Aziz Parosh

Aarti Abdulla

Roland Gupta

Mihaela Meyer

Sighireanu

Giovanni Bernardi

Ranadeep Biswas

Berk Cirisci

German Andres Delbianco

Yassine Hamoudi

Suha Orhun Mutluergil

Rachid Zennou

First and foremost, the work in this dissertation is the result of many supportive and great advisors, teachers, mentors, colleagues, family,

Abstract

Over the past decades, distributed software became an integral part of our society, being used in various domains like online banking or shopping, distance learning, supply chain, and telecommuting. Developing correct and efficient distributed systems is a major and timely challenge. The objective of this dissertation is to propose algorithmic techniques for improving the reliability of such software, focusing on applications ran on top of distributed storage systems like databases and blockchain. Databases allow applications to access data concurrently from multiple sites in a network. Blockchain is a cryptographically-secure distributed ledger that allows to perform irreversible actions between different parties without a trusted authority.

The effect of a set of database transactions executing in parallel is specified using a formalism called consistency model. For instance, serializability states that a set of transactions behave as if they were executed serially one after another even if they actually overlap in time. Although simple to understand, serializability carries a significant penalty on performance and modern databases implement weaker consistency models. In general, these weak models are more complex to reason about. In this dissertation, we investigate the problem of checking a property of applications called robustness. Given two comparable consistency models, an application is called robust if it has the same behaviors when ran on top of databases implementing these two models. This dissertation investigates the theoretical complexity of checking robustness in the context of several consistency models: causal consistency, prefix consistency, snapshot isolation, and serializability. It provides non-trivial reductions to a well-studied problem in formal verification, assertion checking, that enables the reuse of existing verification technology. Besides theoretical results, it proposes pragmatic approaches based on under/over-approximations that are evaluated on practical applications.

Applications ran on top of blockchain are deployed in the form of smart contracts that manipulate the blockchain state. Smart contracts are mainly used to govern trading in cryptoassets that are worth billions of US dollars, and bugs can lead to huge financial losses. Exacerbating the impact of these bugs is the fact that smart contracts cannot be modified once they are deployed on the blockchain. Applying techniques from formal verification to audit smart contracts can help in avoiding expensive bugs. However, since most smart contracts are not annotated with formal specifications, formal verification of functional properties is impeded. To overcome this problem, this dissertation investigates notions of refinement between smart contracts, which enable the reuse of verified contracts as specifications for other contracts, thus scaling up the overall verification effort.

Keywords: Distributed systems, Databases, Blockchain, Smart contracts, Concurrency, Verification, Model checking, Program analysis, Program synthesis.

Résumé

Au cours des dernières décennies, les logiciels distribués ont pris une place centrale dans notre société. Ils sont utilisés dans divers domaines tels que la gestion des transactions bancaires et des achats en ligne, le télétravail, et l'enseignement à distance. Développer des logiciels distribués corrects et efficaces est un défi majeur. L'objectif de cette thèse est de proposer des techniques algorithmiques pour améliorer la fiabilité de ces logiciels, en se concentrant sur les applications logiciels qui s'exécutent au-dessus des systèmes de stockage distribués comme les bases de données ou la blockchain. Les bases de données permettent à des applications d'accéder simultanément aux données grâce à plusieurs sites répartis sur un réseau. La blockchain est un registre de stockage distribué et sécurisé par des techniques cryptographiques qui permet d'effectuer des tâches irréversibles entre différentes entités sans autorité de confiance centrale.

L'exécution en parallèle d'un ensemble de transactions sur des bases de données est spécifiée à l'aide d'un formalisme appelé le modèle de cohérence. Par exemple, le modèle de sérialisabilité indique qu'un ensemble de transactions se comporte comme si elles étaient exécutées en série l'un après l'autre, même si elles se chevauchent dans le temps. Bien que simple à comprendre, la sérialisabilité entraîne une pénalité significative en terme de performance. Pour cette raison les bases de données modernes mettent en oeuvre des modèles de cohérence plus faibles. En général, il est plus complexe de mener des raisonnement sur ces modèles faibles. Dans cette thèse, nous étudions le problème de la vérification d'une propriété des applications logiciels qui s'exécutent au-dessus des bases de données appelée la robustesse. Étant donné deux modèles de cohérence comparables, une application est dite robuste si elle a le même comportement lorsqu'elle est exécutée sur deux bases de données mettant en oeuvre les deux modèles de cohérence. Dans cette thèse, nous étudions la complexité théorique de la vérification de la robustesse dans le contexte de plusieurs modèles de cohérence: causal consistency, prefix consistency, snapshot isolation, et la sérialisabilité. Nous donnons des réductions non triviales à un problème bien étudié dans la littérature de la vérification formelle, la vérification des assertions, qui permet la réutilisation des technologies de vérification existantes. Outre des résultats théoriques, nous proposont aussi des approches basées sur des sous/sur-approximations que nous évaluons sur des applications pratiques.

Les applications logiciels exécutées au-dessus de la blockchain sont déployées sous la forme de smart contracts qui manipulent l'état de la blockchain. Les smart contracts sont principalement utilisés pour des operations basées sur des crypto-monnaies valant plusieurs milliards de dollars.

Par conséquent, des erreurs dans les smart contracts peuvent entraîner d'énormes pertes financières.

Ces erreurs sont exacerbées par le fait que les smart contracts ne peuvent pas être modifiés une fois qu'ils sont déployés sur la blockchain. L'application des techniques de la vérification formelle pour auditer les smart contracts peut aider à éviter des erreurs coûteuses. Cependant, comme la plupart des smart contracts ne sont pas annotés avec leurs spécifications, la vérification formelle des propriétés fonctionnelles est entravée. Pour surmonter ce problème, nous explorons dans cette thèse les notions de raffinement entre smart contracts, qui permettent la réutilisation des smart contracts vérifiés comme spécifications pour d'autres smart contracts, améliorant ainsi l'effort global de vérification.

Mots clefs:

Systèmes distribués, Base de données, Blockchain, Smart contracts, Concurrence, Vérification, Vérification de modèles, Analyse de programmes, Synthèse de programmes.

Chapter 1 Introduction 1.1 Distributed Software

Over the past decades, distributed software became an integral part of our society, being used in various domains like online banking or shopping, distance learning, and telecommuting. With this increased reliance, the demand for reliable and secure distributed software is large and it is growing. Hence, developing efficient and correct distributed software is a major and timely challenge.

Databases and Blockchain are two commonly used distributed software systems.

Modern production databases are distributed over multiple sites in a network. This is because many applications that use these databases require fast and reliable access to the data from different regions of the world, which is impossible to satisfy if these databases are centralized. For instance, in Figure 1.1a, we show a subscription system, it is constituted of three clients from three distinct regions of the world connected to a single server. The clients manipulate the data stored on the sever, e.g., adding new users or querying existing users. The subscription suffers from performance and availability issues. In particular, the response time to the clients Bob and Charlie queries will be very slow because of the long distance between the server and these clients. Also, if the server stops responding then the whole system will crash. A distributed subscription is shown in Figure 1.1b, it addresses the above issues of the centralized subscription. It is constituted of three connected severs distributed over three sites and three clients, each client is connected to one server. The data is replicated across the three servers. Thus, by reducing the distance between the severs and clients, the response time is improved. Also, when one server stops responding the two other severs can replace it and the system continues functioning. However, the distributed subscription must address new consistency issues, caused by the fact that it is distributed, such as: [START_REF]Bitcoin[END_REF] how can the servers coordinate to disallow the two clients Bob and Charlie from adding two users with the same name?, and (2) how often should the servers exchange data to ensure that the reply to Alice query is not obsolete? To faithfully address the above questions, distributed databases implement complex network communication and memory access protocols. Because of this complexity, implementing correct and reliable applications that use these databases is difficult.

A blockchain is a distributed storage system. Distribution and replication stimulate trust and resilience necessary for the blockchain to operate correctly. This is because blockchain allows to perform irreversible and verifiable actions between different parties without a trusted central authority.

Concretely, a blockchain is constituted of a sequence of blocks, which holds a log of completed action records. It uses cryptographic mechanisms to enforce an append-only pattern, disallowing the deletion or alteration of blocks already added to the chain. Applications ran on top of blockchain are called smart contracts, and they allow to manipulate the blockchain state. Smart contracts are commonly used to govern trading in cryptoassets such as Bitcoin [START_REF]Bitcoin[END_REF] and Ether [START_REF]Ethereum[END_REF] that are worth billions of US dollars, and bugs can lead to huge financial losses. Exacerbating the impact of these bugs is the fact that smart contracts cannot be modified once they are deployed on the blockchain.

Databases

Modern databases manage complex workloads for various applications, e.g., cloud storage, cloud computing, e-commerce, finances, and healthcare. Distribution and replication are widely adopted by databases providers to increase performance and tolerate failures of some database sites. Under these settings, modern databases implement different kinds of software optimizations (e.g., changing data structures and communication and consensus protocols) to properly and efficiently execute database operations. For instance, new noSQL (no-relational) databases such as key-value stores have been proposed to optimize data accesses. MongoDB and Cassandra are two popular noSQL databases. Also, distributed databases implement complex mechanisms to resolve conflicting updates stored on different database sites and to update a stale value stored in a database site by the latest value stored in another site. To ease the burden on programmers of applications that use these databases, the implementations of these databases must ensure consistency guarantees allowing to reason about their behaviors in an abstract and simple way.

Consistency

A database consistency model consists of a set of rules specifying the interaction between the database and the applications that use the database. Ideally, programmers of these applications would like to have strong consistency guarantees, i.e., all updates occurring anywhere in the system are seen immediately and executed in the same order by all the database sites. The strongest consistency level is sequential consistency [START_REF] Lamport | How to make a multiprocessor computer that correctly executes multiprocess programs[END_REF], i.e., every computation of a program is equivalent to another one where operations (read or write) are executed atomically and sequentially one after another without interference by all sites. However, while sequential consistency is easier to apprehend by application programmers, their enforcement (by databases implementors) requires the use of global synchronization between all sites, which is hard to achieve while ensuring availability and acceptable performances [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF]. The fact that distributed database systems cannot ensure both availability and strong consistency is known as the consistency, availability, partition tolerance (CAP) theorem in the literature of distributed systems [START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF]. Modern databases often provide weaker consistency guarantees choosing availability over strong consistency. Causal consistency [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] is a fundamental weak consistency model implemented in several production databases, e.g., Antidot-eDB, CockroachDB, and MongoDB, and extensively studied in the literature [START_REF] Almeida | Chainreaction: a causal+ consistent datastore based on chain replication[END_REF][START_REF] Du | Orbe: scalable causal consistency using dependency matrices and physical clocks[END_REF][START_REF] Lloyd | Don't settle for eventual: scalable causal consistency for wide-area storage with COPS[END_REF][START_REF] Lloyd | Stronger semantics for lowlatency geo-replicated storage[END_REF][START_REF] Preguiça | Swiftcloud: Fault-tolerant geo-replication integrated all the way to the client machine[END_REF].

Causal consistency guarantees that every two operations where the second operation causally depends on the first operation, say the first operation affects the outcome of the second operation, are executed in the same order by all sites. For instance, causal consistency disallows the kind of execution of a chat room application shown in Figure 1.2a. This is because the write done by Bob causally depend on the last write done by Alice, however, Charlie observes the Bob's write without observing the last write done by Alice. In comparison to sequential consistency, causal consistency allows that conflicting operations, i.e., which read or write to a common location, be executed in different orders by different sites as long as they are not causally related. For instance, causal consistency allows the kind of execution of a bank application shown in Figure 1.2b. The execution shows two people Alice and Bob who share the same bank account withdrawing a total amount that leads to a negative balance. Sequential consistency disallows this execution since one of withdraws must occur after the other one finishes and thus will be rejected because of insufficient balance.

Transactions

Transaction is an abstract mechanism that refers to a block of operations (writes and reads) of a site can be considered as executing atomically without interferences from actions of other sites. A transaction ensures that either the entire block of operations is applied or non of the operations is applied. Modern databases provide transactions with various semantics corresponding to different tradeoffs between consistency and availability. Serializability [START_REF] Papadimitriou | The serializability of concurrent database updates[END_REF] is the sequential consistency equivalent strong consistency model in the transactional setting, i.e., every computation of a program is equivalent to another one where transactions are executed serially one after another without interference. In the transactional setting, causal consistency refers to the same consistency guarantees as causal consistency in the non-transactional setting. Another popular weak consistency model in the transactional setting is snapshot isolation [START_REF] Berenson | A critique of ANSI SQL isolation levels[END_REF]. It is implemented in several production databases, e.g., Microsoft SQL Database, Oracle, and PostgreSQL, and it is extensively studied in the literature [START_REF] Fekete | Making snapshot isolation serializable[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF][START_REF] Raad | On the semantics of snapshot isolation[END_REF][START_REF] Biswas | On the complexity of checking transactional consistency[END_REF]. Compared to causal consistency, snapshot isolation further requires that transactions follow a total order, called commit order, such that each transaction observes all the updates in a prefix of this sequence and two different transactions observe different prefixes if they both write to a common location. Thus, snapshot isolation disallows the class of anomalies caused by two conflicting writes done concurrently. Two transactions may observe the same prefix as long as they do not write to a common variable, which again may lead to behaviors which are not admitted by serializability.

Correctness and Robustness

Implementing programs that run on top of databases and are both highly performant and correct with respect to their safety specifications is an extremely hard and error prone task. Checking correctness of programs with regard to preserving their safety specifications requires computing the set of reachable states. However, computing the set of reachable states under the weak semantics models is in general a hard problem (either decidable but highly complex (non-primitive recursive), undecidable, or unknown) [START_REF] Atig | On the verification problem for weak memory models[END_REF][START_REF] Atig | What's decidable about weak memory models[END_REF][START_REF] Abdulla | Verification of programs under the release-acquire semantics[END_REF][START_REF] Lahav | Decidable verification under a causally consistent shared memory[END_REF]. An alternative approach is to check robustness of programs against consistency relaxations: Given a program P and two consistency models S and W such that S is stronger than W , we say that P is robust against substituting S with W if for every two implementations I S and I W of S and W respectively, the set of observable behaviors (e.g., traces of computations1 and reachable states) of P when running with I S is the same as its set of observable behaviors when running with I W . This means that P is not sensitive to the consistency relaxation from S to W , and therefore it is possible to reason about the behaviors of P assuming that it is running over S, and no additional synchronization is required when P runs over the weak model W such that it maintains all its properties satisfied with S. Robustness implies that any safety specification of P is preserved when weakening the consistency model (from S to W). Thus, when the stronger model S corresponds to serialisability and P is robust then we can check whether P preserves its safety specifications under the weak consistency model W by checking whether it preserves them under serialisability. The latter is well studied and existing verification tools are well equipped to deal with it.

Robustness also allows: [START_REF]Bitcoin[END_REF] to identify the weakest level of consistency needed by a given program (to satisfy its specification) since a weaker consistency model provides better performance, and [START_REF]Ethereum[END_REF] to ensure that the level of consistency needed by a given program coincides with the one that is guaranteed by its infrastructure, i.e., the database it uses. We assume that this database (including network communication and conflicts resolution protocols) satisfies its consistency guarantees.

While robustness based on reachable states, which requires that a program is robust if the sets of reachable states under the two consistency models coincide, is the necessary and sufficient concept for preserving safety specifications, its verification amounts to computing the set of reachable states under the weak semantics models which leads to the same problem as discussed above. A stronger notion of robustness that allows to overcome this problem is robustness based on the equivalence between the sets of traces of computations. For instance, in the context of shared memory it was

shown in [START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF] that robustness against substituting sequential consistency with total store ordering (TSO) consistency, based on traces of computations, is as hard as reachability under sequential consistency, which is much simpler than reachability under TSO [START_REF] Atig | On the verification problem for weak memory models[END_REF].

Problem Statement

In this dissertation, we investigate the problem of checking robustness of programs in the context of four consistency models: serializability (SER) , snapshot isolation (SI) , prefix consistency (PC)

(another weak consistency model that is stronger than causal consistency and weaker than snapshot isolation) [START_REF] Burckhardt | Global sequence protocol: A robust abstraction for replicated shared state[END_REF][START_REF] Cerone | A framework for transactional consistency models with atomic visibility[END_REF], and causal consistency (CC) in a transactional setting. We focus on robustness based on the criterion of the equivalence between the sets of traces of computations. However, we need to identify the appropriate notions of traces of computations so that in almost all practical cases, programs that are robust based on reachable states criterion are also robust based on traces of computations criterion. Furthermore, checking robustness is also difficult since it requires to apprehend the extra behaviors due to the relaxed model w.r.t. the stronger model. This requires a priori reasoning about complex order constraints between operations in arbitrarily long computations, which may need maintaining unbounded ordered structures, and make robustness checking hard or even undecidable.

We consider two important robustness problems: (1) robustness against substituting the strong model (i.e., SER) with one of the weak consistency models, and (2) robustness against substituting a weak consistency model, e.g., SI, with a weaker one, e.g., CC. The result of the first problem allows to run programs over weakly consistent database while reasoning about the correctness of these programs assuming that they run over SER database. The result of the second problem allows to find the weakest consistency model while a program still satisfy its safety specifications. This is because there is a large class of specifications that can be implemented even in the presence of behaviors which are not admitted under SER (see [START_REF] Shapiro | Consistency in 3d[END_REF] for a discussion).

State of the Art

There are several works that investigated the problem of verifying databases and shared memory correctness, i.e., checking whether a database or a shared memory indeed implements a consistency criteria it claims [START_REF] Herlihy | Linearizability: A correctness condition for concurrent objects[END_REF][START_REF] Alur | Model-checking of correctness conditions for concurrent objects[END_REF][START_REF] Bouajjani | Verifying eventual consistency of optimistic replication systems[END_REF][START_REF] Hamza | On the complexity of linearizability[END_REF][START_REF] Bouajjani | On verifying causal consistency[END_REF]. In addition, there are several other works that investigated the problem of databases and shared memories testing [START_REF] Papadimitriou | The serializability of concurrent database updates[END_REF][START_REF] Gibbons | Testing shared memories[END_REF][START_REF] Ozkan | Randomized testing of distributed systems with probabilistic guarantees[END_REF][START_REF] Ozkan | Trace aware random testing for distributed systems[END_REF][START_REF] Biswas | On the complexity of checking transactional consistency[END_REF][START_REF] Rahmani | CLOTHO: directed test generation for weakly consistent database systems[END_REF]. In this dissertation, we assume that databases are correct and investigate the correctness of programs that run on top of these databases.

In the non-transactional case (i.e., shared memory and programming language memory models), existing work on the verification of robustness can be classified into two classes: (1) overor under-approximate analyses [START_REF] Burckhardt | Effective program verification for relaxed memory models[END_REF][START_REF] Owens | Reasoning about the implementation of concurrency abstractions on x86-tso[END_REF][START_REF] Burnim | Sound and complete monitoring of sequential consistency for relaxed memory models[END_REF][START_REF] Alglave | Stability in weak memory models[END_REF], and (2) precise (sound and complete) analyses [START_REF] Bouajjani | Deciding robustness against total store ordering[END_REF][START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF][START_REF] Derevenetc | Robustness against power is pspace-complete[END_REF][START_REF] Lahav | Robustness against release/acquire semantics[END_REF]. They consider robustness only when the stronger model (S) corresponds to strong consistency, i.e., sequential consistency. In the transactional case, all existing work on the verification of robustness provide either over-or under-approximate analyses [START_REF] Alomari | A robust technique to ensure serializable executions with snapshot isolation DBMS[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Brutschy | Serializability for eventual consistency: criterion, analysis, and applications[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF][START_REF] Cerone | Analysing snapshot isolation[END_REF][START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF],

but none of them provides precise algorithmic verification methods for solving robustness, nor addresses its decidability and complexity. Also, they consider robustness only when the stronger model (S) corresponds to strong consistency, i.e., SER. This dissertation is the first work studying the decidability and complexity of verifying robustness in the context of transactional programs. Also, this dissertation is the first work studying the decidability and complexity of verifying robustness where the stronger model is not strong consistency.

Because of the undecidability/high complexity of reachability problems under weakly consistent models, existing works for the analyses of programs correctness under these models without proving their robustness, e.g., [START_REF] Atig | Getting rid of store-buffers in TSO analysis[END_REF][START_REF] Alglave | Partial orders for efficient bounded model checking of concurrent software[END_REF][START_REF] Dan | Effective abstractions for verification under relaxed memory models[END_REF][START_REF] Abdulla | Context-bounded analysis for POWER[END_REF][START_REF] Lahav | Owicki-gries reasoning for weak memory models[END_REF][START_REF] Gotsman | cause i'm strong enough: reasoning about consistency choices in distributed systems[END_REF][START_REF] Najafzadeh | The CISE tool: proving weakly-consistent applications correct[END_REF][START_REF] Alglave | Ogre and pythia: an invariance proof method for weak consistency models[END_REF], do not provide decision procedures.

Contribution

In this dissertation, we show that the problems of checking robustness of application programs against substituting SER with CC or SI, SI with PC, and PC with CC can be reduced in polynomial time to the reachability problem in concurrent programs under SER. This allows: [START_REF]Bitcoin[END_REF] to avoid explicit reasoning about weak consistency behaviors (since this may imply memorizing unbounded information), and (2) to leverage available tools for verifying invariants/reachability problems on concurrent programs to reason about distributed applications running on weakly consistent databases. This also implies that the robustness problem is decidable for finite-state programs, PSPACE-complete when the number of sites is fixed, and EXPSPACE-complete otherwise. The above reduction requires non-trivial results that characterize the behaviors of each of the considered weak consistency models such as finding the appropriate formal definitions of traces of computations for each individual consistency model so there are almost no programs in practice that distinguish between robustness based on traces of computations and robustness based on reachable states.

The approach we adopt for tackling the robustness problem is based on a precise characterization of the set of robustness violations, i.e., computations that are possible under the weaker model but not the stronger model. For instance, for robustness against substituting SER with CC or SI we show that it is sufficient to search for a special type of minimal robustness violations. We reuse the high-level methodology from [START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF] of characterizing minimal violations according to some measure.

However, we use different notions of measure because of the semantics differences between individual weak consistency models. The key property we prove is that all minimal violations obey to a finite number of patterns. Moreover, using this characterization, we show that given a program P , deciding whether P is not robust can be done by exploring only serial computations: We consider a program P obtained from P by a linear-size instrumentation. The latter maintains along serial computations of P (where accesses to the main memory are done in a sequentially consistent way) the information needed to recognize the pattern of a minimal violation that would have occurred in P under the weaker semantics, i.e., CC or SI, (executing the same set of operations).

However, the above methodology based on minimal violations is applicable when the stronger model in robustness is the model desired for the reachability problem (SER) we reduce to. Thus, for robustness against substituting SI with PC and PC with CC we derive reductions to SER reachability using two completely different methodologies: characterizing violations of robustness against substituting SI with PC in terms of SER computations (of another program) and showing that violations of robustness against substituting PC with CC can be rewritten as violations of robustness against substituting SER with CC (of another program).

In the fist case we use a monitor that checks whether a behavior is admitted by a program P under PC, but not under SI, which raises two non-trivial challenges: (1) defining a monitor for detecting violations of robustness against substituting SI with PC that uses a minimal amount of auxiliary memory (to remember past events), and [START_REF]Ethereum[END_REF] what is the complexity of checking if the composition of P with the monitor reaches a specific control location (we assume that the monitor goes to a specific error location when detecting a violation) under the (weaker) model. Interestingly enough, we address these two challenges by studying the relationship between these two weak consistency models, PC and SI, and SER. The construction of the monitor is based on the fact that violations of robustness against substituting SI with PC can be defined as roughly, the difference between the violations of robustness against substituting SER with PC and SER with SI (investigated in previous work [START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF]), and we show that the reachability problem under PC can be reduced to a reachability problem under SER.

In the second case we rely on the reduction from PC reachability to SER reachability mentioned above. This reduction shows that a given program P reaches a certain control location under PC iff a transformed program P , where essentially, each transaction is split in two parts, one part containing all the reads, and one part containing all the writes, reaches the same control location under SER. Interestingly, P reaches a certain control location under CC if and only if P reaches the same control location under CC. The latter may seem counter-intuitive since it is not true for PC. Thus, the fact that this reduction preserves the structure of the program allows to redefine violations of robustness against substituting PC with CC of a program P to violations of robustness against substituting SER with CC of the transformed program P .

We study the robustness against substituting SER with three distinct semantics models of CC.

We show that the three models coincide for programs containing no write-write data races, i.e., concurrent transactions writing on a common location. We also show that if a program has a write-write data race under one of these models, then it must have a write-write data race under any of the other two models. This property is rather counter-intuitive since two of these models are incomparable and the third model is strictly weaker than both of them (in terms of admitted behaviors).

We also developed a proof methodology for establishing robustness against substituting SER with SI, SI with PC, and PC with CC which builds on Lipton's reduction theory [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF] and the characterization of robustness violations. We use the theory of movers to establish whether the relaxations allowed by weaker models are harmless, i.e., they do not introduce new behaviors compared to the stronger model. We applied the proposed techniques for checking robustness against substituting SER with SI, SI with PC, and PC with CC on 17 challenging applications extracted from previous work [START_REF] Difallah | Oltp-bench: An extensible testbed for benchmarking relational databases[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF]161,[START_REF] Alomari | The cost of serializability on platforms that use snapshot isolation[END_REF][START_REF] Holt | Disciplined inconsistency with consistency types[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Gotsman | cause i'm strong enough: reasoning about consistency choices in distributed systems[END_REF][START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF]. Our techniques are precise enough for proving or disproving the robustness of all of these applications, for all combinations of the consistency models discussed above. In Figure 1.3, we list the consistency models we study in this dissertation.

Blockchain

Blockchain offers an innovative approach that allow to establish trust in an open environment without the need of a centralized authority to do so. Blockchain use cases range from globally deployed cryptoassets like Bitcoin [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF], to supply chains [START_REF]Carrefour says blockchain tracking boosting sales of some products[END_REF], insurance [START_REF]Blockchain is empowering the future of insurance[END_REF], and banking [START_REF]Northern trust uses blockchain for private equity record-keeping[END_REF]. Two popular blockchains are Bitcoin [START_REF]Bitcoin[END_REF] and Ethereum [START_REF]Ethereum[END_REF] which have a combined market capitalization exceeding $575 billion USD. Blockchain systems rely on a tamper-proof ledger, i.e., no entity can delete or modify ledger entries once they have been recorded, that is distributed and replicated across a network of nodes. Ledger entries are organized as a sequence of blocks, each block records a set of completed actions that are called transactions. The ledger establishes which transactions happened (e.g., Alice transferred 2 B coins to Bob as shown in Figure 1.4), and the order in which the transactions happened (e.g., Alice transferred 2 B coins to Bob, and then Bob transferred 2 $ coins to Alice as shown in Figure 1.4). To ensure that a distributed ledger remains secure and accessible to all parties, blockchain systems implementors use consensus protocols to determine the state of the ledger (i.e., nodes agree on this unique state), and cryptographic functions to keep a cryptographic audit trail ensuring the ledger integrity.

Smart Contracts

Several blockchains, most prominently Ethereum, allow the execution of application programs, called smart contracts, that are stored on the blockchain. As they offer autonomy for arbitrarilycomplex transactions between multiple parties, smart contracts are already powering a sizable economy: applications include decentralized finance [START_REF]Why defi utopia would be finance without financiers: quicktake[END_REF], supply chains [START_REF]Carrefour says blockchain tracking boosting sales of some products[END_REF], and insurance [START_REF]Blockchain is empowering the future of insurance[END_REF]. A smart contract resembles an object in an object-oriented programming language. It manages a permanent state stored on the blockchain. It is constituted of a set of functions that manipulate the state.

Functions can be called either directly by users or indirectly by other smart contracts, through transactions. They allow to perform arbitrarily-complex operations using cryptoassets stored on the blockchain. A concept that distinguishes smart contracts from standard software programs is: a smart contract is immutable once it is deployed on the blockchain, i.e., upgrading a deployed contract is extremely difficult due to the design of blockchain. Solidity [START_REF]Solidity, the contract-oriented programming language[END_REF] is the most popular Turing-complete high-level programming language for smart contracts, which is designed to target the Ethereum Virtual Machine [START_REF]Ethereum[END_REF].

Correctness

Although blockchain and smart contracts have received growing interests in both academia and industry in the recent years, the security of blockchain and smart contracts continue to be at the center of the discussion when applying them in new applications. This is because of the many exploitations targeting blockchain and smart contracts that caused expensive losses. For instance, [START_REF] Heilman | Eclipse attacks on bitcoin's peer-to-peer network[END_REF] shows the possibility of attacking a blockchain consensus protocol. In [START_REF] Atzei | A survey of attacks on ethereum smart contracts (sok)[END_REF][START_REF] Sergey | A concurrent perspective on smart contracts[END_REF][START_REF] Kolluri | Exploiting the laws of order in smart contracts[END_REF], the authors survey common bugs in smart contracts that caused big financial losses. Thus, it is important to ensure the correctness of both the blockchain infrastructures (e.g., consensus protocols) and the smart contracts that run on them before their deployment. In this dissertation, we focus on the verification of the correctness of smart contracts. We assume that smart contracts run on a blockchain infrastructure (including network communication, and the behavior of individual nodes) that satisfies its guarantees.

Problem Statement

Formal verification has the potential to mitigate against malicious exploitation of smart contracts.

However, scaling verification efforts to a large number of smart contracts is an important challenge.

In particular, while specifications that are specialized to each individual smart contract are useful for proving customized functional properties [START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF], generic specifications that can be applied to large classes of smart contracts would facilitate verifying contracts en masse. Ideally, the specification for a given class of smart contracts could be written once, and reused for the verification of each contract of that class.

Truly generic specifications must be sufficiently weak so that every correct contract in the given class adheres to its functional properties. Moreover, truly generic specifications must be independent from the state variables of any particular contract, since the state variables of other contracts in the same class generally differ in name, number, and type. Such generic specifications are however unsuited for existing verification tools like solc-verify [START_REF] Hajdu | solc-verify: A modular verifier for solidity smart contracts[END_REF], VeriSol [START_REF] Wang | Formal verification of workflow policies for smart contracts in azure blockchain[END_REF] and VerX [START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF], which suppose that input contracts are annotated with expressions that refer to state variables, e.g., preand post-conditions. This poses a scalability problem since deriving such annotations for each contract from class-wide generic specifications would be a manual labor-intensive process.

In this dissertation, we address this scalability challenge and introduce an approach for verifying unannotated smart contracts via automated semantic comparison against annotated smart contracts.

Our approach is motivated by the insight that many of the smart contracts instantiated on popular blockchains (e.g., Ethereum [166]) are variations on a relatively small number of canonical contracts and libraries implementing concepts like auction, escrow, tokens, and voting. Intuitively, many of these variations obey the principle of substitutability [122], meaning that they adhere to the functional properties captured by the annotations of their canonical counterparts.

State of the Art

Recently, blockchain and smart contracts attracted the interest of the formal verification community.

In particular, several recent work, e.g., [START_REF] Pîrlea | Mechanising blockchain consensus[END_REF][START_REF] Alturki | Towards a verified model of the algorand consensus protocol in coq[END_REF][START_REF] Braithwaite | Tendermint blockchain synchronization: Formal specification and model checking[END_REF][START_REF] Betarte | Towards a formally verified implementation of the mimblewimble cryptocurrency protocol[END_REF][START_REF] Li | Formalizing correct-byconstruction casper in coq[END_REF], use theorem provers such as Coq and TLA+ for the verification of the correctness of blockchain consensus protocols. In this dissertation, we assume the correctness of the blockchain infrastructure including the consensus protocols.

Existing work on smart contracts verification can be classified into two classes: (1) full automated techniques that require no manual intervention, and (2) semi-automated techniques. Full automated techniques, e.g., [START_REF] Grech | Madmax: surviving out-of-gas conditions in ethereum smart contracts[END_REF][START_REF] Kalra | ZEUS: analyzing safety of smart contracts[END_REF][START_REF] Tikhomirov | Smartcheck: Static analysis of ethereum smart contracts[END_REF][START_REF] Tsankov | Securify: Practical security analysis of smart contracts[END_REF][START_REF] He | Learning to fuzz from symbolic execution with application to smart contracts[END_REF][START_REF] Krupp | teether: Gnawing at ethereum to automatically exploit smart contracts[END_REF][START_REF] Luu | Making smart contracts smarter[END_REF][START_REF] Nikolic | Finding the greedy, prodigal, and suicidal contracts at scale[END_REF][START_REF] Torres | Osiris: Hunting for integer bugs in ethereum smart contracts[END_REF][START_REF] Grossman | Online detection of effectively callback free objects with applications to smart contracts[END_REF], are designed to verify correctness for bounded executions or for particular security properties (e.g., integer overflows) and cannot establish full functional correctness. Semi-automated techniques rely on user-provided functional specifications to establish full functional correctness, e.g., [START_REF] Amani | Towards verifying ethereum smart contract bytecode in isabelle/hol[END_REF][START_REF] Bhargavan | Formal verification of smart contracts: Short paper[END_REF][START_REF] Grishchenko | A semantic framework for the security analysis of ethereum smart contracts[END_REF][START_REF] Hirai | Defining the ethereum virtual machine for interactive theorem provers[END_REF][START_REF] Sergey | Temporal properties of smart contracts[END_REF][START_REF] Hajdu | solc-verify: A modular verifier for solidity smart contracts[END_REF][START_REF] Wang | Formal verification of workflow policies for smart contracts in azure blockchain[END_REF][START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF].

However, in this dissertation, we study the problem of verifying full functional correctness for smart contracts for which functional specifications do not exist.

Contribution

In this dissertation, we propose a technique for verifying unannotated smart contracts via automated semantic comparison against annotated canonical smart contracts. With a notion of comparison that implies substitutability, we can thus amortize the cost of manually annotating the canonical contracts by verifying a vast number of unannotated contracts. Our notion of behavioral refinement relates the input-output behavior of contracts' transactions, i.e., parameters and effects on storage, ignoring internal details like local memory and control flow. By proving that a given contract is a behavioral refinement of another, we guarantee the inheritance of behavioral properties, and in particular that the effects of any sequence of transactions obeys its canonical counterpart's functional properties.

Establishing behavioral refinement for unbounded transaction sequences relies on induction.

Akin to inductive invariants for safety properties, proofs of behavioral refinement use induction hypotheses called simulation relations [START_REF] Milner | Communication and concurrency[END_REF]. Essentially, a behavioral simulation relation identifies states of two contracts such that initial states are related; the same transaction applied to related states yields related states and identical effects; and related states are observationally equivalent, i.e., any function applied to both yields identical values.

Pos Neg

{S} C {S}

Simulation (S)

Simulation-checking Contract (C) We develop an algorithm for synthesizing behavioral simulation relations. The algorithm is constituted of two steps: a passive learning step generates candidate simulation relations, and a deductive verification step checks the validity of each candidate. Candidate generation can be demand-driven according to counterexample guided inductive synthesis [START_REF] Solar-Lezama | Combinatorial sketching for finite programs[END_REF], e.g., initially proposing the trivial simulation relating each pair of contract states, and incrementally proposing candidates which rule out spurious counterexamples from prior validation steps. sequences, unless such a pair yields distinct observations, in which case it is a counterexample to simulation. We then leverage off-the-shelf learning algorithms [START_REF] Padhi | Data-driven precondition inference with learned features[END_REF] by providing an oracle to evaluate candidate expressions against pairs of states, i.e., by executing such expressions on the blockchain.

To verify candidate simulation relations, we adopt a notion of product programs inspired by relational verification [START_REF] Barthe | Relational verification using product programs[END_REF]. In particular, we generate an auxiliary simulation-checking contract whose verification implies the validity of a given simulation relation. Intuitively, for each function f of the given unannotated contract, the simulation-checking contract provides a function which executes f in lockstep with its canonical contract's counterpart. Besides asserting the equality of effects and return-values, this function includes the candidate simulation as pre-and post-conditions, ultimately implying inductiveness. We verify the simulation-checking contract using off-the-shelf Solidity smart contracts verifiers [START_REF] Hajdu | solc-verify: A modular verifier for solidity smart contracts[END_REF]. In Figure 1.5 we illustrate the process of generating candidate simulation relations and verifying that they are indeed true simulation relations.

Empirically, we validate our approach by collecting dozens of Solidity-language smart contracts, identifying canonical contracts for several classes, annotating and verifying these canonical contracts with precise formal specifications, and synthesizing simulation relations from multiple variations of each class. Our implementation can correctly synthesize nontrivial simulation relations for many classes, and integrates off-the-shelf tools for example-guided learning and Solidity smart contracts verification.

Thesis Outline

The rest of this dissertation is organized as follows:

• In Chapter 2, we introduce some concepts necessary for describing the dissertation contributions.

• In Chapter 3, we study the relation between three distinct semantics of CC. We then study the robustness against substituting SER with CC and show its reduction to the reachability problem in concurrent programs under SER.

• In Chapter 4, we study the robustness against substituting SER with SI and show its reduction to the reachability problem in concurrent programs under SER. We then present a proof methodology for establishing robustness. Finally, we present an experimental evaluation.

• In Chapter 5, we study the robustness against substituting PC with CC and show its reduction to the robustness against substituting SER with CC. We then present a reduction of the robustness against substituting PC with SI to the reachability problem in concurrent programs under SER.

Finally, we present an experimental evaluation.

• In Chapter 6, we demonstrate an application of behavioral simulation to smart contracts.

We then develop an algorithm for synthesizing behavioral simulation relations. We develop a smart contract benchmark suite including variations of identified canonical contracts. We develop implementation of our approach. Finally, we evaluate our implementation, verifying functional properties for dozens of unannotated smart contracts.

• In Chapter 7, we summarize the contributions in the dissertation and discuss open problems and future research directions.

Chapter 2

Preliminary

Introduction

In this chapter, we present a set of formalisms that we use in Chapters 3, 4, and 5. In §2.2, we give the syntax of a simple programming language for application programs that we study in these chapters. Then, in §2.3, we present the program semantics setting. In particular, we formally define the serializability semantics. We also introduce the notions of serializable program executions and traces of serializable executions.

Program Syntax

We consider a simple programming language grammar which is defined in Figure 2 var represent a process identifier, a register, a label, and a shared variable, respectively. reg-expr is an expression over registers while bexpr is a Boolean expression over registers.

program counter. Multiple instructions can be associated with the same label which allows us to write non-deterministic programs and multiple goto statements can direct the control to the same label which allows us to mimic imperative constructs like loops and conditionals. We assume that the control cannot pass from one transaction to another without going as expected through begin and end instructions.

To simplify the technical exposition of the thesis, programs contain a bounded number of processes and each process executes a bounded number of transactions. A transaction may execute an unbounded number of instructions but these instructions concern a bounded number of variables, which makes it impossible to model SQL (select/update) queries that may access tables with a statically unknown number of rows. The thesis contributions can be extended beyond these restrictions.

Program Semantics

We formally define the semantics of a program P under a consistency model X using an LTS.

The states of the LTS are called configurations, and transitions between configurations are called execution steps. An execution of P is a run of the LTS.

Labeled Transition Systems

A labeled transition system (LTS) is defined as a tuple (Q, Σ, I, F, δ) where Q is the set of states, Σ is a set of alphabet labels,

I ⊆ Q is the set of initial states, F ⊆ Q is the set of terminal (final)
states, and δ ⊆ Q × Σ × Q is the transition relation. A run in the LTS is a sequence of transitions

q 0 a 1 → q 1 • • • an → q n ,
where q 0 ∈ I, q n ∈ F , and forall 0 ≤ i < n, (q i , a i+1 , q i+1) ∈ δ. When there exists a run to some state q ∈ Q, we say that q is reachable.

Serializability Semantics

In the semantics of a program under serializability (SER), a configuration keeps a single sharedvariable valuation (accessed by all processes) with the standard interpretation of read and write statements. Also, a configuration keeps a global lock to ensure that each transaction executes in isolation. Each process has a local configuration to keep registers valuation and the label of next instruction to execute. In the initial configuration, each shared-variable is set to some initial value ⊥. Only configurations where the global lock is set to 1 are considered final, meaning that the execution of a P can end at any time when no transaction is executing.

Formally, the semantics of a program P under serializability is defined using a LTS [P] CM = (C, Ev, gs 0 , C F , →) where C is the set of program configurations, Ev is the set of transition labels called events, gs 0 is the initial configuration, C F is the set of final program configurations, and

→⊆ C × Ev × C
is the transition relation. The set of events is defined by:

Ev = { begin(p, t), ld(p, t, x, v), isu(p, t, x, v), com(p, t) : p ∈ P, t ∈ T, x ∈ V, v ∈ D}
where begin and com label transitions corresponding to the start, resp., the end of a transaction, isu and ld label transitions corresponding to writing, resp., reading, a shared variable during some transaction.

In Figure 2.2, we list the transition relation (execution steps) →. The events labeling a transition are written on top of →. A begin transition will just set the global lock to 0 to signal that a transaction is executing while a com transition will set the global lock to 1. The set of serializable executions of a program P is denoted by Ex SER (P).

begin ∈ inst(ls(p).pc)

l = 0 s = ls(p)[pc → next(pc)] (ls, l, store) begin(p, t) ------→ (ls[p → s], l → 1, store) r := x ∈ inst(ls(p).pc) rval = ls(p).rval[r → store[x]] s = ls(p)[rval → rval, pc → next(pc)] (ls, l, store) ld(p, t, x, v) --------→ (ls[p → s], l, store) x := v ∈ inst(ls(p).pc) s = ls(p)[pc → next(pc)] (ls, l, store) isu(p, t, x, v) --------→ (ls[p → s], l, store[x → v]) end ∈ inst(ls(p).pc) l = 1 s = ls(p)[pc → next(pc)] (ls, l, store) com(p, t) ------→ (ls[p → s], l → 0, store)

Traces of Serializable Executions

A trace abstracts the order in which shared-variables are accessed inside a transaction and the order between transactions accessing different variables. Formally, the trace of a serializable execution ρ is obtained by (1) replacing each sub-sequence of transitions in ρ corresponding to the same transaction with a single "atomic macro-event" (p, t), and (2) adding several standard relations between these atomic macro-events to record the data-flow in ρ, e.g. which transaction wrote the value read by another transaction. The sequence of (p, t) events obtained in the first step is called a summary of ρ. We say that a transaction t in ρ performs an external read of a variable x if ρ contains an event ld(p, t, x, v) which is not preceded by a write on x of t, i.e., an event isu(p, t, x, v).

