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Abstract

Over the past decades, distributed software became an integral part of our society, being used in

various domains like online banking or shopping, distance learning, supply chain, and telecommut-

ing. Developing correct and efficient distributed systems is a major and timely challenge. The

objective of this dissertation is to propose algorithmic techniques for improving the reliability of

such software, focusing on applications ran on top of distributed storage systems like databases and

blockchain. Databases allow applications to access data concurrently from multiple sites in a net-

work. Blockchain is a cryptographically-secure distributed ledger that allows to perform irreversible

actions between different parties without a trusted authority.

The effect of a set of database transactions executing in parallel is specified using a formalism

called consistency model. For instance, serializability states that a set of transactions behave as if

they were executed serially one after another even if they actually overlap in time. Although simple

to understand, serializability carries a significant penalty on performance and modern databases

implement weaker consistency models. In general, these weak models are more complex to reason

about. In this dissertation, we investigate the problem of checking a property of applications called

robustness. Given two comparable consistency models, an application is called robust if it has the

same behaviors when ran on top of databases implementing these two models. This dissertation

investigates the theoretical complexity of checking robustness in the context of several consistency

models: causal consistency, prefix consistency, snapshot isolation, and serializability. It provides

non-trivial reductions to a well-studied problem in formal verification, assertion checking, that en-

ables the reuse of existing verification technology. Besides theoretical results, it proposes pragmatic

approaches based on under/over-approximations that are evaluated on practical applications.

Applications ran on top of blockchain are deployed in the form of smart contracts that manipulate

the blockchain state. Smart contracts are mainly used to govern trading in cryptoassets that are

worth billions of US dollars, and bugs can lead to huge financial losses. Exacerbating the impact

of these bugs is the fact that smart contracts cannot be modified once they are deployed on the

blockchain. Applying techniques from formal verification to audit smart contracts can help in

avoiding expensive bugs. However, since most smart contracts are not annotated with formal

specifications, formal verification of functional properties is impeded. To overcome this problem,

this dissertation investigates notions of refinement between smart contracts, which enable the re-

use of verified contracts as specifications for other contracts, thus scaling up the overall verification
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effort.

Keywords: Distributed systems, Databases, Blockchain, Smart contracts, Concurrency, Veri-

fication, Model checking, Program analysis, Program synthesis.

6



Résumé

Au cours des dernières décennies, les logiciels distribués ont pris une place centrale dans notre

société. Ils sont utilisés dans divers domaines tels que la gestion des transactions bancaires et

des achats en ligne, le télétravail, et l’enseignement à distance. Développer des logiciels distribués

corrects et efficaces est un défi majeur. L’objectif de cette thèse est de proposer des techniques

algorithmiques pour améliorer la fiabilité de ces logiciels, en se concentrant sur les applications

logiciels qui s’exécutent au-dessus des systèmes de stockage distribués comme les bases de données

ou la blockchain. Les bases de données permettent à des applications d’accéder simultanément aux

données grâce à plusieurs sites répartis sur un réseau. La blockchain est un registre de stockage dis-

tribué et sécurisé par des techniques cryptographiques qui permet d’effectuer des tâches irréversibles

entre différentes entités sans autorité de confiance centrale.

L’exécution en parallèle d’un ensemble de transactions sur des bases de données est spécifiée

à l’aide d’un formalisme appelé le modèle de cohérence. Par exemple, le modèle de sérialisabilité

indique qu’un ensemble de transactions se comporte comme si elles étaient exécutées en série l’un

après l’autre, même si elles se chevauchent dans le temps. Bien que simple à comprendre, la

sérialisabilité entraîne une pénalité significative en terme de performance. Pour cette raison les

bases de données modernes mettent en oeuvre des modèles de cohérence plus faibles. En général, il

est plus complexe de mener des raisonnement sur ces modèles faibles. Dans cette thèse, nous étudions

le problème de la vérification d’une propriété des applications logiciels qui s’exécutent au-dessus des

bases de données appelée la robustesse. Étant donné deux modèles de cohérence comparables, une

application est dite robuste si elle a le même comportement lorsqu’elle est exécutée sur deux bases

de données mettant en oeuvre les deux modèles de cohérence. Dans cette thèse, nous étudions

la complexité théorique de la vérification de la robustesse dans le contexte de plusieurs modèles

de cohérence: causal consistency, prefix consistency, snapshot isolation, et la sérialisabilité. Nous

donnons des réductions non triviales à un problème bien étudié dans la littérature de la vérification

formelle, la vérification des assertions, qui permet la réutilisation des technologies de vérification

existantes. Outre des résultats théoriques, nous proposont aussi des approches basées sur des

sous/sur-approximations que nous évaluons sur des applications pratiques.

Les applications logiciels exécutées au-dessus de la blockchain sont déployées sous la forme de

smart contracts qui manipulent l’état de la blockchain. Les smart contracts sont principalement

utilisés pour des operations basées sur des crypto-monnaies valant plusieurs milliards de dollars.
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Par conséquent, des erreurs dans les smart contracts peuvent entraîner d’énormes pertes financières.

Ces erreurs sont exacerbées par le fait que les smart contracts ne peuvent pas être modifiés une

fois qu’ils sont déployés sur la blockchain. L’application des techniques de la vérification formelle

pour auditer les smart contracts peut aider à éviter des erreurs coûteuses. Cependant, comme la

plupart des smart contracts ne sont pas annotés avec leurs spécifications, la vérification formelle

des propriétés fonctionnelles est entravée. Pour surmonter ce problème, nous explorons dans cette

thèse les notions de raffinement entre smart contracts, qui permettent la réutilisation des smart

contracts vérifiés comme spécifications pour d’autres smart contracts, améliorant ainsi l’effort global

de vérification.

Mots clefs: Systèmes distribués, Base de données, Blockchain, Smart contracts, Concurrence,

Vérification, Vérification de modèles, Analyse de programmes, Synthèse de programmes.
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Chapter 1

Introduction

1.1 Distributed Software

Over the past decades, distributed software became an integral part of our society, being used

in various domains like online banking or shopping, distance learning, and telecommuting. With

this increased reliance, the demand for reliable and secure distributed software is large and it is

growing. Hence, developing efficient and correct distributed software is a major and timely challenge.

Databases and Blockchain are two commonly used distributed software systems.

Modern production databases are distributed over multiple sites in a network. This is because

many applications that use these databases require fast and reliable access to the data from different

regions of the world, which is impossible to satisfy if these databases are centralized. For instance,

in Figure 1.1a, we show a subscription system, it is constituted of three clients from three distinct

regions of the world connected to a single server. The clients manipulate the data stored on the

sever, e.g., adding new users or querying existing users. The subscription suffers from performance

and availability issues. In particular, the response time to the clients Bob and Charlie queries will be

very slow because of the long distance between the server and these clients. Also, if the server stops

responding then the whole system will crash. A distributed subscription is shown in Figure 1.1b,

it addresses the above issues of the centralized subscription. It is constituted of three connected

severs distributed over three sites and three clients, each client is connected to one server. The

data is replicated across the three servers. Thus, by reducing the distance between the severs and

clients, the response time is improved. Also, when one server stops responding the two other severs

can replace it and the system continues functioning. However, the distributed subscription must
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address new consistency issues, caused by the fact that it is distributed, such as: (1) how can the

servers coordinate to disallow the two clients Bob and Charlie from adding two users with the same

name?, and (2) how often should the servers exchange data to ensure that the reply to Alice query is

not obsolete? To faithfully address the above questions, distributed databases implement complex

network communication and memory access protocols. Because of this complexity, implementing

correct and reliable applications that use these databases is difficult.

A blockchain is a distributed storage system. Distribution and replication stimulate trust and

resilience necessary for the blockchain to operate correctly. This is because blockchain allows to per-

form irreversible and verifiable actions between different parties without a trusted central authority.

Concretely, a blockchain is constituted of a sequence of blocks, which holds a log of completed ac-

tion records. It uses cryptographic mechanisms to enforce an append-only pattern, disallowing the

deletion or alteration of blocks already added to the chain. Applications ran on top of blockchain

are called smart contracts, and they allow to manipulate the blockchain state. Smart contracts are

commonly used to govern trading in cryptoassets such as Bitcoin [1] and Ether [2] that are worth

billions of US dollars, and bugs can lead to huge financial losses. Exacerbating the impact of these

bugs is the fact that smart contracts cannot be modified once they are deployed on the blockchain.

Two famous smart contracts exploitations are TheDAO and the Parity wallet bugs that caused a

combined loss of $240 million USD.

The objective of this dissertation is to propose algorithmic techniques for improving the relia-

bility of applications ran on top of distributed storage systems like databases and blockchain.

INSERT USER
{“name” : “SM”,

  “password” : “1”}

INSERT USER
{“name” : “SM”,

  “password” : “0”}

SELECT  USER 
WHERE name=”SM”

Alice

Bob

Charlie

(a) A centralized subscription system.

INSERT USER
{“name” : “SM”,

  “password” : “1”}

INSERT USER
{“name” : “SM”,

  “password” : “0”}

SELECT  USER 
WHERE name=”SM”

network link

network link

ne
tw

or
k 

lin
k

Alice

Bob

Charlie

(b) A distributed subscription system.

Figure 1.1: A subscription system.
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1.2 Databases

Modern databases manage complex workloads for various applications, e.g., cloud storage, cloud

computing, e-commerce, finances, and healthcare. Distribution and replication are widely adopted

by databases providers to increase performance and tolerate failures of some database sites. Under

these settings, modern databases implement different kinds of software optimizations (e.g., chang-

ing data structures and communication and consensus protocols) to properly and efficiently execute

database operations. For instance, new noSQL (no-relational) databases such as key-value stores

have been proposed to optimize data accesses. MongoDB and Cassandra are two popular noSQL

databases. Also, distributed databases implement complex mechanisms to resolve conflicting up-

dates stored on different database sites and to update a stale value stored in a database site by

the latest value stored in another site. To ease the burden on programmers of applications that

use these databases, the implementations of these databases must ensure consistency guarantees

allowing to reason about their behaviors in an abstract and simple way.

wr(“I tested positive 
for Covid”)

wr(“never mind, false 
positive”)

rd(“I tested positive 
for  Covid”, “never 

mind, false positive”)

wr(“happy for you”)

rd(“I tested positive 
for  Covid”, “happy 

for you”)

Alice Bob Charlie

(a) Chat room.

rd(“balance” : “100”)

wr(“balance” : “balance-100”)

rd(“balance” : “-100”)

rd(“balance” : 100)

wr(“balance” : “balance-100”) 

rd(“balance” : “-100”)

Alice Bob

(b) Bank.

Figure 1.2: Applications running on top of a causally consistent database.

1.2.1 Consistency

A database consistency model consists of a set of rules specifying the interaction between the

database and the applications that use the database. Ideally, programmers of these applications

would like to have strong consistency guarantees, i.e., all updates occurring anywhere in the sys-

tem are seen immediately and executed in the same order by all the database sites. The strongest

consistency level is sequential consistency [117], i.e., every computation of a program is equivalent

to another one where operations (read or write) are executed atomically and sequentially one after

another without interference by all sites. However, while sequential consistency is easier to ap-

prehend by application programmers, their enforcement (by databases implementors) requires the
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use of global synchronization between all sites, which is hard to achieve while ensuring availability

and acceptable performances [84, 90]. The fact that distributed database systems cannot ensure

both availability and strong consistency is known as the consistency, availability, partition tolerance

(CAP) theorem in the literature of distributed systems [90]. Modern databases often provide weaker

consistency guarantees choosing availability over strong consistency. Causal consistency [116] is a

fundamental weak consistency model implemented in several production databases, e.g., Antidot-

eDB, CockroachDB, and MongoDB, and extensively studied in the literature [31, 77, 123, 124, 144].

Causal consistency guarantees that every two operations where the second operation causally de-

pends on the first operation, say the first operation affects the outcome of the second operation,

are executed in the same order by all sites. For instance, causal consistency disallows the kind

of execution of a chat room application shown in Figure 1.2a. This is because the write done by

Bob causally depend on the last write done by Alice, however, Charlie observes the Bob’s write

without observing the last write done by Alice. In comparison to sequential consistency, causal

consistency allows that conflicting operations, i.e., which read or write to a common location, be

executed in different orders by different sites as long as they are not causally related. For instance,

causal consistency allows the kind of execution of a bank application shown in Figure 1.2b. The

execution shows two people Alice and Bob who share the same bank account withdrawing a total

amount that leads to a negative balance. Sequential consistency disallows this execution since one

of withdraws must occur after the other one finishes and thus will be rejected because of insufficient

balance.

1.2.2 Transactions

Transaction is an abstract mechanism that refers to a block of operations (writes and reads) of a

site can be considered as executing atomically without interferences from actions of other sites. A

transaction ensures that either the entire block of operations is applied or non of the operations

is applied. Modern databases provide transactions with various semantics corresponding to differ-

ent tradeoffs between consistency and availability. Serializability [140] is the sequential consistency

equivalent strong consistency model in the transactional setting, i.e., every computation of a pro-

gram is equivalent to another one where transactions are executed serially one after another without

interference. In the transactional setting, causal consistency refers to the same consistency guar-

antees as causal consistency in the non-transactional setting. Another popular weak consistency
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model in the transactional setting is snapshot isolation [46]. It is implemented in several production

databases, e.g., Microsoft SQL Database, Oracle, and PostgreSQL, and it is extensively studied

in the literature [83, 47, 129, 145, 50]. Compared to causal consistency, snapshot isolation further

requires that transactions follow a total order, called commit order, such that each transaction ob-

serves all the updates in a prefix of this sequence and two different transactions observe different

prefixes if they both write to a common location. Thus, snapshot isolation disallows the class of

anomalies caused by two conflicting writes done concurrently. Two transactions may observe the

same prefix as long as they do not write to a common variable, which again may lead to behaviors

which are not admitted by serializability.

1.2.3 Correctness and Robustness

Implementing programs that run on top of databases and are both highly performant and correct

with respect to their safety specifications is an extremely hard and error prone task. Checking

correctness of programs with regard to preserving their safety specifications requires computing the

set of reachable states. However, computing the set of reachable states under the weak semantics

models is in general a hard problem (either decidable but highly complex (non-primitive recursive),

undecidable, or unknown) [37, 38, 23, 111]. An alternative approach is to check robustness of

programs against consistency relaxations: Given a program P and two consistency models S and

W such that S is stronger than W , we say that P is robust against substituting S with W if for

every two implementations IS and IW of S andW respectively, the set of observable behaviors (e.g.,

traces of computations1 and reachable states) of P when running with IS is the same as its set of

observable behaviors when running with IW . This means that P is not sensitive to the consistency

relaxation from S to W , and therefore it is possible to reason about the behaviors of P assuming

that it is running over S, and no additional synchronization is required when P runs over the weak

model W such that it maintains all its properties satisfied with S. Robustness implies that any

safety specification of P is preserved when weakening the consistency model (from S to W ). Thus,

when the stronger model S corresponds to serialisability and P is robust then we can check whether

P preserves its safety specifications under the weak consistency model W by checking whether it

preserves them under serialisability. The latter is well studied and existing verification tools are

well equipped to deal with it.
1A trace of computation captures the control and data dependencies between operations in the computation.
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Robustness also allows: (1) to identify the weakest level of consistency needed by a given program

(to satisfy its specification) since a weaker consistency model provides better performance, and (2)

to ensure that the level of consistency needed by a given program coincides with the one that is

guaranteed by its infrastructure, i.e., the database it uses. We assume that this database (including

network communication and conflicts resolution protocols) satisfies its consistency guarantees.

While robustness based on reachable states, which requires that a program is robust if the sets of

reachable states under the two consistency models coincide, is the necessary and sufficient concept

for preserving safety specifications, its verification amounts to computing the set of reachable states

under the weak semantics models which leads to the same problem as discussed above. A stronger

notion of robustness that allows to overcome this problem is robustness based on the equivalence

between the sets of traces of computations. For instance, in the context of shared memory it was

shown in [51] that robustness against substituting sequential consistency with total store ordering

(TSO) consistency, based on traces of computations, is as hard as reachability under sequential

consistency, which is much simpler than reachability under TSO [37].

1.2.4 Problem Statement

In this dissertation, we investigate the problem of checking robustness of programs in the context

of four consistency models: serializability (SER) , snapshot isolation (SI) , prefix consistency (PC)

(another weak consistency model that is stronger than causal consistency and weaker than snapshot

isolation) [61, 69], and causal consistency (CC) in a transactional setting. We focus on robustness

based on the criterion of the equivalence between the sets of traces of computations. However, we

need to identify the appropriate notions of traces of computations so that in almost all practical

cases, programs that are robust based on reachable states criterion are also robust based on traces

of computations criterion. Furthermore, checking robustness is also difficult since it requires to

apprehend the extra behaviors due to the relaxed model w.r.t. the stronger model. This requires a

priori reasoning about complex order constraints between operations in arbitrarily long computa-

tions, which may need maintaining unbounded ordered structures, and make robustness checking

hard or even undecidable.

We consider two important robustness problems: (1) robustness against substituting the strong

model (i.e., SER) with one of the weak consistency models, and (2) robustness against substituting

a weak consistency model, e.g., SI, with a weaker one, e.g., CC. The result of the first problem
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allows to run programs over weakly consistent database while reasoning about the correctness of

these programs assuming that they run over SER database. The result of the second problem allows

to find the weakest consistency model while a program still satisfy its safety specifications. This

is because there is a large class of specifications that can be implemented even in the presence of

behaviors which are not admitted under SER (see [152] for a discussion).

1.2.5 State of the Art

There are several works that investigated the problem of verifying databases and shared memory

correctness, i.e., checking whether a database or a shared memory indeed implements a consistency

criteria it claims [103, 35, 53, 98, 52]. In addition, there are several other works that investigated the

problem of databases and shared memories testing [140, 89, 137, 138, 50, 147]. In this dissertation,

we assume that databases are correct and investigate the correctness of programs that run on top

of these databases.

In the non-transactional case (i.e., shared memory and programming language memory mod-

els), existing work on the verification of robustness can be classified into two classes: (1) over-

or under-approximate analyses [62, 136, 63, 29], and (2) precise (sound and complete) analy-

ses [55, 51, 74, 113]. They consider robustness only when the stronger model (S) corresponds

to strong consistency, i.e., sequential consistency. In the transactional case, all existing work on the

verification of robustness provide either over- or under-approximate analyses [33, 47, 57, 58, 70, 129],

but none of them provides precise algorithmic verification methods for solving robustness, nor ad-

dresses its decidability and complexity. Also, they consider robustness only when the stronger model

(S) corresponds to strong consistency, i.e., SER. This dissertation is the first work studying the de-

cidability and complexity of verifying robustness in the context of transactional programs. Also,

this dissertation is the first work studying the decidability and complexity of verifying robustness

where the stronger model is not strong consistency.

Because of the undecidability/high complexity of reachability problems under weakly consistent

models, existing works for the analyses of programs correctness under these models without proving

their robustness, e.g., [39, 28, 72, 24, 114, 93, 130, 27], do not provide decision procedures.
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1.2.6 Contribution

In this dissertation, we show that the problems of checking robustness of application programs

against substituting SER with CC or SI, SI with PC, and PC with CC can be reduced in polynomial

time to the reachability problem in concurrent programs under SER. This allows: (1) to avoid explicit

reasoning about weak consistency behaviors (since this may imply memorizing unbounded informa-

tion), and (2) to leverage available tools for verifying invariants/reachability problems on concurrent

programs to reason about distributed applications running on weakly consistent databases. This

also implies that the robustness problem is decidable for finite-state programs, PSPACE-complete

when the number of sites is fixed, and EXPSPACE-complete otherwise. The above reduction re-

quires non-trivial results that characterize the behaviors of each of the considered weak consistency

models such as finding the appropriate formal definitions of traces of computations for each in-

dividual consistency model so there are almost no programs in practice that distinguish between

robustness based on traces of computations and robustness based on reachable states.

The approach we adopt for tackling the robustness problem is based on a precise characterization

of the set of robustness violations, i.e., computations that are possible under the weaker model but

not the stronger model. For instance, for robustness against substituting SER with CC or SI we

show that it is sufficient to search for a special type of minimal robustness violations. We reuse the

high-level methodology from [51] of characterizing minimal violations according to some measure.

However, we use different notions of measure because of the semantics differences between individual

weak consistency models. The key property we prove is that all minimal violations obey to a finite

number of patterns. Moreover, using this characterization, we show that given a program P ,

deciding whether P is not robust can be done by exploring only serial computations: We consider

a program P ′ obtained from P by a linear-size instrumentation. The latter maintains along serial

computations of P ′ (where accesses to the main memory are done in a sequentially consistent way)

the information needed to recognize the pattern of a minimal violation that would have occurred

in P under the weaker semantics, i.e., CC or SI, (executing the same set of operations).

However, the above methodology based on minimal violations is applicable when the stronger

model in robustness is the model desired for the reachability problem (SER) we reduce to. Thus, for

robustness against substituting SI with PC and PC with CC we derive reductions to SER reachability

using two completely different methodologies: characterizing violations of robustness against sub-

stituting SI with PC in terms of SER computations (of another program) and showing that violations
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of robustness against substituting PC with CC can be rewritten as violations of robustness against

substituting SER with CC (of another program).

In the fist case we use a monitor that checks whether a behavior is admitted by a program

P under PC, but not under SI, which raises two non-trivial challenges: (1) defining a monitor for

detecting violations of robustness against substituting SI with PC that uses a minimal amount of

auxiliary memory (to remember past events), and (2) what is the complexity of checking if the

composition of P with the monitor reaches a specific control location (we assume that the monitor

goes to a specific error location when detecting a violation) under the (weaker) model. Interestingly

enough, we address these two challenges by studying the relationship between these two weak

consistency models, PC and SI, and SER. The construction of the monitor is based on the fact that

violations of robustness against substituting SI with PC can be defined as roughly, the difference

between the violations of robustness against substituting SER with PC and SER with SI (investigated

in previous work [47]), and we show that the reachability problem under PC can be reduced to a

reachability problem under SER.

In the second case we rely on the reduction from PC reachability to SER reachability mentioned

above. This reduction shows that a given program P reaches a certain control location under PC

iff a transformed program P ′, where essentially, each transaction is split in two parts, one part

containing all the reads, and one part containing all the writes, reaches the same control location

under SER. Interestingly, P reaches a certain control location under CC if and only if P ′ reaches

the same control location under CC. The latter may seem counter-intuitive since it is not true for

PC. Thus, the fact that this reduction preserves the structure of the program allows to redefine

violations of robustness against substituting PC with CC of a program P to violations of robustness

against substituting SER with CC of the transformed program P ′.

We study the robustness against substituting SER with three distinct semantics models of CC.

We show that the three models coincide for programs containing no write-write data races, i.e.,

concurrent transactions writing on a common location. We also show that if a program has a

write-write data race under one of these models, then it must have a write-write data race under

any of the other two models. This property is rather counter-intuitive since two of these models

are incomparable and the third model is strictly weaker than both of them (in terms of admitted

behaviors).

We also developed a proof methodology for establishing robustness against substituting SER with
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serializability

snapshot isolation

prefix consistency

causal memorycausal convergence

weak causal consistency

Figure 1.3: Consistency models.

SI, SI with PC, and PC with CC which builds on Lipton’s reduction theory [120] and the character-

ization of robustness violations. We use the theory of movers to establish whether the relaxations

allowed by weaker models are harmless, i.e., they do not introduce new behaviors compared to the

stronger model. We applied the proposed techniques for checking robustness against substituting

SER with SI, SI with PC, and PC with CC on 17 challenging applications extracted from previous

work [76, 58, 161, 32, 105, 47, 93, 129]. Our techniques are precise enough for proving or disproving

the robustness of all of these applications, for all combinations of the consistency models discussed

above. In Figure 1.3, we list the consistency models we study in this dissertation.

1.3 Blockchain

Blockchain offers an innovative approach that allow to establish trust in an open environment

without the need of a centralized authority to do so. Blockchain use cases range from globally

deployed cryptoassets like Bitcoin [131], to supply chains [9], insurance [4], and banking [5]. Two

popular blockchains are Bitcoin [1] and Ethereum [2] which have a combined market capitalization

exceeding $575 billion USD. Blockchain systems rely on a tamper-proof ledger, i.e., no entity can

delete or modify ledger entries once they have been recorded, that is distributed and replicated

across a network of nodes. Ledger entries are organized as a sequence of blocks, each block records

a set of completed actions that are called transactions. The ledger establishes which transactions

happened (e.g., Alice transferred 2 B coins to Bob as shown in Figure 1.4), and the order in which

the transactions happened (e.g., Alice transferred 2 B coins to Bob, and then Bob transferred 2

$ coins to Alice as shown in Figure 1.4). To ensure that a distributed ledger remains secure and

accessible to all parties, blockchain systems implementors use consensus protocols to determine the
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state of the ledger (i.e., nodes agree on this unique state), and cryptographic functions to keep a

cryptographic audit trail ensuring the ledger integrity.

Figure 1.4: Blockchain

1.3.1 Smart Contracts

Several blockchains, most prominently Ethereum, allow the execution of application programs,

called smart contracts, that are stored on the blockchain. As they offer autonomy for arbitrarily-

complex transactions between multiple parties, smart contracts are already powering a sizable econ-

omy: applications include decentralized finance [22], supply chains [9], and insurance [4]. A smart

contract resembles an object in an object-oriented programming language. It manages a permanent

state stored on the blockchain. It is constituted of a set of functions that manipulate the state.

Functions can be called either directly by users or indirectly by other smart contracts, through

transactions. They allow to perform arbitrarily-complex operations using cryptoassets stored on

the blockchain. A concept that distinguishes smart contracts from standard software programs is:

a smart contract is immutable once it is deployed on the blockchain, i.e., upgrading a deployed

contract is extremely difficult due to the design of blockchain. Solidity [21] is the most popular

Turing-complete high-level programming language for smart contracts, which is designed to target

the Ethereum Virtual Machine [2].

1.3.2 Correctness

Although blockchain and smart contracts have received growing interests in both academia and

industry in the recent years, the security of blockchain and smart contracts continue to be at the
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center of the discussion when applying them in new applications. This is because of the many

exploitations targeting blockchain and smart contracts that caused expensive losses. For instance,

[101] shows the possibility of attacking a blockchain consensus protocol. In [40, 150, 107], the authors

survey common bugs in smart contracts that caused big financial losses. Thus, it is important

to ensure the correctness of both the blockchain infrastructures (e.g., consensus protocols) and

the smart contracts that run on them before their deployment. In this dissertation, we focus on

the verification of the correctness of smart contracts. We assume that smart contracts run on a

blockchain infrastructure (including network communication, and the behavior of individual nodes)

that satisfies its guarantees.

1.3.3 Problem Statement

Formal verification has the potential to mitigate against malicious exploitation of smart contracts.

However, scaling verification efforts to a large number of smart contracts is an important challenge.

In particular, while specifications that are specialized to each individual smart contract are useful for

proving customized functional properties [141], generic specifications that can be applied to large

classes of smart contracts would facilitate verifying contracts en masse. Ideally, the specification

for a given class of smart contracts could be written once, and reused for the verification of each

contract of that class.

Truly generic specifications must be sufficiently weak so that every correct contract in the given

class adheres to its functional properties. Moreover, truly generic specifications must be independent

from the state variables of any particular contract, since the state variables of other contracts in

the same class generally differ in name, number, and type. Such generic specifications are however

unsuited for existing verification tools like solc-verify [97], VeriSol [165] and VerX [141], which

suppose that input contracts are annotated with expressions that refer to state variables, e.g., pre-

and post-conditions. This poses a scalability problem since deriving such annotations for each

contract from class-wide generic specifications would be a manual labor-intensive process.

In this dissertation, we address this scalability challenge and introduce an approach for verifying

unannotated smart contracts via automated semantic comparison against annotated smart contracts.

Our approach is motivated by the insight that many of the smart contracts instantiated on popular

blockchains (e.g., Ethereum [166]) are variations on a relatively small number of canonical contracts

and libraries implementing concepts like auction, escrow, tokens, and voting. Intuitively, many
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of these variations obey the principle of substitutability [122], meaning that they adhere to the

functional properties captured by the annotations of their canonical counterparts.

1.3.4 State of the Art

Recently, blockchain and smart contracts attracted the interest of the formal verification community.

In particular, several recent work, e.g., [143, 34, 56, 48, 119], use theorem provers such as Coq and

TLA+ for the verification of the correctness of blockchain consensus protocols. In this dissertation,

we assume the correctness of the blockchain infrastructure including the consensus protocols.

Existing work on smart contracts verification can be classified into two classes: (1) full auto-

mated techniques that require no manual intervention, and (2) semi-automated techniques. Full

automated techniques, e.g., [94, 106, 159, 164, 100, 109, 125, 135, 160, 96], are designed to verify

correctness for bounded executions or for particular security properties (e.g., integer overflows) and

cannot establish full functional correctness. Semi-automated techniques rely on user-provided func-

tional specifications to establish full functional correctness, e.g., [36, 49, 95, 104, 151, 97, 165, 141].

However, in this dissertation, we study the problem of verifying full functional correctness for smart

contracts for which functional specifications do not exist.

1.3.5 Contribution

In this dissertation, we propose a technique for verifying unannotated smart contracts via automated

semantic comparison against annotated canonical smart contracts. With a notion of comparison

that implies substitutability, we can thus amortize the cost of manually annotating the canonical

contracts by verifying a vast number of unannotated contracts. Our notion of behavioral refinement

relates the input-output behavior of contracts’ transactions, i.e., parameters and effects on storage,

ignoring internal details like local memory and control flow. By proving that a given contract is

a behavioral refinement of another, we guarantee the inheritance of behavioral properties, and in

particular that the effects of any sequence of transactions obeys its canonical counterpart’s functional

properties.

Establishing behavioral refinement for unbounded transaction sequences relies on induction.

Akin to inductive invariants for safety properties, proofs of behavioral refinement use induction

hypotheses called simulation relations [127]. Essentially, a behavioral simulation relation identifies

states of two contracts such that initial states are related; the same transaction applied to related
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states yields related states and identical effects; and related states are observationally equivalent,

i.e., any function applied to both yields identical values.

Pos Neg

Simulation 
Relation Learner

Blockchain

Leaner 
Oracle

Expression

counterexample

Transactions

Unannotated Contract
& Canonical Contract

Candidate
Simulation (S)

{S} C {S}

Simulation (S)

Simulation-checking 
Contract (C)

Figure 1.5: Behavioral simulation relations synthesis.

We develop an algorithm for synthesizing behavioral simulation relations. The algorithm is

constituted of two steps: a passive learning step generates candidate simulation relations, and

a deductive verification step checks the validity of each candidate. Candidate generation can be

demand-driven according to counterexample guided inductive synthesis [157], e.g., initially proposing

the trivial simulation relating each pair of contract states, and incrementally proposing candidates

which rule out spurious counterexamples from prior validation steps.

To generate candidate simulation relations, we adopt a paradigm of learning from examples [128].

In this work, we consider only passive learning, which assumes that the set of examples is fixed a

priori, as opposed to being generated on learner demand. In the context of simulation, an example

is a pair of states, i.e., one state of each contract: positive examples are pairs of states which must

be similar, and negative examples are pairs which must not be similar. To generate examples,

we consider sequences of transactions, executed on a blockchain, starting from the initial states

of each contract. Intuitively, negative examples correspond to pairs of states which yield distinct

observations, and positive examples correspond to pairs of states reached by identical transaction

sequences, unless such a pair yields distinct observations, in which case it is a counterexample

to simulation. We then leverage off-the-shelf learning algorithms [139] by providing an oracle to

evaluate candidate expressions against pairs of states, i.e., by executing such expressions on the

blockchain.
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To verify candidate simulation relations, we adopt a notion of product programs inspired by

relational verification [43]. In particular, we generate an auxiliary simulation-checking contract

whose verification implies the validity of a given simulation relation. Intuitively, for each function

f of the given unannotated contract, the simulation-checking contract provides a function which

executes f in lockstep with its canonical contract’s counterpart. Besides asserting the equality of

effects and return-values, this function includes the candidate simulation as pre- and post-conditions,

ultimately implying inductiveness. We verify the simulation-checking contract using off-the-shelf

Solidity smart contracts verifiers [97]. In Figure 1.5 we illustrate the process of generating candidate

simulation relations and verifying that they are indeed true simulation relations.

Empirically, we validate our approach by collecting dozens of Solidity-language smart contracts,

identifying canonical contracts for several classes, annotating and verifying these canonical contracts

with precise formal specifications, and synthesizing simulation relations from multiple variations of

each class. Our implementation can correctly synthesize nontrivial simulation relations for many

classes, and integrates off-the-shelf tools for example-guided learning and Solidity smart contracts

verification.

1.4 Thesis Outline

The rest of this dissertation is organized as follows:

• In Chapter 2, we introduce some concepts necessary for describing the dissertation contribu-

tions.

• In Chapter 3, we study the relation between three distinct semantics of CC. We then study

the robustness against substituting SER with CC and show its reduction to the reachability

problem in concurrent programs under SER.

• In Chapter 4, we study the robustness against substituting SER with SI and show its reduc-

tion to the reachability problem in concurrent programs under SER. We then present a proof

methodology for establishing robustness. Finally, we present an experimental evaluation.

• In Chapter 5, we study the robustness against substituting PC with CC and show its reduction to

the robustness against substituting SER with CC. We then present a reduction of the robustness
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against substituting PC with SI to the reachability problem in concurrent programs under SER.

Finally, we present an experimental evaluation.

• In Chapter 6, we demonstrate an application of behavioral simulation to smart contracts.

We then develop an algorithm for synthesizing behavioral simulation relations. We develop

a smart contract benchmark suite including variations of identified canonical contracts. We

develop implementation of our approach. Finally, we evaluate our implementation, verifying

functional properties for dozens of unannotated smart contracts.

• In Chapter 7, we summarize the contributions in the dissertation and discuss open problems

and future research directions.
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Chapter 2

Preliminary

2.1 Introduction

In this chapter, we present a set of formalisms that we use in Chapters 3, 4, and 5. In §2.2, we

give the syntax of a simple programming language for application programs that we study in these

chapters. Then, in §2.3, we present the program semantics setting. In particular, we formally define

the serializability semantics. We also introduce the notions of serializable program executions and

traces of serializable executions.

2.2 Program Syntax

We consider a simple programming language grammar which is defined in Figure 2.1. A program

is parallel composition of processes distinguished using a set of identifiers P. Each process is a

sequence of transactions and each transaction is a sequence of labeled instructions. Each transaction

starts with a begin instruction and finishes with a commit instruction. Each other instruction is

either an assignment to a process-local register from a set R or to a shared variable from a set

V, or an assume statement. The read/write assignments use values from a data domain D. An

assignment to a register 〈reg〉 := 〈var〉 is called a read of 〈var〉 and an assignment to a shared

variable 〈var〉 := 〈reg-expr〉 is called a write to 〈var〉 (〈reg-expr〉 is an expression over registers

whose syntax we leave unspecified since it is irrelevant for our development). The assume 〈bexpr〉

blocks the process if the Boolean expression 〈bexpr〉 over registers is false. It can be used to model

conditionals. Each instruction is followed by a goto statement which defines the evolution of the
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〈prog〉 ::= program 〈process〉∗

〈process〉 ::= process 〈pid〉 regs 〈reg〉∗

〈ltxn〉∗

〈ltxn〉 ::= 〈binst〉 〈linst〉∗ 〈einst〉

〈binst〉 ::= 〈label〉: begin; goto 〈label〉;

〈einst〉 ::= 〈label〉: end; goto 〈label〉;

〈linst〉 ::= 〈label〉: 〈inst〉; goto 〈label〉;

〈inst〉 ::= 〈reg〉 := 〈var〉

| 〈var〉 := 〈reg-expr〉

| assume 〈bexpr〉

Figure 2.1: Program syntax. a∗ indicates zero or more occurrences of a. 〈pid〉, 〈reg〉, 〈label〉, and

〈var〉 represent a process identifier, a register, a label, and a shared variable, respectively. 〈reg-expr〉

is an expression over registers while 〈bexpr〉 is a Boolean expression over registers.

program counter. Multiple instructions can be associated with the same label which allows us to

write non-deterministic programs and multiple goto statements can direct the control to the same

label which allows us to mimic imperative constructs like loops and conditionals. We assume that

the control cannot pass from one transaction to another without going as expected through begin

and end instructions.

To simplify the technical exposition of the thesis, programs contain a bounded number of pro-

cesses and each process executes a bounded number of transactions. A transaction may execute

an unbounded number of instructions but these instructions concern a bounded number of vari-

ables, which makes it impossible to model SQL (select/update) queries that may access tables

with a statically unknown number of rows. The thesis contributions can be extended beyond these

restrictions.

2.3 Program Semantics

We formally define the semantics of a program P under a consistency model X using an LTS.

The states of the LTS are called configurations, and transitions between configurations are called

execution steps. An execution of P is a run of the LTS.
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2.3.1 Labeled Transition Systems

A labeled transition system (LTS) is defined as a tuple (Q,Σ, I, F, δ) where Q is the set of states,

Σ is a set of alphabet labels, I ⊆ Q is the set of initial states, F ⊆ Q is the set of terminal (final)

states, and δ ⊆ Q× Σ×Q is the transition relation. A run in the LTS is a sequence of transitions

q0
a1→ q1 · · ·

an→ qn, where q0 ∈ I, qn ∈ F , and forall 0 ≤ i < n, (qi, ai+1, qi+1) ∈ δ. When there exists

a run to some state q ∈ Q, we say that q is reachable.

2.3.2 Serializability Semantics

In the semantics of a program under serializability (SER), a configuration keeps a single shared-

variable valuation (accessed by all processes) with the standard interpretation of read and write

statements. Also, a configuration keeps a global lock to ensure that each transaction executes in

isolation. Each process has a local configuration to keep registers valuation and the label of next

instruction to execute. In the initial configuration, each shared-variable is set to some initial value

⊥. Only configurations where the global lock is set to 1 are considered final, meaning that the

execution of a P can end at any time when no transaction is executing.

Formally, the semantics of a program P under serializability is defined using a LTS [P]CM =

(C,Ev, gs0,CF,→) where C is the set of program configurations, Ev is the set of transition labels

called events, gs0 is the initial configuration, CF is the set of final program configurations, and

→⊆ C× Ev× C is the transition relation. The set of events is defined by:

Ev = { begin(p, t), ld(p, t, x, v), isu(p, t, x, v), com(p, t) : p ∈ P, t ∈ T, x ∈ V, v ∈ D}

where begin and com label transitions corresponding to the start, resp., the end of a transaction,

isu and ld label transitions corresponding to writing, resp., reading, a shared variable during some

transaction.

In Figure 2.2, we list the transition relation (execution steps)→. The events labeling a transition

are written on top of →. A begin transition will just set the global lock to 0 to signal that a

transaction is executing while a com transition will set the global lock to 1. The set of serializable

executions of a program P is denoted by ExSER(P).
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begin ∈ inst(ls(p).pc) l = 0 s = ls(p)[pc 7→ next(pc)]

(ls, l, store)
begin(p, t)
−−−−−−→ (ls[p 7→ s], l 7→ 1, store)

r := x ∈ inst(ls(p).pc) rval = ls(p).rval[r 7→ store[x]] s = ls(p)[rval 7→ rval, pc 7→ next(pc)]

(ls, l, store)
ld(p, t, x, v)
−−−−−−−−→ (ls[p 7→ s], l, store)

x := v ∈ inst(ls(p).pc) s = ls(p)[pc 7→ next(pc)]

(ls, l, store)
isu(p, t, x, v)
−−−−−−−−→ (ls[p 7→ s], l, store[x 7→ v])

end ∈ inst(ls(p).pc) l = 1 s = ls(p)[pc 7→ next(pc)]

(ls, l, store)
com(p, t)
−−−−−−→ (ls[p 7→ s], l 7→ 0, store)

Figure 2.2: The set of transition rules defining the serializability semantics. We assume that all the

events which come from the same transaction use a unique transaction identifier t. For a function

f , we use f [a 7→ b] to denote a function g such that g(c) = f(c) for all c 6= a and g(a) = b. The

function inst returns the set of instructions labeled by some given label while next gives the next

instruction to execute.

2.3.3 Traces of Serializable Executions

A trace abstracts the order in which shared-variables are accessed inside a transaction and the order

between transactions accessing different variables. Formally, the trace of a serializable execution

ρ is obtained by (1) replacing each sub-sequence of transitions in ρ corresponding to the same

transaction with a single “atomic macro-event” (p, t), and (2) adding several standard relations

between these atomic macro-events to record the data-flow in ρ, e.g. which transaction wrote the

value read by another transaction. The sequence of (p, t) events obtained in the first step is called

a summary of ρ. We say that a transaction t in ρ performs an external read of a variable x if ρ

contains an event ld(p, t, x, v) which is not preceded by a write on x of t, i.e., an event isu(p, t, x, v).

Also, we say that a transaction t writes a variable x if ρ contains an event isu(p, t, x, v), for some v.

The trace tr(ρ) = (τ,PO,WR,WW,RW) of a serializable execution ρ consists of the summary τ

of ρ along with the program order PO, which relates any two events (p, t) and (p, t′) that occur in

this order in τ , write-read relation WR (also called read-from), which relates any two events (p, t)

and (p′, t′) that occur in this order in τ such that t′ performs an external read of x, and (p, t) is

the last event in τ before (p′, t′) that writes to x (to mark the variable x, we may use WR(x)),

the write-write order WW (also called store-order), which relates any two events (p, t) and (p′, t′)

that occur in this order in τ and write to the same variable x (to mark the variable x, we may
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use WW(x)), the read-write relation RW (also called conflict), which relates any two events (p, t)

and (p′, t′) that occur in this order in τ such that t reads a value that is overwritten by t′. The

read-write relation RW is formally defined as RW(x) = WR−1(x); WW(x) (we use ; to denote the

standard composition of relations) and RW = ⋃
x∈V RW(x).

We will present additional semantics of other consistency models later in the dissertation. In

particular, the notions of trace under these semantics will be very different than the one under

serializability. This is because the transition rules, i.e., events, are different from one semantics to

another, and therefore, the definition of the dependency relations of a trace will differ from one

semantics to another. Moreover, to facilitate the robustness comparison between serializability and

other consistency models, the set of serializable traces will be enlarged to include traces that are

equivalent, up to reordering of events that are not related by a dependency relation, to traces of

serializable executions as defined above.

30



Chapter 3

Robustness Against Causal

Consistency

3.1 Introduction

In this chapter, we investigate three models of causal consistency: causal memory (CM), causal

convergence (CCv), and weak causal consistency (wCC). We study the robustness problem against

one of these models relative to serializability. In §3.2, we outline the three consistency models and

the robustness problem. In §3.3, we formally define the semantics for the three causal consistency

models. We also define programs traces and executions under these semantics. In §3.4, we show that

programs without write-write data race have the same behaviors under the three causal Consistency

models. We also prove that if program admits a write-write data race under a variation of causal

consistency, then it must admit a write-write data race under the other two variations. These

results will allow us latter to derive the characterization of the robustness against wCC using the

characterization of the robustness against CM. In §3.6, we define a class of robustness violations

called minimal violations. In §3.7 and §3.8, we present a series of results that characterize the

particular shapes of minimal violations for CCv and CM, respectively. Finally, in §3.10, we show a

polynomial-time reduction of robustness checking to a reachability problem in a program running

under sequential consistency.
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t1 [z = 1

x = 1]

t2 [y = 1]

||

t3 [x = 2

r1 = z] //0

t4 [r2 = y //1

r3 = x] //2

(a) CCv but not CM.

t1 [x = 1]

t2 [r1 = x] //2
||

t3 [x = 2]

t4 [r2 = x] //1

(b) CM but not CCv.

t1 [x = 2] ||
t2 [x = 1]

t3 [r1 = x] //2

t4 [r2 = x] //1

(c) wCC but not CM nor CCv.

Figure 3.1: Program computations showing the relationship between wCC, CCv and CM. Transactions

are delimited using brackets and the transactions issued on the same site are aligned vertically. The

values read in a transaction are given in comments.

3.2 Overview

In this section, we overview three variations of causal consistency introduced in the literature, weak

causal consistency (wCC) [142, 52], causal memory (CM) [26, 142], and causal convergence (CCv) [59].

We illustrate the robustness problems against these models relative to serializability (SER).

The weakest variation of causal consistency, namely wCC, allows speculative executions and roll-

backs of transactions which are not causally related (concurrent). For instance, the computation in

Figure 3.1c is only feasible under wCC: the site on the right applies t2 after t1 before executing t3 and

roll-backs t2 before executing t4. CCv and CM offer more guarantees. CCv enforces a total arbitration

order between all transactions which defines the order in which delivered concurrent transactions

are executed by every site. This guarantees that all sites reach the same state when all transactions

are delivered. CM ensures that all values read by a site can be explained by an interleaving of

transactions consistent with the causal order, enforcing thus PRAM consistency [121] on top of

wCC.

Contrary to CCv, CM allows that two sites diverge on the ordering of concurrent transactions, but

both models do not allow roll-backs of concurrent transactions. Thus, CCv and CM are incomparable

in terms of computations they admit. The computation in Figure 3.1a is not admitted by CM because

there is no interleaving of those transactions that explains the values read by the site on the right:

reading 0 from z implies that the transactions on the left must be applied after t3 while reading

1 from y implies that both t1 and t2 are applied before t4 which contradicts reading 2 from x.

However, this computation is possible under CCv because t1 can be delivered to the right after

executing t3 but arbitrated before t3, which implies that the write to x in t1 will be lost. The

CM computation in Figure 3.1b is not possible under CCv because there is no arbitration order that
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p1

t1 [r1 = x //0

x = r1 + 1]

||
p2

t2 [r2 = x //0

x = r2 + 1]

(a) Lost Update (LU).

p1

t1 [x = 1

r1 = y] //0

||
p2

t2 [y = 1

r2 = x] //0

(b) Store Buffering (SB).

