Keywords: Transport optimal, Régularité partielle, Monge-Ampère, Matrices aléatoires, Ensemble de Ginibre Optimal transport, Partial regularity, Monge-Ampère, Random matrices, Ginibre ensemble. 1 (, ) = sup | | Lip ≤1

Mes premiers remerciements vont à mes directeurs de thèse, Max Fathi et Felix Otto, sans qui cette thèse ne serait pas ce qu'elle est. Je mesure ma chance d'avoir pu travailler à leurs côtés et j'ai apprécié tout particulièrement leur disponibilité, leurs conseils avisés et les nombreuses discussions au cours desquelles j'ai beaucoup appris.

Je tiens également à remercier Djalil Chafaï et Filippo Santambrogio pour leur lecture attentive de cette thèse et leurs remarques bienvenues. Merci à Maria Colombo et à Radu Ignat d'avoir accepté de faire partie de mon jury, j'en suis très honoré.

Je remercie bien sûr les co-auteurs des articles constituant cette thèse. Outre Max et Felix, je remercie ici Nathaël Gozlan. I would especially like to thank Tobias Ried for our numerous discussions in front of the blackboards of the Max Planck Institute ; it was always a pleasure to work with him.

Étant peu expansif par nature, je serai bref dans la suite. Ma gratitude va à tous les chercheurs avec qui j'ai échangé au cours de ma thèse et qui m'ont permis d'avancer, aux doctorants et post-docs avec qui j'ai pu discuter à Leipzig ou à Toulouse, à mes amis qui m'ont soutenu et m'ont surtout sorti régulièrement de mes recherches, qualité nécessaire au vu du caractère parfois anxiogène d'une thèse. Merci également à ma famille pour les mêmes raisons. Enfin, je remercie tout spécialement Amélie, pour m'avoir supporté pendant ces 3 ans, dans le sens anglais comme dans le sens français du terme.

Résumé

Cette thèse s'intéresse au problème du transport optimal, en particulier aux propriétés de régularité d'une fonction réalisant un tel transport.

La première partie de ce manuscrit donne une nouvelle démonstration du théorème de contraction de Caffarelli, selon lequel le transport optimal de la gaussienne sur une mesure ayant une densité uniformément log-concave par rapport à la gaussienne est 1-Lipschitz. Au contraire des précédentes preuves de ce résultat, la stratégie employée ici s'appuie directement sur le problème de minimisation, ou plus précisément sur une régularisation entropique du transport optimal et une caractérisation variationnelle de la propriété Lipschitz du transport optimal démontrée par Gozlan et Juillet.

La deuxième partie étend l'approche variationnelle proposée par Goldman et Otto, permettant de prouver la régularité partielle de fonctions de transport optimales, à des fonctions de coût générales. La principale nouveauté est l'introduction, dans le contexte du transport optimal, de la notion de quasi-minimalité déjà bien établie dans le domaine des surfaces minimales. On montre en effet qu'un plan de transport optimal pour un coût proche du coût quadratique est quasi-optimal pour le coût quadratique, permettant alors résoudre le problème posé par l'absence d'équivalence de Benamou-Brenier pour un coût quelconque.

Enfin, on obtient dans la troisième et dernière partie une estimation optimale de la vitesse de convergence, en distances de Wasserstein W1 et W2, de la mesure spectrale empirique de matrices de Ginibre vers la loi circulaire. Ceci s'appuie sur une estimation des fluctuations du nombre de points dans un domaine, grâce à la structure déterminantale du processus de points, et une construction itérative de mesures intermédiaires, de l'échelle microscopique à l'échelle macroscopique, permettant de relier distance W2 et variance du nombre de points.
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De façon générale, la présente thèse s'intéresse au problème du transport optimal. Ce chapitre introductif s'attachera d'abord à présenter les notions essentielles du transport optimal, en particulier sa structure et ce que l'on peut dire de sa régularité. On s'attardera ensuite sur un sous-problème, celui de l'appariement optimal entre mesures empiriques de points, qu'ils soient i.i.d. ou qu'ils représentent les valeurs propres de matrices aléatoires.

La dernière section consiste en une présentation des résultats obtenus, ceux-ci constituant le reste du manuscrit. Le chapitre 1 reprend l'article [FGP20] et donne une preuve variationnelle du théorème de contraction de Caffarelli. Le chapitre 2 est basé sur l'article [OPR21], où l'on étend l'approche variationnelle de [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] à des coûts généraux. Enfin, le chapitre 3 s'intéresse au comportement de la mesure spectrale des matrices de Ginibre, donnant en particulier une Introduction IV.2 Généralisation de l'approche variationnelle de [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] 

I Le problème du transport optimal

Posée pour la première fois par Monge en 1781, la question était la suivante : étant donné un tas de sable avec une certaine forme, comment déplacer chaque grain de sable pour former un autre tas ayant une configuration prescrite, de façon à minimiser la distance moyenne de transport ? En termes mathématiques, étant données deux distributions de masse dans R (dans le problème de Monge, la dimension de l'espace ambiant est 2 ou 3 mais on autorise ici une dimension quelconque), modélisées par deux densités : R ⊃ → R On peut généraliser cette question à des distributions données par des mesures positives de même masse sur R , ainsi qu'à d'autres façons de calculer le coût du transport de à . Ainsi, si , respectivement , est une mesure sur , respectivement , avec ( ) = ( ), et si : R × R → R + est une fonction telle que ( , ) représente le coût de déplacement de à , existe-t-il une fonction de transport telle que # = et vérifiant

∫ ( , ( )) (d ) = inf # = ∫ ( , ( )) (d ) ? (I.1)
La mesure # , appelée push-forward de par , est une mesure sur définie par

( # )( ) = ( -1 ( )),
ou de façon équivalente par la propriété que, pour toute fonction mesurable,

∫ d( # ) = ∫ • d .
On retrouve au passage dans cette définition le fait que et # ont la même masse totale. Dans la suite, on normalise cette masse commune à 1 : et sont des mesures de probabilité, dont on note l'ensemble P (R ).

Le premier obstacle à l'existence d'un tel transport optimal est l'absence possible de fonction de transport. En effet, prenons l'exemple d'une mesure de Dirac comme distribution de départ. Dans ce cas, toute fonction transporte sur la mesure de Dirac ( ) , de sorte qu'il n'existe de fonction de transport que si la mesure d'arrivée est elle-même un Dirac. Le deuxième obstacle est bien sûr la possibilité que l'infimum dans (I.1) ne soit pas atteint, ce qui peut arriver lorsque la mesure de départ donne une mesure non nulle à des ensembles de dimension strictement inférieure à . Voir [San15, Sec. 1.4] où l'exemple du transport entre les mesures := ℋ 1 {0}×[0;1] et := 1 2 ℋ 1 {-1}×[0;1] + 1 2 ℋ 1 {1}×[0;1] dans R 2 est détaillé. Suivant les idées de Kantorovitch, remarquons qu'une fonction de transport est un cas particulier de plan de transport, c'est-à-dire une mesure sur × qui forme un couplage entre et dans le sens où la première marginale ( -dimensionnelle) de est et sa seconde marginale est , ou encore : pour toute fonction : R → R,

∫ × ( ) (d d ) = ∫ d et ∫ × ( ) (d d ) = ∫ d .
En effet, en notant = (Id × ) # le couplage induit par , on a

∫ ( , ( )) (d ) = ∫ × ( , ) (d d ).
L'idée est alors de relaxer le problème de minimisation (I.1) en autorisant tous les couplages entre et , pas seulement ceux induits par une fonction de transport. On arrive au problème suivant : étant données deux mesures et et une fonction , on cherche un couplage tel que

∫ × d = inf ∈Π( , ) ∫ × d , (I.2)
où Π( , ) désigne l'ensemble des couplages entre et . D'un point de vue physique, le problème (I.2), à la différence du problème (I.1), permet de séparer la masse. En effet, si on a une fonction de transport alors toutes les particules présentes en position vont au même endroit, donné par ( ). Le transport est dit déterministe. Avec un couplage ∈ Π( , ), il est possible d'envoyer des particules partant de la même position en plusieurs endroits différents, dont la distribution est donnée par la désintégration de par rapport à : le théorème de désintégration permet d'écrire (d d ) = (d ) (d ), ce qui indique que la masse provenant de est redistribuée selon (remarquons que la désintégration de donne ( ) = ( ) ). Dit autrement, ( × ) est la quantité de matière passant de l'ensemble à l'ensemble .

Mathématiquement, le problème (I.2) est beaucoup plus simple à résoudre que (I.1). D'une part, la fonctionnelle à minimiser est linéaire par rapport au couplage et d'autre part, l'ensemble Π( , ) est convexe ; on est donc face à un problème d'optimisation convexe. Remarquons également que cette fois, l'ensemble sur lequel on optimise n'est jamais vide et qu'il est compact pour la topologie de la convergence étroite, par application du théorème de Prokhorov. Une application de la méthode directe du calcul des variations nous donne alors notre premier résultat d'existence (voir par exemple [San15, Th. 1.7]).
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Théorème I.1. Soient , ∈ P (R ) et : R × R → R + semi-continue inférieurement. Alors (I.2) admet une solution.

Distance sur l'espace des mesures de probabilité

Un intérêt théorique important du transport optimal est qu'il fournit une famille de distances "naturelles" sur l'espace P (R ). Plus précisément, si ≥ 1, le coût optimal de transport entre deux mesures avec fonction de coût ( , ) := | -| vérifie les axiomes d'une distance.

Proposition I.1 (Distances de Wasserstein

). Soit 1 ≤ < ∞, soient et deux mesures ayant chacun un moment d'ordre fini, ce que l'on notera , ∈ P (R ). Définissons

( , ) := inf ∫ | -| d | ∈ Π( , ) 1 
.

Alors est une distance sur P (R ).

Exemple I.2. Un cas très simple où la distance de Wasserstein est calculable est celle de deux mesures de Dirac :

( , ) = | -|.
La topologie induite par est celle de la convergence faible des mesures, si on se place sur P (Ω) avec Ω un compact. Sur R , on a l'équivalence

( , ) → 0 ⇐⇒ ⇀ et ∫ | | d → ∫ | | d .
De plus, P (R ), est complet (voir par exemple [AGS08, Prop. 7.1.5]). La distance 1 admet une formulation duale qui prend la forme de la distance de Kantorovich-Rubinstein ([Vil03, Th. 1.14]),

Transport déterministe dans un cadre discret

Après le résultat positif donné par le Théorème I.1, le but est de montrer que, sous certaines conditions sur et ainsi que sur , le plan de transport optimal est en fait induit par une fonction de transport. Examinons cela dans un cadre simplifié.

Exemple I.3. Etudions ici un problème d'appariement optimal (cf. section III), c'est-à-dire le cas où les deux mesures et sont discrètes et ont le même nombre d'atomes, chacun de ces atomes ayant le même poids 1 :

= 1 =1 et = 1 =1 .
Un couplage entre et est alors représenté par une matrice ( ) 1≤ , ≤ où 0 ≤ ≤ 1 donne la portion de masse allant de à . Toute la masse de doit être relocalisée et doit former toute la masse de , ce qui implique que est bistochastique :

=1 = =1 = 1 ∀ ( , ).
Notre problème de transport optimal devient donc min , =1 ( , )

| bistochastique .

Comme on l'a vu plus haut, c'est un problème d'optimisation linéaire avec contraintes convexes donc l'infimum est atteint en un point extrémal de l'ensemble des matrices bistochastiques. D'après le théorème de Birkhoff-von Neumann, un tel point extrémal est une matrice de permutation. On obtient donc un minimiseur induit par une fonction de transport . Il n'y a donc pas d'intérêt à séparer la masse de , il suffit de relier les points deux à deux de façon optimale. Remarquons également qu'il n'y a pas forcément unicité du transport optimal dans ce cadre discret. Par exemple si et sont constituées de deux points chacune de telle façon que les deux atomes de sont placés sur la médiatrice du segment reliant les deux atomes de , voir la Figure 2, alors les deux fonctions possibles sont optimales dès que le coût est par exemple fonction de la distance. Dans ce cadre simple, peut-on exhiber une condition nécessaire et suffisante pour que soit optimale ? Remarquons que toute autre fonction de transport de à peut être déduite de en permutant les indices : ( ) = ( ( ) ) pour une certaine permutation ∈ . Le transport est donc optimal si et seulement si Introduction ou, présenté autrement : pour tout ≥ 1, pour tous ( 1 , . . . , ) ∈ { 1 , . . . , } , en notant := ( ) ∈ { 1 , . . . , }, on a =1 ( , ) ≤ =1 ( , ( ) ) ∀ ∈ .

Cette condition nécessaire et suffisante d'optimalité découle ici de notre connaissance préalable de la structure déterministe du plan de transport optimal. Pourtant, on va voir dans la suite que cette condition, que l'on appelle -monotonie cyclique est encore nécessaire et suffisante pour qu'un plan de transport entre deux mesures de probabilité quelconques soit optimal. C'est grâce à cette propriété que l'on va prouver dans certains cas que est déterministe.

Aspects numériques

D'un point de vue numérique, le problème d'appariement optimal présenté dans l'exemple I.3 peut être résolu par l'algorithme hongrois, ou l'algorithme des enchères. Plus généralement, le transport optimal entre deux mesures discrètes est un problème adapté à des méthodes d'optimisation linéaire de type simplexe ou points intérieurs, voir [PC19, Section 3] ou [San15, Section 6.4] pour plus de détails. Cependant, ces techniques ont toutes une complexité au mieux cubique par rapport au nombre de points. Une autre approche a été proposée dans [START_REF] Cuturi | Sinkhorn distances: lightspeed computation of optimal transport[END_REF], permettant une amélioration substantielle de la rapidité de calcul. L'idée est de minimiser la fonctionnelle de (I.2) pénalisée par un terme entropique que l'on peut choisir petit. Ceci rend le problème strictement convexe et permet l'application de l'algorithme de Sinkhorn, ou IPFP, convergeant très rapidement. On va également utiliser cet algorithme à des fins théoriques dans le chapitre 1 de cette thèse.

Applications du transport optimal

L'économie est un domaine d'application historique du transport optimal puisque c'est dans ce cadre que Kantorovitch (et d'autres mathématiciens) a entre autres développé les techniques de résolution du problème (I.2). Beaucoup de problèmes en économie ou logistique sont formulés en terme de couplage : allocation de ressources, planification de production, appariement entre salariés et emplois de façon à ce que les compétences de chacun correspondent au mieux à l'emploi et que les salaires soient optimisés, le problème principal-agent... On renvoie à [Gal16] pour une présentation des applications modernes du transport optimal en économie. Un deuxième domaine d'application majeur, bien que plus récent, se trouve en science des données, que ce soit le traitement d'images, de données, l'interpolation de formes, la classification supervisée et l'adaptation de domaine en machine learning, voir [KPTSR17, PC19] pour ces notions et beaucoup d'autres applications. On verra également dans la suite de cette introduction des liens avec la mécanique des fluides. Enfin, mentionnons une application théorique importante à la géométrie riemanienne, à savoir la théorie développée indépendamment par Lott et Villani dans [LV09] et Sturm dans [START_REF] Sturm | On the geometry of metric measure spaces I[END_REF]Stu06b] pour donner une notion de courbure de Ricci minorée à des espaces métriques généraux via la convexité de certaines fonctionnelles le long des géodésiques définies par le transport optimal.

I.1 Coût quadratique

On va maintenant focaliser notre présentation sur le cas d'un coût fonction quadratique de la distance euclidienne, c'est-à-dire ( , ) = | -| 2 2 , ou de façon équivalente ( , ) = -• , puisque ce coût donne exactement les mêmes minimiseurs. Ce coût quadratique est le plus utilisé dans la littérature, du fait de la simplicité des résultats associés et de la riche structure que confère la distance 2 à l'espace des mesures de probabilité. Voyons d'abord ce que la notion de -monotonie cyclique devient dans ce cadre : un ensemble Γ ⊂ R × R est dit cycliquement monotone si pour tout > 0, tous -uplets ( 1 , . . . , ) et ( 1 , . . . , ) tels que ( , ) ∈ Γ pour tout , on a

=1 | -| 2 ≤ =1 | -( ) | 2 ∀ ∈ , ce qui est équivalent à =1 • ( -( ) ) ≥ 0 ∀ ∈ .
On comprend avec ce cas particulier l'emploi du terme "monotonie". En particulier, cette définition implique que pour deux couples ( 1 , 1 ), ( 2 , 2 ) ∈ Γ, le vecteur reliant 1 à 1 ne peut pas croiser celui reliant 2 à 2 . Si ces vecteurs représentent un transport de masse de à , on s'attend à ce qu'un transport optimal vérifie cette propriété. La Figure 3 présente deux transports entre deux ensembles de 4 points, celui de droite est cycliquement monotone et optimal, celui de gauche n'est pas monotone. En fait, la propriété de monotonie est plus forte que celle de non-croisement, comme le montre le coin supérieur droit de la Figure 3. Dans ce coin, on transporte deux points sur deux autres points, les deux transports possibles donnent des trajectoires qui ne se croisent pas, pourtant le transport de droite est monotone et optimal alors que celui de gauche n'est pas monotone donc pas optimal.

Introduction inclus dans le graphe de la sous-différentielle d'une fonction convexe propre et semi-continue inférieurement , la Proposition I.4 induit que si est absolument continue par rapport à la mesure de Lebesgue, de façon à ce que l'ensemble des points où n'est pas différentiable soit de -mesure nulle, alors Spt est inclus dans le graphe du gradient d'une fonction convexe. On obtient donc en partie le résultat suivant.

Théorème I.2 (Brenier [Bre87], McCann [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps[END_REF]). Soient , ∈ P (R ) avec ℒ . Si et ont des moments d'ordre 2 finis, il existe une unique fonction telle que # = et vérifiant (I.1), avec ( ,

) = | -| 2
2 . De plus, est le gradient d'une fonction convexe : = ∇ .

Si le moment d'ordre 2 de ou est infini, il existe un unique gradient ∇ d'une fonction convexe telle que ∇ # = .

Enfin, si on ajoute l'hypothèse ℒ alors ∇ * est l'unique transport optimal, en coût quadratique, de à , où * est la transformée de Legendre de . En particulier, ∇ • ∇ * = Id presque partout.

On dira que dérive d'un potentiel convexe . La réciproque est vraie, dans le sens où le gradient d'une fonction convexe qui transporte sur est optimal pour le coût quadratique.

Exemple I.5. En dimension 1, la propriété = avec convexe revient à dire que est une application croissante. En fait, on peut montrer directement que si ∈ P (R) n'a pas d'atome alors := ℱ -1 • ℱ est l'unique fonction croissante transportant sur , où ℱ est la fonction de répartition de la mesure et ℱ -1 sa pseudo-inverse. Cette fonction est donc le transport optimal en coût quadratique de à . Elle est également optimale pour d'autres coûts, en particulier tous ceux de la forme ( , ) = ℎ(| -|) avec ℎ strictement convexe. 

Dualité de Kantorovitch

Le potentiel convexe est lié à une formulation duale du problème de transport optimal. Plus précisément, la contrainte ∈ Π( , ) se réécrit 

Formulation eulérienne du transport optimal et formule de Benamou-Brenier

Prenons l'exemple d'un couplage déterministe, donné par une fonction de transport . Une fois que l'on connaît , c'est-à-dire que l'on sait comment la masse est redistribuée, on peut représenter ce couplage de façon dynamique par des segments reliant chacun une position initiale à sa destination ( ). On définit ainsi une famille de fonctions

( ) := (1 -) + ( ) pour ∈ [0, 1].
On a ainsi une vision lagrangienne du transport : on suit au cours du temps chaque particule le long de sa trajectoire ( ( )) ∈[0,1] . Comme en mécanique des fluides, on peut passer à une description eulérienne du même phénomène, introduite dans le cadre du transport optimal par Benamou et Brenier dans [START_REF] Benamou | A numerical method for the optimal time-continuous mass transport problem and related problems[END_REF]. En effet, définissons la famille de mesures

:= # pour ∈ [0, 1].
est la distribution de masse à l'instant , on a en particulier 0 = et 1 = . Pour que la description soit complète, il faut donner le champ de vitesse à l'instant . Or le trajet de à ( ), de = 0 à = 1, se fait à vitesse constante ( ) -, ce qui nous donne Introduisons l'énergie cinétique associée à l'équation de continuité (I.6) ([AFP00, Eq. 2.26]) :

∫ 1 | | 2 :=        ∫ 1 0 ∫ d d ( ) 2 (d ) d si , +∞ sinon.
Dans [START_REF] Benamou | A numerical method for the optimal time-continuous mass transport problem and related problems[END_REF] (voir aussi [START_REF] Villani | Topics in optimal transportation[END_REF]Th. 8.1], [AGS08, Chap. 8]), Benamou et Brenier ont prouvé que la formulation lagrangienne du transport optimal avec le coût quadratique, consistant à minimiser la longueur quadratique moyenne des trajectoires, est bien équivalente à sa version eulérienne, qui consiste à minimiser l'énergie cinétique globale de la paire ( , ) :

inf

∈Π( , ) ∫ | -| 2 (d d ) = inf ∫ 1 | | 2 | + ∇ • = 0, 0 = , 1 = . (I.8)
En particulier, la paire ( , ) minimisant le membre de droite est bien la paire densité-flux associée au minimiseur du membre de gauche. Cette formulation équivalente conduit à une méthode numérique de calcul du transport optimal, voir [START_REF] Benamou | A numerical method for the optimal time-continuous mass transport problem and related problems[END_REF] et [San15, Chap. 6].

Structure géométrique de l'espace P 2 (R ), 2

Dans la version dynamique du transport, on étudie des courbes dans l'espace de mesures P (R ). Si et sont dans P (R ), la courbe ( ) ∈[0,1] associée au plan de transport optimal par l'équation (I.4) définit en fait une géodésique à vitesse constante dans l'espace métrique P (R ), , dans le sens où, pour tous , ∈ [0, 1],

( , ) = | -| ( , ).

L'espace P (R ), est alors un espace géodésique : pour tous , ∈ P (R ), il existe une géodésique à vitesse constante qui les relie. De plus, une courbe dans P (R ) est une géodésique à vitesse constante de P (R ), si et seulement si elle est de la forme (I.4) pour une mesure ∈ P (R × R ) optimale pour le coût | -| , en tant que couplage entre ses -marginales.

Même si l'équivalence (I.8) peut être généralisée aux coûts | -| pour tout > 1, c'est dans le cas euclidien = 2 que la formule est la plus riche de conséquences. En effet, réécrivons cette équivalence de la façon suivante :

2 2 ( , ) = inf ∫ 1 0 2 ( ) d | + ∇ • ( ) = 0, 0 = , 1 = .
Une telle formule ressemble fortement à la définition d'une métrique riemannienne, c'est-à-dire

2 ( , ) = inf ∫ 1 0 ( ) 2 ( ) d | (0) = , (1) 
= , où . est la norme associée au produit scalaire sur l'espace tangent au point . Il apparaît alors que l'on peut munir P 2 (R ), 2 d'une structure riemannienne formelle : en définissant la norme

= inf 2 ( ) | + ∇ • ( ) = 0 , (I.9) on a 2 2 ( , ) = inf ∫ 1 0 2 d | 0 = , 1 = .
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I.2 Coût général

Une partie de cette thèse s'inscrit dans un contexte plus général que le coût quadratique. Voyons ici comment s'adaptent les résultats précédents si : R × R → R + est maintenant une fonction de coût quelconque.

Le premier résultat que l'on peut adapter directement est celui de -monotonie cyclique du support d'un plan de transport optimal ([Rüs96]). 

( ) = sup ∈ {-( , ) + },
pour une famille de constantes . La -sous-différentielle de en est alors 

( ) = { ∈ | ( ) + ( , ) ≥ ( ) + ( , ), ∀ ∈ }.

II Régularité du transport optimal

Après avoir résumé les principales notions liées au transport optimal, on s'intéresse maintenant à la régularité du minimiseur de (I.1). Pour cela, on suppose dans cette section que les mesures et sont absolument continues par rapport à la mesure de Lebesgue, de façon à ce qu'il existe un transport optimal déterministe dans les deux directions. Les deux premières soussections traiteront exclusivement du coût quadratique, d'abord en présentant les liens entre le transport optimal et une équation de Monge-Ampère, la majorité des résultats de régularité étant obtenus par cette équation. On verra que dans la plupart des cas, espérer une régularité globale, même aussi simple que la continuité, de la fonction de transport est irréaliste, ce qui nous amènera à des résultats de régularité partielle.

II.1 L'équation de Monge-Ampère

La situation est la suivante : , : R → R sont deux densités de probabilité à supports compacts Spt ⊂ et Spt ⊂ , et étant deux ouverts bornés de R , et on suppose qu'elles sont bornées et minorées par une constante strictement positive sur leurs supports. Soit maintenant : R → R une fonction transportant sur , c'est à dire # = . 2 Cette propriété se réécrit

∫ ( ( )) ( ) d = ∫ ( ) ( ) d ∀ ,
ce qui, après un changement de variables formel = ( ) sur l'intégrale de droite, donne

∫ ( ( )) ( ) d = ∫ ( ( )) ( ( ))| det ( )| d ∀ .
On obtient donc formellement, en utilisant la minoration strictement positive de ,

| det ( )| = ( ) ( ( )) pour ∈ . (II.1)
Cette EDP découle uniquement d'un changement de variables et de la condition # = , en particulier, le caractère optimal ou non de pour un certain coût n'est pas utilisé. Cependant, il est impossible d'obtenir une quelconque régularité de , même en supposant et aussi régulières que possible, de l'équation (II.1). D'abord, le calcul que l'on a fait est formel et le changement de variables doit être justifié, ce qui nécessite une régularité préalable de . Ensuite, il existe en général une infinité de solutions à (II.1), la plupart n'ayant aucune régularité. Prenons un exemple extrêmement simple : = = 1 où est le disque unité de R 2 . Le transport optimal est bien sûr l'identité mais n'importe quelle fonction qui échange des parties du disque est un transport admissible. Il est donc clair que l'on ne peut s'attendre à aucune régularité pour un transport quelconque.

Si maintenant est en plus optimal pour le coût quadratique, le Théorème I.2 donne une information supplémentaire sur la structure de : c'est le gradient d'une fonction convexe . Un théorème d'Alexandrov ([Vil09, Th. 14.25]) assure alors que est presque partout deux fois différentiable, ce qui permet de définir une hessienne ∇ 2 positive, et de prouver que = ∇ vérifie bien l'équation (II.1) presque partout, celle-ci prenant alors la forme d'une équation de type Monge-Ampère en .

Théorème II.1 (McCann [McC97]). Avec les hypothèses sur et , si est une fonction convexe telle que

∇ # = alors pour presque tout ∈ R , det ∇ 2 ( ) = ( ) (∇ ( )) . (II.2)
Puisque est bien une solution dans un sens classique de l'équation, grâce au Théorème II.1, on dira qu'une fonction convexe telle que ∇ # = est une solution au sens de Brenier de l'équation de Monge-Ampère (II.2).

L'équation de Monge-Ampère det ∇ Cependant, pour l'équation de Monge-Ampère (II.2) dérivant du problème de transport optimal, on a besoin d'une théorie de régularité pour un second membre beaucoup moins régulier, une hypothèse de régularité sur •∇ revenant à une hypothèse de régularité sur .
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Au début des années 90, Caffarelli a développé une théorie de régularité pour (II.3) avec un second membre seulement supposé majoré et minoré par des constantes strictement positives, ce qui correspond exactement à notre hypothèse sur les densités et .

Théorème II.2 (Caffarelli [Caf91]). Soit : Ω → R une fonction strictement convexe vérifiant, pour un certain > 0,

1 ≤ det ∇ 2 ≤
sur Ω, (II.4) 

au sens d'Alexandrov alors ∈ C
= 1 et = 1 ( ∩{ 1 <0})-1 + 1 ( ∩{ 1 >0})+ 1 , où est le disque unité de R 2 .
Il est clair que le transport optimal ( ) = + sgn( ) 1 est discontinu sur { 1 = 0}. Il est alors possible de montrer que cette discontinuité est conservée dans la situation voisine où le support de est modifié en une forme d'haltère avec un pont entre les deux demi-disques, en faisant un domaine connexe mais non convexe. Par stabilité du transport optimal, si le pont est suffisamment mince, le Exemple II.2. Dans [Wol97] et [Urb07], les auteurs donnent un critère sur les courbures des bords de deux domaines qui assure que le transport optimal entre ces deux domaines n'est pas un C 1 -difféomorphisme. Plus récemment, l'article [CJLPR15] fournit un critère du même type sur la courbure du bord du domaine d'arrivée suffisant pour que le transport optimal soit discontinu. Enfin, on peut se demander si un "petit" défaut de convexité peut induire une discontinuité du transport, le support de la mesure-cible dans le contre-exemple II.1 étant très fortement non-convexe. C'est effectivement le cas : dans [Jha19], il est démontré que pour tout > 0, l' -perturbation Lipschitz d'un carré présentée dans la Figure 8, induit un transport optimal discontinu de 1 sur 1 , ce qui illustre bien l'importance de la convexité du domaine d'arrivée.

1 2 -1 1 2 -1 -2
1 2 2 2 -2 -2 1 2 2 2 -2 -4 -2 2 - 1 Figure 8: Le contre-exemple de [Jha19].
En ajoutant cette hypothèse de convexité, Caffarelli a prouvé qu'une solution convexe au sens de Brenier de (II.2) est bien une solution au sens d'Alexandrov de cette même équation. Partant de là, il a obtenu le résultat suivant.

Théorème II.3 (Caffarelli [Caf92a], [START_REF] Caffarelli | Boundary regularity of maps with convex potentials[END_REF]). En plus des hypothèses sur et au début de cette sous-section, supposons que Spt est convexe. Alors le transport optimal de à est C 0, à l'intérieur de Spt , pour un certain ∈ (0, 1).

Si de plus, Spt est convexe alors ∈ C 0, (Spt ), pour un certain ∈ (0, 1).

Dans [START_REF] Caffarelli | Interior 2, estimates for solutions of the Monge-Ampère equation[END_REF], Caffarelli montre également que si est une solution convexe au sens d'Alexandrov de det ∇ 2 = sur 1 et si est suffisamment proche de 1 alors est 2, sur 1 2
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Supposons maintenant que et sont tous les deux proches de 1 : ( ) = 1+ ( ) + ( 2) et ( ) = 1 + ( ) + ( 2 ). Le même calcul que précédemment donne l'équation linéarisée -Δ = -.

Ainsi, si et sont proches de 1, la solution de l'équation de Monge-Ampère (II.2) associée est proche de 

= (1+ ℎ( ) + ( 2 )) ( ). On a alors 2 2 ( , ) = ∫ |∇ ( ) -| 2 (d ) = 2 ∫ |∇ | 2 d + ( 4 ).
On a vu que est solution de l'équation linéarisée (II.5), c'est-à-dire en notant := -Δ-∇ • ∇, = ℎ.

L'opérateur vérifiant une formule d'intégration par parties contre , on obtient

∫ ∇ • ∇ d = ∫ ( ) d = ∫ ℎ d .
En définissant la norme à poids -1 ( ) par

ℎ -1 ( ) := sup ∫ ℎ d | ∇ 2 ( ) ≤ 1 , et en remarquant que pour tout , ∫ ℎ d = ∫ ( ) d = ∫ ∇ • ∇ d ≤ ∇ 2 ( ) ∇ 2 ( ) , avec égalité si = ∇ 2 ( )
, on en déduit que

∇ 2 ( ) = ℎ -1 ( ) .
On voit formellement qu'au premier ordre (voir [OV00, § 7]), 2 ( , (1 + ℎ) ) = ℎ -1 ( ) + (ℎ). Il est possible d'intégrer cette estimation infinitésimale et de passer d'une norme à poids à la norme -1 associée à la mesure de Lebesgue. Ainsi, si 0

< ≤ , ≤ < ∞, on a (voir [Pey16], [San15, Th. 5.34]) 1 √ - -1 ≤ 2 ( , ) ≤ 1 √ - -1 . (II.7)

II.2 Régularité partielle

On a vu dans l'Exemple II.1 que si le domaine d'arrivée n'est pas convexe, on ne peut pas espérer une régularité globale pour la fonction de transport optimale. Voyons dans cette sous-section ce que l'on peut tout de même dire dans ce cas. Les hypothèses sur les densités et sont les mêmes que dans la sous-section précédente, en particulier , , 1 et 1 sont bornées par sur leurs supports. Rappelons également que le coût est quadratique.

Le premier résultat dans ce sens est dû à Figalli ([Fig10]) en dimension 2, et est rapidement étendu aux dimensions supérieures par Figalli et Kim ([FK10]).

Théorème II.4 ). Soit le transport optimal de à . Il existe deux ouverts

⊂ et ⊂ avec | \ | = | \ | = 0, tels que : → soit un C 0, -difféomorphisme.
Dans [Fig10], une description précise de l'ensemble des points singuliers du potentiel convexe est donnée, ce qui n'a pas pu être étendu en dimension supérieure. La preuve de [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF] suit la stratégie de [Caf92a], en montrant en particulier qu'en un point pour lequel ( ) ∩ ≠ ∅, le potentiel convexe est strictement convexe et différentiable. Il reste alors à montrer que cet ensemble est un ouvert de mesure pleine.

Preuve variationnelle de régularité partielle

Le chapitre 2 de cette thèse s'appuie sur une preuve variationnelle du Théorème II.4 proposée par Goldman et Otto dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], dont on va maintenant donner un aperçu.

Le résultat principal est un résultat d' -régularité qui, couplé au théorème d'Alexandrov, permet rapidement de montrer la régularité partielle de mentionnée dans le Théorème II.4. Pour énoncer ce résultat d' -régularité, on introduit l'énergie quadratique de à l'échelle

E ( ) := 1 +2 ∫ | ( ) -| 2 d + ∫ | -1 ( ) -| 2 d ,
qui mesure l'erreur en norme 2 entre et l'identité dans et entre -1 et l'identité dans . L'idée de l' -régularité est de montrer que si est proche de l'identité à une certaine échelle, c'est-à-dire ici si l'énergie E ( ) est petite, et donc si et sont proches de 1 à cette échelle, alors est hölderienne à une plus petite échelle.

Théorème II.5. Supposons que (0) = (0) = 1 et que pour un certain > 0,

E ( ) + 2 [ ] 2 , + [ ] 2 , 1, (II.8) alors ∈ C 1, ( 2 
) et 2 [∇ ] 2 , 2
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• L'ingrédient principal est une version quantitative de la linéarisation de l'équation de Monge-Ampère en équation de Poisson, présentée dans la sous-section II.1. En effet, la situation est proche de celle décrite dans cette sous-section : le transport := ∇ est proche de l'identité et les densités et sont proches de 1. Ainsi, -Id devrait être proche du gradient d'une fonction solution du problème de Poisson associé dans avec condition au bord liée au flux . La version quantitative [GO20, Prop. 4.6] est la suivante : pour tout > 0, sous les mêmes hypothèses que le Théorème II.5, en particulier (II.8) qui dépend maintenant de , il existe un gradient harmonique ∇ dans

2 tel que 1 +2 ∫ 2 | ( ) --∇ ( )| 2 d E ( ) + 2 [ ] 2 , + [ ] 2 , , (II.9) et 1 +2 ∫ 2 |∇ | 2 E ( ) + 2 [ ] 2 , + [ ] 2 , .
Cette approximation harmonique est d'abord prouvée dans le cadre eulérien, en construisant un compétiteur à la paire densité-flux associée à , puis transférée dans le cadre lagrangien grâce à l'équivalence (I.8).

• Après développement de Taylor de , il est clair que doit être très proche d'une fonction affine, celle-ci étant très proche de l'identité par estimations elliptiques. En particulier, le fait que l'on puisse choisir aussi petit que l'on veut dans (II.9) fait que est plus proche d'une fonction affine à l'échelle 2 qu'elle ne l'était grâce à (II.8) à l'échelle . Ceci suggère d'effectuer un changement de variables affine pour obtenir un transport , toujours optimal entre deux densités et , et telle qu'à une plus petite échelle et pour un certain > 0,

E ( ) ≤ 2 E ( ) + 2 [ ] 2 , + [ ] 2 , .
• La dernière étape est une itération du résultat précédent pour obtenir la formulation de Campanato de la régularité C 1, de ([Cam64]).

