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The hamiltonian graph theory has been studied widely as one of the most important problems in graph theory.

In fact, the hamiltonian problem includes also the generalization of hamiltonian cycles such as circumferences, dominating cycles, pancyclic, cyclability, etc. In this thesis, we will work on the generalizations of hamiltonian graph theory.

There are four fundamental results that deserve special attention here, both for their contribution to the overall theory and their effect on the area's development.

The first result is Dirac's theorem (in 1952), where the search for sufficient conditions for graphs to become hamiltonian graphs usually involves some kind of edge density condition. Enough edges are provided for the existence of a hamiltonian cycles. Dirac's theorem is the first sufficient condition for a graph to be hamiltonian. It is shown that if the degree of each vertex is at least half of the order of the graph, then the graph is hamiltonian.

The second result is Ore's theorem (in 1960), which relaxes Dirac's condition and extends the methods for controlling the degrees of the vertices in the graph. This is the first important generalization of Dirac's theorem.

Ore's theorem is that if for any two nonadjacent vertices, their degree sum is greater than or equal to n, then the graph of order n is hamiltonian.

The k-closure Cl k (G) is obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least k, until no such pair remains. The k-closure is independent of the order of the addition of the edges.

The third fundamental result is that a graph G of order n is hamiltonian if and only if Cl n (G) is hamiltonian.

The fourth fundamental result presents a sufficient condition of hamiltonian graphs on the relation between the independence number and the connectivity of the graphs. If G is a graph with connectivity k such that α(G) ≤ k, where α(G) is the independence number of G, then G is hamiltonian.

Many achievements have been made in the research related to these four fundamental results, but many questions remain to be solved. In this thesis, we will focus on a few questions related to the four basic results.

A cycle containing all vertices of a graph G is called a hamiltonian cycle and G is called hamiltonian if it contains a hamiltonian cycle. A graph G is called pancyclic if it contains cycles of all length k for 3 ≤ k ≤ |V (G)|. Analogously, a bipartite graph G is called bipancyclic if it contains cycles of all even lengths from 4 to |V (G)|.

In Chapters 2 and 3, we study the pancyclicity of a connected graph. Ore showed in 1960 that if the degree sum of any pair of nonadjacent vertices is at least n in a graph G of order n, then G is hamiltonian. Bondy proved that under the same condition, G is pancyclic or G = K n/2,n/2 . Thus, Bondy suggested the interesting "metaconjecture": almost any nontrivial condition on graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of exceptional graphs).

A vertex-cut of G is a subset V of V (G) such that G -V is disconnected. If the vertex-cut V has only one vertex {v}, then we call v as a cut-vertex. A k-vertex-cut is a vertex-cut of k elements. If G has at least one pair of distinct nonadjacent vertices, the connectivity κ(G) of G is the minimum k for which G has a k-vertex-cut; otherwise, we define κ(G) to be |V (G)| -1. G is said to be k-connected if κ(G) ≥ k.

The hamiltonian problem also includes the generalization of hamiltonian cycles. Cyclable problem is one of the most important generalizations of hamiltonian cycles.

Let S be a subset of V (G). We say that G is S-cyclable if G has an S-cycle, i.e., a cycle containing all vertices of S. In 2005, Flandrin, Li, Marczyk and Wozniak showed the following theorem which is an Ore-type condition for graphs to be S-cyclable. Let G = (V, E) be a k-connected graph of order n with k ≥ 2, and X 1 , X 2 , . . . , X k be subsets of the vertex set V , X = X 1 ∪ X 2 ∪ . . . ∪ X k . If for each i = 1, 2, . . . , k, for any pair of nonadjacent vertices in X i , their degree sum is at least n, then G is X-cyclable.

From the above result and Bondy's "metaconjecture", we propose our conjecture: if

G = (V, E) is a k-connected graph (k ≥ 2) of order n with V (G) = X 1 ∪ X 2 ∪ • • • ∪ X k ,
and for any pair of nonadjacent vertices x, y in X i with i = 1, 2, . . . , k, we have d(x) + d(y) ≥ n, then G is pancyclic or G is a bipartite graph.

In Chapter 2, we prove that our conjecture is true for k = 2. We prove that if G = (V, E) is a 2-connected graph of order n with V (G) = X ∪ Y such that for any pair of nonadjacent vertices x 1 and x 2 in X, d(x 1 ) + d(x 2 ) ≥ n and for any pair of nonadjacent vertices y 1 and y 2 in Y , d(y 1 ) + d(y 2 ) ≥ n, then G is pancyclic or G = K n/2,n/2 or G = K n/2,n/2 -{e}. It is easy to see that our result is stronger than Bondy's result.

To prove our result, we present some lemmas.

The first lemma is that let G = (V, E) be a 2-connected balanced bipartite graph of order n and V (G) = X ∪ Y , if for any pair of nonadjacent vertices x 1 and x 2 in X (y 1 and y 2 in Y ), d(x 1 ) + d(x 2 ) ≥ n (d(y 1 ) + d(y 2 ) ≥ n), then G = K n/2,n/2 or G = K n/2,n/2 -{e}.

The second lemma is as follows. Let P = u 1 u 2 u 3 • • • u p be a path in a graph G. If for any vertices x, y ∈ V (G) -V (P ) such that (N P (x) -{u 1 }) -∩ N P (y) = ∅, then d P (x) + d P (y) ≤ p + 1. If d P (x) + d P (y) = p + 1, then (1) V (P ) = (N P (x) -{u 1 }) -∪ N P (y); (2) xu 1 , yu p ∈ E(G); (3) If u i / ∈ N P (x) for some i, 2 ≤ i ≤ p, then u i-1 ∈ N P (y). And if u j / ∈ N P (y) for some j, 1 ≤ j ≤ p -1, then u j+1 ∈ N P (x); (4) If u i , u j / ∈ N P (x) ∪ N P (y)

with 2 ≤ i < j ≤ p -1 such that {u i+1 , u i+2 , . . . , u j-1 } ⊆ N P (x) ∪ N P (y), then there exists an exact one k with i + 1 ≤ k ≤ j -1, such that {u i+1 , u i+2 , . . . , u k } ⊆ N P (x) and {u k , u k+1 , . . . , u j-1 } ⊆ N P (y); (5) If N P (x) does not contain consecutive vertices on P and N P (y) does not contain consecutive vertices on P , then p is odd and N P (x) = N P (y) = {u 1 , u 3 , u 5 , . . . , u p-2 , u p }.

In Chapter 3, we prove that our conjecture is true for k = 3. It is kind of a continuation of the work in Chapter 2. Our main result is to prove that a 3-connected graph G = (V, E) of order n and V (G) = X 1 ∪ X 2 ∪ X 3 , and any pair of nonadjacent vertices v 1 and v 2 in X i , d(v 1 ) + d(v 2 ) ≥ n with i = 1, 2, 3, then G is pancyclic or G is a bipartite graph.

The main idea and the main tools of the proof of Theorem in Chapter 3 and Theorem in Chapter 2 are similar, but there are also some differences. To make this chapter complete, we will give the whole proof of the Theorem in Chapter 3.

In the results of the Chapter 3 of the proof, we give the following lemma. Let G = (V, E) be a 3-connected graph of order n and V (G) = X 1 ∪ X 2 ∪ X 3 . If for each i, i = 1, 2, 3, G[X i ] is a clique, then G = K 3,3 or G is pancyclic.

A digraph D is strongly connected if there exists a path from x to y and a path from y to x for every pair of distinct For two distinct vertices x, y in D, {x, y} dominates a vertex z if x → z and y → z; in this case, we call the pair {x, y} dominating.

A digraph D is called non-hamiltonian if it is not hamiltonian. A balanced bipartite digraph of order 2m is even pancyclic (or bipancyclic) if it contains a cycle of length 2k for any k, 2 ≤ k ≤ m.

In Chapter 4, we consider pancyclic and hamiltonian problems in digraph or bipartite digraph. In Section 1, we present a list of hamiltonian results of digraph or bipartite digraph. In Section 2, we give a sufficient condition for a balanced bipartite digraph to be hamiltonian. We prove that for each dominating pair of vertices when their degree sum is at least 3a, the strongly connected balanced bipartite directed graph D of order 2a ≥ 10 is hamiltonian. In iii Section 3, we show some new sufficient conditions for bipancyclic and cyclability of digraphs.

Chorded pancyclic is one of the generalizations of the hamiltonian problem.

In Chapter 5, we consider chorded pancyclic problems on K 1,3 -free graph. A non-induced cycle is called a chorded cycle. A graph G of order n is chorded pancyclic if G contains a chorded cycle of each length from 4 to n. A graph is called K 1,3 -free if it has no induced K 1,3 subgraph. If a cycle has at least two chords, then the cycle is called a doubly chorded cycle. A graph G of order n is doubly chorded pancyclic if G contains a doubly chorded cycle of each length from 4 to n.

Bondy's metaconjecture was extended as follows. Almost any condition that implies a graph is hamiltonian will also imply it is chorded pancyclic, possibly with some class of well-defined exceptional graphs and some small order exceptional graphs.

We study a minimum degree condition for K 1,3 -free graphs to be chorded pancyclic. In 1986, Flandrin, Fournier and Germa gave a condition of minimum degree for K 1,3 -free graphs to be pancyclic, i.e., a 2-connected K 1,3 -free graph G of the order n ≥ 35, if δ(G) ≥ n-2 3 , then G is pancyclic.

In Chapter 5, from the above result and the extension of Bondy's metaconjecture, we obtain the results of the extension of pancyclic to the chorded pancyclic. We prove the following result: every 2-connected K 1,3 -free graph G with |V (G)| ≥ 35 is chorded pancyclic if the minimum degree is at least n-2 3 . This result supports for the extension of Bondy's metaconjecture. Furthermore, we show the number of chords in the chorded cycle of length m (4 ≤ m ≤ n).

Let CH m be the maximum number of chords in cycle C m ⊆ G with 4 ≤ m ≤ n, and G be a 2-connected K 1,3 -free graph with the order n ≥ 35. If δ(G) ≥ n- 2 3 , then we obtain the size of CH m : if 4 ≤ m ≤ 5, then CH m ≥ m(m-1)

2

m;

if 6 ≤ m ≤ n+1 3 , CH m ≥ m; if n+4 3 ≤ m ≤ 2n+8 3 , CH m ≥ [ m 6 ]; if 2n+11 3 ≤ m ≤ n, CH m ≥ m(δ-(n-m)) 2 -m.
Moreover, we prove CH m ≥ 2. So, we can obtain G is doubly chorded pancyclic.

A hamiltonian path of a graph G is a path that contains all vertices of V (G). A graph G is Hamilton-connected if there is a hamiltonian path connecting every two distinct vertices.

In 1991, Flandrin, Jung and Li proved that if for any three independent vertices x 1 , x 2 , x 3 in a 2-connected graph G of order n,

3 i=1 deg G (x i ) -| 3 i=1 N G (x i )| ≥ n, then G is hamiltonian.
As a generalization of Hamilton-connected and hamiltonian path, Lin et al. introduced the k-fan-connectivity of graphs: for any integer t ≥ 2, let v be a vertex of a graph G and let U = {u 1 , u 2 , . . . , u t } be a subset of V (G) \ {v}.

A (v, U )-fan is a set of paths P 1 , P 2 , . . . , P t such that P i is a path connecting v and u i for 1 ≤ i ≤ t and P i ∩ P j = {v} for 1 ≤ i < j ≤ t. sugg ér é l'int éressante "m étaconjecture" : presque toutes les conditions non triviales sur les graphes qui impliquent que le graphe soit hamiltonien implique aussi que le graphe est pancyclique (il peut y avoir une famille de graphes exceptionnels).

It follows from

Un sommet-coupe de G est un sous-ensemble V de V (G) tel que G -V est d éconnect é. Si le sommet-coupe

V n'a qu'un seul sommet {v}, alors on appelle v comme coupe-sommet. Un k-sommet-coupe est un sommetcoupe de k él éments. Si G a au moins une paire de sommets distincts non adjacents, la connectivit é κ(G) de G est le k minimum pour lequel G a un k-sommet-coupe; sinon, nous d éfinissons κ(G) comme étant

|V (G)| -1. G est dit k-connect é si κ(G) ≥ k.
Le probl ème hamiltonien comprend également la g én éralisation des cycles hamiltoniens, le probl ème cyclable est l'une des g én éralisations les plus importantes des cycles hamiltoniens.

Soit S un sous-ensemble de V (G). On dit que G est S-cyclable si G a un S-cycle, c'est-à-dire un cycle contenant tous les sommets de S. En 2005, Flandrin, Li, Marczyk et Wozniak ont montr é le th éor ème suivant qui est une condition de type Ore pour que les graphes soient S-cyclables. Soit G = (V, E) un graphe k-connect é d'ordre n avec k ≥ 2, et X 1 , X 2 , . . . , X k des sous-ensembles de l'ensemble de sommets V , X = X 1 ∪ X 2 ∪ . . . ∪ X k . Si pour chaque i = 1, 2, . . . , k, pour toute paire de sommets non adjacents dans X i , leur somme de degr és est d'au moins n, alors G est X-cyclable. In this thesis, we will focus on the following topics: hamiltonian graphs, pancyclicity, chorded pancyclic in clawfree graphs, k-fan-connected graphs.
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In this chapter, we give a short but relatively complete introduction. In the first part, some basic definitions and notations are given. In the second section, we introduce some background of hamiltonian graphs and generalizations of hamiltonian problem. And we reviewed the classic results on these topics. In the last section, we show the motivations and overview of our main topics. The number of vertices of a graph G is its order, written as |G| or |V (G)|; its number of edges is its size, denoted by ||G||. Graphs are finite, infinite, countable and so on according to their order.

Basic definitions and notations

Definitions and notations of graph

A graph G is an ordered triple (V (G), E(G), ψ G ) consisting of a nonempty set V (G) of vertices, a set E(G), disjoint from V (G),

Isomorphism

Let G and H be two graphs. An isomorphism between G and H is a bijection ϕ :

V (G) → V (H) such that ϕ(u)ϕ(v) ∈ E(H) if and only if uv ∈ E(G) for all u, v ∈ V (G).
Two graphs are isomorphic if there exists an isomorphism between them.

Subgraph

A graph H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G)
, and ψ H is the restriction of ψ G to E(H). We write

H ⊆ G if H is a subgraph of G. When H ⊆ G but H = G, we call H a proper subgraph of G.
Suppose that V is a nonempty subset of V (G). The subgraph of G whose vertex set is V and whose edge set is the set of those edges of G that have both ends in V is called the subgraph of G induced by V and is denoted by

G[V ]; we say that G[V ] is an induced subgraph of G. The induced subgraph G[V (G) \ V ] is denoted by G -V . If V = {v}, we write G -v for G -{v}. A spanning subgraph of G is a subgraph of H with V (H) = V (G).
Suppose that E is a nonempty subset of E(G). The subgraph of G whose vertex set is the set of ends of edges in E and whose edge set is E is called the subgraph of G induced by E and is denoted by 

G[E ]; G[E ] is an edge-induced

Disjoint union of graphs

Given two graphs

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) with V 1 ∩ V 2 = ∅ and E 1 ∩ E 2 = ∅, the disjoint union of G 1 and G 2 , denoted by G 1 ∪ G 2 , is the graph with vertex set V 1 ∪ V 2 and edge set E 1 ∪ E 2 .

Complete join of graphs

Given two graphs

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) with V 1 ∩ V 2 = ∅ and E 1 ∩ E 2 = ∅, the complete join of G 1
and G 2 , denoted by G 1 + G 2 , is the graph obtained by starting with G 1 ∪ G 2 and adding edges joining every vertex of G 1 to every vertex of G 2 .

Neighbors and degree

Let G = (V (G), E(G)) be a (non-empty) graph. The set of neighbors of a vertex v in G is the set of all vertices adjacent to v, denoted by

N G (v). Put N G (v) = {u ∈ V (G)|uv ∈ E(G)}. More generally for U ⊆ V (G), the neighbors in V \ U of vertices in U are called neighbors of U ; their set is denoted by N G (U ).
If there is no ambiguity, we also write

N (v) for N G (v) and N (U ) for N G (U ).
For any vertex v of a simple graph G = (V (G), E(G)), the degree of v is the number of vertices adjacent to v in G, which is equal to the number of neighbors of v. We will use d G (v) to denote the degree of v, if there is no confusion arises, simplified as

d(v). So d G (v) = |N G (v)|.
A vertex of degree 0 is isolated. We denote δ(G) and ∆(G) the minimum and maximum degrees, respectively, of vertices of G, where δ(G)

:= min{d(v)|v ∈ V (G)} and ∆(G) := max{d(v)|v ∈ V (G)}.
If all the vertices of G have the same degree k, then G is k-regular, or simply regular. A 3-regular graph is called cubic.

Walk, path and cycle

A walk in a graph G = (V (G), E(G)) is a finite non-null sequence W = v 0 e 1 v 1 e 2 v 2 • • • e k v k
, whose terms are alternately vertices and edges, such that, for any 1 ≤ i ≤ k, the ends of e i are v i-1 and v i . We say that W is a walk from v 0 to v k , or a (v 0 , v k )-walk. The vertices v 0 and v k are called the initial vertex and terminal vertex of W , respectively. And v 1 , . . . , v k-1 are its internal vertices. The integer k is the length of W , i.e., the length of a walk is the number of its edge. A walk of length k is also called a k-walk.

If W = v 0 e 1 v 1 • • • e k v k and W = v k e k+1 v k+1 • • • e l v l , are walks, the walk v k e k v k-1 • • • e 1 v 0 , obtained by reversing W , is denoted by W -1 and the walk v 0 e 1 v 1 • • • e l v l , obtained by concatenating W and W at v k , is denoted by W W . A section of a walk W = v 0 e 1 v 1 • • • e k v k is a walk that is a subsequence v i e i+1 v i+1 • • • e j v j
of consecutive terms of W ; we refer to this subsequence as the (v i , v j )-section of W .

In a simple graph, a walk

v 0 e 1 v 1 e 2 v 2 • • • e k v k can be simply expressed as v 0 v 1 • • • v k . If the edges e 1 , e 2 , . . . , e k of a walk W are distinct, W is called a trail.
If the vertices v 0 , v 1 , . . . , v k of W are distinct, then W is called a path or v 0v k -path. Usually, denote the section

v i v i+1 • • • v j of the path P = v 0 v 1 • • • v k by P [v i , v j ].
A walk is closed if it has positive length and its initial vertex and terminal vertex are the same. A closed trail whose terminal vertex and internal vertex are distinct is a circuit; and a closed path is a cycle.

The length of a path or a cycle is the number of its edges. A path or a cycle of length k is called a k-path or k-cycle, respectively; the path or cycle is odd or even according to the parity of its length.

Girth, circumference and chord

The minimum length of a cycle (contained) in a graph G is the girth of G, denoted by g(G). The odd-girth of a graph is the length of the shortest odd-cycle contained in the graph.

The maximum length of a cycle (contained) in G is its circumference, denoted by c(G). If a graph does not contain any cycle, its girth and circumference are defined to be infinity.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that cycle.

Distance and diameter

The distance d G (x, y) in G of two vertices x, y is the length of the shortest xy path in G; if no such path exists, we set d G (x, y) = ∞. Whenever the underlying graph is clear from the context, we will write d(x, y) instead of d G (x, y).

The greatest distance between any two vertices in a connected graph G is the diameter of G, denoted by diamG.

Acyclic graph and tree

An acyclic graph is one that contains no cycle in the graph.

A tree is a connected acyclic graph. A spanning tree of G is a spanning subgraph of G that is a tree.

Connected and component

Two vertices u and v of G = (V (G), E(G)) are said to be connected if there is a (u, v)-path in G. A graph G is called connected if any two of its vertices are linked by a path in G.

If U ⊆ V (G) and G[U ] is connected, we also call U itself connected in G.
Instead of not connected we usually say disconnected.

Let G = (V, E) be a graph. A maximal connected subgraph of G is a component of G.
Clearly, the components are induced subgraphs, and their vertex sets partition V . Since connected graphs are non-empty, the empty graph has no components.

Vertex-cut, connectivity κ(G) and k-connected

A vertex-cut of G is a subset V of V (G) such that G -V is disconnected. If the vertex-cut V has only one vertex {v}, then call v as a cut-vertex. A k-vertex-cut is a vertex-cut of k elements. If G has at least one pair of distinct nonadjacent vertices, the connectivity κ(G) of G is the minimum k for which G has a k-vertex-cut; otherwise, we define κ(G) to be |V (G)| -1. G is said to be k-connected if κ(G) ≥ k.
Edge-cut, edge-connectivity λ(G) and k-edge-connected

An edge-cut of G is a subset E of E(G) such that G -E is disconnected. If the edge-cut E = {e}, then call e
as a cut-edge or bridge. A k-edge-cut is an edge-cut of k elements. Define the edge-connectivity λ(G) of G to be the minimum k for which G has a k-edge-cut. G is said to be k-edge-connected if λ(G) ≥ k.

Independent set and independence number α(G)

An independent set of a graph G is a subset of the vertices such that no two vertices in the subset induce an edge of G. The cardinality of a maximum independent set in a graph G is called the independence number of G,

denoted by α(G).
The definitions of σ m (G) and σ m (G)

For any integer m ≥ 2, if α(G) ≥ m, put σ m (G) = min m i=1 deg G (x i ) x 1 , x 2 , . . . , x m are pairwisely nonadjacent vertices in G σ m (G) = min m i=1 deg G (x i ) -| m i=1 N G (x i )| x 1 , x 2 , . . . , x m are pairwisely nonadjacent vertices in G . If G does not have m vertices that are independent, we define σ m (G) = σ m (G) = ∞.

Hamiltonian cycle and hamiltonian

A cycle containing all vertices of G is called a hamiltonian cycle and G is called hamiltonian if it contains a hamiltonian cycle. For two vertices u and v, a (u, v)-path is a path connecting u and v. A path in G containing every vertex of G is a hamiltonian path. A hamiltonian (u, v)-path is a hamiltonian path connecting u and v.

Traceable, 1-edge hamiltonian and 1-hamiltonian

A graph G is traceable if it contains a spanning path (that is, the path containing all the vertices of G).

A graph G = (V, E) is 1-edge hamiltonian if G-e is hamiltonian for any e ∈ E. Obviously, any 1-edge hamiltonian graph is hamiltonian. The graph G is 1-node hamiltonian if G -v is hamiltonian for any v ∈ V . A graph G is 1- hamiltonian if it is 1-edge hamiltonian and 1-node hamiltonian.
In this thesis, we mainly consider simple graphs. We conclude this section by introducing some special classes of graphs.

Complete graphs and cliques

A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. If there is just one complete graph on n vertices; it is denoted by K n .

A clique of a graph G is a complete graph contained in G as a subgraph. The clique number ω(G) of a graph G is the order of a maximum clique in G.

Bipartite graphs and k-partite graphs

A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y , so that each edge has one end in X and one end in Y ; such a partition (X, Y ) is called a bipartition of graph.

A complete bipartite graph is a simple bipartite graph with bipartition (X, Y ) in which each vertex of X is joined

to each vertex of Y ; if |X| = m and |Y | = n, such a graph is denoted by K m,n .
A k-partite graph is one whose vertex set can be partitioned into k subsets so that no edges has both ends in any one subset; a complete k-partite graph is one that is simple and in which each vertex is joined to every vertex that is not in the same subset.

Line graphs

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G have at least one vertex in common. From the definition of a

line graph, if L(G) is not a complete graph, then a subset X ⊆ V (L(G)) is a vertex cut of L(G) if and only if X is an essential edge-cut of G.

Planar graphs

A graph is planar if it can be drawn on the plan such that its edges intersect only at their ends. Such a drawing is called a planar embedding of the graph. Given a planar embedding of a planar graph, it divides the plan into a set of connected regions, including an outer unbounded connected region. Each of these regions is called a face of the planar graph. The boundary of a face is the cycle of the graph containing it. A planar graph with a given planar embedding is called a plane graph.

Pancyclic and bipancyclic graphs

A graph G is called pancyclic if it contains cycles of all length k for 3 ≤ k ≤ |V (G)|. Analogously, a bipartite graph G is called bipancyclic if it contains cycles of all even lengths from 4 to |V (G)|.

Chorded pancyclic and doubly chorded pancyclic

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say that a cycle is chorded if the cycle has at least one chord, and we call such a cycle chorded cycle. If a cycle has at least two chords, then the cycle is called a doubly chorded cycle. A graph G of order n is chorded pancyclic (doubly chorded pancyclic) if G contains a chorded cycle (doubly chorded cycle) of each length from 4 to n.

In the following, we give some basic terminology and notations of digraphs.

Definitions and notations of digraph

A directed graph D is an ordered triple (V (D), A(D), ψ D ) consisting of a nonempty set V (D) of vertices, a set A(D), disjoint from V (D), of arcs, and an incidence function ψ D that associates with each arc of D an ordered pair of (not necessarily distinct) vertices of D. If a is an arc and u and v are vertices such that ψ D (a) = (u, v), then a is said to join u to v; u is the tail of a, and v is its head. For convenience, we shall abbreviate directed graph to digraph. A digraph is strict if it has no loops and no two arcs with the same ends have the same orientation.

Subdigraph

A digraph D is a subdigraph of D if V (D ) ⊆ V (D), A(D ) ⊆ A(D) and ψ D is the restriction of ψ D to A(D ).
The terminology and notation for subdigraphs is similar to that used for subgraphs.

Directed walks, directed trails, directed paths and directed cycles

A directed walk in D is a finite non-null sequence W = (v 0 , a 1 , v 1 , . . . , a k , v k ), whose terms are alternately vertices and arcs, such that, for i = 1, 2, . . . , k, the arc a i has head v i and tail V i-1 . As with walks in graphs, a directed walk (v 0 , a 1 , v 1 , . . . , a k , v k ) is often represented simply by its vertex sequence (v 0 , v 1 , . . . , v k ). A directed trail is a directed walk that is a trail, i.e., a directed trail is a directed walk in which all edges are distinct.

A directed path is a directed trail in which all vertices are distinct.

A directed circuit is a non-empty directed trail in which the first vertex is equal to the last vertex.

A directed cycle is a directed circuit in which the only repeated vertex is the first / last vertex.

Reachable and diconnected

If there is a directed (u, v)-path in D, vertex v is said to be reachable from vertex u in D.

Two vertices are diconnected in D if each is reachable from the other.

The subdigraphs

D[V 1 ], D[V 2 ], • • • , D[V m ] induced by the resulting partition (V 1 , V 2 , . . . , V m ) of V (D) are called the dicomponents of D. A digraph D is diconnected if it has exactly one dicomponent.

In-degree, out-degree and degree

The in-degree d - D (v) of a vertex v in D is the number of arcs with head v; the out-degree

d + D (v) of v is the number of arcs with tail v. The degree d D (v) of the vertex v in D is defined as d D (v) = d + D (v) + d - D (v).
The number min{d + D (x) : x ∈ V (D)} is called the minimum out-degree of D and is denoted by δ + (D). Minimum out-degrees, maximum in-degrees and out-degrees are similarly defined. We denote the minimum and maximum in-degrees and out-degrees in D by δ -(D), ∆ -(D), δ + (D) and ∆ + (D), respectively.

The number min{d

+ (x) + d -(x) : x ∈ V (D)} is called the minimum degree of D.

Out-neighborhood and in-neigborhood

The out-neighborhood of a vertex x is the set

N + (x) = {y ∈ V (D)|xy ∈ A(D)} and N -(x) = {y ∈ V (D)|yx ∈ A(D)} is the in-neighborhood of x. Similarly, if A ⊆ V (D), then N + (x, A) = {y ∈ A|xy ∈ A(D)} and N -(x, A) = {y ∈ A|yx ∈ A(D)}. The out-degree of x is d + (x) = |N + (x)| and d -(x) = |N -(x)| is the in-degree of x. Similarly, d + (x, A) = |N + (x, A)| and d -(x, A) = |N -(x, A)|.

Tournament

A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. 

Bipartite digraph

A bipartite digraph D = (X

Some background

In 1857, the Irish mathematician Sir William Hamilton (1805-1865) invented a game (Icosian Game, now also known as Hamilton's puzzle) of traveling around the edges of a graph from vertex to vertex. Hamilton described the game, in a letter to his friend Graves, as a mathematical game on the dodecahedron. Each vertex of the dodecahedron is labeled with the name of a city and the game's object is finding a (hamiltonian) cycle along the edges of the dodecahedron such that every vertex is visited a single time, and the ending point is the same as the starting point (see Figure 1.2). Since then, the hamiltonian problem, determining when a graph contains a hamiltonian cycle, has been fundamental in graph theory. For a long time, there was no elegant characterization of hamiltonian graphs, although several necessary and sufficient conditions were known.

Today, however, the constant stream of results in this area continues to supply us with new and interesting theorems and still further questions. The hamiltonian problem came out to be a fruitful branch of graph theory.

The hamiltonian graph theory has been studied widely as one of the most important problems in graph theory.

In fact, the hamiltonian problem also includes the generalization of hamiltonian cycles such as circumferences, dominating cycles, pancyclic, cyclability, etc. In this thesis, we will work on the generalizations of hamiltonian graph theory.

Some background of hamiltonian problem

Hamiltonian problem is one of the most significant problems in graph theory. Finding its proof has greatly promoted the development of graph theory.

Determining whether hamiltonian cycles exist in graphs is NP-complete. Therefore, it is natural and interesting to study sufficient conditions for hamiltonian problems. On the hamiltonian problems, one may find many well-known theorems in graph theory. Thus, it is not necessary and also impossible to give a detailed survey in this thesis. The first result is Dirac's theorem [START_REF] Dirac | Some theorems on abstract graphs[END_REF] (in 1952), where the search for sufficient conditions for graphs to become hamiltonian graphs usually involves some kind of edge density condition. Enough edges are provided for the existence of a hamiltonian cycles. Dirac's theorem is the first sufficient condition for a graph to be hamiltonian. It is shown that if the degree of each vertex is at least half of the order of the graph, the graph is hamiltonian. More precisely see the following,

Theorem 1.2.1 (Dirac's theorem, [41]) If G is a graph of order n ≥ 3 such that δ(G) ≥ n/2, then G is hamiltonian.
This original result started a new approach to develop sufficient conditions on degrees for a graph to be hamiltonian. A lot of effort has been made by various people in the generalization of Dirac's theorem, and this area is one of the core subjects in hamiltonian graph theory and extremely graph theory.

The second result is Ore's theorem [START_REF] Ore | A note on hamiltonian circuits[END_REF] (in 1960), which relaxes Dirac's condition and extends the methods for controlling the degrees of the vertices in the graph. This is the first important generalization of Dirac's theorem. Any path or cycle problem is really a part of a hamiltonian problem. The founding results of Dirac [START_REF] Dirac | Some theorems on abstract graphs[END_REF] and Ore [START_REF] Ore | A note on hamiltonian circuits[END_REF] established interest in hamiltonian graphs. Degree condition is the classic method to solve the hamiltonian problem, and a neighborhood union is an important form of generalized degree condition.

Let

σ k (G) = min{d(x 1 ) + • • • + d(x k )|x 1 , . . . , x k are independent in G}.
Graphs satisfying lower bounds on σ k with k = 2 will often be called Ore-type graphs, while if k = 1, they will be called Dirac-type graphs.

The number of components of a graph G is denoted by ω(G). The graph

G is t-tough (t ≥ 0) if |S| ≥ t • ω(G -S)
for every subset S of the vertex set V (G) with ω(G -S) > 1. The toughness of G, denoted by τ (G), is the maximum t for which G is t-tough. Thus, a graph G is called 1-tough if for any subset S of vertices the number of components in G -S is at most |S|.

The case where the degree sum is less than Ore's theorem (Theorem 1.2.2) has also been extensively studied.

In 1978, Jung [START_REF] Jung | On maximal circuits in finite graphs[END_REF] showed that a 1-tough graph G of order n ≥ 11 with σ 2 (G) ≥ n -4 is hamiltonian. Ainouche and Christofides [5] showed that all 2-connected maximal non-hamiltonian graphs of order n such that σ 2 (G) ≥ n -2 are isomorphic to one of the following graphs:

K (n-1)/2 + K (n+1)/2 , K (n-2)/2 + K (n+2)/2 , K (n-2)/2 + (K (n+2)/2 ∪ K 2 ), K 2 + (2K 2 ∪ K 1 ) and K 2 + 3K 2 .
However, degree sum conditions that apply to very few graphs have a major shortcoming. To be more applicable, it is natural to consider changes in such conditions.

In 1980, Bondy [START_REF] Bondy | Longest paths and cycles in graphs of high degree[END_REF] also gave a sufficient condition for G to contain a cycle C with G -V (C) contains no clique

K k .
H äggkvist and Nicoghossian [START_REF] Nicoghossian | A remark on hamiltonian cycles[END_REF] in 1981 further improved Dirac's theorem by incorporating the connectivity (k) of the graph into the degree bound, such as minimum degree δ ≥ (n + k)/3, σ 3 (G) ≥ n + k and so on.

In 1984, Fan [START_REF] Fan | New sufficient conditions for cycles in graphs[END_REF] considered a condition on a particular subset of non-adjacent vertices. Fan's theorem [START_REF] Fan | New sufficient conditions for cycles in graphs[END_REF] combines local conditions and density conditions. This raises the question, is it possible to use a sparser set of vertices? This idea can be used with other adjacency conditions and structures outside the vertex's neighborhood.

In 1987, Bondy and Fan [START_REF] Bondy | A sufficient condition for dominating cycles[END_REF] provided an Ore-type result for finding a dominating cycle, where a dominating cycle C is such that every edge of the graph has at least one adjacent vertex on the cycle C. Harary and Nash-Williams [START_REF] Harary | On eulerian and hamiltonian graphs and line graphs[END_REF] showed that the existence of a dominating cycle in G is essentially equivalent to the line graph of G is hamiltonian.

Dirac's theorem concerns a degree condition on every vertex. Ore's theorem concerns a degree sum condition on any pair of nonadjacent vertices. It is natural to generalize them into degree and neighborhood conditions on more independent vertices. The results [START_REF] Flandrin | Hamiltonism, degree sum and neighborhood intersections[END_REF] obtained in 1991 use degrees and neighborhood intersection of any set of three independent vertices.

Theorem 1.2.3 ([56])

If G is a 2-connected graph of order n such that σ 3 (G) ≥ n, then G is hamiltonian.

Li in 2000 extended into conditions on degree sum and neighborhood intersection of four independent vertices in 3-connected graphs. Bondy [START_REF] Bondy | Longest paths and cycles in graphs of high degree[END_REF] gave a sufficient hamiltonian condition that relates the degree sum of any k + 1 independent vertices.

Theorem 1.2.5 ([20]) Let G be a k-connected graph of order n ≥ 3. If σ k+1 (G) > 1/2(k + 1)(n -1), then G is hamiltonian.
In 2010, Li, Zhou and Wang [START_REF] Li | The k-dominating cycles in graphs[END_REF] developed Theorem 1.2.4 to the degree sum of k + 3 independent vertices.

