
HAL Id: tel-03420626
https://theses.hal.science/tel-03420626

Submitted on 9 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anchored solutions in robust combinatorial optimization
Adèle Pass-Lanneau

To cite this version:
Adèle Pass-Lanneau. Anchored solutions in robust combinatorial optimization. Operations Research
[math.OC]. Sorbonne Université, 2021. English. �NNT : 2021SORUS177�. �tel-03420626�

https://theses.hal.science/tel-03420626
https://hal.archives-ouvertes.fr

École Doctorale Informatique, Télécommunications et Électronique, Paris

Sorbonne Université, Laboratoire LIP6, équipe Recherche Opérationnelle

EDF R&D, département OSIRIS

Anchored solutions
in robust combinatorial optimization

Adèle Pass-Lanneau

Thèse de doctorat en informatique
présentée et soutenue publiquement le 16 mars 2021

Jury

Rapporteurs

Dominique De Werra Professeur honoraire, EPFL, Suisse

Gerhard J. Woeginger Professeur, RWTH Aachen, Allemagne

Examinateurs

Bruno Escoffier Professeur, Sorbonne Université, LIP6, France

Frédéric Meunier Professeur, École des Ponts, CERMICS, France

Michael Poss Directeur de recherche, CNRS, LIRMM, France

Encadrants

Pascale Bendotti Ingénieur-Chercheur HDR, EDF R&D, France

Philippe Chrétienne Professeur émérite, Sorbonne Université, LIP6, France

Pierre Fouilhoux Professeur, Université Sorbonne Paris Nord, LIPN, France

Extended abstract

An instance of an optimization problem is often subject to uncertainty and likely to
change over time. If the instance changes, an optimal solution to the instance also
changes. However, changing a solution could be difficult in practice. The decision
maker may be change-averse and prefer solutions that are, in some sense, stable.
In this thesis we investigate a stability criterion based on anchored decisions, that
are unchanged decisions with respect to a baseline solution. In reoptimization, the
goal is to find a new solution with a maximum number of decisions maintained
from the previously computed baseline solution. In robust optimization, it is to
find in advance a baseline solution along with a subset of anchored decisions.
When the solution must be modified to adapt to instance disruptions within a
given uncertainty set, anchored decisions are guaranteed not to change.

In Part I, the generic concepts of the thesis are proposed and compared with
the literature. In Chapter 1 we first review the state of the art in robust opti-
mization and solution stability. In Chapter 2, the concepts are presented. The
anchoring level is defined as the number of identical decisions between two so-
lutions of a discrete optimization problem. Anchor-reoptimization problems are
defined, where the anchoring level is maximized. Anchor-robust problems are then
defined as 2-stage robust problems where the size of the subset of anchored deci-
sions is maximized. Anchor-robustness fills the gap between static-robustness and
adjustable-robustness, as it allows to find a trade-off between the cost of a baseline
solution and the number of anchored decisions.

Anchor-reoptimization and anchor-robust problems are studied on two classes
of problems: combinatorial problems with only binary variables in Part II, and
scheduling problems with continuous variables in Part III and Part IV.

In Part II, we consider combinatorial problems written as integer programs in
binary variables, such as matroid bases or matchings. Chapter 3 is devoted to
anchor-reoptimization, under the form of k-red problems from the literature. We
focus on anchor-reoptimization for matroid bases, which can be solved in polyno-
mial time, either by a lagrangian-based algorithm or using a polyhedral characteri-
zation. In Chapter 4, anchor-robustness for combinatorial problems is investigated.

3

Extended abstract

The complexity of the anchor-robust problem is analyzed for various uncertainty
sets, and an MIP reformulation is obtained. The anchor-robust problem is shown
to be computationally less demanding than the recoverable robust problem from
the literature. Finally the so-called price of anchor-robustness is studied, which is
the overhead cost of an anchor-robust solution with respect to a recoverable robust
solution.

In Part III, we consider project scheduling problems, that involve continu-
ous decision variables. In Chapter 5, reoptimization is first considered, by the
means of anchored rescheduling problems. The complexity of rescheduling for
various project scheduling problems is analyzed, showing the boundary between
polynomial and hard cases of anchored rescheduling problems. In Chapter 6, the
anchor-robust approach is developed for project scheduling under precedence con-
straints, leading to the AnchRobPSP problem. Combinatorial properties of the
problem are studied, and dedicated graph models are proposed. We then study the
complexity of AnchRobPSP. Several cases of AnchRobPSP are shown NP-hard,
including budgeted uncertainty. Algorithms are designed for polynomial cases.
For budgeted uncertainty an MIP reformulation is obtained, and its numerical
performance is assessed. In Chapter 7, the anchor-robust approach is redesigned
to address the Resource-Constrained Project Scheduling Problem (RCPSP), which
is already NP-hard in a deterministic setting. We show the connection with the
Adjustable-Robust RCPSP from the literature. Algorithmic tools are proposed,
building upon the contributions of Chapter 6. Exact MIP-based approaches and
dedicated heuristics are devised, for both the Adjustable-Robust RCPSP and the
Anchor-Robust RCPSP in a unified way. The proposed exact and heuristic ap-
proaches are thoroughly evaluated on benchmark instances. Finally, a use case of
anchor-robustness in project scheduling is presented, on a maintenance planning
problem arising at EDF.

In Part IV, we further investigate mixed-integer programming techniques for
the AnchRobPSP problem introduced in Part III. The formulation from Chapter 6
is investigated, together with new linear formulations valid for a larger variety of
uncertainty sets. In Chapter 8, a dominance property is exhibited, and a new
compact formulation is proposed. We show that it captures the combinatorial
structure of the problem. Indeed it yields a polyhedral characterization of integer
solutions of AnchRobPSP in non-trivial cases. Numerical experiments are carried
out to show the efficiency of the approach on instances close to characterization
cases, and on new uncertainty sets. In Chapter 9, we investigate formulations
in the space of anchoring variables only. A complete picture of formulations for
AnchRobPSP is given, both in anchoring variables only, and in extended form
with additional schedule variables. A facial study of the anchored set polytope
is then proposed. In cases where a polyhedral characterization was previously

4

Extended abstract

obtained, we give a minimal description of the anchored set polytope. In general
case, new inequalities are exhibited to strengthen inequalities from the proposed
linear formulations.

Finally conclusions and research perspectives are presented. We point out
some open complexity questions on the anchor-reoptimization and anchor-robust
problems studied in the thesis, and give perspectives on the design of efficient algo-
rithms for NP-hard cases. Finally other problems are identified where the concept
of anchored solutions is relevant, and would lead to new anchor-reoptimization
and anchor-robust problems.

5

Extended abstract

6

Contents

Extended abstract 3

I Anchored solutions in robust optimization 11

Preliminaries 13

1 Robust optimization: state of the art 15

1.1 Robustness in discrete optimization 15

1.2 Static robustness . 18

1.3 Two-stage robust optimization . 22

1.4 Solution stability in reoptimization and robust optimization 27

2 Anchored solutions: concepts 33

2.1 Anchoring level . 33

2.2 Anchor-Reoptimization . 35

2.3 Anchor-Robust optimization . 39

2.4 Main research directions . 47

II Anchored solutions to combinatorial problems 49

Preliminaries 51

3 Anchor-Reoptimization for combinatorial problems:
a case study on matroid bases 53

3.1 k-red matroid bases . 56

3.2 Illustration for the k-red spanning tree 63

3.3 k-red bipartite matching . 65

7

Contents

4 Anchor-Robustness for combinatorial problems 69

4.1 Definitions . 69

4.2 Complexity for discrete and polyhedral uncertainty sets 73

4.3 MIP reformulations . 77

4.4 The price of anchor-robustness . 81

III Anchored solutions in project scheduling 87

Preliminaries 89

5 Anchored Rescheduling problems for project scheduling 91

5.1 Anchored rescheduling under generalized precedence 91

5.2 Polynomiality of ε-AnchRe(GenPrec) 94

5.3 Anchored rescheduling with a deadline constraint 96

5.4 Sensitivity analysis with respect to tolerance 97

5.5 Towards machine rescheduling . 99

6 The Anchor-Robust Project Scheduling Problem 103

6.1 The Anchor-Robust Project Scheduling Problem 104

6.2 Graph models for AnchRobPSP . 110

6.3 Complexity of the AnchRobPSP . 116

6.4 Algorithms for special cases of AnchRobPSP 121

6.5 Comparison to affine decision rules 127

6.6 Numerical results . 132

7 The Anchor-Robust RCPSP: exact and heuristic approaches 145

7.1 Preliminaries . 146

7.2 Anchor-Robust approach for the RCPSP 147

7.3 Graph model and compact MIP reformulations 153

7.4 Computational results: MIP for Adjustable-Robust RCPSP 161

7.5 Computational results: Heuristics for Adjustable-Robust RCPSP . . 165

7.6 Computational results: MIP for Anchor-Robust RCPSP 171

7.7 Computational results: Heuristic for Anchor-Robust RCPSP 175

Industrial use case 179

IV Polyhedral approaches for AnchRobPSP 183

Preliminaries 185

8

Contents

8 Dominance-based linear formulation for AnchRobPSP 187
8.1 Preliminaries on uncertainty sets 188
8.2 Linear formulations for AnchRobPSP 190
8.3 Polyhedral characterization for special cases 195
8.4 Numerical results . 201

9 The combinatorial structure of AnchRobPSP 211
9.1 Formulations in anchoring variables 211
9.2 Polyhedral study of the polytope of anchored sets 221
9.3 Linear bounds evaluation . 226

Conclusion and research perspectives 231

Appendix 235

Bibliography 239

9

Contents

10

Part I

Anchored solutions in robust
optimization

11

Preliminaries on optimization problems

We consider discrete optimization problems under the following form:

(P) min cTx

s.t. x ∈ X

The decision variables are coordinates of decision vector x ∈ RI with I a set of
|I| = n decisions. The objective is to minimize a linear cost function cTx, with
cost vector c ∈ RI . The feasible set is X ⊆ RI

+. An instance of problem (P) is thus
(c,X). We assume that problem (P) can be written as a mixed-integer program
(MIP) under the following form

(MIP) min cTx

s.t. Ax ≤ b

x ≥ 0

x ∈ {0, 1}q × Rn−q

where matrix A is the constraint matrix, and vector b the right-hand side. Decision
variables xi, i ∈ {1, . . . , q} are binary variables, while decision variables xi, i ∈
{q+ 1, . . . , n} are continuous variables. Let S denote the space where the decision
vector lies, that is, S = {0, 1}q × Rn−q. If all decision variables are continuous,
i.e., S = RI , (MIP) is a linear program. If all decision variables are binary, i.e.,
S = {0, 1}I , (MIP) is an integer program in binary variables. In particular, we
say that (P) is a combinatorial problem if it can be written as (MIP) with binary
variables only.

Let us introduce three problems: Selection, Min Cost Spanning Tree
and PERT Scheduling. These problems will be used in Chapter 1 and Chapter 2
to illustrate the proposed concepts. Selection, Min Cost Spanning Tree
are combinatorial problems, while PERT Scheduling has continuous decision
variables. All three are polynomially solvable.

13

Selection. Consider a set of n items. Each item i ∈ {1, . . . , n} is associated
with cost ci ≥ 0. Let p be an integer, p ≤ n. The Selection problem is to select
p items, so as to minimize the total cost of selected items. With binary decision
variable xi = 1 if item i is selected, xi = 0 otherwise, the problem writes as

min cTx

s.t.
∑n

i=1 xi = p

x ∈ {0, 1}n

Note that an optimal solution to Selection is simply obtained by sorting the
items in increasing order of costs ci, and selecting the first p items.

Min Cost Spanning Tree. Consider a graph G = (V,E). A spanning
tree is a subset T ⊆ E of edges such that T is cycle-free and |T | = |V | − 1.
Consider a vector of costs associated to edges c ∈ RE

+. The Min Spanning Tree
problem is to find a spanning tree T ⊆ E with minimum total cost. Consider
binary decision variable xe = 1 if edge e is in the tree, xe = 0 otherwise. The
problem writes as min cTx for x ∈ X , where X ⊆ {0, 1}E is the set of incidence
vectors of spanning trees. Classically the set X can be described with a family
of linear inequalities (see, e.g., (Schrijver, 2003)), and this family has exponential
size. A min-cost spanning tree can be found algorithmically in polynomial time
with Kruskal’s algorithm (see, e.g., (Korte and Vygen, 2012)).

PERT Scheduling. Consider a project with a set J of n jobs. Let s and
t two dummy jobs representing the beginning and the end of the project, and
J = J ∪{s, t}. Consider a set of precedence relations, represented by a precedence
graph (J,A). It is assumed that the precedence graph is acyclic, and s (resp. t) is
a predecessor (resp. a successor) of all jobs. Each job has a processing time pi ≥ 0.
A schedule is a vector of starting times xi ≥ 0, i ∈ J of the jobs. The makespan of
schedule is xt. The Project Scheduling Problem, or PERT Scheduling
Problem, is to find a schedule x ∈ RJ

+ such that for every precedence relation
(i, j) ∈ A, job j starts after job i completes, and so as to minimize the makespan
xt. The problem writes as

min xt
s.t. xj − xi ≥ pi ∀(i, j) ∈ A

x ≥ 0

x ∈ RJ

It is a linear program, and as such, it is solvable in polynomial time. The optimal
value of the problem is equal to the longest s−t path in the precedence graph
(Pinedo, 2002). This longest path value can be computed in polynomial time by
dynamic programming.

14

Chapter 1

Robust optimization: state of the
art

In this chapter, we present state-of-the-art concepts in robust optimization and
solution stability in which the contributions of the thesis fit. In Section 1.1 the
general principles of robustness are exposed. In Section 1.2 and Section 1.3,
static-robust optimization and two-stage robust optimization are presented. In
Section 1.4 related work on solution stability is reviewed.

1.1 Robustness in discrete optimization

Let us first present the core principles of robust optimization, and present the idea
of uncertainty sets.

1.1.1 Robust optimization basics

Discrete optimization is commonly used in operations research to represent a real-
life problem. It may come from various applicative fields, such as scheduling
and planning, workforce assignment, or network design. This real-life problem is
represented by an instance of a discrete optimization problem.

However in practice data is often not known exactly. Data can be difficult
to measure or estimate: hence it is not known with perfect accuracy. Data can
also be dynamic and change over time. Then at some point in time, some data is
available which will not be accurate anymore in the future. This occurs when data
is acquired in advance, before the solution of the optimization problem is used
for practical implementation. Data inaccuracy raises the question of handling
uncertainty in optimization problems. It is all the more important because the
considered discrete optimization problems are very sensitive to uncertainty. A

15

Chapter 1. Robust optimization: state of the art

disruption in the constraints or objective function, be it very small, may impair
the optimality or feasibility of a solution. Therefore one cannot solve the original
optimization problem being oblivious to uncertainty, then hope that the solution
will behave well if data changes, even “not too much”. Uncertainty must be
integrated from the start into the optimization process, with full awareness.

The two main trends for optimization under uncertainty are stochastic op-
timization and robust optimization. The present work lies in the scope of the
latter. In stochastic optimization, distributional information of uncertain data is
available, and a stochastic criterion (e.g., the expected value) is optimized. The
paradigm of robust optimization is to consider that unknown data may take any
value in a so-called uncertainty set. By contrast with stochastic optimization, no
further information is available on distribution of data in the uncertainty set. Ro-
bust optimization is then to find solutions that are immune to any realization in
the uncertainty set, and to optimize a worst-case criterion. Those two ingredients
of robust optimization, i.e., an uncertainty set, and a worst-case criterion, were
already mentioned in early work, such as the book from Kouvelis and Yu (1996),
Robust Discrete Optimization and Its Applications :

“We suggest the use of the robustness approach to decision making, which as-
sumes inadequate knowledge [...] about the random state of nature and develops
a decision that hedges against the worst contingency that may arise.”

1.1.2 Uncertainty sets

Let us formalize the idea of uncertainty set. We want to account for uncertainty
on numerical data of the mixed-integer program (MIP), that is, coefficients in the
constraints or objective function.

The constraint matrix, right-hand side, and cost vector are considered to have
nominal values A, b, and c. The instance of (MIP) with nominal values as data
corresponds to the deterministic problem. We then consider that the real data
may deviate from the nominal values, to be equal to A + δA, b + δb, c + δc. The
deviations δA, δb, δc are a matrix and vectors with the same sizes as A, b, c. An
uncertainty realization is δ = (δA, δb, δc). The uncertainty set ∆ is a set containing
all uncertainty realizations δ = (δA, δb, δc) that the decision maker wants to hedge
against.

There are a number of options for the geometry of the uncertainty set, as
illustrated in Figure 1.1. It can be a discrete set, then every uncertainty realization
is said to be a scenario. The uncertainty set can also be a convex set, usually
containing the element where all deviations are zero. For example, it can be
chosen to be a polyhedron. A special case of polyhedron is a box, i.e., a cartesian

16

Chapter 1. Robust optimization: state of the art

product of intervals, to represent that every coefficient varies independently within
a range. The uncertainty set can also be chosen to be an ellipsoid.

δ1

δ2

•

•
•

•
•

••

•
• •

δ1

δ2

δ1

δ2

δ1

δ2

Figure 1.1: Examples of uncertainty sets: a discrete set, a polytope, a box, an ellipsoid.

For a given uncertainty set ∆, each realization δ = (δA, δb, δc) ∈ ∆ is associated
to an instance (cδ,X δ) of original problem (P), where cδ = c + δc and X δ = {x ∈
S : x ≥ 0, (A + δA)x ≤ b + δb}. The uncertainty set ∆ corresponds to cost
uncertainty if it impairs the cost vector only, right-hand side uncertainty if it
impairs the right-hand side vector only.

Example 1.1 (Uncertainty for Min Cost Spanning Tree). Consider the min
cost spanning tree problem. An instance is formed with the graph G = (V,E) and
the edge costs c ∈ RE

+. A first uncertainty set ∆ may correspond to disruptions of
cost cδ, with cδ = c0 + δ. Then the collection of instances is (cδ,X 0)δ∈∆. Another
uncertainty set ∆ may correspond to disruptions on the graph, for example, edge
deletions. Then each uncertainty realization δ ∈ ∆ corresponds to an edge-set Eδ,
and set X δ is the set of spanning trees of G = (V,Eδ). �

Example 1.2 (Uncertainty for PERT Scheduling). Consider project scheduling
under processing times uncertainty. Processing times have nominal value p ∈ RJ

+,
but may be disturbed into p + δ for some δ ∈ ∆. Then X δ is the set of schedules
of (J,A, p + δ) for every δ. The cost of a schedule is its makespan, i.e., the cost
vector is cδ = χ{t} for every δ ∈ ∆. In this case there is no uncertainty on the cost
function. �

The robust counterpart is an optimization problem formulated using nominal
values A, b, c and the uncertainty set ∆. In general the robust counterpart extends
the deterministic problem, because it coincides with the deterministic problem if
the uncertainty set is reduced to singleton {0}.

A variety of robust approaches were developed in the last 20 years, leading to
distinct robust counterparts. In this chapter, we will present the main trends of
robust optimization literature, and hopefully, give an insight on the diversity of
the proposed approaches.

17

Chapter 1. Robust optimization: state of the art

1.2 Static robustness

Let us first present the first robust approach considered in the literature, which is
static robustness.

1.2.1 The static-robust counterpart

Consider an uncertainty set ∆, and the corresponding collection of instances
(cδ,X δ)δ∈∆ of problem (P). Static-robustness is to find a solution that is feasi-
ble for every uncertainty realization, i.e., x ∈ X δ for every δ ∈ ∆. Such a solution
is said to be a static-robust solution. The criterion to minimize is the worst-case
cost maxδ∈∆ c

δTx.
The static-robust counterpart (SR-P) to problem (P) is the following:

(SR-P) min max
δ∈∆

cδ
T
x

s.t. x ∈ X δ ∀δ ∈ ∆

This problem was introduced in a short note from Soyster in 1973 (Soyster,
1973), and later developed by Ben-Tal and Nemirovski (1998). The word “static”
is in opposition with 2-stage approaches, detailed in Section 1.3. Static-robustness
is also called strict robustness.

Note that if the nominal instance is in the collection (cδ, Xδ)δ∈∆, which is a
standard assumption, the optimal value of (SR-P) is not less than the optimal
value of (P). The increase of optimal value from (P) to its robust counterpart is
called the price of robustness (Bertsimas and Sim, 2004). It is a concern that the
price of robustness is not too high, otherwise robust solutions would have a cost
that is too high to implement them. In that case, the robust approach is said to
be too conservative.

A main concern about the static-robust counterpart is tractability. We use here
the word “tractability” for both the computational complexity of the problem, and
the fact that it can be efficiently handled with specific algorithms or solvers (for
example, an MIP solver). The problem (SR-P) is written with a constraint for
each realization δ ∈ ∆. Hence it potentially has an infinite number of constraints
if ∆ has a non-empty interior, e.g., if ∆ is a polyhedron. A question is whether
this problem can be reformulated to be solved with usual algorithmic tools.

1.2.2 Tractability results

The tractability of the static-robust counterpart depends on both the original
problem (P), and the chosen uncertainty set ∆. It was investigated since the
2000’s by several works that we now review.

18

Chapter 1. Robust optimization: state of the art

Column-wise convex uncertainty. In (Soyster, 1973) the case of a linear pro-
gram (LP) was studied. The feasible set of the original problem is X = {x ∈
Rn : Ax ≤ b, x ≥ 0}. The constraint matrix is uncertain, and may be A + δA.
The uncertainty set is defined so that the jth column of δA lies in a convex set
∆j. In this case, it can be shown that the constraint (A + δA)x ≤ b is satisfied
for every δA ∈ ∆ if and only if (A + δ+

A)x ≤ b, where δ+
A is the matrix with jth

column [δ+
A]j = max∆j

[δA]j. Assume the matrix δ+
A is precomputed. Then the

static-robust counterpart reduces to the LP with constraint matrix A+δ+
A . This is

a simple case of uncertainty representation, where uncertainty realizations of two
columns on the constraint matrix are uncorrelated. It leads to a robust problem
that is just another instance of the original problem. However, it was noted that
the obtained robust solutions are very costly: the approach is said to be overly
conservative.

Ellipsoidal uncertainty. Other continuous problems were studied in (Ben-Tal
and Nemirovski, 1998) for ellipsoidal uncertainty sets. The authors obtained a
range of positive results on the nature and the tractability of static-robust prob-
lems. They showed that the static-robust counterpart of a convex program under
ellipsoidal uncertainty is still a convex program. The static-robust counterpart of
an LP under ellipsoidal uncertainty is a conic quadratic program. For a range of
quadratic problems, the static-robust counterpart is an SDP program. The static-
robust counterpart may have a different nature than that of the original problem.
However it is still identified in a class of problems for which generic solvers can be
used: convex, quadratic, semi-definite programs.

Discrete uncertainty. The case of combinatorial problems and discrete un-
certainty, was investigated in (Kouvelis and Yu, 1996). The authors considered
uncertainty sets given as a list of scenarios. They studied classical polynomial
problems such as minimum assignment, shortest path, or minimum cost spanning
tree. Even for an uncertainty set formed with two scenarios, the robust coun-
terparts of such problems are (weakly) NP-hard, while the deterministic problem
is polynomial. Pseudo-polynomial algorithms are proposed. When the number
of scenarios is unbounded, strong NP-hardness results are obtained for the robust
counterparts. The results from (Kouvelis and Yu, 1996) show that robust problems
can be harder than the original problems. This calls for the study of uncertainty
sets that are more structured than a list of scenarios. Robust problems under
discrete uncertainty were further studied, see (Aissi et al., 2009) for a survey on
complexity results and approximation algorithms.

19

Chapter 1. Robust optimization: state of the art

Polyhedral and budgeted uncertainty. Another approach is to choose poly-
hedral uncertainty sets. Using LP duality the static-robust counterpart can be re-
formulated. Although, there can be an increase in complexity: in (Buchheim and
Kurtz, 2018) an example was built of a polynomial combinatorial problem with
an NP-hard static-robust counterpart under polyhedral uncertainty. Note that for
computational complexity analysis it should be specified whether the uncertainty
polytope is given by an outer description (i.e., a list of inequalities) or an inner
description (i.e., a list of its extreme points). The definition of the static-robust
counterpart implies that it is possible to convexify the uncertainty set without
changing the static-robust solutions. Hence it is equivalent to consider a polytope
given by an inner description, or the discrete set of its extreme points. For linear
programming or (mixed-)integer programming, a major contribution is the one of
Bertsimas and Sim (2004) who introduced budgeted uncertainty. Budgeted un-
certainty sets are a special case of polytopes. This reference is now presented in a
dedicated section.

1.2.3 Budgeted uncertainty and the price of robustness

In (Bertsimas and Sim, 2004, 2003) Bertsimas and Sim introduced budgeted un-
certainty, defined as follows. Both the cost vector and the constraint matrix of
(MIP) are subject to uncertainty. Each row [δA]i of the constraint matrix deviation
δA is supposed to be lying in the discrete set

{uij âij : uij ∈ {−1, 0, 1},
∑n

j=1 |uij| ≤ Γi}.
It means that each coefficient i, j may deviate from its nominal value aij, in the
set {aij − âij, aij, aij + âij}. Integer parameter Γi is an uncertainty budget : at
most Γi values may deviate from their nominal value in an uncertainty realization.
Note that in (Bertsimas and Sim, 2004) Γi could also take non-integer values.
Uncertainty on the cost vector is structured similarly.

If the budget is Γi = n, the uncertainty set contains the realization where
all coefficients deviate from their nominal values. If the budget is Γi = 0, the
uncertainty set is reduced to {0}. An illustration is provided in Figure 1.2.

δ1

δ2

•
•
•

•
•
•

•
•
• δ1

δ2

•
•
•

• •
δ1

δ2

•

Figure 1.2: Budgeted uncertainty set (dark blue dots) and its convex hull (light blue polytope)
for budget Γ = 2, 1, 0.

20

Chapter 1. Robust optimization: state of the art

Regarding tractability, the authors studied the robust counterpart of an MIP
under budgeted uncertainty. They obtained positive results: the robust counter-
part of an MIP under budgeted uncertainty can be reformulated into an MIP, with
size reasonably increased. They also focused on the case of cost uncertainty for a
combinatorial problem. If the original problem is polynomial, the robust counter-
part can be solved through a polynomial number of calls to an algorithm for the
original problem. An approximation algorithm for the original problem also yields
an approximation algorithm for the robust counterpart. Those results advocate
for the practical implementability of the robust approach, since the robust coun-
terpart can be solved with the same tools as those for the deterministic problem
(either through an MIP solver, or with a dedicated algorithm).

Bertsimas and Sim defined the price of robustness as the increase of the cost of
a robust solution, compared to the cost of a solution when there is no uncertainty.
The uncertainty budget Γ can be used to tune the price of robustness, by chang-
ing the number of deviations in the uncertainty set. Budgeted uncertainty is thus
appealing because it yields to tractable robust problems, understandable to practi-
tioners, and with a parameter Γ to control the price of robustness. Note that these
results have had a very important influence on the robust optimization literature,
and budgeted uncertainty has become a standard uncertainty representation in
robust approaches.

1.2.4 Uncertainty modelling in static robustness

Let us finish with a few remarks on the choice of the uncertainty set in static
robustness. These remarks carry over to other robust approaches.

When designing uncertainty sets for a robust problem, multiple aspects are to
be taken into account, among which the following.

I First, the relevance of the uncertainty set, in the sense that the uncertainty
set must contain realizations corresponding to what the decision maker wants
to hedge against. This is a qualitative appreciation of whether the uncer-
tainty set is convincing. It is also necessary that the parameters defining the
uncertainty set (e.g., the range where coefficients lie, the uncertainty budget)
can actually be given values by the practitioners.

I The type of the associated robust problem obtained for this uncertainty set:
is it a convex program? a linear or integer program? can it be solved with
some generic solver? It is often wanted that the robust counterpart does not
differ too much from the original problem, i.e., that belongs to the same class
of problems (e.g., LPs) and that the overhead computational effort to solve
it is not too high.

I The computational complexity of the associated robust problem: is it com-

21

Chapter 1. Robust optimization: state of the art

putationally tractable? Concerning computational complexity, as noted in
(Buchheim and Kurtz, 2018), uncertainty sets with very correlated param-
eters (e.g., scenarios) lead to difficult problems; uncertainty sets with no
correlation (e.g., box uncertainty) lead to easy cases.

I Finally, the price of robustness. An important issue of a high price of ro-
bustness, in an OR perspective, is that robust solutions that are very costly
are likely to be discarded by decision makers. Thus a control on the price of
robustness is necessary, to make robust optimization applicable.

1.3 Two-stage robust optimization

Let us now review two-stage and adjustable-robust optimization approaches.

1.3.1 Definition

In the static-robust approach, decisions are made before the uncertainty realization
is observed, and there is no possibility of revising them afterwards. The authors of
(Ben-Tal et al., 2004) introduced a new class of robust problems, where decisions
are made along a 2-stage process:

– First-stage decisions, called “here and now” decisions, are made before un-
certainty realization is known.

– Second-stage decisions, called “wait and see” decisions, are made after un-
certainty realization is known. Second-stage decisions are also called recourse
decisions, or adjustable since they adjust to uncertainty realization.

Such a 2-stage decision process is classical in stochastic optimization, see, e.g.,
(Birge and Louveaux, 2011).

A robust 2-stage problem usually takes the following form:

min max min cδ(x, yδ)

x ∈ X δ ∈ ∆ yδ ∈ Yδ(x)

The inner minimization corresponds to the second-stage or recourse problem:
given first-stage variables x, and uncertainty realization δ ∈ ∆, find the second-
stage solution yδ in feasible set Yδ(x) that minimizes cost cδ(x, ·). The maximiza-
tion over δ ∈ ∆ is the worst-case criterion. The outer minimization is to optimize
first-stage decisions.

In some applications, there can be a natural partition of decision variables into
first stage and second stage decisions. For example, some decisions may represent
investment decisions to be taken in advance, while other variables are short-term
decisions.

22

Chapter 1. Robust optimization: state of the art

Importantly, two-stage robust problems are less conservative that their static-
robust counterpart. To see this, the two-stage robust problem can be rewritten
with one variable yδ per realization δ ∈ ∆. Then a solution to the two-stage
robust problem corresponds to x ∈ X and a collection (yδ)δ∈∆ of second-stage
solutions such that yδ ∈ Yδ(x) for every δ ∈ ∆. By contrast, in the static-robust
counterpart the vector y does not depend on δ, and thus y ∈ Yδ(x) for every δ ∈ ∆.
Hence the static-robust optimal value is not less than the two-stage robust optimal
value. The price of robustness is thus decreased, if some variables are allowed to
be adjustable.

An important special case of two-stage problems is the following, where there
are no first-stage variables:

(Adj-P) max min cδ(xδ)

δ ∈ ∆ xδ ∈ X δ

In the sequel, we refer to this problem as the adjustable-robust counterpart of
problem (P). The value of the adjustable-robust problem is then the worst-case
value of an optimal solution of the second-stage instance, with feasible set X δ and
objective function cδ. We mention that in the literature, the terms “two-stage”
and “adjustable” are often used as synonyms. In this work adjustable-robustness
will more specifically denote the (Adj-P) problem.

1.3.2 Examples

Let us now illustrate the adjustable-robustness concept on examples for the Se-
lection and PERT Scheduling problems.

Example 1.3 (Adjustable robustness for PERT Scheduling). Consider an in-
stance of the PERT Scheduling problem with a set J = {1, . . . , 4} of four jobs.
The precedence graph is a chain, i.e., it has arc-set A = {(s, 1), (1, 2), (2, 3), (3, 4),
(4, t)}. Nominal processing times are p = (1, 1, 1, 1). An earliest schedule is thus
x = (0, 0, 1, 2, 3, 4), with makespan xt = 4.

Assume now that processing times are uncertain. The real processing times
may be p+ δ. The uncertainty set is budgeted uncertainty set with budget Γ = 1
and δ̂ = (1, 1, 1, 1): that is, we consider that one job may have duration pi+ δ̂i = 2.
Note that schedule x is infeasible if a job is longer than expected.

A static-robust solution is a schedule feasible for every instance G(p+δ), δ ∈ ∆.
The static-robust counterpart is to find a static-robust solution with minimum
makespan. It amounts to finding a schedule of G(p+ δ̂) with minimum makespan.
The static-robust optimum is 8.

The adjustable-robust counterpart is to find the minimum M such that for
every δ ∈ ∆ there exists a schedule of G(p+ δ). On the considered instance, it can

23

Chapter 1. Robust optimization: state of the art

be shown that the optimal value of the adjustable-robust counterpart is 5. Indeed,
for any δ ∈ ∆, the earliest schedule of G(p+ δ̂) has makespan at most 5. It is less
that the static-robust optimal value of 8.

For general precedence graph the adjustable-robust problem was studied in
(Minoux, 2007a,b). It was shown to be solvable in polynomial time for budgeted
uncertainty. The algorithm is to compute by dynamic programming, the length
of all longest paths in the precedence graph where γ ≤ Γ deviations of processing
times occur. �

Example 1.4 (Adjustable robustness for Selection). Consider a toy instance of
the Selection problem, with n = 3 items and p = 2:

min cTx

s.t.
∑3

i=1 xi = 2

xi ∈ {0, 1} i = 1, 2, 3

Consider now that item costs are uncertain. Namely, for each item the nominal
cost is 1, but it may go up to 3; however at most one item may have a cost
greater than the nominal one. It corresponds to cost uncertainty cδ = c + δ with
c = (1, 1, 1), where deviation δ lies in the budgeted uncertainty set ∆ = {δi = 2ui,
ui ∈ {0, 1}3,

∑3
i=1 ui ≤ 1}, with uncertainty budget Γ = 1.

The static-robust problem is

min max
δ∈∆

(c+ δ)Tx

s.t.
∑3

i=1 xi = 2

xi ∈ {0, 1} i = 1, 2, 3

it can be reformulated as one minimization problem with the results of (Bertsimas
and Sim, 2004); in the present case since all items are the same, it is clear that an
optimal solution is to use any pair of items. Then in the worst case, one of them
will have cost 3, and the static-robust value is 4.

The adjustable-robust problem is

max
δ∈∆

min (c+ δ)Txδ

s.t.
∑3

i=1 x
δ
i = 2

xδi ∈ {0, 1} i = 1, 2, 3

In this case, the solution xδ depends on the realization of cost c. Hence an optimal
solution is to observe the costs, and select the two items with cost 1, leading to an
adjustable-robust value of 2. �

24

Chapter 1. Robust optimization: state of the art

1.3.3 Computational complexity of robust two-stage
problems

The main challenge associated to 2-stage robust problems is tractability. In (Ben-
Tal et al., 2004), it was shown that an adjustable robust problem can be NP-hard,
even for a linear program and polyhedral uncertainty set – a case where the static
robust problem is easy to solve. The authors note that “unfortunately, there is
a price to pay for the flexibility of the adjustable-robust counterpart”. Indeed,
the decrease of the price of robustness goes hand in hand with an increase of the
computational complexity.

1.3.3.1 Two-stage approximation approaches

A trend in the literature is thus the design of approximations for two-stage robust
problems that are computationally affordable.

Decision rules. A first idea investigated in the original paper of (Ben-Tal
et al., 2004), is to assume that second-stage variables are not free but obey a
predetermined dependency in the uncertain data. This is called decision rules. For
example, second-stage variables may be affine functions of uncertainty realization
δ. Then the decision variables are the parameters of the dependency. The idea of
affine dependency is carried from the field of optimal control, where a controller
applies an action over the system, and affine control laws are commonly used.
The authors of (Ben-Tal et al., 2004) showed that the affine adjustable-robust
counterpart has good tractability properties. This trend was widely studied in the
subsequent years. Empirically it was observed that affine decision rules often give
near-optimal solutions. Cases where the optimality of affine decision rules can be
proven have been investigated, although not many of them are known (Bertsimas
and Goyal, 2012; Housni and Goyal, 2019). More sophisticated decision rules (e.g.,
piecewise affine) have been developed, but they often are computationally more
expensive (Ben-Tal et al., 2020).

K-adaptability. Another idea introduced in (Bertsimas and Caramanis, 2010)
is to consider k possible second-stage solutions. These k solutions are precom-
puted in first stage, and in second stage the best one is picked. This approach is
called k-adaptability. This solution concept amounts to finding a k-partition of the
uncertainty set: each class of the partition is associated with a second-stage solu-
tion. Even though a bilinear formulation and tractability result can be obtained
under some hypotheses, k-adaptable problems are in general hard to solve. The
main interest is that k-adaptable problems form a discrete hierarchy of problems,
from robust static (k = 1) to “completely adaptable” 2-stage problems (k → +∞)
that is the original 2-stage, where the second-stage solution is any function of the

25

Chapter 1. Robust optimization: state of the art

uncertainty. Subsequent work on k-adaptability include, e.g., (Hanasusanto et al.,
2015; Subramanyam et al., 2020).

Note that decision rules and k-adaptability are two approximations that are
not comparable (one can be better than another on an instance, and vice versa).

1.3.3.2 Two-stage exact approaches

Another line of research is to design exact approaches to solve 2-stage problems,
usually based on decomposition approaches.

Note first that a reformulation can be considered, introducing one decision
variable yδ per uncertainty realization δ ∈ ∆. It is often possible to restrict to
the extreme points of the uncertainty sets. This leads to a formulation with a
finite but exponential number of variables or constraints. It can be solved through
row generation, as done for different applications in (Bienstock and Özbay, 2008;
Gabrel et al., 2014). The idea was developed to tackle more generic MIPs. In
(Billionnet et al., 2014), the authors proposed an approach for solving 2-stage ro-
bust MILPs with continuous recourse. The recourse problem can then be dualized,
and the worst-case problem turned into a single maximization problem, although
bilinear. Linearization techniques can be applied, to get an exponential MILP for-
mulation with a constraint per extreme point of the uncertainty set. The authors
of (Billionnet et al., 2014) then propose a constraint-generation scheme. In (Zeng
and Zhao, 2013) a column-and-constraint scheme was proposed. In particular, it
accommodates with integer variables in the recourse problem. An alternative de-
composition approach, where the separation problem is based on Farkas lemma,
was studied in (Ayoub and Poss, 2016). For robust project scheduling, dedicated
decomposition approaches were proposed in (Bruni et al., 2017, 2018) based on
Benders decomposition.

Note that the proposed decomposition approaches (namely, (Billionnet et al.,
2014; Zeng and Zhao, 2013)) often require the so-called complete recourse hypoth-
esis: the recourse problem is always feasible, i.e., Yδ(x) 6= ∅ for every first-stage
decision x.

Research on this topic is currently quite active, and methods are being pro-
posed with improved computation times. However, as noted in the review from
Rahmaniani et al. (2017), a straightforward implementation of a decomposition
approach such as Benders is often time- and memory-consuming. Enhancements
strategies are needed to obtain an efficient algorithm, such as improved cut gener-
ation, solution generation, or decomposition strategies (Rahmaniani et al., 2017).
The implementation of decomposition approaches is more involved than the im-
plementation of a compact MIP formulation. There is thus, at present time, an
entry cost for practical implementation of exact two-stage robust optimization.

26

Chapter 1. Robust optimization: state of the art

1.4 Solution stability in reoptimization and

robust optimization

In this section, we first present a 2-stage decision process, and point out the ques-
tion of solution stability arising in this framework. We then review related work
on how solution stability can be addressed in both stages, in reoptimization and
robust optimization.

1.4.1 A two-stage decision process

Consider that decisions for problem (P) are made along a two-stage process as
follows.

– In a first stage, the decision maker has a forecast (c0,X 0) of the instance to
solve, and computes a baseline solution x0.

– In a second stage, the decision maker knows the instance (c,X) to solve, and
computes a new solution x.

The instance (c,X) can be different from the forecast, either because of a prediction
error, or because the instance (c0,X 0) has been disrupted in the meantime. Then
it is necessary to propose a solution to the new instance, but also if possible to
maintain decisions taken in the solution x0. Finding a solution x that is not too
different from the baseline solution x0 corresponds to solution stability between x0

and x.
In practice, such a decision process is often encountered, because a baseline

solution that is precomputed in advance is needed. This is the case, e.g., when
processes for implementing a solution are long, technical, or require coordination
between multiple entities. The baseline solution then serves as a basis for imple-
mentation. If needed, the baseline solution may be adjusted afterwards, but it
will be useful to stick to decisions from the baseline solution if possible. This calls
for a measure of stability between the baseline solution and an updated solution
computed later.

This 2-stage decision process is a special case of the 2-stage framework of
Section 1.3, where problem (P) appears twice, in both the first stage and the second
stage. Hence one could imagine using the adjustable-robust counterpart of problem
(P) to benefit from its low price of robustness. However, this could be contradictory
with controlling the stability of second-stage solutions w.r.t. the baseline solution.
Consider again Example 1.4 for the Selection problem. The adjustable-robust
approach proposes a guarantee on the worst-case value of a solution. However,
there is no decision taken in first stage. Consider changing the problem so that a
solution is actually decided in first stage. Then it would be necessary to change
potentially all decisions in second stage to adjust to uncertainty, and obtain the

27

Chapter 1. Robust optimization: state of the art

low price of adjustable-robustness. Precisely, in Example 1.4, if an item is selected
in first-stage with no possibility of changing this decision in second stage, then
the price of robustness equals the static-robust one. That is, there is a trade-off
between the guarantee of decisions and the price of robustness.

It is thus important in the design of a robust 2-stage approach, to know whether
a guarantee on the solution, or on the value of the solution, is needed. Note that
in static robustness, we implicitly obtained a guarantee not only on the value of a
solution, but also on the solution itself. This does not hold for 2-stage problems. In
the project scheduling literature such a choice was emphasized: shall we guarantee
the makespan? or the starting times of the jobs?

1.4.2 Solution stability in reoptimization

Reoptimization is the situation that the decision maker faces in the second stage of
the decision process. A baseline solution was previously decided, but the instance
of the problem has changed, and a new solution is to be found.

The term “reoptimization” was first used in the literature in the following sense:
if the baseline solution was an optimal solution to the baseline instance, and the
new instance is not far from the baseline instance, can we use the knowledge of
the baseline solution to compute more efficiently an optimal solution to the new
instance? (see, e.g., (Böckenhauer et al., 2008; Ausiello et al., 2008)). This does
not a priori incorporate any stability measure between the new solution and the
baseline solution.

Different stability measures have then been considered, to evaluate the distance
between the baseline solution and the new solution, and plugged into a reoptimi-
zation problem.

In (Şeref et al., 2009), the authors considered so-called incremental problems,
where the new solution must be at bounded distance from the baseline solution.
This distance corresponds to the stability measure, and it can have several defini-
tions depending on the problems. For combinatorial problems a distance between
two solutions is the Hamming distance, i.e., the number of elements selected in
one solution but not in the other. The authors of (Şeref et al., 2009) studied
incremental variants of various network problems (shortest path, min cost flow)
and analyzed their complexity. In particular, for a given original problem that is
polynomial, different choices of distance lead to incremental problems that can be
polynomial or NP-hard.

A similar idea is to consider transition costs, so that changing a decision from
the solution incurs a given transition cost. In (Schieber et al., 2018), a reoptimi-
zation framework was proposed with such transition costs. The authors devised
approximate reoptimization algorithms to deal with the trade-off between the cost

28

Chapter 1. Robust optimization: state of the art

of the new solution and the total transition cost. Transition costs appear in other
works such as (Gupta et al., 2014; Bampis et al., 2018) where they are aggregated
with the cost of the solution into a single objective function.

Reoptimization with a stability measure is also related to bi-objective opti-
mization, because of the trade-off between the quality of the solution and the
stability measure. Using transition costs as stability measure often leads to opti-
mization problems with two linear objectives, the cost of the new solution and the
total transition cost. Setting one of the criteria as a constraint leads to budgeted
optimization problems, that are in general NP-hard (see, e.g., (Aggarwal et al.,
1982) for the budgeted spanning tree problem, (Berger et al., 2011) for budgeted
matching).

For optimization problems with continuous variables, a larger variety of stabil-
ity measures can be considered. The distance between solutions can be expressed
as a L1-norm, as done in (Nasrabadi and Orlin, 2013) for linear programs.

As for project scheduling problems, a variety of dedicated reoptimization prob-
lems were studied. Reoptimization, in that case, is to repair a schedule against
disruptions, such as disruptions in jobs durations, or the arrival of new jobs to be
inserted. This is called reactive scheduling, or rescheduling. An approach to repair
schedules is to apply heuristics such as decision rules (Smith, 1995; de Vonder
et al., 2007). Such heuristics do not a priori guarantee solution stability, but they
may be applied only on a subset of the schedule, leaving the rest of the schedule
unchanged.

Rescheduling approaches with a stability feature have been proposed, with a
variety of criteria. It can be to minimize a continuous deviation measure w.r.t. the
baseline schedule (Sakkout and Wallace, 2000; de Vonder et al., 2007), the cost in-
curred when modifying the solution (Deblaere et al., 2011), or a deviation measure
based on the makespan (Artigues and Roubellat, 2000). Another criterion could be
the number of modifications in the schedule (Calhoun et al., 2002; Bendotti et al.,
2017). Namely in (Bendotti et al., 2017), the anchoring level was introduced as
the number of identical starting times between two project schedules. Note that
the literature on exact approaches to reactive scheduling is rather scarce, most
references investigate heuristics. For more references on reactive scheduling, we
refer to the surveys (Herroelen and Leus, 2002; Hazır and Ulusoy, 2020).

1.4.3 Solution stability in robust optimization

After defining a stability measure and the associated reoptimization problem, a
question is to compute a baseline solution. This is the problem faced by the
decision maker at first stage.

The first-stage problem can be cast in the framework of robust optimization.

29

Chapter 1. Robust optimization: state of the art

Let us now review related work in the field of robust optimization, where in sec-
ond stage the recourse problem incorporates a stability measure. Note that alter-
natively, stochastic or multistage models were proposed in the literature, based
namely on transition costs (Gupta et al., 2014; Bampis et al., 2018).

In (Liebchen et al., 2009) the authors introduced the concept of recoverable ro-
bustness as a very general framework for robust optimization with limited recourse.
The reasons for limited recourse are multiple.

– Practical rules. A first reason is that the recourse should resemble (simple)
algorithms that are used in practice for repairing solutions. The authors
provide an illustration on timetabling for railway applications, where recourse
decisions are, e.g., train delays, or breaking transfers between two trains.

– Tractability. Another reason is tractability: the recourse problem is to be
solved quickly, and thus it should be reasonably tractable, or solvable through
some solver or algorithm.

– Solution stability. The last aspect is solution stability, in the sense that it is
good practice not to change too much the solution in the recourse problem. In
particular, a recoverable robust approach is to bound the number of changes
in the solution.

Recoverable robustness is thus a very broad concept, that need to be instan-
tiated on specific problems to be further studied. Recoverable robust railway
applications were studied in (Liebchen et al., 2009; D’Angelo et al., 2011).

A research line emerged on combinatorial problems where recoverable robust-
ness is understood in a more restrictive sense: it corresponds to changing at most
k decisions in the recourse problem. Then recoverable robustness coincides with
robust optimization with incremental recourse proposed in (Nasrabadi and Orlin,
2013). The focus was on the computational complexity of recoverable robust vari-
ants of famous problems, under standard uncertainty representation such as bud-
geted uncertainty. This includes the knapsack problem (Büsing et al., 2011), short-
est path problems (Büsing, 2012), the min cost spanning tree problem (Hradovich
et al., 2017), the selection problem (Kasperski and Zieliński, 2017), among others.
As noted in the survey (Kasperski and Zieliński, 2016), most of the results on re-
coverable robust problems are negative ones. They happen to be very hard, since
they retain the computational complexity of both the static-robust problem, and
the reoptimization problem. The authors note that the literature is still scarce
on approximation algorithms or exact approaches to handle NP-hard recoverable
robust problems.

In the project scheduling literature, a related approach is proactive/reactive
scheduling (Herroelen and Leus, 2002). While reactive scheduling corresponds to
the recourse problem, proactive scheduling corresponds to the first-stage problem.
The goal is to optimize in a combined way the baseline solution, and the reactive

30

Chapter 1. Robust optimization: state of the art

actions to be taken depending on uncertainty realization. Proactive scheduling
problems including a stochastic continuous stability measure were investigated in
(Herroelen and Leus, 2004). However, these problems are relative to stochastic
optimization, and not robust optimization as defined in the present chapter. The
literature on robustness for project scheduling problems, even without any stability
measure, is scarce, see (Artigues et al., 2013) for a min regret problem, (Minoux,
2007b) and (Bruni et al., 2017) for adjustable-robust problems. Even though
robust project scheduling problems with a stability feature appear to be of clear
interest for project managers (Hazır and Ulusoy, 2020), they have been barely
addressed in the literature so far. In (Bendotti et al., 2017), a so-called anchor-
proactive problem was proposed. The criterion is a guarantee over the number of
jobs with stable starting times. The problem was proven polynomial under box
uncertainty. The proposed stability criterion is combinatorial, in contrast with
most stability measures studied in project scheduling literature.