Ce schéma de preuve a été généralisé à des mesures et quelconques dans [GHO21] et adapté dans [MO21] pour obtenir un résultat de régularité au bord, améliorant ainsi un résultat de [START_REF] Chen | Boundary -regularity in optimal transportation[END_REF]. Le chapitre 2 de cette thèse est une généralisation de cette stratégie au cas de coûts généraux et utilise le résultat d'approximation harmonique obtenu dans [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF]. Le cas où les densités sont seulement continues est également traité dans [START_REF] Goldman | An -regularity result for optimal transport maps between continuous densities[END_REF].

II.3 Coût général

La régularité du transport optimal pour un coût général ( , ) est beaucoup plus complexe. Voyons d'abord ce que devient l'équation de transport dans ce cas. Supposons que le coût satisfait aux hypothèses (C1)-(C2). On a toujours

| det ( )| = ( ) ( ( ))
, avec ( ) = c-exp (∇ ( )) d'après le Théorème I.3, où est une fonction -convexe. Par définition de la -exponentielle, ∇ ( ) + ∇ ( , ( )) = 0, ce qui peut être différencié (le calcul est à nouveau formel) en

∇ 2 ( ) + ∇ ( , ( )) + ( )∇ ( , ( )) = 0, où ∇ = 2 , et ∇ = 2 ,
. Ce calcul suggère l'introduction de l'hypothèse suivante sur le coût :

(C4) det ∇ ( , ) ≠ 0 pour tout ( , ) ∈ × .
En supposant (C4) et en remarquant que la -convexité de implique que si est 2 fois différentiable en alors ∇ 2 ( ) + ∇ ( , ( )) ≥ 0, on obtient une équation du type Monge-Ampère vérifiée par : → soit un C 0, -difféomorphisme, pour tout < 1. Si de plus ∈ C +2, et , ∈ C , alors est un C +1, -difféomorphisme. Le chapitre 2 s'attachera à donner une preuve variationnelle de ce résultat, généralisant ainsi la stratégie de [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] (cf. sous-section IV.2 pour une présentation générale de cette preuve). Le résultat crucial de [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] est un théorème d' -régularité, voir [DF15, Th. 4.3 & 5.3], qui prouve la régularité dans un contexte local et normalisé. L'argument utilisé dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], et donc dans le chapitre 2, est assez similaire à celui de [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]. En effet, les deux sont Introduction basés sur une itération de Campanato, sur des boules dont le rayon décroît géométriquement, qui reproduit à chaque étape une amélioration de l'erreur après changement de variables affine. Ce changement de variables provient dans les deux cas de la proximité entre la solution du problème de transport optimal (pour le coût quadratique dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], pour un coût général dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]) et la solution d'un problème plus simple admettant une théorie de régularité bien établie. La principale différence réside dans ce problème simplifié : si dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF], la comparaison se fait avec une équation de Monge-Ampère avec source constante, dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], c'est un simple problème de Poisson qui est utilisé. De plus, cette comparaison se base sur le principe du maximum dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] alors qu'elle s'appuie dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] sur le fait que la paire densité-flux optimale est un minimiseur local (ou un quasi-minimiseur dans le chapitre 2) avec ses propres conditions au bord.

det ∇ 2 ( ) + ∇ ( , ( )) = det ∇ ( , ( )) ( ) ( ( )) , (II.10) en rappelant que ( ) = c-exp (∇ ( )
La stratégie mise en place dans [DF15, Th. 4.4 & 5.3] a été développée ensuite dans [START_REF] Chen | Boundary -regularity in optimal transportation[END_REF] pour prouver un résultat de régularité au bord, dans [START_REF] Chen | Stability results on the smoothness of optimal transport maps with general costs[END_REF] pour obtenir la stabilité de la régularité hölderienne du transport et dans [START_REF] Chen | Partial 2, regularity for optimal transport maps[END_REF] où est établie une régularité 2, partielle du transport optimal.

II.4 Régularité quantitative

On présente ici un résultat de régularité plus quantitatif dû à nouveau à Caffarelli [Caf00,[START_REF] Caffarelli | Erratum: "Monotonicity of optimal transportation and the FKG and related inequalities[END_REF]. Celui-ci énonce que la fonction de transport optimale, en coût quadratique, de la

gaussienne standard (d ) = (2 ) -2 -| | 2
2 d sur R vers une mesure ayant une densité uniformément log-concave par rapport à est 1-Lipschitz.

Théorème II.7 (Caffarelli [Caf00,[START_REF] Caffarelli | Erratum: "Monotonicity of optimal transportation and the FKG and related inequalities[END_REF]). Soit une mesure de probabilité de la forme (d ) = - (d ) avec une fonction convexe. Alors il existe une fonction : R → R convexe de classe C 1 avec ∇ # = et ∇ 2 ≤ , où ∇ 2 est la Hessienne de au sens d'Alexandrov. Ainsi, la fonction de transport = ∇ de à est 1-Lispchitz.

Notons qu'on peut facilement en déduire une version un peu plus quantitative. En effet, on peut reformuler le Théorème II.7 de la façon suivante : si est convexe et

∇ # = avec (d ) = -( ) d et ∇ 2 ≥ , alors ∇ 2 ≤ , où
est la matrice identité de taille . Prenons maintenant une mesure de probabilité de la forme (d ) := -( ) d avec ∇ 2 ≥ avec > 0 et définissons ( ) = ( √ ) et ∇ le transport optimal de à . On a donc

∇ 2 ≥ , ce qui implique que le transport optimal ∇ de à (d ) := -2 -( ) d vérifie ∇ 2 ≤ . Or on vérifie facilement que ( ) = √ ( ),
de sorte qu'on obtient

∇ 2 ≤ 1 √ .
En particulier, si est strictement plus log-concave que la gaussienne, c'est-à-dire si > 1, alors le transport optimal est contractant.

Le théorème de contraction de Caffarelli joue un rôle important dans le domaine des inégalités fonctionnelles, où il permet de transférer une inégalité vraie pour la gaussienne à des mesures uniformément log-concaves. Voyons un exemple très simple.

III. Le problème d'appariement optimal

Exemple II.3. Il est bien connu ([Gro75]) que la gaussienne vérifie une inégalité log-Sobolev avec constante optimale 2 :

Ent ( ) ≤ 2 ∫ R |∇ | 2 d , pour tout ∈ 1 ( ),
où l'entropie de relative à une mesure est définie par Ent ( )

:= ∫ R 2 log 2 d - ∫ R 2 d log ∫ R 2 d .
Prenons maintenant une mesure à densité uniformément log-concave par rapport à la mesure de Lebesgue, c'est-à-dire

(d ) = -( ) d avec ∇ 2 ≥ et > 0.
Soit ∇ le transport optimal de à , on sait d'après le théorème de contraction que

∇ 2 ≤ 1 √ . On a alors Ent ( ) = Ent ( • ∇ ) ≤ 2 ∫ R |∇( • ∇ )| 2 d ≤ 2 ∫ R |∇ 2 | 2 |∇ • ∇ | 2 d ≤ 2 ∫ R |∇ • ∇ | 2 d = 2 ∫ R |∇ | 2 d .
On a ainsi montré que vérifie une inégalité log-Sobolev avec constante 

III Le problème d'appariement optimal

On présente dans cette section un cas particulier de transport optimal déjà esquissé dans l'Exemple I.3, à savoir le transport entre deux mesures discrètes ayant le même nombre d'atomes, ceux-ci ayant la même masse. Ici, ces mesures discrètes seront empiriques dans le sens où elles proviennent de processus de points et l'objet de l'étude est le comportement Introduction moyen du coût de transport optimal ou du transport optimal lui-même. Après avoir rappelé les principaux résultats pour l'appariement optimal classique entre une mesure empirique de points indépendants et identiquement distribués et la mesure de référence, on s'intéressera à une famille de processus de points ni indépendants, ni identiquement distribués, prenant la forme de mesures spectrales empiriques de matrices aléatoires.

III.1 Mesures empiriques de points i.i.d.

Le problème d'appariement optimal (optimal matching en anglais) consiste principalement en l'étude du problème d'optimisation suivant min

∈ 1 =1 -( ) ,
(III.1) où ≥ 1 et où les variables aléatoires et sont indépendantes et identiquement distribuées (i.i.d.) selon une mesure de référence . Remarquons que ce problème est exactement un problème de transport optimal entre les mesures empiriques discrètes

1 =1 et 1 =1 . En effet, 1 =1 , 1 =1 = min ∈ 1 =1 -( ) .
Par inégalité triangulaire, il est clair que la valeur du minimum dans (III.1) est estimée par la valeur de 1

=1 , , (III.2) 
ce que l'on va donc étudier dans la suite de cette sous-section. Le but est maintenant d'estimer la valeur de (III.2), d'établir des estimations de concentration de la mesure empirique := 1 =1 autour de sa moyenne et si possible d'étudier le comportement de la fonction réalisant le transport optimal de à en coût | -| . Cette thèse ne s'intéressera pas à des mesures empiriques où les atomes sont indépendants et identiquement distribués, mais il nous semble tout de même intéressant de rappeler quelques résultats principaux dans ce domaine.

• Dimension 1 ([BL16]

). Pour une large classe de mesures ∈ P (R), par exemple dès que possède un moment d'ordre > 2 fini, on a 3

E 1 ( , ) 1 √ .
Si > 1, la situation est plus complexe. Par exemple, si = ℒ [0,1] , alors

E ( , ) ≈ -2 ,
3 Dans cette thèse, on utilisera la notation pour signifier qu'une quantité est plus petite qu'une autre quantité multipliée par une constante. Si cette constante dépend d'un paramètre , on notera . La notation ≈ signifie alors : et .
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mais si = (0, 1),

E ( , ) ≈          -2 si 1 ≤ < 2, log log si = 2, 1 (log ) 2 si > 2.
• Dimension ≥ 2 avec uniforme. Soit := (0, 1) et := ℒ . Les points 1 , . . . , sont dans le cube donc la distance moyenne entre les points doit être d'ordre -1 , ce qui suggère que ( , ) doit être d'ordre -. Si cette intuition est vraie dès que ≥ 3, Ajtai, Komlós et Tusnády ont montré qu'en dimension 2, un facteur logarithmique apparaît :

E ( , ) ≈        log 2 si = 2 ([AKT84]), - si ≥ 3 ([Tal92, DY95, Led19]).
Cette particularité de la dimension 2 a fait l'objet de beaucoup d'articles depuis, citons en particulier [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF] où la limite lim

→∞ log E 2 2 ( , ) = 1 4 , si = 2,
est établie, prouvant ainsi un ansatz provenant de physiciens [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF] (cet article contient également d'autres conjectures sur le comportement de l'appariement optimal). Avec la même stratégie, il est montré dans [START_REF] Ambrosio | On the optimal map in the 2-dimensional random matching problem[END_REF] que la fonction de transport optimale peut être approchée en norme 2 par la somme de l'identité et du gradient de la solution à un problème de Poisson. Mentionnons que dans [START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF], les auteurs prouvent qu'en dimension ≥ 3, la limite de -E ( , ), avec la mesure empirique de points i.i.d. suivant , existe pour 1 ≤ < 2 . Ce résultat a été récemment étendu pour tout ≥ 1 dans [START_REF] Goldman | Convergence of asymptotic costs for random Euclidean matching problems[END_REF].

• Dimension ≥ 2 pour d'autres mesures. Si est la gaussienne standard dans R 2 alors

E ( , ) ≈        log 2 si 1 ≤ < 2 ([Led19]), (log ) 2 si = 2 ([Led19, Tal18]).
Le cas > 2 est toujours ouvert. Plus généralement, si est une mesure ayant un moment fini d'ordre suffisamment grand, on a
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Enfin, de façon très générale, il est montré dans [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] que si > 0 et si a un moment fini d'ordre suffisamment grand par rapport à , alors

E ( , )          -1 2 si > 2 , -1 2 log(1 + ) si = 2 , - si < 2 .

III.2 Mesures spectrales empiriques

Le chapitre 3 s'intéressera au comportement de la mesure spectrale empirique de matrices aléatoires à entrées gaussiennes indépendantes, en particulier la vitesse de convergence vers une mesure limite en distance 2 . La mesure spectrale d'une matrice ∈ C × est

( ) := 1 =1
, où 1 , . . . , sont les valeurs propres de . On donne ici les résultats principaux de convergence quantitative, en commençant par les matrices hermitiennes.

Matrices hermitiennes

On sait depuis [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF] 
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Matrices non nécessairement hermitiennes

Les matrices aléatoires dont on va étudier le spectre dans le chapitre 3 constituent l'ensemble de Ginibre. Ce sont les matrices aléatoires complexes ∈ C × à entrées indépendantes suivant la loi gaussienne (0, 1 2 2 ). Ainsi la distribution suivie par est . En notant D := (0, 1), on a

-2 exp - , =1 | | 2 , =1 d 
D \ ∪ =1 ≥ (1 - 2 ) .
Or toute la masse de c dans le domaine D \ ∪ =1 doit se déplacer d'une distance supérieure à , ce qui donne

( , c ) ≥ 1 ∫ D\∪ =1 | ( ) -| d ≥ (1 - 2 ).
Après optimisation sur , on obtient

( , c ) ≥ 2 + 2 + 2 2 -2 . (III.6)
IV Contributions de la thèse 

K (d d ) := 1 (2 ) 2 -| -| 2 2 d (d ).
Heuristiquement, grâce à (IV.1), il paraît assez clair que lorsque se rapproche de 0, le problème (IV. 

(d d ) = ( ) ( )K (d d ) avec log ∈ 1 ( ) et log ∈ 1 ( ). (IV.3)
On a donc en particulier lim

→0 ( | K ) = 1 2 2 2 ( , ). (IV.4)
Les potentiels log et log sont caractérisés par la contrainte sur les marginales de , en effet pour tous et ,

1 (2 ) 2 ( ) ∫ R ( ) -| -| 2 2 d = 1, 1 (2 ) 2 ( ) ∫ R ( ) -| -| 2 2 -| | 2 2 d = -( )+ | | 2 2 .
On reconnaît dans ces formules deux semigroupes de type chaleur. En fait, pour simplifier un peu ces formules, on va plutôt choisir le semigroupe d'Ornstein-Uhlenbeck qui, étant auto-adjoint dans 2 ( ), va donner deux fois le même semigroupe dans ces formules. Cela signifie que l'on va remplacer dans (IV.2) la mesure de référence K par

R (d d ) := 1 (2 (1 --)) 2 exp - | --2 | 2 2(1 --) d (d ).
Introduction où est le semigroupe d'Ornstein-Uhlenbeck. Un argument utilisant un schéma itératif de type Sinkhorn permet alors de prouver que le potentiel log , respectivement log , est convexe, respectivement concave. Ceci repose de façon cruciale sur une propriété partagée par et le semigroupe de la chaleur, à savoir la conservation de la log-concavité. Remarquons que ce sont essentiellement les seuls semigroupes de diffusion à vérifier cela ([Kol01]).

A partir de cette propriété des potentiels régularisés, il est possible de conclure de deux façons : celle du chapitre 1 fait intervenir une caractérisation variationnelle de la régularité Lipschitz du transport optimal obtenue dans [GJu20]. Une deuxième possibilité plus directe est rendue possible par le récent article [START_REF] Nutz | Entropic optimal transport: convergence of potentials[END_REF] dans lequel il est montré que les potentiels renormalisés log et log convergent bien vers les potentiels de Kantorovitch associés au problème du transport optimal de à , voir (I.3). La convexité étant conservée par passage à la limite simple, on obtient que le potentiel de Kantorovitch est convexe. Puisque le transport optimal s'écrit ∇ ( ) = -∇ ( ), on déduit bien que ∇ 2 ≤ . Cependant, cette deuxième stratégie ne semble pas permettre de prouver la régularité C 1 du transport optimal, au contraire de la caractérisation variationnelle de [GJu20].

IV.2 Généralisation de l'approche variationnelle de [GO20] à des coûts généraux

Le . Dans [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF], cette approche a été étendue au transport optimal entre des mesures générales, ce qui demandait en particulier un substitut au principe de displacement convexity de McCann. Même si le résultat principal de ce chapitre traite d'un transport optimal entre deux densités, comme dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], cette généralisation va se révéler cruciale ici. En effet, la preuve de [GO20, Lemme 4.2], qui montre que l'interpolation (I.4) est contrôlée en norme ∞ , repose sur l'équation de Monge-Ampère et donc sur la structure du transport pour le coût quadratique. Ceci permet ensuite de montrer que le flux (I.5) est contrôlé en norme 2 , ce qui est à la base du résultat d'approximation harmonique [GO20, Prop. 4.3].

Soient , ⊂ R deux compacts et , : R → R deux densités de probabilité, avec Spt ⊂ and Spt ⊂ . Supposons que la fonction de coût : × → R satisfait les hypothèses (C1)-(C4). Considérons de plus la situation normalisée suivante : 0

∈ Spt ∩ Spt , (0) = (0) = 1 et ∇ (0, 0) = -I. Le résultat principal du chapitre est le résultat d' -régularité suivant. Théorème IV.1. Soit ∈ Π( , ) -optimal. Il existe 0 = 0 ( ) > 0 et = ( ) > 0 tels que pour tout ≤ 0 satisfaisant 1 +2 ∫ 4 ×R | -| 2 d + 2 [ ] 2 ,4 + [ ] 2 ,4 + ∇ 2 ,4
≤ , (IV.5)

il existe une fonction ∈ C 1, ( ) telle que ( × R ) ∩ Spt ⊂ graph .
Les valeurs de 0 et ne dépendent du coût qu'à travers les hypothèses qualitatives (C1)-(C4) sur . Remarquons que l'on n'utilise pas la structure déterministe du plan optimal , comme décrite dans la sous-section I.2, mais que cette structure est en fait une conséquence du Théorème IV.1. Cependant, dans la preuve du résultat préliminaire crucial établissant une borne ∞ a priori sur le déplacement | -| dans le support de , on s'appuie sur la -monotonie de Spt , notion proche du caractère déterministe de . Un corollaire du Théorème IV.1 est le Théorème II.6, établissant que le transport optimal est un C 1, -difféomorphisme entre deux ouverts de mesure pleine. En effet, l'hypothèse (C1) et le fait que est borné assurent que le potentiel -convexe (voir la sous-section I.2 pour une présentation de la structure du transport optimal avec un coût général) est semi-convexe, c'est-à-dire qu'il existe une constante < ∞ telle que + | | 2 soit convexe. Ainsi, le théorème d'Alexandrov s'applique ici : est presque partout deux fois différentiable. Le Théorème II.6 s'obtient alors en combinant la preuve de [GO20, Th. 1.1] et les changements de variable utilisés dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF].

Une motivation importante pour considérer des coûts généraux est l'étude du transport optimal sur des variétés riemanniennes avec un coût ( , ) := 1 2 ( , ) 2 , où est la distance riemannienne. Dans ce contexte, un résultat d' -régularité est particulièrement intéressant puisque, même si est une perturbation compacte du cas euclidien, d'autres mécanismes peuvent créer des singularités, comme la courbure. En effet, la condition MTW (voir soussection II.3) est très restrictive, même pour le coût 2 2 . Il est donc nécessaire de disposer d'une théorie de régularité qui s'affranchisse de conditions supplémentaires sur le coût et de critères géométriques sur les supports. Le Théorème II.6 est utilisé dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] pour montrer que si et sont deux densités C 0, sur la variété avec , , 1 et 1 bornées, le transport optimal entre et avec coût 

Stratégie de preuve

La preuve du Théorème IV.1 suit de près celle de [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], esquissée dans la sous-section II.2. La principale nouveauté est l'introduction, dans le contexte du transport optimal, de la notion de quasi-minimiseur, déjà bien établie dans le contexte des surfaces minimales ([Alm76, Bom82]). L'idée est de montrer qu'à une échelle donnée, un plan minimiseur du transport optimal pour le coût minimise de façon approchée (c'est-à-dire à une erreur près, cette erreur s'améliorant lorsque l'échelle diminue) le transport en coût quadratique. Grâce à cette propriété, on peut appliquer directement le résultat d'approximation harmonique obtenu dans [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF].

Il y a essentiellement deux problèmes importants lorsque l'on veut transposer la stratégie de [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] dans ce cadre général :

• Le résultat préliminaire crucial est une borne ∞ a priori sur le déplacement dans le Introduction support de ([GO20, Lem. 3.1], [GHO21, Lem. 2.9]). Cette estimation en fonction de l'énergie repose sur la monotonie du support du couplage optimal. Ici, on établit un analogue de cette borne ∞ en s'appuyant sur la -monotonie du support du couplage -optimal, voir I.6. Cependant, il est nécessaire d'établir d'abord une borne qualitative sur le déplacement, obtenue pour toute échelle inférieure à un seuil 0 dépendant du coût à travers les hypothèses (C1)-(C4). On vérifie ensuite que cette borne ∞ qualitative se reproduit à chaque étape de l'itération.

• L'approximation harmonique [GHO21, Th. 1.5] s'effectue dans le cadre eulérien du transport optimal. Le passage du cadre lagrangien au cadre eulérien, et vice-versa, est facilité par l'équivalence (I.8) entre énergie lagrangienne

∫ | -| 2 d et énergie eulérienne ∫ 1 | | 2 si
est un couplage optimal pour le coût quadratique et ( , ) sa paire densité-flux associée (définitions (I.4) et (I.5)). Il se trouve que cette équivalence n'est plus vraie si est un couplage général. L'énergie eulérienne est toujours dominée par l'énergie lagrangienne, mais cette domination est en général stricte. On a pu montrer néanmoins que si est un couplage quasi-minimiseur, l'erreur entre les deux énergies peut être estimée par l'erreur dans la propriété de quasi-minimiseur de . Ceci nous permet alors de passer d'un cadre à l'autre de la même façon que dans [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF].

Comparaison avec [DF15]

Notons tout d'abord que les hypothèses (C1)-(C4) sur la fonction de coût sont les mêmes que dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]. Ensuite, comme on l'a vu dans la sous-section II.3, la stratégie que l'on suit est proche de celle de [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]. Mentionnons tout de même que comme dans [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], on obtient dans le Théorème IV.1 une estimation de la semi-norme C 0, sous la forme

2 [∇ ] 2 , 1 +2 ∫ 4 ×R | -| 2 d + 2 [ ] 2 ,4 + [ ] 2 ,4 + ∇ 2 ,4
, qui est linéaire en les données. De plus, l'itération de Campanato que l'on effectue au terme de l'argument se fait directement au niveau C 1, de , à la différence de [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] où trois itérations sont nécessaires, d'abord pour obtenir C 0,1-, puis C 0,1 et finalement C 1, . On remarque également que l'hypothèse (IV.5) que l'on fait sur les données n'est pas plus restrictive que celle faite dans [DF15, Th. 4.3 & 5.3]. Les hypothèses sur les densités et le coût sont essentiellement les mêmes, mais alors que l'on mesure l'écart entre le transport et l'identité en norme 2 , dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] les auteurs se placent au niveau du potentiel -convexe , qu'ils supposent proche en norme ∞ de la fonction 1 2 | | 2 . On montre dans le Corollaire 2.1.3 que dans la situation où ∇ (0, 0) = 0 et

[∇ ] , 1 (ce qui veut dire que le coût est considéré comme proche de -• , ce qui n'est pas forcément le cas dans le Théorème II.5), notre hypothèse découle de celle faite dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF].

Densités continues

On traite également dans la sous-section 2.4.3 le cas où les densités sont seulement continues, pour lequel on prouve comme dans [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] que le transport optimal est C 0, pour tout > 0 lorsque que la situation est normalisée et que les données habituelles sont suffisamment petites.

La preuve de ce résultat d' -régularité est très proche de la précédente et les modifications suivent [START_REF] Goldman | An -regularity result for optimal transport maps between continuous densities[END_REF]. Il apparaît clairement que le coût doit encore être C 2, pour obtenir une régularité C 0, de , puisque l'itération ne peut pas se faire indéfiniment si l'on suppose uniquement ∈ C 2 avec l'hypothèse que la distance ∇ + I ∞ est petite localement.

Quasi-minimiseurs

Enfin, on montre dans la sous-section 2.4.4 comment il est possible d'obtenir le Théorème IV.1 en relaxant l'hypothèse de minimalité : le résultat est encore vrai si l'on suppose seulement que est un couplage déterministe quasi-minimiseur à toutes échelles. L'obstacle majeur ici est la borne ∞ / 2 a priori sur le déplacement. En effet, la preuve de ce résultat a toujours reposé sur la monotonie du support ([GO20, Lem. 3.1], [GHO21, Lem. 2.9] et [MO21, Prop. 2.2]) ou sur sa -monotonie dans le Lemme 2.1.5. Si le transport est quasi-minimiseur, il n'y a a priori pas de raison que son graphe vérifie une quelconque propriété de monotonie. On a néanmoins pu montrer qu'un tel transport vérifie une borne / 2 sur le déplacement pour tout < ∞, ce qui est suffisant pour notre preuve. En effet, il nous est possible de montrer que l'énergie associée aux trajectoires de particules trop excentriques, c'est-à-dire celles qui dépassent la borne ∞ que l'on attend, est très petite par rapport à l'énergie globale du transport. Ainsi, la part significative de l'énergie concerne les trajectoires satisfaisant la borne ∞ et on peut donc appliquer notre stratégie au couplage amputé des mauvaises trajectoires. Il reste ensuite à combiner les deux pour obtenir le même résultat d'approximation harmonique.

IV.3 Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre

On s'intéresse dans le chapitre 3 au transport optimal de la mesure c uniforme sur le disque unité D à la mesure spectrale renormalisée d'une matrice choisie selon la loi de Ginibre (III.3). D'après le Théorème III.1, une estimation de la distance de Wasserstein entre les deux fournit la vitesse de convergence de cette mesure empirique vers sa limite c . Le résultat principal obtenu ici est une estimation optimale (par rapport à la taille de la matrice) de l'espérance de la distance de Wasserstein 2 entre ces deux mesures. Plus précisément, si est une matrice de l'ensemble de Ginibre, c'est-à-dire distribuée selon (III.3), on définit sa mesure spectrale renormalisée Théorème IV.2. Il existe une constante < ∞ telle que pour tout ≥ 2,

:= 1 =1 √ , ( 
E 2 2 ( , c ) ≤ .

Introduction

Au vu de (III.6), ce résultat est optimal par rapport à et améliore, pour la distance 2 , l'estimation obtenue dans [MM14]. Par l'inégalité de Hölder et puisque les mesures considérées sont de masse 1, on obtient immédiatement une estimation optimale de la distance pour tout 1 ≤ ≤ 2 :

Corollaire IV.1. Il existe < ∞ telle que pour tout 1 ≤ ≤ 2, pour tout ≥ 2, E ( , c ) ≤ √ .

Stratégie de preuve

Pour prouver le Théorème III.1, on va en fait se placer au niveau de la mesure spectrale := =1 et prouver que la distance 2 ( , ) entre et la mesure := 1 1 D ( ) d uniforme sur le disque D := (0, √ ) est en moyenne de l'ordre de . L'estimation de cette distance passe par une mesure intermédiaire définie par 

:= (D ) |D | d D + (C \ D ) |D \ D | d D \D , où D := 0, √ ( 1 
E 2 ( D , D ) et E 2 ( C\D , D \D
) sont majorées par , en découpant les deux domaines D et D \ D en sous-domaines de tailles dyadiques, jusqu'à l'échelle microscopique. On utilise alors à chaque échelle les estimations sur la variance du nombre de points obtenues plus tôt. Cette stratégie de construction itérative m'a été suggérée, dans le cas du carré, par F. Otto.

Concentration et comportement du transport optimal

Le chapitre 3 contient également la preuve d'un résultat de concentration de la distance 2 ( , ) lorsque l'on considère les mesures restreintes à un carré. Théorème IV.3. Il existe deux constantes

< ∞ et > 0 telles que pour tout carré ⊂ 0, √ - √ ln de côté ≥ 1, on ait pour tout √ ln , P , 
( ) | | ≥ ≤ exp - 2 2 .
(IV.7)

IV. Contributions de la thèse

La même stratégie que pour un carré permettrait de prouver une inégalité de concentration pour un disque centré en 0 de rayon ≤ √ -√ ln de la forme

P , ( ) | | ≥ exp - 2 2 .
En revanche, pour un anneau au bord du disque de rayon √ , la contrainte sur le rayon spectral limite ce que l'on peut obtenir. En effet, écrivons

P 2 C\D , (C \ D ) | | d ≥ ≤ P 2 C\D , (C \ D ) | | d ≥ ∩ ( ) ≤ √ (IV.8) + P ( ) > √ .
(IV.9)

La probabilité (IV.9) peut être estimée par

-2 si = 1 + ([Rid03]) ou par -2 si 1 ([CHM18]
). Dans les deux cas, le choix de pour que (IV.9) soit suffisamment petit implique que l'échelle 0 soit de l'ordre de , ce qui ne permet pas d'obtenir une estimation intéressante pour (IV.8). Pour cette raison, on ne donne pas d'inégalité de concentration pour la loi circulaire.

On peut cependant utiliser le Théorème IV.3 pour obtenir des informations sur le comportement de la fonction de transport optimale. En effet, l'inégalité de concentration (IV.7) est la même que celle obtenue dans [GHO18, Prop. 2.7] pour un processus de points de Poisson. Cette inégalité permet de montrer l'existence d'une variable aléatoire * satisfaisant

E exp 2 * ln(2 * ) < ∞, telle que pour tout dyadique avec 2 * ≤ ≤ √ , on ait 1 4 2 , ( ) | | ln * * 2 .
Ce résultat, combiné à la théorie développée dans [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF] .

Ce comportement correspond (à l'exposant du logarithme près) à ce à quoi on s'attend dans le cas du processus de Poisson car on sait que la distance moyenne de transport diverge logarithmiquement à grande échelle. Dans notre cas, il serait intéressant de savoir si l'on peut obtenir une borne non divergente sur la dérive.

CHAPITRE 1

A proof of the Caffarelli contraction theorem via entropic regularization 

Introduction

The aim of this chapter is to give a new proof of the celebrated Caffarelli contraction theorem [Caf00, Caf02], which states that the Brenier optimal transport map sending the standard Gaussian measure on R , denoted by in all the chapter, onto a probability measure having a log-concave density with respect to is a contraction. More precisely, let us recall the generalized version of Caffarelli's theorem: Theorem 1.1.1 (Caffarelli [Caf00,[START_REF] Caffarelli | Erratum: "Monotonicity of optimal transportation and the FKG and related inequalities[END_REF]). For any probability measures and respectively of the form (d ) = ( ) (d ) and (d ) = -( ) (d ) with and convex functions, and further assuming has a finite second moment and is compactly supported, there exists a continuously differentiable and convex function : R → R such that ∇ is 1-Lipschitz and = ∇ # .

Caffarelli's original result was only stated for the important particular case where is the Gaussian measure (i.e. = 0), but his proof readily extends to this more general setting [START_REF] Kolesnikov | On Sobolev regularity of mass transport and transportation inequalities[END_REF]. Note that the assumption that is compactly supported can be removed via Chapitre 1. A proof of the Caffarelli contraction theorem via entropic regularization approximation. See [Vil09, Corollary 5.21] for details. Note that in all the chapter we allow convex function to take the value +∞.

Here, we develop an approach based on a variational characterization of Lipschitz regularity of optimal transport maps obtained by Gozlan and Juillet in [GJu20]. To recall this result, we need to introduce the following definition: if 1 , 2 ∈ P 1 (R ), one says that 1 is dominated by 2 for the convex order if ∫ d 1 ≤ ∫ d 2 for all convex function : R → R. In this case, we write 1 ≺ conv 2 . With this notation in hand, the variational characterization of [GJu20] reads as follows:

Theorem 1.1.2. Let , ∈ P 2 (R ) ; the following assertions are equivalent:

(i) There exists a continuously differentiable and convex function :

R → R such that ∇ is 1-Lipschitz and = ∇ # , (ii) For all ∈ P 2 (R ) such that ≺ conv , 2 ( , ) ≤ 2 ( , ).
In other words the Brenier map between and is a contraction if and only if is the closest point to among all probability measures dominated by in the convex order. We will give an alternative proof of this Theorem in Section 1.4 in the particular case where the support of is convex (which is enough for our purpose here) using Kantorovich duality and variational arguments.

Our strategy to recover Theorem 1.1.1 is thus to show the following monotonicity property of the 2 distance: if and satisfy the assumptions of Theorem 1.1.1, it holds

2 ( , ) ≤ 2 ( , ), ∀ ≺ conv . (1.1.1)
For that purpose, we will establish a similar inequality at an information theoretic level replacing 2 by the so called entropic transport cost T (presented in details in the next section) that is defined in terms of the minimization of the relative entropy between and a reference measure involving some small noise parameter > 0. We will prove the following monotonicity property of the entropic cost:

T ( , ) ≤ T ( , ) (1.1.2)
for all ≺ conv with a finite Shannon information. As observed by Mikami [START_REF] Mikami | Monge's problem with a quadratic cost by the zero-noise limit of ℎ-path processes[END_REF] and extensively developed by Léonard [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF][START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] the zero noise limit of T is 1 2 2 2 . Thus letting → 0 in (1.1.2) will give (1.1.1).

This first chapter is organized as follows. Section 1.2 introduces entropic transport costs and the main results. Section 1.3 gives proofs of these results. Section 1.4 presents the alternative proof of Theorem 1.1.2.

Entropic transport costs and main results

Entropic transport costs and main results

Entropic costs and their zero-noise limit

Consider the classical Ornstein-Uhlenbeck process ( ) ≥0 on R , defined by the following stochastic differential equation:

d = -1 2 d + d , ≥ 0,
where ( ) ≥0 is a standard dimensional Brownian motion and 0 ∼ . As it is well known, the process admits the following explicit representation

= 0 -/2 + -/2 ∫ 0 /2 d , ≥ 0.
The joint law of ( 0 , ) will be denoted by . It is therefore given by

= Law , -/2 + √ 1 -- ,
with , two independent standard Gaussian random vectors on R . In other words,

(d d ) = (d ) (d ),
where ↦ → is the probability kernel defined by = N ( -/2 , (1 --) ).

Recall that the relative entropy of a probability measure with respect to another probability measure on some measurable space (X, A) is defined by

( | ) = ∫ log d d d ,
if is absolutely continuous with respect to . If this is not the case, one sets ( | ) = +∞.

The relative entropy is a non-negative quantity that vanishes only when the two probability measures are equal, this is why it is often called Kullback-Leibler distance (even though it is not a true distance).

Definition 1.2.1 (Entropic transport cost). For all probability measures , on R , the entropic transport cost associated to is defined by

T ( , ) = inf ∈Π( , ) ( | ).
As shown by Mikami, Léonard and others [START_REF] Mikami | Monge's problem with a quadratic cost by the zero-noise limit of ℎ-path processes[END_REF][START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF] the zero noise limit of T is

1 2 2 2
. At a heuristic level, this phenomenon can be easily understood from the following identities:

( | ) = ∫ log d d d - ∫ log d d d = ∫ log d d d + 2(1 --) ∫ | --/2 | 2 (d d ) + 2 ∫ | | 2 (d ) + ( ),
Chapitre 1. A proof of the Caffarelli contraction theorem via entropic regularization where ( ) → 0 (and is independent of , , ). So for small , minimizing ↦ → ( | )

amounts to minimizing ↦ → 1 2 ∫ | -| 2 (d d ).
In the sequel we will use the following result, which can be easily deduced from a general convergence theorem due to Carlier 

T ( , ) → 1 2 2 2 ( , ) as → 0.
We state now a technical lemma that will be needed to apply Theorem 1.2.2 in our framework:

Lemma 1.2.3. If and satisfy the assumptions of Theorem 1.1.1, then they are of finite entropy.

The proof is postponed to Section 1.3.