[a = 1

z = 1

x = 1

y = 1]

||

if (a == 1)

[x = 2

r1 = z //0

r2 = y //1

r3 = x] //2

(c) Without transactions,

non-robust against CCv.

[a = 1

x = 1

r1 = x] //2

||
if (a == 1)

[x = 2

r2 = x] //1

(d) Without transactions, non-

robust only against CM.

if ( * )

[x = 1]

else

[r1 = x]

||

if ( * )

[x = 2]

else

[r2 = x]

(e) Robust against both CM

and CCv.

[x = 1]

[r1 = y]
||

[r2 = x

if (r2 == 1)

y = 1]

(f) Robust against both CM

and CCv.

Figure 3.2: (Non-)robust programs. For non-robust programs, the read instructions are commented

with the values they return in robustness violations. The condition of if-else is checked inside a

transaction whose demarcation is omitted for readability (∗ denotes non-deterministic choice).

could explain both reads from x.

Notice that each of the computations in Figures 3.1a, 3.1b, and 3.1c contains a write-write race.

We show that the three causal consistency models coincide for programs containing no write-write

races (i.e., concurrent transactions writing on a common variable), which explains why none of these

computations is possible under all three models. We also show that if a program has a write-write

race under one of these models, then it must have a write-write race under any of the other two

models. This property is rather counter-intuitive since wCC is strictly weaker than both CCv and CM,

and CCv and CM are incomparable (in terms of admitted behaviors).

We now discuss several examples of programs which are (non-) robust against both CM and

CCv or only one of them. Robustness violations are presented in terms of “observable” behaviors,

tuples of values that can be read in the different transactions and that are not possible under

the serializability semantics (they correspond to traces with acyclic transactional happens-before).

Figure 3.2a and Figure 3.2b show examples of programs that are not robust against both CM and CCv,

which have also been discussed in the literature on weak memory models, e.g. [30]. The execution

of Lost Update under both CM and CCv allows that the two reads of x in transactions t1 and t2
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return 0 although this cannot happen under serializability. Also, executing Store Buffering under

both CM and CCv allows that the reads of x and y return 0 although this would not be possible under

serializability. These values are possible because the transaction in each of the processes may not

be delivered to the other process.

Assuming for the moment that each instruction in Figure 3.2c and Figure 3.2d forms a different

transaction, the values we give in comments show that the program in Figure 3.2c, resp., Figure 3.2d,

is not robust against CCv, resp., CM. We associate a timestamp with each transaction, which will allow

to fix an arbitration order between transactions. The values in Figure 3.2c are possible assuming

that the timestamp of the transaction [x = 1] is smaller than the timestamp of [x = 2] (which means

that if the former is delivered after the second process executes [x = 2], then it will be discarded).

Moreover, enlarging the transactions as shown in Figure 3.2c, the program becomes robust against

CCv. The values in Figure 3.2d are possible under CM because different processes do not need to

agree on the order in which to apply transactions, each process applying the transaction received

from the other process last. However, under CCv this behavior is not possible, the program being

actually robust against CCv. As in the previous case, enlarging the transactions as shown in the

figure leads to a robust program against CM.

The approach we use for tackling the robustness verification problem is based on a precise

characterization of the set of robustness violations. For both CCv and CM, we show that it is sufficient

to search for a special type of robustness violations, that can be simulated by serial computations of

an instrumentation of the original program. These computations maintain the information needed

to recognize the pattern of a violation that would have occurred in the original program under a

causally consistent semantics (executing the same set of transactions). A surprising consequence

of these results is that a program is robust against CM iff it is robust against wCC, and robustness

against CM implies robustness against CCv. This shows that the causal consistency variations we

investigate can be incomparable in terms of the admitted behaviors, but comparable in terms of

the robust applications they support.

We end the discussion with several examples of programs that are robust against both CM and

CCv. These are simplified models of real applications reported in [110]. The program in Figure 3.2e

can be understood as the parallel execution of two processes that either create a new user of some

service, represented abstractly as a write on a variable x or check its credentials, represented as a

read of x (the non-deterministic choice abstracts some code that checks whether the user exists).
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Clearly this program is robust against both CM and CCv since each process does a single access to

the shared variable. Although we considered simple transactions that access a single shared variable

this would hold even for “bigger” transactions that access an arbitrary number of variables. The

program in Figure 3.2f can be thought of as a process creating a new user of some service and

reading some additional data in parallel to a process that updates that data only if the user exists.

It is rather easy to see that it is also robust against both CM and CCv.

3.3 Causal Consistency

3.3.1 Program Semantics Under Causal Memory

Informally, the semantics of a program under causal memory is defined as follows. The shared

variables are replicated across each process, each process maintaining its own local valuation of

these variables. During the execution of a transaction in a process, the shared-variable writes are

stored in a transaction log which is visible only to the process executing the transaction and which

is broadcasted to all the processes at the end of the transaction1. To read a shared variable x,

a process p first accesses its transaction log and takes the last written value on x, if any, and

then its own valuation of the shared variables, if x was not written during the current transaction.

Transaction logs are delivered to every process in an order consistent with the causal delivery relation

between transactions, i.e., the transitive closure of the union of the program order (the order in

which transactions are executed by a process), and the delivered-before relation (a transaction t1 is

delivered-before a transaction t2 iff the log of t1 has been delivered at the process executing t2 before

t2 starts). By an abuse of terminology, we call this property causal delivery. Once a transaction

log is delivered, it is immediately applied on the shared-variable valuation of the receiving process.

Also, no transaction log can be delivered to a process p while p is executing another transaction,

we call this property transaction isolation.

Formally, a program configuration is a triple gs = (ls,msgs) where ls : P → S associates a local

state in S to each process in P, and msgs is a set of messages in transit. A local state is a tuple

〈pc, store, rval, log〉 where pc ∈ Lab is the program counter, i.e., the label of the next instruction

to be executed, store : V → D is the local valuation of the shared variables, rval : R → D is the
1For simplicity, we assume that every transaction commits. The effects of aborted transactions shouldn’t be visible

to any process.
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valuation of the local registers, and log ∈ (V×D)∗ is the transaction log, i.e., a list of variable-value

pairs. For a local state s, we use s.pc to denote the program counter component of s, and similarly

for all the other components of s. A message m = 〈t, log〉 is a transaction identifier t from a set T

together with a transaction log log ∈ (V× D)∗. We let M denote the set of messages.

Then, the semantics of a program P under causal memory is defined using a LTS [P]CM =

(C,Ev, gs0,CF,→) where we assume that any program configuration can be final, i.e., CF = C. As

it will be explained later in this section, the executions of P under causal memory are a subset of

those generated by [P]CM. The set of events is defined by:

Ev = { begin(p, t), ld(p, t, x, v), isu(p, t, x, v), del(p, t), com(p, t) : p ∈ P, t ∈ T, x ∈ V, v ∈ D}

where begin and com label transitions corresponding to the start, resp., the end of a transaction,

isu and ld label transitions corresponding to writing, resp., reading, a shared variable during some

transaction, and del labels transitions corresponding to applying a transition log to the local state

of the process issuing the transaction or to the state of another process that received the log. An

event isu is called an issue while an event del is called a store.

The transition relation→ is partially defined in Figure 3.3 (we will present additional constraints

later in this section). The events labeling a transition are written on top of →. A begin transition

will just reset the transaction log while an com transition will add the transaction log together with

the transaction identifier to the set msgs of messages in transit. An ld transition will read the value

of a shared-variable looking first at the transaction log log and then, at the shared-variable valuation

store, while an isu transition will add a new write to the transaction log. Finally, a del transition

represents the delivery of a transaction log that was in transit which is applied immediately on the

shared-variable valuation store.

We say that an execution ρ satisfies transaction isolation if no transaction log is delivered to a

process p while p is executing a transaction, i.e., if an event ev = del(p, t) occurs in ρ before an event

ev′ = com(p, t′) with t′ 6= t, then ρ contains an event ev′′ = begin(p, t′) between ev and ev′. For

an execution ρ satisfying transaction isolation, we assume w.l.o.g. that transactions executed by

different processes do not interleave, i.e., if an event ev associated to a transaction t (an event of the

process executing t or the delivery of the transaction log of t) occurs in ρ before ev′ = com(p′, t′),

then ρ contains an event ev′′ = begin(p′, t′) between ev and ev′. Formally, we say that an execution

ρ satisfies causal delivery if the following hold:

• for any event begin(p, t), and for any process p′, ρ contains at most one event del(p′, t),
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begin ∈ inst(ls(p).pc) s = ls(p)[log 7→ ε, pc 7→ next(pc)]

(ls,msgs)
begin(p, t)
−−−−−−→ (ls[p 7→ s],msgs)

r := x ∈ inst(ls(p).pc) eval(ls(p), x) = v rval = ls(p).rval[r 7→ v] s = ls(p)[rval 7→ rval, pc 7→ next(pc)]

(ls,msgs)
ld(p, t, x, v)
−−−−−−−−→ (ls[p 7→ s],msgs)

x := v ∈ inst(ls(p).pc) log = (ls(p).log) · (x, v) s = ls(p)[log 7→ log, pc 7→ next(pc)]

(ls,msgs)
isu(p, t, x, v)
−−−−−−−−→ (ls[p 7→ s],msgs)

end ∈ inst(ls(p).pc) s = ls(p)[pc 7→ next(pc)]

(ls,msgs)
com(p, t)
−−−−−−→ (ls[p 7→ s],msgs ∪ {(t, ls(p).log)})

〈t, log〉 ∈ msgs store = ls(p).store[x 7→ last(log, x) : x ∈ V, last(log, x) 6= ⊥] s = ls(p)[store 7→ store]

(ls,msgs)
del(p, t)
−−−−−→ (ls[p 7→ s],msgs)

Figure 3.3: The set of transition rules defining the causal memory semantics. We use · to denote

sequence concatenation. The function eval(ls(p), x) returns the value of x in the local state ls(p):

(1) if ls(p).log contains a pair (x, v), for some v, then eval(ls(p), x) returns the value of the last such

pair in ls(p).log, and (2) eval(ls(p), x) returns ls(p).store(x), otherwise. Also, last(log, x) returns the

value v in the last pair (x, v) in log, and ⊥, if such a pair does not exist.

• for any two events begin(p, t) and begin(p, t′), if begin(p, t) occurs in ρ before begin(p, t′), then

the event del(p, t) occurs before begin(p, t′) in ρ. This ensures that when p issues t it must

store the writes of t in its local state before issuing another transaction t′;

• for any events ev1 ∈ {del(p, t1), com(p, t1)}, ev2 = begin(p, t2), and ev′2 = del(p′, t2) with

p 6= p′, if ev1 occurs in ρ before ev2, then there exists ev′1 = del(p′, t1) such that ev′1 occurs

before ev′2 in ρ.

An execution ρ satisfies causal memory if it satisfies transaction isolation and causal delivery. The

set of executions of P under causal memory, denoted by ExCM(P), is the set of executions of [P]CM

satisfying causal memory.

Figure 3.4a shows an execution under CM. This satisfies transaction isolation since no transaction

is delivered while another transaction is executing.

3.3.2 Program Semantics Under Causal Convergence

Compared to causal memory, causal convergence ensures eventual consistency of process-local copies

of the shared variables. Each transaction log is associated with a timestamp and a process applies a
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begin(p1, t1)

isu(p1, t1, x, 1)

com(p1, t1)

·del(p1, t1) ·
begin(p2, t3)

isu(p2, t3, x, 2)

com(p2, t3)

·del(p2, t3) ·del(p1, t3) · del(p2, t1) ·
begin(p2, t4)

ld(p2, t4, x, 1)

com(p2, t4)

·

begin(p1, t2)

ld(p1, t2, x, 2)

com(p1, t2)

(a) CM execution of the program in Figure 3.1b.
begin(p1, t1)

isu(p1, t1, z, 1)

isu(p1, t1, x, 1)

com(p1, t1)

·del(p1, t1) ·

begin(p2, t3)

isu(p2, t3, x, 2)

ld(p2, t3, z, 0)

com(p2, t3)

·del(p2, t3) ·del(p1, t3) · del(p2, t1) ·
begin(p1, t2)

isu(p1, t2, y, 1)

com(p1, t2)

·del(p1, t2) ·del(p2, t2) ·

begin(p2, t4)

ld(p2, t4, y, 1)

ld(p2, t4, x, 2)

com(p2, t4)

(b) CCv execution of the program in Figure 3.1a.
begin(p1, t1)

isu(p1, t1, x, 2)

com(p1, t1)

·del(p1, t1) ·
begin(p2, t2)

isu(p2, t2, x, 1)

com(p2, t2)

·del(p2, t2) · del(p2, t1) ·
begin(p2, t3)

ld(p2, t3, x, 2)

com(p2, t3)

·

begin(p2, t4)

ld(p2, t4, x, 1)

com(p2, t4)

· del(p1, t2)

(c) wCC execution of the program in Figure 3.1c.

Figure 3.4: For readability, the sub-sequences of events delimited by begin and com are aligned

vertically, the execution-flow advancing from left to right and top to bottom.

write on some variable x from a transaction log only if it has a timestamp larger than the timestamps

of all the transaction logs it has already applied and that wrote the same variable x. For simplicity,

we assume that the transaction identifiers play the role of timestamps, which are totally ordered

according to some relation <. CCv satisfies both causal delivery and transaction isolation as well.

Assuming that transactions are constituted of either a read alone or a write alone, CCv is equivalent

to Strong Release-Acquire (SRA), a strengthening of the standard Release-Acquire semantics of the

C11 memory model [112]2.

Formally, we define a variation of the LTS [P]CM, denoted by [P]CCv, where essentially, the

transition identifiers play the role of timestamps and are ordered by a total order <, each process-

local state contains an additional component tstamp storing the largest timestamp the process has

seen for each variable, and a write on a variable x from a transaction log is applied on the local

valuation store only if it has a timestamp larger than tstamp(x). Also, a begin(p, t) transition will

choose a transaction identifier t greater than those in the image of the tstamp component of p’s

local state. The transition rules of [P]CCv that change w.r.t. those of [P]CM are given in Figure 3.5.

The set of executions of P under causal convergence, denoted by ExCCv(P), is the set of executions

of [P]CCv satisfying transaction isolation, causal delivery, and the fact that every process p generates
2This equivalence excludes the atomic read-modify-write (also know as compare-and-swap) operation which is not

provided by CCv.
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Φ1 img(ls(p).tstamp) < t

(ls, lk,msgs)
begin(p, t)
−−−−−−→ (ls[p 7→ s], lk,msgs)

〈t, log〉 ∈ msgs store = ls(p).store[x 7→ last(log, x) : x ∈ V, last(log, x) 6= ⊥, tstamp(x) < t]
tstamp = ls(p).tstamp[x 7→ t : x ∈ V, last(log, x) 6= ⊥, tstamp(x) < t] s = ls(p)[store 7→ store, tstamp 7→ tstamp]

(ls, lk,msgs)
del(p, t)
−−−−−→ (ls[p 7→ s], lk,msgs)

Figure 3.5: Transition rules for defining causal convergence. Φ1 is the hypothesis of the begin(p, t)

transition rule in Figure 3.3, and img denotes the image of a function.

monotonically increasing transaction identifiers.

The execution in Figure 3.4a is not possible under causal convergence since t4 and t2 read 2

and 1 from x, respectively. This is possible only if t1 and t3 write x at p2 and p1, respectively,

which contradicts the definition of del transition given in Figure 3.5 where we cannot have both

t1 < t3 and t3 < t1 at the same time. Figure 3.4b shows an execution under CCv (we assume

t1 < t2 < t3 < t4). Notice that del(p2, t1) did not result in an update of x because the timestamp

t1 is smaller than the timestamp of the last transaction that wrote x at p2, namely t3, a behavior

that is not possible under CM. The two processes converge and store the same shared variable copy

at the end of the execution.

3.3.3 Program Semantics Under Weak Causal Consistency

Compared to the previous semantics, wCC allows that reads of the same process observe concurrent

writes as executing in different orders. Each process maintains a set of values for each shared

variable, and a read returns any one of these values non-deterministically. Transaction logs are

associated with vector clocks [116] which represent the causal delivery relation, i.e., a transaction

t1 is before t2 in causal-delivery iff the vector clock of t1 is smaller than the vector clock of t2.

We assume that transactions identifiers play the role of vector clocks, which are partially ordered

according to some relation <. In applying the log of a transaction t on the local state of the receiving

process p, the final set of values for each shared variable in p will be constituted of the value in the

log of t and the values that were written by concurrent transactions (not related by causal delivery

to t). wCC satisfies both causal delivery and transaction isolation.

Formally, in wCC semantics, the local valuation of the shared variables store : V→ (D× T)∗ is a

map that accepts a shared variable and returns a set of pairs. The pairs are constituted of values
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begin ∈ inst(ls(p).pc) img(ls(p).tstamp) < t

s = ls(p)[log 7→ ε, snapshot 7→ buildSnapshot(store), pc 7→ next(pc)]

(ls,msgs) begin(p, t)−−−−−−→ (ls[p 7→ s],msgs)

r := x ∈ inst(ls(p).pc) cceval(ls(p), x) = (v, t′) rval = ls(p).rval[r 7→ v]
s = ls(p)[rval 7→ rval, pc 7→ next(pc)]

(ls,msgs) ld(p, t, x, v)−−−−−−−→ (ls[p 7→ s],msgs)

end ∈ inst(ls(p).pc) s = ls(p)[snapshot 7→ ε, pc 7→ next(pc)]

(ls,msgs) com(p, t)−−−−−→ (ls[p 7→ s],msgs ∪ {(t, ls(p).log)})

〈t, log〉 ∈ msgs store = ls(p).store[x 7→ update(ls(p), x, t, last(log, x)) : x ∈ V]
s = ls(p)[store 7→ store, pc 7→ next(pc)]

(ls,msgs) del(p, t)−−−−→ (ls[p 7→ s],msgs)

Figure 3.6: Transition rules for defining weak causal consistency semantics: buildSnapshot(store)

returns a consistent snapshot of store. cceval(ls(p), x) returns the pair (last(log, x), t) if last(log, x) 6=

⊥, and returns the pair (v, t′) in ls(p).snapshot(x), otherwise. update(ls(p), x, t, last(log, x)) returns

the result of appending the pair (last(log, x), t) to the set ls(p).store(x) after removing all pairs that

contain values overwritten by t.

that were written concurrently and identifiers of the transactions that wrote those values. When

applying a transaction log on the local valuation store, we keep the values that were written by

transactions that are concurrent with the current transaction. Additionally, in the wCC semantics,

the local state of a process has an additional component snapshot : V → (D × T) that maps each

shared variable to a single pair. snapshot is obtained by taking a “consistent” snapshot from store

when a new transaction starts. Such a snapshot corresponds to a linearization of the transactions

that were delivered to the process, which is consistent with the vector clock order. The snapshot

associates to each variable the last value written in this linearization. When a process does a read

from a shared variable x, it looks first at the transaction log log and then, at the variable valuation

snapshot. In Figure 3.6, we provide the transition rules of [P]wCC that change w.r.t. those of [P]CCv

and [P]CM.

The set of executions of P under weak causal consistency model, denoted by ExwCC(P), is the set

of executions of [P]wCC satisfying transaction isolation and causal delivery. We denote by Tr(P)wCC

the set of traces of executions of a program P under weak causal consistency.

Figure 3.4c shows an execution under wCC, which is not possible under CCv and CM because t3

and t4 read 2 and 1, respectively. Since the transactions t1 and t2 are concurrent, p2 stores both
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values 2 and 1 written by these transactions. A read of x can return any of these two values.

3.3.4 Execution Summary

Let ρ be an execution under X ∈ {CCv, CM, wCC}, a sequence τ of events isu(p, t) and del(p, t) with

p ∈ P and t ∈ T is called a summary of ρ if it is obtained from ρ by substituting every sub-sequence

of transitions in ρ delimited by a begin and an com transition, with a single “macro-event” isu(p, t).

For example, isu(p1, t1) · isu(p2, t3) · del(p1, t3) · del(p2, t1) · isu(p2, t4) · isu(p1, t2) is a summary of

the execution in Figure 3.4a.

We say that a transaction t in ρ performs an external read of a variable x if ρ contains an event

ld(p, t, x, v) which is not preceded by a write on x of t, i.e., an event isu(p, t, x, v). Under CM and wCC,

a transaction t writes a variable x if ρ contains an event isu(p, t, x, v), for some v. In Figure 3.4a,

both t2 and t4 perform external reads and t2 writes to y. A transaction t executed by a process p

writes x at process p′ if t writes x and ρ contains an event del(p′, t) (e.g., in Figure 3.4a, t1 writes

x at p2). Under CCv, we say that a transaction t executed by a process p writes x at process p′ if t

writes x and ρ contains an event del(p′, t) which is not preceded by an event del(p′, t′) with t < t′

and t′ writing x (if it would be preceded by such an event then the write to x of t will be discarded).

For example, in Figure 3.4b, t1 does not write x at p2.

3.3.5 Trace

We define an abstract representation of executions that satisfy transaction isolation3, called trace.

More precisely, the trace of an execution ρ is a tuple tr(ρ) = (τ,PO,WR,WW,RW,STO) where τ is

the summary of ρ, PO is the program order, which relates any two issue events isu(p, t) and isu(p, t′)

that occur in this order in τ , WR is the write-read relation, which relates events of two transactions

t and t′ such that t writes a value that t′ reads, WW is the write-write order, which relates events

of two transactions that write to the same variable, RW is the read-write relation, which relates

events of two transactions t and t′ such that t reads a value overwritten by t′, and STO is the

same-transaction relation, which relates events of the same transaction.

Definition 3.1 (Traces). Formally, the trace of an execution ρ satisfying transaction isolation is

tr(ρ) = (τ,PO,WR,WW,RW,STO) where τ is a summary of ρ, and
3We refer collectively to executions in [P]X with X ∈ {CCv, CM, wCC}.
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isu(p1, t1) del(p1, t1) isu(p2, t3) del(p2, t3) del(p1, t3) del(p2, t1) isu(p1, t2) del(p1, t2) del(p2, t2) isu(p2, t4)
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Figure 3.7: The trace of the execution in Figure 3.4b and its transactional happens-before.

PO: relates the issue and store events isu(p, t) and del(p, t) of t and subsequently, the event del(p, t)

with any issue event isu(p, t′) that occurs after it in τ .

WR: relates any store and issue events ev1 = del(p, t) and ev2 = isu(p, t′) that occur in this order

in τ such that t′ performs an external read of x, and ev1 is the last event in τ before ev2 such

that t writes x at p. To make the shared variable x explicit, we may use WR(x) to name the

relation between ev1 and ev2.

WW: relates events of two transactions that write to the same variable. More precisely, WW

relates any two store events ev1 = del(p, t1) and ev2 = del(p, t2) that occur in this order

in τ provided that t1 and t2 both write the same variable x, and if ρ is an execution under

causal convergence, then t1 and t2 writes x at p, and t1 < t2. To make the shared variable x

explicit, we may use WW(x) to name the relation between ev1 and ev2.

RW: relates events of two distinct transactions t and t′ such that t reads a value that is overwritten

by t′. Formally, RW(x) = WR−1(x); WW(x) and RW = ⋃
x∈V RW(x). If a transaction t reads

the initial value of x then RW(x) relates isu(p, t) with every event del(p′, t′) with p′ ∈ P of

any other transaction t′ that writes to x at p′.

STO: relates issue events with store events of the same transaction. More precisely, STO relates

every event isu(p, t) with every event del(p′, t) with p′ ∈ P.

The following result states an important property of the store order relation WW that is enforced

by the CCv semantics. It holds because the writes in different transactions are applied by different

processes in the same order given by their timestamps, when visible (delivered) to those processes.

Lemma 3.1. Let τ ∈ TrCCv(P) be a trace. If (del(p0, t0), del(p0, t1)) ∈ WW(x), then for every

process p, (del(p, t1), del(p, t0)) 6∈WW(x).

We define the happens-before relation HB as the transitive closure of the union of all the relations

in the trace, i.e., HB = (PO ∪WR ∪WW ∪ RW ∪ STO)+. Since we reason about only one trace at
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a time, we may say that a trace is simply a summary τ , keeping the relations implicit. The trace

of the CCv execution in Figure 3.4b is shown on the left of Figure 3.7. Tr(P)X denotes the set of

traces of executions of a program P under X ∈ {CCv, CM, wCC}.

For readability, we write ev1 →HB ev2 instead of (ev1, ev2) ∈ HB and ev1 and ev2 can be

either isu(p, t) or del(p, t). We use the notation ev1 →HB1 ev2 (resp., (ev1, ev2) ∈ HB1) to denote

(ev1, ev2) ∈ (PO ∪WW ∪WR ∪ STO ∪ RW).

The causal order CO of a trace tr = (τ,PO,WR,WW,RW, STO) is the transitive closure of

the union of the program order, write-read relation, and the same-transaction relation, i.e., CO =

(PO ∪WR ∪ STO)+. For readability, we write ev1 →CO ev2 instead of (ev1, ev2) ∈ CO.

Let t1 and t2 be two transactions issued in a trace tr that originate from two different processes

p1 and p2, respectively. If (isu(p1, t1), isu(p2, t2)) 6∈ CO and (isu(p2, t2), isu(p1, t1)) 6∈ CO, then t1 and

t2 are called concurrent transactions.

The happens-before relation between events is extended to transactions as follows: a transaction

t1 happens-before another transaction t2 6= t1 if the trace tr contains an event of transaction t1 which

happens-before an event of t2. The happens-before relation between transactions is denoted by HBt
and called ransactional happens-before (an example is given on the right of Figure 3.7). For a trace

of serializable execution, the transactional happens-before and the happens-before relation coincide.

Remark 3.1. The operational models of causal consistency we described are equivalent to the ax-

iomatic models defined in [52]. These axiomatic models are defined as a set of constraints on

abstractions of executions, called histories, that consist of a set of read and write operations along

with a program order, denoted by PO′, and a read-from relation, denoted by WR′: PO′ relates op-

erations in the same process and WR′ associates every read operation to the write operation which

wrote the read value. For instance, the axiomatic model of wCC requires that the union of PO′ and

WR′ (denoted CO′) is acyclic4, and its composition with a variation of the conflict relation, denoted

by RW′, ((a, b) ∈ RW′5 iff ∃ c. (c, b) ∈ CO′ ∧ (c, a) ∈ WR′) is irreflexive6. These models can be

extended easily to histories that contain transactions instead of operations by adapting the above

relations. Note that every program trace (cf. Definition 3.1) can be “projected” to a history where

issue and store events from the same transaction in the trace are mapped to a single transaction in

the history. Also, the read-from and the program order between trace events are mapped to the WR′

4This constraint corresponds to the absence of the CyclicCO bad pattern in [52].
5b is overwriting the value a is reading.
6This constraint corresponds to the absence of the WriteCORead bad pattern in [52].
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and PO′ of the history.

To show equivalence between these models, it is sufficient to show that (1) every history corre-

sponding to a trace in the operational model satisfies the constraints of the axiomatic model, and (2)

every history that is valid under the axiomatic model is the “projection” of a trace of the operational

model. For instance, for wCC, it is easy to see that the relation CO′ = PO′ ∪WR′ in a history that is

the projection of a trace τ ∈ TrwCC(P) is acyclic because the causal order CO in τ is. Also, the proof

that CO′; RW′ is irreflexive can be derived easily by contradiction (for instance, if (a, b) ∈ RW′ and

(b, a) ∈ CO′, then there exists c such that (c, b) ∈ CO′ which means that by causal delivery, a can

never read the value written by c).

3.4 Write-Write Race Freedom

We say that an execution ρ has a write-write race on a shared variable x if there exist two concurrent

transactions t1 and t2 that were issued in ρ and each transaction contains a write to the variable

x. We call ρ write-write race free if there is no variable x such that ρ has a write-write race on x.

Also, we say a program P is write-write race free under a consistency model X ∈ {CCv, CM, wCC} iff

for every ρ ∈ ExX(P), ρ is write-write race free.

We show that if a given program has a write-write race under one of the three causal consistency

models then it must have a write-write race under the remaining two. The intuition behind this is

that the three models coincide for programs without write-write races. Indeed, without concurrent

transactions that write to the same variable, every process local valuation of a shared variable will

be a singleton set under wCC and no process will ever discard a write when applying an incoming

transaction log under CCv.

Theorem 3.1. Given a program P and two consistency models X,Y ∈ {CCv, CM, wCC}, P has a

write-write race under X iff P has a write-write race under Y.

Proof. Since wCC is weaker than both CCv and CM, it is sufficient to prove the following two cases:

(1) if P has a write-write race under wCC, then P has a write-write race under CCv and (2) if P has

a write-write race under wCC, then P has a write-write race under CM.

We prove the first case by induction on the number of transactions in P. The second case can

be proved in a similar way.

Base case: P is constituted of two transactions t1 and t2. Assume that P has a write-write race

44



under wCC then the transactions t1 and t2 must originate from different processes. Thus, in any

trace τ of P under CCv where the transactions t1 and t2 are executed concurrently we will have a

write-write race between these two transactions. Thus, P has a write-write race under CCv.

Induction step: If n > 2 is the number of transactions in P, we assume that for any program

P ′ with n′ < n transactions, if P ′ has a write-write race under wCC, then P ′ has a write-write race

under CCv. Assume that P has a write-write race under wCC. Let τ be a trace of P under wCC

where we have a write-write race between two transactions t1 and t2 that were issued by processes

p1 and p2, respectively. Executing t1 and t2 concurrently while writing to a common variable is not

possible under CCv only if the writes were enabled by some events that occurred before t1 and t2
under wCC and are not possible under CCv. However, based on the semantic models of both wCC and

CCv, if all the transactions that write to common variables are causally related then such events

cannot occur under wCC but not CCv. Thus, we must have two other transactions t′1 and t′2 of P

that were executed concurrently in τ under wCC and occurred before t1 (or t2 or both) which write

to a common variable. Without loss of generality, let P1 be the program resulting from removing

the transaction t1 from P. We know that P1 admits a trace τ1 under wCC where the transactions

t′1 and t′2 are involved in a data race. Also, the size of P1 is n − 1 < n. Thus, from the induction

hypothesis we get that P1 has a write-write race under CCv. Because adding a new transaction to

P1 will not eliminate existing data races, P has a write-write race under CCv as well.

The following result shows that indeed, the three causal consistency models coincide for programs

which are write-write race free under any one of these three models.

Theorem 3.2. Let P be a program. Then, ExwCC(P) = ExCCv(P) = ExCM(P) iff P has no write-write

race under neither wCC, CM, and CCv.

Proof. Left-to-right direction: By Theorem 3.1, it is sufficient to prove that P has no write-write

race under CM. Suppose by contradiction that P has a write-write race under CM. Then, there

must exist a trace τ ∈ TrwCC(P) such that we have two concurrent transactions t1 and t2 that are

issued in τ and write to a variable x. Assume w.l.o.g that the issue event of t1 occurs before the

issue event of t2 in τ . Since t1 and t2 are concurrent in τ , the issue event of t1 and the store

events of t2 are commutative, and the issue event of t2 and the store events of t1 are commutative.

Then, τ ′ = α · isu(p1, t1) · del(p1, t1) · β · isu(p2, t2) · del(p2, t2) · del(p1, t2) · del(p2, t1) where α and
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β are sequences of events in τ that t1 and t2 causally depend on (since we are not interested

in other events)7, is a trace of P under CM. In τ ′, both store events del(p2, t1) and del(p1, t2) do

not discard any writes (guaranteed under CM). Therefore, (del(p1, t1), del(p1, t2)) ∈ WW(x) and

(del(p2, t2), del(p2, t1)) ∈WW(x) since both t1 and t2 write to x. However, it is impossible to obtain

τ ′ under CCv as we cannot have (del(p2, t2), del(p2, t1)) ∈WW(x) if (del(p1, t1), del(p1, t2)) ∈WW(x)

which leads to a contradiction (P has different sets of traces under CM and CCv).

Right-to-left direction: It is sufficient to prove the following two cases: if τ has no write-

write race under wCC then τ ∈ TrwCC implies τ ∈ TrCM and τ ∈ TrCCv (TrCCv(P) ⊆ TrwCC(P) and

TrCM(P) ⊆ TrwCC(P) hold by definition).

Let τ ∈ TrwCC be a trace under wCC. Then, τ satisfies transactions isolation and causal delivery. It

is important to notice that if τ has no write-write race then the contents of store at a given variable

will contain a single value at any time during τ . This implies that store can be simulated by a single

value memory which does not discard writes. Thus, we obtain a program semantics that is the same

as the one for CM. Thus, τ is also a trace of P under CM. To prove that τ ∈ TrCCv, we also need to

ensure that the transitive closure of store order in τ is acyclic which is enough to guarantee the

existence of a total arbitration between transactions which is ensured by CCv semantics. Suppose by

contradiction that the transitive closure of store order is cyclic then there must exist a sequence of

events ev1 · ev2 · . . . evn in τ such that (evi, evi+1) ∈WW, for all 1 ≤ i ≤ n−1 and (evn, ev1) ∈WW.

Since τ has no write-write races then (evi, evi+1) ∈WW implies that the issue events corresponding

to evi and evi+1 must be related by causal ordered (since the corresponding transactions must be

causally related to prevent concurrency which will lead to write-write races for transactions that

write to a common variable). For all i s.t. 1 ≤ i ≤ n− 1, let ev′i and ev′i+1 denote these issue events

then (ev′i, ev′i+1) ∈ CO which implies that the causal order CO is cyclic. This is a contradiction

since it is not possible under wCC. Thus, there exists a total order between transactions in τ that

includes both the causal order and the transitive closure of store order. Thus, τ is also a trace of P

under CCv.
7Note that other cases such as τ ′ = α · isu(p1, t1) · β · isu(p2, t2) · del(p2, t2) · del(p1, t2) · del(p1, t1) implies that

τ ′′ = α · isu(p1, t1) · del(p1, t1) · β · isu(p2, t2) · del(p2, t2) · del(p1, t2) · del(p2, t1) is a trace of P as well since all events in

β are not causally dependent on t1.
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Figure 3.8: Two executions of the same serializable trace.

3.5 Program Robustness

Let tr = (τ,PO,WR,WW,RW,STO) be a trace such that every event isu(p, t) in τ is immediately

followed by all del(p′, t) with p′ ∈ P. For simplicity, we write τ as a sequence of “atomic macro-

events” (p, t) where (p, t) denotes a sequence isu(p, t) · del(p, t) · del(p1, t) · . . . · del(pn, t) with P =

{p, p1, . . . , pn}. We say that t is atomic. Then, (τ,PO,WR,WW,RW) is a trace of a serializable

execution as defined in Section 2.3. In Figure 3.7, t3 is atomic and we can use (p2, t3) instead of

isu(p2, t3) · del(p2, t3) · del(p1, t3).

The following result characterizes traces of serializable executions, and follows from previous

works [25, 156] that considered a notion of history/trace that corresponds to our notion of trans-

actional happens-before. The transactional happens-before of any trace under SER is acyclic, and

conversely, any trace obtained under a weaker semantics X ∈ {CCv, CM, wCC} with an acyclic transac-

tional happens-before can be transformed into a trace under SER by successive swaps of consecutive

events in its summary, which are not related by happens-before (the happens-before relations re-

main the same). Indeed, note that multiple executions/traces can have the same (transactional)

happens-before (an example for traces is given in Figure 3.8). In particular, it is possible that a

trace tr produced by a variation of causal consistency has an acyclic transactional happens-before

even though isu(p, t) events are not immediately followed by the corresponding del(p′, t) events.

However, tr would be equivalent, up to reordering of consecutive summary events that are not

related by happens-before, to a trace serializable execution.

Theorem 3.3 ([25, 156]). For any trace tr ∈ TrSER(P), the transactional happens-before of tr is

acyclic. Moreover, for any trace tr = (τ,PO,WR,WW,RW,STO) ∈ TrX(P) with X ∈ {CCv, CM, wCC},

if the transactional happens-before of tr is acyclic, then there exists a permutation τ ′ of τ such that

(τ ′,PO,WR,WW,RW,STO) ∈ TrSER(P).

As a consequence of Theorem 3.3, we define a trace tr to be serializable if it has the same happens-

before relations as a trace of a serializable execution. Let TrSER(P) denote the set of serializable
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traces of a program P.

We now consider the problem of checking whether the causally-consistent semantics of a program

produces only serializable traces (it produces all serializable traces because every issue event can be

immediately followed by all the corresponding store events).

Definition 3.2. A program P is called robust against a semantics X ∈ {CCv, CM, wCC} relative to

serializability iff TrX(P) = TrSER(P).

A trace tr ∈ TrX(P) \ TrSER(P) is called a robustness violation (or violation, for short). By

Theorem 3.3, the transactional happens-before HBt of tr is cyclic.

3.6 Minimal Violations

We define a class of robustness violations called minimal violations. The particular shapes of these

violations, that we determine through a series of results in this section, §3.7, and §3.8, enables a

polynomial-time reduction of robustness checking to a reachability problem in a program running

under serializability.

For simplicity, we use “atomic macro-events” (p, t) even in traces obtained under causal con-

sistency (recall that this notation was introduced to simplify serializable traces), i.e., we assume

that any sequence of events formed of an issue isu(p, t) followed immediately by all the store events

del(p′, t) is replaced by (p, t). Then, all the relations that held between an event ev of such a sequence

and another event ev′, e.g., (ev, ev′) ∈ PO, are defined to hold as well between the corresponding

macro-event (p, t) and ev′, e.g, ((p, t), ev′) ∈ PO.

3.6.1 Happens-Before Through Relation

To decide if two events in a trace are “independent” (or commutative) we use the information about

the existence of a happens-before relation between the events. If two events are not related by

happens-before then they can be swapped while preserving the same happens-before. Thus, we

extend the happens-before relation to obtain the happens-before through relation as follows:

Definition 3.3. Let τ = α ·a ·β · b ·γ be a trace where a and b are events (or atomic macro events),

and α, β, and γ are sequences of events (or atomic macro events) under a semantics X ∈ {CCv, CM}.

We say that a happens-before b through β if there is a non empty sub-sequence c1 · · · cn of β that
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satisfies:

ci →HB1 ci+1 for all i ∈ [0, n]

where c0 = a, cn+1 = b.

The following result shows that any two events in a trace which are not related via the happens-

before through relation can be reordered without affecting the happens-before or they can be placed

one immediately after the other.

Lemma 3.2. Let τ be a trace of a program P under a semantics X ∈ {CCv, CM}, and a and b be

two events such that τ = α · a · β · b · γ. Then, one of the following holds:

1. a happens-before b through β;

2. τ ′ = α · β1 · a · b · β2 · γ ∈ TrX(P) where (a, b) ∈ HB1 has the same happens-before as τ ;

3. τ ′ = α · β1 · b · a · β2 · γ ∈ TrX(P) has the same happens-before as τ .

Proof. We prove that ¬(1)⇒ ((2) or (3)) using induction on the size of β.

Base case: If |β| = 0, then τ = α · a · b · γ, which implies that a does not happen-before b through

β (by definition, β cannot be empty). Thus, either a and b are HB1-related, which corresponds to

(2), or a and b are not HB1-related, which implies that b can move to the left of a producing the

trace τ ′ = α · b · a · γ that has the same happens-before as τ and that corresponds to (3).

Induction step: We assume that the lemma holds for |β| ≤ n. Consider τn+1 = α · a · β · b · γ with

|β| = n + 1. Consider c the last event in the sequence β = β1 · c. If a does not happen before b

through β, then either a does not happen before c through β1 and a and c are not HB1-related, or

c and b are not HB1-related.

First case: suppose that a does not happen before c through β1 and a and c are not HB1-

related. Using the induction hypothesis over τn+1 with respect to a and c (since |β1| ≤ n) results in

τ ′n+1 = α ·β11 · c ·a ·β12 · b ·γ that has the same happens-before as τn+1. We know that if a happens-

before b through β12 then a happens-before b through β because β12 is a subset of β. Therefore,

a does not happen-before b through β12. Since |β12| ≤ |β1| ≤ n, then we can apply the induction

hypothesis to τ ′n+1 with respect to a and b which yields either τ ′′n+1 = α·β11 ·c·β121 ·b·a·β122 ·γ which

has the same happens-before as τ ′n+1, if a and b are not HB1-related, or τ ′′n+1 = α·β11·c·β121·a·b·β122·γ

which has the same happens-before as τ ′n+1, otherwise.
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Second case: suppose c and b are not HB1-related. We apply the induction hypothesis to τn+1

with respect to c and b, and we get τ ′n+1 = α · a · β1 · b · c · γ with the same happens-before as τn+1.

As we already know that a does not happen before b through β then a does not happen before b

through β1. Subsequently by using the induction hypothesis over τ ′n+1 with respect to a and b, we

obtain τ ′′n+1 = α · β11 · b · a · β12 · c · γ where τ ′′n+1 has the same happens-before as τ ′n+1, if a and b

are not HB1-related, or τ ′′n+1 = α · β11 · a · b · β12 · c · γ where τ ′′n+1 has the same happens-before as

τ ′n+1, otherwise.

We show next that a robustness violation should contain at least an issue and a store event of

the same transaction that are separated by another event that occurs after the issue and before the

store and which is related to both via the happens-before relation. Otherwise, since any two events

which are not related by happens-before could be swapped in order to derive a trace with the same

happens-before, every store event could be swapped until it immediately follows the corresponding

issue and the trace would be serializable.

Lemma 3.3. Given a violation τ , there must exist a transaction t such that τ = α · isu(p, t) · β ·

del(p0, t) · γ and isu(p, t) happens-before del(p0, t) through β.

Proof. Assume by contradiction that the lemma does not hold. For every transaction t of τ suppose

there exist p′ ∈ P such that del(p′, t) does not occur immediately after isu(p, t). Thus, τ = α ·

isu(p, t) · β · del(p′, t) · γ, and (isu(p, t), del(p′, t)) ∈ STO ⊂ HB1. From Lemma 3.2, τ ′ = α · β1 ·

isu(p, t) · del(p′, t) · β2 · γ has the same happens-before as τ (since isu(p, t) does not happens-before

del(p′, t) through β). Then, the trace τ∗ where for every transaction t of τ the store events occur

immediately after the issue event has the same happens-before as τ . Thus, τ∗ is serializable which

means that its HBt is acyclic which contradicts the fact that τ is a violation.

The transaction t in the trace τ above is called a delayed transaction. The happens-before con-

straints imply that t belongs to a transactional happens-before cycle in the trace. In the remainder

of the chapter, when given a violation τ = α · isu(p, t) · β · del(p0, t) · γ, we assume that t is the first

delayed transaction in τ .

3.6.2 Minimal Violations

Given a trace τ = α ·b ·β ·c ·ω containing two events b = isu(p, t) and c, the distance between b and c,

denoted by dτ (b, c), is the number of events in β that are causally related to b, excluding events that
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correspond to the delivery of t, i.e., dτ (b, c) = |{d ∈ β | (b, d) ∈ CO ∧ d 6= del(p′, t) for every p′ ∈ P}|

The number of delays #(τ) in a trace τ is the sum of all distances between issue and store events

that originate from the same transaction:

#(τ) =
∑

isu(p,t), del(p′,t) ∈ τ

dτ (isu(p, t), del(p′, t))

Definition 3.4 (Minimal violation). A robustness violation τ is called minimal if it has the

least number of delays among all robustness violations (for a given program P and semantics

X ∈ {wCC, CCv, CM}).

Remark 3.2. It is important to note that a non-robust program can admit multiple minimal vi-

olations with different happens-before relations. For instance, Figure 3.9 pictures two minimal

violations that do not have the same happens-before and both traces have 0 delays. In the trace

in Figure 3.9b a single transaction is delayed while in the trace in Figure 3.9c two transactions

are delayed and are not causally related. For the trace τ1 in Figure 3.9b, we have that #(τ1) =

dτ1(isu(p2, t2), del(p2, t2)) + dτ1(isu(p2, t2), del(p3, t2)) = 0. For the trace τ2 in Figure 3.9c, we have

that #(τ2) = dτ2(isu(p1, t1), del(p1, t1))+dτ2(isu(p1, t1), del(p3, t1))+dτ2(isu(p2, t2), del(p3, t2)) = 0.

Hence, the number of delays for both cases is 0.

p1:

t1: [x = 1

r1 = y]

||
p2:

t2: [y = 2

r2 = z]

||

p3:

t3: [z = 3

r3 = x

r4 = y]

(a) A program.

isu(p2, t2) del(p2, t2) (p3, t3) del(p3, t2) (p1, t1)
RW

RW

RW

STO

(b) A minimal violation of (a).

isu(p1, t1) del(p1, t1) isu(p2, t2) del(p2, t2) del(p1, t2) (p3, t3) del(p3, t2) del(p3, t1)

STO

RW

STO

RW

RW

RW

(c) Another minimal violation of (a).

Figure 3.9: Example of two minimal violation traces that do not have the same happens-before

relation (possible under both CCv and CM). Both traces have the same number of delays which is

equal to 0. The minimal violation in (b) contains a single delayed transaction (t2), and the minimal

violation in (c) contains two delayed transactions (t1 and t2). For readability, we do not show all

PO and STO transitions.
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Given a minimal violation τ = α · isu(p, t) · β · del(p0, t) · γ, the following lemma shows that we

can assume w.l.o.g. that γ contains only store events from transactions that were issued before

del(p0, t) in τ .

