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Abstract

As the percentage of the elderly population is rising worldwide, the demand im-
posed on modern society for providing a sufficient amount of skilled workers in the
caregiving sector is becoming increasingly harder to fulfill. Utilization of robotic tech-
nologies in physical assistance in a home support context can contribute to sustaining
a frail person’s autonomy and quality of life. We envision the use of the humanoid
robot technology for providing daily assistance with physical motion tasks. More spe-
cifically, in this work, we focus on the usage of Pepper humanoid robot platform, mass-
produced by SoftBank Robotics. The choice of the platform is motivated by its afforda-
bility, user-friendly design and multi-modal communication capabilities.

First, we propose and develop a proprioceptive sensor based contact detection me-
thod. In order to maintain low cost of the platform, our method for contact detection
aims at using only the available Pepper’s sensors to detect collision with the environ-
ment, namely a contact event during physical human-robot interaction. We detail the
integration of the proposed method as a feedback signal in the whole-body controller
to react to human touch in real-time.

Secondly, we investigate the whole-body humanoid robot posture planning pro-
blem in the assistive physical human-robot interaction context. We augment the non-
linear optimization based posture generation framework with necessary components
that allow us to plan a robot attitude in contact with a human point cloud. The propo-
sed human point cloud processing pipeline provides the necessary data structures to
formulate the posture generation problem for a robot to initiate a physical assistance
task.

Then, we present a fully autonomous interaction scenario for initiating a physical
assistance process. A Finite-State Machine and task-space Quadratic Programming ba-
sed controller is developed for a robot to navigate towards a human, perform a multi-
modal communication and establish several physical contacts in a fully autonomous
fashion. The controller performance is demonstrated in real experiments with a human
subject. All the software tools developed to perform whole-body task space Quadratic
Programming based control on SoftBank humanoid robots are made publicly available
and are documented in detail.

Finally, we study the problem of partial physical assistance in motion. We present
a control methodology that enables a humanoid robot to supply the assistive forces
necessary to help a frail human to achieve a desired performance of a motion task. We
present and discuss the simulation results of the proposed method.

We conclude this work with discussion of the achieved results and the future pers-
pectives of research in the area of humanoid-human interaction for physical assistance.

Keywords

Contact observer, humanoid robots, whole-body control, multimodal communica-
tion, physical human-robot interaction.





Résumé de la thèse
Alors que le pourcentage de seniors parmi la population mondiale augmente, la

quantité de personnel soignant qualifié pour l’aide à cette catégorie de personnes est
elle en perpétuelle diminution. Cette thèse défend l’idée que l’utilisation des techno-
logies robotiques pour une assistance physique pourrait contribuer à maintenir l’au-
tonomie et la qualité de vie des personnes fragiles, et par conséquent un maintien à
domicile plus long. Les robots humanoïdes peuvent prendre part à une telle vision,
notamment pour effectuer les tâches à valeurs non ajoutées pour le personnel soignant
ou la famille.

Au cours de ce travail, une attention plus particulière est portée à l’utilisation de la
plateforme humanoïde, Pepper, premier robot humanoïde produit en grande série. Le
choix de cette plateforme est motivé par son accessibilité lié à son coût mais également
par sa conception voulue sociale, qui le rend convivial ; ses capacités de communica-
tion multimodales facilitent grandement certaines tâches.

Dans ce cadre, nous avons développé une méthode de détection de contact basée
sur les capteurs proprioceptifs. Afin de maintenir le coût du robot, la détection du
contact utilise uniquement les capteurs déjà présents sur le robot. Il s’agit pour le robot
de détecter les collisions avec l’environnement, et plus spécifiquement la détection de
l’interaction physique homme/robot. L’intégration de la méthode proposée passe par
l’analyse du signal de retour des capteurs pour ajuster la réponse en temps réel du
robot à l’événement de contact détecté.

Ensuite, nous avons abordé le problème de la planification de la posture des ro-
bots humanoïdes dans le contexte de l’interaction physique homme-robot. Nous avons
revu le framework de génération de posture basé sur l’optimisation non linéaire avec
les composants nécessaires qui permettent de planifier une posture en contact avec un
nuage de points issu de la perception de la personne à assister. Le pipeline de traite-
ment du nuage de points proposé fournit les structures de données nécessaires pour
formuler le problème de génération de posture pour qu’un robot puisse initier une
tâche d’assistance physique.

Suite aux discussions avec un centre EHPAD, un premier scénario d’interaction en-
tièrement autonome est proposé pour initier le processus d’assistance. Un contrôleur
dans l’espace des tâches formulé comme un programme quadratique est développé
pour que Pepper puisse atteindre une personne, effectuer une communication multi-
modale et établir plusieurs contacts physiques de manière totalement autonome. La
performance du contrôleur est démontrée par une expérience réelle. Tous les outils lo-
giciels développés pour effectuer le contrôle du corps entier des robots humanoïdes de
SoftBank sont mis à la disposition du public et sont documentés en détail.

Enfin, nous avons entamé le problème de l’assistance physique à des mouvements
prédéfinis. Nous présentons une méthodologie de contrôle adaptative qui permet au
robot Pepper de fournir les forces d’assistance nécessaires pour accompagner un mou-
vement effectué (ici le bras) par une personne avec une suppléance des couples articu-
laires. Nous présentons les résultats préliminaires pour l’approche proposée.

Nous concluons notre thèse par une discussion sur les résultats obtenus et les pers-
pectives futures de la recherche concernant l’interaction physique homme-robot pour
l’assistance physique au mouvement.
Mots clés: observateur de contact, robots humanoïdes, contrôle du corps entier, com-
munication multimodale, interaction physique homme-robot.
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NOMENCLATURE

Acronyms and abbreviations

2D / 3D / 6D 2/3/6 dimensional
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CNN Convolutional Neural Network
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DC Direct Current
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DoF Degree of Freedom

FD Forward Dynamics

FN / FP False Negative / False Positive

FoV Field of view
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ID Inverse Dynamics
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OS Operating System

PAF Part Affinity Field
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PID Proportional Integral Derivative
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SBRE SoftBank Robotics Europe

TP True Positive

URDF Universal Robot Description Format

V-SLAM / SLAM Visual Simultaneous localization and mapping

pHRI / HRI physical Human-Robot Interaction

List of symbols

ε, ε̇ joint position tracking error and its derivative
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q joint position
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u voltage
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L inductance
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Nomenclature

M(q) inertia matrix

c(q, q̇) Coriolis, centrifugal and gravity forces

τf friction torque

τB spring-damper regularization torque term

τext external torque

θ motor angle

φ motor-link angle difference

α motor-link backlash gap

K{x}v, K{x}s viscous and static friction coeficient

Kφp, Kφd stiffness and damping coefficients

τld desired load torque

τd desired joint torque

εexp expected joint position tracking error

r contact observer signal

δ contact observer threshold

Kc, Kv compliance and velocity gains

T assistance task instruction

φ posture generator cost function

u, v NURBS curve parameters

f robot contact wrenches (stacked vector)

P e = {pe, Re} contact point frame position and orientation

S NURBS surface

UV NURBS surface parametric space

ΩC subspace of NURBS surface parametric space
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Nomenclature

D point cloud

Nx,y(z) B-spline basis function

C constraining closed curve

gk point cloud projected onto NURBS surface perametric space

~ntk curve normal at a point

s curve order

qpref preferred robot posture

havg sub-cloud average point

P posture task (QP objective)

B mobile base position task (QP objective)

C center of mass task (QP objective)

qd posture set point

εP posture task error

δP posture task completion threshold

V PBVS task (QP objective)

aXb frame transformation between bodies a and b

O IBVS task (QP objective)
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INTRODUCTION

By the middle of the 21st century, the projected percentage of people over 60 years
of age will reach over 20% of the world population and almost 35% of the population
in Europe; this growth is most critical in Japan; even third world countries will be af-
fected. The problem is therefore global, and in Europe it is quite alarming. People over
65 year old are the world’s most rapidly growing demographic. By the year of 2050,
16% of the global population is expected to represent this age group, which would
constitute a 7% increase from the 9% of the global population falling into this age ca-
tegory in 2019 un2 (2019). This imposes a global problem, when there are more people
in the world requiring help than those who can provide it. As a result, it will become
increasingly difficult to provide quality assistance to those who need it. That is why
we need to think today, and in an urgent manner, how we can arrange life in society
so that elderly and frail people who require daily assistance with various tasks have
access to healthcare services and care that they need. Moreover, these challenges must
be addressed with a careful consideration of all the relevant social, cultural, ethical and
economics constraints.

The various robotics technologies are expected to play a pivotal role in addressing
the challenges of the lack of workforce in the caregiving sector Niemelä and Melkas
(2019). Many researchers all over the world are dedicating their efforts to achieve safe,
reliable and comfortable human-robot interaction. The research in this rapidly expan-
ding area is useful in industrial settings, where people collaborate with the robots,
also often called cobots in this context, to perform manufacturing tasks (Fig. 1). At the
same time, advancing human-robot interaction technologies is also advantageous for
the healthcare settings, where robots can help human caregivers to take care of the frail
people, or even in the home settings to provide required daily assistance and allow a
frail person to remain in the comfort of their own home (Fig. 2).

FIGURE 1 – Physical human-robot interaction with cobots in industrial settings.

The research presented in this thesis focuses on tackling the problem imposed by
the growing need of robotization of the healthcare and caregiving sectors with the use
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Introduction

FIGURE 2 – Physical human-robot interaction for providing daily assistance to frail and elderly.

of the social domotic humanoid robots, namely the Pepper humanoid robots. Most
people have already encountered the Pepper humanoid robot, mass-produced by Soft-
Bank Robotics Pandey and Gelin (2018), either in real life or on television or Internet.
This is a world first affordable humanoid robot specifically designed for a user-friendly
social interaction and for providing the sense of companionship, which makes it a good
candidate for providing a high quality of care for frail people by making them feel both
safe and comfortable. Pepper robots can already move around the room with an omni-
directional mobile base, detect people in its environment, have simple dialogues with
people and recognize principal human emotions. However, in order for this platform
to become a major player in addressing the challenges of the aging population, the ro-
bot needs to have the skills for interacting with humans physically in a safe, reliable
and comfortable manner. In the future, we want humanoid robots, such as Pepper, to
efficiently assist frail people with daily physical tasks. So what needs to be done to
move towards this goal?

The primary skill that a robot needs to possess to actively engage in and appropria-
tely react to the human-robot physical interaction is the ability to detect the contact
events. The current design of a Pepper humanoid robot includes few tactile sensors,
at the back of the hands and on the head, that allow for a simple tactile interaction
with the robot, e.g. touch on the robot’s head can trigger a certain pre-programmed
robot reaction. In order to appropriately engage in a more advanced physical inter-
action, however, the robot ideally must be able to detect a contact not only in some
specific parts of its body, but on any of its links. Yet, the installation of the tactile or
force sensors all over the platform’s body would result in an insurmountable increase
of the platform cost. Thus, an alternative solution must be considered. In this work,
we propose a methodology for a contact event detection, that only uses the sensors
that are already available of the current version of the Pepper robot. We develop and
study a joint position tracking error discrepancy based contact observer. Using the out-
put of an acceleration-resolved whole-body Quadratic Programming based controller,
a decision tree model is trained on a collected dataset of a certain robot motion task to
predict a normal, or expected, joint position tracking error. The prediction of the error
is compared with the readings of the robot encoders to detect a discrepancy. If the dis-
crepancy is higher than a predefined threshold value, a contact event is detected for
a certain robot link. This information is passed as a feedback signal to the controller
that determines what will be the robot reaction to the detected contact event, e.g. stop
moving or comply to the touch. The proposed methodology allows to create contact-
aware whole-body controllers for humanoid robots without requiring any increase in
the platform cost.

8



Introduction

Besides being contact-aware, the humanoid robot needs to be able to autonomously
plan its posture for physical interaction with a human. All the robot-, human-, envi-
ronment and physical interaction task related constraints must be taken into account
when formulating the posture planning problem to ensure that a feasible and safe pos-
ture for a humanoid to physically interact with a human can be computed. Similar
whole-body posture planning methods have already been investigated and developed
for the industrial context, for instance. In this work, we investigate what are the addi-
tional components required to re-formulate a posture planning optimization problem
to include also human and assistance task constraints and objectives. We develop a hu-
man point cloud processing pipeline that supplies the necessary data structures to the
nonlinear optimization based posture planning framework. A constrained parametric
surface, fitted on an assistance task related human body part point cloud is used for
a robot to autonomously plan the exact contact location on the surface. The strictly
convex collision hulls fitted on the point cloud areas that represent other human body
parts are used to formulate collision avoidance constraints. Additional elements, such
as maximum contact force constraints or humanoid head orientation objective, can be
added to the problem formulation if the task requires. The solution of such an optimi-
zation problem is a feasible, safe and appropriate posture suitable for the humanoid to
initiate the physical assistance task.

Before a humanoid robot starts to engage in physical interaction with a human,
two important aspects need to be taken care of. First, the robot must autonomously
navigate to the position in the environment that is sufficiently close with respect to the
human for the robot to reach a person to establish the physical contacts. In this work,
we use a wide-angle depth camera on the Pepper robot prototype, which allows us
to perform a sufficiently accurate human detection even in a very close proximity to
a person. The feedback from the camera and the human detection module is used as
feedback in the Position Based Visual Servoing task of the whole-body controller to
regulate the autonomous robot navigation process.

Once the robot reaches a position relatively close to the human, the second im-
portant aspect that requires careful implementation is the comprehensive communica-
tion of robot intent. Before engaging in the physical interaction, the robot must ensure
that the human is comfortable and prepared for the interaction process. In this work,
we augment the whole-body controller with multimodal communication features. The
Pepper robot uses verbal, visual and body language modalities to communicate its in-
tentions of establishing physical contacts with the human. With this controller feature,
we ensure that the human is well informed about the following actions that the robot
will perform, which increases the chances of a smooth interaction process.

Finally, once the assistance process is correctly initiated, the robot needs to serve
as a source of the assistive force. In the physical assistance task, two sources of force
are contributing to the motion task. First is the force generated by the frail person
themselves and the other is the assistive force supplied by the robot. As the human
force cannot be measured or known a priori, the robot must adapt to the presence of
this unknown variable and regulate its contribution to the motion task accordingly. In
this work, we propose a control method for adapting humanoid robot contribution to
the known motion task while accounting for the presence of unknown human contri-
bution. Identifying a model of a reference torque needed for the task and estimating
human contribution with a combination of observer and predictive experience based
model, the required robot torque contribution to the task is adapted. The interaction
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force required to supply the required assistive torque is computed by a whole-body
humanoid robot motion controller.

These are just some of the main robot skills required for bringing a humanoid robot
technology closer to being used in the physical assistance context. Besides the mentio-
ned skills, which we focus on in this work, better human language and human motion
understanding as well as extensive user-studies etc. are also contributing to the list of
research areas which require attention for enabling humanoids to assist people effi-
ciently with daily life tasks.

The work conducted in the frame of this thesis is presented in this manuscript ac-
cording to the following structure:

• In Chapter 1 we present the proposed contact observer approach. First, we state
the problem and discuss the state-of-the-art. Secondly, the proposed method is
described in detail and first experimental results are demonstrated Bolotnikova
et al. (2018b).

• Then, in Chapter 2, we present a detailed description of the integration of the
proposed contact observer methodology as a feedback signal in a real-time hu-
manoid robot whole-body controller. We conclude this chapter with a presenta-
tion of the results from the real physical interaction experiments with a human
subject Bolotnikova et al. (2018a).

• Chapter 3 is dedicated to the multi-contact posture planning method developed
for the physical human-robot interaction. The posture generation framework,
previously used in the industrial context, is augmented with the components re-
quired for planning a contact on a constrained parametric surface fitted to the
human point cloud. Several human-robot physical interaction scenarios are used
to demonstrate the resulting multi-contact humanoid robot postures computed
using the augmented posture generation framework Bolotnikova et al. (2020b).

• Chapter 4 describes the whole-body controller developed for a fully autonomous
initiation of human physical assistance by a humanoid robot. The controller im-
plementation details and experimental results with a human subject are presen-
ted. Moreover, the controller code used both for simulation and real experiments
is made publicly available Bolotnikova et al. (2020a).

• In Chapter 5 an adaptive force control method for humanoid-to-human assis-
tance with a priori known motion task is proposed. The simulation results of the
proposed methodology are presented and discussed Bolotnikova et al. (2021a).

We conclude our work with discussion of the achieved results and the future re-
search perspectives in the area of human-robot interaction in the daily life assistance
context.

Appendix A presents a software toolkit developed in the frame of this thesis Bo-
lotnikova et al. (2021b). These are the software components that allow to perform a
whole-body task-space Quadratic Programming based control on SoftBank humanoid
robots. The software components are developed with human-robot interaction appli-
cation in mind. An additional scenario of daily assistance, namely medicine delivery,
is used to demonstrate the modularity, ease of use and wide area of application of the
developed software.
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CHAPTER 1

CONTACT OBSERVER

For a humanoid robot to actively participate in a physical interaction with its envi-
ronment or a human user, a real-time solution for a contact observer is required. In this
chapter, we present the methodology proposed for proprioceptive sensor based contact
sensing suitable for affordable personal robots with no force/torque or electric current
sensing. According to the proposed method, we combine robot model knowledge and
the output of an acceleration resolved quadratic programming whole-body controller
to make a prediction of the expected position. The predicted expected position error is
then compared to the error measured by the robot encoders for computing the contact
observer signal. At the end of this chapter, we demonstrate the performance of our
proposed approach in the experiments of contact detection and estimation of collision
direction and intensity on a real humanoid robot Pepper platform controlled by a task-
space multi-objective quadratic programming controller.

1.1 Introduction

The goal of the work presented in this chapter is to propose, develop and test the
contact observer methodology suitable for implementation on a Pepper humanoid ro-
bot. The main motivation for such method development is to use the contact obser-
ver to regulate robot behaviour in the context of physical Human-Robot Interaction
(pHRI). The use of force/torque sensors is not available on the current Pepper plat-
forms. The addition of such sensors to the platform would result in an unacceptable
increase of the platform cost, weight and complexity. As a consequence, the main chal-
lenge addressed in this chapter is that the contact sensing must be addressed by using
only the sensors which are available on the Pepper robot platform.

The Pepper humanoid robot platform (shown on Fig. 1.1), produced by the Soft-
Bank Robotics Europe (SBRE) company, is often presented in various public places and
events. People, especially children, express great interest in interacting with the robot.
That also includes the interest to interact with the robot physically, by touching its face,
head, hands etc. So far, meaningful physical interaction, where the robot can detect and
react to the touch, was limited to only a few tactile sensors, installed on the robot’s head
and hands. Often, however, people excitedly touch various other robot links, while the
robot can express no reaction as it remains “unaware” of these contacts. Enabling ro-
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FIGURE 1.1 – The platform used in our study: Pepper humanoid robot that is widely used in
costumer service and research spheres.

bust whole-body contact observer for the Pepper robot has a potential of bringing the
pHRI experience to a whole new level with meaningful robot reaction to various exter-
nal contacts and ability to interact with the environment through taking contacts and
applying forces, not to mention that this functionality can serve as a safety reflex when
human touch can damage robot structure or vice versa Pandey et al. (2014).

The practical implementation aspects of a contact sensing solution is particularly
challenging for low-cost personal robots, such as Pepper, where the embedded sensors
are limited and the design mechanics and kinematics do not obey high precision re-
quirements. In this chapter, we describe an approach which aims to overcome those
limitations and enable whole-body contact sensing for Pepper.

First, we review the progress made in the proprioceptive sensor based contact sen-
sing in recent years and outline why existing approaches could not be adapted for
the Pepper platform (Sec. 1.2). Then, we present our proposed methodology (Sec. 1.3,
Sec. 1.4). Finally, we demonstrate the performance of the proposed approach (Sec. 1.5)
and draw conclusions with discussion on current method limitations and further de-
velopments (Sec. 1.6).

The contributions of the work presented in this chapter are the following:

1. We derive a formula for expected tracking error computation for a Direct Current
(DC) motor controlled with PD scheme;

2. We describe the process of non-linear system identification for expected tracking
error prediction based on the knowledge of desired trajectory and the robot mo-
del;

3. With the ability to predict which part of the position tracking error is related
to the normal collision-free motion, we propose a novel contact observer signal,
which incorporates direction and intensity information of the collision event;
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FIGURE 1.2 – The collision event pipeline [Haddadin et al. (2017)].

4. We perform experiments with a Pepper robot platform and demonstrate high
sensitivity of our proposed contact observer and good performance of contact
detection and identification of collision direction and intensity for various robot
motions.

1.2 Background

Various methods have been proposed over the years for proprioceptive sensor ba-
sed contact sensing for robotic manipulators. The overview of several such techniques,
namely the direct estimation of the external torque, energy, velocity and momentum
observers, is well documented in the survey paper on robot collisions Haddadin et al.
(2017), where the collision event pipeline is also introduced (Fig. 1.2). In this chapter,
we focus on three main phases of the collision event pipeline: (i) detection– did collision
occur?, (ii) isolation– where on the robot collision occurred?, (iii) identification– what is the
direction and intensity of the collision?