Also, we say that a transaction t writes a variable x if ρ contains an event isu(p, t, x, v), for some v.

The trace tr(ρ) = (τ, PO, WR, WW, RW) of a serializable execution ρ consists of the summary τ of ρ along with the program order PO, which relates any two events (p, t) and (p, t) that occur in this order in τ , write-read relation WR (also called read-from), which relates any two events (p, t)

and (p , t) that occur in this order in τ such that t performs an external read of x, and (p, t) is the last event in τ before (p , t) that writes to x (to mark the variable x, we may use WR(x)), the write-write order WW (also called store-order), which relates any two events (p, t) and (p , t) that occur in this order in τ and write to the same variable x (to mark the variable x, we may use WW(x)), the read-write relation RW (also called conflict), which relates any two events (p, t)

and (p , t) that occur in this order in τ such that t reads a value that is overwritten by t . The read-write relation RW is formally defined as RW(x) = WR -1 (x); WW(x) (we use ; to denote the standard composition of relations) and RW = x∈V RW(x).

We will present additional semantics of other consistency models later in the dissertation. In particular, the notions of trace under these semantics will be very different than the one under serializability. This is because the transition rules, i.e., events, are different from one semantics to another, and therefore, the definition of the dependency relations of a trace will differ from one semantics to another. Moreover, to facilitate the robustness comparison between serializability and other consistency models, the set of serializable traces will be enlarged to include traces that are equivalent, up to reordering of events that are not related by a dependency relation, to traces of serializable executions as defined above.

Chapter 3

Robustness Against Causal Consistency

Introduction

In this chapter, we investigate three models of causal consistency: causal memory (CM), causal convergence (CCv), and weak causal consistency (wCC). We study the robustness problem against one of these models relative to serializability. In §3.2, we outline the three consistency models and the robustness problem. In §3.3, we formally define the semantics for the three causal consistency models. We also define programs traces and executions under these semantics. In §3.4, we show that programs without write-write data race have the same behaviors under the three causal Consistency models. We also prove that if program admits a write-write data race under a variation of causal consistency, then it must admit a write-write data race under the other two variations. These results will allow us latter to derive the characterization of the robustness against wCC using the characterization of the robustness against CM. In §3.6, we define a class of robustness violations called minimal violations. In §3.7 and §3.8, we present a series of results that characterize the particular shapes of minimal violations for CCv and CM, respectively. Finally, in §3.10, we show a polynomial-time reduction of robustness checking to a reachability problem in a program running under sequential consistency.

t1 [z = 1 x = 1] t2 [y = 1] || t3 [x = 2 r1 = z] //0 t4 [r2 = y //1 r3 = x] //2 (a) CCv but not CM. t1 [x = 1] t2 [r1 = x] //2 || t3 [x = 2] t4 [r2 = x] //1 (b) CM but not CCv. t1 [x = 2] || t2 [x = 1] t3 [r1 = x] //2 t4 [r2 = x] //1
(c) wCC but not CM nor CCv.

Overview

In this section, we overview three variations of causal consistency introduced in the literature, weak causal consistency (wCC) [START_REF] Perrin | Causal consistency: beyond memory[END_REF][START_REF] Bouajjani | On verifying causal consistency[END_REF], causal memory (CM) [START_REF] Ahamad | Causal memory: Definitions, implementation, and programming[END_REF][START_REF] Perrin | Causal consistency: beyond memory[END_REF], and causal convergence (CCv) [START_REF] Burckhardt | Principles of eventual consistency[END_REF].

We illustrate the robustness problems against these models relative to serializability (SER).

The weakest variation of causal consistency, namely wCC, allows speculative executions and rollbacks of transactions which are not causally related (concurrent). For instance, the computation in Figure 3.1c is only feasible under wCC: the site on the right applies t2 after t1 before executing t3 and roll-backs t2 before executing t4. CCv and CM offer more guarantees. CCv enforces a total arbitration order between all transactions which defines the order in which delivered concurrent transactions are executed by every site. This guarantees that all sites reach the same state when all transactions are delivered. CM ensures that all values read by a site can be explained by an interleaving of transactions consistent with the causal order, enforcing thus PRAM consistency [START_REF] Lipton | PRAM: A scalable shared memory[END_REF] on top of wCC.

Contrary to CCv, CM allows that two sites diverge on the ordering of concurrent transactions, but both models do not allow roll-backs of concurrent transactions. Thus, CCv and CM are incomparable in terms of computations they admit. The computation in Figure 3.1a is not admitted by CM because there is no interleaving of those transactions that explains the values read by the site on the right: reading 0 from z implies that the transactions on the left must be applied after t3 while reading 1 from y implies that both t1 and t2 are applied before t4 which contradicts reading 2 from x.

However, this computation is possible under CCv because t1 can be delivered to the right after executing t3 but arbitrated before t3, which implies that the write to x in t1 will be lost. The CM computation in Figure 3.1b is not possible under CCv because there is no arbitration order that

p1 t1 [r1 = x //0 x = r1 + 1] || p2 t2 [r2 = x //0 x = r2 + 1]
(a) Lost Update (LU). [a = 1

x = 1 r1 = x] //2 || if (a == 1) [x = 2 r2 = x] //1 (d) Without transactions, non- robust only against CM. if (*) [x = 1] else [r1 = x] || if (*) [x = 2] else [r2 = x]
(e) Robust against both CM and CCv.

[x = 1] [r1 = y] || [r2 = x if (r2 == 1) y = 1]
(f) Robust against both CM and CCv. could explain both reads from x.

Notice that each of the computations in Figures 3.1a, 3.1b, and 3.1c contains a write-write race.

We show that the three causal consistency models coincide for programs containing no write-write races (i.e., concurrent transactions writing on a common variable), which explains why none of these computations is possible under all three models. We also show that if a program has a write-write race under one of these models, then it must have a write-write race under any of the other two models. This property is rather counter-intuitive since wCC is strictly weaker than both CCv and CM, and CCv and CM are incomparable (in terms of admitted behaviors).

We now discuss several examples of programs which are (non-) robust against both CM and CCv or only one of them. Robustness violations are presented in terms of "observable" behaviors, tuples of values that can be read in the different transactions and that are not possible under the serializability semantics (they correspond to traces with acyclic transactional happens-before). which have also been discussed in the literature on weak memory models, e.g. [START_REF] Alglave | Herding cats: Modelling, simulation, testing, and data mining for weak memory[END_REF]. The execution of Lost Update under both CM and CCv allows that the two reads of x in transactions t1 and t2 return 0 although this cannot happen under serializability. Also, executing Store Buffering under both CM and CCv allows that the reads of x and y return 0 although this would not be possible under serializability. These values are possible because the transaction in each of the processes may not be delivered to the other process.

Assuming for the moment that each instruction in Figure 3.2c and Figure 3.2d forms a different transaction, the values we give in comments show that the program in Figure 3.2c, resp., Figure 3.2d, is not robust against CCv, resp., CM. We associate a timestamp with each transaction, which will allow to fix an arbitration order between transactions. The values in Figure 3.2c are possible assuming that the timestamp of the transaction [x = 1] is smaller than the timestamp of [x = 2] (which means that if the former is delivered after the second process executes [x = 2], then it will be discarded).

Moreover, enlarging the transactions as shown in Figure 3.2c, the program becomes robust against

CCv. The values in Figure 3.2d are possible under CM because different processes do not need to agree on the order in which to apply transactions, each process applying the transaction received from the other process last. However, under CCv this behavior is not possible, the program being actually robust against CCv. As in the previous case, enlarging the transactions as shown in the figure leads to a robust program against CM.

The approach we use for tackling the robustness verification problem is based on a precise characterization of the set of robustness violations. For both CCv and CM, we show that it is sufficient to search for a special type of robustness violations, that can be simulated by serial computations of an instrumentation of the original program. These computations maintain the information needed to recognize the pattern of a violation that would have occurred in the original program under a causally consistent semantics (executing the same set of transactions). A surprising consequence of these results is that a program is robust against CM iff it is robust against wCC, and robustness against CM implies robustness against CCv. This shows that the causal consistency variations we investigate can be incomparable in terms of the admitted behaviors, but comparable in terms of the robust applications they support.

We end the discussion with several examples of programs that are robust against both CM and CCv. These are simplified models of real applications reported in [START_REF] Kurath | Analyzing Serializability of Cassandra Applications[END_REF]. The program in Figure 3.2e can be understood as the parallel execution of two processes that either create a new user of some service, represented abstractly as a write on a variable x or check its credentials, represented as a read of x (the non-deterministic choice abstracts some code that checks whether the user exists).

Clearly this program is robust against both CM and CCv since each process does a single access to the shared variable. Although we considered simple transactions that access a single shared variable this would hold even for "bigger" transactions that access an arbitrary number of variables. The program in Figure 3.2f can be thought of as a process creating a new user of some service and reading some additional data in parallel to a process that updates that data only if the user exists.

It is rather easy to see that it is also robust against both CM and CCv.

Causal Consistency

Program Semantics Under Causal Memory

Informally, the semantics of a program under causal memory is defined as follows. The shared variables are replicated across each process, each process maintaining its own local valuation of these variables. During the execution of a transaction in a process, the shared-variable writes are stored in a transaction log which is visible only to the process executing the transaction and which is broadcasted to all the processes at the end of the transaction1 . To read a shared variable x, a process p first accesses its transaction log and takes the last written value on x, if any, and then its own valuation of the shared variables, if x was not written during the current transaction.

Transaction logs are delivered to every process in an order consistent with the causal delivery relation between transactions, i.e., the transitive closure of the union of the program order (the order in which transactions are executed by a process), and the delivered-before relation (a transaction t 1 is delivered-before a transaction t 2 iff the log of t 1 has been delivered at the process executing t 2 before t 2 starts). By an abuse of terminology, we call this property causal delivery. Once a transaction log is delivered, it is immediately applied on the shared-variable valuation of the receiving process.

Also, no transaction log can be delivered to a process p while p is executing another transaction, we call this property transaction isolation.

p ∈ P, t ∈ T, x ∈ V, v ∈ D}
where begin and com label transitions corresponding to the start, resp., the end of a transaction, isu and ld label transitions corresponding to writing, resp., reading, a shared variable during some transaction, and del labels transitions corresponding to applying a transition log to the local state of the process issuing the transaction or to the state of another process that received the log. An event isu is called an issue while an event del is called a store.

The transition relation → is partially defined in Figure 3.3 (we will present additional constraints later in this section). The events labeling a transition are written on top of →. A begin transition will just reset the transaction log while an com transition will add the transaction log together with the transaction identifier to the set msgs of messages in transit. An ld transition will read the value of a shared-variable looking first at the transaction log log and then, at the shared-variable valuation store, while an isu transition will add a new write to the transaction log. Finally, a del transition represents the delivery of a transaction log that was in transit which is applied immediately on the shared-variable valuation store.

We say that an execution ρ satisfies transaction isolation if no transaction log is delivered to a process p while p is executing a transaction, i.e., if an event ev = del(p, t) occurs in ρ before an event ev = com(p, t) with t = t, then ρ contains an event ev = begin(p, t) between ev and ev . For an execution ρ satisfying transaction isolation, we assume w.l.o.g. that transactions executed by different processes do not interleave, i.e., if an event ev associated to a transaction t (an event of the process executing t or the delivery of the transaction log of t) occurs in ρ before ev = com(p , t), then ρ contains an event ev = begin(p , t) between ev and ev . Formally, we say that an execution ρ satisfies causal delivery if the following hold:

• for any event begin(p, t), and for any process p , ρ contains at most one event del(p , t),

Program Semantics Under Causal Convergence

Compared to causal memory, causal convergence ensures eventual consistency of process-local copies of the shared variables. Each transaction log is associated with a timestamp and a process applies a monotonically increasing transaction identifiers.

The execution in Figure 3.4a is not possible under causal convergence since t4 and t2 read 2 and 1 from x, respectively. This is possible only if t1 and t3 write x at p2 and p1, respectively, which contradicts the definition of del transition given in Figure 3.5 where we cannot have both t1 < t3 and t3 < t1 at the same time. Figure 3.4b shows an execution under CCv (we assume

t 1 < t 2 < t 3 < t 4
). Notice that del(p2, t1) did not result in an update of x because the timestamp t 1 is smaller than the timestamp of the last transaction that wrote x at p 2 , namely t 3 , a behavior that is not possible under CM. The two processes converge and store the same shared variable copy at the end of the execution.

Program Semantics Under Weak Causal Consistency

Compared to the previous semantics, wCC allows that reads of the same process observe concurrent writes as executing in different orders. Each process maintains a set of values for each shared variable, and a read returns any one of these values non-deterministically. Transaction logs are associated with vector clocks [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] which represent the causal delivery relation, i.e., a transaction t 1 is before t 2 in causal-delivery iff the vector clock of t 1 is smaller than the vector clock of t 2 .

We assume that transactions identifiers play the role of vector clocks, which are partially ordered according to some relation <. In applying the log of a transaction t on the local state of the receiving process p, the final set of values for each shared variable in p will be constituted of the value in the log of t and the values that were written by concurrent transactions (not related by causal delivery to t). wCC satisfies both causal delivery and transaction isolation.

Formally, in wCC semantics, the local valuation of the shared variables store : V → (D × T) * is a map that accepts a shared variable and returns a set of pairs. The pairs are constituted of values

Execution Summary

Let ρ be an execution under X ∈ {CCv, CM, wCC}, a sequence τ of events isu(p, t) and del(p, t) with p ∈ P and t ∈ T is called a summary of ρ if it is obtained from ρ by substituting every sub-sequence of transitions in ρ delimited by a begin and an com transition, with a single "macro-event" isu(p, t).

For example, isu(p1, t1)

• isu(p2, t3) • del(p1, t3) • del(p2, t1) • isu(p2, t4) • isu(p1, t2
) is a summary of the execution in Figure 3.4a.

We say that a transaction t in ρ performs an external read of a variable x if ρ contains an event ld(p, t, x, v) which is not preceded by a write on x of t, i.e., an event isu(p, t, x, v). Under CM and wCC, a transaction t writes a variable x if ρ contains an event isu(p, t, x, v), for some v. In Figure 3.4a, both t2 and t4 perform external reads and t2 writes to y. A transaction t executed by a process p writes x at process p if t writes x and ρ contains an event del(p , t) (e.g., in Figure 3.4a, t1 writes

x at p2). Under CCv, we say that a transaction t executed by a process p writes x at process p if t writes x and ρ contains an event del(p , t) which is not preceded by an event del(p , t) with t < t and t writing x (if it would be preceded by such an event then the write to x of t will be discarded).

For example, in Figure 3.4b, t1 does not write x at p2.

Trace

We define an abstract representation of executions that satisfy transaction isolation3 , called trace.

More precisely, the trace of an execution ρ is a tuple tr(ρ) = (τ, PO, WR, WW, RW, STO) where τ is the summary of ρ, PO is the program order, which relates any two issue events isu(p, t) and isu(p, t) that occur in this order in τ , WR is the write-read relation, which relates events of two transactions t and t such that t writes a value that t reads, WW is the write-write order, which relates events of two transactions that write to the same variable, RW is the read-write relation, which relates events of two transactions t and t such that t reads a value overwritten by t , and STO is the same-transaction relation, which relates events of the same transaction. PO: relates the issue and store events isu(p, t) and del(p, t) of t and subsequently, the event del(p, t) with any issue event isu(p, t) that occurs after it in τ .

WR: relates any store and issue events ev 1 = del(p, t) and ev 2 = isu(p, t) that occur in this order in τ such that t performs an external read of x, and ev 1 is the last event in τ before ev 2 such that t writes x at p. To make the shared variable x explicit, we may use WR(x) to name the relation between ev 1 and ev 2 .

WW: relates events of two transactions that write to the same variable. More precisely, WW relates any two store events ev 1 = del(p, t 1) and ev 2 = del(p, t 2) that occur in this order in τ provided that t 1 and t 2 both write the same variable x, and if ρ is an execution under causal convergence, then t 1 and t 2 writes x at p, and t 1 < t 2 . To make the shared variable x explicit, we may use WW(x) to name the relation between ev 1 and ev 2 .

RW: relates events of two distinct transactions t and t such that t reads a value that is overwritten by t . Formally, RW(x) = WR -1 (x); WW(x) and RW = x∈V RW(x). If a transaction t reads the initial value of x then RW(x) relates isu(p, t) with every event del(p , t) with p ∈ P of any other transaction t that writes to x at p . STO: relates issue events with store events of the same transaction. More precisely, STO relates every event isu(p, t) with every event del(p , t) with p ∈ P.

The following result states an important property of the store order relation WW that is enforced by the CCv semantics. It holds because the writes in different transactions are applied by different processes in the same order given by their timestamps, when visible (delivered) to those processes. Lemma 3.1. Let τ ∈ Tr CCv (P) be a trace. If (del(p 0 , t 0), del(p 0 , t 1)) ∈ WW(x), then for every process p, (del(p, t 1), del(p, t 0)) ∈ WW(x).

We define the happens-before relation HB as the transitive closure of the union of all the relations in the trace, i.e., HB = (PO ∪ WR ∪ WW ∪ RW ∪ STO) + . Since we reason about only one trace at a time, we may say that a trace is simply a summary τ , keeping the relations implicit. The trace of the CCv execution in Figure 3.4b is shown on the left of Figure 3.7. Tr(P) X denotes the set of traces of executions of a program P under X ∈ {CCv, CM, wCC}.

For readability, we write ev 1 → HB ev 2 instead of (ev 1 , ev 2) ∈ HB and ev 1 and ev 2 can be either isu(p, t) or del(p, t). We use the notation ev 1 → HB 1 ev 2 (resp., (ev 1 , ev 2) ∈ HB 1) to denote

(ev 1 , ev 2) ∈ (PO ∪ WW ∪ WR ∪ STO ∪ RW).
The causal order CO of a trace tr = (τ, PO, WR, WW, RW, STO) is the transitive closure of the union of the program order, write-read relation, and the same-transaction relation, i.e., CO = (PO ∪ WR ∪ STO) + . For readability, we write ev 1 → CO ev 2 instead of (ev 1 , ev 2) ∈ CO.

Let t 1 and t 2 be two transactions issued in a trace tr that originate from two different processes p 1 and p 2 , respectively. If (isu(p 1 , t 1), isu(p 2 , t 2)) ∈ CO and (isu(p 2 , t 2), isu(p 1 , t 1)) ∈ CO, then t 1 and t 2 are called concurrent transactions.

The happens-before relation between events is extended to transactions as follows: a transaction t 1 happens-before another transaction t 2 = t 1 if the trace tr contains an event of transaction t 1 which happens-before an event of t 2 . The happens-before relation between transactions is denoted by HB t and called ransactional happens-before (an example is given on the right of Figure 3.7). For a trace of serializable execution, the transactional happens-before and the happens-before relation coincide.

Remark 3.1. The operational models of causal consistency we described are equivalent to the axiomatic models defined in [START_REF] Bouajjani | On verifying causal consistency[END_REF]. These axiomatic models are defined as a set of constraints on abstractions of executions, called histories, that consist of a set of read and write operations along with a program order, denoted by PO , and a read-from relation, denoted by WR : PO relates operations in the same process and WR associates every read operation to the write operation which wrote the read value. For instance, the axiomatic model of wCC requires that the union of PO and WR (denoted CO) is acyclic 4 , and its composition with a variation of the conflict relation, denoted by RW , ((a, b) 6 . These models can be extended easily to histories that contain transactions instead of operations by adapting the above relations. Note that every program trace (cf. Definition 3.1) can be "projected" to a history where issue and store events from the same transaction in the trace are mapped to a single transaction in the history. Also, the read-from and the program order between trace events are mapped to the WR and PO of the history.

∈ RW 5 iff ∃ c. (c, b) ∈ CO ∧ (c, a) ∈ WR) is irreflexive
To show equivalence between these models, it is sufficient to show that (1) every history corresponding to a trace in the operational model satisfies the constraints of the axiomatic model, and [START_REF]Ethereum[END_REF] every history that is valid under the axiomatic model is the "projection" of a trace of the operational model. For instance, for wCC, it is easy to see that the relation CO = PO ∪ WR in a history that is the projection of a trace τ ∈ Tr wCC (P) is acyclic because the causal order CO in τ is. Also, the proof that CO ; RW is irreflexive can be derived easily by contradiction (for instance, if (a, b) ∈ RW and (b, a) ∈ CO , then there exists c such that (c, b) ∈ CO which means that by causal delivery, a can never read the value written by c).

Write-Write Race Freedom

We say that an execution ρ has a write-write race on a shared variable x if there exist two concurrent transactions t 1 and t 2 that were issued in ρ and each transaction contains a write to the variable x. We call ρ write-write race free if there is no variable x such that ρ has a write-write race on x. Also, we say a program P is write-write race free under a consistency model X ∈ {CCv, CM, wCC} iff for every ρ ∈ Ex X (P), ρ is write-write race free.

We show that if a given program has a write-write race under one of the three causal consistency models then it must have a write-write race under the remaining two. The intuition behind this is that the three models coincide for programs without write-write races. Indeed, without concurrent transactions that write to the same variable, every process local valuation of a shared variable will be a singleton set under wCC and no process will ever discard a write when applying an incoming transaction log under CCv. Theorem 3.1. Given a program P and two consistency models X, Y ∈ {CCv, CM, wCC}, P has a write-write race under X iff P has a write-write race under Y.

Proof. Since wCC is weaker than both CCv and CM, it is sufficient to prove the following two cases:

(1) if P has a write-write race under wCC, then P has a write-write race under CCv and (2) if P has a write-write race under wCC, then P has a write-write race under CM.

We prove the first case by induction on the number of transactions in P. The second case can be proved in a similar way.

Base case: P is constituted of two transactions t 1 and t 2 . Assume that P has a write-write race under wCC then the transactions t 1 and t 2 must originate from different processes. Thus, in any trace τ of P under CCv where the transactions t 1 and t 2 are executed concurrently we will have a write-write race between these two transactions. Thus, P has a write-write race under CCv.

Induction step:

If n > 2 is the number of transactions in P, we assume that for any program P with n < n transactions, if P has a write-write race under wCC, then P has a write-write race under CCv. Assume that P has a write-write race under wCC. Let τ be a trace of P under wCC where we have a write-write race between two transactions t 1 and t 2 that were issued by processes p 1 and p 2 , respectively. Executing t 1 and t 2 concurrently while writing to a common variable is not possible under CCv only if the writes were enabled by some events that occurred before t 1 and t 2 under wCC and are not possible under CCv. However, based on the semantic models of both wCC and CCv, if all the transactions that write to common variables are causally related then such events cannot occur under wCC but not CCv. Thus, we must have two other transactions t 1 and t 2 of P that were executed concurrently in τ under wCC and occurred before t 1 (or t 2 or both) which write to a common variable. Without loss of generality, let P 1 be the program resulting from removing the transaction t 1 from P. We know that P 1 admits a trace τ 1 under wCC where the transactions t 1 and t 2 are involved in a data race. Also, the size of P 1 is n -1 < n. Thus, from the induction hypothesis we get that P 1 has a write-write race under CCv. Because adding a new transaction to P 1 will not eliminate existing data races, P has a write-write race under CCv as well.

The following result shows that indeed, the three causal consistency models coincide for programs which are write-write race free under any one of these three models. Theorem 3.2. Let P be a program. Then, Ex wCC (P) = Ex CCv (P) = Ex CM (P) iff P has no write-write race under neither wCC, CM, and CCv.

Proof. Left-to-right direction: By Theorem 3.1, it is sufficient to prove that P has no write-write race under CM. Suppose by contradiction that P has a write-write race under CM. Then, there must exist a trace τ ∈ Tr wCC (P) such that we have two concurrent transactions t 1 and t 2 that are issued in τ and write to a variable x. Assume w.l.o.g that the issue event of t 1 occurs before the issue event of t 2 in τ . Since t 1 and t 2 are concurrent in τ , the issue event of t 1 and the store events of t 2 are commutative, and the issue event of t 2 and the store events of t 1 are commutative.

Then, τ = α • isu(p 1 , t 1) • del(p 1 , t 1) • β • isu(p 2 , t 2) • del(p 2 , t 2) • del(p 1 , t 2) • del(p 2 , t 1)
where α and β are sequences of events in τ that t 1 and t 2 causally depend on (since we are not interested in other events) 7 , is a trace of P under CM. In τ , both store events del(p 2 , t 1) and del(p 1 , t 2) do not discard any writes (guaranteed under CM). Therefore, (del(p 1 , t 1), del(p 1 , t 2)) ∈ WW(x) and (del(p 2 , t 2), del(p 2 , t 1)) ∈ WW(x) since both t 1 and t 2 write to x. However, it is impossible to obtain

τ under CCv as we cannot have (del(p 2 , t 2), del(p 2 , t 1)) ∈ WW(x) if (del(p 1 , t 1), del(p 1 , t 2)) ∈ WW(x)
which leads to a contradiction (P has different sets of traces under CM and CCv). Let τ ∈ Tr wCC be a trace under wCC. Then, τ satisfies transactions isolation and causal delivery. It is important to notice that if τ has no write-write race then the contents of store at a given variable will contain a single value at any time during τ . This implies that store can be simulated by a single value memory which does not discard writes. Thus, we obtain a program semantics that is the same as the one for CM. Thus, τ is also a trace of P under CM. To prove that τ ∈ Tr CCv , we also need to ensure that the transitive closure of store order in τ is acyclic which is enough to guarantee the existence of a total arbitration between transactions which is ensured by CCv semantics. Suppose by contradiction that the transitive closure of store order is cyclic then there must exist a sequence of events ev 1 • ev 2 • . . . ev n in τ such that (ev i , ev i+1) ∈ WW, for all 1 ≤ i ≤ n -1 and (ev n , ev 1) ∈ WW.

Right

Since τ has no write-write races then (ev i , ev i+1) ∈ WW implies that the issue events corresponding to ev i and ev i+1 must be related by causal ordered (since the corresponding transactions must be causally related to prevent concurrency which will lead to write-write races for transactions that write to a common variable). For all i s.t. 1 ≤ i ≤ n -1, let ev i and ev i+1 denote these issue events then (ev i , ev i+1) ∈ CO which implies that the causal order CO is cyclic. This is a contradiction since it is not possible under wCC. Thus, there exists a total order between transactions in τ that includes both the causal order and the transitive closure of store order. Thus, τ is also a trace of P under CCv.

p1: t1: [r = y x = 1] || p2: t2: [y = 2] isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1) RW isu(p1, t1) del(p1, t1) del(p2, t1) (p2, t2) RW Figure 3
.8: Two executions of the same serializable trace.

Program Robustness

Let tr = (τ, PO, WR, WW, RW, STO) be a trace such that every event isu(p, t) in τ is immediately followed by all del(p , t) with p ∈ P. For simplicity, we write τ as a sequence of "atomic macroevents" (p, t) where (p, t) denotes a sequence isu(p, t)

• del(p, t) • del(p 1 , t) • . . . • del(p n , t) with P = {p, p 1 , . . . , p n }.
We say that t is atomic. Then, (τ, PO, WR, WW, RW) is a trace of a serializable execution as defined in Section 2.3. In Figure 3.7, t3 is atomic and we can use (p2, t3) instead of

isu(p2, t3) • del(p2, t3) • del(p1, t3).
The following result characterizes traces of serializable executions, and follows from previous works [START_REF] Adya | Weak consistency: A generalized theory and optimistic implementations for distributed transactions[END_REF][START_REF] Shasha | Efficient and correct execution of parallel programs that share memory[END_REF] that considered a notion of history/trace that corresponds to our notion of transactional happens-before. The transactional happens-before of any trace under SER is acyclic, and conversely, any trace obtained under a weaker semantics X ∈ {CCv, CM, wCC} with an acyclic transactional happens-before can be transformed into a trace under SER by successive swaps of consecutive events in its summary, which are not related by happens-before (the happens-before relations remain the same). Indeed, note that multiple executions/traces can have the same (transactional) happens-before (an example for traces is given in Figure 3.8). In particular, it is possible that a trace tr produced by a variation of causal consistency has an acyclic transactional happens-before even though isu(p, t) events are not immediately followed by the corresponding del(p , t) events.

However, tr would be equivalent, up to reordering of consecutive summary events that are not related by happens-before, to a trace serializable execution.

Theorem 3.3 ([25, 156]). For any trace tr ∈ Tr SER (P), the transactional happens-before of tr is acyclic. Moreover, for any trace tr = (τ, PO, WR, WW, RW, STO) ∈ Tr X (P) with X ∈ {CCv, CM, wCC}, if the transactional happens-before of tr is acyclic, then there exists a permutation τ of τ such that (τ , PO, WR, WW, RW, STO) ∈ Tr SER (P).

As a consequence of Theorem 3.3, we define a trace tr to be serializable if it has the same happensbefore relations as a trace of a serializable execution. Let Tr SER (P) denote the set of serializable traces of a program P.

We now consider the problem of checking whether the causally-consistent semantics of a program produces only serializable traces (it produces all serializable traces because every issue event can be immediately followed by all the corresponding store events).

Definition 3.2. A program P is called robust against a semantics X ∈ {CCv, CM, wCC} relative to serializability iff Tr X (P) = Tr SER (P).

A trace tr ∈ Tr X (P) \ Tr SER (P) is called a robustness violation (or violation, for short). By Theorem 3.3, the transactional happens-before HB t of tr is cyclic.

Minimal Violations

We define a class of robustness violations called minimal violations. The particular shapes of these violations, that we determine through a series of results in this section, §3.7, and §3.8, enables a polynomial-time reduction of robustness checking to a reachability problem in a program running under serializability.

For simplicity, we use "atomic macro-events" (p, t) even in traces obtained under causal consistency (recall that this notation was introduced to simplify serializable traces), i.e., we assume that any sequence of events formed of an issue isu(p, t) followed immediately by all the store events del(p , t) is replaced by (p, t). Then, all the relations that held between an event ev of such a sequence and another event ev , e.g., (ev, ev) ∈ PO, are defined to hold as well between the corresponding macro-event (p, t) and ev , e.g, ((p, t), ev) ∈ PO.

Happens-Before Through Relation

To decide if two events in a trace are "independent" (or commutative) we use the information about the existence of a happens-before relation between the events. If two events are not related by happens-before then they can be swapped while preserving the same happens-before. Thus, we extend the happens-before relation to obtain the happens-before through relation as follows:

Definition 3.3. Let τ = α • a • β • b
• γ be a trace where a and b are events (or atomic macro events), and α, β, and γ are sequences of events (or atomic macro events) under a semantics X ∈ {CCv, CM}.

We say that a happens-before b through β if there is a non empty sub-sequence

c 1 • • • c n of β that satisfies: c i → HB 1 c i+1 for all i ∈ [0, n]
where

c 0 = a, c n+1 = b.
The following result shows that any two events in a trace which are not related via the happensbefore through relation can be reordered without affecting the happens-before or they can be placed one immediately after the other.

Lemma 3.2. Let τ be a trace of a program P under a semantics X ∈ {CCv, CM}, and a and b be

two events such that τ = α • a • β • b • γ.
Then, one of the following holds:

1. a happens-before b through β;

2. τ = α • β 1 • a • b • β 2 • γ ∈ Tr X (P)
where (a, b) ∈ HB 1 has the same happens-before as τ ;

3. τ = α • β 1 • b • a • β 2 • γ ∈ Tr X (P)
has the same happens-before as τ .

Proof. We prove that ¬(1) ⇒ ((2) or (3)) using induction on the size of β. First case: suppose that a does not happen before c through β 1 and a and c are not HB 1related. Using the induction hypothesis over τ n+1 with respect to a and c (since

Base case:

If |β| = 0, then τ = α • a • b • γ,
|β 1 | ≤ n) results in τ n+1 = α • β 11 • c • a • β 12 • b • γ that
τ n+1 = α•β 11 •c•β 121 •a•b•β 122 •γ
which has the same happens-before as τ n+1 , otherwise.

Second case: suppose c and b are not HB 1 -related. We apply the induction hypothesis to τ n+1 with respect to c and b, and we get

τ n+1 = α • a • β 1 • b • c • γ with the same happens-before as τ n+1 .
As we already know that a does not happen before b through β then a does not happen before b through β 1 . Subsequently by using the induction hypothesis over τ n+1 with respect to a and b, we

obtain τ n+1 = α • β 11 • b • a • β 12 • c • γ
where τ n+1 has the same happens-before as τ n+1 , if a and b

are not HB 1 -related, or τ n+1 = α • β 11 • a • b • β 12 • c • γ
where τ n+1 has the same happens-before as τ n+1 , otherwise.

We show next that a robustness violation should contain at least an issue and a store event of the same transaction that are separated by another event that occurs after the issue and before the store and which is related to both via the happens-before relation. Otherwise, since any two events which are not related by happens-before could be swapped in order to derive a trace with the same happens-before, every store event could be swapped until it immediately follows the corresponding issue and the trace would be serializable.

Lemma 3.3. Given a violation τ , there must exist a transaction t such that

τ = α • isu(p, t) • β • del(p 0 , t) • γ and isu(p, t) happens-before del(p 0 , t) through β.
Proof. Assume by contradiction that the lemma does not hold. For every transaction t of τ suppose there exist p ∈ P such that del(p , t) does not occur immediately after isu(p, t). Thus,

τ = α • isu(p, t) • β • del(p , t) • γ, and (isu(p, t), del(p , t)) ∈ STO ⊂ HB 1 . From Lemma 3.2, τ = α • β 1 • isu(p, t) • del(p , t) • β 2
• γ has the same happens-before as τ (since isu(p, t) does not happens-before del(p , t) through β). Then, the trace τ * where for every transaction t of τ the store events occur immediately after the issue event has the same happens-before as τ . Thus, τ * is serializable which means that its HB t is acyclic which contradicts the fact that τ is a violation.

The transaction t in the trace τ above is called a delayed transaction. The happens-before constraints imply that t belongs to a transactional happens-before cycle in the trace. In the remainder of the chapter, when given a violation

τ = α • isu(p, t) • β • del(p 0 , t)
• γ, we assume that t is the first delayed transaction in τ .

Minimal Violations

Given a trace τ = α•b•β •c•ω containing two events b = isu(p, t) and c, the distance between b and c, denoted by d τ (b, c), is the number of events in β that are causally related to b, excluding events that correspond to the delivery of t, i.e.,

d τ (b, c) = |{d ∈ β | (b, d) ∈ CO ∧ d = del(p , t) for every p ∈ P}|
The number of delays #(τ) in a trace τ is the sum of all distances between issue and store events that originate from the same transaction:

#(τ) = isu(p,

Remark 3.2. It is important to note that a non-robust program can admit multiple minimal vi-

olations with different happens-before relations. For instance, Figure 3.9 pictures two minimal violations that do not have the same happens-before and both traces have 0 delays. In the trace in Figure 3.9b a single transaction is delayed while in the trace in Figure 3.9c two transactions are delayed and are not causally related. For the trace τ 1 in Figure 3.9b, we have that #(τ 1) =

d τ 1 (isu(p2, t2), del(p2, t2)) + d τ 1 (isu(p2, t2), del(p3, t2)) = 0. For the trace τ 2 in Figure 3.9c, we have that #(τ 2) = d τ 2 (isu(p1, t1), del(p1, t1)) + d τ 2 (isu(p1, t1), del(p3, t1)) + d τ 2 (isu(p2, t2), del(p3, t2)) = 0.
Hence, the number of delays for both cases is 0.

p1: t1: [x = 1 r1 = y] || p2: t2: [y = 2 r2 = z] || p3: t3: [z = 3 r3 = x r4 = y] (a) A program. isu(p2, t2) del(p2, t2) (p3, t3) del(p3, t2) (p1, t1) RW RW RW ST O (b) A minimal violation of (a). isu(p1, t1) del(p1, t1) isu(p2, t2) del(p2, t2) del(p1, t2) (p3, t3) del(p3, t2) del(p3,

Given a minimal violation

τ = α • isu(p, t) • β • del(p 0 , t)
• γ, the following lemma shows that we can assume w.l.o.g. that γ contains only store events from transactions that were issued before

del(p 0 , t) in τ . Lemma 3.4. Let τ = α • isu(p, t) • β • del(p 0 , t) • γ be a minimal violation such that isu(p, t) happens- before del(p 0 , t) through β. Then, τ = α • isu(p, t) • β • del(p 0 , t)
• γ , such that γ contains only store events from transactions that were issued before del(p 0 , t) in τ , is also a minimal violation.

Proof. The prefix α • isu(p, t) • β • del(p 0 , t) has a cyclic transactional happens-before and it is already a minimal violation independently of whether γ contains additional transactions.

The following result shows that for every minimal violation, we can extract another minimal violation of the shape

τ = α • isu(p, t) • β • (p , t) • del(p , t) • γ such that (isu(p, t), (p , t)) ∈ HB, and
((p , t), del(p , t)) ∈ HB 1 .
Lemma 3.5. If P is a program that is not robust against some X ∈ {CCv, CM, wCC}, then its set of traces under the semantics X must admit a minimal violation of the shape

τ = α • isu(p, t) • β • (p , t) • del(p , t) • γ such that (isu(p, t), (p , t)) ∈ HB and ((p , t), del(p , t)) ∈ HB 1 . Proof. Let τ = α • isu(p, t) • β • del(p 0 , t)
• γ be a minimal violation of P, such that isu(p, t) happensbefore del(p 0 , t) through β. By Lemma 3.4, we assume that γ contains only store events. We prove by induction on the size of β that P admits another minimal violation against X of the form τ =

α •isu(p 1 , t 1)•β •(p 2 , t 2)•del(p 2 , t 1)•γ such that (isu(p 1 , t 1), (p 2 , t 2)) ∈ HB, ((p 2 , t 2), del(p 2 , t 1)) ∈ HB 1 ,
and τ is a permutation of a subsequence of τ .

Note that isu(p, t) happens-before del(p 0 , t) through β implies that there exists a sub-sequence

c 1 • • • c n of β that satisfies: c i → HB 1 c i+1 for all i ∈ [0, n] where c 0 = isu(p, t), c n+1 = del(p 0 , t).
Then, we have three possibilities for c n : (p , t), isu(p , t), or del(p 0 , t).

Base case: |β|

= 1 implies that β = c n . If c n = (p , t) then τ is a minimal violation s.t. isu(p, t) → HB (p , t) and (p , t) → HB 1 del(p 0 , t). If c n = isu(p , t
) then we regroup together the issue event isu(p , t) with its store events obtaining τ = α • isu(p, t) • (p , t) • del(p 0 , t) • γ to be a minimal violation as well (since the transactional happens-before of the trace resulting from reordering store events in del(p 0 , t) • γ will always be cyclic). Since (p , t

) → HB 1 del(p 0 , t) implies that (p , t) → HB 1 del(p , t) ∈ γ, then τ = α • isu(p, t) • (p , t) • del(p , t) • γ
, where the two store events del(p , t) and del(p , t) are reordered, is a minimal violation. c n = del(p 0 , t) is not possible since t is the first delayed transaction in τ .

Induction step:

We assume that the induction hypothesis holds for |β| ≤ m. The case c n = (p , t) is trivial. If c n = isu(p , t) then removing the issue events that occur after c n will not impact the happens-before. Thus, we remove every issue and atomic marco event that occurs after isu(p , t) with all their store events and regroup together the event isu(p , t) with its store events

obtaining τ = α • isu(p, t) • β • (p , t) • del(p 0 , t)
• γ to be a minimal violation. Similar to before,

τ = α • isu(p, t) • β • (p , t) • del(p , t) • γ is a minimal violation.
If c n = del(p 0 , t), then the corresponding issue event isu(p , t) must occur in β (α contains only atomic macro events because t is the first delayed transaction). If isu(p , t) does not happen before del(p 0 , t) (or any store event of t in β • del(p 0 , t) • γ) through a subsequence of β (resp.,

β • del(p 0 , t) • γ)
then we can regroup together the issue and store events of t and get that τ =

α • isu(p, t) • β • (p , t) • β • del(p 0 , t) • γ is a minimal violation. Otherwise, if isu(p , t) happens-before del(p 0 , t) through a subsequence of β, then τ can be written as τ = α • isu(p, t) • β 1 • isu(p , t) • β 2 • del(p 0 , t) • β 3 • del(p 0 , t) • γ. Note that if there exists an issue event isu(p 1 , t 1) in β 1 • isu(p , t) • β 2 s.t. (isu(p 1 , t 1), del(p 0 , t)) ∈ RW (or (isu(p1, t1), del(p 1 , t)) ∈ RW) then similar to before the following trace τ = α•isu(p, t)•β •(p 1 , t 1)•del(p 0 , t)•γ (resp., τ = α•isu(p, t)•β •(p 1 , t 1)•del(p 1 , t)•γ) is a minimal
violation. Assume now that there does not exist an issue event isu(p 1 , t 1). Then, let isu(p 2 , t 2) be the first issue event in isu(p, t) overwrites. We can remove every issue event and atomic marco event which occur after del(p 3 , t 2) with all related stores:

• β 1 • isu(p , t) s.t. τ = α • isu(p, t) • β 1 • isu(p 2 , t 2) • β 2 • del(p 3 , t 2) • β 3 • γ
τ = α • isu(p, t) • β 1 • isu(p 2 , t 2) • β 2 • del(p 3 , t 2)
• γ where γ contains only store events is a minimal violation. Then, not delaying the transactions in isu(p, t) • β 1 does not affect the reads in

β 1 • isu(p 2 , t 2) • β 2 , and thus, we get that τ = α • (p, t) • β 1 • isu(p 2 , t 2) • β 2 • del(p 3 , t 2) • γ ,
where t 2 is the first delayed transaction in τ and isu(p

2 , t 2) happens-before del(p 3 , t 2) through β 2 , is a minimal violation. Note that |β 2 | < |β| = m + 1,

and we can apply the induction hypothesis to

τ and conclude the proof.