Lemma 3.4. Let τ = α · isu(p, t) ·β · del(p0, t) · γ be a minimal violation such that isu(p, t) happens-

before del(p0, t) through β. Then, τ ′ = α · isu(p, t) · β · del(p0, t) · γ′, such that γ′ contains only store

events from transactions that were issued before del(p0, t) in τ , is also a minimal violation.

Proof. The prefix α · isu(p, t) ·β ·del(p0, t) has a cyclic transactional happens-before and it is already

a minimal violation independently of whether γ contains additional transactions.

The following result shows that for every minimal violation, we can extract another minimal

violation of the shape τ = α · isu(p, t) · β · (p′, t′) · del(p′, t) · γ such that (isu(p, t), (p′, t′)) ∈ HB, and

((p′, t′), del(p′, t)) ∈ HB1.

Lemma 3.5. If P is a program that is not robust against some X ∈ {CCv, CM, wCC}, then its set

of traces under the semantics X must admit a minimal violation of the shape τ = α · isu(p, t) · β ·

(p′, t′) · del(p′, t) · γ such that (isu(p, t), (p′, t′)) ∈ HB and ((p′, t′), del(p′, t)) ∈ HB1.

Proof. Let τ = α · isu(p, t) · β · del(p0, t) · γ be a minimal violation of P, such that isu(p, t) happens-

before del(p0, t) through β. By Lemma 3.4, we assume that γ contains only store events. We prove

by induction on the size of β that P admits another minimal violation against X of the form τ ′ =

α′ ·isu(p1, t1)·β′ ·(p2, t2)·del(p2, t1)·γ′ such that (isu(p1, t1), (p2, t2)) ∈ HB, ((p2, t2), del(p2, t1)) ∈ HB1,

and τ ′ is a permutation of a subsequence of τ .

Note that isu(p, t) happens-before del(p0, t) through β implies that there exists a sub-sequence

c1 · · · cn of β that satisfies: ci →HB1 ci+1 for all i ∈ [0, n] where c0 = isu(p, t), cn+1 = del(p0, t).

Then, we have three possibilities for cn: (p′, t′), isu(p′, t′), or del(p0, t
′).

Base case: |β| = 1 implies that β = cn. If cn = (p′, t′) then τ is a minimal violation s.t.

isu(p, t) →HB (p′, t′) and (p′, t′) →HB1 del(p0, t). If cn = isu(p′, t′) then we regroup together the

issue event isu(p′, t′) with its store events obtaining τ ′ = α · isu(p, t) · (p′, t′) · del(p0, t) · γ′ to be

a minimal violation as well (since the transactional happens-before of the trace resulting from

reordering store events in del(p0, t) · γ′ will always be cyclic). Since (p′, t′) →HB1 del(p0, t) implies

that (p′, t′) →HB1 del(p′, t) ∈ γ, then τ ′′ = α · isu(p, t) · (p′, t′) · del(p′, t) · γ′′, where the two store

events del(p′, t) and del(p′, t) are reordered, is a minimal violation. cn = del(p0, t
′) is not possible

since t is the first delayed transaction in τ .

52



Induction step: We assume that the induction hypothesis holds for |β| ≤ m. The case cn =

(p′, t′) is trivial. If cn = isu(p′, t′) then removing the issue events that occur after cn will not

impact the happens-before. Thus, we remove every issue and atomic marco event that occurs after

isu(p′, t′) with all their store events and regroup together the event isu(p′, t′) with its store events

obtaining τ ′ = α · isu(p, t) · β′ · (p′, t′) · del(p0, t) · γ′ to be a minimal violation. Similar to before,

τ ′′ = α · isu(p, t) · β′ · (p′, t′) · del(p′, t) · γ′′ is a minimal violation.

If cn = del(p0, t
′), then the corresponding issue event isu(p′, t′) must occur in β (α contains

only atomic macro events because t is the first delayed transaction). If isu(p′, t′) does not happen

before del(p0, t
′) (or any store event of t′ in β · del(p0, t) · γ) through a subsequence of β (resp.,

β · del(p0, t) · γ) then we can regroup together the issue and store events of t′ and get that τ ′ =

α · isu(p, t) ·β′ · (p′, t′) ·β′′ ·del(p0, t) ·γ′ is a minimal violation. Otherwise, if isu(p′, t′) happens-before

del(p0, t
′) through a subsequence of β, then τ can be written as τ = α · isu(p, t) · β1 · isu(p′, t′) · β2 ·

del(p0, t
′) · β3 · del(p0, t) · γ. Note that if there exists an issue event isu(p1, t1) in β1 · isu(p′, t′) · β2 s.t.

(isu(p1, t1), del(p0, t)) ∈ RW (or (isu(p1, t1), del(p1, t)) ∈ RW) then similar to before the following

trace τ ′ = α·isu(p, t)·β′·(p1, t1)·del(p0, t)·γ′ (resp., τ ′ = α·isu(p, t)·β′·(p1, t1)·del(p1, t)·γ′) is a minimal

violation. Assume now that there does not exist an issue event isu(p1, t1). Then, let isu(p2, t2) be

the first issue event in isu(p, t) · β1 · isu(p′, t′) s.t. τ = α · isu(p, t) · β′1 · isu(p2, t2) · β′2 · del(p3, t2) · β′3 · γ

and isu(p2, t2) happens-before del(p3, t2) through β′2 and s.t. for every issue event in isu(p, t) · β′1 of

a transaction t4 there does not exist an event in β′1 · isu(p2, t2) ·β′2 that reads from a variable that t4
overwrites. We can remove every issue event and atomic marco event which occur after del(p3, t2)

with all related stores: τ ′ = α · isu(p, t) ·β′1 · isu(p2, t2) ·β′2 ·del(p3, t2) ·γ′ where γ′ contains only store

events is a minimal violation. Then, not delaying the transactions in isu(p, t) ·β′1 does not affect the

reads in β′1 · isu(p2, t2) · β′2, and thus, we get that τ ′′ = α · (p, t) · β′′1 · isu(p2, t2) · β′′2 · del(p3, t2) · γ′′,

where t2 is the first delayed transaction in τ ′′ and isu(p2, t2) happens-before del(p3, t2) through β′′2 ,

is a minimal violation. Note that |β′′2 | < |β| = m+ 1, and we can apply the induction hypothesis to

τ ′′ and conclude the proof.

Next, we show that a program which is not robust against CCv or CM admits violations of

particular shapes. For the remainder of the chapter, we write a minimal violation in the shape

τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS to say that all the events in the sequence αA are atomic

macro events and all the events in the sequence γS are store events. As before, we assume that t is

the first delayed transaction in τ , and by Lemma 3.5, we assume that (isu(p, t), (p′, t′)) ∈ HB and
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τCCv1:
αA isu(p, t)
◦

del(p, t)
◦ β (p′, t′)

◦
del(p′, t)
◦ γS

HB \ CO
∀ CO

∀

WW(y)
RW(y)

τCCv2:
αA isu(p, t)|¬x◦ β1|¬x isu(p1, t1)◦ β2

(p′, t′)
◦

del(p′, t)
◦ γS

HB \ CO
∀

CO RW(x) ∪ (STO; WW(x))
∃

HB
∀

RW(y 6= x)

Figure 3.10: Robustness violation patterns under CCv. We use a R−−−→∀ β to denote ∀ b ∈ β. (a, b) ∈

R. We use β1|¬x to say that all delayed transactions in β1 do not access x. For violation τCCv1, t is

the only delayed transaction. For τCCv2, all delayed transactions are in isu(p, t) · β1 · isu(p1, t1) and

they form a causality chain that starts at isu(p, t) and ends at isu(p1, t1).

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)
WW

RW

(a) Violation of LU program in Figure 3.2a.

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)

RW RW

(b) Violation of SB program in Figure 3.2b.

Figure 3.11: (a) A τCCv1 violation where β2 = ε, γS = ε, and t and t′ correspond to t1 and t2. (b) A

τCCv2 (resp., τCM2) violation where t and t1 coincide and correspond to t1. Also, β1 = ε, β2 = (p2, t2),

γS = ε, such that (isu(p1, t1), (p2, t2)) ∈ RW(y) and ((p2, t2), del(p2, t1)) ∈ RW(x). In all traces, we

show only the relations that are part of the happens-before cycle.

((p′, t′), del(p′, t)) ∈ HB1.

3.7 Robustness Violations Under Causal Convergence

In this section, we present a precise characterization of minimal violations under CCv. In particular,

we show that in these violations, the first delayed transaction (which must exist by Lemma 3.3) is

followed by a possibly-empty sequence of delayed transactions that form a “causality chain”, i.e.,

the issue of every new delayed transaction is causally ordered after the issue of the first delayed

transaction. Also, we show that the issue event of the last delayed transaction happens-before an

event of another transaction that reads a variable updated by the first delayed transaction (which

implies a cycle in the transactional happens-before). This characterization will allow us to build a

monitor for detecting the existence of robustness violations that is linear in the size of the input

program.
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Next, we give a precise definition of the “causality chain”. It consists of a sequence of issue

events such that the first issue is causally ordered before every other issue event and every issued

transaction is delivered to the process executing the next issue event in the chain, before this issue

event executes.

Definition 3.5. We say that a sequence of issue events ev1 · ev2 · . . . evn forms a causality chain

that starts with ev1 and ends at evn in a trace τ if the followings hold:

1. (ev1, evi) ∈ CO, for all 2 ≤ i ≤ n

2. for all 1 ≤ i ≤ n − 1 such that evi = isu(pi, ti), evi+1 = isu(pi+1, ti+1), the store event

del(pi+1, ti) occurs before the issue event evi+1 in τ .

The characterization of robustness violations under CCv is stated in the following theorem and

pictured in Figure 3.10.

Theorem 3.4. A program P is not robust under CCv iff there exists a minimal violation in Tr(P)CCv

of one of the following forms:

1. τCCv1 = αA · isu(p, t) · del(p, t) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p, t) is the issue of the first and only delayed transaction (Lemma 3.6);

(b) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈ RW(y) (Lemma 3.6);

(c) ∀ a ∈ β2. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO (Lemma 3.6).

2. τCCv2 = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p, t) and isu(p1, t1) are the issues of the first and last delayed transactions (Lemmas

3.6 and 3.7);

(b) the issues of all delayed transactions are in β1 and are included in a causality chain that

starts with isu(p, t) and ends at isu(p1, t1) (Lemma 3.7);

(c) for every a ∈ β2, we have that (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB (Lemma

3.6);

(d) there exist a ∈ β2 · (p′, t′), x, and y s.t. x 6= y, (isu(p1, t1), a) ∈ RW(x) ∪ (STO; WW(x)),

(a, (p′, t′)) ∈ HB?8, and ((p′, t′), del(p′, t)) ∈ RW(y) (Lemma 3.6);
8HB? is the reflexive closure of HB.
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(e) all delayed transactions in isu(p, t) · β1 do not access the variable x (Lemma 3.9).

Above, τCCv1 contains a single delayed transaction while τCCv2 may contain arbitrarily many

delayed transactions. In τCCv1 the store event del(p, t) of the only delayed transaction happens

before (p′, t′) which is conflicting with t, thus resulting in a cycle in the transactional happens-

before. In τCCv2 the issue event of the last delayed transaction t1, which is causally ordered after

the issue of the first delayed transaction t, happens before (p′, t′) which is conflicting with t, thus

resulting in a cycle in the transactional happens-before as well. The theorem above allows αA = ε,

β1 = ε, β2 = ε, β = ε, γS = ε, p = p1, t = t1, and t1 to be a read-only transaction. Figure 3.11a

and Figure 3.11b show two violations under CCv where such equalities hold. If t1 is a read-only

transaction then isu(p1, t
′) has the same effect as (p1, t1) since t1 does not contain writes.

The minimality of the violation enforces the constraints stated above. For example, in the

context of τCCv2, the delayed transactions in β1 cannot create a cycle in the transactional happens-

before (otherwise, there exists a sequence of store events γ′S such that αA · isu(p, t) · del(p, t) · β1 ·

del(p0, t) · γ′S is a violation with a smaller measure, which contradicts minimality). Moreover, (c)

implies that β2 contains no stores of delayed transactions from β1. If this were the case, then

these stores can either be reordered after del(p′, t) or if this is not possible due to happens-before

constraints, then there would exist an issue event which is after such a store in the happens-before

order and thus causally after isu(p, t), which would contradict the fact that isu(p1, t1) is the last

issue event in τ that is causally ordered after isu(p, t). Also, if it were to have a delayed transaction

t2 in β2 (resp., β for τCCv1), then it is possible to remove some transaction (the issue and all its

store events) from the original trace and obtain a new violation trace with a smaller number of

delays. For instance, in the case of β2, if t1 6= t, then we can remove the events of the last delayed

transaction (i.e., t1), that is causally related to isu(p, t), since all events in β2 · del(p0, t) · γS neither

read from the writes of t1 nor are issued by the same process as t1 (because of the HB \CO relation

between events β2 and isu(p1, t1)). The resulting trace is still a robustness violation (because of the

transactional happens-before cycle involving t2 since it is delayed in β2) but with a smaller measure.

Note that all processes that delayed transactions, stop executing new transactions in β2 (resp., β)

because of the relation HB \ CO, shown in Figure 3.10, between the delayed transaction t1 (resp.,

t) and events in β2 (resp., β).

In the following we give a series of lemmas that collectively imply Theorem 3.4. Next lemma gives

the decomposition of minimal violations under CCv into two possible patterns. It also characterizes
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the nature of the happens-before dependencies in these traces. For instance, we show that the last

dependency in the happens-before cycle is always a conflict dependency. The lemma proof starts

with a minimal violation as characterized in Lemma 3.5 and uses induction to show that we can

always obtain a minimal violation which follows one of the two patterns. The induction is based

on the size of the sequence of events between the issue and delayed store events of the first delayed

transaction (the sequence β in Lemma 3.5).

Lemma 3.6. If P is a program that is not robust under CCv, then it must admit a minimal violation

τ that satisfies one of the following:

1. τ = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γS where:

(a) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈ RW(y);

(b) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO.

2. τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p1, t1) is the last issue event in {c ∈ β | (isu(p, t), c) ∈ CO};

(b) ∃ x, y, and a ∈ β2·(p′, t′) s.t. (isu(p1, t1), a) ∈ RW(x)∪(STO; WW(x)), (a, (p′, t′)) ∈ HB?,

and ((p′, t′), del(p′, t)) ∈ RW(y);

(c) ∀ a ∈ β2. (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB.

Proof. Let τ = αA · isu(p, t)·β ·(p′, t′)·del(p′, t)·γS be a minimal violation under CCv (cf. Lemma 3.5).

We prove by induction on the size of β that there exists a minimal violation trace τ ′ that satisfies (1)

or (2) and τ ′ is obtained from τ . By the definition of the happens-before ((p′, t′), del(p′, t)) ∈ HB1

implies that ((p′, t′), del(p′, t)) ∈ RW∪WW. Since t′ was issued after t in τ , then based on the total

order of timestamps under CCv, we cannot have ((p′, t′), del(p′, t)) ∈WW. Then, there must exist y

s.t. ((p′, t′), del(p′, t)) ∈ RW(y).

Base case: |β| = 0. Since (isu(p, t), (p′, t′)) ∈ HB then from the definition of the happens-before the

only possible relation is (isu(p, t), (p′, t′)) ∈ RW. Thus, there must exist x s.t. (isu(p, t), (p′, t′)) ∈

RW(x). If x = y then both t and t′ write to x. Thus, by reordering the store event del(p, t) ∈ γS to

occur just after the corresponding issue event we get τ ′ = αA · isu(p, t) · del(p, t) · (p′, t′) · del(p′, t) · γ′S
is also a minimal violation where (del(p, t), (p′, t′)) ∈ WW(x) (since t was issued before t′ and both

write to x) and ((p′, t′), del(p′, t)) ∈ RW(x). τ ′ satisfies the first case of the lemma. If x 6= y then

τ = αA · isu(p, t) ·(p′, t′) ·del(p′, t) ·γS where there exist x and y s.t. x 6= y, (isu(p, t), (p′, t′)) ∈ RW(x),
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and ((p′, t′), del(p′, t)) ∈ RW(y) satisfies the second case of the lemma where t and t1 coincide and

a corresponds to (p′, t′).

Induction step: We assume the induction hypothesis holds for |β| ≤ m. Let σ = {c ∈ β | (isu(p, t), c) ∈

CO}, we will consider the following three possible cases:

First, assume that σ is empty. Since (isu(p, t), (p′, t′)) ∈ HB then there must exist a ∈ β·(p′, t′) s.t.

(isu(p, t), a) ∈ HB1 and (a, (p′, t′)) ∈ HB?. σ is empty implies that β does not contain events that are

related to isu(p, t) through CO (which includes PO∪WR∪STO), therefore, (isu(p, t), a) ∈WW∪RW.

It is impossible to have (isu(p, t), a) ∈WW since isu(p, t) does not contain writes. Thus, there must

exist x s.t. (isu(p, t), a) ∈ RW(x). If x = y then both the transaction of the event a, denoted t2,

and t write to x. We consider the two cases of (a, (p′, t′)) ∈ HB?: i) a = (p′, t′) (i.e., t2 = t′), and ii)

(a, (p′, t′)) ∈ HB. Assume a = (p′, t′) then by reordering the store event del(p, t) ∈ τ to occur just

after the corresponding issue event (since the events in β are not causally related to isu(p, t)) we get

τ ′ = αA · isu(p, t) ·del(p, t) ·β ·(p′, t′) ·del(p′, t) ·γ′S is also a minimal violation where (del(p, t), (p′, t′)) ∈

WW(x) (since t was issued before t′ and both write to x) and ((p′, t′), del(p′, t)) ∈ RW(x). In τ ′ we

remove all events in β that are not causally ordered before (p′, t′) since they do not contribute to

the happens-before cycle. We obtain a new violation trace that satisfies the first case of the lemma.

Assume now that (a, (p′, t′)) ∈ HB. This implies that isu(p2, t2) ∈ β happens-before (p′, t′) (since a is

an event t2). Since both t2 and t write to x and t occurs before t2 in τ then from the definition of store

and conflict relations ((p′, t′), del(p′, t)) ∈ RW(x) implies that ((p′, t′), del(p′, t2)) ∈ RW(x). Also,

since in β we do not have events that are causally related to isu(p, t) then let τ ′ be the trace resulting

from removing all events of t in τ : τ ′ = αA·isu(p2, t2)·β′·(p′, t′)·del(p′, t2)·γ′S where τ ′ is a subsequence

of τ and β′ is a subsequence of β. τ ′ is a minimal violation as well since it was obtained from τ by

just removing events and (isu(p2, t2), (p′, t′)) ∈ HB and ((p′, t′), del(p′, t2)) ∈ RW(x). Since |β′| ≤ m

then we can apply the induction hypothesis on τ ′. If x 6= y we get that in τ , (isu(p, t), a) ∈ RW(x)

and ((p′, t′), del(p′, t)) ∈ RW(y) which satisfies the second case of the lemma.

Second, assume that σ is not empty and all the elements of σ are store events. Since t is

the first delayed transaction in τ then all stores in σ are stores of t. Then, following the same

analogy as before there must exist x and an event a ∈ β · (p′, t′) that is not a store event of t s.t.

(isu(p, t), a) ∈ (STO; WW(x))∪RW(x) and (a, (p′, t′)) ∈ HB?. Similar to before we consider the two

cases x = y and x 6= y and apply the induction hypothesis in the first case.

Third, assume that σ is not empty and isu(p1, t1) is the last issue event in σ, i.e., β = β1 ·
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isu(p1, t1) ·β2 where all the events in β2 are either stores of transactions that are causally related to

isu(p, t) (we can reorder these stores to be part of γS except the store del(p1, t1)) or other events that

are not causally related to isu(p, t). We also have that isu(p, t) is causally ordered before isu(p1, t1).

Since (isu(p, t), (p′, t′)) ∈ HB then (isu(p1, t1), (p′, t′)) ∈ HB, otherwise, we remove isu(p1, t1) and all

related store events from τ and the resulting trace is still a violation and it has less delays since

isu(p, t) was not delayed after isu(p1, t1) in the trace. Thus, (isu(p1, t1), (p′, t′)) ∈ HB. Similar to

before we obtain that there exist x and an event a ∈ β2 · (p′, t′) that is not a store event of t1 s.t.

(isu(p1, t1), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB?. If x = y then both the transaction

of the event a, denoted t2, and t write to x. Thus, (isu(p, t), a) ∈ STO; WW(x). Then, since the

events in β2 · (p′, t′) do not causally depend on isu(p1, t1) then we can remove the events of t1 and

obtain τ ′ where (isu(p, t), a) ∈ STO; WW(x), (a, (p′, t′)) ∈ HB?, and ((p′, t′), del(p′, t)) ∈ RW(y)

where t was not delayed after isu(p1, t1) in the trace, which means that τ ′ has less delays than τ (a

contradiction to τ being a minimal violation). Therefore, we must have x 6= y s.t. (isu(p1, t1), a) ∈

(STO; WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB? and ((p′, t′), del(p′, t)) ∈ RW(y) which satisfies the

second case of the lemma.

We use Tccv1 and Tccv2 to denote the class of minimal violations that satisfy the first and

second case in Lemma 3.6, respectively. The following lemma shows that we can always obtain a

minimal violation trace in either Tccv1 or Tccv2 where β and β2 contain no delayed transactions,

respectively. We distinguish two cases in the proof: i) a minimal violation in Tccv2 where t and t1
are distinct transactions, and ii) a minimal violation in Tccv1 or in Tccv2 where t and t1 coincide.

In the first case, we show that if it were to have a delayed transaction in β2, then it is possible

to remove some transaction from τ that is causally dependent on the first delayed transaction in

τ , and obtain a new violation with a smaller number of delays (which contradicts the minimality

assumption). The second case is proved by induction on the size of β (note that if t and t1 coincide,

then β = β2) where the base case is trivial (i.e., β = ε), and in the induction step, we show that if

it were to have a delayed transaction in β then we can remove one of the delayed transactions in

the trace and obtain another violation with the same number of delays as the original violation and

for which we can apply the induction hypothesis.

Lemma 3.7. Let τ be a minimal violation in Tccv1 or Tccv2. Then, there exist a violation τ1 in

Tccv1 where β contains no delayed transactions or a violation τ2 in Tccv2 where β2 contains no
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delayed transactions.

Proof. We consider two cases: i) τ in Tccv2 where t1 and t are two distinct transactions, ii) τ in

Tccv1 or τ in Tccv2 where t1 and t coincide. We prove the first case by contradiction and the second

case by induction on the size β (we abused terminology here and considered β2 = β since β1 = ε in

the second case).

First case: let τ = αA ·isu(p, t)·β1 ·isu(p1, t1)·β2 ·(p′, t′)·del(p′, t)·γS and suppose by contradiction

that β2 contains a delayed transaction t0 issued by a process q 6= p. W.l.o.g., we assume that

the delayed store events of t0 occur in β2. Thus, β2 = β21 · isu(q, t0) · β22 · del(q′, t0) · β23 and

τ = αA · isu(p, t) · β1 · isu(p1, t1) · β21 · isu(q, t0) · β22 · del(q′, t0) · β23 · (p′, t′) · del(p′, t) · γS. In τ ,

isu(q, t0) happens-before del(q′, t0) through β22. Hence, we deduce that we can get a robustness

violation when the event del(q′, t0) is executed, thus we can remove all issued transactions from

β23 · (p′, t′) except stores of already issued transactions and we obtain: τ ′ = αA · isu(p, t) · β1 ·

isu(p1, t1) · β21 · isu(q, t0) · β22 · del(q′, t0) · β′23 · del(p′, t) · γS which is a minimal violation because

isu(q, t0) happens-before del(q′, t0) through β22 and its number of delays is less or equal to the one

of τ . We know that in β21 · isu(q, t0) · β22 · del(q′, t0) · β′23 · del(p′, t) · γS there are no transactions

from the process p1 or that see the effect of transactions from p1 (because of the HB \ CO relation

between events β2 and isu(p1, t1)). Therefore, isu(p1, t1) is the last issued transaction from p1 and

we do not have any transaction in τ ′ that depends on it. Thus, we can remove isu(p1, t1) and we

obtain the following trace: τ ′′ = αA · isu(p, t) ·β1 ·β21 · isu(q, t0) ·β22 ·del(q′, t0) ·β′23 ·del(p′, t) ·γ′S, which

is a robustness violation because isu(q, t0) happens-before del(q′, t0) through β22. τ ′′ has less delays

than τ ′ (del(p′, t) was not delayed after isu(p1, t1) which was removed), which is a contradiction to

the fact that τ is a minimal violation.

Second case: let τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS. We show by induction that we can

construct either τ1 in Tccv1 where β of τ1 contains no delayed transactions or τ2 in Tccv2 where β2

of τ2 contains no delayed transactions.

Base case: |β| = 0 is trivial.

Induction step: We assume that the induction hypothesis holds for |β| ≤ m. Let t0 be the first

delayed transaction in β. Similar to before, we assume w.l.o.g. that the delayed store events of t0
occurs in β. Thus, β = β01 · isu(q, t0) · β02 · del(q′, t0) · β03 and τ = αA · isu(p, t) · β01 · isu(q, t0) · β02 ·

del(q′, t0) ·β03 · (p′, t′) · del(p′, t) · γS where isu(q, t0) happens-before del(q′, t0) through β02. Using the

same arguments as before, we can remove the event isu(p, t), its related stores in τ , and all issued
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transactions in β03 · (p′, t′). We obtain: τ ′ = α′A · isu(q, t0) ·β02 ·del(q′, t0) ·γ′S where α′A = αA ·β01 and

isu(q, t0) happens-before del(q′, t0) through β02. τ ′ is a robustness violation, and it has the same

number of delays as τ . We now consider two possible case of τ ′: i) τ ′ is in Tccv2 where t0 and

t01, the last delayed transaction causally dependent on isu(q, t0) in τ ′, are two distinct transactions,

or ii) τ in Tccv1 or τ in Tccv2 where t0 and t01 coincide. From the first part of the proof, it is

guaranteed that in the first case there are no delayed transactions after t01. For the second case,

we use the induction hypothesis since |β02| ≤ m (β02 is a strict subsequence of β).

We have now showed all the necessary characterizations for minimal violations that fall under

the first pattern (i.e., Tccv1). In the rest of this section, we focus on minimal violations that fall

under the second pattern (i.e., Tccv2). In particular, we look at minimal violations in Tccv2 where t

and t1 are distinct transactions. In the following lemma, we show that for these minimal violations

the issue events of delayed transactions in isu(p, t) · β1 · isu(p1, t1) constitute a causality chain. Our

proof can be decomposed to two parts. In the first part, we show that we cannot have an issue event

of a delayed transaction in β1 · isu(p1, t1) that is not causally dependent on isu(p, t). We prove this

by showing that if this were possible then we can remove a transaction that is causally dependent

on one of the two delayed transactions and obtain a new violation trace with less delays than the

original violation (which contradicts the minimality assumption). For the second part, we show

that for a given minimal violation, we can construct a happens-before equivalent trace where for

every two successive issue events of delayed transactions in isu(p, t) · β1 · isu(p1, t1), the transaction

in the first issue is delivered to the process executing the second issue before this event happens.

Lemma 3.8. Let τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS be a minimal violation

in Tccv2 s.t t 6= t1 and β2 contains no delayed transactions (cf. Lemma 3.7). Then, there exists a

violation τ ′ = αA · isu(p, t) · β′1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γ′S obtained from τ where β′1 · γ′S is

a subsequence of β1 · γS and the sequence of issue events of delayed transactions forms a causality

chain that starts with isu(p, t) and ends at isu(p1, t1).

Proof. First, we show that we can obtain a violation τ ′ from τ where all delayed transactions

in β′1 · isu(p1, t1) are causally dependent on isu(p, t). From the definition of t1 in Lemma 3.6, we

already have that (isu(p, t), isu(p1, t1)) ∈ CO. In the proof, we assume w.l.o.g that in β1 ·isu(p1, t1)·β2

there is no event a that reads a value that t overwrites, otherwise, we can shortcut the trace by

removing (p′, t′) and instead using the conflict relation between a and a store event of t to build the
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transactional happens-before cycle. Now, assume that β1 contains a delayed transaction t0 from

another process q 6= p that is not causally dependent on isu(p, t). We show that we either can obtain

a contradiction or we can remove all events of t0 and obtain a new violation trace τ ′ that has the

same number of delays as τ . We have three possible cases based on whether the delayed store event

del(q′, t0) of t0 occurs in β1, β2 or γS. Hence, we get that τ can be one of the following:

(a) τ = αA · isu(p, t) · β11 · isu(q, t0) · β12 · del(q′, t0) · β13 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS

(b) τ = αA · isu(p, t) · β11 · isu(q, t0) · β12 · isu(p1, t1) · β21 · del(q′, t0) · β22 · (p′, t′) · del(p′, t) · γS

(c) τ = αA · isu(p, t) · β11 · isu(q, t0) · β12 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γ1
S · del(q′, t0) · γ2

S

In case (a) (resp., (b)) we can notice that since isu(q, t0) happens-before del(q′, t0) through β12 (resp.,

β12 · isu(p1, t1) · β21) then after executing del(q′, t0) we obtain a cycle in the transactional happens-

before. Thus, we can remove (p′, t′) from both traces and still obtain a robustness violation. Let τ ′

be the resulting trace. τ ′ has the same number of delays as τ . In τ ′, we do not have events that read

values that t overwrites. Therefore, we do not need to delay the transaction t to ensure that that

the trace is a violation. Let τ ′′ be the resulting trace where the transaction t executes atomically.

In τ ′′, the transaction t was not delayed after the issue event of t1 which means that τ ′′ has less

delays than τ . This contradicts the fact that τ is a minimal violation.

Case (c): we assume that del(q′, t0) happens-before after (p′, t′), otherwise, we can reorder it

before (p′, t′) and get case (b). Since γ1
S contains only store events, then by the happens-before

definition, del(q′, t0) must be a store event executed by p′ which means that q′ = p′. Let e1 and e2

be the read/write actions t′ that are the source of the conflict between (p′, t′) and del(p′, t) and the

happens-before between (p′, t′) and del(p′, t0), respectively. Similar to before we assume w.l.o.g that

there is no event in β12 ·isu(p1, t1)·β2 that reads a value that t0 overwrites. We consider the two cases:

i) e2 occurs before e1 in t′ or the two coincide, and ii) e1 occurs before e2 in t′. In the first case we

can obtain a new violation where we do not delay the transaction t which will not affect the action

e2 that is the source of the happens-before between (p′, t′) and del(p′, t0) (since e1 occurs after e2

then it cannot disable it). The new trace τ ′ is a violation since the store event del(p′, t0) is delayed.

Also, since the store event del(p′, t) of t was not delayed after isu(p1, t1) then τ ′ has less delays than

τ , which contradicts the fact that τ is a minimal violation. In the second case, if in β12 · isu(p1, t1)·β2

we do not have any event that is causally dependent on isu(q, t0) other than the store events of t0,

then we can remove all events of t0 from τ without affecting the happens before between isu(p, t) and
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del(p′, t) through β12 · isu(p1, t1)·β2 ·(p′, t′). Let τ ′ = αA · isu(p, t)·β′1 · isu(p1, t1)·β2 ·(p′, t′)·del(p′, t)·γ′S
be the resulting trace which has the same number of delays as τ . Otherwise, if in β12 · isu(p1, t1) ·β2

we have an event a that is causally dependent on isu(q, t0) that is not a store event of t0, then the

new trace t′ resulting from not delaying t0 is a violation. This is because the store event del(p′, t)

is delayed. τ ′ has less delays than τ since the store event del(p′, t0) of t0 was not delayed after a.

This contradicts the fact that τ is a minimal violation.

Now, we show that for every two successive issue events of delayed transactions in τ ′, we can

deliver the first to the process of the second before the second is issued. Let evi = isu(pi, ti) and

evj = isu(pj , tj) be two successive issue events of delayed transactions in β1 · isu(p1, t1) s.t. either

(evi, evj) ∈ HB or (evi, del(pi, tj)) ∈ HB. Note that the only case where the store event del(pj , ti)

cannot be moved to occur before evj in β1 is when the two events are related by a happens-before

relation, i.e., (evj , del(pj , ti)) ∈ HB. In this case, we get that the transactions ti and tj are involved in

a cycle in the transactional happens-before in τ ′ which means that τ ′′ = αA·(p, t)·β1·isu(p1, t1)·γS is a

violation which has less delays than τ (since t was not delayed after isu(p1, t1)). Therefore, the trace

τ ′′ where the store event del(pj , ti) occurs before ev2 is happens-before equivalent to τ ′. Similarly,

when the two events are concurrent, the trace τ ′′ where the store event del(pj , ti) occurs before evj is

happens-before equivalent to τ ′. Thus, given the sequence of issue events ev1 ·ev2 · . . . evn of delayed

transactions in τ ′ s.t. ev1 = isu(p, t) and evn = isu(p1, t1), the trace τ ′′ where for every 1 ≤ k ≤ n−1

s.t. evk = isu(pk, tk) and evk+1 = isu(pk+1, tk+1), we have the store event del(pk+1, tk) occurs before

the issue event evk+1 is happens-before equivalent to τ ′. Also, in τ ′′ for every 2 ≤ k ≤ n, we

have that evk is causally dependent on ev1 = isu(p, t). Thus, in τ ′′ the sequence of issue events

ev1 · ev2 · . . . evn of delayed transactions forms a causality chain.

Next, we show that for minimal violations in Tccv2 where t and t1 are distinct transactions, all

delayed transactions in isu(p, t) · β1 do not access the shared variable x that starts the happens-

before path in β2 (Lemma 3.6) between isu(p1, t1) and (p′, t′). If this were not the case, then the

events of t1 can be removed and we still guarantee a happens-before path to del(p′, t) (starting in

the delayed transaction accessing the variable x), thus obtaining a new robustness violation trace

with less delays (since del(p′, t) was not delayed after isu(p1, t1)), which contradicts the minimality

assumption.

Lemma 3.9. Let τ be a minimal violation in Tccv2 where t1 and t are two distinct transactions.

Then, all the delayed transactions in isu(p, t) · β1 do not access the variable x from Lemma 3.6.
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τCM1:
αA isu(p, t)
◦

del(p, t)
◦ β (p′, t′)

◦
del(p′, t)
◦ γS

HB \ CO
∀ CO

∀

WW(x) WW(x)

τCM2:
αA isu(p, t)|¬x◦ β1|¬x isu(p1, t1)◦ β2

(p′, t′)
◦

del(p′, t)
◦ γS

HB \ CO
∀

CO RW(x)
∃

HB
∀

RW(y 6= x)

Figure 3.12: Robustness violation patterns under CM. For violation τCM1, t is the only delayed trans-

action. For τCM2, all delayed transactions are in isu(p, t) · β1 · isu(p1, t1) and they form a causality

chain that starts at isu(p, t) and ends at isu(p1, t1).

Proof. Suppose by contradiction that we have an issue event isu(p2, t2) in isu(p, t) ·β1 (i.e., isu(p, t) ·

β1 = isu(p, t) ·β11 · isu(p2, t2) ·β12) which accesses the shared variable x with either a read or a write

instruction. Then, since there exists an event a ∈ β2 s.t. (isu(p1, t1), a) ∈ WW(x) ∪ (STO; RW(x)),

we have that (isu(p2, t2), a) ∈ WW(x) ∪ (STO; RW(x)). Moreover, because β2 · (p′, t′) · del(p′, t) · γS

does not contain any transaction that causally depends on isu(p1, t1), we get that isu(p1, t1) is the

issue event by the process p1 and we can remove it together with all the related stores in γS to

obtain: τ ′ = αA · isu(p, t) · β11 · isu(p2, t2) · β12 · β2 · (p′, t′) · del(p′, t) · γ′S which is a violation because

isu(p, t) happens-before del(p′, t) through β11 · isu(p2, t2) · β12 · β2 · (p′, t′). Furthermore, τ ′ has less

delays than τ since del(p′, t) was not delayed after isu(p1, t1). This contradicts the fact that τ is a

minimal violation.

3.8 Robustness Violations Under Causal Memory

The characterization of robustness violations under CM is at some level similar to that of robustness

violations under CCv. However, some instance of the violation pattern under CCv is not possible

under CM and CM admits some class of violations that is not possible under CCv. This reflects the

fact that these consistency models are incomparable in general.

The following theorem gives the characterization of minimal violations under CM which is pictured

in Figure 3.12. Roughly, a program is not robust iff it admits a violation that either contains two

concurrent transactions that write to the same variable, or it is a restriction of the pattern τCCv2

admitted by CCv where the last delayed transaction is related only by RW to future transactions.
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The first pattern is not admitted by CCv because the writes to each variable are executed according

to the timestamp order (CM does not satisfy the CCv property stated in Lemma 3.1).

Theorem 3.5. A program P is not robust under CM iff there exists a minimal violation in Tr(P)CM

of one of the following forms:

1. τCM1 = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γS, where:

(a) isu(p, t) is the issue of the first and only delayed transaction;

(b) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈WW(y) (Lemma 3.11);

(c) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO (Lemma 3.11).

2. τCM2 = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS, where

(a) isu(p, t) and isu(p1, t1) are the issues of the first and last delayed transactions (Lemma 3.11);

(b) the issues of all delayed transactions are in β1 are included in a causality chain that

starts with isu(p, t) and ends with isu(p1, t1);

(c) for every a ∈ β2, we have that (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB (Lemma

3.11);

(d) there exist a ∈ β2 · (p′, t′), x, and y s.t. x 6= y, (isu(p1, t1), a) ∈ RW(x), (a, (p′, t′)) ∈ HB?,

and ((p′, t′), del(p′, t)) ∈ RW(y) (Lemma 3.11);

(e) all delayed transactions in isu(p, t) · β1 do not access the variable x.

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)
WW WW

Figure 3.13: Violation of LU pro-

gram in Figure 3.2a. A τCM1 viola-

tion where β2 = γS = ε, and t and

t′ correspond to t1 and t2.

The violation pattern τCM2 is a restriction of the pattern

τCCv2 under CCv. For instance, the trace in Figure 3.11b is

a valid minimal violation of the SB program under CM. The

violation pattern τCM1 implies the existence of a write-write data

race under CM. Figure 3.13 shows a minimal violation under CM

that corresponds to a write-write data race in the LU program.

Conversely, if a program P admits a trace τ which contains a

write-write data race under CM, then P also admits a trace τ ′

where the two transactions t1 and t2 that caused the write-write data race form a cycle in the store

order (the store events of t1 and t2 on the two processes p1 and p2 that issued them can be reordered

to occur in opposite orders, i.e., del(p1, t1) before del(p1, t2) and del(p2, t2) before del(p2, t1), which
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implies that are also in opposite orders w.r.t. the store order). Thus, P has a trace τ ′ with a

cycle in the transactional happens-before which means that P is not robust against CM. Therefore,

a program which is robust against CM is also write-write data race free under CM. Since without

write-write data races, the CM and the CCv semantics coincide, we get the following the result.

Lemma 3.10. If a program P is robust against CM, then P is robust against CCv.

Next, we discuss the proof of Theorem 3.5. The following lemma reveals the two possible minimal

violation patterns under causal memory. The characterization of the patterns in this lemma can

be refined further using arguments similar to the case of CCv (see the discussion at the end of this

section).

Lemma 3.11. If P is a program that is not robust under CM, then it must admit a minimal violation

τ that satisfies one of the following:

1. τ = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γS where:

(a) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈WW(y);

(b) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO.

2. τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p1, t1) is the last issue event from {c ∈ β | (isu(p, t), c) ∈ CO} in τ ;

(b) there exist two variables x 6= y, a in β2 · (p′, t′), and b = (p′, t′) such that (isu(p1, t1), a) ∈

RW(x), (b, del(p′, t)) ∈ RW(y), and (a, b) ∈ HB?;

(c) ∀ a ∈ β2. (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB.

Proof. The proof will contain many arguments which are similar to those used in the proof of

Lemma 3.6. Let τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS be a minimal violation under CM (cf.

Lemma 3.5). We prove that there exists a minimal violation trace τ ′ obtained from τ that satisfies (1)

or (2). Similar to Lemma 3.6, we get that there must exist y s.t. ((p′, t′), del(p′, t)) ∈ RW(y)∪WW(y).

We consider two cases: i) ((p′, t′), del(p′, t)) ∈ WW(y), and ii) ((p′, t′), del(p′, t)) ∈ RW(y). If

((p′, t′), del(p′, t)) ∈WW(y), then by reordering the store event del(p, t) ∈ γS to occur just after the

corresponding issue and removing all events in β (and all related stores in γS) that are not causally

ordered before (p′, t′) (since they do not contribute to the transactional happens-before cycle) we

obtain a trace τ ′ = αA · isu(p, t) · del(p, t) · β′ · (p′, t′) · del(p′, t) · γ′S that is also a minimal violation
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and where (del(p, t), (p′, t′)) ∈ WW(y) and ((p′, t′), del(p′, t)) ∈ WW(y). The trace τ ′ satisfies the

first case of the lemma.

Now assume that ((p′, t′), del(p′, t)) ∈ RW(y), and let σ = {c ∈ β | (isu(p, t), c) ∈ CO}. We

consider the following three cases.

First, assume that σ is empty. As in the proof of Lemma 3.6, we obtain that there exist

a ∈ β · (p′, t′) and x s.t. (isu(p, t), a) ∈ RW(x) and (a, (p′, t′)) ∈ HB?. If x = y then both t and

the transaction t2 by a process p2 of the event a write to x. Similar to before we can reorder the

store event del(p, t) ∈ γS to occur just after the corresponding issue and remove all issue events in

β ·(p′, t′) that occur after the issue event of t2 and all their related stores. Also, we remove all events

in β that are not causally ordered before the issue event of t2. We obtain τ ′ = αA · isu(p, t) ·del(p, t) ·

β′(p2, t2) · del(p2, t) · γ′S. In τ ′ the events of t2 are assembled together, del(p2, t) ∈ γS is reordered to

occur just after (p2, t2), and (del(p, t), (p2, t2)) ∈WW(y) and ((p2, t2), del(p2, t)) ∈WW(y). Thus, τ ′

is a minimal violation and it satisfies the first case of the lemma. If x 6= y then we get the second

case of the lemma.

Second, assume that σ is not empty and all the elements of σ are store events. As in the proof of

Lemma 3.6, we obtain that there exist x and an event a ∈ β · (p′, t′) that is not a store event of t s.t.

(isu(p, t), a) ∈ (STO; WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB?. If (isu(p, t), a) ∈ (STO; WW(x)) or

x = y then both t and the transaction t2 by a process p2 of the event a write to x. Using the same

procedure as in the previous paragraph we can obtain τ ′ = αA·isu(p, t)·del(p, t)·β′·(p2, t2)·del(p2, t)·γ′S
that satisfies the first case of the lemma. Similarly, if (isu(p, t), a) ∈ RW(x) and x 6= y then we get

the second case of the lemma.

Third, assume that σ is not empty and isu(p1, t1) is the last issue event in σ, i.e., β = β1 ·

isu(p1, t1) · β2 · (p′, t′). As in the proof of Lemma 3.6, we obtain that there exist x and an event

a ∈ β2 · (p′, t′) that is not a store event of t1 s.t. (isu(p1, t1), a) ∈ (STO; WW(x)) ∪ RW(x) and

(a, (p′, t′)) ∈ HB?. If x = y then both t and the transaction t2 by a process p2 of the event a write

to x. Using the same procedure as before we can obtain a trace τ ′ = αA · isu(p, t) · del(p, t) · β′1 · β′2 ·

(p2, t2) · del(p2, t) · γ′S that is a minimal violation. τ ′ has less delays than τ since the store of t was

not delayed after isu(p1, t1). This contradicts the fact that τ is a minimal violation. Assume now

that x 6= y. We assume w.l.o.g. that all events in β2 do not read values that any transaction with an

issue event in isu(p, t) ·beta1 · isu(p1, t1) overwrites. If (isu(p1, t1), a) ∈ (STO; WW(x)) and a 6= (p′, t′)

then we can remove all issue events in β2 · (p′, t′) that occur after the issue event of t2 including

67



(p′, t′) and assemble together the events of t2. We obtain that (del(p1, t1), (p2, t2)) ∈ WW(x) and

((p2, t2), del(p2, t1)) ∈ WW(x) where we do not need to delay the transaction t and obtain τ ′ =

αA · (p, t) · β′1 · isu(p1, t1) · del(p1, t1) · β′2 · (p2, t2) · del(p2, t1) · γ′S that is a violation and has less delays

than τ . This contradicts the fact that τ is a minimal violation. If (isu(p1, t1), a) ∈ (STO; WW(x))

and a = (p′, t′) (i.e., t′ = t2) then we construct τ ′ such that all transactions that have issue events in

σ and t are executed atomically after all the events in (β1 \ σ) · β2 · isu(p′, t′) · del(p′, t′) are executed

first, i.e., τ ′ = αA · β11 · β2 · isu(p′, t′) · del(p′, t′) · (p, t) · β12 · β′ · (p1, t1) · del(p1, t
′) · γ′S. τ ′ is a

robustness violation since (del(p′, t′), (p1, t1)) ∈ WW(x) and ((p1, t1), del(p1, t
′)) ∈ WW(x). Also, τ ′

has less delays than τ since t′ was not delayed after a causally dependent event other than its store

events and t is no longer delayed after the issue event of t1. This contradicts the fact that τ is a

minimal violation. Finally, the only remaining possibility is (isu(p1, t1), a) ∈ RW(x) where x 6= y

which corresponds to the second case of the lemma.