Among all the methods, presented in the survey, the best performing one proved to
be the momentum observer De Luca and Mattone (2005), as it can effectively address
all three main phases of the collision event pipeline while avoiding the estimation of
the joint acceleration and mass matrix inversion.

This method has been extended for the application on floating base (humanoid)
systems in Flacco et al. (2016). The momentum observer has also been augmented to
include common non-linear effects, namely large backlash and friction, commonly en-
countered on low-cost platforms Flacco and Kheddar (2017); updated momentum ob-
server was implemented and tested on the Romeo robot arm, which is also developed
and manufactured by SBRE. Another interesting work in this area has addressed re-
construction of the interaction forces in static conditions; it was implemented and tes-
ted on a small humanoid robot from SBRE named NAO Mattioli and Vendittelli (2017).

Initially, the momentum observer was introduced for a single contact isolation, ho-
wever, it was also used as a base for the multi-contact isolation method in Manuelli
and Tedrake (2016). The momentum observer can be used more efficiently in combi-
nation with force sensor measurements, when a force/torque sensor is installed either
at the robot base for fixed platforms Buondonno and De Luca (2016) or when force
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sensors are present on some of the many robot links, as was done for humanoid At-
las in Vorndamme et al. (2017). Such extensions of the momentum observer, however,
are not applicable to low-cost robots due to the lack of force sensing devices on the
platform, mainly because of their cost and the logistics they require.

There are several reasons, why the classical momentum observer (that we investi-
gated and tried) cannot be efficiently applied to platforms like Pepper robot, namely:

1. Motor-side friction is significant and will appear as an external torque in the re-
sidual vector unless friction compensation is appropriately implemented;

2. Significant motor-link backlash and flexibility in some joints violates the assump-
tion that motor and joint angles coincide and consequently torque from the motor
is not always well transmitted to the link-side;

3. Motor torque, τm, which is usually estimated from electric current and current
to torque constants, cannot (for now) be exploited from Pepper due to current
measurements being absolute and down-sampled; if this issue could be resolved
in the future, it can be an addition to our presented method.

We could use the method developed in Flacco and Kheddar (2017) to overcome
friction and backlash; yet it requires having two encoders per joint. As for now, the
motor-side encoder measurements are inaccessible from the robot’s central memory to
measure and account for the motor-link backlash.

The momentum observer method other shortcomings are the estimation delay due
to the necessity to set a high observer gain and the requirement to apply filtering to the
estimated noisy signal, which in turn results in an even lower collision sensitivity and
consequently adds a further delay to the collision detection.

An alternative method, which is also included in the survey paper, is the direct
estimation of the external joint torque τext. This method is the most straightforward
and simplest to implement (Eq. 1.1).

τ̂ext = M̂(q)q̈ + ĉ(q, q̇)− τm (1.1)

where q, q̇, q̈ are the robot joint position, velocity and acceleration vectors, M̂ is the es-
timate of the inertia matrix, ĉ is the vector of the estimated Coriolis, centrifugal and
gravity forces and τm is the vector of the measured motor torques. This method, ho-
wever, requires to estimate joint acceleration q̈, typically obtained via double deriva-
tion of the joint position q measurements that results in a very noisy signal. A method
has been proposed recently to overcome this issue by generating a high-accuracy and
high-bandwidth joint acceleration and velocity estimates via fusion of the propriocep-
tive sensor measurements and the measurements from the links IMU sensors Birjandi
et al. (2020a). This method has been further improved to reduce robot dynamics mo-
del errors’ influence on the sensitivity of the collision detection Birjandi and Haddadin
(2020). These developments led to the improved collision detection accuracy and sen-
sitivity compared to the state of the art methods, such as the momentum observer.
Nevertheless, the utilization of this method requires to use joint torque sensor mea-
surements and robot links IMU measurements, not available on the current Pepper
robot.

In the view of the aforementioned constraints, instead of using the momentum ob-
server method or the observer-extended direct method, we address the whole-body
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contact observer for Pepper by means of monitoring the difference between measu-
red position tracking error and predicted expected position tracking error (i.e. without
external torques during free or static motions) given known robot model and motion
“intentions”. In our work, Pepper is controlled by an acceleration resolved quadra-
tic programming controller (QP) Bouyarmane and Kheddar (2011); Bouyarmane et al.
(2019), which we use to compute desired acceleration (and subsequently velocity and
position by numerical integration) and desired model-based joint torque for a given
motion task. We use those quantities to train a machine learning model that makes a
prediction of the expected tracking error value. Note, that the use of machine learning
techniques has recently gained popularity in the realm of novel collision detection me-
thods based on proprioceptive sensor measurements, Zwiener et al. (2018); Heo et al.
(2019) to name a few. Indeed, such approaches allow to exploit the data, which can
easily be collected, to avoid dealing directly with issues like model errors or the effects
that are hard to model accurately, such as backlash or friction.

In the next section of this chapter, we present the detailed developments of our ap-
proach for expected tracking error prediction and contact observer signal computation.

1.3 Proposed contact observer method

For the development of the contact observer method, we are challenged to use only
position tracking error to extract the collision event information: intensity, direction
and link. However, we assume the condition of having compliant (low PD gains with
or without feedforward terms) semi-reversible or totally reversible actuators. This as-
sumption holds in case of the Pepper platform, which was designed to be safe (low
gains) and semi-reversible, hence inherently compliant.

In static settings, when the join position tracking error value does not vary signifi-
cantly and remains very small (near zero), the contact event monitoring based on joint
position tracking error is trivial –collision or contact event causes the static tracking
error to change and reveals the collision intensity (i.e. stronger collision causes larger
deviation from the static near zero error), direction (positive or negative deviation) and
link (last joint in the chain with tracking error exceeding a given threshold) informa-
tion, assuming the external contact direction is such that it causes joint displacement
(which doesn’t happen if the direction of the contact force is normal to the joint axis).

When the robot moves, the problem becomes more complex –the tracking error is
not constant as in the static case; its dynamics (i.e. the increase or decrease of the tra-
cking error) is not always caused by collision. Indeed, it is due to the fact that because
of the dynamics (inertia, Coriolis...) and the posture configuration (w.r.t gravity) each
joint might not yet reach desired steady-state position. In this case we need to be able
to distinguish when the tracking error increase is caused by a collision event and when
it simply caused by the free joint motion dynamics.

To define a joint position tracking error based contact observer signal, we eliminate
from the tracking error the part that refers to normal/expected joint motion and leave
only the part of the tracking error which is caused by a collision. In order to achieve
this, we identify the relationship between the robot motion intention in terms of desi-
red trajectory and the expected joint position tracking error that would occur if such
motion is not blocked by any external collision. In the following, one degree of free-
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dom toy example, we show the rational ground that drives our reasoning. Consider
a DC motor regulated by a proportional-derivative (PD) controller, with gains Kp and
Kd respectively. Subtracting joint position sensor measurements q from desired joint
position target qd gives the tracking error value ε = qd − q. The value of ε is used as a
feedback in the PD controller to compute desired voltage input u (Eq. 1.2).

u = Kpε+Kdε̇ (1.2)

The electric equation of a DC motor with resistance R and inductance L is given as
Eq. 1.3.

u− e = L
di

dt
+Ri (1.3)

where e is the back-electromotive force that is proportional to the motor speed ω with
proportionality constant Ke (Eq. 1.4).

e = Keω (1.4)

The motor torque is proportional to the electrical current i with proportionality
constant Kt (Eq. 1.5).

τm = Kti (1.5)

The dynamic equation of the motor is given as Eq. 1.6

τm = Jmω̇ + µω + τl (1.6)

where Jm is the motor inertia, µ is the motor friction constant and τl is the load torque
that includes motor-link friction and backlash effects (Eq. 1.7)

τl = M(q)q̈ + c(q, q̇) + τf + τB − τext (1.7)

whereM is the load inertia and c combines Coriolis, centrifugal and gravity forces. Fol-
lowing the friction modeling principles, used for the Romeo arm in Flacco and Khed-
dar (2017), τf depends on the motor-link backlash and is expressed as Eq. 1.8.

τf =


Kφvφ̇+Kφssign(φ̇)+
Kqv q̇ +Kqssign(q̇) |φ| < α

Kθvθ̇ +Kθssign(θ̇) otherwise
(1.8)

where θ is the motor angle, φ = q − θ is the difference between the joint and the motor
angles, α is the size of the motor-link backlash gap and K{x}v, K{x}s are viscous and
static friction coefficients respectively.

When |φ| < α, the motor is moving inside the backlash gap, hence, no torque is
transfered from the motor to the load (i.e. τl = 0). Otherwise, the motor is in contact
with one of the borders of the backlash gap and the load is moving together with the
motor. The τB term in Eq. 1.7 is a spring-damper regularization term to model the effect
due to the motor-link backlash interaction (Eq. 1.9).

τB =


−M(q)q̈ − c(q, q̇)− τf + τext |φ| < α

Kφp(φ+ α) +Kφdφ̇ φ ≥ α

Kφp(φ− α) +Kφdφ̇ φ ≤ −α
(1.9)
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Here, the “inside backlash equation” (i.e. |φ| < α case) simply nulls the load torque as
seen from the actuator; Kφp and Kφd are the stiffness and damping coefficients. Note
that both τf and τB can be thought of as ξ(q, q̇, θ, θ̇, α) for simplicity.

The variable τext in Eq. 1.7 is any other external torque, e.g. that caused by an exter-
nal collision on the link.

Substituting (1.4) and (1.5) into (1.3) gives Eq. 1.10.

u = Keω +R
τm
Kt

(1.10)

We neglect Ldi
dt

term due to its relative insignificance compared to e and Ri.
Substituting (1.2) and (1.6) into (1.10) gives the analytical relation between tracking

error ε and the external torque applied on the load τext (Eq 1.11).

Kpε+Kdε̇ = R

Kt

Jmω̇ +
(
R

Kt

µ+Ke

)
ω + R

Kt

(
M(q)q̈ + c(q, q̇) + τf + τB − τext

)
(1.11)

Same relation can be derived for other types of control schemes (PID, PI, etc.) in analo-
gous form.

For the contact observer method development, this relation can be exploited in the
following ways. First, it shows that by measuring q, q̇, q̈, ω, ω̇, ε and ε̇ and knowing robot
model (M, c), motor properties (R,Kt, Ke, µ, Jm) and controller gains (Kp, Kd), as well
as all other constants present in Eq. 1.11, the value of τext can be computed directly
without necessity to measure motor torque or electric current. Secondly, assuming the
motion of the load free of external collisions, i.e. τext = 0 we can use Eq. 1.11 in order to
compute expected (under free motion assumption) tracking error εexp from the value
of desired position, speed and acceleration of the load qd, q̇d, q̈d (Eq. 1.12).

εexp = RJmN

KtKp

q̈d +
(
R

Kt

µ+Ke

)
N

Kp

q̇d + R

KtKp

(
M(qd)q̈d + c(qd, q̇d)

︸ ︷︷ ︸
desired load torque τld

+τf + τB

)
− Kd

Kp

ε̇exp

(1.12)

where
1
N

is the gear reduction ratio (ω = Nq̇). Yet, in the presence of significant back-
lash, it is more accurate to model ω as a function of q̇ that also includes the motor-link
backlash effect (ω = ξ(q̇, φ, α)). Finally, Eq. 1.11 shows that tracking error has direct
relation to the external torque and thus can potentially be used to reconstruct external
collision forces.

In our work, we cannot directly evaluate Eq. 1.12, because we do not know preci-
sely R,Kt, Ke, Jm, µ, and the value of ε̇exp cannot be computed before computing εexp.
Additionally, we do not have the access to the motor side encoder to measure θ, ω and
ω̇, which would allow us to handle the backlash appropriately and compute τf and τB
terms. Thus, instead of evaluating Eq. 1.12 directly, we choose to identify a non-linear
model from a sample robot motion recording dataset to approximate Eq. 1.12 using a
set of available desired motion related variables, namely q̇d, q̈d, τld and ε.
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For the identification, we selected a binary-tree prediction model Breiman et al.
(1984). The non-smooth activation function of a binary-tree non-linear model estima-
tor is suitable in our particular case, because it is capable of modeling sudden abrupt
changes in the tracking error signal, unlike other non-linear model estimators with
smooth activation function, such ass sigmoid or wavelet networks Zhang and Benve-
niste (1992), which we also experimented with.

The final form of the ε̃exp expression is Eq. 1.13.

ε̃exp(t) = binary_tree(q̇d, q̈d, τld) (1.13)

With the identified model capable to predict the expected joint position tracking
error for a given desired motion feature vector, the part of the joint position tracking
error that is related only to the collision event can be computed by subtracting expected
error value from the measured error to compute our contact observer signal r (Eq. 1.14).

r = ε− εexp (1.14)

In the following section, we describe how the model identification process is per-
formed and discuss the resulting performance of expected tracking error prediction.

1.4 Expected position tracking error model identification

Hereafter, we describe the process of model identification for the expected joint
position tracking error prediction (Eq. 1.13).

In this example, we focus on the Pepper left shoulder roll joint (denoted for short as
LSRoll). In order to identify a model for expected tracking error prediction for LSRoll,
we record the robot motion data free of external collisions while controlling Pepper via
the QP controller with a single posture task in the objective function. The controller is
set up to generate a sequence of various motions including moving between the joint
limits with randomly selected small or big offsets from the joint limits and moving
the joint to various random setpoints. In the middle of each data acquisition process
the configuration of a previous joint (LSPitch) and a the next joint (LERoll) in the chain
change to new randomly selected setpoints and the main joint, LSRoll, repeats the mo-
tion sequence again. With such setup our intention is to identify the model which is
“aware” of the change in the configuration of other nearby joints. Note that this is pos-
sible due to the desired load torque, τld, being part of the feature vector to the non-linear
model estimator, as it incorporates the robot model knowledge. The joint stiffness va-
lue is set to 100% for all joints in our experiments.

For the sample joint motion dataset, 7 different sequences of LSRoll joint motion
are recorded with various QP posture task stiffness values of the QP posture task. Pos-
ture task stiffness varies from 2 to 5 in estimation dataset recordings. This data is used
to identify the parameters of a binary tree and to evaluate accuracy of tracking error
reconstruction on estimation dataset. Average resulting accuracy in terms of Norma-
lized Root-Mean-Square Error (NRMSE) of the joint position tracking error prediction
over 7 data sequence recordings used in the estimation process is 77.29%. We consi-
der it to be satisfactory performance on the estimation dataset and proceed to evaluate
performance of this model on “unseen” test data.
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FIGURE 1.3 – Evaluation of the identified binary tree model for the expected joint position
tracking error prediction on test data: joint trajectories (top); expected tracking error prediction
for LSRoll joint (bottom). Overall tracking error prediction accuracy: 81.11%.

To collect the test data, we use the same QP controller but with new randomly
selected offset and setpoint parameters and increase significantly the stiffness of the
QP posture task, setting it to 9, in order to trigger motion with higher speed (and thus
larger tracking error). The accuracy of tracking error prediction on the test data set
is 81.11%. The plot of a segment of the joints trajectories from this experiment (test
dataset) and error reconstruction plot are shown in Fig. 1.3.

The results presented in Fig. 1.3 demonstrate that the identified prediction model
generalizes well to unseen data and accurately predicts the value of the position tra-
cking error. We also see that the model is robust to changes of the QP task stiffness and
changes of the configuration of other joints in the chain.

For achieving the best possible prediction performance, model identification has to
be performed for every motor separately and possibly repeatedly, as the motors and
the gear system wear out with time. However, we have observed that the left body
side joints’ models can perform equally well for the right side, as the same motor/load
types are used and they wear out approximately equally. Even more so, we observed
that the same motor types can “share” a model. Pepper has 17 joints and uses 5 dif-
ferent types of motors in total. Thus, in general, it is sufficient to perform the model
identification for only 5 different Pepper motor types.

In the next section, we demonstrate how the identified model performs when ap-
plied to the data sequence with external collisions.
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FIGURE 1.4 – LSRoll expected tracking error model evaluation: joint trajectories (top); expected
tracking error prediction (middle); contact observer signal r (bottom). Dashed blue lines show
the start of the contact events. Dashed red lines indicate the threshold δ for contact detection.

1.5 Experimental Results

Now, we showcase how our proposed contact observer signal r (Eq. 1.14) is used
for the contact detection and identification of contact direction and intensity.

In the experiments reported in this section, a median filter over 11 latest samples
of r is applied to reduce noise and eliminate occasional spikes in the signal. The time-
step between two consecutive samples is 12ms. We set a fixed threshold δ = 2.5◦ for the
contact detection. Whenever |r| > δ we consider that a collision/contact occurred. The
threshold δ can also be interpreted as an external torque sensitivity threshold, meaning
that any external force, which results in such a τext at the joint that causes the displace-
ment beyond δ, can be detected by the proposed method. The sign and magnitude of r
reveal the direction and collision intensity information respectively.

We use the same QP controller, described in the previous section, to generate a
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FIGURE 1.5 – Right elbow roll joint model evaluation: joint trajectories (top); expected tracking
error prediction (middle); contact observer signal r (bottom). Dashed blue lines show the start
of the contacts. Dashed red lines indicate the threshold for contact detection.

sequence of the left arm joints motion with new randomly selected parameters for
offsets and setpoints. The QP posture task stiffness is set to 8. During the execution of
the motion several external collisions are triggered by touching the robot’s left arm.
The plot in Fig. 1.4 shows a ∼20 second segment of the results from this experiment.
We repeat a similar experiment for the right arm elbow roll joint RERoll with posture
task stiffness set to 12. A segment of RERoll experiment results is presented in Fig. 1.5.
The extended presentation of these results can be seen in the video accompanying this
work 1.

The results indicate that our proposed method is capable of making precise predic-
tion of expected tracking error and, thus, produce a contact observer signal r which

1. Video titled “Contact Observer for Humanoid Robot Pepper based on Tracking Joint Posi-
tion Discrepancies” is hosted online at the IDH LIRMM YouTube channel: https://youtu.be/
nY9zMG0EsnM
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FIGURE 1.6 – The model identified using LSRoll joint sample data applied to the test data of
RSRoll joint. The models of the left body side generalize well for the right body side joints.

remains below threshold δ when there is no collision, i.e. when the joint moves freely.
When collision occurs (indicated in the plots by dashed vertical blue lines), r exceeds
the fixed threshold. Moreover, the direction and the intensity information about the
collision event is correctly represented via the sign and magnitude of r.

The middle plot of the Fig. 1.6 demonstrates the segment of experiment where the
binary tree model trained using recordings of LSRoll joint’s data is applied to predict
expected tracking error for the right shoulder roll joint (RSRoll). This result confirms
that models identified on left side body joints generalize well for the right side body
joints, eliminating the necessity to train separate models for every robot joint.

The Tab. 1.1 reports the total amount of false positive #FP (r > δ without contact),
false negative #FN (r ≤ δ with contact) and true positive #TP (r > δ with contact)
contact detections across three experiments.

Note that usually after a strong external collision, when the joint quickly returns
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Experiment name #FP #FN #TP
LSRoll experiment 2 2 18
RERoll experiment 0 3 19
RSRoll (with LSRoll model) 0 3 18
Total: 2 8 55

TABLE 1.1 – Number of false positive, false negative and true positive contact detections across
three experiments

to its desired position, r exceeds the threshold for a brief amount of time due to the
impact. Such cases of exceeding the threshold are not considered as false positives in
Tab. 1.1. We also note that most of the false negative cases reported in Tab. 1.1 occur-
red due to the large flexibility of the hip-roll joint, which enables the upper body of
Pepper to move when an arm is pushed/pulled. This reduces the amount of the posi-
tion tracking error in the arm joints and can lead to a false negative contact detection.
Of course, this issue would be resolved when the whole body (including the floating
wheeled part) is considered in the contact detection method.

1.6 Conclusion

In this chapter, we have derived a simplified expression for computing the expected
value of the position tracking error of a DC motor controlled with PD scheme given the
knowledge of desired joint trajectory and desired load torque. This expression revea-
led that, under some conditions of compliance (low PD gains with feedforward terms
and/or reversibility) the expected tracking error prediction does not require know-
ledge of neither the motor current nor the motor torque.

We described the process of non-linear model identification and presented the re-
sults of expected tracking error prediction, which show good accuracy and generaliza-
tion properties of the identified models. We demonstrated how prediction of expected
tracking error can be used for computing the contact observer signal, which incorpo-
rates intensity and direction information of the collision event.

In its initial form, the proposed approach still exhibited some false positive contacts
detections and was not integrated as a feedback signal in real-time robot control. In the
following development stages, we focus on reducing the amount of false positive de-
tections and making the proposed system more robust. The goal of the work, presented
in the next chapter, is to enable the proposed contact observer method to be integrated
as a real-time feedback signal for a whole-body control of the Pepper robot in pHRI
applications and regulation of the robot active compliance to touch.
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CHAPTER 2

COMPLIANT ROBOT MOTION CONTROL

In this chapter, we present developments of a real-time compliant motion control
for a personal humanoid robot Pepper. Our approach allows to interpret and react to
human guidance through touch using only joint encoder measurements to monitor
contact direction and intensity for both static and moving links. This novel method
is developed with consideration of the minimal sensor requirement of the hardware
platform to meet high affordability criteria. We demonstrate performances in the pHRI
experiments with the humanoid robot Pepper.