In this thesis, we build upon the work of (Bendotti et al., 2017). We propose
the anchoring level as a combinatorial stability measure for discrete optimization
problems, and anchored solutions as a concept for stability in robust optimization.
The generic concepts of the thesis are exposed in Chapter 2.

31

Chapter 1. Robust optimization: state of the art

32

Chapter 2

Anchored solutions: concepts

In this chapter we present the general concepts of anchored solutions, in the frame-
work of the 2-stage decision process described in Section 1.4 of Chapter 1.

In Section 2.1 we first introduce the anchoring level as a criterion to count
the number of identical decisions between a baseline solution and a new solution
of optimization problem (P). In Section 2.2 we introduce anchor-reoptimization
problems, that are arising in second stage to compute the new solution. In Sec-
tion 2.3 we define anchor-robust problems. These are the robust problems faced
in first stage to compute a baseline solution along with a guarantee on a subset of
baseline decisions.

Problems defined in this chapter are posed in generic form. They are instanti-
ated and studied in more details in Part II for combinatorial problems, and Part III
for project scheduling problems.

2.1 Anchoring level

Let us first introduce the anchoring level, to serve as a stability measure in reopti-
mization and robust optimization. Recall that S denotes the space where decision
variables lie, e.g., S = {0, 1}I for binary variables, S = RI for continuous variables.
Given two vectors x, y ∈ S, let the anchoring level be defined as

σ(x, y) = |{i ∈ I : xi = yi}|.

Since coordinates of vectors x and y correspond to decisions, the anchoring level
is the number of decisions that are identical in x and y. Note also that σ(x, y) =
|I| − d(x, y) where d(x, y) is the Hamming distance between vectors x an y. The
anchoring level was coined as such in (Bendotti et al., 2017) where it was introduced
as a stability measure for reoptimization in project scheduling.

33

Chapter 2. Anchored solutions: concepts

Let us propose a slight generalization. The idea is still to count the number
of identical decisions in x and y. Coordinates of x and y are either continuous
variables (xi, yi ∈ R) or binary variables (xi, yi ∈ {0, 1}). Let ≡ be a binary
relation on R or {0, 1}. For i ∈ I, xi ≡ yi indicates that xi and yi are identical
decisions. Examples are:

– the equality relation =
– the relation =1 defined by a =1 b if a = b = 1. It corresponds to logical

“and” for binary a and b.
– the relation =ε defined by a =ε b if |a− b| ≤ ε for ε ≥ 0.
Given binary relation ≡ and x, y ∈ S, let the anchoring level associated with

relation ≡ be

σ≡(x, y) = |{i ∈ I : xi ≡ yi}|.

Then σ≡(x, y) is the number of decisions that are identical for ≡ in x and y.

Let us now illustrate the definition on two examples: spanning trees and project
schedules.

Example 2.1 (Anchoring level for spanning trees). Let G = (V,E) be an undirected
graph. Consider two spanning trees X and Y of graph G with incidence vectors x
and y. For equivalence relation =, the anchoring level σ=(x, y) is |E \ (X ∪ Y)|+
|X ∩ Y |. For equivalence relation =1, the anchoring level is the number of edges
belonging to both X and Y , i.e., σ=1(x, y) = |X ∩ Y |. �

Example 2.2 (Anchoring level for project schedules). Consider a set of jobs J , a
precedence graph G = (J,A, p) with processing times p ∈ RJ

+. Let x and y be
two schedules of G = (J,A, p). The decision xi (resp. yi) is the starting time
of job i in schedule x (resp. y). For equivalence relation =, the anchoring level
σ=(x, y) is the number of jobs that have the same starting time in x and y. For
equivalence relation =ε, the anchoring level σ=ε(x, y) is the number of jobs whose
starting times in x and y differ from less than tolerance ε. �

Note that for the proposed equivalence relations, for a given a ∈ R, either a ≡ a
or a is not equivalent to any other value. This latter case occurs for equivalence
relation =1: for binary variable xi, if xi = 0 it is not equivalent to any other
element of {0, 1}. This represents that a zero coordinate in a binary vector is not
an actual decision that we want to count in the anchoring level. For all considered
equivalence relations, remark that a vector that has the most common decisions
with a given vector x is vector x itself, that is, σ≡(x, x) = maxy∈S σ

≡(x, y).

A weighted version of the anchoring level can also be defined. Let w ∈ RI
+ be

anchoring weights. Then the weighted anchoring criterion is

σ≡w (x, y) =
∑

i∈I: xi≡yi wi

34

Chapter 2. Anchored solutions: concepts

and clearly σ≡1 (x, y) = σ≡(x, y) with 1 the all-ones vector of RI . The anchoring
weight wi is a value representing the benefit of having an identical decision i in
two solutions.

In this chapter, unless specified, we will consider the anchoring level:

– for combinatorial problems (S = {0, 1}I), σ(x, y) = {i ∈ I : xi =1 yi}
– for linear programs (S = RI), σ(x, y) = {i ∈ I : xi = yi}.

2.2 Anchor-Reoptimization

A first situation where the anchoring level comes into play is reoptimization. Given
an instance (c,X) of problem (P) and a baseline solution x0, the goal of reopti-
mization is to find a new solution x ∈ X while taking into account both its cost
cTx, and stability w.r.t. the baseline solution, measured by the anchoring level
σ(x0, x). In the sequel we formalize anchor-reoptimization problems.

2.2.1 Reoptimization with anchoring level only

A first problem can be defined where only the anchoring level w.r.t. x0 is to be
optimized:

AnchReopt

Input: X , x0 ∈ S
Problem: maxσ(x0, x) s.t. x ∈ X

If x0 ∈ X , an optimal solution is x = x0, i.e., to keep the baseline solution,
since as noted previously, σ(x0, x0) = maxx∈S σ(x0, x). But in general x0 /∈ X , and
the AnchReopt problem is to repair solution x0 into a feasible solution x ∈ X by
changing a minimum number of decisions. Let us now give more detailed examples.

Combinatorial problems. Consider the case where S = {0, 1}I . Then x0 can
be considered as the incidence vector of a subset of elements, say red elements.
The AnchReopt problem is to find a solution x ∈ X with a maximum number of
red elements. Regarding the complexity of the problem, note that σ(x0, x) = x0Tx
since x0 and x are binary vectors. that is, the anchoring level writes as a linear
function of the new solution x. Hence the problem AnchReopt is an instance of
the original problem (P) with cost vector x0. Therefore for combinatorial problems,
the AnchReopt problem is not any harder than the original problem (P).

35

Chapter 2. Anchored solutions: concepts

Linear programming. Consider the case where S = RI , and X is the polyhe-
dron {x ∈ RI : x ≥ 0, Ax ≤ b}. Let x0 ∈ RI . Note that by contrast with combi-
natorial problems, the anchoring criterion σ(x0, x) = |{i ∈ I : x0

i = xi}| is not a
linear function of the new solution x. We now prove that anchor-reoptimization is
NP-hard in that case.

Proposition 2.1. AnchReopt is strongly NP-hard for linear programs.

Proof. The proof is a reduction from the Stable Set problem: given a graph
G = (V,E), integer k, is there a stable set U ⊆ V of size |U | ≥ k? Let G = (V,E)
be a graph, k ∈ N. Consider the polyhedron X = {x ∈ RV

+ : x ∈ [0, 1]V , xi +xj ≤
1 ∀(i, j) ∈ E} and the solution x0 ∈ RV defined by x0

v = 1 for every v ∈ V . Then
σ(x0, x) = |{v ∈ V : xv = 1}|. If there exists a stable set U ⊆ V of size ≥ k, then
its incidence vector χU is in X and σ(x0, χU) ≥ k. Conversely, assume there exists
x∗ ∈ X such that σ(x0, x∗) ≥ k. Vector x∗ is not an integer vector, but it has
more than k coordinates equal to one. Let U = {v ∈ V : x∗v = 1}. Then χU ≤ x∗

and χU ∈ X ∩ {0, 1}V . Hence U is a stable set of size ≥ k. This proves that the
decision version of AnchReopt is strongly NP-complete.

The underlying idea is that the anchoring level is a combinatorial criterion: are
decisions equal or not? When the variables of the original problem are continuous,
there can be an increase in complexity induced by the anchoring level, when solving
the AnchReopt problem.

Project scheduling. In project scheduling, the variables are the starting times
of jobs, which are continuous. In particular PERT Scheduling writes as a
linear program. In Chapter 5 we will study cases where AnchReopt can be
solved in polynomial time, in contrast with the general NP-hardness result of
Proposition 2.1.

Remark that in the definition of AnchReopt, the baseline solution x0 is given
in the input, but the baseline instance X 0 is not. Hence x0 can be any element of
the space S. For the problems where we study anchor-reoptimization into detail,
we were able to obtain polynomiality results for any x0 ∈ S: in particular for
matroid bases (Chapter 3) and project scheduling problems (Chapter 5). We did
not require any further properties on x0.

2.2.2 Extendable sets in reoptimization

Let us have a closer look to a decision problem related to AnchReopt, arising
when x0 /∈ X .

36

Chapter 2. Anchored solutions: concepts

Extendability

Input: X , x0 ∈ S, H ⊆ I

Question: Is there x ∈ X such that x0
i ≡ xi ∀i ∈ H?

The problem is to decide if a subset of decisions (x0
i)i∈H from x0 can be extended

into a new feasible solution x ∈ X . Let us say that set H is extendable if the
instance of Extendability problem has answer ‘yes’. The problem AnchReopt
is to find an extendable set H of maximum size.

Combinatorial problems. Note that for combinatorial problem, Extendabil-
ity is not any harder than the original problem. Setting anchoring weights wi = 1
if i ∈ H, and wi = 0 otherwise, it comes that H is extendable if and only if
AnchReopt for anchoring weights w has optimal value at least |H|.

Linear programming. Note that for LPs, Extendability is solvable in poly-
nomial time because it writes as an LP with additional equality constraints x0

i = xi
for every i ∈ H. Hence deciding if a set is extendable is polynomial, but finding
one of maximum size is hard (Proposition 2.1).

Project scheduling. The Extendability problem is studied in Chapter 5 and
a combinatorial characterization of extendable sets is provided. This characteriza-
tion will be an important building block of the robust approaches proposed next,
e.g., in Chapter 6.

2.2.3 Reoptimization with anchoring level and cost

If the feasible set does not change, i.e., X 0 = X , it turns out that the baseline
solution x0 is always feasible and the AnchReopt problem is trivial. However if
the cost function changes, the baseline solution x0 may be sub-optimal, making
reoptimization still necessary. A question is thus to find a trade-off between keeping
the decisions from the baseline solution; and finding a new solution with reasonable
cost. The new solution x is thus to be evaluated under the two criteria cTx and
σ(x0, x). With one as the objective function and the other as a constraint, we
obtain two anchor-reoptimization problems:

AnchReopt–Cost

Input: X , x0 ∈ S, C ≥ 0

Problem: maxσ(x0, x) s.t. x ∈ X , cTx ≤ C

37

Chapter 2. Anchored solutions: concepts

AnchReopt–Anch

Input: X , x0 ∈ S, A ∈ N
Problem: min cTx s.t. x ∈ X , σ(x0, x) ≥ A

Note that in decision version, both lead to the same decision problem:

Dec-AnchReopt-Anch&Cost

Input: X , x0 ∈ S, C ≥ 0, A ∈ N
Question: Is there x ∈ X such that cTx ≤ C and σ(x0, x) ≥

A?

Combinatorial problems. For combinatorial problems, these problems will be
discussed in Chapter 3, with a specific focus on the problem of finding a max-weight
basis in a matroid.

Linear programming. Note that for linear programs, AnchReopt–Cost is
harder than AnchReopt which was shown to be NP-hard in Section 2.2.1.

Project scheduling. For project scheduling, we obtained that the AnchRe-
opt–Cost is polynomial, as for the AnchReopt problem: see Chapter 5.

2.2.4 Restricted reoptimization for NP-hard problems

Let us now present an additional concept to handle an NP-hard original problem
(P). Similarly to what was noted in (Liebchen et al., 2009), it is useful to de-
sign reoptimization problems that are computationally easy, so that they can be
integrated as the recourse problem of robust 2-stage approaches. In the anchor-
reoptimization problems proposed in Section 2.2.1 and Section 2.2.3, the new so-
lution x is sought in the feasible set X . In general these problems retain the whole
complexity of the original problem (P), and thus are NP-hard whenever (P) is
NP-hard.

An approach is to consider that only a subset of variables describing the so-
lution can be re-optimized. Consider that feasible solutions of problem (P) are
represented not only with the decision vector x, but also with some additional
variables φ ∈ RJ . Then a feasible solution is (x, φ) ∈ X . Given a baseline solution
(x0, φ), restricted reoptimization is to search for a second-stage solution (x, φ) ∈ X .
The φ variables are thus forced to be the same in the baseline solution and the
second-stage solution. The anchoring level is still evaluated between vectors x0

and x.

38

Chapter 2. Anchored solutions: concepts

Variables φ may capture the structure of the solution: then the second-stage
solution (x, φ) keeps the same structure as the baseline solution (x0, φ). Restricted
reoptimization may be computationally attractive, since it is not necessary to re-
optimize the φ variables. Note that it corresponds, in a robust 2-stage perspective,
to decide that variables φ are first-stage variables. The recourse problem is then
to re-optimize only x variables.

Combinatorial problems. In the present work, we consider only original com-
binatorial problems that are solvable in polynomial time. The investigation of
restricted anchor-reoptimization for combinatorial problems would be an interest-
ing research perspective, especially to deal with NP-hard graph problems.

Project scheduling. An example of restricted reoptimization is considered in
Chapter 5 for the Resource-Constrained Project Scheduling Problem (RCPSP),
which is NP-hard and computationally demanding. Variables φ then correspond to
sequencing decisions related to resource allocations, while x variables are starting
times. It is used in Chapter 7 to design efficient robust approaches for the RCPSP.

2.3 Anchor-Robust optimization

Let us now present a robust optimization approach including an anchoring crite-
rion, to compute a baseline solution.

2.3.1 Framework

Let us first present the general framework with the chosen uncertainty represen-
tation, then recall robust approaches from the literature.

In first stage, the baseline instance is (c0,X 0). In second stage, the new in-
stance is (cδ, Xδ). We consider that the baseline instance corresponds to the nom-
inal instance of problem (P). We assume, as in the robust optimization paradigm
presented in Chapter 1, that we want to hedge against second-stage instances
(cδ,X δ)δ∈∆, with ∆ the uncertainty set. It is assumed that X δ 6= ∅ for every
δ ∈ ∆, i.e., all second-stage instances admit a feasible solution. The baseline
solution x0 is a first-stage decision, while the new solution xδ is a second-stage
decision, adjustable to uncertainty realization δ.

Let us now formally recall static-robust and adjustable-robust approaches from
the literature, within this framework. These two approaches correspond to two
extreme situations where all variables are in first stage (for static-robustness) or
all variables are in second stage (for adjustable-robustness).

The static-robust problem associated with (P) , as stated in Chapter 1, is

39

Chapter 2. Anchored solutions: concepts

(SR-P) min max
δ∈∆

cδ
T
x0

s.t. x0 ∈ X δ ∀δ ∈ ∆

The solution x0 is the baseline solution, chosen before uncertainty realization.
There is no explicit second-stage solution; implicitly, xδ = x0 for every δ ∈ ∆.

(SR-P) is overly conservative because of the worst-case cost max
δ∈∆

cδ
T
x0, and the

constraint that x0 is feasible for every second-stage instance. It might even be that
no such static-robust solution exists if ∩δ∈∆X δ = ∅.

The adjustable-robust counterpart of (P) involves one second-stage solution xδ

for every δ ∈ ∆ and it writes

(Adj-P) max min cδ
T
xδ

δ ∈ ∆ s.t. xδ ∈ X δ

In this case, there is no explicit baseline solution x0 in the optimization problem.

2.3.2 Anchored solutions

Let us now introduce an important concept of the thesis, which is the definition
of anchored sets and anchored solutions.

Definition 2.1 (Anchored set). For given ∆, a subset H ⊆ I of decisions is
anchored w.r.t. a solution x0 ∈ X 0 if for every δ ∈ ∆, there exists xδ ∈ X δ such
that x0

i ≡ xδi for every i ∈ H.

An anchored set is thus a subset of decisions from solution x0 that can be,
in some sense, guaranteed, since it is always possible to repair x0 into a feasible
second-stage solution xδ without changing the decisions x0

i , i ∈ H from the an-
chored set. The fact that a decision is unchanged is represented by equivalence
relation ≡.

Let us now define an anchored solution.

Definition 2.2 (Anchored solution). For given ∆, an anchored solution is a pair
(x0, H) where x0 ∈ X 0 is a baseline solution and H ⊆ I is anchored w.r.t. x0.

Hence an anchored solution is a baseline solution x0 for problem (P), with a
guarantee on decisions of the anchored set H against uncertainty ∆.

Alternatively, we may give an anchored solution as a triplet (x0, H, (xδ)δ∈∆),
where x0 ∈ X 0, xδ ∈ X δ for every δ ∈ ∆, and x0

i ≡ xδi for every i ∈ H, δ ∈ ∆. For
an anchored solution given as a pair (x0, H) the existence of second-stage solutions
such that x0

i = xδi for every i ∈ H, is granted. It may be useful to give explicitly the
second-stage solutions in the anchored solutions, e.g., to evaluate the worst-case
cost of second-stage solutions.

40

Chapter 2. Anchored solutions: concepts

Let us now point out the connection with solutions of the static-robust and
adjustable-robust approaches.

Observation 2.1 (Static means all anchored). A solution x0 is static-robust if
and only if all decisions are anchored w.r.t. x0, that is, H = {i ∈ I : x0

i ≡ x0
i }.

Note that the set {i ∈ I : x0
i ≡ x0

i } is simply I for equivalence relations =
and =ε; it is {i ∈ I : x0

i = 1} for binary x and equivalence relation =1.

Observation 2.2 (Adjustable means none anchored). A solution (xδ)δ∈∆ of the
adjustable-robust problem corresponds to an anchored solution with H = ∅.

In a solution (xδ)δ∈∆ of the adjustable-robust problem, it may be that some
decisions coincide for every δ ∈ ∆. But since there is no a priori guarantee of that,
these are not anchored decisions.

For anchored solutions, criteria of interest are:
– cost of the baseline solution c0Tx0

– worst-case cost of second-stage solutions maxδ∈∆ c
δTxδ

– size (or weight) of the anchored set
These criteria are conflicting. Namely, optimizing the size of the anchored set leads
to a static-robust solution by Observation 2.1; optimizing the worst-case cost leads
to an adjustable-robust solution by Observation 2.2.

We propose anchored solutions as a middle ground between static-robust and
adjustable-robust solutions. Let us illustrate the difference between static-robust,
adjustable-robust and anchored solutions on an example.

Example 2.3 (Anchored solutions). Consider the Selection problem with a set I
of n items available. Assume that all items are the same, with nominal cost ci = c
for every i ∈ I. The problem is to select p items among n with minimum total
cost. Consider budgeted uncertainty with budget Γ and deviation δ̂i = 1 for every
i ∈ I. Note that all items play the same role.

A static-robust solution is to select any p items. Then the worst-case cost of
this solution is attained when deviations occur on the selected items, leading to a
cost of CostStat(n, p,Γ) = pc+ min{Γ, p}.

In an adjustable-robust solution, the selected items depend on the uncertainty
realization. An optimal solution is to select items among the ones with no cost
deviations (min{p, n−Γ} such items can be selected) then to complete the solution
if necessary with items with cost deviation. This leads to a worst-case cost of
CostAdj(n, p,Γ) = pc+ p−min{p, n− Γ} = pc+ max{0, p− n+ Γ}.

An anchored solution is formed by a first-stage selection x0 and a set of k items
which is anchored (with k ≤ p). These anchored items remain in the second-
stage solution. What is the worst-case cost of such a solution? The worst-case

41

Chapter 2. Anchored solutions: concepts

uncertainty realization is when the k anchored items have a cost deviation, leading
to a cost of kc+ min{Γ, k}. Then the p− k other items may be changed: in that
sense, the non-anchored items can be selected as in an adjustable-robust solution.
It leads to a cost CostAdj(n− k, p− k,Γ−min{Γ, k}) for the non-anchored items.
The total cost is CostkAnch(n, p,Γ) = pc+ max{min{Γ, k}, p− n+ Γ}.

It is then clear that CostAdj(n, p,Γ) = Cost0Anch(n, p,Γ) ≤ CostkAnch(n, p,Γ) ≤
CostpAnch(n, p,Γ) = CostStat(n, p,Γ) for any number k of anchored items. �

Throughout the thesis, we will illustrate that anchored solutions bridge the
gap between static-robustness and adjustable-robustness, see, e.g., Chapter 4 or
Chapter 6.

2.3.3 Anchor-Robust optimization problems

Let us now formulate robust problems involving anchored solutions. The above
mentioned criteria are conflicting: namely, the costs versus the size of the anchored
set. Similarly to anchor-reoptimization, we now define variants, depending on
whether the objective function is to optimize the cost of solutions or the size of
the anchored set.

Anchored set maximization variant. A first problem is to optimize the
size of the anchored set, while looking for a baseline solution with bounded cost.
Let C0 ≥ 0. The Anchor-Robust (AnchRob) problem is

(AnchRob) max |H|
x0 ∈ X 0

c0Tx0 ≤ C0

H ⊆ I anchored w.r.t. x0

(AnchRob) can be seen as a robust 2-stage optimization problem. Let us write
the problem under the following form:

max min max |H|
x0 ∈ X 0 δ ∈ ∆ xδ ∈ X δ

c0Tx0 ≤ C0 x0
i = xδi ∀i ∈ H

H ⊆ I

The recourse problem is then an instance of the Extendability problem:
given x0, H ⊆ I and X δ, decide the existence of xδ ∈ X δ such that x0

i = xδi
∀i ∈ H. It is only a feasibility problem since the cost |H| does not depend on
second-stage variables. Hence the inner min/max problem has finite value |H| if
set H is anchored, and infinite value otherwise.

42

Chapter 2. Anchored solutions: concepts

Importantly, (AnchRob) outputs a static-robust solution x0 with H = I if there

exists one respecting the baseline cost condition c0Tx0 ≤ C0. If no static-robust
solution with such a cost exists, an optimal solution of (AnchRob) has a max-size
subset of anchored jobs H (I. Note that the condition on the baseline cost could
be replaced by a condition on the worst-case cost of second-stage solutions.

The Anchor-Robust problem under this Anchored set maximization variant
is well-suited for problems with uncertainty on the feasible set. It is studied for
project scheduling under precedence constraints in Chapter 6, Chapter 8, and for
the Resource-Constrained Project Scheduling Problem in Chapter 7.

Worst-case cost minimization. Let us now propose a cost minimization
variant, which is particularly adapted to the case with cost uncertainty only. Let
k ∈ {0, . . . , |I|} be an integer. The problem is to minimize the worst-case cost of
second-stage solutions, while ensuring that the anchored set has size at least k.

(AnchRob) min max min cδ
T
xδ

x0 ∈ X 0 δ ∈ ∆ xδ ∈ X δ

H ⊆ I x0
i = xδi ∀i ∈ H

|H| ≥ k

In this case the problem clearly writes as a robust 2-stage problem. The set H
is anchored w.r.t. x0 as soon as the inner max/min has a finite value.

The Anchor-Robust under this worst-case cost minimization variant is studied
for combinatorial problems with cost uncertainty in Chapter 4.

2.3.4 Connection with recoverable robustness

The concepts of anchor-robustness and recoverable robustness (Liebchen et al.,
2009) are closely related, as both are 2-stage concepts with a feature to ensure
that first-stage and second-stage solutions are similar.

Solutions of the recoverable robust approach are formed with a baseline so-
lution x0 and a collection (xδ)δ∈∆ of second-stage solutions. For a given integer
k ∈ {0, . . . , |I|} a recoverable robust approach is to impose a lower bound on the
number of common decisions in x0 and xδ. Formally, for every δ ∈ ∆, it is imposed
that |{i ∈ I : x0

i ≡ xδi}| ≥ k, or equivalently, σ(x0, xδ) ≥ k.

Let us now highlight the difference between anchor-robustness and recover-
able robustness. Consider a baseline solution x0 and a collection of second-stage
solutions (xδ)δ∈∆.

– x0 and (xδ)δ∈∆ form a recoverable robust solution if for every δ ∈ ∆, there
exists a Hδ such that |Hδ| ≥ k and x0

i ≡ xδi for every i ∈ Hδ.

43

Chapter 2. Anchored solutions: concepts

– x0 and (xδ)δ∈∆ form an anchored solution with set H of size |H| ≥ k if for
every δ ∈ ∆, x0

i ≡ xδi for every i ∈ H.
Hence any anchored solution is a recoverable robust solution. The difference is
that in an anchored solution the set H of common decisions between x0 and xδ is
the same for every δ ∈ ∆, while for recoverable robust solutions it depends on δ.

Knowing set H in first stage strengthen the guarantee of decisions: indeed the
decision maker knows not only that a small number of changes may occur in second
stage, but also that these changes will occur only on non-anchored decisions.

Example 2.4 (Anchored v.s. recoverable robust solutions). Consider solutions to
the Selection problem, where 5 items must be selected out of a total of 8.
Consider that the baseline solution x0, and second-stage solutions xδ1 , xδ2 , xδ3 are
the following vectors. Let ∆ = {δ1, δ2, δ3}. Since solutions are binary vectors, recall
that the anchoring level is defined as the number of common 1’s coordinates.

The solutions x0, (xδ)δ∈∆ form a recoverable solution for k = 4, since σ(x0, xδ) ≥
4 for every δ ∈ ∆. The common decisions are indicated by the 1’s in bold.

With set H = {e5, e6}, (x0, H, (xδ)δ∈∆) is an anchored solution. The anchored
decisions are indicated by the 1’s in red. There is no anchored set of size larger than
2 for these baseline and second-stage solutions. E.g., {e3, e5, e6} is not anchored
since xδ33 = 0.

x0 xδ1 xδ2 xδ3

0

1

1

0

1

1

0

1

1

1

1

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

1

1

�

We mention that research works on recoverable robustness usually employ a
different definition, where a lower bound is set on the number of different decision
in x0 and xδ (see, e.g., the survey (Kasperski and Zieliński, 2016)). However
we point out that with equality as equivalence relation, such a lower bound is
equivalent to σ(x0, xδ) ≥ k. Indeed |{i ∈ I : x0

i ≡ xδi}|+ |{i ∈ I : x0
i 6≡ xδi}| = |I|,

where |I| is constant.

Finally, we compare the approach to the Anchor-Proactive problem introduced
in (Bendotti et al., 2017). The Anchor-Proactive problem is to find a baseline

44

Chapter 2. Anchored solutions: concepts

solution x0 ∈ X 0 such that c0Tx0 ≤ C0, maximizing minδ∈∆ maxxδ∈X δ σ(x0, xδ).
An anchor-proactive solution with objective value k is thus (x0, (xδ)δ∈∆) such that
for every δ ∈ ∆, σ(x0, xδ) ≥ k. Introducing set Hδ of common decisions, this
writes: for every δ ∈ ∆, there exists Hδ such that |Hδ| ≥ k and x0

i ≡ xδi for
every i ∈ Hδ. Thus anchor-proactive solutions corresponds exactly to recoverable
solutions, as previously defined. The difference between the Anchor-Proactive
problem and recoverable robust problems is mainly the choice of the criterion: in
the former the parameter k is maximized while the baseline cost is bounded, in the
latter the solution cost is minimized for fixed parameter k. These problems are
thus variants, similarly to the two variants of the Anchor-Robust problem defined
in Section 2.3.

2.3.5 Uncertainty with a worst-case element

All problems were introduced without making any assumption on the structure
and properties of the uncertainty. Let us now have a look at the case where the
uncertainty set has a so-called worst-case element. This situation is commonly
encountered for simple uncertainty sets, and we will show that anchored solutions
have a specific form in that case. The worst-case element is formally defined as
follows.

Definition 2.3 (Worst-case element of uncertainty set). Let δ+ ∈ ∆. Then δ+ is
a worst-case element of the uncertainty set ∆ if X δ+ ⊆ X δ for every δ ∈ ∆ and
cδ

+ ≥ cδ for every δ ∈ ∆.

In the sequel, we use the shorthand notation c+ = cδ
+

, x+ = xδ
+

, X+ = X δ+
.

Note that the definition of the worst-case element implies X+ ⊆
⋂
δ∈∆X δ and

X+ is unique. A simple uncertainty set with a worst-case element is a box. For
example with cδ = c+ δ and δ ∈ ∆ = Πi∈I [δ

−
i , δ

+
i], it comes that δ+ is a worst-case

element of ∆.

Proposition 2.2. Assume the uncertainty set ∆ has a worst-case δ+. Then a
solution (x0, H) is anchored for set ∆ if and only if it is anchored for set {δ+}.

Proof. Since {δ+} ⊆ ∆, it is clear that if (x0, H) is anchored for ∆, it is anchored
for the subset {δ+}. Conversely, assume there exists x+ ∈ X+ such that x0

i = x+
i

for every i ∈ H. This solution x+ is thus in X δ for every δ ∈ ∆ by assumption on
the worst-case element. Hence (x0, H) is anchored for ∆.

This observation can be interpreted as a dominance of the worst-case element
in the uncertainty set. Then the Anchor-Robust optimization problems can be
simplified into one-level optimization problems. For example for the Anchored set
maximization variant, with Proposition 2.2 the condition H anchored w.r.t. x0 for

45

Chapter 2. Anchored solutions: concepts

set ∆ reduces to the existence of x+ ∈ X+ such that x0
i = x+

i for every i ∈ H+.
Hence the (AnchRob) problem is

max |H+|
s.t. x0 ∈ X 0

c0Tx0 ≤ C0

x+ ∈ X+

x0
i = x+

i ∀i ∈ H+

This problem is studied, e.g., in Section 6.4.1 for anchor-robust project scheduling.
Consider now the worst-case cost minimization variant. Consider an anchored

solution (x0, H, (xδ)δ∈∆) where every xδ is an optimal solution to the recourse
problem of (AnchRob). Then it holds that the worst-case cost of (x0, H, (xδ)δ∈∆)
is c+Tx+: indeed for every δ ∈ ∆ the optimal value of the recourse problem is at

most cδ
T
x+ since x+ ∈ X δ, which is upper-bounded by c+Tx+ by assumption on

δ+. The (AnchRob) problem is thus

min c+Tx+

s.t. x0 ∈ X 0

x+ ∈ X+

x0
i = x+

i for every i ∈ H+

|H+| ≥ k

This problem is considered in Section 4.2.3 for combinatorial problems.

46

Chapter 2. Anchored solutions: concepts

2.4 Main research directions on

Anchor-Reoptimization and Anchor-Robust

problems

In this chapter we presented anchored solutions, and the associated anchor-reopti-
mization and anchor-robust problems. The main issues relative to these problems
that are investigated throughout the manuscript are the following.

I Computational complexity of anchor-reoptimization and anchor-robust
problems. A focus is to analyze when there is an increase in complexity w.r.t.
the original problem, and when there is none. We also investigate algorithmic
approaches for polynomial cases.

For anchor-reoptimization, the complexity depends on the original problem,
but also on the chosen anchoring criterion. We will study several variants (with
different anchoring weights, equivalence relations, or restricted reoptimization).
See Chap. 3, Chap. 5.

For anchor-robust optimization, the complexity depends on the original prob-
lem, but also heavily on the uncertainty representation: what is the uncertain
data? what is the uncertainty set? Importantly an anchor-robust problem also in-
herits from the hardness of the inner anchor-reoptimization problem. See Chap. 4,
Chap. 6.

I Combinatorial properties. We analyze the combinatorial properties of
extendable or anchored sets. Such a combinatorial study is useful even when the
variables of the original problem are continuous, because the anchoring criterion
itself is combinatorial. See Chap. 5, Chap. 6, Chap. 7. The combinatorial nature of
anchored solutions also motivates polyhedral approaches, investigated in Chap. 3,
Chap. 8, Chap. 9.

I Existence of reformulations for Anchor-Robust problems. In the
spirit of the literature on robust optimization, we investigate reformulations for
anchor-robust problems, that are naturally written as imbricated max/min/max
problems. Such mathematical programs are hard to manage. By a dedicated
approach, we establish MIP reformulations in several cases, see Chap. 4, Chap. 6,
Chap. 7.

I Design of efficient algorithms. Finally for hard cases, a goal is to design
algorithmic tools for solving the problem. These tools are exact approaches, either
based on MIP reformulations and polyhedral study (Chap. 7, Chap. 8, Chap. 9);
or on heuristic algorithms for the most challenging problems (Chap. 7).

47

Chapter 2. Anchored solutions: concepts

48

Part II

Anchored solutions to
combinatorial problems

49

Preliminaries on combinatorial problems

In this part, we consider combinatorial problems, defined as follows. Let E be a set
of elements. Let X ⊆ 2E be a collection of feasible subsets of E. Let w ∈ RE be
a vector of weights associated to elements. The considered combinatorial problem
(P) is to find a feasible subset X ∈ X of elements that maximizes the total weight
w(X) =

∑
i∈X wi.

(P) max w(X)

s.t. X ∈ X

Given a subset U ⊆ E, let χU denote its incidence vector. Let us denote
by X the set {χU : U ∈ X } containing all incidence vectors of feasible sets. The
combinatorial problem (P) is then represented by the program with binary decision
vector x ∈ {0, 1}E:

(P) max wTx

s.t. x ∈ X
We assume that the feasible set X can be described by integrality constraints

and linear constraints, so that (P) is represented by the integer program

(P) max wTx

s.t. Ax ≤ b

x ≥ 0

x ∈ {0, 1}E

The family of constraints Ax ≤ b may have exponential size.
Additionally, we may consider combinatorial problems for which a polyhedral

characterization is known. In that case, a collection of linear inequalities A′x ≤ b′

is known so that
conv(X) = {x ∈ RE : A′x ≤ b′, x ≥ 0}

Note that it is a strong assumption on problem (P).

Let us now define classical combinatorial problems that will be used in the
sequel.

51

Max-Weight Matroid basis Problem. A matroid is a pair M = (E, I)
composed with a ground-set E and a non-empty collection I of subsets of E called
independent, such that:
(i) if X ∈ I and X ′ ⊆ X, then X ′ ∈ I
(ii) if X and X ′ are independent and |X ′| < |X|, then there exists e ∈ X \X ′ such
that X ′ ∪ {e} ∈ I.

An inclusion-wise maximal independent set is a basis. Given a matroid M =
(E, I) and weights w ∈ RE, the Max-Weight Matroid basis Problem is to
find a basis X with maximum total weight w(X).

Matroids are classical structures in combinatorial optimization, see, e.g., Schri-
jver’s book (Schrijver, 2003) for an extensive background. The problem Max-
Weight Matroid Basis Problem generalizes two problems defined in Prelim-
inaries of Part I: Selection and Min Cost Spanning Tree. The problem
Max-Weight Matroid Basis Problem is solvable in polynomial time by a
greedy algorithm, similar to Kruskal’s algorithm for spanning trees. Matroids also
enjoy remarkable polyhedral properties, namely: a polyhedral characterization for
the base polytope conv{χB : B base} was obtained by Edmonds (1971).

Max-Weight Bipartite Matching. Let G = (V1, V2, E) be a bipartite
graph. A matching is a subset of edges X ⊆ E containing no adjacent edges. The
Max-Weight Bipartite Matching Problem is to find a matching X with
maximum weight w(X).

It can be solved in polynomial time, e.g., by the Hungarian algorithm. A
characterization of conv(X), where X is the set of incidence vectors of matchings,
is known (see (Schrijver, 2003)).

52

Chapter 3

Anchor-Reoptimization for
combinatorial problems:
a case study on matroid bases

In this chapter, we consider the combinatorial problem over the set of elements E,
with feasible solutions X ⊆ 2E and weights w ∈ RE, that is

(P) max w(X)

s.t. X ∈ X

Let us recall general definitions, as given in Chapter 2, specified for the com-
binatorial problem (P). Given two subsets of elements X and X ′, an element in
X ∩X ′ is said to be anchored. The anchoring level is |X ∩X ′|, i.e., the number
of elements that are selected in both X and X ′. If anchoring weights a ∈ RE

+

are considered, the weighted anchoring level is a(X ∩ X ′). The main motivation
for anchoring problems is that in practice, the decision maker does not solve the
optimization problem (P) from scratch. The baseline solution is a subset X0 of
elements initially selected. Hence the solution X of (P) can be evaluated on two
criteria: its total weight w(X) and its (weighted) anchoring level with the baseline
|X0 ∩X| (or a(X0 ∩X)).

Let us consider that the elements of the baseline X0 are colored red. Let
ρ ∈ {0, 1}E denote the incidence vector of X0, i.e., of red elements. The anchoring
level |X0 ∩X| (or a(X0 ∩X)) is then the total number (or total anchoring weight)
of red elements selected in solution X.

Let us recall the considered anchor-reoptimization problems. The first prob-
lem AnchReopt is to find a feasible set of elements maximizing the number of
elements from the baseline.

53

Chapter 3. Combinatorial Anchor-Reoptimization

AnchReopt

Input: ρ ∈ {0, 1}E, X ⊆ 2E

Problem: max ρ(X)

s.t. X ∈ X

Problem AnchReopt is simply the original problem (P) with weights ρ ∈
{0, 1}E. Hence it is polynomially solvable if (P) is polynomially solvable for unit
weights. For a problem (P) that is NP-hard even for unit weights (e.g., stable set
problem) then AnchReopt is also NP-hard, since vector ρ is allowed to be any
vector in {0, 1}E. We will focus on the second class of problems, involving both
the anchoring level ρ(X) and the weight w(X) of the solution.

AnchReopt–Cost

Input: ρ ∈ {0, 1}E, X ⊆ 2E, w ∈ RE, W ≥ 0

Problem: max ρ(X)

s.t. X ∈ X

w(X) ≥ W

AnchReopt–Anch, a.k.a. k-red variant

Input: ρ ∈ {0, 1}E, X ⊆ 2E, w ∈ RE, k ∈ N
Problem: max w(X) (P-kRed)

s.t. X ∈ X

ρ(X) ≥ k

The problem AnchReopt–Anch is to find a max-weight solution with at
least k red elements: it is the k-red variant of original problem (P), denoted by
(P-kRed).

Note that a polynomial algorithm for AnchReopt–Cost gives a polynomial
algorithm for AnchReopt–Anch, and vice versa. Namely, the optimal value W ∗

of an instance (ρ,X , w, k) of AnchReopt–Anch is the largest W such that the
optimal value of AnchReopt–Cost on instance (ρ,X , w,W) is at least k. The
optimum W ∗ can be found by dichotomy on the value of W , which requires at
most log(Wmax) calls to the algorithm for AnchReopt–Cost where Wmax is a
bound on W ∗ (e.g., Wmax = nmaxe∈E we). This is polynomial in the size of the
instance of AnchReopt–Anch.

In the sequel we will focus on the k-red variant (P-kRed). Let us illustrate the
k-red variant of the Min Cost Spanning Tree problem in Example 3.1.

54

Chapter 3. Combinatorial Anchor-Reoptimization

Example 3.1 (k-red spanning trees). Consider a baseline instance of the Min Cost
Spanning Tree problem. The graph G = (V,E) has 6 nodes. Baseline edge costs
are represented in Figure 3.1, along with the baseline spanning tree in red. It has
minimum cost.

2
2

4 4

2

3 3

3

4 4

Figure 3.1: Baseline instance of the Min Cost Spanning Tree Problem and an optimal
solution in red.

Consider now that some edge costs change, as indicated in bold in Figure 3.2.
Three solutions are represented. Solution (a) is to keep the baseline: it has new
cost 15. Solution (c) is an optimal solution to the new instance: it has a cost of
13, but only 2 edges in common with the baseline red solution. Solution (b) has
cost 14, and 4 red edges.

2

3 3

3

4 4

4
3

2 3

2

3 3

3

4 4

4
3

2 3

2

3 3

3

4 4

4
3

2 3

(a) (b) (c)

cost 15 cost 14 cost 13 (opt)

5 red edges (baseline) 4 red edges 2 red edges

Figure 3.2: New instance of the Min Cost Spanning Tree Problem, and three distinct
solutions.

This shows that solution (b) with intermediate cost, and 4 red edges out of 5,
can be found by solving the k-red Spanning Tree problem with k = 4. �

55

Chapter 3. Combinatorial Anchor-Reoptimization

In this chapter, we investigate the complexity of the k-red variant (P-kRed) of
polynomial combinatorial problems, and especially matroid bases. Let us review
some related work. For combinatorial problems, the anchoring level coincides
with transition costs: if element e from the baseline is included in the solution,
it yields a profit ae. This model has been studied, e.g., in (Schieber et al., 2018),
where the authors considered a special case of the AnchReopt–Cost problem.
Spanning trees with a side linear constraint have been widely studied (Aggarwal
et al., 1982; Ravi and Goemans, 1996; Ahuja et al., 1993). If the side constraint
is any linear constraint, the problem is weakly NP-hard (Aggarwal et al., 1982).
In particular, this implies that the Anchor-Reoptimization problem is NP-hard
for non-unit anchoring weights. The biobjective spanning tree has also received
attention (Hamacher and Ruhe, 1994; Sourd and Spanjaard, 2008).

The chapter is structured as follows. Section 3.1 is devoted to a case study on
the problem of finding a max-weight k-red basis in a matroid. Two approaches
are proposed. The first one is an algorithm based on Lagrangian relaxation of
the k-red constraint, presented in Section 3.1.2. The second one is a polyhedral
characterization, presented in Section 3.1.3. Both approaches yield a proof that the
k-red matroid basis problem is polynomial. In Section 3.2 the result is illustrated
for spanning trees, along with a consequence on the Pareto front of the k-red
biobjective spanning tree. In Section 3.3 the max-weight k-red matching problem
in a bipartite graph is considered. We show that a longstanding open problem,
Exact Perfect Matching, reduces to this k-red variant.

3.1 Max-weight k-red bases in matroids

Let us study the complexity of finding a max-weight k-red matroid basis. Let
M = (E, I) be the matroid and B its set of bases. Let ρ ∈ {0, 1}E be the
incidence vector of red elements, and k ∈ N. Let w ∈ RE. Let Bk-red denote the
set of bases with at least k-red elements, i.e., Bk-red = {X ∈ B : ρ(X) ≥ k}. We
study the problem (Bas-kRed) of finding a max-weight solution in Bk-red. It can
be written as the integer program

max wTx

s.t. x ∈ X
ρTx ≥ k

(Bas-kRed)

Recall that X denote the set of incidence vectors of B, i.e., the feasible set of
original problem (P).

In this section, we propose two approaches to solve the (Bas-kRed)problem.
Both give a proof of the following result:

56

Chapter 3. Combinatorial Anchor-Reoptimization

Theorem 3.1. The problem (Bas-kRed) of finding a max-weight basis with at least
k red elements is solvable in polynomial time.

The result can be found for spanning trees in (Ahuja et al., 1993; Şeref et al.,
2009). We here propose a natural extension to matroid bases, and the double
algorithmic/polyhedral perspective to the problem.

3.1.1 Preliminaries on matroids

Let us give additional definitions and properties on matroids. We refer to Schri-
jver’s book (Schrijver, 2003) for details and proofs of the main theorems.

A basis of matroid M is defined as an inclusion-wise maximal independent set.
By (ii) in matroid definition (see Page 52), equivalently a basis is an independent
set of maximum cardinality. The rank is a function rM : 2E −→ N defined by
rM(F) = max{|I| : I ⊆ F, I ∈ I} for every subset F ⊆ E of elements. Then a
basis X has cardinality |X| = rM(E). For X ⊆ E and e ∈ E, let X + e (resp.
X − e) denote X ∪ {e} (resp. X \ {e}). Matroids satisfy the following exchange
lemma:

Lemma 3.1 (Exchange lemma). Given two bases X and X ′, then for all e ∈
X \X ′, there exists f ∈ X ′ \X such that X − e+ f and X ′ − f + e are bases.

Matroids also enjoy nice polyhedral properties. The independent set poly-
tope of matroid M is conv{χI : I ∈ I} and the base polytope of matroid M is
conv{χB : B ∈ B}. The incidence vector x of an independent set I, and thus any
element x of the independent set polytope, satisfies inequalities

xe ≥ 0 ∀e ∈ E (3.1)

x(F) ≤ rM(F) ∀F ⊆ E (3.2)

Inequality (3.2) is valid since for every I ∈ I and F ⊆ E, it holds that I ∩ F ∈ I
hence |I ∩F | ≤ rM(F), by definition of the rank. The incidence vector x of a basis
B also satisfies

x(E) = rM(E) (3.3)

An important result due to Edmonds is that these inequalities characterize the
base polytope and the independent set polytope.

Theorem 3.2 (Edmonds, see Corollary 40.2b in (Schrijver, 2003)). The polytopes
{x ∈ RE : (3.1)–(3.2)} and {x ∈ RE : (3.1)–(3.2)–(3.3)} are integer. They charac-
terize the independent set polytope and the base polytope of matroid M , respectively.

57

Chapter 3. Combinatorial Anchor-Reoptimization

Importantly, Theorem 3.2 implies that the Max-Weight Matroid Basis
problem is polynomial, by linear programming. The family of inequalities (2)
is exponential, but a polynomial separation algorithm exists (Theorem 40.4 in
(Schrijver, 2003)). Hence the maximum of wTx over {x ∈ RE : (3.1)–(3.2)–(3.3)}
can be found in polynomial time.

Another result is for the intersection of two matroids.

Theorem 3.3 (Edmonds, see Corollary 41.12a in (Schrijver, 2003)). Let M1 =
(E, I1) and M2 = (E, I2) be two matroids on the same ground-set. The polytope of
common independent sets conv{χI : I ∈ I1 ∩ I2} is described by inequalities (3.1)
and (3.2) associated with both matroids.

Let us finally note that the Min Cost Spanning Tree problem is a special
case of Max-Weight Basis. With a graph G = (V,E), a matroid MG = (E, IG)
is associated where a subset X ⊆ E is an independent set if the set X is cycle-
free. Spanning trees are bases of matroid MG. Spanning trees have cardinality
rMG(E) = |V | − 1.

3.1.2 Lagrangian-based algorithm

Let us present the Lagrangian-based approach to (Bas-kRed). In Section 3.1.2.1
we present the general framework applicable to any k-red problem (P-kRed). In
Section 3.1.2.2 we give further properties specific to k-red matroid bases.

Lagrangian relaxation was used in (Ravi and Goemans, 1996) for the NP-hard
constrained spanning tree and in Example 16.6 in (Ahuja et al., 1993) for a polyno-
mial degree-constrained spanning tree problem. The algorithm from Section 3.1.2.2
is adapted from this technique, and extended to matroid bases. While preparing
the present work, we found out that in (Şeref et al., 2009) the same proof technique
was used for k-red spanning trees and when red edges form a spanning tree.

3.1.2.1 General approach

Consider Lagrangian relaxation of the k-red constraint ρ(X) ≥ k. Let λ ≥ 0 be
the dual Lagrange multiplier associated with the constraint ρ(X) ≥ k, and let
G (λ) be the dual problem

G (λ) : max
X∈X

w(X) + λ(ρ(X)− k)

Let G(λ) be the dual function, i.e., the optimal value of problem G (λ). For a given
λ ≥ 0, the value G(λ) can be computed by solving the problem (P) for modified
weights w̃e = we+λρe. The k-red problem is maxX∈X minλ≥0w(X)+λ(ρ(X)−k).

58

Chapter 3. Combinatorial Anchor-Reoptimization

Hence it holds that G(λ) is an upper bound to the problem for any value of
multiplier λ ≥ 0. The best of such upper bounds is the dual bound

min
λ≥0
G(λ).

In general, the dual bound is not equal to the optimal value of the problem: there
is a Lagrangian duality gap.

A classical optimality condition is as follows. Given λ ≥ 0 and X an optimal
solution of the dual problem G (λ), if λ and X satisfy the complementarity condi-
tions ρ(X) ≥ k, (ρ(X) = k or λ = 0), then X is an optimal solution of (P-kRed).
Indeed this condition implies w(X) +λ(ρ(X)− k) = w(X), hence the weight of X
is equal to the upper bound G(λ). The solution X being feasible for (P-kRed), it
is an optimal solution to (P-kRed).

3.1.2.2 Polynomial algorithm for matroid bases

Let us now give results specific to (Bas-kRed).

Proposition 3.1. For matroid bases, the dual bound minλ≥0 G(λ) is equal to

minλ∈Λ G(λ) where Λ = {wf − we : e, f ∈ E, ρe = 1, ρf = 0}

and thus it can be computed in polynomial time.

Proof. A solution to the dual problem for multiplier λ is a solution to (P) for
modified weights w̃ = w + λρ. Recall that an instance of (P) with weights w̃
can be solved using the greedy algorithm, which compare weights of elements.
We assume that if elements have the same weight, the one with smallest index
is picked first. Consider for any instance of (P), the list of elements of E sorted
lexicographically by increasing w̃e, then by increasing index. Hence the greedy
algorithm always returns the same solution for all instances whose such list is the
same. Let λ∗ be a value of the multiplier such that the list associated to modified
weights w̃ changes at λ∗. Then there exists e, f ∈ E such that w̃e ≤ w̃f if and only
if λ ≤ λ∗. Hence e is red, f is not red, and λ∗ = wf − we.