We use Tcm1 and Tcm2 to denote the class of minimal violations that satisfy the first and second

case in Lemma 3.11, respectively. To show that for a non robust program, we can always find a

minimal violation in either Tcm1 or Tcm2 where β and β2 do not contain delayed transactions we

can use the same proof arguments as in Lemma 3.7. For minimal violations in Tcm2 where t and

t1 are distinct transactions, the two properties that issue events of all delayed transactions form a

causality chain and that delayed transactions in isu(p, t) ·β1 do not access the shared variable x can

also be proved in the same manner as in Lemmas 3.8 and 3.9, respectively.

3.9 Robustness Violations Under Weak Causal Consistency

If a program is robust against CM, then it must not contain a write-write race under CM (note that

this is not true for CCv). Therefore, by Theorem 3.2, a program which is robust against CM has

the same set of traces under both CM and wCC, which implies that it is also robust against wCC.

Conversely, since wCC is weaker than CM (i.e., TrCM(P) ⊆ TrwCC(P) for any P), if a program is robust

against wCC then it is robust against CM. Thus, we obtain the following result.

Theorem 3.6. A program P is robust against wCC iff it is robust against CM.
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3.10 Reduction to SC Reachability

We describe a reduction of robustness checking to a reachability problem in a program executing

under the serializability semantics, which can be simulated on top of standard sequential consistency

(SC) by considering that each transaction is an atomic section (guarded by a fixed global lock).

Essentially, given a program P and a semantics X ∈ {CCv, CM, wCC}, we define an instrumentation

of P such that P is not robust against X iff the instrumentation reaches an error state under

the serializability semantics. The instrumentation uses auxiliary variables in order to simulate

the robustness violations (in particular, the delayed transactions) satisfying the patterns given in

Figure 3.10 and Figure 3.12. We will focus our presentation on the second violation pattern of CCv

(which is similar to the second violation pattern of CM): τCCv2 = αA · isu(p, t) · β1 · isu(p1, t1) · β2 ·

(p′, t′) · del(p′, t) · γS.

The process p that delayed the first transaction t is called the Attacker. The other processes

delaying transactions in β1 · isu(p1, t1) are called Visibility Helpers. Recall that all the delayed

transactions must be causally ordered after isu(p, t). The processes that execute transactions in

β2 · (p′, t′) and contribute to the happens-before path between isu(p1, t1) and del(p′, t) are called

Happens-Before Helpers. A happens-before helper cannot be the attacker or a visibility helper since

this would contradict the causal delivery guarantee provided by causal consistency (a transaction of

a happens-before helper is not delayed, so visible immediately to all processes, and it cannot follow

a delayed transaction). γS contains the stores of the delayed transactions in isu(p, t) · β1 · isu(p1, t1).

It is important to notice that we may have t = t1. In this case, β1 = ε and the only delayed

transaction is t. Also, all delayed transactions in β1 including t1 may be issued by the same process

as t. In all of these cases, the set of Visibility Helpers is empty.

The instrumentation uses two copies of the set of shared variables in the original program. We

use primed variables x′ to denote the second copy. When a process becomes the attacker or a

visibility helper, it will write only to the second copy that is visible only to these processes (and

remains invisible to the other processes including the happens-before helpers). The writes made by

other processes including the happens-before helpers are made visible to all processes, i.e., they are

applied on both copies of every shared variable.

To establish the causality chains of the delayed transactions issued by the attacker and the

visibility helpers, we look whether a transaction can extend the causality chain started by the first

delayed transaction issued by the attacker. This is to ensure that all such transactions are causally
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related to the first delayed transaction (of the attacker). In order for a transaction to “join” the

causality chain, it has to satisfy one of the following conditions:

• the transaction is issued by a process that has already another transaction in the causality

chain. Thus, we ensure the continuity of the causality chain through program order;

• the transaction is reading from a variable that was updated by a previous transaction in the

causality chain. Hence, we ensure the continuity of the causality chain through the write-read

relation.

We introduce a flag for each shared variable to mark the fact that it was updated by a previ-

ous transaction in the causality chain. These flags are used by the instrumentation to establish

whether a transaction “joins” a causality chain. Enforcing a happens-before path starting in the

last delayed transaction, using transactions of the happens-before helpers, can be done in the same

way. Compared to causality chains, there are two more cases in which a transaction can extend a

happens-before path:

• the transaction writes to a shared variable that was read by a previous transaction in the

happens-before path. Hence, we ensure the continuity of the happens-before path through the

read-write relation;

• the transaction writes to a shared variable that was updated by a previous transaction in the

happens-before path. Hence, we ensure the continuity of the happens-before path through

write-write order.

Thus, we extend the shared variables flags used for causality chains in order to record if a variable

was read or written by a previous transaction (in this case, a previous transaction in the happens-

before path). Overall, the instrumentation uses a flag x.event or x′.event for each (copy of a) shared

variable, that stores the type of the last access (read or write) to the variable. Initially, these flags

and other flags used by the instrumentation as explained below are initialized to null (⊥).

In general, whether a process is an attacker, visibility helper, or happens-before helper is not

enforced syntactically by the instrumentation, and can vary from execution to execution. The role

of a process in an execution is set non-deterministically during the execution using some additional

process-local flags. Thus, during an execution, each process chooses to set to true at most one of

the flags p.a, p.vh, and p.hbh, implying that the process becomes an attacker, visibility helper, or

happens-before helper, respectively. At most one process can be an attacker, i.e., set p.a to true.
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[[l1: begin; goto l2;]]A =

// Typical execution of begin

l1: assume HB =⊥ ∧(p.a 6=⊥ ∨atrA =⊥); goto lx1; (3.1)

lx1: begin; goto l2;

// Begin of first delayed transaction

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lx2; (3.2)

lx2: begin; goto lx3;

lx3: p.a := 1; goto lx4;

lx4: Foreach x ∈ V. x′ := x; goto lx5;

lx5: atrA := true; goto l2; (3.3)

[[l1: r := x; goto l2;]]A =

// Read before delaying transactions

l1: assume atrA =⊥ ; goto lx1;

lx1: r := x; goto l2;

// Read in delayed transactions

l1: assume atrA 6=⊥ ∧p.a 6=⊥ ; goto lx2;

lx2: r := x′; goto lx3;

lx3: x′.event := ld; goto l2;

// Special read in last delayed transaction

l1: assume x′.event =⊥ ∧ p.a 6=⊥ ; goto lx4;

lx4: r := x′; goto lx5;

lx5: HB := true; goto lx6; (3.4)

lx6: x.event := ld; goto l2; (3.5)

[[l1: x := e; goto l2;]]A =

// Write before delaying transactions

l1: assume atrA =⊥ ; goto lx1;

lx1: x := e; goto l2;

// Write in delayed transactions

l1: assume atrA 6=⊥ ∧p.a 6=⊥ ; goto lx2;

lx2: x′ := e; goto lx3; (3.6)

lx3: x′.event := st; goto l2; (3.7)

// Special write in first delayed transaction

l1: assume astA = x.event =⊥ ∧ p.a 6=⊥ ; goto lx4;

lx4: x′ := e; goto lx5;

lx5: astA := ‘x‘; goto lx6; (3.8)

lx6: x′.event := st; goto l2;

// Special write in last delayed transaction

l1: assume x′.event =⊥ ∧ p.a 6=⊥ ; goto lx7;

lx7: x′ := e; goto lx8;

lx8: HB := true; goto lx9; (3.9)

lx9: x.event := ld; goto l2; (3.10)

[[l1: com; goto l2;]]A =

l1: assume p.a 6=⊥ ∧ astA =⊥ ; assume false;

l1: com; goto l2;

Figure 3.14: Instrumentation of the Attacker. We use ‘x‘ to denote the name of the variable x.

3.10.1 Instrumentation of the Attacker

We provide in Figure 3.14, the instrumentation of the instructions for the attacker process. Such a

process passes through an initial phase where it executes transactions that are visible immediately

to all the other processes (i.e., they are not delayed), and then non-deterministically it can choose

to delay a transaction. When the attacker randomly chooses the first transaction to start delaying

of transactions, it sets a global flag atrA to true in the instruction begin (line (3.3)). Then, it sets the

flag p.a to 1 to indicate that the current process is the attacker. During the first delayed transaction,

the attacker non-deterministically chooses a write instruction to a shared variable y and stores the
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name of this variable in the flag astA (line (4.5)). The values written during delayed transactions

are stored in the primed variables and are visible only to the attacker and the visibility helpers.

For example, given a variable z, all the writes to z from the original program are transformed into

writes to the primed version z′ (line (4.3)). Each time the attacker writes to a variable z′, it sets

the flag z′.event to st (line (4.4)) which will allow other processes that read the same variable to

join the set of visibility helpers and start delaying their transactions. Once the attacker delays a

transaction, it will read only from the primed variables (i.e., z′).

To start the happens-before path, the attacker has to execute a transaction that either reads or

writes to a shared variable x that was not accessed by a delayed transaction (i.e., x′.event =⊥). In

this case, it sets the variable HB to true (lines (4.2) and (3.9)) to mark the start of the happens before

path and the end of the visibility chains, and it sets the flag x.event to ld (lines (4.1) and (3.10)).

We set x.event to ld even in the case of a write to x in order to simplify the instrumentation of the

happens-before helpers (to check that this transaction is related to a transaction of a happens-before

helper p through WW(x) or RW(x) it is enough that p writes to x and it “observers” the same value

ld in x.event). When the flag HB is set to true the attacker stops executing new transactions. We

can notice that when the HB is set to true, we can no longer execute new transactions from the

attacker (all conditions in lines (3.1) and (3.2) become false).

3.10.2 Instrumentation of the Visibility Helpers

Figure 3.15 lists the instrumentation of the instructions of a process that belongs to the set of

visibility helpers. Such a process passes through an initial phase where it executes the original

code instructions (lines (3.18) and (3.13)) until the flag atrA is set to true by the attacker. Then, it

continues the execution of its original instructions but, whenever it stores a value it writes it to both

the shared variable z and the primed variable z′ so it is visible to all processes. Non deterministically

it chooses a first transaction to delay, at which point it joins the set of visibility helpers. It sets

the flag p.vh to false signaling its desire to join the visibility helpers, and it chooses a transaction

(the begin of this transaction is shown in line (3.12)) through which the process will join the set of

visibility helpers. The process directly starts delaying its writes, i.e., writing to primed variables,

and reading only from delayed writes, i.e., from primed variables, and behaving the same as the

attacker. In order to check that it can extend the sequence of causal dependencies (required by the

causal chain definition), it takes a snapshot of the _.event fields at the beginning of the transaction
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[[l1: begin; goto l2;]]VH =

// Before joining visibility helpers

l1: assume HB =⊥ ∧ (atrA =⊥ ∨p.vh =⊥); goto lx1;

lx1: begin; goto l2; (3.11)

// Joining visibility helpers

l1: assume HB = p.vh = p.a =⊥ ∧ atrA 6=⊥ ; goto lx2;

lx2: begin; goto lx3;

lx3: p.vh := false; goto lx4;

lx4: Foreach x′ ∈ V. x′.event′ := x′.event; goto l2;

// After joining visibility helpers

l1: assume HB =⊥ ∧ atrA 6=⊥ ∧ p.vh; goto lx5;

lx5: begin; goto l2; (3.12)

[[l1: r := x; goto l2;]]VH =

// Before joining visibility helpers

l1: assume atrA =⊥ ∨(p.vh = p.a =⊥); goto lx1;

lx1: r := x; goto l2; (3.13)

// After joining visibility helpers

l1: assume p.vh 6=⊥ ; goto lx2;

lx2: r := x′; goto lx3; (3.14)

lx3: assume x′.event′ = st ∧ ¬p.vh; goto lx4;

lx4: p.vh := true; goto l2; (3.15)

lx3: assume x′.event′ 6= st ∨ p.vh; goto l2;

// Last delayed transaction

l1: assume x′.event =⊥ ∧ p.vh 6=⊥ ; goto lx5;

lx5: HB := true; goto lx6; (3.16)

lx6: x.event := ld; goto lx7; (3.17)

lx7: r := x′; goto l2;

[[l1: x := e; goto l2;]]VH =

// Before attacker delays transactions

l1: assume atrA =⊥ ; goto lx1;

lx1: x := e; goto l2; (3.18)

// Before joining visibility helpers

l1: assume atrA 6=⊥ ∧p.vh = p.a =⊥ ; goto lx2;

lx2: x′ := e; goto lx3;

lx3: x := e; goto l2;

// After joining visibility helpers

l1: assume p.vh 6=⊥ ; goto lx4;

lx4: x′ := e; goto lx5; (3.19)

lx5: x′.event := st; goto lx6; (3.20)

lx6: x′.event′ :=⊥ ; goto l2;

// Last delayed transaction

l1: assume x′.event =⊥ ∧ p.vh 6=⊥ ; goto lx7;

lx7: HB := true; goto lx8; (3.21)

lx8: x.event := ld; goto lx9; (3.22)

lx9: x′ := e; goto l2;

[[l1: com; goto l2;]]VH =

// Before joining visibility helpers

l1: assume atrA =⊥ ∨(atrA 6=⊥ ∧ p.vh =⊥); goto lx1;

lx1: com; goto l2;

// After joining visibility helpers

l1: assume atrA 6=⊥ ∧ p.vh; goto lx2;

lx2: com; goto l2;

// Failed to join visibility helpers

l1: assume atrA 6=⊥ ∧ ¬p.vh; assume false; (3.23)

Figure 3.15: Instrumentation of the Visibility Helpers.

and stores it to _.event′ fields (line lx4 in the instrumentation of begin). This snapshot is necessary

to check that it reads from writes made in other transactions (ignoring the writes in the current

transaction). When a process choses a first transaction to delay (during the begin instruction), it

has made a pledge that during this transaction it will read from a variable that was updated by

a another delayed transaction from either the attacker or some other visibility helper. This is to
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ensure that this transaction extends the visibility chain. Hence, the local process flag p.vh will be

set to true when the process meets its pledge (line (3.15)). If the process does not keep its pledge

(i.e., p.vh is equal to false) at the end of the transaction (i.e., during the end instruction) we block

the execution. Thus, when executing the com instruction of the underlying transaction we check

whether the flag p.vh is null, if so we block the execution (line (3.23)).

When a process joins the visibility helpers, it delays all writes and reads only from the primed

variables (lines (3.19) and (3.14)). Similar to the attacker, a process in the visibility helpers delays

a write to a shared variable z by writing to z′, it sets the flag z′.event to st (line (3.20)). In order

for a process in the visibility helpers to start the happens-before path, it has to either read or write

a shared variable x that was not accessed by a delayed transaction (i.e., x′.event =⊥). In this case

we set the flag HB to true (lines (3.21) and (3.16)) to mark the start of the happens before path

and the end of the visibility chains and set the flag x.event to ld (lines (3.22) and (3.17)). When

the flag HB is set to true, all processes in the set of visibility helpers stop issuing new transactions

because all conditions for executing the begin instruction become false.

3.10.3 Instrumentation of the Happens-Before Helpers

The remaining processes, which are not the attacker or a visibility helper, can become happens-

before helpers. Figure 3.16 lists the instrumentation of the instructions of a happens-before helper

process. Similar to above, when the flag atrA is set to true by the attacker, other processes enter a

phase where they continue executing their instructions, however, when they store a value they write

it in both the shared variable z and the primed variable z′ (lines (3.25) and (3.26)). However, they

only read from the original shared variables (line (4.6)). Once the flag HB is set to true, a process

that cannot be the attacker (i.e., the flag p.a is null) or a visibility helper (i.e., the flag p.vh is null)

chooses non-deterministically a transaction t (the begin of this transaction is shown in line (3.24))

through which it wants to join the set of happens-before helpers, i.e., continue the happens-before

path created by the existing happens-before helpers. Similar to visibility helpers, when a process

choses the transaction t, it makes a pledge (while executing the begin instruction) that during this

transaction it will either read a variable updated by another happens-before helper or write to a

variable that was accessed (read or written) by another happens-before helper (every process that

executes a transaction after HB is set to true makes this pledge). When the pledge is met, the

process sets the flag p.hbh to true (lines (4.7) and (4.11)). The execution is blocked if a process does
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[[l1: begin; goto l2;]]HbH =

// Before joining happens-before helpers

l1: assume HB = p.vh = p.a =⊥ ; goto lx1;

lx1: begin; goto l2;

// Joining happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh = p.vh = p.a =⊥ ; goto lx2;

lx2: begin; goto lx3; (3.24)

lx3: Foreach x ∈ V. x.event′ := x.event; goto l2;

// After joining happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh 6=⊥ ; goto lx4;

lx4: begin; goto l2;

[[l1: x := e; goto l2;]]HbH =

// Before the first delayed transaction

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lx1;

lx1: x := e; goto l2;

// After the first delayed transaction

l1: assume HB = p.vh = p.a =⊥ ∧ atrA 6=⊥ ; goto lx2;

lx2: x′ := e; goto lx3; (3.25)

lx3: x := e; goto l2; (3.26)

// After the last delayed transaction

l1: assume HB 6=⊥ ∧ p.vh = p.a =⊥ ; goto lx4;

lx4: x := e; goto lx5;

lx5: x.event := st; goto lx6; (3.27)

lx6: assume x.event′ 6=⊥ ∧ p.hbh =⊥ ; goto lx7;

lx7: p.hbh := true; goto l2; (3.28)

lx6: assume x.event′ =⊥ ∨ p.hbh 6=⊥ ; goto l2;

[[l1: r := x; goto l2;]]HbH =

// Before the last delayed transaction

l1: assume HB =⊥ ∧ p.vh = p.a =⊥ ; goto lx1;

lx1: r := x; goto l2; (3.29)

// After the last delayed transaction

l1: assume HB 6=⊥ ∧ p.vh = p.a =⊥ ; goto lx2;

lx2: r := x; goto lx3;

lx3: assume x.event′ = st ∧ p.hbh =⊥ ; goto lx4;

lx4: p.hbh := true; goto l2; (3.30)

lx3: assume x.event =⊥ ; goto lx5;

lx5: x.event := ld; goto l2; (3.31)

lx3: assume x.event 6=⊥ ∨ p.hbh 6=⊥ ; goto l2;

[[l1: com; goto l2;]]HbH =

// Before joining happens-before helpers

l1: assume HB = p.vh = p.a =⊥ ; goto lx1;

lx1: com; goto l2;

// After joining happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh 6=⊥ ; goto lx2;

lx2: com; goto lx3;

lx3: r̃ := astA ; goto lx4; (3.32)

lx4: r̃ := r̃.event; goto lx5; (3.33)

lx5: assume r̃ 6=⊥ ; assert false; (3.34)

lx5: assume r̃ =⊥ ; goto l2;

// Failed to join happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh = p.vh = p.a =⊥

; assume false; (3.35)

Figure 3.16: Instrumentation of Happens-Before Helpers.

not keep its pledge (i.e., the flag p.hbh is null) at the end of the transaction (line (3.35)). We use a

flag x.event for each variable x to record the type (read ld or write st) of the last access made by

a happens-before helper (lines (4.8) and (4.10)). Moreover, once HB is set to true (i.e., there are

no more delayed transactions), the process can write and read only the original shared variables,

since the primed versions are no longer in use. A particular case is when the transaction t is from

the first process trying to join the happens-before helpers, in which the transaction must contain
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a read accessing the variable x that was read or written to by a transaction from the attacker of a

visibility helper.

The happens-before helpers continue executing their instructions, until one of them reads from

the shared variable y whose name was stored in astA . This establishes a happens-before path

between the last delayed transaction and a “fictitious” store event corresponding to the first delayed

transaction that could be executed just after this read of y. The execution does not have to contain

this store event explicitly since it is always enabled. Therefore, at the end of every transaction, the

instrumentation checks whether the transaction read y. If it is the case, then the execution stops

and goes to an error state to indicate that this is a robustness violation. The happens-before helpers

processes continue executing their instructions, until one of them executes a load that reads from

the shared variable y that was stored in astA which implies the existence of a happens-before cycle.

Thus, when executing the instruction com at the end of every transaction, we have a conditional

check to detect if we have a load or a write accessing the variable y (lines (3.32), (3.33), and (3.34)).

When the check detects that the variable y was accessed, the execution goes to an error state

(line (3.34)) to indicate that it has produced a robustness violation.

In Figure 3.17, we show an excerpt of the instrumentations of the two transactions of the SB

program. In particular, we only give the instructions of the instrumented SB that are reached

during the execution that leads to an error state. The attacker instrumentation is applied to the

transaction t1 of p1 and the happens-before helpers instrumentation is applied to the transaction

t2 of p2. The first conflict order from t1 to t2 (shown in Figure 3.10) is simulated by the fact that

at line 3.39, y.event′ = ld (see lines 3.37 and 3.38). Also, the second conflict order from t2 to t1 is

simulated by the fact that at line 3.41 we reach the error state where astA .event = x.event = ld (see

lines 3.36 and 3.40).

3.10.4 Correctness

As we have already mentioned, the role of a process in an execution is chosen non-deterministically

at runtime. Therefore, the final instrumentation of a given program P, denoted by [[P]]P2, is

obtained by replacing each labeled instruction 〈linst〉 with the concatenation of the instrumen-

tations corresponding to the attacker, the visibility helpers, and the happens-before helpers, i.e.,

[[〈linst〉]]P2 ::= [[〈linst〉]]A [[〈linst〉]]VH [[〈linst〉]]HbH. The instrumented program [[P]]P2 reaches the

error state iff P admits a violation of the pattern τCCv2. Let [[P]]P1 be the instrumented program
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[[l1: begin; goto l2;]]A =

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lb2;

lb2: begin; goto lb3;

lb3: p1.a := 1; goto lb4;

lb4: Foreach z ∈ V. z′ := z; goto lb5;

lb5: atrA := true; goto l2;

[[l2: x := 1; goto l3;]]A =

l2: assume astA = x.event =⊥ ∧ p1.a 6=⊥ ; goto ls4;

ls4: x′ := 1; goto ls5;

ls5: astA := ‘x‘; goto ls6; (3.36)

ls6: x′.event := st; goto l3;

[[l3: r1 := y; goto l4;]]A =

l3: assume y′.event =⊥ ∧ atrA 6=⊥ ; goto ll4;

ll4: r1 := y′; goto ll5;

ll5: HB := true; goto ll6;

ll6: y.event := ld; goto l4; (3.37)

[[l4: com; goto l5;]]A =

l4: com; goto l5;

[[l1: begin; goto l2;]]HbH =

l1: assume HB 6=⊥ ∧ p2.hbh = p2.vh = p2.a =⊥ ; goto lb2;

lb2: begin; goto lb3;

lb3: x.event′ := x.event; y.event′ := y.event; goto l2;(3.38)

[[l3: y := 1; goto l4;]]HbH =

l3: assume HB 6=⊥ ∧ p2.vh = p2.a =⊥ ; goto ls4;

ls4: y := 1; goto ls5;

ls5: y.event := st; goto ls6;

ls6: assume y.event′ 6=⊥ ∧ p2.hbh =⊥ ; goto ls7; (3.39)

ls7: p2.hbh := true; goto l4;

[[l2: r2 := x; goto l3;]]HbH =

l2: assume HB 6=⊥ ∧ p.vh = p.a =⊥ ; goto ll2;

ll2: r2 := x; goto ll3;

ll3: assume x.event =⊥ ; goto ll5;

ll5: x.event := ld; goto l3; (3.40)

[[l4: com; goto l5;]]HbH =

l4: assume HB 6=⊥ ∧ p2.hbh 6=⊥ ; goto le2;

le2: com; goto le3;

le3: r̃ := astA ; goto le4;

le4: r̃ := r̃.event; goto le5;

le5: assume r̃ 6=⊥ ; assert false; (3.41)

Figure 3.17: Instrumentation of SB program in Figure 3.2b.

that reaches an error state iff P admits a violation of the pattern τCCv1. The instrumentation [[ ]]P1

does not include the visibility helpers since only a single transaction is delayed in τCCv1, and it

can be obtained in the same manner as [[ ]]P2. The following theorem states the correctness of the

instrumentation.

Theorem 3.7. A program P is not robust against CCv iff either [[P]]P1 or [[P]]P2 reaches the error

state.

The proof of this theorem relies on the explanations given above. One can define a bijection

between executions of the instrumentation that reach an error state and executions of the original

program that satisfy the constraints in one of the two violation patterns. The former can be rewritten
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to the latter by roughly, removing all accesses to the auxiliary variables used by the instrumentation,

replacing the writes to shared variable copies by writes to the original variables, delivering delayed

transactions only to visibility helpers, and appending store events for all the delayed transactions.

For the reverse, given a robustness violation τ = αA · isu(p, t) ·β1 · isu(p1, t1) ·β2 · (p′, t′) · del(p′, t) · γS

of type τCCv2, we can build an execution of the instrumentation that reaches an error state, where

p is the attacker, the processes delaying transactions in β1 · isu(p1, t1) are visibility helpers, and the

processes that issue transactions between isu(p1, t1) and del(p′, t) and that are part of the happens-

before path between these two events are the happens-before helpers.

The following result states the complexity of checking robustness for finite-state programs9

against one of the three variations of causal consistency considered in this work (we use causal

consistency as a generic name to refer to all of them). The upper bound is a direct consequence

of Theorem 3.7 and of previous results concerning the reachability problem in concurrent programs

running over SC, with a fixed [108] or parametric number of processes [146]. For the lower bound,

given an instance of the reachability problem under sequential consistency, denoted by (P, `)10, we

construct a program P ′ where each statement s of P is a different transaction (guarded by a global

lock), and where reaching the location ` enables the execution of a “gadget” that corresponds to

the SB program in Figure 3.2b. Executing each statement under a global lock ensures that every

execution of P ′ under causal consistency is serializable, and faithfully represents an execution of

the original P under sequential consistency. Moreover, P reaches ` iff P ′ contains a robustness

violation, which is due to the execution of SB.

Corollary 3.1. Checking robustness of finite-state programs against causal consistency is PSPACE-

complete when the number of processes is fixed and EXPSPACE-complete, otherwise.

Remark 3.3. The reduction to reachability does not manipulate transaction identifiers and it is

insensitive to the number of transactions executed by one process. Thus, all our results extend to

processes that include unbounded loops of transactions. This includes programs where each process

can call a statically known set of transactions (with parameters) an arbitrary number of times.
9That is, programs where the number of variables and the data domain are bounded.

10That is, whether the program P reaches the control location ` under SC.
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3.11 Related Work

Causal consistency is one of the oldest consistency models for distributed systems [116]. Formal

definitions of several variants of causal consistency, suitable for different types of applications, have

been introduced recently [60, 59, 142, 52]. The definitions in this chapter are inspired from these

works and coincide with those given in [52]. In that paper, the authors address the decidability and

the complexity of verifying that an implementation of a storage system is causally consistent (i.e.,

all its computations, for every client, are causally consistent).

While our work focuses on trace-based robustness, state-based robustness requires that a program

is robust if the set of all its reachable states under the weak semantics is the same as its set of

reachable states under the strong semantics. While state-robustness is the necessary and sufficient

concept for preserving state-invariants, its verification, which amounts in computing the set of

reachable states under the weak semantics, is in general a hard problem. The decidability and the

complexity of this problem has been investigated in the context of relaxed memory models such as

TSO and Power, and it has been shown that it is either decidable but highly complex (non-primitive

recursive), or undecidable [37, 38]. Recently, [111] showed that it is also non-primitive recursive for

causal convergence. As far as we know, the decidability and complexity of this problem has not

been investigated for weak causal consistency and causal memory.

Automatic procedures for approximate reachability/invariant checking have been proposed us-

ing either abstractions or bounded analyses, e.g., [39, 28, 72, 24]. Proof methods have also been

developed for verifying invariants and portability in the context of weakly consistent models such

as [114, 93, 130, 27, 118]. These methods, however, do not provide decision procedures.

Decidability and complexity of trace-based robustness has been investigated for the Release-

Aquire (RA) and Partitioned Global Address Space (PGAS) parallel programming models, and the

TSO and Power weak memory models [113, 66, 55, 51, 74, 73]. The work we present in this chapter

borrows the idea of using minimal violation characterizations for building an instrumentation allow-

ing to obtain a reduction of the robustness checking problem to the reachability checking problem

over SC. However, applying this approach to the case of causal consistency is not straightforward

and requires different proof techniques. Dealing with causal consistency requires coming up with

radically different arguments and proofs, for (1) characterizing in a finite manner the set of viola-

tions, (2) showing that this characterization is sound and complete, and (3) using effectively this

characterization in the definition of the reduction to the reachability problem.
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The robustness reductions defined in [55, 66, 74] are based on the theory of regular languages

and do not extend to infinite-state programs like in our case. [55] uses an approach that consists

of enumeration of a pair of SC computations that are conflicting, i.e., between reads and writes

actions occurring in the pair of SC computations, to simulate a TSO computation that violates SC.

[66, 74] define decision procedures based on checking the intersection of a multi-headed automaton

introduced in [66] that simulates minimal violations types of computations (called normal form

computations) with regular languages. In [75], the authors develop robustness characterizations

for store-atomic consistency models called locality and singularity, which state that in a minimal

violation only a single process delays writes and only a single write is delayed, respectively. [115]

proposes robustness characterizations for weak memory models in terms of program transformations

allowed over SC. In particular, they show that instructions reorderings and eliminations are enough

to characterize TSO, while they are not enough to characterize neither C11, Power, or ARM.

As far as we know, our work is the first one that establishes results on the decidability and com-

plexity issues of the robustness problem in the context of causal consistency, and taking into account

transactions. The existing work on the verification of robustness for distributed systems consider

essentially trace-based concepts of robustness and provide either over- or under-approximate anal-

yses for checking it. In [47, 57, 58, 70], static analysis techniques are proposed based on computing

an abstraction of the set of computations that is used in searching for robustness violations. These

approaches may return false alarms due to the abstractions they consider. In particular, [47] shows

that a trace under causal convergence is not admitted by the serializability semantics iff it contains

a (transactional) happens-before cycle with a RW dependency, and another RW or WW dependency.

This characterization alone is not sufficient to prove our result concerning robustness checking. Our

result relies on a characterization of more refined robustness violations and relies on different proof

arguments. In [129] a sound (but not complete) bounded analysis for detecting robustness violation

is proposed. Our approach is technically different, is precise, and provides a decision procedure for

checking robustness when the program is finite-state.

3.12 Conclusion

We studied three variations of causal consistency, showing that they are equivalent for programs

without write-write data races. We showed that the problem of verifying that a program is robust

against causal consistency relative to serializability can be reduced, modulo a linear-size instrumen-
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tation, to a reachability problem in a program running over serializability semantics. This reduction

leads to the first decidability result concerning the problem of checking robustness against a weak

transactional consistency model. Furthermore, this reduction opens the door to the use of existing

methods and tools for the analysis and verification of sequentially consistent concurrent programs,

in order to reason about weakly-consistent programs. It can be used for the design of a large spec-

trum of static/dynamic tools for testing/verifying robustness against causal consistency relative to

serializability.
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Chapter 4

Robustness Against Snapshot

Isolation

4.1 Introduction

In this chapter, we address the problem of verifying robustness of programs against snapshot iso-

lation (SER) relative to serializability. In §4.2, we outline our approach for tackling this problem.

In §4.3, we formally define the semantics of programs under snapshot isolation consistency model.

We also define programs executions and traces under this semantics. In §4.5, we present a series

of results that characterize the particular shapes of minimal violations under SI. Then, in §4.6, we

show a polynomial-time reduction of robustness to reachability problem in a program running under

serializability semantics. Using the above reduction, in §4.7, we develop a proof methodology for

establishing robustness which builds on Lipton’s reduction theory [120]. In particular, we use the

theory of movers to establish whether the relaxations allowed by SI are harmless, i.e., they do not

introduce new behaviors compared to serializability. Finally, in §4.8, we apply our techniques on

10 challenging applications extracted from previous work [58, 161, 32, 105, 47, 93, 129]. We show

that our techniques were enough for proving or disproving the robustness of these applications.

4.2 Overview

In this section, we give an overview of our approach for checking robustness against snapshot

isolation. While serializability enforces that transactions are atomic and conflicting transactions,
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p1:

t1: [r1 = y //0

x = 1]

||
p2:

t2: [r2 = x //0

y = 1]

(a) Write Skew (WS).

[r1 = y ; x = 1] [r2 = x ; y = 1]

conflict

conflict

(b) A WS execution trace.

Figure 4.1: Examples of non-robust programs illustrating the difference between SI and serializ-

ability. causal dependency means that a read in a transaction obtains its value from a write in

another transaction. conflict means that a write in a transaction is not visible to a read in another

transaction, but it would affect the read value if it were visible. Here, happens-before is the union

of the two.

i.e., which read or write to a common location, cannot commit concurrently, SI [46] allows that

conflicting transactions commit in parallel as long as they do not contain a write-write conflict, i.e.,

write on a common location. Moreover, under SI, each transaction reads from a snapshot of the

database taken at its start. These relaxations permit the “anomaly” known as Write Skew (WS)

shown in Figure 4.1a, where an anomaly is a program execution which is allowed by SI, but not

by serializability. The execution of Write Skew under SI allows the reads of x and y to return 0

although this cannot happen under serializability. These values are possible since each transaction

is executed locally (starting from the initial snapshot) without observing the writes of the other

transaction.

Execution trace. Our notion of program robustness is based on an abstract representation of

executions called trace. Informally, an execution trace is a sequence of events, i.e., accesses to

shared variables and transaction begin/commit events, along with several standard dependency

relations between events recording the data-flow. The transitive closure of the union of all these

dependency relations is called happens-before. An execution is an anomaly if the happens-before of

its trace is cyclic. Figure 4.1b shows the happens-before of the Write Skew anomaly. Notice that

the happens-before order is cyclic in both cases.

Semantically, every transaction execution involves two main events, the issue and the commit.

The issue event corresponds to a sequence of reads and/or writes where the writes are visible only to

the current transaction. We interpret it as a single event since a transaction starts with a database

snapshot that it updates in isolation, without observing other concurrently executing transactions.

The commit event is where the writes are propagated and made visible to all processes. Under
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serializability, the two events coincide, i.e., they are adjacent in the execution. Under SI, this

is not the case and in between the issue and the commit of the same transaction, we may have

issue/commit events from concurrent transactions. When a transaction commit does not occur

immediately after its issue, we say that the underlying transaction is delayed. For example, the

following execution of WS corresponds to the happens-before cycle in Figure 4.1b where the write

to x was committed after t2 finished, hence, t1 was delayed:

begin(p1, t1)ld(p1, t1, y, 0)isu(p1, t1, x, 1) com(p1, t1)

begin(p2, t2)ld(p2, t2, x, 0)isu(p2, t2, y, 1)com(p2, t2)

Above, begin(p1, t1) stands for starting a new transaction t1 by process p1, ld represents read (load)

actions, while isu denotes write actions that are visible only to the current transaction (not yet

committed). The writes performed during t1 become visible to all processes once the commit event

com(p1, t1) takes place.

Reducing robustness to SC reachability. The above SI execution can be mimicked by an

execution of the same program under serializability modulo an instrumentation that simulates

the delayed transaction. The local writes in the issue event are simulated by writes to auxiliary

registers and the commit event is replaced by copying the values from the auxiliary registers to

the shared variables (actually, it is not necessary to simulate the commit event; we include it

here for presentation reasons). The auxiliary registers are visible only to the delayed transaction.

In order that the execution be an anomaly (i.e., not possible under serializability without the

instrumentation) it is required that the issue and the commit events of the delayed transaction are

linked by a chain of happens-before dependencies. For instance, the above execution for WS can be

simulated by:

begin(p1, t1)ld(p1, t1, y, 0)we(p1, t1, rx, 1) we(p1, t1, x, rx)

begin(p2, t2)ld(p2, t2, x, 0)isu(p2, t2, y, 1)com(p2, t2)

The write to x was delayed by storing the value in the auxiliary register rx and the happens-before

chain exists because the read on y that was done by t1 is conflicting with the write on y from t2

and the read on x by t2 is conflicting with the write of x in the simulation of t1’s commit event. On

the other hand, the following execution of Write-Skew without the read on y in t1:
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begin(p1, t1)we(p1, t1, rx, 1) we(p1, t1, x, rx)

begin(p2, t2)ld(p2, t2, x, 0)isu(p2, t2, y, 1)com(p2, t2)

misses the conflict (happens-before dependency) between the issue event of t1 and t2. Therefore, the

events of t2 can be reordered to the left of t1 and obtain an equivalent execution where we(p1, t1, x, rx)

occurs immediately after we(p1, t1, rx, 1). In this case, t1 is not anymore delayed and this execution

is possible under serializability (without the instrumentation).

If the number of transactions to be delayed in order to expose an anomaly is unbounded, the

instrumentation described above may need an unbounded number of auxiliary registers. This would

make the verification problem hard or even undecidable. However, we show that it is actually enough

to delay a single transaction, i.e., a program admits an anomaly under SI iff it admits an anomaly

containing a single delayed transaction. This result implies that the number of auxiliary registers

needed by the instrumentation is bounded by the number of program variables, and that checking

robustness against SI can be reduced in linear time to a reachability problem under serializabil-

ity (the reachability problem encodes the existence of the chain of happens-before dependencies

mentioned above). The proof of this reduction relies on a non-trivial characterization of anomalies.

Proving robustness using commutativity dependency graphs. Based on the reduction

above, we also devise an approximated method for checking robustness based on the concept of

mover in Lipton’s reduction theory [120]. An event is a left (resp., right) mover if it commutes to

the left (resp., right) of another event (from a different process) while preserving the computation.

We use the notion of mover to characterize happens-before dependencies between transactions.

Roughly, there exists a happens-before dependency between two transactions in some execution if

one does not commute to the left/right of the other one. We define a commutativity dependency

graph which summarizes the happens-before dependencies in all executions of a given program

between transactions t as they appear in the program, transactions t\{w} where the writes of t are

t1

t2

t1 \ {r}

t2 \ {r}

t1 \ {w}

t2 \ {w}

Figure 4.2: Commutativity de-

pendency graph of WS where the

read of y is omitted.

deactivated (i.e., their effects are not visible outside the trans-

action), and transactions t \ {r} where the reads of t obtain

non-deterministic values. The transactions t \ {w} are used to

simulate issue events of delayed transactions (where writes are

not yet visible) while the transactions t\{r} are used to simulate

commit events of delayed transactions (which only write to the
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shared memory). Two transactions a and b are linked by an edge iff a cannot move to the right of b

(or b cannot move to the left of a), or if they are related by the program order (i.e., issued in some

order in the same process). Then a program is robust if for every transaction t, this graph does

not contain a path from t \ {w} to t \ {r} formed of transactions that do not write to a variable

that t writes to (the latter condition is enforced by SI since two concurrent transactions cannot

commit at the same time when they write to a common variable). For example, Figure 4.2 shows

the commutativity dependency graph of the modified WS program where the read of y is removed

from t1. The fact that it does not contain any path like above implies that it is robust.

4.3 Program Semantics Under Snapshot Isolation

The semantics of a program under SI is defined as follows. The shared variables are stored in a

central memory and each process keeps a replicated copy of the central memory. A process starts

a transaction by discarding its local copy and fetching the values of the shared variables from the

central memory. When a process commits a transaction, it merges its local copy of the shared

variables with the one stored in the central memory in order to make its updates visible to all

processes. During the execution of a transaction, the process stores the writes to shared variables

only in its local copy and reads only from its local copy. When a process merges its local copy with

the centralized one, it is required that there were no concurrent updates that occurred after the last

fetch from the central memory to a shared variable that was updated by the current transaction.

Otherwise, the transaction is aborted and its effects discarded.

A program configuration is a tuple gs = (ls, tstamp, Log) where ls : P → S associates a local

state in S to each process in P, tstamp : V → T stores the largest timestamp for each shared

variable, and Log : V → D holds the global valuation of shared variables. A local state is a tuple

〈pc, store, log, rval〉 where pc ∈ Lab is the program counter, i.e., the label of the next instruction

to be executed, store : V → D is the local valuation of the shared variables, log : V → {⊥, 1} is a

local log which marks shared variables which were updated in a transaction, and rval : R → D is

the valuation of the local registers. For a local state s, we use s.pc to denote the program counter

component of s, and similarly for all the other components of s. Given a transaction t ∈ T× T, we

use t.st to denote the start time of transaction t and t.ct to denote the commit time of t. Before

merging the updates in store with Log, after locally executing a transaction t, we check for every

variable x that t writes to (log(x) 6= ⊥) we have that tstamp(x) < t.st (i.e., there were no concurrent
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begin ∈ inst(ls(p).pc) img(ls.tstamp) < t.st s = ls(p)[log 7→ ε, store 7→ Log, pc 7→ next(pc)]

(ls, tstamp, Log, lk) begin(p, t)−−−−−−→ (ls[p 7→ s], tstamp, Log, lk)

r := x ∈ inst(ls(p).pc) ls(p).store[x] = v rval = ls(p).rval[r 7→ v]
s = ls(p)[rval 7→ rval, pc 7→ next(pc)]

(ls, tstamp, Log, lk) ld(p, t, x, v)−−−−−−−→ (ls[p 7→ s], tstamp, Log, lk)

x := v ∈ inst(ls(p).pc) log = ls(p).log[x 7→ 1] store = ls(p).store[x 7→ v]
s = ls(p)[log 7→ log, store 7→ store, pc 7→ next(pc)]

(ls, tstamp, Log, lk) isu(p, t, x, v)−−−−−−−→ (ls[p 7→ s], tstamp, Log, lk)

end ∈ inst(ls(p).pc) ∀x ∈ V. log[x] = ⊥ ∨ tstamp(x) < t.st img(ls.tstamp) < t.ct
Log = Log[x 7→ store[x] : x ∈ V, log[x] 6= ⊥]

tstamp = tstamp[x 7→ st.ct : x ∈ V, log[x] 6= ⊥] s = ls(p)[pc 7→ next(pc)]

(ls, tstamp, Log, lk) com(p, t)−−−−−→ (ls[p 7→ s], Log 7→ Log, tstamp 7→ tstamp, lk)

Figure 4.3: The set of transition rules defining snapshot isolation semantics model. We assume a

transaction identifier t : (st, ct) has two components.

writes to x). Then, we store the value of store(x) for every variable x that t writes to (log(x) 6= ⊥)

in Log(x). Also, for every variable x that t writes to, we store t.ct in tstamp(x).

The semantics of a program P under SI is defined as a LTS [P]SI = (C,Ev, gs0,CF,→) where

we assume that any program configuration can be final, i.e., CF = C. The set of events under SI is

defined as follow.

Ev = {begin(p, t), ld(p, t, x, v), isu(p, t, x, v), com(p, t) : p ∈ P, t ∈ T2, x ∈ V, v ∈ D}

where begin and com label transitions corresponding to the start and the commit of a transaction,

respectively. isu and ld label transitions corresponding to writing, resp., reading, a shared variable

during some transaction. The transition relation → is defined in Figure 4.3. For readability, the

events labeling a transition are written on top of →. A begin transition resets the local valuation

of the shared variables and fetches their values from the central memory. A com transition applies

the writes performed in a transaction to the central memory by merging the contents of the local

copy store with the central memory Log. An ld transition reads the value of a shared-variable from

the local copy store while an isu transition applies a new write to the local copy store.

An execution of program P, under snapshot isolation, is a sequence of events ev1 ·ev2 ·. . . labeling

the transitions, such that there exists a sequence of configurations gs0 · gs1 · . . . where gs0 is the

initial configuration before P starts execution and gsi−1
evi−−→ gsi is a valid transition for i > 1. The
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set of executions of P under SI is denoted by ExSI(P).

4.3.1 Trace

Formally, the trace of an execution ρ, under snapshot isolation, is obtained by (1) replacing each

sub-sequence of transitions in ρ corresponding to the same transaction, but excluding the com

transition, with a single “macro-event” isu(p, t), and (2) adding several standard relations between

these macro-events isu(p, t) and commit events com(p, t) to record the data-flow in ρ, e.g. which

transaction wrote the value read by another transaction. The sequence of isu(p, t) and com(p, t)

events obtained in the first step is called a summary of ρ. We say that a transaction t in ρ performs

an external read of a variable x if ρ contains an event ld(p, t, x, v) which is not preceded by a write

on x of t, i.e., an event isu(p, t, x, v). Also, we say that a transaction t writes a variable x if ρ

contains an event isu(p, t, x, v), for some v.

The trace tr(ρ) = (τ,PO,WR,WW,RW, STO) of an execution ρ consists of the summary τ of ρ

along with the program order PO, which relates any two issue events isu(p, t) and isu(p, t′) that occur

in this order in τ , write-read relation WR, which relates any two events com(p, t) and isu(p′, t′) that

occur in this order in τ such that t′ performs an external read of x, and com(p, t) is the last event in

τ before isu(p′, t′) that writes to x (to mark the variable x, we may use WR(x)), the write-write order

WW, which relates any two store events com(p, t) and com(p′, t′) that occur in this order in τ and

write to the same variable x (to mark the variable x, we may use WW(x)), the read-write relation

RW, which relates any two events isu(p, t) and com(p′, t′) that occur in this order in τ such that t

reads a value that is overwritten by t′, and the same-transaction relation STO, which relates the

issue event with the commit event of the same transaction. The read-write relation RW is formally

defined as RW(x) = WR−1(x); WW(x) and RW = ⋃
x∈V RW(x). If a transaction t reads the initial

value of x then RW(x) relates isu(p, t) to com(p′, t′) of any other transaction t′ which writes to x

(i.e., (isu(p, t), com(p′, t′)) ∈ RW(x)) (note that in the above relations, p and p′ might designate the

same process).

Since we reason about only one trace at a time, to simplify the writing, we may say that a trace

is simply a sequence τ as above, keeping the relations PO, WR, WW, RW, and STO implicit. The

set of traces of executions of a program P under SI is denoted by Tr(P)SI.