Entropic cost in the framework of Caffarelli theorem

As explained above, the key step in our approach consists in showing that on the set of probability measures dominated by in the convex order, the closest point to for the entropic cost distance is itself (when satisfies the assumptions of Theorem 1.1.1). Theorem 1.2.4. Let and satisfy the assumptions of Theorem 1.1.1. Additionally assume that is bounded from below. If is such that ≺ conv , then for all > 0 T ( , ) ≥ T ( , ).

Let us admit Theorem 1.2.4 for a moment and complete the proof of Theorem 1.1.1.

Proof of Theorem 1.1.1. Let us temporarily assume that is bounded from below. According to Lemma 1.2.3, and have finite entropy. So using Theorem 1.2.2, one concludes by letting → 0 that for all compactly supported probability measures of the form

(d ) = -( ) (d ), with : R → R ∪ {+∞} convex, it holds 2 ( , ) ≤ 2 ( , )
for all of finite entropy and such that ≺ conv . Now, fix some compactly supported 0 of the form 0 (d ) = -0 ( ) (d ), with 0 : R → R ∪ {+∞} convex and let us show that the inequality (1.1.1) holds for any ≺ conv . Take ≺ conv 0 and define, for all ∈ (0, /2), = Law(cos + sin ) and = Law(cos

+ sin ),
where ∼ 0 , ∼ and is independent of and and has density

1 1 ( ) -| | 2 2
, where is the Euclidean unit ball. According to Lemma 1.3.6, is compactly supported and of
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the form - , with convex, is of finite entropy and ≺ conv . Therefore, it holds 2 ( , ) ≤ 2 ( , ). Letting → 0 gives 2 ( , 0 ) ≤ 2 ( , ) for all ≺ conv 0 , which, according to Theorem 1.1.2, completes the proof when has finite entropy.

Finally, let us remove the assumption that is bounded from below. Since is convex, it is bounded from below by some affine function. Thus there exists some ∈ R such that ↦ → ( ) + • is bounded from below. Consider the probability measure ˜ defined as the push forward of under the translation ↦ → + . An easy calculation shows that the density of ˜ with respect to is ( -)+ •( -) , with a normalizing constant, and so ˜ satisfies our assumptions. Therefore, there exists a continuously differentiable convex function ˜ : R → R such that ∇ ˜ is 1-Lipschitz and = ∇ ˜ # ˜ . Setting ( ) = ˜ ( + ), ∈ R , one gets = ∇ # which completes the proof.

Before proving Theorem 1.2.4, let us informally explain why one can guess the statement is easier to prove at the level of entropic cost than directly for the Wasserstein distance. If we consider the plain relative entropy, we have the variational formula

( | ) = sup ∫ d -log ∫ d ,
where the supremum runs over the set of functions such that ∫ d < +∞. Hence, taking = -( + ), gives

( | ) ≥ ∫ -( + ) d ≥ ∫ -( + ) d = ( | )
as soon as ≺ conv . So this trivial bound hints at the fact that comparison is easier for entropies when we have a log concavity condition on the relative density.

To prove Theorem 1.2.4, we need to know more about the optimal coupling for T ( , ). The following is classical in entropic transport literature and goes back to the study of the so called Schrödinger bridges [Sch32].

Proposition 1.2.5. Let , ∈ P 2 (R ) be such that ( | ) < +∞ and ( | ) < +∞ 1. There exists a unique coupling ∈ Π( , ) such that

T ( , ) = ( | ) < +∞ 2.
There exist two measurable functions

, : R → R + such that log ∈ 1 ( ), log ∈ 1 ( ) and (d d ) = ( ) ( ) (d d ).

Sketch of proof.

(1) We equip the set P (R ×R ) with the usual topology of narrow convergence. For this topology, the function ↦ → ( | ) is lower-semicontinuous and the set Π( , ) is compact. Therefore, the function ( • | ) attains its minimum at some point of Π( , ). It is easily checked that the coupling 0 = ⊗ is such that ( 0 | ) < +∞, so ( | ) < +∞. Uniqueness comes from the strict convexity of ( • | ). For the proof of (2) we refer to [Csi75, Corollary 3.2]. In the special case where and satisfy our log-convexity/concavity assumptions we will give a self-contained proof in Section 1.3.
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In the setting of Theorem 1.1.1, it turns out that much more can be said about the functions and . This is explained in the following result, which seems of independent interest. Theorem 1.2.6. With the same notation as in Proposition 1.2.5, let be a probability measure of the form (d ) = ( ) (d ) with a finite second moment and be a compactly supported probability measure on R of the form (d ) = -( ) (d ), with , convex and bounded from below. There exist a log-convex function : R → [1, +∞) and a log-concave function : R → [0, +∞) such that the unique optimal coupling ∈ Π( , ) is of the form

(d d ) = ( ) ( ) (d d ).
Moreover, the function log is integrable with respect to and the function log is integrable with respect to and it holds

T ( , ) = ( | ) = ∫ log d + ∫ log d .
We now give a brief heuristic explanation as to why one can expect this statement to imply the Caffarelli contraction theorem. Informally, from the convergence of the entropic cost to the Wasserstein distance, we expect from the dual formulation that log converges to | | 2 /2 -(up to some additive constant), where is a potential giving rise to the optimal transport map = ∇ . However convexity is preserved by pointwise convergence, so we expect | | 2 /2 -to also be convex. But this is equivalent to ∇ being 1-Lipschitz, since the eigenvalues of the Hessian of must then be bounded by 1. Theorem 1.1.2 will allow us to avoid having to prove convergence of log to a Kantorovich potential.

Section 1.3 is essentially devoted to the proof of Theorem 1.2.6. With Theorem 1.2.6 in hand, the proof of Theorem 1.2.4 becomes almost straightforward:

Proof of Theorem 1.2.4. Recall the following duality inequality for the relative entropy : if

, are two probability measures on a measurable space (X, A) such that ( | ) < +∞, then for any measurable function ℎ :

X → R such that ∫ ℎ d < +∞, it holds ∫ [ℎ] + d < +∞ and ( | ) ≥ ∫ ℎ d -log ∫ ℎ d (1.2.1)
Let ∈ Π( , ) be a coupling between and some probability ≺ conv such that ( | ) < +∞ ; applying the inequality above to = , = and ℎ( ,

) = log ( ( ) ( )), , ∈ R gives ( | ) ≥ ∫ log ( ) + log ( ) (d d ) = ∫ log ( ) (d ) + ∫ log ( ) (d ) ≥ ∫ log ( ) (d ) + ∫ log ( ) (d ) = ( | ) = T ( , ),
where the second inequality comes from the fact that log is a concave function and ≺ conv .

Optimizing over , gives the inequality T ( , ) ≥ T ( , ) and completes the proof.

Proofs

To conclude this section, we mention some perspectives. The most natural question is whether this scheme of proof can be adapted to establish a version of Caffarelli's theorem in other settings than R , such as on manifolds or in free probability [START_REF] Guionnet | Free monotone transport[END_REF], [BJ21]. Another question is about integrated or non-local quantitative regularity estimates, such as those in [Kol10, [START_REF] Kolesnikov | On Sobolev regularity of mass transport and transportation inequalities[END_REF]. The role of 1-Lipschitz bounds in Theorem 1.1.2 is very specific, we do not know if there is an analogue of that equivalence adapted to other types of regularity bounds. However, it could be possible to prove stable a priori bounds on log and pass to the limit. Of particular interest is whether we can establish integrated gradient bounds for non-uniformly convex potentials, since such estimates can still be used to establish Poincaré inequalities [START_REF] Milman | On the role of convexity in isoperimetry, spectral gap and concentration[END_REF]Kla13]. Finally, [START_REF] Philippis | Rigidity and stability of Caffarelli's logconcave perturbation theorem[END_REF] proves a rigidity/stability result for the Caffarelli contraction theorem, and it would be interesting to find a way to improve the quantitative bounds.

Proofs

This section contains the material needed to prove Theorem 1.2.4. The ideas developed here are adapted from a paper by Fortet [For40]. We warmly thank Christian Léonard for mentioning us this paper and explaining to us the ingredients of Fortet's proof. Fortet's work was recently revisited in [START_REF] Essid | Traversing the Schrödinger Bridge Strait: Robert Fortet's Marvelous Proof Redux[END_REF][START_REF] Léonard | Revisiting Fortet's proof of existence of a solution to the Schrödinger system[END_REF].

We will denote by the Ornstein-Uhlenbeck semi-group at time defined for all nonnegative measurable function by

( ) = E[ ( )| 0 = ] = 1 (2 ) /2 1 (1 --) /2 ∫ R ( + -/2 ) -| | 2 2(1--) d , ∈ R .
Suppose that , are measurable non-negative functions such that (d d ) = ( ) ( ) (d d ) belongs to Π( , ). Then, writing the marginals condition, one sees that and are related to each other by the identities: for all , ∈ R

( ) ( ) = ( ) and ( ) ( ) = -( ) . (1.3.1)
These relations suggest to introduce the functional Φ defined as follows: for all measurable function ℎ : R → R ∪ {+∞},

Φ (ℎ) = -log - 1 ( ℎ ) . With this notation, a couple ( , ) satisfies (1.3.1) if and only if = - 1 ( ) and = ℎ with ℎ such that ℎ = Φ (ℎ ).
This fixed point equation suggests that the unknown function ℎ could be obtained as the limit when → +∞ of a sequence (ℎ ) ≥0 satisfying the recursive scheme

ℎ +1 = Φ (ℎ ), ≥ 0 (1.3.2)
Chapitre 1. A proof of the Caffarelli contraction theorem via entropic regularization and initialized with some function ℎ 0 . This fixed point scheme is actually at the core of the use of Sinkhorn's algorithm to numerically approximate optimal transport via entropic regularization [START_REF] Cuturi | Sinkhorn distances: lightspeed computation of optimal transport[END_REF]BCCNP15]. The convexity of ℎ can then be established if we can initiate this fixed point scheme (1.3.2) with some convex initial data ℎ 0 , thanks to the following key result:

Lemma 1.3.1. If ℎ : R → R ∪ {+∞} is convex, then Φ (ℎ) is also convex.
Proof. This property is inherited from the following classical properties of :

• If is log-convex, then ( ) is log-convex. This simply follows from Hölder inequality.

• If is log-concave, then ( ) is log-concave. This follows from the fact that the set of log-concave functions is stable under convolution which is a well known consequence of Prekopa Theorem [START_REF] Prékopa | On logarithmic concave measures and functions[END_REF].

The line of reasoning sketched above is essentially the one adopted in the proof of Theorem 1.2.6, except that the recurrence scheme (1.3.2) needs to be properly modified in order to force its convergence (this modification is the same as the one proposed by Fortet in [For40]).

Remark 1.3.2. In the compact setting, the map Φ is actually a contraction with respect to a well-chosen metric, see for example [Gen19, Lemma 1] or [CGP16] (following the earlier ideas of [FL89] in the discrete setting). This would ensure that the fixed point must belong to any stable subspace. Here, we work in a noncompact setting ( has non-compact support) and it seems the map is globally only 1-Lipschitz at that level of generality. One could however expect that it remains a contraction on a suitable stable subspace of convex functions.

Remark 1.3.3. A natural question is whether our scheme of proof can be used directly at the level of the Kantorovich dual formulation of optimal transport, rather than on the regularized version. The answer seems to be no, as in the limit while the minimizers in the dual formulation of entropic transport, suitably rescaled, converge to the Kantorovich potentials, the fixed point problem becomes degenerate in the limit, and only selects so-called c-convex functions (with the cost here being the quadratic distance), so we lose uniqueness. Indeed, there is no known fixed point scheme similar to (1.3.2) for Kantorovich potentials, which is why Sinkhorn's algorithm is only used to numerically approximate the regularized problem [START_REF] Cuturi | Sinkhorn distances: lightspeed computation of optimal transport[END_REF].

Before moving on to the proof, let us present two other essential properties of Φ .

Lemma 1.3.4. 1. The map Φ is monotone: ℎ ≤ ⇒ Φ (ℎ) ≤ Φ ( ).

For any measurable

ℎ : R → R, it holds ∫ exp (ℎ( ) -Φ (ℎ)( )) d ≤ 1,
with equality if ℎ is bounded from above.

Proofs

Proof. The first point is straightforward. Let us prove the second point. Since the operator is symmetric in 2 ( ), for any function ℎ : R → R it holds

∫ ℎ∧ -Φ (ℎ) d = ∫ ℎ∧ - 1 ( ℎ ) d = ∫ ℎ∧ - 1 ( ℎ ) d .
Letting → +∞, one gets by monotone convergence Proof of Theorem 1.3.5. Let us show that there exists a convex function h : R → R + such that Φ ( h) = h. Then, defining = h and = -/ ( ), we see that is log-convex, is log-concave (we use again the fact that preserves log-convexity) and satisfy (1.3.1). Let us define by induction the sequence (ℎ ) ≥0 as follows: ℎ 0 = 0 and for all ≥ 0

∫ ℎ-Φ (ℎ) d = ∫ { ( ℎ )<+∞}
ℎ +1 = [Φ (ℎ )] + ∧ .
(1.3.3) By construction, note that ℎ takes values in [0, -1]. Let us show by induction that the sequence (ℎ ) ≥0 is non-decreasing. First observe that ℎ 1 = 0 = ℎ 0 and so in particular ℎ 0 ≤ ℎ 1 . According to Item (1) of Lemma 1.3.4, the operator Φ is non-decreasing. Therefore, if ℎ +1 ≥ ℎ for some ≥ 0, then

ℎ +2 = [Φ (ℎ +1 )] + ∧ ( + 1) ≥ [Φ (ℎ )] + ∧ ( + 1) ≥ [Φ (ℎ )] + ∧ = ℎ +1 .
Let us denote by ℎ ∞ the pointwise limit of ℎ as → ∞. The function ℎ ∞ takes values in R + ∪ {+∞}. Let us show that ℎ ∞ solves the following fixed point equation

ℎ ∞ = [Φ (ℎ ∞ )] + . (1.3.4)
Indeed, by monotone convergence, ( ℎ ) → ( ℎ ∞ ). Then, by dominated convergence,

- 1 ( ℎ ) → - 1 ( ℎ ∞ )
which implies that ℎ → [Φ (ℎ ∞ )] + and gives (1.3.4). Now let us show that ℎ ∞ is in fact a fixed point of Φ . Let us admit for now that

Φ (ℎ ∞ ) ( ) < +∞ for all ∈ R . Then, thanks to (1.3.4), ℎ ∞ ( ) < +∞ for all ∈ R . According to Item (2) of Lemma 1.3.4, it holds ∫ ℎ ∞ -Φ (ℎ ∞ ) d ≤ 1. Since ℎ ∞ ≥ Φ (ℎ ∞ ), the function ℎ ∞ -Φ (ℎ ∞ ) is bounded from below by 1. Therefore, ℎ ∞ = Φ (ℎ ∞ ) almost everywhere. regularization
The function Φ (ℎ ∞ ) is easily seen to be continuous and since ℎ ∞ satisfies (1.3.4) it is also continuous. The functions ℎ ∞ and Φ (ℎ ∞ ) being continuous, the equality ℎ ∞ = Φ (ℎ ∞ ) holds in fact everywhere. To complete the proof that ℎ ∞ is a fixed point of Φ , it remains to prove that Φ (ℎ ∞ )( ) < +∞ for all ∈ R . Let us assume, by contradiction, that there exists some ∈ R such that Φ (ℎ ∞ )( ) = +∞. This easily implies that ( ℎ ∞ ) = +∞ almost everywhere, which in turn implies that Φ (ℎ ∞ ) ≡ ∞. Since ℎ ∞ ≥ Φ (ℎ ∞ ), one concludes also that ℎ ∞ ≡ +∞. Now let us show that there exists 0 such that for all ≥ 0 inf ∈R Φ (ℎ )( ) ≥ 0.

(1.3.5)

For any ∈ R , it holds (denoting by = (2 ) /2 (1 --) /2 and by

= inf R ) - 1 ( ℎ ) ( ) = 1 ∫ R -( ) 1 ( ℎ ) ( ) -| --/2 | 2 2(1--) d = 1 ∫ { ≤-} -( ) 1 ( ℎ ) ( ) -| --/2 | 2 2(1--) d + 1 ∫ { >-} -( ) 1 ( ℎ ) ( ) -| --/2 | 2 2(1--) d = 1 ∫ { ≤-} -| --/2 | 2 2(1--) d max ∈{ ≤-} -( ) 1 ( ℎ ) ( ). + ∫ { >-} -| --/2 | 2 2(1--) d ,
where we used the fact that ( ℎ ) ≥ 1, since ℎ ≥ 0. The sequence of functions 1 ( ℎ ) is a non-increasing sequence of continuous functions converging to 0. Therefore, according to Dini's Theorem, the convergence is uniform on the compact set = { < 0}. Since is convex, it is bounded from below on . Therefore, there exists 0 such that max ∈ -( ) 1

( ℎ ) ( ) ≤ for all ≥ 0 . Plugging this inequality into the inequality above, one easily gets (1.3.5). Now, according to (1.3.5), there exists some such that Φ (ℎ 0 ) ≥ 0. Therefore

ℎ +1 = Φ (ℎ ) ≤ Φ (ℎ +1 ). Since ℎ 0 +1 is bounded, Item (2) of Lemma 1.3.4 yields ∫ ℎ +1 -Φ (ℎ +1 ) d = 1, which implies that ℎ +1 = Φ (ℎ +1 ). Therefore, ℎ ∞ = ℎ +1 , which contradicts the fact that ℎ ∞ ≡ +∞.
Finally, let 0 = ℎ * * ∞ be the convex regularization of ℎ ∞ (which is well defined since ℎ ∞ is bounded from below). By definition 0 ≤ ℎ ∞ and since ℎ ∞ ≥ 0, it holds 0 ≥ 0. Define by induction ( ) ≥1 by +1 = max(Φ ( ); 0 ). Since according to Lemma 1.3.1 Φ preserves convexity and 0 is convex, is convex for all . The sequence is non-decreasing and satisfies ≤ ℎ ∞ for all . Therefore, converges pointwise to some ∞ , which is also convex and finite valued. Reasoning as above one sees that ∞ = max(Φ ( ∞ ); 0 ) and so in particular ∞ ≥ Φ ( ∞ ). Using again the fact that

∫ ∞ -Φ ( ∞ ) d ≤ 1, one concludes that ∞ is a fixed point of Φ . Setting h = ∞ completes the proof.
Proof of Theorem 1.2.6. First, let us note that ( ⊗ | ) < +∞. Since and have finite second moment, this is easily seen to be equivalent to ( | ) < +∞ and ( | ) < +∞, which is true according to Lemma 1.2.3. According to Theorem 1.3.5, there exists a coupling

1.3. Proofs (d d ) = ( ) ( ) (d d ) ∈ Π( , )
such that is log-convex and is log-concave. It remains to show that this coupling is optimal for T ( , ). Since ( ) ( ) = -( ) , ∈ R , one sees that log ( ) = -( ) -log ( ). The function log is bounded continuous on the support of and is integrable with respect to . Therefore, log is integrable with respect to . On the other hand, since log ≥ 0, the integral ∫ log d makes sense in [0, +∞]. Let ∈ Π( , ) be a coupling such that ( | ) < +∞ (this set is non empty, since it contains ⊗ ). Applying Inequality (1.2.1) with = , = and ℎ( ,

) = log ( ) + log ( ), , ∈ R , gives ( | ) ≥ ∫ log ( ) + log ( ) (d d ) = ∫ log ( ) (d ) + ∫ log ( ) (d ),
which shows that log is integrable with respect to . A simple calculation shows that

( | ) = ∫ log ( ) (d ) + ∫ log ( ) (d ),
which shows its optimality.

Finally let us prove the technical lemmas used in the proof of Theorem 1.1.1. 

( ) = 1 ∫ - -sin cos -| -sin | 2 2 cos 2 -| | 2 2 d ,
where is a normalizing constant. A simple calculation shows that

| | 2 2 ( ) = 1 ∫ - -sin cos -| sin -| 2 2 cos 2 d
and, according to Prekopa Theorem [START_REF] Prékopa | On logarithmic concave measures and functions[END_REF], the right hand side is log-concave, which completes the proof of Item (1). The proofs of Items ( 2) and (3) are straightforward and left to the reader. The density of is ( )

= 1 ∫ -| cos -| 2 2 sin 2
1 cos - sin (d ) and so ≤ 1 . On the other hand, log ≥ -1/ . Since the support of is compact, one sees that log is integrable and so has finite entropy.

Variational proof of Theorem 1.1.2

The goal of this section is to give an alternative proof of Theorem 1.1.2. The original proof in [GJu20] uses a weak version of optimal transport as an intermediary, but we give here a new proof relying only on the variational problem solved by the Brenier map. However, we need to restrict the proof to the case where is absolutely continuous with respect to Lebesgue (and too but this is hardly a restriction when we assume that a Brenier map exists), with its support being convex. Note that for the purpose of proving the Caffarelli contraction theorem, these assumptions are not a restriction. Let us recall some classical facts about quadratic transport that will be used in the proof (see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport: old and new[END_REF] for proofs and more general statements). If , ∈ P 2 (R ), the quadratic transport cost 1 2 2 2 admits the following dual formulation due to Kantorovich:

1 2 2 2 ( , ) = sup , ∫ | | 2 2 -( ) (d ) + ∫ | | 2 2 -( ) (d ) , (1.4.1)
where the supremum runs over couples of convex conjugate functions ( , ), that is to say that , : R → R ∪ {+∞} are convex, lower semi-continuous and such that = * and = * , where we recall that the Legendre transform ℎ * of a function ℎ : R → R ∪ {+∞} is defined by

ℎ * ( ) = sup ∈R { • -ℎ( )}, ∀ ∈ R .
A classical result in optimal transport tells moreover that the supremum in (1.4.1) is always attained. If ( , ) is such a dual optimizer, we will say that (resp. ) is a transport potential from to (resp. to ). This terminology is justified by the fact that if is absolutely continuous with respect to Lebesgue measure, then according to Brenier theorem, if is a transport potential from to , the map ∇ (which is well defined almost surely) is (the almost surely unique) optimal transport map between and , i.e = ∇ # and

1.4. Variational proof of Theorem 1.1.2 2 2 ( , ) = ∫ | -∇ ( )| 2 (d ).
Finally, if is also absolutely continuous with respect to Lebesgue measure, then ∇ is the optimal transport map between and and it holds

∇ • ∇ ( ) = and ∇ • ∇ ( ) =
for almost every and almost every . For reader's convenience, let us reformulate Theorem 1.1.2 in a slightly different form and with the extra assumptions mentioned above : Theorem 1.4.1. Let , ∈ P 2 (R ) be absolutely continuous with respect to Lebesgue measure and suppose that has a convex support. The following are equivalent:

( ) There exists a transport potential : R → R from to which is continuously differentiable on R and such that ∇ is 1-Lipschitz on R , ( ) There exists a transport potential : R → R ∪ {+∞} from to such that the function

R → R ∪ {+∞} : ↦ → ( ) -| | 2 2 is convex. ( ) For all ∈ P 2 (R ) such that ≺ conv , 2 ( , ) ≤ 2 ( , ).
The equivalence between ( ) and ( ) uses the following classical fact of convex analysis:

C 1 and ∇ 1-Lipschitz ⇐⇒ * - | • | 2 2 is convex, see [HL01, Theorem E 4.2.1] or [GJu20, Lemma 2.1].
It turns out that condition ( ) will be easier to handle than condition ( ).

Proof of Theorem 1.4.1, ( ) ⇒ ( ). Assume is a transport potential from to such that

-| • | 2 2 is convex and let = * . For any ≺ conv , it holds 1 2 2 2 ( , ) = ∫ | | 2 2 -( ) (d ) + ∫ | | 2 2 -( ) (d ) ≤ ∫ | | 2 2 -( ) (d ) + ∫ | | 2 2 -( ) (d ) ≤ 1 2 2 2 ( , ),
where the first equality comes from the optimality of ( , ), the second inequality from the fact that ≺ conv and the concavity of | • | 2 2 -and the third inequality from Kantorovich duality.

For any probability measure ∈ P 2 (R ), we will denote from now on as

:= { ∈ P 2 (R ) : ≺ conv }
the set of all probability measures which are dominated by in the convex order. Note that this set is geodesically convex in (P 2 (R ), 2 ).
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In order to prove the converse implication ( ) ⇒ ( ), we will proceed by contradiction and show that if ( ) is not true then one can construct a competitor ∈ with a smaller Wasserstein distance to . For that purpose, we will use the following simple localization lemma.

Lemma 1.4.2. Let , ∈ P 2 (R ) and suppose that : R → R is an optimal transport map from to . Let ⊂ R be a Borel set such that ( ) > 0, define as the renormalized restriction of to : := ( ) and as the renormalized restriction of to -1 ( ):

:= -1 ( ) ( ) .
Suppose that there exists ∈ such that 2 ( , ) < 2 ( , ). Then the probability measure defined by = + ( ) is such that ∈ and 2 ( , ) < 2 ( , ).

Proof. It is clear that ≺ conv . Let us show that is closer to than . For the sake of simplicity, we will assume that there exists an optimal transport map between and . According to [Vil09, Theorem 4.6], the map is still the optimal transport map from to . The map defined by ( ) = ( ) if ∈ -1 ( ) and ( ) = ( ) if ∈ -1 ( ) is a transport map between and (not necessarily optimal) and it holds:

2 2 ( , ) ≤ ∫ | -( )| 2 (d ) = ( -1 ( )) ∫ | -( )| 2 (d ) + ∫ -1 ( ) | -( )| 2 (d ) < ( -1 ( )) 2 2 ( , ) + ∫ -1 ( ) | -( )| 2 (d ) = ( -1 ( )) ∫ | -( )| 2 (d ) + ∫ -1 ( ) | -( )| 2 (d ) = 2 2 ( , ).
Before completing the proof of Theorem 1.4.1, let us state a lemma about strongly convex functions. Given a convex function , we will denote dom( ) = { ∈ R : ( ) < +∞} the domain of .

Lemma 1.4.3. Let : R → R ∪ {+∞} be a lower semi-continuous convex function such that dom( ) has a non-empty interior. The function is such that

-| • | 2
2 is convex if and only if for all , ∈ int dom( ) where is differentiable it holds

(∇ ( ) -∇ ( )) • ( -) ≥ | -| 2 .
(1.4.2)

Note that if is continuously differentiable, the conclusion of the lemma is straightforward. The proof of Lemma 1.4.3 is postponed at the end of the section.

Proof of Theorem 1.4.1, ( ) ⇒ ( ). Assume that ( ) does not hold, that is to say that whenever is a transport potential from to then the function

-| • | 2
2 is not convex. First we want to make sure that the convexity problem occurs on the support of , denoted 1.4. Variational proof of Theorem 1.1.2 by Spt( ) in what follows. Take ˜ an arbitrary transport potential from to . Then, since Spt( ) is closed and convex, the function defined by ( ) = ˜ ( ) if ∈ Spt( ) and ( ) = +∞ otherwise is still convex and lower semi-continuous. Defining := * , one easily sees that ≤ ˜ * and so ( , ) is a dual optimizer. In all what follows we will deal with this special potential .

Since ( ) does not hold, Lemma 1.4.3 applied with = shows that there exist two points 0 , 0 in the interior of Spt( ) where is differentiable and such that

( 0 -0 ) • (∇ ( 0 ) -∇ ( 0 )) < | 0 -0 | 2 .
(1.4.3)

By continuity of ↦ → ( ( )), for ∈ Spt( ), we can find two functions → 0 and → 0 as → 0 such that for all > 0, ( ( 0 )) = ( ( 0 )). We then define to be the union of these two (disjoint) balls:

:= ( 0 ) ∪ ( 0 ).
Then converges weakly to 1 2 0 + 1 2 0 , as → 0. Let = ∫ (d ) be the barycenter of with respect to . Then we have that lim

→0 = := 0 + 0 2 .
In order to construct a competitor, let us collapse the mass of towards using the displacement interpolant between and

:= [(1 -)Id + ] # .
Then it is easily seen that for all ∈ [0, 1], ≺ conv . Note that we must go towards , instead of directly, in order to stay in . As → 0, this will not make a difference. Let us now compute 2 ( , ), where is defined as in Lemma 1.4.2, and show that for and small enough it is strictly less than 2 ( , ). Note that is the image of under the map (1 -)∇ + which is clearly the gradient of the convex function ↦ → (1 -) ( ) +

• and is thus optimal. Therefore,

2 2 ( , ) = ∫ | -(1 -)∇ ( ) - | 2 (d ) = 2 2 ( , ) + 2 ∫ ( -∇ ( )) • (∇ ( ) -) (d ) + 2 ∫ |∇ ( ) -| 2 (d ).
So, for any fixed > 0, the derivative at = 0 is thus given by

| =0 2 2 ( , ) = 2 ∫ ( -∇ ( )) • (∇ ( ) -) (d )
Note that this formula is a particular case of [Vil09, Theorem 23.9] which gives the time derivative of the Wasserstein distance along general curves of probability measures. Now, our goal is to show that the quantity calculated above is negative for all small enough. Since = ∇ # and ∇ • ∇ ( ) = for -almost every , one gets

| =0 2 2 ( , ) = 2 ∫ (∇ ( ) -) • ( -) (d ).
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To conclude, we use the following continuity property of the subgradient : if ( ) < +∞, then for any > 0, there exists > 0 such that if ∈ ( ) then ( ) ⊂ ( ) + (0) (see [HL93, Theorem 6.2.4]). Since ( 0 ) = {∇ ( 0 )} and ( 0 ) = {∇ ( 0 )}, it follows easily that lim

→0 | =0 2 2 ( , ) = (∇ ( 0 ) -0 ) • ( 0 -) + (∇ ( 0 ) -0 ) • ( 0 -) = 1 2 (∇ ( 0 ) -0 ) • ( 0 -0 ) + 1 2 (∇ ( 0 ) -0 ) • ( 0 -0 ) = 1 2 (∇ ( 0 ) -∇ ( 0 )) • ( 0 -0 ) - 1 2 | 0 -0 | 2 (1.4.3) < 0.
Therefore, for and small enough 2 ( , ) < 2 ( , ), which according to Lemma 1.4.2 shows that there exists ∈ such that 2 ( , ) < 2 ( , ) and completes the proof. 

( -) • ( -) ≥ | -| 2 , ∀ ∈ ( ), ∀ ∈ ( ), (1.4.4)
where, we recall that for any ∈ , we denote by ( ) the sub-gradient of the convex function at point which is defined as the set of all vectors ∈ R such that ( ) ≥ ( ) + • ( -), for all ∈ R . We recall also that when is differentiable at (which is true for Lebesgue almost every in the interior of ) then ( ) = {∇ ( )}. Therefore, if satisfies (1.4.4) it satisfies (1.4.2).

Let us show the converse. According to [Roc70, Theorem 25.6 ], for any ∈ , it holds

( ) = Conv( ( )) + ( ),
where ( ) is the normal cone to at , i.e

( ) = {ℎ ∈ R : ℎ • ( -) ≤ 0, ∀ ∈ }
and ( ) is the set of vectors such that there exists a sequence of points ∈ int where is differentiable such that → and ∇ ( ) → as → ∞. Let , ∈ and ∈ ( ) and ∈ ( ), with decomposition

= + ℎ, = + with ∈ Conv( ( )), ∈ Conv( ( )), ℎ ∈ ( ) and ∈ ( ). Since ( -) • (ℎ -) ≥ 0, it is enough to show that ( -) • ( -) ≥ | -| 2 . By convexity, it is enough to prove that ( -) • ( -) ≥ | -| 2
for all ∈ ( ) and ∈ ( ). If and are sequences converging to and respectively in such a way ∇ ( ) → and ∇ ( ) → , then according to (1.4.2), it holds

(∇ ( ) -∇ ( )) • ( -) ≥ | -| 2
and letting → ∞ gives the desired inequality. 

Introduction

Main results

Let , ⊂ R be compact. We assume that the cost function :

× → R satisfies (C1) ∈ C 2 ( × ).
(C2) For any ∈ , the map ↦ → -∇ ( , ) ∈ R is one-to-one.

(C3) For any ∈ , the map ↦ → -∇ ( , ) ∈ R is one-to-one.

(C4) det ∇ ( , ) ≠ 0 for all ( , ) ∈ × .

Let 0 , 1 : R → R be two probability densities, with Spt 0 ⊆ and Spt 1 ⊆ . It is well-known that under (an even milder regularity assumption than) condition (C1), the optimal transportation problem inf

∈Π( 0 , 1 ) ∫ R ×R ( , ) d , (2.1.1)
where the infimum is taken over all couplings between the measures 0 d and 1 d , admits a solution , which we call a -optimal coupling. For > 0 we define the set

|| == := ( × R ) ∪ (R × ), (2.1.2) 
which is quite natural in the context of optimal transportation, because it allows for a symmetric treatment of the transport problem: it is suitable to describe all the mass that gets transported out of , and all the mass that is transported into . For ∈ (0, 1) we write , and explains the normalization by -( +2) in assumption (2.1.4) and in the definition (2.1.8) of E below, making it a non-dimensional quantity 1 . Similarly, the normalization ∇ (0, 0) = -I makes the second derivatives of the cost function non-dimensional.

∇ , := sup ( , )≠( , )∈ || == |∇ ( , ) -∇ ( , )| |( , ) -( , )| (2 
The main result of this chapter is the following -regularity result:

Theorem 2.1.1. Assume that (C1)-(C4) hold and that 0 (0) = 1 (0) = 1, as well as ∇ (0, 0) = -I. Assume further that 0 is in the interior of × . Let be a -optimal coupling from 0 to 1 . There exists 0 = 0 ( ) > 0 such that for all

≤ 0 with 2 1 +2 ∫ 4 ×R | -| 2 d + 2 [ 0 ] 2 ,4 + [ 1 ] 2 ,4 + ∇ 2 ,4
1, (2.1.4) there exists a function ∈ C 1, ( ) such that ( × R ) ∩ Spt ⊆ graph , and the estimate

[∇ ] 2 , 1 +2+2 ∫ 4 ×R | -| 2 d + [ 0 ] 2 ,4 + [ 1 ] 2 ,4 + ∇ 2 ,4
(2.1.5) holds.

We stress that the implicit constant in (2.1.5) is independent of the cost . The scale 0 below which our -regularity result holds has to be such that 2 0 ⊆ ∩ and such that the qualitative ∞ / 2 bound (Lemma 2.2.1) holds. We note that the dependence of 0 on and the implicit dependence on in the smallness assumption (2.1.4) are only through the qualitative information (C1)-(C4), see Remark 2.1.7 and Lemma 2.2.1 for details. Note also that, without appealing to the well-known result that the solution of (2.1.1) is a deterministic coupling = (Id × ) # 0 , this structural property of the optimal coupling is an outcome of our iteration. Remark 2.1.2. Under the same assumptions as in Theorem 2.1.1, in particular only asking for the one-sided energy 1 +2 ∫ 4 ×R | -| 2 d to be small in (2.1.4), we can also prove the existence of a function * ∈ C 1, ( ) such that (R × ) ∩ Spt ⊆ {( * ( ), ) : ∈ }, with the same estimate on the semi-norm of ∇ * . This follows from the symmetric nature of the assumptions (C1)-(C4), of the normalization conditions on the densities and the cost, and of the smallness assumption (2.1.4). We refer the reader to Step 1 of the proof of Theorem 2.1.1 to see how (2.1.4) entails smallness of a symmetric version of the Euclidean transport energy, as defined in (2.1.8), at a smaller scale.

As in [DF15], Theorem 2.1.1 leads to a partial regularity result for a -optimal transport map , that is, a map such that the -optimal coupling between 0 and 1 is of the form 1 Notice that we are using a different convention here than in [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF], since it is more natural to work with the non-dimensional energy in our context. 2 An assumption of the form 1 means that there exists > 0, typically only depending on the dimension and Hölder exponents, such that if ≤ , then the conclusion holds. We write Λ to indicate that also depends on the parameter Λ. The symbols ∼, and indicate estimates that hold up to a global constant , which typically only depends on the dimension and Hölder exponents. For instance, means that there exists such a constant with ≤

. ∼ means that and .