Next, we show that a program which is not robust against CCv or CM admits violations of particular shapes. For the remainder of the chapter, we write a minimal violation in the shape

τ = α A • isu(p, t) • β • (p , t) • del(p , t)
• γ S to say that all the events in the sequence α A are atomic macro events and all the events in the sequence γ S are store events. As before, we assume that t is the first delayed transaction in τ , and by Lemma 3.5, we assume that (isu(p, t), (p , t)) ∈ HB and τ CCv1:

α A isu(p, t) • del(p, t) • β (p , t) • del(p , t) • γ S HB \ CO ∀ CO ∀ WW(y) RW(y) τ CCv2: α A isu(p, t)| ¬x • β 1 | ¬x isu(p 1 , t 1) • β 2 (p , t) • del(p , t) • γ S HB \ CO ∀ CO RW(x) ∪ (STO; WW(x)) ∃ HB ∀ RW(y = x) Figure 3.10: Robustness violation patterns under CCv. We use a R ---→ ∀ β to denote ∀ b ∈ β. (a, b) ∈ R. We use β 1 | ¬x to
say that all delayed transactions in β 1 do not access x. For violation τ CCv1 , t is the only delayed transaction. For τ CCv2 , all delayed transactions are in isu(p, t) • β 1 • isu(p 1 , t 1) and they form a causality chain that starts at isu(p, t) and ends at isu(p 1 , t 1). τ CCv2 (resp., τ CM2) violation where t and t 1 coincide and correspond to t1. Also, β 1 = , β 2 = (p2, t2), γ S = , such that (isu(p1, t1), (p2, t2)) ∈ RW(y) and ((p2, t2), del(p2, t1)) ∈ RW(x). In all traces, we show only the relations that are part of the happens-before cycle.

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1) WW RW (a) Violation of LU program in Figure 3.2a. isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1) RW RW (
((p , t), del(p , t)) ∈ HB 1 .

Robustness Violations Under Causal Convergence

In this section, we present a precise characterization of minimal violations under CCv. In particular, we show that in these violations, the first delayed transaction (which must exist by Lemma 3.3) is followed by a possibly-empty sequence of delayed transactions that form a "causality chain", i.e., the issue of every new delayed transaction is causally ordered after the issue of the first delayed transaction. Also, we show that the issue event of the last delayed transaction happens-before an event of another transaction that reads a variable updated by the first delayed transaction (which implies a cycle in the transactional happens-before). This characterization will allow us to build a monitor for detecting the existence of robustness violations that is linear in the size of the input program.

Next, we give a precise definition of the "causality chain". It consists of a sequence of issue events such that the first issue is causally ordered before every other issue event and every issued transaction is delivered to the process executing the next issue event in the chain, before this issue event executes.

Definition 3.5. We say that a sequence of issue events ev 1 • ev 2 • . . . ev n forms a causality chain that starts with ev 1 and ends at ev n in a trace τ if the followings hold:

1. (ev 1 , ev i) ∈ CO, for all 2 ≤ i ≤ n 2. for all 1 ≤ i ≤ n -1 such that ev i = isu(p i , t i), ev i+1 = isu(p i+1 , t i+1
), the store event del(p i+1 , t i) occurs before the issue event ev i+1 in τ .

The characterization of robustness violations under CCv is stated in the following theorem and pictured in Figure 3.10.

Theorem 3.4. A program P is not robust under

CCv iff there exists a minimal violation in Tr(P) CCv of one of the following forms: (e) all delayed transactions in isu(p, t) • β 1 do not access the variable x (Lemma 3.9).

1. τ CCv1 = α A • isu(p, t) • del(p, t) • β 2 • (p , t) • del(p ,

τ

CCv2 = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p ,
Above, τ CCv1 contains a single delayed transaction while τ CCv2 may contain arbitrarily many delayed transactions. In τ CCv1 the store event del(p, t) of the only delayed transaction happens before (p , t) which is conflicting with t, thus resulting in a cycle in the transactional happensbefore. In τ CCv2 the issue event of the last delayed transaction t 1 , which is causally ordered after the issue of the first delayed transaction t, happens before (p , t) which is conflicting with t, thus resulting in a cycle in the transactional happens-before as well. The theorem above allows α A = , The minimality of the violation enforces the constraints stated above. For example, in the context of τ CCv2 , the delayed transactions in β 1 cannot create a cycle in the transactional happensbefore (otherwise, there exists a sequence of store events γ S such that

β 1 = , β 2 = , β = , γ S = , p = p 1 , t = t 1 ,
α A • isu(p, t) • del(p, t) • β 1 • del(p 0 , t) • γ S is
a violation with a smaller measure, which contradicts minimality). Moreover, (c) implies that β 2 contains no stores of delayed transactions from β 1 . If this were the case, then these stores can either be reordered after del(p , t) or if this is not possible due to happens-before constraints, then there would exist an issue event which is after such a store in the happens-before order and thus causally after isu(p, t), which would contradict the fact that isu(p 1 , t 1) is the last issue event in τ that is causally ordered after isu(p, t). Also, if it were to have a delayed transaction t 2 in β 2 (resp., β for τ CCv1), then it is possible to remove some transaction (the issue and all its store events) from the original trace and obtain a new violation trace with a smaller number of delays. For instance, in the case of β 2 , if t 1 = t, then we can remove the events of the last delayed transaction (i.e., t 1), that is causally related to isu(p, t), since all events in β 2 • del(p 0 , t) • γ S neither read from the writes of t 1 nor are issued by the same process as t 1 (because of the HB \ CO relation between events β 2 and isu(p 1 , t 1)). The resulting trace is still a robustness violation (because of the transactional happens-before cycle involving t 2 since it is delayed in β 2) but with a smaller measure.

Note that all processes that delayed transactions, stop executing new transactions in β 2 (resp., β)

because of the relation HB \ CO, shown in Figure 3.10, between the delayed transaction t 1 (resp., t) and events in β 2 (resp., β).

In the following we give a series of lemmas that collectively imply Theorem 3.4. Next lemma gives the decomposition of minimal violations under CCv into two possible patterns. It also characterizes the nature of the happens-before dependencies in these traces. For instance, we show that the last dependency in the happens-before cycle is always a conflict dependency. The lemma proof starts with a minimal violation as characterized in Lemma 3.5 and uses induction to show that we can always obtain a minimal violation which follows one of the two patterns. The induction is based on the size of the sequence of events between the issue and delayed store events of the first delayed transaction (the sequence β in Lemma 3.5).

Lemma 3.6. If P is a program that is not robust under CCv, then it must admit a minimal violation τ that satisfies one of the following:

1. τ = α A • isu(p, t) • del(p, t) • β • (p , t) • del(p , t) • γ S where: (a) ∃ y. s.t. (del(p, t), (p , t)) ∈ WW(y) and ((p , t), del(p , t)) ∈ RW(y); (b) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p , t)) ∈ CO. 2. τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S where: (a) isu(p 1 , t 1) is the last issue event in {c ∈ β | (isu(p, t), c) ∈ CO}; (b) ∃ x,
Proof. Let τ = α A •isu(p, t)•β •(p , t)•del(p , t)•γ S be a minimal violation under CCv (cf. Lemma 3.5).
We prove by induction on the size of β that there exists a minimal violation trace τ that satisfies [START_REF]Bitcoin[END_REF] or [START_REF]Ethereum[END_REF] We use Tccv1 and Tccv2 to denote the class of minimal violations that satisfy the first and second case in Lemma 3.6, respectively. The following lemma shows that we can always obtain a minimal violation trace in either Tccv1 or Tccv2 where β and β 2 contain no delayed transactions, respectively. We distinguish two cases in the proof: i) a minimal violation in Tccv2 where t and t 1 are distinct transactions, and ii) a minimal violation in Tccv1 or in Tccv2 where t and t 1 coincide.

In the first case, we show that if it were to have a delayed transaction in β 2 , then it is possible to remove some transaction from τ that is causally dependent on the first delayed transaction in τ , and obtain a new violation with a smaller number of delays (which contradicts the minimality assumption). The second case is proved by induction on the size of β (note that if t and t 1 coincide, then β = β 2) where the base case is trivial (i.e., β =), and in the induction step, we show that if it were to have a delayed transaction in β then we can remove one of the delayed transactions in the trace and obtain another violation with the same number of delays as the original violation and for which we can apply the induction hypothesis. Proof. We consider two cases: i) τ in Tccv2 where t 1 and t are two distinct transactions, ii) τ in Tccv1 or τ in Tccv2 where t 1 and t coincide. We prove the first case by contradiction and the second case by induction on the size β (we abused terminology here and considered β 2 = β since β 1 = in the second case).

First case:

let τ = α A •isu(p, t)•β 1 •isu(p 1 , t 1)•β 2 •(p , t)•del(p , t)
•γ S and suppose by contradiction that β 2 contains a delayed transaction t 0 issued by a process q = p. W.l.o.g., we assume that the delayed store events of t 0 occur in β 2 . Thus,

β 2 = β 21 • isu(q, t 0) • β 22 • del(q , t 0) • β 23 and τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 21 • isu(q, t 0) • β 22 • del(q , t 0) • β 23 • (p , t) • del(p , t) • γ S . In τ ,
isu(q, t 0) happens-before del(q , t 0) through β 22 . Hence, we deduce that we can get a robustness violation when the event del(q , t 0) is executed, thus we can remove all issued transactions from

β 23 • (p , t
) except stores of already issued transactions and we obtain:

τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 21 • isu(q, t 0) • β 22 • del(q , t 0) • β 23 • del(p , t)
• γ S which is a minimal violation because isu(q, t 0) happens-before del(q , t 0) through β 22 and its number of delays is less or equal to the one of τ . We know that in

β 21 • isu(q, t 0) • β 22 • del(q , t 0) • β 23 • del(p , t)
• γ S there are no transactions from the process p 1 or that see the effect of transactions from p 1 (because of the HB \ CO relation between events β 2 and isu(p 1 , t 1)). Therefore, isu(p 1 , t 1) is the last issued transaction from p 1 and we do not have any transaction in τ that depends on it. Thus, we can remove isu(p 1 , t 1) and we obtain the following trace:

τ = α A •isu(p, t)•β 1 •β 21 •isu(q, t 0)•β 22 •del(q , t 0)•β 23 •del(p , t)•γ S , which
is a robustness violation because isu(q, t 0) happens-before del(q , t 0) through β 22 . τ has less delays than τ (del(p , t) was not delayed after isu(p 1 , t 1) which was removed), which is a contradiction to the fact that τ is a minimal violation.

Second case: let

τ = α A • isu(p, t) • β • (p , t) • del(p , t) • γ S .
We show by induction that we can construct either τ 1 in Tccv1 where β of τ 1 contains no delayed transactions or τ 2 in Tccv2 where β 2 of τ 2 contains no delayed transactions.

Base case: |β| = 0 is trivial.

Induction step:

We assume that the induction hypothesis holds for |β| ≤ m. Let t 0 be the first delayed transaction in β. Similar to before, we assume w.l.o.g. that the delayed store events of t 0 occurs in β. Thus,

β = β 01 • isu(q, t 0) • β 02 • del(q , t 0) • β 03 and τ = α A • isu(p, t) • β 01 • isu(q, t 0) • β 02 • del(q , t 0) • β 03 • (p , t) • del(p , t)
• γ S where isu(q, t 0) happens-before del(q , t 0) through β 02 . Using the same arguments as before, we can remove the event isu(p, t), its related stores in τ , and all issued transactions in β 03 • (p , t). We obtain:

τ = α A • isu(q, t 0) • β 02 • del(q , t 0) • γ S where α A = α A • β 01 and
isu(q, t 0) happens-before del(q , t 0) through β 02 . τ is a robustness violation, and it has the same number of delays as τ . We now consider two possible case of τ : i) τ is in Tccv2 where t 0 and t 01 , the last delayed transaction causally dependent on isu(q, t 0) in τ , are two distinct transactions, or ii) τ in Tccv1 or τ in Tccv2 where t 0 and t 01 coincide. From the first part of the proof, it is guaranteed that in the first case there are no delayed transactions after t 01 . For the second case, we use the induction hypothesis since |β 02 | ≤ m (β 02 is a strict subsequence of β).

We have now showed all the necessary characterizations for minimal violations that fall under the first pattern (i.e., Tccv1). In the rest of this section, we focus on minimal violations that fall under the second pattern (i.e., Tccv2). In particular, we look at minimal violations in Tccv2 where t and t 1 are distinct transactions. In the following lemma, we show that for these minimal violations the issue events of delayed transactions in isu(p, t) • β 1 • isu(p 1 , t 1) constitute a causality chain. Our proof can be decomposed to two parts. In the first part, we show that we cannot have an issue event of a delayed transaction in β 1 • isu(p 1 , t 1) that is not causally dependent on isu(p, t). We prove this by showing that if this were possible then we can remove a transaction that is causally dependent on one of the two delayed transactions and obtain a new violation trace with less delays than the original violation (which contradicts the minimality assumption). For the second part, we show that for a given minimal violation, we can construct a happens-before equivalent trace where for every two successive issue events of delayed transactions in isu(p, t) • β 1 • isu(p 1 , t 1), the transaction in the first issue is delivered to the process executing the second issue before this event happens. there is no event a that reads a value that t overwrites, otherwise, we can shortcut the trace by removing (p , t) and instead using the conflict relation between a and a store event of t to build the transactional happens-before cycle. Now, assume that β 1 contains a delayed transaction t 0 from another process q = p that is not causally dependent on isu(p, t). We show that we either can obtain a contradiction or we can remove all events of t 0 and obtain a new violation trace τ that has the same number of delays as τ . We have three possible cases based on whether the delayed store event del(q , t 0) of t 0 occurs in β 1 , β 2 or γ S . Hence, we get that τ can be one of the following:

Lemma 3.8. Let τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S be
violation τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S obtained from τ where β 1 • γ S is a subsequence of β 1 • γ S and
(a) τ = α A • isu(p, t) • β 11 • isu(q, t 0) • β 12 • del(q , t 0) • β 13 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S (b) τ = α A • isu(p, t) • β 11 • isu(q, t 0) • β 12 • isu(p 1 , t 1) • β 21 • del(q , t 0) • β 22 • (p , t) • del(p , t) • γ S (c) τ = α A • isu(p, t) • β 11 • isu(q, t 0) • β 12 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ 1 S • del(q , t 0) • γ 2 S
In case (a) (resp., (b)) we can notice that since isu(q, t 0) happens-before del(q , t 0) through β 12 (resp.,

β 12 • isu(p 1 , t 1) • β 21
) then after executing del(q , t 0) we obtain a cycle in the transactional happensbefore. Thus, we can remove (p , t) from both traces and still obtain a robustness violation. Let τ be the resulting trace. τ has the same number of delays as τ . In τ , we do not have events that read values that t overwrites. Therefore, we do not need to delay the transaction t to ensure that that the trace is a violation. Let τ be the resulting trace where the transaction t executes atomically.

In τ , the transaction t was not delayed after the issue event of t 1 which means that τ has less delays than τ . This contradicts the fact that τ is a minimal violation.

Case (c): we assume that del(q , t 0) happens-before after (p , t), otherwise, we can reorder it before (p , t) and get case (b). Since γ 1 S contains only store events, then by the happens-before definition, del(q , t 0) must be a store event executed by p which means that q = p . Let e 1 and e 2 be the read/write actions t that are the source of the conflict between (p , t) and del(p , t) and the happens-before between (p , t) and del(p , t 0), respectively. Similar to before we assume w.l.o.g that there is no event in β 12 •isu(p 1 , t 1)•β 2 that reads a value that t 0 overwrites. We consider the two cases: i) e 2 occurs before e 1 in t or the two coincide, and ii) e 1 occurs before e 2 in t . In the first case we can obtain a new violation where we do not delay the transaction t which will not affect the action e 2 that is the source of the happens-before between (p , t) and del(p , t 0) (since e 1 occurs after e 2 then it cannot disable it). The new trace τ is a violation since the store event del(p , t 0) is delayed. Also, since the store event del(p , t) of t was not delayed after isu(p 1 , t 1) then τ has less delays than τ , which contradicts the fact that τ is a minimal violation. In the second case, if in β 12 •isu(p 1 , t 1)•β 2 we do not have any event that is causally dependent on isu(q, t 0) other than the store events of t 0 , then we can remove all events of t 0 from τ without affecting the happens before between isu(p, t) and

del(p , t) through β 12 •isu(p 1 , t 1)•β 2 •(p , t). Let τ = α A •isu(p, t)•β 1 •isu(p 1 , t 1)•β 2 •(p , t)•del(p , t)•γ S
be the resulting trace which has the same number of delays as τ . Otherwise, if in

β 12 • isu(p 1 , t 1) • β 2
we have an event a that is causally dependent on isu(q, t 0) that is not a store event of t 0 , then the new trace t resulting from not delaying t 0 is a violation. This is because the store event del(p , t) is delayed. τ has less delays than τ since the store event del(p , t 0) of t 0 was not delayed after a.

This contradicts the fact that τ is a minimal violation. Now, we show that for every two successive issue events of delayed transactions in τ , we can deliver the first to the process of the second before the second is issued. Let ev i = isu(p i , t i) and ev j = isu(p j , t j) be two successive issue events of delayed transactions in β 1 • isu(p 1 , t 1) s.t. either (ev i , ev j) ∈ HB or (ev i , del(p i , t j)) ∈ HB. Note that the only case where the store event del(p j , t i) cannot be moved to occur before ev j in β 1 is when the two events are related by a happens-before relation, i.e., (ev j , del(p j , t i)) ∈ HB. In this case, we get that the transactions t i and t j are involved in a cycle in the transactional happens-before in τ which means that τ

= α A •(p, t)•β 1 •isu(p 1 , t 1)•γ S is a
violation which has less delays than τ (since t was not delayed after isu(p 1 , t 1)). Therefore, the trace τ where the store event del(p j , t i) occurs before ev 2 is happens-before equivalent to τ . Similarly, when the two events are concurrent, the trace τ where the store event del(p j , t i) occurs before ev j is happens-before equivalent to τ . Thus, given the sequence of issue events ev 1 • ev 2 • . . . ev n of delayed transactions in τ s.t. ev 1 = isu(p, t) and ev n = isu(p 1 , t 1), the trace τ where for every 1 ≤ k ≤ n-1 s.t. ev k = isu(p k , t k) and ev k+1 = isu(p k+1 , t k+1), we have the store event del(p k+1 , t k) occurs before the issue event ev k+1 is happens-before equivalent to τ . Also, in τ for every 2 ≤ k ≤ n, we have that ev k is causally dependent on ev 1 = isu(p, t). Thus, in τ the sequence of issue events ev 1 • ev 2 • . . . ev n of delayed transactions forms a causality chain.

Next, we show that for minimal violations in Tccv2 where t and t 1 are distinct transactions, all delayed transactions in isu(p, t) • β 1 do not access the shared variable x that starts the happensbefore path in β 2 (Lemma 3.6) between isu(p 1 , t 1) and (p , t). If this were not the case, then the events of t 1 can be removed and we still guarantee a happens-before path to del(p , t) (starting in the delayed transaction accessing the variable x), thus obtaining a new robustness violation trace with less delays (since del(p , t) was not delayed after isu(p 1 , t 1)), which contradicts the minimality assumption. Lemma 3.9. Let τ be a minimal violation in Tccv2 where t 1 and t are two distinct transactions.

Then, all the delayed transactions in isu(p, t) • β 1 do not access the variable x from Lemma 3.6.

τ CM1: α A isu(p, t) • del(p, t) • β (p , t) • del(p , t) • γ S HB \ CO ∀ CO ∀ WW(x) WW(x) τ CM2: α A isu(p, t)| ¬x • β 1 | ¬x isu(p 1 , t 1) • β 2 (p , t) • del(p , t) • γ S HB \ CO ∀ CO RW(x) ∃ HB ∀ RW(y = x)
Figure 3.12: Robustness violation patterns under CM. For violation τ CM1 , t is the only delayed transaction. For τ CM2 , all delayed transactions are in isu(p, t) • β 1 • isu(p 1 , t 1) and they form a causality chain that starts at isu(p, t) and ends at isu(p 1 , t 1).

Proof. Suppose by contradiction that we have an issue event isu(p 2 , t 2) in isu(p, t) • β 1 (i.e., isu(p, t) •

β 1 = isu(p, t) • β 11 • isu(p 2 , t 2) • β 12
) which accesses the shared variable x with either a read or a write instruction. Then, since there exists an event a ∈

β 2 s.t. (isu(p 1 , t 1), a) ∈ WW(x) ∪ (STO; RW(x)), we have that (isu(p 2 , t 2), a) ∈ WW(x) ∪ (STO; RW(x)). Moreover, because β 2 • (p , t) • del(p , t) • γ S
does not contain any transaction that causally depends on isu(p 1 , t 1), we get that isu(p 1 , t 1) is the issue event by the process p 1 and we can remove it together with all the related stores in γ S to obtain:

τ = α A • isu(p, t) • β 11 • isu(p 2 , t 2) • β 12 • β 2 • (p , t) • del(p , t) • γ S which is a violation because isu(p, t) happens-before del(p , t) through β 11 • isu(p 2 , t 2) • β 12 • β 2 • (p , t).
Furthermore, τ has less delays than τ since del(p , t) was not delayed after isu(p 1 , t 1). This contradicts the fact that τ is a minimal violation.

Robustness Violations Under Causal Memory

The characterization of robustness violations under CM is at some level similar to that of robustness violations under CCv. However, some instance of the violation pattern under CCv is not possible under CM and CM admits some class of violations that is not possible under CCv. This reflects the fact that these consistency models are incomparable in general.

The following theorem gives the characterization of minimal violations under CM which is pictured in Figure 3.12. Roughly, a program is not robust iff it admits a violation that either contains two concurrent transactions that write to the same variable, or it is a restriction of the pattern τ CCv2 admitted by CCv where the last delayed transaction is related only by RW to future transactions. The first pattern is not admitted by CCv because the writes to each variable are executed according to the timestamp order (CM does not satisfy the CCv property stated in Lemma 3.1). Theorem 3.5. A program P is not robust under CM iff there exists a minimal violation in Tr(P) CM of one of the following forms: Conversely, if a program P admits a trace τ which contains a write-write data race under CM, then P also admits a trace τ where the two transactions t 1 and t 2 that caused the write-write data race form a cycle in the store order (the store events of t 1 and t 2 on the two processes p 1 and p 2 that issued them can be reordered to occur in opposite orders, i.e., del(p 1 , t 1) before del(p 1 , t 2) and del(p 2 , t 2) before del(p 2 , t 1), which implies that are also in opposite orders w.r.t. the store order). Thus, P has a trace τ with a cycle in the transactional happens-before which means that P is not robust against CM. Therefore, a program which is robust against CM is also write-write data race free under CM. Since without write-write data races, the CM and the CCv semantics coincide, we get the following the result.

1. τ CM1 = α A • isu(p, t) • del(p, t) • β • (p , t) • del(p , t) • γ S ,

τ CM2

= α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S ,
Lemma 3.10. If a program P is robust against CM, then P is robust against CCv.

Next, we discuss the proof of Theorem 3.5. The following lemma reveals the two possible minimal violation patterns under causal memory. The characterization of the patterns in this lemma can be refined further using arguments similar to the case of CCv (see the discussion at the end of this section).

Lemma 3.11. If P is a program that is not robust under CM, then it must admit a minimal violation τ that satisfies one of the following:

1. τ = α A • isu(p, t) • del(p, t) • β • (p , t) • del(p ,
α A • (p, t) • β 1 • isu(p 1 , t 1) • del(p 1 , t 1) • β 2 • (p 2 , t 2) • del(p 2 , t 1)
• γ S that is a violation and has less delays than τ . This contradicts the fact that τ is a minimal violation. If (isu(p 1 , t 1), a) ∈ (STO; WW(x))

and a = (p , t) (i.e., t = t 2) then we construct τ such that all transactions that have issue events in σ and t are executed atomically after all the events in (

β 1 \ σ) • β 2 • isu(p , t) • del(p , t) are executed first, i.e., τ = α A • β 11 • β 2 • isu(p , t) • del(p , t) • (p, t) • β 12 • β • (p 1 , t 1) • del(p 1 , t) • γ S . τ is a robustness violation since (del(p , t), (p 1 , t 1)) ∈ WW(x) and ((p 1 , t 1), del(p 1 , t)) ∈ WW(x). Also, τ
has less delays than τ since t was not delayed after a causally dependent event other than its store events and t is no longer delayed after the issue event of t 1 . This contradicts the fact that τ is a minimal violation. Finally, the only remaining possibility is (isu(p 1 , t 1), a) ∈ RW(x) where x = y which corresponds to the second case of the lemma.

We use Tcm1 and Tcm2 to denote the class of minimal violations that satisfy the first and second case in Lemma 3.11, respectively. To show that for a non robust program, we can always find a minimal violation in either Tcm1 or Tcm2 where β and β 2 do not contain delayed transactions we can use the same proof arguments as in Lemma 3.7. For minimal violations in Tcm2 where t and t 1 are distinct transactions, the two properties that issue events of all delayed transactions form a causality chain and that delayed transactions in isu(p, t) • β 1 do not access the shared variable x can also be proved in the same manner as in Lemmas 3.8 and 3.9, respectively.

Robustness Violations Under Weak Causal Consistency

If a program is robust against CM, then it must not contain a write-write race under CM (note that this is not true for CCv). Therefore, by Theorem 3.2, a program which is robust against CM has the same set of traces under both CM and wCC, which implies that it is also robust against wCC.

Conversely, since wCC is weaker than CM (i.e., Tr CM (P) ⊆ Tr wCC (P) for any P), if a program is robust against wCC then it is robust against CM. Thus, we obtain the following result.

Theorem 3.6. A program P is robust against wCC iff it is robust against CM.

Reduction to SC Reachability

We describe a reduction of robustness checking to a reachability problem in a program executing under the serializability semantics, which can be simulated on top of standard sequential consistency (SC) by considering that each transaction is an atomic section (guarded by a fixed global lock).

Essentially, given a program P and a semantics X ∈ {CCv, CM, wCC}, we define an instrumentation of P such that P is not robust against X iff the instrumentation reaches an error state under the serializability semantics. The instrumentation uses auxiliary variables in order to simulate the robustness violations (in particular, the delayed transactions) satisfying the patterns given in Figure 3.10 and Figure 3.12. We will focus our presentation on the second violation pattern of CCv (which is similar to the second violation pattern of CM):

τ CCv2 = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S .
The process p that delayed the first transaction t is called the Attacker. The other processes delaying transactions in β 1 • isu(p 1 , t 1) are called Visibility Helpers. Recall that all the delayed transactions must be causally ordered after isu(p, t). The processes that execute transactions in

β 2 • (p , t
) and contribute to the happens-before path between isu(p 1 , t 1) and del(p , t) are called

Happens-Before Helpers. A happens-before helper cannot be the attacker or a visibility helper since this would contradict the causal delivery guarantee provided by causal consistency (a transaction of a happens-before helper is not delayed, so visible immediately to all processes, and it cannot follow a delayed transaction). γ S contains the stores of the delayed transactions in isu(p, t)

• β 1 • isu(p 1 , t 1).
It is important to notice that we may have t = t 1 . In this case, β 1 = and the only delayed transaction is t. Also, all delayed transactions in β 1 including t 1 may be issued by the same process as t. In all of these cases, the set of Visibility Helpers is empty.

The instrumentation uses two copies of the set of shared variables in the original program. We use primed variables x to denote the second copy. When a process becomes the attacker or a visibility helper, it will write only to the second copy that is visible only to these processes (and remains invisible to the other processes including the happens-before helpers). The writes made by other processes including the happens-before helpers are made visible to all processes, i.e., they are applied on both copies of every shared variable.

To establish the causality chains of the delayed transactions issued by the attacker and the visibility helpers, we look whether a transaction can extend the causality chain started by the first delayed transaction issued by the attacker. This is to ensure that all such transactions are causally related to the first delayed transaction (of the attacker). In order for a transaction to "join" the causality chain, it has to satisfy one of the following conditions:

• the transaction is issued by a process that has already another transaction in the causality chain. Thus, we ensure the continuity of the causality chain through program order;

• the transaction is reading from a variable that was updated by a previous transaction in the causality chain. Hence, we ensure the continuity of the causality chain through the write-read relation.

We introduce a flag for each shared variable to mark the fact that it was updated by a previous transaction in the causality chain. These flags are used by the instrumentation to establish whether a transaction "joins" a causality chain. Enforcing a happens-before path starting in the last delayed transaction, using transactions of the happens-before helpers, can be done in the same way. Compared to causality chains, there are two more cases in which a transaction can extend a happens-before path:

• the transaction writes to a shared variable that was read by a previous transaction in the happens-before path. Hence, we ensure the continuity of the happens-before path through the read-write relation;

• the transaction writes to a shared variable that was updated by a previous transaction in the happens-before path. Hence, we ensure the continuity of the happens-before path through write-write order.

Thus, we extend the shared variables flags used for causality chains in order to record if a variable was read or written by a previous transaction (in this case, a previous transaction in the happensbefore path). Overall, the instrumentation uses a flag x.event or x .event for each (copy of a) shared variable, that stores the type of the last access (read or write) to the variable. Initially, these flags and other flags used by the instrumentation as explained below are initialized to null (⊥).

In general, whether a process is an attacker, visibility helper, or happens-before helper is not enforced syntactically by the instrumentation, and can vary from execution to execution. The role of a process in an execution is set non-deterministically during the execution using some additional process-local flags. Thus, during an execution, each process chooses to set to true at most one of the flags p.a, p.vh, and p.hbh, implying that the process becomes an attacker, visibility helper, or happens-before helper, respectively. At most one process can be an attacker, i.e., set p.a to true.

Instrumentation of the Attacker

We provide in Figure 3.14, the instrumentation of the instructions for the attacker process. Such a process passes through an initial phase where it executes transactions that are visible immediately to all the other processes (i.e., they are not delayed), and then non-deterministically it can choose For example, given a variable z, all the writes to z from the original program are transformed into writes to the primed version z (line (4.3)). Each time the attacker writes to a variable z , it sets the flag z .event to st (line (4.4)) which will allow other processes that read the same variable to join the set of visibility helpers and start delaying their transactions. Once the attacker delays a transaction, it will read only from the primed variables (i.e., z).

To start the happens-before path, the attacker has to execute a transaction that either reads or writes to a shared variable x that was not accessed by a delayed transaction (i.e., x .event =⊥). In this case, it sets the variable HB to true (lines (4.2) and (3.9)) to mark the start of the happens before path and the end of the visibility chains, and it sets the flag x.event to ld (lines (4.1) and (3.10)).

We set x.event to ld even in the case of a write to x in order to simplify the instrumentation of the happens-before helpers (to check that this transaction is related to a transaction of a happens-before helper p through WW(x) or RW(x) it is enough that p writes to x and it "observers" the same value ld in x.event). When the flag HB is set to true the attacker stops executing new transactions. We can notice that when the HB is set to true, we can no longer execute new transactions from the attacker (all conditions in lines (3.1) and (3.2) become false). continues the execution of its original instructions but, whenever it stores a value it writes it to both the shared variable z and the primed variable z so it is visible to all processes. Non deterministically it chooses a first transaction to delay, at which point it joins the set of visibility helpers. It sets the flag p.vh to false signaling its desire to join the visibility helpers, and it chooses a transaction (the begin of this transaction is shown in line (3.12)) through which the process will join the set of visibility helpers. The process directly starts delaying its writes, i.e., writing to primed variables, and reading only from delayed writes, i.e., from primed variables, and behaving the same as the attacker. In order to check that it can extend the sequence of causal dependencies (required by the causal chain definition), it takes a snapshot of the _.event fields at the beginning of the transaction and stores it to _.event fields (line l x4 in the instrumentation of begin). This snapshot is necessary to check that it reads from writes made in other transactions (ignoring the writes in the current transaction). When a process choses a first transaction to delay (during the begin instruction), it has made a pledge that during this transaction it will read from a variable that was updated by a another delayed transaction from either the attacker or some other visibility helper. This is to ensure that this transaction extends the visibility chain. Hence, the local process flag p.vh will be set to true when the process meets its pledge (line (3.15)). If the process does not keep its pledge (i.e., p.vh is equal to false) at the end of the transaction (i.e., during the end instruction) we block the execution. Thus, when executing the com instruction of the underlying transaction we check whether the flag p.vh is null, if so we block the execution (line (3.23)).

Instrumentation of the Visibility Helpers

When a process joins the visibility helpers, it delays all writes and reads only from the primed variables (lines (3.19) and (3.

Instrumentation of the Happens-Before Helpers

The remaining processes, which are not the attacker or a visibility helper, can become happensbefore helpers. Figure 3.16 lists the instrumentation of the instructions of a happens-before helper process. Similar to above, when the flag a tr A is set to true by the attacker, other processes enter a phase where they continue executing their instructions, however, when they store a value they write it in both the shared variable z and the primed variable z (lines (3.25) and (3.26)). However, they only read from the original shared variables (line (4.6)). Once the flag HB is set to true, a process that cannot be the attacker (i.e., the flag p.a is null) or a visibility helper (i.e., the flag p.vh is null) chooses non-deterministically a transaction t (the begin of this transaction is shown in line (3.24))

through which it wants to join the set of happens-before helpers, i.e., continue the happens-before path created by the existing happens-before helpers. Similar to visibility helpers, when a process choses the transaction t, it makes a pledge (while executing the begin instruction) that during this transaction it will either read a variable updated by another happens-before helper or write to a variable that was accessed (read or written) by another happens-before helper (every process that executes a transaction after HB is set to true makes this pledge). When the pledge is met, the process sets the flag p.hbh to true (lines (4.7) and (4.11)). The execution is blocked if a process does The proof of this theorem relies on the explanations given above. One can define a bijection between executions of the instrumentation that reach an error state and executions of the original program that satisfy the constraints in one of the two violation patterns. The former can be rewritten to the latter by roughly, removing all accesses to the auxiliary variables used by the instrumentation, replacing the writes to shared variable copies by writes to the original variables, delivering delayed transactions only to visibility helpers, and appending store events for all the delayed transactions.

For the reverse, given a robustness violation

τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S
of type τ CCv2 , we can build an execution of the instrumentation that reaches an error state, where p is the attacker, the processes delaying transactions in β 1 • isu(p 1 , t 1) are visibility helpers, and the processes that issue transactions between isu(p 1 , t 1) and del(p , t) and that are part of the happensbefore path between these two events are the happens-before helpers.

The following result states the complexity of checking robustness for finite-state programs9

against one of the three variations of causal consistency considered in this work (we use causal consistency as a generic name to refer to all of them). The upper bound is a direct consequence of Theorem 3.7 and of previous results concerning the reachability problem in concurrent programs running over SC, with a fixed [START_REF] Kozen | Lower bounds for natural proof systems[END_REF] or parametric number of processes [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF]. For the lower bound, given an instance of the reachability problem under sequential consistency, denoted by (P,)

Related Work

Causal consistency is one of the oldest consistency models for distributed systems [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF]. Formal definitions of several variants of causal consistency, suitable for different types of applications, have been introduced recently [START_REF] Burckhardt | Replicated data types: specification, verification, optimality[END_REF][START_REF] Burckhardt | Principles of eventual consistency[END_REF][START_REF] Perrin | Causal consistency: beyond memory[END_REF][START_REF] Bouajjani | On verifying causal consistency[END_REF]. The definitions in this chapter are inspired from these works and coincide with those given in [START_REF] Bouajjani | On verifying causal consistency[END_REF]. In that paper, the authors address the decidability and the complexity of verifying that an implementation of a storage system is causally consistent (i.e., all its computations, for every client, are causally consistent).

While our work focuses on trace-based robustness, state-based robustness requires that a program is robust if the set of all its reachable states under the weak semantics is the same as its set of reachable states under the strong semantics. While state-robustness is the necessary and sufficient concept for preserving state-invariants, its verification, which amounts in computing the set of reachable states under the weak semantics, is in general a hard problem. The decidability and the complexity of this problem has been investigated in the context of relaxed memory models such as TSO and Power, and it has been shown that it is either decidable but highly complex (non-primitive recursive), or undecidable [START_REF] Atig | On the verification problem for weak memory models[END_REF][START_REF] Atig | What's decidable about weak memory models[END_REF]. Recently, [START_REF] Lahav | Decidable verification under a causally consistent shared memory[END_REF] showed that it is also non-primitive recursive for causal convergence. As far as we know, the decidability and complexity of this problem has not been investigated for weak causal consistency and causal memory.

Automatic procedures for approximate reachability/invariant checking have been proposed using either abstractions or bounded analyses, e.g., [START_REF] Atig | Getting rid of store-buffers in TSO analysis[END_REF][START_REF] Alglave | Partial orders for efficient bounded model checking of concurrent software[END_REF][START_REF] Dan | Effective abstractions for verification under relaxed memory models[END_REF][START_REF] Abdulla | Context-bounded analysis for POWER[END_REF]. Proof methods have also been developed for verifying invariants and portability in the context of weakly consistent models such as [START_REF] Lahav | Owicki-gries reasoning for weak memory models[END_REF][START_REF] Gotsman | cause i'm strong enough: reasoning about consistency choices in distributed systems[END_REF][START_REF] Najafzadeh | The CISE tool: proving weakly-consistent applications correct[END_REF][START_REF] Alglave | Ogre and pythia: an invariance proof method for weak consistency models[END_REF][START_REF] De León | Portability analysis for weak memory models. PORTHOS: one tool for all models[END_REF]. These methods, however, do not provide decision procedures.

Decidability and complexity of trace-based robustness has been investigated for the Release-Aquire (RA) and Partitioned Global Address Space (PGAS) parallel programming models, and the TSO and Power weak memory models [START_REF] Lahav | Robustness against release/acquire semantics[END_REF][START_REF] Calin | A theory of partitioned global address spaces[END_REF][START_REF] Bouajjani | Deciding robustness against total store ordering[END_REF][START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF][START_REF] Derevenetc | Robustness against power is pspace-complete[END_REF][START_REF] Derevenetc | Robustness against Relaxed Memory Models[END_REF]. The work we present in this chapter borrows the idea of using minimal violation characterizations for building an instrumentation allowing to obtain a reduction of the robustness checking problem to the reachability checking problem over SC. However, applying this approach to the case of causal consistency is not straightforward and requires different proof techniques. Dealing with causal consistency requires coming up with radically different arguments and proofs, for (1) characterizing in a finite manner the set of violations, [START_REF]Ethereum[END_REF] showing that this characterization is sound and complete, and (3) using effectively this characterization in the definition of the reduction to the reachability problem.

The robustness reductions defined in [START_REF] Bouajjani | Deciding robustness against total store ordering[END_REF][START_REF] Calin | A theory of partitioned global address spaces[END_REF][START_REF] Derevenetc | Robustness against power is pspace-complete[END_REF] are based on the theory of regular languages and do not extend to infinite-state programs like in our case. [START_REF] Bouajjani | Deciding robustness against total store ordering[END_REF] uses an approach that consists of enumeration of a pair of SC computations that are conflicting, i.e., between reads and writes actions occurring in the pair of SC computations, to simulate a TSO computation that violates SC. [START_REF] Calin | A theory of partitioned global address spaces[END_REF][START_REF] Derevenetc | Robustness against power is pspace-complete[END_REF] define decision procedures based on checking the intersection of a multi-headed automaton introduced in [START_REF] Calin | A theory of partitioned global address spaces[END_REF] that simulates minimal violations types of computations (called normal form computations) with regular languages. In [START_REF] Derevenetc | Locality and singularity for store-atomic memory models[END_REF], the authors develop robustness characterizations for store-atomic consistency models called locality and singularity, which state that in a minimal violation only a single process delays writes and only a single write is delayed, respectively. [START_REF] Lahav | Explaining relaxed memory models with program transformations[END_REF] proposes robustness characterizations for weak memory models in terms of program transformations allowed over SC. In particular, they show that instructions reorderings and eliminations are enough to characterize TSO, while they are not enough to characterize neither C11, Power, or ARM.

As far as we know, our work is the first one that establishes results on the decidability and complexity issues of the robustness problem in the context of causal consistency, and taking into account transactions. The existing work on the verification of robustness for distributed systems consider essentially trace-based concepts of robustness and provide either over-or under-approximate analyses for checking it. In [START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Brutschy | Serializability for eventual consistency: criterion, analysis, and applications[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF][START_REF] Cerone | Analysing snapshot isolation[END_REF], static analysis techniques are proposed based on computing an abstraction of the set of computations that is used in searching for robustness violations. These approaches may return false alarms due to the abstractions they consider. In particular, [START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF] shows that a trace under causal convergence is not admitted by the serializability semantics iff it contains a (transactional) happens-before cycle with a RW dependency, and another RW or WW dependency. This characterization alone is not sufficient to prove our result concerning robustness checking. Our result relies on a characterization of more refined robustness violations and relies on different proof arguments. In [START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF] a sound (but not complete) bounded analysis for detecting robustness violation is proposed. Our approach is technically different, is precise, and provides a decision procedure for checking robustness when the program is finite-state.

Conclusion

We studied three variations of causal consistency, showing that they are equivalent for programs without write-write data races. We showed that the problem of verifying that a program is robust against causal consistency relative to serializability can be reduced, modulo a linear-size instrumen-80 tation, to a reachability problem in a program running over serializability semantics. This reduction leads to the first decidability result concerning the problem of checking robustness against a weak transactional consistency model. Furthermore, this reduction opens the door to the use of existing methods and tools for the analysis and verification of sequentially consistent concurrent programs, in order to reason about weakly-consistent programs. It can be used for the design of a large spectrum of static/dynamic tools for testing/verifying robustness against causal consistency relative to serializability.

Chapter 4

Robustness Against Snapshot Isolation

Introduction

In this chapter, we address the problem of verifying robustness of programs against snapshot isolation (SER) relative to serializability. In §4.2, we outline our approach for tackling this problem.

In §4.3, we formally define the semantics of programs under snapshot isolation consistency model.