Happens before order. We introduce the happens-before relation on the events of a given trace

as the transitive closure of the union of all the relations in the trace, i.e., HB = (PO ∪ WW ∪
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WR ∪ RW ∪ STO)+. The happens-before relation between events is extended to transactions as

follows: a transaction t1 happens-before another transaction t2 6= t1 if the trace tr contains an

event of transaction t1 which happens-before an event of t2. The happens-before relation between

transactions is denoted by HBt and called transactional happens-before. For a trace of serializable

execution, the transactional happens-before and the happens-before relation coincide.

4.4 Robustness Against SI Relative to SER

Given a trace tr = (τ,PO,WR,WW,RW,STO) such that every event isu(p, t) in τ is immediately

followed by com(p, t). For simplicity, we write τ as a sequence of “atomic macro-events” (p, t) where

(p, t) denotes a sequence isu(p, t) · com(p, t). We say that t is atomic. Thus, (τ,PO,WR,WW,RW)

is a trace of a serializable execution as defined in Section 2.3.

Similar to Theorem 3.3, the following result characterizes traces of serializable executions. The

transactional happens-before of any trace under SER is acyclic, and conversely, any trace obtained

under SI with an acyclic transactional happens-before can be transformed into a trace under SER

by successive swaps of consecutive events in its summary, which are not related by happens-before.

Since multiple executions/traces can have the same (transactional) happens-before. It is possible

that a trace tr produced by snapshot isolation has has an acyclic transactional happens-before even

though isu(p, t) events may not be immediately followed by com(p, t) events. However, tr would be

equivalent, up to reordering of “independent” (or commutative) transitions, to a trace of serializable

execution.

Theorem 4.1 ([25, 156]). For any trace tr ∈ TrSER(P), the transactional happens-before of tr is

acyclic. Moreover, for any trace tr = (τ,PO,WR,WW,RW,STO) ∈ TrSI(P), if the transactional

happens-before of tr is acyclic, then there exists a permutation τ ′ of τ such that (τ ′,PO,WR,WW,RW,STO) ∈

TrSER(P).

As a consequence of Theorem 4.1, we define a trace tr to be serializable if it has the same happens-

before relations as a trace of a serializable execution. Let TrSER(P) denote the set of serializable

traces of a program P.

We now consider the problem of checking whether the snapshot isolation semantics of a program

produces only serializable traces.
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Definition 4.1. A program P is called robust against a snapshot isolation relative to serializability

iff TrSI(P) = TrSER(P).

By Theorem 4.1, the transactional happens-before HBt of a robustness violation tr ∈ TrSI(P) \

TrSER(P) is cyclic.

4.5 Minimal Violations

A trace which is not serializable must contain at least an issue and a commit event of the same

transaction that do not occur one after the other even after reordering of “independent” events.

Thus, there must exist an event that occur between the two which is related to both events via

the happens-before relation, forbidding the issue and commit to be adjacent. Otherwise, we can

build another trace with the same happens-before where events are reordered such that the issue

is immediately followed by the corresponding commit. The latter is a serializable trace which

contradicts the initial assumption.

We deduce from above, that a violation trace must contain at least an issue and a commit events

of the same transaction that are related via the happens-before through relation (Definition 3.3).

Otherwise, we can build another trace with the same happens-before where events are reordered

such that every issue isu(p, t) is immediately followed by the corresponding commit com(p, t). The

latter is a serializable trace which contradicts the initial assumption.

Lemma 4.1. Given a violation τ , there must exist a transaction t such that τ = α · isu(p, t) · β ·

com(p, t) · γ and isu(p, t) happens before com(p, t) through β where α, β, and γ are sequences of

events.

Given a violation of the from τ = α · isu(p, t) · β · com(p, t) · γ, we call t a delayed transaction in

the trace τ when isu(p, t) happens before com(p, t) through β.

We define the number of delays for a robustness violation τ , denoted by #(τ), as the total

number of delayed transactions in τ .

Definition 4.2 (Minimal violation). For a given program P, a violation τ is called minimal if it

has the least number of delays among all possible violations.

The characterization of robustness violations under SI is stated in the following theorem.
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isu(p1, t1) (p2, t2) com(p1, t1)

RW RW

(a) A violation of WS program.

isu(p3, t3) (p1, t1) (p2, t2) com(p3, t3)

RW WR RW

(b) A violation of RWC program.

Figure 4.4: (a) Corresponds to a violation where β = (p2, t2), t corresponds to t1, and a = b =

(p2, t2). (b) Corresponds to a violation where β = (p1, t1) · (p2, t2), t corresponds to t1, and a and

b correspond to (p1, t1) and (p2, t2), respectively.

Theorem 4.2. A program P is not robust under SI iff there exists a minimal violation in Tr(P)SI

of the following form:

τSI = α · isu(p, t) · β · com(p, t) where:

(a) isu(p, t) is the issue of the only delayed transaction in τ ; (Lemmas 4.3);

(b) isu(p, t) happens before com(p, t) through β (Lemma 4.1);

(c) for any event a ∈ β, we have that (isu(p, t), a) ∈ HB and (a, com(p, t)) ∈ HB (Lemma 4.1);

(d) there exist events a and b in β such that (isu(p, t), a) ∈ RW(x) and (b, com(p, t)) ∈ RW(y) with

x 6= y (Lemma 4.5);

(e) all transactions in β do not write to shared variables that t writes to (Lemma 4.4).

Above, τSI contains a single delayed transaction. The theorem above allows α = ε and β = a = b.

Figure 4.4 shows two violations against SI relative to SER of the form given in Theorem 4.2.

In the following, we give a series lemmas that constitute Theorem 4.2. For the remainder of the

chapter, we write a minimal violation in the shape τ = αA · isu(p, t) · β · com(p, t) · γ to say that t

is the first delayed transaction in τ (w.r.t. the order between issue events of delayed transactions)

and all the events in the sequence αA are atomic macro events. The following lemma shows that

we can assume w.l.o.g. that γ contains only commit events.

Lemma 4.2. Let τ = αA · isu(p, t) ·β ·com(p, t) ·γ be a minimal violation such that isu(p, t) happens-

before com(p, t) through β. Then, τ ′ = αA · isu(p, t) · β · com(p, t) · γ′, such that γ′ contains only

commit events from delayed transactions is also a minimal violation.

Proof. Similar to the proof of Lemma 3.4.
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Next lemma shows that in a minimal violation τ = αA · isu(p, t) · β · com(p, t) · γ such that γ

contains only commit events, we have β contains no delayed transaction and γ = ε. We show that

if it were to have a delayed transaction t0 in β, then it is possible to obtain a new violation where

either t is not delayed and obtain a new violation with a smaller number of delayed transactions

which contradicts the minimality assumption.

Lemma 4.3. Let τ = αA · isu(p, t) · β · com(p, t) · γ be a minimal violation such that γ contains only

commit events. Then, β does not contain delayed transactions and γ = ε.

Proof. We suppose by contradiction that β contains a delayed transaction t0 issued by a process p0.

It is important to notice that there must exist β′ ⊂ β and com(p0, t0) ∈ β such that isu(p0, t0)

happens before com(p0, t0) through β. Otherwise, we can commute the events until com(p0, t0)

occurs just after isu(p0, t0) and in this case transaction t0 is not delayed by p0. Thus, τ is of the

form τ = αA·isu(p, t)·β1·isu(p0, t0)·β′·com(p0, t0)·β2·com(p, t)·γ (β = β1·isu(p0, t0)·β′·com(p0, t0)·β2

where we assume w.l.o.g that com(p0, t0) occurs in β).

Since in β1 · isu(p0, t0) · β′ · com(p0, t0) · β2 no event depends on isu(p, t). Thus, we can safely

remove isu(p, t) and its associated commit event com(p, t) and obtains: τ ′ = αA · β1 · isu(p0, t0) · β′ ·

com(p0, t0) ·β2 ·γ. which is an violation because of the transactional happens-before cycle caused by

isu(p0, t0) happens-before com(p0, t0) through β′. In τ ′, transaction t was not delayed, therefore, τ ′

has less number of delayed transactions than τ . Thus, τ is not a minimal violation, a contradiction

to our hypothesis. Therefore, t is the only delayed transaction in τ which implies that γ = ε.

An important property of SI is that the execution of concurrent transactions that write to the

same location is disallowed. Thus, the event com(p, t) can take place only if there are no concurrent

writes that were committed after isu(p, t) and write to the same variables as com(p, t).

Lemma 4.4. Let τ = αA · isu(p, t) · β · com(p, t) be a minimal violation such that isu(p, t) happens-

before com(p, t) through β. Then, for every a ∈ β, a does not write to a shared variable that com(p, t)

writes to.

The next lemma characterizes the relation between the delayed transaction and the commit

of the underlying transaction. It shows the type of the first and last happens-before relations in

the happens-before path between the issue event of the delayed transaction and its corresponding

commit event.
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Lemma 4.5. Let τ = αA · isu(p, t) · β · com(p, t) be a minimal anomaly under SI. Then, the

following must hold: there exist (p0, t0), (p1, t1) ∈ β ((p0, t0) and (p1, t1) might be identical) where

(isu(p, t), (p0, t0)) ∈ RW, and ((p1, t1), com(p, t)) ∈ RW.

Proof. The proof comes from the fact that β does not contain events that write to the same variables

that t writes to.

As a direct consequence of Theorem 4.3, the next corollary states that certain classes of programs

are robust against SI relative to SER.

Corollary 4.1. Given a program P, if one of the following holds:

(a) every transaction of P contains a single instruction (either a read or a write);

(b) every transaction of P contains only read/write operations that access a single variable (dif-

ferent transactions might read (reps., write) from (resp., to) different variables);

(c) there exists a shared-variable x, every transaction of P contains a write to x.

then P is robust against SI relative to SER.

4.6 Reducing Robustness to SC Reachability

We define a program instrumentation which mimics the delay of a transaction by doing the writes

on auxiliary variables which are not visible to other transactions. After the delay of a transaction,

we track happens-before dependencies until we execute a transaction that does a “read” on one of

the variables that the delayed transaction writes to (this would expose a read-write dependency

to the commit event of the delayed transaction). While tracking happens-before dependencies we

cannot execute a transaction that writes to a variable that the delayed transaction writes to since

SI forbids write-write conflicts between concurrent transactions.

Concretely, given a program P, we define an instrumentation of P such that P is not robust

against SI iff the instrumentation reaches an error state under serializability. The instrumentation

uses auxiliary variables in order to simulate a single delayed transaction which we prove that it is

enough for deciding robustness. Let isu(p, t) be the issue event of the only delayed transaction. The

process p that delayed t is called the Attacker. When the attacker finishes executing the delayed
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transaction it stops. Other processes that execute transactions afterwards are called Happens-Before

Helpers.

The instrumentation uses two copies of the set of shared variables in the original program to

simulate the delayed transaction. We use primed variables x′ to denote the second copy. Thus, when

a process becomes the attacker, it will only write to the second copy that is not visible to other

processes including the happens-before helpers. The writes made by the other processes including

the happens-before helpers are made visible to all processes.

When the attacker delays the transaction t, it keeps track of the variables it accessed, in par-

ticular, it stores the name of one of the variables it writes to, x, it tracks every variable y that it

reads from and every variable z that it writes to. When the attacker finishes executing t, and some

other process wants to execute some other transaction, the underlying transaction must contain a

write to a variable y that the attacker reads from. Also, the underlying transaction must not write

to a variable that t writes to. We say that this process has joined happens-before helpers through

the underlying transaction. While executing this transaction, we keep track of each variable that

was accessed and the type of operation, whether it is a read or write. Afterward, in order for some

other transaction to “join” the happens-before path, it must not write to a variable that t writes

to so it does not violate the fact that SI forbids write-write conflicts, and it has to satisfy one of

the following conditions in order to ensure the continuity of the happens-before dependencies: (1)

the transaction is issued by a process that has already another transaction in the happens-before

dependency (program order dependency), (2) the transaction is reading from a shared variable

that was updated by a previous transaction in the happens-before dependency (write-read depen-

dency), (3) the transaction writes to a shared variable that was read by a previous transaction in

the happens-before dependency (read-write dependency), or (4) the transaction writes to a shared

variable that was updated by a previous transaction in the happens-before dependency (write-write

dependency). We introduce a flag for each shared variable to mark the fact that the variable was

read or written by a previous transaction.

Processes continue executing transactions as part of the chain of happens-before dependencies,

until a transaction does a read on the variable x that t wrote to. In this case, we reached an error

state which signals that we found a cycle in the transactional happens-before relation.

The instrumentation uses four varieties of flags: a) global flags (i.e., HB, atrA , astA), b) flags

local to a process (i.e., p.a and p.hbh), and c) flags per shared variable (i.e., x.event, x.event′, and
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x.eventI). We will explain the meaning of these flags along with the instrumentation. At the start

of the execution, all flags are initialized to null (⊥).

Whether a process is an attacker or happens-before helper is not enforced syntactically by the

instrumentation. It is set non-deterministically during the execution using some additional process-

local flags. Each process chooses to set to true at most one of the flags p.a and p.hbh, implying

that the process becomes an attacker or happens-before helper, respectively. At most one process

can be an attacker, i.e., set p.a to true. In the following, we detail the instrumentation for read and

write instructions of the attacker and happens-before helpers.

4.6.1 Instrumentation of the Attacker

Figure 4.5 lists the instrumentation of the write and read instructions of the attacker. Each process

passes through an initial phase where it executes transactions that are visible immediately to all

the other processes (i.e., they are not delayed), and then non-deterministically it can choose to

delay a transaction at which point it sets the flag atrA to true. During the delayed transaction it

chooses non-deterministically a write instruction to a variable x and stores the name of this variable

in the flag astA (line (4.5)). The values written during the delayed transaction are stored in the

primed variables and are visible only to the current transaction, in case the transaction reads its own

writes. For example, given a variable z, all writes to z from the original program are transformed

into writes to the primed version z′ (line (4.3)). Each time, the attacker writes to z, it sets the flag

z.event′ = 1. This flag is used later by transactions from happens-before helpers to avoid writing

to variables that the delayed transaction writes to.

A read on a variable, y, in the delayed transaction takes her value from the primed version, y′.

In every read in the delayed transaction, we set the flag y.event to ld (line (4.1)) to be used latter in

order for a process to join the happens-before helpers. Afterward, the attacker starts the happens-

before path, and it sets the variable HB to true (line (4.2)) to mark the start of the happens. When

the flag HB is set to true the attacker stops executing new transactions.

4.6.2 Instrumentation of the Happens-Before Helpers

The remaining processes, which are not the attacker, can become a happens-before helper. Figure

4.6 lists the instrumentation of write and read instructions of a happens-before helper. In a first

phase, each process executes the original code until the flag atrA is set to true by the attacker. This
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[[l1: r := x; goto l2;]]A =

// Read before the delayed transaction

l1: assume atrA =⊥ ; goto lx1;

lx1: r := x; goto l2;

// Read in the delayed transaction

l1: assume atrA 6=⊥ ∧p.a 6=⊥ ; goto lx2;

lx2: r := x′; goto lx3;

lx3: x.event := ld; goto lx4; (4.1)

lx4: assume HB =⊥ ; goto lx5;

lx5: HB := true; goto l2; (4.2)

lx4: assume HB 6=⊥ ; goto l2;

[[l1: x := e; goto l2;]]A =

// Write before the delayed transaction

l1: assume atrA =⊥ ; goto lx1;

lx1: x := e; goto l2;

// Write in the delayed transaction

l1: assume atrA 6=⊥ ∧p.a 6=⊥ ; goto lx2;

lx2: x′ := e; goto lx3; (4.3)

lx3: x.event′ := 1; goto l2; (4.4)

// Special write in the delayed transaction

l1: assume astA = x.event =⊥ ∧ atrA 6=⊥ ; goto lx4;

lx4: x′ := e; goto lx5;

lx5: astA := ‘x‘; goto lx6; (4.5)

lx8: x.event′ := 1; goto l2;

Figure 4.5: Instrumentation of the Attacker. We use ‘x‘ to denote the name of the shared variable

x.

flag signals the “creation” of the secondary copy of the shared-variables, which can be observed only

by the attacker. At this point, the flag HB is set to true, and the happens-before helper process

chooses non-deterministically a first transaction through which it wants to join the set of happens-

before helpers, i.e., continue the happens-before dependency created by the existing happens-before

helpers. When a process chooses a transaction, it makes a pledge (while executing the begin

instruction) that during this transaction it will either read from a variable that was written to by

another happens-before helper, write to a variable that was accessed (read or written) by another

happens-before helper, or write to a variable that was read from in the delayed transaction. When

the pledge is met, the process sets the flag p.hbh to true (lines (4.7) and (4.11)). The execution is

blocked if a process does not keep its pledge (i.e., the flag p.hbh is null) at the end of the transaction.

Note that the first process to join the happens-before helper has to execute a transaction t which

writes to a variable that was read from in the delayed transaction since this is the only way to build

a happens-before between t, and the delayed transaction (PO is not possible since t is not from the

attacker, WR is not possible since t does not see the writes of the delayed transaction, and WW is

not possible since t cannot write to a variable that the delayed transaction writes to). We use a

flag x.event for each variable x to record the type (read ld or write st) of the last access made by
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[[l1: r := x; goto l2;]]HbH =

// Read before the delayed transaction

l1: assume HB =⊥ ∧p.a =⊥ ; goto lx1;

lx1: r := x; goto l2; (4.6)

// Read after the delayed transaction

l1: assume HB 6=⊥ ; goto lx2;

lx2: r := x; goto lx3;

lx3: assume x.eventI = st ∧ p.hbh =⊥ ; goto lx4;

lx4: p.hbh := true; goto l2; (4.7)

lx3: assume x.event =⊥ ; goto lx5;

lx5: x.event := ld; goto l2; (4.8)

lx3: assume x.event 6=⊥ ∨ p.hbh 6=⊥ ; goto l2;

[[l1: x := e; goto l2;]]HbH =

// Write before the delayed transaction

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lx1;

lx1: x := e; goto l2;

// Write after the delayed transaction

l1: assume HB 6=⊥ ∧p.a =⊥ ; goto lx2;

lx2: assume x.event′ 6=⊥ ; assume false; (4.9)

lx2: assume x.event′ =⊥ ; goto lx3;

lx3: x := e; goto lx4;

lx4: x.event := st; goto lx5; (4.10)

lx5: assume x.eventI 6=⊥ ∧ p.hbh =⊥ ; goto lx6;

lx6: p.hbh := true; goto l2; (4.11)

lx5: assume x.eventI =⊥ ∨ p.hbh 6=⊥ ; goto l2;

Figure 4.6: Instrumentation of Happens-Before Helpers.

a happens-before helper (lines (4.8) and (4.10)). During the execution of a transaction that is part

of the happens-before dependency, we must ensure that the transaction does not write to variable

y where y.even′ is set to 1. Otherwise, the execution is blocked (line 4.9).

The happens-before helpers continue executing their instructions, until one of them reads from

the shared variable x whose name was stored in astA . This establishes a happens-before dependency

between the delayed transaction and a “fictitious” store event corresponding to the delayed trans-

action that could be executed just after this read of x. The execution does not have to contain

this store event explicitly since it is always enabled. Therefore, at the end of every transaction,

the instrumentation checks whether the transaction read x. If it is the case, then the execution

stops and goes to an error state to indicate that this is a robustness violation. Notice that after

the attacker stops, the only processes that are executing transactions are happens-before helpers,

which is justified since when a process is not from a happens-before helper it implies that we cannot

construct a happens-before dependency between a transaction of this process and the delayed trans-

action which means that the two transactions commute which in turn implies that this process’s

transactions can be executed before executing the delayed transaction of the attacker.
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4.6.3 Correctness

The role of a process in an execution is chosen non-deterministically at runtime. Therefore, the

final instrumentation of a given program P, denoted by [[P]], is obtained by replacing each labeled

instruction 〈linst〉 with the concatenation of the instrumentations corresponding to the attacker

and the happens-before helpers, i.e., [[〈linst〉]] ::= [[〈linst〉]]A [[〈linst〉]]HbH

The following theorem states the correctness of the instrumentation.

Theorem 4.3. P is not robust against SI iff [[P]] reaches the error state.

If a program is not robust, this implies that the execution of the program under SI results in a

trace where the happens-before is cyclic. Which is possible only if the program contains at least one

delayed transaction. In the proof of this theorem, we show that is sufficient to search for executions

that contain a single delayed transaction.

Notice that in the instrumentation of the attacker, the delayed transaction must contain a read

and write instructions on different variables. Also, the transactions of the happens-before helpers

must not contain a write to a variable that the delayed transaction writes to.

Proof. Soundness. Suppose that the instrumented program reaches an error state. Then, the

execution’s trace of the instrumented program is of the form:

τ? = τ1 · isu(p, t) · τ2 · (p′, t′)

The last transaction, (p′, t′) performed by a process p′′ that does a read accessing the variable

x = astA and is part of the happens-before helpers. This is because the conditional check can be

performed only by a process (pHbH1) that is one of the happens-before helpers and is currently

executing.

In order for pHbH1, to join the set of happens-before helpers, it must have found that the

valuation of the flag HB is not null which means there exists some process p that is the attacker

that sets the flag HB to true. In τ1, the attacker, happens-before helpers, and other processes

start executing the original instructions without setting any flags or delaying any transactions.

Afterwards, the attacker issues the delayed transaction isu(p, t) and it starts populating the primed

variables x′ and reading from them and setting the flags x.event′ to 1 for every variable x that

it writes to and y.event to ld for every variable y that it reads from. During the execution of t,

the attacker sets the flag HB to true. Hence, the happens-before helpers start checking at every
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instruction whether the flags x.event are set to either st or ld. If so, they start populating the flags

x.event and l.event as well. When HB is set to true, the attacker stop issuing new transactions.

Therefore, all transaction in τ2 are from the happens-before helpers.

We now transform τ? into the following execution trace:

τ = τ ′1 · isu(p, t) · τ ′2 · com(p, t)

Here, τ ′1 is the subsequence of all τ1 events that are produced by instructions from P without

the conditionals checking (i.e., the assume statements). The transaction t which is executed by the

attacker represents the delayed transactions in τ with the removal of the conditionals checking and

the flags setting. τ ′2 is the subsequence of all events of τ2 produced by transactions from P which are

executed only by the happens-before helpers except the conditionals checking and the flags setting.

We add the commit event com(p0, t) to describe the commit of the delayed transaction that was

delayed by the attacker. τ is a possible execution’s trace of the program P because τ? is a result

of an execution of the instrumented version of P and we have removed from τ all the effects of the

instrumentation, and replaced the stores to auxiliary variables by issues of stores without changing

the dependency between all the events in the execution.

All transactions in τ ′2 are from the happens-before helpers. Transactions in τ ′2 form a happens-

before path between isu(p, t) and com(p, t). Also, we have a, b = (p′, t′) ∈ τ ′2 such that (isu(p, t), a) ∈

RW(y) and (b, com(p, t)) ∈ RW(x). No transaction in τ ′2 writes to a variable that t writes to. Hence,

τ indeed holds all the properties of the violation described in Theorem 4.2.

Completeness. Suppose we have a violation of a given program P:

τ = τ1 · isu(p, t) · τ2 · com(p, t)

such that τ maintains all the properties given in Theorem 4.2. We demonstrate that there is

a possible serializable execution based on τ of the instrumented version of the program P that

reaches the error state. We show how to build the instrumented program execution. At the start

of the execution, τ1, the attacker, happens-before helpers, and other processes execute the original

transactions with just conditional checks. Afterwards, the attacker delays the transaction isu(p, t)

and starts populating the flags. In isu(p, t), the attacker issues a store to the shared variable

‘x‘ = astA and ∃ b ∈ τ2 such that (b, com(p, t)) ∈ RW(x). All writes that were executed in t by the

attacker are invisible to the remaining processes which includes the happens-before helpers. While
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executing t, the attacker sets the content of the flag y.event to ld for every variable y that it reads

from and it sets the flag HB to true.

On the other hand, the processes which are executing their transactions without delaying them

will attempt to join the happens-before helpers by checking if the flag HB is set to true. If so,

they start the attempt of joining the happens-before helpers and when it succeed they joining the

happens-before helpers and start executing their transactions which constitute τ2. The first executed

transaction by the happens-before helpers is a described above which signals the start of τ2 and

the happen before dependency. Thus, in τ2, we have only transactions form the happens-before

helpers (because the attacker stop when the flag HB is set to true) such that they are related by

the happen before dependency that started from isu(p, t) until it reaches com(p, t) through τ2. We

know that there must exist b ∈ τ2 such that (b, com(p, t)) ∈ RW(‘x‘ = astA). b is equivalent to the

last executed transaction by the happens-before helpers that accesses the shared variable x. Thus,

the underlying happens-before helper will set the content of the flag x.event to ld. Hence, when

the underlying process executes the com instruction of this transaction, it will go to the error state

(lines (3.32), (3.33), and (3.34)) and in this case the instrumented version of the program P has

reached the desired error state.

The following corollary states the complexity of checking robustness for finite-state programs1

against snapshot isolation relative to serializability. The upper bound is a direct consequence of

Theorem 4.3 and of previous results concerning the reachability problem in concurrent programs

running over a sequentially-consistent memory, with a fixed [108] or parametric number of pro-

cesses [146]. For the lower bound, given an instance of the reachability problem under sequential

consistency, denoted by (P, `), we construct a program P ′ where each statement s of P is a different

transaction (guarded by a global lock), and where reaching the location ` enables the execution of

a “gadget” that corresponds to the WS program in Figure 4.1a. Executing each statement under a

global lock ensures that every execution of P ′ under snapshot isolation is serializable, and faithfully

represents an execution of the original P under sequential consistency. Moreover, P reaches ` iff P ′

contains a robustness violation, which is due to the execution of WS.

Corollary 4.2. Checking robustness of finite-state programs against snapshot isolation is PSPACE-

complete when the number of processes is fixed and EXPSPACE-complete, otherwise.
1Programs with a bounded number of variables taking values from a bounded domain.

100



4.7 Proving Program Robustness

As a more pragmatic alternative to the reduction in the previous section, we define an approximated

method for proving robustness which is inspired by Lipton’s reduction theory [120].

Movers. Given an execution τ = ev1 ·. . .·evn of a program P under serializability (where each event

evi corresponds to executing an entire transaction), we say that the event evi moves right (resp.,

left) in τ if ev1 · . . . ·evi−1 ·evi+1 ·evi ·evi+2 · . . . ·evn (resp., ev1 · . . . ·evi−2 ·evi ·evi−1 ·evi+1 · . . . ·evn)

is also a valid execution of P, the process of evi is different from the process of evi+1 (resp., evi−1),

and both executions reach to the same end state σn. For an execution τ , let instOfτ (evi) denote

the transaction that generated the event evi. A transaction t of a program P is a right (resp., left)

mover if for all executions τ of P under serializability, the event evi with instOf(evi) = t moves

right (resp., left) in τ .

If a transaction t is not a right mover, then there must exist an execution τ of P under serializ-

ability and an event evi of τ with instOf(evi) = t that does not move right. This implies that there

must exist another evi+1 of τ which caused evi to not be a right mover. Since evi and evi+1 do not

commute, then this must be because of either a write-read, write-write, or a read-write dependency.

If t′ = instOf(evi+1), we say that t is not a right mover because of t′ and some dependency that is

either write-read, write-write, or read-write. Notice that when t is not a right mover because of t′

then t′ is not a left mover because of t.

We define MWR as a binary relation between transactions such that (t, t′) ∈ MWR when t is not

a right mover because of t′ and a write-read dependency. We define the relations MWW and MRW

corresponding to write-write and read-write dependencies in a similar way.

Read/Write-free transactions. Given a transaction t, we define t \ {r} as a variation of t where

all the reads from shared variables are replaced with non-deterministic reads, i.e., 〈reg〉 := 〈var〉

statements are replaced with 〈reg〉 := ? where ? denotes non-deterministic choice. We also define

t \ {w} as a variation of t where all the writes to shared variables in t are disabled. Intuitively,

recalling the reduction to SC reachability in §4.6, t \ {w} simulates the delay of a transaction by

the Attacker, i.e., the writes are not made visible to other processes, and t \ {r} approximates the

commit of the delayed transaction which only applies a set of writes.

Commutativity dependency graph. Given a program P, we define the commutativity depen-

dency graph as a graph where vertices represent transactions and their read/write-free variations.
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Two vertices which correspond to the original transactions in P are related by a program order

edge, if they belong to the same process. The other edges in this graph represent the “non-mover”

relations MWR, MWW, and MRW.

Given a program P, we say that the commutativity dependency graph of P contains a non-mover

cycle if there exist a set of transactions t0, t1, . . . , tn of P such that the following hold:

(a) (t′′0, t1) ∈ MRW where t′′0 is the write-free variation of t0 and t1 does not write to a variable

that t0 writes to;

(b) for all i ∈ [1, n], (ti, ti+1) ∈ (PO ∪MWR ∪MWW ∪MRW), ti and ti+1 do not write to a shared

variable that t0 writes to;

(c) (tn, t′0) ∈ MRW where t′0 is the read-free variation of t0 and tn does not write to a variable that

t0 writes to.

A non-mover cycle approximates an execution of the instrumentation defined in §4.6 in between

the moment that the Attacker delays a transaction t0 (which here corresponds to the write-free

variation t′′0) and the moment where t0 gets committed (the read-free variation t′0).

The following theorem shows that the acyclicity of the commutativity dependency graph of a

program implies the robustness of the program. Actually, the notion of robustness in this theorem

relies on a slightly different notion of trace where store-order and write-order dependencies take

into account values, i.e., store-order relates only writes writing different values and the write-order

relates a read to the oldest write (w.r.t. execution order) writing its value. This relaxation helps

in avoiding some harmless robustness violations due to for instance, two transactions writing the

same value to some variable.

Theorem 4.4. For a program P, if the commutativity dependency graph of P does not contain

non-mover cycles, then P is robust.

Proof. We prove the contrapositive, i.e., ¬(2) ⇒ ¬(1). In the proof, we use the result of Theorem

4.3.

Assuming that the program P is not robust. Then, based on Theorem 4.3 there must exist an

execution of the instrumentation of P that reaches the error state. We suppose that t is the delayed

transaction, tins is the instrumentation of t (writes are stored in auxiliary registers), and p is the

attacker process. Therefore, the execution of the instrumentation of P that reaches the error state

is of the form τ = α · (p, tins) · a · β · b where a writes to a variable that t reads from and b reads
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from a variable that t writes to. We assume that b is the first event that does read that accesses a

variable that t writes to. In the following we show that the commutativity dependency graph of P

contains a non-mover cycle where t is t0. We consider two cases, first case when a = b and β = ε,

and second case is when a 6= b.

First case: τ = α · (p, tins) · a where a writes to a variable that t reads from, reads from a

variable that t writes to, and does not write to a variable that t writes to. Assume that a = (p1, t1).

Thus, we can obtain that τ0 = α · (p1, t1) · (p, t′) is a trace of serializable execution of P where t′

is the reads free instantiation of t. Since ((p1, t1), com(p, t)) ∈ RW then t1 reads a value that t′ is

overwriting with a different value. Therefore, τ ′0 = α · (p, t′) · (p1, t1) is either a trace of serializable

execution with a different end state than τ0 has or it is not a trace of serializable execution. Thus,

(t1, t′) ∈ MRW and t1 does not write to a variable that t writes to. Similarly, we can obtain that

τn = α ·(p, t′′)·(p1, t1) is a trace of serializable execution of P where t′′ is the writes free instantiation

of t. Since (isu(p, t), (p1, t1)) ∈ RW then t′′ reads a value that t1 is overwriting with a different value.

Therefore, τ ′n = α · (p1, t1) · (p, t′′) is either a trace of serializable execution with a different end state

than τn has or it is not a trace of serializable execution. Thus, (t′′, t1) ∈ MRW and t1 does not write

to a variable that t writes to.

Second case: τ = α ·(p, tins) ·a ·β ·b where a writes to a variable that t reads from, b reads from a

variable that t writes to, and every transaction in a ·β ·b does not write to a variable that t writes to.

Assume that a = (p1, t1) and b = (pn, tn). Since the transactions in (p1, t1) ·β ·(pn, tn) constitute the

happens-before path in the trace τ . Then, for every (pi, ti), (pi+1, ti+1) ∈ (p1, t1) ·β ·(pn, tn) we have

that ((pi, ti), (pi+1, ti+1)) ∈ (PO∪WR∪WW∪RW). In the case ((pi, ti), (pi+1, ti+1)) ∈ (WR∪WW∪

RW), we can obtain that τi = α·γ ·(pi, ti)·(pi+1, ti+1) is a trace of serializable execution of P where γ

either empty (i.e., ε) or γ = (p1, t1) · · · · ·(pi−1, ti−1). Since, ((pi, ti), (pi+1, ti+1)) ∈ (WR∪WW∪RW),

then swapping ti and ti + 1 will result in either reordering of writes or write overwrites a read, or

read obtains a different value. Therefore, τ ′i = α ·γ ·(pi+1, ti+1) ·(pi, ti) is either a trace of serializable

execution with a different end state than τi has or it is not a trace of serializable execution. Thus,

(ti, ti+1) ∈ MRW. Also, we have that ti and ti+1 do not write to a variable that t writes to. Similar

to the first case, we can obtain that τ0 = α · (p1, t1) · β · (pn, tn) · (p, t′) is a trace of serializable

execution of P where t′ is the reads free instantiation of t. Since ((pn, tn), com(p, t)) ∈ RW then tn
reads a value that t′ is overwriting with a different one. Therefore, τ ′0 = α · (p1, t1) ·β · (p, t′) · (pn, tn)

is either a trace of serializable execution with a different end state than τ0 has or it is not a trace
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of serializable execution. Thus, (tn, t′) ∈ MRW and tn does not write to a variable that t writes to.

Furthermore, we can obtain that τn = α · (p, t′′) · (p1, t1) is a trace of serializable execution of P

where t′′ is the writes free instantiation of t. Since (isu(p, t), (p1, t1)) ∈ RW then t′′ reads a value that

t1 is overwriting with a different one. Then, τ ′n = α · (p1, t1) · (p, t′′) is either a trace of serializable

execution with a different end state than τn has or it is not a trace of serializable execution. Thus,

(t′′, t1) ∈ MRW and t1 does not write to a variable that t writes to.

4.8 Experiments

To test the applicability of our robustness checking algorithms, we have considered a benchmark

of 10 applications extracted from the literature related to weakly consistent databases in general.

Each application consists of a set of SQL transactions that can be called an arbitrary number of

times from an arbitrary number of processes. A first set of applications are open source projects

that were implemented to be run over the Cassandra database, that were used in [58]. The set is

constituted of:

Cassieq-Core2: A distributed queue. It manipulates data stored on a single table: USERAC-

COUNTS. It has eight transactions: 1) AddNewAccount for adding a new account; 2) DeleteAnAc-

count for deleting an account; 3) AddNewKey for adding a new key to an existing account; 4)

DeleteAKey for removing a key from an existing account; 5) GetAnAccount to check whether there

exist an account with a given identifier; 6) GetAccounts to display all existing accounts; 7) GetAc-

countKeys for inspecting all the keys of a certain account; 8) GetAccountKey to check whether a

certain account does hold a certain key.

Currency-Exchange3: A trading service. It manipulates data stored on a single table: TRADES.

It has six transactions: 1) SaveTrade for registering a new trade; 2) ViewListTrades for viewing

the trades that occurred before a given timestamp; 3) ViewTrade for inspecting a given trade; 4)

ViewTradeUser for looking for a user who carried out a given trade; 5) GetNbTrades for inspecting

the number of trades; 6) GetTradeTimeStamp for inspecting the timestamp of a given trade.

Shopping-Cart4: An on-line shopping service. It manipulates data stored on two tables: USERS

and PRODUCTS. It has four transactions: 1) GetUser for querying whether a user exist; 2) Get-
2https://github.com/paradoxical-io/cassieq
3https://github.com/Haiyan2/Trade
4https://github.com/nikhilswagle/Shopping_Cart_Angular_Cassandra
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ProductsByCategory for finding products that belong to a given category; 3) GetProductByUPC for

finding a product by its UPC identification; 4) GetCategories for displaying all available categories.

Playlist5: An on-line music service. It manipulates data stored on three tables: USERS, TRACKS,

and ARTISTS. It has fourteen transactions: 1) AddTrack for adding a new track; 2) GetTrack for

inspecting a certain track; 3) AddUser for adding a new user; 4) GetUser for querying whether a

user exist; 5) CreatePlayList for creating a new playlist for a a given user; 6) ListArtistByLetter for

listing artists by the first letters of their names; 7) ListSongsByArtist for listing tracks produced by a

certain artist; 8) ListSongsByGenre for listing tracks in a certain genre group; 9) AddTrackToPlaylist

for adding an existing track to an existing user playlist; 10) DeleteTrackFromPlaylist for removing a

track from a user playlist; 11) GetPlaylistForUser for displaying the contents of a playlist of a certain

user; 12) GetPlaylistNames for displaying all the playlists of a user; 13) DeletePlayListForUser for

deleting a user’s playlist; 14) DeleteUser for deleting a user.

RoomStore6: A messages bot service. It manipulates data stored on a single table: MESSAGES.

It has five transactions: 1) AddMessage for adding a new message; 2) GetLastMessage for getting

the messages of a user; 3) GetMessages for displaying messages that were added in a certain date;

4) GetSpecificMessage for displaying a specific message that was added in a certain date and time;

5) GetTopicMessages for displaying messages that are in a certain topic group.

The second set of applications is extracted from the literatures and is constituted of:

TPC-C [161]: An on-line transaction processing benchmark widely used in the database com-

munity. It manipulates data stored on nine tables: WAREHOUSE, DISTRICT, STOCK, ITEMS,

CUSTOMERS, HISTORY, ORDER, NEWORDER, and ORDERLINE. It has five transactions:

1) NewOrder for placing a new order on a set of items; 2) Delivery for delivering a withstanding

order to a given warehouse; 3) Payment for a given customer paying a withstanding amount of

credit; 4) OrderStatus for inspecting certain orders and the associated order lines; 5) StockLevel

for inspecting stocks at a given warehouse and the withstanding orders at this warehouse.

SmallBank [32]: A simplified representation of a banking application. It manipulates data stored

on three tables: ACCOUNT, SAVING, and CHECKING. It has five transactions: 1) Balance for

inspecting both the saving and checking balances of a given user account; 2) DepositChecking for

depositing a certain amount into the checking balance; 3) TransactSaving for depositing or with-
5https://github.com/DataStaxDocs/playlist
6https://github.com/mebigfatguy/roomstore
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drawing into/form the saving balance; 4) Amalgamate (Amg) for moving the saving and checking

balances of an account to another account checking balance; 5) WriteCheck for withdrawing from

a given account’s checking balance.

FusionTicket [105]: A movie ticketing application. It manipulates data stored on a single ta-

ble: EVENTS. It has four transactions: 1) AddEvent for adding new event in a given venue; 2)

ViewEvent for inspecting an event and the number of tickets available for this event; 3) Browse for

viewing events that are planned in a given venue; 4) Purchase for buying a ticket at a certain event.

Auction [47]: An online auction application It manipulates data stored on three tables: BIDS,

ITEMS, and USERS. It has five transactions: 1) RegBid for placing a bid on an item; 2) RegUser

for user’s registration; 3) ViewItem for viewing the number of bids for an item; 4) ViewUser for

inspecting a user’s name; 5) ViewUsers for displaying all registered users.

Courseware [93, 129]: A course registration service. It manipulates data stored on three tables:

STUDENT, COURSE, and ENROLED. It has five transactions: 1) RegisterStudent for registering

a new student; 2) AddCourse for adding a new course; 3) EnrollStudent for enrolling a given

registered student in a given course; 4) RemoveCourse for removing a given course; 5) QueryCourses

for inspecting available courses.

Our first experiment concerns the reduction of robustness checking to SC reachability. For each

application, we have constructed a client (i.e., a program composed of transactions defined within

that application) with a fixed number of processes (at most 3) and a fixed number of transactions

(between 3 and 7 transactions per process). We have encoded the instrumentation of this client,

defined in §4.6, in the Boogie programming language [41] and used the Civl verifier [99] in order

to check whether the assertions introduced by the instrumentation are violated (which would rep-

resent a robustness violation). Note that since clients are of fixed size, this requires no additional

assertions/invariants (it is an instance of bounded model checking). We model tables as unbounded

maps in Boogie and SQL queries as first-order formulas over these maps (that may contain existen-

tial or universal quantifiers). To model the uniqueness of primary keys we use Boogie linear types.

The results are reported in Table 5.2. We have found two of the applications, Courseware and

SmallBank, to not be robust against snapshot isolation. The violation in Courseware is caused by

transactions RemoveCourse and EnrollStudent that execute concurrently, RemoveCourse removing

a course that has no registered student and EnrollStudent registering a student to the same course.

We get an invalid state where a student is registered for a course that was removed. SmallBank’s
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violation contains transactions Balance, TransactSaving, and WriteCheck. One process executes

WriteCheck where it withdraws an amount from the checking account after checking that the sum

of the checking and savings accounts is bigger than this amount. Concurrently, a second process

executes TransactSaving where it withdraws an amount from the saving account after checking that

it is smaller than the amount in the savings account. Afterwards, the second process checks the

contents of both the checking and saving accounts. We get an invalid state where the sum of the

checking and savings accounts is negative.

Since in the first experiment we consider fixed clients, the lack of assertion violations does not

imply that the application is robust (this instantiation of our reduction can only be used to reveal

robustness violations). Thus, a second experiment concerns the robustness proof method based

on commutativity dependency graphs (§4.7). For the applications that were not identified as non-

robust by the previous method, we have used Civl to construct their commutativity dependency

graphs, i.e., identify the “non-mover” relations MWR, MWW, and MRW (Civl allows to check whether

some code fragment is a left/right mover). In all cases, the graph didn’t contain non-mover cycles,

which allows to conclude that the applications are robust.

The experiments show that our results can be used for finding violations and proving robustness,

and that they apply to a large set of interesting examples. Note that the reduction to SC and

the proof method based on commutativity dependency graphs are valid for programs with SQL

(select/update) queries.

4.9 Related Work

Similar to the previous chapter, in this chapter we borrow some high-level principles from [51]

which addresses the robustness against TSO. We reuse the high-level methodology of characterizing

minimal violations according to some measure and defining reductions to SC reachability using a

program instrumentation. Instantiating this methodology in SI context is however very different,

several fundamental differences being:

– SI and TSO admit different sets of relaxations and SI is a model of transactional databases.

– We use a different notion of measure: the measure in [51] counts the number of events between

a write issue and a write commit while our notion of measure counts the number of delayed

transactions. This is a first reason for which the proof techniques in [51] do not extend to our
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Table 4.1: An overview of the analysis results. CDG stands for commutativity dependency graph.

The columns PO and PT show the number of proof obligations and proof time in second, respec-

tively. T stands for trivial when the application has only read-only transactions.

Application #T Robustness Reachability Analysis CDG Analysis

PO PT PO PT

Auction 4 yes 70 0.3 20 0.5

Courseware 5 no 59 0.37 na na

FusionTicket 4 yes 72 0.3 34 0.5

SmallBank 5 no 48 0.28 na na

TPC-C 5 yes 54 0.7 82 3.7

Cassieq-Core 8 yes 173 0.55 104 2.9

Currency-Exchange 6 yes 88 0.35 26 3.5

PlayList 14 yes 99 4.63 236 7.3

RoomStore 5 yes 85 0.3 22 0.5

Shopping-Cart 4 yes 58 0.25 T T

context.

– Transactions induce more complex traces: two transactions can be related by several de-

pendency relations since each transaction may contain multiple reads and writes to different

locations. In TSO, each action is a read or a write to some location, and two events are related

by a single dependency relation. Also, the number of dependencies between two transactions

depends on the execution since the set of reads/writes in a transaction evolves dynamically.

p1:

t1: [ if (x > y)

r1 = x - y

x = y ]

||

p2:

t2: [ if (y > x)

r2 = y - x

y = x ]

Figure 4.7: A robust program.

The existing work on the verification of robust-

ness for transactional programs provide either over- or

under-approximate analyses. Our commutativity de-

pendency graphs are similar to the static dependency

graphs used in [33, 47, 57, 58, 70], but they are more

precise, i.e., reducing the number of false alarms. The static dependency graphs record happens-

before dependencies between transactions based on a syntactic approximation of the variables ac-

cessed by a transaction. For example, our techniques are able to prove that the program in Figure
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4.7 is robust, while this is not possible using static dependency graphs. The latter would contain a

dependency from transaction t1 to t2 and one from t2 to t1 just because syntactically, each of the

two transactions reads both variables and may write to one of them. Our dependency graphs take

into account the semantics of these transactions and do not include this happens-before cycle. Other

over- and under-approximate analyses have been proposed in [129]. They are based on encoding

executions into first order logic, bounded-model checking for the under-approximate analysis, and a

sound check for proving a cut-off bound on the size of the happens-before cycles possible in the exe-

cutions of a program, for the over-approximate analysis. The latter is less precise than our method

based on commutativity dependency graphs. For instance, extending the TPC-C application with

additional transactions will make the method in [129] fail while our method will succeed in proving

robustness (the three transactions are for adding a new product, adding a new warehouse based on

the number of customers and warehouses, and adding a new customer, respectively).

Finally, the idea of using Lipton’s reduction theory for checking robustness has been also used

in the context of the TSO memory model [54], but the techniques are completely different, e.g., the

TSO technique considers each update in isolation and does not consider non-mover cycles like in

our commutativity dependency graphs.