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions := (Id × ) # 0 . We refer to the subsection I.2 for details on the structure of , in particular its relation to a -convex potential . Note that by assumption (C1) and the boundedness of , the function is semi-convex, i.e., there exists a constant such that + | | 2 is convex. Hence, by Alexandrov's Theorem (see, for instance, [EG15, Theorem 6.9], or [Vil09, Theorem 14.25]), is twice differentiable at a.e. ∈ .

Before stating the partial regularity result, let us mention that our 2 -based assumption on the smallness of the Euclidean energy of the forward transport is not more restrictive than the ∞ -based assumption of closeness of the Kantorovich potential to 1 2 | • | 2 in [DF15, Theorems 4.3 & 5.3]. However, the assumption on is not invariant under transformations of and that preserve optimality, whereas the optimal transport map , and hence our assumption on the energy

--2 ∫ 4 | -( )| 2 0 ( ) d , are unaffected.
For that reason we additionally have to fix ∇ (0, 0) = 0, and ∇ (0, 0) = 0 in the following corollary3 , and ask for [∇ ] ,4 to be small. Hence, in this result we think of the cost as being close to -• , which is not necessarily the case in Theorem 2.1.1. Indeed, in Theorem 2.1.1, we only assume that ∇ is close to -I, which is the case if is close in C 2 norm to -• . Now, if ∇ is close to -I, one may add to the cost terms that only depend on or : it does not affect the mixed second derivatives and neither does it affect the optimization problem (2.1.1), as a coupling only sees mixed terms. The added terms thus change the value of the minimum but not the optimizer.

Corollary 2.1.3. Assume that (C1)-(C4) hold and that 0 (0) = 1 (0) = 1, as well as ∇ (0, 0) = -I, ∇ (0, 0) = 0, and ∇ (0, 0) = 0. Assume further that 0 is in the interior of × . Let be the -optimal transport map from 0 to 1 . There exists 0 = 0 ( ) > 0 such that for all ≤ 0 with

1 2 -1 2 | • | 2 C 0 ( 8 ) + [ 0 ] ,4 + [ 1 ] ,4 + ∇ ,4 + [∇ ] ,4 1, (2.1.6) ∈ C 1, ( ) with [∇ ] , 1 2+ -1 2 | • | 2 C 0 ( 8 ) + [ 0 ] ,4 + [ 1 ] ,4 + ∇ ,4 + ∇ ,4 . (2.1.7)
The partial regularity statement is then as follows: As recently pointed out in [START_REF] Goldman | An -regularity result for optimal transport maps between continuous densities[END_REF] for the quadratic case, the variational approach is flexible enough to also obtain -regularity for optimal transport maps between merely continuous densities. The modifications presented in [START_REF] Goldman | An -regularity result for optimal transport maps between continuous densities[END_REF] can be combined with our results to prove
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an -regularity result for the class of general cost functions considered above. This will be the context of section 2.4.3.

Finally, Theorem 2.1.1 can also be applied to optimal transportation on a Riemannian manifold M with cost given by the square of the Riemannian distance function : if 0 , 1 ∈ C 0, (M) are two probability densities, locally bounded away from zero and infinity on M, then the optimal transport map : M → M sending 0 to 1 for the cost = 

Strategy of the proofs

In this section we sketch the proof of the -regularity Theorem 2.1.1. As in [GO20, GHO21] one of the key steps is a harmonic approximation result, which can be obtained by an explicit construction and (approximate) orthogonality on an Eulerian level.

∞ bound on the displacement

A crucial ingredient to the variational approach is a local ∞ / 2 -estimate on the level of the displacement. More precisely, given a scale , it gives a pointwise estimate on the nondimensionalized displacement -in terms of the (non-dimensionalized) Euclidean transport energy

E ( ) := 1 +2 ∫ || == 1 2 | -| 2 d , (2.1.8)
which amounts to a squared 2 -average of the displacement. While this looks like an inner regularity estimate in the spirit of the main result, Theorem 2.1.1, it is not. In fact, it is rather an interpolation estimate with the -monotonicity of Spt providing an invisible second control next to the energy. This becomes most apparent in the simple context of [GO20, Lemma 3.1] where monotonicity morally amounts to a (one-sided) ∞ -control of the gradient of the displacement. The interpolation character of the estimate still shines through in the fractional exponent 2 +2 ∈ (0, 1) on the 2 -norm. Following [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF], we here allow for general measures and ; the natural local control of these data on the energy scale is given by

D ( , ) := 1 +2 2 ( , ) + ( -1) 2 + 1 +2 2 ( , ) + ( -1) 2 , (2.1.9)
which measures locally at scale > 0 the distance from given measures and to the Lebesgue measure, where

= ( ) | | and 2 ( , ) = 2 ( , d ) (2.1.10)
is the quadratic Wasserstein distance between and d . 5 Notice that if = 0 d and = 1 d with -Hölder continuous probability densities such that 1 2 ≤ ≤ 2 on , 5 We use the convention that 2 ( ,

) = inf ∈Π( , ) ∫ 1 2 | -| 2 d in this chapter.

61

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions The new aspect compared to [GHO21, Lemma 2.9] is the general cost function . Not surprisingly, it turns out that the result still holds provided is close to Euclidean and that the closeness is measured in the non-dimensional C 2 -norm. We stress the fact that this closeness is not required on the entire "cross" || == 5 , cf. (2.1.2), but only to the "finite cross" 

= 0, 1, then 6 D 2 [ 0 ] 2 , + [ 1 ] 2 , , (2. 
B 5 ,Λ := ( 5 × Λ ) ∪ ( Λ × 5 ) . ( 2 
( 5 × R ) ∩ Spt ⊆ B 5 ,Λ ,
then we still get a one-sided ∞ bound in the form of

( , ) ∈ ( 4 × R ) ∩ Spt ⇒ | -| 1 +2 ∫ 6 ×R | -| 2 d + D 6 1 +2
. This observation will be useful in the proof of Theorem 2.1.1 to relate the one-sided energy in (2.1.4) to the full energy in Proposition 2.1.16.
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Note that due to assumption (2.1.13) Proposition 2.1.5 might appear rather useless: indeed, one basically has to assume a (qualitative) ∞ bound in the sense that there is a constant Λ < ∞ such that if ∈ 5 , then ∈ Λ , in order to obtain the ∞ bound (2.1.16). However, as we show in Lemma 2.2.1, due to the global assumptions (C1)-(C4) alone, there exists a scale 0 > 0 and a constant Λ 0 < ∞ such that (2.1.13) holds. Moreover, in the Campanato iteration used to prove Theorem 2.1.1, which is based on suitable affine changes of coordinates, the qualitative ∞ bound (2.1.13) is reproduced in each step of the iteration (with a constant Λ that after the first step can be fixed throughout the iteration, e.g. Λ = 27 works).

Remark 2.1.7.

There is an apparent mismatch with respect to the domains involved in the closeness assumptions on in Theorem 2.1.1 and Proposition 2.1.5: we assume

7 2 [∇ ] 2 ,6
1 in Theorem 2.1.1 and ∇ + I C 0 (B 5 ,Λ ) 1 in Proposition 2.1.5. We are able to relate the two assumptions due to the qualitative ∞ bound (2.1.13): If ∇ (0, 0) = -I, we have for all Λ < ∞, using the inclusion B 5 ,Λ ⊆ || == 6 ,

∇ + I C 0 (B 5 ,Λ ) = sup ( , )∈B 5 ,Λ |∇ ( , ) -∇ (0, 0)| Λ [∇ ] ,6 .
(2.1.17)

Thus, if 2 [∇ ] 2
,6 is chosen small enough, then the assumption (2.1.15) in Proposition 2.1.5 is fulfilled.

Almost-minimality with respect to Euclidean cost

One of the main new contributions of this work is showing that the concept of almostminimality, which is well-established in the theory of minimal surfaces, can lead to important insights also in optimal transportation. The key observation is that if is quantitatively close to Euclidean cost, then a minimizer of (2.1.1) is almost-minimizing for the quadratic cost.

One difficulty in applying the concept of almost-minimality is that we are dealing with local quantities, for which local minimality (being minimizing with respect to its own boundary condition) would be the right framework to adopt. Lemma 2.1.8. Let ∈ Π( , ) be a -optimal coupling between the measures and . Then for any Borel set Ω ⊆ R × R the coupling Ω := Ω is -optimal given its own marginals, i.e. -optimal between the measures Ω and Ω defined via

Ω ( ) = (( × R ) ∩ Ω), Ω ( ) = ((R × ) ∩ Ω), (2.1.18)
for any Borel measurable ⊆ R .

This lemma allows us to restrict any -optimal coupling to a "good" set, where particle trajectories are well-behaved in the sense that they satisfy an ∞ bound. In particular, we have the following corollary: Corollary 2.1.9. Let ∈ Π( , ) be a -optimal coupling between the measures and with the property that for all ( ,

) ∈ || == ∩ Spt | -| ≤ .
Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions for some > 0. Let ∈ Π( , ) be a -optimal coupling between the measures and . Then is almost-minimizing for the Euclidean cost, in the sense that for any ∈ Π( , ) we have that

∫ 1 2 | -| 2 d ≤ ∫ 1 2 | -| 2 d + +2 Δ , (2.1.21) 
where

Δ := ∇ + I 0 ( × ) E ( ) 1 2 
(2.1.22)

for some constant depending only on .

The above statement is most naturally formulated in terms of couplings, that is, in the Kantorovich framework. However, the way (almost-)minimality enters in the proof of the harmonic approximation result (see Theorem 2.1.13 below), it is needed in the Eulerian picture, where the construction of a competitor is done.

The Eulerian side of optimal transportation

As already presented in (I.4) and onwards, given a coupling ∈ Π( , ) between measures and , we can define its Eulerian description, i.e. the density-flux pair ( , ) associated with the coupling by

∫ d := ∫ ((1 -) + ) d , ∫ • d := ∫ ((1 -) + ) • ( -) d (2.1.23)
for ∈ [0, 1] and for all test functions ∈ C 0 (R × [0, 1]) and fields ∈ C 0 (R × [0, 1]) . It is easy to check that ( , ) is a distributional solution of the continuity equation

+ ∇ • = 0, 0 = , 1 = , (2.1.24) 2.1. Introduction that is, for any ∈ C 1 (R × [0, 1]) there holds ∫ 1 0 ∫ d + ∇ • d d = ∫ 1 d - ∫ 0 d . (2.1.25)
For brevity, we will often write ( , ) := ( d , d ). Being divergence-free in ( , ), the density-flux pair ( , ) admits internal (and external) traces on ( × (0, 1)) for any > 0, see [CF03] for details, i.e., there exists a measure on × (0, 1) such that

∫ ×[0,1] ( d + ∇ • d ) = ∫ 1 d - ∫ 0 d + ∫ ×[0,1] d , (2.1.26)
We also introduce the time-averaged measure on defined via

∫ d := ∫ ×[0,1] d . (2.1.27)
Similarly, defining the measure := ∫ 1 0 d (•, ), it is easy to see that ∇ • =and that therefore admits internal and external traces, which agree for all > 0 with | |( ) = ( ) = ( ) = 0, and the internal trace agrees with . Note that we have the duality [San15, Proposition 5.18]

1 2 ∫ 1 | | 2 = sup ∈C 0 (R ×[0,1]) ∫ • d - | | 2 2 d , (2.1.28) 
which immediately implies the subadditivity of ( ,

) ↦ → ∫ 1 | | 2 .
A localized version of (2.1.28), in the form of 

1 2 ∫ ×[0,1] 1 | | 2 = sup ∈C 0 ( ×[0,1]) ∫ • d - | | 2 2 d , ( 2 
( -) -1 2 | | 2 ≤ 1 2 | -| 2
, which is true for any , , ∈ R , the duality formula (2.1.28) immediately implies that the Eulerian cost of the density-flux pair ( , ) corresponding to a coupling via (2.1.23) is always dominated by the Lagrangian cost of , i.e.

1 2 ∫ 1 | | 2 ≤ 1 2 ∫ | -| 2 d . (2.1.30)
We stress that this inequality is in general strict. Contrary to the case of quadratic cost ( , ) = 1 2 | -| 2 , or, equivalently, ( , ) = -• , given an optimal coupling for the cost , the density-flux pair ( , ) associated with in the sense of (2.1.23) is not optimal for the Benamou-Brenier formulation [BB99] of optimal transportation, i.e., 

2 ( , ) = inf 1 2 ∫ 1 | | 2 : + ∇ • = 0, 0 = , 1 = , ( 2 
∫ | -| 2 d = 2 ( , ) ≤ 1 2 ∫ 1 | | 2 ,
which together with (2.1.30) implies (2.1.32).

As another consequence, while displacement convexity guarantees in the Euclidean case that the Eulerian density ≤ 1 (up to a small error), c.f. [GO20, Lemma 4.2], in our case is in general merely a measure. This complication is already present in [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF] and led to important new insights in dealing with marginals that are not absolutely continuous with respect to Lebesgue measure in the Euclidean case, upon which we are also building in this work.

The Eulerian version of the almost-minimality Proposition 2.1.10 can then be obtained via the following lemma: Lemma 2.1.12. Let ∈ Π( , ) be a coupling between the measures and with the property that there exists a constant

Δ < ∞ such that ∫ 1 2 | -| 2 d ≤ ∫ 1 2 | -| 2 d + Δ (2.1.33)
for any ∈ Π( , ), and let ( , ) be its Eulerian description defined in (2.1.23). Then

∫ 1 2 | -| 2 d ≤ 1 2 ∫ 1 | | 2 + Δ, and 
1 2 ∫ 1 | | 2 ≤ 1 2 ∫ 1 | | 2 + Δ
for any pair of measures ( , ) satisfying

∫ d + ∇ • d = ∫ 1 d - ∫ 0 d (2.1.34) for all ∈ C ∞ (R × [0, 1]).

The harmonic approximation result

The main ingredient in the proof of Theorem 2.1.1 is the harmonic approximation result, which states that if a coupling between two measures supported on a ball (say of radius 7 for some > 0) satisfies the ∞ bound Proposition 2.1.5 globally on its support and is almost-minimizing with respect to the Euclidean cost, then the displacementis quantitatively close to a harmonic gradient field ∇Φ in || == . This is actually a combination of a harmonic approximation result in the Eulerian picture (Theorem 2.1.13) and Lemma 2.1.14, which allows us to transfer the Eulerian information back to the Lagrangian framework. 

∫ 1 | | 2 ≤ ∫ 1 | | 2 + +2 Δ (2.1.37)
for any Eulerian competitor, i.e. any pair of measures ( , ) satisfying

∫ d + ∇ • d = ∫ 1 d - ∫ 0 d + ∫ ×[0,1] d .
Then for every 0 < 1, there exist > 0 and , < ∞ such that, provided 8 

then 10 1 +2 ∫ 2 ×[0,1] 1 | -∇Φ| 2 ≤ + E 6 + D 6 + Δ , ( 2 
∫ | -| 2 d ≤ ∫ 1 | | 2 + +2 Δ . ( 2 

.1.43)

Then for any smooth function Φ there holds

1 +2 ∫ || == ∫ 1 0 | -+ ∇Φ( + (1 -) )| 2 d d ≤ 1 +2 ∫ 2 ×[0,1] 1 | -∇Φ| 2 + Δ .
(2.1.44)

One-step improvement and Campanato iteration

With the harmonic approximation result at hand, we can derive a one-step improvement result, which roughly says that if the coupling is quantitatively close to (Id × Id) # 0 on some scale , expressed in terms of the estimate

E ( ) + 2 [ 0 ] 2 , + [ 1 ] 2 , + ∇ 2 , 1,
and the fact that the (qualitative) ∞ bound on the displacement (2.1.13) holds, then on a smaller scale , after an affine change of coordinates, it is even closer to (Id × Id) # 0 . This is the basis of a Campanato iteration to obtain the existence of the optimal transport map and its C 1, regularity.

We start with the affine change of coordinates and its properties: 

0 (0) | det | 2 | det | 1 . 12 If we let 0 ( ) = 0 ( ) 0 (0) , 1 ( ) = 1 ( ) 1 ( ) , ( , ) = ( , ),
so that in particular 0 (0) = 1 (0) = 1 and

∇ ( , ) = -1 ∇ ( , ) -1 , (2.1.46)
from which it follows that ∇ (0, 0) = -I, then the coupling

:= | det | 0 (0) # (2.1.47)
is an optimal coupling between the measures (d ) = 0 ( ) d and (d ) = 1 ( ) d with respect to the cost function .

In the change of variables we perform, the role of is to ensure that we get a normalized cost, i.e. ∇ (0, 0) = -I, while and det in (2.1.47) are needed for to define a transportation plan between the new densities. We refer the reader to Appendix 2.B for a proof of this lemma.

Proposition 2.1.16. Assume that 0 (0) = 1 (0) = 1 and ∇ (0, 0) = -I, and let ∈ Π( 0 , 1 ) be -optimal.

Then for all ∈ (0, 1), there exist ∈ (0, 1) and < ∞ such that for all Λ < ∞ and > 0 for which

|| == 8 ∩ Spt ⊆ B 8 ,Λ ,
(2.1.48)

E 9 ( ) + 2 [ 0 ] 2 ,9 + [ 1 ] 2 ,9 + ∇ 2 ,9 Λ 1, (2.1.49)
there exist a symmetric matrix ∈ R × and a vector ∈ R with

| -I| 2 + 1 2 | | 2 E 9 ( ) + 2 [ 0 ] 2 ,9 + [ 1 ] 2 ,9 , (2.1.50)
such that, performing the change of variables in Lemma 2.1.15, the coupling is -optimal between the measures with densities 0 and 1 and there holds

E ( ) ≤ 2 E 9 ( ) + 2 [ 0 ] 2 ,9 + [ 1 ] 2 ,9 + ∇ 2 ,9
.

(2.1.51)

Moreover, we have the inclusion

|| == 8 9 ∩ Spt ⊆ B 8 9
,3 .

(2.1.52)

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions

Let us give a rough sketch of how the one-step improvement result can now be iterated: In a first step, the qualitative bound on the displacement is obtained from the global assumptions (C1)-(C4) on the cost function, see Lemma 2.2.1. This yields an initial scale 0 > 0 below which the cost function is close enough to the Euclidean cost function for (2.1.13) to hold. We may therefore apply Proposition 2.1.16, so that after an affine change of coordinates the the energy inequality (2.1.51) holds, the transformed densities and cost function are again normalized at the origin, optimality is preserved, and the qualitative ∞ bound (2.1.52) holds for the new coupling. We can therefore apply the one-step improvement Proposition 2.1.16 again, going to smaller and smaller scales. Together with Campanato's characterization of Hölder regularity, this yields the claimed existence and C 1, regularity of .

The details of the above parts of the proof of our main Theorem 2.1.1 are explained in the sections below, with a full proof of Theorem 2.1.1 in Section 2.4.2. The proof of Corollary 2.1.4 is essentially a combination of the ideas in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] and [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF], and is given for the convenience of the reader in Section 2.5.

We conclude the introduction with a comment on the extension of the results presented above to general almost-minimizers with respect to Euclidean cost in the following sense: Definition 2.1.17 (Almost-minimality w.r.t. Euclidean cost (on all scales)). A coupling ∈ Π( , ) is almost-minimal with respect to Euclidean cost if there exists 0 > 0 and Δ • : (0, 0 ] → [0, ∞) non-decreasing such that for all ≤ 0 and ( 0 , 0 ) in the interior of × there holds

∫ | -| 2 d ≤ ∫ | -| 2 d + +2 Δ (2.1.53)
for all ∈ Π( , ) such that Spt( -) ⊆ ( ( 0 ) × R ) ∪ (R × ( 0 )).

We will restrict our attention to almost-minimizers in the class of deterministic transport plans coming from a Monge map , i.e. = = (Id, ) # , and call a transport map almost-minimizing with respect to Euclidean cost if for all ≤ 0 and 0 ∈ int there holds

∫ | ( ) -| 2 (d ) ≤ ∫ | ( ) -| 2 (d ) + +2 Δ (2.1.54)
for all such that # = and graph = graph outside

( ( 0 ) × R ) ∪ (R × ( ( 0 ))).
In this situation, we get the following generalization13 of Theorem 2.1.1, whose proof will be sketched in Section 2.4.4. Theorem 2.1.18. Assume that 0 (0) = 1 (0) = 1, and that 0 is in the interior of × . Let : → be an almost-minimizing transport map from to with rate function Δ = 2 for some < ∞. Assume further that is invertible. There exists 1 > 0 such that for any ≤ 1 with

1 +2 ∫ 4 | ( ) -| 2 (d ) + ∫ 4 | -1 ( ) -| 2 (d ) + 2 [ 0 ] 2 ,4 + [ 1 ] 2 ,4
1, there holds ∈ C 1, ( ).

An ∞ bound on the displacement

In this section we establish an ∞ bound on the displacement for transference plans ∈ Π( , ) with -monotone support, that is, ( , ) + ( , ) ≤ ( , ) + ( , ) for all ( , ), ( , ) ∈ Spt , (2.2.1) provided that the transport cost is small, the marginals , are close to the Lebesgue measure, and the cost function is close to the Euclidean cost function. In Lemma 2.2.1 we use the -monotonicity (2.2.1) combined with the qualitative hypotheses (C1)-(C4) in conjunction with compactness to obtain a more qualitative version of the ∞ / 2 -bound, which just expresses finite expansion. In Proposition 2.1.5 this qualitative ∞ / 2 bound in form of (2.1.13) is upgraded to the desired quantitative version under the scale-invariant smallness assumption (2.1.15). The latter is a consequence of the quantitative smallness hypothesis

2 [∇ ] 2 ,
1, as we pointed out in Remark 2.1.7. In both steps, we need to ensure that there are sufficiently many points in Spt close to the diagonal. This is formulated in Lemma 2.A.1, which does not rely on monotonicity.

Proof of Proposition 2.1.5. Let Λ < ∞ and > 0 be such that (2.1.13), (2.1.14) and (2.1.15) hold. We only prove the bound (2.1.16) for a couple ( , ) ∈ ( 4 × R ) ∩ Spt , as the other case ( , ) ∈ (R × 4 ) ∩ Spt follows by symmetry.

Step 1 (Rescaling). Let ( , ) = ( ( ), ( )) := ( -1 , -1 ) and set := # , := # , := -( × ) # and ( , ) := -2 ( , ), so that still satisfies properties (C1)-(C4), and we have ∈ Π( , ), and Spt ismonotone. We also have

E 6 ( ) = E 6 ( ), D 6 ( , ) = D 6 ( , ) and ∇ + I C 0 (B 5,Λ ) = ∇ + I C 0 (B 5 ,Λ ) .
This allows us to only consider the case = 1 in the following. We will abbreviate E := E 6 and D := D 6 .

Step 2 (Use of -monotonicity of Spt ). Let ( , ) ∈ ( 4 × R ) ∩ Spt . We first show that for all ( , ) ∈ ( 5 × R ) ∩ Spt we have

( -) • ( -) ≤ 3| -| 2 + | -| 2 + | -| | -|, (2.2.2)
where, recalling (2.1.12),

:= ∇ + I C 0 (B 5,Λ ) . (2.2.3) Indeed, setting := + (1 -) and := + (1 -) for , ∈ [0, 1], -monotonicity (2.2.1) of Spt implies that 0 ≥ ( ( , ) -( , )) -( ( , ) -( , )) = ∫ 1 0 ∫ 1 0 ( -) • ∇ ( , ) ( -) d d = -( -) • ( -) + ∫ 1 0 ∫ 1 0 ( -) • ∇ ( , ) + I ( -) d d . (2.2.4) 2.
2. An ∞ bound on the displacement Note that by (2.2.7) the integral on the left-hand-side of inequality (2.2.8) can be expressed as

∫ ( -) ( ) (d d ) = ∫ ( -) ( ) (d ) = +1 + ∫ ( -) ( ) (d ) -d .
To estimate the latter integral, we recall the following result from [GHO21, Lemma 2.8]: for any ∈ C ∞ ( ),

∫ (d -d ) ≤ ∫ |∇ | 2 d 2 ( , ) 1 2 + 1 2 sup |∇ 2 | 2 ( , ).
(2.2.9)

By this estimate with = ( -•) and using that ∼ 1 by assumption (2.1.14), we obtain with (2.2.6) that

∫ ( -) ( ) (d ) -d ( D) 1 2 + 1 D +1 + 1 1 D
for some 0 < 1 to be fixed later. Hence,

( -) • ∫ ( -) ( ) (d d ) ≥ +1 ( -) • - +1 + 1 D | -|. ( 2 

.2.10)

We now estimate each term on the right-hand-side of inequality (2.2.8) separately:

1) For the first term we estimate

∫ | -| 2 ( ) (d d ) = ∫ | -| 2 ( ) (d ) ≤ ∫ | -| 2 ( ) d + ∫ | -| 2 ( ) (d ) -d .
Using again (2.2.6) and ∼ 1 for the first term on the right-hand side, estimate (2.2.9) with = | -•| 2 , and Young's inequality for the second term we obtain 

∫ | -| 2 ( ) (d d ) +2 + D. ( 2 
( -) • +1 + 1 D | -| + +2 + D + E + +1 + 1 D | -|.
Since is arbitrary and ∼ 1, this turns into

| -| ( + )| -| + + 1 1 +2 D | -| + + 1 +1 (E + D). ( 2 

.2.14)

We first choose and the implicit constant in (2.1.15), which in view of (2.2.3) governs , so small that we may absorb the first term on the right-hand-side into the left-hand-side. We then choose to be a large multiple of (E + D) 1 +2 , so that also the second right-hand-side term in (2.2.14) can be absorbed. This choice of is admissible in the sense of 1 provided the implicit constant in (2.1.14) is small enough. This yields (2.1.16).

The next lemma shows that due to the global qualitative information on the cost function , that is, (C1)-(C4), there is a scale below which we can derive a qualitative bound on the displacement. It roughly says that there is a small enough scale after which the cost essentially behaves like Euclidean cost, with an error that is uniformly small due to compactness of the set × .

Lemma 2.2.1. Assume that the cost function satisfies (C1)-(C4) and let ∈ Π( , ) be a coupling with -monotone support.

There exist Λ 0 < ∞ and 0 > 0 such that for all ≤ 0 for which

E 6 + D 6 1, ( 2 

.2.15)

we have the inclusion

|| == 5 ∩ Spt ⊆ B 5 ,Λ 0 .
Proof. We only prove the inclusion ( 5 × R ) ∩ Spt ⊆ 5 × Λ 0 , the other inclusion (R × 5 ) ∩ Spt ⊆ Λ 0 × 5 follows analogously since the assumptions are symmetric in and .

Step 1 (Use of -monotonicity of Spt ). Let > 0 be such that (2.2.15) holds, in the sense that we may use Lemma 2.A.1(ii), and set

( , ) := ( , ) -( , 0) -(0, ) + (0, 0). ( 2 

.2.16)

We claim that there exists a constant < ∞, depending only on C 2 ( × ) , such that ∇ ( , ) ∈ for all ( , ) ∈ ( 5 × R ) ∩ Spt .

To show this, we use the -monotonicity (2.2.1) of Spt . Notice that -monotonicity of Spt implies its -monotonicity:

( , ) -( , ) ≤ ( , ) -( , ) for all ( , ), ( , ) ∈ Spt .

(2.2.17)

With := + (1 -) we can write ( , ) -( , ) = ∫ 1 0 ∇ ( , ) d • ( -) = ∇ ( , ) • ( -) + ∫ 1 0 (∇ ( , ) -∇ ( , )) d • ( -),
and, using that ∇ (0, 0) = 0,

( , ) -( , ) = (∇ (0, ) -∇ (0, 0)) • ( -) + ∫ 1 0 (∇ ( , ) -∇ (0, )) d • ( -).
Inserting these two identities into inequality (2.2.17) gives

∇ ( , ) • ( -) ≤ ∫ 1 0 |∇ ( , ) -∇ ( , )| d | -| + |∇ (0, ) -∇ (0, 0)| | -| + ∫ 1 0 |∇ ( , ) -∇ (0, )| d | -|.
Using the boundedness of C 2 ( × ) we estimate this expression further by

∇ ( , ) • ( -) ≤ ∇ C 0 ( × ) ∫ 1 0 | -| d + ∫ 1 0 | | d | -| + ∇ C 0 ( × ) | | | -| C 2 ( × ) (| | + | | + | |) | -|, (2.2.18)
where in the last step we estimated the integrals and used that

∇ C 0 ( × ) ≤ 2 ∇ C 0 ( × ) , ∇ C 0 ( × ) = ∇ C 0 ( × )
. Now by Lemma 2.A.1(ii), given ∈ 5 , we have ( ( , ) × 7 ) ∩ Spt ≠ ∅ for any direction ∈ -1 . Hence, letting = ∇ ( , ) |∇ ( , )| , we can find a point ( , ) ∈ ( ( , ) × 7 ) ∩ Spt . Since the opening angle of ( , ) is 2 , we have

∇ ( , ) • ( -) = |∇ ( , )|| -| • - | -| |∇ ( , )|| -|.
It follows with (2.2.18) that there exists < ∞ such that

|∇ ( , )| C 2 ( × ) (| | + | | + | |) ≤ .

Almost-minimality and harmonic approximation

Proof of Proposition 2.1.10. First, let us observe that we may assume in the following that 

1 2 ∫ | -| 2 d( -) ≥ 0, ( 2 
∫ | -| 2 d( -) = - ∫ ( ( , ) + • ) d( -) + ∫ ( , ) d( -) = - ∫ ( ( , ) + • ) d( -) + ∫ ( , ) d( -), (2.3.4)
where is defined as in (2.2.16). Abbreviating

( , ) := -( ( , ) + • ),
optimality of with respect to the cost function implies that 1 2

∫ | -| 2 d( -) ≤ ∫ ( , ) d( -). (2.3.5)
Using again the admissibility of , we may write

∫ ( , ) d( -) = ∫ ( ( , ) -( , )) d( -).
Note that by the definition (2.2.16) of , the function satisfies ∇ ( , 0) = 0 for all and ∇ (0, ) = 0 for all , (2.3.6)

∇ ( , ) = -(∇ ( , ) + I) = -(∇ ( , ) + I). (2.3.7) Now, by (2.3.6), ( , ) -( , ) = ∫ 1 0 ∇ ( , + (1 -) ) -∇ (0, + (1 -) ) • ( -) d = ∫ 1 0 ∫ 1 0 • ∇ ( , + (1 -) )( -) d d ,
so that, using (2.3.7) and (2.3.2), it follows that

∫ ( , ) d( -) ∇ + I ∞ ( × ) ∫ × | || -| d( + ) ∇ + I ∞ ( × ) ∫ | -| d( + ). (2.3.8)
Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions By the estimate

( + )(R × R ) = 2 (R ) = 2 ( ) (2.1.20)
, and Hölder's inequality, we get

∫ | -| d( + ) 2 ∫ | -| 2 d( + ) 1 2 (2.3.3) +1 E ( ) 1 2 .

Eulerian point of view

The purpose of this section is to translate almost-minimality from the Lagrangian setting, as encoded by Proposition 2.1.10, to the Eulerian setting so that it may be plugged into the proof of the harmonic approximation result [GHO21, Proposition 1.7]. This is the purpose of Lemma 2.1.12 below, which relates a (Lagrangian) coupling , which we think of being an almost-minimizer, to its Eulerian description ( , ) (introduced in (2.1.23)).

The proof of Lemma 2.1.12 relies on the fact that the Eulerian cost is always dominated by the Lagrangian one, while the other inequality in general only holds for minimizers of the Euclidean transport cost. However, in the proof of Lemma 2.1.12 we can use almost-minimality of , together with the equality of Eulerian and Lagrangian energy for minimizers of the Euclidean transport cost (Remark 2.1.11) to overcome this nuisance.

Proof of Lemma 2.1.12. Let * ∈ Π( , ) be a minimizer of the Euclidean transport cost between and and let ( * , * ) be its Eulerian description. Then by (2.1.30) and (2.1.33) it follows that

∫ 1 | | 2 ≤ ∫ | -| 2 d ≤ ∫ | -| 2 d * + Δ. Since 2 ( , ) = 1 2 ∫ | -| 2 d * , we have that ∫ | -| 2 d * = ∫ 1 * | * | 2 ,
see Remark 2.1.11, so that by minimality of * , which implies minimality of ( * , * ) in the Benamou-Brenier formulation (2.1.31) of 2 ( , ), we obtain

∫ 1 | | 2 ≤ ∫ | -| 2 d ≤ ∫ 1 * | * | 2 + Δ ≤ ∫ 1 | | 2 + Δ
for any ( , ) satisfying (2.1.34), in particular also for ( , ) = ( , ).

The Eulerian version of almost-minimality also implies the following localized version, which will be needed for the harmonic approximation:

Almost-minimality and harmonic approximation

Corollary 2.3.1. Let ∈ Π( , ) be a coupling between the measures and with the property that there exists a constant Δ < ∞ such that

∫ 1 2 | -| 2 d ≤ ∫ 1 2 | -| 2 d + Δ (2.3.9)
for any ∈ Π( , ), and let ( , ) be its Eulerian description defined in (2.1.23). For any > 0 small enough15 , let be the inner trace of on × (0, 1) in the sense of (2.1.26), i.e.

∫ ×[0,1] d + ∇ • d = ∫ 1 d - ∫ 0 d + ∫ ×[0,1] d . ( 2 

.3.10)

Then for any density-flux pair ( , ) satisfying

∫ d + ∇ • d = ∫ 1 d - ∫ 0 d + ∫ ×[0,1] d (2.3.11)
there holds

1 2 ∫ ×[0,1] 1 | | 2 ≤ 1 2 ∫ 1 | | 2 + Δ.
(2.3.12)

Proof. Let ( , ) satisfy (2.3.11). Then the density-flux pair ( , ) := ( , ) + ( , ) ×[0,1] obeys (2.1.34). Indeed,

∫ d + ∇ • d = ∫ d + ∇ • d + ∫ ×[0,1] d + ∇ • d = ∫ d + ∇ • d + ∫ d + ∇ • d - ∫ ×[0,1] d + ∇ • d (2.3.11)&(2.1.25)&(2.3.10) = ∫ 1 d - ∫ 0 d .
Hence, by Lemma 2.1.12 and subadditivity of the Eulerian cost it follows that

1 2 ∫ 1 | | 2 ≤ 1 2 ∫ 1 | | 2 + Δ ≤ 1 2 ∫ 1 | | 2 + 1 2 ∫ ×[0,1] 1 | | 2 + Δ,
which implies (2.3.12).