2.1 Introduction

In various fields, such as manufacturing or health care, an efficient automation
may require work tasks to be performed by a robot in close-contact with a human.
To achieve safe and efficient collaboration, it is important that agents understand each
other’s intentions and react to them appropriately. In this work, we focus on the inter-
pretation and correct online reaction of a humanoid robot Pepper to human touch.

The human-robot collaboration must be safe, efficient and optimal in terms of cost.
Thus, a minimal sensor set-up is preferable in order to reduce robot manufacturing
and maintenance costs. As a result, we focus on more cost-efficient, but in practice a
more challenging way of contact sensing by using a minimum setup of proprioceptive
sensors only. That is to say, we use only robot’s joint encoder measurements to control
robot reaction to external contact events.

Recent developments in the area of proprioceptive sensor based contact monitoring
have shown promising results for serial manipulators Haddadin et al. (2017), huma-
noids Flacco et al. (2016) and also a special case of affordable personal robots, such
as Pepper, used in this work, with high motor-joint backlash and friction Flacco and
Kheddar (2017). In our work, described in the previous chapter, we proposed a contact
observer method that uses data-driven machine learning techniques to detect a colli-
ding link and monitor contact direction and intensity. This method was developed to
fit well into minimal sensor set-up, as only joint encoder measurements are exploited
for contact detection for both moving and static links.

In this chapter, we describe the modifications made to our initial proposed contact
observer method in order to increase its accuracy and generalization properties in the
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case of multi-joint motions. Then, we demonstrate its use as a real-time feedback signal
for regulating compliant motions of the arm of a humanoid robot Pepper.

2.2 Background

In order to control active compliant motion of a robot, it is necessary to sense or
estimate the external forces applied on the robot’s body. A sophisticated yet expensive
solution would require to cover the entire robot structure with a haptic skin. Such an
approach, however, is not suitable for our application due to the cost of adaptation
of additional sensors (even with cheap components) and their maintenance; the in-
troduction of additional weight to the robot structure; additional power consumption
etc. Kheddar and Billard (2011); Mittendorfer et al. (2015); Yogeswaran et al. (2015);
Cheng et al. (2019).

The aforementioned cost and maintenance related constraints are not specific to
our use case, but are important in many other areas of robot-environment or robot-
human physical interaction as well. As a result, researches have directed their efforts
towards achieving contact sensing by using must-be proprioceptive sensors only (i.e.
those usually available on a robot platform), such as joint encoders, motors’ electric
current or torque sensors, etc. A thorough overview of such contact sensing methods
is presented in Haddadin et al. (2017). Methods, which were initially developed for
serial manipulators, have been further developed to be applied on humanoid robots,
e.g. Flacco et al. (2016); Mattioli and Vendittelli (2017); Vorndamme et al. (2017).

In Mattioli and Vendittelli (2017) a proprioceptive sensor based external force re-
construction was used as a feedback in the control loop to regulate robot interaction
forces with the environment –under assumption of static conditions for external force
reconstruction. The goal of our work, presented in this chapter, is to develop a method
that works equally well for controlling a compliant motion of both static and moving
robot links. Compliant reaction to human touch using proprioceptive sensors has been
demonstrated in Flacco and Kheddar (2017) in the experiment with a Romeo huma-
noid robot arm. However, this method could not be adapted for the current version of
the Pepper platform. This is due to the inability to measure motor-link backlash and
to measure or accurately estimate motor torque, which in turn prohibits to estimate
external torque by means of the momentum observer method De Luca and Mattone
(2005). The latter method was used in robot control to achieve safe reaction to external
collisions in pHRI context, see examples in De Luca and Mattone (2005); Haddadin
et al. (2008); De Luca and Ferrajoli (2008); Parusel et al. (2011).

To address a challenging task of contact sensing without using cover haptics, joint
torque or even motors’ electric current sensors; we proposed a position tracking error
based contact observer, described in the previous chapter. This method is based on mo-
nitoring the discrepancy between the measured position tracking error and the expected
one for a given desired free motion trajectory. First, a machine learning model is trai-
ned on a sample dataset with appropriate set of desired trajectory related features to
predict the expected position tracking error value for collision-free joint motion. Then,
for every iteration of the control loop, the trained model is used to predict the expected
position tracking error, assuming no contact has occurred. The contact is detected whe-
never there is significant discrepancy between measured and predicted (and therefore
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expected) error values.
In our initial study, this proposed method has shown promising results for contact

detection and for monitoring both the contact intensity and direction on a sample col-
lected robot motion dataset, which we analyzed offline. Now, we exploit our propo-
sed contact observer method in real-time control for regulating compliant motion of
the Pepper robot for physical interaction with a human. In the work presented in this
chapter, we demonstrate that an enhanced version of our contact observer can be ex-
ploited for the online interpretation of the human touch and regulation of compliant
robot motion.

The use of disturbance observers for the regulation of robot compliant motion has
been explored in several works. In Hyon et al. (2007) whole-body compliant motion
in human-humanoid interaction settings was proposed for maintaining balance of the
torque-controlled bipedal humanoid platform in the presence of unknown external
forces. A momentum based disturbance observer was applied to the floating-base mo-
del of a humanoid robot in Ott et al. (2013) to detect external forces and integrate them
into a whole-body control for kinesthetic teaching and simultaneous compliant balan-
cing. These methods, however, require a measurement of the joint torques, which may
not be available and may also be challenging to estimate in case of highly geared and
flexible joints encountered on many humanoid platforms, including also the Pepper
robot which we use in this work.

In Kim et al. (2018) disturbance observer based compliant humanoid motion control
scheme, that can compensate for high joint elasticity, was proposed including the mo-
deling of flexible joints that was performed using the measurement of motor-joint ba-
cklash angle. On the current position-controlled Pepper platform, access to the motor
side encoder measurements is not available through the robot’s centralized memory,
prohibiting to handle motor-joint backlash and joint flexibility. There are also no motor
torque sensors on the platform. Furthermore, estimation of the motor torque from elec-
tric current measurements is not feasible, due to the measurements being passed to the
centralized memory in absolute and down-sampled form. Nevertheless, in our work
we aim to overcome those constraints by exploiting the machine learning data-driven
approach for the disturbance observer.

Following in this chapter, we describe modifications of the contact observer w.r.t
our initial study presented in Chapter 1. First, we present the details about the ro-
bustified expected position tracking error prediction model training process (Sec. 2.3).
Then, we describe the compliance control scheme and controller implementation de-
tails (Sec. 2.4). Finally, we demonstrate results of the compliant motion regulation using
the proposed method achieved with Pepper in pHRI experiments (Sec. 2.5).

2.3 Contact Observer for Multi-Joint Motions

The use of r signal (Eq. 1.14) for contact monitoring has been demonstrated in the
previous chapter in several experiments with Pepper left and right arm joints, with
one joint moving at a time, i.e. 1 degree of freedom (DoF) case. Occasionally false posi-
tive (FP) and false negative (FN) contact detections occurred during the experiments.
Furthermore, when the system was tested on more complex motions, e.g. with all arm
joints moving simultaneously with arbitrary speed to random set-points, the trained
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expected tracking error prediction models turned out to be not general enough to adapt
to such motions. The reason for this is mainly the fact that sudden motions of one joint
can have significant influence on the tracking error value of some other nearby joints,
especially in the presence of a significant motor-link backlash.

Such false detection cases have to be eliminated or minimized in order to use r as
a feedback signal in the active compliance control. We identified the main reasons for
the false detection cases. First, due to the insufficient prediction accuracy of the binary
tree prediction model for some new data (not used for the model training), r value can
exceed threshold ±δ even though external collision is not present, meaning that pre-
diction model fails to generalize to “unseen” data and predict value of εexp correctly.
Secondly, in some circumstances (e.g. singularity or near joint limits configurations),
external contact force does not cause r to exceed ±δ, thus the contact remains unnoti-
ced. Similarly, in case of light contacts, r does not exceed ±δ, which can be addressed
by lowering the value of δ (which was set to 2.5◦ in previous work). However, to do
that the overall prediction accuracy has to be improved, for both seen and unseen data,
which may not be achievable due to the accuracy-generalization trade-off. And, finally,
as mentioned previously, the prediction of expected tracking error of a joint depends
on the motion of other joints. Therefore, relevant variables related to other joints’ desi-
red trajectories must be identified and included in the prediction feature vector.

The aim is to ensure that the trained models generalize well to a wide range of com-
plex motions, while encountering fewest possible false positive contact detections. At
the same time, it is equally important that prediction is computed within the control
time constraint for all joints. Therefore, the use of complex models that take very long
time to compute the prediction is prohibited, which leads to potentially sacrificing
the maximum achievable prediction accuracy. Thus, the trade-off between model com-
plexity and feature vector size and model accuracy must be properly handled.

In several application areas of machine learning, so called, ensemble based tech-
niques have often shown to perform better in practice compared to single classifica-
tion or regression models Dietterich (2000). In particular, boosting is a machine learning
technique for ensemble model training that is suitable for our goal to battle false posi-
tive contact detection cases Drucker and Cortes (1996).

According to the boosting methodology, a cascade of several models is trained suc-
cessively; every new model k = 2, . . . , N (N being the total number of models in the en-
semble) is trained taking into consideration the performance of the previously trained
models 1, . . . , k−1. At every new iteration k, previously known inaccurate predictions
of εexp are given more weight before training of kth model takes place. As a result, every
new model in the ensemble is trained to make a better prediction, especially in those
cases where previous models performed poorly. This results in minimization of the
maximum prediction error and consequently fewer amount of false positive contact
detection cases. We chose a cascade of boosted decision trees as the prediction model to be
used for training a more robust model for expected position error prediction. We use
XGBoost library implementation of this technique Chen and Guestrin (2016).

To achieve the best possible prediction model accuracy and generalization, while
minimizing the required computation time, we make several important choices about
model hyperparameters. The process of hyperparameter tuning is described in Sec-
tions 2.3.1–2.3.3 for LShoulderRoll joint, also referred to as joint nr. 6 or LSRoll for short
(with corresponding variables denoted as ε6, q6, q̈6 etc.). Analysis for other joints is per-
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formed in the same manner.

2.3.1 Feature Vector Components

On a sample recording of 45 minutes of collision-free data (with time step of 12 ms,
i.e 225000 samples in total) we analyze the importance of different variables for ε6

exp
prediction to select the most relevant variables for the feature vector. We train a boos-
ted ensemble of decision trees with a feature vector that includes the desired motion
related variables for all the main left arm joints. The results of relative variable impor-
tance computed from the trained model are summarized in Fig. 2.1.
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FIGURE 2.1 – Variable importance for ε6exp prediction.

As can be seen from the plot, the most important variables for ε6
exp prediction are

desired speed and torque of the target joint, which confirms our previous findings
described in the previous chapter. However, desired speed, acceleration and torque of
the nearby joint, LShoulderPitch (joint nr. 5), also have significant weight for prediction
of ε6

exp. These features even outweigh the importance of the q̈6
d feature. The variables

after the orange dashed line on the plot are considered of medium-importance and
variables after the red dashed line are considered as non-important.

To make a more informed decision on the final size of the feature vector, we perform
k-fold cross-validation with k = 4 (75% samples for training and 25% for validation)
and analyze how the root-mean-square error (RMSE) and maximum absolute predic-
tion error (MAX) on validation sets are affected as we incrementally include more of
most important variables into prediction feature vector. The mean RMSE evaluated
over 4 cross-validation folds only improves significantly if 3 to 4 most important va-
riables are used (see Fig. 2.2). The mean MAX improves significantly until 6 most im-
portant variables are used and stops improving and even deteriorates after this point.
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Based on these observations, we chose to include 6 most important variables in the
final feature vector.
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FIGURE 2.2 – Prediction error with various feature vector sizes.

2.3.2 Ensemble Size and Learning rate

After selecting the components of the feature vector, we identify an optimal value
for the ensemble size N , and a learning rate η of the model. Since we intend to use the
trained model in the real-time application, we must select the model with the smal-
lest possible ensemble size. Selecting a higher learning rate for the training allows to
achieve good performance with fewer number of sub-models in the ensemble. Howe-
ver, higher learning rate may result in lower model accuracy, as in this case the training
algorithm is only allowed to make “big steps” towards an optimal solution. We ana-
lyze the mean cross-validation RMSE for various sizes of ensemble and for different
values of the learning rate. Fig. 2.3 illustrates the performance of models of various
sizes trained with three different learning rates.

We see from this plot that lower η values do not result in significant improvement
of performance in terms of the mean RMSE over k cross-validation folds as the size
of the ensemble increases. The difference in performance between the best and worst
performing models is < 0.02◦. Therefore, we choose to use η = 0.3 with model size
N = 50 as our optimal choice, since it provides a good performance while keeping
ensemble size N relatively low.

2.3.3 Individual Decision Tree Maximum Depth

Now that other model hyperparameters are selected, we identify an optimal size
of the individual decision trees. We train several models with N = 50 and η = 0.3
and analyze mean RMSE and MAX computed for training and validation folds. We
also compute the rate of false positive detections as a total amount of absolute valida-
tion prediction errors exceeding the threshold ±δ divided by the total number of the
validation samples. The results are shown in Fig. 2.4.
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FIGURE 2.3 – Mean validation RMSE for various ensemble sizes and learning rates.

The results show that with maximum tree depth of 7 the false positive rate de-
creases to < 0.1%. The values of RMSE for both the validation and the training data are
acceptably low, always below soft and hard thresholds indicated as orange and red da-
shed lines on the plot respectively. The maximum absolute prediction error decreases
for both seen and unseen data until maximum tree depth reaches 8. After this point,
the trained model becomes too complex and overfits the training data (training error
decreases, while validation error remains the same or increases). Note that adapting
regularization strategies did not help to improve the performance of the model on va-
lidation data. Based on these observations, we chose the final value for the maximum
tree depth to be set to 8.

With this final decision on hyperparameter values, we are able to achieve the per-
formance of the contact observer that is acceptable for the use of r as a feedback in a
real-time control for active compliance. The next section presents the compliant motion
control implementation details.

2.4 Compliant Motion Control

In this section, we describe the QP controller design that allows to control compliant
robot motion using the contact observer signal as a feedback signal on collisions. The
overview of the entire process is presented by pseudocode in Algorithm 1. For simpli-
city, consider a QP controller with one posture task in the objective function, and typi-
cal kinematics constraints, such as self-collision avoidance and joint limits. The posture
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FIGURE 2.4 – Optimal max individual tree depth selection from false positive rate (top) analysis
and training/test error (bottom).

task specifies a target posture, qtarget
1. The output of the QP controller, q̈d, generates a

whole-body motion that brings the robot joints closer to qtarget, while satisfying the ki-
nematics and self-collision avoidance constraints. The rate of convergence of the joints
to qtarget is regulated via the QP posture task stiffness gain.

Before the QP controller starts to regulate robot motions, the initial robot sensor
values, qinit, are read. For the first iteration of the controller execution, timestamp t =
0, we assume that no collision with the environment occurred, i.e. r(0) = 0. At this
point, the posture task target position is equal to the values of the initial sensor reading
(qtarget = qinit). The QP controller computes q̈d, that is integrated twice to obtain desired
joint setpoint, qd, that is sent to the low-level PD robot servo to progressively bring the
robot joints closer to qtarget. In the first iteration, since qtarget = qinit the robot does not
move, i.e. q̈d ≈ 0.

Using the known robot model and QP output, the desired torque τd is computed.

1. Note that qtarget is the final target robot posture, whereas qd is intermediate desired joints position
command which iteratively and incrementally brings a robot from its initial state to qtarget.
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Now the εexp can be computed using the trained prediction models described in the
previous section. At the same time, the measured position tracking error is computed
as ε = qd−qinit. Finally, the contact observer signal, r = ε−εexp, is computed and passed
to the next QP iteration along with the new sensor readings.

Starting from the second iteration, if |r| < δ the posture task remains unchanged.
Otherwise, if a discrepancy between ε and εexp has occurred (i.e. |r| ≥ δ), before the QP
controller is inferred, the robot QP posture task has to be readjusted to comply in the
direction of estimated disturbance. The compliant motion of every joint is regulated
via Eq. 2.1

qtarget(t) = qd(t−∆t)−Kcr +Kv q̇d(t−∆t) (2.1)

where Kc and Kv are compliance and velocity gains respectively, which are tuned for
every joint. The posture task is updated in the QP objective function with new qtarget,
and the entire process repeats until the controller is stopped.

The compliance gain, Kc, regulates how much influence contact observer signal
r has on updated target posture. Lower values of Kc allow the target posture to be
updated only slightly, which means that QP will not compute high q̈d and the robot
will comply stiffly (little amount with lower speed). On the contrary, a high Kc causes
the qtarget of the posture task to change significantly resulting in high compliance and
faster motion, as the q̈d is proportional to the QP task error. The velocity gain, Kv,
regulates the proportional contribution of joint desired speed to facilitate compliance
of moving joints (those that started to comply in the previous iterations).

Note that this compliant motion control strategy can be augmented with any other
QP tasks (e.g. set point, visual servoing, force tasks, etc.), by adding them to the QP
objective function via higher level planning algorithm either along with compliant
posture task or within periods when |r| < δ. In such a case, a proper tuning of QP
tasks’ weight and stiffness values can influence greatly the overall performance of the
complex QP controller.

2.5 Experimental Results

We use the proposed and robustified contact observer methodology, integrated as
a real-time feedback signal for compliant motion control via the QP controller, in two
pHRI experimental scenarios. The threshold for contact detection, δ, is set to 2.5◦ for all
joints in all experiments.

In the first scenario, a robot is making a motion that initiates the process of assisting
a human to stand up from a sitting position. The robot moves its arm towards the
human back and stops moving further if it detects a contact (i.e. Kc and Kv gains of
Eq. 2.1 are set to zero once the contact is detected). If no contact is detected the robot
continues to move its arm until joint limits. The motion is repeated several times with
varying values of the target LShoulderPitch (LSPitch for short) joint position, allowing
to take contact lower or higher on the back of a human. The values of the desired joint
positions and the contact observer of the LSRoll are shown in Fig. 2.5. When the contact
observer signal exceeds the threshold, the commanded position for the LSRoll joint is
altered such that the robot stops instead of continuing to move forward. The snapshots
of this experiment are shown in Fig. 2.6.

In the second experimental scenario, the robot moves 4 joints of the left arm ran-
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Algorithm 1: The pseudocode of algorithm for the QP controller regulating
joint compliance via r signal

q ← ROBOT.GET SENSORS()
r ← 0
CNTRL ← INITIALIZE CONTROLLER()
POSTURE TASK ← INITIALIZE POSTURE(q)
CNTRL ← INSERT TASK(POSTURE TASK)
CNTRL.RUN()
while CNTRL.RUNNING() do

if |r| ≥ δ then
qtarget(t)← COMPLY JOINTS(r, qd(t− 1), q̇d(t− 1))
CNTRL.POSTURE TASK ← UPDATE TASK(qtarget(t))

end if
q̈d ← SOLVE QP(POSTURE TASK)
q̇d ← INTEGRATE(q̈d) qd ← INTEGRATE(q̇d)
ROBOT.SETJOINTANGLES(qd)
τd ← INV. DYNAMICS(q̈d, q̇d, qd, ROBOT MODEL)
εexp ← PREDICT(q̈d, q̇d, qd, τd)
ε = qd − q
r = ε− εexp
q ← ROBOT.GET SENSORS()

end while

domly. When the contact is detected, Eq. 2.1 with positive Kc and Kv gains, is used to
guide the robot motions through human touch and comply the joints of the arm. The
values for Kc and Kv gains are set manually for every joint; exact values used in the
experiments are presented in Tab. 2.1.

LShoulderPitch LShoulderRoll LElbowYaw LElbowRoll
Kc 17 5 5 17
Kv 0.08 0.02 0.02 0.02

TABLE 2.1 – Gain values for main left arm joints.

The subsequent snapshots of a sample arm motion compliant to the human touch
are shown on Fig. 2.7.

The plot segment of desired position of the shoulder roll joint and corresponding
contact observer signals are shown in Fig. 2.8. Due to the random set-points being com-
manded to the robot during the free motion –to show that the method can be applied
for movement of arbitrary position and speed, the compliance of the joints may not
be obvious from the plot. However, looking closely one sees that at the moments of
contacts (indicated with dashed blue lines) the desired joint position is being altered
taking into account the direction in which the contact is applied.

Extended presentation of the results of both experiments is included in the video
accompanying this work 2.

2. Video titled “Compliant Robot Motion Regulated via Proprioceptive Sensor Based Contact Obser-
ver” is hosted online at the IDH LIRMM YouTube channel: https://youtu.be/NnVgbZqZebU
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FIGURE 2.5 – Robot stops moving the arm forward when it comes in contact with a human
subject’s back. The dotted blue lines show the start of the contact events, red dashed lines show
the threshold values ±δ.

