.

According to Bondy’s metaconjecture, we got the following question.

Problem 7.1.3 Let D be a strongly connected balanced bipartite digraph of order 2a > 10 other than a directed
cycle of length 2a. If D satisfies the condition ¥4, i.e., d(x) + d(y) > 3a for every dominating pair of vertices {x,y},

then D is even pancyclic?

We also showed that if a digraph D of order 2a is not a directed cycle and D contains a cycle of length 2a — 2, if
d(xz)+d(y) > 3a+ 1 for every dominating pair of vertices {x, y}, then D contains a cycle of length 2k for all k£, where
1<k<a.

We want to know whether there is a cyclable version of Theorem (or the sufficient hamiltonian condition for
directed graphs). This will be our further works.

Similarly, can we get D is hamiltonian by replacing the condition of degree with the condition of implicit degree?

For example, starting with Theorem |4.1.1] we have the following problem:
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Question 7.1.4 If D is a strongly connected digraph of order n > 2 and d;(x) + d;(y) > 2n — 1 for all pairs of

nonadjacent vertices x and y of D, then D is hamiltonian.

A non-induced cycle is called a chorded cycle. A graph G of order n is chorded pancyclic if G contains a chorded

cycle of each length from 4 to n. A graph is called K s-free if it has no induced K 3 subgraph.

In Chapter [5, we prove that the following result: every 2-connected K, 3-free graph G with [V(G)| > 35 is

chorded pancyclic if the minimum degree is at least ”gQ. We show the number of chords in the chord cycle of length

[ (4 <1 < n). Moreover, G is doubly chorded pancyclic.
At present, there are not many kinds of researches on chorded pancyclic. So, there’s a lot of room for research.
Can we find more necessary and sufficient conditions for a graph to be chorded pancyclic? That's what we’re going

to work on.

For any integer ¢t > 2, let v be a vertex of a graph G and let U = {uq,us,...,u;} be a subset of V(G) \ {v}. A
(v,U)-fanis a set of paths Py, P», ..., P, such that P, is a path connecting v and u; for 1 < i <t¢and P, N P; = {v}
for1 <i < j <t Ifa(v,U)-fan spans G, then it is called a spanning (v,U)-fan of G. G is k-fan-connected if
G has a spanning (v, U)-fan for every vertex v of G and every subset U of V(G) \ {v} with |[U| = k. Clearly, the

k-fan-connectivity generalizes the Hamilton-connectivity.

In Chapter |§], we prove that if for any three independent vertices x1,z2, 23 in a graph G, Zle degq (i) —

|N2_, Ng(:)| > |V(G)| + k — 1, then G is k-fan-connected and the lower bound is sharp.

Note that the conditions for our results are better than those previously obtained. Is there any other better
condition for a graph to be k-fan-connected? Such as Chvatal and Erdds condition (a(G) < k(G) + 1) and so on.

This will be one of our further works.

If for any pair of vertices = and y, and for k distinct vertices {uy, us,...,ux} in V — {z,y}, there are k internal

disjoint paths Py, P, ..., P, connecting x and y, respectively, such that

u; € Py —A{x,y} for 1 <i<k; and U V(P) =V(G)
1<i<k

Then G is called k-fan-Hamilton-connected.

We will show the result about k-fan-Hamilton-connected of a graph for Dirac-type condition. Our main theorem

is as follows:

Theorem 7.1.4 Letk > 2 be an integer and G be a graph with ordern > 2. If §(G) > "—JQF’“ then G is k-fan-Hamilton-

connected.

Similarly, we will prove that the result about k-fan-Hamilton-connected of a graph for ore-type condition. We

obtain the following theorem:
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Theorem 7.1.5 Let k > 2 be an integer and G be a graph with order n > 2. If 02(G) > n + k, then G is k-fan-

Hamilton-connected.

For Theorems and We intend to prove in two steps. The first step is to prove that for any pair
of vertices = and y, and for k distinct vertices {uy,us,...,ur} in V. — {z,y}, there are k internal disjoint paths
Py, P, ..., P, connecting = and y, respectively, such that u; € P, — {z,y}, forany 1 < i < k. The second step to
prove U, ., V(F;) = V(G). Now that we have completed the second part of the proof, we only have to prove the

existence. This will be our future work.

7.2 Future research

Here, we would like to mention future research.

7.2.1 Hamiltonian line graphs

One of the topics in the hamiltonian graph is the hamiltonicity of claw-free graphs. As we all know, every line graph

is claw-free.

The line graph transformation is probably the most interesting of all graph transformations, and it is certainly the
most widely studied. The line graph concept is quite natural and has been introduced in several ways. We want to
consider the hamiltonian line graphs next. Even we want to study pancyclicity on the line graphs. For example, we

will consider the following problems:

Question 7.2.1 Let G = (V, E) be a k-connected line graph, k > 2, of order n. Suppose that V (G) = U¥_, X; such
that foreachi, i = 1,2,...,k, and for any pair of nonadjacent vertices x,y € X;, d(z)+d(y) > n, then G is pancyclic

or G is bipartite graph.