We also define programs executions and traces under this semantics. In §4.5, we present a series of results that characterize the particular shapes of minimal violations under SI. Then, in §4.6, we show a polynomial-time reduction of robustness to reachability problem in a program running under serializability semantics. Using the above reduction, in §4.7, we develop a proof methodology for establishing robustness which builds on Lipton's reduction theory [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF]. In particular, we use the theory of movers to establish whether the relaxations allowed by SI are harmless, i.e., they do not introduce new behaviors compared to serializability. Finally, in §4.8, we apply our techniques on 10 challenging applications extracted from previous work [START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF]161,[START_REF] Alomari | The cost of serializability on platforms that use snapshot isolation[END_REF][START_REF] Holt | Disciplined inconsistency with consistency types[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Gotsman | cause i'm strong enough: reasoning about consistency choices in distributed systems[END_REF][START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF]. We show that our techniques were enough for proving or disproving the robustness of these applications.

Overview

In this section, we give an overview of our approach for checking robustness against snapshot isolation. While serializability enforces that transactions are atomic and conflicting transactions, i.e., which read or write to a common location, cannot commit concurrently, SI [START_REF] Berenson | A critique of ANSI SQL isolation levels[END_REF] allows that conflicting transactions commit in parallel as long as they do not contain a write-write conflict, i.e., write on a common location. Moreover, under SI, each transaction reads from a snapshot of the database taken at its start. These relaxations permit the "anomaly" known as Write Skew (WS)

shown in Figure 4.1a, where an anomaly is a program execution which is allowed by SI, but not by serializability. The execution of Write Skew under SI allows the reads of x and y to return 0 although this cannot happen under serializability. These values are possible since each transaction is executed locally (starting from the initial snapshot) without observing the writes of the other transaction.

Execution trace. Our notion of program robustness is based on an abstract representation of executions called trace. Informally, an execution trace is a sequence of events, i.e., accesses to shared variables and transaction begin/commit events, along with several standard dependency relations between events recording the data-flow. The transitive closure of the union of all these dependency relations is called happens-before. An execution is an anomaly if the happens-before of its trace is cyclic. Figure 4.1b shows the happens-before of the Write Skew anomaly. Notice that the happens-before order is cyclic in both cases.

Semantically, every transaction execution involves two main events, the issue and the commit.

The issue event corresponds to a sequence of reads and/or writes where the writes are visible only to the current transaction. We interpret it as a single event since a transaction starts with a database snapshot that it updates in isolation, without observing other concurrently executing transactions.

The commit event is where the writes are propagated and made visible to all processes. Under serializability, the two events coincide, i.e., they are adjacent in the execution. Under SI, this is not the case and in between the issue and the commit of the same transaction, we may have issue/commit events from concurrent transactions. When a transaction commit does not occur immediately after its issue, we say that the underlying transaction is delayed. For example, the following execution of WS corresponds to the happens-before cycle in Figure 4.1b where the write to x was committed after t 2 finished, hence, t 1 was delayed: Reducing robustness to SC reachability. The above SI execution can be mimicked by an execution of the same program under serializability modulo an instrumentation that simulates the delayed transaction. The local writes in the issue event are simulated by writes to auxiliary registers and the commit event is replaced by copying the values from the auxiliary registers to the shared variables (actually, it is not necessary to simulate the commit event; we include it here for presentation reasons). The auxiliary registers are visible only to the delayed transaction.

In order that the execution be an anomaly (i.e., not possible under serializability without the instrumentation) it is required that the issue and the commit events of the delayed transaction are linked by a chain of happens-before dependencies. For instance, the above execution for WS can be simulated by: The write to x was delayed by storing the value in the auxiliary register r x and the happens-before chain exists because the read on y that was done by t 1 is conflicting with the write on y from t 2 and the read on x by t 2 is conflicting with the write of x in the simulation of t 1 's commit event. On the other hand, the following execution of Write-Skew without the read on y in t 1 :

begin(p misses the conflict (happens-before dependency) between the issue event of t 1 and t 2 . Therefore, the events of t 2 can be reordered to the left of t 1 and obtain an equivalent execution where we(p 1 , t 1 , x, r x) occurs immediately after we(p 1 , t 1 , r x , 1). In this case, t 1 is not anymore delayed and this execution is possible under serializability (without the instrumentation).

If the number of transactions to be delayed in order to expose an anomaly is unbounded, the instrumentation described above may need an unbounded number of auxiliary registers. This would make the verification problem hard or even undecidable. However, we show that it is actually enough to delay a single transaction, i.e., a program admits an anomaly under SI iff it admits an anomaly containing a single delayed transaction. This result implies that the number of auxiliary registers needed by the instrumentation is bounded by the number of program variables, and that checking robustness against SI can be reduced in linear time to a reachability problem under serializability (the reachability problem encodes the existence of the chain of happens-before dependencies mentioned above). The proof of this reduction relies on a non-trivial characterization of anomalies.

Proving robustness using commutativity dependency graphs. Based on the reduction above, we also devise an approximated method for checking robustness based on the concept of mover in Lipton's reduction theory [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF]. An event is a left (resp., right) mover if it commutes to the left (resp., right) of another event (from a different process) while preserving the computation.

We use the notion of mover to characterize happens-before dependencies between transactions.

Roughly, there exists a happens-before dependency between two transactions in some execution if one does not commute to the left/right of the other one. We define a commutativity dependency graph which summarizes the happens-before dependencies in all executions of a given program between transactions t as they appear in the program, transactions t \ {w} where the writes of t are (or b cannot move to the left of a), or if they are related by the program order (i.e., issued in some order in the same process). Then a program is robust if for every transaction t, this graph does not contain a path from t \ {w} to t \ {r} formed of transactions that do not write to a variable that t writes to (the latter condition is enforced by SI since two concurrent transactions cannot commit at the same time when they write to a common variable). For example, Figure 4.2 shows the commutativity dependency graph of the modified WS program where the read of y is removed from t 1 . The fact that it does not contain any path like above implies that it is robust.

t 1 t 2 t 1 \ {r} t 2 \ {r} t 1 \ {w} t 2 \ {w}

Program Semantics Under Snapshot Isolation

The semantics of a program under SI is defined as follows. The shared variables are stored in a central memory and each process keeps a replicated copy of the central memory. A process starts a transaction by discarding its local copy and fetching the values of the shared variables from the central memory. When a process commits a transaction, it merges its local copy of the shared variables with the one stored in the central memory in order to make its updates visible to all processes. During the execution of a transaction, the process stores the writes to shared variables only in its local copy and reads only from its local copy. When a process merges its local copy with the centralized one, it is required that there were no concurrent updates that occurred after the last fetch from the central memory to a shared variable that was updated by the current transaction.

Otherwise, the transaction is aborted and its effects discarded.

A -------→ (ls[p → s], tstamp, Log, lk)

x := v ∈ inst(ls(p).pc) log = ls(p).log[x → 1] store = ls(p).store[x → v] s = ls(p)[log → log, store → store, pc → next(pc)]
(ls, tstamp, Log, lk) writes to x). Then, we store the value of store(x) for every variable x that t writes to (log(x) = ⊥) in Log(x). Also, for every variable x that t writes to, we store t.ct in tstamp(x).

isu(p, t, x, v) -------→ (ls[p → s], tstamp, Log, lk) end ∈ inst(ls(p).pc) ∀x ∈ V. log[x] = ⊥ ∨ tstamp(x) < t.st img(ls.tstamp) < t.ct Log = Log[x → store[x] : x ∈ V, log[x] = ⊥] tstamp = tstamp[x → st.ct : x ∈ V, log[x] = ⊥] s = ls(p)[pc → next(pc)] (ls, tstamp, Log, lk) com(p, t) -----→ (ls[p → s], Log → Log, tstamp → tstamp, lk)
The semantics of a program P under SI is defined as a LTS [P] SI = (C, Ev, gs 0 , C F , →) where we assume that any program configuration can be final, i.e., C F = C. The set of events under SI is defined as follow.

Ev = {begin(p, t), ld(p, t, x, v), isu(p, t, x, v), com(p, t) : p ∈ P, t ∈ T 2 , x ∈ V, v ∈ D}
where begin and com label transitions corresponding to the start and the commit of a transaction, respectively. isu and ld label transitions corresponding to writing, resp., reading, a shared variable during some transaction. The transition relation → is defined in Figure 4.3. For readability, the events labeling a transition are written on top of →. A begin transition resets the local valuation of the shared variables and fetches their values from the central memory. A com transition applies the writes performed in a transaction to the central memory by merging the contents of the local copy store with the central memory Log. An ld transition reads the value of a shared-variable from the local copy store while an isu transition applies a new write to the local copy store.

An execution of program P, under snapshot isolation, is a sequence of events ev 1 •ev 2 •. . . labeling the transitions, such that there exists a sequence of configurations gs 0 • gs 1 • . . . where gs 0 is the initial configuration before P starts execution and gs i-1 ev i --→ gs i is a valid transition for i > 1. The WR ∪ RW ∪ STO) + . The happens-before relation between events is extended to transactions as follows: a transaction t 1 happens-before another transaction t 2 = t 1 if the trace tr contains an event of transaction t 1 which happens-before an event of t 2 . The happens-before relation between transactions is denoted by HB t and called transactional happens-before. For a trace of serializable execution, the transactional happens-before and the happens-before relation coincide.

Robustness Against SI Relative to SER

Given a trace tr = (τ, PO, WR, WW, RW, STO) such that every event isu(p, t) in τ is immediately followed by com(p, t). For simplicity, we write τ as a sequence of "atomic macro-events" (p, t) where (p, t) denotes a sequence isu(p, t) • com(p, t). We say that t is atomic. Thus, (τ, PO, WR, WW, RW) is a trace of a serializable execution as defined in Section 2.3.

Similar to Theorem 3.3, the following result characterizes traces of serializable executions. The transactional happens-before of any trace under SER is acyclic, and conversely, any trace obtained under SI with an acyclic transactional happens-before can be transformed into a trace under SER by successive swaps of consecutive events in its summary, which are not related by happens-before.

Since multiple executions/traces can have the same (transactional) happens-before. It is possible that a trace tr produced by snapshot isolation has has an acyclic transactional happens-before even though isu(p, t) events may not be immediately followed by com(p, t) events. However, tr would be equivalent, up to reordering of "independent" (or commutative) transitions, to a trace of serializable execution.

Theorem 4.1 ([25, 156]). For any trace tr ∈ Tr SER (P), the transactional happens-before of tr is acyclic. Moreover, for any trace tr = (τ, PO, WR, WW, RW, STO) ∈ Tr SI (P), if the transactional happens-before of tr is acyclic, then there exists a permutation τ of τ such that (τ , PO, WR, WW, RW, STO) ∈ Tr SER (P).

As a consequence of Theorem 4.1, we define a trace tr to be serializable if it has the same happensbefore relations as a trace of a serializable execution. Let Tr SER (P) denote the set of serializable traces of a program P.

We now consider the problem of checking whether the snapshot isolation semantics of a program produces only serializable traces.

Minimal Violations

A trace which is not serializable must contain at least an issue and a commit event of the same transaction that do not occur one after the other even after reordering of "independent" events. Thus, there must exist an event that occur between the two which is related to both events via the happens-before relation, forbidding the issue and commit to be adjacent. Otherwise, we can build another trace with the same happens-before where events are reordered such that the issue is immediately followed by the corresponding commit. The latter is a serializable trace which contradicts the initial assumption. We deduce from above, that a violation trace must contain at least an issue and a commit events of the same transaction that are related via the happens-before through relation (Definition 3.3).

Otherwise, we can build another trace with the same happens-before where events are reordered such that every issue isu(p, t) is immediately followed by the corresponding commit com(p, t). The latter is a serializable trace which contradicts the initial assumption.

Given a violation of the from

τ = α • isu(p, t) • β • com(p, t)
• γ, we call t a delayed transaction in the trace τ when isu(p, t) happens before com(p, t) through β.

We define the number of delays for a robustness violation τ , denoted by #(τ), as the total number of delayed transactions in τ .

Definition 4.2 (Minimal violation). For a given program P, a violation τ is called minimal if it has the least number of delays among all possible violations.

The characterization of robustness violations under SI is stated in the following theorem. (e) all transactions in β do not write to shared variables that t writes to (Lemma 4.4).

τ SI = α • isu(p, t) • β • com(p,
Above, τ SI contains a single delayed transaction. The theorem above allows α = and β = a = b. In the following, we give a series lemmas that constitute Theorem 4.2. For the remainder of the chapter, we write a minimal violation in the shape τ

= α A • isu(p, t) • β • com(p, t) • γ to say that t
is the first delayed transaction in τ (w.r.t. the order between issue events of delayed transactions) and all the events in the sequence α A are atomic macro events. The following lemma shows that we can assume w.l.o.g. that γ contains only commit events.

Lemma 4.2. Let τ

= α A • isu(p, t) • β • com(p, t) • γ be a minimal violation such that isu(p, t) happens- before com(p, t) through β. Then, τ = α A • isu(p, t) • β • com(p, t)
• γ , such that γ contains only commit events from delayed transactions is also a minimal violation.

Proof. Similar to the proof of Lemma 3.4.

Next lemma shows that in a minimal violation τ

= α A • isu(p, t) • β • com(p, t) • γ such that γ
contains only commit events, we have β contains no delayed transaction and γ = . We show that if it were to have a delayed transaction t 0 in β, then it is possible to obtain a new violation where either t is not delayed and obtain a new violation with a smaller number of delayed transactions which contradicts the minimality assumption.

Lemma 4.3. Let τ = α A • isu(p, t) • β • com(p, t)
• γ be a minimal violation such that γ contains only commit events. Then, β does not contain delayed transactions and γ = .

Proof. We suppose by contradiction that β contains a delayed transaction t 0 issued by a process p 0 .

It is important to notice that there must exist β ⊂ β and com(p 0 , t 0) ∈ β such that isu(p 0 , t 0) happens before com(p 0 , t 0) through β. Otherwise, we can commute the events until com(p 0 , t 0) occurs just after isu(p 0 , t 0) and in this case transaction t 0 is not delayed by p 0 . Thus, τ is of the

form τ = α A •isu(p, t)•β 1 •isu(p 0 , t 0)•β •com(p 0 , t 0)•β 2 •com(p, t)•γ (β = β 1 •isu(p 0 , t 0)•β •com(p 0 , t 0)•β 2
where we assume w.l.o.g that com(p 0 , t 0) occurs in β).

Since in

β 1 • isu(p 0 , t 0) • β • com(p 0 , t 0) • β 2
no event depends on isu(p, t). Thus, we can safely remove isu(p, t) and its associated commit event com(p, t) and obtains:

τ = α A • β 1 • isu(p 0 , t 0) • β • com(p 0 , t 0) • β 2 • γ.
which is an violation because of the transactional happens-before cycle caused by isu(p 0 , t 0) happens-before com(p 0 , t 0) through β . In τ , transaction t was not delayed, therefore, τ has less number of delayed transactions than τ . Thus, τ is not a minimal violation, a contradiction to our hypothesis. Therefore, t is the only delayed transaction in τ which implies that γ = .

An important property of SI is that the execution of concurrent transactions that write to the same location is disallowed. Thus, the event com(p, t) can take place only if there are no concurrent writes that were committed after isu(p, t) and write to the same variables as com(p, t). (c) there exists a shared-variable x, every transaction of P contains a write to x.

Lemma 4.4. Let τ = α A • isu(p, t) • β • com(p,
then P is robust against SI relative to SER.

Reducing Robustness to SC Reachability

We define a program instrumentation which mimics the delay of a transaction by doing the writes on auxiliary variables which are not visible to other transactions. After the delay of a transaction, we track happens-before dependencies until we execute a transaction that does a "read" on one of the variables that the delayed transaction writes to (this would expose a read-write dependency to the commit event of the delayed transaction). While tracking happens-before dependencies we cannot execute a transaction that writes to a variable that the delayed transaction writes to since SI forbids write-write conflicts between concurrent transactions.

Concretely, given a program P, we define an instrumentation of P such that P is not robust against SI iff the instrumentation reaches an error state under serializability. The instrumentation uses auxiliary variables in order to simulate a single delayed transaction which we prove that it is enough for deciding robustness. Let isu(p, t) be the issue event of the only delayed transaction. The process p that delayed t is called the Attacker. When the attacker finishes executing the delayed

x.eventI). We will explain the meaning of these flags along with the instrumentation. At the start of the execution, all flags are initialized to null (⊥).

Whether a process is an attacker or happens-before helper is not enforced syntactically by the instrumentation. It is set non-deterministically during the execution using some additional processlocal flags. Each process chooses to set to true at most one of the flags p.a and p.hbh, implying that the process becomes an attacker or happens-before helper, respectively. At most one process can be an attacker, i.e., set p.a to true. In the following, we detail the instrumentation for read and write instructions of the attacker and happens-before helpers. A read on a variable, y, in the delayed transaction takes her value from the primed version, y .

Instrumentation of the Attacker

In every read in the delayed transaction, we set the flag y.event to ld (line (4.1)) to be used latter in order for a process to join the happens-before helpers. Afterward, the attacker starts the happensbefore path, and it sets the variable HB to true (line (4.2)) to mark the start of the happens. When the flag HB is set to true the attacker stops executing new transactions.

Instrumentation of the Happens-Before Helpers

The remaining processes, which are not the attacker, can become a happens-before helper. Figure 4.6 lists the instrumentation of write and read instructions of a happens-before helper. In a first phase, each process executes the original code until the flag a tr A is set to true by the attacker. This flag signals the "creation" of the secondary copy of the shared-variables, which can be observed only by the attacker. At this point, the flag HB is set to true, and the happens-before helper process chooses non-deterministically a first transaction through which it wants to join the set of happensbefore helpers, i.e., continue the happens-before dependency created by the existing happens-before helpers. When a process chooses a transaction, it makes a pledge (while executing the begin instruction) that during this transaction it will either read from a variable that was written to by another happens-before helper, write to a variable that was accessed (read or written) by another happens-before helper, or write to a variable that was read from in the delayed transaction. When the pledge is met, the process sets the flag p.hbh to true (lines (4.7) and (4.11)). The execution is blocked if a process does not keep its pledge (i.e., the flag p.hbh is null) at the end of the transaction.

Note that the first process to join the happens-before helper has to execute a transaction t which writes to a variable that was read from in the delayed transaction since this is the only way to build a happens-before between t, and the delayed transaction (PO is not possible since t is not from the attacker, WR is not possible since t does not see the writes of the delayed transaction, and WW is not possible since t cannot write to a variable that the delayed transaction writes to). We use a flag x.event for each variable x to record the type (read ld or write st) of the last access made by a happens-before helper (lines (4.8) and (4.10)). During the execution of a transaction that is part of the happens-before dependency, we must ensure that the transaction does not write to variable y where y.even is set to 1. Otherwise, the execution is blocked (line 4.9).

The happens-before helpers continue executing their instructions, until one of them reads from the shared variable x whose name was stored in a st A . This establishes a happens-before dependency between the delayed transaction and a "fictitious" store event corresponding to the delayed transaction that could be executed just after this read of x. The execution does not have to contain this store event explicitly since it is always enabled. Therefore, at the end of every transaction, the instrumentation checks whether the transaction read x. If it is the case, then the execution stops and goes to an error state to indicate that this is a robustness violation. Notice that after the attacker stops, the only processes that are executing transactions are happens-before helpers, which is justified since when a process is not from a happens-before helper it implies that we cannot construct a happens-before dependency between a transaction of this process and the delayed transaction which means that the two transactions commute which in turn implies that this process's transactions can be executed before executing the delayed transaction of the attacker.

Correctness

The role of a process in an execution is chosen non-deterministically at runtime. Therefore, the final instrumentation of a given program P, denoted by [[P]], is obtained by replacing each labeled instruction linst with the concatenation of the instrumentations corresponding to the attacker and the happens-before helpers, i.e., [[linst]] ::

= [[linst]] A [[linst]] HbH
The following theorem states the correctness of the instrumentation.

Theorem 4.3. P is not robust against SI iff [[P]] reaches the error state.

If a program is not robust, this implies that the execution of the program under SI results in a trace where the happens-before is cyclic. Which is possible only if the program contains at least one delayed transaction. In the proof of this theorem, we show that is sufficient to search for executions that contain a single delayed transaction.

Notice that in the instrumentation of the attacker, the delayed transaction must contain a read and write instructions on different variables. Also, the transactions of the happens-before helpers must not contain a write to a variable that the delayed transaction writes to.

Proof. Soundness. Suppose that the instrumented program reaches an error state. Then, the execution's trace of the instrumented program is of the form:

τ = τ 1 • isu(p, t) • τ 2 • (p , t)
The last transaction, (p , t) performed by a process p that does a read accessing the variable x = a st A and is part of the happens-before helpers. This is because the conditional check can be performed only by a process (p HbH1) that is one of the happens-before helpers and is currently executing.

In order for p HbH1 , to join the set of happens-before helpers, it must have found that the valuation of the flag HB is not null which means there exists some process p that is the attacker that sets the flag HB to true. In τ 1 , the attacker, happens-before helpers, and other processes start executing the original instructions without setting any flags or delaying any transactions.

Afterwards, the attacker issues the delayed transaction isu(p, t) and it starts populating the primed variables x and reading from them and setting the flags x.event to 1 for every variable x that it writes to and y.event to ld for every variable y that it reads from. During the execution of t, the attacker sets the flag HB to true. Hence, the happens-before helpers start checking at every instruction whether the flags x.event are set to either st or ld. If so, they start populating the flags

x.event and l.event as well. When HB is set to true, the attacker stop issuing new transactions.

Therefore, all transaction in τ 2 are from the happens-before helpers.

We now transform τ into the following execution trace:

τ = τ 1 • isu(p, t) • τ 2 • com(p, t)
Here, τ 1 is the subsequence of all τ 1 events that are produced by instructions from P without the conditionals checking (i.e., the assume statements). The transaction t which is executed by the attacker represents the delayed transactions in τ with the removal of the conditionals checking and the flags setting. τ 2 is the subsequence of all events of τ 2 produced by transactions from P which are executed only by the happens-before helpers except the conditionals checking and the flags setting.

We add the commit event com(p 0 , t) to describe the commit of the delayed transaction that was delayed by the attacker. τ is a possible execution's trace of the program P because τ is a result of an execution of the instrumented version of P and we have removed from τ all the effects of the instrumentation, and replaced the stores to auxiliary variables by issues of stores without changing the dependency between all the events in the execution.

All transactions in τ 2 are from the happens-before helpers. Transactions in τ 2 form a happensbefore path between isu(p, t) and com(p, t). Also, we have a, b = (p , t) ∈ τ 2 such that (isu(p, t), a) ∈ RW(y) and (b, com(p, t)) ∈ RW(x). No transaction in τ 2 writes to a variable that t writes to. Hence, τ indeed holds all the properties of the violation described in Theorem 4.2.

Completeness. Suppose we have a violation of a given program P:

τ = τ 1 • isu(p, t) • τ 2 • com(p, t)
such that τ maintains all the properties given in Theorem 4.2. We demonstrate that there is a possible serializable execution based on τ of the instrumented version of the program P that reaches the error state. We show how to build the instrumented program execution. At the start of the execution, τ 1 , the attacker, happens-before helpers, and other processes execute the original transactions with just conditional checks. Afterwards, the attacker delays the transaction isu(p, t)

and starts populating the flags. In isu(p, t), the attacker issues a store to the shared variable 'x' = a st A and ∃ b ∈ τ 2 such that (b, com(p, t)) ∈ RW(x). All writes that were executed in t by the attacker are invisible to the remaining processes which includes the happens-before helpers. While executing t, the attacker sets the content of the flag y.event to ld for every variable y that it reads from and it sets the flag HB to true.

On the other hand, the processes which are executing their transactions without delaying them will attempt to join the happens-before helpers by checking if the flag HB is set to true. If so, they start the attempt of joining the happens-before helpers and when it succeed they joining the happens-before helpers and start executing their transactions which constitute τ 2 . The first executed transaction by the happens-before helpers is a described above which signals the start of τ 2 and the happen before dependency. Thus, in τ 2 , we have only transactions form the happens-before helpers (because the attacker stop when the flag HB is set to true) such that they are related by the happen before dependency that started from isu(p, t) until it reaches com(p, t) through τ 2 . We know that there must exist b ∈ τ 2 such that (b, com(p, t)) ∈ RW('x' = a st A). b is equivalent to the last executed transaction by the happens-before helpers that accesses the shared variable x. Thus, the underlying happens-before helper will set the content of the flag x.event to ld. Hence, when the underlying process executes the com instruction of this transaction, it will go to the error state The following corollary states the complexity of checking robustness for finite-state programs 1 against snapshot isolation relative to serializability. The upper bound is a direct consequence of Theorem 4.3 and of previous results concerning the reachability problem in concurrent programs running over a sequentially-consistent memory, with a fixed [START_REF] Kozen | Lower bounds for natural proof systems[END_REF] or parametric number of processes [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF]. For the lower bound, given an instance of the reachability problem under sequential consistency, denoted by (P,), we construct a program P where each statement s of P is a different transaction (guarded by a global lock), and where reaching the location enables the execution of a "gadget" that corresponds to the WS program in Figure 4.1a. Executing each statement under a global lock ensures that every execution of P under snapshot isolation is serializable, and faithfully represents an execution of the original P under sequential consistency. Moreover, P reaches iff P contains a robustness violation, which is due to the execution of WS.

Corollary 4.2. Checking robustness of finite-state programs against snapshot isolation is PSPACE-

complete when the number of processes is fixed and EXPSPACE-complete, otherwise.

1 Programs with a bounded number of variables taking values from a bounded domain.

Two vertices which correspond to the original transactions in P are related by a program order edge, if they belong to the same process. The other edges in this graph represent the "non-mover" relations M WR , M WW , and M RW .

Given a program P, we say that the commutativity dependency graph of P contains a non-mover cycle if there exist a set of transactions t 0 , t 1 , . . . , t n of P such that the following hold:

(a) (t 0 , t 1) ∈ M RW where t 0 is the write-free variation of t 0 and t 1 does not write to a variable that t 0 writes to;

(b) for all i ∈ [1, n], (t i , t i+1) ∈ (PO ∪ M WR ∪ M WW ∪ M RW)
, t i and t i+1 do not write to a shared variable that t 0 writes to;

(c) (t n , t 0) ∈ M RW where t 0 is the read-free variation of t 0 and t n does not write to a variable that t 0 writes to.

A non-mover cycle approximates an execution of the instrumentation defined in §4.6 in between the moment that the Attacker delays a transaction t 0 (which here corresponds to the write-free variation t 0) and the moment where t 0 gets committed (the read-free variation t 0).

The following theorem shows that the acyclicity of the commutativity dependency graph of a program implies the robustness of the program. Actually, the notion of robustness in this theorem relies on a slightly different notion of trace where store-order and write-order dependencies take into account values, i.e., store-order relates only writes writing different values and the write-order relates a read to the oldest write (w.r.t. execution order) writing its value. This relaxation helps in avoiding some harmless robustness violations due to for instance, two transactions writing the same value to some variable.

Theorem 4.4. For a program P, if the commutativity dependency graph of P does not contain non-mover cycles, then P is robust.

Proof. We prove the contrapositive, i.e., ¬(2) ⇒ ¬(1). In the proof, we use the result of Theorem 4.3.

Assuming that the program P is not robust. Then, based on Theorem 4.3 there must exist an execution of the instrumentation of P that reaches the error state. We suppose that t is the delayed transaction, t ins is the instrumentation of t (writes are stored in auxiliary registers), and p is the attacker process. Therefore, the execution of the instrumentation of P that reaches the error state

is of the form τ = α • (p, t ins) • a • β • b
where a writes to a variable that t reads from and b reads from a variable that t writes to. We assume that b is the first event that does read that accesses a variable that t writes to. In the following we show that the commutativity dependency graph of P contains a non-mover cycle where t is t 0 . We consider two cases, first case when a = b and β = , and second case is when a = b.

First case: τ = α • (p, t ins)
• a where a writes to a variable that t reads from, reads from a variable that t writes to, and does not write to a variable that t writes to. Assume that a = (p 1 , t 1).

Thus, we can obtain that

τ 0 = α • (p 1 , t 1) • (p,

Experiments

To test the applicability of our robustness checking algorithms, we have considered a benchmark of 10 applications extracted from the literature related to weakly consistent databases in general.

Each application consists of a set of SQL transactions that can be called an arbitrary number of times from an arbitrary number of processes. A first set of applications are open source projects that were implemented to be run over the Cassandra database, that were used in [START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF]. The set is constituted of: DeleteAKey for removing a key from an existing account; 5) GetAnAccount to check whether there exist an account with a given identifier; 6) GetAccounts to display all existing accounts; 7) GetAc-countKeys for inspecting all the keys of a certain account; 8) GetAccountKey to check whether a certain account does hold a certain key. It has five transactions: 1) AddMessage for adding a new message; 2) GetLastMessage for getting the messages of a user; 3) GetMessages for displaying messages that were added in a certain date; 4) GetSpecificMessage for displaying a specific message that was added in a certain date and time;

Cassieq-Core

Currency-Exchange

5) GetTopicMessages for displaying messages that are in a certain topic group.

The second set of applications is extracted from the literatures and is constituted of: ViewEvent for inspecting an event and the number of tickets available for this event; 3) Browse for viewing events that are planned in a given venue; 4) Purchase for buying a ticket at a certain event.

Auction Our first experiment concerns the reduction of robustness checking to SC reachability. For each application, we have constructed a client (i.e., a program composed of transactions defined within that application) with a fixed number of processes (at most 3) and a fixed number of transactions (between 3 and 7 transactions per process). We have encoded the instrumentation of this client, defined in §4.6, in the Boogie programming language [START_REF] Barnett | Boogie: A modular reusable verifier for object-oriented programs[END_REF] and used the Civl verifier [START_REF] Hawblitzel | Automated and modular refinement reasoning for concurrent programs[END_REF] in order to check whether the assertions introduced by the instrumentation are violated (which would represent a robustness violation). Note that since clients are of fixed size, this requires no additional assertions/invariants (it is an instance of bounded model checking). We model tables as unbounded maps in Boogie and SQL queries as first-order formulas over these maps (that may contain existential or universal quantifiers). To model the uniqueness of primary keys we use Boogie linear types.

The results are reported in Table 5.2. We have found two of the applications, Courseware and SmallBank, to not be robust against snapshot isolation. The violation in Courseware is caused by transactions RemoveCourse and EnrollStudent that execute concurrently, RemoveCourse removing a course that has no registered student and EnrollStudent registering a student to the same course.

We get an invalid state where a student is registered for a course that was removed. SmallBank's violation contains transactions Balance, TransactSaving, and WriteCheck. One process executes WriteCheck where it withdraws an amount from the checking account after checking that the sum of the checking and savings accounts is bigger than this amount. Concurrently, a second process executes TransactSaving where it withdraws an amount from the saving account after checking that it is smaller than the amount in the savings account. Afterwards, the second process checks the contents of both the checking and saving accounts. We get an invalid state where the sum of the checking and savings accounts is negative.

Since in the first experiment we consider fixed clients, the lack of assertion violations does not imply that the application is robust (this instantiation of our reduction can only be used to reveal robustness violations). Thus, a second experiment concerns the robustness proof method based on commutativity dependency graphs (§4.7). For the applications that were not identified as nonrobust by the previous method, we have used Civl to construct their commutativity dependency graphs, i.e., identify the "non-mover" relations M WR , M WW , and M RW (Civl allows to check whether some code fragment is a left/right mover). In all cases, the graph didn't contain non-mover cycles, which allows to conclude that the applications are robust.

The experiments show that our results can be used for finding violations and proving robustness, and that they apply to a large set of interesting examples. Note that the reduction to SC and the proof method based on commutativity dependency graphs are valid for programs with SQL (select/update) queries.

Related Work

Similar to the previous chapter, in this chapter we borrow some high-level principles from [START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF] which addresses the robustness against TSO. We reuse the high-level methodology of characterizing minimal violations according to some measure and defining reductions to SC reachability using a program instrumentation. Instantiating this methodology in SI context is however very different, several fundamental differences being:

-SI and TSO admit different sets of relaxations and SI is a model of transactional databases.

-We use a different notion of measure: the measure in [START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF] counts the number of events between a write issue and a write commit while our notion of measure counts the number of delayed transactions. This is a first reason for which the proof techniques in [START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF] do not extend to our -Transactions induce more complex traces: two transactions can be related by several dependency relations since each transaction may contain multiple reads and writes to different locations. In TSO, each action is a read or a write to some location, and two events are related by a single dependency relation. Also, the number of dependencies between two transactions depends on the execution since the set of reads/writes in a transaction evolves dynamically. The existing work on the verification of robustness for transactional programs provide either over-or under-approximate analyses. Our commutativity dependency graphs are similar to the static dependency graphs used in [START_REF] Alomari | A robust technique to ensure serializable executions with snapshot isolation DBMS[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Brutschy | Serializability for eventual consistency: criterion, analysis, and applications[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF][START_REF] Cerone | Analysing snapshot isolation[END_REF], but they are more precise, i.e., reducing the number of false alarms. The static dependency graphs record happensbefore dependencies between transactions based on a syntactic approximation of the variables accessed by a transaction. For example, our techniques are able to prove that the program in Figure 4.7 is robust, while this is not possible using static dependency graphs. The latter would contain a dependency from transaction t 1 to t 2 and one from t 2 to t 1 just because syntactically, each of the two transactions reads both variables and may write to one of them. Our dependency graphs take into account the semantics of these transactions and do not include this happens-before cycle. Other over-and under-approximate analyses have been proposed in [START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF]. They are based on encoding executions into first order logic, bounded-model checking for the under-approximate analysis, and a sound check for proving a cut-off bound on the size of the happens-before cycles possible in the executions of a program, for the over-approximate analysis. The latter is less precise than our method based on commutativity dependency graphs. For instance, extending the TPC-C application with additional transactions will make the method in [START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF] fail while our method will succeed in proving robustness (the three transactions are for adding a new product, adding a new warehouse based on the number of customers and warehouses, and adding a new customer, respectively).

p1: t1: [if (x > y) r1 = x -y x = y] || p2: t2: [if (y > x) r2 = y -x y = x]
Finally, the idea of using Lipton's reduction theory for checking robustness has been also used in the context of the TSO memory model [START_REF] Bouajjani | Reasoning about TSO programs using reduction and abstraction[END_REF], but the techniques are completely different, e.g., the TSO technique considers each update in isolation and does not consider non-mover cycles like in our commutativity dependency graphs.

Conclusion

We studied the robustness against snapshot isolation relative to serializability. We proposed a characterization for a class of traces that are possible under snapshot isolation but are not possible under serializability, called minimal violations. Using this characterization, we showed that the robustness problem is polynomial time reducible to reachability under serializability (the size of the program increases linearly). We also used this characterization to develop an approximated method for proving robustness based on Lipton's reduction theory. We evaluated our techniques on a benchmark of distributed applications extracted from the literature and open source Github projects. The evaluation showed the effectiveness of our techniques for proving (non-)robustness of practical distributed applications.

enough for proving or disproving the robustness of all of these applications, for all combinations of the consistency models discussed above. Process 1

CreateEvent(v, e1, 3):

[Tickets[v][e1] := 3] CountTickets(v): [r := e Tickets[v][e]] 1
Process 2

2 CreateEvent(v, e2, 3):

3 [Tickets[v][e2] := 3]
4 CountTickets(v):

5 [r := e Tickets[v][e]]
(a) FusionTicket.

CreateEvent(v,e1,3)

CountTickets(v) //r=3 CreateEvent(v,e2 ,3) CountTickets(v

Overview

We give an overview of the robustness problems we investigate in this chapter, discussing first the case PC vs. CC, and then SI vs PC. We end with an example that illustrates the more pragmatic robustness checking technique based on commutativity arguments.

Robustness PC vs CC. We illustrate the robustness against substituting PC with CC using the FusionTicket and the Twitter programs in Figure 5.1a and Figure 5.1c, respectively. FusionTicket manages tickets for a number of events, each event being associated with a venue. Its state consists of a two-dimensional map that stores the number of tickets for an event in a given venue (r is a local variable, and the assignment in CountTickets is interpreted as a read of the shared state).

The program has two processes and each process contains two transactions. The first transaction creates an event e in a venue v with a number of tickets n, and the second transaction computes the total number of tickets for all the events in a venue v. A possible candidate for a specification of this program is that the values computed in CountTickets are monotonically increasing since each such value is computed after creating a new event. Twitter provides a transaction for registering a new user with a given username and password, which is executed by two parallel processes.

Its state contains two maps that record whether a given username has been registered (0 and 1 stand for non-registered and registered, respectively) and the password for a given username. Each transaction first checks whether a given username is free (see the assume statement). The intended specification is that the user must be registered with the given password when the registration transaction succeeds.

A program is robust against substituting PC with CC if its set of behaviors under the two models coincide. We model behaviors of a given program as traces, which record standard control-flow and data-flow dependencies between transactions, e.g., the order between transactions in the same session and whether a transaction reads the value written by another (read-from). The transitive closure of the union of all these dependency relations is called happens-before. Figure 5.1b pictures a trace of FusionTicket where the concrete values which are read in a transaction are written under comments. In this trace, each process registers a different event but in the same venue and with the same number of tickets, and it ignores the event created by the other process when computing the sum of tickets in the venue.

Figure 5.1b pictures a trace of FusionTicket under CC, which is a witness that FusionTicket is not robust against substituting PC with CC. This trace is also a violation of the intended speci-serializable execution of the transformed Twitter which is "observationally" equivalent to the trace in Figure 5.1d of the original Twitter, i.e., each read of the shared state returns the same value and the writes on the shared state are applied in the same order (the acyclicity of the happens-before shows that this is a serializable trace). The transformed FusionTicket coincides with the original version because it contains no transaction that both reads and writes on the shared state.

We show that PC behaviors and SER behaviors of the original and transformed program, respectively, are related by a bijection. In particular, we show that any PC vs. CC robustness violation of the original program manifests as a SER vs. CC robustness violation of the transformed program, and vice-versa. For instance, the CC trace of the original Twitter in Figure 5.1d corresponds to the CC trace of the transformed Twitter in Figure 5.1f, and the acyclicity of the latter (the fact that it is admitted by SER) implies that the former is admitted by the original Twitter under PC. On the other hand, the trace in Figure 5.1b is also a CC of the transformed FusionTicket and its cyclicity implies that it is not admitted by FusionTicket under PC, and thus, it represents a robustness violation.

Robustness SI vs PC. We illustrate the robustness against substituting SI with PC using Twitter and the Betting program in Figure 5.1g. Twitter is not robust against substituting SI with PC, the trace in Figure 5.1d being a witness violation. This trace is also a violation of the intended specification since one of the users registers a password that is overwritten in a concurrent transaction. This PC trace is not possible under SI because Register(u,p1) and Register(u,p2) observe the same prefix of the commit order (i.e., an empty prefix), but they write to a common memory location Password[u] which is not allowed under SI.

On the other hand, the Betting program in Figure 5.1g, which manages a set of bets, is robust against substituting SI with PC. The first two processes execute one transaction that places a bet of a value v with a unique bet identifier id, assuming that the bet expiration time is not yet reached (bets are recorded in the map Bets). The third process contains a single transaction that settles the betting assuming that the bet expiration time was reached and at least one bet has been placed.

This transaction starts by taking a snapshot of the Bets map into a local variable Bets', and then selects a random non-null value (different from ⊥) in the map to correspond to the winning bet.

The intended specification of this program is that the winning bet corresponds to a genuine bet that was placed. This trace is allowed under SI because no two transactions write to the same location.

Checking robustness SI vs PC. We reduce robustness against substituting SI with PC to a reachability problem under SER. This reduction is based on a characterization of happens-before cycles1 that are possible under PC but not SI, and the transformation described above that allows to simulate the PC semantics of a program on top of SER. The former is used to define an instrumentation (monitor) for the transformed program that reaches an error state iff the original program is not robust. Therefore, we show that the happens-before cycles in PC traces that are not admitted by SI must contain a transaction that (1) overwrites a value written by another transaction in the cycle and (2) reads a value overwritten by another transaction in the cycle. For instance, the trace of Twitter in Figure 5.1d is not allowed under SI because Register(u,p2) overwrites a value written by Register(u,p1) (the password) and reads a value overwritten by Register(u,p1) (checking whether the username u is registered). The trace of Betting in Figure 5.1g is allowed under SI because its happens-before is acyclic.

Checking robustness using commutativity arguments. Based on the reductions above, we

propose an approximated method for proving robustness based on the concept of mover in Lipton's reduction theory [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF]. A transaction is a left (resp., right) mover if it commutes to the left (resp., right) of another transaction (by a different process) while preserving the computation. We use the notion of mover to characterize the data-flow dependencies in the happens-before. Roughly, there exists a data-flow dependency between two transactions in some execution if one does not commute to the left/right of the other one.

We define a commutativity dependency graph which summarizes the happens-before dependencies in all executions of a transformed program (obtained by splitting the transactions of the original program as explained above), and derive a proof method for robustness which inspects paths in this graph. Two transactions t 1 and t 2 are linked by a directed edge iff t 1 cannot move to the right of t 2 (or t 2 cannot move to the left of t 1), or if they are related by the program order. Moreover, two transactions t 1 and t 2 are linked by an undirected edge iff they are the result of splitting the same transaction.

A program is robust against substituting PC with CC if roughly, its commutativity dependency graph does not contain a simple cycle of directed edges with two distinct transactions t 1 and t 2 , such that t 1 does not commute left because of another transaction t 3 in the cycle that reads a variable that t 1 writes to, and t 2 does not commute right because of another transaction t 4 in the cycle (t 3 and t 4 can coincide) that writes to a variable that t 2 either reads from or writes to2 .

For instance, Figure 5.1i shows the commutativity dependency graph of the transformed Betting program, which coincides with the original Betting because PlaceBet(1,2) and PlaceBet(2,3) are write-only transactions and SettleBet() is a read-only transaction. Both simple cycles in Figure 5.1i contain just two transactions and therefore do not meet the criterion above which requires at least 3 transactions. Therefore, Betting is robust against substituting PC with CC.

A program is robust against substituting SI with PC, if roughly, its commutativity dependency graph does not contain a simple cycle with two successive transactions t 1 and t 2 that are linked by an undirected edge, such that t 1 does not commute left because of another transaction t 3 in the cycle that writes to a variable that t 1 writes to, and t 2 does not commute right because of another transaction t 4 in the cycle (t 3 and t 4 can coincide) that writes to a variable that t 2 reads from3 .

Betting is also robust against substituting SI with PC for the same reason (simple cycles of size 2).