The dual function is piecewise affine, and every breakpoint of G(λ) corresponds
to a value of the multiplier where the output of the greedy algorithm changes. By
the previous remark, every breakpoint is in the set Λ = {wf − we : e, f ∈ E, ρe =
1, ρf = 0}. This set having quadratic size, the minimum of G(λ) can be found
by evaluating the function at each point of Λ. Note that in case (Bas-kRed) is
unfeasible, the minimum of G is unbounded, which can be detected by computing
the value of G in one additional point greater than all points in Λ. Hence the dual
bound minλ≥0 G(λ) can be found in polynomial time as claimed.

59

Chapter 3. Combinatorial Anchor-Reoptimization

By Proposition 3.1, the value λ∗ attaining the dual bound G(λ∗) and an optimal
solution X∗ to the dual problem can be found in polynomial time. In general
solution X∗ does not contain k red edges. In order to show that we can output a
k-red solution satisfying the optimality condition, we need the following lemma.

Lemma 3.2. Let w ∈ RE, and W ∗ be the maximum weight of a basis of M .
Let k be an integer. Given two bases of weight W ∗ with respectively less and

more than k red elements, there always exists a basis of weight W ∗ with exactly k
red elements, and it is computable in polynomial time by Algorithm 1.

Algorithm 1:

Input: X1, X2 ∈ B, k ∈ N such that w(X1) = w(X2) = W ∗ and
ρ(X1) < k < ρ(X2).

Output: X= ∈ B such that w(X=) = W ∗ and ρ(X=) = k.
Let X := X2;
while ρ(X) > k do

Let e ∈ X \X1 be a red element;
Let f ∈ X1 \X such that X − e+ f ∈ B and X1 − f + e ∈ B;
Let X := X − e+ f .

end
Return X;

Proof. Let us prove validity of Algorithm 1. The element e exists because at each
iteration, X has more red elements that X1. The element f exists by the exchange
lemma. At each iteration, the set X is a basis. Also, the number of red edges
in X is decremented of at most one at each iteration. Hence when the algorithm
terminates, it returns a basis X such that ρ(X) = k.

Let us show that the equality w(X) = W ∗ remains valid at each iteration, i.e.,
that w(X − e+ f) = w(X) before the update of X. Since X − e+ f is a basis it
comes w(X − e+ f) ≤ W ∗ = w(X) hence wf ≤ we. Similarly since X1 − f + e is
a basis it comes w(X1 − f + e) ≤ W ∗ = w(X1) and we ≤ wf . Thus we = wf and
the weight of X remains equal to W ∗.

Finally it remains to show that this algorithm terminates after a polynomial
number of iterations. At each update of X, |X1 ∩ X| is incremented. Assume
the algorithm has not terminated after |X \ X1| iterations: then X = X1 hence
ρ(X) < k, a contradiction. Thus there are at most |X \ X1| iterations and the
algorithm is polynomial.

Let us now present a proof of Theorem 3.1 stated Page 57.

Proof. Let λ0 = 0 < λ1 < . . . < λm be the points of Λ. Let λt
∗ ∈ Λ be a point

where G attains its minimum, computed in polynomial time thanks to Proposi-
tion 3.1 by exhaustive search on Λ. For every λt ∈ Λ, let X t denote the optimal

60

Chapter 3. Combinatorial Anchor-Reoptimization

solution of (P) computed by the greedy algorithm in interval [λt, λt+1]. In this inter-
val the dual function coincides with the linear function λ 7→ w(X t)+λ(ρ(X t)−k).

Let us now exhibit a pair λ, X satisfying the complementarity conditions re-
called in Section 3.1.2.1, that is: λ ≥ 0, X is an optimal solution to the dual
problem in λ, and ρ(X) ≥ k, (ρ(X) = k or λ = 0).

(i) Assume first λt
∗

= 0. Then G is non-decreasing, and the slope of G on [0, λ1]
is non-negative. This slope equals ρ(X0) − k. Hence the pair λ = 0, X0

satisfy the condition and X0 is an optimal solution of (Bas-kRed).
(ii) Assume λt

∗
> 0. Consider the two solutions X t∗−1 and X t∗ : both are optimal

solutions of the dual problem G (λt
∗
). Since the dual function attains its

minimum in λt
∗

it comes ρ(X t∗−1) − k ≤ 0 and ρ(X t∗) − k ≥ 0. If one of
them has k red edges, we are done. Otherwise, X t∗−1 and X t∗ satisfy the
conditions of Lemma 3.2 for the modified weights associated with λt

∗
. Using

Algorithm 1, a solution X= can be computed in polynomial time, such that
X= is also an optimal solution of G (λt

∗
), and ρ(X=) = k. Then the condition

is satisfied by λt
∗

and X=, hence X= is an optimal solution of (Bas-kRed).

In particular, for (Bas-kRed) problem this implies that there is no Lagrangian
duality gap.

3.1.3 Polyhedral characterization

Let us now propose a different approach to solve the (Bas-kRed) problem. Let
Q = conv{χB : B ∈ B} denote the base polytope of M . By Edmonds’s result
stated in Theorem 3.2, Q is characterized by inequalities (3.1)–(3.2)–(3.3). Let
Qk-red = conv{χB : B ∈ Bk-red} be the polytope of problem (Bas-kRed). We are
interested in the characterization of the polytope Qk-red. It holds that Qk-red is
included in the intersection Q ∩ {x ∈ RE : ρTx ≥ k} of the base polytope with
the k-red half-space. In general, intersecting integer polytope Q with a half-space
{x ∈ RE : aTx ≥ k}, a ∈ RE would lead to a set with non-integer extreme points.
In general for X ⊆ {0, 1}E and a ∈ RE, the set X ∩ {x ∈ RE : aTx ≥ k} does not
admit an efficient polyhedral characterization. Indeed the problem of maximizing
wTx over this set corresponds to AnchReopt–Anch with non-unit anchoring
weights, which is NP-hard.

In the case of the k-red constraint, the following polyhedral result holds.

61

Chapter 3. Combinatorial Anchor-Reoptimization

Theorem 3.4. Polytope Qk-red is defined by

xe ≥ 0 ∀e ∈ E (3.1)

x(F) ≤ rM(F) ∀F ⊆ E (3.2)

x(E) = rM(E) (3.3)

ρTx ≥ k (3.4)

That is, Qk-red = Q∩ {x ∈ RE : ρTx ≥ k}.

Adding the k-red inequality (3.4) here preserves the integrality of the polytope.

Proof. The proof relies on the identification of the problem (Bas-kRed) as an
intersection of matroids. Let m = rM(E). Let ρ̄ denote the incidence vector of
non-red elements, i.e., ρ̄ = 1 − ρ. Let Mk-red = (E, Ik-red) be a second matroid
defined by: X ∈ Ik-red if ρ̄(X) ≤ m−k. That is, a subset of elements is independent
if it has at most m− k non-red elements. It is a partition matroid.

Then Bk-red = B ∩ Ik-red: indeed a basis X ∈ B has cardinality |X| = m,
hence ρ̄(X) ≤ m − k if and only if ρ(X) ≥ k. Therefore Qk-red = conv{χB : B ∈
B ∩ Ik-red}. Using Theorem 3.3, it comes that Qk-red = Q ∩ P , where P is the
independent set polytope of matroid Mk-red.

Let us show that Q∩ {x ∈ RE : ρTx ≥ k} ⊆ Q ∩ P . Let us compute the rank
rMk-red(F) for F ⊆ E. In set F an independent set of max size is formed with: all
red elements from F , and a number min(ρ̄(F),m− k) of non-red elements. Hence
rMk-red(F) = ρ(F) + min(ρ̄(F),m− k).

Let x ∈ Q ∩ {x ∈ RE : ρTx ≥ k}. Let F ⊆ E. Let Fr and Fn denote
the subset of red and non-red elements of F respectively. Then x(F) = x(Fr) +
x(Fn). It holds that x(Fr) ≤ |Fr| = ρ(F), and similarly x(Fn) ≤ ρ̄(F). Moreover
x(Fn) ≤ ρ̄Tx = (1 − ρ)Tx ≤ m − k, since x(E) = m and ρTx ≥ k. Thus
x(F) ≤ ρ(F) + min(ρ̄(F),m− k). By Theorem 3.2, P is described by inequalities
(1)–(2), here satisfied by x, hence x ∈ P .

Finally this proves Q ∩ {x ∈ RE : ρTx ≥ k} ⊆ Q ∩ P = Qk-red, and Qk-red =
Q∩ {x ∈ RE : ρTx ≥ k} as claimed.

The polyhedral result from Theorem 3.4 yields another proof of the polynomial-
ity of (Bas-kRed) by linear programming. Indeed solving (Bas-kRed) is equivalent
to maximizing wTx over the polytope Qk-red. The inequalities defining Qk-red are
in an exponential number, but again the existence of a polynomial separation al-
gorithm for inequalities (3.2) ensures that the LP can be solved in polynomial
time.

62

Chapter 3. Combinatorial Anchor-Reoptimization

3.2 Illustration for the k-red spanning tree

Let us now illustrate the results from Section 3.1 for the Min Cost Spanning
Tree problem. Note first that it is equivalent to look for a min cost or a max
weight spanning tree, since all spanning trees have the same cardinality. For the
spanning tree problem, the polyhedral result from Theorem 3.4 can be declined as
follows. Given W ⊆ V , let E[W] denote the set of edges with both extremities in
W . It is known (Edmonds, see Theorem 6.13 in (Korte and Vygen, 2012)) that
the spanning tree polytope is defined by

xe ≥ 0 ∀e ∈ E (3.1)

x(E[W]) ≤ |W | − 1 ∀W ⊆ V (3.5)

x(E) = |V | − 1 (3.6)

Corollary 3.1. The polytope of k-red spanning trees is defined by inequalities
(3.1)–(3.5)–(3.6) and k-red inequality (3.4).

Let us now consider the k-red spanning tree problem under a bi-objective per-
spective. Consider the bi-objective problem of finding x ∈ X with the two objec-
tives to maximize: total weight wTx and number of red elements ρTx. A solution
x ∈ X is dominated by solution x′ ∈ X if wTx ≤ wTx′ and ρTx ≤ ρTx′, and
one of the inequalities is strict. The Pareto front is formed by all non-dominated
solutions of X , usually represented in the objective space: that is, a solution x is
represented by point (ρTx,wTx). For k-red problems, since ρTx takes only integer
values, the Pareto front is formed with a polynomial number of points (k, wTxk),
k ∈ {0, . . . , |E|}. Then xk is an optimal solution of the max-weight k-red problem.
A solution x∗ is said to be supported if it maximizes a convex combination of the
objectives wTx + λρTx, for some λ ≥ 0. In general for the bi-objective spanning
tree, the Pareto front in the objective space is a set with exponential size, and not
all non-dominated solutions are supported (Sourd and Spanjaard, 2008). We show
now:

Proposition 3.2. For k-red matroid bases, every point of the Pareto front is
supported.

Proof. Consider a point (k,W) of the Pareto front. The value W is the optimum
of the k-red problem. By the previous result from Section 3.1.2, there is no La-
grangian duality gap: W equals the dual bound G(λ∗) for some λ∗ ∈ Λ. Following
the proof of Theorem 3.1, we consider the following cases:

(i) λ∗ = 0. Then the dual problem is simply the original problem with weights
w. An optimal solution to the dual problem is a maximizer of w over X .
Thus (k,W) is supported.

63

Chapter 3. Combinatorial Anchor-Reoptimization

(ii) λ∗ > 0. Among solutions of the dual problem at λ∗, there exists a solution
with less than k red edges and a solution with more than k edges. Then with
Lemma 3.2, there exists a solution to the dual problem X= with exactly
k red edges. Hence ρ(X=) = k, and w(X=) = G(λ∗). That is, solution
X= corresponds to point (k,W) of the Pareto front. Moreover, X= is a
maximizer of the convex combination of objectives w + λ∗ρ over X . Thus
(k,W) is supported.

Let us illustrate the result on an instance of the Min Cost Spanning Tree
problem. Consider a grid graph with 6× 6 = 36 nodes. A vector of edge-costs c0

is randomly generated in range {1, . . . , 5}. The baseline solution is a tree x0 with

minimum cost c0Tx0, represented in red in left-top picture of Figure 3.4. A new
vector of edge-cost c is defined by ce = 6− c0

e for every e ∈ E. Then the values of c
are also in {1, . . . , 5}, but the cheapest edges in c0 are now the most expensive for
costs c. For edge cost c, the baseline tree has cost cTx0 = 268 while the optimal
cost is 120. In Figure 3.4 are represented 6 different solutions of the new Min
Cost Spanning Tree instance. The corresponding Pareto front is represented
in Figure 3.3.

0 5 10 15 20 25 30 35 40

150

200

250

x(5)

x(4)

x(3)

x(2)

x(1)

x(0)

k

op
t
k
-r

ed
co

st

Pareto front
Dominated

Figure 3.3: Pareto front for the considered grid graph instance, and points associated to solutions
of Figure 3.4.

64

Chapter 3. Combinatorial Anchor-Reoptimization

x(0) x(1) x(2)

cost 268 cost 241 cost 208

35 red edges (baseline) 32 red edges 28 red edges

x(3) x(4) x(5)

cost 172 cost 141 cost 120 (opt)

23 red edges 18 red edges 12 red edges

Figure 3.4: Six different solutions from the Pareto front.

3.3 k-red bipartite matching

Let us now consider k-red bipartite matchings. Given a bipartite graph G =
(V1 ∪ V2, E), let X denote the set of matchings of G. Consider edge weights
w ∈ RE. The Max-Weight Bipartite Matching Problem is solvable in
polynomial time, by a flow algorithm or the Hungarian algorithm. Consider now
the k-red variant. Given ρ ∈ {0, 1}E and k ∈ N, the k-red variant (Match-kRed)
is to find a max-weight matching X ∈ X such that ρ(X) ≥ k.

If all weights are unit or all edges are red, the problem is solvable in polynomial
time using a min cost flow algorithm. In general case, the complexity of this
problem is here left as open question. Indeed we prove a connection with the
Exact Perfect Matching problem, whose complexity is an open problem. A
perfect matching is a matching that matches all vertices of the graph. Let ν(G)
denote the size of a maximum matching.

65

Chapter 3. Combinatorial Anchor-Reoptimization

Exact Perfect Matching

Input: A bipartite graph G = (V1∪V2, E), a subset R ⊆ E
of red edges, an integer k

Question: Is there a perfect matching of the graph with ex-
actly k red edges?

Finding a polynomial algorithm to solve the Exact Perfect Matching
is a long-standing open problem since it was introduced in (Papadimitriou and
Yannakakis, 1982). Non deterministic algorithms are known (Mulmuley et al.,
1987), along with algorithms for complete graphs (Yi et al., 2002). Yuster (2012)
provides an algorithm that either answers that an exact perfect matching does not
exists, or returns a matching with k red edges of size at least ν(G)− 1.

Theorem 3.5. There is a polynomial reduction from Exact Perfect Match-
ing to the decision problem associated with (Match-kRed).

Proof. Let G be a bipartite graph with a subset of edges red, k an integer: they
form an instance of the Exact Perfect Matching problem. An instance (G′, ρ, w,W)
of the decision version of (Match-kRed) is built as follows: let G′ = G, let ρ be
the indicator of red edges of G, let the weight w be the indicator vector of non-red
edges of G, and W = ν(G)− k, where ν(G) is the size of a perfect matching in G.

Assume there exists a perfect matching X of G with exactly k red edges. Then
w(X) = ν(G) − k ≥ W and ρ(X) = k, hence the instance (G′, ρ, w,W) has a
‘yes’ answer. Conversely, let X ′ be a matching of G′ such that ρ(X ′) ≥ k and
w(X ′) ≥ ν(G) − k. Hence ρ(X ′) + w(X ′) ≥ ν(G). By definition of ρ and w it
holds that ρ(X ′) + w(X ′) = |X ′| ≤ ν(G). Hence X ′ is a perfect matching and
equalities ρ(X ′) = k and w(X ′) = ν(G) − k are both satisfied. Therefore there
exists a perfect matching with exactly k red edges in G.

The Lagrangian approach used in the matroid case can also be used for match-
ings. It was done, e.g., for the Exact Perfect Matching problem in Yuster
(2012), and in Berger et al. (2011) for a budgeted matching problem. However a
result similar to Lemma 3.2, providing an optimal solution from two Lagrangian
solutions, is not to be expected: indeed there may exist a Lagrangian duality gap.

Let us recall a classical result in Lagrangian relaxation, that shows that the
two approaches for matroid bases are closely related. Consider any k-red prob-
lem maxwTx for x ∈ X , ρTx ≥ k. Let Q = convX . For λ ≥ 0, let G(λ) =
maxx∈X w

Tx+ λ(ρTx− k).

Proposition 3.3 (Geoffrion, see Theorem 5.36 in (Korte and Vygen, 2012)). The
polytope Q ∩ {x ∈ RE : ρTx ≥ k} is integer if and only if for any value of the
weights w ∈ RE, the dual bound min

λ≥0
G(λ) is equal to the optimal value of the

problem.

66

Chapter 3. Combinatorial Anchor-Reoptimization

Proof. Geoffrion’s theorem states – roughly speaking – that the dual bound cor-
responds to the value of the problem, where undualized constraints are con-
vexified. Let us recall the proof for completeness. Consider the value V =
max{wTx : x ∈ Q, ρTx ≥ k}. Dualizing the k-red constraints, it comes that
V = maxx∈Qminλ≥0w

Tx + λ(ρTx − k). The max/min can be inverted since
both feasible sets are polytopes. Hence V = minλ≥0 maxx∈Qw

Tx + λ(ρTx −
k) = minλ≥0 G (λ). Hence the absence of Lagrangian duality gap is equivalent
to V = max{wTx : x ∈ X , ρTx ≥ k}. This holds for every weight vector
w ∈ RE if and only if Q ∩ {x ∈ RE : ρTx ≥ k} = conv{x ∈ X , ρTx ≥ k},
i.e., Q∩ {x ∈ RE : ρTx ≥ k} is integer.

In Example 3.2, a small instance of k-red matching is given where there is a
Lagrangian duality gap, and equivalently, the matching polytope intersected with
the k-red constraint is not integer anymore.

Example 3.2 (Lagrangian duality gap for k-red matchings). Consider a bipartite
graph G = (U, V,E) with U = {u, u′}, V = {v, v′, v′′} and edge-set {e1, e2, e3, e4}
as represented in Figure 3.5. Weights are w = (1, 1, 2, 1). Edges e2 and e4 are
red. Note here that there are 3 inclusion-wise maximal matchings: M13 = {e1, e3}
has weight 3 and 0 red edges; M14 = {e1, e4} has weight 2 and 1 red edge; M24 =
{e2, e4} has weight 2 and 2 red edges. Let k = 1. The optimum of the k-red
problem is thus 2 (attained by M14 and M24). Consider now the vector x∗ =
1
2
(χM13 + χM24). It is in the matching polytope Q. Also it satisfies ρTx∗ = 1 ≥ k.

It has weight 1
2
(1 + 1 + 2 + 1) = 2.5. This shows that the intersection Q ∩ {x ∈

RE : ρTx ≥ k} contains x∗, which is not an element of Qk-red. The dual function
is G (λ) = max{3− λ, 2 + λ}. Its minimum is 2.5, while the optimum of the k-red
problem is 2. �

u

u′

v

v′

v”

1

1

2

1

Figure 3.5: k-red matching instance from Example 3.2.

67

Chapter 3. Combinatorial Anchor-Reoptimization

Conclusion

We studied k-red variants of polynomial combinatorial problems and especially
matroid bases. This latter problem is polynomial. While the complexity result
cannot be regarded as a new result, we proposed a complete picture of the problem
with an algorithmic and a polyhedral perspective. In particular, the polyhedral
characterization will serve on its own for robust approaches.

The approaches are both built upon the properties of matroid bases. We
pointed out that the result cannot be extended in a straightforward manner to
other problems, even for bipartite matchings that have a close structure. A per-
spective would be to investigate polyhedral characterizations of other k-red prob-
lems, first of all, k-red matchings.

68

Chapter 4

Anchor-Robustness for
combinatorial problems

In this chapter we consider a combinatorial problem (P) with ground-set E, defined
by min c(X) subject to X ∈ X , where X ⊆ 2E and c(X) =

∑
e∈X ce with cost

vector c ∈ RE. Problem (P) is represented by integer program min cTx subject to
x ∈ X , with X ⊆ {0, 1}E.

We consider that uncertainty may impair the cost function. Nominal cost
vector is c ∈ RE. Real cost vector may be cδ = c + δ for δ ∈ ∆, with ∆ the
uncertainty set. We assume that costs are non-negative for every uncertainty
realization, that is, c + δ ≥ 0 for every δ ∈ ∆. By contrast the feasible set X is
not subject to uncertainty.

The concept of anchor-robustness introduced in Chapter 2 is investigated for
combinatorial problems under cost uncertainty. In Section 4.1, the Anchor-Robust
problem (AnchRob) is formally defined, and compared to the recoverable robust
problem (RecovRob) studied in the literature for combinatorial problems. In Sec-
tion 4.2 we analyze the complexity of (AnchRob) for discrete and polyhedral un-
certainty sets. We point out the connection with other robust approaches. In
Section 4.3 we investigate the existence of MIP reformulations for (AnchRob) and
(RecovRob). Finally in Section 4.4 we assess the price of anchor-robustness, that
is, the decrease of the optimal value between (AnchRob) and (RecovRob).

4.1 Definitions

Let us first give definitions of anchored solutions and the Anchor-Robust problem.
These correspond to the general definitions given in Chapter 2, now specialized to
combinatorial problems.

69

Chapter 4. Combinatorial Anchor-Robustness

4.1.1 Anchored sets

As in Chapter 2, we consider a baseline solution X0 ∈ X , and a collection of
second-stage solutions Xδ ∈ X ∀δ ∈ ∆ so that the second-stage solution is chosen
after uncertainty realization δ ∈ ∆ is known. A collection of second-stage collec-
tions (Xδ)δ∈∆ can be interpreted as a strategy of a player, who chooses solution Xδ

depending on the adversarial realization of δ ∈ ∆. Given a collection of solutions
(Xδ)δ∈∆, the worst-case cost is max

δ∈∆
cδ(Xδ). An anchored set is defined as follows.

Definition 4.1 (Anchored set). Let X0 be a baseline solution and (Xδ)δ∈∆ second-
stage solutions. A subset H ⊆ E is anchored w.r.t. X0, (Xδ)δ∈∆ if H ⊆ X0 and
H ⊆ Xδ for every δ ∈ ∆.

Remark that it is Definition 2.1 from Chapter 2, rewritten in the special case
of binary vectors and equivalence relation =1. An interpretation of Definition 4.1
is that elements of H are guaranteed against uncertainty set ∆, since they are
selected in the baseline X0 and in every second-stage instance Xδ.

An anchored solution is a triplet (X0, H, (Xδ)δ∈∆) with H ⊆ E a set that is
anchored w.r.t. X0, (Xδ)δ∈∆.

Anchored solutions coincide with static-robust solutions when the anchored set
is H = X0, as noted in Observation 2.1. Note that since we are considering cost
uncertainty only, any solution X0 ∈ X is trivially a static-robust solution, i.e., fea-
sible for any uncertainty realization. The coincidence with static-robust solutions is
useful for the evaluation of worst-case costs of anchored solutions. With H = X0 is
anchored, the worst-case cost of the second-stage instances maxδ∈∆ c

δ(Xδ) is equal
to the worst-case cost of the baseline maxδ∈∆ c

δ(X0). Indeed, recall that second-
stage costs are non-negative, thus an optimal second-stage solution containing the
anchored set H = X0 is just Xδ = X0 for every δ ∈ ∆.

4.1.2 The Anchor-Robust problem

Let us now formulate the Anchor-Robust problem, derived from the general setting
presented in Chapter 2. Consider a 2-stage robust optimization problem where:

– in first stage is decided a baseline solution X0 and an anchored set H ⊆ X0

– in second stage is decided a new solution Xδ such that H ⊆ Xδ

Consider anchoring weights a ∈ RE
+. Given k ≥ 0, it will be required that the

anchored set has total anchoring weight at least k. Solutions of the Anchor-
Robust problem will be anchored solutions (X0, H, (Xδ)δ∈∆) with anchored set H
satisfying a(H) ≥ k.

Consider first-stage cost vector C ∈ RE, second-stage cost vector c ∈ RE and
uncertainty set ∆. The objective function is the sum of the first-stage cost of the

70

Chapter 4. Combinatorial Anchor-Robustness

baseline and the worst-case cost of second-stage solutions: C(X0)+maxδ∈∆ c
δ(Xδ).

This criterion was used in the literature for other robust approaches (see, e.g.,
(Hradovich et al., 2017)).

Given feasible set X , costs C, c ∈ RE, uncertainty set ∆, anchoring weights
a ∈ RE

+ and k ≥ 0, the Anchor-Robust (AnchRob) problem is to find an anchored
solution (X0, (Xδ)δ∈∆, H) such that a(H) ≥ k, and C(X0) + maxδ∈∆ c

δ(Xδ) is
minimized. This writes as the following program:

(AnchRob) min C(X0) + max min cδ(Xδ)

X0 ∈ X δ ∈ ∆ Xδ ∈ X

H ⊆ X0 H ⊆ Xδ

a(H) ≥ k

Note that the inner minimization problem is always feasible, since X0 is a feasible
solution that can be used in second stage. But for a given realization δ ∈ ∆ the cost
cδ(X0) can be suboptimal, hence a solution Xδ with better cost cδ(Xδ) < cδ(X0)
is chosen.

A special case of interest is when anchoring weights are unitary. Then the
anchored set must satisfy |H| ≥ k where k is an integer in {0, . . . , |E|}. Another
special case is when C = 0. Then the objective function of (AnchRob) coincides
exactly with the static-robust objective function, that is, the worst-case cost. Note
that for unit anchoring weights and C = 0, the problem is exactly the Worst-case
minimization variant of the anchor-robust problem defined in Chapter 2.

Let us now propose a mathematical program for (AnchRob). Recall that X
denotes the set of incidence vectors of elements of X . The decision variables are
as follows:

– x ∈ X : incidence vector of baseline solution X0;
– h ∈ {0, 1}E: incidence vector of the anchored set H;
– y ∈ X : incidence vector of the second-stage solution Xδ. Note that y that is

not implicitly indexed with δ, but does depend on the uncertainty realization.

The fact that h represents an anchored set can be enforced by the linear constraints:
he ≤ xe for every e ∈ E, and he ≤ ye for every e ∈ E. The (AnchRob) problem is
thus:

(AnchRob) min CTx + max min (c+ δ)Ty

x ∈ X δ ∈ ∆ y ∈ X
h ∈ {0, 1}E h ≤ y

h ≤ x

aTh ≥ k

71

Chapter 4. Combinatorial Anchor-Robustness

4.1.3 Connection with the Recoverable-Robust Problem

Let us now present a recoverable robust approach inspired from the literature for
the considered combinatorial problem. Similarly to the (AnchRob) problem, a
baseline solution X0 is decided, then a second-stage solution Xδ is decided after
the uncertainty realization is known. In the recoverable robust approach, the
second-stage solution must share at least k elements with the first-stage solutions.

We consider the following recoverable-robust problem (RecovRob). The inputs
are exactly the same as for (AnchRob), namely, feasible set X , costs C, c ∈ RE,
uncertainty set ∆, anchoring weights a ∈ RE

+ and k ≥ 0. The (RecovRob) problem
is

(RecovRob) min C(X0) + max min cδ(Xδ)

X0 ∈ X δ ∈ ∆ Xδ ∈ X

a(X0 ∩Xδ) ≥ k

The constraint a(X0 ∩Xδ) ≥ k can be interpreted as a constraint on the distance
between the baseline solution and the second-stage solution. It can be written as
the existence of a set Hδ, Hδ ⊆ X0, Hδ ⊆ Xδ such that a(Hδ) ≥ k. The difference
with the Anchor-Robust problem is thus the dependency of the set of common
decisions to uncertainty realization δ. In the case of unit anchoring weights, (Re-
covRob) is the problem studied in the literature (Kasperski and Zieliński, 2016;
Hradovich et al., 2017; Kasperski and Zieliński, 2017).

Using binary vectors x and y to represent sets X0 and Xδ, the constraint
|X0 ∩ Xδ| ≥ k (resp. a(X0 ∩ Xδ) ≥ k) can be cast as the quadratic constraint
xTy ≥ k (resp.

∑
e∈E aexeye ≥ k). The (RecovRob) problem can thus be written

as the following mathematical program:

(RecovRob) min CTx + max min (c+ δ)Ty

x ∈ X δ ∈ ∆ y ∈ X∑
e∈E aexeye ≥ k

As a consequence from the connection between (AnchRob) and (RecovRob),
the optimal value of (RecovRob) is always better (lower) than the optimal value of
(AnchRob). A case where the solutions are not the same, and thus the difference
between optimal values is strict, was given in Chapter 2.

72

Chapter 4. Combinatorial Anchor-Robustness

4.2 Complexity for discrete and polyhedral

uncertainty sets

In this section, the complexity of (AnchRob) is investigated for a variety of uncer-
tainty sets. Note first that (AnchRob) is always harder than the original problem
(P). Thus we mostly focus on cases where (P) is solvable in polynomial time, to
see whether there is an increase in complexity in the anchor-robust problem.

We make the even stronger assumption that an efficient polyhedral characteri-
zation is known for the original problem. It means that a description of conv(X) is
known, and either conv(X) is described by a polynomial number of inequalities or
these inequalities can be separated in polynomial time. Hence the original problem
(P) can be solved as the linear program min cTx, x ∈ conv(X) in polynomial time.
This is the case, e.g., for spanning trees, shortest paths, or bipartite matchings.

4.2.1 Uncertainty sets

Let us present the considered uncertainty sets. Let δ̂ ∈ RE
+ be a vector, where δ̂e is

the worst-case deviation of the cost of element e. Set ∆ can be a polytope, given
by an outer description

∆ = {(δ̂eue) : u ≥ 0,Mu ≤ β}

where M is a matrix and β a vector with κ lines. In particular we assume (w.l.o.g.

up to a change of δ̂) that maxu≥0,Mu≤β ue = 1 for every e ∈ E. We assume κ
polynomial in |E|, so that optimizing a linear function over ∆ can be done in
polynomial time. Two particular cases are as follows. Given Γ ∈ {0, . . . , |E|}, set
∆ is a polyhedral budgeted uncertainty set if

∆ = {(δ̂eue) : ue ∈ [0, 1]E,
∑
e∈E

ue ≤ Γ}

Set ∆ is a box uncertainty set if

∆ = {(δ̂eue) : ue ∈ [0, 1]E}

which corresponds to the special case where Γ = |E|. Set ∆ can also be defined
as a discrete set. In particular, set ∆ is a discrete budgeted set if

∆ = {(δ̂eue) : ue ∈ {0, 1}E,
∑
e∈E

ue ≤ Γ}

This is budgeted uncertainty as defined in (Bertsimas and Sim, 2004).

73

Chapter 4. Combinatorial Anchor-Robustness

Importantly, note that the uncertainty set cannot be convexified without chang-
ing (AnchRob) optimal value. This is to be contrasted with other robust ap-
proaches, e.g., static-robustness. For that reason, we consider both polyhedral
budgeted and discrete budgeted sets, though the former is the convex hull of the
latter. Let us illustrate this point on an example.

Example 4.1 (Do not convexify ∆). Consider the Selection problem with n items

and p = 1. Consider nominal costs c = 0. Let δ̂e = 1 for every e ∈ E and Γ = 1.
Consider ∆ (resp. conv(∆)) the discrete (resp. polyhedral) budgeted uncertainty

set associated with δ̂ and Γ. Consider the case where there is no first stage, and
the (AnchRob) problem is maxδ∈∆ minx∈X (c + δ)Tx. It can be seen as a game
where uncertainty player plays first, then the optimizer player plays second.

– If the uncertainty set is discrete ∆, the uncertainty player adds cost δ̂e = 1
to one edge e, then the second player finds a solution with cost 0 by selecting
any other element f 6= e.

– If the uncertainty set is polyhedral conv(∆), the uncertainty player can now
“split” uncertainty, as δe = 1

n
for every e ∈ E. The second player is then

forced to select a solution with cost 1
n
.

Optimal values of (AnchRob) for ∆ and conv(∆) are thus different. �

4.2.2 Complexity for extreme values of k

Let us start by analyzing the (AnchRob) problem depending on the value of k,
to see when it coincides with other robust problems, and obtain first complexity
results.

4.2.2.1 Case k = 0

Consider first the case where k = 0. No anchored element is required, hence
there is no linking constraint between the baseline solution and the second-stage
solution. The (AnchRob) problem thus boils down to solving independently two
problems:

– Finding a baseline solution x that minimizes CTx (if there are first-stage
costs). This is simply an instance of the original problem.

– Solving maxδ∈∆ miny∈X (c+ δ)Ty.
This latter problem is the adjustable-robust problem (Adj-P), with no first-stage
variable. It is also referred to in the literature as the adversarial problem (see
(Nasrabadi and Orlin, 2013; Kasperski and Zieliński, 2016)). It can also be seen
as an interdiction problem, where a first player (the uncertainty player) tries to
increase the optimal value of the original problem, by disrupting the elements costs
(see (Frederickson and Solis-Oba, 1999)).

Note that in that case k = 0, (AnchRob) and (RecovRob) coincide.

74

Chapter 4. Combinatorial Anchor-Robustness

Proposition 4.1. For k = 0, the (AnchRob) problem is:
– polynomial for polyhedral uncertainty;
– NP-hard for discrete budgeted uncertainty.

Proof. Consider polyhedral uncertainty. For k = 0, the (AnchRob) problem re-
duces to maxδ∈∆ miny∈conv(X)(c+ δ)Ty. Since ∆ and conv(X) are polytopes, max
and min can be inverted. Replacing maxδ∈∆(c + δ)Ty by its dual, we obtain a

minimization problem min cTy + ηTβ for y ∈ conv(X), δ̂y ≤ MTη, η ≥ 0, which
is an LP. It is solvable in polynomial time by assumption on conv(X).

Consider discrete budgeted uncertainty. The NP-hardness result is shown in the
special case of spanning trees. In (Frederickson and Solis-Oba, 1999) it was shown
that the following problem Spanning Tree Interdiction is NP-complete: given
graph G(V,E), integer Γ ∈ N, edge weight w ∈ {0, 1}E, integer W , decide if there
exists a subset S ⊆ E, |S| ≤ Γ such that the min weight spanning tree in the graph
(V,E \S) has weight ≥ W . Let (G = (V,E),Γ, w,W) be an instance of Spanning
Tree Interdiction. Let X denote the set of spanning trees of graph G. Let
cost vector c = w, δ̂e = (|V | − 1) maxe∈E we, budget Γ. Remark that in the graph

G, for an uncertainty realization δ, edges have either cost we or cost we + δ̂e. Due
to the value of δ̂e, a min spanning tree for costs c+δ uses only edges with cost we if
possible. The (AnchRob) problem is maxδ∈∆ minx∈X (c+ δ)Tx. Let W ≥ 0. Then
it holds that the optimal value of (AnchRob) is at least W if and only if the answer
to the Spanning Tree Interdiction problem on instance (G = (V,E),Γ, w,W)
is ‘yes’. Indeed, an uncertainty realization δ ∈ ∆ corresponds to a set S of Γ edges
that are disrupted to cost δ̂e. There exists a spanning tree in the graph (V,E)
with cost W if and only if there exists a spanning tree in the graph (V,E \S) with
cost W . The claimed NP-hardness result follows.

4.2.2.2 Case k = kmax

Let us now consider that the original problem satisfies the assumption

All solutions of (P) have the same cardinality kmax. (FixedCard)

This assumption holds for matroid bases.
Consider unit anchoring weights and k = kmax. Then the inequality

∑
e∈E he ≥

k implies h = x. Given a first-stage solution x, since costs are non-negative a
second-stage optimal solution is y = x. (AnchRob) problem is thus to find a
static-robust solution x minimizing the worst-case cost maxδ∈∆(c+ δ)Tx.

Note that (AnchRob) and (RecovRob) coincide in this case.

Proposition 4.2. Under assumption (FixedCard), (AnchRob) is polynomial for
k = kmax for polyhedral budgeted uncertainty and discrete budgeted uncertainty.

75

Chapter 4. Combinatorial Anchor-Robustness

Proof. The complexity of (AnchRob) is the complexity of the static-robust problem
for the considered uncertainty sets. Consider discrete budgeted ∆. Then the
problem is minx∈X maxδ∈∆(c+ δ)Tx. Using the technique from Bertsimas and Sim
(Bertsimas and Sim, 2004), it holds that this problem can be solved through |E|+1
instances of the original problem (P). Consider now a polyhedral uncertainty set
∆. In minx∈X maxδ∈∆(c + δ)Tx the inner max is on a linear function of δ. Hence
set ∆ can be convexified without changing the optimal value. The polynomiality
result follows.

4.2.3 Complexity depending on the uncertainty set

Let us now examine how the complexity of (AnchRob) depends on the uncertainty
set: box uncertainty, polyhedral uncertainty, and discrete budgeted uncertainty.

4.2.3.1 Box uncertainty

For box uncertainty, the worst case over ∆ in (AnchRob) is attained for the real-

ization δ = δ̂: for every y ∈ X , maxδ∈∆(c+ δ)Ty = (c+ δ̂)Ty. Problem (AnchRob)
is then

min CTx+ (c+ δ̂)Ty

x ∈ X
y ∈ X
h ∈ {0, 1}E

h ≤ x, h ≤ y

aTh ≥ k

It coincides with (RecovRob).

Consider first the case where there are no first-stage costs (C = 0). Then
w.l.o.g. the baseline and the second-stage solution can be set equal. With x = y
the problem corresponds to the AnchReopt–Anch problem with cost function
c + δ̂. For general C and unit anchoring weights, the problem was specifically
studied for spanning trees (Hradovich et al., 2017) and matroid bases (Lendl et al.,
2019) and shown to be solvable in polynomial time. These results are wrapped up
in the following proposition:

Proposition 4.3. Under box uncertainty, (AnchRob) for matroid bases is:

– NP-hard for non-unit anchoring weights, even for C = 0;
– polynomial for unit anchoring weights.

76

Chapter 4. Combinatorial Anchor-Robustness

4.2.3.2 Polyhedral uncertainty

Let us now consider polyhedral uncertainty, which subsumes box uncertainty.
Proposition 4.3 implies that (AnchRob) is NP-hard even for C = 0. However
this relies on non-unit anchoring weights. An open question is the following

Question 4.1. Under polyhedral budgeted uncertainty, what is the complexity of
(AnchRob) for matroid bases with unit anchoring weights?

Note that the corresponding question for the (RecovRob) problem, i.e., the
complexity under polyhedral uncertainty and unit weights, is open even for the
spanning tree problem (Kasperski and Zieliński, 2016). It is not clear whether
the complexity status of (AnchRob) would directly imply the answer to this open
question. However the same proof technique may be used for both problems.

4.2.3.3 Discrete budgeted uncertainty

In the case of discrete budgeted uncertainty, the result for k = 0 from Proposi-
tion 4.1 implies

Proposition 4.4. Under discrete budgeted uncertainty, (AnchRob) is NP-hard.

Note that the result does not rely on anchoring weights.

4.3 MIP reformulations

In this section, we consider polyhedral uncertainty. As shown in Section 4.2, it is
a case where the (AnchRob) problem can be NP-hard. To address the problem we
investigate exact approaches based on mixed-integer programming.

MIP reformulations of static-robust problems (Soyster, 1973; Bertsimas and
Sim, 2004) were important results advocating for the practical implementability
of robust optimization. The class of robust 2-stage problems is more challenging.
MIP formulations for robust 2-stage problems are often based on an enumeration of
extreme points of the uncertainty set, as noted in the literature review of Chapter 1.
By contrast, we investigate MIP formulations where there is no enumeration over
the uncertainty set.

In some special cases, a compact MIP reformulation of (AnchRob) was ob-
tained, namely box uncertainty (see Section 4.2.3). The question is to see whether
a similar reformulation can be found for more general polyhedral uncertainty sets.
We first give a positive result by providing an MIP reformulation for (AnchRob)
in Section 4.3.1. Then we discuss the existence of a similar MIP reformulation for
(RecovRob) in Section 4.3.2.

77

Chapter 4. Combinatorial Anchor-Robustness

4.3.1 Efficient MIP reformulation for (AnchRob)

Consider polyhedral uncertainty ∆ = {(δ̂eue) : u ≥ 0,Mu ≤ β}. Let η ∈ Rκ
+

denote a vector of dual variables associated to the inequalities Mu ≤ β in the
definition of ∆. Let diag(δ̂) denote the diagonal matrix of RE×E with (e, e) coeffi-

cient equal to δ̂e. Then for any y ∈ [0, 1]E, the dual of the maximization problem

maxδ∈∆ δ̂
Ty is to minimize ηTβ for diag(δ̂)y ≤MTη, η ∈ Rκ

+.
For the (AnchRob) problem under polyhedral uncertainty, we obtain the fol-

lowing result

Theorem 4.1. The (AnchRob) problem under polyhedral uncertainty ∆ = {(δ̂eue) :
u ≥ 0,Mu ≤ β} and anchoring weights a ∈ RE admits the following MIP refor-
mulation (FAnch).

(FAnch) min CTx+ cTy + ηTβ

x ∈ X
y ∈ conv(X)

h ∈ {0, 1}E

h ≤ x

h ≤ y

aTh ≥ k

diag(δ̂) y ≤MTη

η ∈ Rκ
+

Proof. Consider the second-stage minimization problem in (AnchRob): min(c +
δ)Ty for y ∈ X , h ≤ y. Note that h ∈ {0, 1}E is fixed. The set Fh = {y ∈
[0, 1]E : y ≥ h} is a face of the hypercube [0, 1]E. The second-stage problem is
to minimize the linear function (c + δ)Ty for y ∈ X ∩ Fh, or equivalently, for
y ∈ conv(X ∩ Fh).

Let us show that conv(X ∩ Fh) = conv(X) ∩ Fh. Since conv(X) ⊆ [0, 1]E, the
set conv(X) ∩ Fh is a face of conv(X). The convex hull conv(X) is an integer
polytope, hence its restriction to face conv(X) ∩ Fh is also an integer polytope.

Thus the inner minimization is the linear program min (c + δ)Ty for y ∈
conv(X)∩Fh. Because ∆ is a polytope, strong duality gives maxδ∈∆ miny∈conv(X)∩Fh
(c + δ)Ty = miny∈conv(X)∩Fh maxδ∈∆(c + δ)Ty. The maximum maxδ∈∆ δ

Ty can be

dualized into ηTβ for diag(δ̂) y ≤ MTη, η ∈ Rκ
+. Plugging into the first-stage

minimization problem of (AnchRob), we obtain the claimed MIP reformulation
(FAnch).

Importantly the proof of Theorem 4.1 does not require any further property
on the set X , except that it is contained in the hypercube.

78

Chapter 4. Combinatorial Anchor-Robustness

The reformulation (FAnch) is an MIP formulation whenever linear inequalities
defining X and conv(X) are known. The size of (FAnch) is polynomial in the
size of the original MIP and the number of constraints κ defining set ∆. Indeed
if q denotes the number of constraints defining conv(X), the MIP reformulation
(FAnch) has 3|E| binary variables, |E|+ κ continuous variables, and 2q + 3|E|+ 1
linear constraints.

Note that we cannot in general impose y ∈ X . The optimal solution of (FAnch)
may have a y-vector that is a fractional point in conv(X), thus not an extreme
point of conv(X).

To see this, consider again the instance of Example 4.1. Consider the MIP
reformulation (FAnch) in that case. Since k = 0, first-stage solution x can be
dropped (set x = y w.l.o.g.). The obtained MIP is to minimize η0 +

∑
e∈E ηe for

y ∈ conv(X) = {y ∈ [0, 1]E :
∑

e∈E ye = 1}, ye ≤ η0 + ηe for every e ∈ E, η0 ≥ 0,
η ∈ RE

+. An optimal solution of cost 1
n

is attained for the fractional point ye = 1
n

for every e ∈ E (setting η0 = 1
n
, ηe = 0 for every e ∈ E). By contrast an integer y

would lead to a solution of cost 1.

In particular, this highlights that a description of conv(X) is necessary to use
(FAnch). For the considered combinatorial problems, a valid formulation is known,
i.e., a polytope P such that X = P ∩ {0, 1}E. However replacing conv(X) by P
in (FAnch) would not lead to a valid reformulation of (AnchRob).

4.3.2 Existence of MIP reformulation for (RecovRob)

Let us now make a connection with (RecovRob), for which an MIP reformulation
would also be of interest. Further assumption on the problem is needed. In
Chapter 3, we showed that when the original problem (P) is to find a max-weight
basis in a matroid, its feasible set X satisfies the following property: ∀x ∈ X ,
conv(X ∩{y :

∑
e∈E xeye ≥ k}) = conv(X) ∩ {y :

∑
e∈E xeye ≥ k}. Here x

plays the role of the red edges incidence vector. The equality corresponds to the
integrality of the k-red polytope from Theorem 3.4.

Let us consider problems (P) and anchoring weights a ∈ RE that satisfy a
similar property, denoted by (Integ):

∀x ∈ X , conv

(
X ∩ {y :

∑
e∈E

aexeye ≥ k}

)
= conv(X) ∩ {y :

∑
e∈E

aexeye ≥ k}.

(Integ)
Note that the left-hand side set is always included in the right-hand side set. The
assumption (Integ) holds when the polytope conv(X)∩ {y :

∑
e∈E aexeye ≥ k} is

integer.

79

Chapter 4. Combinatorial Anchor-Robustness

Let (FRel) denote the relaxation of (FAnch) where h ∈ {0, 1}E is relaxed into
h ∈ [0, 1]E.

Proposition 4.5. If the problem satisfies assumption (Integ), formulation (FRel)
is an MIP reformulation for (RecovRob) under polyhedral uncertainty.

Proof. For fixed x ∈ {0, 1}E, let Fx = {y ∈ RE :
∑

e∈E aexeye ≥ k}. Con-
sider the second-stage minimization problem in (RecovRob): for fixed x ∈ X ,
it is to minimize (c + δ)Ty for y ∈ X ∩ Fx. By the assumption (Integ), it is
min (c+ δ)Ty for y ∈ conv(X)∩Fx. Because ∆ is a polytope, strong duality gives
maxδ∈∆ miny∈conv(X)∩Fx(c + δ)Ty = miny∈conv(X)∩Fx maxδ∈∆(c + δ)Ty. The inner
maximum can again be dualized. We obtain the (quadratic) reformulation

min CTx+ cTy + ηTβ

x ∈ X
y ∈ conv(X)∑

e∈E aexeye ≥ k

diag(δ̂) y ≤MTη

η ∈ Rκ
+

Now consider linearizing the quadratic constraints. Let h ∈ [0, 1]E. The constraint∑
e∈E aexeye ≥ k can be replaced by:

∑
e∈E aehe ≥ k, he ≤ xe, he ≤ ye. Then

he ≤ min(xe, ye) which is equal to xeye since xe ∈ {0, 1}. Plugging the linearization
constraints into the reformulation, we obtain (FRel) as claimed.

Hence (AnchRob) and (RecovRob) have reformulations (FAnch) and (FRel) that
vary only by whether h variables are binary or continuous. However for (Recov-
Rob) assumption (Integ) was needed to dualize the recourse problem.

We now show that obtaining a valid reformulation for (RecovRob) as (FRel) is
more an exception, rather than a general rule. Assumption (Integ) was necessary
in the proof of Proposition 4.5; if this assumption is not satisfied, the validity of
the reformulation may fall down. Let us now formalize this idea. Note first that
(FRel) can be written as minx∈X φ(x), where φ(x) is the optimal value of a linear
program that can be solved in polynomial time. This holds since x ∈ X are the
only binary variables in (FRel).

Proposition 4.6. If P 6= NP, the problem (RecovRob) cannot be reformulated as
minx∈X φ(x), where φ(x) is the optimal value of a minimization linear program
that is solvable in polynomial time.

In particular, formulation (FRel) is not always a valid reformulation for (Re-
covRob).

80

Chapter 4. Combinatorial Anchor-Robustness

Proof. Let us show that for a given first-stage solution x ∈ X , computing its
optimal value in a solution of the (RecovRob) can be NP-hard. Consequently if
P 6= NP , (RecovRob) cannot be written as minc∈X φ(x) Consider the following
example. The underlying problem is matroid basis. The uncertainty set is box,
and anchoring weights are a ∈ RE, not unitary. For a given x ∈ X the poly-
tope conv(X) ∩ Fx is not integer, as shown in Chapter 3; thus assumption (Integ)

does not hold. The (RecovRob) is to minimize CTx + (c + δ̂)Ty for x, y ∈ X ,∑
e∈E aexeye ≥ k. This problem is NP-hard for fixed x ∈ X , as noted in Propo-

sition 4.3. By contrast, for fixed x formulation (FRel) is a linear program, thus
solvable in polynomial time.