4.10 Conclusion

We studied the robustness against snapshot isolation relative to serializability. We proposed a

characterization for a class of traces that are possible under snapshot isolation but are not possible

under serializability, called minimal violations. Using this characterization, we showed that the

robustness problem is polynomial time reducible to reachability under serializability (the size of

the program increases linearly). We also used this characterization to develop an approximated

method for proving robustness based on Lipton’s reduction theory. We evaluated our techniques

on a benchmark of distributed applications extracted from the literature and open source Github

projects. The evaluation showed the effectiveness of our techniques for proving (non-)robustness of

practical distributed applications.

109



Chapter 5

Robustness Between Weak

Consistency Models

5.1 Introduction

In this chapter, we consider the sequence of increasingly strong consistency models, causal con-

sistency (CC), prefix consistency (PC), and snapshot isolation (SI), and investigate the problem of

checking robustness for a given program against weakening the consistency model to one in this

range. In §5.2, we outline the robustness problems we study in this chapter: robustness against

substituting SI with PC and PC with CC, respectively. Robustness against substituting SI with

PC can be obtained as the conjunction of these two cases. In §5.3, we formally define programs

traces under the above consistency models. In §5.4, we show that checking robustness against

substituting PC with CC is reduced to the problem of checking robustness against substituting SER

with CC that we studied in Chapter 3. In §5.5, we show that checking robustness for a program

P is reduced to a reachability (assertion checking) problem in a composition of P under PC with a

monitor that checks whether a PC behavior is an “anomaly”, i.e., admitted by P under PC, but not

under SI. In §5.7, we present a more pragmatic approach for establishing robustness, which avoids

a non-reachability proof under SER, that builds on the concept of commutativity dependency graph

introduced in Chapter 4. We give sufficient conditions for robustness in all the cases mentioned

above, which characterize the commutativity dependency graph associated to a given program. Fi-

nally, in §5.8, we tested the applicability of the proposed techniques on a benchmark containing 7

challenging applications extracted from previous work [76, 105, 58]. These techniques are precise
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enough for proving or disproving the robustness of all of these applications, for all combinations of

the consistency models discussed above.

1 Process 1

2 CreateEvent(v, e1, 3):

3 [ Tickets[v][e1] := 3 ]

4 CountTickets(v):

5 [ r :=
∑
e

Tickets[v][e] ]

1 Process 2

2 CreateEvent(v, e2, 3):

3 [ Tickets[v][e2] := 3 ]

4 CountTickets(v):

5 [ r :=
∑
e

Tickets[v][e] ]

(a) FusionTicket.

CreateEvent(v,e1,3)

CountTickets(v) //r=3

CreateEvent(v,e2,3)

CountTickets(v) //r=3

HB PO
HB

HB PO
HB

(b) A CC trace of FusionTicket.

1 Process 1

2 Register(u, p1):

3 [ r := RegisteredUsers[u]

4 assume r == 0

5 RegisteredUsers[u] := 1

6 Password[u] := p1 ]

1 Process 2

2 Register(u, p2):

3 [ r := RegisteredUsers[u]

4 assume r == 0

5 RegisteredUsers[u] := 1

6 Password[u] := p2 ]

(c) Twitter.

Register(u,p1) Register(u,p2)
HB

HB

(d) A CC and PC trace of Twitter.

1 Process 1

2 RegisterRd(u, p1):

3 [ r := RegisteredUsers[u]

4 assume r == 0 ]

5 RegisterWr(u, p1):

6 [ RegisteredUsers[u] := 1

7 Password[u] := p1 ]

1 Process 2

2 RegisterRd(u, p2):

3 [ r := RegisteredUsers[u]

4 assume r == 0 ]

5 RegisterWr(u, p2):

6 [ RegisteredUsers[u] := 1

7 Password[u] := p2 ]

(e) Transformed Twitter.

RegisterRd(u,p1)

RegisterWr(u,p1)

RegisterRd(u,p2)

RegisterWr(u,p2)

HB
HB PO

HB
HB

HB PO

(f) A CC and SER trace of transformed Twitter.

1 Process 1

2 PlaceBet(1,2):

3 [ assume time < EXPIRY_time

4 Bets[1] := 2 ]

1 Process 2

2 PlaceBet(2,3):

3 [ assume time < EXPIRY_time

4 Bets[2] := 3 ]

1 Process 3

2 SettleBet():

3 [ Bets’ := Bets

4 n := Bets’.Length

5 assume time > EXPIRY_time & n > 0

6 select i s.t. Bets’[i] 6= ⊥

7 return := Bets’[i] ]

(g) Betting.

PlaceBet(1,2) PlaceBet(2,3) SettleBet() // return=2
HB

HB

(h) A PC and SI trace of Betting.

PlaceBet(1,2) SettleBet() PlaceBet(2,3)

(i) The commutativity dependency graph of Betting.

Figure 5.1: Programs and traces under different consistency models.
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5.2 Overview

We give an overview of the robustness problems we investigate in this chapter, discussing first the

case PC vs. CC, and then SI vs PC. We end with an example that illustrates the more pragmatic

robustness checking technique based on commutativity arguments.

Robustness PC vs CC. We illustrate the robustness against substituting PC with CC using the

FusionTicket and the Twitter programs in Figure 5.1a and Figure 5.1c, respectively. FusionTicket

manages tickets for a number of events, each event being associated with a venue. Its state consists

of a two-dimensional map that stores the number of tickets for an event in a given venue (r is a

local variable, and the assignment in CountTickets is interpreted as a read of the shared state).

The program has two processes and each process contains two transactions. The first transaction

creates an event e in a venue v with a number of tickets n, and the second transaction computes the

total number of tickets for all the events in a venue v. A possible candidate for a specification of

this program is that the values computed in CountTickets are monotonically increasing since each

such value is computed after creating a new event. Twitter provides a transaction for registering

a new user with a given username and password, which is executed by two parallel processes.

Its state contains two maps that record whether a given username has been registered (0 and 1

stand for non-registered and registered, respectively) and the password for a given username. Each

transaction first checks whether a given username is free (see the assume statement). The intended

specification is that the user must be registered with the given password when the registration

transaction succeeds.

A program is robust against substituting PC with CC if its set of behaviors under the two models

coincide. We model behaviors of a given program as traces, which record standard control-flow

and data-flow dependencies between transactions, e.g., the order between transactions in the same

session and whether a transaction reads the value written by another (read-from). The transitive

closure of the union of all these dependency relations is called happens-before. Figure 5.1b pictures

a trace of FusionTicket where the concrete values which are read in a transaction are written under

comments. In this trace, each process registers a different event but in the same venue and with

the same number of tickets, and it ignores the event created by the other process when computing

the sum of tickets in the venue.

Figure 5.1b pictures a trace of FusionTicket under CC, which is a witness that FusionTicket is

not robust against substituting PC with CC. This trace is also a violation of the intended speci-
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fication since the number of tickets is not increasing (the sum of tickets is 3 in both processes).

The happens-before dependencies (pictured with HB labeled edges) include the program-order PO

(the order between transactions in the same process), and read-write dependencies, since an in-

stance of CountTickets(v) does not observe the value written by the CreateEvent transaction in

the other process (the latter overwrites some value that the former reads). This trace is allowed

under CC because the transaction CreateEvent(v, e1, 3) executes concurrently with the transaction

CountTickets(v) in the other process, and similarly for CreateEvent(v, e2, 3). However, it is not

allowed under PC since it is impossible to define a total commit order between CreateEvent(v, e1, 3)

and CreateEvent(v, e2, 3) that justifies the reads of both CountTickets(v) transactions (these reads

should correspond to the updates in a prefix of this order). For instance, if we assume that

CreateEvent(v, e1, 3) commits before CreateEvent(v, e2, 3), then CountTickets(v) in the second

process must observe the effect of CreateEvent(v, e1, 3) as well since it observes the effect of

CreateEvent(v, e2, 3). However, this contradicts the fact that CountTickets(v) computes the sum

of tickets as being 3.

On the other hand, Twitter is robust against substituting PC with CC. For instance, Figure

5.1d pictures a trace of Twitter under CC, where the assume in both transactions pass. In this

trace, the transactions Register(u,p1) and Register(u,p2) execute concurrently and are unaware

of each other’s writes (they are not causally related). The HB dependencies include write-write

dependencies since both transactions write on the same location (we consider the transaction in

Process 2 to be the last one writing to the Password map), and read-write dependencies since each

transaction reads RegisteredUsers that is written by the other. This trace is also allowed under

PC since the commit order can be defined such that Register(u,p1) is ordered before Register(u,p2),

and then both transactions read from the initial state (the empty prefix). Note that this trace has

a cyclic happens-before which means that it is not allowed under serializability.

Checking robustness PC vs CC. We reduce the problem of checking robustness against substitut-

ing PC with CC to the robustness problem against substituting SER with CC (the latter reduces to a

reachability problem under SER [45]). This reduction relies on a syntactic program transformation

that rewrites PC behaviors of a given program P to SER behaviors of another program P ′. The pro-

gram P ′ is obtained by splitting each transaction t of P into two transactions: the first transaction

performs all the reads in t and the second performs all the writes in t (the two are related by pro-

gram order). Figure 5.1e shows this transformation applied on Twitter. The trace in Figure 5.1f is a
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serializable execution of the transformed Twitter which is “observationally” equivalent to the trace

in Figure 5.1d of the original Twitter, i.e., each read of the shared state returns the same value and

the writes on the shared state are applied in the same order (the acyclicity of the happens-before

shows that this is a serializable trace). The transformed FusionTicket coincides with the original

version because it contains no transaction that both reads and writes on the shared state.

We show that PC behaviors and SER behaviors of the original and transformed program, respec-

tively, are related by a bijection. In particular, we show that any PC vs. CC robustness violation of

the original program manifests as a SER vs. CC robustness violation of the transformed program,

and vice-versa. For instance, the CC trace of the original Twitter in Figure 5.1d corresponds to the

CC trace of the transformed Twitter in Figure 5.1f, and the acyclicity of the latter (the fact that it is

admitted by SER) implies that the former is admitted by the original Twitter under PC. On the other

hand, the trace in Figure 5.1b is also a CC of the transformed FusionTicket and its cyclicity implies

that it is not admitted by FusionTicket under PC, and thus, it represents a robustness violation.

Robustness SI vs PC. We illustrate the robustness against substituting SI with PC using Twitter

and the Betting program in Figure 5.1g. Twitter is not robust against substituting SI with PC, the

trace in Figure 5.1d being a witness violation. This trace is also a violation of the intended speci-

fication since one of the users registers a password that is overwritten in a concurrent transaction.

This PC trace is not possible under SI because Register(u,p1) and Register(u,p2) observe the same

prefix of the commit order (i.e., an empty prefix), but they write to a common memory location

Password[u] which is not allowed under SI.

On the other hand, the Betting program in Figure 5.1g, which manages a set of bets, is robust

against substituting SI with PC. The first two processes execute one transaction that places a bet of

a value v with a unique bet identifier id, assuming that the bet expiration time is not yet reached

(bets are recorded in the map Bets). The third process contains a single transaction that settles

the betting assuming that the bet expiration time was reached and at least one bet has been placed.

This transaction starts by taking a snapshot of the Bets map into a local variable Bets’, and then

selects a random non-null value (different from ⊥) in the map to correspond to the winning bet.

The intended specification of this program is that the winning bet corresponds to a genuine bet that

was placed. Figure 5.1g pictures a PC trace of Betting where SettleBet observes only the bet of the

first process PlaceBet(1,2). The HB dependency towards the second process denotes a read-write

dependency (SettleBet reads a cell of the map Bets which is overwritten by the second process).
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This trace is allowed under SI because no two transactions write to the same location.

Checking robustness SI vs PC. We reduce robustness against substituting SI with PC to a reach-

ability problem under SER. This reduction is based on a characterization of happens-before cycles1

that are possible under PC but not SI, and the transformation described above that allows to simu-

late the PC semantics of a program on top of SER. The former is used to define an instrumentation

(monitor) for the transformed program that reaches an error state iff the original program is not

robust. Therefore, we show that the happens-before cycles in PC traces that are not admitted by SI

must contain a transaction that (1) overwrites a value written by another transaction in the cycle

and (2) reads a value overwritten by another transaction in the cycle. For instance, the trace of

Twitter in Figure 5.1d is not allowed under SI because Register(u,p2) overwrites a value written by

Register(u,p1) (the password) and reads a value overwritten by Register(u,p1) (checking whether

the username u is registered). The trace of Betting in Figure 5.1g is allowed under SI because its

happens-before is acyclic.

Checking robustness using commutativity arguments. Based on the reductions above, we

propose an approximated method for proving robustness based on the concept of mover in Lipton’s

reduction theory [120]. A transaction is a left (resp., right) mover if it commutes to the left (resp.,

right) of another transaction (by a different process) while preserving the computation. We use the

notion of mover to characterize the data-flow dependencies in the happens-before. Roughly, there

exists a data-flow dependency between two transactions in some execution if one does not commute

to the left/right of the other one.

We define a commutativity dependency graph which summarizes the happens-before dependen-

cies in all executions of a transformed program (obtained by splitting the transactions of the original

program as explained above), and derive a proof method for robustness which inspects paths in this

graph. Two transactions t1 and t2 are linked by a directed edge iff t1 cannot move to the right of

t2 (or t2 cannot move to the left of t1), or if they are related by the program order. Moreover, two

transactions t1 and t2 are linked by an undirected edge iff they are the result of splitting the same

transaction.

A program is robust against substituting PC with CC if roughly, its commutativity dependency

graph does not contain a simple cycle of directed edges with two distinct transactions t1 and t2,
1Traces with an acyclic happens-before are not robustness violations because they are admitted under serializability,

which implies that they are admitted under the weaker model SI as well.
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such that t1 does not commute left because of another transaction t3 in the cycle that reads a

variable that t1 writes to, and t2 does not commute right because of another transaction t4 in the

cycle (t3 and t4 can coincide) that writes to a variable that t2 either reads from or writes to2.

For instance, Figure 5.1i shows the commutativity dependency graph of the transformed Betting

program, which coincides with the original Betting because PlaceBet(1,2) and PlaceBet(2,3) are

write-only transactions and SettleBet() is a read-only transaction. Both simple cycles in Figure 5.1i

contain just two transactions and therefore do not meet the criterion above which requires at least

3 transactions. Therefore, Betting is robust against substituting PC with CC.

A program is robust against substituting SI with PC, if roughly, its commutativity dependency

graph does not contain a simple cycle with two successive transactions t1 and t2 that are linked by

an undirected edge, such that t1 does not commute left because of another transaction t3 in the

cycle that writes to a variable that t1 writes to, and t2 does not commute right because of another

transaction t4 in the cycle (t3 and t4 can coincide) that writes to a variable that t2 reads from3.

Betting is also robust against substituting SI with PC for the same reason (simple cycles of size 2).

5.3 Consistency Models

Syntax. We assume w.l.o.g. that every transaction is written as a sequence of reads or assume state-

ments followed by a sequence of writes (a single goto statement from the sequence of read/assume

instructions transfers the control to the sequence of writes). In the context of the consistency models

we study in this chapter, every program can be equivalently rewritten as a set of transactions of

this form.

Semantics. We consider the serializability (SER), causal consistency (we focus on causal conver-

gence) (CC), and snapshot isolation (SI) consistency models semantics as described in Chapters 2, 3,

and 4, respectively.

In the semantics of a program under prefix consistency (PC), shared variables are stored in a

central memory and each process keeps a local valuation of these variables. When a process starts

a new transaction, it fetches a consistent snapshot of the shared variables from the central memory

and stores it in its local valuation of these variables. During the execution of a transaction in a

process, writes to shared variables are stored in the local valuation of these variables, and in a
2The transactions t1, t2, t3, and t4 correspond to t1, ti, tn, and ti+1, respectively, in Theorem 5.7.
3The transactions t1, t2, t3, and t4 correspond to t1, t2, tn, and t3, respectively, in Theorem 5.8.

116



transaction log. To read a shared variable, a process takes its own valuation of the shared variable.

A process commits a transaction by applying the updates in the transaction log on the central

memory in an atomic way (to make them visible to all processes).

We use the standard model of executions of a program, i.e., trace. We assume that each trans-

action in a program is identified uniquely using a transaction identifier from a set T. f : T → 2S

denotes a mapping that associates each transaction in T with a sequence of read and write events

from the set

S = {re(t, x, v),we(t, x, v) : t ∈ T, x ∈ V, v ∈ D}

where re(t, x, v) is a read of x returning v, and we(t, x, v) is a write of v to x.

Definition 5.1. A trace is a tuple tr = (ρ, f ,TO,PO,WR,WW,RW) where ρ ⊆ T is a set of

transaction identifiers, and

• TO is a mapping giving the order between events in each transaction, i.e., it associates each

transaction t in ρ with a total order TO(t) on f (t)× f (t).

• PO is the program order relation, a strict partial order on ρ× ρ that orders every two trans-

actions issued by the same process.

• WR is the read-from relation between distinct transactions (t1, t2) ∈ ρ×ρ representing the fact

that t2 reads a value written by t1.

• WW is the store order relation on ρ × ρ between distinct transactions that write to the same

shared variable.

• RW is the conflict order relation between distinct transactions, defined by RW = WR−1; WW

(; denotes the sequential composition of two relations).

For simplicity, for a trace tr = (ρ, f ,TO,PO,WR,WW,RW), we write t ∈ tr instead of t ∈ ρ.

We also assume that each trace contains a fictitious transaction that writes the initial values of all

shared variables, and which is ordered before any other transaction in program order. Also, TrX(P)

is the set of traces representing executions of program P under a consistency model X.

For each X ∈ {CC, PC, SI, SER}, the set of traces TrX(P) can be described using the set of

properties in Table 5.1. A trace tr is possible under causal consistency iff there exist two relations

CO a partial order (causal order) and ARB a total order (arbitration order) that includes CO, such

117



that the properties AxCausal, AxArb, and AxRetVal hold [71, 52]. AxCausal guarantees that the

program order and the read-from relation are included in the causal order, and AxArb guarantees

that the causal order and the store order are included in the arbitration order. AxRetVal guarantees

that a read returns the value written by the last write in the last transaction that contains a write

to the same variable and that is ordered by CO before the read’s transaction. We use AxCC to

denote the conjunction of these three properties. A trace tr is possible under prefix consistency

iff there exist a causal order CO and an arbitration order ARB such that AxCC holds and the

property AxPrefix holds as well [71]. AxPrefix guarantees that every transaction observes a prefix of

transactions that are ordered by ARB before it. We use AxPC to denote the conjunction of AxCC

and AxPrefix. A trace tr is possible under snapshot isolation iff there exist a causal order CO and

an arbitration order ARB such that AxPC holds and the property AxConflict holds [71]. AxConflict

guarantees that if two transactions write to the same variable then one of them must observe the

other. We use AxSI to denote the conjunction of AxPC and AxConflict. A trace tr is serializable

iff there exist a causal order CO and an arbitration order ARB such that the property AxSer holds

which implies that the two relations CO and ARB coincide. Note that for any given program P,

TrSER(P) ⊆ TrSI(P) ⊆ TrPC(P) ⊆ TrCC(P).

For a given trace tr = (ρ, f ,TO,PO,WR,WW,RW), the happens before order is the transitive

closure of the union of all the relations in the trace, i.e., HB = (PO ∪WR ∪WW ∪ RW)+. A classic

result states that a trace tr is serializable iff HB is acyclic [25, 156]. Note that HB is acyclic implies

that WW is a total order between transactions that write to the same variable, and (PO ∪WR)+

and (PO ∪WR ∪WW)+ are acyclic.

5.3.1 Robustness

In this chapter, we investigate the problem of checking whether a program P under a semantics

Y ∈ {PC, SI} produces the same set of traces as under a weaker semantics X ∈ {CC, PC}.

We illustrate the notion of robustness on the programs in Figure 5.2, which are commonly used

in the literature. In all programs, transactions of the same process are aligned vertically and ordered

from top to bottom. Each read instruction is commented with the value it reads in some execution.

The store buffering (SB) program in Figure 5.2a contains four transactions that are issued by

two distinct processes. We emphasize an execution where t2 reads 0 from y and t4 reads 0 from x.

This execution is allowed under CC since the two writes by t1 and t3 are not causally dependent.
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AxCausal CO+
0 ⊆ CO

AxArb ARB+
0 ⊆ ARB

AxCC AxRetVal ∧ AxCausal ∧ AxArb

AxPrefix ARB; CO ⊆ CO

AxPC AxPrefix ∧ AxCC

AxConflict WW ⊆ CO

AxSI AxConflict ∧ AxPC

AxSer AxRetVal ∧ AxCausal ∧ AxArb ∧ CO = ARB
where

CO0 = PO ∪WR and ARB0 = PO ∪WR ∪WW

AxRetVal = ∀ t ∈ tr . ∀ re(t, x, v) ∈ f (t) we have that

• there exist a transaction t0 = MaxARB({t′ ∈ tr | (t′, t) ∈ CO ∧ ∃ we(t′, x, ·) ∈ f (t′)}) and an

event we(t0, x, v) = MaxTO(t0)({we(t0, x, ·) ∈ f (t0)}).

Table 5.1: Declarative definitions of consistency models. For an order relation ≤, a = Max≤(A) iff

a ∈ A ∧ ∀ b ∈ A. b ≤ a. [x := 1]t1

[r1 := y] //0t2

[y := 1] t3

[r2 := x] //0 t4

PO RW PORW

(a) Store Buffering (SB).

[r1 := x //0

x := r1 + 1]
t1

[r2 := x //0

x := r2 + 1]
t2

WW

RW

(b) Lost Update (LU).

[r1 := x //0

y := 1]
t1

[r2 := y //0

x := 1]
t2

RW

RW

(c) Write Skew (WS).
[x := 1]t1

[y := 1]t2

[r1 := y] //1 t3

[r2 := x] //1 t4

PO WR POWR

(d) Message Passing (MP).

Figure 5.2: Litmus programs

Thus, t2 and t4 are executed without seeing the writes

from t3 and t1, respectively. However, this execution is

not feasible under PC (which implies that it is not feasible

under both SI and SER). In particular, we cannot have

neither (t1, t3) ∈ ARB nor (t3, t1) ∈ ARB which contra-

dicts the fact that ARB is total order. For example, if

(t1, t3) ∈ ARB, then (t1, t4) ∈ CO (since ARB; CO ⊂ CO)

which contradicts the fact that t4 does not see t1. Sim-

ilarly, (t3, t1) ∈ ARB implies that (t3, t2) ∈ CO which

contradicts the fact that t2 does not see t3. Thus, SB is

not robust against CC relative to PC.

The lost update (LU) program in Figure 5.2b has two

transactions that are issued by two distinct processes. We

highlight an execution where both transactions read 0

from x. This execution is allowed under PC since both
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transactions are not causally dependent and can be executed in parallel by the two processes. How-

ever, it is not allowed under SI since both transactions write to a common variable (i.e., x). Thus,

they cannot be executed in parallel and one of them must see the write of the other. Thus, LU is

not robust against PC relative to SI.

The write skew (WS) program in Figure 5.2c has two transactions that are issued by two distinct

processes. We highlight an execution where t1 reads 0 from x and t2 reads 0 from y. This execution

is allowed under SI since both transactions are not causally dependent, do not write to a common

variable, and can be executed in parallel by the two processes. However, this execution is not

allowed under SER since one of the two transactions must see the write of the other. Thus, WS is

not robust against SI relative to SER.

The message passing (MP) program in Figure 5.2d has four transactions issued by two processes.

Because t1 and t2 are causally dependent, under any semantics X ∈ {CC, PC, SI, SER} we only have

three possible executions of MP, which correspond to either t3 and t4 not observing the writes of t1
and t2, or t3 and t4 observe the writes of both t1 and t2, or t4 observes the write of t1 (we highlight

the values read in the second case in Figure 5.2d). Therefore, the executions of this program under

the four consistency models coincide. Thus, MP is robust against CC relative to any other model.

5.4 Robustness Against CC Relative to PC

We show that checking robustness against CC relative to PC can be reduced to checking robustness

against CC relative to SER. The crux of this reduction is a program transformation that allows to

simulate the PC semantics of a program P using the SER semantics of a program P♣. Checking

robustness against CC relative to SER can be reduced in polynomial time to reachability under

SER [45].

Given a program P with a set of transactions Tr(P), we define a program P♣ such that every

transaction t ∈ Tr(P) is split into a transaction t[r] that contains all the read/assume statements

in t (in the same order) and another transaction t[w] that contains all the write statements in t (in

the same order). In the following, we establish the following result:

Theorem 5.1. A program P is robust against CC relative to PC iff P♣ is robust against CC relative

to SER.

The proof of this theorem relies on several intermediate results concerning the relationship
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between traces of P and P♣. Let tr = (ρ,PO,WR,WW,RW) ∈ TrX(P) be a trace of a program

P under a semantics X. We define the trace tr♣ = (ρ♣,PO♣,WR♣,WW♣,RW♣) where every

transaction t ∈ tr is split into two transactions t[r] ∈ tr♣ and t[w] ∈ tr♣, and the dependency

relations are straightforward adaptations, i.e.,

• PO♣ is the smallest transitive relation that includes (t[r], t[w]) for every t, and (t[w], t′[r]) if

(t, t′) ∈ PO,

• (t′[w], t[r]) ∈ WR♣, (t′[w], t[w]) ∈ WW♣, and (t′[r], t[w]) ∈ RW♣ if (t′, t) ∈ WR, (t′, t) ∈ WW,

and (t′, t) ∈ RW, respectively.
[r1 = x] //0t1[r]

[x = r1 + 1]t1[w]

[r2 = x] //0 t2[r]

[x = r2 + 1] t2[w]
WW

PO
RW
RW

PO

Figure 5.3: A trace of the transformed

LU program (LU♣).

For instance, Figure 5.3 pictures the trace tr♣ for the

LU trace tr given in Figure 5.2b. For traces tr of pro-

grams that contain singleton transactions, e.g., SB in Fig-

ure 5.2a, tr♣ coincides with tr .

Conversely, for a given trace tr♣ = (ρ♣,PO♣,WR♣,WW♣,RW♣) ∈

TrX(P♣) of a program P♣ under a semantics X, we define the trace tr = (ρ,PO,WR,WW,RW) where

every two components t[r] and t[w] are merged into a transaction t ∈ tr . The dependency relations

are defined in a straightforward way, e.g., if (t′[w], t[w]) ∈WW♣ then (t′, t) ∈WW.

The following lemma shows that for any semantics X ∈ {CC, PC, SI}, if tr ∈ TrX(P) for a

program P, then tr♣ is a valid trace of P♣ under X, i.e., tr♣ ∈ TrX(P♣). Intuitively, this lemma

shows that splitting transactions in a trace and defining dependency relations appropriately cannot

introduce cycles in these relations and preserves the validity of the different consistency axioms.

The proof of this lemma relies on constructing a causal order CO♣ and an arbitration order ARB♣
for the trace tr♣ starting from the analogous relations in tr . In the case of CC, these are the smallest

transitive relations such that:

• PO♣ ⊆ CO♣ ⊆ ARB♣, and

• if (t1, t2) ∈ CO then (t1[w], t2[r]) ∈ CO♣, and if (t1, t2) ∈ ARB then (t1[w], t2[r]) ∈ ARB♣.

For PC and SI, CO♣ must additionally satisfy: if (t1, t2) ∈ ARB, then (t1[w], t2[w]) ∈ CO♣. This is

required in order to satisfy the axiom AxPrefix, i.e., ARB♣; CO♣ ⊂ CO♣, when (t1[w], t2[r]) ∈ ARB♣
and (t2[r], t2[w]) ∈ CO♣.

This construction ensures that CO♣ is a partial order and ARB♣ is a total order because CO

is a partial order and ARB is a total order. Also, based on the above rules, we have that: if
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(t1[w], t2[r]) ∈ CO♣ then (t1, t2) ∈ CO, and similarly, if (t1[w], t2[r]) ∈ ARB♣ then (t1, t2) ∈ ARB.

Lemma 5.1. If tr ∈ TrX(P), then tr♣ ∈ TrX(P♣).

Proof. We start with the case X = CC. We first show that tr♣ satisfies AxCausal and AxArb.

For AxCausal, let t′1 ∈ {t1[r], t1[w]} and t′2 ∈ {t2[r], t2[w]}, such that (t′1, t′2) ∈ (PO♣ ∪ WR♣)+.

By the definition of CO♣, we have that either (t′1 = t1[r], t′2 = t2[w]) ∈ PO♣ and t1 = t2 or

(t1, t2) ∈ (PO∪WR)+, which implies that (t1, t2) ∈ CO. In both cases we obtain that (t′1, t′2) ∈ CO♣.

The axiom AxCausal can be proved in a similar way.

Next, we show that tr♣ satisfies the property AxRetVal. Let t be a transaction in tr that contains

a read event re(t, x, v). Let t0 be the transaction in tr such that

t0 = MaxARB({t′ ∈ tr | (t′, t) ∈ CO ∧ ∃ we(t′, x, ·) ∈ f (t′)}).

The read value v must have been written by t0 since tr satisfies AxRetVal. Thus, the read re(t, x, v)

in t[r] of tr♣ must return the value written by t0[w]. From the definitions of CO♣ and ARB♣, we

get

t1[w] ∈ {t′[w] ∈ tr♣ | (t′[w], t[r]) ∈ CO♣ ∧ ∃ we(t′[w], x, ·) ∈ f (t′[w])}

iff

t1 ∈ {t′ ∈ tr | (t′, t) ∈ CO ∧ ∃ we(t′, x, ·) ∈ f (t′)}

because (t1[w], t2[r]) ∈ CO♣ implies (t1, t2) ∈ CO. Since (t1[w], t2[w]) ∈ ARB♣ implies (t1, t2) ∈

ARB, we also obtain that

t0[w] = MaxARB♣({t′[w] ∈ tr♣ | (t′[w], t[r]) ∈ CO♣ ∧ ∃ we(t′[w], x, ·) ∈ f (t′[w])})

and since the read re(t, x, v) in t[r] of tr♣ returns the value written by t0[w], tr♣ satisfies AxRetVal.

For the case X = PC, we show that tr♣ satisfies the property AxPrefix (the other axioms are

proved as in the case of CC). Suppose we have (t′1, t′2) ∈ ARB♣ and (t′2, t′3) ∈ CO♣ where t′1 ∈

{t1[r], t1[w]}, t′2 ∈ {t2[r], t2[w]}, and t′3 ∈ {t3[r], t3[w]}. The are five cases to be discussed:

1. (t′1 = t1[r], t′2 = t2[w]) ∈ PO♣ and t1 = t2 and (t2, t3) ∈ CO,

2. (t1, t2) ∈ ARB and (t2, t3) ∈ CO,

3. (t1, t2) ∈ ARB and (t′2 = t2[r], t′3 = t3[w]) ∈ PO♣ and t2 = t3,

4. (t′1 = t1[r], t′2 = t2[w]) ∈ PO♣ and t1 = t2 and (t2, t3) ∈ ARB and t′3 = t3[w],

122



5. (t1, t2) ∈ ARB and (t2, t3) ∈ ARB and t′3 = t3[w].

Cases (a) and (b) imply that (t1, t3) ∈ CO since ARB; CO ⊂ ARB, which implies that (t′1, t′3) ∈ CO♣.

Cases (c), (d), and (e) imply that (t1, t3) ∈ ARB and t′3 = t3[w] then we get that (t1[w], t3[w]) ∈ CO♣
and t′3 = t3[w] which means that (t′1, t′3) ∈ CO♣.

Note that the rule (t1[w], t2[w]) ∈ CO♣ if (t1, t2) ∈ ARB cannot change the fact that

t1[w] ∈ {t′[w] ∈ tr♣ | (t′[w], t[r]) ∈ CO♣ ∧ ∃ we(t′[w], x, ·) ∈ f (t′[w])}

iff

t1 ∈ {t′ ∈ tr | (t′, t) ∈ CO ∧ ∃ we(t′, x, ·) ∈ f (t′)}

Thus, the proof of AxRetVal follows as in the previous case.

For the case X = SI, we show that tr♣ satisfies AxConflict. If (t1[w], t2[w]) ∈ WW♣, then

(t1, t2) ∈WW ⊂ CO, which implies that (t1[w], t2[r]) ∈ CO♣. Therefore, (t1[w], t2[w]) ∈ CO♣, which

concludes the proof. The axiom AxRetVal can be proved as in the previous cases.

Before presenting a strengthening of Lemma 5.1 when X is CC, we give an important character-

ization of CC traces. This characterization is stated in terms of acyclicity properties.

Lemma 5.2. tr is a trace under CC iff ARB+
0 and CO+

0 ; RW are acyclic (ARB0 and CO0 are defined

in Table 5.1).

Proof. (⇒) Let tr be a trace under CC. From AxCausal and AxArb we get that ARB+
0 ⊂ ARB, and

ARB+
0 is acyclic because ARB is total order. Assume by contradiction that CO+

0 ; RW is cyclic which

implies that CO; RW is cyclic since CO+
0 ⊂ CO, which means that there exist t1 and t2 such that

(t1, t2) ∈ CO and (t2, t1) ∈ RW. (t2, t1) ∈ RW implies that there exists t3 such that (t3, t1) ∈ WW

and (t3, t2) ∈WR. Based on the definition of AxRetVal, t3 has two possible instances:

• t3 corresponds to the "fictional" transaction that wrote the initial values which cannot be the

case when (t1, t2) ∈ CO and t1 writes to the same variable that t2 reads from,

• t3 is the last transaction that occurs before t2 that writes the value read by t2, which means

that (t1, t3) ∈ ARB which contradicts the fact that (t3, t1) ∈WW since WW ⊂ ARB.

(⇐) Let tr be a trace such that ARB+
0 and CO+

0 ; RW are acyclic. Then, we define the relations

CO and ARB such that CO = CO+
0 and ARB is any total order that includes ARB+

0 . Then, we
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obtain that (CO∪WW)+ ⊂ ARB and CO; RW is acyclic. Thus, tr satisfies the properties AxCausal

and AxArb. Next, we will show that tr satisfies AxRetVal. Let t be a transaction in tr that contains

a read event re(t, x, v). Let t0 be transaction in tr such that

t0 = MaxARB({t′ ∈ tr | (t′, t) ∈ CO ∧ ∃ we(t′, x, ·) ∈ f (t′)})

then the read must return a value written by t0. Assume by contradiction that there exists some

other transaction t1 6= t0 such that (t1, t) ∈WR. Then, we get that (t1, t0) ∈ ARB and both write to

x, therefore, (t1, t0) ∈WW since WW ⊂ ARB. Combining (t1, t) ∈WR and (t1, t0) ∈WW we obtain

(t, t0) ∈ RW and since (t0, t) ∈ CO then we obtain that (t, t) ∈ CO; RW which contradicts the fact

that CO; RW is acyclic. Therefore, the read value was written by t0 and tr satisfies AxRetVal.

Next we show that a trace tr of a program P is CC iff the corresponding trace tr♣ of P♣ is CC

as well. This result is based on the observation that cycles in ARB+
0 or CO+

0 ; RW cannot be broken

by splitting transactions.

Lemma 5.3. A trace tr of P is CC iff the corresponding trace tr♣ of P♣ is CC.

Proof. The only-if direction follows from Lemma 5.1. For the if direction: consider a trace tr♣
which is CC. We prove by contradiction that tr must be CC as well. Assume that tr is not CC then it

must contain a cycle in either ARB+
0 or CO+

0 ; RW (based on Lemma 5.2). In the rest of the proof

when we mention a cycle we implicitly refer to a cycle in either ARB+
0 or CO+

0 ; RW.

Splitting every transaction t ∈ tr in a trace to a pair of transactions t[r] and t[w] that occur in

this order might not maintain a cycle of tr . However, we prove that this is not possible and our

splitting conserves the cycle. Assume we have a vertex t as part of the cycle. We show that t can be

split into two transactions t[r] and t[w] while maintaining the cycle. Note that t is part of a cycle

iff either

1. (t1, t) ∈ ARB0 and (t, t2) ∈ ARB0 or

2. (t1, t) ∈ CO0 and (t, t2) ∈ CO0 or

3. (t1, t) ∈ CO0 and (t, t2) ∈ RW or

4. (t1, t) ∈ RW and (t, t2) ∈ CO0

where t1 and t2 might refer to the same transaction. Thus, by splitting t to t[r] and t[w], the above

four cases imply that:
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1. if (t1, t) ∈ CO0 and (t, t2) ∈ ARB0 then (t′1, t[r]) ∈ (PO♣∪WR♣) and (t[w], t′2) ∈ (PO♣∪WR♣∪

WW♣) where t′1 ∈ {t1[r], t1[w]} and t′2 ∈ {t2[r], t2[w]}. This maintains the vertices t′1 and t′2
connected in the cycle formed by the dependency relations of tr♣ since (t[r], t[w]) ∈ PO♣;

2. if (t1, t) ∈WW and (t, t2) ∈ ARB0 then (t′1, t[w]) ∈WW♣ and (t[w], t′2) ∈ (PO♣∪WR♣∪WW♣)

which maintains the vertices t′1 and t′2 connected in the cycle formed by the dependency

relations of tr♣;

3. (t1, t) ∈ CO0 and (t2, t) ∈ RW then (t′1, t[r]) ∈ (PO♣ ∪WR♣) and (t[r], t′2) ∈ RW♣ maintains

the vertices t′1 and t′2 connected in the cycle formed by the dependency relations of tr♣;

4. (t1, t) ∈ RW and (t2, t) ∈ CO0 then (t′1, t[w]) ∈ RW♣ and (t[w], t′2) ∈ (PO♣ ∪WR♣) which

maintains the vertices t′1 and t′2 connected in the cycle formed by the dependency relations of

tr♣ as well.

Therefore, doing the splitting creates a cycle in either (PO♣∪WR♣∪WW♣)+ or (PO♣∪WR♣)+; RW♣
which implies that tr♣ is not CC, a contradiction.

The following lemma shows that a trace tr is PC iff the corresponding trace tr♣ is SER. The if

direction in the proof is based on constructing a causal order CO and an arbitration order ARB for

the trace tr from the arbitration order ARB♣ in tr♣ (since tr♣ is a trace under serializability CO♣
and ARB♣ coincide). These are the smallest transitive relations such that:

• if (t1[w], t2[r]) ∈ ARB♣ then (t1, t2) ∈ CO,

• if (t1[w], t2[w]) ∈ ARB♣ then (t1, t2) ∈ ARB4.

The only-if direction is based on the fact that any cycle in the dependency relations of tr that

is admitted under PC (characterized in Lemma 5.7) is “broken” by splitting transactions. Also,

splitting transactions cannot introduce new cycles that do not originate in tr .

Lemma 5.4. A trace tr is PC iff tr♣ is SER

The lemmas above are used to prove Theorem 5.1 as follows:

Proof of Theorem 5.1: For the if direction, assume by contradiction that P is not robust against

CC relative to PC. Then, there must exist a trace tr ∈ TrCC(P) \TrPC(P). Lemmas 5.3 and 5.4 imply
4If t1[w] is empty (t1 is read-only), then we set (t1, t2) ∈ ARB if (t1[r], t2[w]) ∈ CO♣. If t2[w] is empty, then

(t1, t2) ∈ ARB if (t1[w], t2[r]) ∈ CO♣. If both t1[w] and t2[w] are empty, then (t1, t2) ∈ ARB if (t1[r], t2[r]) ∈ CO♣.
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that the corresponding trace tr♣ of P♣ is CC and not SER. Thus, P♣ is not robust against CC relative

to SER. The only-if direction is proved similarly. �

Robustness against CC relative to SER has been shown to be reducible in polynomial time to the

reachability problem under SER [45]. Given a program P and a control location `, the reachability

problem under SER asks whether there exists an execution of P under SER that reaches `. Therefore,

as a corollary of Theorem 5.1, we obtain the following:

Corollary 5.1. Checking robustness against CC relative to PC is reducible to the reachability problem

under SER in polynomial time.

In the following we discuss the complexity of this problem in the case of finite-state programs

(bounded data domain). The upper bound follows from Corollary 5.1 and standard results about

the complexity of the reachability problem under sequential consistency, which extend to SER, with

a bounded [108] or parametric number of processes [146]. For the lower bound, given an instance

(P, `) of the reachability problem under sequential consistency, we construct a program P ′ where

each statement s of P is executed in a different transaction that guards5 the execution of s using

a global lock (the lock can be implemented in our programming language as usual, e.g., using a

busy wait loop for locking), and where reaching the location ` enables the execution of a “gadget”

that corresponds to the SB program in Figure 5.2a. Executing each statement under a global lock

ensures that every execution of P ′ under CC is serializable, and faithfully represents an execution of

P under sequential consistency. Moreover, P reaches ` iff P ′ contains a robustness violation, which

is due to the SB execution.

Corollary 5.2. Checking robustness of a program with a fixed number of variables and bounded data

domain against CC relative to PC is PSPACE-complete when the number of processes is bounded and

EXPSPACE-complete, otherwise.

5.5 Robustness Against PC Relative to SI

In this section, we show that checking robustness against PC relative to SI can be reduced in polyno-

mial time to a reachability problem under the SER semantics. We reuse the program transformation

from the previous section that allows to simulate PC behaviors on top of SER, and additionally, we
5That is, the transaction is of the form [lock; s; unlock]
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provide a characterization of traces that distinguish the PC semantics from SI. We use this char-

acterization to define an instrumentation (monitor) that is able to detect if a program under PC

admits such traces.

We show that the happens-before cycles in a robustness violation (against PC relative to SI)

must contain a WW dependency followed by a RW dependency, and they should not contain two

successive RW dependencies. This follows from the fact that every happens-before cycle in a PC

trace must contain either two successive RW dependencies, or a WW dependency followed by a

RW dependency. Otherwise, the happens-before cycle will imply a cycle in the arbitration order.

Then, any trace under PC where all its simple happens-before cycles contain two successive RW

dependencies is possible under SI. As a first step, we prove the following theorem.

Theorem 5.2. A program P is robust against PC relative to SI iff every happens-before cycle in a

trace of P under PC contains two successive RW dependencies.

Before giving the proof of the above theorem, we state several intermediate results that charac-

terize cycles in PC or SI traces. First, we show that every PC trace in which all simple happens-before

cycles contain two successive RW is also a SI trace.

Lemma 5.5. If a trace tr is PC and all happens-before cycles in tr contain two successive RW

dependencies, then tr is SI.

Proof. Let ARB1 be a total order that includes ARB+
0 and ARB+

0 ; RW; ARB∗0 (ARB∗0 is the reflexive

closure of ARB0). This is well defined because there exists no cycle between tuples in these two

relations. Indeed, if (t1, t2) ∈ ARB+
0 and there exist t3 and t4 such that (t2, t3) ∈ ARB+

0 , (t3, t4) ∈

RW, and (t4, t1) ∈ ARB∗0, then we have a cycle in ARB+
0 ; RW that does not contain two successive

RW dependencies, which contradicts the hypothesis. Also, for every pair of transactions (t1, t2)

there cannot exist t3 and t4 such that

(t2, t3) ∈ ARB+
0 , (t3, t4) ∈ RW and (t4, t1) ∈ ARB∗0

and t′3 and t′4 such that

(t1, t′3) ∈ ARB+
0 , (t′3, t′4) ∈ RW and (t′4, t2) ∈ ARB∗0

This will imply a cycle in ARB+
0 ; RW; ARB+

0 ; RW which again contradicts the hypothesis. Also, let

CO1 be the smallest transitive relation that includes ARB+
0 and ARB1; ARB+

0 . We show that CO1

and ARB1 are causal and arbitration orders of tr that satisfy all the axioms of SI.
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AxCausal and AxArb hold trivially. Since WW ⊆ CO1, AxConflict holds as well. AxPC holds

because ARB1; CO1 = ARB1; (ARB+
0 ∪ARB1; ARB+

0 )+ = ARB1; ARB+
0 ⊂ CO1.

The axiom AxRetVal is equivalent to the acyclicity of CO1; RW when AxCausal and AxArb hold.

Assume by contradiction that CO1; RW is cyclic. From the definition of CO1 and the fact that ARB1

is total order we obtain that either:

• ARB+
0 ; RW is cyclic, which implies that there exists a happens-before cycle that does not

contain two successive RW, which contradicts the hypothesis, or

• ARB1; ARB+
0 ; RW is cyclic, which implies that there exist t1, t2, and t3 such that (t2, t3) ∈

ARB+
0 , (t3, t1) ∈ RW and (t1, t2) ∈ ARB1. This contradicts the fact that (t2, t3) ∈ ARB+

0 and

(t3, t1) ∈ RW implies (t2, t1) ∈ ARB1.

Therefore, tr satisfies AxRetVal for CO1 and ARB1, which concludes the proof.

The proof of Theorem 5.2 also relies on the following lemma that characterizes happens-before

cycles permissible under SI.

Lemma 5.6. [65, 47] If a trace tr is SI, then all its happens-before cycles must contain two

successive RW dependencies.

Proof of Theorem 5.2: For the only-if direction, if P is robust against PC relative to SI then every

trace tr of P under PC is SI as well. Therefore, by Lemma 5.6, all cycles in tr contain two successive

RW which concludes the proof of this direction. For the reverse, let tr be a trace of P under PC

such that all its happens-before cycles contain two successive RW. Then, by Lemma 5.5, we have

that tr is SI. Thus, every trace tr of P under PC is SI. �

Next, we present an important lemma that characterizes happens before cycles possible under

the PC semantics. This is a strengthening of a result in [47] which shows that all happens before

cycles under PC must have two successive dependencies in {RW,WW} and at least one RW. We

show that the two successive dependencies cannot be RW followed WW, or two successive WW.

Lemma 5.7. If a trace tr is PC then all happens-before cycles in tr must contain either two suc-

cessive RW dependencies or a WW dependency followed by a RW dependency.