Consistency Models

Syntax. We assume w.l.o.g. that every transaction is written as a sequence of reads or assume statements followed by a sequence of writes (a single goto statement from the sequence of read/assume instructions transfers the control to the sequence of writes). In the context of the consistency models we study in this chapter, every program can be equivalently rewritten as a set of transactions of this form.

Semantics. We consider the serializability (SER), causal consistency (we focus on causal convergence) (CC), and snapshot isolation (SI) consistency models semantics as described in Chapters 2, 3, and 4, respectively.

In the semantics of a program under prefix consistency (PC), shared variables are stored in a central memory and each process keeps a local valuation of these variables. When a process starts a new transaction, it fetches a consistent snapshot of the shared variables from the central memory and stores it in its local valuation of these variables. During the execution of a transaction in a process, writes to shared variables are stored in the local valuation of these variables, and in a transaction log. To read a shared variable, a process takes its own valuation of the shared variable.

A process commits a transaction by applying the updates in the transaction log on the central memory in an atomic way (to make them visible to all processes).

We use the standard model of executions of a program, i.e., trace. We assume that each transaction in a program is identified uniquely using a transaction identifier from a set T. f : T → 2 S denotes a mapping that associates each transaction in T with a sequence of read and write events from the set

S = {re(t, x, v), we(t, x, v) : t ∈ T, x ∈ V, v ∈ D}
where re(t, x, v) is a read of x returning v, and we(t, x, v) is a write of v to x.

Definition 5.1. A trace is a tuple tr = (ρ, f , TO, PO, WR, WW, RW) where ρ ⊆ T is a set of transaction identifiers, and

• TO is a mapping giving the order between events in each transaction, i.e., it associates each transaction t in ρ with a total order TO(t) on f (t) × f (t).

• PO is the program order relation, a strict partial order on ρ × ρ that orders every two transactions issued by the same process.

• WR is the read-from relation between distinct transactions (t1, t2) ∈ ρ × ρ representing the fact that t2 reads a value written by t1.

• WW is the store order relation on ρ × ρ between distinct transactions that write to the same shared variable.

• RW is the conflict order relation between distinct transactions, defined by RW = WR -1 ; WW (; denotes the sequential composition of two relations).

For simplicity, for a trace tr = (ρ, f , TO, PO, WR, WW, RW), we write t ∈ tr instead of t ∈ ρ.

We also assume that each trace contains a fictitious transaction that writes the initial values of all shared variables, and which is ordered before any other transaction in program order. Also, Tr X (P)

is the set of traces representing executions of program P under a consistency model X.

For each X ∈ {CC, PC, SI, SER}, the set of traces Tr X (P) can be described using the set of properties in Table 5.1. A trace tr is possible under causal consistency iff there exist two relations CO a partial order (causal order) and ARB a total order (arbitration order) that includes CO, such that the properties AxCausal, AxArb, and AxRetVal hold [START_REF] Cerone | Algebraic laws for weak consistency[END_REF][START_REF] Bouajjani | On verifying causal consistency[END_REF]. AxCausal guarantees that the program order and the read-from relation are included in the causal order, and AxArb guarantees that the causal order and the store order are included in the arbitration order. AxRetVal guarantees that a read returns the value written by the last write in the last transaction that contains a write to the same variable and that is ordered by CO before the read's transaction. We use AxCC to denote the conjunction of these three properties. A trace tr is possible under prefix consistency iff there exist a causal order CO and an arbitration order ARB such that AxCC holds and the property AxPrefix holds as well [START_REF] Cerone | Algebraic laws for weak consistency[END_REF]. AxPrefix guarantees that every transaction observes a prefix of transactions that are ordered by ARB before it. We use AxPC to denote the conjunction of AxCC and AxPrefix. A trace tr is possible under snapshot isolation iff there exist a causal order CO and an arbitration order ARB such that AxPC holds and the property AxConflict holds [START_REF] Cerone | Algebraic laws for weak consistency[END_REF]. AxConflict guarantees that if two transactions write to the same variable then one of them must observe the other. We use AxSI to denote the conjunction of AxPC and AxConflict. A trace tr is serializable iff there exist a causal order CO and an arbitration order ARB such that the property AxSer holds which implies that the two relations CO and ARB coincide. Note that for any given program P,

Tr SER (P) ⊆ Tr SI (P) ⊆ Tr PC (P) ⊆ Tr CC (P).

For a given trace tr = (ρ, f , TO, PO, WR, WW, RW), the happens before order is the transitive closure of the union of all the relations in the trace, i.e., HB = (PO ∪ WR ∪ WW ∪ RW) + . A classic result states that a trace tr is serializable iff HB is acyclic [START_REF] Adya | Weak consistency: A generalized theory and optimistic implementations for distributed transactions[END_REF][START_REF] Shasha | Efficient and correct execution of parallel programs that share memory[END_REF]. Note that HB is acyclic implies that WW is a total order between transactions that write to the same variable, and (PO ∪ WR) + and (PO ∪ WR ∪ WW) + are acyclic.

Robustness

In this chapter, we investigate the problem of checking whether a program P under a semantics Y ∈ {PC, SI} produces the same set of traces as under a weaker semantics X ∈ {CC, PC}.

We illustrate the notion of robustness on the programs in Figure 5.2, which are commonly used in the literature. In all programs, transactions of the same process are aligned vertically and ordered from top to bottom. Each read instruction is commented with the value it reads in some execution.

The store buffering (SB) program in Figure 5.2a contains four transactions that are issued by two distinct processes. We emphasize an execution where t 2 reads 0 from y and t 4 reads 0 from x.

This execution is allowed under CC since the two writes by t 1 and t 3 are not causally dependent.

AxCausal CO + 0 ⊆ CO AxArb ARB + 0 ⊆ ARB AxCC AxRetVal ∧ AxCausal ∧ AxArb AxPrefix ARB; CO ⊆ CO AxPC AxPrefix ∧ AxCC AxConflict WW ⊆ CO AxSI AxConflict ∧ AxPC AxSer AxRetVal ∧ AxCausal ∧ AxArb ∧ CO = ARB
where

CO 0 = PO ∪ WR and ARB 0 = PO ∪ WR ∪ WW AxRetVal = ∀ t ∈ tr. ∀ re(t, x, v) ∈ f (t) we have that • there exist a transaction t 0 = M ax ARB ({t ∈ tr | (t , t) ∈ CO ∧ ∃ we(t , x, •) ∈ f (t)}) and an event we(t 0 , x, v) = M ax TO(t 0) ({we(t 0 , x, •) ∈ f (t 0)}).
Table 5.1: Declarative definitions of consistency models. For an order relation ≤,

a = M ax ≤ (A) iff a ∈ A ∧ ∀ b ∈ A. b ≤ a. [x := 1] t 1 [r1 := y] //0 t 2 [y := 1] t 3 [r2 := x] //0 t 4 PO RW PO RW (a) Store Buffering (SB). [r1 := x //0 x := r1 + 1] t 1 [r2 := x //0 x := r2 + 1] t 2 WW RW (b) Lost Update (LU). [r1 := x //0 y := 1] t 1 [r2 := y //0 x := 1] t 2 RW RW (c) Write Skew (WS). [x := 1] t 1 [y := 1] t 2 [r1 := y] //1 t 3 [r2 := x] //1 t 4 PO WR PO WR (d) Message Passing (MP).
Figure 5.2: Litmus programs Thus, t 2 and t 4 are executed without seeing the writes from t 3 and t 1 , respectively. However, this execution is not feasible under PC (which implies that it is not feasible under both SI and SER). In particular, we cannot have neither (t 1 , t 3) ∈ ARB nor (t 3 , t 1) ∈ ARB which contradicts the fact that ARB is total order. For example, if

(t 1 , t 3) ∈ ARB, then (t 1 , t 4) ∈ CO (since ARB; CO ⊂ CO)
which contradicts the fact that t 4 does not see t 1 . Similarly, (t 3 , t 1) ∈ ARB implies that (t 3 , t 2) ∈ CO which contradicts the fact that t 2 does not see t 3 . Thus, SB is not robust against CC relative to PC.

The lost update (LU) program in Figure 5.2b has two transactions that are issued by two distinct processes. We highlight an execution where both transactions read 0 from x. This execution is allowed under PC since both between traces of P and P ♣ . Let tr = (ρ, PO, WR, WW, RW) ∈ Tr X (P) be a trace of a program P under a semantics X. We define the trace tr ♣ = (ρ ♣ , PO ♣ , WR ♣ , WW ♣ , RW ♣) where every transaction t ∈ tr is split into two transactions t[r] ∈ tr ♣ and t[w] ∈ tr ♣ , and the dependency relations are straightforward adaptations, i.e.,

• PO ♣ is the smallest transitive relation that includes (t[r], t[w]) for every t, and (t

[w], t [r]) if (t, t) ∈ PO, • (t [w], t[r]) ∈ WR ♣ , (t [w], t[w]) ∈ WW ♣ , and (t [r], t[w]) ∈ RW ♣ if (t , t) ∈ WR, (t , t) ∈ WW,
and (t , t) ∈ RW, respectively. Conversely, for a given trace

[r1 = x] //0 t 1 [r] [x = r1 + 1] t 1 [w] [r2 = x] //0 t 2 [r] [x = r2 + 1] t 2 [w]
tr ♣ = (ρ ♣ , PO ♣ , WR ♣ , WW ♣ , RW ♣) ∈
Tr X (P ♣) of a program P ♣ under a semantics X, we define the trace tr = (ρ, PO, WR, WW, RW) where every two components t[r] and t[w] are merged into a transaction t ∈ tr. The dependency relations are defined in a straightforward way, e.g., if (t [w], t[w]) ∈ WW ♣ then (t , t) ∈ WW.

The following lemma shows that for any semantics X ∈ {CC, PC, SI}, if tr ∈ Tr X (P) for a program P, then tr ♣ is a valid trace of P ♣ under X, i.e., tr ♣ ∈ Tr X (P ♣). Intuitively, this lemma shows that splitting transactions in a trace and defining dependency relations appropriately cannot introduce cycles in these relations and preserves the validity of the different consistency axioms.

The proof of this lemma relies on constructing a causal order CO ♣ and an arbitration order ARB ♣ for the trace tr ♣ starting from the analogous relations in tr. In the case of CC, these are the smallest transitive relations such that:

• PO ♣ ⊆ CO ♣ ⊆ ARB ♣ , and • if (t 1 , t 2) ∈ CO then (t 1 [w], t 2 [r]) ∈ CO ♣ , and if (t 1 , t 2) ∈ ARB then (t 1 [w], t 2 [r]) ∈ ARB ♣ .
For PC and SI, CO ♣ must additionally satisfy: if (t 1 , t 2) ∈ ARB, then (t 1 [w], t 2 [w]) ∈ CO ♣ . This is required in order to satisfy the axiom AxPrefix, i.e., ARB ♣ ; CO ♣ ⊂ CO ♣ , when (t

1 [w], t 2 [r]) ∈ ARB ♣ and (t 2 [r], t 2 [w]) ∈ CO ♣ .
This construction ensures that CO ♣ is a partial order and ARB ♣ is a total order because CO is a partial order and ARB is a total order. Also, based on the above rules, we have that: if

(t 1 [w], t 2 [r]) ∈ CO ♣ then (t 1 , t 2) ∈ CO, and similarly, if (t 1 [w], t 2 [r]) ∈ ARB ♣ then (t 1 , t 2) ∈ ARB.
Lemma 5.1. If tr ∈ Tr X (P), then tr ♣ ∈ Tr X (P ♣).

Proof. We start with the case X = CC. We first show that tr ♣ satisfies AxCausal and AxArb.

For AxCausal, let

t 1 ∈ {t 1 [r], t 1 [w]} and t 2 ∈ {t 2 [r], t 2 [w]}, such that (t 1 , t 2) ∈ (PO ♣ ∪ WR ♣) + .
By the definition of CO ♣ , we have that either (t

1 = t 1 [r], t 2 = t 2 [w]) ∈ PO ♣ and t 1 = t 2 or (t 1 , t 2) ∈ (PO ∪ WR) + , which implies that (t 1 , t 2) ∈ CO.
In both cases we obtain that (t 1 , t 2) ∈ CO ♣ .

The axiom AxCausal can be proved in a similar way.

Next, we show that tr ♣ satisfies the property AxRetVal. Let t be a transaction in tr that contains a read event re(t, x, v). Let t 0 be the transaction in tr such that

t 0 = M ax ARB ({t ∈ tr | (t , t) ∈ CO ∧ ∃ we(t , x, •) ∈ f (t)}).
The read value v must have been written by t 0 since tr satisfies AxRetVal. Thus, the read re(t, x, v)

in t[r] of tr ♣ must return the value written by t 0 [w]. From the definitions of CO ♣ and ARB ♣ , we get

t 1 [w] ∈ {t [w] ∈ tr ♣ | (t [w], t[r]) ∈ CO ♣ ∧ ∃ we(t [w], x, •) ∈ f (t [w])} iff t 1 ∈ {t ∈ tr | (t , t) ∈ CO ∧ ∃ we(t , x, •) ∈ f (t)} because (t 1 [w], t 2 [r]) ∈ CO ♣ implies (t 1 , t 2) ∈ CO. Since (t 1 [w], t 2 [w]) ∈ ARB ♣ implies (t 1 , t 2) ∈
ARB, we also obtain that

t 0 [w] = M ax ARB ♣ ({t [w] ∈ tr ♣ | (t [w], t[r]) ∈ CO ♣ ∧ ∃ we(t [w], x, •) ∈ f (t [w])})
and since the read re(t, x, v) in t[r] of tr ♣ returns the value written by t 0 [w], tr ♣ satisfies AxRetVal.

For the case X = PC, we show that tr ♣ satisfies the property AxPrefix (the other axioms are proved as in the case of CC). Suppose we have (t

1 , t 2) ∈ ARB ♣ and (t 2 , t 3) ∈ CO ♣ where t 1 ∈ {t 1 [r], t 1 [w]}, t 2 ∈ {t 2 [r], t 2 [w]}, and t 3 ∈ {t 3 [r], t 3 [w]}.
The are five cases to be discussed: Therefore, doing the splitting creates a cycle in either (PO ♣ ∪WR ♣ ∪WW ♣) + or (PO ♣ ∪WR ♣) + ; RW ♣ which implies that tr ♣ is not CC, a contradiction.

1. (t 1 = t 1 [r], t 2 = t 2 [w]) ∈ PO ♣ and
The following lemma shows that a trace tr is PC iff the corresponding trace tr ♣ is SER. The if direction in the proof is based on constructing a causal order CO and an arbitration order ARB for the trace tr from the arbitration order ARB ♣ in tr ♣ (since tr ♣ is a trace under serializability CO ♣ and ARB ♣ coincide). These are the smallest transitive relations such that:

• if (t 1 [w], t 2 [r]) ∈ ARB ♣ then (t 1 , t 2) ∈ CO, • if (t 1 [w], t 2 [w]) ∈ ARB ♣ then (t 1 , t 2) ∈ ARB 4 .
The only-if direction is based on the fact that any cycle in the dependency relations of tr that is admitted under PC (characterized in Lemma 5.7) is "broken" by splitting transactions. Also, splitting transactions cannot introduce new cycles that do not originate in tr.

Lemma 5.4. A trace tr is PC iff tr ♣ is SER

The lemmas above are used to prove Theorem 5.1 as follows:

Proof of Theorem 5.1: For the if direction, assume by contradiction that P is not robust against CC relative to PC. Then, there must exist a trace tr ∈ Tr CC (P) \ Tr PC (P). Lemmas 5.3 and 5.4 imply that the corresponding trace tr ♣ of P ♣ is CC and not SER. Thus, P ♣ is not robust against CC relative to SER. The only-if direction is proved similarly.

Robustness against CC relative to SER has been shown to be reducible in polynomial time to the reachability problem under SER [START_REF] Beillahi | Robustness against transactional causal consistency[END_REF]. Given a program P and a control location , the reachability problem under SER asks whether there exists an execution of P under SER that reaches . Therefore, as a corollary of Theorem 5.1, we obtain the following:

Corollary 5.1. Checking robustness against CC relative to PC is reducible to the reachability problem under SER in polynomial time.

In the following we discuss the complexity of this problem in the case of finite-state programs (bounded data domain). The upper bound follows from Corollary 5.1 and standard results about the complexity of the reachability problem under sequential consistency, which extend to SER, with a bounded [START_REF] Kozen | Lower bounds for natural proof systems[END_REF] or parametric number of processes [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF]. For the lower bound, given an instance (P,) of the reachability problem under sequential consistency, we construct a program P where each statement s of P is executed in a different transaction that guards5 the execution of s using a global lock (the lock can be implemented in our programming language as usual, e.g., using a busy wait loop for locking), and where reaching the location enables the execution of a "gadget" that corresponds to the SB program in Figure 5.2a. Executing each statement under a global lock ensures that every execution of P under CC is serializable, and faithfully represents an execution of P under sequential consistency. Moreover, P reaches iff P contains a robustness violation, which is due to the SB execution.

Corollary 5.2. Checking robustness of a program with a fixed number of variables and bounded data domain against CC relative to PC is PSPACE-complete when the number of processes is bounded and EXPSPACE-complete, otherwise.

Robustness Against PC Relative to SI

In this section, we show that checking robustness against PC relative to SI can be reduced in polynomial time to a reachability problem under the SER semantics. We reuse the program transformation from the previous section that allows to simulate PC behaviors on top of SER, and additionally, we provide a characterization of traces that distinguish the PC semantics from SI. We use this characterization to define an instrumentation (monitor) that is able to detect if a program under PC admits such traces.

We show that the happens-before cycles in a robustness violation (against PC relative to SI) must contain a WW dependency followed by a RW dependency, and they should not contain two successive RW dependencies. This follows from the fact that every happens-before cycle in a PC trace must contain either two successive RW dependencies, or a WW dependency followed by a RW dependency. Otherwise, the happens-before cycle will imply a cycle in the arbitration order.

Then, any trace under PC where all its simple happens-before cycles contain two successive RW dependencies is possible under SI. As a first step, we prove the following theorem. This will imply a cycle in ARB + 0 ; RW; ARB + 0 ; RW which again contradicts the hypothesis. Also, let CO 1 be the smallest transitive relation that includes ARB + 0 and ARB 1 ; ARB + 0 . We show that CO 1 and ARB 1 are causal and arbitration orders of tr that satisfy all the axioms of SI. cycle with RW dependency followed by WW dependency or two successive WW dependencies. This cycle must contain at least one additional dependency. Otherwise, the cycle would also have a WW dependency followed by a RW dependency, or it would imply a cycle in WW, which is not possible (since WW ⊂ ARB and ARB is a total order). Then, we get that the dependency just before RW is either PO or WR (i.e., CO 0) since we cannot have RW or WW followed by RW. Also, the relation after WW is either PO or WR or WW (i.e., ARB 0) since we cannot have WW followed by RW. Thus, the cycle has the following shape: The instrumentation executes (incomplete) transactions without affecting the auxiliary variables (without tracking happens-before dependencies) until a non-deterministically chosen point in time when it declares the current transaction as the candidate for t # . Only one candidate for t # can be chosen during the execution. This transaction executes only its reads and it chooses nondeterministically a variable that it could write as a witness for the WW dependency. The name of this variable is stored in a global variable varW (see the definition of I # (x := e)). The writes are not applied on the shared memory. Intuitively, t # should be thought as a transaction whose writes are delayed for later, after transaction t in Figure 5.4 executed. The instrumentation checks that t # and t can be connected by some happens-before path that includes the RW and WW dependencies, and that does not contain two consecutive RW dependencies. If it is the case, it violates an assertion at the commit point of t. Since the write part of t # is intuitively delayed to execute after t, the process executing t # is disabled all along the execution (see the assume false).

t 1 t 2 t 3 t 4 • • • t i t i+1 t i+2 t i+3 • • • t n-4 t n-3 t n-2 t n
After choosing the candidate for t # , the instrumentation uses the auxiliary variables for tracking happens-before dependencies. Therefore, rdSet and wrSet record variables read and written, respectively, by transactions that are connected by a happens-before path to t # (in a trace of P).

This is ensured by the assume at line 7. During the execution, the variables read or written by a transaction 8 that writes a variable in rdSet (see line 33), or reads or writes a variable in wrSet (see line 21 and 28), will be added to these sets (see lines 17 and 18). Since the variables that t # writes in P are not recorded in wrSet, these happens-before paths must necessarily start with a RW dependency (from t #). When the assertion fails (line 8), the condition varW ∈ wrSet' ensures that 8 These are stored in the local variables rdSet' and wrSet' while the transaction is running.

Transaction "begin read * test * write * commit" is rewritten to: the current transaction has a WW dependency towards the write part of t # (the current transaction plays the role of t in Figure 5.4).

The rest of the instrumentation checks that there exists a happens-before path from t # to t that does not include two consecutive RW dependencies, called a SI ¬ path. This check is based on the auxiliary variables whose name is prefixed by hb and which take values in the domain {⊥, 0, 1, 2} (⊥ represents the initial value). Therefore,

• hbR['x'] (resp., hbW['x']) is 0 iff there exists a transaction t that reads x (resp., writes to

x), such that there exists a SI ¬ path from t # to t that ends with a dependency which is not RW,

• hbR['x'] (resp., hbW['x']) is 1 iff there exists a transaction t that reads x (resp., writes to

x) that is connected to t # by a SI ¬ path, and every SI ¬ path from t # to a transaction t that reads x (resp., writes to x) ends with an RW dependency,

• hbR['x'] (resp., hbW['x']) is 2 iff there exists no SI ¬ path from t # to a transaction t that reads x (resp., writes to x).

The local variable hbP has the same interpretation, except that t and t are instantiated over transactions in the same process (that already executed) instead of transactions that read or write a certain variable. Similarly, the variable hb is a particular case where t and t are instantiated to the current transaction. The violation of the assertion at line 8 implies that hb is 0 or 1, which means that there exists a SI ¬ path from t # to t.

During each transaction that executes after t # , the variable hb characterizing happens-before paths that end in this transaction is updated every time a new happens-before dependency is witnessed (using the values of the other variables). For instance, when witnessing a WR dependency (line 21), if there exists a SI ¬ path to a transaction that writes to x, then the path that continues with the WR dependency towards the current transaction is also a SI ¬ path, and the last dependency of this path is not RW. Therefore, hb is set to 0 (see line 23). Otherwise, if every path to a transaction that writes to x is not a SI ¬ path, then every path that continues to the current transaction (by taking the WR dependency) remains a non SI ¬ path, and hb is set to the value of hbW['x'], which is 2 in this case (see line [START_REF] Adya | Weak consistency: A generalized theory and optimistic implementations for distributed transactions[END_REF]. Before ending a transaction, the value of hb can be used to modify the hbR, hbW, and hbP variables, but only if those variables contain bigger values (see lines [START_REF]Carrefour says blockchain tracking boosting sales of some products[END_REF][START_REF] Etherscan | [END_REF][START_REF] Ganache | [END_REF][12][START_REF] Openzeppelin | [END_REF][START_REF]Paxos standard erc20 stablecoin pax[END_REF][START_REF] Sirin-Labs | [END_REF][START_REF]Smart contracts benchmark[END_REF].

The correctness of the instrumentation is stated in the following theorem.

Remark 5.1. Our reductions of robustness checking to reachability apply to an extension of our

programming language where the number of processes is unbounded and each process can execute an arbitrary number of times a statically known set of transactions. This holds because the instrumentation in Figure 5.5 and the one in [START_REF] Beillahi | Robustness against transactional causal consistency[END_REF] (for the case CC vs. SER) consist in adding a set of instructions that manipulate a fixed set of process-local or shared variables, which do not store process or transaction identifiers. These reductions extend also to SQL queries that access unbounded size tables. Rows in a table can be interpreted as memory locations (identified by primary keys in unbounded domains, e.g., integers), and SQL queries can be interpreted as instructions that read-/write a set of locations in one shot. These possibly unbounded sets of locations can be represented symbolically using the conditions in the SQL queries (e.g., the condition in the WHERE part of a SELECT). The instrumentation in Figure 6 needs to be adapted so that read and write sets are updated by adding sets of locations for a given instruction (represented symbolically as mentioned above).

Robustness Against CC relative to SI

Checking robustness against CC relative to SI can be also shown to be reducible (in polynomial time) to a reachability problem under SER by combining the results in the previous two sections.

Theorem 5.6. A program P is robust against CC relative to SI iff P is robust against CC relative to PC and P is robust against PC relative to SI.

Proving Robustness Using Commutativity Dependency Graphs

We describe an approximated technique for proving robustness, which leverages the concept of left/right mover in Lipton's reduction theory [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF].

•. . .•t i-1 •t i+1 •t i •t i+2 •. . .•t n (resp., t 1 •. . .•t i-2 •t i •t i-1 •t i+1 •. . .•t n)
is also a valid execution of P, t i and t i+1 (resp., t i-1) are executed by distinct processes, and both traces reach the same end state. A transaction t ∈ Tr(P) is not a right (resp., left) mover iff there exists a trace tr ∈ Tr SER (P) such that t ∈ tr and t does not move right (resp., left) in tr. Thus, when a transaction t is not a right mover then there must exist another transaction t ∈ tr which caused t

to not be permutable to the right (while preserving the end state). Since t and t do not commute, then this must be because of either a write-read, write-write, or a read-write dependency relation between the two transactions. We say that t is not a right mover because of t and a dependency relation that is either write-read, write-write, or read-write. Notice that when t is not a right mover because of t then t is not a left mover because of t.

We define M WR as a binary relation between transactions such that (t, t) ∈ M WR when t is not a right mover because of t and a write-read dependency (t reads some value written by t). We define the relations M WW and M RW corresponding to write-write and read-write dependencies in a similar way. We call M WR , M WW , and M RW , non-mover relations. Using the characterization of robustness violations against CC relative to SER from [START_REF] Beillahi | Robustness against transactional causal consistency[END_REF] and the reduction in Theorem 5.1, we obtain the following result concerning the robustness against CC relative to PC.

[x = 1] t1[w] [y = 1] t2[w] [r1 = y] t3[r] [r2 = x] t4[r] PO M RW M WR M WR M RW PO
• (t n , t 1) ∈ M RW ; • (t j , t j+1) ∈ (PO ∪ WR) * , for j ∈ [1, i -1]; • (t i , t i+1) ∈ (M RW ∪ M WW); • (t j , t j+1) ∈ (M RW ∪ M WW ∪ M WR ∪ PO), for j ∈ [i + 1, n -1].
then P is robust against CC relative to PC.

Proof. It is enough to show: if P is not robust against CC relative to PC then we have a simple cycle in the commutativity dependency graph of P ♣ of the form above. Assume P is not robust against CC relative to PC. Then, from Theorem 5.1, we obtain P ♣ is not robust against CC relative to SER.

Also it was shown in [START_REF] Beillahi | Robustness against transactional causal consistency[END_REF] that if a program is not robust then there must exist a robustness violation trace (CC relative to SER) tr ♣ of the shape tr Note that we may have β = γ = as the case for the trace of the SB program given in Figure 5.2a.

♣ = α • t 1 • β • t i • t i+1 • γ •
We consider first the general case when t 1 ≡ t 2 . The other case can be proved in the same way.

Consider the prefix tr p of tr ♣ : tr p = α • t follows the same procedure taken in the proof of Theorem 5.7. The only difference is that for every two transactions of tr that are part of the happens before between t 3 and t n , if the two are not connected by either PO, WR, WW, or RW then they must be the reads and writes of the same original transaction in P. In this case, in the commutativity dependency graph we have the two transactions related by STO.

• (t j , t j+1) ∈ (M RW ∪ M WW ∪ M WR ∪ PO ∪ STO) * , for j ∈ [3, n -1]; • ∀ j ∈ [2, n -2]. -if (t j , t j+1) ∈ M RW then (t j+1 , t j+2) ∈ (M WR ∪ PO ∪ M WW); -if (t j+1 , t j+2) ∈ M RW then (t j , t j+1) ∈ (M WR ∪ PO). • ∀ j ∈ [3, n -3]. if (t
In Figure 5.6, we have three simple cycles in the graph:

• (t1[w], t4[r]) ∈ M WR and (t4[r], t1[w]) ∈ M RW , • (t2[w], t3[r]) ∈ M WR and (t3[r], t2[w]) ∈ M RW , • (t1[w], t2[w]) ∈ PO, (t2[w], t3[r]) ∈ M WR , (t3[r], t4[r]) ∈ PO, and (t4[r], t1[w]) ∈ M RW .
Notice that none of the cycles satisfies the properties in Theorems 5.7 and 5.8. Therefore, MP is robust against CC relative to PC and against PC relative to SI.

Remark 5.2. For programs that contain an unbounded number of processes, an unbounded number of instantiations of a fixed number of process "templates", or unbounded loops with bodies that contain entire transactions, a sound robustness check consists in applying Theorem 5.7 and Theorem 5.8 to (bounded) programs that contain two copies of each process template, and where each loop is unfolded exactly two times. This holds because the mover relations are "static", they do not depend on the context in which the transactions execute, and each cycle requiring more than two process instances or more than two loop iterations can be short-circuited to a cycle that exists also in the bounded program. Every outgoing edge from a third instance/iteration can also be taken from the second instance/iteration. Two copies/iterations are necessary in order to discover cycles between instances of the same transaction (the cycles in Theorem 5.7 and Theorem 5.8 are simple and cannot contain the same transaction twice). These results extend easily to SQL queries as well because the notion of mover is independent of particular classes of programs or instructions.

Experimental Evaluation

We evaluated our approach for checking robustness on 7 applications extracted from the literature on databases and distributed systems, and an application Betting designed by ourselves. Two applications were extracted from the OLTP-Bench benchmark [START_REF] Difallah | Oltp-bench: An extensible testbed for benchmarking relational databases[END_REF]: a vote recording application (Vote) and a consumer review application (Epinions). Three applications were obtained from Github projects (used also in [START_REF] Beillahi | Checking robustness against snapshot isolation[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF]): a distributed lock application for the Cassandra database (Cassan-draLock [67]), an application for recording trade activities (SimpleCurrencyExchange [162]), and a micro social media application (Twitter [START_REF]Twitter[END_REF]). The last two applications are a movie ticketing application (FusionTicket) [START_REF] Holt | Disciplined inconsistency with consistency types[END_REF], and a user subscription application inspired by the Twitter application (Subscription). Each application consists of a set of SQL transactions that can be called an arbitrary number of times from an arbitrary number of processes. For instance, Subscription In the first part of the experiments, we check for robustness violations in bounded-size executions of a given application. For each application, we have constructed a client program with a fixed number of processes (2) and a fixed number of transactions of the corresponding application (at most 2 transactions per process). For each program and pair of consistency models, we check for robustness violations using the reductions to reachability under SER presented in §5.4 and §5.5 [START_REF] Hawblitzel | Automated and modular refinement reasoning for concurrent programs[END_REF]. The results are reported in Table 5.2, the cells filled with "yes". We showed that the three applications Betting, CassandraLock and SimpleCurrencyExchange are robust against any semantics relative to some other stronger semantics. Epinions, FusionTicket, Subscription and Twitter are robust against SI relative to SER.

Furthermore, Epinions is robust against PC relative to SI while Subscription is robust against CC relative to PC. Finally, the Vote application is robust both against CC relative to PC and against PC relative to SI. As mentioned earlier, all these robustness results are established for arbitrarily large executions and clients with an arbitrary number of processes. For instance, the robustness of SimpleCurrencyExchange ensures that when the exchange market owner observes a trade registered by a user, they observe also all the other trades that were done by this user in the past.

In conclusion, our experiments show that the robustness checking techniques we present are effective in proving or disproving robustness of concrete applications. Moreover, it shows that the robustness property for different combinations of consistency models is a relevant design principle, that can help in choosing the right consistency model for realistic applications, i.e., navigating the tradeoff between consistency and performance (in general, weakening the consistency leads to better performance).

Related Work

The consistency models in this chapter were studied in several recent works [START_REF] Burckhardt | Replicated data types: specification, verification, optimality[END_REF][START_REF] Burckhardt | Principles of eventual consistency[END_REF][START_REF] Cerone | A framework for transactional consistency models with atomic visibility[END_REF][START_REF] Perrin | Causal consistency: beyond memory[END_REF][START_REF] Bouajjani | On verifying causal consistency[END_REF][START_REF] Raad | On the semantics of snapshot isolation[END_REF][START_REF] Biswas | On the complexity of checking transactional consistency[END_REF]. Most of them focused on their operational and axiomatic formalizations. The formal definitions we use in this chapter are based on those given in [START_REF] Cerone | A framework for transactional consistency models with atomic visibility[END_REF][START_REF] Bouajjani | On verifying causal consistency[END_REF]. Biswas and Enea [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF] shows that checking whether an execution is CC is polynomial time while checking whether it is PC or SI is NP-complete.

The robustness problem we study in this chapter has been investigated in the context of weak memory models, but only relative to sequential consistency, against RA and PGAS parallel programming models, and TSO and Power weak memory models [START_REF] Lahav | Robustness against release/acquire semantics[END_REF][START_REF] Calin | A theory of partitioned global address spaces[END_REF][START_REF] Bouajjani | Deciding robustness against total store ordering[END_REF][START_REF] Bouajjani | Checking and enforcing robustness against TSO[END_REF][START_REF] Derevenetc | Robustness against power is pspace-complete[END_REF][START_REF] Derevenetc | Robustness against Relaxed Memory Models[END_REF]. In this work, we study the robustness problem between two weak consistency models, which poses different nontrivial challenges. In particular, previous work proposed reductions to reachability under sequential consistency (or SER) that relied on a concept of minimal robustness violations (w.r.t. an operational semantics), which does not apply in our case. The relationship between PC and SER is similar in spirit to the one given by Biswas and Enea [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF] in the context of checking whether an execution is PC. However, that relationship was proven in the context of a "weaker" notion of trace (containing only program order and read-from), and it does not extend to our notion of trace. For instance, that result does not imply preserving WW dependencies which is crucial in our case.

Some works describe various over-or under-approximate analyses for checking robustness relative to SER. The works in [START_REF] Alomari | A robust technique to ensure serializable executions with snapshot isolation DBMS[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF][START_REF] Brutschy | Serializability for eventual consistency: criterion, analysis, and applications[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF][START_REF] Cerone | Analysing snapshot isolation[END_REF][START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF] propose static analysis techniques based on computing an abstraction of the set of computations, which is used for proving robustness. In particular, [START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF][START_REF] Nagar | Automated detection of serializability violations under weak consistency[END_REF] encode program executions under the weak consistency model using FOL formulas to describe the dependency relations between actions in the executions. These approaches may return false alarms due to the abstractions they consider in their encoding. Note that in this chapter, we prove a strengthening of the results of [START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF] with regard to the shape of happens before cycles allowed under PC.

Conclusion

We proposed polynomial time reductions of the problems of checking robustness between weak consistency models to reachability, and therefore, we showed that checking robustness is in principle as hard as checking reachability. We considered three popular weak consistency models: causal consistency, prefix consistency, and snapshot isolation. We also gave a pragmatic technique for proving robustness based on the notion of non-mover relations that can be constructed automatically

Overview

In this section, we overview the methodology formalized in §6.3 and §6.6 for synthesizing behavioral simulations. We illustrate behavioral refinement on a running example (§6.2.1), describe behavioral simulation for proving refinement (§6.2.2), and demonstrate synthesis on the running example (§6.2.3).

Motivation

We illustrate the concept of behavioral refinement on two contracts implementing an auction (written in the Solidity language of Ethereum), which are partially listed in Figure 6.1. These excerpts focus on the initialization and the bidding parts of an auction. The contract RefAuction 1 plays the role of an annotated canonical implementation of an auction (we omit the exact postconditions for brevity) while Auction is a particular variation. We generally refer to canonical implementations as reference (smart) contracts while variations like Auction are called simply (smart) contracts.

The fields of RefAuction store information about the beneficiary and the ending time of the auction, the current highest bidder and its bid, and the bids of previous highest bidders (the owners of these bids have the right to reclaim them at any point during the auction -for brevity, this functionality is excluded from these excerpts). While the constructor initializes the beneficiary and the ending time of the auction, the bid function allows a participant to pose a new bid which is accepted only if it is bigger than the current highest bid and the timeout did not expire. Otherwise, the bid function has no effect on the state of the contract -if the condition inside a require 1 Extracted from the documentation page of Solidity [START_REF] Solidity | [END_REF]. which implies that the timing conditions in function bid are equivalent. Note that even though bid has no return value, using different conditions for accepting a bid would have been "observable" because of the "getter" method that allows to read the highest bid at any point during an execution.

Behavioral Simulation Relations

Establishing refinement usually relies on an induction argument based on a (behavioral) simulation relation, which in our context, is a relation between the states of the two contracts supporting a proof that the reference contract mimics every method invocation of the other contract. The simulation relation supporting such a proof is defined as follows (the fields of Auction are prefixed by # to distinguish them from fields of the reference auction having the same name):

Sim def = auctionStart + biddingTime = auctionEnd (6.2) ∧ #beneficiary = beneficiary ∧ #highestBidder = highestBidder ∧ #highestBid = highestBid ∧ #pendingReturns = pendingReturns
The initial states of the two contracts (produced after executing the constructor) are obviously related by Sim and also, given any two states (of Auction and RefAuction, respectively) related by (with the same arguments) from the initial state of both the contract and the reference contract.

Such pairs of states are necessarily included in every simulation under the assumption that contracts are deterministic, which roughly, means that the state reached by a contract when executing a sequence of invocations is unique. These two auction contracts satisfy this determinism assumption (this is rather straightforward when the global variable now is assumed to be a constant; otherwise, it is required that any modification of the environment variable now is modeled explicitly as an invocation to a fictitious method -see §6.3 for more details). For instance, the following pair of states is obtained by running constructor(2, a) • bid(b, 10) • bid(c, 20) in both contracts (we write only the keys of pendingReturns that changed with respect to the initial state):

                              beneficiary = a now = 0 auctionStart = 0 biddingTime = 2 highestBid = 20 highestBidder = c pendingReturns[b] = 10                ,                beneficiary = a now = 0 auctionEnd = 2 highestBid = 20 highestBidder = c pendingReturns[b] = 10                               (6.3)
We generate positive examples by enumerating invocation sequences and producing the pairs of states reached by executing them in the two contracts.

The definition of negative examples relies on a relation between states which compares return

values of read-only methods. As a base case, a negative example is any pair of states that are distinguished by a read-only method, i.e., invoking this method on each of the two states results in different return values. For instance, the following pair of states are distinguished by the HighestBid method:

                              beneficiary = a now = 0 auctionStart = 0 biddingTime = 2 highestBid = 20 highestBidder = c pendingReturns[b] = 10                ,                beneficiary = a now = 0 _auctionEnd = 2 highestBid = 30 highestBidder = b                               (6.4)
The first state is obtained by calling constructor(2, a) • bid(b, 10) • bid(c, 20) in the Auction contract while the second one is obtained by calling constructor(2, a) • bid(b, 30) • bid(c, 20) in the reference auction. The difference between the two sequences, i.e., the argument to the second bid, is written in bold font (the last bid in the reference auction sequence is not accepted because it is smaller than the previous one). Such pairs of states should be excluded from any simulation relation because otherwise, the reference contract cannot mimic the invocation of that particular read-only method in the other contract. Going further, any pair of states from which executing the same sequence of invocations leads to states that are distinguishable by some read-only method is also a negative example (this again relies on the assumption that contracts are deterministic). For instance, the predecessors of the pair of states in (6.4), reached before making the last bid (i.e., bid(c, 20)), which is the same in both contracts, is such an example:

                        beneficiary = a now = 0 auctionStart = 0 biddingTime = 2 highestBid = 10 highestBidder = b             ,             beneficiary = a now = 0 _auctionEnd = 2 highestBid = 30 highestBidder = b                        
As we hinted above, negative examples can also be identified based on invocation sequences, in this case two distinct ones. Therefore, their generation is oblivious to state representations and based on an enumeration of pairs of invocation sequences.

Note that Sim in Equation 6.2 is indeed a separator between the examples described above.

Verifying Simulation Relations

To verify that a simulation candidate is indeed valid we rely on deductive verification. We generate a simulation-checking contract with one function for each of the functions common to the input contracts, invoking each version in turn. Figure 6 bigger than every previous bid.

Behavioral Refinement

The formalization of behavioral refinement between contracts relies on a simple yet universal model of computation, namely labeled transition systems. A labeled transition system (LTS) A = (Q, Σ, s 0 , δ) over the possibly-infinite alphabet Σ is a possibly-infinite set Q of states with initial state s 0 ∈ Q, and a transition relation δ ⊆ Q × Σ × Q. The ith symbol of a sequence τ ∈ Σ * is denoted τ i , and is the empty sequence. An execution of A is an alternating sequence of states and transition labels (also called actions) ρ = s 0 , a 0 , s 1 . . . a k-1 , s k for some k > 0 such that δ(s i , a i , s i+1) for each 0 ≤ i < k. We write s i a i ...a j-1 -----→ A s j as shorthand for the subsequence s i , a i , ..., s j-1 , a j-1 , s j of ρ. (in particular s i -→ s i). The projection τ |Γ of a sequence τ is the maximum subsequence of τ over the alphabet Γ. This notation is extended to sets of sequences as usual. A trace of A is the projection ρ|Σ of an execution ρ of A. The set of traces of an LTS A is denoted by T (A). An LTS is deterministic if for any state s and sequence τ ∈ Σ * , there is at most one state s such that s τ -→ s .

A contract is interpreted as an LTS whose traces represent sequences of invocations to the contract's methods together with their inputs and observable outcomes. A typical example of an observable outcome is the return value, which can be read through invocations from other contracts.

Other examples include effects like gas consumption, changes on the state of other contracts, changes on Blockchain global variables like the balances of external accounts, etc. To simplify the technical exposition, we will mostly focus on return values but this is not a limitation. This LTS interpretation is used to formalize and reason about the soundness of our methodology. It is not intended to be constructed explicitly.

Essentially, the states of the LTS are composed of an internal part represented as assignments to the contract's fields and the balance of the address at which the contract is deployed, and an environment part represented as assignments to environment variables, e.g., now in Figure 6.1, which influence the contract's behavior. The transitions represent invocations to the contract's methods or updates of the environment variables, e.g., increasing the value of now3 . The labels record method names, arguments, and observable outcomes. For uniformity, updates of environment variables are modeled as invocations to some fictitious methods.