The results from Theorem 4.1 and Proposition 4.6 show that (AnchRob) and
(RecovRob) do not have the same properties w.r.t. MIP reformulations. Prob-
lem (AnchRob) always has a MIP reformulation, regardless of the problem and
anchoring weights. For (RecovRob) the existence of such a reformulation is not
always satisfied. This reveals that (RecovRob) is computationally harder than
(AnchRob). It advocates for the use of anchor-robustness, at the expense of solu-
tions that have a higher cost w.r.t. recoverable robust solutions. Let us now assess
this increase in cost, referred to as the price of anchor-robustness.

4.4 The price of anchor-robustness

Consider an instance of (AnchRob) (or (RecovRob)) problem, formed with X ,
costs c, C, set ∆, unit anchoring weights and integer k. We assume that the
problem (P) satisfies the assumption that all solutions have the cardinality kmax.
Let CostAnch(k) and CostRecov(k) denote the optimal values of the (AnchRob) and
(RecovRob) respectively. Anchor-robustness and recoverable robustness are both
a middle ground between adjustable robustness (case k = 0) and static robustness
(case k = kmax). Let CostAdj = CostAnch(0) and CostStat = CostAnch(k

max). It
holds that for every k ∈ {0, . . . , kmax}

CostAdj ≤ CostRecov(k) ≤ CostAnch(k) ≤ CostStat.

We now investigate the gap

PoAR(k) =
CostAnch(k)− CostRecov(k)

CostRecov(k)

81

Chapter 4. Combinatorial Anchor-Robustness

that we call the price of anchor-robustness. In the sequel, the price of anchor-
robustness is examined both theoretically and numerically.

4.4.1 Unboundedness

A negative result is that

Proposition 4.7. The price of anchor-robustness is unbounded, even for unit
anchoring weights and polyhedral budgeted uncertainty.

Proof. Consider the Selection problem, with feasible set X = {x ∈ {0, 1}E :∑
e∈E xe = p} for some p ≤ |E|. Consider unit anchoring weights and k = p.

Selection is a special case of matroid bases, hence assumption (Integ) is satisfied.
Let C = 0.

Consider problem (AnchRob). Note that the existence of h ∈ {0, 1}E,
∑

e∈E he ≥
k, y ≥ h implies that h = y, since k = p. Hence y must be an integer solution.
Problem (AnchRob) thus writes: miny∈X maxδ∈∆(c + δ)Ty. Hence problem (An-
chRob) coincides with the static-robust problem.

Consider now problem (RecovRob). Note that for any y ∈ conv(X), the equal-
ity
∑

e∈E ye = p is satisfied. Setting h = y, we get h ∈ [0, 1]E such that
∑

e∈E he ≥
k. Problem (RecovRob) thus writes: miny∈conv(X) maxδ∈∆(c+ δ)Ty. Inverting min
and max, it is equal to maxδ∈∆ miny∈conv(X)(c + δ)Ty = maxδ∈∆ miny∈X (c + δ)Ty.
Hence problem (RecovRob) coincides with the adjustable-robust problem.

Let us now give an example where

CostAdj ≤ CostRecov(k) = 1
n
< 1 = CostAnch(k) ≤ CostStat.

Let c = 0. Consider polyhedral budgeted uncertainty with Γ = 1 and δ̂e = 1
for every e ∈ E. Let p = k = 1. The problem is thus to pick one item. Note
that all items are the same. In problem (AnchRob), one item should be chosen

in first stage. An optimal solution has cost maxδ∈∆ δ̂e = 1 hence CostAnch(k) =
1. In problem (RecovRob), an optimal second-stage solution is to pick the item
e ∈ E with minimum deviation δe. Such an item has cost at most 1

n
, attained for

uncertainty realization δe = 1
n

for every e ∈ E. Hence CostRecov(k) = 1
n
. Hence

PoAR(k) = n− 1.

4.4.2 Numerical experiments

Let us now evaluate the price of anchor-robustness in numerical experiments, on
problem Selection.

Given integer p, the problem has feasible set X = {x ∈ {0, 1}E :
∑

e∈E xe = p}.
Its convex hull is conv(X) = {x ∈ [0, 1]E :

∑
e∈E xe = p}. Consider first-stage

82

Chapter 4. Combinatorial Anchor-Robustness

costs C ∈ RE, second-stage costs c ∈ RE, integer k, and polyhedral budgeted
uncertainty with budget Γ and deviations δ̂ ∈ RE.

Using Theorem 4.1, a reformulation for the (AnchRob) problem is

min CTx+ cTy + ηΓ +
∑

e∈E ρe
x ∈ {0, 1}E∑

e∈E xe = p

y ∈ [0, 1]E∑
e∈E ye = p

h ∈ {0, 1}E

h ≤ x

h ≤ y∑
e∈E he ≥ k

δ̂eye ≤ ρe + η ∀e ∈ E
η ≥ 0

ρ ∈ RE
+

By Proposition 4.5, a reformulation for (RecovRob) is the MIP where integrality
of h is relaxed into h ∈ [0, 1]E.

We consider instances of Selection with E = {1, . . . , n} a set of n = 50
items and p = 10. Costs Ce and ce are randomly generated in range {1, . . . , 5} for
every e ∈ E. The uncertainty set is polyhedral budgeted uncertainty set, where
deviation δ̂e is also randomly generated in range {1, . . . , 5} for every e ∈ E. A

total number of 100 random triplets (C, c, δ̂) is generated.

The (RecovRob) and (AnchRob) problems can be solved by the MIP refor-
mulation derived from Theorem 4.1 which is compact. The corresponding MIP
formulations are solved using Julia, JuMP v0.18 and Cplex 12.8. We first mention
that all instances are solved within a few seconds.

83

Chapter 4. Combinatorial Anchor-Robustness

Let us illustrate the optimal values of (RecovRob) and (AnchRob) depending
on k and Γ. In Figure 4.1, we represent, for each budget Γ = 1, 3, 5, 10, 15, 20, 50:
– in blue, the optimal value of (AnchRob) depending on the value of k ∈ {0, . . . , p};
– in green, the optimal value of (RecovRob) depending on the value of k ∈
{0, . . . , p};
– in gray the area between the two curves, corresponding to the price of anchor-
robustness.

0 1 2 3 4 5 6 7 8 9 10

25

30

35

40

45

50

55

Γ=1

Γ=3

Γ=5

Γ=10

Γ=15

Γ=20

Γ=50

k

O
p
ti

m
al

va
lu

e
of

(R
ec

ov
R

ob
)

or
(A

n
ch

R
ob

)

Figure 4.1: Optimal values of (RecovRob) and (AnchRob) depending on k, for budget Γ =
1, 3, 5, 10, 15, 20, 50.

Each pair of curves (blue and green) illustrates how recoverable and anchor-
robustness bridge the gap between adjustable robustness (k = 0) and static-
robustness (k = p). Also optimal values of (RecovRob) and (AnchRob) coincide at
these extreme values of k. For the static-robust case (k = p), note that all curves
coincide whenever Γ ≥ p. Indeed, for any budget Γ ≥ p, the worst-case cost of a
solution is when all items costs are disrupted. The gray area corresponds to the
difference between (RecovRob) and (AnchRob). It is very limited for small budget
(Γ = 1) and high budget (Γ > 10). The cases where optimal values of (RecovRob)
and (AnchRob) differ the most are for intermediate value of k and Γ.

84

Chapter 4. Combinatorial Anchor-Robustness

In Figure 4.2 we represent, for each budget Γ = 1, 3, 5, 10, 15, 20, 50, the price
of anchor-robustness PoAR(k) = CostAnch(k)−CostRecov(k)

CostRecov(k)
.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

k

P
oA

R
(%

)

Γ=1
Γ=3
Γ=5
Γ=7
Γ=10
Γ=15
Γ=20
Γ=50

Figure 4.2: Value of PoAR(k) depending on k, for budget Γ = 1, 3, 5, 10, 15, 20, 50.

On the considered instances, the PoAR value remains small: at most 5%. The
largest values of PoAR are obtained for k ∈ {4, . . . , 8} and small budget Γ = 3, 5.
The PoAR for Γ = 1 is smaller, while for budget Γ ≥ 5, it decreases with Γ. Recall
that the theoretical result of Proposition 4.7 is that PoAR is unbounded. By
contrast we observe here that in random instances, the price of anchor-robustness
remains very small.

Importantly in our random instances, the costs are non-zero. Hence the gap
between the costs Ce and ce and the worst-case deviation δ̂e, is bounded. In the
instance built in Proposition 4.7, the costs were 0, hence the gap between costs
and worst-case deviation was unbounded. This suggests that further results could
be obtained to bound the price of anchor-robustness, with more assumptions on
C, c, δ̂.

Another question is whether a low price of anchor-robustness would also be
observed empirically on other combinatorial problems, e.g., for the Min-Cost
Spanning Tree problem. When investigating this question for spanning trees,
it appeared that designing instances (especially, graphs) with a non-zero PoAR
was uneasy. Random instances often had no PoAR, or even no gap between the
optimal costs of static-robust and adjustable-robust problems. These preliminary
results are not presented in the manuscript.

85

Chapter 4. Combinatorial Anchor-Robustness

Conclusion

In this work we studied the Anchor-Robust approach for combinatorial problems
under cost uncertainty. The focus was set on original polynomial problems with
a polyhedral characterization. We first studied the complexity of the (AnchRob)
problem depending on the uncertainty set and the number of anchored decisions
required. The problem was shown NP-hard for discrete budgeted uncertainty, and
some cases of polyhedral uncertainty. The hardness results for (AnchRob) are to
be contrasted to existing robust approaches that are tractable for these uncertainty
sets. MIP techniques for (AnchRob) were then investigated. An MIP reformula-
tion was obtained for (AnchRob), relying on a description of the polytope of the
original problem. In parallel, the recoverable robust approach was also examined.
It is close to (AnchRob) and similarly provides intermediate solutions between
adjustable and static-robustness. Most complexity results are common to both
problems. Concerning MIP reformulations, a strong assumption on the problem
is needed to obtain a reformulation for (RecovRob). This reveals the different
nature of problems (AnchRob) and (RecovRob). We then investigated the price
of anchor-robustness. While it is in general unbounded, numerical computations
showed that it was small in practice on random instances.

There are multiple research perspectives to the work presented in this chapter.
The complexity of (AnchRob) could be studied more specifically for some prob-
lems. An open question is the complexity of the (AnchRob) problem for spanning
trees, polyhedral budgeted uncertainty and unit anchoring weights. The big pic-
ture of the complexity of (AnchRob) on classical polynomial problems is far from
being complete. On MIP reformulations, it would then be necessary to assess the
numerical performance of the proposed MIP for NP-hard cases of (AnchRob). A
research direction is also to extend the MIP tools to new cases, e.g., to design an
approach for (AnchRob) when an efficient description of the problem polytope is
not known. It can be expected that the proposed reformulation could serve as a
basis for the design of approximation or decomposition-based exact approaches.
Finally, investigation on the price of anchor-robustness could be further carried
out. Better bounds could be searched for, depending on costs and deviations
values or properties of the combinatorial problem, and compared to numerical
computations.

86

Part III

Anchored solutions in project
scheduling

87

Preliminaries on project scheduling

In this part, we study project scheduling problems, a family of problems containing
PERT Scheduling.

We consider a project with a set J of n jobs. Let s and t two dummy jobs
representing the beginning and the end of the project, and J = J ∪ {s, t}. A job
j ∈ J has processing time pj ≥ 0. A solution of a project scheduling problem is
a schedule, i.e., a vector of starting times xi ≥ 0, i ∈ J of the jobs. The starting
time of s is usually xs = 0. The makespan of the schedule is xt.

Various constraints can be imposed on the schedule, leading to distinct project
scheduling problems.

Precedence constraints. Let (J,A) be a precedence graph. It is assumed
that the precedence graph is acyclic, and s (resp. t) is a predecessor (resp. a
successor) of all jobs. Then precedence constraints are of form

xj − xi ≥ pi ∀(i, j) ∈ A

representing that for every precedence arc (i, j) ∈ A, job j must start after job i
is completed. The problem of finding a schedule under precedence constraints, so
as to minimize the makespan, is the PERT scheduling problem introduced in
Part I.

Generalized precedence constraints. A generalization is to consider con-
straints of form

xj − xi ≥ aij ∀(i, j) ∈ A
where aij is any real number, possibly negative. Such generalized precedence
constraints can be used to cast time-window constraints, or deadlines. For exemple,
if job i should start before date d, this can be represented by the generalized
precedence constraint xs − xi ≥ −d. Let the precedence graph be (J,A) and let
(J,A, a) denote its arc-weighted version. The problem of finding a schedule under
generalized precedence constraints, so as to minimize the makespan, is the Gen
Prec Project Scheduling Problem. A schedule satisfying the constraints
of (J,A, a) exists if and only if there exists no positive circuit in (J,A, a). The
minimum makespan is the length of the longest s−t path in (J,A, a), which can
be found in polynomial time by dynamic programming (Pinedo, 2002).

89

Resource constraints. Consider a set of renewable resources R. Assume
that each job i ∈ J has a resource requirement rik of resource k ∈ R during
its execution. The total amount of resource k available is limited, equal to Rk.
Resource constraints associated to (r, R) are that at every date d ≥ 0, the total
quantity of resource required by jobs under execution is less than the resource
availability. This writes∑

i∈J : xi≤d<xi+pi rik ≤ Rk ∀d ≥ 0

Note that schedule x satisfies the resource constraints at all dates if and only
if it satisfies them at every date xj, j ∈ J where a job starts. The problem of
finding a schedule under precedence constraints and resource constraints, so as to
minimize the makespan, is the Resource-Constrained Project Scheduling
Problem (RCPSP). It has been widely studied in the scheduling literature. It
is NP-hard in the strong sense and computationally challenging (Artigues et al.,
2008).

A special case is when there is only one resource type (|R| = 1), every job
has a resource requirement ri = 1, and the resource availability is an integer m.
Then a schedule x satisfies the resource constraints if and only if at every date,
there is at most m jobs under execution. This corresponds to executing jobs on m
identical machines. In that special case, finding a feasible schedule with minimum
makespan is still an NP-hard problem (Garey and Johnson, 1979).

90

Chapter 5

Anchored Rescheduling problems
for project scheduling

In this chapter we study anchor-reoptimization problems for project scheduling,
called anchored rescheduling problems, and analyze their computational complex-
ity. The present results have been published in (Bendotti et al., 2020b). Following
the general definitions of Chapter 2, we study two anchoring levels. The first
one is the number of identical starting times between both schedules. The second
one is the number of starting times that differ from less than a tolerance thresh-
old. The anchored rescheduling problem was previously investigated in (Bendotti
et al., 2017) for PERT Scheduling with no tolerance, and proved polynomial.
We extend the result to GenPrec Project Scheduling, with a tolerance.
Generalized precedences allow for a larger variety of constraints such as deadlines
or time windows. The introduction of the tolerance feature also leads to a more
realistic anchored rescheduling problem. We then consider a machine scheduling
case, where the anchored rescheduling problem is shown NP-hard. We define a
variant where the sequence of jobs on machines is fixed, resorting to restricted
reoptimization as introduced in Section 2.2.4. It is shown that this simpler, yet
practically attractive, variant is solvable in polynomial time.

5.1 Anchored rescheduling under generalized

precedence

We consider a project scheduling problem Π where a solution is a schedule x ∈ RJ .
Given a subset I ⊆ J , a partial assignment of starting times (xi)i∈I is called a
baseline. Given an instance I of project scheduling problem Π, a baseline (xi)i∈I
and a solution y of I, the anchoring level is σ(x, y) = |{i ∈ I : xi = yi}|, i.e., the

91

Chapter 5. Anchored Rescheduling

number of anchored jobs that have the same starting time in the baseline and in
the new solution y. This definition was introduced in (Bendotti et al., 2017) and it
follows the general definition of Chapter 2 with equivalence relation =. In practice
the decision maker may consider that a change of the starting time of a job is
negligible within some tolerance. Given a tolerance vector ε ∈ RJ

+, baseline (xi)i∈I
and solution y, job i ∈ I is ε-anchored if |xi − yi| ≤ εi. The ε-anchorage level is
σε(x, y) = |{i ∈ I : |xi − yi| ≤ εi}|. It corresponds to the general definition of
Chapter 2 with equivalence relation =ε; note however that we allow the tolerance
parameter to depend on the job.

The corresponding Anchored Rescheduling problems are as follows.

AnchRe(Π)

Input: instance I of problem Π, baseline (xi)i∈I
Problem: find y a schedule of I such that σ(x, y) is maxi-

mized.

ε-AnchRe(Π)

Input: instance I of problem Π, baseline (xi)i∈I , tolerance
ε ∈ RJ

+

Problem: find y a schedule of I such that σε(x, y) is maxi-
mized.

Note that the baseline (xi)i∈I may be issued from the solution of a previous
instance I0 of problem Π. However in the sequel no specific assumption is made
on the properties of baseline x.

Let us now give additional background on the GenPrec Project Schedul-
ing problem, denoted by (GenPrec). The set of jobs is J = {1, . . . , n}, and jobs s
and t are indexed 0 and n + 1 respectively, so that J = {0, . . . , n + 1}. Consider
a directed graph G = ({0, . . . , n + 1},A). Let G(a) be the weighted digraph ob-
tained by adding arc weights a ∈ RA to the digraph G. Let us denote by (i, j, aij)
a weighted arc of G(a). The weighted digraph G(a) defines an instance of the
(GenPrec) scheduling problem if it satisfies the following assumptions:
(i) there is no circuit of positive length in G(a)
(ii) for every job i ∈ {1, . . . , n} there exists at least a path of non-negative length
from 0 to i and from i to n+ 1 in G(a).

The (GenPrec) problem is to find a schedule x of jobs {0, . . . , n+ 1} so that

xj − xi ≥ aij for every arc (i, j, aij) of G(a).

Note that w.l.o.g. we set x0 = 0 in every schedule. Assumption (i) ensures the
existence of a feasible schedule for the instance G(a) (see e.g. (Pinedo, 2002)).

92

Chapter 5. Anchored Rescheduling

0 1

2 3

4 5

6 70

2

2.5

2

1

1

2.5

3

-8

-6

Figure 5.1: Generalized precedence graph G(a) with 6 jobs.

y1=0

y2=2.25

y3=4.75

y4=1.5

y5=4.5

y6=7.5

0 2.52 4.5 6
x1 x2x4 x3=x5 x6

Figure 5.2: Schedule y = (0, 2.25, 4.75, 1.5, 4.5, 7.5) feasible for G(a) with 6 jobs.

From assumption (ii), it comes that in every feasible schedule and for every i ∈
{1, . . . , n}, the inequality 0 ≤ xi ≤ xn+1 holds: job 0 and job n+ 1 then represent
the beginning and the end of the schedule respectively.

Various constraints can be modeled within this framework. A classical prece-
dence constraint xj − xi ≥ pi can be represented by an arc (i, j, pi), where pi is
the processing time of job i. The special case of acyclic precedence graph G(p)
is denoted by (Prec). For illustrative purpose, an example of a generalized prece-
dence graph G(a) with n = 6 jobs is represented in Figure 5.1. It features circuits,
and arcs with negative weights, e.g., the arc (6, 4,−6) corresponds to constraint
y6 − y4 ≤ 6.

A feasible schedule y is represented in Figure 5.2. Job i is represented as a rect-
angle of length max(i,j)∈A aij, note e.g. that a12 6= a14. Baseline x = (0, 2.5, 4.5, 2,
4.5, 6) is also represented. For baseline x and no tolerance, only jobs {1, 5} are
anchored. For the same baseline and with tolerance ε = (0, 0.25, 0.25, 0, 0, 0), jobs
{1, 2, 3, 5} are ε-anchored.

The rest of the chapter is structured as follows. In Section 5.2 the problem ε-

93

Chapter 5. Anchored Rescheduling

AnchRe(GenPrec) is proven to be solvable in polynomial time. In Section 5.3 we
correct a flawed complexity result from (Bendotti et al., 2017) in the case of time-
window constraints. In Section 5.5 we use our framework in a machine scheduling
variant. In Section 5.4 we analyze the impact of tolerance ε on the optimum of
the anchored rescheduling problem.

5.2 Polynomiality of ε-AnchRe(GenPrec)

In this section we prove

Theorem 5.1. ε-AnchRe(GenPrec) is solvable in polynomial time.

Let ((xi)i∈I , G(a), ε) be an instance of ε-AnchRe(GenPrec). By testing as-
sumptions (i) and (ii), it can be checked in polynomial time that the weighted
digraph G(a) is a valid instance of the (GenPrec) problem.

As done in Chapter 2, we can now define extendable sets, that are subsets of
decisions that can be maintained in the new solution. Let H ⊆ I be a subset of
jobs. Formally, the set H is x-extendable if there exists a schedule x of G(a) such
that all jobs in H are ε-anchored with respect to x. Solving ε-AnchRe(GenPrec)
is exactly finding a set H x-extendable of maximum size and an associated solution
y.

Consider an auxiliary graph Gaux defined by copying the graph G(a), then
adding for every job i ∈ H two new arcs (0, i, xi − εi) and (i, 0,−(xi + εi)). The
auxiliary graph defines an instance of the (GenPrec) problem, whose constraints
are the constraints from G(a), and the new arcs constraints yi ≥ xi−εi and −yi ≥
−(xi+εi), that is exactly |yi−xi| ≤ εi. Hence there is a one-to-one correspondence
between the schedules of the auxiliary graph Gaux, and the schedules of the instance
G(a) in which all jobs in H are ε-anchored with respect to the baseline x. Thus
we obtain

Proposition 5.1. The set H is x-extendable if and only if the auxiliary graph
Gaux has no positive circuit.

Let us now show that the absence of positive circuit in Gaux is also equivalent
to H ∪ {0} being an antichain in an appropriate poset. Let us denote by `(P)
the length of a directed path P in G(a). For every pair of distinct jobs i, j ∈
{0, 1, . . . , n}, let LG(a)(i, j) be the maximum length of a directed path from i to j
in G(a). By convention it is equal to −∞ if there is no such path. A relation R
on the set of jobs {0, 1, . . . , n} is defined by:

iRj if and only if i = j or xi − εi + LG(a)(i, j) > xj + εj

94

Chapter 5. Anchored Rescheduling

where we define ε0 = 0 for the simplicity of notation. In particular, if i 6= j and
iRj, it implies that value LG(a)(i, j) is finite and there exists a path from i to j in
G(a).

Lemma 5.1. The relation R is a partial order on the set of jobs {0, 1, . . . , n}.

Proof. Relation R is clearly reflexive. Relation R is antisymmetric: if iRj and
jRi with i 6= j, then there exists a longest path Pij from i to j and a longest
path Pji from j to i in G(a). The circuit obtained by closing Pij with Pji has
length LG(a)(i, j) + LG(a)(j, i), which is non-positive by assumption (i) on G(a).
Furthermore LG(a)(i, j) + LG(a)(j, i) > xj + εj − (xi − εi) + xi + εi − (xj − εj) =
2(εi + εj) ≥ 0, a contradiction. Finally relation R is transitive: consider three
pairwise distinct jobs i, j, k such that iRj and jRk. There exists two paths Pij
and Pjk in G(a), hence their concatenation (Pij, Pjk) forms a path from i to k. It
comes xi−εi+LG(a)(i, k) ≥ xi−εi+LG(a)(i, j)+LG(a)(j, k) > xj+εj+LG(a)(j, k) >
xk + εk + 2εj ≥ xk + εk. Hence iRk.

Proposition 5.2. The auxiliary graph Gaux has no positive circuit if and only if
H ∪ {0} is an antichain of the poset ({0, 1, . . . , n},R).

Proof. Assume that H ∪ {0} is not an antichain. Then there exists two distinct
jobs i and j in H∪{0} such that iRj. Hence there exists a longest path Pij from i
to j in G(a). Consider the circuit C obtained by closing the path Pij with the new
arc (0, i, xi− εi) if i 6= 0 and with the new arc (j, 0,−(xj + εj)) if j 6= 0. Then the
length of C is LG(a)(i, j) + xi− εi− (xj + εj). Note that it is valid even if i = 0 or
j = 0. This length is positive from the definition of R, hence the auxiliary graph
contains a positive circuit.

Conversely, assume that there exists a positive circuit in the auxiliary graph.
Then there exists a positive circuit C that contains every vertex at most once.
Since G(a) contains no positive circuit, the circuit C contains at least one new
arc, and consequently it contains vertex 0 exactly once. It follows that C contains
one or two successive new arcs. Let P be the path obtained by removing the new
arcs from the circuit C. Let i and j be the first and last vertex of P respectively.
The length of C can be written xi − εi + `(P)− (xj + εj) (again it is valid even if
i = 0 or j = 0). By assumption this length is positive, then with `(P) ≤ LG(a)(i, j)
it comes xi − εi + LG(a)(i, j) > xj + εj and iRj.

Remark that all results presented here can be extended to the case of asym-
metric tolerance intervals, that is, the case where the starting time of job i is
considered as unchanged if yi ∈ [xi − ε−i , xi + ε+

i] with two distinct parameters
ε−i , ε

+
i ≥ 0.

95

Chapter 5. Anchored Rescheduling

We now deduce the proof of the polynomiality result.

Proof of Theorem 5.1. With Proposition 5.1 and Proposition 5.2, a set H is x-
extendable if and only if H ∪ {0} is an antichain of the poset ({0, 1, . . . , n},R).
Hence solving the reactive problem is tantamount to finding a maximum size an-
tichain H ∪{0} of the poset. The latter problem can be solved in polynomial time
(Dilworth, 1950). Note also that given a set H∗ of maximum size, a corresponding
reactive solution y∗ can be found in polynomial time by computing any schedule
of GH∗ . Hence the problem ε-AnchRe(GenPrec) is polynomial-time solvable.

Algorithmically, a max-size antichain can be found through a combinatorial
algorithm such as Dilworth’s algorithm (Dilworth, 1950), or through linear pro-
gramming. A non-compact characterization of the associated polytope is known,
together with a polynomial separation algorithm (Schrijver, 2003). Furthermore
anchoring weights may be introduced so that the objective is to maximize the
total weight of ε-anchored jobs. Then the linear programming approach allows
to search for a max-weight antichain for any weight function, while Dilworth’s
algorithm requires integer weights.

Beyond the complexity result, the combination of Proposition 5.1 and Propo-
sition 5.2 constitutes a combinatorial characterization of x-extendable sets. This
characterization will be of prominent importance in the robust approach devel-
opped in Chapter 6. Thus we write it explicitly, in the case ε = 0, in the following
corollary.

Corollary 5.1 (Characterization of extendable sets). The set H is x-extendable
if and only if

xj − xi ≥ LG(a)(i, j) ∀i, j ∈ H ∪ {0}

5.3 Anchored rescheduling with a deadline

constraint

In Chapter 2 we defined two classes of anchor-reoptimization problems, depending
on whether the cost of the new solution is taken into account. For scheduling prob-
lems, this amounts to setting an upper bound on the makespan of schedule y, i.e.,
to impose a deadline constraint yn+1 ≤ B. The AnchReopt–Cost problem in-
troduced in Chapter 2 can then be declined as the following anchored rescheduling
problem

96

Chapter 5. Anchored Rescheduling

ε-AnchRe(Π)-Deadline

Input: instance I of problem Π, baseline (xi)i∈I , tolerance
ε ∈ RJ

+, deadline B

Problem: find y a schedule of I such that yn+1 ≤ B and
σε(x, y) is maximized.

Using generalized precedence constraints, time window constraints of form yi ∈
[li, ui] can be modelled with two arcs (0, i, li) and (i, 0,−ui) (recall that y0 = 0
w.l.o.g.). In particular, the deadline constraint yn+1 ≤ B can be represented by
the generalized precedence constraint (n+ 1, 0,−B). Consequently

Corollary 5.2. ε-AnchRe(Π)-Deadline is solvable in polynomial time.

We now correct a flawed complexity result from (Bendotti et al., 2017). In
this previous paper, the so-called Anchor-Reactive CPM-Scheduling Problem with
Time Windows (ARSPTW) was defined as a variant of AnchRe(Prec) where the
baseline is a complete schedule (I = J), and a deadline constraint is imposed on
the new schedule: yn+1 ≤ B. Deadline B is part of the instance of the ARSPTW.
It follows that the ARSPTW is a special case of ε-AnchRe(Π)-Deadline.

Corollary 5.3. The ARSPTW is polynomial-time solvable.

The proof of Theorem 4.3 from (Bendotti et al., 2017) incorrectly stated the
NP-hardness of the ARSPTW. It relied on a reduction from the so-called Maximum
Complete Bipartite Subgraph problem (MCBS): given a bipartite graph G = (L∪
R,E) with n non isolated nodes and an integer k, is there a complete bipartite
subgraph of G with at least k nodes? The correct reference to Garey and Johnson
(1979) requires that the complete bipartite subgraph is balanced, i.e., it has the
same number of nodes in L and R. Without this condition, the MCBS problem is
polynomial-time solvable.

5.4 Sensitivity analysis of ε-AnchRe(GenPrec)

with respect to tolerance

Regarding tolerance ε as a new input of the rescheduling problem, a natural ques-
tion is the sensitivity of the optimal value of ε-AnchRe(GenPrec) to ε. In this sec-
tion, we study the behavior of the rescheduling optimal value in the case where tol-
erance is given by a single parameter ε ≥ 0, that is, εi = ε for every i ∈ {1, . . . , n}.
Similar results hold if every εi is any affine function of ε. Given a baseline x and
an instance G(a), let

OPT (ε) = max
y schedule

of G(a)

σε(x, y)

97

Chapter 5. Anchored Rescheduling

For every pair of distinct jobs i, j ∈ {0, . . . , n}, define bij = 1
2
(LG(a)(i, j) −(xj−xi))

if i 6= 0 and j 6= 0, and bij = LG(a)(i, j) − (xj − xi) if i = 0 or j = 0. Let
B = {bij, i, j ∈ {0, . . . , n}, i 6= j}.

Proposition 5.3. The function OPT (·) is piecewise constant and non-decreasing
on R+. Moreover every breakpoint ε∗ of function OPT belongs to set B.

Proof. The function OPT (·) is integer-valued. Moreover the function ε 7→ σε(x, y)
is non-decreasing hence OPT (·) is also non-decreasing. Let ε ≥ 0. Define bε =
max{b ∈ B, b ≤ ε}. The claim is that OPT (ε) = OPT (bε). Consider the
poset ({0, . . . , n},R) introduced in Section 5.2. The relation R depends on the
tolerance and it can be rewritten as follows: for two distinct jobs i, j ∈ {0, . . . , n},
iRj if and only if bij > ε. Moreover, from the definition of bε, for every pair
i, j, the inequality bij > ε is equivalent to bij > bε. Hence, the relation R is the
same for tolerance ε and for tolerance bε. From Proposition 5.2, for every ε, the
value OPT (ε) is the maximum size of an antichain containing job 0 in the poset
({0, . . . , n},R). Since the poset remains the same for tolerance ε and tolerance bε,
it comes OPT (ε) = OPT (bε). From the claim, it follows that OPT is constant on
every interval of form [b, b′[where b and b′ are two successive points of B. Hence
any breakpoint of the function must be a point in B.

Consider now the problem of minimizing the tolerance while ensuring that at
least k jobs are ε-anchored:

MinTolerance

Input: precedence graph G(a), baseline x, integer k

Problem: find ε such that OPT (ε) ≥ k and ε is minimized.

From Proposition 5.3 the optimum of MinTolerance can be found in set B.
Values in B can be computed in polynomial time, and |B| ≤ n2 +n, which implies:

Corollary 5.4. MinTolerance can be solved in polynomial time.

Consider the instance with 6 jobs from Figure 5.1. Figure 5.3 shows its asso-
ciated rescheduling optimal value OPT for the baseline x = (0, 2.5, 4.5, 2, 4.5, 6).
The computation of the set B for this instance leads to four possible breakpoint
values (B = {0, 0.25, 0.5, 0.75}), but only three of them are actual breakpoints of
OPT . Namely, changing the tolerance within the range [0.25; 0.75[has no impact
on the number of ε-anchored jobs.

98

Chapter 5. Anchored Rescheduling

OPT

0.25 0.5 0.75 1

ε
1

2

3

4

5

6

Figure 5.3: Anchored rescheduling optimal value OPT (ε) for instance from Figure 5.1 and base-
line x = (0, 2.5, 4.5, 2, 4.5, 6).

5.5 Towards machine rescheduling

A question is to benefit from the polynomiality result of Theorem 5.1 in a machine
environment. Consider a set of m machines, and a set of jobs J to be scheduled
under precedence constraints represented by precedence graph G(p). The problem
is denoted by (m|Prec). A solution of (m|Prec) is then formed with a vector of
starting times x ∈ RJ

+, and an assignment of jobs on machines.

5.5.1 NP-hardness on one machine

The anchored rescheduling problem can be considered as previously, that is,

ε-AnchRe(m|Prec)

Input: integer m, precedence graph G(p), baseline (xi)i∈I ,
tolerance ε ∈ RJ

+

Problem: find y a schedule of G(p) on m machines such that
σε(x, y)

We first note that

Proposition 5.4 (Chrétienne (2018)). AnchRe(m|Prec) is NP-hard, even on a
single machine (m = 1).

Indeed, it was proven in (Chrétienne, 2018) that the AnchRe(m|Prec) problem
is NP-complete for a single machine, even when there is no precedence constraints,
by a reduction from 3-Partition.

By contrast with the project scheduling problem studied in Section 5.2, for a
single machine it is even difficult to decide whether a set H is x-extendable. Note

99

Chapter 5. Anchored Rescheduling

that Corollary 5.1 gives a polynomial algorithm to decide if a set is extendable
in project scheduling, by computing longest paths in the precedence graph. On a
single machine, we prove

Proposition 5.5. On a single machine, deciding if a set H is x-extendable is
NP-hard.

Proof. The proof is a reduction from 2-partition. Consider the following instance
of the scheduling problem. There are n+2 jobs: n normal jobs with processing time
pj, one middle job with processing time 1, and one final job with processing time
1. The precedence constraints are that all jobs must be executed before the final
job. The baseline is such that xmid = 1

2
(
∑n

j=1 pj) and xfinal = 1 +
∑n

j=1 pj. The
set H is formed with the middle job and the final job. The instance is illustrated
in Figure 5.4.

Then the following equivalence holds. There exists a schedule y of jobs on the
machine such that the middle and the final jobs are scheduled at their baseline
starting times if and only if there exists a 2-partition of the pj’s into two equally
valued subsets. The claimed NP-hardness result follows.

middle final

1
2

∑
pj 1+

∑
pj

0

Figure 5.4: Schedule on a single machine from the reduction, with middle job (resp. final job)
in blue (resp. red) and normal jobs in yellow.

5.5.2 Rescheduling with fixed sequences

Consider now the following variant. Given a baseline solution, let S = (S1, . . . ,
Sm) be a collection of sequences, where sequence Sk is the ordered list of jobs
processed on machine k in the baseline. We consider the anchored rescheduling
problem where it is required that the new solution y is consistent with the sequences
from S , i.e.,

ε-AnchRe(m|Prec)-fixedSeq

Input: integer m, precedence graph G(p), baseline (xi)i∈I ,
sequences S , tolerance ε ∈ RJ

+

Problem: find y a schedule of G(p) on m machines with se-
quences S such that σε(x, y) is maximized

100

Chapter 5. Anchored Rescheduling

Theorem 5.2. ε-AnchRe(m|Prec)-fixedSeq is solvable in polynomial time.

Proof. Let GS (p) denote the precedence graph formed with G(p) and additional
arcs (i, j) for every pair i, j of successive jobs in a sequence of S . Then y is a
schedule of G(p) on m machines with sequence S if and only if it is a schedule
of the instance GS (p) of (Prec). Hence solving ε-AnchRe(m|Prec)-fixedSeq
is equivalent to solving ε-AnchRe(Prec) for the precedence graph GS (p). From
Theorem 5.1, it comes that ε-AnchRe(m|Prec)-fixedSeq can be solved in poly-
nomial time.

This fits within the framework of restricted reoptimization, presented in Sec-
tion 2.2.4 of Chapter 2. In rescheduling with fixed sequences, rescheduling does not
impair neither the assignment of jobs on machines nor the sequences of jobs on ma-
chines. The schedule y being much more constrained than in ε-AnchRe(m|Prec),
less jobs can be ε-anchored. However the sequences of jobs on machines can be
regarded as decisions that are maintained during rescheduling. Rescheduling with
fixed sequences thus serves a similar purpose as anchored jobs, by the stabilization
of decisions. A practical justification for rescheduling with fixed sequences is that
the order of jobs on machines may be difficult or costly to revise if the instance
changes. The sequence of jobs on a machine may require preparation, while it is
easier to adjust only starting times of jobs.

Note that in the NP-hardness result of Proposition 5.5, the reduction is based
on sequencing decisions: should a job be scheduled before or after the middle job?

Rescheduling while maintaining the structure of the schedule w.r.t. resources
(e.g., the sequence of jobs on machines) was considered in the literature in the con-
text of robust approaches for the resource-constrained project scheduling problem
(Bruni et al., 2017). However the authors of (Bruni et al., 2017) did not consider
any criterion to maintain starting times.

Conclusion

We studied a rescheduling problem with the objective of maximizing the num-
ber of jobs whose starting times correspond to the baseline, within tolerance ε.
The problem was shown to be polynomial, even under generalized precedence con-
straints, including deadlines or time windows constraints. It was also shown that
this polynomiality result can be used in the case of machine anchored rescheduling
with fixed sequences of jobs on machines. Fixing sequence decisions seem to be the
keypoint for designing polynomial rescheduling variants. In Chapter 7 the RCPSP
problem is dealt with. The idea of restricted reoptimization, where sequencing
decisions are fixed, is further developed.

101

Chapter 5. Anchored Rescheduling

If the anchored rescheduling problem of an NP-hard problem is bound to remain
NP-hard, it is interesting to stress that a polynomial variant can be of practical
interest. It could be integrated into a robust problem, in order to find a good base-
line schedule that could be marginally modified if disruptions occur. A perspective
is thus to identify such polynomial variants of rescheduling problems, under other
resource constraints.

102

Chapter 6

The Anchor-Robust Project
Scheduling Problem

We consider robust optimization for Project Scheduling under uncertain pro-
cessing times. In project management, the decision maker often needs to compute
a baseline schedule in advance. If processing times are later disrupted, the base-
line schedule may become infeasible. Then rescheduling is necessary to recover a
feasible solution. The need for stability in rescheduling was pointed out in the
literature review of Chapter 1 and anchor-rescheduling problems were investigated
in Chapter 5. In this chapter we investigate the anchor-robust approach to limit
adverse effects of rescheduling by guaranteeing the starting times of some jobs,
against realizations of processing times in a given uncertainty set.

For a given uncertainty set, standard robust approaches either produce a sched-
ule with a very large makespan, or offer no guarantee on starting times of the jobs.
The robust-static approach produces a schedule with very large makespan, that
would be inapplicable in practice. On the opposite, an adjustable-robust approach
is to find the minimum worst-case makespan, at the expense of deciding the sched-
ule after the uncertainty realization. Thus there is no baseline solution, and no
guarantee on starting times.

In this work, corresponding to (Bendotti et al., 2019), we propose the anchor-
robust approach as a middle ground between guaranteeing starting times and
guaranteeing the makespan. The output is twofold: a baseline schedule with
bounded makespan, and a subset of anchored jobs, that corresponds to guaranteed
starting times in the baseline schedule. Starting times of non-anchored jobs may
need to be adjusted according to the uncertainty realization to recover a feasible
schedule. Every job is associated with an anchoring weight, representing how
beneficial it is to have a guarantee on the starting time of the job. The Anchor-
Robust Project Scheduling Problem (AnchRobPSP) is to find a baseline schedule

103

Chapter 6. Anchor-Robust Project Scheduling

with bounded makespan along with a maximum weight subset of anchored jobs.

The aim of this chapter is to provide an in-depth study of AnchRobPSP, to
propose algorithms based on its combinatorial properties. The main contributions
are as follows.

AnchRobPSP is first formulated using graph models. Two graph models are
provided: the first one is applicable to general uncertainty sets, while the second
one is dedicated to budgeted uncertainty sets. These graph models are shown to be
convenient tools to both exhibit hard cases and devise algorithms. In particular,
the existence of a compact MIP formulation for AnchRobPSP under budgeted
uncertainty is obtained.

Complexity results and algorithms are given for AnchRobPSP under the fol-
lowing uncertainty sets. For box uncertainty sets, we show that AnchRobPSP is
solvable in polynomial time. For upper-bounded uncertainty sets, we show that
AnchRobPSP is co-NP-hard. For budgeted uncertainty sets, we first show that
the decision version of AnchRobPSP is NP-complete, even in restricted cases with
fixed budget. (Pseudo-)polynomial algorithms are then given for special cases,
depending on the uncertainty set and the precedence graph.

A computational evaluation highlights the characteristics of optimal solutions
of AnchRobPSP and the impact of parameters. The proposed approaches to solve
AnchRobPSP are shown to be competitive with classical affine decision rules from
the literature.

6.1 The Anchor-Robust Project Scheduling

Problem

In this section we first define formally the AnchRobPSP problem, the considered
uncertainty sets, and point out connections with classical robust approaches.

6.1.1 Problem definition

Let us recall some notation for the original Project Scheduling problem. A set
of jobs J = {1, . . . , n} must be scheduled while respecting precedence constraints,
represented by a directed acyclic graph G = (J,A). The vertex-set of G is J =
J∪{s, t} where s (resp. t) is a predecessor (resp. successor) of all jobs, representing
the beginning (resp. the end) of the schedule. Each job i ∈ J has a processing
time pi ∈ R+, and ps = 0. Given a vector p ∈ RJ

+, let G(p) be the weighted
digraph obtained from G by weighting every arc (i, j) with pi. A schedule of G(p)

104

Chapter 6. Anchor-Robust Project Scheduling

is a vector of starting times x ∈ RJ
+ such that xj − xi ≥ pi for every arc (i, j) of

G(p), xs = 0. Then xt is the makespan of the schedule.

We consider a 2-stage decision process to deal with uncertain processing times
of jobs. At first stage, the decision maker has a baseline instance G(p) to solve,
and a deadline M ≥ 0. He must choose a baseline schedule, i.e., a schedule of G(p)
with makespan at most M . At second stage, the decision maker will know the real
instance G(p + δ) where δ ∈ RJ

+ is the vector of disruptions on processing times.
Then a second-stage schedule xδ of G(p+ δ) will be determined. We consider that
the decision maker wants to hedge against a family {G(p + δ)}δ∈∆ of instances,
where the set ∆ is the uncertainty set. In order to have guarantees on starting
times, we are interested in jobs for which the starting time in the baseline schedule
x0 will be the same as the starting time in any second-stage schedule xδ. Formally

Definition 6.1. Given a baseline schedule x0, a subset H of jobs is anchored with
respect to x0 if for every δ ∈ ∆, there exists a schedule xδ of G(p + δ) such that
x0
i = xδi for every i ∈ H.

Note that it corresponds to Definition 2.1 from Chapter 2 in the case of con-
tinuous variables with equivalence relation =.

Each job i ∈ J is associated with an anchoring weight ai ∈ R+. Given a
baseline instance G(p), an uncertainty set ∆, anchoring weights a ∈ RJ

+, and a
deadline M , the Anchor-Robust Project Scheduling Problem (AnchRobPSP) is to
find a baseline schedule x0 and a subset H ⊆ J anchored with respect to x0, so
that the total weight a(H) =

∑
i∈H ai is maximized.

(AnchRobPSP) is a robust 2-stage problem that can be written as the following
program:

(AnchRobPSP): max min max a(H)

x0 schedule of G(p) δ ∈ ∆ xδ schedule of G(p+ δ)

x0
t ≤M xδj = x0

j ∀j ∈ H
H ⊆ J

Uncertainty appears in the right-hand side of precedence constraints. Also,
since H is decided in first stage, the recourse problem is a linear program with
constant objective function, i.e., it is a feasibility problem. Set H is an anchored
set if and only if the inner min/max has value a(H); otherwise it has value −∞.
It corresponds to the Anchored set maximization variant of the Anchor-Robust
problem, proposed in generic form in Chapter 2.

105

Chapter 6. Anchor-Robust Project Scheduling

A previous reference is the proactive problem denoted by DAPSP in (Bendotti
et al., 2017). It is also a robust 2-stage problem that can be written similarly as
a max/min/max program, but with the set H being a recourse variable. In other
words the set H would appear in the inner maximization problem for DAPSP,
rather than in the outer maximization problem for AnchRobPSP. The complexity
of DAPSP was studied in (Bendotti et al., 2017) for the special case of box uncer-
tainty. From a practical point of view, AnchRobPSP offers a stronger guarantee
on starting times, since the anchored jobs are known in first stage. We refer to
Section 2.3.4 for a generic comparison between the two problems.

6.1.2 Uncertainty sets

Let us now give definitions of the considered uncertainty sets. Let ∆ ⊆ RJ
+.

The set ∆ is referred to as a general uncertainty set when no further condition is
imposed. The set ∆ is an upper-bounded uncertainty set if there exists δ+ ∈ RJ

+

such that for every δ ∈ ∆, δ+
i ≥ δi for every i ∈ J , i.e., the duration of job i

in a second-stage instance is at most pi + δ+
i . Note that δ+ is not necessarily

an element of ∆ because it is unlikely that all jobs have maximum duration at
the same time. The set ∆ is a box uncertainty set if ∆ = Πi∈J [δ−i , δ

+
i] for some

δ−, δ+ ∈ RJ
+. The set ∆ is a budgeted uncertainty set associated with vector

δ̂ ∈ RJ
+ and integer Γ ∈ {1, . . . , n} if ∆ =

{
(δ̂iui)i∈J : ui ∈ {0, 1}J ,

∑
i∈J ui ≤ Γ

}
.

Budget Γ corresponds to the maximum number of disruptions that can occur at
the same time (Bertsimas and Sim, 2004).

Note that the uncertainty set ∆ can be convexified without changing feasi-
ble solutions. This result is well-known for robust 2-stage linear programs, see
e.g., Theorem 2.2 in (Ben-Tal et al., 2004). It can be checked that it applies
similarly to AnchRobPSP. It stems from the fact that combinatorial decisions
(for deciding set H) are taken in first stage. Consequently, it is equivalent to

consider the budgeted uncertainty set defined by Γ and δ̂, or its convex hull{
(δ̂iui)i∈J : ui ∈ [0, 1]J ,

∑
i∈J ui ≤ Γ

}
. In this latter case, more than Γ jobs may

have a non-zero disruption δi.

Let us illustrate AnchRobPSP on a simple example for these uncertainty sets.
Consider a project scheduling instance with 5 jobs. The precedence graph is rep-
resented in Figure 6.1. Nominal processing times are p = (1, 1, 1, 1, 2). Each job is

also associated with a worst-case deviation δ̂ = (0.5, 1, 0.5, 0.5, 0.5). In Figure 6.1,

each arc (i, j) is weighted with value pi + δ̂i. Let the deadline be M = 4.5.

106

Chapter 6. Anchor-Robust Project Scheduling

s

1

2

3

4

5

t

0

0

1+0.5 1+0.5

1+1

1+0.5

2+0.5

1+0.5

Figure 6.1: Precedence graph for an instance with 5 jobs, with arc-weights p+ δ̂.

Two different uncertainty sets will be considered, to give a flavor of their re-
spective impact on solutions of AnchRobPSP.

A first uncertainty set is the box ∆ = Πi∈J [0, δ̂i]. Then every job i may have

any duration in range [pi, pi+̂δi]. In general a schedule for processing times p+δ̂ has
a makespan larger than M , hence such a schedule is infeasible for AnchRobPSP.
Consider the schedule x = (0, 1, 1, 3, 2.5) and set H = {1, 2, 4}. Figure 6.2 shows

schedule x. Each job is represented by a rectangle of length pi, and deviation δ̂i is
represented with dotted rectangle. Jobs from H are represented in dark gray. Then
(x,H) is a solution of AnchRobPSP for box ∆. First x has makespan M = 4.5.
Also the set H is anchored w.r.t. x, since for any value of jobs durations, it is
possible to repair the schedule by moving jobs 3 and 5 only (in this case, just by
right-shifting).

0 M

1

3

5

2

4

Figure 6.2: Schedule x = (0, 1, 1, 3, 2.5) and set H = {1, 2, 4} in dark gray, anchored for box

uncertainty set ∆ = Πi∈J [0, δ̂i].

A second uncertainty set is ∆ = {(δ̂iui)i∈J : u ∈ {0, 1}J ,
∑

i∈J ui ≤ 1}. It
corresponds to an uncertainty budget Γ = 1, i.e., at most one processing time
deviates. Consider the same schedule x, and the set H ′ = {1, 2, 4, 5}, represented
in Figure 6.3. Set H ′ is anchored w.r.t. x for budgeted uncertainty set ∆: indeed
for any value of δ ∈ ∆, the schedule can be repaired by moving only job 3.

107

Chapter 6. Anchor-Robust Project Scheduling

0 M

1

3

5

2

4

Figure 6.3: Schedule x = (0, 1, 1, 3, 2.5) and set H ′ = {1, 2, 4, 5} in dark gray, anchored for

budgeted uncertainty set ∆ = {(δ̂iui)i∈J : u ∈ {0, 1}J ,
∑
i∈J ui ≤ 1}.