The Dirac-type condition requires that every vertex has a large degree. However, for some vertices that may have a smaller degree, we hope to use some large degree vertices to replace the small degree vertices in the correct position considered in the proof to constructing a longer cycle. This idea leads to the definitions of implicit degrees given by Zhu, Li, and Deng in 1989.

For any vertex u in a graph G, define

N 1 (u) = N (u) and N 2 (u) = {x ∈ V (G) : d(x, u) = 2}
, where d(u, v) is the distance between x and u, i.e., the number of edges in the shortest path between x and u. 

M 2 = max{d(v) : v ∈ N 2 (u)} and m 2 = min{d(v) : v ∈ N 2 (u)}.
Let

d 1 ≤ d 2 ≤ • • • ≤ d k ≤ d k+1 ≤ • • •
be the degree sequence of the vertices of N 1 (u) ∪ N 2 (u). If N 2 (u) = ∅, then we define two kinds of implicit-degrees of u, denoted by d 1 (u) and d 2 (u), as follows:

d 1 (u) =        max{d k+1 , k + 1} if d k+1 > M 2 , max{d k , k + 1} otherwise.
and

d 2 (u) =        max{m 2 , k + 1} if m 2 > d k , d 1 (u) otherwise. If N 2 (u) = ∅, then define d 1 (u) = d 2 (u) = d(u).
It is clear from the definition that d 2 (u) ≥ d 1 (u) ≥ d(u) for every vertex u. Let δ i = min{d i (u) : ∀u ∈ V (G)} and for i = 1, 2

σ i,k (G) = min k j=1 d i (x j ) x 1 , x 2 , . . . , x k are k independent vertices of G .
In 2012, Li, Ning, Cai extended Theorem 1.2.5 into condition with implicit degrees.

Theorem 1.2.7 ([92]) Let G be a k-connected graph of order n ≥ 3. If σ (2,k+1) (G) > (k + 1)(n -1)/2, then G is hamiltonian.
In 1976, Bondy and Chv átal [START_REF] Bondy | A method in graph theory[END_REF] introduced classical results on stability and closure.

The k-closure Cl k (G) is obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least k, until no such pair remains. The k-closure is independent of the order of the addition of the edges.

Obviously, any graph of order n satisfies

G = Cl 2n-3 (G) ⊆ Cl 2n-4 (G) ⊆ • • • ⊆ Cl 1 (G) ⊆ Cl 0 (G) = K n .
The third fundamental result is that a graph G of order n is hamiltonian if and only if Cl n (G) is hamiltonian.

The following theorem motivated Bondy and Chv átal to the definition of closure. This developed a powerful tool that is very useful in the proofs of many results. The fourth fundamental result due to Chv átal and Erd ös [START_REF] Erd | A note on hamiltonian circuits[END_REF] gives a sufficient condition of hamiltonian graphs on the relation between the independence number and the connectivity of the graphs. If G is a graph with connectivity

k such that α(G) ≤ k, where α(G) is the independence number of G, then G is hamiltonian. A graph G = (V, E) is 1-edge hamiltonian if G-e is hamiltonian for any e ∈ E. Obviously, any 1-edge hamiltonian graph is hamiltonian. The graph G is 1-node hamiltonian if G -v is hamiltonian for any v ∈ V . A graph G is 1-
hamiltonian if it is 1-edge hamiltonian and 1-node hamiltonian.

Theorem 1.2.10 ([34])

A k-connected graph G is (1) Traceable if α(G) ≤ κ(G) + 1.
(2) Hamiltonian if α(G) ≤ κ(G).

(3) 1-hamiltonian, 1-edge hamiltonian and hamiltonian connected if α(G) < κ(G).

This result also produced many new results.

If G contains no induced subgraph isomorphic to any graph in the set F = {H 1 , H 2 , . . . , H k }, we say G is F -free.

If F = {H 1 }, we say G is H 1 -free.
In 1990, Ainouche et al. [6] showed that K 1,3 -free graph G can reduce the condition of Theorem 1.2.10. The square

G 2 of G is the graph (V (G), {uv|u, v ∈ V (G); d(u, v) ≤ 2}), where d(u, v) is the distance in G from u to v. Theorem 1.2.11 ([6]) A k-connected K 1,3 -free graph G (k ≥ 2) is hamiltonian if α(G 2 ) ≤ k.
Many achievements have been made in the research related to these four fundamental results, but many questions remain to be solved. In this thesis, we will focus on a few questions related to the four basic results.

Some background of generalization of hamiltonian problem

Many results generalize or reinforce Dirac's theorems. Some results generalize hamiltonian cycles to the circumference of graphs, and some results look for more edge-disjoint hamiltonian cycles. In addition, some results attempt to construct cycles of all lengths from 3 to the order of the graph, i.e., to prove that the graph is pancyclic, which is one of the main topics of this thesis.

We will introduce some results which generalize hamiltonian cycles and Dirac's theorems. In addition to the results I introduced, there are many results regarding the generalization of the hamiltonian problem. For some results concerning independence number and connectivity conditions, please refer to [START_REF] Broersma | Cycles through subsets with large degree sums[END_REF][START_REF] Erd | A note on hamiltonian circuits[END_REF][START_REF] Harkat-Benhamdine | Cyclability of 3-connected graphs[END_REF]; for some results on pancyclic, please refer to [START_REF] Faudree | Pancyclism and small cycles in graphs[END_REF][START_REF] Favaron | An ore-type condition for pancyclability[END_REF][START_REF] Hu | Removable matchings and hamiltonian cycles[END_REF]. For more details, we refer to the survey paper by Li [START_REF] Li | Generalizations of dirac's theorem in hamiltonian graph theory-a survey[END_REF].

A generalization of Dirac's theorem is from the parameter of circumferences of graphs.

Circumference

If a graph satisfies the Dirac-type condition or Ore-type condition, then it is hamiltonian. Thus, the circumference of the graph is its order. Bermond, Bondy and Linial show the following result.

Theorem 1.2.12 ([15], [18] and [98])

Let G be a 2-connected graph of order n.

Then the circumference c(G) ≥ min{n, σ 2 (G)}.
One of the necessary conditions for the hamiltonian graph is 1-tough, and the 1-tough graph must be 2-connected.

Therefore, it is natural to want to know the lower bound of the circumference in Dirac-type or Ore-type conditions.

Let G be a 1-tough graph. In 1986, Bauer and Schmeichel [START_REF] Bauer | Long cycles in tough graphs[END_REF] proved that c(G) ≥ min{n, σ 2 (G) + 2}.

In 1997, Wei [START_REF] Wei | Longest cycles in 3-connected graphs[END_REF] generalized Theorem 1.2.3 into circumference in the case that the graph is 3-connected.

Theorem 1.2.13 ([123])

If G is 3-connected graph, then the circumference c(G) ≥ min{n, σ 3 (G)}. Let dif f (G) = p(G) -c(G)
, where p(G) and c(G) are the orders of the longest path and the longest cycle, respectively. There are many studies on dif f (G). In 1995, Enomoto, Van Den Heuvel, Kaneko, and Saito [START_REF] Enomoto | Relative length of long paths and cycles in graphs with large degree sums[END_REF] showed that for a

2-connected graph G of order n, if σ 3 (G) ≥ n + 2, then dif f (G) ≤ 1.
And in 2009, Ozeki, Tsugaki, and Yamashita [START_REF] Ozeki | On relative length of longest paths and cycles[END_REF] proved that for a 3-connected graph G of order n with σ 4 (G)

≥ n + 6, dif f (G) ≤ 2.
For the condition of implicit degree, in [START_REF] Yongjin | Implicit-degrees and circumferences[END_REF], Zhu, Li, and Deng obtain results about the circumference. See Definition 1.2.6 for the definition of σ (2,2) (G).

Theorem 1.2.14 ([127])

Let G be a 2-connected graph of order n.

Then the circumference c(G) ≥ min{n, σ (2,2) (G)}.
When constructing hamiltonian graphs, the transformation of non-hamiltonian graphs into hamiltonian graphs often produces many spanning cycles. Therefore, sometimes it is in nature to count the number of disjoint cycles that exist and prove the existence of several edge-disjoint cycles. One of the generalizations of the hamiltonian problem is edge-disjoint hamiltonian cycles.

Edge-disjoint hamiltonian cycles

Edge-disjoint hamiltonian cycles are important in telecommunication networks. Using the hamiltonian cycle, we can design a simple protocol for network communications. If a network has k edge-disjoint hamiltonian cycles, then k different messages can circulate independently in the network. And when less than k edges do not work, the network can still work with some hamiltonian cycles. One of the fundamental results about edge-disjoint hamiltonian cycles in graphs under Dirac-type condition is due to Nash-Williams who showed in [START_REF] Nash-Williams | Edge-disjoint hamiltonian circuits in graphs with vertices of large valency[END_REF] that a graph of order n satisfying Dirac-type condition admits at least 5(n+10) 224 edge-disjoint hamiltonian cycles. Nash Williams asked if that number could be improved, and it has been a matter of interest ever since. Nash-Williams [START_REF] Nash-Williams | Edge-disjoint hamiltonian circuits in graphs with vertices of large valency[END_REF] gave an example of a graph on n = 4m vertices with minimum degree 2m having at most (n + 4)/8 edge disjoint hamiltonian cycles.

Nash-Williams [START_REF] Nash-Williams | Edge-disjoint hamiltonian circuits in graphs with vertices of large valency[END_REF] noted that the construction given above depends on the graph being non-regular. He conjectured [START_REF] Nash-Williams | Edge-disjoint hamiltonian circuits in graphs with vertices of large valency[END_REF] the following, which is the best possible, and was also conjectured independently by Jackson [START_REF] Jackson | Edge-disjoint hamilton cycles in regular graphs of large degree[END_REF]. In regular graphs, the Nash-Williams result [START_REF] Nash-Williams | Edge-disjoint hamiltonian circuits in graphs with vertices of large valency[END_REF] has been extended independently by Jackson and Li. A kregular graph is a graph in which every vertex has degree k.

Theorem 1.2.17 (Jackson, [START_REF] Jackson | Edge-disjoint hamilton cycles in regular graphs of large degree[END_REF]) Let G be a k-regular graph of order n ≥ 14.

If k ≥ n-1 2 , then G has at least 3k-n+1 6 
edge-disjoint hamiltonian cycles.

Theorem 1.2.18 (Li, [82])

Let G be a k-regular graph of order at most 3k -2. If k ≥ 16 and G -{e , e } is 2connected for any two edges e and e , then G admits two edge-disjoint hamiltonian cycles.

Pancyclicity is one of the most important generalizations of the hamiltonian problem. And pancyclicity is one of the main topics of this thesis.

Pancyclic, vertex pancyclic and edge pancyclic

A graph G of order n is said to be vertex pancyclic if, for any vertex x, there is a cycle in G of length l containing

x, for each l, 3 ≤ l ≤ n. In 1971, Bondy [START_REF] Bondy | Pancyclic graphs i[END_REF] initiated the study of pancyclic and vertex pancyclic graphs, and he showed that if δ(G) ≥ (n + 1)/2, then G is vertex pancyclic. Many results concerning pancyclic graphs are based upon edge density conditions.

For several sufficient conditions, Bondy's metaconjecture has been verified. This is motivation to examine these sufficient conditions even for vertex pancyclicity since vertex pancyclicity implies pancyclicity, and pancyclicity implies hamiltonian.

Obviously, when k ≥ 3, we cannot place k vertices on the 3-cycle. Therefore, two methods have recently appeared to adjust the concept of pancyclic meaning. The first method is due to Goddard [START_REF] Goddard | Minimum degree conditions for cycles including specified sets of vertices[END_REF].

For k ≥ 2, we say G is k-vertex pancyclic if every set S of k vertices is in a cycle of every possible length. Further, G is set-pancyclic if G is k-vertex pancyclic for all k ≥ 2.

Now by "possible length", Goddard means at least k+ the path cover number of G[S]

, where the path cover number of G[S] is the least number of paths that cover all the vertices of G[S]. This is easily seen to be a reasonable range, since if G[S] has path cover number t, then at least t new vertices will be needed to link the paths (containing our k vertices) into a cycle. Goddard [START_REF] Goddard | Minimum degree conditions for cycles including specified sets of vertices[END_REF] showed: If G has order n and δ(G) ≥ (n + 1)/2, then G is set pancyclic.

In [START_REF] Faudree | Generalizing pancyclic and k-ordered graphs[END_REF] a second approach is proposed. Let k ≥ 0, s ≥ 0, and t ≥ 1 be fixed integers with s ≤ t and G be a graph of order n. For an integer m with k

+ t ≤ m ≤ n, a graph G is (k, t, s, m)-pancyclic if for each (k, t, s)-linear forest F , there is a cycle C r of length r in G containing F for each m ≤ r ≤ n.
We now switch from the Ore-type condition to a condition on the minimum degree. We investigate the edge pancyclicity of graphs by considering the vertex pancyclicity of a related digraph.

Theorem 1.2.19 ([114])

Let G be a graph of order n such that δ(G) ≥ (n + 2)/2. Then G is edge pancyclic.

There are several new strong hamiltonian properties and generalizations of old properties. Brandt [START_REF] Brandt | A sufficient condition for all short cycles[END_REF] proposed one such generalization as weak pancyclic.

Weakly pancyclic

If a graph contains cycles of all lengths between its girth and circumference, it is called a weak pancyclic. In 1997, Brandt showed the following.

Theorem 1.2.20 ([25])

If G is a nonbipartite graph of order n and size q > (n -1) 2 /4 + 1 , then G is weakly pancyclic.

Conjecture 1.2.21 ([25]

) Every nonbipartite graph of order n and size at least (n-1)(n-3)/4+4 is weakly pancyclic.

In 1999, Bollob ás and Thomason [START_REF] Bollob | Weakly pancyclic graphs[END_REF] were very close to solving this conjecture. In 2013, Brandt [START_REF] Brandt | Cycles and paths in triangle-free graphs[END_REF] also considered other degree conditions for weakly pancyclic graphs. Let S be a subset of vertices. We ask if we may get some properties on cycles under conditions on the subset S of vertices. Two questions arise: is there a path/cycle containing a maximum number of vertices in S? Does the graph admit a path/cycle of large length? Another generalization of hamiltonian graphs is the idea of cyclable sets.

Cyclable

A subset S of V (G) is called cyclable in G if all the vertices of S belong to a common cycle in G. If V (G) is
cyclable, then G is hamiltonian. Several set restricted density results imply cyclability. The first extends the wellknown Chv átal-Erd ös Theorem. The following result is due independently to Bollob ás and Brightwell [START_REF] Bollob | Cycles through specified vertices[END_REF] and Shi [START_REF] Ronghua | 2-neighborhoods and hamiltonian conditions[END_REF]. It uses the classic Dirac-type density condition for the subset S of V (G). Let δ(S) be the minimum degree in

G of a vertex of S. Theorem 1.2.23 ([17], [115]) Let G be a 2-connected graph and S a subset of V (G). If δ(S) ≥ n/2, then S is cyclable in G.
In 1995, Ota [START_REF] Ota | Cycles through prescribed vertices with large degree sum[END_REF] made the natural extension to degree sums of pairs of nonadjacent vertices in S, denoted by σ 2 (S).

Theorem 1.2.24 ([111])

Let G be a 2-connected graph and S a subset of

V (G). If σ 2 (S) ≥ n/2, then S is cyclable in G. Theorem 1.2.25 ([58]) Let G = (V, E) be k-connected graph, k ≥ 2, of order n. Denote by X 1 , X 2 , . . . , X k subsets of the vertex set V and let X = X 1 ∪ X 2 ∪ . . . ∪ X k . If for each i, i = 1, 2, .
. . , k, and for any pair of nonadjacent vertices x, y ∈ X i , we have d

(x) + d(y) ≥ n, then G is X-cyclable.
The following result generalizes Theorem 1.2.25 into the implicit degree condition. [START_REF] Li | An implicit degree condition for cyclability in graphs[END_REF] give examples that do not satisfy the condition of Theorem 1.2.25, and verify the implicit degree condition in the following theorem.

Theorem 1.2.26 Let G be a k-connected graph on n vertices with k ≥ 2. Denote by X 1 , X 2 , . . . , X k subsets of the vertex set V (G) and let X = X 1 ∪ X 2 ∪ . . . ∪ X k If σ (1,2) (X j ) ≥ n for each j, 1 ≤ j ≤ k, then X is cyclable in G.
An extension of the idea of cyclable sets is the following. A graph G is said to be S-pancyclable if for every integer l, 3 ≤ l ≤ |S|, there is a cycle in G that contains exactly l vertices of S. An Ore-type result in this direction is the following:

Theorem 1.2.27 ([52]) If G is a graph of order n and σ 2 (G) ≥ n, then either G is S-pancyclable or else n is even, S = V (G) and G = K n/2,n/2 , or |S| = 4, G[S] = K 2,2
and the structure of G is well characterized.

[1] also, consider bipartite graphs.

Theorem 1.2.28 Let G be a 2-connected balanced bipartite graph of order 2n and bipartition (X, Y ). Let S be a subset of X of cardinality at least 3. Then if the degree sum of every pair of nonadjacent vertices x ∈ S and y ∈ Y

is at least n + 3, then G is S-pancyclable.
Most of this thesis will focus on the generalization of the hamiltonian problem.

Motivations and overview 1.3.1 Motivations and overview of pancyclicity

A graph of order n is said to be pancyclic if it contains cycles of all lengths from 3 to n.

"The study of pancyclic graphs arose from the conviction that existing sufficient conditions for a graph to be hamiltonian are satisfied only by graphs with a much more specific structure."-J.A. Bondy, 1971.

In 1971, Bondy [START_REF] Thomas | Proceedings of the Second Louisiana Conference on Combinatorics Graph Theory and Computing[END_REF] suggested the following interesting "metaconjecture": almost any nontrivial condition on graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of exceptional graphs).

Pancyclicity is one of the main topics of this thesis. It is NP-complete to test whether a graph is pancyclic.

Let's recall some results that support the "metaconjecture". In 1981, Amar, Flandrin Fournier, and Germa [START_REF] Amar | Hamiltonian pancyclic graphs[END_REF] showed the following:

Theorem 1.3.2 ([9]) Let G be a hamiltonian, nonbipartite graph of order n ≥ 162. If δ(G) ≥ (2n + 1)/5, then G is pancyclic.
In 1982, Mitchem and Schmeichel [START_REF] Mitchem | Pancyclic and bipancyclic graphs-a survey[END_REF] proposed that the degree bound in theorems that guarantee pancyclicity or bipancyclicity can be reduced if the assumption is hamiltonian. This is clearly a strengthening over simply assuming G is 2-connected. As it turns out, Faudree, H äggkvist, and Schelp [START_REF] Faudree | Pancyclic graphs-connected ramsey number[END_REF] had already asked a question of this type.

Theorem 1.3.3 If G is a hamiltonian graph on n vertices with q > (n -1) 2 /4 + 1 edges, then G is either pancyclic or bipartite.

Theorem 1.3.4 ([14])

Let G be a 2-connected graph on n vertices. If for all vertices x and y, dis

(x, y) = 2 implies max {d(x), d(y)} ≥ n 2 , then G is either pancyclic, K n 2 , n 2 , K n 2 , n
2e, or the graph shown in the following figure. 

d(x) + d(y) + d(z) ≥ 3n 2 -1, then G is either pancyclic, K n 2 , n 2 , K n 2 , n 2 -e, or C 5 .
If only a pair of consecutive vertices on the hamiltonian cycle is considered, then the edge density can be reduced. In 1988, Hakimi and Schmeichel [START_REF] Schmeichel | A cycle structure theorem for hamiltonian graphs[END_REF] showed the following theorem:

Theorem 1.3.6 ( [117]) If G is a hamiltonian graph of order n with hamiltonian cycle C = x 1 x 2 ...x n x 1 such that d(x 1 ) + d(x n ) ≥ n, with say d(x 1 ) ≤ d(x n ), then G is either (1) pancyclic, (2) bipartite, or 
(3) missing only an (n -1)-cycle.

Moreover, if (3) holds, then d(x n-2 ), d(x n-1 ), d(x 2 ), d(x 3 ) < n/2
, and G has one of two possible adjacency structures near x 1 and x n . In the first structure, vertices x n-2 , x n-1 , x n , x 1 , x 2 , x 3 are independent except for edges of C, and

x n x n-3 , x n x n-4 , x 1 x 4 , x 1 x 5 ∈ E(G). The second structure (which can occur only if d(x 1 ) < d(x n )) is identical to the first except that x n x 3 ∈ G and x 1 x 5 / ∈ G.
In 1996, this idea was generalized by Faudree, Favaron, Flandrin, and Li in the case that the graph admits a hamiltonian path.

Theorem 1.3.7 ( [47])

Let G be a graph of order n. If G has a hamiltonian (u, v)-path for a pair of nonadjacent vertices u and v such that

d(u) + d(v) ≥ n, then G is pancyclic. Moreover, if u (or v) has degree at least n 2 ,
it is contained in a triangle and for any m, 4 ≤ m ≤ n, there exists some C m in G that contains both u and v.

For the bipartite graph, in 1988, Entringer and Schmeichel [START_REF] Entringer | Edge conditions and cycle structure in bipartite graphs[END_REF] gave the following theorem.

Theorem 1.3.8 ([44])

Let G be a hamiltonian bipartite graph on 2n vertices and q > n 2 /2 edges. Then G is bipancyclic.

This result is also the best possible that can be seen by taking five k-sets of independent vertices and cyclically joining all vertices in one set to all vertices in the next set. This graph has a degree sum of 4n/5 but lacks triangles.

In 1989, Tian and Zang [START_REF] Tian | Bipancyclism in hamiltonian bipartite graphs[END_REF] got the following result. In [START_REF] Faudree | Variations of pancyclic graphs[END_REF] and [START_REF] Gould | Bipartite versions of two pancyclic results[END_REF], they asked the following more general problem. Problem 1.3.10 Given a result, assuming that G is 2-connected and has properties P 1 , . . . , P k to obtain property P , when does the hamiltonian hypothesis instead of 2-connectivity allow us to reduce the other hypotheses and obtain the same result?

Then, we have the theorem: a graph with order n and vertex degree sequence

d l < d 2 < • • • < d n , such that d k < k < n/2 implies d n-k > n -k is either pancyclic or bipartite.
In 2004, combining Ramsey number conditions gave new results. R(a, b) stands for the standard graph Ramsey number.

Theorem 1.3.11 ([57])

Let G be a k-connected graph with independence number α such that

k > α + (α + 1)R(α + 1, α + 1).
Then G is pancyclic.

In 2009, Hu and Li [START_REF] Hu | Removable matchings and hamiltonian cycles[END_REF] were able to show pancyclic in a graph obtained from a graph with Ore-type condition by deleting some edges.

We must mention that other important conditions for pancyclic and weakly pancyclic are about the number of edges. Bondy [START_REF] Bondy | Pancyclic graphs i[END_REF] obtained that every hamiltonian graph of order n and size at least n 2 /4 is pancyclic. A result of H äggkvist, Faudree, and Schelp [START_REF] Faudree | Pancyclic graphs-connected ramsey number[END_REF] states that a hamiltonian nonbipartite graph of order n and size at least

(n-1) 2 4
+ 2 is pancyclic. From this, Brandt [START_REF] Brandt | A sufficient condition for all short cycles[END_REF] deduced that every nonbipartite graph of order n and size at least

(n-1) 2 4
+2 is weakly pancyclic. He conjectured that it suffices to have the size at least n 2 4 -n+5 . This conjecture is proved by Bollob ás and Thomason [START_REF] Bollob | Weakly pancyclic graphs[END_REF]. They showed that every graph of order n and size at least n 2 4n + 59 is weakly pancyclic or bipartite.

In [START_REF] Li | An implicit degree condition for cyclability in graphs[END_REF] and [START_REF] Li | An implicit degree condition for hamiltonian graphs[END_REF], Li, Ning, and Cai get results about cyclable. There are also some results on pancyclicity that use implicit degrees. From Bondy's metaconjecture, we propose the following conjecture.

Conjecture 1.3.12 ([85])

Let G = (V, E) be a k-connected graph (k ≥ 2) of order n. Suppose that V (G) = ∪ k i=1 X i .
If for any pair of nonadjacent vertices x, y

∈ X i with i = 1, 2, . . . , k, d(x) + d(y) ≥ n, then G is pancyclic or G is bipartite graph.
In Chapter 2, we prove Conjecture 1.3.12 is true for k = 2. Our main result is the following. 

d(y 1 ) + d(y 2 ) ≥ n. Then G is pancyclic or G = K n/2,n/2 or G = K n/2,n/2 -{e}.
It is easy to see that Theorem 1.3.13 is stronger than Bondy's theorem (Theorem 1.3.1).

In Chapter 3, we prove that the conjecture 1.3.12 is true for k = 3. The following is our main result.

Theorem 1.3.14 ([86]) Let G = (V, E) be a 3-connected graph of order n and V (G) = X 1 ∪ X 2 ∪ X 3 . For any pair of nonadjacent vertices v 1 and v 2 in X i , d(v 1 ) + d(v 2 ) ≥ n with i = 1, 2, 3. Then G is pancyclic or G is bipartite.

Motivations and overview on forbidden graphs

Given a family of graphs F, we say a graph G is F-free if G contains no induced subgraph isomorphic to a graph in F. The graphs of F are called forbidden subgraphs. If G contains no induced subgraph isomorphic to any graph

in the set F = {H 1 , H 2 . . . , H k }, we say G is F -free. If F = {H 1 }, we say G is H 1 -free.
Forbidden subgraphs are a method to the hamiltonian problem, which started with an observation by Goodman and Hedetniemi [START_REF] Goodman | Sufficient conditions for a graph to be hamiltonian[END_REF]. The forbidden subgraph's problem has been studied for G being traceable, hamiltonian, pancyclic, Hamilton-connected, and so on.

δ ≥ n-2 3 σ 3 ≥ n -2 U 2 > 2n-5 3
Traceability [START_REF] Matthews | Longest paths and cycles in k1, 3-free graphs[END_REF](S) [START_REF] Yiping | Some results on longest paths and cycles in k1, 3-free graphs[END_REF][START_REF] Broersma | Sufficient conditions for hamiltonicity and traceability of k 1, 3-free graphs[END_REF] (S) [START_REF] Bauer | Hamiltonian properties of graphs with large neighborhood unions[END_REF](S) Table 1.1: 1-connected claw-free graphs

δ σ 2 σ 3 U 2 Traceability ≥ n-2 2 [49] Hamiltonicity ≥ n-2 3 [99](S) ≥ 2n-5 3 [55] ≥ n -2 [125, 28](S) ≥ 2n-5 3 [12](S) Pancyclicity ≥ n-2 3 [54] ≥ 2n-2 3 [49]
Table 1.2: 2-connected claw-free graphs

The complete bipartite graph K 1,n is called a star, and the K 1,3 is called a claw. A graph is claw-free if it contains no claw as its induced subgraph.

Many of the results mentioned in this thesis are also included in the survey by Gould [START_REF] Gould | Updating the hamiltonian problem-a survey[END_REF].

The circumference of 2-connected claw-free graphs was investigated by Broersma et al. [START_REF] Broersma | Long paths and cycles in tough graphs[END_REF].

So, first, let's introduce some of the notation that we're going to use.

For

1 ≤ k ≤ n we denote by U k (G) the minimum of the neighborhood union |N (x 1 ) ∪ • • • ∪ N (x k )|, where the minimum is taken over all subsets {x 1 , x 2 , . . . , x k } of k independent vertices of V (G).
For the sake of clarity and ease of reference, the results concerning traceability, hamiltonicity and pancyclicity in claw-free graphs as a function of δ, σ k and U k have been placed in Tables 1.1,1.2 (depending on the connectivity of the graph). As S (for sharp) in Table 1.1 indicates that the bound cannot be improved.

The following result gives a minimum degree condition for K 1,3 -free graphs to be pancyclic.

Theorem 1.3.15 ([54]) Let G be a 2-connected K 1,3 -free graph with the order n ≥ 35. If δ(G) ≥ n-2 3 , then G is pancyclic.
The lower bound of Theorem 1.3.15 is sharp because there is a graph of order 34, which satisfies the degree sum condition in Theorem 1.3.15 but is not pancyclic.

For non-hamiltonian 3-connected claw-free graphs, in Table 1.3, we gave some results regarding traceability, hamiltonicity and Hamilton-connected. Li Mingchu [START_REF]A note on the circumferences of 3-connected claw-free graphs[END_REF] verified 4δ as a lower bound for the circumference.

In the 1980s, some results showed that a 2-connected graph is a hamiltonian graph when specific induced subgraph pairs are prohibited. Notable among these were the following results (see Figure 1.3 for graphs and note that Z 2 is obtained from Z 3 by removing the vertex of degree one).

Theorem 1.3.16 (1) [42] If G is a 2-connected {K 1,3 , N }-free graph, then G is hamiltonian. (2) [29] If G is a 2-connected {K 1,3 , P 6 }-free graph, then G is hamiltonian. (3) [66] If G is a 2-connected {K 1,3 , Z 2 }-free graph, then G is hamiltonian. δ σ 3 U 2 Traceability ≥ n + 1 [71] Hamiltonicity ≥ n+7 6 [81] ≥ 11(n-7) 21 [71] Hamilton-connected ≥ n + 1 [53]
Table 1.3: 3-connected claw-free graphs (4) [START_REF] Bedrossian | Forbidden subgraph and minimum degree conditions for hamiltonicity[END_REF] If G is a 2-connected {K 1,3 , W }-free graph, then G is hamiltonian.

Z 3 K 1,3 W N (1, 1, 1) = N Figure 1.3: The forbidden graphs
The fundamental conjecture of Matthews and Sumner [START_REF] Matthews | Longest paths and cycles in k1, 3-free graphs[END_REF] is still open.

In 1979, Oberly and Sumner [START_REF] Oberly | Every connected, locally connected nontrivial graph with no induced claw is hamiltonian[END_REF] obtained the following results by associating forbidden subgraphs with local connectivity: a connected, locally connected, K 1,3 -free graph of order n ≥ 3 is hamiltonian. A graph G is locally connected if, for each vertex x, the subgraph G[N (x)] is a connected graph.

In 1988, Zhang [START_REF] Zhang | Hamilton cycles in claw-free graphs[END_REF] considered degree sums in K 1,3 -free graphs. He showed that if G is a k-connected, K 1,3 -free graph of order n such that σ k+1 (G) ≥ nk, then G is hamiltonian.

Conjecture 1.3.17 ( Matthews-Sumner conjecture ) Every 4-connected claw-free graph is hamiltonian.

In 2001, Broersma, Kriesell, and Ryj ácek [START_REF] Broersma | On factors of 4-connected claw-free graphs[END_REF] showed that the above conjecture is true for some graphs.

For the hamiltonian problem, there are still some special problems. Such as alternating hamiltonian cycles, making weighted graphs hamiltonian, and so on. To solve the problems of the Matthews-Sumner conjecture and the completeness of the general theory, the 3-connected case is generally considered. There are a lot of new results here.

Theorem 1.3.19 ([81]

) Every 3-connected claw-free graph with minimum degree δ and order at most 6δ -7 is hamiltonian.

Theorem 1.3.20 ([95]

) Every 3-connected claw-free graph with minimum degree δ and order n ≤ 5δ -8 is Hamiltonconnected.

In [START_REF] Gould | Pancyclicity of 3-connected graphs: Pairs of forbidden subgraphs[END_REF], it described the pancyclicity of 3-connected graphs with forbidden pairs. In 2011, Ryj áček and Vr ána [START_REF] Ryj | Line graphs of multigraphs and hamilton-connectedness of claw-free graphs[END_REF] proposed the following conjecture. For more results of claw-free graphs, we refer to the survey paper by Faudree et al. [START_REF] Faudree | Claw-free graphs-a survey[END_REF].

Chorded pancyclic on claw-free graphs is one of the main topics of this thesis. We study a minimum degree condition for K 1,3 -free graphs to be chorded pancyclic in this thesis.

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say that a cycle is chorded if the cycle has at least one chord, and we call such a cycle chorded cycle. If a cycle has at least two chords, then the cycle is called a doubly chorded cycle. A graph G of order n is chorded pancyclic (doubly chorded pancyclic) if G contains a chorded cycle (doubly chorded cycle) of each length from 4 to n.

Bondy's metaconjecture was extended into almost any condition that implies a graph is hamiltonian will imply it is chorded pancyclic, possibly with some class of well-defined exceptional graphs and some small order exceptional graphs. As support for the extension of Bondy's metaconjecture, there are the following results. For graphs G and H, let G H denote the Cartesian product of G and H. 

then G is chorded pancyclic, or G = K n 2 , n 2 , or G = K 3 K 2 Theorem 1.3.24 ([60]) A hamiltonian graph G of order n ≥ 4 with |E(G)| ≥ 1 4 n 2 is chorded pancyclic unless G = K n 2 , n 2 , or G = K 3 K 2 . Theorem 1.3.25 ([36]) Let G be a 2-connected graph of order n ≥ 10. If G is {K 1,3 , Z 2 }-free then G = C n or G is chorded pancyclic, where C n be a cycle with n vertices. Theorem 1.3.26 ([36]) Let G be a 2-connected graph of order n ≥ 13. If G is {K 1,3 , P 6 }-free then G is chorded pancyclic.
In Chapter 5, we obtain the results which the extension of the pancyclicity to the corded pancyclicity from Theorem 1.3.15. Our main results are as follows:

Theorem 1.3.27 ([93]) Let G be a 2-connected K 1,3 -free graph with the order n ≥ 35. If δ(G) ≥ n-2
3 , then G is chorded pancyclic.

Let CH m be the maximum number of chords in cycle C m ⊆ G with 4 ≤ m ≤ n. We obtain the following theorem.

Theorem 1.3.28 ([93]) Let G be a 2-connected K 1,3 -free graph with the order n ≥ 35. If δ(G) ≥ n-2 3 , then CH m ≥                        m(m-1) 2 -m if 4 ≤ m ≤ 5, m if 6 ≤ m ≤ n+1 3 , [ m 6 ] if n+4 3 ≤ m ≤ 2n+8 3 , m(δ-(n-m)) 2 -m if 2n+11 3 ≤ m ≤ n.
Moreover, by Theorem 1.3.28, CH m ≥ 2. Therefore, we can obtain that G is doubly chorded pancyclic.

Corollary 1.3.29 ([93]) Let G be a 2-connected K 1,3 -free graph with the order n ≥ 35. If δ(G) ≥ n-2 3 , then G is doubly chorded pancyclic.
In the previous part of this section, we gave several theorems for forbidden graphs, from which we can generalize the conditions of Theorem 1.3.27 to obtain chorded pancyclic.