Question 7.2.2 For 3-connected line graphs, can high essential connectivity guarantee chorded pancyclic? Or what

are the sufficient conditions to determine the line graph to be chorded pancyclic?

7.2.2 Fault-tolerant hamiltonicity

The consideration of fault-tolerance ability is a major factor in evaluating the performance of networks. A graph G
is called a k-vertex fault-tolerant hamiltonian, or simply k-hamiltonian, if it remains hamiltonian after removing no
more than k vertices from G. Hence, using the notion of fault-tolerance the k-hamiltonian-connected graphs, k-
pancyclic graphs, and k-panconnected graphs can be defined similarly. Fault-tolerant hamiltonicity has been widely
studied in many network topologies, such as hypercubes, de Bruijn networks, double loop networks, twisted cubes,

bubble-sort graphs, and star graphs.
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Definition 7.2.1 LetT be a group, S be a set of elements of T not including the identity element. Suppose, further-
more, that the inverse of every element of S also belongs to S. The Cayley graph C(T', S) is the graph with vertex

set " in which two vertices x and y are adjacent if and only if xy=! € S.

Given a graph G, we assign a sign + or — to each edge of G. The edges labeled + are called positive edges
while the ones labeled — are called negative edges. We can see this assignment as a mapping of the edges of G
to the set {+, —}. Such a mapping is called a signature of G. We normally denote the set of negative edges by X.
Note that a signature of G is given if and only if the set of negative edges is given, thus the set of edges X will be

referred to as the signature of G, and (G, ) is called a signed graph.

Since edge faults can occur when a network is put into service, it is important to consider faulty networks. So,
fault-tolerance ability is a very important factor of interconnection networks. Therefore, we want to consider edge
fault-tolerant hamiltonicity and edge fault-tolerant pancyclicity (bipancyclicity) in many graphs, such as singed graphs

and so on.

7.2.3 Graph coloring

Due to the four-color problem and the modeling of several applications, graph coloring is one of the most studied
areas of graph theory. It consists of assigning colors to the vertices or edges of an input graph under various

constraints.

Edge-colorings are interesting not only because of the mathematical point of view but also because of the many
applications they have in real life, for example in scheduling problems and frequency assignment for fiber optic

networks, etc. Therefore, many types of edge-colorings have been studied over the years.

An edge-colored graph is a graph whose edges have been colored in some way with ¢ different colors. There
is a question: given an edge-colored graph, how can we find (if possible) or guarantee the existence of some
subgraphs with certain properties? For example, how to find or guarantee the existence of a hamiltonian cycle that
is properly colored. So, we want to study proper hamiltonian cycles, proper hamiltonian paths, proper trees, proper
cycles, rainbow trees, rainbow paths, rainbow cliques, monochromatic cliques, monochromatic cycles, etc. on some

conditions such as several edges, connectivity, rainbow degree, etc.

A graph is k-proper connected if any two vertices are connected by k-vertex disjoint paths whose adjacent edges
have distinct colors. A strong edge-coloring of a graph G is an edge-coloring such that any two vertices belonging

to distinct edges with the same color are not adjacent.

We also want to study the proper connection of graphs and strong edge-colorings of graphs.
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7.2.4 Other works

We can study graph structural properties with algorithmic aspects. We also consider the parameters for several

classes of graphs like graphs without induced P, (path on 4 vertices), bipartite graphs, grids, etc.
Furthermore, we study the hamiltonian properties of the graph that can be combined with the algorithm.

The vertex coloring problem: the vertices of the input graph are presented to a coloring algorithm one at a time
in some arbitrary order. The algorithm must choose a color for each vertex, based only on the colors assigned to

the already-processed vertices.

We also studied the graph coloring problem by the algorithm such as polynomial-time algorithms. The most

popular on-line coloring algorithm is the greedy algorithm.
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Appendix A

The supplement of Claim

In this chapter, we will give a detailed proof of Claim in Chapter[3]

Since |V (Plvz,v4-1])| < 4and |V (P[vgt+1,vp—1])| < 4, by the maximality of P, then |H| < min{d—2,p—d—1} < 4.

Suppose V(H) = {u}. If [V(P[ve,vq-1])| = 1 and |V (Plvg41,vp-1])| = 1, since d(v1) + d(v,) > n and G is not
pancyclic, it is easy to know G = K3 3.