Lemma 2.1.12, in the form of the bound (2.1.43), allows us to relate Eulerian and Lagrangian side of the harmonic approximation result, which will be central in the application to the one-step-improvement Proposition 2.1.16. The proof of this Lagrangian version is very similar to [GHO21, Proof of Theorem 1.5], however, we stress again that since we are not dealing with minimizers of the Euclidean transport cost, one has to be careful when passing from Eulerian to Lagrangian energies. maps: general cost functions Proof of Lemma 2.1.14. By scaling, it is enough to show that

∫ || == 1 ∫ 1 0 | -+ ∇Φ( + (1 -) )| 2 d d ≤ ∫ 2 ×[0,1] 1 | -∇Φ| 2 + Δ 1 .
(2.3.13) By the ∞ -bound, we know that if ( , ) ∈ || == 1 ∩ Spt , then for any ∈ [0, 1] there holds + (1 -) ∈ 2 . Hence, we may estimate

∫ || == 1 ∫ 1 0 | -+ ∇Φ( + (1 -) )| 2 d d ≤ ∬ 1 0 | -+ ∇Φ( + (1 -) )| 2 1 { +(1-) ∈ 2 } d d .
(2.3.14)

Multiplying out the square and using the definition of ( , ) from (2.1.23), we may write16 

∬ 1 0 | -+ ∇Φ( + (1 -) )| 2 1 { +(1-) ∈ 2 } d d = ∬ 1 0 | -| 2 1 { +(1-) ∈ 2 } d d + ∬ 1 0 |∇Φ( + (1 -) )| 2 1 { +(1-) ∈ 2 } d d + 2 ∬ 1 0 ( -) • ∇Φ( + (1 -) ) 1 { +(1-) ∈ 2 } d d = ∫ | -| 2 d - ∬ 1 0 | -| 2 1 { +(1-) ∈ 2 } d d + ∫ 2 ×[0,1] |∇Φ| 2 d -2 ∫ 2 ×[0,1] ∇Φ • d .
Now note that (2.1.29) implies a local counterpart of (2.1.30): for any open set ⊆ R ,

∫ ×[0,1] 1 | | 2 ≤ ∬ 1 0 | -| 2 1 { +(1-) ∈ } d d . (2.3.15)
Arguing with an open -neighborhood of and continuity of the right-hand side with respect to , one may show that (2.3.15) holds for any closed set , so that in particular

∫ 2 ×[0,1] 1 | | 2 ≤ ∬ 1 0 | -| 2 1 { +(1-) ∈ 2 } d d ,
which, together with (2.1.43), gives

∫ | -| 2 d - ∬ 1 0 | -| 2 1 { +(1-) ∈ 2 } d d ≤ ∫ 1 | | 2 + Δ 1 - ∫ 2 ×[0,1] 1 | | 2 = ∫ 2 ×[0,1] 1 | | 2 + Δ 1 ,
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so that (2.3.13) follows from the identity

∫ 2 ×[0,1] 1 | | 2 + ∫ 2 ×[0,1] |∇Φ| 2 d -2 ∫ 2 ×[0,1] ∇Φ • d = ∫ 2 ×[0,1] d d 2 + |∇Φ| 2 -2∇Φ • d d d = ∫ 2 ×[0,1] d d -∇Φ 2 d = ∫ 2 ×[0,1] 1 | -∇Φ| 2 .
(2.3.16)

Harmonic Approximation

In this section we sketch the proof of the (Eulerian) harmonic approximation Theorem 2.1.13. As already noted in the introduction, the proof of Theorem 2.1.13 is done at the Eulerian level (as in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF][START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF]) by constructing a suitable competitor.

Proof of Theorem 2.1.13. By scaling we may without loss of generality assume that = 1. Let ( , ) be the Eulerian description of the coupling ∈ Π( , ). The proof of the Eulerian version of the harmonic approximation consists of the following four steps, at the heart of which is the construction of a suitable competitor (Step 3). Note that since we want to make the dependence on the parameter in the ∞ -bound (2.1.36) precise, one actually has to look a bit closer into the proofs of the corresponding statements in [START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF], since in their presentation of the results the estimate (E 6 + D 6 ) 1 +2 is used.17 

Step 1 ( Passage to a regularized problem). Choose a good radius * ∈ (3, 4) for which the flux is well-behaved on * . Actually, since we are working with 2 -based quantities, to be able to get 2 bounds on ∇Φ, we would have to be able to estimate in 2 or at least in the Sobolev trace space 2( -1) . However, since the boundary fluxes are just measures and since for the approximate orthogonality (see Step 2) a regularity theory is required up to the boundary, one first has to go to a solution (with

∫ * d = 0) of a regularized problem Δ = const in * and * • ∇ = on * , (2.3.17)
where const is the generic constant for which the equation has a solution, and is a regularization through rearrangement of with good 2 bounds (see [GHO21, Section 3.1.2] for details).

Using properties of the regularized flux and elliptic regularity, the error made by this approximation can be quantified as 

sup 2 |∇(Φ -)| 2 + sup 2 |∇ 2 (Φ -)| 2 + sup 2 |∇ 3 (Φ -)| 2 (E 6 + D 6 ) 1+
∫ 2 ×[0,1] d ≤ ∫ d = ∫ d = (R ) = ( 7 ) 1,
so that together with (2.3.18) we may estimate, using ≤ 1,

∫ 2 ×[0,1] 1 | -∇Φ| 2 ∫ 2 ×[0,1] 1 | -∇ | 2 + (E 6 + D 6 ) 1+ 2
for any ∈ (0, 1). Note that the error term is superlinear in E 6 + D 6 .

Step 2 (Approximate orthogonality [GHO21, Proof of Lemma 1.8]). For every 0 < 1 there exist > 0,

< ∞ such that if E 6 + D 6 ≤ , then ∫ 2 ×[0,1] 1 | -∇ | 2 - ∫ * ×[0,1] 1 | | 2 - ∫ * |∇ | 2 ≤ E 6 + D 6 . (2.3.19)
The proof of (2.3.19) essentially relies on the representation formula

∫ * ×[0,1] 1 | -∇ | 2 = ∫ * ×[0,1] 1 | | 2 - ∫ * |∇ | 2 + 2 ∫ * d( -) + 2 ∫ * d( -) + ∫ * ×[0,1] |∇ | 2 (d -d ).
The three error terms in the second line of this equality are then bounded as follows. The first term uses that and are close in Wasserstein distance. An estimate on the second term relies on the fact that and are close 18 . This bound relies on the choice of a good radius in

Step 1 and 2 estimates up to the boundary on ∇ . The bound on the third error term uses elliptic regularity theory and a restriction result for the Wasserstein distance, which implies that 2 * ( ∫ 1 0

, ) E 6 + D 6 . 19 This estimate actually requires a further regularization of , and by relying on interior regularity estimates explains why one has to go from * to the slightly smaller ball 2 in the estimate (2.3.19). A close inspection of [GHO21, Proof of Lemma 1.8] shows that the term involving in these error estimates comes in product with a superlinear power of E 6 + D 6 as in Step 1, so that we may bound ≤ 1 and still be able to obtain an arbitrarily small prefactor in (2.3.19) by choosing E 6 + D 6 small enough.

Step 3 (Construction of a competitor [GHO21, Proof of Lemma 1.9]). For every 0 < 1 there exist > 0 and , < ∞ such that if E 6 + D 6 ≤ , then there exists a density-flux pair ( , ) satisfying (2.3.11) for = * , and such that

∫ 1 | | 2 - ∫ * |∇ | 2 ≤ + E 6 + D 6 .
(2.3.20)

18 Closeness here means closeness of ± and ± (the positive and negative parts of the measures) with respect to the geodesic Wasserstein distance on * . 19 We note that for the case of quadratic cost and Hölder continuous densities treated in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] a bound on this term is easy due to McCann's displacement convexity, which implies that ≤ 1 up to a small error.

Step 4 (Almost-minimality on the Eulerian level). Since the density-flux pair ( , ) satisfies (2.3.11) for = * , Corollary 2.3.1 implies that

∫ * ×[0,1] 1 | | 2 - ∫ * |∇ | 2 ≤ ∫ 1 | | 2 - ∫ * |∇ | 2 + Δ. (2.3.21)
Combining the above steps, we have proved that for any 0 < 1 there exist > 0 and < ∞ such that if Φ is the solution of (2.1.39), then

∫ 2 ×[0,1] 1 | -∇Φ| 2 ≤ + E 6 + D 6 + Δ. (2.3.22)
2.4 The -regularity result

One-step improvement

The following proposition is a one-step improvement result, which will be the basis of a Campanato iteration in Theorem 2.1.1. Note that the iteration is more complicated than in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF], because at each step we have to restrict the -optimal coupling to the smaller cross where the ∞ -bound holds to be able to apply the harmonic approximation result. As a consequence, we have to make sure that the qualitative bound (2.2.15) on the displacement (which is an important ingredient in obtaining quantitative version of the ∞ -bound (2.1.16)) is propagated in each step of the iteration. 20 We start with the short proof of Lemma 2.1.8, which is the starting point of each iteration step.

Proof of Lemma 2.1.8. Let ∈ Π( , ) be a -optimal coupling, and let Ω := Ω be its restriction to a subset Ω ⊆ R × R . Then Ω ∈ Π( Ω , Ω ) where the marginal measures Ω , Ω are defined in (2.1.18).

Given any coupling ∈ Π( Ω , Ω ), we can define := -Ω + . It is easy to see that is an admissible coupling between the measures and , hence by -optimality of , we obtain by the additivity of the cost functional with respect to the transference plan

∫ ( , ) d ≤ ∫ ( , ) d = ∫ ( , ) d - ∫ ( , ) d Ω + ∫ ( , ) d , hence ∫ ( , ) d Ω ≤ ∫ ( , ) d for any ∈ Π( Ω , Ω ),
that is, Ω is a -optimal coupling between Ω and Ω .

20 Alternatively, one could devise an argument based on the fact that the qualitative ∞ bound only depends on the cost through its global properties (C1)-(C4) and that the set of cost functions considered in the iteration is relatively compact.
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As a direct application and as a further preparation for the one-step-improvement we present the short proof of Corollary 2.1.9.

Proof of Corollary 2.1.9. Let ∈ Π( , ) be -optimal. Then by Lemma 2.1.8 the coupling := || == is a -optimal coupling between the measures and defined via

( ) = (( × R ) ∩ || == ), ( ) = ((R × ) ∩ || == ),
for any ⊆ R Borel. In particular, we have that

( ) ≤ ( × R ) = ( ).
If ⊆ 2 , then

( ) = ((( ∩ ) × R ) ∪ ( × )) = ( × ) = 0,
since for any ( , ) ∈ Spt , by assumption we have that

| -| ≤ ≤ , so × ∩Spt = ∅. Hence, Spt ⊆ 2 . Similarly, if ⊆ , then ( ) = (( × R ) ∪ ( × )) = ( × R ) = ( ),
which implies that = on . By symmetry, the same properties hold for .

We now give the proof of the one-step improvement Proposition 2.1.16, which is the working horse of the Campanato iteration.

Proof of Proposition 2.1.16.

Step 1 (Rescaling). Without loss of generality we can assume that = 1. Hence, to simplify notation we will also use the shorthand

E := E 9 ( ), D := D 9 ( 0 , 1 ), and [ 0 ] := [ 0 ] ,9 , [ 1 ] := [ 1 ] ,9 , ∇ := ∇ ,9 .
Note that by the normalization 0 (0) = 1 (0) = 1 we have that 1 2 ≤ ≤ 2 for = 1, 2, provided that [ 0 ] + [ 1 ] is small enough. In particular, Lemma 2.A.4 then implies that

D [ 0 ] 2 + [ 1 ] 2 .
Indeed, let ( , ) = ( , ) := ( -1 , -1 ) and set 0 ( ) = 0 ( ), 1 ( ) = 1 ( ), ( , ) = -2 ( , ), and = -1 . We still have 0 (0) = 1 (0) = 1 and ∇ (0, 0) = -I, and := -( ) # is the -optimal coupling between 0 and 1 .
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Step 2 ( ∞ -bound for ). We claim that the coupling satisfies the ∞ -bound

| -| ≤ for all ( , ) ∈ Spt || == 6 (2.4.1) with = ∞ (E + D) 1 +2
for some constant ∞ < ∞ depending only on . In view of the harmonic approximation Theorem 2.1.13 it is therefore natural to consider the coupling || == 6 , which by Lemma 2.1.8 and Corollary 2.1.9 is a -optimal coupling between its own marginals, denoted by and . Indeed, since is -optimal, its support is -monotone. By assumptions (2.1.48), (2.1.49), and Remark 2.1.7 we may therefore estimate

∇ + I C 0 (B 8,Λ ) Λ [∇ ] Λ 1. (2.4.2)
Hence, appealing to Proposition 2.1.5 (suitably rescaled), we obtain the claimed ∞ -bound (2.4.1). Notice that the dependence of the smallness assumption (2.1.49) on Λ only enters through the Λ-dependence of (2.4.2).

Step 3 (Properties of the marginals and of || == 6

). We claim that the marginals and of || == 6 satisfy Spt , Spt ⊆ 7 , and

( 7 ) ≤ 2| 7 |.
Indeed, due to the ∞ -bound (2.4.1) the marginal measures are supported on 7 if E + D 1 (such that ≤ 1). Furthermore, from Corollary 2.1.9 we have that = 0 d and = 1 d on 6 , as well as ≤ 0 d , which implies that

( 7 ) ≤ ∫ 7 0 d ≤ (1 + [ 0 ] )| 7 | ≤ 2| 7 |
since by assumption (2.1.49) we may assume that [ 0 ] ≤ 1.

Step 4 (Almost-minimality of || == 6 and applicability of the harmonic approximation Theorem 2.1.13). We show next that the coupling || == 6 is an almost-minimizer of the Euclidean transport problem in the sense that for any ∈ Π( , ) there holds

1 2 ∫ | -| 2 d || == 6 ≤ 1 2 ∫ | -| 2 d + Δ, (2.4.3) with Δ = [∇ ] E 1 2
, and that || == 6 satisfies the assumptions of Theorem 2.1.13.

Indeed, by

Step 3 and the -optimality of || == 6 , we may apply Proposition 2.1.10 to obtain inequality (2.4.3) with

Δ = ∇ + I C 0 ( 7 × 7 ) E 1 2 7 [∇ ] E 1 2 , (2.4.4) 
where we also used that E 7 E.

Note that in view of Lemma 2.1.12 the Eulerian description of || == 6 satisfies (2.1.37). Together with Step 2 and Step 3 this implies that the assumptions of Theorem 2.1.13 are fulfilled.
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Step 5 (Definition of and and proof of estimate (2.1.50)). For given > 0, to be chosen later, let and be as in the harmonic approximation result (Theorem 2.1.13). We claim that, with the harmonic gradient field ∇Φ defined in (2.1.39), := ∇Φ(0), := ∇2 Φ(0), and := E 2 , (2.4.5) satisfy the bounds (2.1.50).

Since

0 (0) = 1 (0) = 1, we have 1 2 ≤ ≤ 2, = 0, 1, provided [ 0 ] 2 + [ 1 ]
2 is small enough, so that (2.1.11) holds. In particular, since agrees with 0 d on 6 and agrees with 1 d on 6 , we may estimate

D 6 ( , ) = D 6 ( 0 , 1 ) (2.1.11) [ 0 ] 2 ,6 + [ 1 ] 2 ,6 [ 0 ] 2 + [ 1 ] 2 .
Assume now that

E 6 ( ) + D 6 ( , ) E + [ 0 ] 2 + [ 1 ] 2 ≤ , (2.4.6) 
so that Theorem 2.1.13 allows us to define the vector and the matrices , as in (2.4.5). Note that since is symmetric, so is the matrix . By (2.1.41) and (2.1.11), we then have

| | 2 E 6 ( ) + D 6 ( , ) E + [ 0 ] 2 + [ 1 ] 2 ,
and the same estimate holds for | | 2 , so that

| -I| 2 E + [ 0 ] 2 + [ 1 ] 2 .
This proves the estimate (2.1.50). Furthermore, recalling the definition of Φ in (2.1.39), we bound

|1 -det 2 | 2 = 1 -E tr 2 = 1 -E ΔΦ(0) 2 = |1 -E -| 2 - 2 (2.1.9) D * ( , ) (2.1.11) 2 * [ 0 ] 2 , * + [ 1 ] 2 , * [ 0 ] 2 + [ 1 ] 2 .
(2.4.7)

In view of (2.1.50) we may assume that ∈ 9 , so that 21

| 1 ( ) 1 -1 (0) 1 | 2 | 1 ( ) -1 (0)| 2 ≤ | | 2 [ 1 ] 2 [ 1 ] 2 , (2.4.8) 
and similarly for = -∇ (0, ),

| -I| 2 ∇ 2 , (2.4.9) 
which implies that

|1 -det | 2 | -I| 2 [∇ ] 2 .
(2.4.10)
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Now, noticing that = 1 ( )

1 | det | 2 | det | 1 because 0 (0) = 1, ( 2 
.4.7), (2.4.8) together with 1 (0) = 1, and (2.4.10) imply

|1 -| 2 [ 0 ] 2 + [ 1 ] 2 + [∇ ] 2 .
(2.4.11)

Step 6 (Mapping properties of ). We show that if

E + D + [∇ ] 2 2 , 22 then -1 ( || == ) ⊆ || == 2 .
(2.4.12) Indeed, we have

-1 ( || == ) = -1 ( × R ) ∪ -1 (R × ) = -1 × R ∪ R × ( -1 - * + ) ,
and from (2.1.50), (2.4.9), and (2.4.11) it follows that -1 ⊆ 2 and

-1 - * + ⊆ 2 if E + D + [∇ ] 2
2 , which we assume to be true from now on.

Step 7 (Transformation of the displacement) We next show that for all ( , ) = ( , ) ∈ R × R and ∈ [0, 1] there holds

( -) = --∇Φ( + (1 -) ) + , (2.4.13) 
where the error is controlled by

| | (| -1| + | -I|) (| | + | |) + |∇ 2 Φ(0)| 2 | | + |∇ 2 Φ(0)|| -| + sup ∈[0,1] |∇ 3 Φ( ( + (1 -) ))| | + (1 -) | 2 .
(2.4.14) Indeed, by (2.1.45) we have

( -) = * ( -) -2 = --2 + ( * -I)( -),
and the second term, which will turn out to be an error term, can be bounded by

|( * -I)( -)| ≤ (| -1|| * | + | * -I|) | -| (2.4.9) (| -1| + | -I|) (| | + | |). (2.4.15)
We show next that 2 + ≈ + ∇Φ( + (1 -) ), with an error that can be controlled. This relies on the fact that, Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions where

|E -I -| | | 2 , (2.4.17) 
and Taylor approximation. Indeed,

|∇Φ( + (1 -) ) -(∇Φ(0) + ∇ 2 Φ(0)( + (1 -) ))| sup ∈[0,1] |∇ 3 Φ( ( + (1 -) ))| | + (1 -) | 2 (2.4.18)
so that with (2.4.16), (2.4.17), and (2.4.5),

| 2 + -( + ∇Φ( + (1 -) ))| |∇ 2 Φ(0) + ∇Φ(0) -∇Φ( + (1 -) ))| + |∇ 2 Φ(0)| 2 | | ≤ |∇ 2 Φ(0) ( + (1 -) ) + ∇Φ(0) -∇Φ( + (1 -) ))| + |1 -||∇ 2 Φ(0)|| -| + |∇ 2 Φ(0)| 2 | | (2.4.18) sup ∈[0,1] |∇ 3 Φ( ( + (1 -) ))| | + (1 -) | 2 + |∇ 2 Φ(0)|| -| + |∇ 2 Φ(0)| 2 | |. (2.4.19)
Collecting all the error terms from (2.4.15) and (2.4.19) then yields (2.4.13).

Step 8 (Proof of the energy estimate (2.1.51)). In this final step we prove the energy estimate (2.1.51).

To this end, let us compute

+2 E ( ) = ∫ || == | -| 2 d ≤ | -1 | 2 ∫ || == | ( -)| 2 d = | -1 | 2 ∫ 1 0 ∫ || == | ( -)| 2 d d (2.1.47)&(2.4.13) | det || -1 | 2 ∫ -1 ( || == ) ∫ 1 0 | --∇Φ( + (1 -) )| 2 + | | 2 d d (2.4.12)&(2.1.50) ∫ || == 2 ∫ 1 0 | --∇Φ( + (1 -) )| 2 d d + ∫ || == 2 ∫ 1 0 | | 2 d d .
(2.4.20)

For the first term on the right-hand side of (2.4.20), we use the harmonic approximation theorem in its Lagrangian version (Lemma 2.1.14), which is applicable by Step 4. In particular, we may estimate, assuming that ≤ 1 2 ,

∫ || == 2 ∫ 1 0 | --∇Φ( + (1 -) )| 2 d d ≤ ∫ || == 1 ∫ 1 0 | --∇Φ( + (1 -) )| 2 d d ≤ ∫ 2 ×[0,1] 1 | -∇Φ| 2 + Δ ≤ + E + D + Δ,
2.4. The -regularity result so that by (2.4.4), (2.1.11), and Young's inequality,

∫ || == 2 ∫ 1 0 | --∇Φ( + (1 -) )| 2 d d + E + ([ 0 ] 2 + [ 1 ] 2 + [∇ ] 2 ). (2.4.21)
To estimate the error term

∫ || == 2 ∫ 1 0 | | 2 d d we use the following consequence of the ∞ - bound (2.4.1): if E + [ 0 ] 2 + [ 1 ] 2
+2 , which holds in view of (2.1.49), then

|| == 2 ∩ Spt ⊆ 3 × 3 . (2.4.22)
With this in mind, we will bound each term in (2.4.14) separately. Note that

∫ || == 2 | | 2 + | | 2 d (2.4.22) ≤ ∫ 3 ×R | | 2 d + ∫ R × 3 | | 2 d = ∫ 3 | | 2 0 ( ) d + ∫ 3 | | 2 1 ( ) d +2 ,
and similarly

∫ || == 2 d
. Moreover, by (2.4.22), we may estimate for any ( ,

) ∈ || == 2 ∩ Spt sup ∈[0,1] |∇ 3 Φ( ( + (1 -) ))| | + (1 -) | 2 2 sup 3 |∇ 3 Φ| 2 sup 2 |∇ 3 Φ| .
Together with the bound (2.1.50) and since we assumed that E +

[ 0 ] 2 + [ 1 ] 2 2 , which implies that | | 2 2 , it follows that ∫ || == 2 ∫ 1 0 | | 2 d d +2 |1 -| 2 + | -I| 2 + +2 |∇ 2 Φ(0)| 4 + |∇ 2 Φ(0)| 2 ∫ || == 2 | -| 2 d + +4 sup 2 |∇ 3 Φ| 2 .
Hence with the bounds (2.4.11), (2.4.9), and (2.1.41), together with

E + [ 0 ] 2 + [ 1 ] 2 2
and ≤ 1, we obtain

∫ || == 2 ∫ 1 0 | | 2 d d +2 [ 0 ] 2 + [ 1 ] 2 + [∇ ] 2 + +2 (E + [ 0 ] 2 + [ 1 ] 2 ) 2 + (E + [ 0 ] 2 + [ 1 ] 2 ) +2 E + +4 (E + [ 0 ] 2 + [ 1 ] 2 ) +2 [ 0 ] 2 + [ 1 ] 2 + [∇ ] 2 + +4 E. (2.4.23)
Inserting the estimates (2.4.21) and (2.4.23) into (2.4.20) yields the existence of a constant = ( , ) such that

E ( ) ≤ -( +2) + +2 + 2 E + , [ 0 ] 2 + [ 1 ] 2 + [∇ ] 2 .
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We now fix = ( , , ) such that 2 ≤ 1 3 2 , which is possible since < 1, and then small enough so that -( +2) ≤ 1 3 2 . This fixes given by Theorem 2.1.13. Finally, we may choose E +

[ 0 ] 2 + [ 1 ] 2 small enough so that +2 (2.4.1) = ∞ (E + D) 1 +2 +2 ≤ 1 3 2 , yielding (2.1.51).
Step 9 (Proof of ( 

) ⊆ || == , provided that E + D + [∇ ] 2 2 , so that ( , ) ∈ || == ∩ Spt .
Using the ∞ bound (2.1.16) (notice that ≤ 2 3 ) and the fact that we assumed E + D +2 , we obtain

| -| ≤ = ∞ (E + D) 1 +2 ≤ , so that ( , ) ∈ B ,2 . It thus follows that ( , ) ∈ (B ,2
). Following the proof of Step 6, we have

(B ,2 ) ⊆ B 2 ,3 ,
and conclude that ( , ) ∈ B 2 ,3 ∩ || == 8 9 = B8 9 ,3 .

Proof of -regularity

To lighten the notation in this subsection, let us set

H ( 0 , 1 , ) := 2 [ 0 ] 2 , + [ 1 ] 2 , + ∇ 2 , .
We are now in the position to give the proof of our main -regularity theorem, which we restate for the reader's convenience:

Theorem 2.1.1. Assume that (C1)-(C4) hold and that 0 (0) = 1 (0) = 1, as well as ∇ (0, 0) = -I. Assume further that 0 is in the interior of × . Let be a -optimal coupling from 0 to 1 . There exists 0 = 0 ( ) > 0 such that for all ≤ 0 with 1

+2 ∫ 4 ×R | -| 2 d + H 4 ( 0 , 1 , ) 1, (2.4.24) 
there exists a function ∈ C 1, ( ) such that Spt ∩ ( × R ) ⊆ graph , and the estimate

[∇ ] 2 , 1 2 1 +2 ∫ 4 ×R | -| 2 d + H 4 ( 0 , 1 , ) (2.4.25) 
holds.

The -regularity result

Proof of Theorem 2.1.1. To simplify notation, we write E for E ( ) and H for H ( 0 , 1 , ).

Note that since 0 (0) = 1 (0) = 1 and

[ 0 ] ,4 + [ 1 ]
,4 is small by (2.4.24), we may assume throughout the proof that 1 2 ≤ 0 , 1 ≤ 2 on 4 .

Step 1 (Control of the full energy at scale 2 ). We show that under assumption (2.4.24) we can bound 

E 2 1 +2 ∫ 4 ×R | -| 2 d . ( 2 
( , ) ∈ ( 3 × R ) ∩ Spt ⇒ | -| 1 +2 ∫ 4 ×R | -| 2 d + D 4 ( 0 , 1 ) 1 +2 
.

(2.4.27)

Let us now prove that

(R × 2 ) ∩ Spt ⊆ 4 × 2 , (2.4.28) 
from which we get 

∫ R × 2 | -| 2 d ≤ ∫ 4 ×R | -| 2 d
= -+ -, 0 ≤ ( -) • ( -) + ( -) • ( -) + | -|| -| + | -|| -| ≤ ( -1)| -|| -| + (1 + )| -|| -| ≤ | -| - 1 2 2 + (1 + )| -| ,
which together with (2.4.29) yields a contradiction, proving (2.4.28).

In the following, Step 2 -Step 6 are devoted to prove that under the assumption

E 2 + H 2 1, (2.4.30) 
the following Campanato estimate holds: Step 2 (Getting to a normalized setting). We claim that it is enough to prove that if

sup 0< < 2 sup 0 ∈ 1 +2+2 inf , ∫ ( ( 0 )∩ )×R | -( + )| 2 d 1 2 (E 2 + H 2 ) . ( 2 
E + H 1 (2.4.32) then for all ≤ 2 , 1 +2 inf , ∫ ×R | -( + )| 2 d 2 2 (E + H ) . (2.4.33) 
Let us first notice that for any 0 ∈ , ( (

0 ) ∩ ) × R ⊆ || == 2 so that E 0 , := 1 +2 ∫ ( ( 0 )∩ )×R | -| 2 d E 2 ,
and

H 0 , := 2 [ 0 ] 2 , ( 0 ) + [ 1 ] 2 , + ∇ 2 ,( ( 
0 )∩ )×R H 2 .
Therefore, in view of (2.4.30), it is sufficient to show for all 0 ∈ that, if

E 0 , + H 0 , 1, (2.4.34) 
then for all ≤ 2 ,

1 +2 inf , ∫ ( ( 0 )∩ )×R | -( + )| 2 d 2 2 E 0 , + H 0 , . (2.4.35) 
Performing a similar change of coordinates as Lemma 2.1.15, namely letting := -∇ ( 0 , 0), := ( 0 ( 0 ) det ) 1 and ( ) := -1 and defining := 1

0 ( 0 ) (Id × -1 ) # , 0 := 0 0 ( 0 ) , 1 := 1 • , ( , 
) := -1 ( , ( )),
we have that 0 ( 0 ) = 1 (0) = 1 and ∇ ( 0 , 0) = -I. Furthermore, is a -optimal coupling between 0 and 1 and , 0 , 1 and still satisfy (2.4.34). Without loss of generality, we may thus assume 0 = 0 and then (2.4.34) turns into (2.4.32) and (2.4.35) turns into (2.4.33).

The -regularity result

Step 3 (First step of the iteration). Recall that (2.1.11) holds, i.e., D

2 [ 0 ] 2 , + [ 1 ] 2 ,
. By (a rescaling of) Lemma 2.2.1, there exist Λ 0 < ∞ and 0 > 0 such that for all ≤ 0 for which (2.4.32) holds, we have

|| == 8 9 ∩ Spt ⊆ B 8 9 , Λ 0 9 . 
(2.4.36)

Let > 0. In view of (2.4.32) and (2.4.36), we may apply Proposition 2.1.16 to get the existence of a symmetric matrix 1 and a vector 1 such that, defining 1 := -∇ 1 (0, 1 ),

1 := 1 ( 1 ) det 2 1
-1 1 1 and 0,1 , 1,1 , 1 and 1 as 0 , 1 , and in Lemma 2.1.15, we get

E 1 := E ( 1 ) ≤ 2 E + H , (2.4.37) 
and that 1 is a 1 -optimal coupling between 0,1 and 1,1 . From (2.1.52) we also have the inclusion

|| == 8 9 ∩ Spt 1 ⊆ B 8 9 ,3 , (2.4.38) 
so that we may fix Λ = 27 from now on (assuming w.l.o.g. that Λ 0 ≥ 27).

Step 4 (Iterating Proposition 2.1.16). We now show that we can iterate Proposition 2.1.16 a finite number of times.

Notice that from the estimates (2.1.50), (2.4.9) and (2.4.11) we have the inclusion

-1 1 - * 1 1 + 1 ⊆ . (2.4.39)
Hence, we can bound

[ 1,1 ] , = 1 ( 1 ) -1 sup ≠ ∈ | 1 ( -1 1 - * 1 1 + 1 ) -1 ( -1 1 - * 1 1 + 1 )| | -| (2.4.8) | -1 1 - * 1 1 | sup ≠ ∈ | 1 ( -1 1 - * 1 1 + 1 ) -1 ( -1 1 - * 1 1 + 1 )| |( -1 1 - * 1 1 + 1 ) -( -1 1 - * 1 1 + 1 )| (2.4.39) ≤ - 1 | -1 1 | | 1 | sup ≠ ∈ | 1 ( ) -1 ( )| | -| .
Estimates (2.1.50), (2.4.8), (2.4.9), and (2.4.11) thus yield for ∈ {0, 1} ( 0,1 is treated similarly)

[ ,1 ] 2 , ≤ 1 + (E 1 2 + H 1 2 ) [ ] 2 , ,
where is a constant depending only on and . Using (2.1.46), the same kind of computation gives

∇ 1 2 , ≤ 1 + (E 1 2 + H 1 2 ) ∇ 2 , , (2.4.40) 
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H 1 := H ( 0,1 , 1,1 , 1 ) ≤ 2 1 + (E 1 2 + H 1 2 ) H . ( 2 
:= 0, -1 ( -1 ), 1, ( ) := 1, -1 ( -1 - * + ) 1, -1 ( ) , ( , 
) := ( , -1 * ( -)), := det # -1 , (2.4.42) 
and ( ,

) := -1 ( -1 , -1 - * + ), (2.4.43) 
we recover 0, (0) = 1, (0) = 1 and ∇ (0, 0) = -I, is a -optimal coupling between 0, and 1, , and from (2.1.52) we have

|| == 8 9 ∩ Spt ⊆ B 8 9 ,3
.

(2.4.44)

Moreover, defining

E := E ( ) and H := H ( 0, , 1, , ), (2.4.45) 
we have

E (2.1.51) ≤ 2 E -1 + H -1 , (2.4.46) | -I| 2 + 1 ( -1 ) 2 | | 2 (2.1.50) E -1 + 2( -1) 2 [ 0, -1 ] 2 , -1 + [ 1, -1 ] 2 , -1 , (2.4.47) | -I| 2 (2.4.9) 2( -1) 2 [∇ -1 ] 2 , -1 , (2.4.48) 
| -1|2 (2.4.11) H -1 .

(2.4.49)

Arguing as for (2.4.41), there exists a constant 1 = 1 ( , ) < ∞ such that

H ≤ 2 1 + 1 (E -1 ) 1 2 + (H -1 ) 1 2 H -1 .
(2.4.50)

Step 5 (Smallness at any step of the iteration). From now on, we fix > . Let us show by induction that there exists a constant 2 = 2 ( , , 

) < ∞ such that for all ∈ N E ≤ 2 2 (E + H ) , (2.4.51) 
H ≤ 2 (1 + )H -1 . ( 2 
:= +∞ =1 (1 + ) < ∞.
We set

2 := max 2( -) , 3 -2 1 -2( -) .
(2.4.54) By (2.4.37) and (2.4.41), the estimates (2.4.51) and (2.4.52) hold for = 1 provided E + H is small enough, since 2 ≥ max{ 2( -) , -2 }. Assume now that (2.4.51) and (2.4.52) hold for all 1 ≤ ≤ -1. By induction hypothesis, we have

E -1 ≤ 2 2( -1) (E + H ) and H -1 ≤ 3 2( -1) H .
Combining these two estimates with (2.4.50) for = and assuming that

1 1 2 2 (E 1 2 + H 1 2 ) + 1 2 3 H 1 2 ≤ ,
which is possible provided E + H is small enough, we get (2.4.52). Similarly, by (2.4.46) with = we obtain, using that 2 ≥ 3 -2 1-2( -) by (2.4.54), the bound

-2 E ≤ 2( -) 2 + 3 -2 (E + H ) ≤ 2 (E + H ).
This concludes the induction.

Step 6 (Campanato estimate). We can now prove the main estimate, that is, assuming (2.4.32), we show that (2.4.33) holds.

Let := . . . 1 , := . . . 1 , := -1 * . . . -1 1 * 1 , := =1 ( -1 * ) . . . ( -1 * )
and

( , ) := ( , -). (2.4.55)
We see that, recalling (2.4.42) and noticing that

= • • • • • 1 , = det # and 0, ( ) = 0 ( -1 ). (2.4.56)
Moreover, from (2.4.47), (2.4.51), and (2.4.52), we have the estimate Let us now compute 1

| -I| 2 E + H 1, (2.4.57) so that 1 2 × R ⊆ -1 ( ) × R = -1 ( × R ). ( 2 
1 2 +2 inf , ∫ 1 2 ×R | -( + )| 2 d (2.4.58) 1 ( ) +2 ∫ -1 ( ×R ) | --1 -1 --1 -1 | 2 d (2.4.56) = (det ) -1 ( ) +2 ∫ ×R | -1 -1 ( -)| 2 d (2.4.57)&(2.4.59) 1 ( ) +2 ∫ ×R | -| 2 d (2.4.45) = E .
By (2.4.51), we obtain 1

1 2 +2 inf , ∫ 1 2 ×R | -( + )| 2 d 2 (E + H ) ,
from which (2.4.33) follows, concluding the proof of (2.4.31)

Step 7 (Spt is contained in the graph of a function within × R ). We claim that (2.4.31) implies the existence of a function :

→ such that

( × R ) ∩ Spt ⊆ graph T.
(2.4.60)

In the following, we abbreviate

[[ ]] 2 := sup 0< < 2 sup 0 ∈ 1 +2+2 inf , ∫ ( ( 0 )∩ )×R | -( + )| 2 d .
To prove the claim, fix 0 ∈ and notice that (2.4.31) implies that for any > 0 small enough, there holds

1 +2 inf , ∫ ( 0 )×R | -( + )| 2 d 2 2 1 +2 ∫ 4 ×R | -| 2 d + H 4 .
(2.4.61)

Step 7.A. It is easy to see that the infimum in (2.4.61) is attained at some = ( 0 ) and = ( 0 ). Analogous to [Cam64, Lemma 3.IV] one can show that there exist a matrix 0 = 0 ( 0 ) and a vector 0 = 0 ( 0 ) such that → 0 and → 0 as → 0 (uniformly in 0 ) with rates

| -0 | [[ ]]
and

| -0 | [[ ]] +1 . (2.4.62)
We refer the reader to Appendix 2.C for a proof of the convergences and (2.4.62).
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Step 7.D. For any Lebesgue point 0 ∈ , define ( 0 ) := 0 ( 0 ) 0 + 0 ( 0 ). Then the previous Step 7.C shows that ×R = (Id × ) # 0 , that is (2.4.60).

Step 8 By boundedness of 0 , (2.4.31) implies the bound sup

0< < 2 sup 0 ∈ 1 +2+2 inf , ∫ ( 0 )∩ | ( ) -( + )| 2 d 1 2 1 +2 ∫ 4 ×R | -| 2 d + H 4 ,
which by means of Campanato's theory [Cam64] proves that ∈ C 1, ( ) and that the Hölder seminorm of ∇ satisfies (2.4.25).

Remark 2.4.1. The deterministic structure of the -optimal coupling, that is, the existence of such that = (Id × ) # 0 , is a classical result in optimal transportation. If we had used this result, the proof would have become shorter, as Step 7 would not have been needed.