FIGURE 2.6 – The snapshots of the experiment where the robot’s arm motion is altered depen-
ding on whether it comes in contact with a human’s back or not. The snapshots explained from
left to right: (i) no contact, LSRoll joint is at its forward limit; (ii) no contact, LSRoll is at its ba-
ckward limit; (iii) first contact, robot’s arm stops moving before reaching the limit; (iv) human
moves away, no contact, LSRoll is at its forward limit; (v) human moves back, robot’s arm stops
moving before reaching the limit.

2.6 Conclusion

In this chapter, we have detailed the process of integration of a joint position tra-
cking error discrepancy based contact observer as a real-time feedback signal in the QP
controller for regulating compliant robot motion. The theoretical and implementation
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Compliant robot motion control 2.6. Conclusion

FIGURE 2.7 – The snapshots of the experiment where the robot’s arm motion is compliant to
the human’s touch.
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FIGURE 2.8 – Robot moves joints to random set-points. When contact is detected, joint position
is set according to Eq. 2.1. The dotted blue lines show the start of the contact events, red dashed
lines show ±δ.

details of contact observer robustification and compliance controller design have been
described. Finally, we demonstrated the performance of the proposed method in pHRI
experiments with humanoid robot Pepper.

The following Chapter 3 is dedicated to the whole-body feasible multi-contact pos-
ture planning for pHRI applications. Chapter 4 presents the whole-body controller for
a pHRI scenario that utilizes the compliant robot motion control strategy, presented in
this chapter, to establish several physical contacts with a human subject.
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CHAPTER 3

MULTI-CONTACT PLANNING ON
HUMANS

For robots to interact with humans in close proximity safely and efficiently, a spe-
cialized method to compute whole-body robot posture and plan contact locations is
required. In our work, a humanoid robot is envisioned to be used as a caregiver that
is assisting a human with a physical task. In this chapter, we present the proposed
method for formulating and initializing a non-linear optimization posture generation
problem using an intuitive description of the assistance task and the result of a hu-
man point cloud processing. The proposed method allows to plan whole-body posture
and contact locations on a task-specific surface of a human body, under robot equi-
librium, friction cone, torque/joint limits, collision avoidance, and assistance task in-
herent constraints. The proposed framework can uniformly handle any arbitrary sur-
face generated from point clouds, for autonomously planning the contact locations and
interaction forces on potentially moving, movable, and deformable surfaces, which oc-
cur in direct physical human-robot interaction. At the end of this chapter, we present
and discuss the results of posture generation using the proposed method for pHRI
scenarios.

3.1 Introduction

A humanoid robot can potentially be used as a reconfigurable and mobile multi-
functional assistive support structure. One such platform can be used to assist in va-
rious tasks, unlike simpler robots that are designed for a specific task. Moreover, a
familiar anthropomorphic appearance of the robot can result in overall better usability
due to higher likeability Staffa and Rossi (2016), more intuitive communication Mitz-
ner et al. (2014); Torta et al. (2014) and easier gain of user trust and acceptance of the
technology Li et al. (2010).

This chapter is dedicated to the development of the multi-contact planning metho-
dology that works directly on a human point cloud. The central question of multi-
contact planning is the computation of a feasible multi-contact configuration of a hu-
manoid robot. In what follows, we answer the question: how to compute a feasible
robot posture in contact with a human, and plan contact locations on a surface of a
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Multi-contact planning on humans 3.1. Introduction

FIGURE 3.1 – Safe and feasible humanoid robot posture for pHRI.

human body part, while accounting for human safety and comfort, as well as robot
structure and assistance task inherent constraints? (Fig. 3.1)

In our work, we introduce additional constraints to the posture generator (PG) for-
mulated as non-linear optimization on non-euclidean manifolds Brossette et al. (2018).
Multi-contact planning follows care-givers guidance to build and initialize PG, which
includes the robot, assistance task and human inherent constraints and objectives. We
present newly integrated PG constraints that plan contact locations on a surface of a
human body part specified in the assistance task description. We fit a Non-Uniform Ra-
tional B-Spline (NURBS) surface, trimmed by a NURBS curve, on a segmented point
cloud, that represents a human body part, as acquired from the embedded robot’s
camera, and use it to formulate geometric contact constraints. Additionally, we use
collision avoidance with human point cloud constraints to ensure pHRI safety. More
explicitly, the contributions of the work presented in this chapter are following:

1. A construction and initialization of PG for pHRI from an intuitive description of
an assistance task (Sec. 3.3);

2. A formulation of constraints for contact location planning on a human point
cloud surface (Sec. 3.3.1);

3. A human point cloud processing for contact planning and collision avoidance PG
constraints (Sec. 3.3.2);

4. An evaluation of the proposed method in pHRI scenarios (Sec. 3.4).
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Multi-contact planning on humans 3.2. Related works

3.2 Related works

Multi-contact planning has been addressed in various works and is currently a hot
topic in humanoid research. Yet, it has never been extended to human physical assis-
tance. To our best knowledge, our work is the first to consider such a perspective. At
the heart of multi-contact planning, there is a so-called PG that generates on-demand
(i.e. requests from the search strategy) the possible contact candidates.

Multi-contact planning methods treated mostly interaction with static and rigid en-
vironments, for which exact models are available. Existing methods address multi-
contact planning by building a search tree Escande et al. (2013) or using a cascade
coupling Tonneau et al. (2018), both based on a frequent inference of the PG (viewed as
generalized inverse kinematics). First, the contact surfaces are elected and the corres-
ponding contact posture is found, if exists, that realizes these contacts. Other methods
embed contact planning directly with the motion problem formulation. For instance,
in Arreguit et al. (2018) the contact sequence is predefined, the rigid and static environ-
ment is modelled by flat circular surfaces, and the contact locations of each humanoid
end-effector are part of the optimization variables, so they are free to move inside the
predefined contact surfaces. Similarly, the contact locations on flat surfaces, and also
the contact sequence itself, have been incorporated into an optimization problem by
the use of mixed-integer optimization Ibanez et al. (2014); Deits and Tedrake (2014);
Ponton et al. (2016), non-linear trajectory optimization Dai et al. (2014) or augmenta-
tion of the contact creation related decision variables Mordatch et al. (2012). Those are
some of the most outstanding works in multi-contact motion planning, but so far none
have ever addressed contact planning on a human body for assistance.

One could be tempted to extend previous multi-contact planning to pHRI. In prac-
tice there are interesting simplifications such as the fact that (i) a human represents a
closed-form almost know surface for contact planning, and (ii) assistance must follow
recommendations from geriatric, care-givers and doctor professionals, which means
that the type of contact to achieve a given assistance are known and must be followed.
However, there are also some difficulties such as the fact that (i) human is articulated,
and (ii) its surface is varying with clothes and deformations which require using direct
perception to plan contacts, e.g. point clouds. The PG on point cloud has been explo-
red in preliminary experiments using plane segmentation for stair climbing Oßwald
et al. (2011), and in multi-contact navigation planning on flat and rigid surfaces Bros-
sette et al. (2013). In pHRI, however, a basic plane fitted on a point cloud cannot well-
represent a human body part surface. The inclusion of a trimmed NURBS surface into
the PG, proposed in our work, allows to achieve high flexibility for the modelling of a
surface for contact location planning. As a result, our proposed framework can handle
a wide range of various pHRI scenarios.

In our work, we use a single RGBD camera and human links location 2D probability
heatmaps, from OpenPose library Cao et al. (2017), to perform human link point cloud
segmentation (Sec. 3.3.2). The output of the segmentation is then used to construct a
parametric surface for contact location planning and convex hulls of human body parts
for collision avoidance constraints (Sec. 3.3.1). Several works dedicated to the problem
of the semantic meaning of human body parts in a point cloud exist in the literature.
For instance, the method to fit an entire 3D human body model to the point cloud was
proposed in Kwok et al. (2014). This method, however, requires two RGBD cameras, a
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set of precomputed human body templates and takes around 30s to complete. Additio-
nally, the output of this method is a volumetric mesh of a human body, which cannot
be efficiently incorporated into the contact point location search optimization problem
that requires continuous parametric surface as an input. A faster method for human
pose estimation via skeleton fitting on a point cloud acquired by multiple RGBD ca-
meras was proposed by Barros et al. (2015). This method, first, roughly initializes the
human skeleton on a point cloud. Then, points in the cloud are assigned the limb class
to which they are closest to. This method is reported to perform under 1 s, and could
potentially be used in our framework for point cloud segmentation. However, it re-
quires two RGBD sensors calibrated setup, whereas we opt to use one RGBD sensor
for lower set-up complexity and potential use of the method with the on-board ro-
bot camera. The machine learning-based labelling of point cloud elements into human
body part classes was proposed in Buys et al. (2014). The output of this method could
also potentially substitute OpenPose probability heatmaps in our framework (Fig. 3.4).
However, the performance of this method on our sample data has shown to be far less
superior compared to that of the OpenPose, which made it unusable in our work.

In the following Sec. 3.3, we describe in detail our proposed methodology for
whole-body robot posture planning for pHRI. Our proposed method requires a point
cloud from a single RGBD camera and an intuitive description of the pHRI task to ge-
nerate a safe and feasible whole-body robot posture suitable for the pHRI task. The
proposed method also allows to find appropriate optimal contact locations on a finely
defined human body part surface, fitted directly on the human point cloud. To the best
of our knowledge, no PG framework has such functionality, which is critical for pHRI
applications.

3.3 Proposed method

In the world, where robots will be working with human caregivers for assisting
patients in secondary care tasks, it is paramount that high-level intuitive human com-
mands can be translated into low-level robot motion planning and control objectives. It
is especially critical to make sure that there is no increased workload of caregivers due
to the introduction of robots into their workspace, a problem that often goes unnoticed
in the process of introduction of new technology Niemelä and Melkas (2019). Indeed,
in the caregiving sector, assistance know-how and practices should be instructed to
the robot from health professionals’ knowledge and practices Khatib et al. (1999). The
objective of our work, presented in this chapter, is to enable the robot to generate safe
feasible postures for engaging in pHRI as instructed from the high-level instructions
given to the robot by non-(robotics) experts.

For a given assistance task instruction, here we denote it as T , the optimal floating
base location (i.e. position and orientation) and joints configuration of a humanoid
robot, that we call robot posture denoted as q, have to be planned simultaneously. Ad-
ditionally, the PG algorithm needs to autonomously plan the suitable, appropriate and
feasible contact locations on the patient body, where assistive forces should be applied.
The computed posture must enable the robot to supply or resist required contact forces
to assist a human as required while ensuring its own equilibrium, human comfort and
safety. To compute such feasible posture, we propose to formulate a non-linear optimi-
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zation problem described by Eq. 3.1. 1

min
q,u,v,f

φ(q,u,v,f) (3.1a)

s. t.



joint and torque limits
self–collision avoidance
environment–robot collision avoidance
environment–robot contacts
equilibrium and friction cone constraints
human–robot collision avoidance
fmin
i ≤ f c

i ≤ fmax
i ∀i ∈ [1,m]

P e
i = Si(ui, vi) ∀i ∈ [1,m]

ui, vi ∈ ΩCi ∀i ∈ [1,m]

(3.1b)
(3.1c)
(3.1d)
(3.1e)
(3.1f)
(3.1g)
(3.1h)
(3.1i)

(3.1j)

Here, φ is a cost function –i.e. a function of the decision variables, to minimize (e.g.
distance to a desired posture, torques, contact forces, etc.). The explicit expression of
φ is given in Sec. 3.4, Eq. 3.5a. The constraints Eq. 3.1b–3.1h have been previously dis-
cussed in Brossette et al. (2018) and are described in detail in Brossette (2016). Some
are bounds on the decision variables and others are more general bounds. The novel
constraints Eq. 3.1i–3.1j, which enable the PG to plan contact location on a surface of
the human body part, are introduced in this work (Sec. 3.3.1).

An assistance task instruction T , for instance, could be the following: T = {Lightly
contact the patient on the left arm with the robot’s right hand and turn the robot’s
head to look at her/his face}. Such description of the task determines the structure of
the PG optimization problem, it’s constraints and objectives. More precisely, it dictates
the total number of robot-human contacts m, robot end-effector to be used for making
contact P e

i , the patient body parts to contact Si (Eq. 3.1i) (trimmed by ΩCi if necessary
(Eq. 3.1j)), class of force bounds that is appropriate for the task fmin

i ,fmax
i (Eq. 3.1h),

and robot head orientation objective (see Eq. 3.5a).
To plan the contact locations on a surface of a human body part, as dictated by

T , the constraint expressed via Eq. 3.1i is added to the optimization problem. This
constraint restricts the robot-human contact to lie on the NURBS surface Si fitted to the
point cloud of the segmented human body part. To allow our framework to equally
handle any arbitrary point cloud or special-cases, we use additional curve enclosure
constraint, Eq. 3.1j, that trims away areas in the parametric space of Si that are not sui-
table for establishing a contact (e.g. the areas not covered by the point cloud, sensitive
or delicate areas of the human body surface). The NURBS surface parameters ui and
vi are stacked into decision variables u and v of our PG on manifold, respectively. The
robot contact forces f c

i are stacked into a PG decision variables vector f .
Depending on the problem and its size, non-linear optimization is not deterministic

in general, see discussions in Brossette et al. (2018). Nevertheless, we suggest that the
information that can be extracted from T and the information of the human perception
in the environment (Sec. 3.3.2), allows us to have very good initial guesses. This allows
the solution, when it exists, to be found relatively fast. We bring practical examples of
such task-aware PG initialization in the Sec. 3.4. As in any gradient descent approach,

1. Matrices and vectors are in bold; scalars in non-bold lower-case; descriptive functions in calligra-
phic font.
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there is no guarantee that the solution is a global optimum nor that it could be syste-
matically found when it exists. In the latter case, we perturb the initial guess.

We detail the implementation of constraints Eq. 3.1i and Eq. 3.1j in the following
section 3.3.1, present the details of a human point cloud processing pipeline in Sec. 3.3.2
and, finally, exemplify the use of our approach on sample pHRI tasks in Sec. 3.4.

3.3.1 Contact constrained to a surface fitted on a point cloud

In this section, we detail the constraints for planning a contact location on an point
cloud surface (Eq. 3.1i–3.1j).

Given a point cloud D = {pk|k = 0, · · · , K} and an initial guess of the control
points locations P init

ij of the NURBS surface S, the control points position update cij ,
that fits S onto D, can be computed via quadratic optimization that minimizes the
Euclidean distance between points pk and corresponding closest points projected onto
surface as S(uk,vk), see Eqs. 3.2a–3.2b.

min
cij

∑
k

pk −
∑
i

∑
j Ni,b(uk)Nj,r(vk)(P init

ij + cij)∑
i

∑
j Ni,b(uk)Nj,r(vk)

2

(3.2a)

0 ≤ uk, vk ≤ 1 uk, vk ∈ R (3.2b)

The parameters b and r denote surface order in directions U and V of the surface pa-
rametric space, respectively. The nonrational B-spline basis functions are denoted as
Nx,y(z). The number of control points can be either predefined or adjusted in the fitting
process Piegl and Tiller (2012); Dimitrov et al. (2016); Flöry (2009).

Example of a point cloud D and a fitted NURBS surface S are shown in Fig. 3.2
(top). This figure also illustrates the next issue we need to address, which is the four-
sided nature of the NURBS surface. Since NURBS parametric space is four-sided, sur-
face fitted to an arbitrary point cloud likely needs to be trimmed by fitting a constrai-
ning closed curve C that encloses the point cloud, thus defining a subspace of the
surface parametric space ΩC ⊂ UV that is suitable for making a contact. The control
points of C are found by, first, projecting 3D points pk into UV ⊂ R2 space, to get cor-
responding 2D points gk. Given the initial guess of curve control points location P init

i ,
so-called, footpoint parameter tk is computed for every gk, so that point C(tk) on the
curve is the closest point to gk and ~ntk is curve normal at this point. The constraining
curve fitting process consists in finding curve control points position update values ci
by solving the optimization problem Eqs. 3.3a–3.3b Flöry and Hofer (2008).

min
ci

∑
k

wk

gk − ∑
iNi,s(tk)(P init

i + ci)∑
uNi,s(tk)

2

(3.3a)

(gk − C(tk))T · ~ntk ≤ 0 (3.3b)

where s is the curve order and wk are the point’s weights, which are lower for the
interior points and higher for the points which are closest to the curve. The points gk,
projected onto the UV space of S, along with fitted constraining curve C, are shown
in Fig. 3.2 (top). Note that if D represents a rather four-sided real surface, the fitting
of C may not be required, as the surface underlying such a point cloud will already be
well-defined by S (i.e. nothing to “trim out” with C).
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FIGURE 3.2 – NURBS surface and curve fitting to point cloud (top), trimmed contact surface
constraint representation (bottom).

After S and C control point values are adjusted to fit D, the goal is to find such
values of u∗ and v∗ so that the contact point location P e ∈ S(u∗, v∗) is on the area of
NURBS surface covered by the point cloud (i.e. u∗, v∗ ∈ ΩC), while satisfying all the
other PG constraints Eqs. 4.1b– 3.1h.
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FIGURE 3.3 – Curve enclosure constraint on UV space.

The fitted surface and the constraining curve can now be incorporated into the PG
formulation. We consider here only one contact for the purpose of presentation clarity.
The end-effector frame for contact is P e = {pe,Re = (~xe, ~ye,~ze)}, with frame position
pe and orientation Re w.r.t. the world frame. We add surface parameters as additional
decision variables u and v, and add the constraints Eqs. 3.4c–3.4j to the PG problem.

min
q,u,v,f

φ(q, u, v,f) (3.4a)

s. t. eq. 4.1b–eq. 3.1h (3.4b)

ps =
∑
i

∑
j Ni,b(u)Nj,r(v)Pij∑

i

∑
j Ni,b(u)Nj,r(v) (3.4c)

0 ≤ u, v ≤ 1 u, v ∈ R (3.4d)

([u v]− C(tuv))T · ~ntuv ≤ 0 (3.4e)

du = ∂S(u, v)
∂u

dv = ∂S(u, v)
∂v

(3.4f)

zs = du× dv ys = zs × du (3.4g)

Rs =
(

du

|du|
,

ys

|ys|
,

zs

|zs|

)
(3.4h)

#      »

pspe ·Rs = (0, 0, 0) (3.4i)
~ze ·Rs

xy = (0, 0) ~ze ·Rs
z ≥ 0 (3.4j)

The constraints Eqs. 3.4c–3.4e ensure that the contact point ps lies on the autho-
rized surface area. The constraints Eqs. 3.4f–3.4h compute the surface contact frame
orientation Rs at point ps with Z-axis aligned with the surface normal. The constraints
Eqs. 3.4i– 3.4j align the robot’s end-effector frame with the surface contact frame in 3
translational directions and 2 orientational axes. The robot is free to choose its contac-
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ting end-effector orientation only around the surface normal. These constraints are
illustrated in Fig. 3.2 (bottom); specifically Eq. 3.4e is illustrated in Fig. 3.3. Here, the
variable tuv ∈ [0 1], from the curve parametric space, is a footpoint parameter of [u v]
point, computed on previous optimization iteration, such that C(tuv) is the closest point
on the curve to [u v] and ~ntuv is the curve’s normal at this point.

The solution to Eq. 3.4 is an optimal whole-body robot posture and the contact
location on the point cloud surface, approximated by the trimmed NURBS surface,
that satisfies joint and torque limits, maintains robot statically stable, keeps interaction
forces inside the friction cones, avoids collisions and satisfies contact force bounds.

In the following Sec. 3.3.2, we detail the human point cloud segmentation that sup-
plies the input D for the construction of the contact constraints of the proposed PG
framework. We also describe how the point cloud segmentation is used to construct
human-robot collision avoidance constraints of PG (Eq. 3.1g).

3.3.2 Processing of human point cloud

Our proposed robot-human contact planning, described in Sec. 3.3.1, can be used
for assistance pHRI tasks, as long as, the point cloud to contact D (e.g. human shoulder,
human back) is properly segmented out from an entire scene observed by an RGBD
camera. Here, we present the point cloud segmentation pipeline that supplies input to
our PG. The overview of the entire pipeline is shown in Fig. 3.4.

First, an RGB image is processed by a two-branch multi-stage convolutional neural
network (CNN) from the OpenPose library Cao et al. (2017). This CNN predicts confi-
dence maps (CM) for 25 main human body keypoints, by assigning the likelihood of
the presence of a particular human body part to every image pixel. Simultaneously,
CNN predicts, so-called, Part Affinity Fields (PAF), which encode the location and
orientation of human body parts in the 2D image.

In our work, we use CM and PAF to compute human body parts 2D masks for point
cloud segmentation. We threshold PAF and CM of all the body parts to consider only
high likelihood pixels (≥ σ = 40%), which are assigned a 100% likelihood after thre-
sholding. The pixels with likelihood below σ are assigned 0% likelihood. As a result,
we obtain black and white images that represent 2D masks of human body parts.