6.1.3 Anchoring weights vs makespan

The anchoring weight ai represents the value for guaranteeing the starting time
of job i, or the cost incurred if job i must be rescheduled. Then the weight of H
represents a saving obtained from anchored jobs. Anchoring weights can also be
used to enforce some jobs into the anchored set H.

Solutions (x0, H) can be evaluated with respect to two conflicting criteria:
makespan of the baseline schedule x0

t , and weight of the anchored set a(H). In
AnchRobPSP, the objective is a(H) and x0

t is upper bounded in the constraints.
Alternatively one may define the following variant A-AnchRobPSP. The input is
(G(p),∆, a, A) with some anchoring target A ≥ 0, and the problem is to find
(x0, H) with x0 a baseline schedule, H anchored w.r.t. x0, a(H) ≥ A, and the
makespan x0

t is minimized. Regarding algorithmic complexity, studying either An-
chRobPSP or A-AnchRobPSP is equivalent, and the algorithmic approaches we
propose for AnchRobPSP are applicable to A-AnchRobPSP. This variant corre-
sponds to the Cost minimization variant of the Anchor-Robust problem, presented
in Chapter 2.

6.1.4 The price of anchor-robustness

Let us highlight the connection between anchor-robustness and standard robust
approaches, as noted in Chapter 2. In the adjustable-robust approach, all starting
times are adjustable, i.e., there are no anchored jobs (H = ∅). In the static-robust
approach, all starting times are guaranteed, i.e., all jobs are anchored (H = J).
Note that AnchRobPSP produces a solution where starting times are guaranteed
as much as possible, contrarily to the adjustable-robust problem; AnchRobPSP is
able to output a baseline schedule respecting deadline M even when a static-robust
schedule could not.

108

Chapter 6. Anchor-Robust Project Scheduling

Let us show that the price of robustness introduced in (Bertsimas and Sim,
2004) can be generalized to anchor-robustness.

In AnchRobPSP, second-stage schedules are not explicit, however the definition
of anchored set ensures that there for every δ ∈ ∆ there exists a second-stage
schedule such that x0

i = xδi for every i ∈ H. In particular, the makespan of
second-stage schedules is not subject to any constraint. Only the makespan of
the baseline schedule is bounded by M . In order to compare anchored solutions
with other robust approaches, let us consider anchored solutions given as a triplet
(x0, H, (xδ)δ∈∆), where H is anchored w.r.t. x0 and xδ.

The worst-case makespan is maxδ∈∆ x
δ
t . It is the objective function of static-

robust and adjustable-robust problems. For α ∈ [0, 100] let us define Mα as the
minimum value of the worst-case makespan maxδ∈∆ x

δ
t , where (x0, H, (xδ)δ∈∆) is

an anchored solution and |H| ≥ α
100
n. That is, Mα is the minimum worst-case

makespan that can be guaranteed if α% of the jobs are anchored. Then Mα=0 is
exactly the optimal value MAR of the adjustable-robust problem, and Mα=100 is
exactly the optimal value MRS of the static-robust problem.

Importantly, Mα can easily be computed with algorithmic tools designed for
AnchRobPSP. Consider adding to the precedence graph a terminal fictitious job
t∗, with pt∗ = 0. If t∗ is anchored, the starting time of job t∗ corresponds the
worst-case makespan. Define unit anchoring weights. Then Mα is the optimal
value of problem A-AnchRobPSP in the new instance, with t∗ enforced anchored
and with anchoring target A = 1 + α

100
n.

Let Mmin denote the minimum makespan of a schedule of G(p). The price of
robustness for the adjustable-robust problem and the static-robust problem are
classically defined as MAR

Mmin
and MRS

Mmin
respectively, and it holds that MAR

Mmin
≤ MRS

Mmin
.

For α ∈ [0, 100], let the price of anchor-robustness PoARα% be the ratio Mα

Mmin
. By

varying the anchoring target α in [0, 100], it is possible to tune the price of (anchor-
)robustness, and get intermediary solutions between adjustable-robust solutions
and static-robust solutions. Some computations of the price of anchor-robustness
are carried out in Section 6.6.

109

Chapter 6. Anchor-Robust Project Scheduling

6.2 Graph Models for the Anchor-Robust

Project Scheduling Problem

Let us first restate a technical result that will be used in the sequel. Let G̃ be a
directed acyclic graph with vertex-set J = J ∪{s, t} and let G̃(π) be the weighted

digraph obtained by adding arc-weight πij ∈ R+ to every arc (i, j) of G̃. Note that

G̃(π) is a precedence graph for project scheduling under generalized precedence.

Given a path P in G̃(π), the length of the path P in G̃(π) is denoted by `G̃(π)(P).

Given two vertices i, j ∈ J , let LG̃(π)(i, j) be the length of the longest i−j path in

G̃(π) (or −∞ if there is no i−j path in G̃(π)). Given x ∈ RJ
+ and H ⊆ J , let xH

denote the restriction of vector x to H, i.e., xH = (xi)i∈H .

In Chapter 5 we gave a characterization of extendable sets, i.e., subsets of
starting times from a baseline that can be extended into a new solution of a
project scheduling instance. Let us restate this result as a lemma.

Lemma 6.1. Given G̃(π), a set H ⊆ J and x0
H a vector of RH

+ , there exists a

schedule x of G̃(π) such that xH = x0
H if and only if x0

j −x0
i ≥ LG̃(π)(i, j) for every

i, j ∈ H ∪ {s}.

Let (G(p),∆,M, a) be an instance of AnchRobPSP. It is assumed throughout
the paper that LG(p)(s, t) ≤M , namely, a baseline schedule always exists.

6.2.1 A General-Purpose Graph Model

Let ∆ be a general uncertainty set. For every i, j ∈ J , let L∆
ij = max

δ∈∆
LG(p+δ)(i, j).

Let G∆ be the weighted digraph obtained by taking the transitive closure of the
precedence graph G, and adding the arc-weight L∆

ij on each arc (i, j) with j 6= t,
and the arc-weight LG(p)(i, t) on each arc (i, t). Given H ⊆ J , let G∆[H] denote
the subgraph of G∆ induced by H ∪ {s, t}. An example of an instance with 5
jobs and processing times p = (2, 1, 2, 1, 2) is represented in Figure 6.4(a) with a
precedence graph G(p) and in Figure 6.4(b) with the associated graph G∆ for the
box uncertainty set ∆ = Πi∈J [0, δ+

i] with δ+ = (2, 1, 2, 1, 1). Note that in this case
L∆
ij = LG(p+δ+)(i, j) for every i, j ∈ J .

110

Chapter 6. Anchor-Robust Project Scheduling

(a) s 1 2 3

4

5

t0 2 1
2 1

2 2

(b) s 1 2 3

4

5

t0 4 2
4 1

4 2

4

6

10

10

6

10

10

7

6

6

5

4

Figure 6.4: (a) A precedence graph G(p) (b) The associated graph G∆ for ∆ = Πi∈J [0, δ+
i] with

δ+ = (2, 1, 2, 1, 1).

We prove the following result.

Theorem 6.1. Let H ⊆ J .
(a) Let x be a schedule of G(p). The set H is anchored w.r.t. schedule x if and
only if xj − xi ≥ L∆

ij for every i, j ∈ H ∪ {s}.
(b) The set H is anchored w.r.t. a baseline schedule with makespan at most M if
and only if LG∆[H](s, t) ≤M .

Proof. Note first that equivalence (a) follows from Lemma 6.1. Indeed, the set H
is anchored w.r.t. x if and only if for every δ ∈ ∆, we have xj − xi ≥ LG(p+δ)(i, j)
for every i, j ∈ H ∪ {s}, which is equivalent to xj − xi ≥ max

δ∈∆
LG(p+δ)(i, j) = L∆

ij .

Let us now prove equivalence (b). Assume H is anchored w.r.t. a baseline
schedule x0. As a consequence of (a), it holds that x0

j − x0
i ≥ L∆

ij for every
i, j ∈ H ∪ {s}. Also x0

t − x0
i ≥ LG(p)(i, t) since x0 is a schedule of G(p). Hence

x0
H∪{s,t} is a schedule of G∆[H] and x0

t ≤M , thus LG∆[H](s, t) ≤M .

Conversely, assume LG∆[H](s, t) ≤ M . Let G̃ be the (multi)graph obtained from
G(p) by adding all the arcs of G∆[H]. The claim is that LG̃(s, t) ≤ M . Let P be

an s−t path in G̃. Let h1, . . . , hq be the vertices of H ∩ P , indexed in the order
they appear in the path. Let h0 = s and hq+1 = t for the simplicity of notation.
Let Pk be the subpath of P from hk to hk+1. Then for k < q, `G̃(Pk) ≤ L∆

hkhk+1
:

111

Chapter 6. Anchor-Robust Project Scheduling

indeed either Pk is the arc (hkhk+1) from G∆[H] of length L∆
hkhk+1

, or Pk is a path

in G(p), hence since ∆ ⊆ RJ
+, an upper bound on the length of Pk is L∆

hkhk+1
. Also

`G̃(Pq) ≤ LG(p)(hq, t). Therefore, the length of P in G̃ is at most the length of the
path (s, h1, . . . , hq, t) in G∆[H]. It follows that LG̃(s, t) ≤ LG∆[H](s, t) ≤ M . As

a consequence from the claim, there exists a schedule x0 of G̃ such that x0
t ≤ M ,

hence x0 is a baseline schedule. Also x0
j − x0

i ≥ L∆
ij for every i, j ∈ H ∪ {s} by

definition of G̃, which implies with (a) that H is anchored w.r.t. x0.

Referring to the example shown in Figure 6.4, consider the subset of jobs
H = {1, 5}. The longest s−t path in G∆[H] is (s, 1, 5, t) and has length 12. From
Theorem 6.1, for the considered uncertainty set ∆ the subset H = {1, 5} can then
be anchored w.r.t. a baseline schedule if and only if the deadline M is at least 12.

Note that the graph G∆ is dense since it is the transitive closure of the prece-
dence graph. Moreover, the computation of the arc-weights L∆

ij might already be
a hard problem, depending on the definition of ∆. Indeed computing a weight L∆

ij

amounts to solving a maximization problem on ∆. More details are provided in
the complexity analysis presented in Section 6.3.1.

6.2.2 A Layered Graph for Budgeted Uncertainty

Let δ̂ ∈ RJ
+, Γ ∈ {1, . . . , n} and let ∆ be the budgeted uncertainty set ∆ =

{(δ̂iui)i∈J : ui ∈ {0, 1}J ,
∑

i∈J ui ≤ Γ}. The objective of this section is to provide
a dedicated graph model for budgeted uncertainty. The layered graph Glay is
defined as follows. It contains Γ + 1 copies of the precedence graph G(p), called
layers, indexed by γ ∈ {0, . . . ,Γ}. The layer Γ is called upper layer, the layer 0 is
the lowest layer. The vertices in layer γ are denoted by sγ, 1γ, . . . , nγ, tγ. The arcs
of each copy of G(p) are called horizontal arcs. Additionally, for each arc (i, j)
of G(p), for each γ ∈ {0, . . . ,Γ − 1}, the layered graph contains a transversal arc

(iγ+1, jγ) with weight pi + δ̂i. Given H ⊆ J , the layered graph Glay(H) associated
with H is defined from the layered graph Glay by adding, for each job i ∈ H, for
each γ ∈ {0, . . . ,Γ− 1}, a vertical arc (iγ, iΓ) with weight 0.

Referring to the instance presented in Figure 6.4, the corresponding layered
graph Glay(H) for H = {1, 5}, δ̂ = δ+ = (2, 1, 2, 1, 1) and Γ = 2 is represented in
Figure 6.5, with copies of jobs in H appearing in gray.

112

Chapter 6. Anchor-Robust Project Scheduling

s0 20 30

40

t010

50

s1 21 31

41

t111

51

s2 22 32

42

t212

52

0 2 1
2 1

2 2

0 2 1
2 1

2 2

0 2 1
2 1

2 2

0

2+
2

1+
1

2+2

1+
1

2+
2

2+
1

0

2+
2

1+
1

2+2

1+
1

2+
2

2+
1

0

0

0

0

Figure 6.5: The layered graph Glay(H) associated with precedence graph from Figure 6.4, for
H = {1, 5} and Γ = 2.

A key property of the layered graph is stated in Lemma 6.2.

Lemma 6.2. Let i, j ∈ J . In the layered graph Glay, the longest path from iΓ to a
copy of j has length L∆

ij .

Proof. First, let us prove that by construction of the layered graph, the length of
any path P from iΓ to a copy of j is upper-bounded by L∆

ij . For every job k on

the path P , let δ∗k be equal to δ̂k if P goes through a transversal arc outgoing from
a copy of k, and δ∗k = 0 otherwise. Then the length of P in the layered graph is
equal to the length of the corresponding path in G(p + δ∗). Also, path P uses at
most Γ transversal arcs, hence δ∗ ∈ ∆ and the length of P is at most L∆

ij . Let
us now show that the equality holds by exhibiting for every i, j a path P of the
layered graph of length L∆

ij . The value L∆
ij is equal to `G(p+δ∗)(Q) for some δ∗ ∈ ∆

and some path Q in the precedence graph. Let P be the path in the layered graph
obtained by starting at vertex iΓ and following the arcs of Q: path P follows a
horizontal arc if the corresponding job is not disrupted in δ∗, or a transversal arc if
the corresponding job is disrupted in δ∗. Then the length of P is equal to L∆

ij .

We note that the layered graph Glay can be interpreted as the state graph
corresponding to the dynamic programming algorithm from (Minoux, 2007b).

113

Chapter 6. Anchor-Robust Project Scheduling

Theorem 6.2. Let ∆ be a budgeted uncertainty set. Let H ⊆ J .
(a) Let z be a schedule of G(p). The set H is anchored w.r.t. schedule z if and
only if there exists a schedule x of Glay(H) such that xΓ

i = zi for every i ∈ J .
(b) A set H is anchored w.r.t. a baseline schedule with makespan at most M if
and only if LGlay(H)(s

Γ, tΓ) ≤M .

Proof. (a) Assume the set H is anchored w.r.t. z, or equivalently with Theo-
rem 6.1, that zj − zi ≥ L∆

ij for every i, j ∈ H ∪ {s}. Let us prove that zj − zi ≥
LGlay(H)(i

Γ, jΓ) for every i, j ∈ J : indeed by Lemma 6.1 it is a sufficient condition

for the existence of a schedule x of Glay(H) such that xΓ
i = zi for every i ∈ J .

Let P be an iΓ−jΓ path in Glay(H), and let h1, . . . , hq be the jobs of H corre-
sponding to vertical arcs of P . Let h0 = i and hq+1 = j for the ease of notation.
Consider Pk, k ∈ {0, . . . , q} the subpath of P going from hΓ

k to a copy of hk+1.
By definition of the hk’s the path Pk uses no vertical arc: it is a path in Glay. By
Lemma 6.2, it comes `Glay(H)(Pk) ≤ L∆

hkhk+1
. By assumption on z it holds that

L∆
hkhk+1

≤ zhk+1
− zhk , hence `Glay(H)(Pk) ≤ zhk+1

− zhk . Summing up the inequality
over k ∈ {0, . . . , q} we obtain `Glay(H)(P) ≤ zhq+1 − zh0 = zj − zi. This holds for
every iΓ−jΓ path P , therefore zj − zi ≥ LGlay(H)(i

Γ, jΓ).
Conversely, assume the existence of such a schedule x. Let us prove that zj − zi ≥
L∆
ij for every i, j ∈ H ∪ {s}. Let i, j ∈ H ∪ {s}, and consider γ ∈ {0, . . . ,Γ} such

that there is a path from iΓ to jγ which is a longest path between iΓ and a copy
of j in Glay. Then zj − zi = xΓ

j − xΓ
i = xΓ

j − x
γ
j + xγj − xΓ

i , where xΓ
j − x

γ
j ≥ 0

because of the vertical arc (jγ, jΓ), and xγj − xΓ
i ≥ L∆

ij by definition of γ and with
Lemma 6.2. Thus zj−zi ≥ L∆

ij and with Theorem 6.1, the set H is anchored w.r.t.
z.

Equivalence (b) can then be proven as follows. From (a), a subset H is anchored
w.r.t. a baseline schedule if and only if there exists a schedule of Glay(H) whose
restriction to the upper layer has makespan at most M . The existence of such a
schedule is equivalent to LGlay(H)(s

Γ, tΓ) ≤M .

Referring to the layered graph represented in Figure 6.5, the longest s2−t2
path is (s2, 12, 21, 31, 50, 52, t2), with length 11. From Theorem 6.2, for uncertainty
budget Γ = 2, the subset H = {1, 5} can be anchored w.r.t. a baseline schedule if
and only if the deadline M is at least 11.

Let us now derive a compact mixed integer programming (MIP) formulation
for AnchRobPSP under budgeted uncertainty, using the layered graph. A real
variable xγj ≥ 0 is associated with every vertex jγ of the layered graph; a binary
variable hj ∈ {0, 1} is associated with every job j ∈ J , so that hj = 1 if j is
anchored, and hj = 0 otherwise. Let A denote the arc-set of the precedence graph
G. Let Dj = LG(p+δ̂)(s, j) − LG(p)(s, j) for every j ∈ J . Consider the following
program.

114

Chapter 6. Anchor-Robust Project Scheduling

(Lay) max
∑
i∈J

aihi

s.t. xγj − x
γ
i ≥ pi ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ} (1)

xγj − x
γ+1
i ≥ pi + δ̂i ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ− 1} (2)

xΓ
j − x

γ
j ≥ −Dj(1− hj) ∀j ∈ J , ∀γ ∈ {0, . . . ,Γ− 1} (3)

xΓ
t ≤M (4)

xγj ≥ 0 ∀j ∈ J, ∀γ ∈ {0, . . . ,Γ}

hj ∈ {0, 1} ∀j ∈ J

Theorem 6.3. Program (Lay) is a valid MIP formulation for AnchRobPSP under
uncertainty budget Γ.

Proof. With Theorem 6.2, AnchRobPSP is equivalent to maximizing a(H) subject
to H ⊆ J , x schedule of Glay(H), xΓ

t ≤ M . Let us show that there exists a
feasible pair (x,H) of the problem with objective value a(H) if and only if there
exists a feasible solution of program (Lay) with objective value equal to a(H).
First note that, given a feasible solution (x, h) of the MIP, it holds that x is
a schedule of Glay(H) where H = {i ∈ J : hi = 1}. Indeed constraints (1)
and (2) correspond to horizontal and transversal arcs respectively, and constraints
(3) correspond to vertical arcs for jobs i ∈ H. Conversely, consider H ⊆ J
such that there exists a schedule x of Glay(H), xΓ

t ≤ M . Let x′ be the earliest
schedule of Glay(H). Note that x′Γt ≤ M . Let h be the indicator vector of H.
Then (x′, h) is a feasible solution of the MIP with objective value a(H). Indeed
x′ clearly satisfies constraints (1)-(2)-(4), and constraint (3) when hj = 1. It
remains to prove that x′ also satisfies constraint (3) when hj = 0. We have
x′γj = LGlay(H)(s

Γ, jγ) ≤ LGlay(J)(s
Γ, jγ) ≤ LG(p+δ̂)(s, j). Indeed in Glay(J) the

longest sΓ−jγ path uses alternatively vertical and transversal arcs, hence its length
is the length of the corresponding s−j path in G(p + δ̂). Also x′Γj ≥ LG(p)(s, j),

hence x′γj − x′
Γ
j ≤ LG(p+δ̂)(s, j)− LG(p)(s, j) = Dj.

Note that the values Dj can be computed in polynomial time in a preprocessing
step.

Theorem 6.3 thus provides a compact MIP formulation for AnchRobPSP un-
der budgeted uncertainty, with a linear number of binary variables, a polynomial
number of continuous variables and a polynomial number of constraints. Note also
that program (Lay) can readily be modified to tackle A-AnchRobPSP, by setting
minxΓ

t in the objective and adding constraint
∑

i∈J aihi ≥ A instead of (4). It

115

Chapter 6. Anchor-Robust Project Scheduling

is important to emphasize that a compact formulation is not a general rule for
robust 2-stage problems but rather an exception. For static-robust problems such
formulations were key results of the work of (Soyster, 1973) and (Bertsimas and
Sim, 2004). Both AnchRobPSP and A-AnchRobPSP for budgeted uncertainty can
thus be readily solved with an off-the-shelf MIP solver.

6.3 Complexity of the Anchor-Robust Project

Scheduling Problem

To study the complexity of AnchRobPSP, we consider two distinct complexity
issues, depending on whether the inputs of the problem contain G(p) and ∆, or
directly the graph G∆ with the arc-weights L∆

ij . On the one hand, if the values L∆
ij

are part of the input, the decision version of AnchRobPSP is in NP, since checking
whether LG∆[H](s, t) ≤ M can be done in polynomial time. On the other hand, if
the values L∆

ij are not part of the input, we show that for some uncertainty sets
it is co-NP-complete to decide if a set H is anchored, and thus AnchRobPSP is
co-NP-hard. Let us start with this latter point.

6.3.1 AnchRobPSP is at least as hard as computing L∆
ij

LetD be a family of uncertainty sets. Let Worst-case Longest Path WLP(D)
be the following problem: given a precedence graph G(p), a job j ∈ J , ∆ ∈ D,
L ≥ 0, is it true that for every δ ∈ ∆, the longest s−j path in G(p + δ) has
length at most L? Note that this problem is to decide whether L∆

sj ≤ L. Let also
Anch(D) be the decision version of AnchRobPSP over the family of uncertainty
sets D, that is: given a precedence graph G(p), ∆ ∈ D, M ≥ 0, a ∈ RJ

+, A ≥ 0, is
there H ⊆ J such that a(H) ≥ A and LG∆[H](s, t) ≤M?

Lemma 6.3. There exists a polynomial reduction from WLP(D) to Anch(D).

Proof. Let IWLP = (G(p), j,∆, L) be an instance of WLP(D). An associated
instance IA = (G′(p′),∆′,M ′, a′, A′) of Anch(D) problem is built as follows. Let
G′ = G, and p′i = pi if job i is a predecessor of j, and p′i = 0 otherwise (including
p′j = 0). Let M ′ = L and ∆′ = ∆. Finally let a′i = 1 for every i 6= j, and
a′j = A′ = n, where n is the number of jobs in G(p).

For instance IA, the anchoring weights are such that a subset H of jobs satisfies
a′(H) ≥ A′ if and only if it contains job j. If IWLP has a ‘yes’ answer, i.e., if
L∆
sj ≤ L, then LG′∆′ [{j}](s, t) = L∆

sj + LG′(p′)(j, t) ≤ L = M ′. Thus the singleton
{j} yields a ‘yes’ answer for IA. Conversely, if H is anchored and a′(H) ≥ A′,

116

Chapter 6. Anchor-Robust Project Scheduling

then j ∈ H. The value L∆
sj is the arc-weight of the arc (s, j) of G′∆

′
[H], hence

L∆
sj ≤ LG′∆′ [H](s, t) ≤M ′ = L.

Note that the reduction can be modified so that anchoring weights are all equal
to one in IA. Indeed it suffices to replace job j by n duplicates of j, all with the
same predecessors and successors as j. The reduction then applies similarly.

Let us fix notation for the Knapsack problem in order to show the following
theorem. The Knapsack problem is: given a set I of m items, w ∈ NI , v ∈ NI ,
W ∈ N, V ∈ N, is there a subset S ⊆ I of items such that w(S) ≤ W and
v(S) ≥ V .

Theorem 6.4. AnchRobPSP is co-NP-hard for upper-bounded uncertainty sets,
even with unit anchoring weights.

Proof. We claim that the complement of WLP(D) is NP-hard when D denotes

the family of sets ∆ defined by ∆ =
{

(δ̂iui)i∈J : ui ∈ {0, 1}J ,
∑

i∈J αiui ≤ β
}

for

some α ∈ NJ and β ∈ N. Every ∆ of that form is an upper-bounded uncertainty
set. From the reduction of Lemma 6.3, the claim will imply that AnchRobPSP
is co-NP-hard in this case. Let us now show this claim. The complement of
WLP(D) is: given G(p), job j, set ∆ defined by δ̂, α, β, and L ≥ 0, is there u ∈
{0, 1}J such that

∑
i∈J αiui ≤ β and LG(p+δ̂u)(s, j) > L? The proof is a reduction

from Knapsack. Let IKP = (I = {1, . . . ,m}, wi, vi,W, V) be an instance of

the Knapsack problem. The associated instance IWLP = (G(p), j, δ̂, α, β, L) of
WLP(D) is defined as follows. Let L = V −1, let G(p) be a path (s, 1, . . . ,m, j, t)

with arc-weights pi = 0 for every i ∈ I, pj = 0. Let δ̂i = vi, αi = wi for every
i ∈ I, and β = W . Given u ∈ {0, 1}J , the constraint

∑
i∈J αiui ≤ β then writes∑

i∈I wiui ≤ W , and LG(p+δ̂u)(s, j) =
∑

i∈I(pi + δ̂iui) =
∑

i∈I viui. Hence there

exists u ∈ {0, 1}J that yields a ‘yes’ answer for the complement of WLP(D) on
IWLP if and only if it yields a ‘yes’ answer for the instance IKP of the Knapsack
problem.

6.3.2 NP-Completeness for Budgeted Uncertainty

In this section we show that for DΓ the family of budgeted uncertainty sets, the
decision version Anch(DΓ) of AnchRobPSP is NP-complete. First note that for
every ∆ ∈ DΓ the values L∆

ij can be computed in polynomial time by the dynamic
programming algorithm from (Minoux, 2007b). Hence Anch(DΓ) is in NP.

We establish the following lemma when the precedence graph is a path.

Lemma 6.4. Let G be an s−t path (s, 1, 2, . . . , n, t). A subset {h1, . . . , hq} ⊆
J (with h1 < · · · < hq) is anchored w.r.t. a baseline schedule if and only if
L∆
sh1

+ L∆
h1h2

+ · · ·+ L∆
hq−1hq

+ LG(p)(hq, t) ≤M .

117

Chapter 6. Anchor-Robust Project Scheduling

Proof. We show that L∆
ij ≤ L∆

ik + L∆
kj for every i ≤ k ≤ j. Indeed if Pij denotes

the (unique) i−j path in G, for some δ∗ ∈ ∆ it holds that L∆
ij = `G(p+δ∗)(Pij) =

`G(p+δ∗)(Pik) + `G(p+δ∗)(Pkj) ≤ L∆
ik + L∆

kj. This inequality implies that the longest
s−t path in G∆[H] is the path (s = h0, h1, . . . , hq, t = hq+1) going through all jobs
of H. The result follows from Theorem 6.1.

Theorem 6.5. Anch(DΓ) is NP-complete, even if Γ = 1 and the precedence graph
is a path.

Proof. The proof is a reduction from Knapsack. The problem Anch(DΓ) on
a path with Γ = 1 is stated as follows: given a precedence graph G(p) which is

an s−t path, δ̂ ∈ RJ
+, M ≥ 0, a ∈ RJ

+, A ≥ 0, is there a subset H ⊆ J such
that a(H) ≥ A and LG∆[H](s, t) ≤ M , where ∆ is the budgeted uncertainty set

defined by δ̂ and Γ = 1. Let IKP = (I = {1, . . . ,m}, wi, vi,W, V) be an instance

of the Knapsack problem. The associated instance IA = (J, pi, δ̂,M, ai, A) of
Anch(DΓ) is as follows:
• the set of jobs is J = {0, 1, . . . ,m,m+ 1}, where we assume w.l.o.g. that the

items 1, . . . ,m are sorted by decreasing weight: w1 ≥ · · · ≥ wm
• the precedence graph is the path (0, 1, . . . ,m+ 1) and pi = 0 for every i ∈ J
• δ̂i = wi for every i ∈ I, δ̂0 = 1 + max

i∈I
wi, δ̂m+1 = 0 (hence δ̂0 ≥ δ̂1 ≥ · · · ≥

δ̂m+1)

• M = W + δ̂0

• ai = vi for every i ∈ I, a0 = 0, am+1 = v̄ where v̄ = 1 +
∑

i∈I vi
• A = V + v̄
The size of IA is polynomial in the size of IKP . We prove three claims on the

instance IA.
(i) Let H ⊆ J and S = H∩I. Then a(H) ≥ A ⇐⇒ v(S) ≥ V and m+1 ∈ H.

Indeed a(H) ≥ A writes v(S)+ v̄1m+1∈H ≥ V + v̄. If m+1 /∈ H then the inequality
cannot be satisfied since v̄ > v(S).

(ii) For every i, j ∈ J such that i < j, L∆
ij = δ̂i and L∆

si = δ̂0. Indeed by

definition L∆
ij = maxδ∈∆

∑
i≤k<j δk = maxi≤k<j δ̂k which equals δ̂i if i 6= s and δ̂0

otherwise.
(iii) Let H ⊆ J such that m + 1 ∈ H and let S = H ∩ I. Then LG∆[H](s, t) ≤

M ⇐⇒ w(S) ≤ W . Let H = {h1, . . . , hq} with h1 < · · · < hq. By Lemma 6.4

and claim (ii), LG∆[H](s, t) = δ̂0 + δ̂h1 + · · · + δ̂hq−1 . Note that S = {h1, . . . , hq−1}
since m+ 1 ∈ H. Thus LG∆[H](s, t) ≤M ⇐⇒ δ̂0 + δ̂(S) ≤M ⇐⇒ w(S) ≤ W .

Let us now prove that the instance IKP of the Knapsack problem has a ‘yes’
answer if and only if the instance IA of Anch(DΓ) has a ‘yes’ answer. If there
exists some S ⊆ I such that w(S) ≤ W and v(S) ≥ V , then let H = S ∪ {m+ 1}:
by (i) it comes a(H) ≥ A, and by (iii) LG∆[H](s, t) ≤M . Conversely assume there

118

Chapter 6. Anchor-Robust Project Scheduling

exists H ⊆ J such that a(H) ≥ A and LG∆[H](s, t) ≤M , and let S = H ∩ I. Then
by (i) v(S) ≥ V and m + 1 ∈ H, and by (iii) w(S) ≤ W . Hence the problem
Anch(DΓ) is NP-complete, even if the precedence graph is a path and Γ = 1.

Now consider the case where δ̂ is uniform, i.e., δ̂i = δ̂0 for every i ∈ J for some
δ̂0 ∈ R+.

Theorem 6.6. Anch(DΓ) is NP-complete, even if Γ = 1 and δ̂ is uniform.

Proof. Let IKP = (I = {1, . . . ,m}, wi, vi,W, V) be a Knapsack instance. Let

us build an instance IA = (n,G, p, δ̂0,M, a, A) of Anch(DΓ) as follows. An illus-
tration is given in Figure 6.6, where the instance is represented, with processing
times on arcs and anchoring weights in brackets.
• Let n = 3m+ 1. Jobs are j1, . . . , jm+1, α1, . . . , αm, β1, . . . , βm.
• The precedence graph is as follows: job ji, i ≤ m has two successors αi and
βi; job αi has successor job ji+1; job βi has successor job ji+1.
• Let processing times be defined by: pji = 1 for every i ≤ m; pjm+1 = 0;
pβi = 1 for every i ≤ m; pαi = 1 + wmax − wi for every i ≤ m, where
wmax = maxi∈I wi.
• Let δ̂0 = wmax.
• Let M = 2m(1 + δ̂0)−

∑
i∈I wi +W .

• With vtot =
∑

i∈I vi, let aji = vtot for every i ≤ m + 1, aαi = 0 and aβi = vi
for every i ≤ m.
• Finally A = (m+ 1)vtot + V .
Given a subset of jobs H, it comes that a(H) =

∑
i:ji∈H vtot +

∑
i:βi∈H vi.

Hence, setting S := {i : βi ∈ H}, we have a(H) = |{i : ji ∈ H}|vtot + v(S). Hence
a(H) ≥ A if and only if all ji’s are in H and v(S) ≥ V .

Consider a subset H of jobs that contains all ji’s, but no αi. Let us now
compute LG∆[H](s, t) in this instance. Fix i ≤ m. Let us compute LG∆[H](ji, ji+1).
Case 1. If βi ∈ H, the path through αi has worst-case length 2 + wmax − wi +
δ̂0, the path through βi has worst-case length 2 + 2δ̂0. Hence since δ̂0 = wmax,
LG∆[H](ji, ji+1) = 2 + 2δ̂0.

Case 2. If βi /∈ H, the path through αi has worst-case length 2 + wmax − wi + δ̂0,
the path through βi has worst-case length 2 + δ̂0. Hence LG∆[H](ji, ji+1) = 2 +

wmax − wi + δ̂0.
We now prove that IKP has a ‘yes’ answer if and only if IA has a ‘yes’ answer.

Assume there exists S a solution to the knapsack problem for IKP . Consider the
subset of jobs H = {ji, i ≤ m + 1} ∪ {βi, i ∈ S}. Then a(H) ≥ A, as noted
previously. Consider now the longest s−t path in G∆[H]. We claim that w.l.o.g.
such a longest path goes through every job ji, i ≤ m + 1. Consider some job ji
and let u (resp. v) be a job before ji (resp. after ji) in the precedence graph.

119

Chapter 6. Anchor-Robust Project Scheduling

Then L∆
uv = LG(p)(u, v) + δ̂0 = LG(p)(u, ji) + LG(p)(ji, v) + δ̂0, since every u−v

path in G(p) goes through ji. It comes L∆
uv ≤ L∆

uji
+ L∆

jiv
. With this claim,

LG∆[H](s, t) = LG∆[H](s, j1) +
∑

i≤m LG∆[H](ji, ji+1) + LG∆[H](jm+1, t), and

LG∆[H](s, t) =
∑
i:βi∈H

2(1 + δ̂0) +
∑
i:βi /∈H

2(1 + δ̂0) + (wmax − wi − δ̂0)

LG∆[H](s, t) = 2m(1 + δ̂0)−
∑
βi /∈H

wi = M +
∑
i:βi∈H

wi −W = M + w(S)−W

Hence w(S) ≤ W implies LG∆[H](s, t) ≤M .
Conversely, let H be a solution of AnchRobPSP for instance IA. The previous

remark on the weight of H implies that every ji is in H, and the subset S = {i :
βi ∈ H} satisfies v(S) ≥ V . Then S is a subset of items for the knapsack problem
such that v(S) ≥ V . Let H ′ ⊆ H be the set of ji and βi jobs of H (αi jobs
are removed). Then LG∆[H′](s, t) ≤ LG∆[H](s, t) ≤ M . The previous computation
gives LG∆[H′](s, t) = M +w(S)−W . Hence w(S) ≤ W , and S gives a ‘yes’ answer
to the knapsack instance IKP . This proves the claimed NP-hardness result.

j1

α1

β1

j2

α2

β2

j3 jm

αm

βm

jm+1

1

1 1

1 + wmax − w1 1

1 1

1 + wmax − w2 1

1 1

1 + wmax − wm

. . .

[vtot]

[0]

[v1]

[vtot]

[0]

[v2]

[vtot] [vtot]

[0]

[vm]

[vtot]

Figure 6.6: Instance of Anch(DΓ) used in proof of Theorem 6.6.

6.3.3 Discussion on complexity aspects for given L∆
ij

We finally discuss some aspects of the complexity of the problem, when the values
L∆
ij are part of the input of the problem. From Theorem 6.1, the problem An-

chRobPSP is equivalent to finding a subset H ⊆ J such that LG∆[H](s, t) ≤ M ,
and a(H) is maximized. Equivalently, by considering the set I = J \ H of non-
anchored jobs, the problem is to find I ⊆ J such that LG∆[J\I](s, t) ≤M , and a(I)
is minimized. This can be recognized as the min Weight Vertex Blocker to Longest
Path Problem (WVBLP), which is a variant of network interdiction problems stud-
ied in the literature (Israeli and Wood, 2002; Boros et al., 2006). Given an instance

120

Chapter 6. Anchor-Robust Project Scheduling

of a maximization problem on a network, vertex blocker problems look for a subset
of vertices to remove, so that the optimum of the maximization problem in the
remaining graph falls below a given threshold. Hence AnchRobPSP corresponds
to WVBLP on G∆, thus raising the question of the complexity of the WVBLP on
G∆ graphs. Many vertex blocker problems have been shown to be NP-complete
(Boros et al., 2006), but these results cannot be directly applied to AnchRobPSP,
since it is the restriction of WVBLP to very structured instances, namely the G∆

graphs. Recall that the G∆ are transitive closures of directed acyclic graphs, and
their arc-weights are values L∆

ij and LG(p)(j, t). Theorem 6.5 provides an NP-hard
case of the problem WVBLP on G∆ instances. Note that the reduction involves
non-unit anchoring weights. The complexity of AnchRobPSP when the values L∆

ij

are part of the input, and with unit anchoring weights, is still an open question.

6.4 Algorithms for special cases of

AnchRobPSP

In this section we provide an algorithm (Algorithm A+) to compute a feasible
solution for AnchRobPSP under upper-bounded uncertainty, and show that An-
chRobPSP under box uncertainty is a polynomial case where Algorithm A+ is
exact. For budgeted uncertainty, polynomial algorithms are exhibited for spe-
cial cases, and a dynamic programming approach is proposed for series-parallel
precedence graphs.

6.4.1 Algorithm A+ for upper-bounded uncertainty

In this section the set ∆ is an upper-bounded uncertainty set, i.e., there exists
δ+ ∈ RJ

+ such that δ+
i ≥ δi for every i ∈ J for every δ ∈ ∆. Let x denote the

earliest schedule of G(p + δ+). A first remark is that if the makespan of x is at
most M , then (x, J) is an optimal solution of AnchRobPSP. Indeed x is then both
a baseline schedule and a feasible second-stage schedule for every δ ∈ ∆, since δ+

is an upper bound on ∆. However, in general the makespan of x is larger than M
and then not all jobs can be anchored. Let x denote the latest schedule of G(p)
such that xt = M . Consider the following algorithm.

121

Chapter 6. Anchor-Robust Project Scheduling

Algorithm A+

Input: G(p), δ+, M .

Output: a solution (x,H) of AnchRobPSP.

Compute xi = LG(p+δ+)(s, i) for every i ∈ J ;

Compute xi = M − LG(p)(i, t) for every i ∈ J ;

Let xi = min{xi, xi} for every i ∈ J ;

Let H = {i ∈ J : xi ≤ xi};
Return (x,H).

Let us first prove that Algorithm A+ provides a feasible solution for An-
chRobPSP for any upper-bounded uncertainty set.

Proposition 6.1. If ∆ is upper-bounded by δ+, Algorithm A+ returns a feasible
solution of AnchRobPSP.

Proof. Let (x,H) be the output of Algorithm A+. First we show that x is a
baseline schedule. It is clear that it has makespan at most M since xt ≤ xt ≤M .
Also x and x are both schedules of G(p), since δ+ ≥ 0. Hence x = min{x, x} is
also a schedule of G(p). The set H is anchored with respect to x: indeed let us
consider for every δ ∈ ∆ the same second-stage schedule x. It is a schedule of
G(p + δ) because δ+ is an upper bound on ∆, and for every i ∈ H, xi = xi. It
follows that the pair (x,H) is a feasible solution of the instance (G(p),∆,M, a) of
AnchRobPSP.

Note that a feasible solution of AnchRobPSP for a budgeted uncertainty set
can thus be obtained by using Algorithm A+ with δ+ = δ̂, since δ̂ is an upper
bound for ∆. It is also worth mentioning that solutions computed with Algorithm
A+ have a specific structure. Namely, if H is the set returned by A+ and i /∈ H,
one can check that no job on the longest path from i to t in G(p) belongs to H.
We now prove that box uncertainty is a polynomial case, where Algorithm A+ is
exact.

Theorem 6.7. For box uncertainty, Algorithm A+ solves AnchRobPSP in poly-
nomial time.

Proof. Let us show that A+ returns an optimal solution when ∆ is the box
Πi∈J [δ−i , δ

+
i]. First it is feasible by Proposition 6.1. Let j be a job not anchored

by the algorithm, i.e., such that xj > xj. Let x0 be an arbitrary baseline schedule.
Then LG(p+δ+)(s, j) + LG(p)(j, t) = xj + M − xj > M by assumption on j, and
since x0 is a baseline schedule M ≥ x0

t − x0
j + x0

j − x0
s ≥ LG(p)(j, t) + x0

j − x0
s. It

122

Chapter 6. Anchor-Robust Project Scheduling

comes LG(p+δ+)(s, j) > x0
j − x0

s. From Lemma 6.1, there exists no schedule xδ
+

of

G(p + δ+) such that xδ
+

j = x0
j . Since δ+ ∈ ∆, job j cannot be in any anchored

set. Since all anchoring weights are non-negative, the solution returned by the
algorithm is optimal.

Note that the proof only requires that ∆ is upper-bounded by δ+ and that
δ+ ∈ ∆, which is more general than ∆ being the box Πi∈J [δ−i , δ

+
i]. The proof of

Theorem 6.7 also yields as a corollary that the set H optimal for AnchRobPSP
under box uncertainty is unique, and it is the set returned by Algorithm A+.

Interestingly, for box uncertainty it can be shown that the proactive problem
DAPSP of (Bendotti et al., 2017) and AnchRobPSP coincide. The analysis of
Algorithm A+ thus yields a simpler proof of the polynomiality of DAPSP for
box uncertainty. Moreover, the algorithm proposed in (Bendotti et al., 2017) has
complexity O(n3), while Algorithm A+ is linear in the number of arcs in G.

6.4.2 Polynomial Cases for Budgeted Uncertainty

Under budgeted uncertainty, AnchRobPSP is NP-hard as shown in Theorem 6.5.
In this section we exhibit polynomial special cases.

6.4.2.1 Path precedence graph and unit anchoring weights.

We first investigate the case where the precedence graph is a path. The reduc-
tion from Theorem 6.5 relies on the numerical values of anchoring weights. We
show that in the case of unit anchoring weights the problem becomes solvable in
polynomial time.

Theorem 6.8. Let G be an s−t path, and let ∆ be a budgeted uncertainty set. If
ai = 1 for every i ∈ J , then AnchRobPSP is solvable in polynomial time.

Proof. Under budgeted uncertainty, the arc-weights of graph G∆ can be computed
in polynomial time. Consider then the problem of finding an s−t path in G∆ with
length at most M , and with a maximum number of arcs. This problem is solvable
in polynomial time as a polynomial case of the Resource-Constrained Longest Path
Problem (Garey and Johnson, 1979). The claim is that this problem is equivalent
to solving the special case of AnchRobPSP. Indeed from Lemma 6.4, there is a
one-to-one correspondance between subsets of jobs and s−t paths in G∆, and a
subset H is feasible for AnchRobPSP if and only if the corresponding path has
length at most M in G∆. Hence maximizing a(H) = |H| amounts to maximizing
the number of arcs in the associated s−t path, under the constraint that the length
of the path is at most M .

123

Chapter 6. Anchor-Robust Project Scheduling

Note that the result holds not only for budgeted uncertainty, but also for any
uncertainty set for which the arc-weights L∆

ij can be computed in polynomial time.

6.4.2.2 A special case with pi=0, δ̂i=1, Γ=1, ai=1.

Let the precedence graph G be any directed acyclic graph. Let us consider the
special case U-AnchRobPSP where pi = 0 and ai = 1 for every i ∈ J and ∆ is a
budgeted uncertainty with δ̂i = 1 for every i ∈ J and budget Γ = 1. An instance
of U-AnchRobPSP is thus formed with the graph G and the deadline M , assumed
to be an integer. We will show that U-AnchRobPSP is a polynomial case, by an
equivalence with a poset problem. Recall that a partial order ≺ can be naturally
defined from the precedence graph G by setting i ≺ j if there exists an i−j path
in G. Let MaxSubposet be the problem of finding, given a poset and an integer
M , a max-size subposet in which all chains have size at most M .

Let (G,M) be an instance of U-AnchRobPSP, and let J∗ denote the set of jobs
that have a predecessor other than s in the precedence graph G. The arc-weights
of G∆ are as follows: the arcs from s to a job i /∈ J∗ have weight 0, all incoming
arcs of t have weight 0, all other arcs have weight 1. Consequently, given H ⊆ J ,
the length of an s−t path in G∆[H] is equal to the number of vertices of J∗ in
the path. It follows that LG∆[H](s, t) ≤M if and only if all chains in the subposet
(H ∩ J∗,≺) have size at most M . Finally, since G can be any directed acyclic
graph, the poset (J∗,≺) can be any poset. Thus U-AnchRobPSP is equivalent to
MaxSubposet.

Theorem 6.9. U-AnchRobPSP is solvable in polynomial time.

Proof. Note first that a subposet in which all chains have size at most M is exactly
the union of M antichains (some of the antichains being possibly empty). The
problem of finding a max-size union of M antichains in a poset can be solved in
polynomial time, through a min-cost circulation algorithm (see Theorem 14.8 in
Schrijver (2003)). Using this result and the equivalence between U-AnchRobPSP
and MaxSubposet, the result follows.

6.4.3 Dynamic Programming for Budgeted Uncertainty
and Series-Parallel Precedence Graphs

This section is devoted to solving AnchRobPSP under budgeted uncertainty for
series-parallel precedence graphs. It is assumed that vectors p, δ̂, and the deadline
M have integer values. Series-parallel digraphs are defined recursively as follows.
A digraph is series-parallel with terminals s and t if one of the three assertions is
satisfied:

124

Chapter 6. Anchor-Robust Project Scheduling

• Its vertex-set is {s, t} and its arc-set is {(s, t)};
• (Series composition.) It is formed with two series-parallel digraphs G1 and
G2, where terminals t1 and s2 have been identified;
• (Parallel composition.) It is formed with two series-parallel digraphs G1 and
G2, where the two pairs of terminals s1 and s2, and t1 and t2, have been
identified.

In the sequel it is assumed that the precedence graph G is series-parallel with
terminals s and t. Given two jobs i and j such that i ≺ j, let Jij denote the
subset of jobs that are successors of i and predecessors of j, with i, j /∈ Jij, i.e.,
Jij = {k ∈ J : i ≺ k ≺ j}. Let Gij denote the subgraph of G induced by Jij∪{i, j}:
it is series-parallel with terminals i and j.

The proposed algorithmic scheme relies on the layered graph from Section 6.2.2.
With Theorem 6.2, a subset H ⊆ J is anchored when there exists a schedule x of
Glay(H) such that xΓ

t ≤ M . Let us now introduce a value function suitable for a
dynamic programming approach. Given a pair of jobs i, j such that i ≺ j, and
b = (bγ)γ∈{0,...,Γ} and b′ = (b′γ)γ∈{0,...,Γ} two vectors of (Γ + 1) integer numbers, the
value function is

Vij(b, b
′) = max a(H)

s.t. H ⊆ Jij
x schedule of Glay

ij (H)

xγi = bγ ∀γ ∈ {0, . . . ,Γ}
xγj = b′γ ∀γ ∈ {0, . . . ,Γ}

The last two conditions are called boundary conditions in the sequel: they
enforce the values of starting times of copies of i and j in schedule x. Let
L = LG(p+δ̂)(s, t). Let b and b′ be the vectors defined by bγ = 0 for every

γ ∈ {0, . . . ,Γ}, b′Γ = M , and b′
γ

= L for every γ ∈ {0, . . . ,Γ− 1}. The maximum
weight of an anchored set is then exactly the value Vst(b, b

′). Indeed note that
the condition xγt ≤ L for every γ ∈ {0, . . . ,Γ − 1} can be added w.l.o.g. By dy-
namic programming, the value function will be computed for vectors b, b′ in the set
B = {b = (bγ)γ∈{0,...,Γ} : bγ ∈ {0, . . . , L} ∀γ ∈ {0, . . . ,Γ}}. We now show how to
compute the value function in the base case, and prove decomposition properties
with respect to series and parallel composition.

Lemma 6.5 (Base case.). Let Gij be the digraph with vertex-set {i, j} and arc-set
{(i, j)}. Let b, b′ ∈ B. Then Vij(b, b

′) = 0 if b′γ − bγ ≥ pi for every γ ∈ {0, . . . ,Γ}
and b′γ − bγ+1 ≥ pi + δ̂i for every γ ∈ {0, . . . ,Γ− 1}. Otherwise Vij(b, b

′) = −∞.

Proof. Note that Jij = ∅, hence the value function is 0 if there exists a schedule

x of Glay
ij (∅) satisfying the boundary conditions, and −∞ otherwise. Also, the

125

Chapter 6. Anchor-Robust Project Scheduling

boundary conditions fully define the schedule. Hence the value function is 0 if
and only if b and b′ satisfy the constraints of Glay

ij (∅), i.e., b′γ − bγ ≥ pi for every

γ ∈ {0, . . . ,Γ} and b′γ − bγ+1 ≥ pi + δ̂i for every γ ∈ {0, . . . ,Γ− 1}.

Assume Gij is obtained by a parallel composition, w.l.o.g. parallel composition
of two series-parallel digraphs G1

ij and G2
ij with terminals i and j. Let J1

ij and J2
ij

denote respectively their sets of inner vertices and V 1
ij and V 2

ij denote their value
functions.