Proof. It was shown in [47] that all happens-before cycles under PC must contain two successive

dependencies in {RW,WW} and at least one RW. Assume by contradiction that there exists a
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cycle with RW dependency followed by WW dependency or two successive WW dependencies. This

cycle must contain at least one additional dependency. Otherwise, the cycle would also have a WW

dependency followed by a RW dependency, or it would imply a cycle in WW, which is not possible

(since WW ⊂ ARB and ARB is a total order). Then, we get that the dependency just before RW

is either PO or WR (i.e., CO0) since we cannot have RW or WW followed by RW. Also, the relation

after WW is either PO or WR or WW (i.e., ARB0) since we cannot have WW followed by RW. Thus,

the cycle has the following shape:

t1 t2 t3 t4 · · · ti ti+1 ti+2 ti+3 · · · tn−4 tn−3 tn−2 tn−1 tn
RW WW ARB0 CO0 RW WW CO0 RW WW ARB0

CO0

Since CO0; RW ⊆ ARB is a consequence of the PC axioms [71], we get that (tn, t2) ∈ ARB,

(ti, ti+2) ∈ ARB and (tn−4, tn−2) ∈ ARB, which allows to “short-circuit” the cycle. Using the fact

that WW ⊂ ARB, CO0 ⊂ ARB, and ARB0 ⊂ ARB, and applying the short-circuiting process

multiple times, we obtain a cycle in the arbitration order ARB which contradicts the fact that

ARB is a total order.

Combining the results of Theorem 5.2 and Lemmas 5.4 and 5.7, we obtain the following char-

acterization of traces which violate robustness against PC relative to SI.

Theorem 5.3. A program P is not robust against PC relative to SI iff there exists a trace tr♣ of P♣
under SER such that the trace tr obtained by merging6 read and write transactions in tr♣ contains a

happens-before cycle that does not contain two successive RW dependencies, and it contains a WW

dependency followed by a RW dependency.

The results above enable a reduction from checking robustness against PC relative to SI to a

reachability problem under the SER semantics. For a program P, we define an instrumentation

denoted by [[P]], such that P is not robust against PC relative to SI iff [[P]] violates an assertion

under SER. The instrumentation consists in rewriting every transaction of P as shown in Figure 5.57.

α t# β t0 γ t

RW HB

WW

Figure 5.4: Execution simulating a violation

to robustness against PC relative to SI.

The instrumentation [[P]] running under SER sim-

ulates the PC semantics of P using the same idea of

decoupling the execution of the read part of a trans-

action from the write part. It violates an assertion
6This transformation has been defined at the beginning of §5.4.
7The instrumentation uses program constructs which can be defined as syntactic sugar from the syntax presented

in §2.2, e.g., if-then-else statements (outside transactions).
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when it simulates a PC trace containing a happens-before cycle as in Theorem 5.3. The execution

corresponding to this trace has the shape given in Figure 5.4, where t# is the transaction that

occurs between the WW and the RW dependencies, α, β, and γ are sequences of transactions, and

every transaction executed after t# (this can be a full transaction in P, or only the read or write

part of a transaction in P) is related by a happens-before path to t# (otherwise, the execution of

this transaction can be reordered to occur before t#). A transaction in P can have its read part

included in α and the write part included in β or γ. Also, β and γ may contain transactions in P

that executed only their read part. It is possible that t0 = t, β = γ = ε, and α = ε (the LU program

shown in Figure 5.2b is an example where this can happen). The instrumentation uses auxiliary

variables to track happens-before dependencies, which are explained below.

The instrumentation executes (incomplete) transactions without affecting the auxiliary variables

(without tracking happens-before dependencies) until a non-deterministically chosen point in time

when it declares the current transaction as the candidate for t#. Only one candidate for t# can

be chosen during the execution. This transaction executes only its reads and it chooses non-

deterministically a variable that it could write as a witness for the WW dependency. The name of

this variable is stored in a global variable varW (see the definition of I#( x := e )). The writes are

not applied on the shared memory. Intuitively, t# should be thought as a transaction whose writes

are delayed for later, after transaction t in Figure 5.4 executed. The instrumentation checks that t#
and t can be connected by some happens-before path that includes the RW and WW dependencies,

and that does not contain two consecutive RW dependencies. If it is the case, it violates an assertion

at the commit point of t. Since the write part of t# is intuitively delayed to execute after t, the

process executing t# is disabled all along the execution (see the assume false).

After choosing the candidate for t#, the instrumentation uses the auxiliary variables for track-

ing happens-before dependencies. Therefore, rdSet and wrSet record variables read and written,

respectively, by transactions that are connected by a happens-before path to t# (in a trace of P).

This is ensured by the assume at line 7. During the execution, the variables read or written by a

transaction8 that writes a variable in rdSet (see line 33), or reads or writes a variable in wrSet

(see line 21 and 28), will be added to these sets (see lines 17 and 18). Since the variables that t#
writes in P are not recorded in wrSet, these happens-before paths must necessarily start with a RW

dependency (from t#). When the assertion fails (line 8), the condition varW ∈ wrSet’ ensures that
8These are stored in the local variables rdSet’ and wrSet’ while the transaction is running.
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Transaction “begin 〈read〉∗ 〈test〉∗ 〈write〉∗ commit” is rewritten to:

if ( !done# )

if ( * )

begin <read>∗ <test>∗ commit

if ( !done# )

begin <write>∗ commit

else

I(begin) (I(<write>))∗ I(commit)

else

begin (I#(<read>))∗ <test>∗ (I#(<write>))∗ I#(commit)

assume false;

else if ( * )

rdSet’ := ∅;

wrSet’ := ∅;

I(begin) (I(<read>))∗ <test>∗ I(commit)

I(begin) (I(<write>))∗ I(commit)

I#( r := x ):

r := x;

hbR[’x’] := 0;

rdSet := rdSet ∪ { ’x’ };

I#( x := e ):

if ( varW == ⊥ and * )

varW := ’x’;

I#( commit ):

assume ( varW != ⊥ )

done# := true

I( begin ):

1 begin

2 hb := ⊥

3 if ( hbP != ⊥ and hbP < 2 )

4 hb := 0;

5 else if ( hbP = 2 )

6 hb := 2;

I( commit ):

7 assume ( hb != ⊥ )

8 assert ( hb == 2 or varW 6∈ wrSet’ );

9 if ( hbP == ⊥ or hbP > hb )

10 hbP = hb;

11 for each ’x’ ∈ wrSet’

12 if ( hbW[’x’] == ⊥ or hbW[’x’] > hb )

13 hbW[’x’] = hb;

14 for each ’x’ ∈ rdSet’

15 if ( hbR[’x’] == ⊥ or hbR[’x’] > hb )

16 hbR[’x’] = hb;

17 rdSet := rdSet ∪ rdSet’;

18 wrSet := wrSet ∪ wrSet’;

19 commit

I( r := x ):

19 r := x;

20 rdSet’ := rdSet’ ∪ { ’x’ };

21 if ( ’x’ ∈ wrSet )

22 if ( hbW[’x’] != 2 )

23 hb := 0

24 else if ( hb == ⊥ )

25 hb := hbW[’x’]

I( x := e ):

26 x := e;

27 wrSet’ := wrSet’ ∪ { ’x’ };

28 if ( ’x’ ∈ wrSet )

29 if ( hbW[’x’] != 2 )

30 hb := 0

31 else if ( hb == ⊥ )

32 hb := hbW[’x’]

33 if ( ’x’ ∈ rdSet )

34 if ( hb = ⊥ or hb > hbR[’x’] + 1 )

35 hb := min(hbR[’x’] + 1,2)

Figure 5.5: A program instrumentation for checking robustness against PC relative to SI. The

auxiliary variables used by the instrumentation are shared variables, except for hbP, rdSet’, and

wrSet’, which are process-local variables, and they are initially set to ⊥.
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the current transaction has a WW dependency towards the write part of t# (the current transaction

plays the role of t in Figure 5.4).

The rest of the instrumentation checks that there exists a happens-before path from t# to t that

does not include two consecutive RW dependencies, called a SI¬ path. This check is based on the

auxiliary variables whose name is prefixed by hb and which take values in the domain {⊥, 0, 1, 2}

(⊥ represents the initial value). Therefore,

• hbR[’x’] (resp., hbW[’x’]) is 0 iff there exists a transaction t′ that reads x (resp., writes to

x), such that there exists a SI¬ path from t# to t′ that ends with a dependency which is not

RW,

• hbR[’x’] (resp., hbW[’x’]) is 1 iff there exists a transaction t′ that reads x (resp., writes to

x) that is connected to t# by a SI¬ path, and every SI¬ path from t# to a transaction t′′ that

reads x (resp., writes to x) ends with an RW dependency,

• hbR[’x’] (resp., hbW[’x’]) is 2 iff there exists no SI¬ path from t# to a transaction t′ that

reads x (resp., writes to x).

The local variable hbP has the same interpretation, except that t′ and t′′ are instantiated over

transactions in the same process (that already executed) instead of transactions that read or write

a certain variable. Similarly, the variable hb is a particular case where t′ and t′′ are instantiated

to the current transaction. The violation of the assertion at line 8 implies that hb is 0 or 1, which

means that there exists a SI¬ path from t# to t.

During each transaction that executes after t#, the variable hb characterizing happens-before

paths that end in this transaction is updated every time a new happens-before dependency is

witnessed (using the values of the other variables). For instance, when witnessing a WR dependency

(line 21), if there exists a SI¬ path to a transaction that writes to x, then the path that continues with

the WR dependency towards the current transaction is also a SI¬ path, and the last dependency of

this path is not RW. Therefore, hb is set to 0 (see line 23). Otherwise, if every path to a transaction

that writes to x is not a SI¬ path, then every path that continues to the current transaction (by

taking the WR dependency) remains a non SI¬ path, and hb is set to the value of hbW[‘x‘], which

is 2 in this case (see line 25). Before ending a transaction, the value of hb can be used to modify

the hbR, hbW, and hbP variables, but only if those variables contain bigger values (see lines 9–16).

The correctness of the instrumentation is stated in the following theorem.
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Theorem 5.4. A program P is robust against PC relative to SI iff the instrumentation in Figure 5.5

does not violate an assertion when executed under SER.

Theorem 5.4 implies the following complexity result for finite-state programs. The lower bound

is proved similarly to the case CC vs PC.

Corollary 5.3. Checking robustness of a program with a fixed number of variables and bounded data

domain against PC relative to SI is PSPACE-complete when the number of processes is bounded and

EXPSPACE-complete, otherwise.

Checking robustness against CC relative to SI can be also shown to be reducible (in polynomial

time) to a reachability problem under SER by combining the results of checking robustness against

CC relative to PC and PC relative to SI.

Theorem 5.5. A program P is robust against CC relative to SI iff P is robust against CC relative

to PC and P is robust against PC relative to SI.

Remark 5.1. Our reductions of robustness checking to reachability apply to an extension of our

programming language where the number of processes is unbounded and each process can execute

an arbitrary number of times a statically known set of transactions. This holds because the instru-

mentation in Figure 5.5 and the one in [45] (for the case CC vs. SER) consist in adding a set of

instructions that manipulate a fixed set of process-local or shared variables, which do not store pro-

cess or transaction identifiers. These reductions extend also to SQL queries that access unbounded

size tables. Rows in a table can be interpreted as memory locations (identified by primary keys in

unbounded domains, e.g., integers), and SQL queries can be interpreted as instructions that read-

/write a set of locations in one shot. These possibly unbounded sets of locations can be represented

symbolically using the conditions in the SQL queries (e.g., the condition in the WHERE part of

a SELECT). The instrumentation in Figure 6 needs to be adapted so that read and write sets are

updated by adding sets of locations for a given instruction (represented symbolically as mentioned

above).

5.6 Robustness Against CC relative to SI

Checking robustness against CC relative to SI can be also shown to be reducible (in polynomial

time) to a reachability problem under SER by combining the results in the previous two sections.
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Theorem 5.6. A program P is robust against CC relative to SI iff P is robust against CC relative

to PC and P is robust against PC relative to SI.

5.7 Proving Robustness Using Commutativity Dependency Graphs

We describe an approximated technique for proving robustness, which leverages the concept of

left/right mover in Lipton’s reduction theory [120]. This technique reasons on the commutativity

dependency graph, introduced in Chapter 4, associated to the transformation P♣ of an input program

P that allows to simulate the PC semantics under serializability (we use a slight variation of the

original definition of this class of graphs). We characterize robustness against CC relative to PC and

PC relative to SI in terms of certain properties that (simple) cycles in this graph must satisfy.

We recall the concept of movers and the definition of commutativity dependency graphs. Given

a program P and a trace tr = t1 · . . . · tn ∈ TrSER(P) of P under serializability, we say that ti ∈ tr

moves right (resp., left) in tr if t1 · . . . ·ti−1 ·ti+1 ·ti ·ti+2 · . . . ·tn (resp., t1 · . . . ·ti−2 ·ti ·ti−1 ·ti+1 · . . . ·tn)

is also a valid execution of P, ti and ti+1 (resp., ti−1) are executed by distinct processes, and both

traces reach the same end state. A transaction t ∈ Tr(P) is not a right (resp., left) mover iff there

exists a trace tr ∈ TrSER(P) such that t ∈ tr and t does not move right (resp., left) in tr . Thus, when

a transaction t is not a right mover then there must exist another transaction t′ ∈ tr which caused t

to not be permutable to the right (while preserving the end state). Since t and t′ do not commute,

then this must be because of either a write-read, write-write, or a read-write dependency relation

between the two transactions. We say that t is not a right mover because of t′ and a dependency

relation that is either write-read, write-write, or read-write. Notice that when t is not a right mover

because of t′ then t′ is not a left mover because of t.

We define MWR as a binary relation between transactions such that (t, t′) ∈ MWR when t is not

a right mover because of t′ and a write-read dependency (t′ reads some value written by t). We

define the relations MWW and MRW corresponding to write-write and read-write dependencies in a

similar way. We call MWR, MWW, and MRW, non-mover relations.

The commutativity dependency graph of a program P is a graph where vertices represent trans-

actions in P. Two vertices are linked by a program order edge if the two transactions are executed

by the same process. The other edges in this graph represent the “non-mover” relations MWR, MWW,

and MRW. Two vertices that represent the two components t[w] and t[r] of the same transaction t

(already linked by PO edge) are also linked by an undirected edge labeled by STO (same-transaction

134



relation).

[x = 1]t1[w]

[y = 1]t2[w]

[r1 = y] t3[r]

[r2 = x] t4[r]

PO MRW

MWRMWR
MRW PO

Figure 5.6: The commutativity depen-

dency graph of the MP♣ program.

Our results about the robustness of a program P

are stated over a slight variation of the commutativity

dependency graph of P♣ (where a transaction is either

read-only or write-only). This graph contains addi-

tional undirected edges that link every pair of transac-

tions t[r] and t[w] of P♣ that were originally compo-

nents of the same transaction t in P. Given such a commutativity dependency graph, the robustness

of P is implied by the absence of cycles of specific shapes. These cycles can be seen as an abstraction

of potential robustness violations for the respective semantics (see Theorem 5.7 and Theorem 5.8).

Figure 5.6 pictures the commutativity dependency graph for the MP program. Since every trans-

action in MP is singleton, the two programs MP and MP♣ coincide.

Using the characterization of robustness violations against CC relative to SER from [45] and

the reduction in Theorem 5.1, we obtain the following result concerning the robustness against CC

relative to PC.

Theorem 5.7. Given a program P, if the commutativity dependency graph of the program P♣ does

not contain a simple cycle formed by t1 · · · ti · · · tn such that:

• (tn, t1) ∈ MRW;

• (tj , tj+1) ∈ (PO ∪WR)∗, for j ∈ [1, i− 1];

• (ti, ti+1) ∈ (MRW ∪MWW);

• (tj , tj+1) ∈ (MRW ∪MWW ∪MWR ∪ PO), for j ∈ [i+ 1, n− 1].

then P is robust against CC relative to PC.

Proof. It is enough to show: if P is not robust against CC relative to PC then we have a simple cycle

in the commutativity dependency graph of P♣ of the form above. Assume P is not robust against

CC relative to PC. Then, from Theorem 5.1, we obtain P♣ is not robust against CC relative to SER.

Also it was shown in [45] that if a program is not robust then there must exist a robustness violation

trace (CC relative to SER) tr♣ of the shape tr♣ = α · t1 ·β · ti · ti+1 ·γ · tn where (t1, ti) ∈ (PO∪WR)+,

(ti, ti+1) ∈ (WW ∪ RW), (ti+1, tn) ∈ HB, and (tn, t1) ∈ RW. Note that since transactions in the

trace tr♣ can either be read-only or write-only. Then, (ti, ti+1) ∈ (WW ∪ RW) and (tn, t1) ∈ RW
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imply that t1 and ti+1 must be a write-only transactions and tn must be a read-only transaction.

Note that we may have β = γ = ε as the case for the trace of the SB program given in Figure 5.2a.

We consider first the general case when t1 6≡ t2. The other case can be proved in the same way.

Consider the prefix trp of tr♣: trp = α · t1 · β · ti where (t1, ti) ∈ (PO ∪WR)+ which is a SER

trace of P♣. Then, we have a sequence of transactions from t1 to ti that are related by either PO or

WR. In the case two transactions are only related by WR, then the first transaction is not a right

mover because of the second transaction reads from a write in the first transaction. Thus, we can

relate the two transactions using the relation MWR in the commutativity dependency graph.

Similarly consider the following trace trs extracted from tr♣: trs = α · ti+1 · γ · tn where

(ti+1, tn) ∈ HB which is a SER trace of P♣. Similar to before, we have a sequence of transactions

from ti+1 to tn that are related by either PO, WR, WW, or RW. For any two transactions that are

related only by either WR, WW, or RW, this implies that the first transaction is not a right mover

because of the second transaction and a write-read, write-write, or read-write dependency between

the two, respectively. Thus, we can relate the two transactions using either MWR, MWW, or MRW,

respectively.

Now consider the following trace tr1 extracted from tr♣: tr1 = α · t1 ·β · ti · ti+1 where (ti, ti+1) ∈

(WW ∪ RW) is a SER trace of P♣. Because ti and ti+1 are related by either WW or RW, then ti

is not a right mover because of ti+1 and a write-write or read-write dependency between the two,

respectively. Thus, we can relate the two transactions using either MWW or MRW, respectively.

Finally, consider the following trace tr2 extracted from tr♣: tr2 = α · ti+1 · γ · tn · t1 where

(tn, t1) ∈ RW is a SER trace of P♣. Because tn and t1 are related by RW, then tn is not a right

mover because of t1 and a read-write dependency between the two. Thus, we can relate the two

transactions using MRW.

Next we give the characterization of commutativity dependency graphs required for proving

robustness against PC relative to SI.

Theorem 5.8. Given a program P, if the commutativity dependency graph of the program P♣ does

not contain a simple cycle formed by t1 · · · tn such that:

• (tn, t1) ∈ MWW, (t1, t2) ∈ STO, and (t2, t3) ∈ MRW;

• (tj , tj+1) ∈ (MRW ∪MWW ∪MWR ∪ PO ∪ STO)∗, for j ∈ [3, n− 1];

• ∀ j ∈ [2, n− 2].
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– if (tj , tj+1) ∈ MRW then (tj+1, tj+2) ∈ (MWR ∪ PO ∪MWW);

– if (tj+1, tj+2) ∈ MRW then (tj , tj+1) ∈ (MWR ∪ PO).

• ∀ j ∈ [3, n− 3]. if (tj+1, tj+2) ∈ STO and (tj+2, tj+3) ∈ MRW then (tj , tj+1) ∈ MWW.

then P is robust against PC relative to SI.

Proof. Similar to before it is enough to show: if P is not robust against PC relative to SI then we

have a simple cycle in the commutativity dependency graph of P♣ of the form above. Assume P is

not robust against PC relative to SI. Then, from Theorem 5.4, we obtain that if [[P]] reaches an error

state under SER then we will have the following trace tr under SER: tr = α · t#[r] · t3 · β · tn · t#[w]9

where (t#[r], t3) ∈ RW, (t3, tn) ∈ HB, (tn, t#[w]) ∈ WW, and we do not have two successive RW

in the happens before between t3 and tn. In tr , t#[w] (resp., t#[r]) represents t1 (resp., t2) in

the theorem statement. Note that we may have α = β = ε as is the case of the transformed LU

program given in Figure 5.3. The construction of the cycle in the commutativity dependency graph

follows the same procedure taken in the proof of Theorem 5.7. The only difference is that for every

two transactions of tr that are part of the happens before between t3 and tn, if the two are not

connected by either PO, WR, WW, or RW then they must be the reads and writes of the same

original transaction in P. In this case, in the commutativity dependency graph we have the two

transactions related by STO.

In Figure 5.6, we have three simple cycles in the graph:

• (t1[w], t4[r]) ∈ MWR and (t4[r], t1[w]) ∈ MRW,

• (t2[w], t3[r]) ∈ MWR and (t3[r], t2[w]) ∈ MRW,

• (t1[w], t2[w]) ∈ PO, (t2[w], t3[r]) ∈ MWR, (t3[r], t4[r]) ∈ PO, and (t4[r], t1[w]) ∈ MRW.

Notice that none of the cycles satisfies the properties in Theorems 5.7 and 5.8. Therefore, MP is

robust against CC relative to PC and against PC relative to SI.

Remark 5.2. For programs that contain an unbounded number of processes, an unbounded num-

ber of instantiations of a fixed number of process “templates”, or unbounded loops with bodies that

contain entire transactions, a sound robustness check consists in applying Theorem 5.7 and The-

orem 5.8 to (bounded) programs that contain two copies of each process template, and where each
9For simplicity, we assume here that after reaching the error state we execute the writes of t#, i.e., t#[w]
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loop is unfolded exactly two times. This holds because the mover relations are “static”, they do

not depend on the context in which the transactions execute, and each cycle requiring more than

two process instances or more than two loop iterations can be short-circuited to a cycle that exists

also in the bounded program. Every outgoing edge from a third instance/iteration can also be taken

from the second instance/iteration. Two copies/iterations are necessary in order to discover cycles

between instances of the same transaction (the cycles in Theorem 5.7 and Theorem 5.8 are simple

and cannot contain the same transaction twice). These results extend easily to SQL queries as well

because the notion of mover is independent of particular classes of programs or instructions.

5.8 Experimental Evaluation

We evaluated our approach for checking robustness on 7 applications extracted from the literature

on databases and distributed systems, and an application Betting designed by ourselves. Two appli-

cations were extracted from the OLTP-Bench benchmark [76]: a vote recording application (Vote)

and a consumer review application (Epinions). Three applications were obtained from Github

projects (used also in [44, 58]): a distributed lock application for the Cassandra database (Cassan-

draLock [67]), an application for recording trade activities (SimpleCurrencyExchange [162]), and

a micro social media application (Twitter [3]). The last two applications are a movie ticketing

application (FusionTicket) [105], and a user subscription application inspired by the Twitter ap-

plication (Subscription). Each application consists of a set of SQL transactions that can be called

an arbitrary number of times from an arbitrary number of processes. For instance, Subscription

provides an AddUser transaction for adding a new user with a given username and password, and a

RemoveUser transaction for removing an existing user. (The examples in Figure 5.1 are particular

variations of FusionTicket, Twitter, and Betting.) We considered five variations of the robustness

problem: the three robustness problems we studied in this chapter along with robustness against

SI relative to SER and against CC relative to SER. The artifacts are available in a GitHub repository

[79].

In the first part of the experiments, we check for robustness violations in bounded-size executions

of a given application. For each application, we have constructed a client program with a fixed

number of processes (2) and a fixed number of transactions of the corresponding application (at

most 2 transactions per process). For each program and pair of consistency models, we check for

robustness violations using the reductions to reachability under SER presented in §5.4 and §5.5
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in the case of pairs of weak consistency models, and the reductions in [44, 45] when checking for

robustness relative to SER. We check for reachability (assertion violations) using the Boogie program

verifier [41]. We model tables as unbounded maps in Boogie and SQL queries as first-order formulas

over these maps (that may contain existential or universal quantifiers). To model the uniqueness of

primary keys we use Boogie linear types.

Table 5.2 reports the results of this experiment (cells filled with “no”). Five applications are not

robust against at least one of the semantics relative to some other stronger semantics. FusionTicket

and Twitter were not robust against both CC relative to PC and PC relative to SI. Epinions, Sub-

scription, and Vote, were not robust against CC relative to PC, PC relative to SI, and SI relative

to SER, respectively. The columns for robustness against CC relative to SI and against CC relative

to SER can be obtained as the conjunction of results in the other three columns. The wall-clock

times for the robustness checks are all under one second, and the memory consumption is around

50 Megabytes.

All the robustness violations we report correspond to violations of the intended specifications.

For instance: (1) the robustness violation of Epinions against CC relative to PC allows two users to

update their ratings for a given product and then when each user queries the overall rating of this

product they do not observe the latest rating that was given by the other user, (2) the robustness

violation of Subscription against PC relative to SI allows two users to register new accounts with

the same identifier, and (3) the robustness violation of Vote against SI relative to SER allows the

same user to vote twice. The specification violation in Twitter was reported in [58]. However, it was

reported as violation of a different robustness property (CC relative to SER) while our work shows

that the violation persists when replacing a weak consistency model (e.g., SI) with a weaker one

(e.g. CC). This implies that this specification violation is not present under SI (since it appears in

the difference between CC and SI behaviors), which cannot be deduced from previous work.

In the second part of the experiments, we used the technique described in Section 5.7, based on

commutativity dependency graphs, to prove robustness. For each application (set of transactions)

we considered a program that for each ordered pair of (possibly identical) transactions in the

application, contains two processes executing that pair of transactions. Following Remark 5.2, the

robustness of such a program implies the robustness of a most general client of the application that

executes each transaction an arbitrary number of times and from an arbitrary number of processes.

We focused on the cases where we could not find robustness violations in the first part. To build
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Table 5.2: Results of the experiments. The columns titled X-Y stand for the result of applications

robustness against X relative to Y.

Application Transactions Robustness

CC-PC PC-SI CC-SI SI-SER CC-SER

Betting 2 yes yes yes yes yes

CassandraLock 3 yes yes yes yes yes

Epinions 8 no yes no yes no

FusionTicket 3 no no no yes no

SimpleCurrencyExchange 4 yes yes yes yes yes

Subscription 2 yes no no yes no

Twitter 3 no no no yes no

Vote 1 yes yes yes no no

the “non-mover” relations MWR, MWW, and MRW for the commutativity dependency graph, we

use the left/right mover check provided by the CIVL verifier [99]. The results are reported in

Table 5.2, the cells filled with “yes”. We showed that the three applications Betting, CassandraLock

and SimpleCurrencyExchange are robust against any semantics relative to some other stronger

semantics. Epinions, FusionTicket, Subscription and Twitter are robust against SI relative to SER.

Furthermore, Epinions is robust against PC relative to SI while Subscription is robust against CC

relative to PC. Finally, the Vote application is robust both against CC relative to PC and against

PC relative to SI. As mentioned earlier, all these robustness results are established for arbitrarily

large executions and clients with an arbitrary number of processes. For instance, the robustness of

SimpleCurrencyExchange ensures that when the exchange market owner observes a trade registered

by a user, they observe also all the other trades that were done by this user in the past.

In conclusion, our experiments show that the robustness checking techniques we present are

effective in proving or disproving robustness of concrete applications. Moreover, it shows that the

robustness property for different combinations of consistency models is a relevant design principle,

that can help in choosing the right consistency model for realistic applications, i.e., navigating the

tradeoff between consistency and performance (in general, weakening the consistency leads to better

performance).
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5.9 Related Work

The consistency models in this chapter were studied in several recent works [60, 59, 69, 142, 52,

145, 50]. Most of them focused on their operational and axiomatic formalizations. The formal

definitions we use in this chapter are based on those given in [69, 52]. Biswas and Enea [50] shows

that checking whether an execution is CC is polynomial time while checking whether it is PC or SI

is NP-complete.

The robustness problem we study in this chapter has been investigated in the context of weak

memory models, but only relative to sequential consistency, against RA and PGAS parallel pro-

gramming models, and TSO and Power weak memory models [113, 66, 55, 51, 74, 73]. In this work,

we study the robustness problem between two weak consistency models, which poses different non-

trivial challenges. In particular, previous work proposed reductions to reachability under sequential

consistency (or SER) that relied on a concept of minimal robustness violations (w.r.t. an operational

semantics), which does not apply in our case. The relationship between PC and SER is similar in

spirit to the one given by Biswas and Enea [50] in the context of checking whether an execution is

PC. However, that relationship was proven in the context of a “weaker” notion of trace (containing

only program order and read-from), and it does not extend to our notion of trace. For instance,

that result does not imply preserving WW dependencies which is crucial in our case.

Some works describe various over- or under-approximate analyses for checking robustness relative

to SER. The works in [33, 47, 57, 58, 70, 129] propose static analysis techniques based on computing

an abstraction of the set of computations, which is used for proving robustness. In particular,

[58, 129] encode program executions under the weak consistency model using FOL formulas to

describe the dependency relations between actions in the executions. These approaches may return

false alarms due to the abstractions they consider in their encoding. Note that in this chapter, we

prove a strengthening of the results of [47] with regard to the shape of happens before cycles allowed

under PC.

5.10 Conclusion

We proposed polynomial time reductions of the problems of checking robustness between weak

consistency models to reachability, and therefore, we showed that checking robustness is in principle

as hard as checking reachability. We considered three popular weak consistency models: causal
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consistency, prefix consistency, and snapshot isolation. We also gave a pragmatic technique for

proving robustness based on the notion of non-mover relations that can be constructed automatically

using SMT solvers. We tested our techniques on realistic programs that model the most intricate

parts of distributed applications that are obtained from the standard OLTP benchmark and open

source Github projects.
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Chapter 6

Behavioral Simulations for Smart

Contracts

6.1 Introduction

In this chapter, we are interested in the verification of smart contracts that are not annotated

with formal specifications. We propose a technique for verifying unannotated smart contracts via

automated semantic comparison against annotated canonical smart contracts. With a notion of

comparison that implies substitutability, we can thus amortize the cost of manually annotating the

canonical contracts by verifying a vast number of unannotated contracts. Our notion of behavioral

refinement relates the input-output behavior of contracts’ transactions, i.e., parameters and effects

on storage, ignoring internal details like local memory and control flow. By proving that a given

contract is a behavioral refinement of another, we guarantee the inheritance of behavioral properties,

and in particular that the effects of any sequence of transactions obeys its canonical counterpart’s

functional properties. Establishing behavioral refinement for unbounded transaction sequences relies

on induction. Akin to inductive invariants for safety properties, proofs of behavioral refinement use

induction hypotheses called simulation relations [127]. Essentially, a behavioral simulation relation

identifies states of two contracts such that initial states are related; the same transaction applied

to related states yields related states and identical effects; and related states are observationally

equivalent, i.e., any function applied to both yields identical values.

In §6.2, we outline our approach to synthesize behavioral simulation relations between smart

contracts. In §6.3-6.4, we demonstrate an application of behavioral simulation to smart contracts.
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Then, in §6.5-6.6, we develop an algorithm for synthesizing behavioral simulation relations. To gen-

erate candidate simulation relations, we adopt a paradigm of learning from examples [128]. To verify

candidate simulation relations, we adopt a notion of product programs inspired by relational verifi-

cation [43]. In §6.8, we develop a smart contract benchmark suite including variations of canonical

contracts. Finally, in §6.9, we evaluate our approach, verifying functional properties for dozens of

unannotated smart contracts. The Empirical evaluation validates our approach by synthesizing sim-

ulation relations from multiple variations of each class of canonical contracts. Our implementation

can correctly synthesize nontrivial simulation relations for many classes, and integrates off-the-shelf

tools for example-guided learning and Solidity smart contracts verification.

6.2 Overview

In this section, we overview the methodology formalized in §6.3 and §6.6 for synthesizing behav-

ioral simulations. We illustrate behavioral refinement on a running example (§6.2.1), describe

behavioral simulation for proving refinement (§6.2.2), and demonstrate synthesis on the running

example (§6.2.3).

6.2.1 Motivation

We illustrate the concept of behavioral refinement on two contracts implementing an auction (writ-

ten in the Solidity language of Ethereum), which are partially listed in Figure 6.1. These excerpts

focus on the initialization and the bidding parts of an auction. The contract RefAuction1 plays the

role of an annotated canonical implementation of an auction (we omit the exact postconditions for

brevity) while Auction is a particular variation. We generally refer to canonical implementations

as reference (smart) contracts while variations like Auction are called simply (smart) contracts.

The fields of RefAuction store information about the beneficiary and the ending time of the

auction, the current highest bidder and its bid, and the bids of previous highest bidders (the owners

of these bids have the right to reclaim them at any point during the auction – for brevity, this

functionality is excluded from these excerpts). While the constructor initializes the beneficiary and

the ending time of the auction, the bid function allows a participant to pose a new bid which is

accepted only if it is bigger than the current highest bid and the timeout did not expire. Otherwise,

the bid function has no effect on the state of the contract – if the condition inside a require
1Extracted from the documentation page of Solidity [17].
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1 // @notice invariant ...

2 contract RefAuction {

3 uint public auctionEnd, highestBid;

4 address payable public beneficiary;

5 address public highestBidder;

6 mapping(address => uint) pendingReturns;

7 // @notice postcondition ...

8 constructor(uint _bidTime, address payable _benefic) public {

9 beneficiary = _benefic;

10 auctionEnd = now + _bidTime;

11 }

12 // @notice postcondition ...

13 function bid() public payable {

14 require(now <= auctionEnd && msg.value > highestBid);

15 if (highestBid != 0)

16 pendingReturns[highestBidder] += highestBid;

17 highestBidder = msg.sender;

18 highestBid = msg.value;

19 }

20 // @notice postcondition ...

21 function PendingReturns() public view returns (uint) {

22 return pendingReturns[msg.sender];

23 }

24 // @notice postcondition ...

25 function HighestBid() public view returns (uint) {

26 return highestBid;

27 }

28 }

Figure 6.1: A canonical auction contract, omitting withdrawal, auction-ending, and other view

functions. Implicit variables now, msg.value, and msg.sender yield block timestamps, Ether sent,

and callers’ addresses.

statement fails, the invocation is reverted and is semantically equivalent to skip. This contract also

contains several functions that allow to read its fields, in particular a bid that has been superseded

by a higher one (function PendingReturns) and the highest bid.

The contract Auction is a variation that changes the representation of the auction ending

time decomposing it into an auction start time and a bidding duration. The handling of revert

conditions in the bid function is syntactically distinct, but semantically equivalent to the require

in RefAuction.
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1 contract Auction {

2 uint public auctionStart, biddingTime, highestBid;

3 address payable public beneficiary;

4 address public highestBidder;

5 mapping(address => uint) pendingReturns;

7 constructor(uint _bidTime, address payable _benefic) public {

8 beneficiary = _benefic;

9 auctionStart = now;

10 biddingTime = _bidTime;

11 }

12 function bid() public payable {

13 if (now > auctionStart + biddingTime || msg.value <= highestBid)

14 revert();

15 if (highestBidder != address(0))

16 pendingReturns[highestBidder] += highestBid;

17 highestBidder = msg.sender;

18 highestBid = msg.value;

19 }

20 function PendingReturns() public view returns (uint) {

21 return pendingReturns[msg.sender];

22 }

23 function HighestBid() public view returns (uint) {

24 return highestBid;

25 }

26 }

Figure 6.2: A variation of the canonical auction contract in Figure 6.1.

Despite syntactic and state representation differences, every sequence of transactions calling

methods of Auction has the same effect as if they were calling RefAuction instead. This relationship

can be stated as Auction being a behavioral refinement of RefAuction, i.e., that its behaviors are

subsumed by RefAuction. We use the term behavior to refer to a summary of the inputs and

outcomes, e.g., return values, of a sequence of invocations.

Behavioral refinement is consistent with Liskov’s substitutability principle [122], i.e., any con-

tract can be replaced with any of its refinements in any context, as long as a behavior records all

the outcomes (effects) which are observable in a context. For the sake of this example, we will focus

on return values. Other observable effects which are relevant in a Blockchain environment, e.g.,

changes on the state of other contracts or Blockchain global variables like the balances of external

146



accounts, are discussed in §6.3.

For instance2,

constructor(5, a) · bid(b, 20) · bid(c, 30) · HighestBid()⇒ 30

constructor(5, a) · bid(b, 20) · bid(c, 10)⇒ ⊥ · HighestBid()⇒ 20

are two possible behaviors of Auction which are also possible when calling methods of RefAuction

instead (we use the ⊥ return value to signal a reverted bid invocation). More generally, refinement

holds because the conditions under which a new bid is accepted are semantically the same even

though the two contracts use different representations of the ending time. The constructors of these

contracts ensure that the two representations are “consistent” in the sense that

auctionEnd = auctionStart + biddingTime (6.1)

which implies that the timing conditions in function bid are equivalent. Note that even though bid

has no return value, using different conditions for accepting a bid would have been “observable”

because of the “getter” method that allows to read the highest bid at any point during an execution.

6.2.2 Behavioral Simulation Relations

Establishing refinement usually relies on an induction argument based on a (behavioral) simulation

relation, which in our context, is a relation between the states of the two contracts supporting

a proof that the reference contract mimics every method invocation of the other contract. The

simulation relation supporting such a proof is defined as follows (the fields of Auction are prefixed

by # to distinguish them from fields of the reference auction having the same name):

Sim def= auctionStart + biddingTime = auctionEnd (6.2)

∧ #beneficiary = beneficiary ∧#highestBidder = highestBidder

∧ #highestBid = highestBid ∧#pendingReturns = pendingReturns

The initial states of the two contracts (produced after executing the constructor) are obviously

related by Sim and also, given any two states (of Auction and RefAuction, respectively) related by
2For bid invocations, the caller identity and the amount of Ether it sends are written as explicit arguments, and

the return value of an invocation (e.g., to HighestBid()) is written after ⇒. Also, we use small cap letters a, b, c to

represent values of type address.
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Sim, executing an arbitrary invocation in Auction can be mimicked by an invocation in RefAuction

of the same method with the same arguments and return values. Moreover, the states reached at

the end of the two invocations are again related by Sim. The latter enables an extension of this

proof to an arbitrary number of invocations.

The existence of this simulation relation implies that Auction is a behavioral refinement of

RefAuction, which implies that it satisfies any property of RefAuction characterizing its behaviors.

Even more, since the simulation relates the states of the two contracts, it also supports deriving valid-

by-construction inductive invariants or pre/post-condition annotations for methods. For instance,

an inductive invariant of a reference contract (that holds before and after every method invocation)

can be used to define a valid-by-construction inductive invariant for any contract that it simulates.

In the context of our running example, the following inductive invariant of the reference auction

Inv def= ∀i.pendingReturns[i] ≤ highestBid

implies that Sim ∧ Inv is an inductive invariant for Auction.

6.2.3 Simulation Relation Synthesis

We propose methodology for synthesizing such simulation relations automatically that consists of

two parts: a learning procedure for guessing simulation relation candidates from examples (§6.2.3),

and using deductive verification for establishing the validity of the inferred candidates (§6.2.3).

Learning Simulations From Examples

To generate candidate simulation relations we use a procedure based on learning from examples,

where the goal is learning a (first-order) formula that “separates” a set of positive examples from

a set of negative examples, i.e., satisfied by all positive examples and falsified by all negative ones.

In our context, examples are pairs of states of the contract and reference contract, respectively.

The positive examples must be included in any simulation relation while the negative ones must

be excluded from any simulation. Classifying examples as positive or negative enables the re-

use of any existing learning algorithm that can produce formulas separating between the two,

e.g., [85, 86, 139, 149, 155].

The positive examples are pairs of states obtained by executing the same sequence of invocations
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(with the same arguments) from the initial state of both the contract and the reference contract.

Such pairs of states are necessarily included in every simulation under the assumption that contracts

are deterministic, which roughly, means that the state reached by a contract when executing a

sequence of invocations is unique. These two auction contracts satisfy this determinism assumption

(this is rather straightforward when the global variable now is assumed to be a constant; otherwise,

it is required that any modification of the environment variable now is modeled explicitly as an

invocation to a fictitious method – see §6.3 for more details). For instance, the following pair of

states is obtained by running constructor(2, a) · bid(b, 10) · bid(c, 20) in both contracts (we write

only the keys of pendingReturns that changed with respect to the initial state):



beneficiary = a

now = 0

auctionStart = 0

biddingTime = 2

highestBid = 20

highestBidder = c

pendingReturns[b] = 10


,



beneficiary = a

now = 0

auctionEnd = 2

highestBid = 20

highestBidder = c

pendingReturns[b] = 10




(6.3)

We generate positive examples by enumerating invocation sequences and producing the pairs of

states reached by executing them in the two contracts.

The definition of negative examples relies on a relation between states which compares return

values of read-only methods. As a base case, a negative example is any pair of states that are

distinguished by a read-only method, i.e., invoking this method on each of the two states results in

different return values. For instance, the following pair of states are distinguished by the HighestBid

method: 



beneficiary = a

now = 0

auctionStart = 0

biddingTime = 2

highestBid = 20

highestBidder = c

pendingReturns[b] = 10


,



beneficiary = a

now = 0

_auctionEnd = 2

highestBid = 30

highestBidder = b




(6.4)

The first state is obtained by calling constructor(2, a) · bid(b,10) · bid(c, 20) in the Auction

contract while the second one is obtained by calling constructor(2, a) · bid(b,30) · bid(c, 20) in
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the reference auction. The difference between the two sequences, i.e., the argument to the second

bid, is written in bold font (the last bid in the reference auction sequence is not accepted because

it is smaller than the previous one). Such pairs of states should be excluded from any simulation

relation because otherwise, the reference contract cannot mimic the invocation of that particular

read-only method in the other contract. Going further, any pair of states from which executing the

same sequence of invocations leads to states that are distinguishable by some read-only method is

also a negative example (this again relies on the assumption that contracts are deterministic). For

instance, the predecessors of the pair of states in (6.4), reached before making the last bid (i.e.,

bid(c, 20)), which is the same in both contracts, is such an example:



beneficiary = a

now = 0

auctionStart = 0

biddingTime = 2

highestBid = 10

highestBidder = b


,



beneficiary = a

now = 0

_auctionEnd = 2

highestBid = 30

highestBidder = b




As we hinted above, negative examples can also be identified based on invocation sequences,

in this case two distinct ones. Therefore, their generation is oblivious to state representations and

based on an enumeration of pairs of invocation sequences.

Note that Sim in Equation 6.2 is indeed a separator between the examples described above.

Verifying Simulation Relations

To verify that a simulation candidate is indeed valid we rely on deductive verification. We generate

a simulation-checking contract with one function for each of the functions common to the input

contracts, invoking each version in turn. Figure 6.3 lists an excerpt of this contract for our running

example. The inheritance mechanism ensures that each state of SimulationCheck is a disjoint union

of a state of Auction and RefAuction, respectively. The simulation-checking contract lists the given

candidate simulation relation, in this case Sim in Equation 6.2, as both a pre- and post-condition to

each function (as well as a post-condition of the constructor), and asserts that both versions of each

function yields the same results. Sim is a valid simulation relation if all the pre/post-conditions and

assertions are satisfied by SimulationCheck.

This deductive verification step completes the proof that Auction is a behavioral refinement

of RefAuction and that it inherits all its behavioral properties, e.g., a bid is accepted only if it is
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1 contract SimulationCheck is Auction, ReferenceAuction {

3 // @notice postcondition Sim

4 constructor(uint _biddingTime, address payable _beneficiary)

5 Auction(_biddingTime, _beneficiary)

6 ReferenceAuction(_biddingTime, _beneficiary) public { }

8 // @notice precondition Sim

9 // @notice postcondition Sim

10 function checkBid() public payable {

11 r0 = Auction.bid();

12 r1 = ReferenceAuction.bid();

13 assert (r0 == r1);

14 }

15 }

Figure 6.3: Validating the simulation relation Sim.

bigger than every previous bid.

6.3 Behavioral Refinement

The formalization of behavioral refinement between contracts relies on a simple yet universal

model of computation, namely labeled transition systems. A labeled transition system (LTS)

A = (Q,Σ, s0, δ) over the possibly-infinite alphabet Σ is a possibly-infinite set Q of states with

initial state s0 ∈ Q, and a transition relation δ ⊆ Q×Σ×Q. The ith symbol of a sequence τ ∈ Σ∗ is

denoted τi, and ε is the empty sequence. An execution of A is an alternating sequence of states and

transition labels (also called actions) ρ = s0, a0, s1 . . . ak−1, sk for some k > 0 such that δ(si, ai, si+1)

for each 0 ≤ i < k. We write si
ai...aj−1−−−−−→A sj as shorthand for the subsequence si, ai, ..., sj−1, aj−1, sj

of ρ. (in particular si ε−→ si). The projection τ |Γ of a sequence τ is the maximum subsequence of

τ over the alphabet Γ. This notation is extended to sets of sequences as usual. A trace of A is the

projection ρ|Σ of an execution ρ of A. The set of traces of an LTS A is denoted by T (A). An LTS is

deterministic if for any state s and sequence τ ∈ Σ∗, there is at most one state s′ such that s τ−→ s′.

A contract is interpreted as an LTS whose traces represent sequences of invocations to the

contract’s methods together with their inputs and observable outcomes. A typical example of an

observable outcome is the return value, which can be read through invocations from other contracts.

Other examples include effects like gas consumption, changes on the state of other contracts, changes
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on Blockchain global variables like the balances of external accounts, etc. To simplify the technical

exposition, we will mostly focus on return values but this is not a limitation. This LTS interpretation

is used to formalize and reason about the soundness of our methodology. It is not intended to be

constructed explicitly.