Formally, an invocation label m(u) is a method name m along with a vector u of argument

values. An operation label = m(u) ⇒ v is an invocation label m(u) along with a return value v. We assume a fixed, but unspecified, domain Vals of argument or return values. Vals includes a distinguished return value ⊥ associated to invocations that revert. We use inv() to refer to the invocation label in an operation label . This notation is extended to sequences or sets of operation labels as expected. An interface Σ is a set of operation labels over a finite set of method names.

We use Σ to denote the subset of Σ that excludes operation labels with ⊥ as a return value, and Meths(Σ) to denote the method names in Σ. read-only methods like HighestBid are represented as self-loops. Transitions also represent updates of now, e.g., increasing its value by 7.

Modeling updates of environment variables as labeled LTS transitions is important to ensure that the resulting LTS is deterministic. For instance, assuming that such updates are transitions in the LTS interpretation of RefAuction (Figure 6.4), the singleton sequence constructor(5, a)

leads to two distinct states, where now = 0 and now = 7, respectively. Determinism is important for the soundness of our learning procedure (see §6.5).

Remark 6.1. The notion of contract in Definition 6.1 considers the return value as the only observable outcome of an invocation. This notion can be extended to include other observable effects by enriching the structure of transition labels. For instance, it is quite frequent that the methods of a contract invoke Solidity primitives like send for transferring Ether, or methods of other contracts, and possibly even check their return values. An invocation to such a method m can be represented by a transition labeled by m(u) ⇒ I, v where u and v are the arguments and return value of this invocation, and I is a sequence of operation labels corresponding to the "internal" calls made during this invocation (e.g., a call to send with its arguments and return value).

The standard refinement relation between two LTSs is defined as the inclusion between the set of traces produced by the two LTSs. For practical reasons, we consider an extension of this notion that allows a contract to refine another even if (1) it has a larger interface (it defines a larger set of methods) or (2) invocations revert more often (this is sound since any update of a reverted invocation is discarded).

Behavioral Simulations

The standard methodology for proving refinement is based on simulation relations, which are the analog of inductive invariants in proofs of safety. Simulation relations enable an induction scheme to prove inclusion of traces which generally can go forward, from initial states towards end states, or backward, from end states towards initial states. While both types of reasoning, forward or backward, are sound for proving refinement, forward reasoning is easier to automate while being complete for proving refinement of deterministic LTSs only [START_REF] Lynch | Forward and backward simulations: I. untimed systems[END_REF]. Since smart contracts are most often deterministic, we focus on forward reasoning in this work.

Let C 1 = (Q 1 , Σ 1 , s 1 0 , δ 1) and C 2 = (Q 2 , Σ 2
, s 2 0 , δ 2) be two contracts. A simulation relation R relates states of C 1 and C 2 , respectively, in particular their initial states, such that any transition of C 1 from a state q (corresponding to a non-reverted invocation) can be reproduced by C 2 from a state related by R to q (i.e., C 2 has a transition with the same label from the state related by R to q). The end states of the two transitions in C 1 and C 2 , respectively, must again be related by R5 .

Formally, a relation

6 R ⊆ Q 1 × Q 2 is called a (behavioral) simulation from C 1 to C 2 iff R(s 1 0 , s 2 0) and for all s 1 , s 1 ∈ Q 1 , a ∈ Σ 1 , and s 2 ∈ Q 2 , s 1 a -→ C 1 s 1 ∧ R(s 1 , s 2) =⇒ ∃s 2 ∈ Q 2 . s 2 a|Σ 2 ---→ C 2 s 2 ∧ R(s 1 , s 2)
We adapted the standard definition of a simulation relation to take into account the restriction to non-reverted invocations and that Σ shows that a simulation relation can be seen as a "separator" between two sets of pairs of states (of the two contracts), analogous to an inductive invariant being a separator between "safe" and "unsafe" states. This enables a learning from examples approach for computing simulation relation candidates.

Learning Simulations From Examples

We describe a learning procedure for simulation relations which relies on a classification of pairs of states (of the two contracts) as positive, included in every simulation, or negative, excluded from every simulation. This classification is based on a notion of observational distinguishability between states which holds when two states can be distinguished by return values of read-only methods. We say that an invocation label m(u) is read-only in a contract C when it is enabled in every state, i.e., for any trace

σ 1 • σ 2 ∈ T (C), there exists v ∈ Vals such that σ 1 • (m(u) ⇒ v) • σ 2 ∈ T (C),
P (s 1 , s 2) : ∃σ ∈ (Σ 2) * . s 1 0 σ -→ C 1 s 1 ∧ s 2 0 σ -→ C 2 s 2 N (s 1 , s 2) : ∃s 1 , s 2 , ∃σ ∈ (Σ 2) * . s 1 σ -→ C 1 s 1 ∧ s 2 σ -→ C 2 s 2 ∧ s 1 s 2
where s 1 0 and s 2 0 are the initial states of C 1 and C 2 , respectively. This classification is sound under the assumption that C 2 is deterministic. For negative examples, assuming by contradiction that (s 1 , s 2) ∈ N is included in a simulation relation, the state s 2 reached by C 2 when mimicking some sequence of invocations σ of C 1 should "simulate" the corresponding state s 1 of C 1 . However, this cannot be the case since the two states are distinguishable (by Lemma 6.1). Theorem 6.2. For any simulation relation R from a contract C 1 to a deterministic contract C 2 , we have that:

P ⊆ R ⊆ ¬N.
Example 6.4. Positive and negative examples for the pair of contracts Auction and RefAuction (listed in Figure 6.1) are given in Equation 6.3 and Equation 6.4, respectively.

The reverse of Theorem 6.2 does not hold, i.e., there exist relations R that separate P from N and that are not simulation relations. For instance, if the set of observation methods Obs is empty, then N is also empty. However, not every superset of P satisfies the inductiveness requirement of a simulation relation. This is similar to the fact that not every superset of the reachable set of states in a program is an inductive invariant. This source of incompleteness can be removed by adapting the approach used in the ICE framework [START_REF] Garg | ICE: A robust framework for learning invariants[END_REF] for inductive invariant synthesis. For deterministic contracts where the return value of an invocation in a given state is unique, positive and negative examples can be represented precisely using invocation sequences. This enables a procedure for enumerating such examples which consists in enumerating (pairs of) invocation sequences and which is oblivious to state representations.

A contract C is return-value deterministic if it is deterministic and for any method m, arguments u, and admitted trace σ ∈ T (C), there is a single label m(u) ⇒ v such that σ • (m(u) ⇒ v) ∈ T (C). Determinism does not imply uniqueness of return values. For instance, an extension of Auction (Figure 6.1) with a read-only method foo that returns a random value, computed using block.difficulty for instance, remains deterministic. The following result shows that states of return-value deterministic contracts can be represented precisely using invocation sequences. Based on Lemma 6.2, each positive example can be represented by a single invocation sequence (the pair of states being reproducible by running this sequence of invocations in both contracts) and each negative example can be represented by two invocation sequences, each sequence representing a state in one of the two contracts. Also, checking that a pair of states is a negative example reduces to checking whether by running the same (possibly-empty) sequence of invocations on the two states, irrespectively of the return values, leads to two states which are distinguishable. This is sound under the return-value determinism assumption.

The classification of simulation examples we presented above makes it possible to leverage off-theshelf learning algorithms that compute formulas that are satisfied by positive examples and falsified by negative ones, e.g., [START_REF] Garg | ICE: A robust framework for learning invariants[END_REF][START_REF] Garg | Learning invariants using decision trees and implication counterexamples[END_REF][START_REF] Padhi | Data-driven precondition inference with learned features[END_REF][START_REF] Sankaranarayanan | Dynamic inference of likely data preconditions over predicates by tree learning[END_REF][START_REF] Sharma | Interpolants as classifiers[END_REF], up to a bounded enumeration of such examples. The problem of checking whether such a formula is a valid simulation relation is discussed in the next section.

Verifying Simulations

We reduce the problem of verifying that a simulation candidate is valid to checking that it is an inductive invariant for a composition of contracts, which is formalized using a slight variation of the standard product construction for their LTS interpretations. Therefore, the product C 1 × C 2 of two contracts is defined as follows: the states are pairs of states of C 1 and C 2 , respectively, and a state (s 1 , s 2) can perform a transition labeled by a ∈ Σ 1 to one of the following states:

• (s 1 , s 2) if s 1 and s 2 can perform a transition labeled by a to s 1 and s 2 , respectively • (s 1 , s 2) if a ∈ Σ 2 and s 1 can perform a transition labeled by a to s 1 , and • a fail state if a ∈ Σ 2 and only s 1 can perform an a transition.

The second case is required for simulation relations towards reference contracts that have a smaller interface while the last case makes it possible to detect invalid simulation candidates. Note also that The contract AxB is used to represent the product of the LTS interpretations of A and B. Since foo is defined in both contracts, the method sync_foo represents synchronous invocations of foo in A and B while also ensuring equality of return values, unless foo fails in A. Transitions of the product corresponding to bar invocations are represented using the method sync_bar. If AxB verifies the assertion, then its LTS interpretation restricted to invocations of sync_foo and sync_bar is the product of the LTS interpretations of A and B. Note that AxB can fail the assertion although B is deterministic and it simulates A. This is possible when A is not return-value deterministic, e.g., foo can return two values in both A and B when executed from the initial state. By Theorem 6.3, if a relation R between states of A and B is an inductive invariant of AxB restricted to sync_foo and sync_bar (it holds before and after every invocation) and AxB verifies the assertion, then R is simulation from A to B. Remark 6.2. This construction can be extended to handle certain specificities of Solidity. For instance, to deal with payable functions like bid in the auction contracts from Figure 6.1, it is sufficient to introduce a ghost variable in the reference contract that tracks the value of the balance (i.e., adding the amount in msg.value). Then, a simulation relation relates this ghost variable and the balance of the simulated contract instead of the two balances. Also, to establish the fact that a reference contract invocation makes the same "external " calls (to Solidity primitives like send or to other contracts) as the invocation of the contract it simulates (see Remark 6.1) we rely on auxiliary variables that record the sequence of calls with their arguments in each of the two invocations. We then assert the equality between these auxiliary variables and assume that these calls have the same return values. This models the fact that the two contracts refine one another when placed in the same context where the environment produces the same responses.

Implementation

In this section we describe an implementation of our methodology for Solidity smart contracts.

Our implementation consists of four main components: an example generator, an example-guided synthesizer, a blockchain oracle, and a deductive verifier. As input, our implementation requires a pair of Solidity smart contracts with overlapping function signatures, and parameters to limit example generation, including the sets of values to use for transaction parameters, and the number of contract states to explore. rating positive and negative examples by enumerating candidate features of increasing complexity.

We extend PIE along two principle axes. First, we extend its grammar to include types and operations to handle Solidity language features like addresses, arrays, and maps. Second, instead of concrete examples on which to evaluate candidate features, we make examples symbolic, and delegate evaluation of features on examples to a blockchain oracle.

As an optimization we provide the synthesizer with a set of seed features generated from the given pair of contracts. Intuitively, the seed features correspond to equalities between terms over the respective contracts' fields that are likely to hold. For instance, when contracts each have a read-only (view) function f which evaluates terms t 1 and t 2 , respectively, we generate the equality t 1 = t 2 . While this is not generally feasible for view functions with complex control flow, it is useful in practice, since many view functions have simple bodies, e.g., a single return statement.

Verification

Our verifier consists of the reduction from simulation checking to deductive verification, described in §6.6, along with the solc-verify verifier [START_REF] Hajdu | solc-verify: A modular verifier for solidity smart contracts[END_REF], which in turn reduces Solidity contract verification to Boogie verification (and ultimately SMT solving). We have contributed only GitHub issues and feature requests to solc-verify.

Besides the nuances described in §6.6 relating to effects on global state, e.g., balances, verifying the simulation-checking contract with solc-verify involved one key nuance regarding modular verification. In particular, while invocations to the annotated reference contract can be verified modularly, i.e., using only its pre-and post-conditions, invocations to the unannotated contract are verified inline, i.e., explicitly reasoning about the statements in its implementation. Besides helping to virtualize potentially-conflicting global effects between the two invocations, such modularity generally improves tractability.

Case Study of Solidity Smart Contracts

In this section we outline our case study of Solidity smart contracts, including collection methodology, a partial taxonomy, and an analysis of syntactic similarities. Our starting points for sourcing canonical contracts included the Solidity documentation [START_REF]Solidity, the contract-oriented programming language[END_REF], the Etherscan block explorer and analytics platform [START_REF] Etherscan | [END_REF], the State of the DApps curated directory for decentralized applications [18], and the OpenZepplin contracts library [START_REF] Openzeppelin | [END_REF]. • not computed, e.g., ⊥ × 2 in the erc20 row indicates 2 pairs for which our implementation did not compute plausible candidate relations.

Our approach synthesizes simulation relations which are notably simpler than the inductive invariants which would be required to verify the functional properties of unannotated contracts by other means. For example, the inductive invariants for typical auction contracts would require disjunctions over auction phases, e.g., active vs. completed, while simulation relations between typical auction contracts need only conjunctions of equalities (see Figure 6.12). Previous works on relational verification make the same observation [START_REF] Farzan | Automated hypersafety verification[END_REF][START_REF] Barthe | Relational verification using product programs[END_REF].

For each phase we summarize runtimes, in seconds. Distributions with mean µ, standard deviation σ, and population count n are represented as µ ± σ : k, where σ is omitted when 0, and k is omitted when equal to the subject count n of the row labeled c × n. Among the three phases, synthesis generally takes much longer, e.g., minutes, than example generation, e.g., seconds, and verification, e.g., one second.

Cases Where Simulation Was Not Proved

Our implementation only failed to compute candidate simulation relations in 3 cases. However, each failure is due to the discovery of genuine counterexamples to simulation (and refinement). Counterexamples arise in 2 out of 5 ERC-20 variations and in the multi-1 contract which simultaneously implements three canonical contracts: ERC-20, Ownable, and Pausable.

The first counterexample arises due to the transferFrom function of ERC-20. The canonical contract subtracts the transferred amount from the sender balance before adding it to the receiver balance, reverting when the subtraction underflows, while the variation contract does the reverse.

Thus after executing the following transactions: the function allowance(a 1 , a 2) returns 2 in the first case, since a 2 's allowance has not decreased, but 0 in the second. Since the transferFrom function is present in the ERC-20 token standard [START_REF]Erc-20 token standard[END_REF] this counterexample corresponds to a vulnerability of the unannotated contract.

The remaining two cases arise from ERC-20's decreaseAllowance function. While the canonical contract reverts the transaction if the requested decrease is greater than the current allowance, the We consider generating contract and loop invariants orthogonal to simulation relations, and standard techniques exist [START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF].

Example Generation Phase

For the example generation phase we count blockchain transactions executed, transaction sequences

Synthesis Phase

For the synthesis phase we count the fields and seed features given to the synthesizer, non-atomic terms in the generated simulation relation, and the number of queries to the blockchain oracle for evaluating new features against examples. Note that the seed features were automatically generated as explained in §6.7.2. The primary factors to overall runtime, which is roughly proportional to the number of oracle queries, are the number and sizes of generated terms.

Despite similarities between varying canonical contract refinements, a naive syntactic strategy of listing equalities, i.e., that used to generate seed features, would not suffice (cf. §6.8). In most cases, the synthesizer is forced to generate terms that are not seed features while enumerating a relatively small number of candidates (column "queries").

Verification Phase

For the verification phase we count the lines of Solidity code, verified functions, and unverified functions. While verification succeeds in most cases, current limitations in solc-verify yield a few failures. The first two cases were caused by skipping and reporting parsing errors for functions which have Solidity features that are not supported by the tool. The last case requires establishing a contract invariant (see §6.9.1), yet we do not currently apply invariant-generation to individual contracts. Note that for the auction contract, the function which allows previous highest bidders to reclaim their bids invokes the Solidity send function to transfer ether. Thus, to prove that this function preserves the candidate simulation relation, we apply the technique described in Remark 6.2

where we use shadow variables to record the status of the invocations of send.

Related Work

Analysis of Smart Contracts. A number of systems have been proposed for detecting vulnerabilities in smart contracts. These systems are based on static analysis, e.g. [START_REF] Grech | Madmax: surviving out-of-gas conditions in ethereum smart contracts[END_REF][START_REF] Kalra | ZEUS: analyzing safety of smart contracts[END_REF][START_REF] Tikhomirov | Smartcheck: Static analysis of ethereum smart contracts[END_REF][START_REF] Tsankov | Securify: Practical security analysis of smart contracts[END_REF], symbolic execution engines, e.g. [START_REF] He | Learning to fuzz from symbolic execution with application to smart contracts[END_REF][START_REF] Krupp | teether: Gnawing at ethereum to automatically exploit smart contracts[END_REF][START_REF] Luu | Making smart contracts smarter[END_REF][START_REF] Nikolic | Finding the greedy, prodigal, and suicidal contracts at scale[END_REF][START_REF] Torres | Osiris: Hunting for integer bugs in ethereum smart contracts[END_REF], or dynamic analysis, e.g., [START_REF] Grossman | Online detection of effectively callback free objects with applications to smart contracts[END_REF]. The systems based on static analysis are designed to expose certain coding patterns that are prone to critical bugs and cannot establish full functional correctness. In contrast, our work makes it possible to establish behavioral simulations towards verified contracts which implies full functional correctness. The systems based on symbolic execution or dynamic analysis are incomplete and can only establish correctness for bounded executions.

Functional Verification of Smart Contracts. Several previous works have developed methodologies for proving full functional correctness of smart contracts using theorem provers like Coq, F*, and Isabelle/HOL, e.g., [START_REF] Amani | Towards verifying ethereum smart contract bytecode in isabelle/hol[END_REF][START_REF] Bhargavan | Formal verification of smart contracts: Short paper[END_REF][START_REF] Grishchenko | A semantic framework for the security analysis of ethereum smart contracts[END_REF][START_REF] Hirai | Defining the ethereum virtual machine for interactive theorem provers[END_REF][START_REF] Sergey | Temporal properties of smart contracts[END_REF], SMT solvers, e.g, [START_REF] Hajdu | solc-verify: A modular verifier for solidity smart contracts[END_REF][START_REF] Wang | Formal verification of workflow policies for smart contracts in azure blockchain[END_REF], or predicate abstraction [START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF]. These works rely on user-provided functional specifications while our work, by establishing behavioral simulations, makes it possible to verify contracts for which such specifications do not exist (as long as the simulations relate them with verified contracts).

Computing Refinement Relations Between Finite-State Systems. The complexity of computing simulation relations between finite-state systems has been addressed quite extensively in the literature, e.g. [START_REF] Bustan | Simulation-based minimazation[END_REF][START_REF] Cécé | Foundation for a series of efficient simulation algorithms[END_REF][START_REF] Henzinger | Computing simulations on finite and infinite graphs[END_REF][START_REF] Gentilini | From bisimulation to simulation: Coarsest partition problems[END_REF][START_REF] Gentilini | Rank and simulation: the well-founded case[END_REF][START_REF] Ranzato | An efficient simulation algorithm based on abstract interpretation[END_REF]. Some of these works extend to infinite-state systems as long as they have finite similarity quotient which intuitively, means that they are simulated by a finite-state system. This is not the case for smart contracts which store infinite-domain inputs in their state, e.g., the auction bids of Figure 6.1.

Synthesizing "Small-Step" Simulation Relations. An established approach for proving the validity of compiler optimizations consists in synthesizing simulation relations from source to optimized programs, e.g., [START_REF] Barrett | TVOC: A translation validator for optimizing compilers[END_REF][START_REF] Gjomemo | From verification to optimizations[END_REF][START_REF] Namjoshi | A witnessing compiler: A proof of concept[END_REF][START_REF] Namjoshi | Witnessing program transformations[END_REF][START_REF] Necula | Translation validation for an optimizing compiler[END_REF][START_REF] Tristan | Evaluating value-graph translation validation for LLVM[END_REF]. These simulation relations concern traces of a small-step operational semantics of the two programs while our approach computes behavioral simulations which relate programs in terms of operation sequences, ignoring local memory and control-flow. Moreover, the simulation relations are synthesized at compile time during the construction of the optimized program. A reduction of simulation relation synthesis to solving a set of Horn clauses has been investigated in [START_REF] Fedyukovich | Automated discovery of simulation between programs[END_REF][START_REF] Fedyukovich | Property directed equivalence via abstract simulation[END_REF]. This reduction has been evaluated only for validating compiler optimizations and applying it to smart contracts would require modeling Solidity semantics with Horn clauses, which is non-trivial.

Learning-Based Synthesis of Preconditions or Inductive Invariants. Learning from examples has been used to synthesize preconditions or inductive invariants that imply a user-provided specification, e.g, [START_REF] Garg | ICE: A robust framework for learning invariants[END_REF][START_REF] Garg | Learning invariants using decision trees and implication counterexamples[END_REF][START_REF] Padhi | Data-driven precondition inference with learned features[END_REF][START_REF] Sankaranarayanan | Dynamic inference of likely data preconditions over predicates by tree learning[END_REF][START_REF] Sharma | Interpolants as classifiers[END_REF]. Our work addresses the verification problem when such specifications are lacking. The learning procedures defined in these works are however re-usable in our context. Our implementation leverages the one defined by [START_REF] Padhi | Data-driven precondition inference with learned features[END_REF].

Conclusion

Towards verifying unannotated smart contracts against precise functional specifications, we have proposed a notion of behavioral refinement, along with an automated simulation-based proof methodology. As noted in §6.5-6.6, our method is complete modulo three (unavoidable) sources of incompleteness: deductive verification, simulation for proving trace refinement, and learning from a bounded set of examples.

For verifying candidate simulation relations, our current implementation assumes manuallyprovided loop invariants, and, in some cases (see §6.9.1), contract invariants. This manual effort could likely be automated for many contracts of interest using standard invariant-generation techniques, e.g., [START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF]. Regardless, we consider the cost of any such manual effort to be offset by a significant benefit: the inheritance of arbitrary specifications established by the corresponding canonical contract(s). This includes hyperproperties like noninterference [START_REF] Goguen | Security policies and security models[END_REF][START_REF] Grishchenko | A semantic framework for the security analysis of ethereum smart contracts[END_REF][START_REF] Steffen | zkay: Specifying and enforcing data privacy in smart contracts[END_REF], because we use simulation relations instead of arbitrary trace refinement relations. The incompleteness due to simulation relations is thus also counterbalanced by the preservation of a larger class of specifications.

Chapter 7

Conclusion

In this chapter, we give a summary of the dissertation and describe possible extensions and future directions.

Conclusion

In this dissertation, we proposed algorithmic techniques for improving the reliability of distributed software. In particular, we proposed automated techniques that aid in checking the correctness of software programs that run on top of distributed systems. We addressed the problem of checking whether an application program running on top of a database is robust against the weakening of the database's consistency guarantee. We also addressed the problem of verifying that a smart contract running on top of a blockchain satisfies its functional properties. We advanced the state-of-the-art we summarize the primary technical contributions presented in this dissertation:

• We addressed the problems of checking robustness of application programs against substituting SER with CC or SI, PC with CC, and SI with PC. We considered three distinct semantics of causal consistency that were studied in the literature of distributed databases. We showed that the behaviors of a program over these three semantics coincide when the program does not contain write-write data races. In our reduction of robustness against substituting SER with CC or SI to reachability problem, we developed new characterizations of a class of traces that violate robustness called minimal violation. We also showed that by splitting a transaction to a readonly transaction followed by a write-only transaction, the robustness against substituting PC with CC can be reduced to robustness against substituting SER with CC. We developed a new instrumentation procedure that allows to reduce robustness against substituting SI with PC to reachability under serializability. Furthermore, we developed a pragmatic technique for proving robustness using the notion of movers. Finally, we applied the techniques to a set of applications collected from open source GitHub projects and the literature.

• We applied behavioral simulation between smart contract to allow the verification of unannotated smart contracts using annotated canonical smart contracts as specifications. We

Future Work

In this section we discuss possible directions for future research that can build on the contributions of this dissertation:

• An interesting direction for future work is looking at the robustness problem in the context of hybrid consistency models where some of the transactions in the program can be declared serializable. These models include synchronization primitives similar to lock acquire/release which allow to enforce a serialization order between some transactions. Such mechanisms can be used as a "repair" mechanism in order to make programs robust. We believe that our approach can be extended to these models.

• Another interesting direction for future work is to consider robustness of application programs that use operations offered by abstract data types (ADTs), e.g., counters, lists, and sets, to access data stored on databases instead of the standard read/write operations. Conflict-free replicated data types (CRDTs) [START_REF] Shapiro | Conflict-free replicated data types[END_REF] are recently introduced ADTs that can be implemented by distributed systems while achieving availability, convergence, and partition tolerance. CRDTs ensure efficient resolution of the effects of concurrent updates to replicated data. Thus, an interesting question is to look at the robustness of programs that use CRDTs against substituting each linearizable CRDT with the corresponding weakly consistent CRDT implementation [START_REF] Shapiro | Convergent and commutative replicated data types[END_REF].

• For application programs that are not robust against the weakening of consistency relative to serializability, it is still possible that these programs do satisfy their invariants/specifications. However, we are not aware of generic verification tools that can facilitate the verification of programs that run on top of databases that implement different variations of weak consistencies. Thus, an interesting direction for future work is to develop new proof tools that facilitate the verification of these programs.

• The current implementation for synthesizing simulation relations can be improved from multiple perspectives: (1) automate the identification of canonical smart contracts against which to consider refinements, e.g., using machine-learning classifiers; (2) relax compatibility requirements on function signatures between smart contracts, e.g., to allow simulation among contracts that have similar functions with varying parameter types; (3) eliminate the need to provide example-generation parameters when synthesizing a simulation relation, e.g., using verifier counterexamples to drive example generation; (4) eliminate the need for manually-provided contract and loop invariants using standard invariant-generation techniques, e.g., [START_REF] Permenev | Verx: Safety verification of smart contracts[END_REF]; and

(5) use synchronized-loop product together with the synchronized function product for verifying simulation relation.

• Popular blockchains such as Ethereum terminate a smart contract execution if the amount of the computational resources, called gas, it has consumed exceeds a certain limit fixed by the author of the transaction. Consequently, smart contracts with inefficient code are gas-inefficient and error-prone. An interesting future direction is to develop a technique that given a smart contract, it synthesizes a gas-efficient contract that is a refinement of the original contract.

 Two famous smart contracts exploitations are TheDAO and the Parity wallet bugs that caused a combined loss of $240 million USD. The objective of this dissertation is to propose algorithmic techniques for improving the reliability of applications ran on top of distributed storage systems like databases and blockchain. A distributed subscription system.

Figure 1 . 1 :

 11 Figure 1.1: A subscription system.

Figure 1 . 2 :

 12 Figure 1.2: Applications running on top of a causally consistent database.

Figure 1 . 3 :

 13 Figure 1.3: Consistency models.

Figure 1

 1 Figure 1.4: Blockchain

Figure 1 . 5 :

 15 Figure 1.5: Behavioral simulation relations synthesis.

Figure 2 . 1 :

 21 Figure 2.1: Program syntax. a * indicates zero or more occurrences of a. pid , reg , label , and

Figure 2 . 2 :

 22 Figure 2.2: The set of transition rules defining the serializability semantics. We assume that all the events which come from the same transaction use a unique transaction identifier t. For a function f , we use f [a → b] to denote a function g such that g(c) = f (c) for all c = a and g(a) = b. The function inst returns the set of instructions labeled by some given label while next gives the next instruction to execute.

Figure 3 . 1 :

 31 Figure 3.1: Program computations showing the relationship between wCC, CCv and CM. Transactions are delimited using brackets and the transactions issued on the same site are aligned vertically. The values read in a transaction are given in comments.

Figure 3 . 2 :

 32 Figure 3.2: (Non-)robust programs. For non-robust programs, the read instructions are commented with the values they return in robustness violations. The condition of if-else is checked inside a transaction whose demarcation is omitted for readability (* denotes non-deterministic choice).

Figure 3 .

 3 Figure 3.2a and Figure 3.2b show examples of programs that are not robust against both CM and CCv,

Figure 3 .

 3 Figure 3.4a shows an execution under CM. This satisfies transaction isolation since no transaction is delivered while another transaction is executing.

Figure 3 . 5 :

 35 Figure 3.5: Transition rules for defining causal convergence. Φ 1 is the hypothesis of the begin(p, t) transition rule in Figure 3.3, and img denotes the image of a function.

Figure 3 . 7 :

 37 Figure 3.7: The trace of the execution in Figure 3.4b and its transactional happens-before.

 -to-left direction: It is sufficient to prove the following two cases: if τ has no writewrite race under wCC then τ ∈ Tr wCC implies τ ∈ Tr CM and τ ∈ Tr CCv (Tr CCv (P) ⊆ Tr wCC (P) and Tr CM (P) ⊆ Tr wCC (P) hold by definition).

 which implies that a does not happen-before b through β (by definition, β cannot be empty). Thus, either a and b are HB 1 -related, which corresponds to (2), or a and b are not HB 1 -related, which implies that b can move to the left of a producing the trace τ = α • b • a • γ that has the same happens-before as τ and that corresponds to (3). Induction step: We assume that the lemma holds for |β| ≤ n. Consider τ n+1 = α • a • β • b • γ with |β| = n + 1. Consider c the last event in the sequence β = β 1 • c. If a does not happen before b through β, then either a does not happen before c through β 1 and a and c are not HB 1 -related, or c and b are not HB 1 -related.

 has the same happens-before as τ n+1 . We know that if a happensbefore b through β 12 then a happens-before b through β because β 12 is a subset of β. Therefore, a does not happen-before b through β 12 . Since |β 12 | ≤ |β 1 | ≤ n, then we can apply the induction hypothesis to τ n+1 with respect to a and b which yields either τ n+1 = α•β 11 •c•β 121 •b•a•β 122 •γ which has the same happens-before as τ n+1 , if a and b are not HB 1 -related, or

 Another minimal violation of (a).

Figure 3 . 9 :

 39 Figure 3.9: Example of two minimal violation traces that do not have the same happens-before relation (possible under both CCv and CM). Both traces have the same number of delays which is equal to 0. The minimal violation in (b) contains a single delayed transaction (t2), and the minimal violation in (c) contains two delayed transactions (t1 and t2). For readability, we do not show all PO and STO transitions.

 b) Violation of SB program in Figure 3.2b.

Figure 3 .

 3 Figure 3.11: (a) A τ CCv1 violation where β 2 = , γ S = , and t and t correspond to t1 and t2. (b) A

Lemma 3 . 7 .

 37 Let τ be a minimal violation in Tccv1 or Tccv2. Then, there exist a violation τ 1 in Tccv1 where β contains no delayed transactions or a violation τ 2 in Tccv2 where β 2 contains no delayed transactions.

Figure 3 . 13 :

 313 Figure 3.13: Violation of LU program in Figure 3.2a. A τ CM1 violation where β 2 = γ S = , and t and t correspond to t1 and t2.

Figure 3 .

 3 [START_REF] Openzeppelin | [END_REF] shows a minimal violation under CM that corresponds to a write-write data race in the LU program.

[[l 1 :// Begin of first delayed transaction l 1 :// Read in delayed transactions l 1 :// Special read in last delayed transaction l 1 :// Write before delaying transactions l 1 :// Write in delayed transactions l 1 :// Special write in last delayed transaction l 1 :Figure 3 . 14 :

 1111111314 Figure 3.14: Instrumentation of the Attacker. We use 'x' to denote the name of the variable x.

 to delay a transaction. When the attacker randomly chooses the first transaction to start delaying of transactions, it sets a global flag a tr A to true in the instruction begin (line (3.3)). Then, it sets the flag p.a to 1 to indicate that the current process is the attacker. During the first delayed transaction, the attacker non-deterministically chooses a write instruction to a shared variable y and stores the name of this variable in the flag a st A (line (4.5)). The values written during delayed transactions are stored in the primed variables and are visible only to the attacker and the visibility helpers.

Figure 3 .

 3 Figure 3.15 lists the instrumentation of the instructions of a process that belongs to the set of visibility helpers. Such a process passes through an initial phase where it executes the original code instructions (lines (3.18) and (3.13)) until the flag a tr A is set to true by the attacker. Then, it

Figure 3 . 15 :

 315 Figure 3.15: Instrumentation of the Visibility Helpers.

 [START_REF]Paxos standard erc20 stablecoin pax[END_REF]). Similar to the attacker, a process in the visibility helpers delays a write to a shared variable z by writing to z , it sets the flag z .event to st (line(3.20)). In order for a process in the visibility helpers to start the happens-before path, it has to either read or write a shared variable x that was not accessed by a delayed transaction (i.e., x .event =⊥). In this case we set the flag HB to true (lines (3.21) and (3.16)) to mark the start of the happens before path and the end of the visibility chains and set the flag x.event to ld (lines (3.22) and (3.17)). When the flag HB is set to true, all processes in the set of visibility helpers stop issuing new transactions because all conditions for executing the begin instruction become false.

[[l 1 :// After the first delayed transaction l 1 :// After the last delayed transaction l 1 :// After the last delayed transaction l 1 :Figure 3 . 16 :Figure 3 . 17 :Theorem 3 . 7 .

 111131631737 Figure 3.16: Instrumentation of Happens-Before Helpers.

Figure 4 . 1 :

 41 Figure 4.1: Examples of non-robust programs illustrating the difference between SI and serializability. causal dependency means that a read in a transaction obtains its value from a write in another transaction. conflict means that a write in a transaction is not visible to a read in another transaction, but it would affect the read value if it were visible. Here, happens-before is the union of the two.

Figure 4 . 2 :

 42 Figure 4.2: Commutativity dependency graph of WS where the read of y is omitted.

Figure 4 . 3 :

 43 Figure 4.3: The set of transition rules defining snapshot isolation semantics model. We assume a transaction identifier t : (st, ct) has two components.

Definition 4 . 1 .

 41 A program P is called robust against a snapshot isolation relative to serializability iff Tr SI (P) = Tr SER (P). By Theorem 4.1, the transactional happens-before HB t of a robustness violation tr ∈ Tr SI (P) \ Tr SER (P) is cyclic.

Lemma 4 . 1 .

 41 Given a violation τ , there must exist a transaction t such that τ = α • isu(p, t) • β • com(p, t) • γ and isu(p, t) happens before com(p, t) through β where α, β, and γ are sequences of events.

 A violation of RWC program.

Figure 4 . 4 :Theorem 4 . 2 .

 4442 Figure 4.4: (a) Corresponds to a violation where β = (p2, t2), t corresponds to t1, and a = b = (p2, t2). (b) Corresponds to a violation where β = (p1, t1) • (p2, t2), t corresponds to t1, and a and b correspond to (p1, t1) and (p2, t2), respectively.

Figure 4 .

 4 Figure 4.4 shows two violations against SI relative to SER of the form given in Theorem 4.2.

Figure 4 .

 4 Figure 4.5 lists the instrumentation of the write and read instructions of the attacker. Each process passes through an initial phase where it executes transactions that are visible immediately to all the other processes (i.e., they are not delayed), and then non-deterministically it can choose to delay a transaction at which point it sets the flag a tr A to true. During the delayed transaction it chooses non-deterministically a write instruction to a variable x and stores the name of this variable in the flag a st A (line (4.5)). The values written during the delayed transaction are stored in the primed variables and are visible only to the current transaction, in case the transaction reads its own writes. For example, given a variable z, all writes to z from the original program are transformed into writes to the primed version z (line (4.3)). Each time, the attacker writes to z, it sets the flag z.event = 1. This flag is used later by transactions from happens-before helpers to avoid writing to variables that the delayed transaction writes to.

[[l 1 :// Read before the delayed transaction l 1 :// Read in the delayed transaction l 1 :// Write before the delayed transaction l 1 :// Write in the delayed transaction l 1 :. 4)// Special write in the delayed transaction l 1 :Figure 4 . 5 :

 111114145 Figure 4.5: Instrumentation of the Attacker. We use 'x' to denote the name of the shared variable x.

Figure 4 . 6 :

 46 Figure 4.6: Instrumentation of Happens-Before Helpers.

(lines (3 .

 3 [START_REF] Alomari | The cost of serializability on platforms that use snapshot isolation[END_REF],(3.33), and (3.34)) and in this case the instrumented version of the program P has reached the desired error state.

TPC-C [161]:

 161 An on-line transaction processing benchmark widely used in the database community. It manipulates data stored on nine tables: WAREHOUSE, DISTRICT, STOCK, ITEMS, CUSTOMERS, HISTORY, ORDER, NEWORDER, and ORDERLINE. It has five transactions: 1) NewOrder for placing a new order on a set of items; 2) Delivery for delivering a withstanding order to a given warehouse; 3) Payment for a given customer paying a withstanding amount of credit; 4) OrderStatus for inspecting certain orders and the associated order lines; 5) StockLevel for inspecting stocks at a given warehouse and the withstanding orders at this warehouse.SmallBank [32]:A simplified representation of a banking application. It manipulates data stored on three tables: ACCOUNT, SAVING, and CHECKING. It has five transactions: 1) Balance for inspecting both the saving and checking balances of a given user account; 2) DepositChecking for depositing a certain amount into the checking balance; 3) TransactSaving for depositing or with-drawing into/form the saving balance; 4) Amalgamate (Amg) for moving the saving and checking balances of an account to another account checking balance; 5) WriteCheck for withdrawing from a given account's checking balance.FusionTicket [105]:A movie ticketing application. It manipulates data stored on a single table: EVENTS. It has four transactions: 1) AddEvent for adding new event in a given venue; 2)

[47]:

 47 An online auction application It manipulates data stored on three tables: BIDS, ITEMS, and USERS. It has five transactions: 1) RegBid for placing a bid on an item; 2) RegUser for user's registration; 3) ViewItem for viewing the number of bids for an item; 4) ViewUser for inspecting a user's name; 5) ViewUsers for displaying all registered users. Courseware [93, 129]: A course registration service. It manipulates data stored on three tables: STUDENT, COURSE, and ENROLED. It has five transactions: 1) RegisterStudent for registering a new student; 2) AddCourse for adding a new course; 3) EnrollStudent for enrolling a given registered student in a given course; 4) RemoveCourse for removing a given course; 5) QueryCourses for inspecting available courses.

Figure 4 . 7 :

 47 Figure 4.7: A robust program.

)

 A CC and PC trace of Twitter.

 A CC and SER trace of transformed Twitter. A PC and SI trace of Betting. PlaceBet(1,2) SettleBet() PlaceBet(2,3) (i) The commutativity dependency graph of Betting.

Figure 5 . 1 :

 51 Figure 5.1: Programs and traces under different consistency models.

Figure 5 .

 5 1g pictures a PC trace of Betting where SettleBet observes only the bet of the first process PlaceBet[START_REF]Bitcoin[END_REF][START_REF]Ethereum[END_REF]. The HB dependency towards the second process denotes a read-write dependency (SettleBet reads a cell of the map Bets which is overwritten by the second process).

Figure 5 . 3 :

 53 Figure 5.3: A trace of the transformed LU program (LU ♣).

Figure 5 . 4 :

 54 Figure 5.4: Execution simulating a violation to robustness against PC relative to SI.

7

 if (!done #) if (*) begin <read> * <test> * commit if (!done #) begin <write> * commit else I(begin) (I(<write>)) * I(commit) else begin (I # (<read>)) * <test> * (I # (<write>)) * I # (commit) assume false; else if (*) rdSet' := ∅; wrSet' := ∅; I(begin) (I(<read>)) * <test> * I(commit) I(begin) (I(<write>)) * I(commit) I # (r := x): r := x; hbR['x'] := 0; rdSet := rdSet ∪ { 'x' }; I # (x := e): if (varW == ⊥ and *) varW := 'x'; I # (commit): assume (varW != ⊥) done # := true I(begin): assume (hb != ⊥) 8 assert (hb == 2 or varW ∈ wrSet'); 9 if (hbP == ⊥ or hbP > hb) 10 hbP = hb; 11 for each 'x' ∈ wrSet' 12 if (hbW['x'] == ⊥ or hbW['x'] > hb) 13 hbW['x'] = hb; 14 for each 'x' ∈ rdSet' 15 if (hbR['x'] == ⊥ or hbR['x'] > hb) 16 hbR['x'] = hb; 17 rdSet := rdSet ∪ rdSet'; 18 wrSet := wrSet ∪ wrSet'; 19 commit I(r := x): 19 r := x; 20 rdSet' := rdSet' ∪ { 'x' }; 21 if ('x' ∈ wrSet) 22 if (hbW['x'] != 2) 23 hb := 0 24 else if (hb == ⊥) 25 hb := hbW['x'] I(x := e): 26 x := e; 27 wrSet' := wrSet' ∪ { 'x' }; 28 if ('x' ∈ wrSet) 29 if (hbW['x'] != 2) 30 hb := 0 31 else if (hb == ⊥) 32 hb := hbW['x'] 33 if ('x' ∈ rdSet) 34 if (hb = ⊥ or hb > hbR['x'] + 1) 35 hb := min(hbR['x'] + 1,2)

Figure 5 . 5 :

 55 Figure 5.5: A program instrumentation for checking robustness against PC relative to SI. The auxiliary variables used by the instrumentation are shared variables, except for hbP, rdSet', and wrSet', which are process-local variables, and they are initially set to ⊥.

Figure 5 . 6 :

 56 Figure 5.6: The commutativity dependency graph of the MP ♣ program.

Figure 5 .

 5 Figure 5.6 pictures the commutativity dependency graph for the MP program. Since every transaction in MP is singleton, the two programs MP and MP ♣ coincide.

 provides an AddUser transaction for adding a new user with a given username and password, and a RemoveUser transaction for removing an existing user. (The examples in Figure 5.1 are particular variations of FusionTicket, Twitter, and Betting.) We considered five variations of the robustness problem: the three robustness problems we studied in this chapter along with robustness against SI relative to SER and against CC relative to SER. The artifacts are available in a GitHub repository [79].

accounts, are discussed in §6. 3 .For instance 2 ,

 32 constructor(5, a) • bid(b, 20) • bid(c, 30) • HighestBid() ⇒ 30 constructor(5, a) • bid(b, 20) • bid(c, 10) ⇒ ⊥ • HighestBid() ⇒ 20 are two possible behaviors of Auction which are also possible when calling methods of RefAuction instead (we use the ⊥ return value to signal a reverted bid invocation). More generally, refinement holds because the conditions under which a new bid is accepted are semantically the same even though the two contracts use different representations of the ending time. The constructors of these contracts ensure that the two representations are "consistent" in the sense that auctionEnd = auctionStart + biddingTime (6.1)

Figure 6 . 4 :

 64 Figure 6.4: A fragment of the LTS interpretation of RefAuction. Boxes represent states and arrows represent transitions. The representation of states emphasizes the fields changed by the incoming transition.