Suppose 2 < |V (Pvg,vg—1])] < 40r2 < |[V(Plvgs1,vp-1])| < 4. By d(v1) + d(vp) > n, if |[V(Plva,v4-1])| = 3,
[V(Plva+1, vp—1])| = 1, [V(Pv2,v4-1])| = 3 and |V (P[vq+1,vp,—1])| = 3, we obtain G is a bipartite graph. Otherwise,
we can construct all cycles Cy, 3 < k < n.

Taking d = 6 and p = 11 as an example, we construct all the cycles Cy, for 3 < k <mn, in G. Since n =12and G
is hamiltonian, then we just construct all cycles Cy, 3 < k < 11. And dp(v1) + dp(v11) > 10.

First, we construct the cycle C5. Suppose there does not exist a cycle C5. Then, for any v; € V(P[vs, v10]),
vv1 ¢ E(GQ) or vipivr ¢ E(G). Since dp(v1) + dp(v11) > 10, then Np(v1) = Np(vp) = {v2,v4,v6,vs,v10}. Thus,
C5 = vivguvy, a contradiction.

If C4 does not exist in G, then vivy, ¢ E(G). And vivs ¢ E(G) otherwise let Cy = vjvsvguvy. Similarly,
v1v7, 11010 € E(G). S0, Np(v1) C {vs, v3,v6, vs,v9 }. By the symmetry vy and v, then Np(v11) C {vs,v4, vs, vg, v10}-
Since dp(v1) + dp(vi1) > 10, then vivg, vivs € E(G). Let C4 = vyvgvrvsvy, @ contradiction.

The same argument with Cy, if C5 does not exist, then
Np(v1) € {v2,v3,v6,v7,v10} @nd Np(vi1) C {v2,vs,vg, V9, V10 }

. Since dp(vy) + dp(vi1) > 10, then vivs, v1v6 € E(G). So, let Cs5 = vivzvsvsv6v1, @ contradiction.
The same with above, we can construct the cycle Cs. And C7 = vyvg - - - vguvs.

If there does not exist cycle Cs in G, then vyvg, v11v6, V108, v1104 ¢ E(G). There is at most one edge between

v1vs and vivg. And we have vivy ¢ E(G) or vivig ¢ E(G). So dp(v1) < 5. Since dp(v1) + dp(v11) > 10, by the
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symmetry v; and vi1, then viv7, vivs,v1105,v1107 € E(G). And without loss of generality, let v1v3 € E(G). So,
Cs = v1V3V4V5V6UV11V7V1, A contradiction.
If there does not exist Cy0|e Cg in G, then V1v9, V15 ¢ E(G) If V1V19 € E(G), then Cg = V1V2V3V4V5V6UV11V10V1,

a contradiction. And v1v4 ¢ E(G) or vivg ¢ E(G). So

Np(v1) = {v2,v3,v4,06, 07} OF Np(v1) = {v2,v3, 06, 07, V8 }.

By the symmetry,

Np(vp) = {va, vs,v6,v9,v10} OF Np(vp) = {vs, s, Vs, Vg, V10 }-

Since dp(v1) + dp(v11) > 10, then vivr, v11v5 € E(G). So, let Cy = v1v7v3v9v19v1105v6uv1, @ CcONtradiction.
Suppose that there does not exist cycle Cyp in G, then vivg, v1v19,v1v4 ¢ E(G). And vivs ¢ E(G) or vivs ¢

E(G) otherwise Cip = v1v3v40506uv1101009Vv1, A contradiction. So Np(vy) = {va,vs,vs,v6,v7} OF Np(vy) =

{v2,vs, v, v7,us}. By the symmetry, Np(v,) = {v4,vs,v6,v7,v10} Of Np(vp) = {vs, v, 7,09, v10}. Since dp(v1) +

dp(vi1) > 10,

V1V5040V11V10V9URV7T VUV if V1104 € E(G),
Cio =

V1V20V3V4V5V11V9V8V7V6V1 if VoV11 € E(G)
This is a contradiction.

If C11 does not exist in G, then vyvs,v1vs ¢ E(G) and (Np(v1))” N Np(v11) = 0. since dp(v1) +dp(v11) > 10, by
Lemma , then V2V11, V1010 € E(G) from V13, V9V11 ¢ E(G) If v; € V(P[’U4, 'UG]) @] {’Ug} such that V1V, V1V;41 €
E(G), then Ci11 = 01901 ©UV11V10 " - V4101, A contradiction. So dp(’l)l) < 4. Slmllarly, dp(’l)ll) < 4. This

contradicts to dp(v1) + dp(v11) > 10.

So, in this case, we can construct all cycles C, 3 < k < n, in G.

Similarly, when 2 < |V (H)| < 4, we can obtain G is pancyclic or G is a bipartite graph.
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Résumé: La théorie hamiltonienne des graphes a
été largement étudiée comme I'un des problémes les
plus importants de la théorie des graphes. Dans
cette thése, nous travaillons sur des généralisations
de la théorie hamiltonienne des graphes, et nous
nous concentrons sur les sujets suivants : hamiltonien
graphes, pancyclicité, pancyclicité a cordes dans les
graphes sans griffes, graphes k-fan-connectés.