We combine all resulting 2D masks to obtain 16 masks for body part segmentation
from point cloud (different total number of masks can be used depending on the use-
case). We dilate the resulting masks to remove small holes and expand the borders.
The head mask is augmented by adding an ellipse of estimated head width and height
around the face centre. The torso mask is augmented with a polygon that connects
3-4 visible torso keypoints (assuming that at least 3 torso keypoints are visible). Fur-
ther, subtraction of body parts masks that are likely to be occluding torso (e.g. arms,
forearms, hands) is performed on the torso mask.

Once the masks for all individual body parts are computed, a depth image and
camera intrinsic parameters are used to compute a 3D point cloud of the entire scene.
We apply human body parts 2D masks on a point cloud to segment 16 sub-clouds
which contain only those 3D points that are likely to belong to each particular human
body part.

The result of the segmentation is used to select a sub-cloud D that, according to
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FIGURE 3.4 – Point cloud processing pipeline to supply input for the posture optimization
problem formulation for pHRI assistance task.
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predefined task T , is to be used for establishing a contact. This sub-cloud D is filtered,
downsampled made fit a NURBS surface S and a trimming curve C, using NURBS
algorithms from Point Cloud Library Piegl and Tiller (2012); Rusu and Cousins (2011),
and building contact constraints Eqs. 3.4c–3.4j.

All segmented sub-clouds are used to create (strictly) convex hulls of human body
parts for human-robot non-desired collision avoidance (Eq. 3.1g). The PG’s collision
avoidance is implemented using an efficient GJK distance algorithm for proximity que-
ries Escande et al. (2014b). The cloud D, representing a body link for the contact crea-
tion, is also used to define collision avoidance constraints with all robot links but the
end-effector used for contact as specified in T .

Our proposed method does not require costly estimation of a human model para-
meters, its floating base position and orientation or joint angles. Nevertheless, it pro-
vides all the necessary information, extracted directly from a point cloud, for compu-
ting a safe and feasible multi-contact posture suitable for initiating pHRI for a well
specified and intuitively formulated assistance task. There are ongoing efforts in the
3D computer graphics and vision communities to provide directly reliable 3D pose
and joint configuration of humans in any posture, see e.g. Xu et al. (2018). Shall this be
one day readily available in reasonable computation time and reliability, we can sim-
ply replace our pipeline with it, eventually pre-fit a personalized NURB on it, and use
it as an input for our PG. It won’t make our PG faster but we will gain in the perception
side (i.e. the construction of the PG problem).

We exemplify how our proposed method performs on sample point clouds in the
following Sec. 3.4.

3.4 Experimental Results

In this section, we present the evaluation of the performance of our proposed me-
thod for whole-body posture generation and contact location planning on a human
point cloud. First, we outline the method implementation details (Sec. 3.4.1). Then, we
discuss the results of NURBS surface and curve fitting to the segmented human body
part point cloud (Sec. 3.4.2). And finally, we present the results of the robot posture and
contact locations generated using the proposed method for three sample pHRI scena-
rios in the context of human care and assistance (Sec. 3.4.3–3.4.5). We conclude this sec-
tion with discussion on method limitations and future work perspectives (Sec. 3.4.6).

3.4.1 Implementation details

The PG framework Brossette et al. (2018), that we use and extend for the pHRI use-
case in our work, is highly versatile and is not robot specific. Given just a URDF file
description of Pepper robot, that we use as a platform in our work, all the basic PG
constraints (Eqs. 3.1b–3.1f) are automatically constructed using this PG framework.

The novel PG constraints (Eqs. 3.4c–3.4j, and 3.1g) are constructed based on the
results of the point cloud processing in each particular scenario. The only robot specific
parts of the PG formulation in our scenarios is a frame constraint for Pepper mobile
base, which is free to move only in XY plane and around Z-axis of the world reference
frame, and 3 contact constraints with the ground one per each robot wheel.
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The RGBD data for each scenario was collected and then processed offline. We
present the resulting safe and feasible multi-contact postures for pHRI, computed by
our proposed method, visualized in RViz together with the corresponding point clouds
and trimmed contact NURBS surfaces on the right side of Figs. 3.5–3.7. The plots on the
left side of Figs. 3.5–3.7 show cost function (Eq. 3.5a) convergence, for each scenario,
that indicate the optimality of the resulting PG solutions. The convergence criterion of
PG is thoroughly described in Brossette (2016) (see p. 78).

3.4.2 Results of surface and constraining curve fitting

We assume that after segmentation and filtering a point cloud accurately represents
the underlying real surface. We consider the trimmed NURBS surface to well represent
the actual surface of the human body when the average squared fitting errors, Eq. 3.2a
and Eq. 3.3a, are below 12mm and 0.0052, for surface and curve, respectively. Fitting
the constraining curve with a lower tolerance threshold is significantly slower and
more importantly useless. The human body is compliant already, and in the online
experiments, the person might move a bit too. Thus, the robot must be controlled to
reach the person and establish the contacts in closed-loop. One potential continuation
of this work could exploit the robot’s configuration, that is computed by our PG, to
serve as a target for the closed-loop QP Bouyarmane et al. (2019) controller, that will
achieve the desired contacts and postures at best using online perception and measu-
red contacts Bolotnikova et al. (2018b,a). In such a controller, contacts will be made
using guarded motion to absorb surface uncertainties. For example, when a motion
supporting contact is required on the patient’s back, it won’t be required at mm preci-
sion.

3.4.3 Scenario 1: Attracting human’s attention

For our first experiment, we consider a use-case where the robot attracts a human’s
attention by performing a light touch. For this use-case, the task for the robot is T1 =
{Lightly contact the patient on the left upper limb with your right hand and look at
her/his face}. The points of the human left upper limb are extracted from the point
cloud for fitting a trimmed NURBS surface for contact constraint with the robot’s right
end-effector. Other segmented sub-clouds are used to create convex hulls for collision
avoidance.

Since we know the task to perform a priori, we can do a task- and human-aware
initialization of PG. We initialize the robot posture with the mobile base in front of
and facing the surface to contact (as detected from RGBD data), the right end-effector
slightly raised and turned to be prepared for a contact, and the left end-effector in
a downward position. We denote such robot configuration as preferred posture qpref,
which can be dictated for specific classes of assistance tasks from human knowledge
and expertise.

We use qpref in the PG cost function to keep the final result to be close to the pre-
ferred posture. We also define the robot camera orientation objective, to ensure that it
is oriented towards the human head sub-cloud average point havg. Finally, the force
bounds, which can be defined by medical professionals, for the ‘light’ human-robot
contact interaction forces are set to fmin = {−0.05,−0.05, 0.5},fmax = {0.05, 0.05, 3.0}
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FIGURE 3.5 – PG convergence plot (left), computed robot posture in contact with human point
cloud (right) for experimental scenario 1.

in our experimental scenarios. The final form of such PG is Eq. 3.5.

min
q,u,v,f

wp

∥∥∥q − qpref
∥∥∥2

+

∥∥∥∥∥∥
#                »

pcamhavg∥∥∥ #                »

pcamhavg
∥∥∥ ·Rcam

z − 1.0

∥∥∥∥∥∥
2

(3.5a)

s. t. eq. 4.1b–eq. 3.1h eq. 3.4c–eq. 3.4j (3.5b)

where pcam and Rcam
z are the translation and Z-axis orientation of the robot camera

optical frame, respectively, w.r.t. the world reference frame. The vector wp contains the
weights of the preferred posture objective for each robot joint. The elements of this vector
are set to 1, except for the mobile base and neck joints, which are set to 0, to let the robot
freely plan mobile base and head position and orientation.

The solution of Eq. 3.5, a safe and feasible robot posture for the pHRI task T1, is
shown with annotations of all objectives and constraints in Fig. 3.1 at the beginning of
this chapter. Another view of the same scene, that better illustrates the result of contact
location planning on a trimmed surface fitted to point cloud, is shown on the right of
Fig. 3.5.

3.4.4 Scenario 2: Initiating assistance for sit-to-stand transfer

The second scenario consists in initiating a process of assistance for sit-to-stand
transfer. Note that a suitable strategy for assistance in such a scenario may vary from
patient to patient. Here, we assume that a suitable strategy is to initiate two contacts.
The first contact is closer to the patient’s shoulder for applying a pushing force forward
and upward. The second contact is closer to the hand of the patient, which would allow
to control human’s forward movement by resisting force applied on the robot end-
effector by the patient. The same trimmed NURBS surface is used to formulate both PG
contact constraints. However, different initial points in the surface parametric space
are used for decision variables initial values, one closer to the shoulder and another
closer to the hand. The command of the assistance task for this scenario given to the
robot is T2 = {Lightly contact the patient on the left upper limb near the shoulder
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FIGURE 3.6 – PG convergence plot (left), computed robot posture in contact with human point
cloud (right) for experimental scenario 2.

with your right hand, and near the patient’s hand with your left hand, while looking
at her/his face}. The objective function in this scenario has the same form as eq. 3.5a,
with two sets of contact constraints with trimmed NURBS surface and a different task-
specific qpref (with both end effectors raised and turned in preparation for the contacts).
The resulting PG convergence plot, computed robot posture and contact locations are
shown in Fig. 3.6.

3.4.5 Scenario 3: Checking for responsiveness

In our last presented experimental scenario, the robot is required to check if a per-
son, lying on a bed, is responsive. The task given to the robot is T3 = {Lightly contact
the patient on the right upper limb with your left hand and look at her/his face}. The
human right upper limb point cloud is segmented out and used for surface and curve
fitting, which are then used to define the contact constraints between human right up-
per limb and robot left end-effector. We reuse the objective function of scenario 1, with
a different value of havg, as the human head is now in a different location in the scene.
The robot left end-effector is slightly raised and turned in qpref. The PG convergence
plot, resulting whole-body posture and optimal contact location are shown on Fig. 3.7.

3.4.6 Discussion, limitations and further developments

The task complexity, commutation times of each part of our method and the total
number of PG solver iterations for each scenario are presented in Tab. 3.1. All compu-
tations were performed on the GeForce GTX 1050 Ti GPU.

The convex hull for collision avoidance between the robot and the bed, that a per-
son is sitting or lying on, is defined and added manually to the simulation scene in
all scenarios. Ideally, such convex hulls should be computed automatically. We also
assume that a person is well detectable on a 2D image by OpenPose with the pixel pro-
bability threshold of 40%. Otherwise, the human point cloud cannot be well segmented
and a safe robot posture cannot be computed using the proposed PG method.
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FIGURE 3.7 – PG convergence plot (left), computed robot posture in contact with human point
cloud (right) for experimental scenario 3.

Scenario ID 1 2 3
Contact point cloud size 3049 3049 2862
Number of contacts 4 5 4
Point cloud segmentation / convex hulls creation time (s) 2.28 2.45 2.69
Trimmed NURBS surface fitting time (s) 0.717 0.734 0.926
Number of PG iterations 23 50 36
PG convergence time (s) 1.876 5.286 2.828

TABLE 3.1 – The computation time of each phase of the method and the number of solver
iterations for each test scenario.

For the future work, the proposed method should be optimized for the online
(re)planning of the robot motion in pHRI scenarios. The output of proposed PG could
be used to control the robot in experiments, where the robot engages in physical contact
with people for assistance in motion López et al. (2014). The user reaction to such in-
teraction should be analyzed and used for method refinement in the following steps
of development of motion planning methods and a ‘robotiquette’ for pHRI in close
proximity Dautenhahn (2007). Lastly, the proposed method could be incorporated
into the motion synthesis framework to compute robot trajectories accounting for the
type of motion that human and robot must undergo while maintaining or switching
contacts Escande et al. (2013). This must be done to guarantee that the computed pos-
tures outputted are indeed suitable for a particular a priori known assistance in motion
task all along the motion path.

3.5 Conclusion

In this chapter, we have described in detail the proposed new constraints for gene-
rating safe and feasible multi-contact robot postures for pHRI tasks. We presented the
details of the proposed pHRI specific contact constraints that allow to autonomously
plan a feasible optimal contact location on human body parts for establishing a phy-
sical contact between a humanoid robot and a human subject. The implementation of
the human point cloud processing, that generates the input for contact location plan-
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ning and human-robot collision avoidance constraints, was presented and evaluated
in three sample pHRI scenarios.

The next chapter is dedicated to the description, design and implementation of the
whole-body humanoid robot QP controllers for pHRI applications in the caregiving
context.
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CHAPTER 4

AUTONOMOUS INITIATION OF HUMAN
PHYSICAL ASSISTANCE

The goal of our work is to study the use of humanoid robot technology for physical
assistance in motion for a frail person. A whole-body controller for a humanoid robot
needs to be carefully designed in order to ensure efficient, intuitive and secure inter-
action between humanoid-assistant and human-patient. In this chapter, we present a
design and implementation of a whole-body controller that enables a humanoid robot
with a mobile base to autonomously reach a person, perform audiovisual communica-
tion of intent, and establish several physical contacts for initiating physical assistance.
Our controller uses (i) visual human perception as a feedback for navigation and (ii)
joint residual signal based contact detection for closed-loop physical contact creation.
At the end of the chapter, we assess the developed controller on a healthy subject and
report on the experiments achieved and discuss the results.

4.1 Introduction

In the work described in this chapter, we consider a general interaction scenario
which may occur in everyday care. A humanoid robot is required to autonomously
reach a person and establish several physical contacts on a human body to initiate
physical assistance in motion. A whole-body task-space control framework 1 is used
to develop a Finite State Machine (FSM) controller that enables a humanoid robot to
autonomously participate in such an interaction scenario.

A visual human perception is utilized for closed loop navigation towards a hu-
man. The joint residual signal based contact detection, described earlier in Chapters 1
and 2, is used to determine time of robot-human contact events. Verbal, visual and
body language communication is included in the controller design to enable a robot to
autonomously communicate its intentions to a human. The contributions of the work
presented in this chapter are following:

• we present the design of a whole-body controller architecture for the interaction
scenario (Sec. 4.3.1);

1. https://jrl-umi3218.github.io/mc_rtc
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• we describe the implementation of an autonomous visual feedback based navi-
gation towards a human (Sec. 4.3.2);

• we detail the integration of a multi-modal communication of intent in the control-
ler design (Sec. 4.3.3);

• finally, we present the results of using the controller for an interaction trial with
a healthy subject (Sec. 4.4).

4.2 Background

In the field of research on pHRI for assistance in motion or power augmentation,
a large majority of the works consider either the scenarios where human is creating a
contact on the robot body surface Tirupachuri et al. (2019); Romano et al. (2017) or the
application of exoskeletons Vaca Benitez et al. (2013). In our work, however, the roles
are reversed, it is the robot who is responsible for autonomously establishing a physi-
cal contact. An interaction scenario where the robot itself is actively and autonomously
creating contacts on a surface of a human participant body is rarely considered. In Ya-
mada et al. (1997) a control of a robot establishing a contact on the human body was
studied with consideration of safety limits in terms of the human pain tolerance limits.
In López et al. (2014) a humanoid robot was used in a sit-to-stand assistance context to
contact a human and perform a motion while maintaining the contact.

The human-aware navigation is a basic skill that a robot must have for operating in
the same environment as humans Kruse et al. (2013). A human aware motion planner
that takes safety, human comfort and social acceptability into account while planning
the robot’s path for HRI was proposed in Sisbot et al. (2007). An inverse reinforcement
learning based navigation goal and path generation approach that also takes social
norms into account was proposed in Ramírez et al. (2016). Such planners, if extended
to account also for the physical interaction in the assistive context using conclusions
from appropriate user studies, could be used in the controller presented in this chapter
to design the path for a robot to follow when approaching the human subject prior to
initiating the physical assistance process. For now, the position goal w.r.t. the human
subject is defined manually in the controller presented in this chapter. The path to reach
the navigation goal is the result of the visual servoing QP task error minimization. A
sensor fusion approach for the human-following robot navigation was developed and
tested in Tee Kit Tsun et al. (2018). Visual servoing was used to make a robot navigate
towards a human, maintain constant distance between itself and a human, and follow
a walking human. This visual servoing based control was presented in Claudio et al.
(2016); Agravante et al. (2016). Although, this work does not include the details of the
navigation method. However, a demo of this navigation approach is available online 2.

Yet, none of the previous works have considered a full autonomous interaction sce-
nario with integration of all components of visual feedback based navigation towards
a person, multi-modal communication of intent and closed-loop physical contact crea-
tion. In the work presented in this chapter, we describe the design and implementa-
tion of the whole-body QP FSM controller for the studied pHRI scenario (Sec. 4.3) and
present the experimental results (Sec. 4.4).

2. https://youtu.be/QDmDY5koKIE
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FIGURE 4.1 – FSM based controller design for interaction scenario.

4.3 Controller architecture

The whole-body controller for a Pepper humanoid robot is developed using the
mc_rtc QP task-space control framework. We consider a complex interaction scenario
which is comprised of several distinct stages, each of which consists in achieving mul-
tiple objectives. Therefore, the controller is implemented in a form of an FSM, where
every state corresponds to a specific stage of the interaction process. Fig. 4.1 presents
the general structure of the implemented FSM controller. In the following Sec. 4.3.1 we
describe this controller implementation in detail.

4.3.1 FSM QP controller implementation

The robot actions are controlled by an acceleration-resolved QP controller. This
means that an optimization problem is formulated with a quadratic objective func-
tion that consists of a weighted sum of tasks formulated as errors between actual and
desired setpoints in task space, as well as first and second derivatives of these task
errors. Robot joints acceleration are the decision variables of the problem. A set of li-
near constraints in the optimization problem formulation ensure that the solution is
physically feasible and safe Bouyarmane et al. (2019).

As indicated in Fig. 4.1, the interaction starts with controller initialization (init). At
this stage, the robot description module is used to build the base control problem as
QP with default tasks and constraints (Eq. 4.1).
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min
q̈,f

P + B + C (4.1a)

s. t.



joint position, velocity and torque limits
self–collision avoidance
sliding ground contact constraints
bound mobile base velocity and acceleration

(4.1b)
(4.1c)
(4.1d)
(4.1e)

The objective function of the QP contains a default posture task P , default mobile
base position task B and a center of mass task C. Interested readers can refer to Bouyar-
mane et al. (2019) for detailed definition of these common QP tasks and constraints.

After the controller initialization, transition to the InitialPosture state is triggered. At
this stage, we assume that the robot is positioned far away from and facing the human
participant. In this state, the default posture task P is given a new setpoint qd, which
is an upright standing posture. We define a threshold δP and consider this state to be
completed when the posture task error εP is less than or equal to this threshold, which
triggers transition to the NavigateToHuman state.

In the NavigateToHuman state, default mobile base task B is removed from the pro-
blem formulation and a Position Based Visual Servoing (PBVS) task V , regulating mo-
bile base motion, is added. The objective of this task is to minimize the error in the
camera frame between mobile base position, computed from kinematics tree, and tar-
get mobile base position, which is defined w.r.t human frame detected in robot camera
field of view (Fig. 4.2). We detail how this target position is computed and reached
in closed-loop in Sec. 4.3.2. Termination of this state is triggered when V task error εB
reaches a predefined threshold δB.

Now, the robot executes a sequence of predefined contact tasks T ci , i = 0, . . . , N . For
every contact task, the first state (of the sub-FSM) is IntentCommunication, where the ro-
bot explains and illustrates its further intentions specific to T ci to the human (Fig. 4.3).
This state is implemented to ensure smooth and comprehensive transition to the states
where the robot establishes physical contacts with the human. We detail the purpose
and implementation of this state in Sec. 4.3.3. Human head orientation is monitored
in this state to verify that a human has paid attention to the visual communication on
the robot screen. The time for intent communication is predefined TI . Once state time
tI exceeds TI intent is considered to be successfully communicated and transition to
the PreContact state is triggered. After robot prepares for a contact, appropriate joint
residual signal, described in Chapters 1 and 2, is monitored in the MakeContact state,
as robot is moving its end-effector towards the human body, to detect the time of the
contact event. When all contact tasks are finished the experiment ends with Remove-
Contacts state followed by the mobile base of the robot moving away.

4.3.2 Nearby surrounding navigation towards human

We define a fixed mobile base position and orientation target w.r.t human reference
frame hX∗b . The pose of the human reference frame (Pelvis link), expressed in the robot
camera frame, is obtained from human Body Tracking by Azure Kinect camera instal-
led on the robot, we denote this transformation as cXh. From the joint encoder readings
and known robot kinematics we compute transformation between camera frame and
mobile base frame bXc, which at the start of the experiment is equal to the world frame
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FIGURE 4.2 – NavigateToHuman FSM state visual tasks.

bXc = wXc at t = 0, where t is the time elapsed from the start of the experiment. The
desired setpoint pose hX∗b in the camera frame is (Eq. 4.2)

cX∗b = cXh
hX∗b (4.2)

All frames involved in these computations are illustrated in Fig. 4.2.
This update is performed on every iteration of the controller and passed as a target

to the PBVS QP task V associated with the motion of the mobile base. Due to the fact
that a camera and the body tracking frame rate ( 30Hz and 15Hz respectively) is much
lower than the control frame rate ( 83Hz in case of Pepper), new detection data is not
available for every controller iteration. This may result in a sudden task error jumps
and discontinuities. For a smoother PBVS task error evolution and convergence, in this
work, we set lower limits for the mobile base speed and acceleration.