Before we give the proof of Corollary 2.1.3, let us remark that one can show the following variant of our qualitative ∞ bound on the displacement (Lemma 2.2.1): Lemma 2.4.2. Assume that the cost function satisfies (C1)-(C4) and that ∇ (0, 0) = 0. Let be a -convex function. There exist Λ 0 < ∞ and 0 > 0 such that for all ≤ 0 for which

1 2 -1 2 | • | 2 C 0 ( 8 ) ≤ 1 we have esssup ∈ 4 |c-exp (∇ ( ))| ≤ Λ 0 . (2.4.66)
Proof. Since is -convex, it is differentiable a.e. For any ∈ 4 such that ∇ ( ) exists, let = c-exp (∇ ( )), that is,

∇ ( ) + ∇ ( , ) = 0. (2.4.67)
Let be defined as in (2.2.16). Then, using ∇ (0, 0) = 0, we have

-∇ ( , ) = -∇ ( , ) + ∇ ( , 0) (2.4.67) = ∇ ( ) + ∇ ( , 0) -∇ (0, 0) = ∇ ( ) -+ + ∫ 1 0 ∇ ( , 0) d , so that |∇ ( , )| ≤ |∇ ( ) -| + | | + ∇ C 0 ( × ) | |.

The -regularity result

Being -convex, the function , and therefore also the function ↦ → ( ) - Steps 2 and 3 of the proof of Lemma 2.2.1 then imply that there exist Λ 0 < ∞ and 0 > 0 (depending on only through assumptions (C1)-(C4)) such that for all ≤ 0 we have

1 2 | | 2 , is semi-convex, which implies that esssup ∈ 4 |∇ ( ) -| 1 sup ∈ 8 | -1 2 | | 2 |, ( 2 
|∇ ( , )| ≤ ⇒ | | ≤ Λ 0 ,
that is, (2.4.66) holds.

Proof of Corollary 2.1.3. By Lemma 2.4.2 there exist Λ 0 < ∞ and 0 > 0, depending only on the qualitative assumptions (C1)-(C4) on such that for all ≤ 0 for which (2.1.6) holds, we have

∞ ( 4 ) ≤ Λ 0 . (2.4.69) We claim that 1 - ∞ ( 4 ) 1 2 -1 2 | • | 2 C 0 ( 8 ) + [∇ ] ,4 + [∇ ] ,4 , (2.4.70) 
which immediately implies that

1 +2 ∫ 4 ×R | -| 2 d = 1 +2 ∫ 4 | -( )| 2 0 ( )d 1 4 -1 2 | • | 2 2 C 0 ( 8 ) + 2 [∇ ] 2 ,4 + [∇ ] 2 ,4
1.

(2.4.71)

In particular, it follows by Theorem 2.1.1, that there exists a potentially smaller scale 0 ≤ 0 such that for all ≤ 0 for which (2.1.6) holds, we have that ∈ C 1, ( ) and ∇ satisfies the bound (2.1.5). Applying (2.4.71) once more, we see that (2.1.7) holds.

To prove the claim (2.4.70), we appeal to semi-convexity of the -convex function (which implies semi-convexity of the function ↦ → ( ) -1 2 | | 2 ), in particular Lemma 2.A.6, to bound

- ∞ ( 4 ) ≤ -∇ ∞ ( 4 ) + ∇ - ∞ ( 4 ) 1 -1 2 | • | 2 C 0 ( 8 ) + ∇ - ∞ ( 4 ) .
Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions It remains to estimate the latter term. To this end, notice that for a.e. ∈ 4 we have ∇ ( ) = -∇ ( , ( )), so that with the normalization assumption ∇ (0, 0) = 0 we may bound 

≤ Λ 0 [∇ ] ,4 + [∇ ] ,4 .
In view of (2.1.6), we may assume This proves the claimed inequality (2.4.70).

Λ 0 [∇ ] ,4 + [∇ ] ,4 ≤ 1, so that |∇ ( ) -( )| ≤ . ( 2 

-regularity for continuous densities

In this subsection only, we modify the assumptions on the densities: 0 and 1 are only supposed to be continuous on and respectively. As in [START_REF] Goldman | An -regularity result for optimal transport maps between continuous densities[END_REF] we still derive Hölder regularity (but only C 0, ) for the optimal map in a small ball, assuming that the lagrangian energy, the ∞ distance between 1 and the densities and the semi-norm of ∇ are small enough at a larger scale. Let be the -optimal coupling between 0 and 1 . There exists 0 > 0 such that for all ≤ 0 with

E 2 ( ) + 0 -1 2 ∞ ( ) + 1 -1 2 ∞ ( ) + ∇ 2 ,2
1, (2.4.74)

then there exists a map such that Spt ∩ ( × R ) ⊂ graph and for any ∈ (0, 1), we have ∈ C 0, ( ).

The -regularity result

Notice that we do not give an estimate on the semi-norm of ∇ , in fact we can only say that it is bounded. Indeed, the estimate (2.1.5) comes from the data getting geometrically smaller at each step of the iteration. Here the data concerning the densities do not improve as we zoom in, we only have

-1 2 ∞ ( ) ≤ -1 2 ∞ ( ) .
A second point to notice is that we still need to assume Hölder regularity of the second derivative of the cost, as being C 2 would not be enough. This was already the case in [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]. In our iteration, we see clearly why it is needed: after the change of variables that we give in Proposition 2.4.4 below, the new cost is such that

∇ ( , ) = ∇ ( , -1 -1 -1 + ) -1 -1 .
From there, the best ∞ estimate we can hope for is

∇ + I ∞ ( || == ) ≤ | || -1 || -1 | ∇ + I ∞ ( || == ) .
From estimates (2.4.78) and (2.4.82), we get

∇ + I ∞ ( || == ) ≤ 1 + 1 2 ∇ + I ∞ ( || == ) ,
where is the left-hand side of (2.4.74). Now, the issue is that the norms of the densities will not improve as we iterate this result, so that will stay at best of the same order, which causes the ∞ norm of the iterated cost to grow geometrically. The proof is very close to the one in the previous subsection and to [START_REF] Goldman | An -regularity result for optimal transport maps between continuous densities[END_REF]. The idea is to iterate a one-step improvement result that we state but do not prove, as it is the same as Proposition 2.1.16 up to Lemma 2.A.4 replaced by the estimate

D ( 0 , 1 ) 0 -1 2 ∞ ( ) + 1 -1 2 ∞ ( ) if 1 2 ≤ 0,1 ≤ 2 in , (2.4.75)
that is proved exactly the same way. Notice also that this change of variables does not need to normalize the densities to be 1 at 0, because we keep track of closeness to 1 with the ∞ norms.

Proposition 2.4.4. Assume that ∈ Π( 0 , 1 ) is -optimal. For all ∈ (0, 1), there exist ∈ (0, 1) and > 0 such that for all Λ < ∞ and > 0 for which

|| == 5 ∩ Spt ⊆ B 5 ,Λ
(2.4.76)

and

E 6 ( ) + 0 -1 2 ∞ ( 6 ) + 1 -1 2 ∞ ( 6 ) + ∇ 2 ,6
Λ 1, (2.4.77)

there exist a symmetric matrix ∈ R × with det = 1 and a vector ∈ R with 

| -I| 2 + 1 2 | | 2 E 6 ( ) + 0 -1 2 ∞ ( 6 ) + 1 -1 2 ∞ ( 6 ) , (2 
E ( ) ≤ 2 E 6 ( ) + 0 -1 2 ∞ ( 6 ) + 1 -1 2 ∞ ( 6 ) + ∇ 2 ,6
(2.4.80)

holds. Moreover, we have the inclusion

|| == 5 ∩ Spt ⊆ B 5 ,8 . (2.4.81) 
From this construction, we get as before the the estimate We are now ready to give the proof of Theorem 2.4.3. To lighten the notations, let us set

| -I| = |∇ (0, ) -∇ (0, 0)| ∇ , ( 2 
E := E ( ), L := 0 -1 2 ∞ ( ) + 1 -1 2 ∞ ( ) , H := 2 ∇ 2 , .
Proof of Theorem 2.4.3. The first goal of the proof is to show that under the assumption (2.4.74), the following Campanato-type estimate holds for any ∈ (0, 1):

sup 0< <2 sup 0 ∈ 1 +2 inf ∫ ( ∩ ( 0 ))×R | -| 2 d 2-2 .
(2.4.84)

This will be done in Step 1-Step 5.

Step 1 (Getting to a normalized setting). Let ∈ (0, 1). We claim that it is enough to prove that if Indeed, notice that for any 0 ∈ ,

E + L + H 1, ( 2 
E 0 , := 1 +2 ∫ || == 0 , | -| 2 d E 2 , L 0 , := 0 -1 2 ∞ ( ( 0 )) + 1 -1 2 ∞ ( ) L 2 and H 0 , := 2 ∇ 2 , || == , H 2 ,
where || == 0 , := ( ( 0 ) × R ) ∪ (R × ). Therefore, it is sufficient to show for all 0 ∈ that, if

E 0 , + L 0 , + H 0 , 1, (2.4.87) then for all ≤ 2 , 1 inf ∫ ( 0 ) | -| 2 d 2 2-2 .
(2.4.88)

Letting := -∇ ( 0 , 0), := (det ) 1/ and ( ) := -1 and defining

0 := 0 , 1 := 1 • , ( , 
) := -1 ( , ( )), := (Id × -1 ) # ,
we have that ∇ ( 0 , 0) = -I, is a -optimal coupling between 0 and 1 and , 0 , 1 and still satisfy (2.4.87).

Without loss of generality, we may thus assume 0 = 0, so that (2.4.87) becomes (2.4.85) and (2.4.88) becomes (2.4.86).

Step 2 (First step of the iteration). By Lemma 2.2.1, there exist Λ 0 < ∞ and 0 > 0 such that for all ≤ 0 for which (2.4.85) holds, recall also (2.4.75), we have

|| == 5 6 ∩ Spt ⊆ B 5 6 , Λ 0 6 
.

(2.4.89)

In view of (2.4.85) and (2.4.89), we may apply Proposition 2.4.4 to get the existence of a symmetric matrix 1 and a vector 1 such that, defining 1 := -∇ 1 (0, 1 ), 1 := (det 1 ) -1/ and 1 0 , 1 1 , 1 and 1 as 0 , 1 , and in Proposition 2.4.4, we get

E 1 := E ( 1 ) ≤ 2 E + (L + H ), (2.4.90)
and 1 is a 1 -optimal coupling between 1 0 and 1 1 . We also get

|| == 5 6 ∩ Spt 1 ⊆ B5 6 , 4 3 . 
(2.4.91)
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Step 3 (Iterating Proposition 2.4.4). We are going to show that we can iterate Proposition 2.4.4 a finite number of times.

Let us compute, using in the last inequality the inclusion -1

1 - * 1 1
+ 1 ⊂ which comes from the estimates (2.4.78), (2.4.82) and (2.4.83):

1 1 -1 ∞ ( ) = sup ∈ | 1 ( -1 1 - * 1 1 + 1 ) -1| = sup ∈ -1 1 - * 1 1 + 1 | 1 ( ) -1| ≤ 1 -1 ∞ ( ) .
Similarly, using -1

1 ⊂ , 1 0 -1 ∞ ( ) ≤ 0 -1 ∞ ( ) ,
so that

L 1 := L ( 1 0 , 1 1 ) ≤ L .
(2.4.92)

Finally, using the same inclusions and setting 1 ( ,

) := ( 1 , 1 -1 1 * 1 ( -1 )) so that -1 1 ( || == ) ⊂ || == , we get ∇ 1 , := sup ( , )≠( , )∈ || == |∇ 1 ( , ) -∇ 1 ( , )| | -| + | -| = sup ( , )≠( , )∈ || == | -1 1 (∇ ( -1 1 ( , )) -∇ ( -1 1 ( , ))) -1 1 1 | | 1 ( -1 1 --1 1 )| + | 1 -1 1 * 1 ( -1 1 - * 1 1 --1 1 - * 1 1 )| ≤ | 1 || -1 1 || -1 1 | max{| -1 1 | , ( -1 1 | 1 || -1 1 |) } × sup ( , )≠( , )∈ -1 1 ( || == ) |∇ ( , ) -∇ ( , )| | -| + | -| .
Estimates (2.4.78), (2.4.82) and (2.4.83) thus yield

∇ 1 , ≤ 1 + (E 1/2 + L 1/2 + H 1/2 ) ∇ , ,
so that we have

H 1 := H ( 1 ) ≤ 2 1 + (E 1/2 + L 1/2 + H 1/2 ) H . ( 2 
( ) := -1 0 ( ), 1 ( ) := -1 1 ( -1 -1 -1 + ), ( , ) := ( -1 , ( -)), := # -1 , (2. 
E ≤ 2 E -1 + (L -1 + H -1 ), (2.4.97) | -I| 2 + 1 ( -1 ) 2 | | 2 E -1 + L -1 , (2.4.98) | -I| 2 + | -1| 2 H -1 .
(2.4.99)

Arguing as for (2.4.92) and (2.4.93), we get the existence of a constant 1 ( , ) > 0 such that for all 1 ≤ ≤ L ≤ L -1 and H ≤ 2 1 + 1 (E -1 ) 1/2 + (L -1 ) 1/2 + (H -1 ) 1/2 H -1 . (2.4.100)

Step 4 (Smallness at any step of the iteration Combining these two estimates with (2.4.100) for = and assuming that

2 1 + 1 1/2 2 (E 1/2 + L 1/2 + H 1/2 ) + L 1/2 + H 1/2 ≤ 1,

The -regularity result

Therefore, noticing we may assume that 1

+ 3 (E 1/2 + L 1/2 + H 1/2 ) ≤ -2-2 +3+2 , we get 1 1 2 inf ∫ 1 2 ×R | -| 2 d ( ) 2 2-2 .
Step 6 (Spt is contained in the graph of a function within × R ). Exactly as in Step 7 of the proof of Theorem 2.1.1, (2.4.84) implies the existence of a function :

→ such that

( × R ) ∩ Spt ⊆ graph T.
(2.4.109)

Step 7 (Conclusion). By boundedness of 0 , (2.4.84) implies the bound sup

0< < 2 sup 0 ∈ 1 +2 inf , ∫ ( 0 )∩ | ( ) -| 2 d 2-2 ,
which by means of Campanato's theory [Cam64] proves that ∈ C 0, ( ).

-regularity for almost-minimizers

In this section we give a sketch of the proof of Theorem 2.1.18. One of the main differences compared to the situation of Theorem 2.1.1 is that our assumptions do not allow us to prove an ∞ bound on the displacement (which followed from ( -)monotonicity of Spt ). However, almost-minimality (on all scales) allows us to obtain an bound for arbitrarily large < ∞.

Proposition 2.4.5. Assume that 0 , 1 ∈ 0, with 0 (0) = 1 (0) = 1. Let be an almostminimizing transport map from = 0 d to = 1 d with Δ ≤ 1. Assume further that is invertible. Then there exists a radius 1 = 1 ( 0 , 1 ) > 0 such that for any 6 ≤ 1 ,

E 6 ( ) + [ 0 ] ,6 + [ 1 ] ,6 1 (2.4.110)
implies that for any < ∞,

1 1 ∫ 2 | ( ) -| (d ) + 1 ∫ 2 | -1 ( ) -| (d ) 1 E 6 ( ) 1 +2 . (2.4.111)
The scale 1 below which the result holds depends on the global Hölder semi-norms [ 0 ] and [ 1 ] of the densities and the condition 1 ⊂ Spt 0 ∩ Spt 1 .

The proof of Proposition 2.4.5 is given in Appendix 2.D. Note that since -1 is also almost-minimizing, the bound for -1 follows from applying Proposition 2.D.1 to -1 . The estimate (for arbitrarily large < ∞) allows us to split the particle trajectories into two groups: Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions • good trajectories that satisfy an ∞ bound on the displacement, corresponding to starting points in the set

G = { ∈ 2 ∪ -1 ( 2 ) : | ( ) -| ≤ }, (2.4.112) 
where := (E 6 ( ) + D 6 ( , )) for some ∈ (0, 1 +2 ), that we fix in what follows, and

• bad trajectories that are too long, corresponding to

B = { ∈ 2 ∪ -1 ( 2 ) : | ( ) -| > }.
(2.4.113)

Due to the bound, the energy carried by bad trajectories is superlinearly small: By definition of E 6 ( ) and ,

1 (B) 1 2 1 +2 ∫ 2 ∪ -1 ( 2 ) | ( ) -| 2 (d ) E 6 ( ) 1-2 , (2.4.114) hence 1 +2 ∫ B | ( ) -| 2 (d ) ≤ 1 (B) 1-2 1 + ∫ 2 ∪ -1 ( 2 ) | ( ) -| (d ) 2 E 6 ( ) 2 +2 +(1-2 ) 1-2
, from which we see that, given ∈ (0, 1 +2 ), we may choose large enough so that the exponent is larger than 1. In particular, for any > 0 we may bound

1 +2 ∫ B | ( ) -| 2 (d ) ≤ E 6 ( ),
(2.4.115) provided E 6 ( ) 1. Once the bad trajectories have been removed, the good trajectories can be treated as before. More precisely, if we restrict the coupling to the set G × (G), then the resulting coupling is still deterministic and almost-minimizing with respect to quadratic cost (given its own boundary conditions). In particular, since G × (G) ⊂ || == 2 the global estimate

∫ G | ( ) -| 2 (d ) ≤ ∫ G | ( ) -| 2 (d ) + Δ 2 for all # G = # G = (G)
holds. This allows for a passage from the Lagrangian to the Eulerian point of view like in Lemma 2.1.12. 24 Moreover, the measures G and (G) , as well as the coupling G× (G) , satisfy the assumptions of the harmonic approximation Theorem 2.1.13. 25 Hence, given 0 < 1, there exists a threshold > 0, constants ≤ . The harmonic gradient field allows us to define the affine change of coordinates from Lemma 2.1.15 with = e 2 with = ∇ 2 Φ(0) and = ∇Φ(0) satisfying (2.1.50) (and = I) to obtain a new coupling = between the measures and from the (full) coupling . We can now use the harmonic approximation result Theorem 2.1.13 together with the harmonic estimates (2.1.41) to bound

1 +2 ∫ || == ∩(G× (G)) | --( + )| 2 d ≤ E 6 ( ) + 2 ([ 0 ] 2 ,6 + [ 1 ] 2 ,2 ) + Δ 2 .
For the bad trajectories we use the estimate (2.4.115) together with the bound

∫ || == ∩(B× (B)) | + | 2 d ∫ ( ∩B)×R | + | 2 d + | | 2 ∫ B× (B) | -| 2 d + | | 2 ∫ B×( ∩ (B)) | | 2 d (2.4.115) (| | 2 2 + | | 2 ) (B) + | | 2 +2 E 6 ( ) (2.4.114)&(2.1.50) +2 E 6 ( ) 2-2 + 2 ([ 0 ] 2 ,6 + [ 1 ] 2 ,6 ) + E 6 ( ) to obtain, recalling that < 1 +2 < 1 2 , 1 +2 ∫ || == ∩(B× (B)) | --( + )| 2 d ≤ E 6 ( ) + 2 ([ 0 ] 2 ,6 + [ 1 ] 2 ,6
).

(2.4.116)

In particular, for ∈ (0, 1) we can write

( ) +2 E ( ) = ∫ || == | -| 2 (d d ) = | det | ∫ -1 ( || == ) | - * ( -) -| 2 (d d ),
so that using the identity - * ( -)-= - * ( --( + ))-- * ( * -I-) +( -1) , the estimate (2.4.116) together with (2.1.41) and (2.1.50) imply that for any ∈ (0, 1) there exist 0 < 1 and < ∞ such that

E ( ) ≤ 2 E 6 ( ) + 2 [ 0 ] 2 ,6 + 2 [ 1 ] 2 ,6 + Δ 2 ,
which implies a one-step-improvement result for the case of general almost-minimizers. It remains to show that the transformed coupling is still almost-minimal on all small scales in the sense of Definition 2.1.17. To this end, let ≤ 1 , ( 0 , 0 ) ∈ Spt , and ∈ Π( , ) with Spt( -) ⊂ ( ( 0 ) × R ) ∪ (R × ( 0 )). Then, writing Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions ( ) = - * ( ( -1 ) -), where # = , one sees that

∫ | -| 2 d( - ) = -2 ∫ ( ( ) -( )) • (d ) = -2| det | ∫ - * ( ( ) -( )) • (d ) = -2 | det | ∫ ( ( ) -( )) • (d ) = | det | ∫ | -| 2 d( - ).
Note that

Spt( - ) = -1 Spt( - ) ⊂ ( | | ( 0 ) × R ) ∪ (R × | | ( 0 )),
where 0 = 0 and 0 = -1 0 + . Since is almost-minimizing, it follows that

∫ | -| 2 d( - ) ≤ | det |(max{1, -1 }| | ) +2 Δ max{1, -1 }| | ,
hence is almost-minimizing among deterministic couplings with rate

Δ = | det |(max{1, -1 }| |) +2 Δ max{1, -1 }| | .
Assuming that Δ = 2 , together with the bounds on and from (2.1.50) this gives

Δ ≤ 1 + (E 1 2 1 + 1 [ 0 ] , 1 + 1 [ 1 ]
, 1 ) Δ , in particular the rate Δ exhibits the same behaviour as the Hölder seminorm of ∇ in (2.4.40) and shows that the one-step-improvement can be iterated down to arbitrarily small scales, yielding the 1, -regularity of in a ball with radius given by a fraction of .

Partial regularity: Proof of Corollary 2.1.4

As a corollary of Theorem 2.1.1, we obtain a variational proof of partial regularity for optimal transport maps proved in [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF]. The changes of variables used to arrive to a normalized situation are exactly the same as in [START_REF] Philippis | Partial regularity for optimal transport maps[END_REF] and the argument to derive partial regularity from -regularity follows [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF].

Proof of Corollary 2.1.4. We recall that a classical result in optimal transport states that the optimal map from 0 to 1 for the cost and the optimal map * from 1 to 0 for the cost * ( , ) := ( , ) are almost everywhere inverse to each other, and are of the form

( ) = c-exp (∇ ( )) and -1 ( ) := * ( ) = c * -exp (∇ ( )),
where is a -convex function and is the -conjugate of , see subsection I.2. and are semi-convex so that by Alexandrov's Theorem, they are twice differentiable almost

2.A. Some technical lemmas

2.A Some technical lemmas 2.A.1 Properties of the support of couplings

The following lemma is an important ingredient in the proofs of our ∞ bounds on the displacement of couplings with -monotone support, Proposition 2.1.5 and Lemma 2.2.1: Lemma 2.A.1. Let ∈ Π( , ) and assume that there exists > 0 such that

1 +2 ∫ 6 ×R | -| 2 d + D 6
1.

(2.A.1)

Then (i) ( × 2 ) ∩ Spt ≠ ∅ provided 1 +2 ∫ 6 ×R | -| 2 d + D 6 1 +2 .
(ii) For any ∈ 5 and ∈ -1 we have that ( ( , ) × 7 ) ∩ Spt ≠ ∅, where

( , ) := ( , ) ∩ ( ( ) \ 2 ( ))
is the intersection of the annulus ( ) \ Proof. To lighten the notation in the proof, let us set

E + 6 := 1 +2 ∫ 6 ×R | -| 2 d . (2.A.2)
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We start with the more delicate statement (ii). Let ∈ 5 and ∈ -1 , note that

( ( , ) × 7 ) = ( ( , ) × R ) -( ( , ) × 7 ) = ( ( , )) -( ( , ) × 7 ).
Since ( , ) ⊆ 6 , we have

( ( , ) × 7 ) 1 2 ∫ 6 × 7 1 2 | -| 2 (d d ) (2.A.2) E + 6 .
To estimate ( ( , )) from below, let be a smooth cut-off function equal to one on a ball of radius 2 and zero outside a concentric ball of radius satisfying

sup | | + sup |∇ | + 2 sup |∇ 2 | 1, (2.A.3)
and such that Spt ⊆ ( , ) ⊆ 6 , which is possible provided ≤ 4 . Then by (2.A.3)

( ( , )) ∫ 6 d = ∫ 6 d + ∫ 6 (d -d ) 2 - ∫ 6 (d -d ) .
We now use (2.2.9) with = to get, by the definition (2.1.9) of D 6 , and since ∼ 1 by (2.A.1), that

∫ 6 (d -d ) -2 2 +2 2 D 1 2 6 + -2 +2 D 6 . Hence, ( ( , )) 1 - -( +2) D 6 1 2 - -( +2) D 6 .
We may now choose = 4 so that

( ( , )) 1 -4 +2 D 6 1 2 -4 +2 D 6 ,
from which we conclude that ( ( , ) × 7 ) is strictly positive if D 6 and E + 6 are small enough.

In order to prove (i) we run a similar argument to obtain

( × 2 ) 1 --( +2) (E + 6 + D 6 ) 1 2 --( +2) (E + 6 + D 6 ) . Hence ( × 2 ) ∩ Spt ≠ ∅ provided that (E + 6 + D 6 ) 1 +2
. maps: general cost functions

Proof. By the assumptions on , the 2-Wasserstein distance between d and d restricted to can be bounded by

2 ( , ) ∇Ψ 2 2 ( ) ,
where Ψ is the mean-zero solution of the Neumann problem 

-ΔΨ = - in , ∇Ψ • = 0 on , (2. 
1 2 sup |∇Ψ| 2 -2 C 0 ( ) + 2 [ -] 2 , 2 [ ] 2 , , so that 2 ( , ) ∇Ψ 2 2 ( ) sup |∇Ψ| 2 +2 2 [ ] 2 , .

2.A.3 A property of semi-convex functions

Lemma 2.A.6. Let ∈ R and assume that :

R → R is -semi-convex, that is, ↦ → ( ) + 2 | | 2 is convex. Then ∇ ∞ ( 1 ) 1 2 C 0 ( 3 ) max{ 1 2 C 0 ( 3 ) , 1 2 }.
(2.A.6)

Proof. Notice first that by semi-convexity, the gradient of exists a.e. Convexity of ↦ → ( ) + 2 | | 2 implies that for a.e. and all ,

∇ ( ) • ( -) ≤ ( ) -( ) + 2 | -| 2 .
In particular, for a.e. ∈ 1 and every ∈ 3 lying in a cone of opening angle 2 3 with apex at and axis along ∇ ( ), so that ∇ ( )

• ( -) ≥ 1 2 |∇ ( )|| -|, we have |∇ ( )| C 0 ( 3 ) | -| + | -|.
Optimizing in | -| then gives (2.A.6).
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We claim that for any ∈ N 0 there holds Step 2 We claim that for any ∈ N,

∫ 2 --1 ( 0 ) | 2 -( ) -2 --1 ( )| 2 0 ( ) d [[ ]] 2 2 -( +2+2 ) +2+2 . (2.C.3) Indeed, since ∈ Π( 0 , 1 ) and 2 --1 ( 0 ) ⊂ 2 -( 0 ), we may estimate ∫ 2 --1 ( 0 ) | 2 -( ) -2 --1 ( )| 2 0 ( ) d = ∫ 2 --1 ( 0 )×R | 2 -( ) -2 --1 ( )| 2 d ∫ 2 -( 0 )×R | -2 -( )| 2 d + ∫ 2 --1 ( 0 )×R | -2 --1 ( )| 2 d
| -2 -| [[ ]] -1 =0 2 - . (2.C.4)
Indeed, writing the difference as a telescopic sum, we may apply (2.C.1) to the polynomial

2 --2 --1 to obtain | -2 -| ≤ -1 =0 | 2 --2 --1 | -1 =0 2 ( +1) ( +2) 1 +2 ∫ 2 --1 ( 0 ) | 2 --2 --1 | 2 d 1 2
, so using that 1 2 ≤ 0 ≤ 2 on 2 --1 ( 0 ), the claim follows with (2.C.3).

Step 3 We show next that the sequence { 2 -} ∈N converges as → ∞ to a limit 0 independent of . Indeed, for any > we may use (2.C.4) to estimate

| 2 --2 -| [[ ]] -1 = 2 - , →∞ -→ 0,
since the series ∞ =0 2 -converges. Hence, the sequence { 2 -} ∈N is Cauchy and there exists 0 ∈ R × such that 2 -→ 0 as → ∞.

To see the independence of the limit of , let 0 < < < 2 be small enough. Then applying (2.C.1) to the function 2

--2 -for ∈ N gives | 2 --2 -| 2 2 ( +2) --2 ∫ 2 -( 0 ) | 2 -( ) -2 -( )| 2 d ,
which can be bounded similarly to Step 1 to yield

| 2 --2 -| 2 2 -2 2 [[ ]] 2 1 + +2+2 →∞ -→ 0.
The claimed inequality (2.4.62) now follows easily by letting → ∞ in (2.C.4).

2.D. An bound on the displacement for almost-minimizing transport maps

Notice that is well-defined because, in view of (2.D.4), we have ( ) ⊂ 2 ( 0 ). Furthermore, we see that = Id outside of 6 ( 0 ), and that swaps ( + ) and its translate ( + )+2 and swaps ( -) and its translate ( -) -2 , so that is an involution; in particular, preserves the Lebesgue measure. Combining the second point with the inclusion 6 ( 0 ) ⊂ 0 ( ) from (2.D.4), we get that Φ := -1 • • is identity outside of . From the third point, we see that Φ is also an involution and Φ # = , and it follows that the map := • Φ satisfies # = and = outside of . Thus, (2.D.8) holds. Now, recalling that = -Id,

∫ ( ( ) -) • (Φ( ) -) (d ) = ∫ ( -1 ( )) • ( -1 ( ( )) --1 ( )) ( 0 ) d ,
so using the fact that = Id everywhere except on ( ) and ( ( + ) + 2 ) ∪ ( ( -) -2 ), we have two terms to estimate. From the identity

∫ ( ) ( -1 ( )) • ( ( ) -) ( 0 ) d = 2 ∫ | • | d , and (2. 
D.3), we first have

∫ ( ) ( -1 ( )) • ( -1 ( ( )) --1 ( )) ( 0 ) d -2 ∫ | • | d ≤ ∫ ( ) | ( -1 ( )| | ( ) -0 | 1+ + | -0 | 1+ ( 0 ) d ≤ 1+ ∫ | | d . ( 2 

.D.10)

We then estimate, using (2.D.3) and (2.D.5), 

∫ ( ( + )+2 )∪( ( -)-2 ) ( -1 ( )) • ( -1 ( ( )) --1 ( )) ( 0 ) d ∫ ( ( + )+2 )∪( ( -)-2 ) | ( -1 ( ))| d , (2. 
∫ | • | d - ∫ | | d +1 + ∫ ( ( + )+2 )∪( ( -)-2 ) | ( -1 ( ))| d . ( 2 

.D.12)

It remains to integrate (2.D.12) with respect to ∈ 2 \ 1 , using that

∫ 2 \ 1 | ( ) • | d | ( )| (2.D.13)
and the equivalence

∈ ( ( + ) + 2 ) ∪ ( ( -) -2 ) ⇐⇒ ∈ 1 2 ( -( + )) ∪ 1 2 ( + ( -)), CHAPITRE 3 
Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre Le chapitre est organisé de la façon suivante : dans la section 3.2, on estime la variance du nombre de points dans plusieurs types de domaines qui vont nous être utiles par la suite. La section 3.3 contient l'estimation de la distance 2 dans un carré, ainsi que la preuve du Théorème IV.3. On n'utilise pas ce résultat pour prouver le Théorème 3.1.1 mais la stratégie est la même que celle utilisée dans les sections 3.4 et 3.5, on l'expose donc d'abord dans ce cadre. Pour finir, la section 3.6 contient la preuve du Théorème 3.1.1.

Introduction

Estimation de la variance du nombre de points

Le processus de points défini par a une structure déterminantale, en particulier les fonctions de -corrélation s'écrivent ([Meh04, Ch. 15]) 

, ( 1 , . . . , ) := ∫ C - ( 1 , . . . , ) d +1 • • • d = ( -)! ! exp - =1 | | 2 det ( , ) 1≤ , ≤ , 3 
( ) = ∫ C =1 ( ) ( 1 , . . . , ) d 1 • • • d = ∫ ,1 ( ) d (3.2.2) = 1 ∫ -| | 2 ( , ) d = | | - 1 ∫ -| | 2 ∞ = | | 2 ! d ,
ce qui permet d'en donner une estimation qui nous sera utile.

Lemme 3.2.1. Soit ⊂ 0, √ - √ ln , | | -3 2 ≤ E ( ) ≤ | | . Démonstration. Soit = 1 - = 1 -ln , on a 1 ∫ -| | 2 ∞ = | | 2 ! d ≤ 1 ∫ D -| | 2 ∞ = | | 2 ! d ≤ 1 ∫ D -| | 2 | | 2 d = ∫ 2 0 - d = ! -2 ∞ = +1 ( 2 ) ! ≤ √ (1+2 ln -2 ) = √ (2 ln(1-)+2 -2 ) ,
Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre ce qui donne le résultat en utilisant l'inégalité ln(1 -) ≤ --2 2 pour ∈ (0; 1). Calculons maintenant

E| ( )| 2 = ∫ C , =1 ( ) ( ) ( 1 , • • • , ) d 1 • • • d = ∫ ,1 ( ) d + ( -1) ∫ × ,2 ( 1 , 2 ) d 1 d 2 .
Or

( -1) ∫ × ,2 ( 1 , 2 ) d 1 d 2 = 1 2 ∫ × -| 1 | 2 -| 2 | 2 ( ( 1 , 1 ) ( 2 , 2 ) -( 1 , 2 ) ( 2 , 1 )) d 1 d 2 = 1 ∫ -| | 2 ( , ) d 2 - 1 2 ∫ × -| 1 | 2 -| 2 | 2 | ( 1 , 2 )| 2 d 1 d 2 ,
ce qui donne, en reconnaissant grâce à (3.2.2) l'espérance au carré de ( ) dans le premier terme de droite,

Var ( ( )) = ∫ ,1 ( ) d - 1 2 ∫ × -| 1 | 2 -| 2 | 2 | ( 1 , 2 )| 2 d 1 d 2 .
Maintenant, 

∫ × -| 1 | 2 -| 2 | 2 | ( 1 , 2 )| 2 d 1 d 2 = ∫ ×C -| 1 | 2 -| 2 | 2 | ( 1 , 2 )| 2 d 1 d 2 - ∫ × -| 1 | 2 -| 2 | 2 | ( 1 , 2 )| 2 d 1 d 2 , et ∫ ×C -| 1 | 2 -| 2 | 2 | ( 1 , 2 )| 2 d 1 d 2 = ∫ ×C -| 1 | 2 -| 2 | 2 ( 1 , 1 ) ( 2 , 2 ) d 1 d 2 - ∫ ×C -| 1 | 2 -| 2 | 2 det ( , ) 1≤ , ≤2 d 1 d 2 = ∫ -| | 2 ( , ) d -( -1) 2 ∫ ×C ,2 ( 1 , 2 ) d 1 d 2 = 2 2 ∫ ,1 ( ) d -( -1) 2 ∫ ,1 ( ) d = 2 ∫ ,1 ( ) d , d'où finalement Var ( ( )) = 1 2 ∫ × -(| 1 | 2 +| 2 | 2 ) | ( 1 , 2 )| 2 d 1 d 2 . ( 3 
√ )) = 1 2 ∫ ( √ )×( √ ) -(| 1 | 2 +| 2 | 2 ) | ( 1 , 2 )| 2 d 1 d 2 = 2 2 ∫ × -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 .
On sépare cette intégrale en trois parties.