Motivation and overview of hamiltonicity in digraphs

Let D be a digraph. A cycle (path) is called hamiltonian if it includes all the vertices of D. A digraph D is hamiltonian if it contains a hamiltonian cycle and is pancyclic if it contains a cycle of length k for any 3 ≤ k ≤ n, where n is the order of D. A balanced bipartite digraph of order 2m is even pancyclic if it contains a cycle of length 2k for any

k, 2 ≤ k ≤ m.
In [START_REF] Jackson | Hamilton cycles in regular 2-connected graphs[END_REF], Jackson pointed out that for undirected regular graphs, the degree condition of Dirac's theorem can be greatly reduced by adding the connectivity condition. He got the result that every 2-connected d-regular graph on n vertices with d ≥ n/3 contains a hamiltonian cycle. In addition to the Petersen graph, Hilbig [START_REF] Hilbig | Kantenstrukturen in nichthamiltonschen Graphen[END_REF] and Zhu et al. [START_REF] Yongjin | An improvement of jackson's result on hamilton cycles in 2connected regular graphs[END_REF] raised the degree condition to n/3 -1. There is an example to prove that the degree condition cannot be reduced further and that the connectivity condition is necessary. For directed graphs, the following conjecture is obtained. The conjecture of Bang-Jensen et al. [START_REF] Bang-Jensen | A new sufficient condition for a digraph to be hamiltonian[END_REF] would strengthen Meyniel's theorem (A strongly connected directed graph of order n whose degree sum of any pair of nonadjacent vertices is at least 2n -1 is hamiltonian.) by requiring the degree condition only for dominated pairs of vertices (a pair of vertices is dominated if there is a vertex which sends an edge to both of them). Nash-Williams [START_REF] Nash-Williams | Hamiltonian circuits in graphs and digraphs[END_REF] proposes a conjecture about degree sequence conditions in directed graphs similar to Chv átal's theorem.

Another sufficient hamiltonian condition in undirected graphs is the Chv átal-Erd ös theorem [START_REF] Erd | A note on hamiltonian circuits[END_REF]. The connectivity κ(G) of a digraph is defined to be the size of the smallest set of vertices S so that G -S is either not strongly connected or consists of a single vertex. Let α 2 (G) be the size of the largest set S so that S induces no cycle of length 2. Jackson and Ordaz [START_REF] Jackson | Chv átal-erdos conditions for paths and cycles in graphs and digraphs. a survey[END_REF] got the following conjecture.

Conjecture 1.3.31 ([78]) If G is a digraph with κ(G) ≥ α 2 (G) + 1, then G contains a hamiltonian cycle.
In 1960, Ore [START_REF] Ore | A note on hamiltonian circuits[END_REF] generalized Dirac's [START_REF] Dirac | Some theorems on abstract graphs[END_REF] well-known theorem about hamiltonian cycles in graphs. Bondy [START_REF] Bondy | Pancyclic graphs i[END_REF] extended this result and proved that a graph satisfying the Ore-type condition is not only hamiltonian but even pancyclic, unless the graph is regular, completes bipartite. Ghouila-Houri [START_REF] Ghouilahouri | Une condition suffisante dexistence dun circuit hamiltonien[END_REF] and Woodall [START_REF] Woodall | Sufficient conditions for circuits in graphs[END_REF] generalized Dirac's theorem and Ore's theorem to digraphs, respectively.

One can use Ghouila-Houri's theorem [START_REF] Ghouilahouri | Une condition suffisante dexistence dun circuit hamiltonien[END_REF] to deduce that every digraph on n vertices with a minimum semidegree greater than n/2 is pancyclic.

We say that a digraph with n vertices satisfies the condition (c i ) if, for each pair of nonadjacent vertices, the degree sum is at least 2n -2 + i.

In 1973, Meyniel [START_REF] Meyniel | Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe orient é[END_REF] generalized the results of Ghouila-Houri and Woodall ( [START_REF] Ghouilahouri | Une condition suffisante dexistence dun circuit hamiltonien[END_REF] and [START_REF] Woodall | Sufficient conditions for circuits in graphs[END_REF]) by showing that a strongly connected digraph satisfying c i is hamiltonian. Overbeck-Larisch [START_REF] Overbeck-Larisch | Hamiltonian paths in oriented graphs[END_REF] and Bondy and Thomassen [START_REF] Thomassen | An ore-type condition implying a digraph to be pancyclic[END_REF] gave a short proof of Meyniel's theorem. In 1976, H äggkvist and Thomassen [START_REF] Thomassen | On pancyclic digraphs[END_REF] generalized Ghouila-Houri's theorem by showing that a strongly connected digraph D with n vertices and minimum degree at least n is pancyclic unless n is even and G = K n/2,n/2 .

Theorem 1.3.32 ([69]

) If a strongly connected digraph D with n vertices has minimum degree at least n, then D is pancyclic, or n is even and

G = K n/2,n/2 .
In 1971, Bondy [START_REF] Bondy | Pancyclic graphs i[END_REF] proved that the number of edges in an undirected hamiltonian nonpancyclic graph with n vertices is less than or equal to n 2 /4 and conjectured that the number of edges in a hamiltonian nonpancyclic digraph with n vertices is less than or equal to n 2 /2.

Every hamiltonian digraph with n vertices and n/2(n + 1) -1 or more edges is pancyclic.

Another natural way to generalize Dirac's theorem is to require finding a certain set of vertex-disjoint cycles in G that together cover all vertices of G. For directed and oriented graphs, factors with specified cycles length and k-ordered hamiltonian cycles are also taken into account.

A graph G is k-ordered if for every sequence s 1 , s 2 , . . . , s k of distinct vertices of G there is a cycle which encounters s 1 , s 2 , . . . , s k in this order. G is a k-ordered hamiltonian if it contains a hamiltonian cycle with this property.

In 1977, Thomassen [START_REF] Thomassen | An ore-type condition implying a digraph to be pancyclic[END_REF] proved that the Ore-type condition implies that every digraph with minimum in-degree and minimum out-degree > n/2 is pancyclic. In 1997, Alon and Gutin [START_REF] Alon | Properly colored hamilton cycles in edge-colored complete graphs[END_REF] observed that one can use Ghouila-Houri's theorem [START_REF] Ghouilahouri | Une condition suffisante dexistence dun circuit hamiltonien[END_REF] to show that every digraph G with minimum in-degree and minimum out-degree > n/2 is even vertex-pancyclic.

A digraph D is strongly connected (or, just, strong) if there exists a path from x to y and a path from y to x for every pair of distinct vertices x, y.

A digraph D is k-strongly (k ≥ 1) connected (or k-strong), if |V (D)| ≥ k + 1 and D(V (D) \ A) is strongly connected for any subset A ⊆ V (D) of at most k -1 vertices.
Recently, there has been a renewed interest in various Meyniel-type hamiltonian conditions in bipartite digraphs.

Let us recall the following well-known degree conditions that guarantee that a balance bipartite digraph is hamiltonian.

We begin with the following theorem due to Adamus Janusz. Then D is hamiltonian.

Before starting the following theorems, we need to introduce additional notation.

Let D(8) be the bipartite digraph with partite sets X = {x 0 , x 1 , x 2 , x 3 } and Y = {y 0 , y 1 , y 2 , y 3 }, A(D(8)) contains exactly the arcs y 0 x 1 , y 1 x 0 , x 2 y 3 , x 3 y 2 and all the arcs of the following 2-cycles: We also proved some new sufficient conditions for bipancyclic of digraphs. Let D be a digraph and let S be a nonempty subset of vertices of D. We say that a digraph D is S-strongly connected if, for any pair x, y of distinct vertices of S, there exists a path from x to y and a path from y to x.

x i ↔ y i , i ∈ [0, 3], y 0 ↔ x 2 , y 0 ↔ x 3 , y 1 ↔ x 2
A set S of vertices in a directive graph D is said to be cyclable (pathable) in D if D contains a directed cycle (path) through all vertices of S.

Many well-known conditions guarantee the cyclability of a set of vertices in an undirected graph. In 2007, Li, Flandrin and Shu [START_REF] Li | A sufficient condition for cyclability in directed graphs[END_REF] proved the following theorem which gives a sufficient condition for cyclability of digraphs. In this thesis, we show the following theorem. 

Motivation and overview of k-fan-connected graphs

To facilitate the reading, we state again the definitions and notations here.

A vertex cut is a set S ⊂ V (G) such that G -S has more components than G. A graph is k-connected if every vertex cut has at least k vertices. The connectivity of G, κ(G), is the minimum size of a vertex cut, i.e., κ(G) is the maximum k such that G is k-connected.
One of these subclasses of hamiltonian graphs is the family of Hamilton-connected graphs introduced by Ore If G is a Hamilton-connected graph, then G is hamiltonian. It is well known that the complete bipartite graph is not Hamilton-connected.

In 1963, Ore [START_REF] Ore | Hamilton connected graphs[END_REF] gave a sufficient condition for a graph to be Hamilton-connected: a graph whose degree sum for each pair of nonadjacent vertices is at least its order plus one is Hamilton-connected. In 1969 and 1970, Chartrand, Kapoor, and Kronk [START_REF] Kapoor | A generalization of hamiltonian-connected graphs[END_REF] and Lick [START_REF] Chartrand | n-hamiltonian graphs[END_REF] found another sufficient condition for Hamilton-connected graphs, that is, G is a graph of order n ≥ 3 such that for every j with 2 ≤ j ≤ n/2, the number of vertices of degree not exceeding j is less than j -1, then G is Hamilton-connected. In 1970, Lick [START_REF] Lick | A sufficient condition for hamiltonian connectedness[END_REF] proposed a sufficient condition about the degree sequence for hamiltonian connectivity. In 1972, Chv átal and Erd ös [START_REF] Erd | A note on hamiltonian circuits[END_REF] considered the relationship between the independent number and the connectivity as a condition to get the hamiltonian connectivity of graphs.

Faudree et al. [START_REF] Faudree | Neighborhood unions and hamiltonian properties in graphs[END_REF] and Wei [START_REF] Wei | Hamiltonian paths and hamiltonian connectivity in graphs[END_REF] studied sufficient degree and/or neighborhood union conditions for Hamiltonconnected graphs.

In 1979, Chartrand, Gould, and Polimeni [START_REF] Chartrand | A note on locally connected and hamiltonian-connected graphs[END_REF] proved that if a graph G is connected, locally 3-connected, and contains no induced subgraph isomorphic to K 1,3 , then G is Hamilton-connected.

The following theorem is a well-known result due to Ore. As a generalization of Hamilton-connected and hamiltonian path, Lin et al. introduced the k-fan-connectivity of graphs in [START_REF] Lin | On the spanning fan-connectivity of graphs[END_REF]. For any integer t ≥ 2, let v be a vertex of a graph G and let U = {u 1 , u 2 , . . . , u t } be a subset of V (G) \ {v}. A (v, U )-fan is a set of paths P 1 , P 2 , . . . , P t such that P i is a path connecting v and u i for 1 ≤ i ≤ t and

P i ∩ P j = {v} for 1 ≤ i < j ≤ t.
It follows from Menger Theorem [START_REF] Menger | Zur allgemeinen kurventheorie[END_REF] that there is a (v, U )-fan for every vertex v of G and every subset U of

V (G) \ {v} with |U | ≤ k if and only if G is k-connected. If a (v, U )-fan spans G, then it is called a spanning (v, U )-fan of G. If G has a spanning (v, U )-fan for every vertex v of G and every subset U of V (G) \ {v} with |U | = k, then G is k-fan-connected. Theorem 1.3.50 ([40]) A graph G is k-connected if and only if |G| > k + 1 and for any k-set U ⊆ V (G) and
x ∈ V (G) -U , there is an xU -fan.

Let k be a positive integer. In 2009, Lin et al. [START_REF] Lin | On the spanning fan-connectivity of graphs[END_REF] established some results about k-fan. A hamiltonian path P is nothing but a spanning 1-fan rooted at the endpoints of P . A graph G is spanning k-fan-connected if it has at least k + 1 vertices and contains a spanning k-(x, U )-fan for every choice of x ∈ V (G) and U ∈ ( V (G)/{x} k ); In [START_REF] Lin | On the spanning fan-connectivity of graphs[END_REF], it is an easy observation that a graph with at least three vertices is spanning 1-fan-connected if and only if it is spanning 2-fan-connected. More generally, if G is spanning (k + 1)-fan-connected, then it must be spanning k-fan-connected. [START_REF] Lin | On the spanning fan-connectivity of graphs[END_REF], obtained an Ore-type condition for graphs to be k-fan-connected. 

(u) + d(v) ≥ n + k -1, then G is k-fan-connected if and only if G + uv is k-fan-connected.

Lin et al., in

(G) ≥ |V (G)| + k -1, then G is k-fan- connected.
In Chapter 6, we studied the k-fan-connected graphs. Our main theorem is as follows:

Theorem 1.3.53 ([94]) Let k ≥ 2 be an integer and G be a

(k + 1)-connected graph. If σ 3 (G) ≥ |V (G)| + k -1, then G is k-fan-connected.
The lower bound of σ 3 (G) in Theorem 1.3.53 is sharp as shown in Chapter 6.

Chapter 2

Pancyclicity in hamiltonian graphs

In this chapter, we will discuss the result related to Conjecture 1.3.12.

Let S be a subset of V (G). We say that G is S-cyclable if G has an S-cycle, i.e., a cycle containing all vertices of S. The following theorem is an Ore-type condition for a graph to be S-cyclable.

Theorem 2.0.1 ([58]) Let G = (V, E) be a k-connected graph, k ≥ 2, of order n. Denote by X 1 , X 2 , . . . , X k subsets of the vertex set V and let X = X 1 ∪ X 2 ∪ • • • ∪ X k . If for each i, i = 1, 2, . . . , k, and for any pair of nonadjacent vertices x, y ∈ X i , we have d(x) + d(y) ≥ n, then G is X-cyclable.
Bondy suggested the following interesting "metaconjecture": almost any nontrivial condition on graphs which implies that the graph is hamiltonian also implies that the graph is pancyclic (there may be a family of exceptional graphs). From Bondy's "metaconjecture" and Theorem 2.0.1, we propose Conjecture 1.3.12. We recall Conjecture 1.3.12 here.

Conjecture 2.0.2 Let G = (V, E) be a k-connected graph, k ≥ 2, of order n. Suppose that V (G) = ∪ k i=1 X i such that for each i, i = 1, 2, . . . , k, and for any pair of nonadjacent vertices x, y

∈ X i , d(x)+d(y) ≥ n. Then G is pancyclic or G is bipartite graph.
The main result of this chapter is to prove that the above conjecture is true for k = 2. Our main result is the following theorem. 

d(y 1 ) + d(y 2 ) ≥ n, then G is pancyclic or G = K n/2,n/2 or G = K n/2,n/2 -{e}.
It is easy to see that Theorem 2.0.3 is stronger than Bondy's result in Theorem 1.3.1. For ease of reading, we reiterate Theorem 1.3.1 here.

Theorem 2.0.4 (Bondy's theorem, [START_REF] Bondy | Pancyclic graphs i[END_REF]) If a graph G satisfies the Ore-type condition that the degree sum of any pair of nonadjacent vertices is at least the order of G, then G is pancyclic or isomorphic to K n/2,n/2 .

We will prove Theorem 2.0.3 in Section 2.2. Section 2.1 contains two lemmas with their proofs.

Preliminaries

Some definitions, notations and theorems

Now, we introduce some definitions, notations and theorems which can be used in the proof of Theorem 2.0.3.

All graphs considered in this chapter are finite, undirected and without loops or multiple edges. Given a graph G, we write G as the complement of G. Let

σ 2 (G) = min{d(x) + d(y) | x, y ∈ V (G), x = y, xy / ∈ E(G)}.
A cycle containing all vertices of G is called a hamiltonian cycle and G is called hamiltonian if it contains a hamiltonian cycle. For two vertices u and v, a (u, v)-path is a path connecting u and v. A hamiltonian (u, v)-path is a hamiltonian path connecting u and v. For any integer m, denote by C m a cycle of length m. Other notations and terminology not defined in this chapter can be found in section 1.1 of Chapter 1.

For a cycle C = c 1 c 2 • • • c p c 1 in G with a given orientation, the order 1, 2, . . . p following the orientation of C, we denote by c - i = c i-1 the predecessor of c i and by c + i = c i+1 the successor of c i . For a subset X of V (C), X + and X -denote the set of the successors and the predecessor of the vertices of X in C, respectively. For any x ∈ V (G), we put

N - C (x) = {c - i | c i ∈ C ∩ N (x)}, N + C (x) = {c + i | c i ∈ C ∩ N (x)}.
We define similarly for the predecessor and the successor of a vertex on a path

P [p 1 , p q ] = p 1 p 2 • • • p q . We denote by P [p q , p 1 ] = p q p q-1 • • • p 1 .
The following theorems play an important role in the proof of Theorem 2.0.3.

Theorem 2.1.1 ([117])

If G is a hamiltonian graph of order n with hamiltonian cycle C = x 1 x 2 ...x n x 1 such that

d(x 1 ) + d(x n ) ≥ n, with say d(x 1 ) ≤ d(x n ), then G is either (1) pancyclic, (2) bipartite, or 
(3) missing only an (n -1)-cycle.

Moreover, if (3) holds, then d(x n-2 ), d(x n-1 ), d(x 2 ), d(x 3 ) < n/2, and G has one of two possible adjacency structures near x 1 and x n . In the first structure, vertices x n-2 , x n-1 , x n , x 1 , x 2 , x 3 are independent except for edges of C, and 

x n x n-3 , x n x n-4 , x 1 x 4 , x 1 x 5 ∈ E(G)

Lemmas

In this section, we present some lemmas which will be used in the proof of Theorem 2.0.3. 

2 in Y ), d(x 1 ) + d(x 2 ) ≥ n (resp., d(y 1 ) + d(y 2 ) ≥ n), then G = K n/2,n/2 or G = K n/2,n/2 -{e} . Proof of Lemma 2.1.3. Suppose that G = K n/2,n/2 . Let V 1 and V 2 be the bipartitions of G. Clearly n ≥ 6. Let v 1 ∈ V 1 and v 2 ∈ V 2 be
a pair of non-adjacent vertices. Then d(v 1 ) < n/2 and d(v 2 ) < n/2. Without loss of generality, we assume v 1 ∈ X. Since the maximum degree of G is n/2, v 1 must be adjacent to every ver-

tex in X. Hence (V 1 -{v 1 }) ∪ {v 2 } ⊆ Y . Similarly, (V 2 -{v 2 }) ∪ {v 1 } ⊆ X.
Since for any pair of vertices

x 1 , x 2 ∈ V 1 -{v 1 }, d(x 1 ) + d(x 2 ) ≥ n, then N G (x 1 ) = N G (x 2 ) = V 2 .

And for any pair of vertices

y 1 , y 2 ∈ V 2 -{v 2 }, N G (y 1 ) = N G (y 2 ) = V 1 . So, we deduce that G = K n/2,n/2 -{e}. Lemma 2.1.4 ([85]) Let P = u 1 u 2 u 3 • • • u p be a path in G and x, y ∈ V (G) -V (P ) such that (N P (x) -{u 1 }) -∩ N P (y) = ∅. Then d P (x) + d P (y) ≤ p + 1 and if d P (x) + d P (y) = p + 1, (1) V (P ) = (N P (x) -{u 1 }) -∪ N P (y); (2) xu 1 , yu p ∈ E(G); (3) If u i /
∈ N P (x) for some i, 2 ≤ i ≤ p, then u i-1 ∈ N P (y), and if u j / ∈ N P (y) for some j, 1 ≤ j ≤ p -1, then

u j+1 ∈ N P (x); (4) If u i , u j / ∈ N P (x) ∪ N P (y) with 2 ≤ i < j ≤ p -1 such that {u i+1 , u i+2 , .
. . , u j-1 } ⊆ N P (x) ∪ N P (y), then there exists exact one k, i + 1 ≤ k ≤ j -1, such that {u i+1 , u i+2 , . . . , u k } ⊆ N P (x) and {u k , u k+1 , . . . , u j-1 } ⊆ N P (y);

(5) If N P (x) does not contain consecutive vertices on P and N P (y) does not contain consecutive vertices on P , then p is odd and N P (x) = N P (y) = {u 1 , u 3 , u 5 , . . . , u p-2 , u p }.

Proof of Lemma 2.1.4. Since (N P (x) -{u 1 }) -∩ N P (y) = ∅, we deduce that

d P (x) + d P (y) = |N P (x)| + |N P (y)| ≤ |(N P (x) -{u 1 }) -| + 1 + |N P (y)| = |(N P (x) -{u 1 }) -∪ N P (y)| + 1 ≤ p + 1. (2.1)
It follows that if d P (x) + d P (y) = p + 1, (N P (x) -{u 1 }) -∪ N P (y) = V (P ) (( 1) is proved.) and u 1 ∈ N P (x). Since

u p ∈ V (P ) -N P (x) -, then u p ∈ N P (y). ((2) is proved.) If u i / ∈ N P (x) for some i with 2 ≤ i ≤ p, then u i-1 / ∈ N P (x) -
and hence u i-1 ∈ N P (y). If u j / ∈ N P (y) for some j with 1 ≤ j ≤ p -1, then u j ∈ N P (x) -and u j+1 ∈ N P (x). ((3) is proved.) Suppose V (P ) -

(N P (x) ∪ N P (y)) = {u i1 , u i2 , . . . , u it }. Let P 0 = u 1 u 2 • • • u i1-1 , P s = u is+1 u is+2 • • • u is+1-1 with 1 ≤ s ≤ t -1, P t = u it+1 u it+2 • • • u p .
By the same argument with (2.1) on every P k , 0 ≤ k ≤ t, it follows that

d P k (x) + d P k (y) ≤ |P k | + 1 and p + 1 = d P (x) + d P (y) ≤ t k=0 (d P k (x) + d P k (y)) ≤ t k=0 (|P k | + 1) = |P | + 1.
This implies that d P k (x) + d P k (y) = |P k | + 1 with 0 ≤ k ≤ t. Since P k ⊆ N P (x) ∪ N P (y) and (N P (x) -{u 1 }) -∩ N P (y) = ∅, then there exists a vertex u j k ∈ P k for any k, 0 ≤ k ≤ t, such that N P0 (x) = {u 1 , u 2 , . . . , u j0 } and

N P0 (y) = {u j0 , u j0+1 , . . . , u i1-1 }, N P k (x) = {u i k +1 , u i k +2 , • • • , u j k } and N P k (y) = {u j k , u i k +1 , . . . , u i k+1 -1 } with 1 ≤ k ≤ t -1, N Pt (x) = {u it+1 , u it+2 , • • • , u jt } and N Pt (y) = {u jt , u it+1 , . . . , u p }. ( (4 
) is proved.)

If there are two consecutive vertices in N P (x) ∪ N P (y), by (4), either x or y must contain consecutive neighbors, a contradiction. By (2), we deduce that p is odd and N P (x) ∪ N P (y) = {u 1 , u 3 , u 5 , . . . , u p-2 , u p }.(( 5) is proved.)

The proof of main result

Now we prove the Theorem 2.0.3.

To the contrary, we assume that G is a counterexample, i.e. G is not pancyclic, G = K n/2,n/2 and G = K n/2,n/2 -{e}, such that |V (G)| is minimum among all counterexamples. Without loss of generality, let X∩Y = ∅ and |X| ≥ |Y |.

The connectivity of G is at least 3

First, we get an important result.

Claim 2.2.1

The connectivity of G is at least 3.

To prove Claim 2.2.1, we assume that the connectivity of G is 2. Let {w , w } be a cut-set which cuts G into H 1 and Define a new graph D as follows:

H 2 . Let |H 1 | = n 1 and |H 2 | = n 2 . Suppose first that H 1 ∩ X = ∅ and H 2 ∩ X = ∅. For any u ∈ H 1 ∩ X and v ∈ H 2 ∩ X, we have n ≤ d(u) + d(v) ≤ |H 1 | -1 + 2 + |H 2 | -1 + 2 ≤ n, which implies N (u) = (H 1 -{u}) ∪ {w , w } and N (v) = (H 2 -{v}) ∪ {w , w }. If moreover H 1 ∩ Y = ∅ and H 2 ∩ Y = ∅,
D :=        G -H 1 if w w ∈ E(G), (G -H 1 ) ∪ {w w } if w w / ∈ E(G). Let X = X ∩ V (D) and Y = Y ∩ V (D).
Then D is 2-connected, and D(X ) is a clique. Clearly any vertex u ∈ X -{w w } forms a triangle with w and w and hence D is not bipartite. For any pair of nonadjacent vertices

v 1 , v 2 ∈ Y , at least one of v 1 and v 2 is in H 2 and d D (v 1 ) + d D (v 2 ) ≥ d G (v 1 ) + d G (v 2 ) -|H 1 | ≥ n -|H 1 | = |D|. Since
G is a minimum counterexample and D is not bipartite, there exists a cycle 

C k in D for any k , 3 ≤ k ≤ |D|. When w w / ∈ C k , C k ⊆ G. When w w ∈ C k , let x 1 ∈ H 2 ∩ X ⊆ D(X ) and x 2 ∈ H 1 . For k ≥ 4 and x 1 / ∈ C k , since
= C 4 = K 2,2 .
Suppose, without loss of generality, that

H 1 ∩ Y = ∅ and H 2 ∩ X = ∅. If there exist u 1 , v 1 ∈ H 1 and u 2 , v 2 ∈ H 2 such that u 1 v 1 / ∈ E(G) and u 2 v 2 / ∈ E(G), then 2n ≤ d(u 1 ) + d(v 1 ) + d(u 2 ) + d(v 2 ) ≤ 2(|H 1 | -2 + 2) + 2(|H 2 | -2 + 2) ≤ 2(|H 1 | + |H 2 |),
a contradiction. So, without loss of generality, we assume H 2 is a clique.

Since H 2 is clique and with the cycle C n define above, it is easy to get all C m , n - 

n 2 + 2 ≤ m ≤ n. Let P = x 0 x 1 x 2 x 3 • • • x n1 x n1+1 ,
for any i, 1 ≤ i ≤ n 1 -2, such that x i x i+2 / ∈ E(G) and x 0 x i+2 , x i x n1+1 ∈ E(G).
Proof. For some i,

1 ≤ i ≤ n 1 -2, if x i x i+2 ∈ E(G), then put P * = w x 1 x 2 • • • x i x i+2 x i+3 • • • x n1 w . Suppose for any i, 1 ≤ i ≤ n 1 -2, x i x i+2 / ∈ E(G). If there is a j, 0 ≤ j ≤ i -2, such that x j x i ∈ E(G) and x j+1 x i+2 ∈ E(G),
then put P * = x 0 x 1 • • • x j x i x i-1 • • • x j+1 x i+2 x i+3 • • • x n1 x n1+1 . It follows that P [x 0 , x i-1 ] ∩ N (x i ) + ∩ N (x i+2 ) = ∅. By Lemma 2.1.4, d P [x0,xi-1] (x i ) + d P [x0,xi-1] (x i+2 ) ≤ |P [x 0 , x i-1 ]| + 1
and the equality implies x 0 x i+2 ∈ E(G). Similarly, we have

d P [xi+3,xn 1 +1] (x i ) + d P [xi+3,xn 1 +1] (x i+2 ) ≤ |P [x i+3 , x n1+1 ]| + 1
and the equality implies x i x n1+1 ∈ E(G). Thus, we obtain that

n ≤ d G (x i ) + d G (x i+2 ) ≤ |P [x 0 , x i-1 ]| + 1 + |P [x i+3 , x n1+1 ]| + 1 + 2|{x i+1 }| = n 1 + 3,
which implies that n 2 = 1 and the equality implies We may directly deduce that when n 1 ≤ 3, either there is

x 0 x i+2 , x i x n1+1 ∈ E(G).
C n1+2 or G = K 2,2 or G = K 3,3 -{e}.
Suppose that H 2 ∩ N (w ) ∩ N (w ) = ∅. Clearly we have a cycle of length n 1 + 2 if w w ∈ E(G). We assume

w w / ∈ E(G). If w , w ∈ Y (or w , w ∈ X), since d G (w ) + d G (w ) ≥ n, d H1 (w ) + d H1 (w ) ≥ n 1 + 2. By Lemma 2.
1.4 and with the path P define above, it exists an i, 1 ≤ 1 ≤ n 1 -1 such that w x i+1 , w x i ∈ E(G). Hence, we have

a cycle w x i+1 x i+2 • • • x n1 w x i x i-1 • • • x 1 w with length n 1 + 2.
without loss of generality, we consider the case that

w ∈ X and w ∈ Y . Put G 1 = G(H 1 ∪ {w , w }) with X 1 = V (H 1 ) ∪ {w } and Y 1 = {w }. If N (w ) ∩ H 1 = {z}, then for any z ∈ V (H 1 ) -{z}, n ≤ d(w ) + d(z ) ≤ n 1 + n 2 + 1, a contradiction. So |N (w ) ∩ H 1 | ≥ 2. If |N (w ) ∩ H 1 | ≥ 2,
we can see that G 1 is 2-connected, and it satisfies that condition of the theorem with a smaller order.

So, G 1 has a cycle of length n 2 + 2. If N (w ) ∩ H 1 = {x}, then {w , x} is a 2-cut. By the above argument, we

may have that G(H 2 ∪ {w }) is a clique in Y and hence H 2 ∩ N (w ) ∩ N (w ) = ∅, a contradiction.
Therefore, we obtain a cycle C n1+2 in G.

We will show the existence of

C m , 3 ≤ m ≤ n 1 + 1 or G = K n/2,n/2 or G = K n/2,n/2 -{e}. When |N (w ) ∩ H 1 | ≥ 2, we define G 2 = G(H 1 ∪ {w }) with X 2 = V (H 1 ) and Y 2 = {w }. If x and x are nonadjacent vertices in X 2 , d G2 (x ) + d G2 (x ) ≥ d G (x ) -1 + d G (x ) -1 ≥ n -2 ≥ |V (G 2 )|, which implies that G 2 is 2-connected. Since |V (G 2 )| < V (G)|
, by the minimality assumption, G 2 is pancyclic or

G 2 = K (n1+1)/2,(n1+1)/2 or G 2 = K (n1+1)/2,(n1+1)/2 -{e}.
In the last two cases, for any pair of nonadjacent vertices

x and x in G 2 -{w }, d G2 (x ) + d G2 (x ) ≤ n 1 + 1 and hence n ≤ d G (x ) + d G (x ) ≤ n 1 + 3. It follows that |H 2 | = 1, n 1 is odd and x w , x w ∈ E(G). When n 1 ≥ 5, V (H 1 ) ⊂ N (w ). It is easy to see now that G(H 1 ∪ {w , w }) contains all cycles C m , for 3 ≤ m ≤ n 1 + 2. When n 1 = 3, we deduce that G = K 3,3 -{e}.
Without loss of generality, we assume that 

N (w ) ∩ H 1 = {x } and N (w ) ∩ H 1 = {x }. If w w ∈ E(G), let G 1 = G(H 1 ∪ {w , w }) with X 1 = V (H 1 )
2n ≤ d G (x a ) + d G (x b ) + d G (w ) + d G (w ) ≤ 2(n 1 -1) + 2(n 2 + 1) = 2(|G| -2),
a contradiction. So H 1 is a clique and there are all cycles c m , for 3 ≤ m ≤ n 1 . Since

n 1 + n 2 + 2 = n ≤ d G (w ) + d G (w ) ≤ 2 + n 2 + |H 2 ∩ N (w ) ∩ N (w )|, it follows that |H 2 ∩ |N (w ) ∩ N (w )| ≥ n 1 .
Clearly there is a cycle C n1+1 in G.

Claim 2.2.1 is proved.

Constructing the desired hamiltonian cycle

By Claim 2.2.1 we assume that G is 3-connected. If both G[X] and G[Y ] are cliques, clearly G is pancyclic or G = K 2,2
. It follows that we may assume that there exists a pair of nonadjacent x 1 and x 2 in X or Y .

Let P = v 1 v 2 v 3 • • • v p be a path in G such that (1) v 1 v p / ∈ E(G) and v 1 , v p ∈ X or v 1 , v p ∈ Y , say v 1 , v p ∈ X;
(2) subject to (1), p is as large as possible.

When V (P ) = V (G), by Theorem 2.1.2, G is pancyclic. So there is a vertex w 0 ∈ V (G) -V (P ). Since G is 3-connected, there are three internal disjoint paths P 1 [w 0 , v d ], P 2 [w 0 , v l ] and P 3 [w 0 , v m ] connecting w 0 and three distinct vertices {v d , v l , v m } ⊆ V (P ) with d < l < m. It follows that w 0 , v d+1 (= v + d ), v l+1 (= v + l ) are pairwisely nonadjacent (otherwise there would be a path longer than P that connects v 1 and v p , a contradiction). Then two of the three vertices w 0 , v d+1 (= v + d ), v l+1 (= v + l ) should be in the same part of X and Y .

If these two vertices are w 0 and v d+1 ,

put P 1 [v 1 , w 0 ] = P [v 1 , v d ]P 1 (v d , w 0 ] = v 1 v 2 • • • v d P 1 (v d , w 0 ] and P 2 = P [v d+1 , v p ] = v d+1 v d+2 • • • v p ;
If these two vertices are w 0 and v l+1 ,

put P 1 [v 1 , w 0 ] = P [v 1 , v l ]P 2 (v l , w 0 ] = v 1 v 2 • • • v l P 2 (v l , w 0 ] and P 2 = P [v l+1 , v p ] = v l+1 v l+2 • • • v p ;
If these two vertices are v d+1 and v l+1 ,

put P 1 [v 1 , v d+1 ] = v 1 v 2 • • • v d P 1 (v d , w 0 ] P 2 (w 0 , v l )v l v l-1 • • • v d+1 and P 2 = v l+1 v l+2 • • • v p .
In all the above cases, these two paths P 1 and P 2 satisfy |P 1 | + |P 2 | ≥ p + 1, one endpoint of P 1 and one endpoint of P 2 are not adjacent and both belong to X, the other endpoint of P 1 and the other endpoint of P 2 are not adjacent and both belong to X or Y . We assume that

Q = u 1 u 2 u 3 • • • u q and Q = u q+1 u q+2 • • • u t are two disjoint paths such that t (t ≥ p + 1) is maximum, subject to u 1 , u t ∈ X, u q , u q+1 ∈ X or u q , u q+1 ∈ Y and u 1 u t , u q u q+1 / ∈ E(G).
If there exists a vertex

w * ∈ (G -(Q ∪ Q )) ∩ N (u q ) ∩ N (u q+1 ), then there is a new path P * := Q w * Q = u 1 u 2 • • • u q w * u q+1 u q+2 • • • u t which contradicts the maximality of P . So (G -(Q ∪ Q )) ∩ N (u q ) ∩ N (u q+1 ) = ∅. Similarly (G -(Q ∪ Q )) ∩ N (u 1 ) ∩ N (u t ) = ∅.
For any i,

2 ≤ i ≤ q -1, if u i u t , u i+1 u 1 ∈ E(G), then Q = u q u q-1 • • • u i+1 u 1 u 2 u 3 • • • u i u t u t-1 • • • u q+1 is a new
path. Since u q , u q+1 are nonadjacent and both belong to X or Y and t ≥ p + 1, Q contradicts with the choice of P .