The error between the current and desired mobile base frame poses is used as a
feedback for the PBVS task V to navigate in closed-loop to the desired position (Eq. 4.3)

εB = cXb(cXb∗)−1 (4.3)

Detected human head frame is used for a camera orientation target task implemen-
ted in the controller as an Image Based Visual Servoing (IBVS) task O. With headXc

being a human head frame pose in the camera frame detected by Azure Kinect, the O
task error which ensures that human head is kept as close as possible to the center of
the field of view, (FoV) is εO = headXc.translation. Based on our experience, keeping a
human head in the center of FoV results in a better overall human body tracking re-
sults from the Azure Kinect, especially once some human body parts become occluded
and are thus no longer in the FoV.
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In the future, this method could be combined with V-SLAM 3 technology for highly
robust performance. This is necessary for improved safety and for handling low frame
rate and high frame latency of Azure Kinect depth sensor.

4.3.3 Intent communication for user comfort and safety

Humans usually express interest in touching a humanoid robot when they see one.
However, when the roles are reversed and it is the robot that will establish physical
contacts on a human body, the loss of control from a human side, the lack of unders-
tanding of the robot intentions, and the low communicative cognitive capabilities of
the robot can cause discomfort and even fear during the interaction. The closer a robot
moves to the person, the more considerations need to be taken into account for human
comfort and safety. And in the case of direct physical contact, human participant sa-
fety and comfort (both physical and mental) are of extreme importance for successful
human-robot interaction.

Indeed, a human participant needs to trust the robot to feel comfortable to allow it
to establish physical contact. And this trust can be established only if the human can
predict what the robot intentions are. Therefore, we integrate good user experience
design considerations as parts of the FSM controller in order for the human to feel
comfortable while the robot is in close proximity and is establishing physical contacts

3. We choose SLAM as it will certainly be a mature technology to navigate inside rooms, indoor
senior citizens’ homes, personal houses, hospitals, etc.
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FIGURE 4.4 – MakeContact FSM state, all contacts established.

with the human. For that robot is programmed to clearly communicate its intentions
to the user, using different communication modalities (verbal, visual, body language).

When the robot reaches the person close enough, prior to establishing physical
contacts, the robot is communicating verbally what it intends to do next. At the same
time, using body language the robot draws the attention of the human participant to
its tablet screen where an illustration of the intended physical interaction is displayed
on a schematic figure, as is shown in Fig. 4.3.

With the aforementioned tools for information transfer, that are familiar and intui-
tive for a human subject, we enrich the interaction with different communication mo-
dalities and enable the robot to make its intentions clear prior to establishing physical
contact on a body part surface of the human subject.

4.3.4 Establishing physical contact

The physical contacts are established using posture QP tasks to move robot’s right
or left hand links towards the surface of the human body where the contact is suppo-
sed to be established (Fig. 4.4). Contacts are established in closed-loop via monitoring
of residual signal between predicted (learned) and measured joint position tracking er-
rors, as described in Chapters 1 and 2. Predefined contact locations on a human body
in this work were inspired from observing the human caregiver’s practices for similar
interaction tasks. The exact position of the contacts can be adjusted to different hu-
man morphologies or chair heights. However, the feasible contact locations are limited
by the robot’s reachable workspace. The exact feasible placement of the contacts can
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be planned by analyzing the human point cloud using the method presented in the
previous Chapter 3.

4.4 Experimental Results

To test and evaluate the performance of the developed QP controller for pHRI, we
have achieved preliminary experiments that could be enhanced further in the future
work. 4 The autonomous initiation of physical assistance experiment is presented in
Sec. 4.4.2. The software tools developed to achieve this experiment have been made
publicly available and are thoroughly described in Appendix A.

4.4.1 Platform description

In the experiment described in this section, we are using the upgraded prototype
of Pepper wheeled humanoid robot platform that has been customized for later in-situ
experiments with real patients. With respect to the commercial version, this robot has
an additional Azure Kinect camera mounted on the top of the head and used in our
experiments for human body tracking. The robot is also equipped with the RealSense
D434 camera for SLAM and additional source of IMU measurement that we were not
using in the experiments. These additional hardware elements are added to the robot
description module and used by mc_rtc framework to build the base controller QP
formulation. Under the tablet, this upgraded prototype Pepper version has embedded
Jetson TX2 that could be used for onboard image processing and other heavy com-
putation. For the time being, we are running the controller on an external Personal
Computer (PC) for easy debugging and programming purposes.

4.4.2 Results

At the start of thePersonal Computer experiment, the robot is placed about 1.2 me-
ters away from a chair where the human participant is sitting. First, the robot navigates
towards the person, then communicates its intentions, and proceeds to initiate several
physical contacts. First contact robot establishes one on the right shoulder of the hu-
man participant. Then, the robot invites the participant to place their hand in the ro-
bot’s right end-effector (as is being simultaneously demonstrated on the tablet screen
of the robot). The experiment ends with all contacts being autonomously removed,
robot thanking the participant and moving away.

Fig. 4.6 illustrates 4 main stages of the experimental controller run with the real
human participant. Interested reader is invited to see the video 5 accompanying this
work for the full experiment demonstration or to refer to the controller source code for
implementation details 6.

4. For the time being, the experiments with more participants couldn’t be achieved because of the
restrictions of the Covid19 outbreak.

5. Video titled “Autonomous Initiation of Human Physical Assistance by a Humanoid” is hosted
online at the IDH LIRMM YouTube channel: https://youtu.be/vDmEc1aBODA

6. https://github.com/anastasiabolotnikova/autonomous_phri_init
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Plot on Fig. 4.5 shows evolution of the PBVS task errors in XY translational and Z
rotational axes during the NavigateToHuman state (Fig. 4.6c). As can be seen from the
plot, the task error evolution and convergence is mostly smooth. A slight sudden jump
occurs at the end of the state for the Y axis, when the robot is very close to the human
participant. Typically, at this stage the depth perception deteriorates due to the human
being too close to the camera and, as a result, discontinuities in human body tracking
are also likely to occur. Nevertheless, the NavigateToHuman state completion criteria is
successfully reached and transition to the next FSM state is triggered.

FIGURE 4.5 – Evolution of navigation task errors.

Next state in the controller FSM is IntentCommunication. This part of the experiment
can be seen on Fig. 4.6d. While the robot is communicating its intentions, using mul-
tiple communication modalities, as described in Sec. 4.3.3, the IBVS QP task ensures
that the human head is kept in the field of view. The orientation of the human head
frame is monitored to verify that the human face was oriented to look at the robot’s
tablet at least once for paying attention to the figure displayed on the screen. This is
an additional criteria for exiting IntentCommunication state. The plot of the monitored
human head to robot tablet angle is shown on Fig. 4.7. This plot validates that, shortly
after the start of IntentCommunication state, the human head is being oriented to look
at the robot tablet.

Once robot intent is communicated, the transition to PreContact and then MakeCon-
tact states for the robot’s left end-effector is triggered. The robot moves its left arm
towards the human back to establish a contact on the right shoulder of the participant
(Fig. 4.6g). The monitoring of the residual between measured left shoulder joint posi-
tion tracking error and predicted expected position tracking error of this joint allows
to detect the contact event (as mentioned in Sec. 4.3.4). Fig. 4.8 shows the residual si-
gnal for the left robot shoulder roll joint. As can be seen from the plot, the contact is
detected (when residual reached a threshold) and maintained for several seconds after
the detection occurs as is requested according to the MakeContact state design.

Similar process is repeated for the robot’s right end-effector. However, in this case,
the robot invites the user participant to place their hand into the robot’s right end
effector, which is brought up in front of the user as is shown in (Fig. 4.6h). The plot on
the Fig. 4.9 shows the residual signal for the robot right elbow roll joint and indicates

61



Autonomous initiation of human physical assistance 4.4. Experimental Results

(c) Navigation (d) Intent communication

(g) First contact (h) Second contact

FIGURE 4.6 – Robot onboard camera view and video screenshots illustrating main parts of the
experiment with human participant.

62



Autonomous initiation of human physical assistance 4.4. Experimental Results

FIGURE 4.7 – Human face to tablet angle.

FIGURE 4.8 – Left end-effector contact detection.

FIGURE 4.9 – Right end-effector contact detection.

successful detection of the contact event. Once the contact is detected, the robot closes
its right gripper slightly, as a human would do in a similar interaction. This contact is
also maintained for a few seconds before being removed.
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The experiment ends with the robot autonomously and carefully removing all es-
tablished physical contacts one by one. The robot thanks the human user for participa-
tion in the experiment and moves away.

4.5 Conclusion

In the work presented in this chapter, we integrated and enhanced different bricks
to build an architecture that enables the humanoid robot Pepper to reach a person in
need for physical assistance, communicate its intentions and establish several physi-
cal contacts to initiate the assistance process. We developed a task-space optimization
controller instance derived from Bouyarmane et al. (2019), enhanced with visual ser-
voing Paolillo et al. (2018), which allows reaching safely a person. In close contact inter-
action the robot initiates contacts to achieve compliant contact motion. The controller
was enhanced with communication plug-ins.

In the next chapter, we propose an adaptive task-space force control strategy that
could be used in the controller described in this chapter to regulate the robot force
contribution to the human motion task while providing the physical assistance. We
study the proposed methodology in simulation using a personalized human model
and present the achieved results.
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CHAPTER 5

ADAPTIVE HUMANOID-TO-HUMAN
MOTION ASSISTANCE

We envision a humanoid robot to serve as a source of an additional force in motion
assistance for frail persons. In this context, we present a control strategy for a huma-
noid to adaptively regulate its assistive force contribution. First, we identify a human
model torque control for an optimal execution of a priori known motion task from
sample recordings of this task performed by a healthy individual. We utilize the iden-
tified model in the proposed position discrepancy based observer of the human torque
contribution, the unknown and unmeasurable variable. We propose an experience-
based human contribution model learning strategy that allows improving the human
contribution estimate from trial-to-trial. The target assistive torque contribution is then
calculated as the difference between the optimal torque required for the motion task
and the estimated human contribution. The target assistive torque is integrated into a
multi-robot quadratic programming task-space controller to compute the desired in-
teraction force required for the robot to supply the necessary assistive torque for the
human model. We use the non-optimal recordings of the human motion task to emu-
late human frailty and apply our adaptive force control strategy to demonstrate the
results of a humanoid successfully assisting the simulated human model to restore the
optimal motion task performance.

5.1 Introduction

A promising area of the humanoid robots application is daily assistance for frail and
elderly, e.g. Niemelä and Melkas (2019); Mitzner et al. (2014); Bolotnikova et al. (2020b).
Humanoids could be specifically designed to be user-friendly, multi-functional and
safe Pandey and Gelin (2018). These properties allow us to envision a humanoid provi-
ding companionship through social assistance Papadopoulos et al. (2020) and helping
people in need to perform daily chores. Being a platform capable of physical interac-
tion, one of the useful functionalities for humanoids would be to assist frail people
with motion tasks that typically require assistance from a human caregiver. Enabling
a humanoid to provide such assistance safely and efficiently can help to increase frail
person autonomy.
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FIGURE 5.1 – Humanoid-to-human physical assistance in motion.

During physical assistance, two sources of force contribute to the human motion:
forces that are generated by the human and the assistive forces supplied by the robot
(Fig. 5.1). The control challenge in such a scenario is the fact that human force contri-
bution is not known to the robot and cannot be directly measured. The exact intended
human motion is not known either. Only if robot force contribution to the human mo-
tion task is adaptively regulated to account for the presence of another (unknown and
unmeasurable) source of force, the motion can be performed correctly. Indeed, lower
than required wouldn’t provide the necessary assistance; more than required could
engender fear, stress or deviate the motion greatly from the way it should be correctly
executed, causing discomfort and potentially harm to the human.

Our contributions are as follows. First, as an extension to the multi-robot task-space
quadratic programming controller (MQP) framework Bouyarmane et al. (2019), we in-
tegrate a human model as an additional ‘robot’. Indeed, in the original work presenting
the MQP Bouyarmane et al. (2019), this extension was left as future work that we partly
address in this letter. By doing so, constraints inherent to frailty such as human reduced
range of motion, muscles torques limits, absence of limb... are integrated straightfor-
wardly to be accounted for during robot control. Second, based on this framework, we
propose a control scheme to provide the strictly necessary assistive force for a priori
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known human task that accounts for possible human force contribution to the task.
By using knowledge on human expected motion for a given task performed without
muscle strength limitations, an associate model of a human torque control is identified
(Sec. 5.3.1). This model is used in a position discrepancy based human torque contribu-
tion observer (Sec. 5.3.2). An experience-based prediction strategy allows to improve a
human contribution estimate from trial-to-trial (Sec. 5.3.3). The assistive torque requi-
red to support a motion task is then defined as a difference between the torque required
for the correct motion execution and the estimate of the human contribution. Finally,
the target assistive torque is integrated into the MQP to compute (and servo on) the de-
sired force the robot applies to provide the assistive torque (Sec. 5.3.4). We use sample
recordings of non-optimal human movement to emulate human frailty and demons-
trate how our method enables humanoid assist (Sec. 5.4). To the best of the authors’
knowledge, this work is the first to devise task-space optimal control –extensively used
in multi-limbs redundant robots, to direct humanoid-human physical interaction to as-
sist frail human motion.

5.2 Problem statement

For a common and well-defined human task (e.g. target reaching Todorov and Jor-
dan (2002); Kratzer et al. (2018), sit-to-stand transfer Aissaoui and Dansereau (1999)...)
human motion prediction can be obtained from theory computational models (simu-
lation), or from sample recording of the motion executed correctly unassisted by in-
dividuals using motion capture systems. Human motion prediction is a very active
research topic in itself, e.g. Kratzer et al. (2020); Corona et al. (2020). Such know-
ledge can be exploited and used in our context; however, it needs to be filtered in
a one-run execution under the frailty constraints implemented in the MQP (e.g. hu-
man with reduced joint limits), which could induce a slightly different motion even
in the availability of full muscle strength (no human torque limitation). The MQP task
would implement a simple tracking of this ideal task-motion under all strict integrity-
constraints. At the end, for a given task, we collect a time series of the human joint
angles qtask

h (t), t = 0, . . . , T , where T is the time when the target joint position q∗h for the
given task is reached, together with respective joint velocity q̇task

h (t) and acceleration
q̈task

h (t). The nominal torque τ task(t) required to perform the task motion can be obtai-
ned using a sample personalized model of a human body with dynamic link properties
and inverse dynamics (eq. 5.1).

τ task(t) = Mh(qtask
h (t))q̈task

h (t) + Ch(qtask
h (t), q̇task

h (t)) (5.1)

where Mh is a human model inertia matrix and vector Ch incorporates Coriolis, cen-
trifugal and gravity terms. There are reliable methods to identify inertia parameters of
healthy Herman (2007); Jovic et al. (2016) or frail Latella et al. (2019) persons.

In the physical assistance process, the total torque required to perform a task all
along its motion is the sum of what human can possibly generate as torque τh, and the
assistive torque τa provided by the robot by means of multi-contact physical interac-
tion, i.e. by applying forces from robot to human frh at multiple points p (in practice,
one or two) located on a human (eq. 5.2).

τ task = τh + τa = τh + JThpfhr (5.2)
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where Jhp is a human body model stacked Jacobians that maps the forces (fhr = −frh),
applied at possibly multiple points p, into human model joint torques.

For a frail human τh < τ task, i.e. human muscular strength is not sufficient for achie-
ving the task motion correctly. The goal of the robotic assistance is to apply the contact
forces that supplement the human generated torques such that the motion resembles
as closely as possible to the expected one. Thus, roughly speaking, the amount of the
required assistive torque is a difference between the total torque required to perform
the task and the human generated torque (eq. 5.3).

τa = τ task − τh (5.3)

The human muscle generated torque is not known to the robot a priori and cannot
be directly measured. The main challenge in the assistance process is the adaptation
of the robot force contribution to the unknown and unmeasurable variable τh. In this
letter, we suggest that the robot contribution adaptation is achieved by observing the
discrepancies between expected and measured human motion. This is because the lat-
ter can be estimated from vision, see e.g. Cao et al. (2021).

In the following we present the position discrepancy based human torque observer
coupled with an experience based prediction model of τh. Then, we integrate the target
assistive torque into the MQP.

5.3 Proposed method

5.3.1 Identifying reference task torque control model

Once we identify the task torque trajectory τ task (eq. 5.1), the relation between task
error e (as defined in Bouyarmane et al. (2019)) evolution data and the total torque
required for the task to be performed can be identified. In this study, we use a neural
network (NN) model for identifying this relation (eq. 5.4).

τ task = NN(e, ∫ e, ė) (5.4)

Given the current task error state (e, ∫ e, ė), this model predicts what would be the
total torque if a given human subject (represented by a personalized human model)
would execute the task-motion unassisted (τa = 0). Network structure in our study
comprises 3 neurons in the input layer, 12 neurons in a single hidden layer and a single
neuron in the output layer. Based on our experimentations with the model fitting, such
a structure proved to be an optimal compromise between model complexity and pre-
diction accuracy.

Next, we show what role τ task plays in the estimation of τh and subsequent compu-
tation of the target assistive torque τa. In the Sec. 5.4, we demonstrate the use of eq. (5.4)
for τ task computation in the proposed control framework (Fig. 5.2).

5.3.2 Human torque contribution observer

We derive a position discrepancy based observer for estimating the human torque
contribution τh to the task. At the very start of the interaction, we use an initial guess
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FIGURE 5.2 – The proposed control scheme for adaptive humanoid-to-human assistance with
a motion task.

of the human torque contribution estimate, τ̂ init
h , to compute the target assistive torque

τ ∗a = τ task − τ̂ init
h .

As shown in Fig. 5.2, the target assistive torque is passed to the MQP block. Indeed,
the MQP computes the desired robot motion together with consistent forces for the
robot to apply at contact points so as to generate τ ∗a in the human model joints, through
physical interaction. More details on the use of the human model in the MQP controller
are provided later in Sec. 5.3.4. Such MQP based control of the humanoid results in frh

forces being applied on the human body. These forces are mapped into human joint
assistive torques, τa, via stacked contact Jacobian, Jhp, (eq. 5.2).

In order to observe yet unknown human contribution to the task τh, we assume τa

to be the only joint torque acting on the human model. With this assumption in mind,
we compute expected acceleration of the human model joints via forward dynamics (FD,
eq. 5.5).

˜̈qh = M−1
h (qh)[τa − Ch(qh, q̇h)] (5.5)

Then, we compute respective expected velocity and position for the following time
step t+ δt (eq. 5.6-5.7)

˜̇qh(t+ δt) = q̇h(t) +M−1
h (qh)[τa − Ch(qh, q̇h)]δt (5.6)

q̃h(t+ δt) = qh(t) + ˜̇qh(t+ δt)δt =
= qh(t) + q̇h(t)δt+M−1

h (qh)[τa − Ch(qh, q̇h)]δt2
(5.7)

After τh and τa are applied to the human model at time t, the resulting human joint
position qh(t + δt) is estimated (e.g. via any robot embedded motion tracking). This
measured quantity can be expressed through integration of forward dynamics, this
time taking both sources of torque, τa and τh, into account (eq. 5.8)

qh(t+ δt) = qh(t) + q̇h(t)δt+
+M−1

h (qh)[τh + τa − Ch(qh, q̇h)]δt2
(5.8)

Now, the difference between the expected and measured human model joints posi-
tion is computed (eq. 5.9).

qh(t+ δt)− q̃h(t+ δt) = qh(t) + q̇h(t)δt+
+M−1

h (qh)[τa − Ch(qh, q̇h)]δt2 − qh(t)−
− q̇h(t)δt−M−1

h (qh)[τh + τa − Ch(qh, q̇h)]δt2
(5.9)

69



Adaptive humanoid-to-human motion assistance 5.3. Proposed method

Simplifying this equation results in (eq. 5.10)

qh(t+ δt)− q̃h(t+ δt) = M−1
h (qh)τhδt

2 (5.10)

which allows us to write an expression for position discrepancy based observer of hu-
man contribution to the motion task τh (eq. 5.11)

τ obs
h = Mh(qh)[qh(t+ δt)− q̃h(t+ δt)]

δt2
(5.11)

The computations involved in the τh observer are presented schematically in the
Fig. 5.2.

5.3.3 Experience based human contribution prediction

The position discrepancy based observer for human contribution estimation pre-
sented in Sec. 5.3.2 only produces the estimate τ obs

h after the motion is observed, i.e.
after the human has actually applied its contribution τh. This results in a one time-step
behind (lag) estimation. Assuming that between two consecutive time-steps human
contribution does not changes significantly, i.e. |τh(t) − τh(t − δt)| < ε; for small ε, the
estimation of human torque contribution is likely to result in an overall good assistance
performance.