Lemma 6.6 (Parallel composition). For every b, b′ ∈ B, the value function satis-
fies Vij(b, b

′) = V 1
ij(b, b

′) + V 2
ij(b, b

′).

Proof. Let H ⊆ Jij and (H1, H2) be the partition of H defined by H1 = H ∩ J1
ij,

H2 = H ∩ J2
ij. Given x a schedule of Glay

ij , let x1 (resp. x2) denote the restriction

of x to copies of jobs in G1
ij (resp. G2

ij). It holds that x is a schedule of Glay
ij (H)

such that xi = b and xj = b′ if and only if x1 and x2 are schedules of Glay
ij (H1)

and Glay
ij (H2) respectively, and they satisfy x1

i = b and x1
j = b′, and x2

i = b and
x2
j = b′. Hence the value function Vij(b, b

′) decomposes over the subgraphs G1
ij and

G2
ij, leading to the desired equality.

Assume Gij is obtained by series composition of two series-parallel digraphs
Gik and Gkj for a given k ∈ Jij.

Lemma 6.7 (Series composition). For every b, b′ ∈ B, the value function satisfies

Vij(b, b
′) = max

{
max
b′′∈B
{Vik(b, b′′) + Vkj(b

′′, b′)} ; ak + max
b′′∈Banch

{Vik(b, b′′) + Vkj(b
′′, b′)}

}
where Banch = {b ∈ B : bγ ≤ bΓ ∀γ ∈ {0, . . . ,Γ}}.

Proof. Let H ⊆ Jij and let H1 = H ∩ Jik and H2 = H ∩ Jkj. Given x a schedule

of Glay
ij , let x1 (resp. x2) denote the restriction of x to copies of jobs in Gik (resp.

Gkj). It holds that x is a schedule of Glay
ij (H) such xi = b and xj = b′ if and only

if: x1 (resp. x2) is a schedule of Glay
ik (H1) (resp. Glay

kj (H2)), x1
k = x2

k = b′′ for some

b′′ ∈ B, and either (i) or (ii) is satisfied: (i) k /∈ H (ii) k ∈ H, b′′ ∈ Banch. Indeed
when k ∈ H, both schedules x1 and x2 must satisfy the vertical arcs constraints in
k, which is equivalent to b′′ ∈ Banch. Case (i) leads to the first term and case (ii)
leads to the second term of the maximum; we thus obtain the desired equality.

Theorem 6.10. For fixed uncertainty budget Γ, AnchRobPSP can be solved in
O(mL3Γ+3), where m is the number of arcs in the precedence graph and L =
LG(p+δ̂)(s, t).

126

Chapter 6. Anchor-Robust Project Scheduling

Proof. Given a series-parallel digraph G, its binary decomposition tree is a binary
tree whose leaves are attached to arcs of the digraph, and internal nodes represent
series or parallel compositions. The binary decomposition tree of G is computable
in linear time (Valdes et al., 1982) and it has 2m − 1 nodes, each of them cor-
responding to a subgraph Gij of G, which is series-parallel with terminals i and
j.

Let us now describe the overall algorithm, using the binary decomposition
tree of the precedence graph. Nodes of the decomposition tree are considered in a
bottom-up fashion. For every subgraph Gij associated with the current node of the
tree, compute and store the value Vij(b, b

′) for every pair of vectors b, b′ ∈ B. If Gij

is obtained by parallel composition, this can be done in O(1) time (Lemma 6.6). If
Gij is obtained by series composition, this can be done in O(|B|) time (Lemma 6.7).
If Gij is as arc, this can be done in O(Γ) time (Lemma 6.5). Finally return Vst(b, b

′).

The complete table of the value function has (2m − 1)|B|2 entries, and it can
be filled in O(m|B|2 max{|B|,Γ}). For fixed Γ, since |B| = O(LΓ+1), the total
running time is O(mL3Γ+3).

Note that the values of anchoring weights have no impact on the running time
of the proposed algorithm. Note also that the dynamic programming scheme can
be refined, e.g., by decreasing the size of the set B; however this would not change
the final pseudo-polynomiality result.

6.5 Comparison to affine decision rules

In this section, we investigate affine decision rules for AnchRobPSP. Affine decision
rules are a classical approximation approach to robust 2-stage problems that origi-
nates from control systems. Affine decision rules are reminiscent of linear feedback
to reduce the adverse effect of disruptions on the system (Ben-Tal et al., 2004). We
present an MIP formulation for solving the problem under affine decision rules, and
give some cases where affine decision rules can be proven optimal. Affine decision
rules being a state-of-the-art approach for robust 2-stage optimization, they will
serve as a reference point for evaluating our approaches in numerical experiments.

127

Chapter 6. Anchor-Robust Project Scheduling

6.5.1 Approach and MIP

Assume that second-stage schedule variables xδ affinely depend on the uncertainty
realization δ, that is,

xδj − x0
j = yj +

∑
k∈J

Yjkδk ∀j ∈ J

where y ∈ RJ and Y ∈ RJ×J are a vector and a matrix to be determined. The
special case where y = 0 is referred to as linear decision rule: the difference between
the second-stage solution and the baseline solution linearly depends on δ. Let us
denote by [Y δ]j the j-th coordinate of vector Y δ.

Under this assumption, the problem AnchRobPSP under affine decision rules,
denoted by AnchRob-Aff, is:

(AnchRob-Aff): max min max
∑

i∈J aihi

x0
j − x0

i ≥ pi ∀(i, j)∈A δ ∈ ∆ xδj = x0
j + yj + [Y δ]j ∀j ∈ J

x0
t ≤M xδj − xδi ≥ pi + δi ∀(i, j)∈A
x0 ∈ RJ

+ xδ ∈ RJ
+

h ∈ {0, 1}J |xδj − x0
j | ≤ Dj(1− hj) ∀j ∈ J

y ∈ RJ

Y ∈ RJ×J

Let AnchRob-Lin denote the special case with linear decision rule, i.e., when y = 0.
Note that the constraint |xδj − x0

j | ≤ Dj(1− hj) ∀j ∈ J correctly enforces that
x0
j = xδj if hj = 1. We define second-stage schedule as a vector of RJ

+ (and not

RJ
+). Since xδ is non-negative, one can set xδs = 0.

In the AnchRob-Aff problem the uncertainty set ∆ can be convexified without
changing the optimal value of the problem, as a consequence of a result from
(Ben-Tal et al., 2004).

The main advantage of affine decision rules is that it leads to tractable robust
problems (Ben-Tal et al., 2004). In the case of AnchRob-Aff under budgeted uncer-
tainty, AnchRob-Aff can be reformulated as an MIP, given next in Proposition 6.2.
The result is based both on the technique from (Ben-Tal et al., 2004) to write the
problem under affine rules in a form similar to the static-robust problem; and also
on the result of (Bertsimas and Sim, 2004) to reformulate robust problems under
budgeted uncertainty.

128

Chapter 6. Anchor-Robust Project Scheduling

Proposition 6.2. The problem AnchRob-Aff admits the following MIP reformu-
lation.

(Paff) max
∑
i∈J

aihi

s.t. hj ∈ {0, 1} ∀j ∈ J
x0 ∈ RJ

+

y ∈ RJ

Y ∈ RJ×J

x0
j − x0

i ≥ pi ∀(i, j) ∈ A
x0
t ≤M

x0
j + yj − x0

i − yi ≥ pi + ηijΓ +
∑

k∈J ρijk ∀(i, j) ∈ A
(Yjk − Yik − 1i=k)δ̂k + ρijk + ηij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ J
ρij ∈ RJ

+ ∀(i, j) ∈ A
ηij ≥ 0 ∀(i, j) ∈ A
yi + η′iΓ +

∑
k∈J ρ

′
ik ≤ Di(1− hi) ∀i ∈ J

Yikδ̂k ≤ ρ′ik + η′i ∀i, k ∈ J
ρ′i ∈ RJ

+ ∀i ∈ J
η′i ≥ 0 ∀i ∈ J
−yi + η′′i Γ +

∑
k∈J ρ

′′
ik ≤ Di(1− hi) ∀i ∈ J

Yikδ̂k ≥ −ρ′′ik − η′′i ∀i, k ∈ J
ρ′′i ∈ RJ

+ ∀i ∈ J
η′′i ≥ 0 ∀i ∈ J
x0
i + yi ≥ η′′′Γ +

∑
k∈J ρ

′′′
k ∀i ∈ J

Yikδ̂k + ρ′′′k + η′′′ ≥ 0 ∀i, k ∈ J
ρ′′′ ∈ RJ

+

η′′′ ≥ 0

Proof. Using equality xδ = x0 +y+Y δ, the variable xδ can be eliminated from the
recourse problem. The AnchRob-Aff problem can be written as a single maximiza-
tion problem on variables x0, h, y, Y satisfying the (infinite) set of constraints:

129

Chapter 6. Anchor-Robust Project Scheduling

(1): (x0
j + yj + [Y δ]j)− (x0

i + yi + [Y δ]i) ≥ pi + δi ∀δ ∈ ∆, ∀(i, j) ∈ A
(2): yj + [Y δ]j ≤ Dj(1− hj) ∀δ ∈ ∆, ∀j ∈ J
(3): −yj − [Y δ]j ≤ Dj(1− hj) ∀δ ∈ ∆, ∀j ∈ J
(4): x0

j + yj + [Y δ]j ≥ 0 ∀δ ∈ ∆

Consider first the constraint (1) associated to (i, j) ∈ A. It holds that
(x0

j + yj + [Y δ]j)− (x0
i + yi + [Y δ]i) ≥ pi + δi ∀δ ∈ ∆ if and only if:

(1’): x0
j + yj − x0

i − yi + min
δ∈∆

(∑
k∈J

(Yjk − Yik)δk − δi

)
≥ pi

Since ∆ is the budgeted uncertainty set {(δ̂kuk)k∈J : u ∈ [0, 1]J ,
∑

k∈J uk ≤ Γ},
the minimization problem over ∆ in (1’) can be dualized, as done by Bertsimas
and Sim in (Bertsimas and Sim, 2004). Let ρij ∈ RJ

+ and ηij ∈ R+ denote the dual
variables associated respectively to inequalities uk ≤ 1 ∀k ∈ J and

∑
k∈J uk ≤ Γ

appearing in the definition of ∆. Replacing the minimization over ∆ by its dual,
constraint (1’) rewrites as

x0
j + yj − x0

i − yi − ηijΓ−
∑

k∈J ρijk ≥ pi
(Yjk − Yik − 1i=k)δ̂k + ρijk + ηij ≥ 0

ρij ∈ RJ
+

ηij ∈ R+

The very same proof technique applies to (2)-(3)-(4). The claimed reformulation
follows.

Let (Plin) denote the special case of (Paff) when y = 0.
Note that (Paff) has n binary variables and 3n2 +4n+3+ |A|(n+1) continuous

variables. The number of variables is independent from budget Γ.

6.5.2 Optimality of decision rules

(Paff) is a priori a heuristic for AnchRobPSP. However we exhibit two cases where
AnchRob-Aff and AnchRobPSP coincide.

Proposition 6.3. Under box uncertainty, AnchRob-Aff and AnchRobPSP coin-
cide.

Proof. Consider the solution x+ obtained by Algorithm A+. By the results from
Section 6.4.1, choosing x+ as second-stage solution for every δ ∈ ∆, the set H+

with maximum weight can be anchored. It is thus sufficient to prove that the
collection of second-stage solutions xδ = x+ for every δ ∈ ∆ can be written as an
affine function of δ. It holds that x+ − x0 = y + Y δ with y = x+ − x0 and Y = 0.
Hence AnchRob-Aff and AnchRobPSP coincide for box uncertainty.

130

Chapter 6. Anchor-Robust Project Scheduling

We now show that the result does not hold anymore if we restrict to linear
decision rule only.

Proposition 6.4. Under box uncertainty, there are instances where the optimal
value of AnchRob-Lin is strictly less than the optimal value of AnchRobPSP.

Proof. Let us present an example where for the optimal anchored solution (x0, H),
there is no second-stage solutions (xδ)δ∈∆ that can be written as xδ − x0 = Y δ
for given matrix Y . Consider a set of 5 jobs. The precedence graph contains arcs
(1, 3), (2, 3), (3, 4), (3, 5). Let p = (1, 1, 1, 1, 2). Let ∆ be a box uncertainty set

with δ̂ = (1, 1, 0, 0, 0). Let M = 4. With this deadline M , a baseline schedule x0

satisfies x0
1 = x0

2 = 0, x0
3 = 1, x0

4 ∈ [2, 3] and x0
5 = 2. For unit anchoring weights,

the set H+ = {1, 2, 4} is the optimal anchored set returned by Algorithm A+.
There is a unique baseline schedule associated with H+ which is x0 = (0, 0, 1, 3, 2).

In uncertainty realization δ where job 1 has duration p1 + δ̂1 = 2, the second-stage
starting time of job 3 must be xδ3 = 2. The same holds if job 2 is disrupted, or if jobs
1 and 2 are both disrupted. Assume the linear dependency xδ3 = x0

3 + Y δ. By the

previous remark, the matrix Y must satisfy 2 = 1 + Y31δ̂1 (case job 1 disrupted),

2 = 1 + Y32δ̂2 (case job 2 disrupted), 2 = 1 + Y31δ̂1 + Y32δ̂2 (case jobs 1 and 2
disrupted). It follows that Y31 = Y32 = 1 and Y31 + Y32 = 1 a contradiction.

Consider now budgeted uncertainty with Γ = 1. A similar result was proven for
linear programs in (Bertsimas and Goyal, 2012). We give a proof for AnchRobPSP
for completeness.

Proposition 6.5. Under budgeted uncertainty with Γ = 1, AnchRob-Aff and An-
chRobPSP coincide.

Proof. Since the set ∆ can be convexified without changing the solutions of AnchRob-
Aff, it is sufficient to prove the result for set ∆ = {(δ̂kuk)k∈J : u ∈ {0, 1}J ,

∑
k∈J uk ≤

1} which is formed with the n+1 vectors: 0 and δ̂iχ
i for i ∈ J . Consider an optimal

solution (x0, H) to the AnchRobPSP problem, and a collection of second-stage so-
lutions associated with (x0, H). Consider the second-stage solution x∅ associated
with the uncertainty realization δ = 0. W.l.o.g. we can assume x∅ = x0. Indeed
x0 is trivially a schedule of G(p) that coincides with x0 on anchored set H. For
every i ∈ J , let x(i) denote the second-stage solution for the uncertainty realization
δ = δ̂iχ

i. Consider the matrix Y whose i-th row is [Y]i = 1

δ̂i
(x(i) − x0). It clearly

satisfies xδ − x0 = Y δ for every δ ∈ ∆. The result follows.

An open question is whether the optimal values of AnchRobPSP and AnchRob-
Aff always coincide. In the literature, there are relatively few cases where the
optimality of affine decision rules has been proven (Housni and Goyal, 2019).

131

Chapter 6. Anchor-Robust Project Scheduling

6.6 Numerical results

In this section, we highlight the relevance of AnchRobPSP under box or budgeted
uncertainty, based on numerical experiments. We assess the numerical perfor-
mances of the MIP formulation (Lay) from Section 6.2.2 and heuristic A+ from
Section 6.4.1. In particular we compare them to MIP reformulations under affine
or linear decision rules. We study the impact of parameters (budget Γ, deadline
M) on solutions of the problem, and show that AnchRobPSP provides a convenient
way to control the price of robustness.

6.6.1 General Settings

Instances. For evaluation purpose, different categories of instances are consid-
ered, either randomly generated or taken from the literature. Let us first describe
the precedence graphs of the instances.

• In PSP instances, the precedence graphs are taken from the PSPLib (Kolisch
and Sprecher, 1996), a benchmark for the Resource-Constrained Project
Scheduling Problem. We consider 50 instances from the families j120i, with
i ∈ {1, . . . , 5}, which are the largest instances available (n = 120 jobs).
• In ER instances, the precedence graphs are generated as follows. The num-

ber of jobs n ranges in {30, 60, 100, 200}. Precedence graphs are generated
randomly with Erdös-Rényi (ER) model, i.e., between each pair of jobs i < j
the arc (i, j) is added with probability pr = 10

n
. Processing times of jobs are

generated uniformly in {1, . . . , 20}.
• In ERC instances, the precedence graphs are the same as ER instances,

but with modified processing times so that every job is on a Critical path.
Processing times of jobs are increased by repeating the two following steps
until every job is on a critical path: (i) find a job i with positive margin
m = LG(p)(s, t)− (LG(p)(s, i) + LG(p)(i, t)) > 0 (ii) increment pi of a random
value in {1, . . . ,m}.

For all instances, the uncertainty set ∆ is a budgeted uncertainty set for a
given budget Γ, and values δ̂i drawn uniformly from [0, 0.5pi]. We considered
50 PSP instances, and we generated 10 ER instances and 10 ERC instances for
each value of n ∈ {30, 60, 100, 200}, thus resulting in a total of 40 ER instances
and 40 ERC instances. Tests were performed with unit anchoring weights. The
deadline M is chosen between the minimum makespan Mmin = LG(p)(s, t) and the
smallest deadline Mmax = LG∆[J](s, t) for which all jobs can be anchored. When
the deadline M has to be fixed, it is defined arbitrarily as a convex combination
of Mmin and Mmax. Note that the value of Γ or M used in experiments will be
specified in the sequel when necessary.

132

Chapter 6. Anchor-Robust Project Scheduling

Since PSP instances correspond to a reference for another problem, they have
limited relevance for our purpose: namely, they feature precedence graphs with
small degree. In constrast, in ER instances the expected value of the average degree
in the precedence graph is driven by the constant n×pr, which we arbitrarily fixed
at 10. Finally ERC instances are motivated by applications to industrial projects,
where it can be observed that a lot of paths are critical or almost critical in the
baseline instance.

Implementation. Algorithms for AnchRobPSP were implemented with Julia
0.6.2. MIP formulations were solved using JuMP v0.18.1 and Cplex 12.8. Note that
all considered MIP formulations, either (Lay) or (Paff), are compact. Numerical
experiments were completed on a PC with Intel Core i7-7500U CPU @ 2.70GHz
2.90GHz and 8 Go RAM.

6.6.2 Performance of formulation (Lay) and A+ heuristic

Formulation (Lay). Let us first give numerical results of formulation (Lay)
on the considered instances. We consider unit anchoring weights. In Table 6.1
and Table 6.2 are reported for ER instances and ERC instances respectively, for
n = 30, 60, 100, 200, 400, 600 and Γ = 1, 2, 3:
– opt: the optimal value of the MIP reformulation;

– time: the computation time, in seconds;

– #nodes: the number of nodes explored by Cplex.

Note first that the number of anchored jobs is smaller for ERC instances then
for ER instances, as a consequence from the design of ERC instances.

It can be seen that formulation (Lay) is efficient to solve instances up to 600
jobs: the worst average computation time is 14.54 seconds for ER instances, n =
600, Γ = 2. The number of nodes is small; in particular the problem is solved at
root node for all ERC instances with budget Γ ≥ 3. When the uncertainty budget
increases, the size of formulation (Lay) is increased. However this does not lead to
harder instances, e.g., the number of nodes for ER instances is smaller for Γ = 3
than for Γ = 2, and all ERC instances are solved at root node. These results show
that formulation (Lay) is efficient to solve AnchRobPSP instances.

133

Chapter 6. Anchor-Robust Project Scheduling

n opt time (s) #nodes

ER

Γ = 1

30 19.8 0.36 0.0

60 47.8 0.22 0.0

100 86.1 0.09 28.8

200 182.1 0.18 82.9

400 375.6 1.53 2602.1

600 571.2 2.44 2698.4

Γ = 2

30 17.8 0.10 0.0

60 44.9 0.21 0.0

100 82.6 0.09 0.0

200 177.7 0.16 20.4

400 367.9 2.87 1717.9

600 561.6 14.54 6914.1

Γ = 3

30 17.0 0.08 0.0

60 42.9 0.08 0.0

100 80.1 0.08 0.0

200 172.7 0.15 0.0

400 363.5 0.78 188.1

600 554.4 7.86 2458.3

Table 6.1: Performance of formulation (Lay) on ER instances.

n opt time (s) #nodes

ERC

Γ = 1

30 11.6 0.07 0.0

60 23.3 0.06 1.6

100 42.6 0.10 20.2

200 83.8 0.28 573.8

400 169.8 1.36 3944.4

600 271.7 10.57 5024.4

Γ = 2

30 11.0 0.03 0.0

60 22.1 0.29 0.0

100 37.0 0.04 0.0

200 71.8 0.05 0.0

400 153.1 0.12 13.5

600 239.7 0.24 65.7

Γ = 3

30 10.8 0.02 0.0

60 22.1 0.03 0.0

100 36.0 0.04 0.0

200 70.1 0.04 0.0

400 150.3 0.08 0.0

600 233.0 0.14 0.0

Table 6.2: Performance of formulation (Lay) on ERC instances.

134

Chapter 6. Anchor-Robust Project Scheduling

Algorithm A+. Let us now evaluate Algorithm A+ and compare solutions to the
optimal solution of AnchRobPSP computed with formulation (Lay). In Table 6.3
and Table 6.4 are reported
– val(A+): the average number of anchored jobs |H+| returned by A+;

– gapToOpt: the average value opt−val(A+)
n

.

Algorithm A+ runs in less than 0.01 seconds for all instances up to n = 600
jobs. Regarding the quality of A+ solution, it can be seen that the gap to optimal
number of anchored jobs is small (at most 13.1% for ER instances with n = 100
jobs). The gap decreases when the budget increases, since A+ returns an optimal
solution for Γ = n.

Algorithm A+ is thus a very fast heuristic, that outputs good quality solutions
on our benchmark, especially for the largest instances and large budget.

n val(A+) gapToOpt

ER

Γ = 1

30 16.6 10.66%

60 40.5 12.16%

100 73.0 13.10%

200 161.5 10.30%

400 347.3 7.07%

600 532.2 6.50%

Γ = 2

30 16.6 4.00%

60 40.5 7.33%

100 73.0 9.60%

200 161.5 8.10%

400 347.3 5.15%

600 532.2 4.90%

Γ = 3

30 16.6 1.33%

60 40.5 4.00%

100 73.0 7.10%

200 161.5 5.60%

400 347.3 4.05%

600 532.2 3.70%

Table 6.3: Performance of Algorithm A+ on ER instances.

135

Chapter 6. Anchor-Robust Project Scheduling

n val(A+) gapToOpt

ERC

Γ = 1

30 10.8 2.66%

60 22.1 2.00%

100 35.6 7.00%

200 69.8 7.00%

400 149.1 5.17%

600 230.2 6.91%

Γ = 2

30 10.8 0.66%

60 22.1 0%

100 35.6 1.40%

200 69.8 1.00%

400 149.1 1.00%

600 230.2 1.58%

Γ = 3

30 10.8 0%

60 22.1 0%

100 35.6 0.40%

200 69.8 0.15%

400 149.1 0.30%

600 230.2 0.46%

Table 6.4: Performance of Algorithm A+ on ERC instances.

Comparison with affine decision rules. Let us now evaluate the MIP for-
mulation obtained for the problem under affine decision rules. The MIP reformu-
lations (Paff) and (Plin) are solved for all instances with n = 30, 60, 100. The time
limit is set to 600 seconds. In Tables 6.5,6.6 are reported:
– solved: the number of instances solved to optimality, out of 10;

– time: the average computation time on solved instances, in seconds;

– unsolved: the number of instances not solved to optimality but where a feasible

solution is found;

– gap: the average optimality gap returned by Cplex on unsolved instances;

– noSol: the number of instances where no feasible solution is found.

Recall that all considered instances were solved in less than 1 second by for-
mulation (Lay). By contrast, solving the MIP formulation (Paff) (resp. (Plin)) is
harder: while all n = 30 instances are solved to optimality, for n = 100 instances
only 2 instances out of 60 are solved to optimality by (Paff) (resp. 4 out of 60 by
(Plin)). A difficulty encountered by the solver is to find a feasible solution: e.g.,
for ERC instances with n = 100, in the affine case, an incumbent is found only for
2 instances out of 30.

136

Chapter 6. Anchor-Robust Project Scheduling

Affine decision rule Linear decision rule

n Γ solved time unsolved gap noSol solved time unsolved gap noSol

ER

30 1 10 11.45 0 - - 10 4.58 0 - -

30 2 10 4.39 0 - - 10 3.75 0 - -

30 3 10 3.39 0 - - 10 2.89 0 - -

60 1 9 191.41 1 12.44% - 8 117.36 2 2642.88% -

60 2 10 169.47 0 - - 9 222.08 1 28.62% -

60 3 9 103.59 1 Inf - 9 72.38 1 27.58% -

100 1 - - 4 156.52% 6 - - 10 Inf -

100 2 - - 6 234.46% 4 1 559.84 6 Inf 3

100 3 2 603.02 5 345.14% 3 - - 10 Inf -

Table 6.5: Affine and linear decision rules for ER instances

Affine decision rule Linear decision rule

n Γ solved time unsolved gap noSol solved time unsolved gap noSol

ERC

30 1 10 17.25 0 - - 10 8.17 0 - -

30 2 10 4.98 0 - - 10 3.16 0 - -

30 3 10 2.75 0 - - 10 1.78 0 - -

60 1 8 292.49 2 23.3% - 8 171.15 2 54.02% -

60 2 9 201.87 1 Inf - 9 118.31 1 Inf -

60 3 10 186.93 0 - - 10 72.96 0 - -

100 1 - - 1 Inf 9 - - 6 Inf 4

100 2 - - 1 Inf 9 1 564.91 6 Inf 3

100 3 - - 0 - 10 2 387.86 6 Inf 2

Table 6.6: Affine and linear decision rules for ERC instances

Linear decision rules lead to an MIP formulation with slightly less constraints
and variables than affine decision rule. The performance of (Plin) is thus slightly
better than (Paff). Namely, there are less instances with no feasible solution.
However the overall performance is comparable, and instances with n = 100 jobs
are hardly solved.

Decision rules are a priori heuristics. However on all tested instances solved
to optimality, we observed that both affine and linear decision rules give optimal
solutions to AnchRobPSP. This corresponds to empirical results from the litera-
ture (Housni and Goyal, 2019) that affine decision rules very often give optimal
solutions. Though there is a priori no theoretical guarantee that affine decision
rules are optimal for Γ ≥ 2.

As a conclusion, state-of-the-art affine decision rules lead to MIP formulation
that are a priori approximations to the problem. By contrast the formulation (Lay)
we proposed is an exact MIP formulation. The computation time of (Lay) is an

137

Chapter 6. Anchor-Robust Project Scheduling

order of magnitude lower than the computation time for affine or linear decision
rules. Hence formulation (Lay) clearly outperforms formulations under decision
rules for AnchRobPSP.

6.6.3 Impact of parameters on AnchRobPSP solutions

Finally let us evaluate the impact of parameters Γ and M on optimal solutions of
the problem.

6.6.3.1 Impact of the uncertainty budget Γ

Consider the case where the decision maker is given the deadline M , and has to
decide the value of the uncertainty budget Γ. It is clear that the higher the budget
Γ, the less jobs can be anchored, i.e., the optimal value of AnchRobPSP is non-
increasing with respect to Γ. We now provide experimental results to quantify the
impact of Γ on the optimum.

Let us first compare the maximum number of anchored jobs optAnch(Γ) for
different values of Γ. The value of M is chosen at 3

4
Mmin + 1

4
Mmax. Other convex

combinations have been tested and lead to similar results. Note that if M = Mmax

then optAnch(Γ) = n for every Γ ∈ {1, . . . , n}. We test small values of Γ, namely
Γ ∈ {1, 2, 3}, and values that are proportional to the number of jobs, namely,
Γ ∈ {d5%ne, 10%n, 20%n, 100%n}. Note that this latter case Γ = 100%n = n
corresponds to box uncertainty. Results are reported in Tables 6.7, 6.8.

Budget Γ

1 2 3 d5%ne 10%n 20%n 100%n

PSP

j1201 106.5 102.5 100.2 98.6 98.6 98.6 98.6

j1202 101.0 99.0 99.0 99.0 99.0 99.0 99.0

j1203 103.8 100.1 98.5 98.1 98.1 98.1 98.1

j1204 97.0 94.0 94.0 94.0 94.0 94.0 94.0

j1205 107.0 101.0 99.0 99.0 99.0 99.0 99.0

Table 6.7: Value optAnch(Γ) for different values of budget Γ on PSP instances (n = 120), for
fixed M .

138

Chapter 6. Anchor-Robust Project Scheduling

Budget Γ

n 1 2 3 d5%ne 10%n 20%n 100%n

ER

30 19.8 17.8 17.0 17.8 17.0 16.6 16.6

60 47.8 44.9 42.9 42.9 41.1 40.5 40.5

100 86.1 82.6 80.1 75.5 73.1 73.0 73.0

200 182.1 177.7 172.7 162.3 161.5 161.5 161.5

ERC

30 11.6 11.0 10.8 11.0 10.8 10.8 10.8

60 23.3 22.1 22.1 22.1 22.1 22.1 22.1

100 42.6 37.0 36.0 35.6 35.6 35.6 35.6

200 83.8 71.8 70.1 69.8 69.8 69.8 69.8

Table 6.8: Value optAnch(Γ) for different values of budget Γ on ER and ERC instances, for fixed
M .

Numerical experiments show that the range between optAnch(1) and optAnch(n)
remains small. Also, the maximum number of anchored jobs for Γ = n is already
attained for small values of Γ: on all considered instances, optAnch(20%n) is
equal to optAnch(n). An interpretation is that uncertainty sets with small budget
contain already a large enough variety of disruptions for AnchRobPSP.

A related question is whether an optimal solution computed for some budget
Γ (e.g., Γ = 1) will resist to more than Γ disruptions. Given an optimal solution
(xopt, Hopt) computed for budget Γ = 1, we simulate second-stage instances where
ΓSimu disruptions occur, with ΓSimu > Γ, then check whether the schedule xopt

H =(
xopt
i

)
i∈Hopt can be maintained. We run 1000 simulations and return the percentage

of simulations where the answer is yes. Recall that it is easy to check whether the
schedule xopt

H can be maintained, with the condition from Lemma 6.1. Numerical
results can be found in Table 6.9.

Number of disruptions ΓSimu

n 2 3 5 10

PSP 120 99.8% 99.5% 98.5% 93.9%

ER

30 96.8% 91.1% 74.8% 38.6%

60 99.0% 96.8% 91.4% 70.0%

100 99.3% 98.4% 95.1% 81.8%

200 99.9% 99.6% 98.6% 94.0%

ERC

30 98.9% 96.8% 91.1% 76.0%

60 99.9% 99.5% 98.2% 92.9%

100 99.8% 99.1% 97.9% 90.2%

200 99.8% 99.5% 98.4% 93.2%

Table 6.9: Percentage of simulations where xopt
H can be maintained after ΓSimu disruptions, over

1000 simulations.

139

Chapter 6. Anchor-Robust Project Scheduling

We note that the percentage remains over 90% for all instance sets with up to
ΓSimu = 3 disruptions. Hence the starting times of anchored jobs xopt

H produced by
AnchRobPSP for Γ = 1 is likely to be maintained after more than Γ disruptions.

At first glance budgeted uncertainty sets with Γ = 1 may seem too optimistic,
because realizations with only one disruption can be considered as relatively fa-
vorable. However the results from Table 6.9 show that the obtained solution
resists well in practice to more than one disruption. Moreover Tables 6.7, 6.8 show
that increasing the budget only decrease moderately the value of optAnch. Also
optAnch(n) can be easily evaluated with A+. Hence Γ = 1 can be regarded as a
good candidate for choosing the uncertainty budget for AnchRobPSP.

6.6.3.2 Trade-off between Makespan and Anchor-Robustness

In this section, the uncertainty set is considered as fixed, we set Γ = 1 for experi-
ments. We give insights on how AnchRobPSP can be used to achieve the trade-off
between makespan and number of anchored jobs.

The price of (anchor-)robustness. We first evaluate numerically the price of
(anchor-)robustness. Recall that for α ∈ [0, 100], Mα is defined as the minimum
worst-case makespan over the pairs (x0, H) feasible for AnchRobPSP, and with
|H| ≥ α%n. Then the price of anchor-robustness is PoARα% = Mα

Mmin
.

Numerical results are provided in Table 6.10. They illustrate the classical fact
that adjustable-robust and static-robust problems yields very different outputs in
terms of price of robustness: e.g., for ER instances with n = 30 jobs, opting
for a static-robust problem causes an increase of +28% of the makespan w.r.t.
Mmin, vs. only +4.7% for the adjustable-robust problem. In between are solutions
of AnchRobPSP for different values of the anchoring target α. Note that it is
possible to obtain solutions with anchored jobs without increasing the price of
robustness, e.g., for PSP instances, it is possible to get 50% of jobs anchored
within the adjustable-robust makespan.

140

Chapter 6. Anchor-Robust Project Scheduling

Anchoring target α

0 10 20 50 80 90 100

n (adjustable) (static)

PSP 120 1.049 1.049 1.049 1.049 1.060 1.119 1.313

ER

30 1.047 1.047 1.047 1.051 1.149 1.202 1.280

60 1.044 1.044 1.044 1.044 1.089 1.164 1.280

100 1.037 1.037 1.037 1.037 1.052 1.129 1.293

200 1.037 1.037 1.037 1.037 1.038 1.076 1.274

ERC

30 1.149 1.149 1.154 1.192 1.258 1.295 1.366

60 1.167 1.167 1.171 1.197 1.266 1.304 1.379

100 1.169 1.169 1.171 1.189 1.257 1.296 1.388

200 1.208 1.208 1.208 1.222 1.276 1.313 1.410

Table 6.10: Price of anchor-robustness PoARα% for various values of the anchoring target α, for
Γ = 1.

A biobjective perspective on makespan and anchor-robustness. When
solving AnchRobPSP, it might be in practice that the deadline M is dictated by
exogeneous factors and given to the decision maker. If so, the value of M is fixed
regardless of its impact on the anchoring criterion. Our claim is that information
on the impact of M on the anchoring criterion may be of great interest for the
decision maker, who could consider asking for a revision of the value of M .

By solving AnchRobPSP for various values of M we obtain a Pareto front,
where Pareto-optimal solutions of AnchRobPSP are represented in the solution
space for the two criteria. It is clear that the optimal value of AnchRobPSP
is non-decreasing w.r.t. M . An example is presented in Figure 6.7 on an ERC
instance with n = 60 jobs. While static-robust problem only provides one point of
the Pareto front, AnchRobPSP provides a wider variety of solutions, among which
the decision maker may pick its preferred one.

Examples of Gantt charts of four Pareto-optimal solutions are provided in
Figure 6.8. In every Gantt chart, jobs of H are in black. Solution S1 has makespan
Mmin, hence only a few jobs can be anchored (and since it is an ERC instance,
only jobs with no predecessors can be anchored). Solution S4 is a static-robust
schedule. Solutions S2 and S3 are other possible options. Note that the position
of S3 in the Pareto front indicates that any solution with more anchored jobs than
S3 has a makespan at least 9 units greater than the makespan of S3.

This approach gives a new way to fix the deadline M , by choosing an anchoring
target α, and setting M to the smallest value for which there exists a Pareto-
optimal solution with at least α% anchored jobs.

141

Chapter 6. Anchor-Robust Project Scheduling

300 310 320 330 340 350 360 370 380
0

10

20

30

40

50

60

S1

S2

S3

S4

Makespan of x

N
u
m

b
er

of
an

ch
or

ed
jo

b
|H
|

Figure 6.7: Pareto front makespan/anchoring criterion for an ERC instance with n = 60.

142

Chapter 6. Anchor-Robust Project Scheduling

(S1)

(S2)

(S3)

(S4)

Figure 6.8: Gantt charts of four solutions from the Pareto front. Anchored jobs are in black.

143

Chapter 6. Anchor-Robust Project Scheduling

Conclusion

Anchor-robustness was proposed as a concept standing between static-robust and
adjustable-robust approaches, to achieve a trade-off between guarantee on starting
times and cost of a solution, here corresponding to the schedule makespan. It led
to the definition of the AnchRobPSP problem.

In the present work we studied the structure of AnchRobPSP by exploiting both
the structure of the underlying project scheduling problem, and the properties of
box or budgeted uncertainty. Based on these structural properties, we analyzed the
computational complexity of the problem. AnchRobPSP was proven NP-hard for
budgeted uncertainty, while the corresponding adjustable-robust problem is solv-
able in polynomial time. This increase in complexity stems from the binary nature
of deciding whether a job is anchored or not, under the constraints imposed by the
uncertainty set and the deadline. We then designed a compact MIP reformulation
and algorithms. We emphasize that the proposed algorithmic tools, such as the
layered graph, are dedicated to the problem. The associated formulation (Lay)
appears to outperform state-of-the-art generic techniques, such as decision rules.
These results are good promises for the implementability of anchor-robustness as
a concept, through efficient algoritmic approaches for AnchRobPSP.

In the line of the complexity analysis of AnchRobPSP, an open question is the
complexity of the variant where the values L∆

ij are part of the input (or computable
in polynomial time) and with unit anchoring weights. Another perspective is to
further investigate mixed-integer programming techniques for the problem. This
is done in Part IV of the thesis, where new MIP formulations for AnchRobPSP
are proposed.

144

Chapter 7

The Anchor-Robust RCPSP:
exact and heuristic approaches

In this chapter, we study anchor-robustness for the Resource-Constrained Project
Scheduling Problem (RCPSP). The RCPSP is to find a minimum makespan sched-
ule for the jobs of a project under precedence constraints and scarce resource avail-
ability. By contrast with PERT Scheduling, the RCPSP is a classical problem
that is NP-hard and computationally challenging to solve in practice (see, e.g.,
(Artigues et al., 2008) for a survey). The RCPSP is ubiquitous in applications,
where it often appears with uncertain parameters as it can be expected from any
real-life problem. We focus on uncertainty in the processing times of the jobs
and propose an anchor-robust optimization approach, in the spirit of the general
concepts exposed in Chapter 2.

As pointed out in (Hazır and Ulusoy, 2020), research on robust optimization
for the RCPSP is rather scarce, compared to stochastic project scheduling. In
(Artigues et al., 2013) the authors studied a robust problem under a min regret
criterion. In (Bruni et al., 2017) the authors introduced the Adjustable-Robust
RCPSP, derived from the general concept of adjustable robustness from (Ben-Tal
et al., 2004). Sequencing decisions (corresponding to resource allocation decisions)
are fixed before uncertainty is known; by contrast the starting times of jobs adjust
to the uncertainty realization. The goal is to minimize the worst-case makespan.
As noted already in Chapter 6, adjustable-robustness outputs a worst-case make-
span, but it gives no schedule to decide in advance since starting times depend on
the uncertainty realization. However, finding a precomputed baseline schedule is
often required in applications to prepare the implementation of the schedule. This
motivates the study of an approach to compute a baseline solution with bounded
makespan, along with a subset of anchored decisions.

The main contributions of this chapter, corresponding to (Pass-Lanneau et al.,

145

Chapter 7. The Anchor-Robust RCPSP

2020), are the following. Anchored solutions are defined as a new concept in two-
stage robust optimization for the RCPSP. The Anchor-Robust RCPSP is defined,
to find a baseline schedule with bounded makespan, sequencing decisions, and
a maximum number of anchored jobs. The connection with Adjustable-Robust
RCPSP is pointed out. We show that these two problems can benefit from each
other, in order to find both a worst-case makespan and a baseline schedule. We
extend algorithmic tools from Chapter 6 and obtain a graph model and compact
MIP reformulations for adjustable-robustness and anchor-robustness in a unified
way. Heuristic algorithms are also proposed based on the same graph model. We
investigate numerical performance of the proposed compact reformulation for the
Adjustable-Robust RCPSP on instances based on the PSPLib. We point out that
the overhead computational effort for solving the Adjustable-Robust RCPSP, in
comparison with the deterministic RCPSP, is low. We follow on by investigat-
ing the efficiency of the proposed heuristic approaches to solve larger instances.
We then provide numerical results for the Anchor-Robust RCPSP, for both MIP
reformulation and heuristics. We highlight the good properties of anchor-robust
solutions for finding a trade-off between makespan and guarantee of starting times.

7.1 Preliminaries

Consider an instance of the RCPSP I = ((J,A, p), (rik)i∈J,k∈R, (Rk)k∈R). It is
formed with a precedence graph (J,A, p), with p ∈ RJ

+ the processing times of jobs,
and resource requirements (rik)i∈J,k∈R and resource capacity (Rk)k∈R). Given in-

stance I, the RCPSP is to find a schedule x ∈ RJ
+ satisfying precedence constraints

of (J,A, p) and resource constraints, so that the makespan xt is minimized.

Consider processing times uncertainty. Processing times have nominal values
p ∈ RJ

+ and their real value may be some p + δ, where deviation δ is assumed
to be lying in uncertainty set ∆ ⊆ RJ

+. In this chapter we consider budgeted

uncertainty. The budgeted uncertainty set associated with vector δ̂ ∈ RJ
+ and

integer Γ is ∆ = {δ = (δ̂iui)i∈J : u ∈ {0, 1}J ,
∑

i∈J ui ≤ Γ}. If Γ = 0, set ∆ is
reduced to the singleton {0}, and robust approaches reduce to the deterministic
RCPSP. Note that ∆ is defined as a discrete set, and not a polytope; a result from
(Ben-Tal et al., 2004) applicable to all robust approaches we consider, is that ∆
can be convexified without changing the solutions. If Γ = |J |, the convex hull of

set ∆ is the box uncertainty set Πi∈J [0, δ̂i], also known as interval uncertainty set.

Let I = ((J,A, p), (rik), (Rk)) denote the nominal RCPSP instance. Let also
Iδ = ((J,A, p+δ), (rik), (Rk)) be the instance where processing times are affected
by deviation δ ∈ ∆. A first attempt to account for uncertainty is to define the
Static-Robust RCPSP: given nominal instance I and set ∆, the problem is to find

146

Chapter 7. The Anchor-Robust RCPSP

a schedule x+ that is feasible for Iδ for every δ ∈ ∆, so as to minimize makespan
x+
t . The static-robust schedule x+ is likely to have a very large makespan. Note

in this case that changing the budget Γ has no impact on the price of robustness,
as formalized in the following observation.

Observation 7.1. For every budget Γ ∈ {1, . . . , |J |}, solutions of the Static-

Robust RCPSP for budgeted uncertainty set ∆ = {(δ̂iui)i∈J : u ∈ {0, 1}J ,
∑

i∈J ui ≤
Γ} are the same as solutions of the Static-Robust RCPSP for box uncertainty set

Πi∈J [0, δ̂i].

Proof. Let Γ < |J |. Clearly a static-robust solution for box uncertainty is also

static-robust for ∆ since ∆ ⊆ Πi∈J [0, δ̂i]. Conversely, assume that x is feasible for
uncertainty set ∆. Let (i, j) ∈ A. It holds that xj − xi ≥ pi + δi for every δ ∈ ∆.

In particular for every budget Γ ≥ 1, the uncertainty realization where δi = δ̂i is
in ∆. Hence xj − xi ≥ pi + δ̂i, and x is a schedule of (J,A, p + δ̂). Since δ̂ is an
upper-bound on the box uncertainty set, schedule x is a static-robust solution for
box uncertainty.

We mention that this result is not specific to the RCPSP problem, but from the
uncertainty being on the right-hand side of constraints. This observation motivates
the study of 2-stage robust approaches, where the schedule could be adapted to
uncertainty realization.

7.2 Anchor-Robust approach for the RCPSP

In this section we propose the concept of anchor-robustness for the RCPSP, based
on the general concepts of Chapter 2. We first recall the flow formulation for
the RCPSP, which serves as a basis for the proposed anchor-robust approach.
Anchored sets are then formally defined, along with the Anchor-Robust RCPSP.
Finally we highlight the connection with the Adjustable-Robust RCPSP from the
literature.

7.2.1 Flow formulation for the RCPSP

Let us first present the flow formulation for the RCPSP from the literature (Ar-
tigues et al., 2003). Let J2 = {(i, j), i, j ∈ J, i 6= j}. With a schedule x satisfying
resource constraints, one can associate a so-called resource flow f . The resource
flow is a collection (fk)k∈R of s−t flows in the graph (J, J2). Flow fk has value Rk,
and the quantity flowing through every job i ∈ J equals the resource requirement

147

Chapter 7. The Anchor-Robust RCPSP

rik. Intuitively, the flow fk represents how units of resource k are passed from a
job to another. If fkij > 0 for some k ∈ R, i.e., if job j uses some units of resource
k after completion of job i, then an extra precedence constraint xj − xi ≥ pi must
be satisfied by schedule x. To represent such extra precedence constraints, con-
sider vector σ ∈ {0, 1}J2

. Let Aσ = {(i, j) ∈ J2 : σij = 1}. Vector σ ∈ {0, 1}J2

is a sequencing decision (also called sufficient selection in the literature) associ-
ated with resource flow f if: (i) σ contains all original precedence constraints,
i.e., A ⊆ Aσ; (ii) σ contains all arcs corresponding to non-zero flow values, i.e.,
{(i, j) ∈ J2 : ∃ k ∈ R, fkij > 0} ⊆ Aσ. Using the resource flow, the following
formulation for the RCPSP was proposed in (Artigues et al., 2003):

min xt
s.t. xj − xi ≥ pi −M(1− σij) ∀i, j ∈ J2 (1)

σij = 1 ∀(i, j) ∈ A (2)

fkij ≤ min{rik, rjk}σij ∀i, j ∈ J2, k ∈ R (3)∑
j:(i,j)∈J2 fkij = r̃ik ∀k ∈ R, ∀i ∈ J ∪ {s} (4)∑
j:(j,i)∈J2 fkji = r̃ik ∀k ∈ R, ∀i ∈ J ∪ {t} (5)

fkij ≥ 0 ∀i, j ∈ J2, k ∈ R (6)

σij ∈ {0, 1} ∀i, j ∈ J2 (7)

xj ≥ 0 ∀j ∈ J (8)

where r̃ik = Rk if i = s or i = t, and r̃ik = rik otherwise, and M is an upper bound
on the optimal value. Constraint (1) imposes that vector x ∈ RJ

+ is a schedule

of (J,Aσ, p), M being a bigM value. Remark that for σ ∈ {0, 1}J2
and non-zero

processing times, the existence of a schedule x of (J,Aσ, p) implies the absence of
circuits in Aσ. Constraint (2) imposes that A ⊆ Aσ. Constraints (4)–(5) define
every (fkij)i,j∈J2 to be a flow in the complete graph (J, J2) and the quantity of
resource k going out of s (resp. through i ∈ J) to be equal to Rk (resp. rik).
Constraint (3) imposes that if a non-zero flow goes from i to j then there must be
a precedence relation from i to j in σ.

An example is provided in Figure 7.1 on an instance with 5 jobs. There is one
resource, with availability R = 2. On the left the precedence graph is represented,
with precedence arcs as black arrows. The resource consumption of jobs is given
into brackets in green. A feasible resource flow is represented with dotted green
arrows, and each arrow corresponds to a unit of flow. Hence the sequencing decision
is defined by Aσ = {(s, 1), (1, 2), (2, t), (s, 4), (4, 2), (2, 5), (5, t)}. On the right, a
feasible schedule of (J,Aσ, p) for pi = 1 for every i ∈ J .

148

Chapter 7. The Anchor-Robust RCPSP

s

1 2 3

4 5

t

[1] [2] [0]

[1] [1]

1
2

3
4

5

0 1 2 3

Figure 7.1: Example of resource flow for an instance of 5 jobs, and an associated feasible schedule.

Let S denote the set of all sequencing decisions, i.e.,

S = {σ ∈ {0, 1}J2

: ∃f such that (σ, f) satisfies (2)–(7)}.

Importantly, flow f does not interfere directly with schedule x but only implies
that σ is an element of S. Hence a solution of the RCPSP can be represented as
a pair (x, σ) with σ ∈ S and x a schedule of (J,Aσ, p).

The flow formulation is known to have a poor linear relaxation bound, but it is
compact and its size is independent from the time horizon (Koné et al., 2013). In
the sequel, it will be shown that the flow formulation can be used as the underlying
structure of robust formulations.

7.2.2 Anchored sets

We consider the following approach for 2-stage decisions. A baseline solution (x, σ)
is chosen in first stage, feasible for the instance I. Then, the real instance may
be Iδ: the schedule can be changed in second stage into a new schedule xδ of
(J,Aσ, p+δ), with sequencing decision σ unchanged. Note that it corresponds
to the idea of restricted reoptimization proposed in Section 2.2.4 of Chapter 2 to
handle reoptimization of NP-hard problems. The decision maker may also want
to guarantee starting times, so that the starting times of some jobs are the same
in x and xδ: this is done through the definition of anchored jobs.

Definition 7.1. Let (z, σ) be a solution of the RCPSP instance I. Let H ⊆ J .
The set H is anchored w.r.t. schedule z and sequencing decision σ if for every
δ ∈ ∆, there exists a schedule zδ of (J,Aσ, p+δ) such that zi = zδi for every i ∈ H.