So N Q (u 1 ) -∩ N Q (u t ) = ∅. Similarly, N Q (u t ) + ∩ N Q (u 1 ) = ∅. It follows that n ≤ d G (u 1 ) + d G (u t ) ≤ |G -V (Q ∪ Q )| + d Q -{u1} (u 1 ) + d Q -{u1} (u t ) + d Q -{ut} (u 1 ) + d Q -{ut} (u t ) ≤ |G -V (Q ∪ Q )| + |Q -{u 1 }| + 1 + |Q -{u t }| + 1 ≤ n -t + t = n. (2.
2)

It implies that d Q -{u1} (u 1 ) + d Q -{u1} (u t ) = |Q -{u 1 }| + 1 and d Q -{ut} (u 1 ) + d Q -{ut} (u t ) = |Q -{u t }| + 1.
Therefore Q -{u 1 }, Q -{u t }, u 1 and u t satisfy Lemma 2.1.4. So u 1 u q+1 , u q u t ∈ E(G). Hence, we have a cycle

C := u 1 u 2 • • • u q u t u t-1 • • • u q+1 u 1 .
Now, we constructed a hamiltonian cycle C. Next, we will give the properties of the hamiltonian cycle C.

Claim 2.2.3 N

G (u 1 ) ⊆ V (C), N G (u t ) ⊆ V (C), N G (u q ) ⊆ V (C) and N G (u q+1 ) ⊆ V (C).
Proof. Suppose that there is w ∈ N G (u 1 ) -V (C). It follows that w ∈ Y since otherwise when wu t ∈ E(G), the path u q u q-1 • • • u 1 wu t u t-1 • • • u q+1 , contradicts with the choice of P , and when wu t / ∈ E(G), w, u t ∈ X, the two paths wQ [u 1 , u q ] = wu 1 u 2 • • • u q and Q contradict with the property of Q and Q .

Since G is 3-connected, there are two internal disjoint paths F 1 [w, u i ] and F 2 [w, u j ] between w and u i , u j ∈

V (C) -{u 1 }. If u i = u t , then a path u q u q-1 • • • u 1 wF 1 (w, u t )u t u t-1 • • • u q+1 contradicts the choice of P . So i = t and j = t.
Similarly, we may show that at least one of u i and u j , say u i / ∈ {u q , u q+1 }. Hence, we may assume

u i / ∈ {u 1 , u t , u q , u q+1 }. If u 2 = u i , we put Q 1 = u 1 wF 1 (w, u 2 )u 2 u 3 • • • u q and Q 1 = Q , which contradict the definitions of Q and Q . So u 2 = u i and u 2 = u j , in particular, wu 2 / ∈ E(G). If u 2 ∈ Y , then a path u 2 u 3 • • • u q u t u t-1 • • • u q+1 u 1 w contradicts the maximality of P . So u 2 ∈ X. Suppose q + 2 ≤ i ≤ t -1. If u t u i-1 ∈ E(G) (resp. u t u i-2 ∈ E(G) when t -1 ≥ i ≥ q + 3), then u q+1 u q+2 • • • u i-2 u i-1 u t u t-1 • • • u i F (u i , w)wu 1 u 2 • • • u q (resp. u q+1 u q+2 • • • u i-3 u i-2 u t u t-1 • • • u i F (u i , w)wu 1 u 2 • • • u q )
is a path of length at least t > p, a contradiction. Hence,

u t u i-1 / ∈ E(G) when t -1 ≥ i ≥ q + 2 and u t u i-2 / ∈ E(G) when t -1 ≥ i ≥ q + 3.
By (2.2) and Lemma 2.1.4 (3),

u 1 u i ∈ E(G) when t -1 ≥ i ≥ q + 2 and u 1 u i-1 ∈ E(G) when t -1 ≥ i ≥ q + 3.
From u 1 u q+1 ∈ E(G), i = q + 1, q + 2. Therefore, we always obtain u

1 u i-1 ∈ E(G). If u 2 u t ∈ E(G), then there is a path u q+1 u q+2 • • • u i-1 u 1 wF (w, u i )u i u i+1 • • • u t u 2 u 3 • • • u q+1 whose length is at least t + 1 > p, a contradiction. If u 2 u t / ∈ E(G), two paths u 2 u 3 • • • u q and u q+1 u q+2 • • • u i-1 u 1 wF (w, u i )u i u i+1 • • • u t , contradict with the choice of Q and Q .
Thus, we may assume

u i ∈ Q (3 ≤ i ≤ q -1)
.

If wu i+1 ∈ E(G) (resp. u 2 u i+1 ∈ E(G)), two paths u 1 u 2 • • • u i F (u i , w)wu i+1 u i+2 • • • u q (resp.u 1 wF (w, u i )u i u i-1 • • • u 2 u i+1 u i+2 • • • u q ) and Q contradict the choice of Q and Q . So wu i+1 / ∈ E(G) and u 2 u i+1 / ∈ E(G). It follows that a path Q = wF (w, u i )u i u i-1 • • • u 1 u q+1 u q+2 • • • u t u q u q-1 • • • u i+1 if u i+1 ∈ Y or Q = u 2 u 3 • • • u i F (u i , w)wu 1 u q+1 u q+2 • • • u t u q u q-1 • • • u i+1 if u i+1 ∈ X.
contradicts the maximality of P .

Thus, N G (u 1 ) ⊆ V (C). Similarly, N G (u t ) ⊆ V (C), N G (u q ) ⊆ V (C) and N G (u q+1 ) ⊆ V (C).
The proof of Claim 2.2.3 is completed.

Claim 2.2.4 C is a hamiltonian cycle of G.

Proof. In (2.2), by Claim 2.2.3, we have

n ≤ d G (u 1 ) + d G (u t ) ≤ d Q -{u1} (u 1 ) + d Q -{u1} (u t ) +d Q -{ut} (u 1 ) + d Q -{ut} (u t ) ≤ |Q -{u 1 }| + 1 + |Q -{u t }| + 1 ≤ t,
which implies t = n and hence C is a hamiltonian cycle.

The rest of the proof of Theorem 2.0.3

C is a hamiltonian cycle, in which u 1 and u q+1 are consecutive and u q and u t are consecutive. Since

d G (u 1 ) + d G (u t ) + d G (u q ) + d G (u q+1 ) ≥ 2n, we have either d G (u 1 ) + d G (u q+1 ) ≥ n or d G (u t ) + d G (u q ) ≥ n. By Theorem 2.1.1,
G is either pancyclic or bipartite or missing only an (n -1)-cycle.

Case 1 G is bipartite.

Let A and B be the bipartitions of G. Without loss of generality, we assume |A| ≥ |B|.

If |A| = 2, G = K 2,2 . If
|A| ≥ 3, every pair of vertices in X ∩ A (resp., Y ∩ A) have degree sum at most 2|B|. Hence, they must be adjacent to all vertices of B and

|A| = |B| = n 2 . By Lemma 2.1.3, it follows that G = K n/2,n/2 or G = K n/2,n/2 -{e}.
Case 2 G is missing only an (n -1)-cycle.

If d G (u 1 ) + d G (u q+1 ) ≥ n + 1, from the proof of Theorem 2.0.4, G is pancyclic. So we assume d G (u 1 ) + d G (u q+1 ) = n and similarly d G (u t ) + d G (u q ) = n. If u 1 u 3 ∈ E(G), then there is a (n -1)-cycle: u 1 u 3 u 4 • • • u q u t u t-1 • • • u q+1 u 1 , a contradiction. So u 1 u 3 / ∈ E(G)
and from Lemma 2.1.4, u 2 u t ∈ E(G).

Without loss of generality, assume q ≥ tq. When q = 2 and t = 4, clearly G = K 2,2 . When q = 3,

u 1 u 2 u t u t-1 • • • u q+1 u 1 is a (n -1)-cycle.
When q = 4, by Theorem 2.1.1, u q u q+1 ∈ E(G) which is a contradiction.

So we assume that q ≥ 5. Similarly, we may assume that tq ≥ 5.

From Theorem 2.1.1, we obtain d(u 2 ) < n/2, d(u 3 ) < n/2, d(u q+2 ) < n/2, d(u q+3 ) < n/2 and

u 2 u q+2 , u 2 u q+3 , u 3 u q+2 , u 3 u q+3 / ∈ E(G).
It follows that u 2 , u 3 belong to one of X and Y , say X, and u q+2 , u q+3 belong to Y .

Similarly, d(u q-1 ), d(u q-2 ), d(u t-1 ), d(u t-2 ) < n/2, u q-1 , u q-2 belong to one of X and Y and u t-1 , u t-2 belong to the other one of X and Y . If

u 2 u t-1 ∈ E(G), we get a (n -1)-cycle: u 1 u 4 u 5 • • • u q u t u 2 u t-1 u t-2 • • • u q+1 u 1 , a contradiction. Thus u 2 u t-1 / ∈ E(G), which implies u t-1 , u t-2 ∈ Y and hence u q-1 , u q-2 ∈ X. We have u 2 ∈ N (u q-1 ) ∩ N (u q-2 ). The (n -1)-cycle C n-1 = u 1 u 4 u 5 • • • u q-2 u 2 u q-1 u q u t u t-1 • • • u q+1 u 1 is a contradiction.
The proof of Theorem 2.0.3 is complete.

Open problems

In 1960, Ore [START_REF] Ore | A note on hamiltonian circuits[END_REF] showed that if the degree sum of any pair of nonadjacent vertices is at least n in a graph G of order n, then G is hamiltonian (Theorem 1.2.2). Bondy proved that under the same condition, G is pancyclic or

G = K n/2,n/2 (Theorem 1.3.1).
Chapter 3

Pancyclicity in 3-connected graphs

In this chapter, we give the proof of Conjecture 1.3.12 for graphs of k = 3. It is kind of a continuation of the work in Chapter 2. To facilitate reading, we reiterate Conjecture 1.3.12 here.

Conjecture 3.0.1 Let G = (V, E) be a k-connected graph, k ≥ 2, of order n. Suppose that V (G) = ∪ k i=1 X i such
that for each i, i = 1, 2, . . . , k, and for any pair of nonadjacent vertices x, y

∈ X i , d(x)+d(y) ≥ n. Then G is pancyclic or G is a bipartite graph.
The main result of this chapter is to prove that the above conjecture is true for k = 3.

Theorem 3.0.2 Let G = (V, E) be a 3-connected graph of order n and V (G) = X 1 ∪ X 2 ∪ X 3 . For any pair of nonadjacent vertices v 1 and v 2 in X i , d(v 1 ) + d(v 2 ) ≥ n with i = 1, 2, 3. Then G is pancyclic or G is a bipartite graph.

Introduction

In Chapter 2, we gave proof of Conjecture 1.3.12 for a 2-connected graph, i.e., k = 2 in Conjecture 1.3.12. 

Y , d(y 1 ) + d(y 2 ) ≥ n. Then G is pancyclic or G = K n/2,n/2 or G = K n/2,n/2 -{e}.
Here we will prove that Conjecture 1.3.12 is true for k = 3 by showing Theorem 3.0.2.

The main idea and the main tools of the proof of Theorem 3.0.2 and Theorem 2.0.3 are similar, but there are also some differences. To make this chapter complete, we will give the whole proof of Theorem 3.0.2. We will follow all notations, such as hamiltonian (u, v)-path, the predecessor and the successor of a vertex, S-cyclable etc., as in Chapter 2.

Well-known results

In our proof of Theorem 3.0.2, we will use some well-known results. 

Let C = x 1 x 2 • • • x n x 1 be a hamiltonian cycle in a graph G. If d(x 1 ) + d(x n ) ≥ n + 1,
(n -1)-cycle, then d(x n-2 ), d(x n-1 ), d(x 2 ), d(x 3 ) < n/2
, and G has one of two possible adjacency structures near x 1 and x n . In the first structure, vertices x n-2 , x n-1 , x n , x 1 , x 2 , x 3 are independent except for edges of C, and

x n x n-3 , x n x n-4 , x 1 x 4 , x 1 x 5 ∈ E(G). The second structure (which can occur only if d(x 1 ) < d(x n )) is identical to the first except that x n x 3 ∈ G and x 1 x 5 / ∈ G.

Outline of the proof

In our proof for Theorem 3.0.2, we will use Menger's Theorem (see section 6.1 in Chapter 6).

In Theorem 3.0.2, let V (G) = X 1 ∪ X 2 ∪ X 3 . We first consider the situation for each i

, i = 1, 2, 3, G[X i ] is a clique (Lemma 3.2.2).
Next, we can find a path P . There is a vertex w 0 ∈ V (G) -V (P ), and there are (at least) three internal disjoint paths P 1 [w 0 , v d1 ], P 2 [w 0 , v d2 ], and P 3 [w 0 , v d3 ] connecting w 0 and three distinct vertices {v d1 , v d2 , v d3 } ⊆ V (P ) with

d 1 < d 2 < d 3 .
Then we talk about it in two cases: non-extremal case (v d1 = v 1 or v d3 = v p ) and extremal case

(v d1 = v 1 and v d3 = v p ).
In section 3.3, we will talk about non-extremal case. First, we show the existence of a cycle

C := u 1 u 2 • • • u q u t u t-1 • • • u q+1 u 1 . such that |C| ≥ |P | + 1 and |C| = n. So, there exists a vertex w ∈ V (G -C).
And there are three disjoint paths P 1 [w, u l1 ], P 2 [w, u l2 ] and P 3 [w, u l3 ] between w and u l1 , u l2 , u l3 ∈ V (C). With that, according to the relationship between {u l1 , u l2 , u l3 } and {u 1 , u t , u q , u q+1 }, it is proved that G is pancyclic or a bipartite graph in this non-extremal case.

Let the component where w 0 is located be H. In section 3.4, let's first show some properties of H. In the end, we have proved Theorem 3.0.2 with the extremal case based on the number of vertices in H.

Suppose there exists i ∈ {1, 2, 3} such that |X i | ≥ 3. We assume

e 1 = u 1 v 1 ∈ G[X 1 ] and e 2 = u 2 v 2 ∈ G[X 2 ] such that u 1 u 2 , v 1 v 2 ∈ E. Let e 3 = u 3 v 3 ∈ G[X 3 ] and u, v ∈ G[V -X 3 ] such that u 3 u, v 3 v ∈ E. Since G[X i ] is a clique for any i ∈ {1, 2, 3}, for each k, 1 ≤ k ≤ |X i | -1, there is a (u i , v i )-path P i k in G[X i ] of length k. So, we have cycles of all lengths from 4 to |X 1 ∪ X 2 |. Since G is 3-connected, without loss of generality, we assume u, v ∈ X 2 . If u / ∈ {u 2 , v 2 } or v / ∈ {u 2 , v 2 }, there is (u, v)-paths Q in G[V -X 3 ] of all lengths from 1 to |X 1 ∪ X 2 | -1. When |G[X 1 ]| ≥ 3 or |G[X 2 ]| ≥ 4, since G[X 1 ] and G[X 2 ] are cliques, we can find a (u, v)-paths Q such that |V (Q)| = |X 1 ∪ X 2 | -1. Then C = Q ∪ {u 3 v 3 , u 3 u, v 3 v} is a cycle of length |X 1 ∪ X 2 | + 1. Also, we can find a (u, v)-paths Q such that |V (Q)| = |X 1 ∪X 2 |, then C k = P 3 k ∪Q∪{u 3 u, v 3 v} are cycles of all lengths from |X 1 ∪X 2 |+2
to n. Thus, G is pancyclic, a contradiction.

When

|X 1 | = 2 and |X 2 | = 3, if |X 3 | ≥ 3, we choose (u, v)-paths Q such that |V (Q)| = 3, then C = Q ∪ P 3 3 is a cycle |C | = 6. And We can find (u, v)-paths Q such that |V (Q)| = |X 1 ∪ X 2 |, then C k = P 3 k ∪ Q are cycles of all lengths from 7 to n. Then G is pancyclic, a contradiction. If |X 3 | = 2, since G is 3-connected, it is easy to construct G is pancyclic. If u = u 2 , v = v 2 . If |X 3 | ≥ 3 and |X 2 | = 2, since G[X i ] is a clique for any i = 1, 2, 3, it is easy to construct cycles of all lengths from 3 to n in G. Then G is pancyclic. This is a contradiction. So, |X 3 | = 2 or |X 2 | ≥ 3. If |X 2 | ≥ 3, since G is 3-connected, there is a vertex w ∈ X 2 /{u 2 , v 2 } such that N (w) ∩ (X 3 ∪ X 1 ) = ∅. When N (w) ∩ X 3 = ∅, from the same argument with u / ∈ {u 2 , v 2 } or v / ∈ {u 2 , v 2 }, it follows that G is pancyclic. When N (w) ∩ X 1 = ∅, by the symmetry between G[X 1 ] and G[X 3 ], G is pancyclic. So |X 2 | = 2.
Also, by the symmetry between G[X 1 ] and

G[X 3 ], then |X 1 | = |X 2 | = |X 3 | = 2.
This is a contradiction.

The proof of this lemma is complete.

Lemma 3.2.4

Let G be a 1-connected graph with the order n and V (G) = X 1 ∪ X 2 . Suppose that for any pair of nonadjacent vertices x 1 and x 2 in

X i with i = 1, 2, d(x 1 ) + d(x 2 ) ≥ n. If w cuts G into G 1 and G 2 , then V (G 1 ) ⊆ X i and V (G 2 ) ⊆ X j with i = j ∈ {1, 2}. Moreover, G 1 is a clique or G 2 is a clique. Proof: Suppose that G 1 ∩ X i = ∅ and G 2 ∩ X i = ∅ with i = 1, 2, then n ≤ d(x) + d(y) ≤ |G 1 | -1 + 1 + |G 2 | -1 + 1 < n for any vertex x ∈ X i ∩ G 1 and y ∈ X i ∩ G 2 , a contradiction. So, V (G 1 ) ⊆ X i and V (G 2 ) ⊆ X j with i = j ∈ {1, 2}. If there exist u 1 , v 1 ∈ V (G 1 ) and u 2 , v 2 ∈ V (G 2 ) such that u 1 v 1 / ∈ E(G) and u 2 v 2 / ∈ E(G), then 2n ≤ d(u 1 ) + d(v 1 ) + d(u 2 ) + d(v 2 ) ≤ 2(|G 1 | -2 + 1) + 2(|G 2 | -2 + 1) < 2n, a contradiction. Thus, G 1 is a clique or G 2 is a clique. Lemma 3.2.5
Let G be a 2-connected graph with the order n and V (G) = X 1 ∪ X 2 . Suppose that for any pair of nonadjacent vertices x 1 and x 2 in

X i with i = 1, 2, d(x 1 ) + d(x 2 ) ≥ n. If {w, w 1 } cuts G into G 1 and G 2 , G 1 ∩ X i = ∅ and G 2 ∩ X i = ∅ with i = 1, 2, then G 1 and G 2 are cliques. Moreover, G is pancyclic. Proof: For any vertex x ∈ X i ∩ G 1 and y ∈ X i ∩ G 2 with i = 1, 2, n ≤ d(x) + d(y) ≤ |G 1 | + |G 2 | + 2 ≤ n. So, N (x) = G 1 ∪ {w, w 1 } and N (y) = G 2 ∪ {w, w 1 }.
G 1 and G 2 are cliques. Thus, G is pancyclic.

Non-extremal case

To the contrary, we suppose that G is not pancyclic graph or a bipartite graph. And |V (G)| is minimum among all counter example. By Lemma 3.2.2, there exists i ∈ {1, 2, 3} such that G[X i ] is not a clique. Therefore, we may assume that there exists a pair of nonadjacent vertices in X i for some i ∈ {1, 2, 3} .

Let P = v 1 v 2 v 3 • • • v p be a path in G such that (1) v 1 v p / ∈ E(G) and v 1 , v p ∈ X i , i ∈ {1, 2, 3};
(2) subject to (1), p is as large as possible.

If V (P ) = V (G), by Theorem 2.1.2, G is pancyclic. So, there is a vertex w 0 ∈ V (G)-V (P ). Since G is a 3-connected graph, there are (at least) three internal disjoint paths P 1 [w 0 , v d1 ], P 2 [w 0 , v d2 ], and P 3 [w 0 , v d3 ] connecting w 0 and three distinct vertices {v d1 , v d2 , v d3 } ⊆ V (P ) with d 1 < d 2 < d 3 .

We will prove it in two cases: v d1 = v 1 or v d3 = v p (say Non-extremal case) and v d1 = v 1 and v d3 = v p (say extremal case). Let's start with the non-extremal case.

v 1 v p w 0 P v d i v d i +1 p i (a) when w 0 v d i +1 ∈ E(G) v 1 v p w 0 P i P j v d i v d i +1 v d j v d j +1 P (b) when v d i +1 v d j +1 ∈ E(G) Figure 3.1: A path is longer than P if {w 0 , v d1+1 , v d2+1 , v d3+1 } is not independent vertex set Case 1 v d1 = v 1 or v d3 = v p .

The existence of cycle longer than |P | + 1

Without loss of generality, we assume v d3 = v p . It follows that w 0 , v d1+1 , v d2+1 , v d3+1 are pairwisely nonadjacent otherwise there would be a path longer than P that connects v 1 and v p (see Figure 3.1), a contradiction. Then two of these four vertices w 0 , v d1+1 , v d2+1 , v d3+1 should be in the same part X i for i ∈ {1, 2, 3}. Thus, -if these two vertices are w 0 and v di+1 where i ∈ {1, 2, 3} (see figure 3.2), put

P 1 [v 1 , w 0 ] = P [v 1 , v di ]P i (v di , w 0 ]
and

P 2 = P [v di+1 , v p ];
-if these two vertices are v di+1 and v dj +1 (see Figure 3.3), put

P 1 [v 1 , v di+1 ] = P [v 1 , v di ]P i (v di , w 0 ]P j (w 0 , v dj ) P [v dj , v di+1 ] and P 2 [v dj +1 , v p ] = P [v dj +1 , v p ], where i, j ∈ {1, 2, 3}
In all above cases, the two paths P 1 and P 2 satisfy |P 1 | + |P 2 | ≥ p + 1, one endpoint of P 1 and one endpoint of P 2

are not adjacent and both belong to X i , the other endpoint of P 1 and the other endpoint of P 2 are not adjacent and both belong to X j , where i, j ∈ {1, 2, 3}.

v 1 v p w 0 P P 1 P 2 P i v d i v d i +1
Figure 3.2: w 0 and v di+1 are both belong to the same X j We assume that

P P 2 v 1 v p w 0 P 1 P i P j v d i v d i +1 v d j v d j +1
Q = u 1 u 2 u 3 • • • u q and Q = u q+1 u q+2 • • • u t are two disjoint paths such that t (t ≥ p + 1) is maximum, subject to u 1 , u t ∈ X i , u q , u q+1 ∈ X j with i, j ∈ {1, 2, 3}, and u 1 u t / ∈ E, u q u q+1 / ∈ E(G).
By the choice of P , then

(G -(Q ∪ Q )) ∩ N (u q ) ∩ N (u q+1 ) = ∅, (G -(Q ∪ Q )) ∩ N (u 1 ) ∩ N (u t ) = ∅, N Q (u 1 ) -∩ N Q (u t ) = ∅ and N Q (u t ) + ∩ N Q (u 1 ) = ∅. It follows from Lemma 3.2.1 that n ≤ d G (u 1 ) + d G (u t ) ≤ |G -V (Q ∪ Q )| + d Q -{u1} (u 1 ) + d Q -{u1} (u t ) + d Q -{ut} (u 1 ) + d Q -{ut} (u t ) ≤ |G -V (Q ∪ Q )| + |Q -{u 1 }| + 1 + |Q -{u t }| + 1 ≤ n -t + t = n. (3.1) This implies that d Q -{u1} (u 1 ) + d Q -{u1} (u t ) = |Q -{u 1 }| + 1 and d Q -{ut} (u 1 ) + d Q -{ut} (u t ) = |Q -{u t }| + 1.
By Lemma 3.2.1, u 1 u q+1 , u q u t ∈ E(G). Hence, we have a cycle

C := u 1 u 2 • • • u q u t u t-1 • • • u q+1 u 1 .

Some properties of H

Claim 3.4.1 For any two vertices x, y in H, then x, y ∈ X i for some i ∈ {1, 2, 3}. And there does not exist other components apart from H and P .

Proof. Without loss of generality, we assume w 0 ∈ X 1 . Suppose that there is a vertex u ∈ (Hw 0 ) ∩ X i with i ∈ {2, 3}. It follows that w 0 , v 2 , v d2+1 are pairwisely nonadjacent by the choice of P . Similarly, u, v 2 , v d2+1 are pairwisely nonadjacent. If there are at least two vertices of w 0 , v 2 , v d2+1 in the same parity X i , by Case 1, we are done. So, w 0 , v 2 , v d2+1 should be in different parity X i . Then there are two of u, v 2 , v d2+1 should be in the same parity. By Case 1, we are done. So, for any two vertices of H in the same X i .

Suppose that there is another component H apart from H and P , then H and H are disconnected.

By the same argument with H, every vertex in H should be in the same parity of X i with i ∈ {1, 2, 3}. For v ∈ H , there are three internal disjoint paths P i [w 0 , v ti ] connecting v and three distinct vertices v ti ∈ P with i = 1, 2, 3. If there are two vertices in {v t1 , v t2 , v t3 } that are not {v 1 , v p }, by Case 1, we are done. We assume v 1 = v t1 and

v t3 = v p . Since w 0 , v 2 and v d2+1 are in different parity X i for i = 1, 2, 3. Let v 2 ∈ X 2 and v d2+1 ∈ X 3 .
Similarly, the vertices v, v 2 and v t2+1 should be in different parity

X i with i = 1, 2, 3. If v ∈ X 1 , then path P 1 [w 0 , v 1 ]P [v 1 , v p ]P 1 (v p , v] contradicts the choice of P . So v ∈ X 3 and v t2+1 ∈ X 1 , then path P 1 [w 0 , v 1 ]P (v 1 , v t2 ]P 2 (v t2 , v]P 3 (v, v p ]P (v p , v t2+1 ]
contradicts the choice of P by w 0 v t2+1 / ∈ E. So, there does not exist another component apart from H and P . If there is a vertex x ∈ H such that xx / ∈ E, then there are three internal disjoint paths F i [x , x i ] connecting

x and three distinct vertices

x i ∈ V (C 1 ) with i = 1, 2, 3. Since {v 1 , v d2 , v p } is cut-set of G, there is a vertex x i ∈ {x 1 , x 2 , x 3 } such that x i ∈ {y, v 1 , v p }. When x i = y or x i = v p , there is a (x, x )-path xv 1 P v p x i F i x which contradicts the choice of P . If x i = v 1
, there is a (x, x )-path xyv p P v 1 F i x , which contradicts the choice of P . By the symmetry between x and y, so every vertex in H connects with x and y.

If there are two vertices u , v ∈ H such that u v / ∈ E, then xu , yv ∈ E and there is a (u , v )-path u xv 1 P v p yv which contradicts the choice of P . So, H is a clique.

By Claims 3.4.1 and 3.4.2, let

V (G) = V (H ∪ P ), P = v 1 v 2 • • • v p and N P (V (H)) = {v 1 , v d , v p }.

H has at least three vertices

In this section, we will show that if

|V (H)| ≥ 3, then G is pancyclic or G is a bipartite graph. Let G = G-(H ∪{v 1 , v d , v p }) be a subgraph of G. We may assume u, v, w ∈ V (H) such that uv 1 , vv p , w v d ∈ E. By Claim 3.4.3, then V (G ) ⊆ X 2 ∪ X 3 .
For any two nonadjacent vertices x, y ∈ X i with i ∈ {2, 3}, we get

d G (x) + d G (y) ≥ d(x) + d(y) -6 ≥ |G |.
When G is a 2-connected graph, by Theorem 2.0.3, G is pancyclic or

G = K |G |/2,|G |/2 or G = K |G |/2,|G |/2 - {e}. Suppose G = K |G |/2,|G |/2 or G = K |G |/2,|G |/2 -{e}. Let X and Y be the bipartitions of G . If v 2 , v d+1 ∈ X, then v 3 v d+1 ∈ E or v 2 v d+2 ∈ E. If v 2 ∈ X and v d+1 ∈ Y , then v 3 v d+2 ∈ E.
In the both cases, there is a (v 1 , v p )-path which contradicts the choice of P . So, G is pancyclic, and we assume there are cycles

C k , 3 ≤ k ≤ p -3, in G. Suppose there does not exist cycles C m with p -2 ≤ m ≤ n in G. By Claim 3.4.5, we can assume |V (P [v 2 , v d-1 ])| ≥ 5. If v 2 , v p-1 ∈ X 2 , by Fact 3.4.4, then v d-1 , v d+1 ∈ X 3 . Since |H| ≥ 3, then v d-1 v d+1 ∈ E otherwise there is a (v d-1 , v d+1 )-path v d+1 v d+2 • • • v p vuv 1 v 2 • • • v d-1
which contradicts the choice of P . By the maximality of P , then

|V (P [v d+1 , v p-1 ])| ≥ 4. Then v 4 v d+1 / ∈ E(G) otherwise path P 1 = v 1 uvwv d v d-1 v d-2 • • • v 4 v d+1 v d+2 • • • v p contradicts with the choice of P . If v 4 ∈ X 3 , then there are two paths Q 1 = v 1 uvw v d v d-1 • • • v 4 and Q 2 = v d+1 v d+2 • • • v p such that |Q 1 | + |Q 2 | ≥ p + 1.
By Case 1, we have done. So, v 4 ∈ X 2 , then v 2 v 4 ∈ E by the choice of P . Similarly, v d-2 ∈ X 3 and

v d-2 v d+1 , v p-1 v p-3 ∈ E. Then let C p-2 = v 1 v 2 v 4 • • • v d-2 v d+1 • • • v p-3 v p-1 v p vuv 1 , C p-1 = v 1 v 2 v 4 • • • v d-2 v d+1 • • • v p vuv 1 , C p = v 1 v 2 • • • v d-2 v d+1 • • • v p vuv 1 , C p+1 = P -{v d } ∪ {v d-1 v d+1 , v 1 u, vv p , vu}.
By Claim 3.4.2, then there are cycle

C m with n ≥ m ≥ p + 2, a contradiction. So, we assume v 2 , v d-1 ∈ X 2 and v d+1 , v p-1 ∈ X 3 .
By the choice of P and Case 1, then 

v 4 v d+1 / ∈ E, v 4 ∈ X 2 and v 2 v 4 ∈ E. Similarly, v p-3 v p-1 ∈ E, v d-3 v d-1 ∈ E and v d+3 v d+1 ∈ E (v p-1 v d+1 ∈ E). In the same argument with v 2 , v p-1 ∈ X 2 , we can construct all cycles C k , with n ≥ m ≥ p -2. Then G is pancyclic, a contradiction. So, the connectivity of G is 1. Let w 1 cuts G into G 1 and G 2 . It follows that |V (P [v 2 , v d-1 ])| ≥ 5 or |V (P [v d+1 , v p-1 ])| ≥ 5 from Claim 3.
can assume V (G 1 ) ⊆ X 2 , V (G 2 ) ⊆ X 3 , w 1 ∈ X 3 and G 1 is a clique, and v 2 ∈ X 2 and v d+1 ∈ X 3 . When v 2 v i ∈ E (i ≤ d -1 and i is as large as possible), then v i-1 v d+1 / ∈ E otherwise path v 1 uw v d v d-1 • • • v i v 2 v 3 • • • v i-1 v d+1 v d+2 • • • v p contradicts the choice of P . If v i-1 ∈ X 3 , there are two paths Q 1 = v i-1 v i-2 • • • v 2 v i v i+1 • • • v d w uv 1 and Q 2 = v d+1 v d+2 • • • v p such that |Q 1 | + |Q 2 | ≥ p + 2, by the Case 1, we have done. So v i-1 ∈ X 2 and G[P [v 2 , v i-1 ]] is a By Proposition 3.4.13, G is pancyclic. If v d-1 ∈ G 1 and v d+1 = v i (v d+1 = v j ), or if v d+1 ∈ G 2 and v d-1 = v i (v d-1 = v j ), or if v d-1 = v i and v d+1 = v j , the same argument with v d-1 ∈ G 1 and v d+1 ∈ G 2 , G is pancyclic. When v 1 , v p ∈ G 1 (v 1 , v p ∈ G 2 ). If v d-1 , v d+1 ∈ G 1 , by Fact 3.4.4, v 2 , v p-1 ∈ W 3 . By the definition of path P , this is a contradiction. If v d-1 , v d+1 ∈ G 2 , since G[G 2 ∩ W 3 ] is a clique, by Fact 3.4.12, G is pancyclic. If v d-1 ∈ G 2 and v d+1 = v i , then v j ∈ V (P [v 2 , v d-1 ]) and V (P [v j+1 , v d-1 ]) = V (G 2 ). So, there is v k ∈ P [v j+2 , v d-1 ] such that v i v k ∈ E, by Proposition 3.4.13, G is pancyclic. Similarly, if v d-1 = v i and v d+1 ∈ G 2 , G is pancyclic. If v d-1 = v j and v d+1 ∈ G 1 , by Facts 3.4.4 and 3.4.11, then v 2 = v i ∈ W 3 , V (P [v 3 , v d-2 ]) = V (G 2 )
and

G[P [v 2 , v d-1 ]] is a clique. If there is v k ∈ P [v d+1 , v p-2 ] such that v k v 2 ∈ E, then v d+1 v k+1 ∈ E otherwise P 1 = v d+1 v d+2 • • • v k v 2 v 3 • • • v d wv p v p-1 • • • v k+1 such that |P 1 | = |P |, by case 1 and v 1 v 2 , v 1 w ∈ E, a contradiction. So, path v 1 wv d v d-1 • • • v 2 v k v k-1 • • • v d+1 v k+1 v k+2 • • • v p longer than P , a contradiction. Thus, for any vertex v k ∈ P [v d+1 , v p-2 ] such that v 2 v k / ∈ E. Similarly, for any vertex v k ∈ P [v d+1 , v p-2 ] such that v d-1 v k / ∈ E. If v p-1 v p-3 / ∈ E, then S = v p-1 v p wv 1 v 2 • • • v p-3 such that |S | = |P |. If |P [v d+1 , v p-3 ]| ≥ 3, by Claim 3.4.3, a contradiction. If |P [v d+1 , v p-3 ]| = 2, if v d+1 v p-2 / ∈ E, by Claim 3.4.3, a contradiction. So, v d+1 v p-2 ∈ E and path v p-1 v p wv 1 v 2 • • • v d+1 v p-2 v p-3 contradicts the choice of P . If |P [v d+1 , v p-3 ]| = 1, since G is 3-connected, if v 1 v p-2 ∈ E, then path v p-3 v p-2 v 1 v 2 • • • v d wv p v p-1 contradicts the choice of P . If v p-2 v p ∈ E, then v p-1 v p-2 v p wv 1 v 2 • • • v p-3 contradicts the choice of P . If v d v p-2 ∈ E, then v d+1 v p-2 v d v d-1 • • • v 1 wv p v p-1 contradicts the choice of P . So, v p-1 v p-3 ∈ E. Then v p-2 v p-4 ∈ E otherwise path v p-2 v p-3 v p-1 v p wv 1 v 2 • • • v p-4
contradicts the choice of P . Similarly, for

any vertex v l ∈ P [v d+1 , v p-3 ] such that v l v l+2 ∈ E. Suppose v d+1 v d+4 / ∈ E, then v d+4 = v p-1 otherwise path v d+1 v d • • • v 1 wv p v p-1 • • • v d+5 v d+3 v d+2 v d+4 longer than P . Since G is 3-connected, assume N (v d+2 )∩{v 1 , v d , v p } = ∅. If v d+2 v 1 ∈ E, then there is a path v d+1 v d+3 v d+2 v 1 v 2 • • • v d wv p v p-1 • • • v d+4 longer than P , a contradiction. If v d v d+2 ∈ E, path v d+1 v d+3 v d+2 v d v d-1 • • • v 1 wv p • • • v d+4 longer than P . If v p v d+2 ∈ E, then path v d+4 v d+3 v d+2 v p wv 1 v 2 • • • v d+1 contradict with the choice of P . So, v d+1 v d+4 ∈ E. Similarly, for any vertex v l ∈ P [v d+1 , v p-4 ] such that v l v l+3 ∈ E. It follows that G is pancyclic from Claim 3.4.6. Similarly, if v d-1 ∈ G 2 and v d+1 ∈ G 1 , then G is pancyclic. If v d+1 ∈ G 2 and v d-1 ∈ G 1 , when V (P [v 2 , v i-1 ] ∪ P [v i+1 , v d-1 ]) ⊆ W 2
, the same argument with above, we can get a contradiction. When 

V (P [v 2 , v d-1 ]) ⊆ G 1 and V (P [v d+1 , v i-1 ] ∪ P [v i+1 , v p-2 ]) ⊆ G 2 ,
∈ P [v 2 , v d-1 ] such that v l v i ∈ E or v l v j ∈ E. Since G is 2-connected, so, we can assume v 1 v i ∈ E(G). If v i ∈ W 2 , then v i v 1 wv p v p-1 • • • v i+1 v i-1 v i-2 • • • v 2 is a path which contradicts the choice of P . So, v i ∈ W 3 . The similar proof to Fact 3.4.11, G[v d+1 , v p-1 ] is a clique. By Claim 3.4.6,
G is pancyclic or a bipartite graph.