Essentially, the states of the LTS are composed of an internal part represented as assignments

to the contract’s fields and the balance of the address at which the contract is deployed, and an

environment part represented as assignments to environment variables, e.g., now in Figure 6.1, which

influence the contract’s behavior. The transitions represent invocations to the contract’s methods or

updates of the environment variables, e.g., increasing the value of now3. The labels record method

names, arguments, and observable outcomes. For uniformity, updates of environment variables are

modeled as invocations to some fictitious methods.

Formally, an invocation label m(~u) is a method name m along with a vector ~u of argument

values. An operation label ` = m(~u) ⇒ v is an invocation label m(~u) along with a return value

v. We assume a fixed, but unspecified, domain Vals of argument or return values. Vals includes

a distinguished return value ⊥ associated to invocations that revert. We use inv(`) to refer to the

invocation label in an operation label `. This notation is extended to sequences or sets of operation

labels as expected. An interface Σ is a set of operation labels over a finite set of method names.

We use ΣX to denote the subset of Σ that excludes operation labels with ⊥ as a return value, and

Meths(Σ) to denote the method names in Σ.

Definition 6.1. A (smart) contract is an LTS C = (Q,Σ, s0, δ) over an interface Σ.

Example 6.1. Figure 6.4 pictures a fragment of the LTS interpretation of RefAuction. This LTS

contains an initial state from where a number of transitions corresponding to constructor invocations

are enabled. These different transitions correspond to different sets of arguments passed to the

constructor. As mentioned above, a state of this LTS consists of a valuation of all the fields of

RefAuction, e.g., beneficiary and _auctionEnd, the balance of the address at which this contract

is deployed, written as balance[this], and the environment variable now. Invocations that revert,

e.g., bidding 10 when the highest bid is 20, marked using the ⊥ return value, or invocations to
3This LTS can be thought of as a composition between an LTS defining the evolution of the variables controlled

by the contract and an LTS defining the evolution of the environment variables (whose states are valuations of these

variables). The states of the two LTSs share the valuation of the environment variables (read by the first LTS and

updated by the second).
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Initial 
state: 

now = 0

beneficiary = d 
_auctionEnd = 10 

… 

beneficiary = a 
_auctionEnd = 5 

… 

constructor(10, d)

constructor(5, a)

bid(b, 20)

bid(c, 30)

highestBidder = b 
highestBid = 20 

balance[this] = 20 
… 

highestBidder = c 
highestBid = 30 

balance[this] = 30 
… 

bid(b, 20) => ⊥
HighestBid() => 30

add_now(7)

now = 7 
…

bid(c, 10) => ⊥

Figure 6.4: A fragment of the LTS interpretation of RefAuction. Boxes represent states and arrows

represent transitions. The representation of states emphasizes the fields changed by the incoming

transition.

read-only methods like HighestBid are represented as self-loops. Transitions also represent updates

of now, e.g., increasing its value by 7.

Modeling updates of environment variables as labeled LTS transitions is important to ensure

that the resulting LTS is deterministic. For instance, assuming that such updates are ε transitions

in the LTS interpretation of RefAuction (Figure 6.4), the singleton sequence constructor(5, a)

leads to two distinct states, where now = 0 and now = 7, respectively. Determinism is important

for the soundness of our learning procedure (see §6.5).

Remark 6.1. The notion of contract in Definition 6.1 considers the return value as the only

observable outcome of an invocation. This notion can be extended to include other observable

effects by enriching the structure of transition labels. For instance, it is quite frequent that the

methods of a contract invoke Solidity primitives like send for transferring Ether, or methods of

other contracts, and possibly even check their return values. An invocation to such a method m can

be represented by a transition labeled by m(~u)⇒ I, v where ~u and v are the arguments and return

value of this invocation, and I is a sequence of operation labels corresponding to the “internal” calls

made during this invocation (e.g., a call to send with its arguments and return value).

The standard refinement relation between two LTSs is defined as the inclusion between the set

of traces produced by the two LTSs. For practical reasons, we consider an extension of this notion

that allows a contract to refine another even if (1) it has a larger interface (it defines a larger

set of methods) or (2) invocations revert more often (this is sound since any update of a reverted

invocation is discarded).
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1 contract PAX {

2 mapping(address => uint256) public balances;

3 address public owner;

4 constructor() public {

5 owner = msg.sender;

6 }

7 function mint(address to, uint val) public {

8 require(msg.sender == owner);

9 balances[to] = balances[to] + val;

10 }

11 function transfer(address to, uint val) public {

12 require(val <= balances[msg.sender]);

13 balances[msg.sender] = balances[msg.sender] - val;

14 balances[to] = balances[to] + val;

15 }

16 function transferOwnership(address _newOwner) public {

17 require(msg.sender == owner);

18 owner = _newOwner;

19 }

20 }

Figure 6.5: A contract managing a set of tokens.

For instance, Figure 6.5 lists several functions of a contract called PAX4 that allows an owner

to mint some set of tokens for some specific address (function mint), transfer tokens between dif-

ferent addresses (function transfer), and change ownership (function transferOwnership). Also,

Figure 6.6 lists an excerpt from the ERC20 reference contract in OpenZeppelin [13]. PAX defines

the method transferOwnership that does not occur in ERC20 and the method mint in PAX can

revert if it is not called by the owner while its counterpart in ERC20 can not. We consider PAX to

be a refinement of ERC20 because any sequence of non-reverted invocations to methods of PAX that

exist in both is admitted by ERC20 as well (when looking only at arguments and return values as

in the LTS interpretation). This extension of the notion of refinement also allows that a contract

is a refinement of several reference contracts. For instance, PAX is also a refinement of the contract

Ownable from the OpenZeppelin library, which implements an ownership mechanism.

Definition 6.2. A contract C1 over interface Σ1 refines another contract C2 over interface Σ2 when

T (C1)|ΣX2 ⊆ T (C2).
4A variation of a contract extracted from [14].
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1 contract ERC20 {

2 mapping(address => uint256) public balances;

3 function mint(address to, uint val) public {

4 balances[to] = balances[to] + val;

5 }

6 function transfer(address to, uint val) public {

7 require(val <= balances[msg.sender]);

8 balances[msg.sender] = balances[msg.sender] - val;

9 balances[to] = balances[to] + val;

10 }

11 }

Figure 6.6: An excerpt from the ERC20 reference contract.

6.4 Behavioral Simulations

The standard methodology for proving refinement is based on simulation relations, which are the

analog of inductive invariants in proofs of safety. Simulation relations enable an induction scheme

to prove inclusion of traces which generally can go forward, from initial states towards end states,

or backward, from end states towards initial states. While both types of reasoning, forward or

backward, are sound for proving refinement, forward reasoning is easier to automate while being

complete for proving refinement of deterministic LTSs only [126]. Since smart contracts are most

often deterministic, we focus on forward reasoning in this work.

Let C1 = (Q1,Σ1, s
1
0, δ1) and C2 = (Q2,Σ2, s

2
0, δ2) be two contracts. A simulation relation R

relates states of C1 and C2, respectively, in particular their initial states, such that any transition

of C1 from a state q (corresponding to a non-reverted invocation) can be reproduced by C2 from a

state related by R to q (i.e., C2 has a transition with the same label from the state related by R to

q). The end states of the two transitions in C1 and C2, respectively, must again be related by R5.

Formally, a relation6 R ⊆ Q1 × Q2 is called a (behavioral) simulation from C1 to C2 iff R(s1
0, s

2
0)

5This is a variation called forward simulation relation, which corresponds to the forward reasoning mentioned above,

from initial states towards end states. In general, proving refinement may also require establishing the existence of

a backward simulation, which is similar but the preservation of steps is defined in the reverse direction, i.e., for any

transition of C1 leading to a state q and any state q′ of C2 related by R to q, there exists a transition of C2 with the

same label leading to q′ and starting from a state related by R to the source state of C1’s transition.
6For readability, we write binary relations as predicates, e.g., R(s1, s2) instead of (s1, s2) ∈ R.
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and for all s1, s
′
1 ∈ Q1, a ∈ Σ1, and s2 ∈ Q2,

s1
a−→C1 s

′
1 ∧R(s1, s2) =⇒ ∃s′2 ∈ Q2. s2

a|ΣX
2−−−→C2 s

′
2 ∧R(s′1, s′2)

We adapted the standard definition of a simulation relation to take into account the restriction to

non-reverted invocations and that Σ1 is not necessarily included in Σ2. Transitions with labels that

exist only in C1 should be mimicked by ε (skip) transitions of C2.

Example 6.2. The relation Sim1
def= #balances = balances is a simulation relation from PAX in

Figure 6.5 to ERC20 in Figure 6.6 (the field balances of PAX is prefixed by #). This holds because

in particular, executing a method of PAX which is not defined by ERC20 does not affect balances.

The following statement follows from standard results relating simulation relations and refine-

ment [126].

Theorem 6.1. If there exists a simulation relation from a contract C1 to a contract C2, then C1

refines C2. Moreover, if C1 refines C2 and C2 is deterministic, then there exists a simulation relation

from C1 to C2.

Theorem 6.1 reduces refinement proofs to synthesizing simulation relations. The next section

shows that a simulation relation can be seen as a “separator” between two sets of pairs of states

(of the two contracts), analogous to an inductive invariant being a separator between “safe” and

“unsafe” states. This enables a learning from examples approach for computing simulation relation

candidates.

6.5 Learning Simulations From Examples

We describe a learning procedure for simulation relations which relies on a classification of pairs of

states (of the two contracts) as positive, included in every simulation, or negative, excluded from

every simulation. This classification is based on a notion of observational distinguishability between

states which holds when two states can be distinguished by return values of read-only methods. We

say that an invocation label m(~u) is read-only in a contract C when it is enabled in every state, i.e.,

for any trace σ1 ·σ2 ∈ T (C), there exists v ∈ Vals such that σ1 · (m(~u)⇒ v) ·σ2 ∈ T (C), and it does

not enable other invocations, i.e., for any value v ∈ Vals and trace σ1 · (m(~u)⇒ v) · σ2 ∈ T (C), we

have that σ1 · σ2 ∈ T (C) as well. A method m is read-only in a contract C when every invocation
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labelm(~u) is read-only. For instance, the methods PendingReturns and HighestBid of the contract

RefAuction in Figure 6.1 are read-only, while bid is not read-only.

Let C1 and C2 be two contracts over interfaces Σ1 and Σ2, respectively. A method m ∈

Meths(Σ1) ∩ Meths(Σ2) is called an observation method when it is read-only in both C1 and C2.

Given a set of observation methods Obs, two states s1 and s2 of C1 and C2, respectively, are

(observationally) distinguishable w.r.t. Obs, denoted by s1 ./Obs s2, if

∃m ∈ Obs, ~u ∈ Vals∗, v ∈ Vals. s1
m(~u)⇒v−−−−−→C1 s1 ∧ ¬s2

m(~u)⇒v−−−−−→C2 s2

We will omit the set of methods Obs from the notations when they are not important or understood

from the context.

Example 6.3. PendingReturns and HighestBid in Figure 6.1 are observation methods for the

pair of contracts Auction and RefAuction. The pair of states in Equation 6.4 are distinguishable

with respect to these two observation methods (HighestBid in particular).

The following result shows that any pair of distinguishable states is excluded from any simulation.

It follows from an instantiation of the definition of a simulation on transitions corresponding to

observation method invocations.

Lemma 6.1. Let C1 and C2 be two contracts and Obs a set of observation methods. For any

simulation R from C1 to C2,

s1 ./Obs s2 =⇒ ¬R(s1, s2)

We define two relations P and N over states of C1 and C2 representing positive and negative

examples for simulation relations, respectively:

P (s1, s2) : ∃σ ∈ (ΣX2 )∗. s1
0
σ−→C1 s1 ∧ s2

0
σ−→C2 s2

N(s1, s2) : ∃s′1, s′2, ∃σ ∈ (ΣX2 )∗. s1
σ−→C1 s

′
1 ∧ s2

σ−→C2 s
′
2 ∧ s′1 ./ s′2

where s1
0 and s2

0 are the initial states of C1 and C2, respectively. This classification is sound under

the assumption that C2 is deterministic. For negative examples, assuming by contradiction that

(s1, s2) ∈ N is included in a simulation relation, the state s′2 reached by C2 when mimicking some

sequence of invocations σ of C1 should “simulate” the corresponding state s′1 of C1. However, this

cannot be the case since the two states are distinguishable (by Lemma 6.1).
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Theorem 6.2. For any simulation relation R from a contract C1 to a deterministic contract C2,

we have that:

P ⊆ R ⊆ ¬N.

Example 6.4. Positive and negative examples for the pair of contracts Auction and RefAuction

(listed in Figure 6.1) are given in Equation 6.3 and Equation 6.4, respectively.

The reverse of Theorem 6.2 does not hold, i.e., there exist relations R that separate P from N

and that are not simulation relations. For instance, if the set of observation methods Obs is empty,

then N is also empty. However, not every superset of P satisfies the inductiveness requirement of a

simulation relation. This is similar to the fact that not every superset of the reachable set of states

in a program is an inductive invariant. This source of incompleteness can be removed by adapting

the approach used in the ICE framework [85] for inductive invariant synthesis.

Theorem 6.2 implies that there exists no simulation relation when the set of positive and negative

examples intersect.

Corollary 6.1. If P ∩N 6= ∅, then there exists no simulation from C1 to C2, provided that C2 is

deterministic.

For deterministic contracts where the return value of an invocation in a given state is unique,

positive and negative examples can be represented precisely using invocation sequences. This enables

a procedure for enumerating such examples which consists in enumerating (pairs of) invocation

sequences and which is oblivious to state representations.

A contract C is return-value deterministic if it is deterministic and for any method m, argu-

ments ~u, and admitted trace σ ∈ T (C), there is a single label m(~u) ⇒ v such that σ · (m(~u) ⇒

v) ∈ T (C). Determinism does not imply uniqueness of return values. For instance, an extension of

Auction (Figure 6.1) with a read-only method foo that returns a random value, computed using

block.difficulty for instance, remains deterministic. The following result shows that states of

return-value deterministic contracts can be represented precisely using invocation sequences.

Lemma 6.2. For any return-value deterministic contract C, the following holds:

∀s, s′. s0
σ−→ s ∧ s0

σ′−→ s′ ∧ inv(σ) = inv(σ′) =⇒ s = s′

Based on Lemma 6.2, each positive example can be represented by a single invocation sequence

(the pair of states being reproducible by running this sequence of invocations in both contracts) and
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each negative example can be represented by two invocation sequences, each sequence representing

a state in one of the two contracts. Also, checking that a pair of states is a negative example

reduces to checking whether by running the same (possibly-empty) sequence of invocations on the

two states, irrespectively of the return values, leads to two states which are distinguishable. This is

sound under the return-value determinism assumption.

The classification of simulation examples we presented above makes it possible to leverage off-the-

shelf learning algorithms that compute formulas that are satisfied by positive examples and falsified

by negative ones, e.g., [85, 86, 139, 149, 155], up to a bounded enumeration of such examples. The

problem of checking whether such a formula is a valid simulation relation is discussed in the next

section.

6.6 Verifying Simulations

We reduce the problem of verifying that a simulation candidate is valid to checking that it is an

inductive invariant for a composition of contracts, which is formalized using a slight variation of

the standard product construction for their LTS interpretations. Therefore, the product C1×C2 of

two contracts is defined as follows: the states are pairs of states of C1 and C2, respectively, and a

state (s1, s2) can perform a transition labeled by a ∈ ΣX1 to one of the following states:

• (s′1, s′2) if s1 and s2 can perform a transition labeled by a to s′1 and s′2, respectively

• (s′1, s2) if a 6∈ ΣX2 and s1 can perform a transition labeled by a to s′1, and

• a fail state  if a ∈ ΣX2 and only s1 can perform an a transition.

The second case is required for simulation relations towards reference contracts that have a smaller

interface while the last case makes it possible to detect invalid simulation candidates. Note also that

C1 × C2 excludes transitions corresponding to reverted invocations of C1. An inductive invariant

for a contract C = (Q,Σ, s0, δ) is a set of states I such that (1) s0 ∈ I and (2) if s ∈ I and s a−→ s′,

for some symbol a, then s′ ∈ I. The following theorem shows that any inductive invariant of the

product (that does not contain the fail state) is also a simulation relation. The reverse holds when

C2 is deterministic.

Theorem 6.3. Let C1 and C2 be two contracts. If R is an inductive invariant for C1×C2 such that

 6∈ R, then R is simulation from C1 to C2. Moreover, if C2 is deterministic and R is a simulation
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1 contract A {

2 ...

3 function foo(uint x) public view returns (uint) { require(x>42); ... }

4 function bar() public view returns (uint) { ... }

5 }

6 contract B {

7 ...

8 function foo(uint x) public view returns (uint) { ... }

9 }

10 contract AxB is A, B {

11 ...

12 function sync_foo(uint x) public {

13 r0 = A.foo(x);

14 r1 = B.foo(x);

15 require(r0 != ⊥);

16 assert (r0 == r1);

17 }

18 function sync_bar() public {

19 A.bar();

20 }

21 }

Figure 6.7: A contract AxB representing the product of the LTS interpretations of two contracts A

and B.

from C1 to C2, then R is an inductive invariant for C1 × C2 and  6∈ R.

In the following, we discuss a concrete instantiation of the results above that relies on source

code instead of LTS interpretations. The most important point is defining a contract that represents

the product of the LTS interpretations of two contracts. As hinted in §6.2.3, such a contract can be

defined using the inheritance mechanism of Solidity. The more subtle issues are related to enforcing

transitions with the same label, since the label includes an invocation and a return value, and

dealing with reverted invocations and methods that are defined in only one of the two contracts.

We explain these issues using the contracts A and B in Figure 6.7, where B is intended to simulate

A (their fields are omitted). The method foo is defined in both contracts, but A’s version contains

a require that may revert certain invocations, while the method bar is defined only in contract A.

Note that methods defined only in B can be ignored while checking whether it simulates another

contract.
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The contract AxB is used to represent the product of the LTS interpretations of A and B. Since

foo is defined in both contracts, the method sync_foo represents synchronous invocations of foo in

A and B while also ensuring equality of return values, unless foo fails in A. Transitions of the product

corresponding to bar invocations are represented using the method sync_bar. If AxB verifies the

assertion, then its LTS interpretation restricted to invocations of sync_foo and sync_bar is the

product of the LTS interpretations of A and B. Note that AxB can fail the assertion although B is

deterministic and it simulates A. This is possible when A is not return-value deterministic, e.g., foo

can return two values in both A and B when executed from the initial state.

By Theorem 6.3, if a relation R between states of A and B is an inductive invariant of AxB

restricted to sync_foo and sync_bar (it holds before and after every invocation) and AxB verifies

the assertion, then R is simulation from A to B.

Remark 6.2. This construction can be extended to handle certain specificities of Solidity. For

instance, to deal with payable functions like bid in the auction contracts from Figure 6.1, it is

sufficient to introduce a ghost variable in the reference contract that tracks the value of the balance

(i.e., adding the amount in msg.value). Then, a simulation relation relates this ghost variable and

the balance of the simulated contract instead of the two balances. Also, to establish the fact that a

reference contract invocation makes the same “external ” calls (to Solidity primitives like send or to

other contracts) as the invocation of the contract it simulates (see Remark 6.1) we rely on auxiliary

variables that record the sequence of calls with their arguments in each of the two invocations. We

then assert the equality between these auxiliary variables and assume that these calls have the same

return values. This models the fact that the two contracts refine one another when placed in the

same context where the environment produces the same responses.

6.7 Implementation

In this section we describe an implementation of our methodology for Solidity smart contracts.

Our implementation consists of four main components: an example generator, an example-guided

synthesizer, a blockchain oracle, and a deductive verifier. As input, our implementation requires

a pair of Solidity smart contracts with overlapping function signatures, and parameters to limit

example generation, including the sets of values to use for transaction parameters, and the number

of contract states to explore.
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Given these inputs, the example generator provides the synthesizer with positive and negative

examples, where each example corresponds to a pair of contract states. In turn, the synthesizer

provides the verifier with a candidate simulation relation separating positive and negative examples.

Since examples correspond to contract states on an Ethereum blockchain, the synthesizer relies on

an oracle to evaluate expressions on examples. Finally, the verifier validates candidate simulation

relations.

While this simple scheme sufficed for our empirical study, in principle, the selection of in-

put parameters could be automated in a refinement loop from spurious verifier counterexamples,

i.e., following counterexample guided inductive synthesis [157]. Furthermore, although we assume

the annotated contract against which the given unannotated contract is compared is identified a

priori, in principle this identification might be performed, e.g., via machine learning classifiers.

6.7.1 Example Generation

Our example generator executes transaction sequences on the Ganache [11] personal blockchain

for Ethereum using the Web3 Ethereum JavaScript API [19] and Solidity compiler [21]. Given

limits transaction parameters, e.g., small sets of integer and address values, the example generator

systematically explores every transaction sequence in lexicographic order up to the given threshold

on the number of contract states. For each state we record as observations the return values

for each read-only (view) function over the given parameter limits. In case the states reached

in some transaction sequence yield different observations, we return the transaction sequence and

observations as a counterexample refuting simulation. Otherwise, the example generator yields

positive and negative examples according to §6.5.

Two notable issues that the example generator must overcome are potential nondeterminism,

e.g., due to account creation and transaction block mining, and controlling transaction parameters,

e.g., the message sender parameter. While the former can be managed via parameters to Ganache,

the latter required instantiating auxiliary contracts at various addresses to invoke target functions

- effectively setting the sender to the auxiliary contract’s address.

6.7.2 Synthesis

Our synthesizer component extends the Precondition Inference Engine (PIE) [139], a tool which

learns a set of features, i.e., atomic predicates, (and a Boolean combination of these features) sepa-
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rating positive and negative examples by enumerating candidate features of increasing complexity.

We extend PIE along two principle axes. First, we extend its grammar to include types and op-

erations to handle Solidity language features like addresses, arrays, and maps. Second, instead

of concrete examples on which to evaluate candidate features, we make examples symbolic, and

delegate evaluation of features on examples to a blockchain oracle.

As an optimization we provide the synthesizer with a set of seed features generated from the

given pair of contracts. Intuitively, the seed features correspond to equalities between terms over

the respective contracts’ fields that are likely to hold. For instance, when contracts each have a

read-only (view) function f which evaluates terms t1 and t2, respectively, we generate the equality

t1 = t2. While this is not generally feasible for view functions with complex control flow, it is useful

in practice, since many view functions have simple bodies, e.g., a single return statement.

6.7.3 Verification

Our verifier consists of the reduction from simulation checking to deductive verification, described

in §6.6, along with the solc-verify verifier [97], which in turn reduces Solidity contract verification

to Boogie verification (and ultimately SMT solving). We have contributed only GitHub issues and

feature requests to solc-verify.

Besides the nuances described in §6.6 relating to effects on global state, e.g., balances, verify-

ing the simulation-checking contract with solc-verify involved one key nuance regarding modular

verification. In particular, while invocations to the annotated reference contract can be verified

modularly, i.e., using only its pre- and post-conditions, invocations to the unannotated contract are

verified inline, i.e., explicitly reasoning about the statements in its implementation. Besides help-

ing to virtualize potentially-conflicting global effects between the two invocations, such modularity

generally improves tractability.

6.8 Case Study of Solidity Smart Contracts

In this section we outline our case study of Solidity smart contracts, including collection methodol-

ogy, a partial taxonomy, and an analysis of syntactic similarities. Our starting points for sourcing

canonical contracts included the Solidity documentation [21], the Etherscan block explorer and an-

alytics platform [10], the State of the DApps curated directory for decentralized applications [18],

and the OpenZepplin contracts library [13].
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Contract Source Variations

Auction Ethereum 3

CrowdSale (token offering) OpenZepplin 3

ERC 20 (token) OpenZepplin 5

ERC 165 (interface detection) OpenZepplin 4

ERC 721 (non-fungible token) OpenZepplin 3

Escrow (payment) OpenZepplin 3

Gambling dice2.win 1

LifeCycle (life cycle) OpenZepplin 5

Lottery Etherscan 1

MultiSigWallet ConsenSys 1

Ownable (ownership) OpenZepplin 5

Roles (access control) OpenZepplin 5

Voting Etherscan 2

Total 41

Figure 6.8: Collection of smart contracts.

A first observation is that a vast number of contracts on the, e.g., Ethereum blockchain are

variations on a relatively-small number of canonical contacts like those listed in the first column

in Figure 6.8. We found that more than half of the 47 398 contracts extracted from the Ethereum

blockchain and studied in [78], which cover each of the eighteen Ethereum application categories from

State of the DApps, contain keywords associated with these canonical contracts. This finding seems

consistent with common practice, since standardization mechanisms such as Ethereum Request for

Comment (ERC) are widely used.

In order to use these canonical contracts as targets for our verification methodology, we manually

annotated them with full functional specifications, and verified the annotations with solc-verify [97].

To source contract variations, we collected contracts from Etherscan, as well as popular Blockchain

platforms including Moloch Ventures [12], 0xcert [6], Sirin Labs [15], Bit Nation [8], and Crypto

Kitties [7]. Overall we collected a set of 43 unannotated contracts, 41 of these contracts are catego-

rized in Figure 6.8 based on which canonical contract they implement. The remaining two contracts

are referred to as multi-contracts as they simultaneously implement multiple canonical contracts.

The collected contracts can be found at [16].

Finally, to assess the need for the automated synthesis procedure described in §6.5, we considered
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weaker syntactic approaches with varying degrees of sophistication. For example, simply considering

the conjunction of equalities between fields with the same names could work for simple single-field

contracts, like ownership. In case contracts renamed fields, some field-name similarity heuristic

would be required. For contracts with multiple fields, more sophisticated field-matching heuristics

would be required, and so on. Then there are contracts whose simulation involves arithmetic

expressions, further complicating heuristics. While the current generation of smart contracts we’ve

studied are relatively simple, future generations could render such heuristics fairly useless. As noted

in §6.11, our approach is relatively complete, and, as demonstrated in §6.9, capable of synthesizing

simulations for many non-trivial contracts.

6.9 Experimental Evaluation

In this section we outline an empirical study of our automated verification approach applied to the

Solidity smart contracts described in §6.8 using the implementation described in §6.7. We are able

to run our tool on all contracts from Figure 6.8 except MultiSigWallet and Gambling, which require

generating non-primitive transaction parameters, including addresses of deployed token contracts

and components of cryptographic signatures.

The overview of Figure 6.12 summarizes our results, listing the generated simulation relations

(omitting atomic terms) and verification outcomes. Each row, labeled c × n corresponds to n

unannotated contracts compared against one canonical annotated contract c, e.g., auction × 3 cor-

responds to 3 distinct unannotated auction contracts compared with one canonical auction contract.

(The rows labeled multi-i × 3 are exceptions; in these cases we consider one unannotated contract

compared against 3 distinct canonical contracts, corresponding to cases of multiple inheritance/in-

terfaces.) In all but 3 cases we are able to generate plausible candidate simulation relations, and in

all but 3 cases we are able to verify these relations – see §6.9.1.

In the "simulation relations" column, we list the learned simulation relations in prefix notation,

omitting atomic terms, i.e., contract fields and constants. In the verified column, we list the number

of canonical-and-unannotated-contract pairs for which a candidate simulation relation was:

• computed and verified, e.g., T× 3 in the auction row indicates success for 3 contract pairs;

• computed but not verified, e.g., F × 1 in the crowdsale row indicates a candidate simulation

relation our implementation did not verify; and
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contracts simulation relations verified

auction × 3 (∧(∧(∧(∧(∧(=)(=))(=))(=))(=))(= (+)))×3 T×3

crowdsale × 3 (∧(∧(∧(∧(=)(=))(=))(=))(=))×3 F×1, T×2

erc165 × 4 (=)×4 T×4

erc20 × 5 (∧(=)(=))×3 T×3, ⊥×2

erc721 × 3 (∧(∧(∧(=)(=))(=))(=))×3 T×3

escrow × 3 (∧(=)(=))×3 T×3

finalizable × 2 (∧(=)(=))×2 T×2

lottery × 1 (∧(=)(=))×1 F×1

multi-1 × 3 (∧(=)(=))×1, (=)×1 T×2, ⊥×1

multi-2 × 3 (∧(=)(=))×2, (=)×1 T×3

ownable × 4 (=)×4 T×4

pausable × 3 (∧(=)(=))×3 T×3

signer-role × 2 (=)×2 T×2

voting × 2 (∧(=)(=))×2 T×2

whitelisted × 3 (∧(=)(=))×3 F×1, T×2

Figure 6.9: Summary of results. Overview: generated simulation relations (atomic terms omitted)

and verification outcomes.

• not computed, e.g., ⊥× 2 in the erc20 row indicates 2 pairs for which our implementation did

not compute plausible candidate relations.

Our approach synthesizes simulation relations which are notably simpler than the inductive

invariants which would be required to verify the functional properties of unannotated contracts

by other means. For example, the inductive invariants for typical auction contracts would require

disjunctions over auction phases, e.g., active vs. completed, while simulation relations between

typical auction contracts need only conjunctions of equalities (see Figure 6.12). Previous works on

relational verification make the same observation [80, 43].

For each phase we summarize runtimes, in seconds. Distributions with mean µ, standard devi-

ation σ, and population count n are represented as µ ± σ : k, where σ is omitted when 0, and k

is omitted when equal to the subject count n of the row labeled c × n. Among the three phases,

synthesis generally takes much longer, e.g., minutes, than example generation, e.g., seconds, and

verification, e.g., one second.
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contracts transactions traces states positive negative time

auction × 3 174 47 78 47 370 33±1.6

crowdsale × 3 99.3±11.5 25 34 12.7±8.1 330 20±1

erc165 × 4 26 7 10 7 36 5.7±0.1

erc20 × 5 287.6±391.3 21±3.5: 3 38±6.9: 3 12.6±11.8 60±54.8 52.5±59.3

erc721 × 3 154 39 74 31.7±12.7 100 121.6±1.1

escrow × 3 76 19 34 19 100 10.2±0.1

finalizable × 2 28 7 10 6 28 4.4±0.1

lottery × 1 176 33 62 33 370 20.7

multi-1 × 3 212±322.2 7: 2 10: 2 3±2.6 14±14 53±66.2

multi-2 × 3 50±41.6 13±10.4 22±20.8 11±12.2 47.3±46.1 24.8±19.6

ownable × 4 26 7 10 5 28 5±0.1

pausable × 3 26 7 10 4 14 4.5±0.1

signer-role × 2 26 7 10 5 30 6.6±0.1

voting × 2 34 11 10 11 84 13.1±0.9

whitelisted × 3 66±8 17±2 30±4 15±1 118±39 10.8±0.9

Figure 6.10: Example Generation: counting blockchain transactions executed, transaction se-

quences (traces), states, and generated examples.

6.9.1 Cases Where Simulation Was Not Proved

Our implementation only failed to compute candidate simulation relations in 3 cases. However, each

failure is due to the discovery of genuine counterexamples to simulation (and refinement). Coun-

terexamples arise in 2 out of 5 ERC-20 variations and in the multi-1 contract which simultaneously

implements three canonical contracts: ERC-20, Ownable, and Pausable.

The first counterexample arises due to the transferFrom function of ERC-20. The canonical

contract subtracts the transferred amount from the sender balance before adding it to the receiver

balance, reverting when the subtraction underflows, while the variation contract does the reverse.

Thus after executing the following transactions:

a1: approve(a2, 2); a2: transferFrom(a1, a1, 2)

the function allowance(a1, a2) returns 2 in the first case, since a2’s allowance has not decreased,

but 0 in the second. Since the transferFrom function is present in the ERC-20 token standard [20]

this counterexample corresponds to a vulnerability of the unannotated contract.

The remaining two cases arise from ERC-20’s decreaseAllowance function. While the canonical

contract reverts the transaction if the requested decrease is greater than the current allowance, the
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contracts fields seeds terms queries time

auction × 3 15 5 7 10914 2561.8±11.3

crowdsale × 3 12 4.7±0.6 5 659.3±556.6 345.3±135.7

erc165 × 4 4 1 1 43 20.3±0.1

erc20 × 5 7.6±1.3 1.8±0.4 2: 3 121±3.5: 3 69.2±4.1: 3

erc721 × 3 18 4 4 131.7±12.7 104.4±10

escrow × 3 6 1 2 299±1.7 72.5±0.3

finalizable × 2 4 1 2 92 19.4±0.2

lottery × 1 6 1 2 840 353.7

multi-1 × 3 15±1 1 1.5±0.7: 2 46.5±19.1: 2 26.7±2.1: 2

multi-2 × 3 13±1 1.3±0.6 1.7±0.6 74±46.8 44.5±35.5

ownable × 4 2 1 1 33 15.7±0.2

pausable × 3 4 1 2 54 13.6

signer-role × 2 2 0 1 70 21.3±0.1

voting × 2 6±2.8 0 2 4037.5±4635.1 324±303

whitelisted × 3 4.3±0.6 0.7±0.6 2 2114±3105.9 172.6±152.5

Figure 6.11: Synthesis: counting contract fields and seed features passed as input, non-atomic

terms in generated simulations, and blockchain-oracle queries.

variation contract simply sets the allowance to zero without reverting the transaction. Thus after

executing the following transactions:

a1: increaseAllowance(a2, 1)

a1: decreaseAllowance(a2, 2)

the function allowance(a1, a2) returns 1 in the first case, but 0 in the second. Note that the de-

creaseAllowance function is not present in the ERC-20 token standard but only in the OpenZeppelin

implementation that we use as the canonical ERC-20 contract.

Our implementation is limited since it does not automatically generate loop and contract invari-

ants for verifying candidate simulation relations. Generally speaking, loop invariants on otherwise-

unannotated contracts are necessary for methods with loops; contract invariants can be required

in cases where the unannotated-contract state invariants are not implied by the combination of

canonical-contract state invariants (which are given) and candidate simulation relations (which are

computed by our synthesizer). While our experiments never required loop invariants, contract in-

variants were required in one case, to characterize fields of the unannotated contracts which have no

direct correspondence to canonical-contract fields. In particular, one of whitelisted’s unannotated

contracts maintains a length field equal to the number of elements in an array; the corresponding
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contracts lines of code verified fns. unverified time

auction × 3 481.3±11.6 11 0 1.9±0.1

crowdsale × 3 527.7±31.6 19.7±0.6 0.3±0.6 2.1±0.2: 2

erc165 × 4 115.3±15.9 3 0 0.8

erc20 × 5 431±124.7: 3 11.7±1.5: 3 0: 3 1.2: 3

erc721 × 3 684.7±7.1 10 0 1.3

escrow × 3 227.7±11 7 0 1.1±0.1

finalizable × 2 146.5±20.5 5 0 0.8

lottery × 1 224 - - -

multi-1 × 3 408±5.7: 2 5.5±0.7: 2 0: 2 1.2±0.2: 2

multi-2 × 3 582±46.9 6.7±2.1 0 1.1±0.1

ownable × 4 185.3±25.2 4.5±0.6 0 0.8

pausable × 3 206.3±3.2 5 0 0.8

signer-role × 2 159.5±2.1 6 0 0.9

voting × 2 167±9.9 5 0 0.9

whitelisted × 3 177±5.3 5.7±0.6 0.3±0.6 1±0.1: 2

Figure 6.12: Verification: counting lines of Solidity code, verified functions, and unverified func-

tions.

canonical contract has no such length field. Such relationships hold equally in all positive and

negative examples since examples only include reachable contract states. In contrast, invariant-

generation for individual contracts would distinguish a contract’s reachable and unreachable states.

We consider generating contract and loop invariants orthogonal to simulation relations, and stan-

dard techniques exist [141].

6.9.2 Example Generation Phase

For the example generation phase we count blockchain transactions executed, transaction sequences

(traces), states encountered, and positive and negative examples. Our implementation usually learns

simulation relations from a relatively small set of examples: 100 examples usually suffice, up to 450

in the worst cases. Another observation is that the total number of positive and negative examples is

several times the number of explored states. This happens because negative examples arise not only

from observationally-inequivalent states encountered among the executed transaction sequences, but

also inductively from prefixes of longer negative examples – see Lemma 6.2. The 3 cases where no

examples were generated correspond to genuine counterexamples to simulation.
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6.9.3 Synthesis Phase

For the synthesis phase we count the fields and seed features given to the synthesizer, non-atomic

terms in the generated simulation relation, and the number of queries to the blockchain oracle for

evaluating new features against examples. Note that the seed features were automatically generated

as explained in §6.7.2. The primary factors to overall runtime, which is roughly proportional to the

number of oracle queries, are the number and sizes of generated terms.

Despite similarities between varying canonical contract refinements, a naive syntactic strategy

of listing equalities, i.e., that used to generate seed features, would not suffice (cf. §6.8). In most

cases, the synthesizer is forced to generate terms that are not seed features while enumerating a

relatively small number of candidates (column "queries").

6.9.4 Verification Phase

For the verification phase we count the lines of Solidity code, verified functions, and unverified

functions. While verification succeeds in most cases, current limitations in solc-verify yield a few

failures. The first two cases were caused by skipping and reporting parsing errors for functions

which have Solidity features that are not supported by the tool. The last case requires establishing

a contract invariant (see §6.9.1), yet we do not currently apply invariant-generation to individual

contracts. Note that for the auction contract, the function which allows previous highest bidders

to reclaim their bids invokes the Solidity send function to transfer ether. Thus, to prove that this

function preserves the candidate simulation relation, we apply the technique described in Remark 6.2

where we use shadow variables to record the status of the invocations of send.

6.10 Related Work

Analysis of Smart Contracts. A number of systems have been proposed for detecting vulnerabil-

ities in smart contracts. These systems are based on static analysis, e.g. [94, 106, 159, 164], symbolic

execution engines, e.g. [100, 109, 125, 135, 160], or dynamic analysis, e.g., [96]. The systems based

on static analysis are designed to expose certain coding patterns that are prone to critical bugs and

cannot establish full functional correctness. In contrast, our work makes it possible to establish

behavioral simulations towards verified contracts which implies full functional correctness. The

systems based on symbolic execution or dynamic analysis are incomplete and can only establish
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correctness for bounded executions.

Functional Verification of Smart Contracts. Several previous works have developed method-

ologies for proving full functional correctness of smart contracts using theorem provers like Coq,

F*, and Isabelle/HOL, e.g., [36, 49, 95, 104, 151], SMT solvers, e.g, [97, 165], or predicate abstrac-

tion [141]. These works rely on user-provided functional specifications while our work, by estab-

lishing behavioral simulations, makes it possible to verify contracts for which such specifications do

not exist (as long as the simulations relate them with verified contracts).

Computing Refinement Relations Between Finite-State Systems. The complexity of com-

puting simulation relations between finite-state systems has been addressed quite extensively in the

literature, e.g. [64, 68, 102, 87, 88, 148]. Some of these works extend to infinite-state systems as

long as they have finite similarity quotient which intuitively, means that they are simulated by a

finite-state system. This is not the case for smart contracts which store infinite-domain inputs in

their state, e.g., the auction bids of Figure 6.1.

Synthesizing “Small-Step” Simulation Relations. An established approach for proving the

validity of compiler optimizations consists in synthesizing simulation relations from source to op-

timized programs, e.g., [42, 91, 132, 133, 134, 163]. These simulation relations concern traces of

a small-step operational semantics of the two programs while our approach computes behavioral

simulations which relate programs in terms of operation sequences, ignoring local memory and

control-flow. Moreover, the simulation relations are synthesized at compile time during the con-

struction of the optimized program. A reduction of simulation relation synthesis to solving a set

of Horn clauses has been investigated in [81, 82]. This reduction has been evaluated only for vali-

dating compiler optimizations and applying it to smart contracts would require modeling Solidity

semantics with Horn clauses, which is non-trivial.

Learning-Based Synthesis of Preconditions or Inductive Invariants. Learning from exam-

ples has been used to synthesize preconditions or inductive invariants that imply a user-provided

specification, e.g, [85, 86, 139, 149, 155]. Our work addresses the verification problem when such

specifications are lacking. The learning procedures defined in these works are however re-usable in

our context. Our implementation leverages the one defined by [139].
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6.11 Conclusion

Towards verifying unannotated smart contracts against precise functional specifications, we have

proposed a notion of behavioral refinement, along with an automated simulation-based proof method-

ology. As noted in §6.5-6.6, our method is complete modulo three (unavoidable) sources of in-

completeness: deductive verification, simulation for proving trace refinement, and learning from a

bounded set of examples.

For verifying candidate simulation relations, our current implementation assumes manually-

provided loop invariants, and, in some cases (see §6.9.1), contract invariants. This manual effort

could likely be automated for many contracts of interest using standard invariant-generation tech-

niques, e.g., [141]. Regardless, we consider the cost of any such manual effort to be offset by

a significant benefit: the inheritance of arbitrary specifications established by the corresponding

canonical contract(s). This includes hyperproperties like noninterference [92, 95, 158], because we

use simulation relations instead of arbitrary trace refinement relations. The incompleteness due to

simulation relations is thus also counterbalanced by the preservation of a larger class of specifica-

tions.
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Chapter 7

Conclusion

In this chapter, we give a summary of the dissertation and describe possible extensions and future

directions.

7.1 Conclusion

In this dissertation, we proposed algorithmic techniques for improving the reliability of distributed

software. In particular, we proposed automated techniques that aid in checking the correctness of

software programs that run on top of distributed systems. We addressed the problem of checking

whether an application program running on top of a database is robust against the weakening of the

database’s consistency guarantee. We also addressed the problem of verifying that a smart contract

running on top of a blockchain satisfies its functional properties. We advanced the state-of-the-art

in several directions: (1) we developed reductions for the robustness problem in the context of

several common consistency models to the well studied reachability problem; (2) we gave the first

results on the decidability and complexity of verifying robustness in the context of transactional

databases; (3) we introduced a new pragmatic technique for proving programs robustness that

exploits Lipton’s reduction theory; (4) we proposed a new behavioral simulation-based technique

to verify unannotated smart contracts; and (5) we developed a new technique for the synthesis of

behavioral simulation relations using counterexample driven synthesis. In the rest of this section,

we summarize the primary technical contributions presented in this dissertation:

• We addressed the problems of checking robustness of application programs against substituting

SER with CC or SI, PC with CC, and SI with PC. We considered three distinct semantics of causal
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consistency that were studied in the literature of distributed databases. We showed that the

behaviors of a program over these three semantics coincide when the program does not contain

write-write data races. In our reduction of robustness against substituting SER with CC or SI

to reachability problem, we developed new characterizations of a class of traces that violate

robustness called minimal violation. We also showed that by splitting a transaction to a read-

only transaction followed by a write-only transaction, the robustness against substituting PC

with CC can be reduced to robustness against substituting SER with CC. We developed a new

instrumentation procedure that allows to reduce robustness against substituting SI with PC

to reachability under serializability. Furthermore, we developed a pragmatic technique for

proving robustness using the notion of movers. Finally, we applied the techniques to a set of

applications collected from open source GitHub projects and the literature.

• We applied behavioral simulation between smart contract to allow the verification of unan-

notated smart contracts using annotated canonical smart contracts as specifications. We

proposed a new technique based on counterexample guided synthesis to find behavioral sim-

ulation relations. In particular, our technique is based on a learning algorithm that discovers

simulation relation from a set of examples and a verification algorithm based on relational

verification that checks whether a discovered formula is a simulation relation by checking

whether it is an invariant of the product contract. We developed a tool implementation of the

techniques. We collected a benchmark of smart contracts obtained from open source GitHub

projects and Etherscan, which we used to evaluate the implementation.

7.2 Future Work

In this section we discuss possible directions for future research that can build on the contributions

of this dissertation:

• An interesting direction for future work is looking at the robustness problem in the context

of hybrid consistency models where some of the transactions in the program can be declared

serializable. These models include synchronization primitives similar to lock acquire/release

which allow to enforce a serialization order between some transactions. Such mechanisms can

be used as a “repair” mechanism in order to make programs robust. We believe that our

approach can be extended to these models.
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• Another interesting direction for future work is to consider robustness of application programs

that use operations offered by abstract data types (ADTs), e.g., counters, lists, and sets, to

access data stored on databases instead of the standard read/write operations. Conflict-free

replicated data types (CRDTs) [153] are recently introduced ADTs that can be implemented by

distributed systems while achieving availability, convergence, and partition tolerance. CRDTs

ensure efficient resolution of the effects of concurrent updates to replicated data. Thus, an

interesting question is to look at the robustness of programs that use CRDTs against substi-

tuting each linearizable CRDT with the corresponding weakly consistent CRDT implementa-

tion [154].

• For application programs that are not robust against the weakening of consistency relative to

serializability, it is still possible that these programs do satisfy their invariants/specifications.

However, we are not aware of generic verification tools that can facilitate the verification of

programs that run on top of databases that implement different variations of weak consisten-

cies. Thus, an interesting direction for future work is to develop new proof tools that facilitate

the verification of these programs.

• The current implementation for synthesizing simulation relations can be improved from multi-

ple perspectives: (1) automate the identification of canonical smart contracts against which to

consider refinements, e.g., using machine-learning classifiers; (2) relax compatibility require-

ments on function signatures between smart contracts, e.g., to allow simulation among con-

tracts that have similar functions with varying parameter types; (3) eliminate the need to pro-

vide example-generation parameters when synthesizing a simulation relation, e.g., using veri-

fier counterexamples to drive example generation; (4) eliminate the need for manually-provided

contract and loop invariants using standard invariant-generation techniques, e.g., [141]; and

(5) use synchronized-loop product together with the synchronized function product for veri-

fying simulation relation.

• Popular blockchains such as Ethereum terminate a smart contract execution if the amount

of the computational resources, called gas, it has consumed exceeds a certain limit fixed

by the author of the transaction. Consequently, smart contracts with inefficient code are

gas-inefficient and error-prone. An interesting future direction is to develop a technique that

given a smart contract, it synthesizes a gas-efficient contract that is a refinement of the original
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contract.
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