As a strategy to compensate for the one step lag in τh observation, we propose to
combine the observer with an experience based human contribution prediction. The idea
is based on trial-to-trial learning of the human contribution. During the very first assis-
tance trial, as there is no data to learn from yet, we fully rely on the τ obs

h for computing
τ ∗a . After the first trial, the experience gained –namely the observed human contribu-
tion and the task error evolution data computed during the assistance trial, can be
used to learn the model for predicting human contribution Gribovskaya et al. (2011).
We suggest task error evolution and assistive force contribution to be the features for
learning such a model (eq. 5.12)

τ
pred
h = f(e, ∫ e, ė, τa) (5.12)

Thus, the training dataset is of the following structure: feature vector
(e(t), ∫ e(t) dt, ė(t), τa(t)); label (τ obs

h (t+ δt)).
During the next assistance trial (with the same human subject and for the same

task), besides relying only on the observed human contribution τ obs
h , we can also make

use of the ability to predict τpred
h and anticipate what the human contribution is likely

to be at the upcoming time-step based on the model learned from previous assistance
experiences.

The final τh estimate is then computed as a weighted sum of two terms: observer
term and prediction term (eq. 5.13)

τ̂fin
h = (I −W )τ obs

h +Wτ
pred
h , (5.13)

where W is the diagonal matrix of prediction confidence weights and I is the identity
matrix. W is updated online based on the evaluation of the human contribution pre-
diction model test error. After each time-step, the difference between predicted human
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contribution and the one observed will inform the system how accurate the experience
based prediction model is (eq. 5.14).

Etest = |τpred
h (t)− τ obs

h (t+ δt)|. (5.14)

If the test error Etest is large for a given human model joint, it is a sign that actual
human contribution is significantly different from what was learned from previous
experiences (e.g. the human is in a better shape and thus can contribute more than in
the previous trials). In this case, the corresponding element on the diagonal of W is
decreased. If the prediction matches closely the observed τ obs

h , the W diagonal element
is increased. For example, in Sec. 5.4, the W diagonal element corresponding to the
shoulder joint is decreased by a fixed amount of 0.1 until it reaches the value of 0.0.
For increasing this element of W the value of 0.01 is used until the value of the weight
reaches 0.9. With such a strategy, the preference is given to the observer rather than the
predictor for the computation of the final estimate of the human torque contribution to
the motion task.

After every assistance, the data gathered during the process can be added to the
training set and used to retrain and improve the experience based human contribution
prediction model. If human performance does not improve or degrade significantly
from one trial to another, then with every new assistance trial such a model becomes
an increasingly more reliable source of human contribution estimation.

A supplementary benefit of iteratively and continuously training an experience ba-
sed human contribution prediction model, is the ability to evaluate frailty performance
during the assistance trial and report the progress compared to previous assistance ex-
perience. If human performance does improve or degrade significantly, this change
in human performance can be detected by monitoring the magnitude and sign of the
prediction error Etest recorded during the assistance process. For instance, if the obser-
ved human contribution is systematically higher than predicted one, it can be detected
using the proposed system and subsequently reported to medical checks.

5.3.4 Force control for human assistance via MQP

In the previous sections, we explained the strategies for computing τ task and esti-
mating τh. With these quantities, we can compute the target amount of assistive torque
(eq. 5.15).

if |τ̂fin
h | < |τtask|: τ ∗a = τ task − τ̂fin

h ; else: τ ∗a = 0 (5.15)

Here, we explain how this value is used in the MQP to compute the amount of required
interaction contact force for humanoid-to-human physical assistance.

Both humanoid and personalized human models are included in a single MQP for-
mulation with all related typical MQP constraints and objectives (eq. 5.16), see details
in Bouyarmane et al. (2019),

min
q̈,f

Pr +Or +Mr + Cr + Ph (5.16a)

71



Adaptive humanoid-to-human motion assistance 5.3. Proposed method

s. t.



robot joint position/velocity/torque bounds
robot (self-)collision avoidance
robot fixed environment contacts
robot non-sliding
+
human-frailty joint/velocity/torque bounds

human (self-)collision avoidance

human fixed environment contacts

human no-sliding

human-robot collision avoidance

robot-human assistive contacts (eq. 5.18)

(5.16b)

where Pr and Ph are robot and human model posture tasks respectively, Or is robot
head orientation task,Mr is robot mobile base position task, Cr is robot CoM task, q̈ and
f are MQP decision variables accelerations of the joints of the models and interaction
contact forces. A set of contact constraints between two models is defined. The contact
point locations are planned w.r.t to the assistance task as in Bolotnikova et al. (2020b).

The feasibility of the physical interaction is ensured by including a combined robot-
human equation of motion as a dynamics constraint in MQP, where robot-human in-
teraction forces Frh are part of the QP decision variables f (eq. 5.17)(

Mh(qh) 0
0 Mr(qr)

)
q̈ +

(
Ch(qh, q̇h) 0

0 Cr(qr, q̇r)

)
=

= Sτ +
(
JTeh 0
0 JTer

)
Fe +

(
JTrh 0
0 −JThr

)
Frh

(5.17)

Here q = (qh, qr), τ = (τh, τr), where qr is the vector of robot joint positions and τr is
the vector of robot joint torques. Fe = (Feh, Fer), and Feh, Frh, Fer are stacked vectors of
environment-human, robot-human and environment-robot exerted forces respectively.
For instance, for m environment-human contacts Feh ∈ R6m, with corresponding Jaco-
bians stacked into Jeh ∈ R6m×dh , where dh is number of DoF in the human body model.
The diagonal selection matrix S indicates actuated DoFs, i.e. selection matrix diagonal
elements are 1 for the actuated joints and 0 for the DoFs representing the floating bases
or none-actuated joints of both humanoid robot and a human model.

Each contact between the humanoid and the human robot is represented in the
MQP by the following constraint,

Jrpq̇r = Jhpq̇h, (5.18)

where Jrp in a robot model link body Jacobian at the contact point p and Jhp is a cor-
responding body Jacobian at a contact point on a human model, see Bouyarmane et al.
(2019) for more details.

Having τ ∗a , we know what assistive torque the robot needs to generate, which can
be incorporated into MQP as a constraint τa = −JThpfrh. Yet, considering many other
constraints, it might be unfeasible for a robot to fulfill a strict equality constraint. In
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such case, the target assistive torque could rather be incorporated into MPQ objective
function as a task (eq. 5.19)

||τa + JThpfrh|| (5.19)

The amount of assistive force is computed by the MQP solver along with desired
robot motion that fulfills all MQP constraints. In order for a position controlled robot
to realize the desired assistive force frh, an admittance task is added into the MQP.
This task takes the difference between desired force and actual one (sensor readings or
contact force observer) and outputs the desired end-effector velocity to minimize this
difference, see Bouyarmane et al. (2019).

5.4 Experimental results

5.4.1 Data description

Due to the pandemic situation, the hardware limitations of Pepper and other prac-
tical legal issues (ethical procedures, etc.) it is not yet possible to achieve experiments
with actual frail patients. In order to assess our approach, we found real patient data
that can gather both normal and deficient comparative motions for a given set of simple
tasks. We borrow a data set 1 from a rehabilitation exercise Vakanski et al. (2018) and
adapt it to our robotic assistance case-study. The data gathers recordings of both op-
timal tasks execution (that we considered to be our reference motion with full muscle
strength) as well as non-optimal motions for similar tasks in case of muscle deficiency
(that we consider to emulate human frailty). Note that the reduced version of the da-
taset Liao et al. (2020) is used in our work.

FIGURE 5.3 – MQP controller scenes of the interaction wrench and robot motion computation
for assistance under pHRI constraints.

We validate our control scheme in simulation (one run) using the human motion
recordings of the shoulder scaption rehabilitation exercise. This case is chosen for its
achievability by Pepper. This task consists for a human to raise one arm in front of the
chest until reaching the shoulders height, while other joints remain static, see Figs. 5.1
and 5.3. The data set contains 54 repetitions of the shoulder scaption task performed
by 6 different subjects (9 repetitions per each subject).

1. https://webpages.uidaho.edu/ui-prmd/
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From the whole-body motion recordings, we extract the right shoulder joint posi-
tion around the Y-axis (green arrow in Fig. 5.3); it is the primary joint involved in the
scaption task. The other joints of the human model are kept at a fixed position in our
study, so the assistance is supplied primarily to the shoulder Y-axis joint. Moreover,
the human model is configured to be in a sitting posture to enable Pepper to reach the
right forearm and maintain the contact as the human arm is moving upwards during
the scaption task.

FIGURE 5.4 – The correctly performed shoulder scaption (green), non-optimal performance of
the same task (red). Position and torque plots for the right shoulder joint around Y-axis.

The top plot in Fig. 5.4 shows that, compared to the correctly performed task, non-
optimal (that we consider frail) human motion recording failed to reach the shoulders
height level. The bottom plot shows that the range of torques for the frail motion re-
cording is indeed narrower compared to the correct one. Therefore, this sample data
is suitable for our study and emulates well the lack of human joint torque (frailty) to
achieve the desired scaption task.

5.4.2 Computing torques required for the task

We use a single sample correctly executed scaption task motion recording to iden-
tify the task torque control model as described in Sec. 5.3.1. The Fig. 5.5 shows the
performance of the NN model in computing task torque from the information of the
task error evolution.

Using the NN model, it is hence possible to compute a task torque that matches
closely the reference torque computed from the correct motion recording sample and
a personalized human model.

5.4.3 Estimated human contribution

Now we have in hands the model to compute the τ task. We assess our proposed
human contribution observer τ obs

h . At this stage, we consider that no previous assis-
tance trials took place, therefore no human contribution models exist yet. That is to
say: τpred

h = NA;W = 0; τfin
h = τ obs

h ). Fig. 5.6 shows the observed and true value (unk-
nown to the controller) of the human torque contribution.
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FIGURE 5.5 – Identified model of the task torque.

Assuming that the position and velocity of the human model joints (qh(0), q̇h(0)) are
measured before the start of the assistance process, the model based value is used as
the initial guess of human contribution estimate (eq. 5.20).

τ̂ init
h = Ch(qh(0), q̇h(0)) (5.20)

The observed human contribution data, collected in the previous (first) assistance
trial, excluding the initial guess, is used to train the experience based human contri-
bution prediction model as described in Sec. 5.3.3. Starting from the second assistance
trial, this model is used in combination with the observer to improve the final human
torque contribution estimate. The Fig. 5.6 shows that the initial guess of the human
contribution is improved by 1.76 Nm using the experience based prediction model, re-
ducing the estimation error by nearly 10 folds from 1.96 Nm to 0.2 Nm. This plot also

FIGURE 5.6 – Estimated human contribution.

shows that the human torque contribution starts exceeding the task torque after about
0.44 sec of the assistance process. After this point, according to eq. 5.15, the human
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contribution to the motion alone is considered to be sufficient to achieve the desired
task, the robot is thus moving along with the human, but is not required to generate
any assistive force.

5.4.4 Assisted motion

Having both τ task and τfin
h , the assistive torque τa can be computed (eq. 5.3). As des-

cribed in Sec. 5.3.4, the human model state and the required amount of assistive torque
are integrated into the MQP controller. The latter computes the interaction forces and
robot motion to perform the assistance process while satisfying the human model-,
robot- and contact constraints and minimizing the MQP tasks erros in the objective
function (eq. 5.16).

The MQP computed robot-to-human assistive force for the first trial (with no pre-
diction of the human contribution) is shown in Fig. 5.7. The same computation results
for the second trial (this time, with prediction of the human contribution) are shown in
Fig. 5.8. The MQP controller scenes during the force computation process at different
times of the scaption task are shown in Fig. 5.3. In Fig. 5.6, it is shown how the use
of the predictive model helps to reduce the estimation error for the initial guess of the
human contribution by nearly 10 folds. This in turn results in lower τa being compu-
ted at the very start of the interaction, and consequently lower interaction forces being
computed by MQP (Fig. 5.8). This results in lower (and closer to the reference motion)
human joint acceleration at the start of the assistance process (Fig. 5.10).

FIGURE 5.7 – MQP computed assistive wrench.

The MQP computed force is applied to the human model forearm link in
PyBullet Coumans and Bai (2019) simulation along with the simulated insufficient
human torque contribution, the result is the improved motion performance shown in
Figs. 5.9 and 5.10. These plots demonstrate that supplied assistive forces help to achieve
the scaption task motion that is closer to the correct full muscle strength reference mo-
tion.
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FIGURE 5.8 – MQP assistive wrench with experience based human contribution prediction.

FIGURE 5.9 – Joint position during correct motion, non-assisted non-optimal motion and non-
optimal assisted motion.

FIGURE 5.10 – Joint velocity and acceleration during correct motion, non-assisted non-optimal
motion and non-optimal assisted motion.
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5.4.5 Multi-contact assistance for multi-joint motion

To provide humanoid-to-human assistance in motion for multiple joints, several
contacts can be established with a human model. For each contact an assistance requi-
rement is defined as a constraint or a task on the contact force as described in Sec. 5.3.4.

Such a multi-contact assistive scenario is represented here by the following
example. A contact between Pepper robot’s left end-effector and human model upper
arm is established to supply the required assistive torque at the human model shoulder
joint, same as in the simulated experiment presented in the previous subsections. An
additional contact, between the robot’s right end-effector and the human model hand,
is established to generate assistive torque at the human model elbow joint to support
elbow bending motion (Fig. 5.11). The τtask for the bending of the elbow is computed
from simulating a human model performing the required motion unassisted. The hu-
man model frailty is then simulated by setting τa = 0.2τtask for the elbow joint.

FIGURE 5.11 – Humanoid-to-human assistance with two contacts.

5.4.6 Discussion, limitations, and future work

Our proposed method and presented simulation results are based on full know-
ledge of the frail human model kinematics and dynamic parameters. The human state,
namely position and velocity, is also assumed measurable at every time-step. Finally,
in the presentation of the simulation results, it is assumed that the robot can apply the
desired assistive forces frh, as computed by the MQP, to generate the required assistive
torque τa.

Estimating human model inertia parameters might require an instrumented appa-
ratus like in Jovic et al. (2016); Latella et al. (2019) or not, like in Pavol et al. (2002) for
elderly. As the human torque contribution observer and the MQP parts of our method
rely on human model knowledge, their performance correlates with the accuracy of
such estimation techniques. Yet, the MQP is yet a single QP that operates in closed-
loop and also in the task-space, which makes it tolerate uncertainties in such parame-
ters Bouyarmane and Kheddar (2018). It is more critical to be very precise in the frailty
parameters in terms of human joint range and muscle strength limitations (that can
be set in a conservative way) than in the exact inertia parameters identification. Other
human external contact forces are computed from the MQP, being a decision variable.
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Yet, they can be guided from knowledge of the human dynamic parameters estima-
tion and the knowledge of joint accelerations as in Pham et al. (2018). We assume that
relying on frail patients physiological data knowledge is feasible because (i) collecting
such data is critical in many applications and businesses driven by the Silver Economy
boost; and (ii) health and strength conditions of frail patients are monitored through
frequent medical checks. Such data can feed robotics and embedded AI algorithms.

An alternative pathway is to make the proposed framework robust to less critical
uncertainties by means of domain randomization technique Tobin et al. (2017); Trem-
blay et al. (2018). The proposed method could be extended with an iterative reinforce-
ment learning of the optimal assistive strategy while different variations of the human
model are being tested against the method to help with better transfer of the efficient
assistive strategy from simulation to real experiments.

In order for the position controlled Pepper robot to realize the assistive forces, a
closed-loop admittance task based system needs to be implemented as part of the in-
teraction MQP controller. This would require a real-time force sensing solution to be
implemented on the robot, either as an additional sensor, or preferably as a proprio-
ceptive sensor-based estimator Buondonno and De Luca (2016); Birjandi et al. (2020b).

Last, once the method is safely transferred from simulation to real experiments,
user studies must be conducted to evaluate how the proposed robotic assistance is
perceived by the users and answer such important questions as: (i) does the interac-
tion process feel safe and intuitive?, (ii) does the assistance provided by the robot feel
useful?, etc. Additionally, the benefits of using a humanoid robot technology in this
context can be questioned. Maybe simpler robots specifically designed for a given task
is a better solution Li et al. (2016); Lee et al. (2018)? Nevertheless, the use of the huma-
noid technology allows developers to provide a more user-friendly pHRI experience
through the use of additional Pepper humanoid features, such as verbal, visual and
body language communication Bolotnikova et al. (2020a). Besides providing physi-
cal assistance, a more interactive robot with a humanoid form can do more domestic
tasks and provide encouragement via communication channels familiar to the human
users Li et al. (2010); Torta et al. (2014). Although the base mobility plays an important
role in repositioning, the lack of critical degrees of freedom in the Pepper wrists (one
rotation only) is what generated the awkward postures seen in Fig 5.3. Because of this
lack of dexterity, closed-kinematic chain subsequent to both arms contact manipulation
of a human (arm) has very limited robot motions as can be seen in Fig 5.11. Therefore,
dexterity and redundancy are important to consider in future versions of Pepper toge-
ther with grasp/arm strength, to hold human limbs during assistance, and a less bulky
mobile-base to avoid colliding bed and chairs in the vicinity of the human.

5.5 Conclusion

In this letter, we studied humanoid-to-human physical assistance for known task-
motions. An adaptive force control framework is proposed for a humanoid to supply
the required assistance. The proposed method consists of several interacting compo-
nents. The first one is the model for computing human joint torque required to achieve
a desired task; it is trained on a sample motion data. The second component, is the
observer of the actual and potentially insufficient human contribution to the task. The
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third component is the experience based human task contribution model training. The
final component, includes frailty constraints and consists in the multi-robot whole-
body task-space control that computes both the robot motion and the amount of assis-
tive force to apply on the human body to generate the required amount of the assis-
tive torque. We exemplify and discuss the performance of the proposed method on a
sample humanoid-to-human assistance using the data of a human subject performing
an exercise in a non-optimal way. Limitations and future venues of research and deve-
lopment are also thoroughly discussed.
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Summary

In the frame of this thesis, we have studied several important aspects relevant to
the frail human assistance by a domotic humanoid robot.

First, we focused on a topic of proprioceptive sensor based contact sensing metho-
dology development, described in Chapter 1. We have thoroughly described the reaso-
ning behind the proposed methodology. Several preliminary experiments for contact
detection were presented.

Then, in Chapter 2, we have described in detail how a real-time compliant motion
control was achieved using the robustified version of the contact observer methodo-
logy. The pHRI experiments were presented showcasing the use of the proposed and
implemented control methodology for regulating the compliant robot motion.

An extension of the PG framework that allows to plan a contact location on a trim-
med parametric NURBS surface fitted to the segmented human body part point cloud
was presented in Chapter 3. We have detailed the human point cloud processing pi-
peline that supplies the input to the extended PG framework for defining contact lo-
cation planning and human-robot collision avoidance constraints. Several pHRI sce-
narios were presented to demonstrate the results of the proposed whole-body posture
and contact location planning method.

We have implemented a QP controller for a full pHRI interaction scenario to en-
able a humanoid robot to initiate the process of assistance in motion. We integrated
in a single FSM controller several important functionality bricks for such a scenario,
namely closed-loop navigation to the human, multi-modal intent communication, es-
tablishment of several physical contacts. A sample experiment with a healthy human
subject was presented to demonstrate the performance of the developed controller.

Finally, the last part of the thesis, presented in Chapter 4, was dedicated to the de-
velopment of the adaptive task-space force control methodology for partial humanoid-
to-human assistance with a known motion task. The proposed methodology was des-
cribed in detail and simulation results were presented for a sample assistance with a
rehabilitation exercise.

The software tools developed over the course of this thesis were made publicly
available to facilitate future developments of the task-space QP based controllers for
interested users of the SoftBank Robotics Europe humanoid robots. The detailed des-
cription of these software tools is presented in Appendix A.
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Future perspectives

From the experience gained over the course of this research work, we can outline
several significant future research axes that, in our opinion, require attention of the
research community and efforts of the industrial developments and innovations for
enabling the affordable domotic humanoid robots, such as Pepper, to become a useful
actor in the context of physical assistance for frail persons. Hereafter, we detail these
future research axes:

• Further developments of the proprioceptive sensor based whole-body contact
sensing, studied in this thesis (Chapters 1 and 2), could definitely help to achieve
more complex and useful pHRI interactions. The exploitation of the joint electric
current or torque sensing, that could not be used in this work, could allow to
well estimate the forces applied on the robot structure. This in turn will enable
closed-loop force control of the domotic humanoid robot in pHRI context.

• The multi-contact planning methodology, proposed in Chapter 3, could foremost
benefit from an accelerated computations of the solution to the non-linear opti-
mization PG problem. A faster computation of the PG solution would allow to
use this method in the online experiments for a whole-body posture and contact
location (re)planning.

• Several modifications of the hardware platform of the Pepper humanoid robot
could greatly impact the use of such a platform in the assistive pHRI context.
Namely, the increased onboard computing power via the use of modern portable
GPUs is paramount for enabling the robot to be controlled without the use of an
external PC. The use of onboard wide-angle depth perception for human body
tracking is also a critical aspect for a pHRI in close proximity, as was demonstra-
ted in the experiments presented in Chapter 4, where an additional camera was
attached to the current Pepper robot platform for running the experiments.