The same argument with

v 1 , v p ∈ G 1 , when v 1 ∈ G 1 and v p = v j or when v 1 = v i and v p = v j , G is pancyclic or a bipartite graph.
Thus, G is pancyclic or G is a bipartite graph. The proof of the theorem 3.0.2 is complete.

Concluding remarks and further work

In this chapter, we prove that if

G = (V, E) is a 3-connected graph of order n with V (G) = X 1 ∪ X 2 ∪ X 3 , for any pair of nonadjacent vertices v 1 and v 2 in X i , d(v 1 ) + d(v 2 ) ≥ n with i = 1, 2, 3, then G is pancyclic or a bipartite graph.
Note that the main result of this chapter is to prove that the conjecture 2.0.2 is true for k = 3. For all other cases (k ≥ 4) of Conjecture 2.0.2, we haven't given proof. Thus, this is our other further work.

In this chapter, we consider finite digraphs without loops and multiple arcs. Terminology and notations not described below follow Section 1.1.

For a digraph D, we denote by V (D) the vertex set of D and by A(D) the set of arcs in D. The order of D is the number of its vertices. The arc of a digraph D directed from x to y is denoted by xy or x → y (we also say that x dominates y or y is an out-neighbour of x and x is an in-neighbour of y), and x ↔ y denotes that x → y and y → x (x ↔ y is called 2-cycle). If x → y and y → z we write x → y → z. If there is no arc from x to y, we shall use the notation xy / ∈ A(D).

For disjoint subsets V 1 and V 2 of V (D), we define A(V 1 → V 2 ) as the set {xy ∈ A(D)|x ∈ V 1 , y ∈ V 2 } and A(V 1 , V 2 ) = A(V 1 → V 2 ) ∪ A(V 2 → V 1 ). If x ∈ V (D) and V 1 = {x}, we sometimes write x instead of {x}. If V 1 and V 2 are two disjoint subsets of V (D) such that every vertex of V 1 dominates every vertex of V 2 , then we say that V 1 dominates V 2 , denoted by V 1 → V 2 . V 1 ↔ V 2 means that V 1 → V 2 and V 2 → V 1 .
The out-neighborhood of a vertex x is the set

N + (x) = {y ∈ V (D)|xy ∈ A(D)} and N -(x) = {y ∈ V (D)|yx ∈ A(D)} is the in-neighborhood of x. Similarly, if U ⊆ V (D), then N + (x, U ) = {y ∈ U |xy ∈ A(D)} and N -(x, U ) = {y ∈ U |yx ∈ A(D)}. The out-degree of x is d + (x) = |N + (x)| and d -(x) = |N -(x)| is the in-degree of x. Similarly, d + (x, U ) = |N + (x, U )| and d -(x, U ) = |N -(x, U )|. The degree of the vertex x in D is defined as d(x) = d + (x) + d -(x) (similarly, d(x, U ) = d + (x, U ) + d -(x, U )). The subdigraph of D induced by a subset U of V (D) is denoted by D U or U brevity.
The path (respectively, the cycle) consisting of the distinct vertices x 1 , x 2 , . . . , x m (m ≥ 2) and the arcs

x i x i+1 , i ∈ [1, m -1] (respectively, x i x i+1 , i ∈ [1, m -1]
, and x m x 1 ), is denoted by

x 1 x 2 • • • x m (respectively, x 1 x 2 • • • x m x 1 )
. The length of a cycle or a path is the number of its arcs. We say that

x 1 x 2 • • • x m is a path from x 1 to x m or is a (x 1 , x m )-path.
The length of a cycle or a path is the number of its arcs.

If P is a path containing a subpath from x to y, we let P [x, y] denote that subpath. Similarly, if C is a cycle containing vertices x and y, C[x, y] denotes the subpath of C from x to y. Given a vertex x of a path P or a cycle C, we denote by x + (respectively, by x -) the successor (respectively, the predecessor) of x (on P or C), and in case of ambiguity, we use P or C as a subscript (that is

x + P • • • ).
A digraph D is strongly connected (or, just, strong) if there exists a path from x to y and a path from y to x for every pair of distinct vertices x, y. A cycle (path) is called hamiltonian if it includes all the vertices of D. A digraph D is hamiltonian if it contains a hamiltonian cycle and is pancyclic if it contains a cycle of length k for any 3 ≤ k ≤ n, where n is the order of

A digraph D is k-strongly (k ≥ 1) connected (or k-strong), if |V (D)| ≥ k + 1 and D(V (D) \ A) is strongly connected for any subset A ⊆ V (D) of at most k -1 vertices. A digraph D is bipartite if there exists a partition X, Y of V (D)
D. A digraph D is called non-hamiltonian if it is not hamiltonian. A balanced bipartite digraph of order 2m is even pancyclic if it contains a cycle of length 2k for any k, 2 ≤ k ≤ m.
For general digraphs, there are not in the literature as many sufficient conditions as for undirected graphs that guarantee the existence of a hamiltonian cycle in a digraph. The more general and classical ones is the following theorem of M. Meyniel: Notice that Meyniel's theorem is a common generalization of well-known classical theorems of Ghouila-Houri [START_REF] Ghouilahouri | Une condition suffisante dexistence dun circuit hamiltonien[END_REF] and Woodall [START_REF] Woodall | Sufficient conditions for circuits in graphs[END_REF]. A beautiful short proof Meyniel's theorem can be found in [START_REF] Bondy | A short proof of meyniel's theorem[END_REF].

Recently, there has been a renewed interest in various Meyniel-type hamiltonian conditions in bipartite digraphs (see, e.g., [4,[START_REF] Adamus | A degree sum condition for hamiltonicity in balanced bipartite digraphs[END_REF][START_REF] Darbinyan | A sufficient condition for pre-hamiltonian cycles in bipartite digraphs[END_REF][START_REF] Wang | A sufficient condition for a balanced bipartite digraph to be hamiltonian[END_REF]). The following theorem due to Adamus Janusz. Then D is hamiltonian.

Before starting the following theorems, we need to introduce additional notation.

Let D(8) be the bipartite digraph with partite sets X = {x 0 , x 1 , x 2 , x 3 } and Y = {y 0 , y 1 , y 2 , y 3 }, A(D(8)) contains exactly the arcs y 0 x 1 , y 1 x 0 , x 2 y 3 , x 3 y 2 and all the arcs of the following 2-cycles:

x i ↔ y i , i ∈ [0, 3], y 0 ↔ x 2 , y 0 ↔
x 3 , y 1 ↔ x 2 and y 1 ↔ x 3 , and it contains no other arcs. There are many results that support Bondy's "metaconjecture" in digraph. Let us cite for example the following: Next, we will give a sufficient condition for the existence of hamiltonian cycles in balance bipartite digraph.

The hamiltonicity of balance bipartite digraph

This section mainly presents the proof of Theorem 4.0.2. First, we propose some lemmas to prove Theorem 4.0.2.

Lemmas

Throughout this section, we assume that D is a strongly connected balanced bipartite digraph with partite sets of cardinalities a ≥ 5, which satisfies the condition d(x) + d(y) ≥ 3a for every dominating a pair of vertices {x, y}. 

|A(V (C 1 ), V (D) \ V (C 1 ))| ≤ |C 1 |(2a -|C 1 |) 2 .
Now, we are ready to prove Theorem 4.0.2.

The proof of Theorem 4.0.2

Now, let D be a balanced bipartite satisfying the conditions of Theorem 4.0.2. Let X and Y denote its partite sets.

For a proof by contradiction, suppose that D is not hamiltonian.

By Lemma 4.2.1 and condition ℵ 0 , for every vertex x ∈ V (D), d(x) ≤ 2a. Then, we have the follow claim: To complete the proof, we now will prove the following claim. 

C i = v 1 u 1 • • • v s u s v 1 , where for any 1 ≤ i ≤ s, v i ∈ Y , u i ∈ X and x = u 1 .
When y 1 u 1 / ∈ A(D), by d(u 1 ) ≥ 2a -1, we have u 1 y 1 ∈ A(D). Then, we obtain the following fact: 

t(a -t) ≥ t i=1 d C c 1 (x i ) = s i=1 d C c 1 (x i ) + xj ∈R d C c 1 (x j ) + x k ∈R d C c 1 (x k ) ≥ s i=1 (a -t -α i ) + ( i∈I α i + j∈I (α j -1))(a -t + 2) +(t - i∈I α i - j∈I (α j -1) -s)(a -t) = t(a -t) + s i=1 α i -2|I |. ( * * ) So, i∈I α i + j∈I α j = s k=1 α k ≤ 2|I |.
If there is i ∈ I such that α i = 1, by the definition of I , then

d + C1 (x i ) = 1. (M 2 ) By Claim 4.2.4, then a ≤ d(x i ) = d + C1 (x i ) + d - C1 (x i ) + d C c 1 (x i ) ≤ 1 + t + a -t -1 = a,
and d C c 1 (x i ) = a -t -1. So, d - C1 (x i ) = t.
Next, we will show

N + (x i ) ∩ V (C c 1 ) = ∅.
Suppose there exists y ∈ A(C j ) with j = 1 such that x i y ∈ A(D), then {x, x i } is a dominating pair, where x be a predecessor vertex of y on C j . By d(x i ) = a and ℵ 0 , we obtain d(x) = 2a. Let y i be a successor vertex of x i on C 1 .

So, xy i ∈ A(D) and C 1 can be merged into C j . This contradicts the minimality of l. Hence,

N + (x i ) ∩ V (C c 1 ) = ∅. (M 3 )
Suppose there exists x j ∈ V (C 1 ) ∩ X such that {x j , x i } is a dominating pair, by d(x i ) = a and ℵ 0 , then d(x j ) = 2a.

Since t ≥ 2, let y and y are predecessor and successor of x j on C 1 , respectively. If there exists yx ∈ A(C j ) with j = 1 such that y x ∈ A(D), by d(x j ) = 2a, then yx j ∈ A(D). So, C 1 can be merged into C j , a contradiction. Thus,

N + (y ) ∩ V (C c 1 ) = ∅. Similarly, N -(y ) ∩ V (C c 1 ) = ∅. By (M 2 ), then d C1 (y ) + d C1 (y ) ≤ 4t -1. It follows that {y , y } is a dominating pair from d(x j ) = 2a. So, 3a ≤ d(y ) + d(y ) = d C1 (y ) + d C1 (y ) + d C c 1 (y ) + d C c 1 (y ) ≤ 4t -1 + 2(a -t) = 2a + 2t -1,
we obtain t ≥ a+1 2 , which contradicts t ≤ a 2 . Hence, there does not exist any vertex x j in V (C 1 ) ∩ X such that x j and x i have a common out-neighbour. By Lemma 4.2.1, let x ∈ V (C j ) such that {x i , x } is a dominating pair. Then d(x ) = 2a by d(x i ) = a. Let y i be a predecessor vertex of x i on C 1 , y be a predecessor vertex of x on C j .

If there exists x ∈ V (C 1 ) ∩ X such that y x ∈ A(D). By d(x ) = 2a, then C 1 can be merged into C j . This contradicts the minimality of l. So d + C1 (y ) = 0. By (M 3 ), then x i y / ∈ A(D). So, d - C1 (y ) ≤ t-1. And d C c 1 (y ) ≤ 2(a-t). Thus, d(y ) ≤ 2(at) + t -1.

By (M 2 ), then d - C1 (y i ) ≤ t -1. And d + C1 (y i ) ≤ t. If there exists x ∈ V (C j ) \ {x } such that y i x ∈ A(D), by (M 3 ), d + C1 (y ) = 0, and d C c 1 (x i ) = a -t -1, then y x i ∈ A(D)
, where y be a predecessor vertex of x on C j . So, C 1 can be merged into C j , a contradiction. Thus, d + Cj \{x } (y i ) = 0. Similarly, for any k = 1, j, d

+ C k (y i ) = 0.
And by d(x ) = 2a, then y i x ∈ A(D). Thus,

N + C c 1 (y i ) = {x}, i.e., d + C c 1 (y i ) = 1. And d - C c 1 (y i ) ≤ a -t. So, d(y i ) = d + C1 (y i ) + d - C1 (y i ) + d + C c 1 (y i ) + d - C c 1 (y i ) ≤ a + t.
It follows that {y i , y } is a dominating pair from d(x ) = 2a. Thus,

d(y i ) + d(y ) ≤ 2(a -t) + t -1 + a + t = 3a -1, which contradicts d(y i ) + d(y ) ≥ 3a.
Hence, for all i ∈ I , α i ≥ 2 and the ( * * ) inequalities are equal. Then |I | = 0 and α i = 2 with i ∈ I . Let 

x ∈ V (C 1 ) ∩ X such that {x, x i } is a dominating pair. Since d(x i ) = d + C1 (x i ) + d - C1 (x i ) + d C c 1 (x i ) ≤ 2 + t + a -t -2 =

The bipancyclicity and cyclability of digraph

In this section, first, we proved some new sufficient conditions for bipancyclic of digraphs.

From Theorem 4.1.4, we obtain the following theorem. Then d(x 1 ) ≥ 3a + 1a -1 = 2a. Hence, x 1 together with every vertex y i forms a 2-cycle.

So, we can obtain that D contains a cycle of all even lengths 2k with 1 ≤ k ≤ a. The proof of this theorem is completed.

Before proceeding further, we give more notations.

Let D be a digraph and let S be a nonempty subset of vertices of D. We say that a digraph D is S-strongly connected if, for any pair x, y of distinct vertices of S, there exists a path from x to y and a path from y to x.

A set S of vertices in a directive graph D is said to be cyclable (pathable) in D if D contains a directed cycle (path) through all vertices of S.

There are many well-known conditions which guarantee the cyclability of a set of vertices in an undirected graph.

H. Li, E. Flandrin and J. Shu [START_REF] Li | A sufficient condition for cyclability in directed graphs[END_REF] proved the following theorem which gives a sufficient condition for cyclability of digraphs. In this section, we will show the following theorem. 

Concluding remarks and further work

In this chapter, we gave sufficient conditions for a balanced bipartite digraph to be hamiltonian. And we show some sufficient conditions for a digraph to be even pancyclic and cyclable.

Note that our result show that a balance bipartite digraph with order 2a, if d(x) + d(y) ≥ 3a for every dominating pair of vertices {x, y}, we can find a hamiltonian cycle. We also show that if a digraph D of order 2a is not a directed cycle and D contains a cycle of length 2a -2, if d(x) + d(y) ≥ 3a + 1 for every dominating pair of vertices {x, y}, then D contains a cycle of length 2k for all k, where 1 ≤ k ≤ a.

We get the following question: 3 , then G is doubly chorded pancyclic.

Terminology and notations

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say that a cycle is chorded if the cycle has at least one chord, and we call such a cycle chorded cycle. If a cycle has at least two chords, then the cycle is called a doubly chorded cycle. A graph G of order n is chorded pancyclic (doubly chorded pancyclic) if G contains a chorded cycle (doubly chorded cycle) of each length from 4 to n.

Bondy's metaconjecture (see Chapter 1 or Chapter 2) was extended into almost any condition that implies a graph is hamiltonian will imply it is chorded pancyclic, possibly with some class of well-defined exceptional graphs and some small order exceptional graphs. As support for the extension of Bondy's metaconjecture, there are many results (see Section 1.3.2 in Chapter 1).

For a vertex set S of V (G), we denote by G[S] the subgraph of G induced by S.

Given a family £ = {H 1 , H 2 , . . . , H k } of graphs, we say that a graph G is £-free if G has no induced subgraph isomorphic to any H i with i = 1, 2, . . . , k. In particular, if £ = {H}, we simply say G is H-free.

From Theorem 5.0.1, we got our main result (Theorem 5.0.2). Theorem 5.0.2 supports for extension of Bondy's metaconjecture.

When G is chorded pancyclic, it is in nature to consider how many chords in a cycle of length l, for any 1 ≤ l ≤ n, where n is the order of G. Thus, we obtain Theorem 5.0.3.

It is necessary to introduce the followings.

We say that a graph G is traceable if it contains a spanning path (that is, the path containing all the vertices of G ). For any integer m, denote by C m a cycle of length m.

The proof of main results

Preparation for the proof

To prove main results, we use the following theorem: Theorem 5.2.1 ([34]) Let G be a graph with at least three vertices. For some s, if G is s-connected and contains no independent set of more than s vertices, then G has a hamiltonian cycle.

From Theorem 5.2.1, we obtain the following lemma:

We may assume that v 10 = v 1 . Suppose that there is a vertex z ∈ N (v 1 ) ∩ N (v 7 ). Since δ(G) ≥ n-2 3 ≥ 11 and G is K 1,3 -free, there must exist four vertices

x 1 , x 2 , x 3 , x 4 ∈ N (v 9 ) such that x 1 x 2 x 3 x 4 is a path in G. Since G is K 1,3 -free, then x 4 v 8 ∈ E(G) or x 4 v 10 ∈ E(G). Let C =        v 1 zv 7 v 8 x 4 x 3 x 2 x 1 v 9 v 10 • • • v m v 1 if x 4 v 8 ∈ E(G), v 1 zv 7 v 8 v 9 x 1 x 2 x 3 x 4 v 10 • • • v m v 1 if x 4 v 10 ∈ E(G)
Then C is a cycle of length m with the chord x 2 v 9 , a contradiction.

Hence, N (v 1 ) ∩ N (v 7 ) = ∅. Since N (v 1 ) ∩ N (v 4 ) = N (v 4 ) ∩ N (v 7 ) = N (v 1 ) ∩ N (v 7 ) = ∅, we obtain that n -2 ≤ d(v 1 ) + d(v 4 ) + d(v 7 ) ≤ 6 + |V (G -C)| = n -m + 6.
So, we obtain m ≤ 8, which contradicts that m ≥ 9.

Case 2 4 ≤ m ≤ 8.

First, we give the following result.

Claim 5.2.3 If there exists a cycle

C l = v 1 v 2 • • • v l v 1 of
length l in G for some 3 ≤ l ≤ 7 and there does not exist a chorded cycle C of length l + 1 in G, then for any two vertices v i , v j ∈ V (C l ), v i and v j has no common neighbor in

V (G) \ V (C l ).
Proof. Without loss of generality, let x ∈ N G-C l (v 1 ). Since there exists no chorded cycle of length l + 1 in G, then x is not adjacent to two consecutive vertices in C l .

To the contrary, we assume v

j x ∈ E(G) with 3 ≤ j ≤ l 2 . Note that 3 ≤ j ≤ 4 since 3 ≤ l ≤ 7. Since G is K 1,3 -free, v j-1 v j+1 ∈ E(G). Let C =        C l -{v 1 v l , v 2 v 3 } ∪ {v 1 x, v 3 x, v 2 v l } if v 3 x ∈ E(G), C l -{v 1 v l , v 2 v 3 , v 4 v 5 } ∪ {v 1 x, xv 4 , v 2 v l , v 3 v 5 } otherwise.
Then C is a cycle of length l + 1 with the chord v 2 v 3 . This is a contradiction.

By the symmetry, this claim is proved. Now, we have two subcases.

By Lemma 5.2.2, suppose G[A 2 ] is traceable, then there is a path Q 1 such that |Q 1 | + |Q| = [ 2m 6 ]. Then C 1 = v 1 x v 3+[ 2m 6 ] v 4+[ 2m 6 ] • • • v i-1 Qv i Q 1 v i+1 • • • v m v 1 is a cycle of length m with CH m ≥ [ m 6 ] chords. Suppose G[A 2 ] is two disjoint cliques. If A 1 = ∅, since G is K 1,3 -free, there exist v ∈ A 2 and u ∈ A 1 such that uv ∈ E(G). So, we can find two paths Q 2 and Q 3 in G[A 2 ] such that v is the endpoint of Q 3 and |Q 2 | + |Q 3 | + |Q| = [ 2m 6 ]. Then C 2 = v 1 x v 3+[ 2m 6 ] v 4+[ 2m 6 ] • • • v i-1 Quv Q 3 v i Q 2 v i+1 • • • v m v 1 is a cycle of length m with CH m ≥ [ m 6 ] chords. This is a contradiction. If A 1 = ∅, since G is K 1,3 -free, then there exist v ∈ A 2 such that v v i-1 ∈ E(G). So, we can find two paths Q 4 and Q 5 in G[A 2 ] such that v is the endpoint of Q 5 and |Q 4 | + |Q 5 | = [ 2m 6 ]. Then C 2 = v 1 x v 3+[ 2m 6 ] v 4+[ 2m 6 ] • • • v i-1 v Q 5 v i Q 4 v i+1 • • • v m v 1 is a cycle of length m with CH m ≥ [ m 6 ] chords. This is a contradiction. So N G-Cm (v 1 ) ∩ N G-Cm (v 3+[ 2m 6 ] ) = ∅. Then n -2 ≤ d(v 1 ) + d(v 2+[ m 6 ] ) + d(v 3+[ 2m 6 ] ) ≤ |V (G -C m )| + 6 + 6 + [ m 6 ] -4 = n -m + [ m 6 ] + 8.
Thus, we obtain m ≤ 12, which contradicts that m ≥ n+4 3 ≥ 13, where [ m 6 ] ≥ 3.

Suppose [ m 6 ] = 2, by Theorem 1.3.27, C m is a cycle with a chord. Since G is K 1,3 -free, without loss of generality, we assume

v 1 v 3 ∈ E(G). Now we show N G-Cm (v 1 ) ∩ N G-Cm (v 4 ) = ∅. Suppose u ∈ N G-Cm (v 1 ) ∩ N G-Cm (v 4 ).
Since there does not exist 2 chords in C m , we can assume w

∈ N G-Cm (v i )∩N G-Cm (v i+1 ) with v i ∈ V (C m [v 5 , v m ]). Let C = v 1 uv 4 v 5 • • • v i wv i+1 • • • v 1 . If uv m ∈ E(G), then C is a cycle of length m with the chords uv m and v i v i+1 , a contradiction. It follows from G is K 1,3 -free that uv 3 ∈ E(G). Then, C * = v 1 uv 3 v 4 • • • v m v 1 is a cycle of length m with the chords v 1 v 3 and uv 4 , a contradiction. So N G-Cm (v 1 ) ∩ N G-Cm (v 4 ) = ∅. Similarly, N G-Cm (v 4 ) ∩ N G-Cm (v 7 ) = ∅. It follows from N G-Cm (v 1 ) ∩ N G-Cm (v 3+[ 2m 6 ] ) = ∅ that N G-Cm (v 1 ) ∩ N G-Cm (v 7 ) = ∅. Hence, we obtain that n -2 ≤ d(v 1 ) + d(v 4 ) + d(v 7 ) ≤ 7 + |V (G -C m )| = n -m + 7.
So, we obtain m ≤ 9, which contradicts that m ≥ n+4 3 ≥ 13.

Case 4 2n+11 3 ≤ m ≤ n. Assume C m = v 1 v 2 • • • v m v 1 be a cycle in G with CH m chords. For any vertex v i ∈ V (C m ), d G-Cm (v i ) ≤ n -m and d Cm ≥ δ -(n -m). So, CH m ≥ m(δ-(n-m)) 2 -m.
A vertex cut is a set S ⊂ V (G) such that G -S has more than one component. A graph is k-connected if every vertex cut has at least k vertices. The connectivity of G, κ(G), is the minimum size of a vertex cut, i.e., κ(G) is the maximum k such that G is k-connected. Let α(G) be the number of the vertices of a maximum independent set in The proof of Proposition 6.1.5 is easy. Now I will prove it briefly.

G. For any integer m ≥ 2, if α(G) ≥ m, put σ m (G) = min m i=1 deg G (x i ) x 1 , x 2 , . . . , x m are pairwisely nonadjacent vertices in G σ m (G) = min m i=1 deg G (x i ) -| m i=1 N G (x i )| x 1 , x 2 
Proof. Let {x 1 , x 2 , . . . , x m } be an independent set of vertices in G such that σ m (G) = m i=1 deg G (x i ). And assume {y 1 , y 2 , . . . , y m+1 } be independent set of vertices in G such that σ m+1 (G) = m+1 i=1 deg G (y i ) -| m+1 i=1 N G (y i )|. From the definition of σ m (G), we can obtain σ m (G) ≤ m i=1 deg G (y i ). And it is easy to know that deg G (y i ) ≥ | m+1 i=1 N G (y i )|. It follows that deg G (y m+1 ) ≥ | m+1 i=1 N G (y i )|. Thus σ m (G) ≤ σ m+1 (G).
The related definition of hamiltonian was introduced in the section 1.1 of the chapter 1, here I will explain it again.

A hamiltonian path of a graph G is a path that contains all vertices of V (G). A graph G is Hamilton-connected if there is a hamiltonian path between every two different vertices. A cycle containing all vertices of G is called a hamiltonian cycle and G is called hamiltonian if it contains a hamiltonian cycle. Let K m and C m denote the complete graph of m vertices and the cycle of length m, respectively.

One of the core subjects in hamiltonian graph theory is to develop sufficient conditions for a graph to have a hamiltonian path/cycle (refer to [START_REF] Li | Generalizations of dirac's theorem in hamiltonian graph theory-a survey[END_REF] for a survey). Some further sufficient conditions related to degrees of vertices with distance exactly two for hamiltonian graphs can be found in Chapters 1 and 2.

We begin with a well-known result due to Ore. Theorem 6.1.6 (Ore [START_REF] Ore | A note on hamiltonian circuits[END_REF]) Let G be a graph of order n ≥ 3 such that σ 2 (G) ≥ n. Then G is hamiltonian.

The following result gives the degree sum condition for graphs to be Hamilton-connected by Ore [START_REF] Ore | Hamilton connected graphs[END_REF] Theorem [START_REF] Ore | A note on hamiltonian circuits[END_REF] is generalized into a sufficient condition on any three independent vertices. In 1991, Flandrin, Jung and Li proved the followings:

v u 1 u 2 u k x 1 w 1 x 2 w 2 x 4 H v u 1 u 2 u k x 1 w 1 x 2 x 3 w 2 x 4 H Figure 6.3:
The definition of w 1 and w 2 , where black vertices are insertible vertices.

The relationships among three independent vertices

Since G is (k + 1)-connected, |N G (V (H)) ∩ V (T )| ≥ k + 1. Then |N G (V (H)) ∩ V (P [v, u i ])| ≥ 2 for some 1 ≤ i ≤ k.
Without loss of generality, we may assume that

V (P [v, u 1 ]) has the most vertices in N G (V (H)) among V (P [v, u i ])
for all 1 ≤ i ≤ k. And assume that there is a segment of T in P [v, u 1 ]. Let x 1 and x 2 be the end vertices of the If there is only one segment

segment of T in P [v, u 1 ] such that V (P [x 1 , u 1 ]) ∩ N G (V (H)) = {x 1 }. Let w 1 be the non-insertible vertex of P [x 1 , x 2 ] such that |V (P [x 1 , w 1 
P [x 1 , x 2 ] in T , let w 2 ∈ N T (x 2 ) \ V (P [x 1 , x 2 ]
). Now w 2 is not in a segment, and w 2 is in V (P [v, u 1 ]). In this case, let y 1 = w 2 (see Fig. 6.4).

Let w 3 be an arbitrary vertex of V (H). For two vertices a and b, we denote aHb a path connecting a and b through H if such a path exists.

The relationship among three vertices w 1 , w 2 and w 3 be as following claims.

Claim 6.4.2

The vertex w 3 is not adjacent to w 1 and w 2 .

Proof. Suppose that w 1 w 3 ∈ E(G). We use a segment insertion SI[P [y 1 , y m-1 ]] and let T be a resulted graph.

Then T + w 1 w 3 ∪ w 3 Hx 1 is a (v, U )-fan with the order of at least |V (T )| + 1. This is a contradiction.

Suppose that w 2 w 3 ∈ E(G). From the maximality of T , w 2 x 2 / ∈ E(T ). Thus, w 2 is in a segment of T . Then we deduce a contradiction by the similar argument of the above one. Therefore, w 3 is not adjacent to w 1 and w 2 . Claim 6.4.3 For any 1 ≤ i ≤ m and 1 ≤ j ≤ , y i and y j are not adjacent.

Proof. We prove this claim by induction on i + j with 1 ≤ i ≤ m and 1 ≤ j ≤ . Suppose that y 1 y 1 ∈ E(G). Then

T + y 1 y 1 -x 1 y 1 -y 1 x 2 ∪ x 1 Hx 3 is a (v, U )-
fan with the order of at least |V (T )| + 1, a contradiction. Suppose that this claim holds for 2 ≤ i +j < i+j with i+j ≥ 3. Suppose that y i y j ∈ E(G). We use segment insertions SI

[P [y 1 , y i-1 ]] (if i ≥ 2) and SI[P [y 1 , y j-1 ]] (if j ≥ 2).
Let T be a resulted graph. According to the induction hypothesis of this claim, for each 1 ≤ i ≤ i -1, y i is not inserted into any edge of P [x 2 , y j ], and for each 1 ≤ j ≤ j -1, y j is not inserted into any edge of P [x 1 , y j ]. Then T + y j y i ∪ x 1 Hx 3 is a (v, U )-fan with the order of at least |V (T )| + 1, a contradiction.

Hence, Claim 6.4.3 holds. By Claims 6.4.2 and 6.4.3, the set {w 1 , w 2 , w 3 } is an independent set of G. Claim 6.4. 4 The following statements hold for each 1 ≤ i ≤ m and 1 ≤ j ≤ .

(i) N G (y i ) ∩ (N G (w 3 ) ∩ V (T )) + u1 = ∅, (ii) if w 2 is in V (P [v, u 1 ]), then N G (y j ) ∩ (N G (w 3 ) ∩ V (T )) + u1 = ∅, (iii) if w 2 is in V (P [v, u 2 ]), then N G (y j ) ∩ (N G (w 3 ) ∩ V (T )) - u2 = ∅, (iv) if w 2 is in V (P [v, u 1 ]), then N G (y i ) ∩ (N G (y j ) ∩ (V (T ) \ V (P [w 1 , x 2 ]))) - u1 = ∅, (v) if w 2 is in V (P [v, u 2 ]), then N G (y j ) ∩ (N G (y i ) ∩ (V (T ) \ V (P [v, w 1 ] ∪ P [x 3 , v]))) - u2 = ∅, (vi) if w 2 is in V (P [v, u 2 ]), then N G (y j ) ∩ (N G (y i ) ∩ V (P [v, w 1 ] ∪ P [x 3 , v])) - u1 = ∅. And if w 2 is in V (P [v, u 1 ]), then N G (y j ) ∩ (N G (y i ) ∩ V (P [w 1 , x 2 ])) - u1 = ∅.
6.4.4 (iv), (vi) and Lemma 6.3.2, we obtain the desired inequality in the case that vw 1 ∈ E(G).

Suppose that vw 1 / ∈ E(G). By Claim 6.4.4 (iv), (vi) and Lemma 6.3.1, we obtain

|N G (w 1 ) ∩ V (P [v, s 1 ] -s 1 )| + |N G (w 2 ) ∩ V (P [v, s 1 ] -s 1 )| ≤ |V (P [v, s 1 ] -s 1 )|. If w 2 ∈ V (P [v, u 1 
]), by Claim 6.4.4 (iv) and Lemma 6.3.1 (i), then this claim holds in the case that vw 1 / ∈ E(G). We may assume w 2 ∈ V (P [v, u 2 ]). Then w 2 is a non-insertible vertex. By Claim 6.4.4 (vi) and Lemma 6.3.1 (iii), hence, this claim holds in the case that vw 1 / ∈ E(G).

Claim 6.4.9 The following inequality holds.

1≤i≤3 |N G (w i ) ∩ V (P [x 1 , x 2 ] -x 1 )| -| 1≤i≤3 (N G (w i ) ∩ V (P [x 1 , x 2 ] -x 1 )| ≤        |V (P [x 1 , x 2 ] -x 1 )| if w 2 is in a segment |V (P [x 1 , x 2 ] -x 1 ))| + 1 otherwise.
Proof. By Claim 6.4.3, then

|N G (w 1 ) ∩ V (P [x 1 , w 1 ] -x 1 )|+|N G (w 2 ) ∩ V (P [x 1 , w 1 ] -x 1 )| ≤ |V (P [x 1 , w 1 ] -x 1 )| -1. (6.1) 
By Claim 6.4.4 (vi), then N G (w 2 ) ∩ (N G (w 1 ) ∩ V (P [w 1 , x 2 ])) - u1 = ∅. By Lemma 6.3.1 and (6.1), we obtain

|N G (w 2 ) ∩ V (P [x 1 , x 2 ] -x 1 )| + |N G (w 1 ) ∩ V (P [x 1 , x 2 ] -x 1 )| = |N G (w 2 ) ∩ V (P [x 1 , x 2 ] -x 1 )| + |(N G (w 1 ) ∩ V (P [x 1 , x 2 ] -x 1 )) - u1 | ≤ |V (P [x 1 , x 2 ] -x 1 )|
Suppose that w 2 is in a segment. Then w 2 is a non-insertible vertex. By Lemma 6.3.1 (ii) and (iii), w 1 and w 2 are adjacent to x 2 . Since N G (w 3 ) ∩ V (P [x 1 , x 2 ]x 1 ) ⊆ {x 2 }, we obtain the desired inequality. Hence, we may assume that w 2 is not in a segment. By N G (w 3 ) ∩ V (P [x 1 , x 2 ]x 1 ) ⊆ {x 2 }, we obtain the desired inequality.