• Cas | 1 2 | > 1. Grâce au Lemme 3.A.3, on a 1 := ∫ ( × )∩{| 1 2 |>1} -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 ≤ 2 ∫ ( × )∩{| 1 2 |>1} -(| 1 | 2 +| 2 | 2 ) 2 | 1 2 | 2 d 1 d 2 . En utilisant l'inclusion ( × ) ∩ {| 1 2 | > 1} ⊂ {| 1 | < 1 -, | 2 | > 1 1-} avec := ( , D) > 0, on obtient 1 ≤ 2 ∫ | |<1- (1+ln | | 2 -| | 2 ) d ∫ | |> 1 1- (1+ln | | 2 -| | 2 ) d . (3.2.4) Par concavité de : ↦ → 1 + ln -, si < (1 -) 2 , ( ) ≤ 2 -2 (1 -) 2 + 2 ln(1 -), (3.2.5) et si > 1 (1-) 2 , ( ) ≤ (-2 + 2 ) -2 ln(1 -). L'inégalité (3.2.4) devient 1 ≤ 2 ∫ | |<1- exp 2 -2 (1 -) 2 | | 2 d ∫ | |> 1 1- exp (-2 + 2 ) | | 2 d = 2 • (1 -) 2 (2 -2 ) exp (2 -2 ) -1 • (2 -2 ) exp - (2 -2 ) (1 -) 2 = (1 -) 2 2(2 -2 ) 2 exp - (2 -2 ) 2 (1 -) 2 = 8 2 (1 -) 2 (1 -2 ) 2 exp -4 2 (1 -2 ) 2 (1 -) 2 ≤ -4 2 8 2 ≤ 8 4 ln , (3.2.6) si ≥ ln .
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• Cas | 1 2 | < 1. Avec l'inclusion grossière ( × ) ∩ {| 1 2 | < 1} ⊂ {| 1 | < 1 -} × C et la décomposition C = {| 2 | < 1 1-} ∪ {| 2 | > 1 1-}, on obtient grâce au Lemme 3.A.4, 2 := ∫ ( × )∩{| 1 2 |<1} -(| 1 | 2 +| 2 | 2 ) ∞ = ( 1 * 2 ) ! 2 d 1 d 2 ≤ ∫ | |<1- (1+ln | | 2 -| | 2 ) d ∫ | |< 1 1- (1+ln | | 2 -| | 2 ) d (3.2.7) + ∫ | |<1- (1+ln | | 2 -| | 2 ) d ∫ | |> 1 1- (1+ln | | 2 -| | 2 ) d . ( 3 
∫ | |<1- (1+ln | | 2 -| | 2 ) d ∫ | |> 1 1- (1+ln | | 2 -| | 2 ) d ≤ 2 4 2 .
(3.2.9)

Pour le terme (3.2.7), on réutilise l'inégalité de concavité (3.2.5) pour la première intégrale et on majore l'exponentielle par 1 dans la deuxième intégrale puisque 1 + ln -≤ 0 pour tout ∈ (0, 1), puis on utilise l'inégalité ln(1 -) ≤ -- 

2 2 valable pour tout ∈ (0, 1) et l'estimation 2 -2 ≥ , pour obtenir ∫ | |<1- (1+ln | | 2 -| | 2 ) d ∫ | |< 1 1- (1+ln | | 2 -| | 2 ) d ≤ ∫ | |<1- exp 2 -2 (1 -) 2 | | 2 d • (1 -) 2 2 ln(1-) = 2 2 ln(1-) (2 -2 ) (2 -2 ) -1 ≤ 2 -2 2 . ( 3 
2 .

• Conclusion. Il reste alors à étudier

3 := ∫ ( × )∩{| 1 2 |<1} -(| 1 | 2 +| 2 | 2 ) 1 * 2 2 d 1 d 2 = ∫ ( × )∩{| 1 2 |<1} -| 1 -2 | 2 d 1 d 2 ≤ ∫ × -| 1 -2 | 2 d 1 d 2 .
(3.2.12)

A partir d'ici, considérons le cas d'un domaine rectangulaire. Par invariance par translation de | 1 -2 | 2 , on se ramène au domaine := -1 2 ;

1 2 × - 2 2 ; 2 2 avec 1 √ ≤ 1 , 2 ≤ √ 2 2 .
Pour se ramener à la dimension 1, on écrit

1 = 1 + 1 et 2 = 2 + 2 et on obtient, avec := -1 2 ; 1 2 2 , ∫ × -| 1 -2 | 2 d 1 d 2 = 2 1 2 2 ∫ × -2 1 ( 1 -2 ) 2 -2 2 ( 1 -2 ) 2 d 1 d 2 ≤ 2 1 2 2 ∫ 1 2 -1 2 ∫ [-1 2 ; 1 2 ] -2 1 ( 1 -2 ) 2 d 1 d 2 ∫ 1 2 -1 2 ∫ R -2 2 ( 1 -2 ) 2 d 1 d 2 + 2 1 2 2 ∫ 1 2 -1 2 ∫ [-1 2 ; 1 2 ] -2 2 ( 1 -2 ) 2 d 1 d 2 ∫ 1 2 -1 2 ∫ R -2 1 ( 1 -2 ) 2 d 1 d 2 .
Il y a donc 2 termes à estimer, le plus simple étant (on note pour 1 ou 2 )

∫ 1 2 -1 2 ∫ R -2 ( 1 -2 ) 2 d 1 d 2 = 2 .
(3.2.13)

Pour le deuxième terme, on a pour ≤ 1

∫ 1 2 -1 2 ∫ [-1 2 ; 1 2 ] -2 ( 1 -2 ) 2 d 1 d 2 = 2 ∫ 1 2 -1 2 ∫ +∞ 1 2 -2 ( 1 -2 ) 2 d 1 d 2 = 2 ∫ 1 2 - -1 2 ∫ +∞ 1 2 -2 ( 1 -2 ) 2 d 1 d 2 (3.2.14) + 2 ∫ 1 2 1 2 - ∫ 1 2 + 1 2 -2 ( 1 -2 ) 2 d 1 d 2 (3.2.15) + 2 ∫ 1 2 1 2 - ∫ +∞ 1 2 + -2 ( 1 -2 ) 2 d 1 d 2 .
(3.2.16) L'intégrale (3.2.14) est estimée grâce au Lemme 3.A.5 : 

∫ 1 2 - -1 2 ∫ +∞ 1 2 -2 ( 1 -2 ) 2 d 1 d 2 ≤ 1 2 2 ∫ 1 2 - -1 2 -2 ( 1 2 -2 ) 2 1 2 -2 d 2 ≤ 1 2 2 ∫ 1 2 - -∞ -2 ( 1 2 -) 2 d ≤ -2 2 (2 2 ) 2 .

Estimation de la variance du nombre de points

aux coordonnées polaires dans (3.2.3), Var ( ) = 1 2 ∫ | 1 |≤ ∫ | 2 |> -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 = 1 2 -1 =0 -1 =0 1 ! ! ∫ 0 -2 + +1 d ∫ ∞ -2 + +1 d ∫ 2 0 ( -) d ∫ 2 0 ( -) d = 4 -1 =0 1 ( !) 2 ∫ 0 -2 2 +1 d ∫ ∞ -2 2 +1 d = -1 =0 1 ( !) 2 ∫ 2 0 - d ∫ ∞ 2 - d ≤ =0 1 ! ∫ ∞ - d + -1 = +1 1 ! ∫ +1 0 - d , (3.2 
=0 1 ! ∫ ∞ - d = =0 - =0 ! = - =0 ! ( -+ 1) ≤ 1 + - =0 +1 ! - =1 ( -1)! = 1 + - +1 ! ≤ 1 + 2 .
De façon similaire, la deuxième somme de (3.2.20) est estimée par 

-1 = +1 1 ! ∫ +1 0 - d = -1 = +1 --1 ∞ = +1 ( + 1) ! ≤ --1 ∞ = +2 ( + 1) ! ( --1) = --1 ( + 1) +2 ( + 1)! ≤ + 1 
= ∈ C | √ (1 -) < | | < √ (1 + 3 ) et 0 < arg < .
On a, avec le même passage en polaire que dans la sous-section précédente,

Var ( ) = 1 + 2 + 3 , (3.2.22) où 1 = 1 2 -1 =0 -1 =0 1 ! ! ∫ √ (1+3 ) √ (1-) -2 + +1 d ∫ √ (1-) 0 -2 + +1 d ∫ 0 ( -) d ∫ 2 0 ( -) d , 2 = 1 2 -1 =0 -1 =0 1 ! ! ∫ √ (1+3 ) √ (1-) -2 + +1 d ∫ ∞ √ (1+3 ) -2 + +1 d ∫ 0 ( -) d ∫ 2 0 ( -) d , 3 = 1 2 -1 =0 -1 =0 1 ! ! ∫ √ (1+3 ) √ (1-) -2 + +1 d ∫ √ (1+3 ) √ (1-) -2 + +1 d ∫ 0 ( -) d ∫ 2 ( -) d . En majorant ∫ √ (1+3 ) √ (1-) -2 + +1 d par ∫ ∞ √ (1-) -2 + +1 d , le calcul précédent avec ici := √ (1 -) donne 1 ≤ 2 1 + √ (1 -) √ 2 ≤ 2 √ .
De même, en notant := (1 + 3 ) 2 , on obtient

2 ≤ 2 -1 =0 1 ! ∫ ∞ - d = 2 -1 =0 - =0 ! ≤ 2 -1 =0 - ! ( -) = 2 - ! ≤ √ (2 ) 3 2 exp 1 -+ ln ≤ √ (2 ) 3 2 exp -2 1 - 2 ≤ √ (2 ) 3 2 -18 2 ≤ (2 ) 3 2 • √ 18 .
Estimons maintenant 3 . En remarquant que si ≠ ,

∫ 0 ( -) d ∫ 2 ( -) d = - ∫ 0 ( -) d 2 ≤ 0,
3.2. Estimation de la variance du nombre de points

on a 3 ≤ 2 1 -2 -1 =0 1 ! ∫ (1+3 ) 2 (1-) 2 - d 2 ≤ 2 1 -2 -1 =0 1 ! ∫ (1+3 ) 2 (1-) 2 - d .
Sur (0, +∞), la fonction ↦ → - atteint un unique maximum global en = donc

∫ (1+3 ) 2 (1-) 2 - d ≤ 8 (1 + ) -(1-) 2 ( (1 -) 2 ) si ≤ (1 -) 2 , ! si (1 -) 2 < ≤ -1. D'où 3 ≤ 2 1 -2       8 (1 + ) -(1-) 2 (1-) 2 =0 (1 -) 2 ! + 2       ≤ 2 .
On obtient finalement par (3.2.22) 

Var ( ) ≤ 1 2 √ ln + 1 (2 ) 

Intersection d'un rectangle avec un disque

Considérons enfin l'intersection d'un rectangle du quadrant { ≥ 0, ≥ 0} avec un cercle centré en 0 de rayon inférieur à √ -√ ln . Plus précisément, soit ⊂ D défini comme suit :

:= ∩ (0, ) avec = [ ; + ] × [ ; + ] , (3.2.23) où ≥ 0, ≥ 0, ≤ 1 -, := √ 2 -2 -la longueur et := √ 2 -2 -la hauteur de , tels que , ≥ 1
√ . On renvoie à la Figure 3.1 pour une illustration de cet ensemble. Par la formule (3.2.3),

Var ( ( √ )) = 2 2 ∫ × -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 = 2 2 ∫ × -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 (3.2.24) + 2 2 ∫ ×( ∩ ) -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 *
2 ) ! Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre L'intégrale (3.2.24) permet de se ramener au cas traité dans la sous-section 3. ∫

∫ × -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 ≤ ∫ ( × )∩{| 1 2 |>1} -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 + 2 ∫ ( × )∩{| 1 2 |<1} -(| 1 | 2 +| 2 | 2 ) ∞ = ( 1 * 2 ) ! 2 d 1 d 2 + 2 ∫ × -(| 1 -2 | 2 ) d 1 d 2 1 4 log + 1
×( ∩ ) -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 ≤ ∫ 1 × 2 -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 = -1 , =0 + ! ! ∫ - -2 + +1 d ∫ 0 + 0 ( -) d ∫ + √ 2 -2 + +1 d ∫ 2 0 ( -) d = 2 -1 =0 2 ( !) 2 ∫ - -2 2 +1 d ∫ + √ 2 -2 2 +1 d = 2 2 -1 =0 1 ( !) 2 ∫ 2 ( -) 2 - d ∫ ( + √ 2 ) 2 2 - d ≤ 2 2 -1 =0 1 ! ∫ 2 ( -) 2 - d .
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Or, sur (0; +∞) la fonction ↦ → - atteint un unique maximum en = donc

∫ 2 ( -) 2 - d ≤        2 -( -) 2 ( ( -) 2 ) si ≤ ( -) 2 , ! si ( -) 2 < < 2 , 2 -2 ( 2 ) si ≥ 2 .
Ceci donne alors 

2 2 ∫ ×( ∩ ) -(| 1 | 2 +| 2 | 2 ) -1 =0 ( 1 * 2 ) ! 2 d 1 d 2 ≤

Optimal matching dans un carré

Estimation de la distance

Soit ⊂ (0, √ -√ ln ) un carré de côté = 2 0 avec 0 ∈ [1; 2) et ∈ N, et notons ici := . On rappelle la notation (3.1.1). On cherche à estimer la valeur moyenne de La stratégie que l'on va utiliser m'a été suggérée par F. Otto.

Etape 1 (Construction d'une suite finie de mesures). On découpe en quatre carrés disjoints 1 , 2 , 3 et 4 chacun de côté -1 := 2 -1 0 et on définit la mesure Cette mesure est simplement constante sur chacun des sous-carrés, chaque constante étant choisie pour que -1 donne la même masse que à chaque sous-carré. De la même façon, on découpe chaque en quatre carrés disjoints ,1 , ,2 , ,3 et ,4 chacun de côté 

Estimation de la distance

Avec la construction que l'on vient de présenter, on va estimer

E 2 , ( ) | |
en utilisant la même stratégie que dans le cas du carré, dans la section 3.3. Tout d'abord, par inégalité triangulaire, on a

E 2 , ( ) | | 1 2 ≤ E 2 2 ( , 0 ) 1 2 + +1 =1 E 2 2 ( -1 , ) 1 2 . 
(3.4.3)

Etape 1 (Distance de à 0 ). Pour tous 0 ≤ ≤ 2 -1 et 0 ≤ ≤ 2 -1, on a 0 ( , ,0 ) = ( , ,0 ) donc Etape 3 (Distance de -1 à ). Soit maintenant 1 ≤ ≤ . Pour tous 0 ≤ ≤ 2 --1 et 0 ≤ ≤ 2 --1, on a ( , , ) = -1 ( , , ) donc On découpe chacun de ces arcs en deux sous-arcs 

E 2 2 ( , 0 ) ≤ 4 =1 2 -1 =0 2 -1 =0 E 2 , , 0 
( , 0 ) = 4 2 -1 =0 2 -1 =0 E 2 , ,
E 2 2 ( -1 , ) ≤ 4 =1 2 --1 =0 2 --1 =0 E 2 , , ( -1 , ) = 4 2 --1 =0 -1 =0 E

Optimal matching dans un anneau

Vitesse de convergence pour la loi du cercle

On est maintenant prêt à donner la preuve du Théorème 3.1.1. 

3.A. Lemmes techniques

3.A Lemmes techniques

On rassemble dans cet appendice quelques lemmes techniques élémentaires qui nous sont utiles dans ce chapitre. 

Figure 1 :

 1 Figure 1: Transport entre deux densités.

Figure 2 :

 2 Figure 2: Non-unicité du transport optimal.

Figure 3 :

 3 Figure 3: Appariement entre deux ensembles de 4 points.

Figure 4 :

 4 Figure 4: Transport croissant en dimension 1.

2 -

 2 + ( )) d | , continues bornées = 0, car cette quantité est infinie si ∉ Π( , ). En injectant cette contrainte dans notre problème de minimisation et en intervertissant inf et sup, on obtient un problème dual équivalent à (I.1) :sup ∫ d + ∫ d | ⊕ ≤ | -| 2 2 , ∈ 1 ( ), ∈ 1 ( ) , (I.3) où ⊕ ( , ) = ( ) + ( ). Le couple ( , ) optimisant (I.3) est formé d'une fonction -concave et de sa -conjuguée , dans le sens où ( ) = inf ∈R | -| 2 ( ) (c'est-à-dire que est l'inf-convolution deet |.| 2 2 ). La fonction est alors le potentiel de Kantorovitch associé au problème. En particulier, on a ( ) := | | 2 2 -( ) convexe et semi-continue inférieurement et le transport optimal s'écrit alors ( ) = -∇ ( ).

(Figure 5 :

 5 Figure 5: Description eulérienne du transport.

IntroductionFigure 6 :

 6 Figure 6: Les transports de l'Exemple I.7.

Figure 7 :

 7 Figure 7: Les densités modifiées de l'Exemple II.1.
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 2 est un C 1, -difféomorphisme entre deux ouverts de mesure pleine sur la variété. La condition (C4) n'est pas satisfaite par la famille de coûts ( , ) := | -| si ≠ 2, notre résultat ne s'applique donc pas. Une borne ∞ / a priori sur le déplacement est établie dans le très récent article [GM21], ce qui constitue une première étape cruciale pour généraliser le Théorème IV.1 aux coûts . Une telle borne ∞ / , mais seulement globale, a auparavant été obtenue dans [BJR07].

  IV.6) dont les atomes sont les valeurs propres de √ . D'après le Théorème III.1, la mesure limite est alors la mesure c (d ) := 1 1 D ( ) d , uniforme sur le disque unité D. On montre le résultat suivant.

2
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  -d which gives the claim. The existence of a coupling of the desired form can be established under more general conditions on and : Theorem 1.3.5. Let be a probability measure of the form (d ) = ( ) (d ) with : R → R convex and bounded from below, and let be a probability measure on R of the form (d ) = -( ) (d ), with : R → R ∪ {+∞} a convex function such that { < -} is bounded for = inf R ≤ 0. There exist a log-convex function : R → [1, +∞) and a log-concave function : R → [0, +∞) such that the measure defined by (d d ) = ( ) ( ) (d d ) belongs to Π( , ).

Chapitre 2 .

 2 Variational approach to the regularity of optimal transport maps: general cost functions 2.D An bound on the displacement for almost-minimizing transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

  .1.3) for the C 0, -semi-norm of the mixed derivative ∇ of the cost function in the cross || == , and denote by [ ] , := sup ≠ ∈ | ( ) -( )| | -| the C 0, -semi-norm of in . Fixing 0 (0) = 1 (0) = 1, we think of the densities as non-dimensional objects. This means that ( || == ) = ∫ ( 0 + 1 ) -( × ) has units of (length) , so that the Euclidean 2| 2 d has dimensionality (length) +2

Corollary 2 .1. 4 .

 24 Let 0 , 1 : R → R be two probability densities with the properties that = Spt 0 and = Spt 1 are bounded with 4 | | = | | = 0, 0 , 1 are positive on their supports, and 0 ∈ C 0, ( ), 1 ∈ C 0, ( ). Assume that ∈ C 2, ( × ) and that (C2)-(C4) hold. Then there exist open sets ⊆ and ⊆ with | \ | = | \ | = 0 such that the -optimal transport map between 0 and 1 is a C 1, -diffeomorphism between and .

2 2

 2 is a C 1,diffeomorphism outside two closed sets Σ , Σ ⊂ M of measure zero. See [DF15, Theorem 1.4] for details.

  .1.29) also holds for any open set ⊆ R . From the inequality •

E 6 (

 6 ) + D 6 ( , ) ≤ , (2.1.38) the following holds: There exists a radius * ∈ (3 , 4 ) such that if Φ is the solution, unique up to an additive constant, of 9 ΔΦ =in * and • ∇Φ = • = * on * , (2.1.39)

Lemma 2 .

 2 1.15. Let ∈ Π( , ) be an optimal transport plan with respect to the cost function between the measures (d ) = 0 ( ) d and (d ) = 1 ( ) d . Given a non-singular matrix ∈ R × and a vector ∈ R , we perform the affine change of coordinates 11 = - * * ( -) =: ( , ), (2.1.45) 2.1. Introduction where = -∇ (0, ) and = 1 ( )

Figure 2 . 1 :

 21 Figure 2.1: The definition of and in the proof of (2.4.28).

  .4.68) see Lemma 2.A.6 in the appendix. By the closeness assumption on and (C1) we may therefore bound |∇ ( , )| ≤ .

  |∇ ( ) -( )| = |∇ ( , ( )) + ( )| ≤ |∇ ( , ( )) -∇ ( , 0) + ( )| + |∇ ( , 0) -∇ (0, 0) | d . It now follows with (2.4.69), definition (2.1.3), and ∇ (0, 0) = 0, ∇ (0, 0) = -I, that |∇ ( ) -( )| ≤ [∇ ] ,4 (| | + | ( )| )| ( )| + [∇ ] ,4 | | +1 (2.4.72) (2.4.69)

-1 2 | • | 2 C 0

 220 .4.73) Using that by Lemma 2.A.6 and the smallness assumption (2.1.6), we have |∇ ( ) -| 1 ( 8 ) , and writing ( ) = ( ( ) -∇ ( )) + (∇ ( ) -) + , the estimate (2.4.72) turns into |∇ ( ) -( )| [∇ ] ,4 ( + |∇ ( ) -( )| )(|∇ ( ) -( )| + ) + 1+ [∇ ] ,4(2.4.73) 1+[∇ ] ,4 + [∇ ] ,4 .

Theorem 2 . 4 . 3 .

 243 Assume that (C1)-(C4) hold, and that ∇ (0, 0) = -I.

  .4.78) Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions such that the following holds: Let = , ), where := -∇ (0, ) and set0 ( ) = 0 ( ), 1 ( ) = 1 ( ), ( , ) = ( ( , ) -( , ) -(0, ) + (0, )) ,where = (det ) -1 .23 Then the coupling:= # (2.4.79)is an optimal coupling between the measures (d ) = 0 ( ) d and (d ) = 1 ( ) d with respect to the cost function , and the energy estimate

E

  4.94) and( ,) := -1 ( , -1 -1 -1 + )2.4. The -regularity resultwe have ∇ (0, 0) = -I, is a -optimal coupling between 0 and 1 , and the inclusion := E ( ), L := L ( 0 , 1 ) and H := H ( ),(2.4.96) 

2 ()

 2 with the spherical cone ( , ) of opening angle 2 with apex at and axis along , see Figure2.2.

Figure 2 . 2 :

 22 Figure 2.2: The definition of ( , ) in Lemma 2.A.1.

2 E 2 2 (

 222 Soitune matrice aléatoire complexe à entrées gaussiennes indépendantes, soient 1, • • • , ses valeurs propres distinctes (l'ensemble des matrices ayant valeurs propres distinctes est Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre de mesure pleine dans × ). Le -uplet ( 1 , . . . , ) a pour densité ( 1 , . . . , ) notera P la mesure de probabilité sur C × associée à la densité et E l'espérance associée. 1 Soit= =1 la mesure spectrale empirique et := 1 1 D ( ) d avec D := (0, √ ). Le but du chapitre est de prouver le Théorème III.1, que l'on redonne ici sous une forme un peu différente. Théorème 3.1.1. Il existe une constante < ∞ telle que pour tout ≥ , ) ≤ . Dans la suite, on utilise à nouveau la notation ( , ) := 2 ( , ), (3.1.1) pour tout ensemble et toutes mesures et .

  .20) où := 2 et où on a utilisé ∫ 0 d ≤ ! et ∫ ∞ -d ≤ ! pour tout . Estimons d'abord la première somme de (3.2.20), en utilisant le Lemme 3.A.1 pour estimer la factorielle d'un nombre :

  3 ) et 0 < arg < , alors Var ( ) ≤ | |.

4 (√ 2 2 , 2 0Figure 3 . 1 :

 422231 Figure 3.1: Définition de dans (3.2.23).

- 2 :

 2 = 2 -2 0 et on définit la mesure Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre Etape 3.A. (Premier terme dans (3.3.5)). Introduisons la fonction qui vérifie -Δ = --1 sur ,

2 , 2 . 2 √ 2 , 2 √ 0 . 2 et 2 = 2 =

 222220222 Il est maintenant temps de choisir les . Il apparaît que le meilleur choix est ce qui correspond d'ailleurs à l'estimation obtenue dans la sous-section précédente. On fixe également 0 := √ 0 Ceci est possible tant que 0 < , ce qui est vrai car < et 0 ≥ 1, ce qui est vrai tant que ≥ Le terme dominant dans la somme est alors le terme = 1, ce qui nous donne en utilisant l'égalité 4 = 0 et = (0, ) et notons à nouveau := , on veut estimer E 2 , Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre Démonstration. Par croissance de sin et décroissance de cos sur [0; 2 ], | , , | | 2 + 1 ,2 + 2 , sin 2 -2 +1 sin (2 ---1 2 ) 2 et sur [0; 2 ], ≥ sin ≥ 2 , d'où | , , | | 2 + 1 ,2 + 2 , car ≥ 0 et ≤ 2 --1.

2 , 2 ( 2 0 et sin 2 +1 2 0Etape 2 ( 2 ( 2 ,

 2222222 ,0 ( , 0 ) ≤ √ 2 max{ ( , ,0 ), ( , ,0 )} , ,0 ), donc en utilisant le Lemme 3.4.1 (ii) et en bornant cos 2 +1 par 1 et sin 0 2 par 0 2 , on obtient E 2 , ,0 ( , 0 ) ≤ 2 ( 0 ) 4 ≤ 32 , 3.4. Optimal matching dans un disque ce qui fait que (3.4.4) devient, en rappelant que 2 +1 ≤ , Distance de à +1 ). En suivant la même stratégie que dans le cas du carré dans la section précédente, on montre que E 2 , +1 ) 2 . (3.4.6) En effet, en définissant solution du problème de Poisson correspondant, on a grâce à (II.7), en notant ≤ := {∃ , ainsi que (3.2.21) et (3.4.2), donne E Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre

2 24Etape 4 ( 2 .

 242 Etape 3.C. (Cas d'un domaine touchant le cercle). Soit 0 ≤ ≤ 2 --1, on note ici := , , et := 2 +1,2 , -1 le sous-rectangle contenu dans , ainsi que := 2 + ,2 + , -1 pour ∈ {0, 1}. Les calculs précédents s'appliquent, grâce en particulier au Lemme 3.4.1 (v), jusqu'à obtenirE 2 ( -1 , ) max{ ( ), ( )} min{ ( ), ( )} Var ( ) + Var ( ) + ∈{0,1}Var ( ) ,3.5. Optimal matching dans un anneauce qui donne, en utilisant (3.4.2),E 2 ( -1 , ) max{ ( ), ( )} min{ ( ), ( )} | | ≤ max{ ( ), ( )} 2 .(3.4.17)Or max{ ( ), ( )} 2 ≤ 2 -, donc en sommant les contributions de la forme (3.4.17), Estimation finale). En injectant les estimations obtenues dans (3.4.10), (3.4.16) et (3.4.18) dans (3.4.9), on trouveE 2 2 ( -1 , ) (2 + 2 -) ,On a donc prouvé l'estimation suivante.Théorème 3.4.1. Soit := (0, ) avec ≤

2 (

 2 On définit D := (0, √ (1 -)) en rappelant (3.2.19), := D \ D , := C\D où on note encore := , et := (C\D ) | | . On veut estimer E 2 , d ) . Le domaine de restriction de est ici non borné, on a donc besoin d'un résultat a priori précisant le comportement du rayon spectral de notre matrice aléatoire. D'après [Rid03, Preuve du Th. 2], pour tout > 2, on a P ( ) √ > 1 + ≤ -2 , (3.5.1) Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre où ( ) est le rayon spectral de . Ceci suggère la décomposition suivante la somme dans (3.5.3) peut être estimé de la façon suivante, en supposant 1 + ( + 1) ≤ et en notant :à estimer (3.5.2), qui correspond à l'espérance de la distance d'appariement dans le cas où toutes les valeurs propres se trouvent dans (0, √ (1 + 3 )), c'est-à-dire la situation où = et = estimer (3.5.5), la stratégie est à nouveau la même que dans les cas du carré et du disque. On découpe et en deux arcs d'anneau, chacun d'angle -1 := , 3 ) et arg( ) ∈ ]0, [ , 1 := 1 ∩ D ; 3 ) et arg( ) ∈ ] , 2 [ , 2 := 2 ∩ D .

E

  3 ), on a par isotropie, pour ∈ {1, 2} Vitesse de convergence pour la loi du cercle où on a utilisé le fait que E ( ) = 2E ( ) par isotropie. En combinant (3.5.11) et (3.5.12), réunion de (3.5.4) et (3.5.13) donne ainsi le résultat suivant. Théorème 3.5.1. Soit D := (0, √ (1 -)) et := D \ D , alors

2 .

 2 Démonstration du Théorème 3.1.1. On rappelle que D := (0D ) |D \ D | d D \D . Par inégalité triangulaire, il suffit d'estimer E 2 2 ( , ) et E 2 2 ( , ). En transportant de façon optimale D sur D et C\D sur D \D , on obtient grâce aux Théorèmes 3.4.1 et 3.5.1 l'estimation Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre Donc, en notant ≥ := La même stratégie pour estimer P (C \ D ) ≤ |D \D | 2 ne donne que du 1 √ ln, ce qui ne sera pas suffisant. On utilise alors l'inégalité de concentration (3.2.1) pour obtenir ce qui conclut la preuve.

2 ..

 2 Les constantes n'ont pas d'importance pour l'utilité qu'on fait de ce résultat. Cette version est prouvée par exemple dans [MM14, Lem. 7] Le lemme suivant se prouve facilement par récurrence. Lemme 3.A.Pour tous ∈ N et > 0Les deux lemmes suivants permettent d'estimer les sommes partielles et le reste de la série exponentielle. Lemme 3.A.3. Si ≥ 1, on a Soit une variable aléatoire suivant la loi de Poisson de paramètre . Alors pour tout > 0, donc, en choisissant := -ln > 0,
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  La réciproque est vraie si le coût est continu en prenant éventuellement la valeur +∞ ([Pra08]) et si le coût est semi-continu inférieurement à valeurs finies ([ST09]), et même dans des cas plus généraux ([BGMS09, BC10]). Cependant, elle n'est pas vraie en toute généralité ([AP03]). Comme dans le cadre quadratique, un analogue du théorème de Rockafellar caractérise de tels ensembles. Γ est -cycliquement monotone si et seulement s'il existe une

	Proposition I.6. Si est continue et	est optimal pour le coût alors Spt est -
	cycliquement monotone.	

fonction -convexe telle que Γ ⊂ graph . Une fonction est dite -convexe si elle s'écrit

  Il reste alors à montrer qu'une solution au sens de Brenier de (II.2) est une solution strictement convexe au sens d'Alexandrov de (II.4). Pour cela, une hypothèse cruciale à ajouter est la convexité du support de . Le contre-exemple classique pour se convaincre que la convexité du domaine d'arrivée est nécessaire part de la situation suivante en dimension 2 : prenons

	1, loc (Ω) pour un certain universel.
	Exemple II.1.

  En d'autres termes, le transport optimal de à est proche de l'identité perturbée par le gradient d'une solution de (II.6). Dans[START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF], une version quantitative de cette linéarisation est obtenue et est un des ingrédients de base de la stratégie développée dans le Chapitre 2 de cette thèse.

	| | 2 2 + ( ) avec solution de l'équation de Poisson	
	-Δ = -.	(II.6)

Lien entre 2 et une norme de Sobolev négative

La linéarisation précédente permet également de linéariser formellement la distance 2 entre deux mesures et proches l'une de l'autre. A nouveau, le potentiel convexe est ( )

= | | 2 2 + ( ) + (

2

) et les densités de et de sont telles que ( )

IV.1 Une preuve variationnelle du théorème de contraction de Caffarelli

  

	où l'entropie relative à une mesure de référence est définie par
	( | ) :=	∫ R log d d +∞	d si sinon.	,
	On remarque que le problème d'optimisation (IV.1) est équivalent à
				inf ∈Π( , )	( | K ),		(IV.2)
	où la mesure de référence est						
	Dans le chapitre 1, on donne une preuve variationnelle du théorème de contraction II.7.
	La preuve originale par Caffarelli s'appuie sur l'équation de Monge-Ampère vérifiée par
	les fonctions de transport optimales et sur des arguments de type principe du maximum.
	En particulier, elle n'exploite pas directement le problème d'optimisation (I.1), ce qui est
	également le cas d'autres preuves comme [Kol13, KM12].	
	Stratégie de preuve						
	Pour montrer le Théorème II.7, on utilise la régularisation entropique et l'algorithme de
	Sinkhorn. Pour tout > 0, on définit un nouveau problème d'optimisation par perturbation
	de (I.2) par un terme entropique,						
	inf ∈Π( , )	1 2	∫	| -| 2 d +	( |	⊗ ) ,	(IV.1)

  et étendue dans le chapitre 2 de cette thèse, permet de prouver que pour ∼ √ , il existe une variable aléatoire * , satisfaisant Introduction Ainsi, entre une échelle 2 * , , proche de l'échelle microscopique par (IV.10), et l'échelle macroscopique, le transport optimal est quantitativement proche d'une fonction affineen norme 2 . De plus, la dérive est estimée par

	| | 2	2 * , ln 3	* ,	
		2		
	sup E exp	* , ln(2 * , )	< ∞	(IV.10)

  , Duval, Peyré and Schmitzer [CDPS17, Theorem 2.7]. We will say that a probability measure is of finite (Shannon) entropy if it is absolutely continuous with respect to the Lebesgue measure and if

	∫	log d d	d is finite. Note that, if
	∈ P 2 (R ), then it is of finite entropy if and only if ( | ) < +∞.
	Theorem 1.2.2 (Carlier et al. [CDPS17]). Suppose that , ∈ P 2 (R ) are of finite entropy.
	Then, it holds		

Lemma 1.3.6. Let

  

	regularization		
	Proof. The density	of	is given by
						is enough
	to show that On the other hand, [ ] -is integrable since is integrable. On the one hand,	∫ is bounded from below by some affine [ ] + d = ∫ log( -) --d ≤ 1 .
	function.				
	The following Lemma was used in the proof of Theorem 1.1.1:
	Assume furthermore that has compact support. Define, for all ∈ (0, /2),
			= Law(cos		+ sin )	and	= Law(cos	+ sin ),
	where	∼ , ∼ and	independent of , and such that the law of	is given by
	( ) = 1 1	( ) where is the Euclidean unit ball and a normalizing constant. Then,
	for all ∈ (0, /2),		
	1. the probability	has a density of the form -with respect to , with	: R →
	R ∪ {+∞} convex,	
	2. the probability measures	and	are compactly supported,
	3. it holds	≤ ,		
	4. the probability	has finite entropy.

Proof of Lemma 1.2.3. Let us first show that the probability measure has finite entropy. Since has a finite second moment, it is enough to show that ( | ) < +∞, which amounts to show that is integrable. Since is bounded from below by some affine function, it is clear that [ ] -is integrable. Moreover, since the convex function is such that ∫

( ) (d ) = 1, this implies according to [GMRS17, Lemma 2.1] that [ ] + ( ) ≤ | | 2

2 , for all ∈ R , and so [ ] + is also integrable. Similarly, to see that ( | ) < +∞, it (d ) = -( ) (d ) with : R → R ∪ {+∞} convex and ≺ conv .

  .1.12) This is crucial, since only this smallness is guaranteed by the finiteness of the C 2, -norm,

	and for which				
				E 6 + D 6	1,	(2.1.14)
	and	∇ + I C 0 (B 5 ,Λ )	1,	(2.1.15)
	we have that				
	( , ) ∈ || == 4 ∩ Spt		⇒ | -|	(E 6 + D 6 )	1 +2 .	(2.1.16)
	Remark 2.1.6. A close look at the proof of Proposition 2.1.5 actually tells us that if E 6 is
	replaced in (2.1.14) by the one-sided energy, that is, if we assume
	1 +2	∫	6 ×R	| -| 2 d	1,
	and if (2.1.13) is replaced by the one-sided inclusion	

cf. (2.1.17) below. This sharpening is a consequence of the qualitative hypotheses (C1)-(C4).

Proposition 2.1.5. Assume that the cost function satisfies (C1)-(C4), and let ∈ Π( , ) be a coupling with -monotone support.