 Figure 6.6: An excerpt from the ERC20 reference contract.

 Theorem 6.2 implies that there exists no simulation relation when the set of positive and negative examples intersect. Corollary 6.1. If P ∩ N = ∅, then there exists no simulation from C 1 to C 2 , provided that C 2 is deterministic.

Lemma 6. 2 .

 2 For any return-value deterministic contract C, the following holds:∀s, s . s 0 σ -→ s ∧ s 0 σ -→ s ∧ inv(σ) = inv(σ) =⇒ s = s

C 1 ×

 1 C 2 excludes transitions corresponding to reverted invocations of C 1 . An inductive invariant for a contract C = (Q, Σ, s 0 , δ) is a set of states I such that (1) s 0 ∈ I and (2) if s ∈ I and s a -→ s , for some symbol a, then s ∈ I. The following theorem shows that any inductive invariant of the product (that does not contain the fail state) is also a simulation relation. The reverse holds whenC 2 is deterministic. Theorem 6.3. Let C 1 and C 2 be two contracts. If R is an inductive invariant for C 1 × C 2 such that ∈ R, then R is simulation from C 1 to C 2 . Moreover, if C 2 is deterministic and R is a simulation

Figure 6 . 9 :

 69 Figure 6.9: Summary of results. Overview: generated simulation relations (atomic terms omitted) and verification outcomes.

Figure 6 . 10 :

 610 Figure 6.10: Example Generation: counting blockchain transactions executed, transaction sequences (traces), states, and generated examples.

a 1 :

 1 approve(a 2 , 2); a 2 : transferFrom(a 1 , a 1 , 2)

(

 traces), states encountered, and positive and negative examples. Our implementation usually learns simulation relations from a relatively small set of examples: 100 examples usually suffice, up to 450 in the worst cases. Another observation is that the total number of positive and negative examples is several times the number of explored states. This happens because negative examples arise not only from observationally-inequivalent states encountered among the executed transaction sequences, but also inductively from prefixes of longer negative examples -see Lemma 6.2. The 3 cases where no examples were generated correspond to genuine counterexamples to simulation.

 in several directions: (1) we developed reductions for the robustness problem in the context of several common consistency models to the well studied reachability problem; (2) we gave the first results on the decidability and complexity of verifying robustness in the context of transactional databases; (3) we introduced a new pragmatic technique for proving programs robustness that exploits Lipton's reduction theory; (4) we proposed a new behavioral simulation-based technique to verify unannotated smart contracts; and (5) we developed a new technique for the synthesis of behavioral simulation relations using counterexample driven synthesis. In the rest of this section,

 proposed a new technique based on counterexample guided synthesis to find behavioral simulation relations. In particular, our technique is based on a learning algorithm that discovers simulation relation from a set of examples and a verification algorithm based on relational verification that checks whether a discovered formula is a simulation relation by checking whether it is an invariant of the product contract. We developed a tool implementation of the techniques. We collected a benchmark of smart contracts obtained from open source GitHub projects and Etherscan, which we used to evaluate the implementation.

 store : V → D is the local valuation of the shared variables, rval : R → D is the valuation of the local registers, and log ∈ (V × D) * is the transaction log, i.e., a list of variable-value pairs. For a local state s, we use s.pc to denote the program counter component of s, and similarly for all the other components of s. A message m = t, log is a transaction identifier t from a set T together with a transaction log log ∈ (V × D) * . We let M denote the set of messages.

	Formally, a program configuration is a triple gs = (ls, msgs) where ls : P → S associates a local state in S to each process in P, and msgs is a set of messages in transit. A local state is a tuple pc, store, rval, log where pc ∈ Lab is the program counter, i.e., the label of the next instruction (C, Ev, gs 0 , C F , →) where we assume that any program configuration can be final, i.e., C F = C. As it will be explained later in this section, the executions of P under causal memory are a subset of those generated by [P] CM . The set of events is defined by: to be executed, Then, the semantics of a program P under causal memory is defined using a LTS [P] CM = Ev = { begin(p, t), ld(p, t, x, v), isu(p, t, x, v), del(p, t), com(p, t) :

if ev 1 occurs in ρ before ev 2 , then there exists ev 1 = del(p , t 1) such that ev 1 occurs before ev 2 in ρ.

	begin ∈ inst(ls(p).pc) s = ls(p)[log → , pc → next(pc)]
	(ls, msgs)	begin(p, t) ------→ (ls[p → s], msgs)
	r := x ∈ inst(ls(p).pc) eval(ls(p), x) = v rval = ls(p).rval[r → v] s = ls(p)[rval → rval, pc → next(pc)]
	(ls, msgs)	ld(p, t, x, v) --------→ (ls[p → s], msgs)
	x := v ∈ inst(ls(p).pc) log = (ls(p).log) • (x, v) s = ls(p)[log → log, pc → next(pc)]
	(ls, msgs)	isu(p, t, x, v) --------→ (ls[p → s], msgs)
	end ∈ inst(ls(p).pc) s = ls(p)[pc → next(pc)]
	(ls, msgs)	com(p, t) ------→ (ls[p → s], msgs ∪ {(t, ls(p).log)})
	t, log ∈ msgs store = ls(p).store[x → last(log, x) : x ∈ V, last(log, x) = ⊥] s = ls(p)[store → store]
	(ls, msgs)	del(p, t) -----→ (ls[p → s], msgs)
	Figure 3.3: The set of transition rules defining the causal memory semantics. We use • to denote
	sequence concatenation. The function eval(ls(p), x) returns the value of x in the local state ls(p):
	(1) if ls(p).log contains a pair (x, v), for some v, then eval(ls(p), x) returns the value of the last such
	pair in ls(p).log, and (2) eval(ls(p), x) returns ls(p).store(x), otherwise. Also, last(log, x) returns the
	value v in the last pair (x, v) in log, and ⊥, if such a pair does not exist.
	• for any two events begin(p, t) and begin(p, t), if begin(p, t) occurs in ρ before begin(p, t), then
	the event del(p, t) occurs before begin(p, t) in ρ. This ensures that when p issues t it must
	store the writes of t in its local state before issuing another transaction t ;
	• for any events ev 1 ∈ {del(p, t 1), com(p, t 1)}, ev 2 = begin(p, t 2), and ev 2 = del(p , t 2) with
	p = p , An execution ρ satisfies causal memory if it satisfies transaction isolation and causal delivery. The
	set of executions of P under causal memory, denoted by Ex CM (P), is the set of executions of [P] CM
	satisfying causal memory.	

 Figure 3.4c shows an execution under wCC, which is not possible under CCv and CM because t3 and t4 read 2 and 1, respectively. Since the transactions t 1 and t 2 are concurrent, p 2 stores both values 2 and 1 written by these transactions. A read of x can return any of these two values.

	begin ∈ inst(ls(p).pc) img(ls(p).tstamp) < t
	s = ls(p)[log → , snapshot → buildSnapshot(store), pc → next(pc)]
	(ls, msgs)	begin(p, t) ------→ (ls[p → s], msgs)
	r := x ∈ inst(ls(p).pc) cceval(ls(p), x) = (v, t) rval = ls(p).rval[r → v]
			s = ls(p)[rval → rval, pc → next(pc)]
	(ls, msgs)	ld(p, t, x, v) -------→ (ls[p → s], msgs)
	end ∈ inst(ls(p).pc) s = ls(p)[snapshot → , pc → next(pc)]
	(ls, msgs)	com(p, t) -----→ (ls[p → s], msgs ∪ {(t, ls(p).log)})
	t, log ∈ msgs store = ls(p).store[x → update(ls(p), x, t, last(log, x)) : x ∈ V]
			s = ls(p)[store → store, pc → next(pc)]
	(ls, msgs)	del(p, t) ----→ (ls[p → s], msgs)
	Figure 3.6: Transition rules for defining weak causal consistency semantics: buildSnapshot(store)
	returns a consistent snapshot of store. cceval(ls(p), x) returns the pair (last(log, x), t) if last(log, x) =
	⊥, and returns the pair (v, t) in ls(p).snapshot(x), otherwise. update(ls(p), x, t, last(log, x)) returns
	the result of appending the pair (last(log, x), t) to the set ls(p).store(x) after removing all pairs that
	contain values overwritten by t.	
	that were written concurrently and identifiers of the transactions that wrote those values. When
	applying a transaction log on the local valuation store, we keep the values that were written by
	transactions that are concurrent with the current transaction. Additionally, in the wCC semantics,
	the local state of a process has an additional component snapshot : V → (D × T) that maps each
	shared variable to a single pair. snapshot is obtained by taking a "consistent" snapshot from store
	when a new transaction starts. Such a snapshot corresponds to a linearization of the transactions
	that were delivered to the process, which is consistent with the vector clock order. The snapshot
	associates to each variable the last value written in this linearization. When a process does a read
	from a shared variable x, it looks first at the transaction log log and then, at the variable valuation
	snapshot. In Figure 3.6, we provide the transition rules of [P] wCC that change w.r.t. those of [P] CCv
	and [P] CM .	
	The set of executions of P under weak causal consistency model, denoted by Ex wCC (P), is the set
	of executions of [P] wCC satisfying transaction isolation and causal delivery. We denote by Tr(P) wCC
	the set of traces of executions of a program P under weak causal consistency.

 and t 1 to be a read-only transaction. Figure 3.11a and Figure 3.11b show two violations under CCv where such equalities hold. If t 1 is a read-only

transaction then isu(p 1 , t) has the same effect as (p 1 , t 1) since t 1 does not contain writes.

 isu(p 1 , t 1) • β 2 where all the events in β 2 are either stores of transactions that are causally related to isu(p, t) (we can reorder these stores to be part of γ S except the store del(p 1 , t 1)) or other events that are not causally related to isu(p, t). We also have that isu(p, t) is causally ordered before isu(p 1 , t 1). HB, otherwise, we remove isu(p 1 , t 1) and all related store events from τ and the resulting trace is still a violation and it has less delays since isu(p, t) was not delayed after isu(p 1 , t 1) in the trace. Thus, (isu(p 1 , t 1), (p , t)) ∈ HB. Similar to before we obtain that there exist x and an event a ∈ β 2 • (p , t) that is not a store event of t 1 s.t.

and τ is obtained from τ . By the definition of the happens-before ((p , t), del(p , t)) ∈ HB

1

implies that ((p , t), del(p , t)) ∈ RW ∪ WW. Since t was issued after t in τ , then based on the total order of timestamps under CCv, we cannot have ((p , t), del(p , t)) ∈ WW. Then, there must exist y s.t. ((p , t), del(p , t)) ∈ RW(y).

Base case: |β| = 0. Since (isu(p, t), (p , t)) ∈ HB then from the definition of the happens-before the only possible relation is (isu(p, t), (p , t)) ∈ RW. Thus, there must exist x s.t. (isu(p, t), (p , t)) ∈ RW(x). If x = y then both t and t write to x. Thus, by reordering the store event del(p, t) ∈ γ S to occur just after the corresponding issue event we get τ

= α A • isu(p, t) • del(p, t) • (p , t) • del(p , t) • γ S

is also a minimal violation where (del(p, t), (p , t)) ∈ WW(x) (since t was issued before t and both write to x) and ((p , t), del(p , t)) ∈ RW(x). τ satisfies the first case of the lemma. If x = y then

τ = α A • isu(p, t) • (p , t) • del(p , t) • γ S

where there exist x and y s.t. x = y, (isu(p, t), (p , t)) ∈ RW(x), and ((p , t), del(p , t)) ∈ RW(y) satisfies the second case of the lemma where t and t 1 coincide and a corresponds to (p , t).

Induction step: We assume the induction hypothesis holds for

|β| ≤ m. Let σ = {c ∈ β | (isu(p, t), c) ∈

CO}, we will consider the following three possible cases: First, assume that σ is empty. Since (isu(p, t), (p , t)) ∈ HB then there must exist a ∈ β•(p , t) s.t.

(isu(p, t), a) ∈ HB 1 and (a, (p , t)) ∈ HB?. σ is empty implies that β does not contain events that are related to isu(p, t) through CO (which includes PO∪WR∪STO), therefore, (isu(p, t), a) ∈ WW ∪RW.

It is impossible to have (isu(p, t), a) ∈ WW since isu(p, t) does not contain writes. Thus, there must exist x s.t. (isu(p, t), a) ∈ RW(x). If x = y then both the transaction of the event a, denoted t 2 , and t write to x. We consider the two cases of (a, (p , t)) ∈ HB?: i) a = (p , t) (i.e., t 2 = t), and ii) (a, (p , t)) ∈ HB. Assume a = (p , t) then by reordering the store event del(p, t) ∈ τ to occur just after the corresponding issue event (since the events in β are not causally related to isu(p, t)) we get

τ = α A •isu(p, t)•del(p, t)•β •(p , t)•del(p , t)•γ S is

also a minimal violation where (del(p, t), (p , t)) ∈ WW(x) (since t was issued before t and both write to x) and ((p , t), del(p , t)) ∈ RW(x). In τ we remove all events in β that are not causally ordered before (p , t) since they do not contribute to the happens-before cycle. We obtain a new violation trace that satisfies the first case of the lemma.

Assume now that (a, (p , t)) ∈ HB. This implies that isu(p 2 , t 2) ∈ β happens-before (p , t) (since a is an event t 2). Since both t 2 and t write to x and t occurs before t 2 in τ then from the definition of store and conflict relations ((p , t), del(p , t)) ∈ RW(x) implies that ((p , t), del(p , t 2)) ∈ RW(x). Also, since in β we do not have events that are causally related to isu(p, t) then let τ be the trace resulting from removing all events of t in τ :

τ = α A •isu(p 2 , t 2)•β •(p , t)•del(p , t 2)•γ S

where τ is a subsequence of τ and β is a subsequence of β. τ is a minimal violation as well since it was obtained from τ by just removing events and (isu(p 2 , t 2), (p , t)) ∈ HB and ((p , t), del(p , t 2)) ∈ RW(x). Since |β | ≤ m then we can apply the induction hypothesis on τ . If x = y we get that in τ , (isu(p, t), a) ∈ RW(x) and ((p , t), del(p , t)) ∈ RW(y) which satisfies the second case of the lemma.

Second, assume that σ is not empty and all the elements of σ are store events. Since t is the first delayed transaction in τ then all stores in σ are stores of t. Then, following the same analogy as before there must exist x and an event a ∈ β • (p , t) that is not a store event of t s.t.

(isu(p, t), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p , t)) ∈ HB?. Similar to before we consider the two cases x = y and x = y and apply the induction hypothesis in the first case.

Third, assume that σ is not empty and isu(p 1 , t 1) is the last issue event in σ, i.e., β = β 1 • Since (isu(p, t), (p , t)) ∈ HB then (isu(p 1 , t 1), (p , t)) ∈ (isu(p 1 , t 1), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p , t)) ∈ HB?. If x = y then both the transaction of the event a, denoted t 2 , and t write to x. Thus, (isu(p, t), a) ∈ STO; WW(x). Then, since the events in β 2 • (p , t) do not causally depend on isu(p 1 , t 1) then we can remove the events of t 1 and obtain τ where (isu(p, t), a) ∈ STO; WW(x), (a, (p , t)) ∈ HB?, and ((p , t), del(p , t)) ∈ RW(y) where t was not delayed after isu(p 1 , t 1) in the trace, which means that τ has less delays than τ (a contradiction to τ being a minimal violation). Therefore, we must have x = y s.t. (isu(p 1 , t 1), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p , t)) ∈ HB? and ((p , t), del(p , t)) ∈ RW(y) which satisfies the second case of the lemma.

 where: (a) isu(p, t) is the issue of the first and only delayed transaction; (b) ∃ y. s.t. (del(p, t), (p , t)) ∈ WW(y) and ((p , t), del(p , t)) ∈ WW(y) (Lemma 3.11); (c) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p , t)) ∈ CO (Lemma 3.11).

 where (a) isu(p, t) and isu(p 1 , t 1) are the issues of the first and last delayed transactions (Lemma 3.11);

(b) the issues of all delayed transactions are in β 1 are included in a causality chain that starts with isu(p, t) and ends with isu(p 1 , t 1); (c) for every a ∈ β 2 , we have that (isu(p 1 , t 1), a) ∈ HB \ CO and (a, (p , t)) ∈ HB (Lemma 3.11); (d) there exist a ∈ β 2 • (p , t), x, and y s.t. x = y, (isu(p 1 , t 1), a) ∈ RW(x), (a, (p , t)) ∈ HB?, and ((p , t), del(p , t)) ∈ RW(y) (Lemma 3.11);

(e) all delayed transactions in isu(p, t) • β 1 do not access the variable x.

 If x = y then both t and the transaction t 2 by a process p 2 of the event a write to x. Similar to before we can reorder the store event del(p, t) ∈ γ S to occur just after the corresponding issue and remove all issue events in β • (p , t) that occur after the issue event of t 2 and all their related stores. Also, we remove all events) and assemble together the events of t 2 . We obtain that (del(p 1 , t 1), (p 2 , t 2)) ∈ WW(x) and ((p 2 , t 2), del(p 2 , t 1)) ∈ WW(x) where we do not need to delay the transaction t and obtain τ =

t) • γ S where: (a) ∃ y. s.t. (del(p, t), (p , t)) ∈ WW(y) and ((p , t), del(p , t)) ∈ WW(y); (b) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p , t)) ∈ CO. 2. τ = α A • isu(p, t) • β 1 • isu(p 1 , t 1) • β 2 • (p , t) • del(p , t) • γ S where: (a) isu(p 1 , t 1) is the last issue event from {c ∈ β | (isu(p, t), c) ∈ CO} in τ ; (b) there exist two variables x = y, a in β 2 • (p , t), and b = (p , t) such that (isu(p 1 , t 1), a) ∈ RW(x), (b, del(p , t)) ∈ RW(y), and (a, b) ∈ HB?; (c) ∀ a ∈ β 2 . (isu(p 1 , t 1), a) ∈ HB \ CO and (a, (p , t)) ∈ HB.

Proof. The proof will contain many arguments which are similar to those used in the proof of

Lemma 3.6

. Let τ = α A • isu(p, t) • β • (p , t) • del(p , t) • γ S be a minimal violation under CM (cf.

Lemma 3.5). We prove that there exists a minimal violation trace τ obtained from τ that satisfies

[START_REF]Bitcoin[END_REF]

or

[START_REF]Ethereum[END_REF]

. Similar to Lemma 3.6, we get that there must exist y s.t. ((p , t), del(p , t)) ∈ RW(y)∪WW(y).

We consider two cases: i) ((p , t), del(p , t)) ∈ WW(y), and ii) ((p , t), del(p , t)) ∈ RW(y). If ((p , t), del(p , t)) ∈ WW(y), then by reordering the store event del(p, t) ∈ γ S to occur just after the corresponding issue and removing all events in β (and all related stores in γ S) that are not causally ordered before (p , t) (since they do not contribute to the transactional happens-before cycle) we

obtain a trace τ = α A • isu(p, t) • del(p, t) • β • (p , t) • del(p , t) • γ S that

is also a minimal violation and where (del(p, t), (p , t)) ∈ WW(y) and ((p , t), del(p , t)) ∈ WW(y). The trace τ satisfies the first case of the lemma. Now assume that ((p , t), del(p , t)) ∈ RW(y), and let σ = {c ∈ β | (isu(p, t), c) ∈ CO}. We consider the following three cases.

First, assume that σ is empty. As in the proof of Lemma 3.6, we obtain that there exist a ∈ β • (p , t) and x s.t. (isu(p, t), a) ∈ RW(x) and (a, (p , t)) ∈ HB?. in β that are not causally ordered before the issue event of t 2 . We obtain

τ = α A • isu(p, t) • del(p, t) • β (p 2 , t 2) • del(p 2 , t) • γ S .

In τ the events of t 2 are assembled together, del(p 2 , t) ∈ γ S is reordered to occur just after (p 2 , t 2), and (del(p, t), (p 2 , t 2)) ∈ WW(y) and ((p 2 , t 2), del(p 2 , t)) ∈ WW(y). Thus, τ is a minimal violation and it satisfies the first case of the lemma. If x = y then we get the second case of the lemma.

Second, assume that σ is not empty and all the elements of σ are store events. As in the proof of Lemma 3.6, we obtain that there exist x and an event a ∈ β • (p , t) that is not a store event of t s.t.

(isu(p, t), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p , t)) ∈ HB?. If (isu(p, t), a) ∈ (STO; WW(x)) or x = y then both t and the transaction t 2 by a process p 2 of the event a write to x. Using the same procedure as in the previous paragraph we can obtain τ

= α A •isu(p, t)•del(p, t)•β •(p 2 , t 2)•del(p 2 , t)•γ S

that satisfies the first case of the lemma. Similarly, if (isu(p, t), a) ∈ RW(x) and x = y then we get the second case of the lemma. Third, assume that σ is not empty and isu(p 1 , t 1) is the last issue event in σ, i.e.,

β = β 1 • isu(p 1 , t 1) • β 2 • (p , t).

As in the proof of Lemma 3.6, we obtain that there exist x and an event a ∈ β 2 • (p , t) that is not a store event of t 1 s.t. (isu(p 1 , t 1), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p , t)) ∈ HB?. If x = y then both t and the transaction t 2 by a process p 2 of the event a write to x. Using the same procedure as before we can obtain a trace τ

= α A • isu(p, t) • del(p, t) • β 1 • β 2 • (p 2 , t 2) • del(p 2 , t) • γ S that

is a minimal violation. τ has less delays than τ since the store of t was not delayed after isu(p 1 , t 1). This contradicts the fact that τ is a minimal violation. Assume now that x = y. We assume w.l.o.g. that all events in β 2 do not read values that any transaction with an issue event in isu(p, t) • beta 1 • isu(p 1 , t 1) overwrites. If (isu(p 1 , t 1), a) ∈ (STO; WW(x)) and a = (p , t) then we can remove all issue events in β 2 • (p , t) that occur after the issue event of t 2 including (p , t

 begin(p 1 , t 1)ld(p 1 , t 1 , y, 0)isu(p 1 , t 1 , x, 1) com(p 1 , t 1) begin(p 2 , t 2)ld(p 2 , t 2 , x, 0)isu(p 2 , t 2 , y, 1)com(p 2 , t 2)

Above, begin(p 1 , t 1) stands for starting a new transaction t 1 by process p 1 , ld represents read (load) actions, while isu denotes write actions that are visible only to the current transaction (not yet committed). The writes performed during t 1 become visible to all processes once the commit event com(p 1 , t 1) takes place.

 1 , t 1)we(p 1 , t 1 , rx, 1) we(p 1 , t 1 , x, rx) begin(p 2 , t 2)ld(p 2 , t 2 , x, 0)isu(p 2 , t 2 , y, 1)com(p 2 , t 2)

 t) is a trace of serializable execution of P where t is the reads free instantiation of t. Since ((p 1 , t 1), com(p, t)) ∈ RW then t 1 reads a value that t is overwriting with a different value. Therefore,τ 0 = α • (p, t) • (p 1 , t 1) is either a trace of serializable execution with a different end state than τ 0 has or it is not a trace of serializable execution. Thus, then swapping t i and t i + 1 will result in either reordering of writes or write overwrites a read, or read obtains a different value. Therefore,τ i = α•γ •(p i+1 , t i+1)•(p i , t i) is either a trace of serializableexecution with a different end state than τ i has or it is not a trace of serializable execution. Thus, (t i , t i+1) ∈ M RW . Also, we have that t i and t i+1 do not write to a variable that t writes to. Similar to the first case, we can obtain thatτ 0 = α • (p 1 , t 1) • β • (p n , t n) • (p, t) is a trace of serializable execution of P where t is the reads free instantiation of t. Since ((p n , t RW and t n does not write to a variable that t writes to. Furthermore, we can obtain that τ n = α • (p, t) • (p 1 , t 1) is a trace of serializable execution of P where t is the writes free instantiation of t. Since (isu(p, t), (p 1 , t 1)) ∈ RW then t reads a value that t 1 is overwriting with a different one. Then, τ n = α • (p 1 , t 1) • (p, t) is either a trace of serializable execution with a different end state than τ n has or it is not a trace of serializable execution. Thus, (t , t 1) ∈ M RW and t 1 does not write to a variable that t writes to.

(t 1 , t) ∈ M RW and t 1 does not write to a variable that t writes to. Similarly, we can obtain that

τ n = α•(p, t)•(p 1 , t 1

) is a trace of serializable execution of P where t is the writes free instantiation of t. Since (isu(p, t), (p 1 , t 1)) ∈ RW then t reads a value that t 1 is overwriting with a different value.

Therefore, τ n = α • (p 1 , t 1) • (p, t) is either a trace of serializable execution with a different end state than τ n has or it is not a trace of serializable execution. Thus, (t , t 1) ∈ M RW and t 1 does not write to a variable that t writes to.

Second case: τ = α • (p, t ins) • a • β • b

where a writes to a variable that t reads from, b reads from a variable that t writes to, and every transaction in a•β •b does not write to a variable that t writes to.

Assume that a = (p 1 , t 1) and b = (p n , t n). Since the transactions in (p 1 , t 1) • β • (p n , t n) constitute the happens-before path in the trace τ . Then, for every (p i , t i), (p i+1 , t i+1)

∈ (p 1 , t 1)•β •(p n , t n) we have that ((p i , t i), (p i+1 , t i+1)) ∈ (PO ∪ WR ∪ WW ∪ RW). In the case ((p i , t i), (p i+1 , t i+1)) ∈ (WR ∪ WW ∪ RW), we can obtain that τ i = α•γ •(p i , t i)•(p i+1 , t i+1

) is a trace of serializable execution of P where γ either empty (i.e.,) or γ = (p

1 , t 1)•• • ••(p i-1 , t i-1). Since, ((p i , t i), (p i+1 , t i+1)) ∈ (WR∪WW ∪RW), n), com(p, t)) ∈ RW then t n reads a value that t is overwriting with a different one. Therefore, τ 0 = α • (p 1 , t 1) • β • (p, t) • (p n , t n)

is either a trace of serializable execution with a different end state than τ 0 has or it is not a trace of serializable execution. Thus, (t n , t) ∈ M

 An on-line music service. It manipulates data stored on three tables: USERS, TRACKS,

	ProductsByCategory for finding products that belong to a given category; 3) GetProductByUPC for
	finding a product by its UPC identification; 4) GetCategories for displaying all available categories.
	Playlist 5 : and ARTISTS. It has fourteen transactions: 1) AddTrack for adding a new track; 2) GetTrack for
	inspecting a certain track; 3) AddUser for adding a new user; 4) GetUser for querying whether a
	user exist; 5) CreatePlayList for creating a new playlist for a a given user; 6) ListArtistByLetter for
	listing artists by the first letters of their names; 7) ListSongsByArtist for listing tracks produced by a
	certain artist; 8) ListSongsByGenre for listing tracks in a certain genre group; 9) AddTrackToPlaylist
	for adding an existing track to an existing user playlist; 10) DeleteTrackFromPlaylist for removing a
	track from a user playlist; 11) GetPlaylistForUser for displaying the contents of a playlist of a certain
	user; 12) GetPlaylistNames for displaying all the playlists of a user; 13) DeletePlayListForUser for
	deleting a user's playlist; 14) DeleteUser for deleting a user.
	It has six transactions: 1) SaveTrade for registering a new trade; 2) ViewListTrades for viewing
	the trades that occurred before a given timestamp; 3) ViewTrade for inspecting a given trade; 4)
	ViewTradeUser for looking for a user who carried out a given trade; 5) GetNbTrades for inspecting
	the number of trades; 6) GetTradeTimeStamp for inspecting the timestamp of a given trade.
	Shopping-Cart 4 : An on-line shopping service. It manipulates data stored on two tables: USERS
	and PRODUCTS. It has four transactions: 1) GetUser for querying whether a user exist; 2) Get-

3 : A trading service. It manipulates data stored on a single table: TRADES. RoomStore 6 : A messages bot service. It manipulates data stored on a single table: MESSAGES.

Table 4 .

 4 1: An overview of the analysis results. CDG stands for commutativity dependency graph.The columns PO and PT show the number of proof obligations and proof time in second, respectively. T stands for trivial when the application has only read-only transactions.

	Application	#T Robustness Reachability Analysis CDG Analysis
				PO	PT	PO	PT
	Auction	4	yes	70	0.3	20	0.5
	Courseware	5	no	59	0.37	na	na
	FusionTicket	4	yes	72	0.3	34	0.5
	SmallBank	5	no	48	0.28	na	na
	TPC-C	5	yes	54	0.7	82	3.7
	Cassieq-Core	8	yes	173	0.55	104	2.9
	Currency-Exchange	6	yes	88	0.35	26	3.5
	PlayList	14	yes	99	4.63	236	7.3
	RoomStore	5	yes	85	0.3	22	0.5
	Shopping-Cart	4	yes	58	0.25	T	T
	context.						

 t 1 = t 2 and (t 2 , t 3) ∈ CO, 2. (t 1 , t 2) ∈ ARB and (t 2 , t 3) ∈ CO, CO 0 and (t, t 2) ∈ ARB 0 then (t 1 , t[r]) ∈ (PO ♣ ∪WR ♣) and (t[w], t 2) ∈ (PO ♣ ∪WR ♣ ∪ WW ♣) where t 1 ∈ {t 1 [r], t 1 [w]} and t 2 ∈ {t 2 [r], t 2 [w]}. This maintains the vertices t 1 and t 2 connected in the cycle formed by the dependency relations of tr ♣ since (t[r], t[w]) ∈ PO ♣ ; 2. if (t 1 , t) ∈ WW and (t, t 2) ∈ ARB 0 then (t 1 , t[w]) ∈ WW ♣ and (t[w], t 2) ∈ (PO ♣ ∪WR ♣ ∪WW ♣) which maintains the vertices t 1 and t 2 connected in the cycle formed by the dependency relations of tr ♣ ; 3. (t 1 , t) ∈ CO 0 and (t 2 , t) ∈ RW then (t 1 , t[r]) ∈ (PO ♣ ∪ WR ♣) and (t[r], t 2) ∈ RW ♣ maintains the vertices t 1 and t 2 connected in the cycle formed by the dependency relations of tr ♣ ; 4. (t 1 , t) ∈ RW and (t 2 , t) ∈ CO 0 then (t 1 , t[w]) ∈ RW ♣ and (t[w], t 2) ∈ (PO ♣ ∪ WR ♣) which maintains the vertices t 1 and t 2 connected in the cycle formed by the dependency relations of tr ♣ as well.

3. (t

1 , t 2) ∈ ARB and (t 2 = t 2 [r], t 3 = t 3 [w]) ∈ PO ♣ and t 2 = t 3 , 4. (t 1 = t 1 [r], t 2 = t 2 [w]) ∈ PO ♣ and t 1 = t 2 and (t 2 , t 3) ∈ ARB and t 3 = t 3 [w], 1. if (t 1 , t) ∈

 Theorem 5.2. A program P is robust against PC relative to SI iff every happens-before cycle in a trace of P under PC contains two successive RW dependencies.Before giving the proof of the above theorem, we state several intermediate results that characterize cycles in PC or SI traces. First, we show that every PC trace in which all simple happens-before cycles contain two successive RW is also a SI trace.). This is well defined because there exists no cycle between tuples in these two relations. Indeed, if (t 1 , t 2) ∈ ARB + 0 and there exist t 3 and t 4 such that (t 2 , t 3) ∈ ARB + 0 , (t 3 , t 4) ∈ RW, and (t 4 , t 1) ∈ ARB * 0 , then we have a cycle in ARB + 0 ; RW that does not contain two successive RW dependencies, which contradicts the hypothesis. Also, for every pair of transactions (t 1 , t 2) there cannot exist t 3 and t 4 such that (t 2 , t 3) ∈ ARB + 0 , (t 3 , t 4) ∈ RW and (t 4 , t 1) ∈ ARB *

	Lemma 5.5. If a trace tr is PC and all happens-before cycles in tr contain two successive RW
	dependencies, then tr is SI.
	Proof. Let ARB 1 be a total order that includes ARB + 0 and ARB + 0 ; RW; ARB * 0 (ARB * 0 is the reflexive
	closure of ARB 0 0
	and t 3 and t 4 such that
	(t 1 , t 3) ∈ ARB + 0 , (t 3 , t 4) ∈ RW and (t 4 , t 2) ∈ ARB * 0

 RW ⊆ ARB is a consequence of the PC axioms[START_REF] Cerone | Algebraic laws for weak consistency[END_REF], we get that (t n , t 2) ∈ ARB, (t i , t i+2) ∈ ARB and (t n-4 , t n-2) ∈ ARB, which allows to "short-circuit" the cycle. Using the fact that WW ⊂ ARB, CO 0 ⊂ ARB, and ARB 0 ⊂ ARB, and applying the short-circuiting process multiple times, we obtain a cycle in the arbitration order ARB which contradicts the fact that ARB is a total order.Combining the results of Theorem 5.2 and Lemmas 5.4 and 5.7, we obtain the following characterization of traces which violate robustness against PC relative to SI. A program P is not robust against PC relative to SI iff there exists a trace tr ♣ of P ♣ under SER such that the trace tr obtained by merging 6 read and write transactions in tr ♣ contains a happens-before cycle that does not contain two successive RW dependencies, and it contains a WW dependency followed by a RW dependency.The results above enable a reduction from checking robustness against PC relative to SI to a reachability problem under the SER semantics. For a program P, we define an instrumentation denoted by [[P]], such that P is not robust against PC relative to SI iff [[P]] violates an assertion under SER. The instrumentation consists in rewriting every transaction of P as shown in Figure 5.5 7 .

	RW	WW ARB0	CO0	RW	WW	CO0	RW	WW	-1	ARB0	t n
					CO0						
	Since CO 0 ; Theorem 5.3. α		t #	β RW	t 0	γ HB	t
												WW

 Theorem 5.4. A program P is robust against PC relative to SI iff the instrumentation inFigure 5.5 does not violate an assertion when executed under SER.Theorem 5.4 implies the following complexity result for finite-state programs. The lower bound is proved similarly to the case CC vs PC.Checking robustness against CC relative to SI can be also shown to be reducible (in polynomial time) to a reachability problem under SER by combining the results of checking robustness against CC relative to PC and PC relative to SI. A program P is robust against CC relative to SI iff P is robust against CC relative to PC and P is robust against PC relative to SI.

	Corollary 5.3. Checking robustness of a program with a fixed number of variables and bounded data
	domain against PC relative to SI is PSPACE-complete when the number of processes is bounded and
	EXPSPACE-complete, otherwise.
	Theorem 5.5.

 This technique reasons on the commutativity dependency graph, introduced in Chapter 4, associated to the transformation P ♣ of an input program P that allows to simulate the PC semantics under serializability (we use a slight variation of the original definition of this class of graphs). We characterize robustness against CC relative to PC and PC relative to SI in terms of certain properties that (simple) cycles in this graph must satisfy.We recall the concept of movers and the definition of commutativity dependency graphs. Given a program P and a trace tr = t 1 • . . . • t n ∈ Tr SER (P) of P under serializability, we say that t i ∈ tr moves right (resp., left) in tr if t 1

 The commutativity dependency graph of a program P is a graph where vertices represent transactions in P. Two vertices are linked by a program order edge if the two transactions are executed by the same process. The other edges in this graph represent the "non-mover" relations M WR , M WW , and M RW . Two vertices that represent the two components t[w] and t[r] of the same transaction t (already linked by PO edge) are also linked by an undirected edge labeled by STO (same-transaction relation).

 Theorem 5.7. Given a program P, if the commutativity dependency graph of the program P ♣ does not contain a simple cycle formed by t 1 • • • t i • • • t n such that:

 t n where (t 1 , t i) ∈ (PO ∪ WR) + , (t i , t i+1) ∈ (WW ∪ RW), (t i+1 , t n) ∈ HB, and (t n , t 1) ∈ RW. Note that since transactions in the trace tr ♣ can either be read-only or write-only. Then, (t i , t i+1) ∈ (WW ∪ RW) and (t n , t 1) ∈ RW imply that t 1 and t i+1 must be a write-only transactions and t n must be a read-only transaction.

 [START_REF]Bitcoin[END_REF] • β • t i where (t 1 , t i) ∈ (PO ∪ WR) + which is a SER trace of P ♣ . Then, we have a sequence of transactions from t 1 to t i that are related by either PO or WR. In the case two transactions are only related by WR, then the first transaction is not a right mover because of the second transaction reads from a write in the first transaction. Thus, we can relate the two transactions using the relation M WR in the commutativity dependency graph.Similarly consider the following trace tr s extracted from tr ♣ :tr s = α • t i+1 • γ • t n where (t i+1 , t n) ∈HB which is a SER trace of P ♣ . Similar to before, we have a sequence of transactions from t i+1 to t n that are related by either PO, WR, WW, or RW. For any two transactions that are related only by either WR, WW, or RW, this implies that the first transaction is not a right mover because of the second transaction and a write-read, write-write, or read-write dependency between the two, respectively. Thus, we can relate the two transactions using either M WR , M WW , or M RW , respectively. Now consider the following trace tr 1 extracted from tr ♣ :tr 1 = α • t 1 • β • t i • t i+1 where (t i , t i+1) ∈ (WW ∪ RW)is a SER trace of P ♣ . Because t i and t i+1 are related by either WW or RW, then t i is not a right mover because of t i+1 and a write-write or read-write dependency between the two, respectively. Thus, we can relate the two transactions using either M WW or M RW , respectively. Finally, consider the following trace tr 2 extracted from tr ♣ :tr 2 = α • t i+1 • γ • t n • t 1 where (t n , t 1)∈ RW is a SER trace of P ♣ . Because t n and t 1 are related by RW, then t n is not a right mover because of t 1 and a read-write dependency between the two. Thus, we can relate the two transactions using M RW .Next we give the characterization of commutativity dependency graphs required for proving robustness against PC relative to SI. Given a program P, if the commutativity dependency graph of the program P ♣ does not contain a simple cycle formed by t 1 • • • t n such that:• (t n , t 1) ∈ M WW , (t 1 , t 2) ∈ STO, and (t 2 , t 3) ∈ M RW ;

	Theorem 5.8.

 j+1 , t j+2) ∈ STO and (t j+2 , t j+3) ∈ M RW then (t j , t j+1) ∈ M WW . then P is robust against PC relative to SI.Proof. Similar to before it is enough to show: if P is not robust against PC relative to SI then we have a simple cycle in the commutativity dependency graph of P ♣ of the form above. Assume P is not robust against PC relative to SI. Then, from Theorem 5.4, we obtain that if [[P]] reaches an error state under SER then we will have the following trace tr under SER:tr = α • t # [r] • t 3 • β • t n • t # [w] 9where (t # [r], t 3) ∈ RW, (t 3 , t n) ∈ HB, (t n , t # [w]) ∈ WW, and we do not have two successive RW in the happens before between t 3 and t n . In tr, t # [w] (resp., t # [r]) represents t 1 (resp., t 2) in the theorem statement. Note that we may have α = β = as is the case of the transformed LU program given in Figure5.3. The construction of the cycle in the commutativity dependency graph

Table 5 .

 5 2: Results of the experiments. The columns titled X-Y stand for the result of applications robustness against X relative to Y. WR , M WW , and M RW for the commutativity dependency graph, we use the left/right mover check provided by the CIVL verifier

	Application	Transactions			Robustness		
			CC-PC PC-SI CC-SI SI-SER CC-SER
	Betting	2	yes	yes	yes	yes	yes
	CassandraLock	3	yes	yes	yes	yes	yes
	the "non-mover" relations M						

 using SMT solvers. We tested our techniques on realistic programs that model the most intricate parts of distributed applications that are obtained from the standard OLTP benchmark and open source Github projects.Then, in §6.5-6.6, we develop an algorithm for synthesizing behavioral simulation relations. To generate candidate simulation relations, we adopt a paradigm of learning from examples[128]. To verify candidate simulation relations, we adopt a notion of product programs inspired by relational verification[START_REF] Barthe | Relational verification using product programs[END_REF]. In §6.8, we develop a smart contract benchmark suite including variations of canonical contracts. Finally, in §6.9, we evaluate our approach, verifying functional properties for dozens of unannotated smart contracts. The Empirical evaluation validates our approach by synthesizing simulation relations from multiple variations of each class of canonical contracts. Our implementation can correctly synthesize nontrivial simulation relations for many classes, and integrates off-the-shelf tools for example-guided learning and Solidity smart contracts verification.

	Chapter 6
	Behavioral Simulations for Smart
	Contracts
	6.1 Introduction
	and in particular that the effects of any sequence of transactions obeys its canonical counterpart's
	functional properties. Establishing behavioral refinement for unbounded transaction sequences relies
	on induction. Akin to inductive invariants for safety properties, proofs of behavioral refinement use
	induction hypotheses called simulation relations [127]. Essentially, a behavioral simulation relation
	identifies states of two contracts such that initial states are related; the same transaction applied
	to related states yields related states and identical effects; and related states are observationally

In this chapter, we are interested in the verification of smart contracts that are not annotated with formal specifications. We propose a technique for verifying unannotated smart contracts via automated semantic comparison against annotated canonical smart contracts. With a notion of comparison that implies substitutability, we can thus amortize the cost of manually annotating the canonical contracts by verifying a vast number of unannotated contracts. Our notion of behavioral refinement relates the input-output behavior of contracts' transactions, i.e., parameters and effects on storage, ignoring internal details like local memory and control flow. By proving that a given contract is a behavioral refinement of another, we guarantee the inheritance of behavioral properties, equivalent, i.e., any function applied to both yields identical values.

In §6.2, we outline our approach to synthesize behavioral simulation relations between smart contracts. In §6.3-6.4, we demonstrate an application of behavioral simulation to smart contracts.