By Claim 6.4.2, (N G (w 1 ) ∪ N G (w 2 )) ∩ V (H) = ∅ and so

|(N G (w 1 ) ∪ N G (w 2 ) ∪ N G (w 3 )) ∩ V (H)| ≤ |V (H)| -|{w 3 }| ≤ |V (G)| -|V (T )| -1. (6.2) 
Let P be the set of segments of T and paths P [t i , u i ] for 2 ≤ i ≤ k.

The discussion is then classified according to whether vw 3 is an edge of G. So let's first look at the case where vw 3 is an edge.

Suppose that vw 3 ∈ E(G), since G is k + 1 connected, then there are at least two segments. So w 1 and w 2 are non-insertible vertices. Then V (T ) = ∪ P ∈P (V (P )s(P )) ∪ V (P [t 1 , u 1 ]). By Claims 6.4.5, 6.4.6 and 6.4.9, we

obtain 1≤i≤3 |N G (w i )∩V (T )| -| 1≤i≤3 (N G (w i ) ∩ V (T )| = P ∈P   1≤i≤3 |N G (w i ) ∩ V (P -s u1 (P ))| -| 1≤i≤3 (N G (w i ) ∩ V (P -s u1 (P ))|   + 1≤i≤3 |N G (w i ) ∩ V (P [t 1 , u 1 ]))| -| 1≤i≤3 (N G (w i ) ∩ V (P [t 1 , u 1 ]))| ≤ P ∈P (|V (P )| -1) + |V (P [t 1 , u 1 ])| + 1 = |V (T )| + 1. (6.3) 
By (6.3) and (6.2), we obtain

1≤i≤3 |N G (w i )| -| 1≤i≤3 N G (w i )| ≤ |V (G)|. Since k ≥ 2, this contradicts to σ 3 (G) ≥ |V (G)| + k -1.
Let's talk about the case where vw 3 is not an edge in G.

Suppose that vw

3 / ∈ E(G). Let Q be the set of paths P [v, s i ] for 2 ≤ i ≤ k. Then V (T ) = P ∈P∪Q (V (P ) -s u1 (P )) ∪ V (P [v, s 1 ] -s 1 ) ∪ V (P [t 1 , u 1 ]).
By Claims 6.4.7 and 6.4.8, we obtain

Q∈Q   1≤i≤3 |N G (w i ) ∩ V (Q -s u1 (Q))| -| 1≤i≤3 (N G (w i ) ∩ V (Q -s u1 (Q))|   + 1≤i≤3 |N G (w i ) ∩ V (P [v, s 1 ] -s 1 )| -| 1≤i≤3 (N G (w i ) ∩ V (P [v, s 1 ] -s 1 ))| ≤        Q∈Q (|V (Q)| -1) + k -1 + |V (P [v, s 1 ] -s 1 )| -1 if vw 1 / ∈ E(G) Q∈Q (|V (Q)| -1) + |V (P [v, s 1 ] -s 1 )| otherwise ≤ Q∈Q (|V (Q)| -1) + |V (P [v, s 1 ] -s 1 )| + k -2. (6.4)
Under the condition that vw 3 is not an edge in G, we separately discuss and analyze whether w 2 is in a segment.

Suppose w 2 is in a segment, then by Claims 6.4.5, 6.4.6, 6.4.9 and (6.4), we obtain

1≤i≤3 |N G (w i ) ∩ V (T )| -| 1≤i≤3 (N G (w i ) ∩ V (T )| = P ∈P∪Q   1≤i≤3 |N G (w i ) ∩ V (P -s u1 (P ))| -| 1≤i≤3 (N G (w i ) ∩ V (P -s u1 (P ))|   + 1≤i≤3 |N G (w i ) ∩ V (P [v, s 1 ] -s 1 )| -| 1≤i≤3 (N G (w i ) ∩ V (P [v, s 1 ] -s 1 ))| + 1≤i≤3 |N G (w i ) ∩ V (P [t 1 , u 1 ]))| -| 1≤i≤3 (N G (w i ) ∩ V (P [t 1 , u 1 ]))| ≤ P ∈P (|V (P )| -1) + Q∈Q (|V (Q)| -1) + |V (P [v, s 1 ] -s 1 )| + k -2 + |V (P [t 1 , u 1 ]| + 1 ≤ |V (T )| + k -1. (6.5) 
By (6.2) and (6.5), we obtain

1≤i≤3 |N G (w i )| -| 1≤i≤3 N G (w i )| ≤ |V (G)| + k -2. This contradicts to σ 3 (G) ≥ |V (G)| + k -1. Suppose w 2 is not in a segment, since G is (k +1)-connected, then for any 2 ≤ i ≤ k, |N G (V (H))∩V (P [v, u i ])| =
1. By Claims 6.4.5, 6.4.6, 6.4.9 and (6.4), we obtain For convenience, let z 1 = w 1 , z 2 = z - u1 and z 3 = w 3 (see Fig. 6.5). By Claim 6.4.4 (iv), for any 1 ≤ i ≤ m, y i and z 2 are not adjacent, where y m = w 1 = z 1 . We consider the degree sum of {z 1 , z 2 , z 3 } to divide T into some parts. We prove this equation by induction on i with 1 ≤ i ≤ m. Suppose that there is a vertex y ∈ V (T )\(V (P [v 2 , z 2 ])∪

1≤i≤3 |N G (w i ) ∩ V (T )| -| 1≤i≤3 (N G (w i ) ∩ V (T )| = P ∈P∪Q   1≤i≤3 |N G (w i ) ∩ V (P -s u1 (P ))| -| 1≤i≤3 (N G (w i ) ∩ V (P -s u1 (P ))|   + 1≤i≤3 |N G (w i ) ∩ V (P [v, s 1 ] -s 1 )| -| 1≤i≤3 (N G (w i ) ∩ V (P [v, s 1 ] -s 1 ))| + 1≤i≤3 |N G (w i ) ∩ V (P [t 1 , u 1 ]))| -| 1≤i≤3 (N G (w i ) ∩ V (P [t 1 , u 1 ]))| ≤ P ∈P (|V (P )| -1) + Q∈Q (|V (Q)| -1) + |V (P [v, s 1 ] -s 1 )| + k -1 + |V (P [t 1 , u 1 ]| + 1 ≤ |V (T )| + k. (6.6) v u 1 u 2 u k x 1 z 1 x 2 w 2
V (P [v, z 1 ]))) such that y 1 y ∈ E(G) and z 2 y + u1 ∈ E(G). T + w 2 z + z 2 y + u1 + y 1 yw 2 x 2z 2 zyy + u1 ∪ x 1 Hx 2 is a (v, U )-fan (see Figure 6.7) with the order of at least |V (T )| + 1, a contradiction. We assume that this equation (6.7)

holds for 1 ≤ j < i. Suppose that there is a vertex w ∈ N G (y i ) ∩ (V (T ) \ (V (P [v 2 , z 2 ]) ∪ V (P [v, z 1 ]))) such that ⋮ ⋮ Claim 6.4.10 Claim 6.4.11 (6.11) (6.12) (6.13) (6.9) (6.9) (6.10) (6.10) If N G (z 3 ) ∩ V (P [x 1 , x 2 ]) \ {x 1 } = ∅, then we also obtain the desired inequality by (6.16). Hence, we may assume that the equal sign of the inequality (6.16) holds and N G (z 3 ) ∩ V (P [x 1 , x 2 ]) \ {x 1 } = {x 2 }.

v u 1 u 2 u i u k x 1 z z 1 z 2 z 3 t 2 t i t k x 2 w 2 H v 1 v 2 v i v k
Suppose that z 1 x 2 ∈ E(G). Then z 1 and z 2 are adjacent to x 2 by Lemma 6.3.1 (i). This together with x 2 z 3 ∈ E(G), we obtain the desired inequality. Hence, we may assume that z By Claims 3.4.12, 6.4.10, (6.11), (6.12), and (6.13), we obtain Therefore, by (6.2), (6.17), and (6.18), we obtain

1≤i≤3 |N G (z i ) ∩ V (P [v, u 1 ] ∪ P [v, u 2 ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [v, u 1 ] ∪ P [v, u 2 ])| = 1≤i≤3 |N G (z i ) ∩ V (P [t 1 , u 1 ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [t 1 , u 1 ]))| + 1≤i≤3 |N G (z i ) ∩ V (P [x 1 , x 2 ))| -| 1≤i≤3 (N G (z i ) ∩ V (P (x 1 , x 2 ])| + 1≤i≤3 |N G (z i ) ∩ V (P [v 2 , t 2 ))| -| 1≤i≤3 (N G (z i ) ∩ V (P [v 2 , t 2 
1≤i≤3 |N G (z i )| -| 1≤i≤3 N G (z i )| ≤ |V (G)| + k -2.
This contradicts to σ 3 (G) ≥ |V (G)| + k -1.

The proof of Theorem 6.0.2 (i.e., Theorem 1.3.53) is complete.

Concluding remarks and further work

For any integer t ≥ 2, let v be a vertex of a graph G and let U = {u 1 , u 2 , . . . , u t } be a subset of V (G) \ {v}. A (v, U )-fan is a set of paths P 1 , P 2 , . . . , P t such that P i is a path connecting v and u i for 1 ≤ i ≤ t and P i ∩ P j = {v} In this chapter, we prove that if for any three independent vertices x 1 , x 2 , x 3 in a graph G,

3 i=1 deg G (x i ) - | 3 i=1 N G (x i )| ≥ |V (G)| + k -1,
then G is k-fan-connected and the lower bound is sharp.

Note that the conditions for our results are better than those previously obtained. Is there any other better condition for a graph to be k-fan-Connected? Such as Chv átal and Erd ös condition (α(G) ≤ κ(G) + 1) and so on.

This will be one of our further works. The symbols σ 3 (X) and σ 3 (Y ) that appear in Question 7.1.1 can be found in section 1.3.4 of Chapter 1. From Bondy's "metaconjecture", we further ask the following questions: for each i, i = 1, 2, . . . , k, and σ 3 (X i ) ≥ n + c where c be an integer, then G is pancyclic or G is bipartite graph.

In Chapter 1, we defined implicit degree (Definition 1.2.6). For the condition of implicit degree, Li proposes the following conjecture: If we change the degree condition to the implicit degree condition in Conjecture 2.0.2, is there the same conclusion? What is the lower bound after changing to the implicit degree condition? Can it be characterized? These are the questions we will continue to study next.

In Chapter 4, we gave sufficient conditions for a balanced bipartite digraph to be hamiltonian. And we show some sufficient conditions for a digraph to be even pancyclic and cyclable.

We showed that in a balance bipartite digraph with order 2a, if d(x) + d(y) ≥ 3a for every dominating pair of vertices {x, y}, we can find a hamiltonian cycle.

According to Bondy's metaconjecture, we got the following question. We also showed that if a digraph D of order 2a is not a directed cycle and D contains a cycle of length 2a -2, if d(x) + d(y) ≥ 3a + 1 for every dominating pair of vertices {x, y}, then D contains a cycle of length 2k for all k, where 1 ≤ k ≤ a.

We want to know whether there is a cyclable version of Theorem 4.0.2 (or the sufficient hamiltonian condition for directed graphs). This will be our further works.

Similarly, can we get D is hamiltonian by replacing the condition of degree with the condition of implicit degree?

For example, starting with Theorem 4.1.1, we have the following problem: R ésum é: La th éorie hamiltonienne des graphes a ét é largement étudi ée comme l'un des probl èmes les plus importants de la th éorie des graphes. Dans cette th èse, nous travaillons sur des g én éralisations de la th éorie hamiltonienne des graphes, et nous nous concentrons sur les sujets suivants : hamiltonien graphes, pancyclicit é, pancyclicit é à cordes dans les graphes sans griffes, graphes k-fan-connect és.

Pour le probl ème du pancyclic, on montre pour k = 2, 3, si G = (V, E) est un graphe k-connect é d'ordre Abstract: Hamiltonian graph theory has been widely studied as one of the most important problems in graph theory. In this thesis, we work on generalizations of hamiltonian graph theory, and focus on the following topics: hamiltonian graphs, pancyclicity, chorded pancyclic in the claw-free graphs, k-fanconnected graphs.

n avec V (G) = X 1 ∪ X 2 ∪ • • • ∪ X k ,
For pancyclic problem, we show for k = 2, 3, if G = (V, E) is a k-connected graph of order n with V (G) = X 1 ∪ X 2 ∪ • • • ∪ X k , and for any pair of nonadjacent vertices x, y in X i with i = 1, 2, . . . , k, we have d(x) + d(y) ≥ n, then G is pancyclic or G is a bipartite graph.

For hamiltonian problem in bipartite digraph, let D be a strongly connected balanced bipartite directed graph of order 2a ≥ 10. Let x, y be distinct vertices in D, {x, y} dominates a vertex z if x → z and y → z; in this case, we call the pair {x, y} dominating. We show that D is hamiltonian for each dominating pair of vertices if their degree sum is at least 3a. In addition, we show some new sufficient conditions for bipancyclic and cyclability of digraphs.

For chorded pancyclic problem in claw-free graphs, we prove that every 2-connected claw-free graph G with |V (G)| ≥ 35 is chorded pancyclic if the minimum degree is at least n-2

3 . Furthermore, we show the number of chords in the chord cycle of length l (4 ≤ l ≤ n). In addition, G is doubly chorded pancyclic.

For k-fan-connected problem, we prove that if for any three independent vertices x 1 , x 2 , x 3 in a graph G,

3 i=1 deg G (x i ) -| 3 i=1 N G (x i )| ≥ |V (G)| + k -1, then
G is k-fan-connected and the lower bound is sharp. This main result deduces a 3-connected graph, under the same assumptions, is a Hamilton-connected. Finally, we would like to mention several new studies related to this thesis that is not included in the thesis. Moreover, we also cover other topics that I am interested in, such as hamiltonian line graphs, fault-tolerant hamiltonicity, graph coloring and so on. These topics are likely to become my further research fields.

  vertices x, y. A digraph D is k-strongly (k ≥ 1) connected (or k-strong), if |V (D)| ≥ k + 1 and D(V (D) \ A) is strongly connected for any subset A ⊆ V (D) of at most k -1 vertices. A digraph D is bipartite if there exists a partition X, Y of V (D)into two partite sets such that every arc of D has its end-vertices in different partite sets. It is called balanced if |X| = |Y |.

  Menger theorem that there is a (v, U )-fan for every vertex v of G and every subset U of V (G) \ {v}with |U | ≤ k if and only if G is k-connected. If a (v, U )-fan spans G, then it is called a spanning (v, U )-fan of G. G is k-fan-connected if G has a spanning (v, U )-fan for every vertex v of G and every subset U of V (G) \ {v} with cents dont la somme des degr és est d'au moins k, jusqu' à ce qu'il ne reste plus une telle paire. La k-cl ôture est ind épendante de l'ordre d'adjacent des ar êtes. Le troisi ème r ésultat fondamental est qu'un graphe G d'ordre n est hamiltonien si et seulement si Cl n (G) est hamiltonien. Le quatri ème r ésultat fondamental pr ésente une condition suffisante des graphes hamiltoniens sur la relation entre le nombre d'ind épendances et la connectivit é des graphes. Si G est un graphe de connectivit é k tel que α(G) ≤ k, o ù α(G) est le nombre d'ind épendances de G, alors G est hamiltonien. De nombreuses r éalisations ont ét é r éalis ées dans la recherche li ée à ces quatre r ésultats fondamentaux, mais de nombreuses questions restent à r ésoudre. Dans cette th èse, nous nous concentrerons sur quelques questions li ées aux quatre r ésultats de base. Un cycle contenant tous les sommets d'un graphe G est appel é cycle hamiltonien et G est dit hamiltonien s'il contient un cycle hamiltonien. Un graphe G est dit pancyclique s'il contient des cycles de toute longueur k pour 3 ≤ k ≤ |V (G)|. De mani ère analogue, un graphe bipartite G est dit bipancyclique s'il contient des cycles de tous pairs longueurs de 4 à |V (G)|. Dans les Chapitres 2 et 3, nous étudions la pancyclicit é d'un graphe connect é. Ore a montr é en 1960 que si la somme des degr és d'une paire de sommets non adjacents est d'au moins n dans un graphe G d'ordre n, alors G est hamiltonien. Bondy a prouv é que sous la m ême condition, G est pancyclique ou G = K n/2,n/2 . Ainsi, Bondy a

3. 6

 6 Two of four vertices w, u l1+1 , u l2+1 , u l3+1 should be in the same parity X i with i ∈ {1, 2, 3} . . . . . . . 3.7 When u l3 = u q and u l2 ∈ Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 When u l2 = u q and u l3 ∈ Q -{u q+1 , u t } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  of edges, and an incidence function ψ G that associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G. If e is an edge and u and v are vertices such that ψ G (e) = uv, then e is said to join u and v; the vertices u and v are called the ends of e; the ends u and v are incident with an edge e. Two vertices x, y are adjacent, if xy is an edge of the graph; Two edges e = f are adjacent if they are incident with a common vertex.

Figure 1 . 1 :

 11 Figure 1.1:The seven bridges and the graph of the K önigsberg bridge problem[START_REF] Bondy | Graph theory with applications[END_REF] 

  subgraph of G. The spanning subgraph of G with edge set E(G) \ E is written simply as G -E . The graph obtained from G by adding a set of edges E is denoted by G + E . If E = {e}, we write Ge and G + e instead of G -{e} and G + {e}.

Figure 1 . 2 :

 12 Figure 1.2: The Hamilton's puzzle: the graph of the dodecahedron

Theorem 1 . 2 . 2 (

 122 Ore's theorem, [109]) Let G be a graph of order n. If d(x) + d(y) ≥ n for any pair of nonadjacent vertices x and y in G, then G is hamiltonian.

Theorem 1 . 2 . 4 (

 124 [START_REF] Li | On cycles in 3-connected graphs[END_REF]) Let G be a 3-connected graph of order n. If σ 4 (G) ≥ n + 3, G has a dominating maximum cycle.

Definition 1 . 2 . 6

 126 Let d(u) = k + 1, and put

Conjecture 1 . 2 . 15

 1215 Let G be a d-regular graph on at most 2d vertices. Then G contains n/2 edge-disjoint hamiltonian cycles. In 1985, Faudree, Rousseau, and Schelp obtained the first results about edge-disjoint hamiltonian cycles in graphs under the Ore-type condition. But they required n + 2k -2 instead of n in Ore-type condition. In 1986, Faudree and Schelp conjectured that if n is sufficiently larger than δ and σ 2 (G) ≥ n, then the graph of order n has δ-1 2 edge-disjoint hamiltonian cycles. Their conjecture was confirmed in 1989 by Li. In regular graphs, Nash-Williams' result [106] has been extended by Jackson and Li, independently. Therefore, it is interesting to see if the Ore-type condition σ 2 (G) ≥ n may ensure more edge-disjoint hamiltonian cycles. We have the following, Theorem 1.2.16 ([88]) Let G be a graph of order n ≥ 20. If δ ≥ 5 and σ 2 (G) ≥ n, then G has at least two edge-disjoint hamiltonian cycles.

Theorem 1 . 2 . 22 (

 1222 [START_REF] Brandt | Cycles and paths in triangle-free graphs[END_REF]) Let G = C 5 be a nonbipartite triangle-free graph of order n. If δ(G) > n/3, then G is weakly pancyclic with girth 4 and circumference min{2, nα(G)}, (where α(G) is the independence number of G).

Theorem 1 . 3 . 1 (

 131 Bondy's theorem,[START_REF] Bondy | Pancyclic graphs i[END_REF]) Let G be a graph of order n. If d(x) + d(y) ≥ n for any pair of nonadjacent vertices x and y in G, then G is pancyclic or isomorphic to K n/2,n/2 .

Theorem 1 . 3 . 5 (

 135 Figure of Theorem 1.3.4 Theorem 1.3.5 ([117]) Let G be a 2-connected graph on n vertices. If for all independent vertices x, y and z, we have d(x) + d(y) + d(z) ≥ 3n 2 -1, then G is either pancyclic, K n

Theorem 1 . 3 . 9 (

 139 [START_REF] Tian | Bipancyclism in hamiltonian bipartite graphs[END_REF]) If G is a hamiltonian bipartite graph on 2n vertices where n ≥ 60 and δ(G) ≥ 5n/2 + 2, then G is bipancyclic.

Theorem 1 . 3 .

 13 13 ([85]) Let G = (V, E) be a 2-connected graph of order n and V (G) = X ∪ Y . If for any pair of nonadjacent vertices x 1 and x 2 in X, d(x 1 ) + d(x 2 ) ≥ n and for any pair of nonadjacent vertices y 1 and y 2 in Y ,

Theorem 1 . 3 .

 13 18 ([80])Every 5-connected line graph with minimum degree at least 6 is hamiltonian.

Theorem 1 . 3 .

 13 21 ([67]) If X and Y are connected graphs of order at least 3 with X, Y = P 3 and Y = K 1,3 , then a 3-connected XY -free graph G is pancyclic if and only if X = K 1,3 and Y is a subgraph of a member of the family {P 7 , L 1 , N (4, 0, 0), N (3, 1, 0), N (2, 2, 0), N (2, 1, 1)}.

Conjecture 1 . 3 .

 13 22 ([116]) Every 4-connected claw-free graph is Hamilton-connected.

Theorem 1 . 3 .

 13 23 ([35]) Let G be a graph of order n ≥ 4. If d(x) + d(y) ≥ n for any two nonadjacent vertices in G,

Conjecture 1 . 3 . 30

 1330 Every strongly 2-connected d-regular digraph on n vertices with d ≥ n/3 contains a hamiltonian cycle.

Theorem 1 .

 1 3.33 ([2])Let D be a strong connected balanced bipartite digraph of order 2a ≥ 6. Suppose that d(x) + d(y) ≥ 3a for each pair of distinct vertices x, y with a common out-neighbor or a common in-neighbor, then D is hamiltonian.The following theorems are generalizations of Theorem 1.3.33. Theorem 1.3.34 ([121]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 4. Suppose that, for every dominating pair of vertices {x, y}, either d(x) ≥ 2a -1 and d(y) ≥ a + 1 or d(y) ≥ 2a -1 and d(x) ≥ a + 1.

and y 1 ↔

 1 x 3 , and it contains no other arcs. Theorem 1.3.35 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 4. Suppose that, for every dominating pair of vertices {x, y}, either d(x) ≥ 2a -1 or d(y) ≥ 2a -1 (max{d(x), d(y)} ≥ 2a -1). Then D is hamiltonian or isomorphic to the digraph D(8). Theorem 1.3.36 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8. Suppose that d(x) + d(y) ≥ 4a -3 for every pair of vertices x, y with a common out-neighbour. Then D is hamiltonian. In 1971, Bondy suggested [19] "metaconjecture". There are many results that support this "metaconjecture" in digraph. Let us cite for examples the followings: Theorem 1.3.37 ([39]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8 with partite sets X and Y . If D is not a directed cycle and max{d(x), d(y)} ≥ 2a -1 for every pair of distinct vertices {x, y} with a common out-neighbor, then either D contains cycles of all even lengths less than or equal to 2a or D is isomorphic to the digraph D(8). Theorem 1.3.38 ([102]) Let D be a balanced bipartite digraph of order 2a ≥ 4 with partite sets X and Y . Suppose that d(x) + d(y) ≥ 3a + 1 for each two vertices x, y either both in X or both in Y . Then D contains cycles of all even lengths 4, 6, . . . , 2a (i.e., D is bipancyclic). Theorem 1.3.39 ([3]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 6. Suppose that d(x) + d(y) ≥ 3a for every pair of vertices x, y with a common in-neighbour or a common out-neighbour. Then D is either bipancyclic or D is a directed cycle of length 2a. In view of the next theorem we need the following definition. Definition 1.3.40 Let D be a balanced bipartite digraph of order 2a ≥ 10, and let k be an integer. We say that D satisfies the condition ℵ k if for every dominating pair of vertices {x, y}, d(x) + d(y) ≥ 3a + k. In Chapter 4, we prove the following theorem which improves the result of Theorem 1.3.33. Theorem 1.3.41 ([87]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 10. Suppose that D satisfies the condition ℵ 0 , i.e., d(x) + d(y) ≥ 3a for every dominating pair of vertices {x, y}, D is hamiltonian.

Theorem 1 . 3 .

 13 42 ([87]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8 with partite sets X and Y . Suppose that D contains a cycle of length 2a -2 and d(x) + d(y) ≥ 4a -4 for every dominating pair of vertices {x, y}. Then D is even pancyclic. Theorem 1.3.43 ([87]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 10 other than a directed cycle of length 2a. If D contains a cycle of length 2a -2 and D satisfies the condition ℵ 1 , i.e., d(x) + d(y) ≥ 3a + 1 for every dominating pair of vertices {x, y}, then D contains a cycle of length 2k for all k, where 1 ≤ k ≤ a (i.e., D is even pancyclic).

Theorem 1 . 3 .

 13 44 ([89]) Let D be a digraph of order n and S ⊆ V (D). If D is S-strong and if d(x) + d(y) ≥ 2n -1 for any two nonadjacent vertices x, y ∈ S, then S is cyclable in D. Theorem 1.3.45 ([89]) Let D be a digraph of order n and S ⊆ V (D). If D is S-strong and if d(x) + d(y) ≥ 2n -3 for any two nonadjacent vertices x, y ∈ S, then S is pathable in D.

Theorem 1 . 3 .

 13 46 ([87]) Let D be a 2-strong digraph of order n and S ⊆ V (D). If D is S-strong and if d(x) + d(y) + d(w) + d(z) ≥ 4n -3 for all distinct pairs of non-adjacent vertices x, y and w, z in S, then S is cyclable in D or D contains a cycle through all the vertices of S except one. The proof of Theorem 1.3.46 is in Chapter 4.

[ 110 ]

 110 in 1963. A graph G is said to be Hamilton-connected if each pair u, v of distinct vertices are joined by a u, v-path containing all the vertices of G.

Theorem 1 . 3 .

 13 47 ([110]) Let G be a graph of order n ≥ 3. If σ 2 (G) ≥ n + 1, then G is Hamilton-connected. Theorem 1.3.47 is generalized into a sufficient condition on any three independent vertices. In 1991, Flandrin, Jung and Li proved the followings: Theorem 1.3.48 ([56]) Let G be a 2-connected graph of order n such that σ 3 (G) ≥ n, then G is hamiltonian. When σ 3 (G) ≥ n -1, we have the following theorem: Theorem 1.3.49 ([Flandrin, Jung and Li [56]) Let G be a connected graph of order n such that σ 3 (G) ≥ n -1, then G has a hamiltonian path.

Theorem 1 . 3 .

 13 51 ([97]) Assume that k is a positive integer. Let G be a graph with order n. If u and v be two non-adjacent vertices with d

Theorem 1 . 3 .

 13 52 ([97]) Let k ≥ 2 be an integer and G be a graph. If σ 2

Theorem 2 . 0 . 3 (

 203 [START_REF] Li | On pancyclic 2-connected graphs[END_REF]) Let G = (V, E) be a 2-connected graph of order n and V (G) = X ∪ Y . If for any pair of nonadjacent vertices x 1 and x 2 in X, d(x 1 ) + d(x 2 ) ≥ n and for any pair of nonadjacent vertices y 1 and y 2 in Y ,

.Theorem 2 . 1 . 2 (

 212 The second structure (which can occur only if d(x 1 ) < d(x n )) is identical to the first except that x n x 3 ∈ G and x 1 x 5 / ∈ G.[47]) Let G be a graph of order n. If G has a hamiltonian (u, v)-path for a pair of nonadjacent vertices u and v such that d(u) + d(v) ≥ n, then G is pancyclic. Moreover, if u (or v) has degree at least n 2 , it is contained in a triangle and for any m, 4 ≤ m ≤ n, there exists some C m in G that contains both u and v.

Lemma 2 . 1 . 3

 213 Let G = (V, E) be a 2-connected balanced bipartite graph of order n and V (G) = X ∪ Y . If for any pair of nonadjacent vertices x 1 and x 2 in X (resp., y 1 and y

x 1 is

 1 adjacent to every vertex in C k , it is easy to construct a path P k-1 of k -1 vertices in D connecting w and w .Put C k := x 2 w P k-1 w x 2 that is a cycle of length k in G. For k ≥ 4 and x 1 ∈ C k , since x is adjacent to every vertex in C k ,similarly it is easy to construct a path P k-1 of k -1 vertices in D connecting w and w , which gives a cycle of length k, C k = x 2 w P k-1 w x 2 in G. When k = 3, we may deduce directly that w w / ∈ E(G) and |H 1 | = 1 since otherwise we have a C 3 . Let x ∈ X ∩ H 2 . If |H 2 | ≥ 2, we have u ∈ H 2 -{x} which is adjacent to w or w . Now xuw x (or xuw x) is a triangle in G. So |H 2 | = 1 and G

Theorem 3 . 1 . 1 (

 311 Theorem 2.0.3) Let G = (V, E) be a 2-connected graph of order n and V (G) = X ∪ Y . If for any pair of nonadjacent vertices x 1 and x 2 in X, d(x 1 ) + d(x 2 ) ≥ n and for any pair of nonadjacent vertices y 1 and y 2 in

Theorem 3 . 1 . 2 (Theorem 2 . 1 . 2 ) 2 ,Theorem 3 . 1 . 3 (

 3122122313 Let G be a graph of order n. If G has a hamiltonian (u, v)-path for a pair of nonadjacent vertices u and v such that d(u) + d(v) ≥ n, then G is pancyclic. Moreover, if u (or v) has degree at least n it is contained in a triangle and for any m, 4 ≤ m ≤ n, there exists some C m in G that contains both u and v. [47])

Figure 3 . 3 :

 33 Figure 3.3: v dj +1 and v di+1 are both belong to the same X k

Claim 3 . 4 . 2 H

 342 is a clique. Proof. Suppose V (H) = {u, v}, and uv / ∈ E(G), by Claim 3.4.1 and the choice of P , a contradiction. Thus, suppose |H| ≥ 3. Since G is a 3-connected graph, then there are three vertices x, y, z in H such that xv 1 , v p y, zv d2+1 ∈ E. Then xy ∈ E otherwise there is a (x, y)-path which contradicts the choice of P by Claim 3.4.1. Let C 1 = P ∪ {xy, xv 1 , yv p }.

4 . 5 .

 45 By Lemma 3.2.4 and Fact 3.4.4, we

  by Fact 3.4.4 and Proposition 3.4.13, then v p-1 = v j and there does not exist v l

  into two partite sets such that every arc of D has its end-vertices in different partite sets. It is called balanced if |X| = |Y |. The underlying graph of a digraph D is denoted by U G(D). It contains an edge xy if x → y or y → x (or both).

Theorem 4 . 1 . 1 (

 411 M. Meyniel [103]) If D is a strongly connected digraph of order n ≥ 2 and d(x) + d(y) ≥ 2n -1 for all pairs of nonadjacent vertices x and y of D, then D is hamiltonian.

Theorem 4 . 1 . 2 (

 412 [START_REF] Adamus | A degree sum condition for hamiltonicity in balanced bipartite digraphs[END_REF]) Let D be a strong connected balanced bipartite digraph of order 2a ≥ 6. Suppose that d(x) + d(y) ≥ 3a for each pair of distinct vertices x, y with a common out-neighbor or a common in-neighbor, then D is hamiltonian.The following theorems are the generalization of Theorem 4.1.2.

Theorem 4 . 1 . 3 (

 413 [START_REF] Wang | A sufficient condition for a balanced bipartite digraph to be hamiltonian[END_REF]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 4. Suppose that, for every dominating pair of vertices {x, y}, either d(x) ≥ 2a -1 and d(y) ≥ a + 1 or d(y) ≥ 2a -1 and d(x) ≥ a + 1.

Theorem 4 . 1 . 4 (

 414 [START_REF] Darbinyan | Sufficient conditions for hamiltonian cycles in bipartite digraphs[END_REF]) Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8. Suppose that d(x) + d(y) ≥ 4a -3 for every pair of vertices x, y with a common out-neighbour. Then D is hamiltonian.

Theorem 4 . 1 . 5 (

 415 [START_REF] Meszka | New sufficient conditions for bipancyclicity of balanced bipartite digraphs[END_REF]) Let D be a balanced bipartite digraph of order 2a ≥ 4 with partite sets X and Y . Suppose that d(x) + d(y) ≥ 3a + 1 for each two vertices x, y either both in X or both in Y . Then D contains cycles of all even lengths 4, 6, . . . , 2a (i.e., D is bipancyclic);

Lemma 4 . 2 . 1 Lemma 4 . 2 . 2 2 . 4 . 2 . 3 ([ 4 ])

 42142224234 Suppose that D is non-hamiltonian. Then, for every vertex u ∈ V (D), there exists a vertex v ∈ V (D) \ {u} such that u and v have a common out-neighbour. Proof of Lemma 4.2.1. Suppose, on the contrary, that D contains a vertex x 0 which has no common out-neighbor with any other vertex in D. Let P = x 0 x 1 • • • y be the largest path in D. Then d -(x 1 ) = 1 and d(x 1 ) ≤ a + 1. If there exists a vertex w ∈ V (D) such that {x 1 , w} is a dominating pair, then d(w) ≥ 2a -1. If d(w) = 2a, then x 0 would have w as a common out-neighbor with some vertices, a contradiction. So d(w) = 2a -1, d(x 1 ) = a + 1 and x 0 w / ∈ A(D). By strong connectedness of D, for any x ∈ V (D), d + (x) ≥ 1. Thus, d + (x 1 ) = a and x 1 would have a common out-neighbor with any vertex v from its partite set. The same argument with w, d(v) = 2a -1 and x 0 v / ∈ A(D). So. D[V (D) -{x 0 , x 1 }] be a complete bipartite digraph. Since D is a strongly connected digraph, then it is easy to construct a hamiltonian cycle of D. This contradicts D is non-hamiltonian. It follows that x 1 has no common out-neighbor with any other vertex in D. Repeating the above argument for all vertices on P , so, y has no common out-neighbor with any other vertex in D. Since P be the largest path in D, it follows from the strong connectedness of D that D is a cycle of length 2a, i.e., D is hamiltonian, a contradiction. Similarly, we can obtain the following lemma: Suppose that D is not a cycle of length 2a. If d(x) + d(y) ≥ 3a + 1 for every dominating pair of vertices {x, y}, then, for every vertex u ∈ V (D), there exists a vertex v ∈ V (D) \ {u} such that u and v have a common out-neighbour. The next lemma is the key of the proof of Theorem 4.0.Lemma Suppose that D is non-hamiltonian, and let {C 1 , C 2 , . . . , C l } be a cycle factor in D with a minimal number of elements, and |C 1 | ≤ |C 2 | • • • ≤ |C l |. Then,

Claim 4 . 2 . 4

 424 For every vertex u in D, d(u) ≥ a.

Claim 4 . 2 . 5 D 2 . 2 .