We say equivalently that H is an anchored set or a subset of anchored jobs.
An anchored set H corresponds to jobs whose starting times are guaranteed in
the baseline schedule z: indeed for every realization in the uncertainty set, it is
possible to repair the baseline schedule z into a feasible schedule zδ of the new

149

Chapter 7. The Anchor-Robust RCPSP

instance (J,Aσ, p+δ) without changing the starting times of anchored jobs. We
mention that contrary to Chapter 6, the anchored set is in J . This allows for a
guarantee of the worst-case makespan by setting the final job t in the anchored
set.

For illustrative purpose, consider again the instance and the sequencing decision
of Figure 7.1. The corresponding graph (J,Aσ) is represented in Figure 7.2 at the
top. Consider the schedule z = (0, 0, 1.5, 3, 0.5, 3, 5) represented at the bottom of

Figure 7.2. Each job has pi = 1 and δ̂i = 1. The uncertainty budget is Γ = 1. Then
the set H = {1, 3, 5, t} is anchored w.r.t. z and σ. Indeed, for every uncertainty
realization, it is possible to modify the starting times of jobs 2 and 4 and recover a
feasible schedule of (J,Aσ, p+ δ). For example if job 2 is disrupted, it is sufficient
to left-shift jobs 2 and 4 of one time unit.

s

1 2 3

4 5

t

1

3

5

2

4

0 1 2 3 4 5

Figure 7.2: Graph (J,Aσ) (top) and schedule z such that H = {1, 3, 5, t} is anchored w.r.t. z
and σ when Γ = 1 (bottom).

In the sequel, we will consider anchored solutions given as triplets (z, σ,H),
formed with a solution (z, σ) of I with baseline schedule z and sequencing deci-
sion σ, and subset of jobs H anchored w.r.t. z and σ.

Static-robust solutions correspond exactly to solutions with anchored set H =
J . Indeed if J is anchored w.r.t. z and σ, then z is a schedule of (J,Aσ, p+δ) for
every δ ∈ ∆. Then (z, σ) is a solution of Iδ for every δ ∈ ∆: it is a static-robust
solution.

150

Chapter 7. The Anchor-Robust RCPSP

7.2.3 The Anchor-Robust RCPSP

Let us now define the optimization problem Anchor-Robust RCPSP:
Given RCPSP instance I = ((J,A, p), (rik)i∈J,k∈R, (Rk)k∈R) and a deadline M ≥ 0,
find a sequencing decision σ ∈ S, a baseline schedule z of (J,Aσ, p) with makespan
at most M , and a subset of jobs H ⊆ J , such that H ∪ {t} is anchored w.r.t. z
and σ, and the number of anchored jobs |H| is maximized.

The Anchor-Robust RCPSP can be seen as a robust 2-stage problem, and
written as the following mathematical program:

max min max |H|
σ ∈ S δ ∈ ∆ zδ schedule of (J,Aσ, p+δ)

z schedule of (J,Aσ, p) zδi = zi ∀i ∈ H
zt ≤M zδt = zt
H ⊆ J

The inner min/max problem has finite value |H| if the set H ∪ {t} is anchored
w.r.t. z and σ; otherwise it has infinite value. The Anchor-Robust RCPSP is thus
to find an anchored solution (z, σ,H∪{t}) where the makespan of z is bounded by
deadline M , and the size of H is maximized. Note that the final job t is forced to
be in the anchored set H∪{t}. This offers a guarantee on the worst-case makespan,
in the sense that zδt ≤M for every δ ∈ ∆.

The connection with static-robustness is as follows. There exists a solution
with anchored set H = J if and only if M ≥ Mstat, where Mstat is the optimal
value of the Static-Robust RCPSP. If M < Mstat a solution of the Anchor-Robust
RCPSP only has a subset of the jobs that are anchored, but of maximum size.

In the Anchor-Robust RCPSP, the schedule in second stage is subject to prece-
dence constraints only since the sequencing decision σ ∈ S is fixed. This is why
algorithmic tools from Chapter 6 can be used.

The Anchor-Robust RCPSP provides a baseline solution where decisions are
guaranteed in two ways. First, some starting times, i.e., starting times of jobs
in H, are not modified in second stage by definition of anchored sets. Second,
the sequencing decision σ is a first-stage decision and it is not to be modified
in second stage. We emphasize that fixing sequencing decision in advance can
be of practical interest. In applications, the sequencing decision may correspond,
e.g., to the sequence of operations performed by workers with specific skills or
equipment. They would prefer not to revise the order in which operations are
performed; by contrast, it may be acceptable to adapt some starting times. From
a computational point of view, sequencing decisions in the second stage would
lead to very difficult optimization problems. Namely, if the sequencing decision is

151

Chapter 7. The Anchor-Robust RCPSP

in second stage, even deciding if the starting time of a job can be guaranteed, is
NP-hard. This corresponds to the NP-hardness results obtained in Chapter 5.

7.2.4 Connection with the Adjustable-Robust RCPSP

An adjustable-robust approach for the RCPSP was proposed in (Bruni et al., 2017).
First stage decision is the sequencing decision σ ∈ S; schedule x is decided in
second stage. The Adjustable-Robust RCPSP writes as the following mathematical
program:

min max min xδt
σ ∈ S δ ∈ ∆ s.t. xδ schedule of (J,Aσ, p+δ)

Let QΓ(σ) denote the inner max-min problem, i.e., the worst-case makespan for
sequencing decision σ ∈ S. The Adjustable-Robust RCPSP is then to minimize
QΓ(σ) for σ ∈ S.

Contrary to the anchor-robust approach, the Adjustable-Robust RCPSP does
not include the computation of a baseline schedule. However the Adjustable-
Robust RCPSP is related to anchored sets by the following observation.

Observation 7.2. Let σ ∈ S. The worst-case makespan QΓ(σ) is equal to the
minimum makespan of z, where (z, σ, {t}) is an anchored solution.

Proof. By definition QΓ(σ) is the minimum value M such that for every δ ∈ ∆,
there exists a schedule xδ of (J,Aσ, p+δ) with makespan at most M . Equivalently,
it is the minimum M such that z is a schedule of (J,Aσ, p) with zt = M , and {t}
is anchored w.r.t. z and σ, by definition of anchored solutions.

A consequence of Observation 7.2 is that there exists a solution of the Anchor-
Robust RCPSP if and only if M ≥ Madj, where Madj is the optimal value of
the Adjustable-Robust RCPSP. The singleton {t} can be anchored if and only if
M ≥ Madj. Note that even with deadline M = Madj, there exists solutions with
anchored set H∪{t}, H 6= ∅, as illustrated in Section 7.6. That is, it is possible to
guarantee a non-trivial subset of starting times without increasing the worst-case
makespan Madj.

The Adjustable-Robust RCPSP and the Anchor-Robust RCPSP can benefit
from each other in the following way. First the Adjustable-Robust RCPSP can be
solved to determine a robust worst-case makespan Madj. Then the Anchor-Robust
RCPSP can be solved with deadline Madj to determine schedule z∗ satisfying this
deadline, sequencing decision σ∗, along with an anchored set H∗.

152

Chapter 7. The Anchor-Robust RCPSP

Let us review the approaches proposed in the literature to solve the Adjustable-
Robust RCPSP. In (Bruni et al., 2017) the problem was introduced and a Benders
decomposition was proposed. The computation of QΓ(σ) for fixed σ appears as
subproblem. The authors then focused on budgeted uncertainty and proved that
QΓ(σ) can be computed in polynomial time by dynamic programming in that
case. Note that it is the same problem solved in (Minoux, 2007a). The authors
proposed enhancements to the Benders decomposition algorithm, evaluated on
instances built upon the PSPLib. In (Bruni et al., 2018) the same authors inves-
tigated two new methods: a primal and a dual one. The dual method has the
same subproblem as in (Bruni et al., 2017) but other cuts associated with dual
information are added on the fly. The primal method is a column-and-constraint
generation scheme inspired from (Zeng and Zhao, 2013). Computational compar-
ison of the two decomposition approaches of (Bruni et al., 2018) and the one of
(Bruni et al., 2017) is reported. In (Bold and Goerigk, 2020) a compact refor-
mulation for the Adjustable-Robust RCPSP is proposed, independently from the
present work.

7.3 Graph model and compact MIP

reformulations

In this section, we extend the layered graph from Chapter 6 to characterize an-
chored sets and solutions of the Anchor-Robust RCPSP. Compact MIP reformula-
tions are deduced for the Anchor-Robust RCPSP and for the Adjustable-Robust
RCPSP. Heuristics based on the graph model are also proposed.

7.3.1 Layered graph

Let us propose a graph model based on the layered graph. Let ∆ be the bud-
geted uncertainty set defined by deviation δ̂ ∈ RJ

+ and budget Γ, and let nominal
processing times be p ∈ RJ

+.

Let (J,A, p) be a precedence graph. For H ⊆ J , consider the layered graph
Glay(A, H). There is no difference with the definition of Chapter 6, except that
there are additional vertical arcs between copies of t if t ∈ H. Let us recall the
construction of Glay(A, H). It contains Γ + 1 layers, indexed from 0 to Γ. Each
layer γ contains a copy of the set of jobs, denoted by iγ, i ∈ J . The arc-set of
the layered graph contains three types of arcs. Horizontal arcs are arcs (iγ, jγ) for
every γ and (i, j) ∈ A, with arc-weights pi. Transversal arcs are arcs (iγ+1, jγ) for

153

Chapter 7. The Anchor-Robust RCPSP

every γ < Γ and (i, j) ∈ A, with arc-weights pi + δ̂i. Vertical arcs are arcs (jγ, jΓ)
for every j ∈ H, γ < Γ, with arc-weights 0.

Note that the layered graph has all information from ∆, since the number of
layers depends on the uncertainty budget Γ, and deviations δ̂ appear on arc-weights
of transversal arcs. Note also that if the graph (J,A) is acyclic, then Glay(A, H)
is acyclic. In Chapter 6 the set H was defined as a subset of J and not J , but all
results extend to the case of a set H containing s or t.

Let us now derive a characterization of anchored sets for the RCPSP. It follows
directly from Definition 7.1 and Theorem 6.2 that

Theorem 7.1. Let (z, σ) be a solution of the RCPSP instance I. Let H ⊆ J .
The set H is anchored w.r.t. sequencing decision σ and schedule z if and only if
there exists x a schedule of Glay(Aσ, H) such that xΓ

i = zi for every i ∈ J .

Combining Observation 7.2 and Theorem 7.1, it follows that

Corollary 7.1. For every σ ∈ S, the worst-case makespan QΓ(σ) is equal to the
minimum value of xΓ

t for x a schedule of Glay(Aσ, {t}).

Hence the layered graph can be used to compute the worst-case makespan
QΓ(σ), since the minimum value of xΓ

t for x a schedule of Glay(Aσ, {t}) is equal to
the length of the longest sΓ−tΓ path in Glay(Aσ, {t}). Recall that Glay(Aσ, {t}) is
acyclic when (J,Aσ) is acyclic. Such longest path can be computed in polynomial
time by dynamic programming.

7.3.2 Compact MIP reformulations

Let us now introduce new MIP reformulation for the Anchor-Robust and Adjustable-
Robust RCPSP. The formulations involve the following decision variables:
– variables f and σ as in the flow formulation for the RCPSP;
– continuous variables xγj ≥ 0 for every j ∈ J , γ ∈ {0, . . . ,Γ};
– for the Anchor-Robust RCPSP, binary variables h ∈ {0, 1}J .

Theorem 7.2. The Anchor-Robust RCPSP under budgeted uncertainty admits
the following compact MIP reformulation (Fanch).

154

Chapter 7. The Anchor-Robust RCPSP

(Fanch) max
∑

i∈J hi
s.t. xγj − x

γ
i ≥ pi −M(1− σij) ∀i, j ∈ J2, ∀γ ≤ Γ (a)

xγj − x
γ+1
i ≥ pi + δ̂i −M(1− σij) ∀i, j ∈ J2, ∀γ < Γ (b)

xΓ
t − x

γ
t ≥ 0 ∀γ < Γ (c)

xΓ
j − x

γ
j ≥ −M(1− hj) ∀j ∈ J , ∀γ < Γ (d)

xΓ
t ≤M (e)

σ, f satisfy (2)–(5)

fkij ≥ 0 ∀i, j ∈ J2, k ∈ R (6)

σij ∈ {0, 1} ∀i, j ∈ J2 (7)

xγj ≥ 0 ∀j ∈ J , ∀γ ≤ Γ (8)

hj ∈ {0, 1} ∀j ∈ J (9)

Proof. Constraints (2)–(7) ensure that σ ∈ S. By Theorem 7.1, the Anchor-
Robust RCPSP is to find a set H, a sequencing decision σ, and a schedule x of
Glay(Aσ, H∪{t}) such that xΓ

t ≤M . Indeed if x is a schedule of Glay(Aσ, H∪{t}),
then xΓ is a schedule of (J,Aσ, p) due to horizontal arcs in layer Γ: hence xΓ will
be the baseline schedule. Let h ∈ {0, 1}J be the incidence vector of set H. It
remains to show that (a)–(d) correctly enforce constraints from Glay(Aσ, H ∪{t}).
For σij = 1, constraints (a) (resp. (b)) enforce horizontal arcs (resp. transversal
arcs) constraints. Constraints (c) enforce vertical arc constraints between copies
of t. For hj = 1, constraints (d) enforce vertical arc constraints between copies of
j. Hence it suffices to check that for σij = 0 (resp. hj = 0) constraints (a)–(b)
(resp. constraints (d)) are valid for any schedule x. Note first that the deadline
constraint (e) and vertical arc constraints (c) imply xγt ≤ M for every γ ≤ Γ.

Thus xγ+1
i + pi + δ̂i ≤ M for every γ < Γ, and xγi + pi ≤ M for every γ ≤ Γ.

Hence xγi + pi− xγj ≤ xγi + pi ≤M , and constraint (a) is valid if σij = 0. Similarly

xγ+1
i + pi + δ̂i − xγj ≤ xγ+1

i + pi + δ̂i ≤ M , and constraint (b) is valid if σij = 0.
Finally xγj − xΓ

j ≤M , and constraint (d) is valid if hj = 0.

Note that deadline M is used as a common bigM value in constraints (a), (b)
and (d).

A similar result holds for the Adjustable-Robust RCPSP.

Theorem 7.3. The Adjustable-Robust RCPSP under budgeted uncertainty admits
the following compact MIP reformulation (Fadj), where M is an upper-bound on
the optimal value.

155

Chapter 7. The Anchor-Robust RCPSP

(Fadj) min xΓ
t

s.t. xγj − x
γ
i ≥ pi −M(1− σij) ∀i, j ∈ J2, ∀γ ≤ Γ (i)

xγj − x
γ+1
i ≥ pi + δ̂i −M(1− σij) ∀i, j ∈ J2, ∀γ < Γ (ii)

xΓ
t − x

γ
t ≥ 0 ∀γ < Γ (iii)

σ, f satisfy (2)-(5)

fkij ≥ 0 ∀i, j ∈ J2, k ∈ R (6)

σij ∈ {0, 1} ∀i, j ∈ J2 (7)

xγj ≥ 0 ∀j ∈ J , ∀γ ≤ Γ (8)

Proof. Constraints (2)–(7) model that σ ∈ S. By Corollary 7.1 the worst-case
makespan QΓ(σ) is the minimum value of xΓ

t for x a schedule of Glay(Aσ, {t}). It
suffices to show that (i)-(ii)-(iii) correctly enforce constraints from Glay(Aσ, {t}).
The proof is very similar as the one of Theorem 7.2. For σij = 1, constraints (i)
(resp. (ii)) enforce horizontal arcs (resp. transversal arcs) constraints. Constraints
(iii) enforce vertical arc constraints between copies of t. Hence it suffices to check
that for σij = 0 constraints (i)–(ii) are valid for any optimal schedule x. The
value M is an upper bound hence xΓ

t ≤ M can be assumed w.l.o.g. Vertical arc

constraints (iii) then imply xγt ≤M for every γ ≤ Γ. Thus xγ+1
i + pi + δ̂i ≤M for

every γ < Γ, and xγi + pi ≤M for every γ ≤ Γ. Hence xγi + pi−xγj ≤ xγi + pi ≤M ,

and constraint (i) can be imposed w.l.o.g. if σij = 0. Similarly xγ+1
i +pi+ δ̂i−xγj ≤

xγ+1
i + pi + δ̂i ≤M , and constraint (b) can be imposed w.l.o.g. if σij = 0.

Note that M can be set to M =
∑

i∈J pi + δ̂i.

The same compact reformulation for the Adjustable-Robust RCPSP was ob-
tained independently in (Bold and Goerigk, 2020).

We emphasize that obtaining such compact reformulations is rather an excep-
tion than a general rule for robust 2-stage problems. Hence the Anchor-Robust
RCPSP and the Adjustable-Robust RCPSP can be solved directly by MIP solv-
ing. Besides this formulation, the literature for the Adjustable-Robust RCPSP
contains only decomposition methods based on exponential formulations. Even
if such reformulations have reasonable (polynomial) size, they become difficult to
solve for off-the-shelf MIP solvers when the size of the instance increases. This
motivates the design of heuristic algorithms.

7.3.3 Heuristic algorithms for the Adjustable-Robust
RCPSP

Let us propose a framework for designing heuristics for the Adjustable-Robust
RCPSP. Consider a heuristic algorithm H to solve the (deterministic) RCPSP; it

156

Chapter 7. The Anchor-Robust RCPSP

is assumed that when applied to instance I, algorithm H outputs a sequencing
decision H(I) = σ̂ ∈ S. The heuristic algorithm H can be used to design the
following heuristic AdjΓ(H) for the Adjustable-Robust RCPSP:

Algorithm 3: Heuristic AdjΓ(H) for the Adjustable-Robust RCPSP

Data: Instance I, set ∆ with budget Γ, algorithm H
Let σ̂ := H(I);
Let QΓ(σ̂) := longest sΓ−tΓ path in Glay(Aσ̂, {t});
return solution σ̂ with value QΓ(σ̂) ;

Algorithm AdjΓ(H) has complexity CH + O((|J | + |A|)Γ) where CH is the
complexity of algorithm H. Indeed the computation of QΓ(σ̂) can be done by
dynamic programming since Glay(Aσ̂, {t}) is acyclic. The vertex-set (resp. arc-
set) of Glay(Aσ̂, {t}) has size O(|J |Γ) (resp. O(|A|Γ)) leading to longest path
computation complexity O((|J |+ |A|)Γ).

Let us now present a class of heuristic algorithms for the RCPSP to instantiate
algorithm H. They are based on Parallel Schedule Generation Scheme (Parallel
SGS) and priority rules. We refer to (Kolisch and Hartmann, 1999) for details
and references on heuristic algorithms for the RCPSP. In Parallel SGS, a feasible
schedule is built incrementally by time incrementation. At current time, the set of
eligible jobs is formed with all jobs whose predecessors in (J,A, p) are scheduled
and completed, and such that at current time there is enough resources available
to start the job. A job is selected for the eligible set, and scheduled. If the eligible
set is empty, time is incremented to the next date where a job completes.

To select a job from the eligible set, a common method is to use priority rules.
We consider static priority rules that are computed before Parallel SGS is executed.
In that case, every job is given a priority π(i). When a job is to be selected from
the eligible set, the job with highest priority π(i) is selected. In the sequel, a
total of 7 priority rules are considered, a trivial one and 6 priority rules from the
literature:

• Trivial rule (ID): π(i) is the index of job i
• Shortest Processing Time (SPT): π(i) = −pi
• Most Total Successors (MTS): π(i) is the number of successors in the tran-

sitive closure of (J,A)
• Latest Finish Time (LFT): π(i) = x̄i + pi where x̄ is the latest schedule of

(J,A, p) with minimum makespan
• Latest Starting Time (LST): π(i) = x̄i
• Minimum Slack (MSLK): π(i) = −(x̄i − xi), where x is the earliest schedule

of (J,A, p)
• Greatest Rank Positional Weight (GRPW): π(i) = pi +

∑
j:(i,j)∈A pj

Importantly, ParallelSGS with priority rule π can easily be executed so that it

157

Chapter 7. The Anchor-Robust RCPSP

outputs a resource flow, and thus a sequencing decision σ̂π ∈ S. This was done,
e.g., in (Artigues et al., 2003). Let Hπ denote the algorithm corresponding to
Parallel SGS with priority π. Depending on the instance, it is not always the same
priority rule that yields the best QΓ(σ̂π) value. Consider the following heuristic,
denoted by BestRule:

Algorithm 4: Heuristic BestRule for the Adjustable-Robust RCPSP

Data: Instance I, set ∆ with budget Γ
for priority rule π in {ID, SPT, MTS, LFT, LST, MSLK, GRPW} do

Let σ̂π, QΓ(σ̂π) be the output of AdjΓ(Hπ) ;
end
Let π∗ := arg minπQΓ(σ̂π) ;
return solution σ̂π

∗
with value QΓ(σ̂π

∗
);

Note that the selected sequencing decision is the one that gives the best worst-
case makespan value for the considered uncertainty set. Namely, the output of the
BestRule heuristic depends on the uncertainty budget Γ.

7.3.4 Heuristic for the Anchor-Robust RCPSP

Due to the connection between Adjustable-Robust RCPSP and Anchor-Robust
RCPSP, it can be expected that solving Anchor-Robust RCPSP will be computa-
tionally challenging, and heuristics will be needed to solve medium-size instances.
Note that in the MIP reformulations, the formulation for Anchor-Robust RCPSP
features the same variables as that of the Adjustable-Robust RCPSP, plus addi-
tional binary variables h ∈ {0, 1}J . Let us now propose a MIP-based heuristic for
solving the Anchor-Robust RCPSP.

Consider the case where the deadline M is computed by solving the Adjustable-
Robust RCPSP in a first phase, i.e., M = QΓ(σ̂) for some sequencing decision
σ̂ ∈ S. This can be done through the MIP formulation or a heuristic algorithm
such as BestRule.

Note first that the knowledge of σ̂ readily gives a feasible solution for the
Anchor-Robust RCPSP with deadline M = QΓ(σ̂). Indeed with x the earliest
schedule of Glay(Aσ, {t}), it holds that (xΓ, σ̂, {t}) is an anchored solution with
baseline schedule xΓ respecting deadline xΓ

t ≤M . In general, the optimal solution
of the Anchor-Robust RCPSP (z∗, σ∗, H∗ ∪{t}) can be with σ∗ 6= σ̂. Consider the
following heuristic, which is to solve the Anchor-Robust RCPSP while enforcing
σ∗ = σ̂:

158

Chapter 7. The Anchor-Robust RCPSP

Algorithm 5: Heuristic FixedSequence for the Anchor-Robust RCPSP

Data: Instance I, set ∆ with budget Γ, sequencing decision σ̂, deadline
M = QΓ(σ̂)

Let (x∗, H∗) := arg max |H|
s.t. H ⊆ J , x schedule of Glay(Aσ̂, H) with xΓ

t ≤M ;

return solution (x∗Γ, σ̂, H∗);

The maximization step can be done by adapting the MIP from Theorem 7.2 to
fixed sequencing decision σ̂. That is, (x∗, H∗) is an optimal solution to the MIP
formulation

max
∑

i∈J hi
s.t. xγj − x

γ
i ≥ pi ∀(i, j) ∈ Aσ̂, ∀γ ≤ Γ

xγj − x
γ+1
i ≥ pi + δ̂i ∀(i, j) ∈ Aσ̂, ∀γ < Γ

xΓ
t − x

γ
t ≥ 0 ∀γ < Γ

xΓ
j − x

γ
j ≥ −M(1− hj) ∀j ∈ J , ∀γ < Γ

xΓ
t ≤M

xγj ≥ 0 ∀j ∈ J , ∀γ ≤ Γ

hj ∈ {0, 1} ∀j ∈ J

This is an instance of AnchRobPSP. While the problem is still NP-hard, it is
easier to solve than the Anchor-Robust RCPSP because there are no sequencing
decision variables. In the case where σ̂ is obtained by the BestRule heuristic, the
FixedSequence heuristic is referred to as the BestRuleSequence heuristic.

159

Chapter 7. The Anchor-Robust RCPSP

In this section we proposed exact and heuristic approaches to both the Adjus-
table-Robust and the Anchor-Robust RCPSP. In Figure 7.3 these approaches are
summarized. For each of them, we indicate the main tools involved in italic, and
the reference to the corresponding section for computational results.

Adjustable-Robust RCPSP Anchor-Robust RCPSP

minimize worst-case makespan maximize the number of anchored jobs

under deadline constraint

Exact MIP reformulation (Fadj) MIP reformulation (Fanch)

flow formulation, layered graph flow formulation, layered graph

Section 7.4 Section 7.6

Heuristic BestRule (BR) FixedSequence/BestRuleSequence (BRS)

ParallelSGS, layered graph BestRule, MIP for AnchRobPSP

Section 7.5 Section 7.7

Figure 7.3: Proposed exact and heuristic approaches to Adjustable-Robust and Anchor-Robust
RCPSP, and associated section for numerical results.

160

Chapter 7. The Anchor-Robust RCPSP

7.4 Computational results: MIP for

Adjustable-Robust RCPSP

In this section numerical performances of the compact reformulation obtained in
Section 7.3.2 for the Adjustable-Robust RCPSP are discussed.

7.4.1 Instances and settings

The instances are built upon RCPSP instances from the PSPLib. The number
of jobs is n ∈ {30, 60, 90, 120}. The instances with n = 30 jobs are the same as
(Bruni et al., 2017, 2018). For fixed n, there are 480 RCPSP instances. There are
4 resources types (|R| = 4). The instances differ through three parameters:
– the network complexity NC ∈ {1.5, 1.8, 2.1} corresponding to the average degree
of jobs in the precedence graph;
– the resource factor RF ∈ {0.25, 0.50, 0.75, 1} indicating the number of resources
used by a job;
– the resource strength RS ∈ {0.20, 0.50, 0.70, 1} quantifying the size of resource
conflicts.

Regarding uncertainty, deviation is defined by δ̂ = 0.5p and the uncertainty
budget is Γ ∈ {3, 5, 7}. This leads to 1440 instances for each value of n. The case
of Γ = 0, corresponding to deterministic RCPSP, will also be considered.

The MIP formulation (Fadj) has been implemented using Julia 0.6.2, with JuMP
0.18.5. It is solved with CPLEX 12.8 on a PC under Windows 10 with Intel Core
i7-7500U CPU 2.90GHz and 8 Go RAM. The upper boundM is set to

∑
i∈J(pi+δ̂i).

The time limit is set to 1200 seconds.

In the sequel we report averaged results. Detailed computational results can
be found in the Appendix, page 235.

7.4.2 Performance of (Fadj) and impact of parameters on
small instances

Let us first consider instances with n = 30 jobs, as these small instances were
considered in the literature (Bruni et al., 2017, 2018). In this section computational
results are presented and the impact of parameters is studied to identify the hardest
instances to solve with the considered formulation.

7.4.2.1 Impact of the budget

Let us first present computational results and analyze the impact of uncertainty
budget Γ. In Table 7.1 the following results are reported for Γ = 3, 5, 7:

161

Chapter 7. The Anchor-Robust RCPSP

– #solved: the number of instances solved to optimality within time limit;
– time: the computation time averaged on instances solved to optimality, in sec-
onds;
– #unsolved: the number of instances not solved to optimality within time limit;
– gap: the final gap averaged on instances not solved to optimality.

Γ #solved time(s) #unsolved gap

3 345 39.53 135 19.26%

5 344 44.65 136 19.01%

7 337 50.98 143 19.17%

all 1026 45.01 414 19.15%

Table 7.1: Performance of (Fadj) depending on the budget Γ for n = 30 jobs.

Note first that direct implementation of the MIP reformulation allows us to
solve 1026 instances over the total number of 1440 instances. The impact of the
uncertainty budget appears to be limited: when Γ is increased, the number of
solved instances and average computation time smoothly deteriorate.

The performance of (Fadj) can be compared to state-of-the-art methods from
the literature, that are decomposition methods of (Bruni et al., 2017, 2018). The
authors compare three methods; the Primal Method from (Bruni et al., 2018) re-
sults to be the more efficient of the three. The Primal Method solves 767 instances
out of 1440 within the time limit of 1200 seconds. The average time for solved
instances is 113,13 seconds. The average final gap for unsolved instances is 13,48%.
Consequently, the MIP reformulation appears to be competitive with state-of-the-
art decomposition methods. We acknowledge that we did not re-implement and
run the decomposition algorithms from (Bruni et al., 2017, 2018). The compari-
son in terms of computation time of our compact reformulation and decomposition
approaches is thus limited in significance. However the proposed approach is prac-
tically attractive since the implementation of a compact MIP formulation is much
easier than the implementation of decomposition methods, where convergence is-
sues may arise.

7.4.2.2 Impact of PSPLib parameters

Let us now comment on the impact of benchmark parameters NC, RF, and RS. In
Table 7.2, we report for each value of parameter NC, RF and RS, the same entries
as for Table 7.1 for all budgets Γ = 3, 5, 7.

162

Chapter 7. The Anchor-Robust RCPSP

#solved time(s) #unsolved gap

NC 1.5 328 42.83 152 18.78%

NC 1.8 343 36.82 137 20.00%

NC 2.1 355 54.92 125 18.65%

RF 0.25 360 6.49 0 -

RF 0.5 276 68.46 84 13.46%

RF 0.75 218 67.38 142 20.29%

RF 1 172 59.61 188 20.83%

RS 0.2 107 88.05 253 27.99%

RS 0.5 229 90.84 131 5.66%

RS 0.7 330 42.11 30 3.48%

RS 1 360 5.71 0 -

Table 7.2: Performance of (Fadj) depending on PSPLib parameters for n = 30 jobs.

The results show that parameter NC has a limited impact on the performance
of the compact reformulation in terms of the number of instances solved, time and
gap. By contrast, resource parameters RF and RS have an important impact, the
hardest instances being for high RF and low RS. It corresponds to the instances
where jobs use resources of different types (high RF) but instances are not highly
disjunctive (low RS). Note that all instances with RF = 0.25 or RS = 1.0 are
solved optimally; instances with RS ≥ 0.5 are solved with small final gap, 5.66%
on average.

7.4.2.3 Overhead computational price of adjustable robustness

In this section, we assess numerically the overhead computational effort that is
necessary to solve the Adjustable-Robust RCPSP, in comparison with the deter-
ministic RCPSP. Our claim is that (Fadj) inherits from the weakness of the flow
formulation for the RCPSP.

Recall that the deterministic RCPSP corresponds to the case Γ = 0, and (Fadj)
coincides with the flow formulation for the RCPSP in that case. The 480 instances
of the deterministic RCPSP are solved with the MIP formulation (Fadj) and Γ = 0.

In Figure 7.4, the percentage of solved instances is represented depending on
computation time, for the flow formulation relative to the deterministic RCPSP,
and for the formulation (Fadj) with budget Γ = 3, 5, 7.

163

Chapter 7. The Anchor-Robust RCPSP

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

10

20

30

40

50

60

70

80

Time (s)

%
o
f

so
lv

ed
in

st
an

ce
s

(o
u

t
of

4
8
0)

Flow formulation

Formulation (Fadj) with Γ = 3

Formulation (Fadj) with Γ = 5

Formulation (Fadj) with Γ = 7

Figure 7.4: Percentage of solved instances over time, for budgets Γ = 0, 3, 5, 7.

It can be observed that the proportion of solved instances is quite similar for
Γ = 3, 5, 7 or for the deterministic RCPSP. For all of them, 60% of instances are
solved within 100 seconds. Then a plateau is observed, since remaining instances
are hard. The overhead computation effort is represented by the offset of robust
curves w.r.t. the deterministic one.

7.4.3 Performance of (Fadj) on larger instances

In this section we provide insights on the scalability of the MIP when the number
of jobs n is increased. The analysis from Section 7.4.2 led to the identification of
parameters with the most influence on the performance of the MIP. In particular
instances with RF ≤ 0.5 and RS = 1 are the most efficiently solved for n = 30
jobs. The MIP is solved for instances with such parameters and a larger number
of jobs (n = 30, 60, 90).

In Table 7.3 are reported the same entries as in Table 7.1 and a new one:
– #noSol: the number of instances where no feasible solution was found by MIP
within the time limit.

164

Chapter 7. The Anchor-Robust RCPSP

n Γ #solved time(s) #unsolved gap #noSol

30 3 60 2.04 0 - 0

30 5 60 3.69 0 - 0

30 7 60 5.11 0 - 0

60 3 60 57.76 0 - 0

60 5 60 79.08 0 - 0

60 7 60 104.14 0 - 0

90 3 59 272.36 1 20.26% 0

90 5 54 424.80 6 25.09% 0

90 7 42 471.12 13 40.46% 5

Table 7.3: Performance of (Fadj) for the 60 instances with RF ≤ 0.5 and RS = 1.

While instances with n = 30 are very efficiently solved, instances with n = 90
with the same parameters are not all solved within the time limit of 1200 seconds.
Note that for five instances with n = 90 and Γ = 7, the MIP solver does not find
a feasible solution. For such instances, no optimality gap is available. The same
behavior appears on all tested instances with n = 120 jobs, for which results are
unreported. The results show that even for instance classes that are very easy for
small size (n = 30), the MIP fails for medium-size instances.

7.5 Computational results: Heuristics for

Adjustable-Robust RCPSP

In this section, numerical performance of heuristics for the Adjustable-Robust
RCPSP is investigated.

7.5.1 Quality evaluation of priority rules

Let us first evaluate priority rules on instances with n = 30 jobs. A first question
is the relevance of priority rules that were designed for the deterministic RCPSP;
a second one is the relevance of applying the BestRule heuristic instead of only
one priority rule. Let us denote by Q∗Γ the optimal value of the Adjustable-Robust
RCPSP for budget Γ. Let us denote by QΓ(H) and QΓ(BR) the value of heuristic
AdjΓ(H) and BestRule heuristic respectively.

165

Chapter 7. The Anchor-Robust RCPSP

7.5.1.1 Correlation in quality between deterministic and robust
setting

Let us address the first question: does a good heuristic H for the RCPSP yield a
good heuristic AdjΓ(H) for the Adjustable-Robust RCPSP?

Consider the instances with n = 30 jobs where the optimal values Q∗Γ, Γ =
0, 3, 5, 7 have been found by solving the MIP. The question is to assess numerically

the correlation between the gaps Gap0(H) =
Q0(H)−Q∗0
Q0(H)

and GapΓ(H) =
QΓ(H)−Q∗Γ
QΓ(H)

,

i.e., the quality ofH for the RCPSP and the quality of AdjΓ(H) for the Adjustable-
Robust RCPSP.

For budgets Γ = 3, 5, 7 we consider the data points formed with the gaps
Gap0(H) and GapΓ(H) on all solved instances, for each heuristic H based on
one of the 7 priority rules presented in Section 7.3.3. In Table 7.4 the Pearson
correlation coefficient between these gaps, computed with Julia function cor(), is
reported for budgets Γ = 3, 5, 7. (For each value of Γ, the number of points is thus
seven times the number of instances solved for both budget Γ and budget 0.) In
Figure 7.5 we represent the data points in the 2D space with first axis Gap0 and
second axis GapΓ.

Γ #points Correl. Coeff. between GapΓ and Gap0

3 2408 0.9882

5 2387 0.9797

7 2345 0.9838

Table 7.4: Correlation coefficient between optimality gaps in deterministic and robust cases for
instances with n = 30 jobs.

−10 0 10 20 30 40
−10

0

10

20

30

40

Gap0

G
ap

Γ
,

Γ
=

3

ID
SPT
MTS
LFT
LST

MSLK
GRPW

−10 0 10 20 30 40
−10

0

10

20

30

40

Gap0

G
ap

Γ
,

Γ
=

5

ID
SPT
MTS
LFT
LST

MSLK
GRPW

−10 0 10 20 30 40
−10

0

10

20

30

40

Gap0

G
ap

Γ
,

Γ
=

7

ID
SPT
MTS
LFT
LST

MSLK
GRPW

Figure 7.5: Heuristic solutions plotted in (Gap0,GapΓ) space, for Γ = 3, 5, 7, for instances with
n = 30 jobs.

In Table 7.4 correlation coefficients are around 0.98, which indicates an impor-
tant correlation between Gap0 and GapΓ. Indeed uncorrelated data would lead
to a coefficient correlation of 0; affinely related data would lead to a correlation

166

Chapter 7. The Anchor-Robust RCPSP

coefficient of 1. This result justifies the use of priority rules that were studied in
the literature for the minimization of the makespan in the deterministic RCPSP
setting.

7.5.1.2 Relevance of BestRule

We now investigate the second question, which is the relevance of choosing the
best priority rule, rather than only one.
Given an instance and heuristic algorithm H, let 4toBR denote the gap of H to
BestRule solution, defined as QΓ(H)−QΓ(BR)

QΓ(BR)
. In Table 7.5 are reported for each

priority rule based algorithm H:
– #isBR: the number of instances (over 1440) for which the priority rule gives the
best value, i.e., QΓ(H) = QΓ(BR);
– 4toBR avg: the average value of 4toBR on all instances;
– 4toBR max: the maximum value of 4toBR on all instances.

Priority rule #isBR 4toBR avg 4toBR max

ID 703 +2.71% +37.00%

SPT 540 +4.85% +31.57%

MTS 959 +1.17% +13.40%

LFT 381 +8.38% +50.00%

LST 398 +8.32% +50.00%

MSLK 866 +2.48% +29.46%

GRPW 446 +6.27% +48.27%

Table 7.5: Quality of priority rules w.r.t. BestRule on the 1440 instances with n = 30 jobs.

It can be observed that every priority rule is the best priority rule for some
instances (at least 381 out of 1440 for LFT). Priority rules MTS and MSLK have
the best results in terms of #isBR and 4toBR avg values. However, the make-
span given by MTS is up to +13.4% more than the BestRule makespan for some
instances, as shown by 4toBR max. The BestRule heuristic thus has a better
performance in average on the benchmark.

7.5.2 Performance of BestRule heuristic

Let us now present insights on the performance of the BestRule heuristic, in terms
of computation time and solution quality.
First the BestRule heuristic is evaluated on all instances, i.e., with n = 30, 60, 90, 120
jobs. Let BR denote the value of BestRule heuristic. Since some of these instances
are difficult to solve through the MIP formulation, the linear bound Rel (i.e., the

167

Chapter 7. The Anchor-Robust RCPSP

optimal value of the continuous relaxation of the MIP) is used as a lower bound
for the problem.

In Table 7.6 are given, for each value of n = 30, 60, 90, 120 and Γ = 3, 5, 7:
– BR time: the computation time for BestRule heuristic;
– Gap: the gap BR−Rel

BR
of BestRule to the linear bound Rel;

– Rel time: the computation time for the linear bound Rel.

n Γ BR time (s) Gap BR−Rel
BR Rel time (s)

30 3 0.11 10.33% 0.15

30 5 0.11 10.05% 0.17

30 7 0.12 10.37% 0.21

60 3 0.21 9.54% 0.58

60 5 0.27 9.24% 0.73

60 7 0.28 9.15% 0.94

90 3 0.40 9.18% 1.59

90 5 0.32 9.03% 1.87

90 7 0.48 8.97% 2.42

120 3 0.47 21.62% 4.86

120 5 0.67 21.00% 5.33

120 7 0.73 20.66% 6.50

Table 7.6: Performance of BestRule heuristic for all instances.

The computation time of the BR heuristic is below 1 second, making it appli-
cable to large instances with up to 120 jobs. By contrast, the time for solving the
continuous relaxation of the MIP with Cplex grows faster, reaching more than 5
seconds for the instances with 120 jobs. The results provide a good signal for the
scalability of the BestRule heuristic, in comparison with methods based on MIP
solving.

The gap between BR and the linear bound Rel is around 10% for instances
with n ≤ 90 jobs, but goes to more than 20% for n = 120 jobs. This gap is
affected both by the quality of the BR heuristic and the weakness of the lower
bound; in the sequel BestRule is compared to the optimal value of the problem,
when known.

Let us now compare BestRule to solutions of (Fadj). We distinguish between
instances solved to optimality, and instances not solved to optimality where only a
lower bound is known. Let us denote by OPT the optimal value, MIPSol the value
of the best solution and LB the best lower bound found by Cplex when solving
(Fadj). The gap returned by Cplex is thus MIPSol−LB

MIPSol
.

168

Chapter 7. The Anchor-Robust RCPSP

Results are reported in Table 7.7 for all n = 30 instances, and in Table 7.8 for
instances with n = 30, 60, 90 and RF ≤ 0.5, RS = 1 for which MIP results were
previously analyzed. In both tables, we report for budget Γ = 3, 5, 7:
– for all instances:

– BR gap: the gap BR−LB
BR

of BestRule to lower bound LB;
– MIP gap: the gap MIPSol−LB

MIPSol
obtained by MIP solving;

– for instances solved optimally by MIP:
– #instances: the number of such instances;
– BR gap: the gap BR−OPT

BR
of BestRule to optimal value OPT;

– #(BR=OPT): the number of instances where BestRule heuristic returns
an optimal solution.
– for instances not solved optimally by MIP:

– BR gap: the gap BR−LB
BR

of BestRule to lower bound LB;
– MIP gap: the gap MIPSol−LB

MIPSol
obtained by MIP solving;

– #(BR<MIPSol) : the number of instances where BestRule heuristic re-
turns a solution that is better than the best incumbent found by MIP;

– #noMIPSol : the number of instances where no incumbent was found by
MIP.

all instances instances solved by MIP instances not solved by MIP

n Γ BR gap MIP gap #inst BR gap #(BR=OPT) #inst BR gap MIP gap #(BR<MIPSol) #noMIPSol

30 3 7.42% 5.41% 341 1.49 % 201 139 21.97 % 18.71 % 17 0

30 5 7.36% 5.38% 342 1.49 % 196 138 21.89 % 18.74 % 23 0

30 7 7.54% 5.71% 335 1.42 % 199 145 21.69 % 18.90 % 27 0

Table 7.7: Performance of BestRule heuristic for instances with n = 30 jobs.

all instances instances solved by MIP instances not solved by MIP

n Γ BR gap MIP gap #inst BR gap #(BR=OPT) #inst BR gap MIP gap #(BR<MIPSol) #noMIPSol

30 3 0.14% 0.0% 60 0.14 % 55 0 - - - 0

30 5 0.16% 0.0% 60 0.16 % 55 0 - - - 0

30 7 0.08% 0.0% 60 0.08 % 56 0 - - - 0

60 3 0.06% 0.0% 60 0.06 % 57 0 - - - 0

60 5 0.08% 0.0% 60 0.08 % 55 0 - - - 0

60 7 0.12% 0.0% 60 0.12 % 50 0 - - - 0

90 3 0.08% 0.33% 59 0.07 % 51 1 0.54 % 20.26 % 1 0

90 5 0.19% 2.50% 54 0.17 % 45 6 0.39 % 25.09 % 6 0

90 7 0.27% 9.56% 42 0.23 % 33 13 0.39 % 40.46 % 13 5

Table 7.8: Performance of BestRule heuristic for instances with RF ≤ 0.5, RS = 1 for n = 30, 60, 90 jobs.

169

Chapter 7. The Anchor-Robust RCPSP

In Table 7.7 it can be observed that the BR gap is at most 7.54% on average;
BR gap is around 2% larger than the MIP gap. For instances where OPT is known,
BR gap is even smaller (at most 1.49%). Notably, BestRule outputs an optimal
solution on a large subset of instances: 596 out of 1440. For instances where OPT
is not known, the BR gap is also close to MIP gap. On 67 instances, BestRule
outputs a solution which is better than the best incumbent found by MIP solving
after 1200 seconds computation.

In Table 7.8, similar results are obtained for instances with n = 30, 60 jobs,
where OPT is known for all instances. The BR gap is very small (at most 0.14%
on average), and BestRule gives an optimal solution for 328 instances out of 360.
For n = 90 jobs, not all instances are solved by MIP. The BR gap is still very small
for instances solved (at most 0.23% on average), and BestRule gives an optimal
solution for 130 instances out of 180. For instances where OPT is not known,
the BestRule heuristic is very efficient (BR gap ≤ 1%), while MIP gap is large
(more than 20%). The BestRule is better than the best MIP solution on all these
instances. Note also that for Γ = 7, there are 5 instances where no MIP solution
was known, while BestRule does provide a solution. The good performance of
BestRule on unsolved instances results into a very good performance on average
on all instances: e.g., for Γ = 7, BR gap is only 0.27% versus a MIP gap of 9.56%.

170

Chapter 7. The Anchor-Robust RCPSP

7.6 Computational results: MIP for

Anchor-Robust RCPSP

In this section, the compact MIP reformulation (Fanch) for Anchor-Robust RCPSP
is evaluated. The impact of deadline M on the number of anchored jobs is also
discussed.

7.6.1 Instances and settings

Let us describe the settings of numerical experiments.
The Anchor-Robust RCPSP instances are defined as follows. The instances of the
RCPSP and uncertainty sets are the same as in Section 7.4. The only additional
input of the Anchor-Robust RCPSP is the deadline M . As proposed in Section 7.2,
the deadline M can be found by solving the Adjustable-Robust RCPSP. Since the
Adjustable-Robust RCPSP is difficult to solve even for some instances with n = 30
jobs, we consider in the sequel that deadline M is set to the value M̂ = QΓ(BR)
of BestRule heuristic. The BestRule heuristic is thus applied on each instance to
determine M̂ . The solution found by BestRule heuristic is a sequencing decision
σ̂ with worst-case makespan QΓ(σ̂) = M̂ . The sequencing decision σ̂ ∈ S is fed to
(Fanch) as a warm-start. Note that this gives a feasible solution to the MIP solver,
with hi = 0 for every i ∈ J .

Computational settings are the same as in Section 7.4. The time limit for MIP
solving is set to 1200 seconds. The computation times reported in this section do
not include the computation time of BestRule heuristic, which is negligible w.r.t.
MIP solving.

7.6.2 Performance of (Fanch) on small instances

Let us first assess the performance of the compact reformulation (Fanch) for in-
stances with n = 30 jobs, and analyze the influence of parameters.

In Table 7.9 and Table 7.10 are reported, for each value of Γ = 3, 5, 7 and for
each value of parameter NC, RF and RS respectively:
– Anch: the average number of anchored jobs in the best solution found by (Fanch);
– #solved: the number of instances solved to optimality within time limit;
– time: the computation time averaged on instances solved to optimality, in sec-
onds;
– #unsolved: the number of instances not solved to optimality within time limit;
– gap: the final gap averaged on instances not solved to optimality. It equals
UB−Anch
Anch

where UB is the best upper bound found by MIP;

171

Chapter 7. The Anchor-Robust RCPSP

– Gapn: the final gap UB−Anch
n

expressed as a percentage of the number of jobs.

Γ Anch #solved time (s) #unsolved gap Gapn
3 16.09 307 32.76 173 244.86% 53.78%

5 17.92 321 25.42 159 261.78% 55.10%

7 23.01 372 34.69 108 237.08% 56.08%

all 19.01 1000 31.12 440 249.06% 54.82%

Table 7.9: Performance of (Fanch) for n = 30 jobs, w.r.t. budget Γ.

Anch #solved time (s) #unsolved gap Gapn
NC 1.5 20.63 340 28.97 140 223.59% 53.53%

NC 1.8 18.76 332 27.09 148 272.88% 56.24%

NC 2.1 17.62 328 37.44 152 249.34% 54.63%

RF 0.25 21.58 359 1.83 1 25.82% 16.35%

RF 0.5 19.88 261 32.11 99 126.86% 48.33%

RF 0.75 17.82 199 55.69 161 243.28% 51.99%

RF 1 16.74 181 60.8 179 323.1% 61.17%

RS 0.2 12.67 98 36.53 262 356.03% 68.84%

RS 0.5 20.12 232 74.92 128 106.01% 38.43%

RS 0.7 21.25 310 24.66 50 54.78% 23.31%

RS 1 21.98 360 6.99 0 - -

Table 7.10: Performance of (Fanch) for n = 30, w.r.t. PSPLib parameters.

Let us first comment on the optimal value Anch of the problem. As reported
in Table 7.9, on average around 19 jobs out of 30 can be anchored in a baseline
schedule within the makespan M̂ . This highlights that a large proportion of jobs
can be anchored, while respecting the worst-case makespan M̂ obtained in first
place. The impact of the choice for deadline M̂ is discussed in Section 7.6.4.

Let us now comment on performance of the compact reformulation. First
(Fanch) allows for solving 1000 instances out of 1440 to optimality. For instances
that are not solved to optimality, the value Anch can be very small, which results
into a very large gap (264% on average). Recall that Anch appears as denominator
in the gap formula. The Gapn value is more suitable for interpretation. The
average Gapn value is 54.82%, thus showing the poor performance of (Fanch) on
unsolved instances.

Table 7.9 shows that the uncertainty budget has an impact on the number of
instances solved: by contrast with the Adjustable-Robust RCPSP, for high budget
Γ = 7, more instances are solved to optimality. This is interpreted in Section 7.6.3.

172

Chapter 7. The Anchor-Robust RCPSP

Regarding the impact of PSPLib parameters reported in Table 7.10, it appears
that the same instance subsets are hard for both the Anchor-Robust RCPSP and
the Adjustable-Robust RCPSP. Namely, all instances with RF = 0.25 except one
are solved to optimality, and all instances with RS = 1 are solved to optimality.
By contrast parameter NC has no significant impact on performance.