 .3 lists an excerpt of this contract for our running example. The inheritance mechanism ensures that each state of SimulationCheck is a disjoint union of a state of Auction and RefAuction, respectively. The simulation-checking contract lists the given candidate simulation relation, in this case Sim in Equation 6.2, as both a pre-and post-condition to each function (as well as a post-condition of the constructor), and asserts that both versions of each function yields the same results. Sim is a valid simulation relation if all the pre/post-conditions and assertions are satisfied by SimulationCheck.

	contract SimulationCheck is Auction, ReferenceAuction {
	// @notice postcondition Sim
	constructor(uint _biddingTime, address payable _beneficiary)
	Auction(_biddingTime, _beneficiary)
	ReferenceAuction(_biddingTime, _beneficiary) public { }
	// @notice precondition Sim
	// @notice postcondition Sim
	function checkBid() public payable {
	r0 = Auction.bid();
	r1 = ReferenceAuction.bid();
	assert (r0 == r1);
	}
	}
	Figure 6.3: Validating the simulation relation Sim.

This deductive verification step completes the proof that Auction is a behavioral refinement of RefAuction and that it inherits all its behavioral properties, e.g., a bid is accepted only if it is

 [START_REF]Bitcoin[END_REF] is not necessarily included in Σ 2 . Transitions with labels that exist only in C 1 should be mimicked by (skip) transitions of C 2 . ERC20 in Figure6.6 (the field balances of PAX is prefixed by #). This holds because in particular, executing a method of PAX which is not defined by ERC20 does not affect balances.

	Example 6.2. The relation Sim 1	def = #balances = balances is a simulation relation from PAX in
	Figure 6.5 to The following statement follows from standard results relating simulation relations and refine-
	ment [126].	

Theorem 6.1. If there exists a simulation relation from a contract C 1 to a contract C 2 , then C 1 refines C 2 . Moreover, if C 1 refines C 2 and C 2 is deterministic, then there exists a simulation relation from C 1 to C 2 . Theorem 6.1 reduces refinement proofs to synthesizing simulation relations. The next section

 is read-only. For instance, the methods PendingReturns and HighestBid of the contract RefAuction in Figure6.1 are read-only, while bid is not read-only.Let C 1 and C 2 be two contracts over interfaces Σ 1 and Σ 2 , respectively. A method m ∈ Meths(Σ 1) ∩ Meths(Σ 2) is called an observation method when it is read-only in both C 1 and C 2 .Given a set of observation methods Obs, two states s 1 and s 2 of C 1 and C 2 , respectively, are (observationally) distinguishable w.r.t. Obs, denoted bys 1 Obs s 2 , if ∃m ∈ Obs, u ∈ Vals * , v ∈ Vals. s 1We will omit the set of methods Obs from the notations when they are not important or understood from the context.

	m(u)⇒v -----→ C 1 s 1 ∧ ¬s 2	m(u)⇒v -----→ C 2 s 2

and it does not enable other invocations, i.e., for any value v ∈ Vals and trace σ 1 • (m(u) ⇒ v) • σ 2 ∈ T (C), we have that σ 1 • σ 2 ∈ T (C) as well. A method m is read-only in a contract C when every invocation label m(u) Example 6.3. PendingReturns and HighestBid in Figure 6.1 are observation methods for the pair of contracts Auction and RefAuction. The pair of states in Equation 6.4 are distinguishable with respect to these two observation methods (HighestBid in particular). The following result shows that any pair of distinguishable states is excluded from any simulation. It follows from an instantiation of the definition of a simulation on transitions corresponding to observation method invocations. Lemma 6.1. Let C 1 and C 2 be two contracts and Obs a set of observation methods. For any simulation R from C 1 to C 2 , s 1 Obs s 2 =⇒ ¬R(s 1 , s 2) We define two relations P and N over states of C 1 and C 2 representing positive and negative examples for simulation relations, respectively:

 Figure 6.11: Synthesis: counting contract fields and seed features passed as input, non-atomic terms in generated simulations, and blockchain-oracle queries.variation contract simply sets the allowance to zero without reverting the transaction. Thus after executing the following transactions:a 1 : increaseAllowance(a 2 , 1)a 1 : decreaseAllowance(a 2 , 2)the function allowance(a 1 , a 2) returns 1 in the first case, but 0 in the second. Note that the de-creaseAllowance function is not present in the ERC-20 token standard but only in the OpenZeppelin implementation that we use as the canonical ERC-20 contract.Our implementation is limited since it does not automatically generate loop and contract invariants for verifying candidate simulation relations. Generally speaking, loop invariants on otherwiseunannotated contracts are necessary for methods with loops; contract invariants can be required in cases where the unannotated-contract state invariants are not implied by the combination of canonical-contract state invariants (which are given) and candidate simulation relations (which are computed by our synthesizer). While our experiments never required loop invariants, contract invariants were required in one case, to characterize fields of the unannotated contracts which have no direct correspondence to canonical-contract fields. In particular, one of whitelisted's unannotated contracts maintains a length field equal to the number of elements in an array; the corresponding Figure 6.12: Verification: counting lines of Solidity code, verified functions, and unverified functions. canonical contract has no such length field. Such relationships hold equally in all positive and negative examples since examples only include reachable contract states. In contrast, invariantgeneration for individual contracts would distinguish a contract's reachable and unreachable states.

	contracts contracts	fields	seeds lines of code	terms verified fns.	queries unverified time time
	auction × 3 auction × 3	15	5 481.3±11.6	7 11	10914 0	2561.8±11.3 1.9±0.1
	crowdsale × 3 crowdsale × 3 12	4.7±0.6 5 527.7±31.6 19.7±0.6	659.3±556.6 0.3±0.6	345.3±135.7 2.1±0.2: 2
	erc165 × 4 erc165 × 4	4	1 115.3±15.9	1 3	43 0	0.8	20.3±0.1
	erc20 × 5 erc20 × 5	7.6±1.3 1.8±0.4 2: 3 431±124.7: 3 11.7±1.5: 3	121±3.5: 3 0: 3	69.2±4.1: 3 1.2: 3
	erc721 × 3 erc721 × 3	18	4 684.7±7.1	4 10	131.7±12.7 0	1.3	104.4±10
	escrow × 3 escrow × 3	6	1 227.7±11	2 7	299±1.7 0	72.5±0.3 1.1±0.1
	finalizable × 2 finalizable × 2 4	1 146.5±20.5	2 5	92 0	0.8	19.4±0.2
	lottery × 1 lottery × 1	6	224	1	2 -	840 -	-	353.7
	multi-1 × 3 multi-1 × 3	15±1 408±5.7: 2 1	1.5±0.7: 2 5.5±0.7: 2	46.5±19.1: 2 0: 2	26.7±2.1: 2 1.2±0.2: 2
	multi-2 × 3 multi-2 × 3	13±1 582±46.9 1.3±0.6 1.7±0.6 6.7±2.1	74±46.8 0	44.5±35.5 1.1±0.1
	ownable × 4 ownable × 4	2	1 185.3±25.2	1 4.5±0.6	33 0	0.8	15.7±0.2
	pausable × 3 pausable × 3	4	1 206.3±3.2	2 5	54 0	0.8	13.6
	signer-role × 2 signer-role × 2 2	0 159.5±2.1	1 6	70 0	0.9	21.3±0.1
	voting × 2 voting × 2	6±2.8 167±9.9 0	2 5	4037.5±4635.1 324±303 0 0.9
	whitelisted × 3 4.3±0.6 0.7±0.6 2 whitelisted × 3 177±5.3 5.7±0.6	2114±3105.9 0.3±0.6	172.6±152.5 1±0.1: 2

A trace of computation captures the control and data dependencies between operations in the computation.

For simplicity, we assume that every transaction commits. The effects of aborted transactions shouldn't be visible to any process.

This equivalence excludes the atomic read-modify-write (also know as compare-and-swap) operation which is not provided by CCv.

We refer collectively to executions in [P] X with X ∈ {CCv, CM, wCC}.

This constraint corresponds to the absence of the CyclicCO bad pattern in[START_REF] Bouajjani | On verifying causal consistency[END_REF].

b is overwriting the value a is reading.

This constraint corresponds to the absence of the WriteCORead bad pattern in[START_REF] Bouajjani | On verifying causal consistency[END_REF].

Note that other cases such asτ = α • isu(p1, t1) • β • isu(p2, t2) • del(p2, t2) • del(p1, t2) • del(p1, t1) implies that τ = α • isu(p1, t1) • del(p1, t1) • β • isu(p2, t2) • del(p2, t2) • del(p1, t2) • del(p2, t1) is a trace of P as well since all events in β are not causally dependent on t1.

That is, programs where the number of variables and the data domain are bounded.

That is, whether the program P reaches the control location under SC.

https://github.com/paradoxical-io/cassieq

https://github.com/Haiyan2/Trade

https://github.com/nikhilswagle/Shopping_Cart_Angular_Cassandra

https://github.com/DataStaxDocs/playlist

https://github.com/mebigfatguy/roomstore

Traces with an acyclic happens-before are not robustness violations because they are admitted under serializability, which implies that they are admitted under the weaker model SI as well.

The transactions t1, t2, t3, and t4 correspond to t1, ti, tn, and ti+1, respectively, in Theorem 5.7.

The transactions t1, t2, t3, and t4 correspond to t1, t2, tn, and t3, respectively, in Theorem 5.8.

If t1[w] is empty (t1 is read-only), then we set (t1, t2) ∈ ARB if (t1[r], t2[w]) ∈ CO ♣ . If t2[w] is empty, then (t1, t2) ∈ ARB if (t1[w], t2[r]) ∈ CO ♣ . If both t1[w] and t2[w] are empty, then (t1, t2) ∈ ARB if (t1[r], t2[r]) ∈ CO ♣ .

That is, the transaction is of the form [lock; s; unlock]

This transformation has been defined at the beginning of §5.4.

The instrumentation uses program constructs which can be defined as syntactic sugar from the syntax presented in §2.2, e.g., if-then-else statements (outside transactions).

For simplicity, we assume here that after reaching the error state we execute the writes of t # , i.e., t #[w]

For bid invocations, the caller identity and the amount of Ether it sends are written as explicit arguments, and the return value of an invocation (e.g., to HighestBid()) is written after ⇒. Also, we use small cap letters a, b, c to represent values of type address.

This LTS can be thought of as a composition between an LTS defining the evolution of the variables controlled by the contract and an LTS defining the evolution of the environment variables (whose states are valuations of these variables). The states of the two LTSs share the valuation of the environment variables (read by the first LTS and updated by the second).

A variation of a contract extracted from[START_REF]Paxos standard erc20 stablecoin pax[END_REF].

This is a variation called forward simulation relation, which corresponds to the forward reasoning mentioned above, from initial states towards end states. In general, proving refinement may also require establishing the existence of a backward simulation, which is similar but the preservation of steps is defined in the reverse direction, i.e., for any transition of C1 leading to a state q and any state q of C2 related by R to q, there exists a transition of C2 with the same label leading to q and starting from a state related by R to the source state of C1's transition.

For readability, we write binary relations as predicates, e.g., R(s1, s2) instead of (s1, s2) ∈ R.

Acknowledgments

a read accessing the variable x that was read or written to by a transaction from the attacker of a visibility helper.

The happens-before helpers continue executing their instructions, until one of them reads from the shared variable y whose name was stored in a st A . This establishes a happens-before path between the last delayed transaction and a "fictitious" store event corresponding to the first delayed transaction that could be executed just after this read of y. The execution does not have to contain this store event explicitly since it is always enabled. Therefore, at the end of every transaction, the instrumentation checks whether the transaction read y. If it is the case, then the execution stops and goes to an error state to indicate that this is a robustness violation. The happens-before helpers processes continue executing their instructions, until one of them executes a load that reads from the shared variable y that was stored in a st A which implies the existence of a happens-before cycle.

Thus, when executing the instruction com at the end of every transaction, we have a conditional check to detect if we have a load or a write accessing the variable y (lines (3.32), (3.33), and (3.34)).

When the check detects that the variable y was accessed, the execution goes to an error state (line (3.34)) to indicate that it has produced a robustness violation.

In Figure 3.17, we show an excerpt of the instrumentations of the two transactions of the SB program. In particular, we only give the instructions of the instrumented SB that are reached during the execution that leads to an error state. The attacker instrumentation is applied to the transaction t1 of p1 and the happens-before helpers instrumentation is applied to the transaction t2 of p2. The first conflict order from t1 to t2 (shown in Figure 3.10) is simulated by the fact that at line 3.39, y.event = ld (see lines 3.37 and 3.38). Also, the second conflict order from t2 to t1 is simulated by the fact that at line 3.41 we reach the error state where a st A .event = x.event = ld (see lines 3.36 and 3.40).

Correctness

As we have already mentioned, the role of a process in an execution is chosen non-deterministically at runtime. Therefore, the final instrumentation of a given program P, denoted by [[P]] P2 , is obtained by replacing each labeled instruction linst with the concatenation of the instrumentations corresponding to the attacker, the visibility helpers, and the happens-before helpers, i.e.,

Trace

Formally, the trace of an execution ρ, under snapshot isolation, is obtained by [START_REF]Bitcoin[END_REF] replacing each sub-sequence of transitions in ρ corresponding to the same transaction, but excluding the com transition, with a single "macro-event" isu(p, t), and (2) adding several standard relations between these macro-events isu(p, t) and commit events com(p, t) to record the data-flow in ρ, e.g. which transaction wrote the value read by another transaction. The sequence of isu(p, t) and com(p, t) events obtained in the first step is called a summary of ρ. We say that a transaction t in ρ performs an external read of a variable x if ρ contains an event ld(p, t, x, v) which is not preceded by a write on x of t, i.e., an event isu(p, t, x, v). Also, we say that a transaction t writes a variable x if ρ contains an event isu(p, t, x, v), for some v.

The trace tr(ρ) = (τ, PO, WR, WW, RW, STO) of an execution ρ consists of the summary τ of ρ along with the program order PO, which relates any two issue events isu(p, t) and isu(p, t) that occur in this order in τ , write-read relation WR, which relates any two events com(p, t) and isu(p , t) that occur in this order in τ such that t performs an external read of x, and com(p, t) is the last event in τ before isu(p , t) that writes to x (to mark the variable x, we may use WR(x)), the write-write order WW, which relates any two store events com(p, t) and com(p , t) that occur in this order in τ and write to the same variable x (to mark the variable x, we may use WW(x)), the read-write relation RW, which relates any two events isu(p, t) and com(p , t) that occur in this order in τ such that t reads a value that is overwritten by t , and the same-transaction relation STO, which relates the issue event with the commit event of the same transaction. The read-write relation RW is formally defined as RW(x) = WR -1 (x); WW(x) and RW = x∈V RW(x). If a transaction t reads the initial value of x then RW(x) relates isu(p, t) to com(p , t) of any other transaction t which writes to x (i.e., (isu(p, t), com(p , t)) ∈ RW(x)) (note that in the above relations, p and p might designate the same process).

Since we reason about only one trace at a time, to simplify the writing, we may say that a trace is simply a sequence τ as above, keeping the relations PO, WR, WW, RW, and STO implicit. The set of traces of executions of a program P under SI is denoted by Tr(P) SI .

Happens before order. We introduce the happens-before relation on the events of a given trace as the transitive closure of the union of all the relations in the trace, i.e., HB = (PO ∪ WW ∪ transaction it stops. Other processes that execute transactions afterwards are called Happens-Before Helpers.

The instrumentation uses two copies of the set of shared variables in the original program to simulate the delayed transaction. We use primed variables x to denote the second copy. Thus, when a process becomes the attacker, it will only write to the second copy that is not visible to other processes including the happens-before helpers. The writes made by the other processes including the happens-before helpers are made visible to all processes.

When the attacker delays the transaction t, it keeps track of the variables it accessed, in particular, it stores the name of one of the variables it writes to, x, it tracks every variable y that it reads from and every variable z that it writes to. When the attacker finishes executing t, and some other process wants to execute some other transaction, the underlying transaction must contain a write to a variable y that the attacker reads from. Also, the underlying transaction must not write to a variable that t writes to. We say that this process has joined happens-before helpers through the underlying transaction. While executing this transaction, we keep track of each variable that was accessed and the type of operation, whether it is a read or write. Afterward, in order for some other transaction to "join" the happens-before path, it must not write to a variable that t writes to so it does not violate the fact that SI forbids write-write conflicts, and it has to satisfy one of the following conditions in order to ensure the continuity of the happens-before dependencies: [START_REF]Bitcoin[END_REF] the transaction is issued by a process that has already another transaction in the happens-before dependency (program order dependency), (2) the transaction is reading from a shared variable that was updated by a previous transaction in the happens-before dependency (write-read dependency), (3) the transaction writes to a shared variable that was read by a previous transaction in the happens-before dependency (read-write dependency), or (4) the transaction writes to a shared variable that was updated by a previous transaction in the happens-before dependency (write-write dependency). We introduce a flag for each shared variable to mark the fact that the variable was read or written by a previous transaction.

Processes continue executing transactions as part of the chain of happens-before dependencies, until a transaction does a read on the variable x that t wrote to. In this case, we reached an error state which signals that we found a cycle in the transactional happens-before relation.

The instrumentation uses four varieties of flags: a) global flags (i.e., HB, a tr A , a st A), b) flags local to a process (i.e., p.a and p.hbh), and c) flags per shared variable (i.e., x.event, x.event , and

Proving Program Robustness

As a more pragmatic alternative to the reduction in the previous section, we define an approximated method for proving robustness which is inspired by Lipton's reduction theory [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF].

Movers. Given an execution τ = ev 1 •. . .•ev n of a program P under serializability (where each event ev i corresponds to executing an entire transaction), we say that the event ev i moves right (resp.,

is also a valid execution of P, the process of ev i is different from the process of ev i+1 (resp., ev i-1), and both executions reach to the same end state σ n . For an execution τ , let instOf τ (ev i) denote the transaction that generated the event ev i . A transaction t of a program P is a right (resp., left) mover if for all executions τ of P under serializability, the event ev i with instOf(ev i) = t moves right (resp., left) in τ .

If a transaction t is not a right mover, then there must exist an execution τ of P under serializability and an event ev i of τ with instOf(ev i) = t that does not move right. This implies that there must exist another ev i+1 of τ which caused ev i to not be a right mover. Since ev i and ev i+1 do not commute, then this must be because of either a write-read, write-write, or a read-write dependency.

If t = instOf(ev i+1), we say that t is not a right mover because of t and some dependency that is either write-read, write-write, or read-write. Notice that when t is not a right mover because of t then t is not a left mover because of t.

We define M WR as a binary relation between transactions such that (t, t) ∈ M WR when t is not a right mover because of t and a write-read dependency. We define the relations M WW and M RW corresponding to write-write and read-write dependencies in a similar way.

Read/Write-free transactions. Given a transaction t, we define t \ {r} as a variation of t where all the reads from shared variables are replaced with non-deterministic reads, i.e., reg := var statements are replaced with reg := where denotes non-deterministic choice. We also define t \ {w} as a variation of t where all the writes to shared variables in t are disabled. Intuitively, recalling the reduction to SC reachability in §4.6, t \ {w} simulates the delay of a transaction by the Attacker, i.e., the writes are not made visible to other processes, and t \ {r} approximates the commit of the delayed transaction which only applies a set of writes.

Commutativity dependency graph. Given a program P, we define the commutativity dependency graph as a graph where vertices represent transactions and their read/write-free variations.

Chapter 5

Robustness Between Weak Consistency Models

Introduction

In this chapter, we consider the sequence of increasingly strong consistency models, causal consistency (CC), prefix consistency (PC), and snapshot isolation (SI), and investigate the problem of checking robustness for a given program against weakening the consistency model to one in this range. In §5.2, we outline the robustness problems we study in this chapter: robustness against substituting SI with PC and PC with CC, respectively. Robustness against substituting SI with PC can be obtained as the conjunction of these two cases. In §5.3, we formally define programs traces under the above consistency models. In §5.4, we show that checking robustness against substituting PC with CC is reduced to the problem of checking robustness against substituting SER with CC that we studied in Chapter 3. In §5.5, we show that checking robustness for a program P is reduced to a reachability (assertion checking) problem in a composition of P under PC with a monitor that checks whether a PC behavior is an "anomaly", i.e., admitted by P under PC, but not under SI. In §5.7, we present a more pragmatic approach for establishing robustness, which avoids a non-reachability proof under SER, that builds on the concept of commutativity dependency graph introduced in Chapter 4. We give sufficient conditions for robustness in all the cases mentioned above, which characterize the commutativity dependency graph associated to a given program. Finally, in §5.8, we tested the applicability of the proposed techniques on a benchmark containing 7 challenging applications extracted from previous work [START_REF] Difallah | Oltp-bench: An extensible testbed for benchmarking relational databases[END_REF][START_REF] Holt | Disciplined inconsistency with consistency types[END_REF][START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF]. These techniques are precise fication since the number of tickets is not increasing (the sum of tickets is 3 in both processes).

The happens-before dependencies (pictured with HB labeled edges) include the program-order PO (the order between transactions in the same process), and read-write dependencies, since an instance of CountTickets(v) does not observe the value written by the CreateEvent transaction in the other process (the latter overwrites some value that the former reads). This trace is allowed under CC because the transaction CreateEvent(v, e1, 3) executes concurrently with the transaction CountTickets(v) in the other process, and similarly for CreateEvent(v, e2, 3). However, it is not allowed under PC since it is impossible to define a total commit order between CreateEvent(v, e1, 3) and CreateEvent(v, e2, 3) that justifies the reads of both CountTickets(v) transactions (these reads should correspond to the updates in a prefix of this order). For instance, if we assume that CreateEvent(v, e1, 3) commits before CreateEvent(v, e2, 3), then CountTickets(v) in the second process must observe the effect of CreateEvent(v, e1, 3) as well since it observes the effect of CreateEvent(v, e2, 3). However, this contradicts the fact that CountTickets(v) computes the sum of tickets as being 3.

On the other hand, Twitter is robust against substituting PC with CC. For instance, Figure 5.1d pictures a trace of Twitter under CC, where the assume in both transactions pass. In this trace, the transactions Register(u,p1) and Register(u,p2) execute concurrently and are unaware of each other's writes (they are not causally related). The HB dependencies include write-write dependencies since both transactions write on the same location (we consider the transaction in Process 2 to be the last one writing to the Password map), and read-write dependencies since each transaction reads RegisteredUsers that is written by the other. This trace is also allowed under PC since the commit order can be defined such that Register(u,p1) is ordered before Register(u,p2), and then both transactions read from the initial state (the empty prefix). Note that this trace has a cyclic happens-before which means that it is not allowed under serializability.

Checking robustness PC vs CC. We reduce the problem of checking robustness against substituting PC with CC to the robustness problem against substituting SER with CC (the latter reduces to a reachability problem under SER [START_REF] Beillahi | Robustness against transactional causal consistency[END_REF]). This reduction relies on a syntactic program transformation that rewrites PC behaviors of a given program P to SER behaviors of another program P . The program P is obtained by splitting each transaction t of P into two transactions: the first transaction performs all the reads in t and the second performs all the writes in t (the two are related by program order). Figure 5.1e shows this transformation applied on Twitter. The trace in Figure 5.1f is a transactions are not causally dependent and can be executed in parallel by the two processes. However, it is not allowed under SI since both transactions write to a common variable (i.e., x). Thus, they cannot be executed in parallel and one of them must see the write of the other. Thus, LU is not robust against PC relative to SI.

The write skew (WS) program in Figure 5.2c has two transactions that are issued by two distinct processes. We highlight an execution where t 1 reads 0 from x and t 2 reads 0 from y. This execution is allowed under SI since both transactions are not causally dependent, do not write to a common variable, and can be executed in parallel by the two processes. However, this execution is not allowed under SER since one of the two transactions must see the write of the other. Thus, WS is not robust against SI relative to SER.

The message passing (MP) program in Figure 5.2d has four transactions issued by two processes.

Because t 1 and t 2 are causally dependent, under any semantics X ∈ {CC, PC, SI, SER} we only have three possible executions of MP, which correspond to either t 3 and t 4 not observing the writes of t 1 and t 2 , or t 3 and t 4 observe the writes of both t 1 and t 2 , or t 4 observes the write of t 1 (we highlight the values read in the second case in Figure 5.2d). Therefore, the executions of this program under the four consistency models coincide. Thus, MP is robust against CC relative to any other model.

Robustness Against CC Relative to PC

We show that checking robustness against CC relative to PC can be reduced to checking robustness against CC relative to SER. The crux of this reduction is a program transformation that allows to simulate the PC semantics of a program P using the SER semantics of a program P ♣ . Checking robustness against CC relative to SER can be reduced in polynomial time to reachability under SER [START_REF] Beillahi | Robustness against transactional causal consistency[END_REF].

Given a program P with a set of transactions Tr(P), we define a program P ♣ such that every transaction t ∈ Tr(P) is split into a transaction t[r] that contains all the read/assume statements in t (in the same order) and another transaction t[w] that contains all the write statements in t (in the same order). In the following, we establish the following result: Cases (a) and (b) imply that (t 1 , t 3) ∈ CO since ARB; CO ⊂ ARB, which implies that (t 1 , t 3) ∈ CO ♣ .

Cases (c), (d), and (e) imply that (t 1 , t 3) ∈ ARB and t 3 = t 3 [w] then we get that (t

Thus, the proof of AxRetVal follows as in the previous case.

For the case X = SI, we show that tr ♣ satisfies AxConflict.

concludes the proof. The axiom AxRetVal can be proved as in the previous cases.

Before presenting a strengthening of Lemma 5.1 when X is CC, we give an important characterization of CC traces. This characterization is stated in terms of acyclicity properties. Lemma 5.2. tr is a trace under CC iff ARB + 0 and CO + 0 ; RW are acyclic (ARB 0 and CO 0 are defined in Table 5.1).

Proof. (⇒) Let tr be a trace under CC. From AxCausal and AxArb we get that ARB + 0 ⊂ ARB, and ARB + 0 is acyclic because ARB is total order. Assume by contradiction that CO + 0 ; RW is cyclic which implies that CO; RW is cyclic since CO + 0 ⊂ CO, which means that there exist t 1 and t 2 such that (t 1 , t 2) ∈ CO and (t 2 , t 1) ∈ RW. (t 2 , t 1) ∈ RW implies that there exists t 3 such that (t 3 , t 1) ∈ WW and (t 3 , t 2) ∈ WR. Based on the definition of AxRetVal, t 3 has two possible instances:

• t 3 corresponds to the "fictional" transaction that wrote the initial values which cannot be the case when (t 1 , t 2) ∈ CO and t 1 writes to the same variable that t 2 reads from,

• t 3 is the last transaction that occurs before t 2 that writes the value read by t 2 , which means that (t 1 , t 3) ∈ ARB which contradicts the fact that (t 3 , t 1) ∈ WW since WW ⊂ ARB.

(⇐) Let tr be a trace such that ARB + 0 and CO + 0 ; RW are acyclic. Then, we define the relations CO and ARB such that CO = CO + 0 and ARB is any total order that includes ARB + 0 . Then, we 123 obtain that (CO ∪ WW) + ⊂ ARB and CO; RW is acyclic. Thus, tr satisfies the properties AxCausal and AxArb. Next, we will show that tr satisfies AxRetVal. Let t be a transaction in tr that contains a read event re(t, x, v). Let t 0 be transaction in tr such that

then the read must return a value written by t 0 . Assume by contradiction that there exists some other transaction t 1 = t 0 such that (t Proof. The only-if direction follows from Lemma 5.1. For the if direction: consider a trace tr ♣ which is CC. We prove by contradiction that tr must be CC as well. Assume that tr is not CC then it must contain a cycle in either ARB + 0 or CO + 0 ; RW (based on Lemma 5.2). In the rest of the proof when we mention a cycle we implicitly refer to a cycle in either ARB + 0 or CO + 0 ; RW. Splitting every transaction t ∈ tr in a trace to a pair of transactions t[r] and t[w] that occur in this order might not maintain a cycle of tr. However, we prove that this is not possible and our splitting conserves the cycle. Assume we have a vertex t as part of the cycle. We show that t can be split into two transactions t[r] and t[w] while maintaining the cycle. Note that t is part of a cycle iff either Assume by contradiction that CO 1 ; RW is cyclic. From the definition of CO 1 and the fact that ARB 1 is total order we obtain that either:

• ARB + 0 ; RW is cyclic, which implies that there exists a happens-before cycle that does not contain two successive RW, which contradicts the hypothesis, or Therefore, tr satisfies AxRetVal for CO 1 and ARB 1 , which concludes the proof.

The proof of Theorem 5.2 also relies on the following lemma that characterizes happens-before cycles permissible under SI. Lemma 5.6. [START_REF] Cahill | Serializable isolation for snapshot databases[END_REF][START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF] If a trace tr is SI, then all its happens-before cycles must contain two successive RW dependencies.

Proof of Theorem 5.2: For the only-if direction, if P is robust against PC relative to SI then every trace tr of P under PC is SI as well. Therefore, by Lemma 5.6, all cycles in tr contain two successive RW which concludes the proof of this direction. For the reverse, let tr be a trace of P under PC such that all its happens-before cycles contain two successive RW. Then, by Lemma 5.5, we have that tr is SI. Thus, every trace tr of P under PC is SI.

Next, we present an important lemma that characterizes happens before cycles possible under the PC semantics. This is a strengthening of a result in [START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF] which shows that all happens before cycles under PC must have two successive dependencies in {RW, WW} and at least one RW. We show that the two successive dependencies cannot be RW followed WW, or two successive WW. Lemma 5.7. If a trace tr is PC then all happens-before cycles in tr must contain either two successive RW dependencies or a WW dependency followed by a RW dependency.

Proof. It was shown in [START_REF] Bernardi | Robustness against consistency models with atomic visibility[END_REF] that all happens-before cycles under PC must contain two successive dependencies in {RW, WW} and at least one RW. Assume by contradiction that there exists a in the case of pairs of weak consistency models, and the reductions in [START_REF] Beillahi | Checking robustness against snapshot isolation[END_REF][START_REF] Beillahi | Robustness against transactional causal consistency[END_REF] when checking for robustness relative to SER. We check for reachability (assertion violations) using the Boogie program verifier [START_REF] Barnett | Boogie: A modular reusable verifier for object-oriented programs[END_REF]. We model tables as unbounded maps in Boogie and SQL queries as first-order formulas over these maps (that may contain existential or universal quantifiers). To model the uniqueness of primary keys we use Boogie linear types. Table 5.2 reports the results of this experiment (cells filled with "no"). Five applications are not robust against at least one of the semantics relative to some other stronger semantics. FusionTicket and Twitter were not robust against both CC relative to PC and PC relative to SI. Epinions, Subscription, and Vote, were not robust against CC relative to PC, PC relative to SI, and SI relative to SER, respectively. The columns for robustness against CC relative to SI and against CC relative to SER can be obtained as the conjunction of results in the other three columns. The wall-clock times for the robustness checks are all under one second, and the memory consumption is around 50 Megabytes.

All the robustness violations we report correspond to violations of the intended specifications.

For instance: (1) the robustness violation of Epinions against CC relative to PC allows two users to update their ratings for a given product and then when each user queries the overall rating of this product they do not observe the latest rating that was given by the other user, (2) the robustness violation of Subscription against PC relative to SI allows two users to register new accounts with the same identifier, and (3) the robustness violation of Vote against SI relative to SER allows the same user to vote twice. The specification violation in Twitter was reported in [START_REF] Brutschy | Static serializability analysis for causal consistency[END_REF]. However, it was reported as violation of a different robustness property (CC relative to SER) while our work shows that the violation persists when replacing a weak consistency model (e.g., SI) with a weaker one (e.g. CC). This implies that this specification violation is not present under SI (since it appears in the difference between CC and SI behaviors), which cannot be deduced from previous work.

In the second part of the experiments, we used the technique described in Section 5.7, based on commutativity dependency graphs, to prove robustness. For each application (set of transactions) we considered a program that for each ordered pair of (possibly identical) transactions in the application, contains two processes executing that pair of transactions. Following Remark 5.2, the robustness of such a program implies the robustness of a most general client of the application that executes each transaction an arbitrary number of times and from an arbitrary number of processes.

We focused on the cases where we could not find robustness violations in the first part. To build statement fails, the invocation is reverted and is semantically equivalent to skip. This contract also contains several functions that allow to read its fields, in particular a bid that has been superseded by a higher one (function PendingReturns) and the highest bid.

The contract Auction is a variation that changes the representation of the auction ending time decomposing it into an auction start time and a bidding duration. The handling of revert conditions in the bid function is syntactically distinct, but semantically equivalent to the require in RefAuction. Despite syntactic and state representation differences, every sequence of transactions calling methods of Auction has the same effect as if they were calling RefAuction instead. This relationship can be stated as Auction being a behavioral refinement of RefAuction, i.e., that its behaviors are subsumed by RefAuction. We use the term behavior to refer to a summary of the inputs and outcomes, e.g., return values, of a sequence of invocations.

Behavioral refinement is consistent with Liskov's substitutability principle [122], i.e., any contract can be replaced with any of its refinements in any context, as long as a behavior records all the outcomes (effects) which are observable in a context. For the sake of this example, we will focus on return values. Other observable effects which are relevant in a Blockchain environment, e.g., changes on the state of other contracts or Blockchain global variables like the balances of external Sim, executing an arbitrary invocation in Auction can be mimicked by an invocation in RefAuction of the same method with the same arguments and return values. Moreover, the states reached at the end of the two invocations are again related by Sim. The latter enables an extension of this proof to an arbitrary number of invocations.

The existence of this simulation relation implies that Auction is a behavioral refinement of RefAuction, which implies that it satisfies any property of RefAuction characterizing its behaviors.

Even more, since the simulation relates the states of the two contracts, it also supports deriving validby-construction inductive invariants or pre/post-condition annotations for methods. For instance, an inductive invariant of a reference contract (that holds before and after every method invocation) can be used to define a valid-by-construction inductive invariant for any contract that it simulates.

In the context of our running example, the following inductive invariant of the reference auction

implies that Sim ∧ Inv is an inductive invariant for Auction.

Simulation Relation Synthesis

We propose methodology for synthesizing such simulation relations automatically that consists of two parts: a learning procedure for guessing simulation relation candidates from examples (§6.2.3), and using deductive verification for establishing the validity of the inferred candidates (§6.2.3).

Learning Simulations From Examples

To generate candidate simulation relations we use a procedure based on learning from examples, where the goal is learning a (first-order) formula that "separates" a set of positive examples from a set of negative examples, i.e., satisfied by all positive examples and falsified by all negative ones. In our context, examples are pairs of states of the contract and reference contract, respectively.

The positive examples must be included in any simulation relation while the negative ones must be excluded from any simulation. Classifying examples as positive or negative enables the reuse of any existing learning algorithm that can produce formulas separating between the two, e.g., [START_REF] Garg | ICE: A robust framework for learning invariants[END_REF][START_REF] Garg | Learning invariants using decision trees and implication counterexamples[END_REF][START_REF] Padhi | Data-driven precondition inference with learned features[END_REF][START_REF] Sankaranarayanan | Dynamic inference of likely data preconditions over predicates by tree learning[END_REF][START_REF] Sharma | Interpolants as classifiers[END_REF].

The positive examples are pairs of states obtained by executing the same sequence of invocations For instance, Figure 6.5 lists several functions of a contract called PAX 4 that allows an owner to mint some set of tokens for some specific address (function mint), transfer tokens between different addresses (function transfer), and change ownership (function transferOwnership). Also, Figure 6.6 lists an excerpt from the ERC20 reference contract in OpenZeppelin [START_REF] Openzeppelin | [END_REF]. PAX defines the method transferOwnership that does not occur in ERC20 and the method mint in PAX can revert if it is not called by the owner while its counterpart in ERC20 can not. We consider PAX to be a refinement of ERC20 because any sequence of non-reverted invocations to methods of PAX that exist in both is admitted by ERC20 as well (when looking only at arguments and return values as in the LTS interpretation). This extension of the notion of refinement also allows that a contract is a refinement of several reference contracts. For instance, PAX is also a refinement of the contract Ownable from the OpenZeppelin library, which implements an ownership mechanism. from

In the following, we discuss a concrete instantiation of the results above that relies on source code instead of LTS interpretations. The most important point is defining a contract that represents the product of the LTS interpretations of two contracts. As hinted in §6.2.3, such a contract can be defined using the inheritance mechanism of Solidity. The more subtle issues are related to enforcing transitions with the same label, since the label includes an invocation and a return value, and dealing with reverted invocations and methods that are defined in only one of the two contracts.

We explain these issues using the contracts A and B in Figure 6.7, where B is intended to simulate A (their fields are omitted). The method foo is defined in both contracts, but A's version contains a require that may revert certain invocations, while the method bar is defined only in contract A.

Note that methods defined only in B can be ignored while checking whether it simulates another contract.

Given these inputs, the example generator provides the synthesizer with positive and negative examples, where each example corresponds to a pair of contract states. In turn, the synthesizer provides the verifier with a candidate simulation relation separating positive and negative examples.

Since examples correspond to contract states on an Ethereum blockchain, the synthesizer relies on an oracle to evaluate expressions on examples. Finally, the verifier validates candidate simulation relations.

While this simple scheme sufficed for our empirical study, in principle, the selection of input parameters could be automated in a refinement loop from spurious verifier counterexamples, i.e., following counterexample guided inductive synthesis [START_REF] Solar-Lezama | Combinatorial sketching for finite programs[END_REF]. Furthermore, although we assume the annotated contract against which the given unannotated contract is compared is identified a priori, in principle this identification might be performed, e.g., via machine learning classifiers.

Example Generation

Our example generator executes transaction sequences on the Ganache [START_REF] Ganache | [END_REF] personal blockchain for Ethereum using the Web3 Ethereum JavaScript API [19] and Solidity compiler [START_REF]Solidity, the contract-oriented programming language[END_REF]. Given limits transaction parameters, e.g., small sets of integer and address values, the example generator systematically explores every transaction sequence in lexicographic order up to the given threshold on the number of contract states. For each state we record as observations the return values for each read-only (view) function over the given parameter limits. In case the states reached in some transaction sequence yield different observations, we return the transaction sequence and observations as a counterexample refuting simulation. Otherwise, the example generator yields positive and negative examples according to §6.5.

Two notable issues that the example generator must overcome are potential nondeterminism, e.g., due to account creation and transaction block mining, and controlling transaction parameters, e.g., the message sender parameter. While the former can be managed via parameters to Ganache, the latter required instantiating auxiliary contracts at various addresses to invoke target functions -effectively setting the sender to the auxiliary contract's address.

Synthesis

Our synthesizer component extends the Precondition Inference Engine (PIE) [START_REF] Padhi | Data-driven precondition inference with learned features[END_REF], a tool which learns a set of features, i.e., atomic predicates, (and a Boolean combination of these features) sepa- A first observation is that a vast number of contracts on the, e.g., Ethereum blockchain are variations on a relatively-small number of canonical contacts like those listed in the first column in Figure 6.8. We found that more than half of the 47 398 contracts extracted from the Ethereum blockchain and studied in [START_REF] Durieux | Empirical review of automated analysis tools on 47, 587 ethereum smart contracts[END_REF], which cover each of the eighteen Ethereum application categories from State of the DApps, contain keywords associated with these canonical contracts. This finding seems consistent with common practice, since standardization mechanisms such as Ethereum Request for Comment (ERC) are widely used.

In order to use these canonical contracts as targets for our verification methodology, we manually annotated them with full functional specifications, and verified the annotations with solc-verify [START_REF] Hajdu | solc-verify: A modular verifier for solidity smart contracts[END_REF].

To source contract variations, we collected contracts from Etherscan, as well as popular Blockchain platforms including Moloch Ventures [12], 0xcert [6], Sirin Labs [START_REF] Sirin-Labs | [END_REF], Bit Nation [START_REF] Bitnation | [END_REF], and Crypto Kitties [START_REF]Awesome cryptokitties[END_REF]. Overall we collected a set of 43 unannotated contracts, 41 of these contracts are categorized in Figure 6.8 based on which canonical contract they implement. The remaining two contracts are referred to as multi-contracts as they simultaneously implement multiple canonical contracts.

The collected contracts can be found at [START_REF]Smart contracts benchmark[END_REF].

Finally, to assess the need for the automated synthesis procedure described in §6.5, we considered weaker syntactic approaches with varying degrees of sophistication. For example, simply considering the conjunction of equalities between fields with the same names could work for simple single-field contracts, like ownership. In case contracts renamed fields, some field-name similarity heuristic would be required. For contracts with multiple fields, more sophisticated field-matching heuristics would be required, and so on. Then there are contracts whose simulation involves arithmetic expressions, further complicating heuristics. While the current generation of smart contracts we've studied are relatively simple, future generations could render such heuristics fairly useless. As noted in §6.11, our approach is relatively complete, and, as demonstrated in §6.9, capable of synthesizing simulations for many non-trivial contracts.

Experimental Evaluation

In this section we outline an empirical study of our automated verification approach applied to the Solidity smart contracts described in §6.8 using the implementation described in §6.7. We are able to run our tool on all contracts from Figure 6.8 except MultiSigWallet and Gambling, which require generating non-primitive transaction parameters, including addresses of deployed token contracts and components of cryptographic signatures.

The overview of Figure 6.12 summarizes our results, listing the generated simulation relations (omitting atomic terms) and verification outcomes. Each row, labeled c × n corresponds to n unannotated contracts compared against one canonical annotated contract c, e.g., auction × 3 corresponds to 3 distinct unannotated auction contracts compared with one canonical auction contract.

(The rows labeled multi-i × 3 are exceptions; in these cases we consider one unannotated contract compared against 3 distinct canonical contracts, corresponding to cases of multiple inheritance/interfaces.) In all but 3 cases we are able to generate plausible candidate simulation relations, and in all but 3 cases we are able to verify these relations -see §6.9.1.

In the "simulation relations" column, we list the learned simulation relations in prefix notation, omitting atomic terms, i.e., contract fields and constants. In the verified column, we list the number of canonical-and-unannotated-contract pairs for which a candidate simulation relation was:

• computed and verified, e.g., T × 3 in the auction row indicates success for 3 contract pairs;

• computed but not verified, e.g.