 42522 contains a cycle factor.Proof. D contains a cycle factor if and only if there exist both a perfect matching from X to Y and a perfect matching from Y to X. By the K önig-Hall theorem[START_REF] Ore | Graphs and matching theorems[END_REF], it suffices to show that |N + (S)| ≥ |S| for every S ⊂ X and |N + (T )| ≥ |T | for every T ⊂ Y . Suppose, on the contrary, that a nonempty set S ⊂ X such that |N + (S)| < |S|. By the strong connectedness of D, d + (x) ≥ 1 for every vertex x in D. Then |S| ≥ 2. It follows from |N + (S)| < |S| that there exist vertices x 1 , x 2 ∈ S such that N + (x 1 )∩N + (x 2 ) = ∅. Thus, {x 1 , x 2 } be a dominating pair. By condition ℵ 0 , we can obtain 3a ≤ d(x 1 ) + d(x 2 ) = (d + (x 1 ) + d + (x 2 )) + (d -(x 1 ) + d -(x 2 )) ≤ 2(|S| -1) + 2a, and so, 2|S| ≥ a + 2. Since S ⊂ X and |N + (S)| < |S|, then |S| ≤ a and |Y \ N + (S)| ≥ 1.If there exist y 1 , y 2 ∈ Y \ N + (S) such that {y 1 , y 2 } is a dominating pair, then3a ≤ d(y 1 ) + d(y 2 ) ≤ 2(2a -|S|) ≤ 4a -(a + 2), a contradiction. So, no two vertices of Y \ N + (S) form a dominating pair. Thus, |N + (Y \ N + (S) -{y})| ≥ |Y \ N + (S) -{y}|. For every vertex y ∈ Y \ N + (S), d + (y) ≤ a -(|Y \ N + (S)| -1) = a -|Y \ N + (S)| + 1 = |N + (S)| + 1 ≤ |S|. By Claim 4.2.4, a ≤ d(y) = d + (y) + d -(y) ≤ |S| + (a -|S|) = a. So, d(y) = a and d + (y) = |S|. If there are two vertices y 1 , y 2 in Y \ N + (S), then d + (y 1 ) = d + (y 2 ) = |S|. Since {y 1 , y 2 } is not a dominating pair, then N + (y 1 ) ∩ N + (y 2 ) = ∅. Thus, 2|S| = d + (y 1 ) + d + (y 2 ) = |N + (y 1 ) ∪ N + (y 2 )| ≤ a, which contradicts 2|S| ≥ a + 2.Hence S = X. However, |Y \ N + (S)| ≥ 1, so y ∈ Y \ N + (S) such that d -(y ) = 0, which contradicts the strong connectedness of D. By the minimality of l and d(x ) = 2a, y x 1 / ∈ A(D). If x 1 y ∈ A(D), then {x , x 1 } is a dominating pair. So x y 1 ∈ A(D) by ℵ 0 . C 1 can be merged into C i , a contradiction. So x 1 y / ∈ A(D). By d(x ) = 2a, then {y , y 1 } is a dominating pair and d(y ) ≥ 2a -If there exists C j with j = 1, i. Let yx ∈ A(C j ), since d(y ) ≥ 2a-2 and y x 1 , x 1 y / ∈ A(D), then y x, yx ∈ A(D). So, C i can be merged into C j . This contradicts the minimality of l. It follows from a ≥ 5 that |C i | ≥ 6. Let x y x y x y ⊆ C i . Since d(y ) ≥ 2a -2 and d(x ) = 2a, then y x , x y , x y ∈ A(D). Suppose y x 1 ∈ A(D), if x y ∈ A(D), then C = C i \ {y x , x y , y x , x y } ∪ {y x , x y , y x 1 , x 1 y 1 , y 1 x , x y } is a hamiltonian cycle, a contradiction. By d(y ) ≥ 2a -2, then x y ∈ A(D). Similarly, we can find a hamiltonian cycle C = C i \ {x y , y x , x y , y x } ∪ {x y , y x 1 , x 1 y 1 , y 1 x , x y , y x }, a contradiction. So, y x 1 / ∈ A(D).By d(x 1 ) = a ≥ 5, there exists y ∈ C i such that y connects with x 1 . Let x be the successor vertex of y on cycleC i , then y x ∈ A(D) by d(y ) ≥ 2a -2. If yx 1 ∈ A(D), then C = C i \ {yx, y x , y x } ∪ {yx 1 , x 1 y 1 , y 1 x , y x, y x }is a hamiltonian cycle, a contradiction. So x 1 y ∈ A(D). Similarly, we can find a hamiltonian cycle, a contradiction. Case 4 d(x 1 ) = d(y 1 ) = a + 1. By Lemma 4.2.1, there exists a vertex x ∈ X \ {x 1 } such that {x 1 , x } is a dominating pair. It follows from condition ℵ 0 that d(x ) ≥ 2a -1. Let x ∈ C i for some 1 < i ≤ l and y be the successor of x on the cycle C i . If {y 1 , y } is not a dominating pair, then y 1 x / ∈ A(D) or y x / ∈ A(D). By d(x ) ≥ 2a -1, y x 1 / ∈ A(D). When |C i | = 2, then y x ∈ A(D), y 1 x / ∈ A(D) and x y 1 ∈ A(D). By the minimality of l, x 1 y / ∈ A(D). By Claim 4.2.4, then d(y ) ≥ a ≥ 5, so there exists x ∈ C j with j = 1, i such that x y ∈ A(D) or y x ∈ A(D). If x y ∈ A(D), let y be the successor vertex of x on C j . Then x y ∈ A(D) since d(x ) ≥ 2a -1. So, C i can be merged into cycle C j , a contradiction. Similarly, if y x ∈ A(D), a contradiction. So |C i | ≥ 4. Without loss of generality, let

Fact 4 . 2 . 7

 427 If x y 1 ∈ A(D) (u 1 y 1 ∈ A(D)), then D would be hamiltonian.Proof. If there exists uk ∈ C i such that y 1 u k ∈ A(D), then {v k , y 1 } is a dominating pair. So, d(v k ) ≥ 2a -1. By the minimality of l, v k x 1 / ∈ A(D). Since d(v k ) ≥ 2a -1, then x 1 v k ∈ A(D), and {x 1 , u k-1 } is a dominating pair. Thus,d(u k-1 ) ≥ 2a -1.By the minimality of l, then u k-1 y 1 / ∈ A(D) and y 1 u k-1 ∈ A(D). Repeating the above argument for all the subsequent vertices on C i , then y 1 u 1 ∈ A(D). So C 1 an be merged into C i , a contradiction. Hence, vertex x k ∈ R, d(x k ) ≥ at + 2. So, by ( * ), we obtain:

  a, so d(x) = 2a and d C c 1 (x) = at + 2 by ℵ 0 . Then 2a = d(x) ≤ at + 2 + 2t = a + t + 2 and t = a -2. It follows from t ≤ a/2 and t ≥ 2 that t = 2 and a = 4. This contradicts a ≥ 5. Hence, D is hamiltonian. The proof of Theorem 4.0.2 is completed.

Theorem 4 . 3 . 1

 431 Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 8 with partite sets X and Y . Suppose that D contains a cycle of length 2a -2 and d(x) + d(y) ≥ 4a -4 for every dominating pair of vertices {x, y}. Then D is even pancyclic. To prove Theorem 4.3.1, we use the following theorem: Since D is a strongly connected balance bipartite digraph and by Lemma 4.2.1, we assume, without loss of generality, xy 1 ∈ A(D). So {x, x 1 } is a dominating pair and d(x) + d(x 1 ) ≥ 3a + 1.

Theorem 4 . 3 . 5 (

 435 [START_REF] Li | A sufficient condition for cyclability in directed graphs[END_REF]) Let D be a digraph of order n and S ⊆ V (D). If D is S-strong and if d(x) + d(y) ≥ 2n -1 for any two nonadjacent vertices x, y ∈ S, then S is cyclable in D.

Theorem 4 . 3 . 6 6 :

 4366 Let D be a 2-strong digraph of order n and S ⊆ V (D). If D is S-strong and if d(x) + d(y) + d(w) + d(z) ≥ 4n -3 for all distinct pairs of nonadjacent vertices x, y and w, z in S, then S is cyclable in D or D contains a cycle through all the vertices of S except one. Proof of Theorem 4.3.Since for all distinct pairs of nonadjacent vertices x, y and w, z in S, d(x) + d(y) + d(w) + d(z) ≥ 4n -3. Then S contains at most one pair of nonadjacent vertices u, v such that d(u) + d(v) ≤ 2n -2.If for any pair of nonadjacent vertices x, y in S such that d(x) + d(y) ≥ 2n -1, by Theorem 4.3.5, we obtain S is cyclable in D. So, we assume that there is a pair of nonadjacent vertices u, v in S such that d(u)+ d(v) ≤ 2n -2.Let S = S -{u}, then D is clearly S -strongly connected and for two nonadjacent vertices of S have degree sum in D greater or equal to 2n -1. It follows that S is cyclable in D from Theorem 4.3.5. Let C be a cycle which contains all vertices of S , i.e., C contains a cycle through all the vertices of S except one vertex u.

Theorem 4 .

 4 3.6 has completed.

Problem 4 . 4 . 1

 441 Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 10 other than a directed cycle of length 2a. If D satisfies the condition ℵ 1 , i.e., d(x) + d(y) ≥ 3a for every dominating pair of vertices {x, y}, then D is even pancyclic? Also, we have a question to know if Theorem 4.0.2 (or the sufficient hamiltonian condition of digraphs) has a cyclable version. These will be our further works. Corollary 5.0.4 Let G be a 2-connected K 1,3 -free graph with the order n ≥ 35. If δ(G) ≥ n-2

Proposition 6 . 1 . 5

 615 , . . . , x m are pairwisely nonadjacent vertices in G If G does not have m vertices that are independent, we define σ m (G) = σ m (G) = ∞. By the definition of σ m (G) and σ m (G), we obtain the following proposition. For a graph G, σ m (G) ≤ σ m+1 (G).

  in 1963. Theorem 6.1.7 (Ore [110]) Let G be a graph. If σ 2 (G) ≥ |V (G)| + 1, then G is Hamilton-connected.

  ])| is as small as possible. Write P [x 1 , w 1 ] = y 0 y 1 . . . y m where y 0 = x 1 and y m = w 1 .If there is a segment P [x 3 , x 4 ] of T other than P [x 1 , x 2 ], we choose the segment P [x 3 , x 4 ] so that if there is a segment of T other than P [x 1 , x 2 ] in P [v, u 1 ], then we assume x 3 = x 2 (see the graph in the left of Fig.6.3) otherwise without loss of generality, we may assume that the segment P [x 3 , x 4 ] is in P [v, u 2 ] such that |V (P [v, x 3 ])| is as small as possible (see the graph in the right of Fig.6.3). Now let w 2 be the non-insertible vertex of P [x 3 , x 4 ] such that |V (P [x 3 , w 2 ])| is as small as possible. Then w 2 is in a segment, and w 2 ∈ V (P [v, u 1 ]) or w 2 ∈ V (P [v, u 2 ]). Write P [x 3 , w 2 ] = y 0 y 1 . . . y where y 0 = x 3 and y = w 2 .

2 HFigure 6 . 4 :

 264 Figure 6.4: The definition of w 1 and w 2 , where black vertices are insertible vertices.

z 2 H z 3 Figure 6 . 5 :

 2365 Figure 6.5: The definition of z 1 , z 2 , and z 3 where black vertices are insertible vertices.

Fig. 6 .

 6 Fig. 6.6 illustrates how to divide T and when we consider the parts.

Figure 6 . 6 :

 66 Figure 6.6: Summary of the following proofs.

Figure 6 . 8 :Claim 6 . 4 . 11

 686411 Figure 6.8: The construction of a larger (v, U )-fan with xz 2 ∈ E in Claim 6.4.10

1 x 2 /=

 2 ∈ E(G). Then |N G (z 1 ) ∩ (V (P [z 1 , x 2 ]) \ {x 2 })| + |N G (z 2 ) ∩ (V (P [z 1 , x 2 ]) \ {x 2 })| = |V (P [z 1 , x 2 ])| -1. Let x = s u2 (P [x 2 , z 1 ]x 2 ). By Lemma 6.3.1 (i), z 2 x ∈ E(G). We use a segment insertion SI[P [y 1 , y m-1 ]] and let T be a resulted graph. So, T + z 2 x + z 1 zz 2 zx 2 x ∪ x 1 Hx 2 is a (v, U )-fan with the order of at least |V (T )| + 1, a contradiction. Hence, we obtain the desired inequality.By (6.9) and (6.10), we obtain3≤j≤k   1≤i≤3 |N G (z i ) ∩ V (P [v j , u j ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [v j , u j ])|   |V (T ) \ (V (P [v, u 1 ] ∪ P [v, u 2 ]))| + k -2(6.17)

  z i ) ∩ V (P [z, u 2 ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [z, u 2 ]))| + 1≤i≤3 |N G (z i ) ∩ V (P [t 2 , z 2 ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [t 2 , z 2 ]))| + 1≤i≤3 |N G (z i ) ∩ V (P [v, w 2 ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [v, w 2 ]))| ≤ V (P [v, u 1 ] ∪ P [v, u 2 ]) + 1.(6.18)

for 1 ≤

 1 i < j ≤ t. If a (v, U )-fan spans G, then it is called a spanning (v, U )-fan of G. G is k-fan-connected ifG has a spanning (v, U )-fan for every vertex v of G and every subset U of V (G) \ {v} with |U | = k. Clearly, the k-fan-connectivity generalizes the Hamilton-connectivity.

Question 7 . 1 . 1

 711 Let G = (V, E) be a 2-connected graph of order n. Suppose that V (G) = X ∪ Y . If σ 3 (X) ≥ n + cand σ 3 (Y ) ≥ n + c, where c be an integer, then G is hamiltonian.

Question 7 . 1 . 2 Question 7 . 1 . 3

 712713 Let G = (V, E) be a 2-connected graph of order n. Suppose that V (G) = X ∪ Y . If σ 3 (X) ≥ n + cand σ 3 (Y ) ≥ n + c where c be an integer, then G is pancyclic or a bipartite graph. Let G = (V, E) be a k-connected graph, k ≥ 2, of order n. Suppose that V (G) = ∪ k i=1 X i such that

Conjecture 7 . 1 . 2

 712 Let G = (V, E) be a 2-connected graph of order n. S be a subset of V (G). If σ i,2 ≥ n, then G is S-pancyclic or G is exceptional graph.

Problem 7 . 1 . 3

 713 Let D be a strongly connected balanced bipartite digraph of order 2a ≥ 10 other than a directed cycle of length 2a. If D satisfies the condition ℵ 1 , i.e., d(x) + d(y) ≥ 3a for every dominating pair of vertices {x, y}, then D is even pancyclic?

Titre:

  Pancyclicit é dans la th éorie des graphes hamiltonienne Mots cl és: Pancyclicit é, Cycle hamiltonien, Pancyclicit é à cordes, Graphe sans griffe, k-fan-connect é.

2 3.

 2 pancyclique et la cyclabilit é des digraphes. Pour le probl ème pancyclique à cordes dans les graphes sans griffes, nous prouvons que tout graphe G sans griffes 2-connect é avec |V (G)| ≥ 35 est pancyclique à cordes si le degr é minimum est d'au moins n-De plus, nous montrons le nombre de cordes dans le cycle à cordes de longueur l (4 ≤ l ≤ n). De plus, G est un pancyclique à double corde.Pour le probl ème k-fan-connect é, nous prouvons que si pour trois sommets ind épendants x 1 , x 2 , x 3 dans un graphe G,3 i=1 deg G (x i ) -| 3 i=1 N G (x i )| ≥ |V (G)| + k -1,alors G est k-fan-connect é et la borne inf érieure est tranchant. Ce r ésultat principal en d éduit qu'un graphe 3-connexe, sous les m êmes hypoth èses, est un Hamilton-connexe. Enfin, nous aimerions mentionner plusieurs nouvelles études li ées à cette th èse qui n'est pas incluses dans la th èse. De plus, nous couvrons également d'autres sujets qui m'int éressent, tels que les graphes de ligne hamiltoniens, l'hamiltonicit é tol érante aux pannes, la coloration de graphe, etc. Ces sujets sont susceptibles de devenir mes autres domaines de recherche. Title: Pancyclicity in hamiltonian graph theory Keywords: Pancyclicity, Hamiltonian cycle, Chorded pancyclicity, Claw-free graph, k-fan-connected.
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Hamiltonian, pancyclic and cyclable A

  , Y ; A) has the vertex set partitioned into two partite sets X and Y of cardinalities a and b, respectively, where A denotes the set of arcs; each arc has one vertex in X and the other in Y . If a = b then D is called balanced. K * a,b denotes a complete bipartite digraph with partite sets of cardinalities a and b.MatchingA matching M from X to Yis a set of arcs such that any vertex in X ∪ Y is incident with at most one arc in A and moreover each arc in M has its tail in X and a head in Y ; M is perfect if each vertex has incident arc in M . cycle (path) is called hamiltonian if it includes all the vertices of D. A digraph D is hamiltonian if it contains a hamiltonian cycle and is pancyclic if it contains a cycle of length k for any 3 ≤ k ≤ n, where n is the order of D. A balanced bipartite digraph of order 2m is even pancyclic if it contains a cycle of length 2k for any k, 2 ≤ k ≤ m. A set S of vertices in a directive graph D is said to be cyclable (pathable) in D if D contains a directed cycle (path) through all vertices of S.

Theorem 1.2.8 ([21]) Let

  u and v be distinct nonadjacent vertices of a graph G of order n ≥ 3 such that d G (u) + d G (v) ≥ n. Then G is hamiltonian if and only if G + uv is hamiltonian.

	Zhu, Li, and Deng [127]

obtained the following result on hamiltonian graphs under the condition of implicit degree. Theorem 1.2.9 ([127]) Let

  G be a simple graph of order n. If u and v are nonadjacent vertices with d 1 (u)+d 1 (v) ≥ n, then G is hamiltonian if and only if G + uv is hamiltonian.

  with x 0 = w and x n1+1 = w , be a hamiltonian path of G(H 1 ∪ {w , w }). We first prove

the followings: Fact 2.2.2 Either G(H 1 ∪ {w , w }) contains a path P * connecting w and w such that |P * | = n 1 + 1, or n 2 = 1 and

  connecting w and w such that |P * | = n 1 + 1, then the cycle yw P * w y is of length n 1 + 2. If no such path exists, by Fact 2.2.2, w x i+2 , x i w ∈ E(G) for any i,1 ≤ i ≤ n 1 -2. It follows that w x 3 , w x 2 ∈ E(G) when n 1 ≥ 4. It gives a cycle w x 3 x 4 • • • x n1 w x 2 x 1 w of length n 1 + 2.

The Fact is proved.

When there is a y ∈ H 2 ∩N (w )∩N (w ), we have a cycle yw P w y of length n 1 +3. When H 2 ∩N (w )∩N (w ) = ∅,

we get y 1 ∈ H 2 ∩ N (w ) and y 2 ∈ H 2 ∩ N (w ) such that y 1 y 2 ∈ E(G).

And by Fact 2.2.2 and since |H 2 | ≥ 2, we have a path P * in G -H 2 connecting w and w such that |P * | = n 1 + 1. It follows that y 1 w P * w y 2 y 1 is a cycle of length n 1 + 3. Therefore, we have obtained all cycles C m , n 1 + 3 ≤ m ≤ n.

To prove that G contains a C n1+2 , we suppose first that there is a y ∈ H 2 ∩ N (w ) ∩ N (w ). If G(H 1 ∪ {w , w }) contains a path P *

  and Y 1 = {w , w }. It is easy to verify that G 1 satisfies the condition of the theorem and |G 1 | < |G|. By the minimality assumption of G, we have G 1 is pancyclic or G 1 = K (n1+2)/2,(n1+2)/2 or G 2 = K (n1+2)/2,(n1+2)/2 -{e}. If n 1 = 2, by degree sum condition, then G is pancyclic. If n 1 ≥ 3, from d G1 (w ) = d G1 (w ) = 1, we get that G 1 is pancyclic and hence G has all cycles C

m , for 3 ≤ m ≤ n 1 + 2. So we assume that w w / ∈ E(G).

Clearly {x , x } is a 2-cuts of G. By the above argument, either

H 2 ∪ {w , w } ⊆ Y is a clique (which is not possible because w w / ∈ E(G)) or H 1 -{x , x } ⊆ X is a clique.

If there are two nonadjacent vertices x a and x b in X, we obtain

  For 3 ≤ i ≤ k, then s u1 (P [t i , u i ] \ {t i })z 2 / ∈ E(G). Otherwise, there is a (v, U )-fan T + w 2 z + z 2 s u1 (P [t i , u i ] \ {t i })w 2 x 2zz 2t i s u1 (P [t i , u i ] \ {t i }) ∪ t i Hx 2 which contradicts the maximality of T . By Lemma 6.3.1 and (6.7), we obtain the following, for3 ≤ i ≤ k, G (z i ) ∩ V (P [t i , u i ] \ {t i }))| ≤ |V (P [t i , u i ] \ {t i })| (6.9)By (6.7), for3 ≤ i ≤ k, then (N G (z 2 ) ∩ (V (P [v i , t i ]) \ {v i })) - u1 ∩ N G (z 1 ) = ∅. Since z 1 is a non-insertible vertex and N G (V (H)) ∩ V (P [v i , t i ]) ⊆ {t i }, it follows from Lemma 6.3.2 that we obtain the following, for 3 ≤ i ≤ k, (6.10)let P 1 = P [v 2 , t 2 ] -{v 2 , t 2 }. If z 2 v 2 / ∈ E(G), then |N G (z 1 ) ∩ V (P 1 )| + |N G (z 2 ) ∩ V (P 1 )| = |V (P 1 )| + 1. By (6.8) and Lemma 6.3.1(i), z 2 x ∈ E(G). This is a contradiction. So, z 2 v 2 ∈ E(G). By (6.8), s u1 (P 1 )z 1 / ∈ E(G). The similar argument of the above, z 2 x ∈ E(G), a contradiction. Thus, we obtain the following inequality:|N G (z 1 ) ∩ V (P [v 2 , t 2 ] -{t 2 })| + |N G (z 2 ) ∩ V (P [v 2 , t 2 ] -{t 2 })| ≤ |V (P [v 2 , t 2 ] -{t 2 })| -1.By Claim 6.4.4(iv), w 2 z 1 / ∈ E(G). It follows from (6.8) and Lemma 6.3.1(i) that|N G (z 1 ) ∩ V (P [v, w 2 ])| + |N G (z 2 ) ∩ V (P [v, w 2 ])| ≤ |V (P [v, w 2 ])|. (6.15)Hence, we obtain the desired inequality and may assume that vz 1 / ∈ E(G).If either inequality (6.14) or inequality (6.15) is not equal, then we obtain the desired inequality. Therefore, we assume that the equal signs of inequalities (6.14) and (6.15) are both true.Suppose thatz 2 v / ∈ E(G). Then |N G (z 1 ) ∩ V (P [v 1 , w 2 ])| + |N G (z 2 ) ∩ V (P [v 1 , w 2 ])| = |V (P [v, w 2 ])|. By Lemma 6.3.1 (i), z 1 w 2 ∈ E(G), a contradiction. So, z 2 v ∈ E. When z 1 v 2 / ∈ E(G). Suppose z 2 v 2 / ∈ E(G).By (6.14), we obtain |N G (z 1 )∩V (P 1 )|+|N G (z 2 )∩V (P 1 )| = |V (P 1 )|+1. This together with Lemma 6.3.1 (i), xz 2 ∈ E(G), a contradiction. So z 2 v 2 ∈ E(G). Then s u1 (P 1 )z 1 / ∈ E(G) by (6.8), the similar argument of the above, s u1 (P 1 )z 2 ∈ E(E). Repeating the above argument for all vertices on P [v 2 , t 2 ]t 2 , we get xz 2 ∈ E(G), a contradiction. So, z 1 v 2 ∈ E(G).

			z 3	H	
					U
	v	w 2 x 2 t 2 x	z 1 z 2	x 1 z	u 1 u 2
					u k

1≤i≤3 |N G (z i ) ∩ V (P [t i , u i ] \ {t i })| -| 1≤i≤3 (N 1≤i≤3 |N G (z i ) ∩ V (P [v i , t i ])| -| 1≤i≤3 (N G (z i ) ∩ V (P [v i , t i ]))| ≤ |V (P [v i , t i ])| + 1

  et pour toute paire de sommets non adjacents x, y dans X i avec i = 1, 2, . . . , k, on a d(x) + d(y) ≥ n, alors G est pancyclique ou G est un graphe bipartite.Pour le probl ème hamiltonien du digraphe biparti, soit D un graphe orient é biparti équilibr é fortement connect é d'ordre 2a ≥ 10. Soit x, y des sommets distincts dans D, {x, y} domine un sommet z si x → z et y → z; dans ce cas, nous appelons le couple {x, y} dominant. Nous montrons que D est hamiltonien pour chaque paire de sommets dominants si leur somme de degr és est d'au moins 3a. En outre, nousmontrons quelques nouvelles conditions suffisantes pour la bi-
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In this chapter, we prove that if G = (V, E) is a 2-connected graph of order n with V (G) = X ∪ Y such that for any pair of nonadjacent vertices x 1 and x 2 in X, d(x 1 ) + d(x 2 ) ≥ n and for any pair of nonadjacent vertices y 1 and y 2 in Y , d(y 1 ) + d(y 2 ) ≥ n, then G is pancyclic or G = K n/2,n/2 or G = K n/2,n/2 -{e}.

Note that the main result of this chapter is to prove that the conjecture 2.0.2 is true for k = 2. For all other cases (k ≥ 3) of Conjecture 2.0.2, we haven't given proof. In the next chapter (Chapter 3), we will prove that Conjecture 2.0.2 is true for k = 3.

We try to prove Conjecture 1.3.12 with k ≥ 4, but unfortunately, we did not succeed yet. This will be one of our further works.

For Conjecture 1.3.12, it is natural to generalize them into degree and neighborhood conditions on more independent vertices. Therefore, this is our other further work.

Some lemmas

Some lemmas in our proof are the same as in Chapter 2. We will give these lemmas without proof here. Lemma 3.2.1 (Lemma 2.1.4) Let P = u 1 u 2 u 3 • • • u p be a path in G and x, y ∈ V (G) -V (P ) such that (N P (x) -{u 1 }) -∩ N P (y) = ∅. Then d P (x) + d P (y) ≤ p + 1 and if d P (x) + d P (y) = p + 1, (1) V (P ) = (N P (x) -{u 1 }) -∪ N P (y);

(2) xu 1 , yu p ∈ E(G);

(3) If u i / ∈ N P (x) for some i, 2 ≤ i ≤ p, then u i-1 ∈ N P (y), and if u j / ∈ N P (y) for some j, 1 ≤ j ≤ p -1, then u j+1 ∈ N P (x);

(4) If u i , u j / ∈ N P (x) ∪ N P (y) with 2 ≤ i < j ≤ p -1 such that {u i+1 , u i+2 , . . . , u j-1 } ⊆ N P (x) ∪ N P (y), then there exists exact one k, i + 1 ≤ k ≤ j -1, such that {u i+1 , u i+2 , . . . , u k } ⊆ N P (x) and {u k , u k+1 , . . . , u j-1 } ⊆ N P (y);

(5) If N P (x) does not contain consecutive vertices on P and N P (y) does not contain consecutive vertices on P , then p is odd and N P (x) = N P (y) = {u 1 , u 3 , u 5 , . . . , u p-2 , u p }.

If V (G) = X 1 ∪ X 2 ∪ X 3 and for each i, i = 1, 2, 3, G[X i ] is a clique, we have the following lemma: Lemma 3.2.2 Let G = (V, E) be a 3-connected graph of order n and V (G) = X 1 ∪ X 2 ∪ X 3 . If for each i, i = 1, 2, 3, G[X i ] is a clique. Then G = K 3,3 or G is pancyclic.

Proof of Theorem 3.2.2: Suppose, on the contrary, that G is not pancyclic. By Theorem 2.0.1, G is hamiltonian.

Suppose there exists i ∈ {1, 2, 3} such that

then G is pancyclic. This is a contradiction. Suppose X i = {u i , v i } for any i, i = 1, 2, 3. We obtain the following proposition: Proposition 3.2.3 N (x) ∩ X j = ∅ for any x ∈ {u i , v i } with each i = j ∈ {1, 2, 3}.

Proof. Without loss of generality, let

1 is a cycle of length 3, and we have a cycle

G is hamiltonian. This is a contradiction. By the symmetry of G[X i ], we obtain this proposition.

By the Proposition 3.2.3, then G[V -X 3 ] is 2-connected graph. It follows that G is pancyclic or G isomorphic to K 3,3 from Theorem 2.0.3 and Proposition 3.2.3.

When |C| = n, C is a hamiltonian cycle, where u 1 and u q+1 are consecutive vertices on C, and u q and u t are consecutive vertices on C. Since d G (u 1 ) + d G (u t ) + d G (u q ) + d G (u q+1 ) ≥ 2n, we have either d G (u 1 ) + d G (u q+1 ) ≥ n or d G (u t ) + d G (u q ) ≥ n. Then d G (u 1 ) + d G (u q+1 ) = n and d G (u t ) + d G (u q ) = n otherwise by Theorem 3.1.3, G is pancyclic, a contradiction. By Theorem 3.1.4, we assume G is missing only an (n -1)-cycle.

Then

-cycle, a contradiction. Similarly u q-2 u q / ∈ E(G), u q+1 u q+3 / ∈ E(G) and u t u t-2 / ∈ E(G). By Lemma 3.2.1, it follows that u 2 u t ∈ E(G), u q-1 u q+1 ∈ E(G), u 1 u t-1 ∈ E(G) and u q u q+2 ∈ E(G).

Suppose that u 1 has two consecutive neighbor u i and u i+1 in Q . Then

is a (n -1)-cycle, a contradiction. So, u 1 does not have two consecutive neighbors in Q . Similarly, u 1 does not have two consecutive neighbors in Q and u q (resp., u q+1 , u t ) does not have two consecutive neighbors in Q and Q .

By Lemma 3.2.1, we deduce that q and tq are even, and suppose

. . , u q-3 , u q-1 },

When there are u i , u j ∈ A 1 such that u i u j ∈ E(G), if j = q, then u i-1 , u i+1 ∈ N Q (u q ). It contradicts that u q has no two consecutive neighbors in Q . So, we have j ≤ q -2. Then u i+1 , u j+1 ∈ N Q (u q ), and

is a (n -1)-cycle, a contradiction.

When there are u i ∈ A 1 and u j ∈ A 2 such that u i u j ∈ E(G), then u i-1 ∈ N Q (u q ), u j+1 ∈ N Q (u q+1 ). It follows that

is a (n -1)-cycle, a contradiction. Thus, similarly, A and B are independent sets, independently. Hence, G a is a bipartite graph.

When |C| = n, there exists a vertex w ∈ V (G -C). Since G is a 3-connected graph, there are three internal disjoint paths P 1 [w, u l1 ], P 2 [w, u l2 ] and P 3 [w, u l3 ] between w and u l1 , u l2 , u l3 ∈ V (C). By the maximality of P , then there does not exist two vertices u li , u lj ∈ {u l1 , u l2 , u l3 } such that u li = u 1 , u lj = u t or u li = u q , u lj = u q+1 .

Thus, we have two cases: at most one vertex in {u l1 , u l2 , u l3 } belong to {u 1 , u t , u q , u q+1 }. And there exists only two vertices of {u l1 , u l2 , u l3 } belong to {u 1 , u t , u q , u q+1 }. First, we analyze the first case.

3.3.2

At most one vertex in {u l 1 , u l 2 , u l 3 } belong to {u 1 , u t , u q , u q+1 } Without loss of generality, it follows that w, u l1+1 (= u + l1 ), u l2+1 (= u + l2 ), u l3+1 (= u + l3 ) are pairwisely nonadjacent since otherwise there would be two paths which contradict with the choice of Q and Q (see Figures 3.4 and 3.5 ). Then two of four vertices w, u l1+1 , u l2+1 , u l3+1 should be in the same parity X i with i ∈ {1, 2, 3}. 

If these two vertices are u li+1 and u lj +1 , where u li+1 and u lj +1 in the same path Q ( Q ) (see Figure 3.6(b)), put

If these two vertices are u li+1 ∈ Q and u lj +1 ∈ Q (see Figure 3.6(c)), put

In all above cases, three paths

, one endpoint of Q 1 and one endpoint of Q 2 are not adjacent and both belong to X i , the other endpoint of Q 1 and the endpoint of Q 3 are not adjacent and both belong to X j and the other endpoint of Q 2 and the other endpoint of Q 3 are not adjacent and both belong to X k with i, j, k ∈ {1, 2.3}.

We assume that S 1 = w 1 w 2 w 3 • • • w q , S 2 = w q+1 w q+2 • • • w l and S 3 = w l+1 w l+2 • • • w t are three disjoint paths such that t (t ≥ t+1) is maximum, subject to w 1 , w t ∈ X 1 , w q , w q+1 ∈ X 2 , w l , w l+1 ∈ X 3 and w 1 w t , w q w q+1 , w l w l+1 / ∈ E(G).

By the choice of Q and Q , (G -(S 1 ∪ S 2 ∪ S 3 )) ∩ N (w q ) ∩ N (w q+1 ) = ∅, (G -(S 1 ∪ S 2 ∪ S 3 )) ∩ N (w 1 ) ∩ N (w t ) = ∅ and (G -(S 1 ∪ S 2 ∪ S 3 )) ∩ N (w l ) ∩ N (w l+1 ) = ∅.

(a) these two vertices are w and u l i +1

(b) these two vertices are u l i +1 and

.6: Two of four vertices w, u l1+1 , u l2+1 , u l3+1 should be in the same parity X i with i ∈ {1, 2, 3} Suppose 2 ≤ i ≤ q -1. If w i w q+1 , w i-1 w q ∈ E, two paths S 1 [w 1 , w i-1 ]w q S 1 (w q , w i ]w q+1 S 2 and S 3 , which contradict the choice of Q and Q . So, by Lemma 3.2.1, then

Then there is a path S 2 [w l , w q+1 ]w 1 S 1 (w 1 , w q ]w t S 3 (w t , w l+1 ] which contradicts the choice of P . Thus,

The same argument with w q , w q+1 , it follows that d S1 (w

contradicts the choice of P . So, G is pancyclic or a bipartite graph.

There exists only two vertices of {u

Without loss of generality, we assume u l1 = u 1 , then there are four subcases:

Subcase 1.1 u l3 = u q and u l2 ∈ Q .

It follows that w, u 2 , u l2+1 , u q+1 are pairwisely nonadjacent by the choice of Q , Q and P . Then two of these four vertices w, u 2 , v l2+1 , v q+1 should be in the same parity X i , for some i ∈ {1, 2, 3}. Let j ∈ {2, l 2 + 1},

By the choice of Q and Q , wu j / ∈ E and u 2 u l2+1 / ∈ E. By the maximality of P , then u j u q+1 / ∈ E and wu q+1 / ∈ E.

It follows that w, u t , u l3-1 , u q-1 are pairwisely nonadjacent. And two of these four vertices w, u t , u l3-1 , u q-1 should be in the same parity X i , for some i ∈ {1, 2, 3}.