For all Λ < ∞ and for all > 0 such that

|| == 5 ∩ Spt ⊆ B 5 ,Λ

(2.1.13)

  One of the main observations now is that -optimal couplings of the type considered in Corollary 2.1.9 are almost-minimizers of the Euclidean transport cost. The following assumptions (2.1.19) and (2.1.20) should be read as properties satisfied by the marginal measures and of the restriction of a -optimal coupling to a finite cross on which the ∞ bound (2.1.16) holds. Moreover, one of the marginals should be close to the Lebesgue measure in the sense that ( ) .

	Then the coupling	:=	|| == is -optimal between the measures	and	as defined in
	(2.1.18) and we have that Spt , Spt	⊆ 2 (in particular Spt	⊆ 2 × 2 ),	=
	and	= on	, and	≤ ,	≤ .
	Proposition 2.1.10. Let and be two measures such that
						Spt ⊆	, Spt ⊆	,	(2.1.19)
						( ) ≤ 2| |,	(2.1.20)

  For minimizers of the Euclidean transport cost, i.e. 2 ( , ) = 1

	Chapitre 2. Variational approach to the regularity of optimal transport
	maps: general cost functions				
	Remark 2.1.11. 2 | 2 d , we have equality in (2.1.30),	∫	| -
	1 2	∫ 1 | | 2 =	1 2	∫	| -| 2 d .	(2.1.32)
	Indeed, if ( , ) is the Eulerian description of , then by (2.1.31)	
	1					
	2					

.1.31) where the continuity equation and boundary conditions are understood in the weak sense (2.1.25), see [Vil03, Chapter 8] for details.

  2 d the smallness assumption of the Euclidean energy of on scale 6 could be replaced by a smallness assumption on the global Euclidean energy of . However, since D behaves nicely under restriction only on average, the applicability of the harmonic approximation result derived in[START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF] becomes more apparent in the form of assumption (2.1.38).From the Eulerian version of the harmonic approximation Theorem 2.1.13 we can also obtain a Lagrangian version via almost-minimality:

	.1.40) (2.1.41) 8 Note that by assumption (2.1.35) the coupling is supported on 7 × 7 , so that by means of the and 1 2 sup 2 |∇Φ| 2 + sup 2 |∇ 2 Φ| 2 + 2 sup 2 |∇ 3 Φ| 2 E 6 + D 6 . estimate E 6 ( ) E 7 ( ) = ∫ maps: general cost functions Lemma 2.1.14. Let > 0 and let ∈ Π( , ) be a coupling between the measures and , such that 1. satisfies a global ∞ -bound, that is, there exists a constant ≤ 1 such that | -| ≤ for any ( , ) ∈ Spt ; (2.1.42) 2. if ( , ) is the Eulerian description of as defined in (2.1.23), then there exists a | -| Chapitre 2. Variational approach to the regularity of optimal transport constant Δ < ∞ such that

9 

We recall that since the boundary flux * (as defined in (2.1.27)) is a measure, equation (2.1.39) has to be understood in the distributional sense, and that = ( * ) | * | and = ( * ) | * | . 10 We refer to (2.3.16) for how to understand the left-hand side of (2.1.40).

  Spt and set ( , ) := -1 ( , ), see Lemma 2.1.15 for the definition of . Then by 2.A.3, there holds ( , ) ∈ Spt . Similarly to Step 6,

	2.1.52)). Let ( , ) ∈ || == 8 9 ∩ we have that -1 ( || == 8 9

  .4.26) Indeed, from Remarks 2.1.6 and 2.2.2, we know that (2.4.24) implies the ∞ bound

  .4.58)

	Chapitre 2. Variational approach to the regularity of optimal transport
	maps: general cost functions			
	Similarly, from (2.4.47), (2.4.48) and (2.4.49),		
	| -1| 2 + |	-I| 2 E + H	1.	(2.4.59)

  ). Let us show by induction that there exists a constant 2 ( , ) such that for all ∈ N

	E ≤ 2 (E + L + H ) ,	(2.4.101)
	H ≤ H -1 .	(2.4.102)
	This will show, together with (2.4.95) and the estimate	
	L ≤ L	for all ∈ N	(2.4.103)
	coming from (2.4.100), that we can keep on iterating Proposition 2.4.4.	
	We set		
	2 := max 2 , 1 -2 .	(2.4.104)
	By (2.4.90) and (2.4.93), (2.4.101) and (2.4.102) hold for = 1 since 2 ≥ max{ 2 , } and
	provided E + L + H is small enough.		
	Assume now (2.4.101) and (2.4.102) hold for all 1 ≤ ≤ -1. By induction hypothesis, we
	have		
	E -1 ≤ 2 (E + L + H ) and H -1 ≤ H .	

  and a harmonic gradient field ∇Φ (defined through (2.1.39)) satisfying (2.1.41), such that (2.1.40) holds for the Eulerian description ( , ) of G× (G) , provided E 6 ( ) +

		2.4. The -regularity result
	, < ∞, 2 [ 0 ] 2 ,6 + [ 1 ] 2	,6
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Vitesse de convergence pour la loi du cercle

  

. . . . . . . . . . . . 3.A Lemmes techniques . . . . . . . . . . . . . . . . . . . . . . . . . . .

  .2. Estimation de la variance du nombre de points

	où	( , ) :=	-1 =0	( ) !	.
	Cette propriété permet en particulier d'obtenir une formule pour la variance de la variable
	aléatoire	( ) où est un ensemble mesurable. De plus, on sait ([HKPV06, Th. 7]) que le
	nombre de points d'un processus déterminantal dans un ensemble , ici	( ), suit la même
	loi qu'une somme de variables de Bernoulli dont les paramètres sont les valeurs propres de
	l'opérateur K de 2 ( ) défini par				
		K ( ) :=	∫	( , ) ( ) d .
	Ceci permet d'obtenir l'inégalité de concentration ([MM14, Prop. 4])
						2
		P (| ( ) -E ( )| ≥ ) ≤ exp -min	4 Var	( )	, 2	,	(3.2.1)
	valable pour tout ≥ 0 et tout ⊂ D .				
	Soit ⊂ C un ensemble mesurable, on se propose d'estimer la variance de	( ), c'est-à-
	dire les fluctuations du nombre de valeurs propres se trouvant dans . On obtient d'abord
	l'espérance de cette variable aléatoire,				
	E					

3 Arc sur le bord du disque

  Considérons maintenant un arc d'anneau chevauchant le bord de D . On rappelle que D est le disque de rayon √ centré en 0 et la définition (3.2.19) de . Soit :

	Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour
	l'ensemble de Ginibre			
	3.2.			
					2	,
	ce qui donne le résultat suivant :	
	Lemme 3.2.3. Si 1 ≤ ≤	√	-	√ ln alors
				Var	( (0, )) ≤ 2 .	(3.2.21)

  2.1, en utilisant les inclusions × ⊂ × pour les deux premières intégrales et × ⊂ × pour la troisième et en remarquant que l'estimation de ∫ × -| 1 -2 | 2 en (3.2.18) est valable pour n'importe quel rectangle de C :

  En insérant (3.2.26) et (3.2.28) dans (3.2.24) et (3.2.25), on obtient le lemme suivant. Soit défini en (3.2.23). Supposons que , ≥ 1 √ alors

						2	• 6
						(3.2.27) ≤	3 √ 2	2	| |.	(3.2.28)
	Lemme 3.2.5. Var ( (	√	)) ≤ 2 √	( + ) +	3 √ 2 2	| | ≤ 11 | |.

  D'où, en estimant grossièrement la distance 2 et en utilisant le Lemme 3.2.2, De plus, en utilisant à nouveau le Lemme 3.2.1, pour tout ≥ 2, .4. Optimal matching dans un disque D'après le Lemme 3.2.1, on a |E ( ) -4E ( )| ≤ 5 3/2 . Supposons alors que pour tout , 1 12 2 > 5 3/2 , c'est-à-dire 0 0 > 60 3/2 , ce qui est vrai puisque ≥ et 0 ≥ 1. On obtient l'existence d'une constante > 0 telle que En rappelant qu'ici = -1 = 2 , on obtient en combinant (3.3.15), (3.3.17) et (3.3.18) dans (3.3.16)

							3.3. Optimal matching dans un carré
	Si est suffisamment grand 3 pour que 3 2	≤	2 0 4 , de façon à ce qu'on ait	2 -E ( ) ≤	2 4
	d'après le Lemme 3.2.1, on a pour tout ∈ {1, 4}
					2		2	2
	P		P ( ) ≤ 2 ( -1 , ) ≥	2	= P ( ) -E ( ) ≤ ∩ A ≤ 4 exp -1 6 min 12 Var ( ) -E ( ) -2 , 2 2 ≤ P ( ) -E ( ) ≤ -4 16 2 Var ( ( )) + 4 =1 exp -1 24 min 48 Var ( ) ≤ ≤ 8 exp -min , √ .	, 2	(3.3.18)
							2 , ce qui donne
	P	E	4 2 ( -1 , ) ≤ { ( )≤ 8 2 } ≤ ( E ( ) -4 ( ) √ 2 ) 2 8 2 2 ( -1 , ) > ≤ 2 E =1 ≤ E ( ) -4 2 2 + 16 =1 4 Var ( ( )) 2 P ∃ , ( ) ≤ 4 E ( ) -2 2 . , ( ) | | ≥ 4 exp -min	2 2	(3.3.9) (3.3.10)
							=1
		P ( ) ≥	2 2 2	4 2 2 Var ( ( )) + E ( ) -≤ 2 Var ( ( )) + 2 E ( ) -+ 32 4 ≤ P ( ) -E ( ) ≥ 2( 2 -2) 2 ≤ 2 Var ( ( )) . 2 2 4( 2 -2) 2 4 ,
	de sorte que					=1
	En utilisant le Lemme 3.2.1, on obtient 2 E 2 ( -1 , ) > E 2 ( -1 , ) ≤ { 2 2 2 < ( )≤ 2( +1) 2 2 1 3 + Var ( ( )) + } ≤ ( √ 2 ) 2 • 2( + 1) 2 2 4 =1 Var ( ( )) 2 Var ( ( )) • 4( 2 -2) 2 4 ( + 1) 2 = Var ( ( )) ( 2 -2) 2
							+ Var ( ( )) + ( + 1) 2 4 =1 ( 2 -2) 2 .	Var ( ( )).	(3.3.11)
	D'après le Lemme 3.2.2, on a donc En injectant (3.3.9) et (3.3.11) dans (3.3.8), on obtient
						E E	2 ( -1 , ) > 2 ( -1 , ) ≤	. ,	(3.3.7) (3.3.12)
	Etape 3.B. (Deuxième terme dans (3.3.5)). Ecrivons car ∞ =2 ( +1) 2 ( 2 -2) 2 < ∞.
	E Etape 4 (Conclusion). En combinant (3.3.12) et (3.3.7), on obtient finalement 2 ( -1 , ) ≤ = E 2 ( -1 , ) ≤ { ( )≤ 8 2 }
						∞
						+	E E 2 ( -1 , ) 2 ( -1 , ) ≤ { 2 2 2 .	< ( )≤ 2( +1) 2 2	}	.	(3.3.8) (3.3.13)
						=2

4

.

3

≥ 11 marche, sinon il suffit de choisir 0 plus grand : 4 3/2 ≤ 13 car ≥ 2. L'estimation voulue dans le cas < 13 est immédiate. 3

  2, , ( -1 , ) + 4 Etape 3.A. (Domaines dont le bord est trop court). On commence par traiter un cas particulier : les domaines , , (non vides) tels que ( , , ) < 1 ou ( , , ) < 1. Commençons par en estimer le nombre : En particulier, ce n'est pas possible si ≥ 2 . Par symétrie,( , , ) < 1 =⇒ 2 -+1 -2 -1 < 2 -2 =⇒ 2 2 ---1 < 2 -2 .Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre donc, en utilisant à nouveau le Lemme 3.4.2 et le fait que ∞ Grâce à la symétrie précisée dans le Lemme 3.4.1 (vi), on s'intéresse maintenant exclusivement au cas + ≤ 2 -, c'est-à-dire au cas où ( , , ) ≤ ( , , ). On a alors

						=2	( +1) 2 ( 2 -1) 2 < ∞, (3.4.12) devient
	E	2 ( -1 , ) ≤	max{ ( ), ( )} 2 | |	∈{0,1} 2	Var ( ) + Var ( )
			max{ ( ), ( )} min{ ( ), ( )}	∈{0,1} 2	2 --1 =0 Var ( ) + Var E 2 , , ( -1 , ), ( ) .	(3.4.9) (3.4.13)
	car si > , , , = ∅. En combinant (3.4.11) et (3.4.13), on obtient finalement
		E 2 ( -1 , )	max{ ( ), ( )} min{ ( ), ( )}	Var ( ) +	∈{0,1} 2	Var ( ) ,
	( , , ) = 2 sin 2 ce qui donne grâce au Lemme 3.2.2, ≥ (2 + 1) 2 2 sin 2 ≥ (2 + 1) 2 + 1 2 E 2 ( -1 , ) max{ ( ), ( )} 2 2 4 min{ ( ), ( )}	.	,	(3.4.14)
	d'où				
	( , , ) 2 ( , , ) ( Pour ces domaines, on a l'estimation = 2 sin 2 Il reste à sommer sur tous les rectangles, ce qui donne cos 2 2 +1 2 sin 2 +1 2	≤ 2 + 1	.	(3.4.15)
	E 2				
	Or, en utilisant à nouveau le Lemme 3.4.1 (ii),
		max{ ( , , ), ( , , )} ≤	≤	2 +2	• 2 -+1 = 2 +1 ,
	donc			E 2	, , ( -1 , ) ≤ 2 3 16	.
	On a donc			
						2 -2
			E 2	, , ( -1 , ) ≤ 2	E 2	, , ( -1 , )
		( , , ) < 1				=0 =0
		ou ( , , ) < 1			

, , ) < 1 =⇒ 2 + 1 < 2 -2 =⇒ < 2 -2 -1 . , , ( -1 , ) ≤ 2 max{ ( , , ), ( , , )} 2 | , , | ≤ 2 max{ ( , , ), ( , , )} 3 . ≤ 2 3 32 • 2 2 -4 ≤ 16 • 2 -. (3.4.10)

Dans la suite de l'Etape 3, on suppose implicitement que les domaines que l'on considère ont des côtés plus grands que 1, de façon à ce qu'on puisse utiliser les estimations de variance obtenues dans les Lemmes 3.2.2 et 3.2.5.

  1,1 , 1,2 , 2,1 , 2,2 et 1,1 , 1,2 , 2,1 , 2,2 , chacun de ces sous-arcs correspondant à un angle -2 := 2 . La mesure associée est On continue ces découpages jusqu'à des arcs d'angle 0 ∈ [ ; 2 [ choisi de façon à ce qu'il existe ∈ N tel que 2 = 2 0 . Ce faisant, on a défini les mesures -2 , . . . , 1 , la mesure étant constante sur des arcs d'angle -1 := 2 -1 0 . Comme précédemment, l'inégalité triangulaire donne ,..., -et := 1 ,..., -des arcs d'angle et 1 , 2 , 1 , 2 leurs deux sous-arcs chacun d'angle -1 . On veut estimer

											3.5. Optimal matching dans un anneau
	E	2 2	,	( ) | |	d	1/2	≤ E		2 2 (	, 1 )	1/2 +	=1	E	2 2 ( , +1 )	1/2	.
	L'admissibilité du transport arc par arc donne ensuite
								2			2				
		E		2 2 (	, 1 )	≤			• • •	E	2 2 (		1 ,..., , 1 1 , ••• , )	(3.5.6)
							1 =1			=1				
								2			2				
		et E		2 2 ( , +1 )	≤	1 =1	• • •	-=1	E	2		1 ,..., -	( , +1 )	.	(3.5.7)
	Pour (3.5.6), on estime grossièrement le transport par
					2 2 (										
		E		2 2 (	1 ,..., , 1 1 ,..., )		≤ 4 2 E ( 1 ,..., ) =	4 2 2	E ( )
											≤	4 2 2	E (C \ D )
											≤	4 2 2		-	|D | -3/2
											=	4 2 2		2	-2 + 3/2
												2 3		
												2	,	
	et finalement													
						E		2 2 (		, 1 )			2 3 .	(3.5.8)
	On se tourne maintenant vers (3.5.7). Notons		:= 1
						-1 :=	2 =1	2 =1	( , ) | , |	d	, .

1 ,..., , 1 1 ,..., ) ≤ (2 √ ) 2 ( 1 ,..., ) de sorte que, par isotropie radiale de la distribution des valeurs propres et en utilisant le Lemme 3.2.1, E[ 2 ( , +1 ) ].

Dans l'ensemble du manuscrit, | | désigne la norme euclidienne du vecteur et si est un ensemble mesurable, | | désigne la mesure de Lebesgue de .

C'est un abus de notation : # = signifie en fait # ( ℒ ) = ( ℒ ).

Assuming that (0) = 0, the assumption ∇ (0, 0) = 0 fixes ∇ (0) = -∇ (0, (0)) = 0.

| • | denotes the Lebesgue measure on R .

Whenever there is no room for confusion, we will drop the dependence of D on the measures and .

The assumption of Theorem 2.1.1 is scaled to 6 here to match the scale on which smallness of E and D is assumed in both statements.

We use the notation - * = ( * ) -1 , where * is the transpose of , and∇ 2 ( , ) = ∇ ( , ) ∇ ( , ) ∇ ( , ) ∇ ( , ).

Note that is non-singular by assumption (C4).

A more quantitative version of this result is work in progress.

Notice that by the assumption that is supported on 2 ( -), the function ↦ → | -| ( ) has no singularity at = .

must be small enough so that ⊂ Spt ∩ Spt .

Note that by an approximation argument, we may use := 1 2 |∇Φ| 2 and := 1 2 ∇Φ as test functions in (2.1.23).

We do not assume that this bound holds in assumption (2.1.36). However, in the one-step improvement Proposition 2.1.16 and the consecutive iteration to obtain the -regularity Theorem 2.1.1, this is of course an important ingredient, which holds in view of Proposition 2.1.5.

and the Lipschitz continuity of the function ↦ → 1 away from zero.

= E = I + + (E -I -), (2.4.16)22 Note that we have not yet fixed .

H(2.4.53) 

Note that is non-singular by assumption (C4).

Using that the optimal coupling between G and ( G) is deterministic, so that one can appeal to almost-minimality within the class of deterministic couplings.

Note that there is a slight mismatch in the power in the ∞ bound between the definition of good trajectories and the setting of[START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF]. However, one can convince oneself easily that the results of[START_REF] Goldman | Quantitative linearization results for the Monge-Ampère equation[END_REF] still apply.

See for instance [Tro87, Theorem 3.16] for details.

Ces deux quantités dépendent bien sûr de mais on ne rappelle pas cette dépendance dans la notation par souci de simplicité d'écriture.

On ne cherche dorénavant plus à expliciter les constantes mais il est possible de le faire.

,..., -. Ces probabilités de déviation se réécrivent alors en probabilités de déviation du nombre de points dans le sous-domaine, pour lesquelles on peut utiliser l'inégalité de concentration (3.2.1). La différence est que l'on ne va pas descendre jusqu'à l'échelle microscopique 0 ∼ 1 car cela ne nous donnerait rien d'intéressant. On va en fait devoir choisir une échelle minimale 0 mésoscopique dépendant de pour optimiser les estimations qu'on obtient.

( , +1 ) ≤ 2 . (3.4.8) En combinant (3.4.7) et (3.4.8), on obtient (3.4.6).

Remerciements

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions By assumption (2.1.13), we have ( , ), ( , ) ∈ 5 × Λ and thus {( , )} ∈[0,1] ⊆ 5 × Λ ⊂ B 5,Λ . Hence, we obtain from (2.2.3)

(2.2.5)

Upon writing -= ( -) + ( -) + ( -), it follows that

from which we obtain the estimate

Note that 1 by assumption (2.1.15), hence (2.2.2) follows.

Step 3 (Proof of estimate (2.1.16)). Let 1 and ∈ -1 be arbitrary, to be fixed later. Let be supported in 2 ( -) and satisfy the bounds

.2.6)

We make the additional assumption that is normalized in such a way that

.2.7)

Note that since ∈ 4 and 1, we have Spt ⊆ 2 ( -) ⊂ 5 .

Integrating inequality (2.2.2) against the measure ( ) (d d ), it follows that

(2.2.8)

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions

Step 2 (Use of global information on ). We claim that there exist 0 > 0 and Λ 0 < ∞ such that for all ≤ 0 and ∈ , we have that ⊆ -∇ ( , Λ 0 ).

Indeed, by assumption (C2), for any ∈ , the map -∇ ( , •) = -∇ ( , •) + ∇ ( , 0) is one-to-one on . Since ∇ ( , ) = ∇ ( , ), it follows by (C4) that det ∇ ( , ) ≠ 0 for all ( , ) ∈ × . Hence, the map

is well-defined and a C 1 -diffeomorphism, so that in particular

Using that -∇ ( , 0) = 0, which translates into (0) = 0, this takes the form

By compactness of , there thus exist a radius 0 > 0 and a constant Λ 0 < ∞ such that

and | | ≤ 0 , which we may reformulate as

for all ≤ 0 and ∈ .

Step 3 (Conclusion). If ( , ) ∈ ( 5 × R ) ∩ Spt , then we claim that | | ≤ Λ 0 for ≤ 0 . Indeed, by Step 1 we have ∇ ( , ) ∈ . Since ⊆ ∇ ( , Λ 0 ) by Step 2, injectivity of ↦ → ∇ ( , ) implies that we must have ∈ Λ 0 . Remark 2.2.2. Note that if (2.2.15) is replaced by smallness of the one-sided energy, i.e., 1

then Lemma 2.A.1 still applies and we obtain the one-sided qualitative bound

Almost-minimality and harmonic approximation

Almost-minimality with respect to Euclidean cost

In this section we show that a minimizer of the optimal transport problem with cost function is an approximate minimizer for the problem with Euclidean cost function. However, in order to make full use of the Euclidean harmonic approximation result from [GHO21, Proposition 1.6] on the Eulerian side, we have to be careful in relating Lagrangian and Eulerian energies. This is where the concept of almost-minimality shows its strength, since it provides us with the missing bound of Lagrangian energy in terms of its Eulerian counterpart.

The -regularity result

Step 7.B. We claim that 1 ∫

(2.4.64)

By definition of , , we have

Using (2.4.62), 0 ≤ 2, and 0 ∈ , it follows that 1 ∫

Finally, the last term in (2.4.64) is estimated by

Letting → 0 in the above estimates proves the claim (2.4.63).

Step 7.C. By disintegration, there exists a family of measures { } ∈ on such that 1 ∫

(2.4.65)

Since the left-hand side of (2.4.65) tends to zero as → 0 by Step 7.B, it follows that if 0 is a Lebesgue point, we must have 

This concludes the induction.

Step 

and

(2.4.107)

In particular, setting

, we obtain the inclusion

(2.4.108)

Let us now compute, using that det = 1, 1 -0 ∞ ( )

(1

2.5. Partial regularity: Proof of Corollary 3.1.4

everywhere. Therefore, we can find two sets of full measure 1 ⊆ and 1 ⊆ such that for all ( 0 , 0 ) ∈ 1 × 1 , is twice differentiable at 0 , is twice differentiable at 0 and -1 ( ( 0 )) = 0 and ( -1 ( 0 )) = 0 .

(2.5.1)

Now let := 1 ∩ -1 ( 1 ) and := 1 ∩ ( 1 ).

(2.5.2)

Because 0 and 1 are bounded and bounded away from zero, sends sets of measure 0 to sets of measure 0 so that

The goal is now to prove that and are open sets and that is a C 1, -diffeomorphism between and . Fix 0 ∈ , then by (2.5.2), 0 := ( 0 ) ∈ . Up to translation, we may assume that

Then is a -convex function and we have

so that ( ) = c-exp (∇ ( )), from which we know that is the -optimal transport map from 0 to 1 . By Alexandrov's Theorem, there exist a symmetric matrix such that

so that, using that ( , ) ↦ → c-exp ( ) is C 1 and setting := -∇ (0, 0) = -∇ (0, 0), noticing that by Assumption (C4) is nondegenerate, a simple computation yields

Therefore, we have

The -convexity of and the fact that c-exp (∇ ( )) ∈ ( ) imply that, see for instance [Fig17, Section 5.3], ∇ 2 ( ) + ∇ ( , c-exp (∇ ( ))) ≥ 0, so that, together with (2.5.3), (2.5.4) and the property (0) = 0, the matrix = ∇ 2 (0) is positive definite. We now make the change of variables := 1 2 and := -1 2 so that

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions Defining 0 ( ) := det( -1 2 ) 0 ( -1 2 ) and 1 ( )

we get that # 0 = 1 -optimally. This may be seen noticing that

where ( ) := ( -1/2 ) is a -convex function. The cost satisfies ∇ (0, 0) = -I and by the Monge-Ampère equation

, we obtain 0 (0) = 1 (0). Up to dividing 0 and 1 by an equal constant, we may assume that

Moreover, with this change of variables, (2.5.5) turns into

Finally, is still C 2, and satisfies Assumptions (C2)-(C4) and since 0 and 1 are bounded and bounded away from zero, 0 and 1 are C 0, , and we have

Hence by (2.5.6) and (2.5.7), we may apply Theorem 2.1.1 to obtain that is C 1, in a neighborhood of zero. By Remark 2.1.2, we also obtain that -1 is C 1, in a neighborhood of zero.

Going back to the original map, this means that is a C 1, diffeomorphism between a neighborhood of 0 and the neighborhood ( ) of ( 0 ). In particular, × ( ) ⊆ × so that

and are both open and by (2.5.1), is a global C 1, diffeomorphism between and .

2.A. Some technical lemmas

The next lemma, which is quite elementary, relates the support of a measure and the support of its push forward under an affine transformation: Lemma 2.A.3. Let be a measure on R and set := # , where ( )

Proof. Let ∈ Spt . Then for all > 0

so that for all > 0 we have ( ( -1 ( ))) > 0. The other implication follows analogously.

2.A.2 Bound on D

In this subsection we show how the quantity D ( 0 , 1 ) can be bounded in terms of the Hölder semi-norms of the densities 0 , 1 : Lemma 2.A.4. Let 0 , 1 ∈ C 0, , ∈ (0, 1), be two probability densities with bounded support, and such that

A.4)

Proof. By the definition (2.1.10) of := and using (0) = 1, Jensen's inequality implies

If > 0 is such that ⊆ Spt , the assumption that is bounded away from zero on its support implies that 1. The claimed inequality (2.A.4) then follows with Lemma 2.A.5. Lemma 2.A.5. Let ∈ C 0, , ∈ (0, 1), be a density with bounded support, and such that 1 2 ≤ ≤ 2 on its support. Then

2.B The change of coordinates Lemma 2.1.15

Proof of Lemma 2.1.15. First, we clearly have 0 (0) = 1 (0) = 1 and ∇ (0, 0) = -I. It is also easy to check that ∈ Π( 0 , 1 ). Let us now compute

Thus, -optimality of is equivalent to -optimality of . Indeed, if is not optimal for the cost then one can find a coupling ∈ Π( 0 , 1 ) such that ∫ ( ,

Remark 2.B.1. It is also possible to prove the -optimality of by showing that Spt is -cyclically monotone, which characterizes optimality (see for instance [San15, Theorem 1.49]). This property readily follows from Lemma 2.A.3 and the -cyclical monotonicity of Spt .

2.C Some aspects of Campanato's theory

Lemma 2.C.1. Let > 0, 1 2 ≤ 0 ≤ 2 on , and assume that the coupling ∈ Π( 0 , 1 ) satisfies (2.4.31) for ∈ (0, 1).

Then there exist 0 ∈ R × and 0 ∈ R such that → 0 and → 0 uniformly in 0 and the estimates (2.4.62) hold.

Proof of Lemma 2.C.1. We only give the proof for , as the one for is analogous. Without loss of generality we may assume that is small enough such that ( 0 ) ⊂ . For further reference in the proof, let us mention here the following estimates obtained by equivalence of the ∞ and 2 norms in the set of polynomials of degree one: Let ( ) = + for some ∈ R × and ∈ R , then for any 0 ∈ R and > 0 there holds

Step 1 Define

2.D. An

bound on the displacement for almost-minimizing transport maps

2.D An bound on the displacement for almost-minimizing transport maps

In this section we give a proof of the interior estimate for arbitrary < ∞ on the displacement of almost-minimizing transport maps: Proposition 2.D.1. Assume has a 0, density satisfying (0) = 1. Let be an almostminimizing transport map from to in the sense of (2.1.54) with a rate function Δ ≤ 1. Then there exists 1 > 0 such that, if

Proof.

Step 1 (A smooth transport map from to the Lebesgue measure). We fix an open ball 0 centered at 0 such that 0 ⊂ Spt . Let be the Dacorogna-Moser transport map from

. By an affine change of variables in the target space, we may define for any 0 ∈ a map 0 with the same regularity as that pushes forward 0 to ( 0 ) d 0 , where 0 is the modified target space under this affine transformation, such that 0 ( 0 ) = 0 and 0 ( 0 ) = I.

In particular, for all ∈ 0 ,

where depends on and therefore on through the global Hölder semi-norm [ ] . Moreover, since -1 has the same regularity as , -1 0 is C 1, and for all ∈ ( 0 ),

Letting 1 > 0 small enough so that first, 1 ⊂ 0 ⊂ Spt , and second, 1 ≤ 1, we may therefore assume, writing 0 ( ) -0 = 0 ( ) -+ -0 and -1 0 ( ) -0 = -1 0 ( ) -+ -0 , that for all 0 ∈ 1 ,

We note that 1 depends on only through [ ] . In view of (2.D.1) and the condition (0) = 1, we may assume that 1 2 ≤ ≤ 2 on 1 .

(2.D.5)

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions

Step 2 (Use of almost-minimality at scale ). Let us denote the displacement by := -Id. We claim that if 1 is small enough, for any ball := 12 ( 0 ) ⊂ 1 and any set ⊂ ( 0 ), we have 27

To see this, we start from the following pointwise identity, that holds for any map Φ,

which is (a deformation of) a standard identity used to derive ( -)monotonicity of an optimal transport map. As usual in optimal transportation, such a monotonicity property follows from considering a competitor that swaps points in the target space. However, because of our assumption of almost-minimality, we cannot really work with a pointwise argument but have to consider small sets of positive measure. We will do this by applying (2.D.7) with a map Φ that swaps some parts of the graph of . Indeed, assuming Φ is a -preserving involution such that Φ = Id outside of a set of diameter of order , we may integrate (2.D.7) with respect to , so that the identities

combined with almost-minimality of at a scale of order , yield

.D.8)

To implement this, we give ourselves a direction ∈ 2 \ 1 , swap the (images through of the) 28 sets

and -:= \ + , with their translates along or -, and average over all directions. For this we first define a map via

for ∈ ( -) -2 , otherwise.

(2.D.9) 27 We use the notation ⨏ for the average of a function on a set, with respect to the Lebesgue measure. 28 In the rest of Step 2, we drop the index 0 for the map 0 . Now, is the map such that ( 0 ) = 0 and ( 0 ) = I.

Chapitre 2. Variational approach to the regularity of optimal transport maps: general cost functions which gives

From (2.D.13), (2.D.14) and the inclusion

we obtain

Finally, the transport condition

Choosing 1 so that 1 ≤ 1 2 and using (2.D.5), we obtain (2.D.6). We note again that the choice of 1 depends on only through [ ] .

Step 3 We claim that for any set ⊂ 1 2 with diam ≤ 1 , for any > 0, we have

.

(2.D.15)

Step 3.A. Let us show that for all > 0 and for any two balls

.D.16)

To this end, we momentarily introduce

Applying Step 2 to the sets := ( 0 ) and := ( 0 ), we obtain, provided 12 ≤ ≤ , ⨏

2.D. An

bound on the displacement for almost-minimizing transport maps so that, provided ≤ ≤ , ⨏

Fixing a large enough ∼ 1, this yields in the range ≤ ≤ , ⨏

(2.D.17)

In the remaining range ≤ ≤ , we have

which is (2.D.16).

Step 3.B. We prove (2.D.15). By applying Cauchy-Schwarz to (2.D.16), we obtain ⨏

so that, optimizing in by choosing = ∫

1 by (2.D.1), we get, provided

.

In combination with

Step 2, this yields (2.D.15).

Step 4 (Conclusion). We now have all the ingredients to prove the estimate (2.D.2). Given a threshold < ∞ and a ball ⊂

of radius 1 , we apply Step 3 to := {| | > } ∩ , to the effect that

, thanks to (2.D.1), there are radii 1 for which the statement on the left-hand side of (2.D.18) holds. Hence, by covering 1 4 by these balls, we obtain 

holds for all . This amounts to an estimate in the weak norm of on 1 4

. Because of (2.D.1), we trivially have

, so by interpolation, we obtain (2.D.2).

Chapitre 3. Vitesse de convergence optimale vers la loi circulaire pour l'ensemble de Ginibre

En estimant l'intégrale (3.2.16) de la même façon et en bornant l'intégrale (3.2.15) par 2 , on obtient

( 2 ) 2 + 2 2 .

(3.2.17)

Prenons := 1 √ 2 , ce qui donne, en combinant (3.2.12), (3.2.13) et (3.2.17), 

Dans la suite, on notera toujours

Disque de rayon inférieur à √ -√ ln

Ensuite, soit := (0, ), avec 1 ≤ ≤ √ -√ ln . On utilise la même stratégie que dans [MM14, Prop. 10] pour estimer la variance du nombre de points dans . Ainsi, par passage

Optimal matching dans un carré

On continue de cette manière jusqu'à des carrés de côté 0 et on définit ainsi les mesures -1 , -2 , . . ., 0 . En particulier

1 ,..., -.

On définit finalement

Etape 2 (Utilisation des propriétés de 2 ). Par inégalité triangulaire, on a

Puisque par construction, on a pour tout et tous 1

De la même façon

Les termes de la somme dans (3.3.3) peuvent être estimés grossièrement par

ce qui donne l'estimation

Etape 3 (Estimation de la distance entre -1 et dans un carré de taille ). Il reste maintenant à estimer E 2 ( -1 , ), où l'on note := 1 ,..., -et := 2 . est donc un carré de côté 2 découpé en quatre carrés disjoints chacun de côté . En notant

Il reste maintenant à remonter les calculs. Avec (3.3.13), (3.3.2) devient

ce qui, combiné avec (3.3.4) donne finalement dans (3.3.1)

On a donc démontré le résultat suivant :

Concentration : preuve du Théorème IV.3

On donne ici la preuve du Théorème IV.3, c'est-à-dire que l'on prouve une inégalité de concentration de la forme P , 

Cependant, les auteurs obtiennent cette inégalité de concentration uniquement pour la mesure empirique globale et sa limite .

Etape 2 (Utilisation de la construction précédente). Fixons maintenant ≤ < 2 

Posons alors := Ensuite, grâce à l'inégalité (3.3.6) et les définitions de et , La construction que l'on va présenter sera symétrique par rapport aux axes ( ) et ( ), on notera avec un exposant ∈ {1, 2, 3, 4} les domaines dans définis à partir de ceux dans 1 . Soit -1 := 4 et pour ∈ {0, 1}, ∈ {0, 1}, , , -1 := [ cos(( + 1) -1 ); cos( -1 )] × [ sin( -1 ); sin(( + 1) -1 )] ,

, , -1 := , , -1 ∩ .

On définit alors

, , -1 | = 0 si , , -1 = 0. On continue cette méthode jusqu'à des angles 0 . Plus précisément, à l'étape , on définit -:= 2 +1 et pour tous 0

, , -:= , , -∩ .

Rassemblons quelques propriétés utiles :

(ii) En notant la longueur et la hauteur,

+1,2 +1, -1 où dénote une union disjointe. 

Optimal matching dans un disque

(vi) , , est le symétrique de 2 ---1,2 ---1, par rapport à la droite = . En particulier,

On déduit des Lemmes 3.2.2 et 3. Enfin, on donne une estimation du rapport de surface entre un rectangle de la construction et un de ses sous-rectangles. 

Lemme 3.4.2. Pour tout

On utilise alors l'égalité Démonstration. Soit 0 < , > 0,

.

La deuxième intégrale se ramène à la première par le changement de variables ↦ → -.