• The open-source, well documented and maintained software for robot control in
pHRI experiments is an essential tool for roboticists to share and reuse the expe-
riences gained across various application areas in an easy and fast manner. From
our side, we have made the developed software publicly available and described
thoroughly in Appendix A. We hope that these open-source tools will prove to be
useful for other roboticists and will help to foster the future developments that
will contribute to the extension and continuous improvement of these tools.

• Finally, extensive user studies are required for refining the proposed methodolo-
gies taking user feedback into consideration. Unfortunately, the envisioned user
studies could not be conducted in the frame of this thesis due to the Covid-19
pandemic. This is an extremely important part of the research work that would
allow to reveal the benefits and limitations of the use of the domotic humanoid
robot as an physically assistive agent for frail persons.
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CHAPTER A

DEVELOPED SOFTWARE TOOLS

We present an open-source software interface, called mc_naoqi, that allows to per-
form whole-body task-space QP based control, implemented in mc_rtc framework,
on the SBRE humanoid robots.

QP task-space control has become a golden standard in humanoid robot control Es-
cande et al. (2014a); Cisneros et al. (2019); Bouyarmane et al. (2019). One of the most
powerful software control frameworks that implements QP task-space control, called
mc_rtc 1, is now publicly available. This framework provides developers with useful
tools for writing complex controllers for either individual or multiple interacting ro-
bots to perform wide variety of experiments, e.g. in aircraft automation Kheddar et al.
(2019) or in physically interacting with humans Otani et al. (2018); Bolotnikova et al.
(2020a) that we presented in Chapter 4.

In order to control any given complex robots with this framework, an interface must
be developed to allow communication between the control framework and the robot’s
low-level controllers, sensors and devices. For different types of robots a specific in-
terface, as well as robot description and robot module, need to be developed in order
to adapt to particularities of robot brand and low-level control strategies, devices and
onboard operating system (OS). The idea of task-space control is to lie exactly between
low-level control and high-level planning with somewhat adjustable frontiers.

In this appendix, we present the open-source software interface, called mc_naoqi 2,
that enables running the controllers implemented with mc_rtc framework on wi-
dely used SBRE humanoid robots Gouaillier et al. (2009); Pandey and Gelin (2018),
that are running NAOqi OS and a customly developed local module mc_naoqi_dcm
(Sec. A.1). We also provide robot modules and description packages that serve as a
representation of SBRE robots in the mc_rtc framework (Sec. A.2). Additionally, we
release a basic sample FSM mc_rtc controller for Pepper robot and its interaction with
a human model in simulation (Sec. A.3).

Fig. A.1 shows an overview of the developed tools and their interconnection, des-
cribed in detail in the rest of the appendix. The video presentation of the developed
tools and their use in pHRI experiments is available online 3.

1. https://jrl-umi3218.github.io/mc_rtc
2. https://github.com/jrl-umi3218/mc_naoqi
3. Video “Task-Space Control Interface for SoftBank Humanoids and its Human-Robot Interaction

Applications” is hosted at the IDH LIRMM YouTube channel: https://youtu.be/qzEnCGlT93s
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FIGURE A.1 – mc_naoqi interface enables communication between SBRE humanoid robots
and mc_rtc control framework. It can be used to steer the robot behaviour in HRI experiments.
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A.1 Control Interface

Fig. A.2 gives a schematic overview of the mc_rtc control framework and its
connection to the simulation and control interfaces, such as mc_naoqi. Interested rea-
ders are invited to visit mc_rtc project website for more information, installation ins-
tructions and tutorials.

FIGURE A.2 – mc_rtc control framework architecture.

Fig. A.1 illustrates schematically the role of the mc_naoqi interface as a commu-
nication layer between mc_rtc control framework and NAOqi OS running onboard
SBRE humanoid robots, such as NAO, Pepper or Romeo. In the following subsections,
we describe the entire system in detail.

A.1.1 Forwarding device commands from controller to the robot

The main role of the mc_naoqi interface is to forward the fixed frame rate control
commands computed by the QP solver of mc_rtc whole-body QP controller to the
onboard low-level robot actuators control. The decision variable of the mc_rtc QP
controller is robot joint accelerations, which is integrated once to get desired velocity
(e.g. for Pepper mobile base command), and then once more to get desired robot joint
angles for joint actuator commands.

For social, user-friendly and interacting humanoid robots, such as Pepper or NAO,
it is highly beneficial to endow mc_rtc controller with the functionality to also for-
ward other device commands, such as sentence to play from the speakers, desired
tablet screen image or eye led color, from the mc_rtc controller to the robot devices
via mc_naoqi interface. This functionality allows mc_rtc framework users to deve-
lop controllers which can provide a richer interaction experience for HRI applications.
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For instance, when a certain mc_rtc controller FSM state is terminated, the robot can
indicate this event (and that it is going to transition to the next FSM state) with a com-
prehensive verbal message, illustrative tablet image and/or a specific LED color.

The mc_naoqi interface is thus developed with rich HRI consideration in mind,
and allows mc_rtc controller to forward commands to all the robot devices, not only
the joint actuators. We describe how it is implemented on the robot module side in
detail in Sec A.2.

A.1.2 Forwarding sensor data from the robot to the controller

The mc_naoqi interface is also responsible for getting the most up-to-date sensor
readings from a robot low-level memory in real-time and forwarding sensor measure-
ments in a suitable form to the mc_rtc controller real robot state representation as a
feedback. This way, the task-space QP controller keeps track of the real robot state and
can use it to perform closed-loop QP control computations.

Besides common sensor readings, such as encoder values, force sensors or Inertial
measurement unit (IMU) measurements, mc_naoqi interface also allows to forward
from the robot to the mc_rtc controller such sensor readings as electric motor current
and touch sensor readings (from tactile or bumper sensors). We describe how custom
robot sensors are implemented on the robot module side in detail in Sec A.2.

For HRI applications, the touch sensor readings are especially beneficial to be for-
warded to the controller, as they allow to detect when a human touches the robot. This
signal can then be used inside the mc_rtc FSM controller, for instance, to trigger an
appropriate reaction of the robot to the touch or to trigger a transition to a specific FSM
state of the controller.

A.1.3 Local low-level robot module

A customized local robot low-level module, called mc_naoqi_dcm 4, is cross-
compiled for NAOqi OS and is set to run onboard the robot to read sensor values
and set device commands synchronized with a robot control loop via Device Commu-
nication Manager (DCM) every 12 ms, fastest update rate currently available for SBRE
robots.

When a user connects to the robot via mc_naoqi interface, and commands to turn
on robot motors, a preprocess function is connected to DCM loop, to start setting the
actuator commands at a fixed time rate, synchronized with the other DCM operations.
After the user commands to turn off robot motors via mc_naoqi interface, the pre-
process actuator command update function is disconnected from the DCM loop. This
way, the user can safely use other control applications, such as Choregraphe, with the
robot right after using mc_naoqi interface, even though mc_naoqi_dcm module is
still active on the robot.

In order to prevent the default high-level robot behaviours to interfere with the
commands forwarded to the robot via mc_naoqi from the mc_rtc controller, the de-
fault robot safety reflexes are disabled when robot motors are turned on via mc_naoqi.

4. https://github.com/jrl-umi3218/mc_naoqi_dcm
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Once the motors are turned off via mc_naoqi, the default robot safety reflexes are re-
enabled. This has to be taken into account by an mc_rtc controller designer, to ensure
that the developed controller is safe to be run on the real robot, through extensive tes-
ting in simulation.

A fast access to the low-level robot memory is initialized when mc_naoqi_dcm
starts to run on the robot. This allows to read a predefined set of sensor values from
robot memory in the fastest way.

A.2 Robot representation in mc_rtc framework

A.2.1 Robot description packages

To control any robot with mc_rtc framework, a basic description of this robot
needs to be provided. Such robot description includes robot kinematic tree, dyna-
mic properties of the links, description of robot contact surfaces (i.e. covers), and
convex (eventually strictly convex Escande et al. (2014b)) anti-collision shapes (these
shapes can be automatically generated from existing robot links graphic representa-
tion). Examples of these robot description elements for SBRE humanoids are shown in
Fig. A.3. With this work, we release these robot description projects, implemented as
Robot Operating System (ROS) packages, for NAO 5 and Pepper 6 robots.

(a) First contact (b) Second contact

FIGURE A.3 – NAO and Pepper robot descriptions for the robot representation in the robot
module of the mc_rtc framework.

A.2.2 Robot mc_rtc modules

As illustrated in Fig. A.1, the robot description packages are used by a robot module
software layer to create a structure that provides a complete description of the robot:
kinematic tree parsed from URDF files, visual and physical representations of robot
links, surfaces attached to the robot bodies, sensors and other devices, strictly convex
hulls and primitive shapes for collision avoidance, etc. The instance of this structure
is used by the mc_rtc framework, as control robot state representation, to formulate
the QP control problem (objectives and constraints), that is then passed to the solver to
compute the next desired robot state.

5. https://github.com/jrl-umi3218/nao_description

6. https://github.com/jrl-umi3218/pepper_description

87

https://github.com/jrl-umi3218/nao_description
https://github.com/jrl-umi3218/pepper_description


Developed software tools A.2. Robot representation in mc_rtc framework

We make the robot modules for NAO 7 and Pepper 8 publicly available with this
work. For fast prototyping and experiments, the robot description package and module
can easily be augmented with any new robot hardware elements, e.g. new onboard
camera, which we demonstrate in Sec. A.4.

The Pepper robot module exploits a recently introduced new mc_rtc framework
feature - generic robot devices. This feature enables developers to implement any kind
of robot custom device representation as part of the robot module, which can then be
used in the mc_rtc controller. Currently implemented devices in Pepper robot module
are:

• loud speaker: to forward speech commands to the robot directly from the mc_rtc
controller via mc_naoqi;

• visual display tablet: to set robot tablet image from the mc_rtc controller via
mc_naoqi interface;

• touch sensor: to forward tactile sensor readings from the robot to the mc_rtc
controller via mc_naoqi

Wheeled mobile base of Pepper is modeled as a floating base, constrained to move
on a plane (i.e. the room ground), with limits imposed to the mobile base body maxi-
mum speed and acceleration according to physical hardware limitations.

In mc_rtc framework, two main hierarchies for the robot control are the following:

• Tasks: that are objectives ‘describing’ what the robot should do at the best it can;

• Constraints: that are limits under which the tasks are to be performed, i.e. what
the robot should always fulfill strictly.

Many tasks and constraints are already implemented as robot-independent templates
in mc_rtc. For instance PostureTask, CoMTask, EndEffectorTask, KinematicsConstraint,
ContactConstraint, etc. However, in some cases it might be desirable to design and im-
plement new custom tasks or constraints, not yet implemented in mc_rtc. Such new
tasks and constraints might be specific to a robot, use-case or research topic. In the Pep-
per robot module mc_pepper, we provide an example of the implementation of a cus-
tom CoMRelativeBodyTask QP control objective. This task allows to specify the desired
Pepper center of mass (CoM) target relative to the robot mobile base frame (as oppo-
sed to world frame in mc_rtc CoMTask). The implementation of this Pepper specific
objective was necessary to allow a controller to simultaneously compute a new mobile
base position and keep the CoM objective as part of QP computations. An example of
a Pepper specific QP constraint implementation is a custom BoundedAccelerationConstr
constraint, included in the Pepper robot module. This constraint allows to impose ac-
celeration bounds for Pepper mobile base link.

An example of how these custom Pepper robot specific tasks and constraints are
loaded and used in a sample mc_rtc controller can be seen in PepperFSMController
open-source project, which we describe in detail in Sec. A.3. In an analogous way, many
other novel tasks and constraints can easily be implemented and tested.

7. https://github.com/jrl-umi3218/mc_nao

8. https://github.com/jrl-umi3218/mc_pepper
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A.3 Sample Pepper mc_rtc FSM controller

A.3.1 Individual robot controller

To facilitate the process of writing a new mc_rtc controller, especially for new po-
tential users of the framework, we provide a basic sample PepperFSMController 9. It can
be used as a starting point for new controller development or as an example of how
similar projects should be implemented.

The sample controller includes Pepper as the main controller robot, associated
default posture task, kinematics and dynamics constraints, self-collision avoidance
constraints, robot-ground contact constraint. The controller also includes implementa-
tion of few sample FSM states that allow to control robot posture, mobile base, camera
orientation and right and left hand end-effector positions, either through predesined
setpoints or interactively through RViz Kam et al. (2015) (Fig. A.4).

FIGURE A.4 – RViz scenes of sample FSM Pepper controller states.

A.3.2 Controller for HRI including a human model

A direct extension of the master branch of the sample controller project, is a branch
called topic/withHumanModel. On this branch, a multi-robot QP (MQP) control fea-
ture of the mc_rtc framework is exploited by adding a human model and its state
as part of the mc_rtc controller (recall Fig. A.1). A human model is integrated into
mc_rtc exactly the same way that any other robot model, by providing a description
ROS package 10 and implementing a corresponding robot module 11. Fig. A.5 shows the
human model description used in our projects.

This MQP controller can be used to develop and simulate a wide variety of HRI
scenarios including pHRI ones, e.g. using human model and robot contact surfaces
description to define contact tasks and constraints.

9. https://github.com/jrl-umi3218/pepper-fsm-controller

10. https://github.com/jrl-umi3218/human_description

11. https://github.com/jrl-umi3218/mc_human
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FIGURE A.5 – Simulation human model used in mc_rtc framework.

In the open-source sample MQP controller project, we provide an example of an
HRI controller state called NavigateToHuman. In this state, a Position Based Visual Ser-
voing (PBVS) task of mc_rtc framework is used to control Pepper robot mobile base
to navigate in closed-loop to a set-point defined w.r.t human model torso frame (it
can be any other human model frame), while using simulation data as a virtual visual
feedback signal. At the same time, Image Based Visual Servoing (IBVS) task is used
to control robot camera orientation to look at the human head. Fig. A.6 illustrates the
simulation of the NavigateToHuman FSM state at the start, middle and the end of this
state.

FIGURE A.6 – Simulated NavigateToHuman state of a sample MQP mc_rtc FSM controller
with a human model included.

The sample controller project can also efficiently serve as a starting point for deve-
loping controllers for various real HRI applications, which we showcased in Sec. 4.4
for instance.
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A.4 Medicine delivery experiment

Recently, the Covid-19 pandemic has put attention into robotics, which can help to
deal with the problematics of human virus transmission, by transferring some risky
labours and non-added value tasks of care-givers to robotic systems. Examples come
from different companies, like disinfecting ultraviolet (UV) rovers and ground drones
for hospitals, or even beaming videos to connect patients to their relatives. There are
more examples in other fields, like flagging patients with suspected pneumonia during
their hospital admission, or using robots and AI in logistics to transport daily groceries.

(c) Navigation to the human (d) Verbal communication

(g) Human takes the pills (h) Human takes the bottle

FIGURE A.7 – Experiment screenshots (top rows), perceived robot state, Azure Kinect point
cloud and human body markers (bottom rows).

We have already demonstrated, in Chapter 4, how the developed tools, presented
in this appendix, can be used to enable Pepper robot to perform autonomous initiation
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of human physical assistance. We also made the controller code 12 publicly available
to serve as a software reference to our work and as an advanced FSM mc_rtc HRI
controller example. This controller shows how our developed software components
allow to easily create complex controllers for rich, intuitive and efficient HRI. This in-
cludes closed-loop navigation toward human, verbal, visual and body language com-
munication, and physical interaction with a human for an assistance process initiation.

In this section, we present a controller for another HRI application –inspired from
the Covid-19 outbreak, where Pepper robot behaviour is regulated, with the help of
the mc_naoqi and the developed robot modules, to autonomously deliver medication
to a human lying on the bed. In this scenario a bed height conforms that of Pepper for
the given tasks.

The aim here is also to demonstrate how the controllers for new HRI scenarios can
be easily prepared using our developed tools and re-using states and elements of the
controllers written for other HRI scenarios. As such, for instance, the NavigetaToHuman
state could be re-used from our previous work, for this new scenario with almost no
modifications, despite the person lying in the bed instead of sitting on a chair. Other
parts of this new controller FSM also needed only slight adjustments w.r.t our existing
work (states present in the other HRI controller) to create a controller for this new HRI
application.

Fig. A.7 shows excerpts screenshots from the experiment video. In the bottom rows
images, the scenes are visualized in RViz. Note, that additional hardware, namely
Azure Kinect, which is used for human state feedback, and RealSense camera, which
is included in the robot prototype, but not used in this experiment, are easily included
in the robot description (Fig. A.8) and processed by the robot module, and therefore
are also included in the QP problem formulation (e.g. for more accurate robot center of
mass computation). Full experiment can be seen in the accompanying video 13.

FIGURE A.8 – Extra hardware included in the prototype Pepper robot

Once the robot reaches a position nearby the person, it communicates verbally its
intention to pass the medicine (Fig. A.7d). Then it proceeds to open its right gripper for
the person to take the pills (Fig. A.7g). The passing of the bottle with liquid is arranged
with the help of the robot module feature, described in Sec. A.2, that allows to forward
robot tactile sensor data to the mc_rtc controller, which then triggers robot left hand
gripper to open slightly to allow the person to get out the bottle more easily (Fig. A.7h).

12. https://github.com/anastasiabolotnikova/autonomous_phri_init

13. Video “Task-Space Control Interface for SoftBank Humanoids and its Human-Robot Interaction
Applications” is hosted at the IDH LIRMM YouTube channel: https://youtu.be/qzEnCGlT93s
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FIGURE A.9 – Evolution of Position Based Visual Servoing closed-loop Pepper mobile base
navigation to human task errors

Fig. A.9 shows the progress of the closed-loop PBVS task, that uses Azure Kinect
body tracking for feedback to make the robot navigate to the person (Fig. A.7c). Task
errors eventually converge near zero, although in a not very smooth way. This is due
to the low quality of human detection (that prohibits constant usage in a continuous
closed-loop way), and the low detection frame rate and latency issues (that limits the
speed in reaching the person). Indeed, the existing human motion trackers are not ro-
bust enough for robotic usage. It is important to underline some shortcomings that
prohibit current spreading of HRI in real practice:

• reliable human posture and body detection algorithms (even those advanced)
often fail in robotics because of the usage perspective. In assistive robotics sce-
narios, it is the robot which moves toward a human that can be static (i.e. not
moving much), e.g. lying in a home or hospital bed or sitting on a chair. Most of
the human pose detection algorithms are trained with rather static camera and
moving human and not with a moving camera and static (or moving) human. We
have witnessed considerable effects on the robustness of the human pose acqui-
sition by a moving robot with all the algorithms we tried. As a consequence, it is
difficult to use them continuously in closed-loop control.

• lack of ground-truth: most of the human pose detection matches well in an
augmented-reality, their image or video counterpart, but no one provides measu-
rement ground-truth concerning the pose results that are returned. That is to say,
it is difficult to assess the precision of the 6D pose returned by most algorithms
with ground-truth 6D measurements. In robotics, it is important to know preci-
sely and in real-time the exact joint and floating base values of the human posture
and configuration, namely when it comes to contact a person or to manipulate a
given limb of a person.

• last but not least, as it is the most critical issue: in close-contact interaction with
humans (i.e. when the robot reaches a person), tracking may be lost even when a
wide fish-eye camera is used. This is even more critical when physical interaction
causes an obstructed view of the person. This means that human pose estimation
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approaches in the framework of human-robot close-contact interactions have to
be deeply reviewed.

This being said, the approach we adopt is rather modular enough to live with such
shortcoming without recalling into question the controller. Any improvement in hu-
man pose estimation w.r.t the performances mentioned previously will straightfor-
wardly result in better robustness and performance of the controller, because of its
conceptual simplicity.

A.5 Concluding notes

For robotics to gain more insight, trust and meet the challenge of future human
societal stakes, such as home daily assistance for frail or elderly persons, or to be ef-
ficiently used in future outbreaks, research efforts shall be paired with important in-
tegration development ones. Any advances made in critical human-robot interaction
technological bricks such as human perception, artificial intelligence chatbots, 5G, ad-
vanced SLAM. . . should be integrated in readily available and sustained task-space
control frameworks. This is the very purpose of the tools described in this appen-
dix: we do not only aim at sharing the open-source code for the robotic community
in general and the HRI in particular, but also sharing experiences that led to exis-
ting developments which are made to be further used, improved and sustained. Our
methodology in terms of control can be seen now under a different philosophy. In
computer science, algorithms, simple instructions such as if-then-else, while-for loops,
variables... together with basic well-agreed routines and functions constitute the ba-
sic bricks of any modern algorithm that solve increasingly more complex problems.
Our robot control framework should be seen under this spectrum: we shall provide
elementary controllers and controller “routines”, templates that form the common
“instructions”, and functions of more complex controllers that solve more and more
complicated tasks. We exemplify what mr_rtc may bring under a unified framework
in terms of task specification, embedding straightforwardly the constraints... how a
multi-(sensory,objectives,robots) task-space controller can be used to build sustainable
controllers, and show that what we propose is consistent, as all these tasks are defi-
ned exactly the same way for any robot or multi-robot system. We hope that users of
SBRE robots could assess, enrich and use our developed software tools in even more
challenging scenarios.
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