The proof of Subcase 1.2 is similar to the proof of Subcase 1.

then there are two paths longer than Q and Q , a contradiction. If w, u l3-1 ∈ X i or w, u q-1 ∈ X i , there is a (w, u j )-path C/{u j u j+1 } ∪ P s [w, u j+1 ] longer than P , where j ∈ {l 3 -1, q -1} and

and

It follows that w, u 2 , u l2+1 , u q+2 are pairwisely nonadjacent by the choice of Q and Q .

If wu 2 ∈ E or u q+2 w ∈ E or wu l2+1 ∈ E or u 2 u l2+1 ∈ E, then there are two paths which contradict with the choice of Q and Q . If u 2 u q+2 ∈ E, there are two paths

and Q [u q , u l2+1 ]u q+2 Q (u q+2 , u t ] which contradict with the choice of Q and Q . Then two of these four vertices

w, u 2 , u l2+1 , u q+2 should be in the same parity X i , for some i ∈ {1, 2, 3}.

If w, u 2 ∈ X i or u q+2 , w ∈ X i or w, u l2+1 ∈ X i , there is (w, u j )-path C -{u j-1 u j } ∪ P s [w, u j-1 ] which contradicts the choice of P , where j ∈ {2, l 2 + 1, q + 2},

It follows that w, u 2 , u q+2 , u l3+1 are pairwisely nonadjacent by the choice of Q and Q .

The proof of Subcase 1.4. is similar to the proof of Subcase 1.3. So again, let's skip the proof step. Thus, in

Case 1 (in non-extremal case), G is pancyclic or G is a bipartite graph. Now let's talk about the extreme case, which is Case 2.

Extremal case

Case 2 v d1 = v 1 and v d3 = v p .

So, {v 1 , v p , v d2 } is cut-set of G and let the component where w 0 is located be H.

Let's first show some properties of H.

Proof. Suppose there exists

So, there exists at most one vertex on V (P ) \ {v i } which does not adjacent to v i . If v i adjacent to every vertex in V (P ) \ {v i }, then it is easy to prove that G is pancyclic. So, we assume v j ∈ V (P )

Suppose j = p, then there are cycles

where p is even), by the symmetry, G is pancyclic.

Suppose that i + 2 ≤ j ≤ p -1, by the symmetry, G is pancyclic.

Suppose that j = 1, there are cycles

Similarly, when j = p and i = p

By the choice of P and Case 1, we have the following fact: In the following, we prove that if two vertices with a distance of

are adjacent, and any two vertices on P [v d+1 , v p-1 ] are adjacent, then G is pancyclic or a bipartite graph. So, we got the following result.

Claim 3.4.6 If for any

Then G is pancyclic or a bipartite graph.

Proof. If d ≥ 7 and pd ≥ 3. Then, we can construct all cycles

According to the number of vertices in H, we construct all cycles C k with d -1 ≤ k ≤ n.

Suppose |H| ≥ 3. we may assume u, v, a ∈ V (H) such that v 1 u, v p v, v d a ∈ E(G). By Claim 3.4.2, there are

If |H| = 2, since G is a 3-connected graph, without loss of generality, we may assume u, v ∈ V (H) such that 

If d ≥ 7 and pd = 2, by the maximality of P , then |H| = 1. The same argument with above, it is easy to construct G is pancyclic. According to the number of vertices in V (H), we go ahead and prove the rest of the proof.

clique.

If v 2 v j ∈ E (d + 2 ≤ j ≤ p -1 and j is as small as possible), similarly 

. By the degree sum condition, we

). By Claim 3.4.6, then G is pancyclic or a bipartite graph.

H has two vertices

In this section, we will show that if |V (H)| = 2, then G is pancyclic or G is a bipartite graph.

In this case, let

For any two nonadjacent vertices x, y ∈ W i with i = 1, 2, 3, we can obtain

When G is a 3-connected graph, by the minimality of G, then there are cycles

be hamiltonian cycle and hamiltonian path of G , respectively, where

Next, we will show that there are cycles C k with 

Then v i and v i+2 are in different part W j with j ∈ {1, 2, 3}, otherwise there is a path 

By the choice of P , then

So, m = n-2. Since G is a 3-connected graph and Claim 3.4.5, we can assume vv d ∈ E and

There does not exist cycle C n-2 , then for any

The same argument with Fact 3.4.4, then

Suppose that the connectivity of G is 2 and

), then we have the following:

Next, we will show if

Then, by Fact 3.4.7, it is easy to construct cycles

By Theorem 2.0.4, Fact 3.4.7 and Proposition 3.4.8, G is pancyclic.

, we obtain the following: 

, we obtain the following:

Proof. Assume i < j and w ∈ {u, v} or w = uv.

We can assume d ≥ j + 1. By Facts 3.4.4 and 3.4.7, then v 2 = v i . Similarly,

the same argument with Proposition 3.4.10, G is pancyclic.

)] is a clique. By Claim 3.4.6, G is pancyclic. So, we can obtain the following fact:

By the choice of P , zv d+3 ∈ E and for any vertex

H has only one vertex

In this section, we will prove if

First, we show that there is a cycle C p in G. Suppose there does not exist a cycle C p , then

So, B is an independent set. By Claim 3.4.5, we can assume |B| ≥ 4, So, there exist

this is a contradiction. Thus, there exist the cycle C p .

Next, we suppose v d is adjacent to at least one of v 1 and v p , then we will show G is pancyclic or G is a bipartite graph. Without loss of generality, we assume

By Facts 3.4.4 and 3.4.7,

By the definition of P , this is a contradiction. Suppose

By Claim 3.4.5, we assume

For any two nonadjacent vertices x, y ∈ W i with i = 1, 2, 3, then we can obtain (3.7). Suppose that V (G 2 ) = {w 1 } and i < j. 

We assume 

We give the following result for the rest of proof of Theorem 3.0.2.

Proposition 3.4. [START_REF] Bedrossian | Forbidden subgraph and minimum degree conditions for hamiltonicity[END_REF] If there exists a vertex

Chapter 4

Pancyclicity and hamiltonicity in digraphs or bipartite digraphs

In this chapter, we consider the hamiltonian properties of a digraph or bipartite digraph.

Let D be a strongly connected balanced bipartite directed graph of order 2a ≥ 10. Let x, y be distinct vertices in D, {x, y} dominates a vertex z if x → z and y → z; in this case, we call the pair {x, y} dominating.

In this chapter, we show that if for every dominating pair of vertices whose degree sum is at least 3a in a strongly connected balanced bipartite directed graph D, then D is hamiltonian. More precisely, we prove the following.

Before we go any further, we need the following definition. We will prove this theorem by contradiction and K önig-Hall theorem. In Section 4.1, we will present a list of hamiltonian results of a digraph or bipartite digraph. In Section 4.2, we proposed some lemmas to prove Theorem 4.0.2. Also, we give the proof of Theorem 4.0.2. In Section 4.3, We show some new sufficient conditions for bipancyclic and cyclability of digraphs.

Introduction and notations

We start with some terminology and notations.

This Claim is proved.

By Claim 4.2.5, D contains a cycle factor {C 1 , C 2 , . . . , C l }. Now suppose l is the minimum possible, since D is not hamiltonian, so l ≥ 2. We assume

. Now, we have the following claim:

Proof. For a proof by contradiction, suppose t = 1. Then C 1 is a 2-cycle, and let

. And by Claim 4.2.4,

Without loss of generality, assume d(x 1 ) ≤ d(y 1 ). We distinguish the following four cases.

By Lemma 4.2.1, there exists a vertex x ∈ X \ {x 1 } such that {x 1 , x } is a dominating pair. It follows from condition Then

is a cycle that contradicts the minimality of l. Thus, D is hamiltonian.

By Fact 4.2.7, since D is not hamiltonian, then x y 1 / ∈ A(D). And by d(x

Then Hence, {y 1 , y } is a dominating pair, then d(y ) ≥ 2a -1. 

Since D is strongly connected, then there exists C j with j = 1, i and xy ∈ A(C j ). By

which contradicts the minimality of l.

By Lemma 4.2.3, without loss of generality, assume

Then, we have the following claim.

Claim 4.2.8 When d C c 1 (x 1 ) = at, then D would be hamiltonian.

Proof. For all We will show For all

. By y and x k were arbitrary and the strong connectedness of D, there exist

. So, C 1 can be merged into C 2 , a contradiction. Hence, no two vertices x i and x j in

When t ≥ 3, without loss of generality, assume {y 2 , y 3 } is a dominating pair. By ( * ) and Lemma 4.2.3, then

Then t ≤ 2, a contradiction. So, t = 2.

If there is y ∈ C j with j = 1 such that x 1 y ∈ A(D), let x be a predecessor vertex of y on C j . So, {x 1 , x} is a dominating pair. By ℵ 0 , d(x) = 2a, C 1 can be merged into C j , a contradiction. Thus,

a contradiction. So, {x i , x j } is not a dominating pair.

By Lemma 4.2.1, for all above x i , x j , if there exist x , x ∈ C 1 such that {x i , x } and {x j , x } are dominating pairs, then

In the same argument with x 1 , by (M ), for each 1 ≤ i ≤ s, x i dominates at least α i vertices on C 1 . Denote by S i the vertex set of the predecessors of x i which dominates at least α i vertices and apart from x i . For all 1 ≤ i < j ≤ s,

I denotes all i that x i dominates at least α i vertices apart from its own on C 1 , and I denotes all i that x i dominates exactly α i -1 vertices apart from its own on C 1 . Then |R| = (t -i∈I α i -j∈I (α j -1)s). By (M 1 ), for any 

And for every dominating pair of vertices {x, y}, then D contains a cycle of length 2k for all k, where 1 ≤ k ≤ a (i.e., D is even pancyclic).

To prove Theorem 4.3.3, we need the following lemma. Chapter 5

Chorded pancyclicity in claw-free graphs

Chorded pancyclic is one of the generalizations of the hamiltonian problem. In this chapter, we study a new sufficient condition of chorded pancyclic graphs.

We study a minimum degree condition for K 1,3 -free graphs to be chorded pancyclic. Theorem 1.3.15 gives a condition of minimum degree for K 1,3 -free graphs to be pancyclic. We reaffirm this theorem here. 

Moreover, by Theorem 5.0.3, CH m ≥ 2. So, we can obtain G is doubly chorded pancyclic.

Lemma 5.2.2

Let G be a K 1,3 -free graph. For any x ∈ V (G), then G[N G (x)] is either traceable, or two disjoint cliques.

Proof. We assume that x is any vertex in V (G). Suppose that G[N G (x)] is disconnected, then there are only two

For the sake of contradiction, suppose that there are two nonadjacent vertices u and v in V (G 1 ). Let z be a

into two components G and G . The same argument as when

The proof of this lemma is completed.

Proof of Theorem 5.0.2

In this section we prove Theorem 5.0.2.

Note that δ(G) ≥ n-2

3

≥ 11 since n ≥ 35. For the sake of a contradiction, we suppose that G is not chorded pancyclic. Let m be the largest value with 4 ≤ m ≤ n such that G has no chorded cycle of length m. By Theorem 5.0.1, there exists a chorded cycle of length n, and so m = n.

By Theorem 5.0.1, G is pancyclic. We divide the proof into some cases according to the value of m.

Case 1 m ≥ 9.

Suppose that there exists a vertex

So, we obtain n < 30, which contradicts that n ≥ 35.

Subcase 2.2 4 ≤ m ≤ 7

The following property which is important for our work, is that: Claim 5.2. 4 If there exists a cycle C l of length l in G for some 3 ≤ l ≤ 6, then there exists a chorded cycle C of

To be contrary, we assume that there does not exist a chorded cycle

Since G is K 1,3 -free, it follows from Claim 5.2.3 and Lemma 5.

Hence, there is a chorded cycle with length l + 1 in

The proof of Claim 5.2.4 is completed.

Since G is pancyclic, it follows from Claim 5.2.4 that G has a chorded cycle of length m with 4 ≤ m ≤ 7. This is a contradiction. Hence, this theorem holds.

Next we will prove Theorem 1.3.28 (i.e., Theorem 5.0.3). When m = 4. For any vertex x ∈ V (G), let y ∈ N (x). If there are 3 vertices u 1 , u 2 , u 3 ∈ N (x) -{y} such that

Proof of

Hence, G[{v 1 , v 2 , x, y}] is clique, we are done.

When m = 5. We suppose that there does not exist chorded cycle C 5 in G such that CH 5 ≥ m(m-1)

2

m = 5.

For any vertex x ∈ V (G), let y ∈ N (x).

There are 4 vertices

We prove this case by induction on m.

When m = 6, by Case 1, let

Suppose there exists

So, we obtain n < 28, which contradicts that n ≥ 35.

Next, we suppose there is a cycle C m with CH m ≥ m chords for any m < n+1 3 . We will show there is a cycle

For the sake of a contradiction, we suppose that G does not exist a cycle C m+1 with CH m+1 ≥ m + 1 chords.

Suppose there exists

Then C is a cycle of length m + 1 with CH m+1 ≥ m + 1 chords, a contradiction.

So, for any

and

Next, we will show that for any x ∈ N G-Cm (v i ) and y ∈ N G-Cm (v i+1 ), we have xy / ∈ E(G).

To the contrary, suppose

Further, we will prove that for any vertex

Thus, we obtain m ≤ 5, which contradicts that m ≥ 7.

Case 3 n+4

3 ≤ m ≤ 2n+8 3 .

For the sake of a contradiction, we suppose that G does not exist a cycle

By Lemma 5.2.2, when G[T ] is traceable, let P be a path in

When G[T ] is two disjoint cliques. It follows from G is K 1,3 -free that there exists a vertex v ∈ T such that vv i-1 ∈ E(G). So, we can find two paths P 1 and

Next, we will show

Suppose for any vertex

Hence, the theorem holds.

Open problems

A non-induced cycle is called a chorded cycle. A graph G of order n is chorded pancyclic if G contains a chorded cycle of each length from 4 to n. A graph is called K 1,3 -free if it has no induced K 1,3 subgraph.

In this chapter, we prove that the following result: every

3 . We show the number of chords in the chorded cycle of length l (4 ≤ l ≤ n). Moreover, G is doubly chorded pancyclic.

At present, there are not many types of research on chorded pancyclic. So, there's a lot of room for research.

Can we find more necessary and sufficient conditions for a graph to be chorded pancyclic? That's what we're going to work on.

Chapter 6 k-fan-connected graphs

In this chapter, we will show the result of k-fan-connected graph by improving the degree sum condition of Theorem 

Our main result is Theorem 1.3.53. We reaffirm this theorem here. Theorem 6.0.2 Let k ≥ 2 be an integer and G be a

We can obtain the following corollary that is stronger than Theorem 6.1.7 in the case of 3-connected graphs.

In this chapter, we use some new notations. Let T be a tree and let r ∈ V (T ). The outdirected tree concerning (T, r) is the directed tree obtained from T in which all the edges are directed away from r. For X ⊂ V (T ) and

T,r and Y + T,r , denote the set of the predecessors and the successors of the vertices of X and Y in (T, r), respectively. Similarly, for x ∈ V (T ), x - T,r denote the predecessor of x in (T, r), respectively. If there is no ambiguity, we write X - r , Y + r , and x - r for X - T,r , Y + T,r , and x - T,r , respectively.

We shall prove Theorem 1.3.53 (i.e., Theorem 6.0.2) by contradiction and induction. In section 6.1, we will present Menger's Theorem and give some other related introductions. The lower bound of σ 3 (G) in Theorem 1.3.53 (i.e., Theorem 6.0.2) is sharp, as shown in Section 6.2. In section 6.3, to prove the theorem 1.3.53 (i.e., Theorem 6.0.2), we're going to introduce some preliminaries. In section 6.4, we will prove Theorem 1.3.53 (i.e., Theorem 6.0.2).

Menger's Theorem and introduction

Menger's Theorem

We start with Menger's Theorem which is one of the cornerstones of graph theory.

We first give some definitions about Menger's theorem.

Let G = (V, E) be a graph and A, B ⊆ V , we call

contains a vertex or an edge from X, we say that X separates the sets A and B in G.

Menger's theorem takes many versions. A simple, very general versions of Menger's Theorem is as follows: The following is a global Version of Menger's Theorem.

Theorem 6.1.4 (Global Version of Menger's Theorem)

1. A graph is k-connected if and only if it contains k independent paths between any two vertices.

A graph is k-edge-connected if and only if it contains k edge-disjoint paths between any two vertices

This version of Menger's Theorem is the one we usually use the most. In section 6.4, our proof of Theorem 1.3.53 uses a global version of Menger's Theorem.

Introduction and notations

We will use standard notations and terminology of graph theory. To make it easier to read, in this section we again introduce some definitions and notations. For a vertex x ∈ V (G), we denote the degree of x in G by deg G (x) and the set of neighbors of the vertex x in G by N G (x), where

Theorem 6.1.8 (Flandrin, Jung and Li [START_REF] Flandrin | Hamiltonism, degree sum and neighborhood intersections[END_REF]) Let G be a 2-connected graph of order n such that σ 3 (G) ≥ n, then G is hamiltonian.

When σ 3 (G) ≥ n -1, we have the following theorem: Theorem 6.1.9 (Flandrin, Jung and Li [START_REF] Flandrin | Hamiltonism, degree sum and neighborhood intersections[END_REF]) Let G be a connected graph of order n such that σ 3 (G) ≥ n -1, then G has a hamiltonian path.

As a generalization of Hamilton-connected and hamiltonian path, Lin et al. introduced the k-fan-connectivity of graphs in [START_REF] Lin | On the spanning fan-connectivity of graphs[END_REF]. Now we again introduce the concept of k-fan-connected which was mentioned in section 1.3.4.

For any integer t ≥ 2, let v be a vertex of a graph G and let U = {u 1 , u 2 , . . . , u t } be a subset of V (G) \ {v}. A (v, U )-fan is a set of paths P 1 , P 2 , . . . , P t such that P i is a path connecting v and u i for 1 ≤ i ≤ t and P i ∩ P j = {v}

It follows from Menger Theorem [START_REF] Menger | Zur allgemeinen kurventheorie[END_REF] that there is a (v, U )-fan for every vertex v of G and every subset U of

If a graph G has order at least three, it is easy to obtain that "G is Hamilton-connected" is equivalent to "G is 2-fan-connected".

We show the followings. Proposition 6.1.10 Let k ≥ 2 be an integer. If a graph G is k-fan-connected, then G is (k + 1)-connected.

Proof. Suppose that G is not (k + 1)-connected. There exists a cut-set S with size at most k. Let U be a subset of V (G) with S ⊆ U such that |U | = k. It follows that there exists no spanning (v, U )-fan in G for any vertex v of V (G) \ U , contrary to the k-fan-connectivity of G.

In this chapter, we improve Theorem 6.0.1 by showing that the Flandrin-Jung-Li's condition in Theorem 6.1.8 is a new sufficient condition of k-fan-connected graphs. We get our main result Theorem 6.0.2.

Sharpness of the lower bound

The lower bound of σ 3 (G) in Theorem 6.0.2 is sharp as shown in this section.

The following example gives many graphs which satisfy the conditions of Theorem 6.0.2, but does not satisfy the degree sum condition of Theorem 6.0.1.

Example: let n be a large integer and a graph G = (K 1 ∪ C (n-k+3)/2 ) + K (n+k-5)/2 (see Figure 6.1). Then

is n + k -3. It follows that G satisfies all conditions of Theorem 6.0.2, but does not satisfy the degree sum condition of Theorem 6.0.1.

then it is easy to verify that G is k-connected. By proposition 6.1.5, we got

It follows that G is k-fan-connected from Theorem 6.0.2. Thus, the result of Theorem 6.0.1 can be derived from Theorem 6.0.2.

Let us see the following example that shows the lower bound of σ 3 (G) in Theorems 6.0.2 is sharp.

In the sense that we cannot replace the lower bound

Let n be a sufficiently large integer, and let k ≥ 2 be an integer. Let G := K (n+k-2)/2 + K (n-k+2)/2 (see Figure 6.2). Then

). We will

show that G has no spanning (v, U )-fan.

Suppose that G has a spanning (v, U )-fan T . Then the number of the edges of T having one end vertex in

) and the other in

On the other hand, the number of the edges of T is

This is a contradiction. So, the lower bound of σ 3 (G) in Theorems 6.0.2 is sharp.

Preliminaries

In this section, We introduce some lemmas which are used in the proof of Theorem 6.0.2.

The first lemma has already been introduced in Chapter 2, and now we reintroduce it under new notation. Lemma 6.3.1 [START_REF] Li | On pancyclic 2-connected graphs[END_REF] Let

(ii) if w 1 is not adjacent to consecutive two vertices on P , then w 2 u 1 ∈ E(G), and

(iii) if w 2 is not adjacent to consecutive two vertices on P , then w 1 u p ∈ E(G).

Now, let's state this lemma briefly. When |N G (w 1 )∩V (P )|+|N G (w 2 )∩V (P )| = p+1, we have (i)

If w 1 is not adjacent to consecutive two vertices on P and

By using the conclusion of (i) again, we can get w 1 u 2 ∈ E(G). Then w 1 is adjacent to consecutive two vertices on P , a contradiction. So (ii) holds. Similarly, if w 2 is not adjacent to consecutive two vertices on P , then

, and w 3 be three vertices in V (G) -V (P )

Proof. First, we consider the case

Hence, we may assume that |N G (w 1 ) ∩ V (P )| + |N G (w 2 ) ∩ V (P )| = p. If w 3 is not adjacent to u p , then the lemma holds. So, we assume w 3 is adjacent to u p . If u 1 w 2 / ∈ E(G), by applying Lemma 6.3.1 to P -{u 1 }, w 1 u p , w 2 u p ∈ E(G) and so we obtain

We may assume that

By applying Lemma 6.3.

This completes the case u 1 w 1 / ∈ E(G).

Next, we consider the case 

Hence, the lemma holds.

Proof of Theorem 6.0.2

In this section, we will prove Theorem 6.0.2.

The sketch of the proof:

Firstly, to prove this theorem, we introduce the segment insertion operation. An important Claim 6.4.5 derived from this operation is also given. It will be shown in section 6.4.1.

Secondly, because Theorem 6.0.2 is based on σ 3 (G), so in section 6.4.2 we're going to find three independent vertices w 1 , w 2 and w 3 . At the same time, we get some relationships among their neighborhood sets.

Thirdly, in Section 6.4.3, we divide the vertex set of the graph G into several partitions. And then we find the degree sum of the three independent vertices w 1 , w 2 and w 3 in each partition.

Lastly, according to whether w 2 belongs a segment to discuss, then we get contradiction. Thus, the theorem is further proved.

Segment insertion operation

On the contrary, suppose that G is not k-fan-connected, then there exists a vertex v and a subset Proof. On the contrary, we assume that there exists a segment P = w 1 w 2 . . . w s not containing a non-insertible vertex. Let Q be a path connecting w 1 and w s such that V (Q) \ {w 1 , w s } ⊆ V (H). We use a segment insertion

] and let T be the resulting graph. Then T ∪ Q is a (v, U )-fan with the order of at least |V (T )| + 1.

This contradicts the maximality of T .

Proof. (i) We show that N

Suppose that there is a vertex w ∈ N G (w 3 ) ∩ V (T ) such that there is a vertex w + ∈ N G (y i ) ∩ {w} + u1 for some

)-fan with the order of at least |V (T )| + 1, a contradiction. We assume that this claim holds for 1 ≤ j < i with i ≥ 2. We use a segment insertion SI[P [y 1 , y i-1 ]] and let T be a resulted graph. It follows from the induction hypothesis of this claim that for each 1 ≤ j < i, y j is not inserted in ww + . Then T + y i w +ww + ∪ x 1 Hw is a (v, U )-fan with the order of at least |V (T )| + 1, a contradiction.

(ii) We show N G (y j ) ∩ (N G (w 3 ) ∩ V (T )) + u1 = ∅ for each 1 ≤ j ≤ . If w 2 is in a segment of T , then we can deduce a contradiction by the similar argument of the above one. If w 2 is not in any segments of T , then we can also deduce a contradiction by the similar argument of the above one in the case i = 1.

(iii) We can show N G (y j ) ∩ (N G (w 3 ) ∩ V (T )) - u2 = ∅ by induction on j with 1 ≤ j ≤ . The proof is similar to the proof of (i).

(iv) We show this claim by induction on i + j with 1 ≤ i ≤ m and 1 ≤ j ≤ . Suppose that there is a vertex

(v, U )-fan with the order of at least |V (T )| + 1, a contradiction. We assume that this claim holds for 3 ≤ i + j < i + j.

Suppose that there is a vertex

) such that w - u1 y i ∈ E(G) for some 1 ≤ i ≤ m and 1 ≤ j ≤ . We use segment insertions SI[P [y 1 , y i-1 ]] (if i ≥ 2) and SI[P [y 1 , y j-1 ]] (if j ≥ 2). Let T be a resulted graph. It follows from Claim 6.4.3 and the induction hypothesis of this claim that y i is not inserted into an edge in P [x 2 , w 2 ] ∪ {ww - u1 } for each 1 ≤ i < i and y j is not inserted into an edge in P [x 1 , w 1 ] ∪ {ww - u1 } for each 1 ≤ j < j.

Hence, T + y i w - u1 + y j www - u1 ∪ x 1 Hx 2 is a (v, U )-fan with the order of at least |V (T )| + 1, a contradiction.

(v) We can show this claim by induction on i + j with 1 ≤ i ≤ m and 1 ≤ j ≤ . The proof is similar to the proof of (iv).

(vi) We show this claim by induction on i + j with 1 ≤ i ≤ m and 1

)-fan with the order of at least |V (T )| + 1, a contradiction. We assume that this claim holds for 3 ≤ i + j < i + j. Suppose that there is a vertex

such that w - u1 y j ∈ E(G) for some 1 ≤ i ≤ m and 1 ≤ j ≤ . We use segment insertions

Let T be a resulted graph. It follows from Claim 6.4.3 and the induction hypothesis of this claim that for each 1 ≤ j < j, y j is not inserted in an edge into P [x 1 , w 1 ] ∪ {ww - u1 }. Then T + y i w + y j w - u1ww - u1 ∪ x 1 Hx 3 is a (v, U )-fan with the order of at least

6.4.3

The rest of the proof of Theorem 6.0.2

Note that each vertex of H satisfies the property of w 3 in Claims 6.4.2 and 6.4.4 since w 3 is an arbitrary vertex of H.

For the path P contained in T , the first vertex of P in order along (T, r) is denoted by s r (P ), where r is a vertex of T . Let v i be the vertex in

then let s i (resp. t i ) be the vertices of 

By Claim 6.4.4 (iv), then N G (w 1 ) ∩ (N G (w 2 ) ∩ V (P )) - u1 = ∅. By Lemma 6.3.2,

Thus, we obtain the desired inequality.

Suppose

]), by Claim 6.4.4 (i), (ii) and (iv), then w 1 s u1 (Ps u1 (P )), w 2 s u1 (P - 

We obtain the desired inequality from Lemma 6.3.2.

The following claims calculate σ 3 (G) on

respectively.

Claim 6.4.7 Suppose that vw 3 / ∈ E(G). For each 2 ≤ j ≤ k, the following inequality holds.

Proof. First, we consider the case vw

∅ from Claim 6.4.4 (iv). Since w 1 is a non-insertible vertex, by Lemma 6.3.2, we obtain the desired inequality in the case that vw 1 / ∈ E(G). If w 2 in P [v, u 2 ], then w 2 is a non-insertible vertex. By Claim 6.4.4 (v) and (vi), then

We obtain the desired inequality from Lemma 6.3.2.

Next, we consider tha case vw 1 ∈ E(G). Since w 1 is a non-insertible vertex, w 1 is not adjacent to v j for each

]), by Claim 6.4.4 (iv), then for each 2 

Proof. It follows that w 1 and w 2 are not adjacent to s u1 (P [v, s 1 ]s 1 ) from Claim 6.4.4 (i), (ii) and (iii). By Claim 

and 

(see Figure 6.8) with the order of at least |V (T )| + 1, a contradiction. So z 2 x / ∈ E(G). By (6.8) and Lemma 6.3.1(i), we obtain

Conclusions and future research

In this thesis, we (mainly) studied hamiltonian graph theory. We briefly describe the obtained results here. In addition, we would like to mention several new studies that are relevant but not included in this thesis.

Results obtained and open questions

In Chapter 2, we proved that if G = (V, E) is a 2-connected graph of order n with V (G) = X ∪ Y such that for any pair of nonadjacent vertices x 1 and x 2 in X, d(x 1 ) + d(x 2 ) ≥ n and for any pair of nonadjacent vertices y 1 and y 2 in

Note that the main result of Chapter 2 is to prove that the conjecture 2.0.2 is true for k = 2.

In Chapter 3, we proved that Conjecture 2.0.2 is true for k = 3.

We showed that if G = (V, E) is a 3-connected graph of order n with V (G) = X 1 ∪ X 2 ∪ X 3 , for any pair of nonadjacent vertices v 1 and v 2 in X i , d(v 1 ) + d(v 2 ) ≥ n with i = 1, 2, 3, then G is pancyclic or a bipartite graph.

We haven't given a proof for Conjecture 1.3.12 with k ≥ 4. That's what we're going to do next. In Chapter 5, we prove that the following result: every 2-connected K 1,3 -free graph G with |V (G)| ≥ 35 is chorded pancyclic if the minimum degree is at least n-2 3 . We show the number of chords in the chord cycle of length l (4 ≤ l ≤ n). Moreover, G is doubly chorded pancyclic.

At present, there are not many kinds of researches on chorded pancyclic. So, there's a lot of room for research.

Can we find more necessary and sufficient conditions for a graph to be chorded pancyclic? That's what we're going to work on.

For any integer t ≥ 2, let v be a vertex of a graph G and let U = {u 1 , u 2 , . . . , u t } be a subset of V (G) \ {v}. A (v, U )-fan is a set of paths P 1 , P 2 , . . . , P t such that P i is a path connecting v and u i for 1 ≤ i ≤ t and P i ∩ P j = {v} In Chapter 6, we prove that if for any three independent vertices x 1 , x 2 , x 3 in a graph G,

and the lower bound is sharp.

Note that the conditions for our results are better than those previously obtained. Is there any other better condition for a graph to be k-fan-connected? Such as Chv átal and Erd ös condition (α(G) ≤ κ(G) + 1) and so on.

This will be one of our further works.

If for any pair of vertices x and y, and for k distinct vertices {u 1 , u 2 , . . . , u k } in V -{x, y}, there are k internal disjoint paths P 1 , P 2 , . . . , P k connecting x and y, respectively, such that

Then G is called k-fan-Hamilton-connected.

We will show the result about k-fan-Hamilton-connected of a graph for Dirac-type condition. Our main theorem is as follows: Theorem 7.1.4 Let k ≥ 2 be an integer and G be a graph with order n ≥

Similarly, we will prove that the result about k-fan-Hamilton-connected of a graph for ore-type condition. We obtain the following theorem: 123 Theorem 7.1.5 Let k ≥ 2 be an integer and G be a graph with order n

For Theorems 7.1.4 and 7.1.5, We intend to prove in two steps. The first step is to prove that for any pair of vertices x and y, and for k distinct vertices {u 1 , u 2 , . . . , u k } in V -{x, y}, there are k internal disjoint paths P 1 , P 2 , . . . , P k connecting x and y, respectively, such that u i ∈ P i -{x, y}, for any 1 ≤ i ≤ k. The second step to prove 1≤i≤k V (P i ) = V (G). Now that we have completed the second part of the proof, we only have to prove the existence. This will be our future work.

Future research

Here, we would like to mention future research.

Hamiltonian line graphs

One of the topics in the hamiltonian graph is the hamiltonicity of claw-free graphs. As we all know, every line graph is claw-free.

The line graph transformation is probably the most interesting of all graph transformations, and it is certainly the most widely studied. The line graph concept is quite natural and has been introduced in several ways. We want to consider the hamiltonian line graphs next. Even we want to study pancyclicity on the line graphs. For example, we will consider the following problems: 

Fault-tolerant hamiltonicity

The consideration of fault-tolerance ability is a major factor in evaluating the performance of networks. A graph G is called a k-vertex fault-tolerant hamiltonian, or simply k-hamiltonian, if it remains hamiltonian after removing no more than k vertices from G. Hence, using the notion of fault-tolerance the k-hamiltonian-connected graphs, kpancyclic graphs, and k-panconnected graphs can be defined similarly. Fault-tolerant hamiltonicity has been widely studied in many network topologies, such as hypercubes, de Bruijn networks, double loop networks, twisted cubes, bubble-sort graphs, and star graphs. Given a graph G, we assign a sign + orto each edge of G. The edges labeled + are called positive edges while the ones labeledare called negative edges. We can see this assignment as a mapping of the edges of G to the set {+, -}. Such a mapping is called a signature of G. We normally denote the set of negative edges by Σ.

Note that a signature of G is given if and only if the set of negative edges is given, thus the set of edges Σ will be referred to as the signature of G, and (G, Σ) is called a signed graph.

Since edge faults can occur when a network is put into service, it is important to consider faulty networks. So, fault-tolerance ability is a very important factor of interconnection networks. Therefore, we want to consider edge fault-tolerant hamiltonicity and edge fault-tolerant pancyclicity (bipancyclicity) in many graphs, such as singed graphs and so on.

Graph coloring

Due to the four-color problem and the modeling of several applications, graph coloring is one of the most studied areas of graph theory. It consists of assigning colors to the vertices or edges of an input graph under various constraints.

Edge-colorings are interesting not only because of the mathematical point of view but also because of the many applications they have in real life, for example in scheduling problems and frequency assignment for fiber optic networks, etc. Therefore, many types of edge-colorings have been studied over the years.

An edge-colored graph is a graph whose edges have been colored in some way with c different colors. There is a question: given an edge-colored graph, how can we find (if possible) or guarantee the existence of some subgraphs with certain properties? For example, how to find or guarantee the existence of a hamiltonian cycle that is properly colored. So, we want to study proper hamiltonian cycles, proper hamiltonian paths, proper trees, proper cycles, rainbow trees, rainbow paths, rainbow cliques, monochromatic cliques, monochromatic cycles, etc. on some conditions such as several edges, connectivity, rainbow degree, etc.

A graph is k-proper connected if any two vertices are connected by k-vertex disjoint paths whose adjacent edges have distinct colors. A strong edge-coloring of a graph G is an edge-coloring such that any two vertices belonging to distinct edges with the same color are not adjacent.

We also want to study the proper connection of graphs and strong edge-colorings of graphs.

Other works

We can study graph structural properties with algorithmic aspects. We also consider the parameters for several classes of graphs like graphs without induced P 4 (path on 4 vertices), bipartite graphs, grids, etc.

Furthermore, we study the hamiltonian properties of the graph that can be combined with the algorithm.

The vertex coloring problem: the vertices of the input graph are presented to a coloring algorithm one at a time in some arbitrary order. The algorithm must choose a color for each vertex, based only on the colors assigned to the already-processed vertices.

We also studied the graph coloring problem by the algorithm such as polynomial-time algorithms. The most popular on-line coloring algorithm is the greedy algorithm.

Appendix A

The supplement of Claim 3.4.5

In this chapter, we will give a detailed proof of Claim 3. 

This is a contradiction.