Pour le probléme du pancyclic, on montre pour k =
2,3, si G = (V, E) est un graphe k-connecté d'ordre
n avec V(G) = X; U X, U --- U Xy, et pour toute
paire de sommets non adjacents x,y dans X; avec
i=1,2,...,k,onad(x) + d(y) > n, alors G est pan-
cyclique ou G est un graphe bipartite.

Pour le probleme hamiltonien du digraphe biparti, soit
D un graphe orienté biparti équilibré fortement con-
necté d’ordre 2a¢ > 10. Soit z,y des sommets dis-
tincts dans D, {z,y} domine un sommet z si z — z et
y — z; dans ce cas, nous appelons le couple {z,y}
dominant. Nous montrons que D est hamiltonien pour
chaque paire de sommets dominants si leur somme
de degrés est d’au moins 3a. En outre, nousmontrons
quelques nouvelles conditions suffisantes pour la bi-

Titre: Pancyclicité dans la théorie des graphes hamiltonienne

Mots clés: Pancyclicité, Cycle hamiltonien, Pancyclicité a cordes, Graphe sans griffe, k-fan-connecté.

pancyclique et la cyclabilit & des digraphes.

Pour le probleme pancycligue a cordes dans les
graphes sans griffes, nous prouvons que tout graphe
G sans griffes 2-connecté avec |V(G)| > 35 est pan-
cyclique a cordes si le degré minimum est d’au moins
"T*Q. De plus, nous montrons le nombre de cordes
dans le cycle a cordes de longueur [ (4 <1 < n). De
plus, G est un pancyclique a double corde.

Pour le probleme k-fan-connecté, nous prouvons que
si pour trois sommets indépendants 1, z2, x3 dans un
graphe G, 327, degg (i) — | Nizy Na(w:i)| > [V(G)] +
k—1, alors G est k-fan-connecté et la borne inférieure
est tranchant. Ce résultat principal en déduit qu’un
graphe 3-connexe, sous les mémes hypothéses, est
un Hamilton-connexe.

Enfin, nous aimerions mentionner plusieurs nouvelles
études liées a cette thése qui n’est pas incluses dans
la these. De plus, nous couvrons également d’autres
sujets qui m’intéressent, tels que les graphes de ligne
hamiltoniens, I'hamiltonicité tolérante aux pannes, la
coloration de graphe, etc. Ces sujets sont suscepti-
bles de devenir mes autres domaines de recherche.

Title: Pancyclicity in hamiltonian graph theory

Abstract: Hamiltonian graph theory has been widely
studied as one of the most important problems in
graph theory. In this thesis, we work on general-
izations of hamiltonian graph theory, and focus on
the following topics: hamiltonian graphs, pancyclic-
ity, chorded pancyclic in the claw-free graphs, k-fan-
connected graphs.

For pancyclic problem, we show for £k = 2,3, if
G = (V,E) is a k-connected graph of order n with
V(G) = X;UXoU---UXy, and for any pair of nonad-
jacent vertices z,y in X; with: =1,2,... k, we have
d(x)+d(y) > n, then G is pancyclic or G is a bipartite
graph.

For hamiltonian problem in bipartite digraph, let D
be a strongly connected balanced bipartite directed
graph of order 2a > 10. Let z, y be distinct vertices in
D, {z,y} dominates a vertex z if  — z and y — z; in
this case, we call the pair {«, y} dominating. We show
that D is hamiltonian for each dominating pair of ver-
tices if their degree sum is at least 3a. In addition, we
show some new sufficient conditions for bipancyclic

Keywords: Pancyclicity, Hamiltonian cycle, Chorded pancyclicity, Claw-free graph, k-fan-connected.

and cyclability of digraphs.

For chorded pancyclic problem in claw-free graphs,
we prove that every 2-connected claw-free graph G
with |V(G)| > 35 is chorded pancyclic if the mini-
mum degree is at least % Furthermore, we show
the number of chords in the chord cycle of length !
(4 <1 < n). In addition, G is doubly chorded pan-
cyclic.

For k-fan-connected problem, we prove that if for any
three independent vertices z1,z2,x3 in a graph G,
>y degg (@) = | M=y No(w:)| = [V(G)|+k —1, then
G is k-fan-connected and the lower bound is sharp.
This main result deduces a 3-connected graph, under
the same assumptions, is a Hamilton-connected.
Finally, we would like to mention several new stud-
ies related to this thesis that is not included in the
thesis. Moreover, we also cover other topics that |
am interested in, such as hamiltonian line graphs,
fault-tolerant hamiltonicity, graph coloring and so on.
These topics are likely to become my further research
fields.
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