7.6.3 Performance of (Fanch) on larger instances

Let us now examine the scalability of the MIP formulation (Fanch) when the number
of jobs n is increased. Similarly to Section 7.4.3, we restrict our attention to
instances with RF ≤ 0.5 and RS = 1 that are efficiently solved for n = 30 jobs.
The MIP formulation (Fanch) is solved for instances with RF ≤ 0.5, RS = 1 and
n = 30, 60, 90 jobs. In Table 7.11 are reported the same entries as in Table 7.9.

Anch #solved time (s) #unsolved gap Gapn
30 3 19.78 60 0.25 0 -

30 5 21.28 60 0.51 0 -

30 7 24.48 60 0.47 0 -

60 3 38.11 57 16.79 3 6.13%

60 5 40.38 59 25.17 1 2.77%

60 7 44.25 59 6.00 1 4.76%

90 3 61.68 54 54.33 6 7.46%

90 5 65.41 59 76.28 1 4.91%

90 7 70.61 60 76.30 0 -

Table 7.11: Performance of (Fanch) for instances with RF ≤ 0.5 and RS = 1.

For n = 60 and n = 90 jobs, some instances are not solved to optimality within
1200 seconds. Note that for the Adjustable-Robust RCPSP, all instances with
n = 60 jobs were solved, as reported previously in Table 7.3. Computation time
for n = 90 instances is lower than that for the Adjustable-Robust RCPSP on the
same instances. This is due to the warm-start, which gives a feasible sequencing
decision matching the deadline to (Fanch). The warm-start prevents (Fanch) from
finding no feasible solution.

Contrary to the Adjustable-Robust RCPSP, instances for larger Γ are solved
more easily. In particular, the number of unsolved instances decreases with Γ.
This can be surprising since the size of the MIP formulation increases with Γ.
Note that the average number of anchored jobs Anch is higher for Γ = 7. Hence
a large part of anchoring variables can be quickly set to one by the solver, and
a small subset of anchoring variables is left for optimization. This yields simpler
instances.

173

Chapter 7. The Anchor-Robust RCPSP

7.6.4 Impact of the deadline

Let us finally discuss the impact of the chosen deadline M . We proposed to choose
as deadline the output M̂ of the BestRule heuristic, and we observed the number
of jobs that can be anchored. The deadline may also be increased, so that more
jobs can be anchored. A question is to evaluate the impact of an increase of the
deadline w.r.t. the number of jobs that can be anchored.

To that end, the Anchor-Robust RCPSP is solved for deadline βM̂ , with β a
scaling factor ranging in {1.0, 1.05, 1.1, 1.2, 1.3}. Instances with RF = 0.25, RS
= 1 are considered, for which the optimal value of the Anchor-Robust RCPSP is
efficiently computed. In Table 7.12 are reported, for each value of the deadline
βM̂ , the optimal number of anchored jobs. Each line corresponds to an average
over the 30 instances, for budget Γ = 3. The last line corresponds to the average
for n = 30, 60, 90, the value being given as a percentage of anchored jobs.

Scaling factor β applied to deadline

n 1.0 1.05 1.1 1.2 1.3

30 18.39 21.40 24.26 28.73 30.0

60 39.36 44.60 49.10 55.56 59.9

90 59.83 67.63 74.76 83.73 89.2

all 64.47% 73.6% 81.93% 93.8% 99.64%

Table 7.12: Optimal number of anchored jobs depending on the deadline βM̂ , for Γ = 3 and RF
= 0.25, RS = 1.

As noted previously, a large proportion of jobs can be anchored even for dead-
line M̂ : around 65% of jobs. A slight increase of the deadline, e.g., an increase of
+5%, allows for an increase of +10% of the number of anchored jobs. Finally, for
a large increase of the makespan (+30%) on almost all instances all jobs are an-

chored, meaning that deadline 1.3M̂ is more than the makespan of a static-robust
solution.

This highlights the interest of using Anchor-Robust RCPSP to find a baseline
schedule, with the opportunity of tuning the deadline value. A trade-off can be
found between the deadline and the number of anchored jobs.

174

Chapter 7. The Anchor-Robust RCPSP

7.7 Computational results: Heuristic for

Anchor-Robust RCPSP

In this section, we evaluate the BestRuleSequence (BRS) heuristic to solve hard
instances of the Anchor-Robust RCPSP.

7.7.1 Scalability of BRS heuristic

We first evaluate the performance of BRS heuristic on larger instances. The MIP
for BRS is solved under the same computational settings as (Fanch) studied in
Section 7.6. The fixed sequencing decision is σ̂ given by BestRule heuristic, and
the deadline is M̂ = QΓ(σ̂). Recall that the MIP formulation for BRS heuristic
does not have any binary variable for the sequencing decision, but only anchoring
binary variables and continuous schedule variables.

In Table 7.13 are reported, for each value of n = 30, 60, 90, 120 and Γ = 3, 5, 7:
– AnchBRS: the average number of anchored jobs obtained by BRS;
– AnchBRS(%): AnchBRS expressed as a percentage of n;
– BR time: the average time for BestRule heuristic, in seconds;
– BRS time: the average time for BestRuleSequence heuristic, in seconds;
– Total time: the sum of BR time and BRS time, in seconds.

n Γ AnchBRS AnchBRS(%) BR time BRS time Total time

30 3 9.19 30.63% 0.11 0.01 0.13

30 5 11.47 38.26% 0.11 0.01 0.12

30 7 16.65 55.51% 0.12 0.01 0.13

60 3 13.01 21.69% 0.21 0.01 0.22

60 5 14.75 24.58% 0.27 0.01 0.28

60 7 19.26 32.10% 0.28 0.01 0.30

90 3 16.39 18.22% 0.40 0.01 0.42

90 5 17.72 19.69% 0.32 0.02 0.35

90 7 21.49 23.88% 0.48 0.02 0.51

120 3 12.30 10.25% 0.47 0.01 0.49

120 5 12.74 10.61% 0.67 0.02 0.69

120 7 14.75 12.29% 0.73 0.03 0.76

Table 7.13: Performance of BRS heuristic for all instances.

It can be observed first, that even if BRS is based on solving an MIP, it is solved
extremely efficiently with Cplex: the order of magnitude is 10 milliseconds. The
program is often solved at presolve or root node. A connection can be made with
results for exact solving of the Anchor-Robust RCPSP presented in Section 7.6.

175

Chapter 7. The Anchor-Robust RCPSP

This shows that the computational effort necessary to solve Anchor-Robust RCPSP
is mainly due to sequencing decision variables: for fixed sequencing decision the
problem is very easily handled through MIP.

Total time (to run BestRule heuristic and find M̂ , then run BRS heuristic to
find an associated baseline schedule and anchored jobs) is less than a second on
all considered instances, proving the scalability of BRS heuristic.

Finally the number of anchored jobs found with BRS is high for small instances:
up to 55% for n = 3 and Γ = 7. It drops to 10% for instances with n = 120 jobs.
This raises the question of evaluating BRS heuristic w.r.t. the optimal value of
the Anchor-Robust RCPSP.

7.7.2 Comparison to exact solution of the Anchor-Robust
RCPSP

Let us compare the value AnchBRS obtained by BRS heuristic to the optimal value
of the Anchor-Robust RCPSP. Let Anch denote the best value found by MIP, and
UB the best upper bound found by MIP.

Results are reported in Table 7.7 for all n = 30 instances, and in Table 7.8 for
instances with n = 30, 60, 90 and RF ≤ 0.5, RS = 1 for which MIP results were
previously analyzed. In both tables, we report for budget Γ = 3, 5, 7:
– for all instances:

– BRS Gapn: the gap UB−AnchBRS
n

of BestRuleSequence to UB;
– MIP Gapn: the gap UB−MIPSol

n
obtained by MIP solving;

– for instances solved optimally by MIP:
– #instances: the number of such instances;
– BRS Gapn: the gap OPT−AnchBRS

n
of BestRuleSequence to OPT;

– #(BRS=OPT): the number of instances where BestRuleSequence heuris-
tic returns an optimal solution.
– for instances not solved optimally by MIP:

– BRS Gapn: the gap UB−AnchBRS
n

of BestRuleSequence to UB;
– MIP Gapn: the gap UB−MIPSol

n
obtained by MIP solving.

all instances instances solved by MIP instances not solved by MIP

n Γ BRS Gapn MIP Gapn #inst BRS Gapn #(BRS=OPT) #inst BRS Gapn MIP Gapn
30 3 42.39% 19.38% 307 25.38 % 0 173 72.57 % 53.78 %

30 5 39.73% 18.25% 321 21.48 % 48 159 76.57 % 55.10 %

30 7 33.81% 12.61% 372 20.51 % 136 108 79.62 % 56.08 %

Table 7.14: Performance of BRS heuristic for instances with n = 30 jobs.

176

Chapter 7. The Anchor-Robust RCPSP

all instances instances solved by MIP instances not solved by MIP

n Γ BRS Gapn MIP Gapn #inst BRS Gapn #(BRS=OPT) #inst BRS Gapn MIP Gapn
30 3 17.05% 0% 60 17.05 % 0 0 - -

30 5 7.44% 0% 60 7.44 % 23 0 - -

30 7 3.05% 0% 60 3.05 % 40 0 - -

60 3 24.33% 0.16% 57 23.53 % 1 3 39.44 % 3.33 %

60 5 23.19% 0.02% 59 22.99 % 2 1 35.00 % 1.66 %

60 7 19.88% 0.05% 59 19.80 % 8 1 25.00 % 3.33 %

90 3 31.72% 0.42% 54 30.32 % 0 6 44.25 % 4.25 %

90 5 32.98% 0.05% 59 32.54 % 0 1 58.88 % 3.33 %

90 7 29.77% 0% 60 29.77 % 0 0 - -

Table 7.15: Performance of BRS heuristic for instances with RF ≤ 0.5, RS = 1.

Table 7.14 shows that BRS Gapn is very large, e.g., 42.39% for instances with
n = 30 jobs and Γ = 3. The gap is also large for instances solved to optimality,
although the BRS heuristic provides an optimal solution to the Anchor-Robust
RCPSP for 184 instances out of 1440.

Table 7.15 shows that the BRS heuristic has good performance for small in-
stances with easy RF and RS: namely BRS Gapn is 3.05% for instances with n = 30
and Γ = 7. For larger instances, BRS Gapn is large although the MIP Gapn is
very small.

Hence the performance in terms of solution quality of BRS heuristic is lim-
ited, except for small, easy instances, and high budget. Note that it implies the
following on the Anchor-Robust RCPSP. While the worst-case makespan M̂ may
be associated to a sequencing decision σ̂, there exists other sequence decisions re-
specting the deadline M̂ , and such that many more jobs can be anchored. Hence,
restricting to the sequencing decision σ̂ leads to BRS heuristic, which has poor
quality but is very efficient in terms of computation time.

177

Chapter 7. The Anchor-Robust RCPSP

Conclusion

In the present work, the concept of anchor-robustness was applied to the RCPSP.
The definition of anchored solutions generalizes the definition of solutions of the
adjustable-robust approach. It offers a guarantee of starting times, in addition to
a guarantee of the worst-case makespan, against realizations of processing times in
the uncertainty set. Anchor-robustness bridges the gap between static robustness
and adjustable robustness from the literature.

We extended a graph model designed for PERT scheduling and obtained results
for the Anchor-Robust RCPSP and the Adjustable-Robust RCPSP, leading to
both exact and heuristic approaches. Regarding exact solution approaches, we
obtained compact MIP formulations for both problems. For heuristics, we showed
how to benefit from efficient heuristics for the RCPSP to design efficient heuristics
for Anchor-Robust and Adjustable-Robust RCPSP. Altogether this is a complete
toolbox for solving the Anchor-Robust and the Adjustable-Robust RCPSP.

A numerical evaluation of the proposed tools was performed. The compact re-
formulation for the Adjustable-Robust RCPSP is competitive with decomposition
algorithms from the literature. We studied the scalability of MIPs, and identified
hard instances. It turns out that these are the same as for the RCPSP, where opti-
mizing the resource sequencing decision is computationally challenging. To address
such hard instances, the proposed heuristics are very efficient. The Anchor-Robust
RCPSP can also be efficiently solved. In particular, the combination of BestRule
and BestRuleSequence heuristics provides both a robust makespan and baseline
schedule with anchored jobs.

An important perspective is to improve MIP formulations. As illustrated in
numerical experiments, the computational difficulty mainly arises from the binary
variables for the sequencing decision. A question is to improve the flow formu-
lation for the RCPSP, e.g., with valid inequalities. This would surely improve
the compact reformulations we proposed for the Adjustable-Robust and Anchor-
Robust RCPSP. The efficiency of heuristics also raises the question of combining
heuristics and MIP solving, beyond the mere warm-start we proposed.

Another perspective is to extend the anchor-robust approach, and include the
possibility of sequencing decision revision in second stage. The sequencing decision
may be adapted after uncertainty is known, but only partially so that the anchor-
robust problem could remain reasonably tractable. The question of finding exact
and heuristic approaches for this new problem would be an interesting research
perspective.

178

Industrial use case

Let us now briefly discuss an industrial use case encountered at EDF, on which
the anchor-robust approach was used. We first describe the applied problem at
EDF. We then discuss how the concepts studied in Chapter 6 and Chapter 7 are
well-suited to the industrial application. Finally we describe the decision-aiding
tool that was developed at EDF, based on theoretical contributions of the thesis.

Maintenance planning at EDF as a use case

EDF operates a fleet of 56 nuclear units in France, which produce nearly 70% of
the national electricity demand. A nuclear unit is regularly placed in maintenance
to reload nuclear fuel. During a maintenance outage, a variety of operations are
performed on the different circuits of the unit. While some outages are routine,
others occur only once in the lifetime of a unit. This is the case for outages when
large components must be replaced. An outage where the steam generators are
replaced includes very specific operations. These are, e.g., welding operations, and
radiographic weld testing to check the quality of weldings.

Maintenance operations are conducted by EDF entity responsible for nuclear
units, and executed either by EDF or subcontracting entities. Monitoring the to-
tal duration of the outage is an important issue. An outage has a fixed nominal
duration, planned in advance. If the outage is longer than its nominal duration,
then the nuclear unit will not be back on the grid on time. EDF will thus have to
substitute the corresponding production using more expensive units to fullfill the
electricity demand. The availability of the nuclear fleet is a major performance
criterion for the company. The problem under consideration is, for a given nu-
clear unit, to schedule maintenance operations of an outage within the given total
duration.

Anchor-robustness for industrial planning

Let us now describe how the planning problem can be represented by a project
scheduling problem, and how the anchor-robust approach is well-suited to this

179

Industrial use case

use case.

RCPSP representation. The core structure of the problem resembles an in-
stance of the RCPSP problem. Activities are the jobs to be scheduled, under
precedence constraints. Resource constraints can be used to model some of the
practical constraints. Some workforce constraints simply write as RCPSP con-
straints: e.g., there is a limited number of welders, hence the number of welding
operations that can be done in parallel is bounded. There are also disjunctive con-
straints on the use of premises. For example, some rooms of the reactor building
are small and can accommodate a limited number of workers at a time. Finally
there are specific constraints due to weld testing operations. When these are under
execution, some premises are made unavailable, to prevent interferences between
radiographic sources and staff involved on other activities.

Uncertain activity durations. Uncertainty appears in the activity durations,
since activities can be longer than expected. This is exactly processing time un-
certainty as studied in previous chapters. Uncertainty representation with an
uncertainty set is also well-suited for the industrial case. In particular, budgeted
uncertainty appears to be well adapted, with a limited number of parameters – the
worst-case activity durations – to be evaluated by practitioners. The uncertainty
budget can be tuned in the decision making process, and it is also simple to appre-
hend. By contrast, a stochastic approach is hardly applicable, since a probability
distribution over durations would be difficult to acquire. A default of budgeted un-
certainty is that all jobs are considered similar. In practice there are job types that
are uncorrelated, hence different budgets could be considered, e.g. one budget for
welding operations, one budget for testing operations. In Chapter 8, uncertainty
sets with multiple budgets are investigated.

Need for a baseline schedule. In such an industrial context a baseline schedule
is highly needed in practice. Schedules are prepared months in advance, due to
the project complexity. The course of activities needs to be prepared by teams.
Also since some operations are executed by subcontractors, contracts should be
established in advance including some schedule information. Moreover, there are
some constraints that are not explicitly modelled or written, but checked manually
by project managers. These can be implicit linking constraints with other units.
For instance, there is some very specialized workforce implied in maintenance
operations of all nuclear units. Hence their schedule information must be fixed in
advance.

Bounded total duration. The baseline schedule must have bounded makespan,
i.e., there is a global deadline for all maintenance operations. It corresponds to
the timeslot when the unit is decoupled from the national grid. As explained
previously, if the outage extends beyond the deadline, it results into high overhead

180

Industrial use case

costs for EDF to match the electricity demand.

Need for robustness and anchored jobs. A question is the type of robust so-
lutions suitable to such a practical context. An approach producing a baseline
schedule is mandatory. The simplest to be thought of would be static-robustness.
The static-robust approach can be considered as naturally implemented by plan-
ning managers. Margins are added if activities are likely to take longer than ex-
pected. Such a static-robust schedule would not satisfy the deadline if deviations
of all activities are taken into account. By contrast, an anchor-robust approach
produces a baseline satisfying the deadline, where some jobs are anchored, and
others are not. In practice the need for guaranteed starting times depends on the
activities. Some activities are very difficult or costly to reschedule. For example,
there may be human errors if teams do not have enough time for preparation af-
ter schedule change. For subcontracted activities, the subcontractor may charge
penalties if the schedule changes. By contrast, there are some activities that are
easier to adjust. On EDF problem, project managers could identify jobs to anchor
as a priority. That is, it was possible to set anchoring weights for an anchor-robust
approach.

Discussion on fixed flow. In the presence of resources, we proposed in Chap-
ter 7 fixed flow reoptimization. The tools initially designed for PERT scheduling
were extended to the RCPSP. Beyond its computational properties, fixed flow re-
optimization matches what is advisable to do in practice. Namely for weld testing,
the flow corresponds to an order of operations performed by a weld testing team.
It is useful to fix this order in advance, as weld testing is quite heavy to implement.
There are many constraints such as interferences with other activities, marking the
area before testing, stringent regulation, to name a few. For other resources types,
the fixed flow assumption may be less linked to practical reality. For example, for
welding operations, it is less difficult to change the order of operations performed
by a team of welders.

Tools for EDF maintenance planning problem

Let us now highlight how some contributions of the thesis have been used on
this industrial problem. These are mainly tools from Chapter 7, derived from
Chapter 5 and Chapter 6. The algorithmic tools have been implemented by EDF
optimization engineers in a decision-aiding software as a proof of concept, and
applied on industrial data.

Instances of the Anchor-Robust RCPSP are solved according to the following
steps:

I Resource flows are computed with ParallelSGS and the priority rules from
Section 7.3.3;

181

Industrial use case

I Then the Anchor-Robust RCPSP is solved for fixed flow, similarly to the
FixedSequence heuristic of Section 7.3.4. The problem then reduces to the
AnchRobPSP.

I The obtained instance of the AnchRobPSP is solved through heuristics, in-
spired from Algorithm A+ from Section 6.4.1.

All algorithmic techniques are heuristics, and they do not rely on an MIP
solver. By contrast, numerical results from the thesis are mainly for exact ap-
proaches. However there are some learnt lessons for the practical application. For
the resource flow, the results of Section 7.5 show that the considered heuristics
produce good quality solutions. The results of Section 6.6.3 also help in the choice
of the uncertainty budget, praising for the use of a small budget. We also em-
phasized the biobjective nature of the problem, with makespan and number of
anchored jobs as criteria. Hence in the decision-aiding software diversified solu-
tions were produced along the Pareto front, so that the decision maker can choose
between them.

An additional feature would be to have a tool where a solution can be manu-
ally modified by project managers (e.g., moving jobs, and choosing the anchored
set). This would raise new algorithmic questions. However we point out that the
layered graph is a very convenient structure to re-compute a solution after manual
modifications.

The anchor-robust approach, applied to this practical planning problem, helped
evaluating the impact of some constraints on schedule robustness. Such a sensitiv-
ity analysis would have been difficult to made with only a static robust approach,
where the schedule is bound to be feasible when all activities deviate, and thus is
very conservative.

182

Part IV

Polyhedral approaches for the
Anchor-Robust Project

Scheduling Problem

183

Preliminaries on polyhedral approaches
for AnchRobPSP

In this part, we consider the Anchor-Robust Project Scheduling Problem intro-
duced in Chapter 6, abbreviated as AnchRobPSP. Let us give definitions and
notations that will be used in the next two chapters.

Let J be the set of jobs and J = J ∪ {s, t}. Let G = (J,A) be the precedence
graph, with source s and sink t. Let G(p) = (J,A, p) be its arc-weighted version.
It is assumed that there is an arc (s, i) (resp. arc (i, t)) for every job i ∈ J without
predecessor (resp. successor) in J . Let ≺ denote the partial order on J defined by
i ≺ j if there exists an i−j path in G. Given i, j ∈ J , i ≺ j, let LG(p)(i, j) be the
length of the longest i−j path in G(p). In the sequel we will use the shorthand
notation L0

ij = LG(p)(i, j). The minimum makespan of a schedule of G(p) is then
L0
st. A longest s−t path is a critical path. The precedence graph G(p) is critical if

all s−t paths in G(p) are critical, i.e., they have length L0
st.

The uncertainty set is ∆ ⊆ RJ
+. For uncertainty set ∆, the worst-case longest

path value is

L∆
ij = max

δ∈∆
LG(p+δ)(i, j)

for every i, j ∈ J , i ≺ j. Let G denote the transitive closure of G. Let G∆ be the
weighted version of G with arc-weight L∆

ij to every arc i ≺ j, j 6= t, and L0
jt for

every j ∈ J . For H ⊆ J , let G∆[H] be the subgraph of G∆ induced by H ∪ {s, t}.

In Chapter 6, the AnchRobPSP problem was defined as follows. Given a sched-
ule x of G(p) and uncertainty set ∆, a subset of jobs H ⊆ J is x-anchored if for
every δ ∈ ∆ there exists xδ schedule of G(p+ δ) such that xδi = xi for every
i ∈ H (Definition 6.1). Given a deadline M ≥ 0, and anchoring weights w ∈ RJ

+,
the Anchor-Robust Project Scheduling Problem AnchRobPSP is to find a pair
(x,H) maximizing the anchoring weight

∑
i∈H wi, with x a schedule of G(p) with

makespan at most M , and H ⊆ J an x-anchored subset of jobs.
The combinatorial decisions of AnchRobPSP correspond to the anchored set

H, rather than the baseline schedule. In particular, the objective function depends
on H only. The problem can be defined alternatively using the anchored set only.

185

Formally, a subset H ⊆ J is anchored if there exists a schedule x of G(p) with
makespan at most M such that H is x-anchored. Theorem 6.1, page 111, shows
that H is anchored if and only if the longest s−t path in G∆[H] is at most M .
Given G∆, deadline M ≥ 0, and anchoring weights w ∈ RJ

+, the AnchRobPSP
problem can thus be rewritten as:

AnchRobPSP: maxw(H) s.t. LG∆[H](s, t) ≤M .

Importantly, in this part we will assume that L∆
ij values are precomputed. That

is, the weighted graph G∆ is part of the input of the problem. In Chapter 8 we
present uncertainty sets for which the L∆

ij values can be efficiently computed.

Given H ⊆ J , let χH denote the incidence vector of H. Let H = {χH : H
anchored set}. Let Q = conv(H) be the anchored set polytope. AnchRobPSP
reduces to finding a max-weight anchored set, i.e., maximizing

∑
i∈J wihi for h ∈

H, or equivalently, for h ∈ Q. Theorem 6.1 ensures that given an anchored set
H, it is easy to retrieve a baseline schedule x for which H is x-anchored. Let G̃H

denote the precedence graph obtained from G(p) by introducing additional arcs

(i, j), i ∈ H ∪ {s}, j ∈ H, i ≺ j with arc-lengths L∆
ij . Then any schedule of G̃H is

a baseline schedule.

Let us give some definitions related to mixed-integer programming formula-
tions for AnchRobPSP. Considered formulations for AnchRobPSP involve binary
anchoring variables h ∈ {0, 1}J to indicate if jobs are in the anchored set, and
continuous variables, say x ∈ Rq. A formulation for AnchRobPSP is defined by
a polyhedron P ⊆ Rq × [0, 1]J and integrality constraints h ∈ {0, 1}J , so that
the feasible set of the formulation is P ∩ (Rq×{0, 1}J). Given F ⊆ Rq × RJ ,
let Projh(F) = {h ∈ RJ : ∃(x, h) ∈ F} denote its projection on h variables.
A formulation is valid for AnchRobPSP if Projh(P) ∩ {0, 1}J = H. Given two
polyhedra P1 and P2, formulation associated with P1 is stronger than formulation
associated with P2 if Projh(P1) ⊆ Projh(P2). A formulation yields a polyhedral
characterization for AnchRobPSP if Projh(P) = Q = conv(H). Importantly, if
the formulation associated with polyhedron P yields a polyhedral characterization
for a special case of AnchRobPSP, and P is described by a polynomial number
of inequalities, then the special case of AnchRobPSP is polynomial. Indeed An-
chRobPSP can be solved by the linear program max

∑
i∈J wihi for (x, h) ∈ P .

186

Chapter 8

Dominance-based linear
formulation for the
Anchor-Robust Project
Scheduling Problem

In this chapter, we further investigate exact approaches for the AnchRobPSP
problem, and especially compact formulations. To the best of our knowledge,
compact formulations have been scarcely encountered for robust 2-stage problems
in the literature. In Chapter 6 the AnchRobPSP problem was introduced and it
was proven NP-hard even for budgeted uncertainty. For budgeted uncertainty, the
compact MIP formulation (Lay) was obtained. It is based on the so-called layered
graph and a dedicated analysis of this special case. Formulation (Lay) is inherent
to budgeted uncertainty, and thus not applicable to other uncertainty sets.

The main contribution of the chapter, as found in (Bendotti et al., 2020a), are
linear formulations for AnchRobPSP that are valid for a variety of uncertainty
sets including, but not restricted to, budgeted uncertainty sets. As exposed in
the preliminaries, we consider as precomputed the L∆

ij values. We highlight that
such a computation can be carried out efficiently for elaborate uncertainty sets,
e.g., with several budgets. We exhibit a dominance property among schedules
and derive a linear formulation from it. This dominance-based linear formulation,
called (Dom), improves over a naive linear formulation. For budgeted uncertainty,
(Dom) is also stronger than formulation (Lay) in special cases of interest. A
polyhedral study is carried out to highlight how formulation (Dom) captures the
combinatorial structure of the problem. We prove that (Dom) yields a complete
polyhedral characterization in two special cases. The first one is box uncertainty.
The second one is 1-disruption uncertainty, i.e., budgeted uncertainty with Γ = 1

187

Chapter 8. Dominance-based formulation

and uniform deviation, on critical precedence graphs. Finally numerical experi-
ments give evidence that (Dom) performs well for budgeted uncertainty, even for
instances that do not match the polyhedral characterization cases. (Dom) is also
capable of solving the problem for uncertainty sets where no MIP formulation was
previously investigated, e.g., in the case of several budgets. Such an uncertainty
representation was motivated in the description of the industrial case, page 180.

8.1 Preliminaries on uncertainty sets

In this section we present the considered uncertainty sets: budgeted uncertainty
sets and special cases, but also generalizations with several budgets.

Note first that some assumptions on ∆ can be made without loss of generality.
The uncertainty set can be assumed to be convex (Ben-Tal et al., 2004). The
uncertainty set can also be assumed to be down-monotone, i.e., if δ ∈ ∆ and
δ′ ≤ δ then δ′ ∈ ∆. Indeed it directly follows from the fact that if xδ is a schedule
of G(p+ δ), then it is a schedule of G(p+ δ′) for every δ′ ≤ δ. In the present work,
considered uncertainty sets will be polyhedra, and w.l.o.g. down-monotone.

Let us now define formally uncertainty sets of interest.
Set ∆ is a box uncertainty set if ∆ = {(δi)i∈J : 0 ≤ δi ≤ δ̂i ∀i ∈ J} with

δ̂ ∈ RJ
+, i.e., it is a cartesian product of intervals. Then δ̂ is a greatest element of

∆ in the sense that δ ≤ δ̂ for every δ ∈ ∆. Note that if ∆ is any set with greatest
element δ̂, then w.l.o.g. it can be assumed to be down-monotone, and thus equal
to the box with greatest element δ̂.

Set ∆ is a budgeted uncertainty set if ∆ = {(δ̂iui)i∈J : u ∈ [0, 1]J ,
∑

i∈J ui ≤ Γ},
with deviation δ̂ ∈ RJ

+ and uncertainty budget Γ ∈ {1, . . . , |J |}. Box uncertainty
is the special case of budgeted uncertainty where Γ = |J |.

Set ∆ is a 1-disruption uncertainty set if it is a budgeted uncertainty set with
unit budget Γ = 1 and uniform deviation, i.e., δ̂i = δ̂0 for every i ∈ J . Extreme
points of a 1-disruption uncertainty set represent the situation where one event of
fixed – possibly large – deviation δ̂0 may happen anywhere in the project. Then
the processing time of one job is increased by fixed amount δ̂0.

Let us now present more elaborate uncertainty sets, built as unions or inter-
sections of budgeted uncertainty sets.

Set ∆ is a partition-budgeted uncertainty set if ∆ = {(δ̂iui)i∈J : u ∈ [0, 1]J ,∑
i∈Jk ui ≤ Γk ∀k ∈ {1, . . . ,m}} where (J1, ..., Jm) is a partition of J and Γk ∈

{1, . . . , |Jk|} for every k ∈ {1, . . . ,m}. Each group Jk is associated with its own

uncertainty budget Γk. It holds that ∆ =
⋂

1≤k≤m ∆k where ∆k = {(δ̂iui)i∈J : u ∈
[0, 1]J ,

∑
i∈Jk ui ≤ Γk} for every k ∈ {1, . . . ,m}. Distinct uncertainty budgets on

188

Chapter 8. Dominance-based formulation

disjoint subsets of the partition are relevant when deviations of jobs from different
subsets are uncorrelated. A special case of interest is to consider a partition
(J1, J2) where jobs of the first subset J1 are associated with small deviations but
large uncertainty budget Γ1; jobs of the second subset J2 are associated with large
deviations but small uncertainty budget Γ2.

Set ∆ is a mixed-budgeted uncertainty set if ∆ =
⋃

1≤k≤m ∆k where ∆k are
budgeted uncertainty sets. Consider the following special case, where ∆1 is defined
by deviation δ̂ and budget Γ1, and ∆2 is defined by deviation τ δ̂ for a given
τ ∈ [0, 1], and budget Γ2 > Γ1. Then ∆ = ∆1 ∪ ∆2 supports two kinds of
uncertainty realizations corresponding either to a large number of small deviations
(i.e., δ ∈ ∆2) or a small number of large deviations (i.e., δ ∈ ∆1). For uniform
deviation, it holds that ∆1 (∆ whenever τΓ2 > Γ1.

In Figure 8.1 are represented examples of such uncertainty sets in R3. From the
left to the right, the uncertainty sets are the following. The first two are budgeted
with unit deviation δ̂, and budget Γ = 2 and Γ = 1 respectively. The third set is a
partition-budgeted uncertainty set with groups J1 = {1}, J2 = {2, 3} and budgets
Γ1 = Γ2 = 1. The fourth set is a mixed-budgeted uncertainty set formed as the
union of the budgeted uncertainty set with unit deviation δ̂ and Γ = 1, and the
box with deviation 0.7.

δ1

δ2

δ3

δ1

δ2

δ3

δ1

δ2

δ3

δ1

δ2

δ3

Figure 8.1: Examples of uncertainty sets. From the left to the right: budgeted with Γ = 2,
budgeted with Γ = 1, partition-budgeted, mixed-budgeted.

All these uncertainty sets are defined implicitly through inequalities or set
operations. Note that the uncertainty set may also be given explicitly as the
convex hull of a discrete set of points. Given a set S of scenarii, for every s ∈ S the
uncertainty realization is some δs ∈ RJ

+, and ∆ = conv{δs, s ∈ S}. Any implicitly-
defined set ∆ can be written under that form by enumerating its extreme points,
but then the input size is exponentially increased.

Let us now discuss the assumption on longest paths computation for these
uncertainty sets. Computing worst-case longest path values L∆

ij can be an NP-
hard problem for polyhedral set ∆ defined by inequalities, as shown in Chapter 6.

189

Chapter 8. Dominance-based formulation

However, efficient algorithms can be designed for some uncertainty sets. For
box uncertainty, the computation is straightforward since L∆

ij = LG(p+δ̂)(i, j). For
budgeted uncertainty sets, and thus 1-disruption uncertainty sets, the worst-case
longest path values L∆

ij can be computed in polynomial time by dynamic program-
ming (Minoux, 2009). The algorithm is linear in Γ|A|.

For partition-budgeted uncertainty sets, the L∆
ij values can be computed using

a straightforward generalization of the dynamic programming of (Minoux, 2009)
which is linear in (Π1≤k≤mΓk)|A|. For mixed-budgeted uncertainty sets, the L∆

ij

values can be easily obtained since L∆
ij = max1≤k≤m L

∆k

ij for every i, j ∈ J . For
explicitly-defined uncertainty sets, values L∆

ij can be computed in polynomial time
in the number of scenarii |S|, since L∆

ij = maxs∈S LG(p+δs)(i, j). This relies on the

property that L∆
ij = L

conv(∆)
ij for any ∆.

For all considered uncertainty sets, the L∆
ij values can thus be computed in

polynomial time. In the sequel, we consider the L∆
ij values as precomputed in

a preprocessing step. Thus they will appear as coefficients of constraints in the
proposed mixed-integer programming formulations.

8.2 Linear formulations for AnchRobPSP

In this section, we establish linear formulations for AnchRobPSP using L∆
ij values

as coefficients. A naive formulation is first given as a benchmark. The main dom-
inance property is proven, and formulation (Dom) is derived from it. Formulation
(Dom) is then compared to other formulations.

8.2.1 A naive formulation

Consider schedule continuous variables xj, j ∈ J , and anchoring binary variables
hj ∈ {0, 1}, j ∈ J . Vector h is the incidence vector of the anchored set H.
A formulation for AnchRobPSP requires constraints to enforce that H is an x-
anchored set. The characterization of Theorem 6.1 suggests a quadratic constraint

xj − xi ≥ L∆
ijhihj ∀i, j ∈ J, i ≺ j (1)

to represent precedence constraints of the graph G̃H . Note that for dummy jobs
s and t there is no hj decision variable but we set hs = 1 and ht = 0 for the ease
of notation. For validity, it is sufficient to check that for each i ≺ j, if hi = 0 or
hj = 0 then inequality (1) is valid. Indeed it reduces to xj − xi ≥ 0 which holds
for every i ≺ j for every schedule x of G(p).

190

Chapter 8. Dominance-based formulation

Applying a standard linearization technique, a linear formulation (Std) can be
obtained by replacing constraint (1) by the following linear inequality (2)

(Std): max
∑

i∈J wihi
s.t. xj − xi ≥ pi ∀(i, j) ∈ A

xt ≤M
xj − xi ≥ L∆

ij(hi + hj − 1) ∀i, j ∈ J, i ≺ j (2)

xj ≥ 0 ∀j ∈ J
hj ∈ {0, 1} ∀j ∈ J

It is easy to check that when hi = 0 or hj = 0, (2) induces a valid constraint.

8.2.2 A dominance property

Let X≤M denote the set of schedules of G(p) with makespan at most M . Let
H ⊆ J be a subset of jobs. Let us define the set of all baseline schedules x such
that (x,H) is feasible for AnchRobPSP, i.e., X≤M(H) = {x ∈ X≤M : H is x-
anchored}. Note that AnchRobPSP problem is to maximize the weight of a set H
such that X≤M(H) 6= ∅. By Theorem 6.1,

X≤M(H) = {x ∈ X≤M : xj − xi ≥ L∆
ij ∀i ∈ H ∪ {s}, j ∈ H, i ≺ j}.

Let us now define a set of baseline schedules where the same inequality is
imposed, but on pairs i, j with i ∈ J ∪ {s}:

Z≤M(H) = {z ∈ X≤M : zj − zi ≥ L∆
ij ∀i ∈ J ∪ {s}, j ∈ H, i ≺ j}.

Theorem 8.1. Set Z≤M(H) is dominant, in the sense that Z≤M(H) ⊆ X≤M(H),
and X≤M(H) 6=∅ implies Z≤M(H) 6=∅.

Proof. Since H ⊆ J , the definition of set Z≤M(H) contains more constraints than
that of set X≤M(H). Hence Z≤M(H) ⊆ X≤M(H). Let us prove X≤M(H) 6=
∅ =⇒ Z≤M(H) 6= ∅. Recall that G̃H is the precedence graph obtained from G(p)
by introducing additional arcs (i, j), i ∈ H ∪ {s}, j ∈ H, i ≺ j with arc-lengths

L∆
ij . Note that X≤M(H) is exactly the set of schedules of G̃H with makespan at

most M . Let z be the earliest schedule of G̃H . By assumption, there exists a
schedule in X≤M(H), thus zt ≤ M . Let i ∈ J ∪ {s} and j ∈ H. Let us show
that zj − zi ≥ L∆

ij holds, even for i /∈ H ∪ {s}. Consider a longest s−i path P ∗si
in G̃H , and let k ∈ H ∪ {s} be the last vertex of H ∪ {s} on this path. Then
zi = LG̃H (s, i) = LG̃H (s, k) + LG̃H (k, i) = zk + LG̃H (k, i). The subpath of P ∗si from

k to i is a longest k−i path in G̃H . Since it has no vertex in H ∪ {s} except k, it
uses no additional arc and its length is LG̃H (k, i) = L0

ki. It comes zk − zi = −L0
ki.

191

Chapter 8. Dominance-based formulation

Since z ∈ X≤M(H), zj− zk ≥ L∆
kj. Then zj− zi = (zj− zk) + (zk− zi) ≥ L∆

kj−L0
ki.

Also, for k ≺ i ≺ j, it holds that L∆
kj ≥ L0

ki + L∆
ij : indeed L∆

ij is attained for some
δ∗ ∈ ∆ ⊆ RJ

+, hence L∆
kj ≥ LG(p+δ∗)(k, i) + LG(p+δ∗)(i, j) ≥ L0

ki + L∆
ij . Finally

zj − zi ≥ L∆
ij , hence z ∈ Z≤M(H).

8.2.3 Dominance-based linear formulation (Dom)

AnchRobPSP problem is to maximize the weight of a set H such that X≤M(H) 6=
∅, or equivalently with Theorem 8.1, such that Z≤M(H) 6= ∅. We now intro-
duce a new formulation derived from Theorem 8.1, where continuous variables z
correspond to a schedule z ∈ Z≤M(H).

(Dom): max
∑

i∈J wihi
s.t. zj − zi ≥ pi ∀(i, j) ∈ A

zt ≤M
zj − zi ≥ L0

ij + (L∆
ij − L0

ij)hj ∀i, j ∈ J, i ≺ j (3)

zj ≥ 0 ∀j ∈ J
hj ∈ {0, 1} ∀j ∈ J

Proposition 8.1. Formulation (Dom) is valid for AnchRobPSP.

Proof. Let (z, h) be feasible for (Dom), and H := {i ∈ J : hi = 1}. Note first that
inequality (3) implies z ∈ X≤M(H). Hence z is a schedule with makespan at most
M and H is z-anchored. Hence h ∈ H. Conversely, let h ∈ H be the incidence
vector of an anchored set H. From Theorem 8.1, there exists z ∈ Z≤M(H). Such
a schedule z satisfies zj − zi ≥ L∆

ij for every i ∈ J ∪ {s} and j ∈ H. Then z
satisfies (3): indeed if hj = 1 inequality (3) corresponds to inequality zj−zi ≥ L∆

ij ;
if hj = 0 then (3) amounts to zj − zi ≥ L0

ij, which holds since z is a schedule of
G(p).

Note that precedence constraint zj − zi ≥ pi associated with arc (i, j) ∈ A is
implied by (3) since i ≺ j and L0

ij ≥ pi.

We now introduce a family of valid inequalities. Let j ∈ J . By inequality (3)
with i = s, it comes that zj ≥ L0

sj + (L∆
sj − L0

sj)hj. Since z ∈ X≤M it satisfies
zj +L0

jt ≤M , thus leading to M ≥ L0
sj + (L∆

sj −L0
sj)hj +L0

jt. Hence the following
valid inequality

hj ≤
⌊
M − (L0

sj + L0
jt)

L∆
sj − L0

sj

⌋
. (4)

In Section 8.3 these inequalities will be discussed with respect to the polyhedral
characterization under box uncertainty.

192

Chapter 8. Dominance-based formulation

8.2.4 Comparison between (Dom) and other formulations

In this section it is shown that formulation (Dom) is stronger than (Std), and
stronger than (Lay) in some cases of interest.

Consider first the continuous relaxations of (Dom), (Std) and the variant of
(Std) with quadratic constraint (1). It turns out that they can easily be compared.
Indeed for every hi, hj ∈ [0, 1], it holds that hj ≥ hihj. Hence the right-hand side
of inequality (3) is tighter than the right-hand side of inequality (1). Also for every
hi, hj ∈ [0, 1], it holds that (1− hi)(1− hj) ≥ 0 or equivalently hihj ≥ hi + hj − 1.
Hence the right-hand side of inequality (1) is tighter than the right-hand side of
inequality (2).

Let us now investigate the special case of budgeted uncertainty, and compare
(Dom) with formulation (Lay), that we now recall. Formulation (Lay) involves
anchoring variables hj ∈ {0, 1} for every j ∈ J , and continuous variables xγj for

every γ ∈ {0, . . . ,Γ}, j ∈ J . Formulation (Lay) is based on a so-called layered
graph Glay(h) associated with h ∈ [0, 1]J and built as follows. The layered graph
Glay(h) is formed with Γ + 1 copies of the precedence graph called layers indexed
from 0 to Γ. Let iγ denote the copy of job i in layer γ. The layered graph features
three types of arcs. Horizontal arcs are copies of arcs of G(p), i.e., arcs (iγ, jγ) for
(i, j) ∈ A, with length pi. Transversal arcs are (iγ+1, jγ) for (i, j) ∈ A, with length

pi + δ̂i. Vertical arcs are (iγ, iΓ) for i ∈ J , γ < Γ, with length −Dj(1− hj), where
Dj is a bigM value. A valid choice is Dj = LG(p+δ̂)(s, j) − LG(p)(s, j) for every

j ∈ J . It was shown that h ∈ {0, 1}J is the incidence vector of an anchored set if
and only if there exists x a schedule of Glay(h) such that xΓ

t ≤ M , see page 114.
This leads to the formulation

(Lay): max
∑

i∈J wihi
s.t. xγj − x

γ
i ≥ pi ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ}

xγj − x
γ+1
i ≥ pi + δ̂i ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ− 1}

xΓ
j − x

γ
j ≥ −Dj(1− hj) ∀j ∈ J , ∀γ ∈ {0, . . . ,Γ− 1}

xΓ
t ≤M
xγj ≥ 0 ∀j ∈ J, ∀γ ∈ {0, . . . ,Γ}
hj ∈ {0, 1} ∀j ∈ J

Variables xΓ
j , j ∈ J from layer Γ can be interpreted as a baseline schedule such

that H = {i ∈ J : hi = 1} is xΓ-anchored. Other continuous variables xγj , j ∈ J ,
γ < Γ can be regarded as additional variables.

Let PLay (resp. PDom) denote the polytope of solutions ((xγ)γ∈{0,...,Γ}, h) (resp.
(z, h)) that are feasible for the continuous relaxation of formulation (Lay) (resp.

193

Chapter 8. Dominance-based formulation

(Dom)). Consider the following assumption on the Dj values, denoted by (IneqDj)

for every i ≺ j, Dj ≥ L∆
ij − L0

ij. (IneqDj)

Note that assumption (IneqDj) is that Dj values are “large enough”. In formula-
tion (Lay) they play the role of bigM values. We set Dj = LG(p+δ̂)(s, j)−LG(p)(s, j)

because it is a tight value for which (Lay) is valid. The formulation would remain
valid for larger values of Dj’s. In the sequel, we will show that the (IneqDj) as-
sumption is satisfied for critical precedence graphs, i.e., precedence graphs where
all s−t paths are longest s−t paths. We now prove

Proposition 8.2. Under assumption (IneqDj), formulation (Dom) is stronger
than formulation (Lay), in the sense that Projh(PDom) ⊆ Projh(PLay).

Proof. Let h ∈ Projh(PDom), i.e., h ∈ [0, 1]J such that there exists a schedule
z satisfying inequalities (3) and zt ≤ M . We want to prove the existence of a

schedule x of Glay(h) with makespan xΓ
t ≤ M . Let us build a graph G̃ as follows:

it contains the graph Glay(0) (no vertical arcs) to which we add precedence arcs
(i, j) for i ≺ j with weight L0

ij + (L∆
ij −L0

ij)hj in the upper layer, so that to enforce

constraints (3). Let x be the earliest schedule of G̃. Since G̃ has no vertical arc,

the longest sΓ−tΓ path in G̃ is the longest sΓ−tΓ path in its upper layer. Because
of the existence of schedule z, the longest sΓ−tΓ path in the upper layer of G̃ has
length at most M .

Let us show that x is a schedule of Glay(h): it is sufficient to show that vertical
arcs constraints are satisfied, i.e., that xΓ

j − x
γ
j ≥ −Dj(1 − hj) for every j ∈ J ,

γ ∈ {0, . . . ,Γ}. Let us denote by Lγij the longest i−j path with uncertainty budget
γ (then LΓ

ij = L∆
ij). Let j ∈ J , γ ∈ {0, . . . ,Γ}. By definition of x, there exists

i∗ ∈ J ∪ {s} such that

xγj = xΓ
i∗ + LΓ−γ

i∗j

E.g., this equality is satisfied with i∗ the last vertex in the upper layer on a longest
path from sΓ to jγ. Because of arcs in the upper layer, we also have

xΓ
j − xΓ

i∗ ≥ L0
i∗j + (LΓ

i∗j − L0
i∗j)hj.

Combining the two latter (in)equalities, we obtain xΓ
j−x

γ
j = (xΓ

j−xΓ
i∗)+(xΓ

i∗−x
γ
j) ≥

L0
i∗j + (LΓ

i∗j − L0
i∗j)hj − LΓ−γ

i∗j = (LΓ
i∗j − L0

i∗j)hj − (LΓ−γ
i∗j − L0

i∗j). Let f(hj) =

(LΓ
i∗j−L0

i∗j)hj−(LΓ−γ
i∗j −L0

i∗j) denote this latter quantity. Let also g(hj) = −Dj(1−
hj). Both are affine functions of hj. The inequality f(hj) ≥ g(hj) writes as

(Dj − LΓ
i∗j + L0

i∗j)hj ≤ Dj − LΓ−γ
i∗j + L0

i∗j. The right-hand side can be lower-
bounded by Dj − LΓ

i∗j + L0
i∗j (attained for γ = 0). By assumption (IneqDj),

Dj − LΓ
i∗j + L0

i∗j ≥ 0 and the inequality f(hj) ≥ g(hj) holds for every hj ∈ [0, 1]

194

Chapter 8. Dominance-based formulation

and γ ≤ Γ. Hence schedule x satisfies vertical arcs constraints. Therefore x is a
schedule of Glay(h) such that xΓ

t ≤M , and h ∈ Projh(PLay).

We now give an example where Projh(PDom) is strictly included in Projh(PLay).
Let J = {1, 2, 3} be a set of three jobs, let G be the path (s, 1, 2, 3, t), and let

pi = 1 and δ̂i = 1 for every i ∈ J . Let also Γ = 1, and M = 3. It is a case where
Proposition 8.2 is applicable. Consider h∗ = (1, 0, 1

2
). To see that h ∈ Projh(PLay),

consider the layered graph Glay(h∗), represented in Figure 8.2. The vector x defined
by x1 = (0, 0, 1, 2, 3) in layer 1, x0 = (0, 0, 2, 3, 4) in layer 0 is also represented into
brackets on the vertices in Figure 8.2.

s0 10 20 30 t0

s1 11 21 31 t1

0 1 1 1

0 1 1 1

1+
1

1+
1

1+
1

0 -1 -2(1-1
2
)

[0] [0] [1] [2] [3]

[0] [0] [2] [3] [4]

Figure 8.2: Layered graph Glay(h∗) for h∗ = (1, 0, 1
2), and schedule x into brackets.

It can be checked that vector x is a schedule of Glay(h∗), hence (x, h∗) ∈ PLay.
Assume for a contradiction that there exists (z, h∗) ∈ PDom. Then zt− z3 ≥ 1 and
z3 − zs ≥ 2 + (3 − 2)h∗3 = 2.5 and zt − zs ≥ 3.5 > M . Thus h∗ /∈ Projh(PDom),
and Projh(PDom) (Projh(PLay). More precisely, it is a case where (Dom) yields
a polyhedral characterization of AnchRobPSP, as shown next in Section 8.3.2.1.

The question whether (Dom) is stronger than (Lay) in general case, even with-
out assumption (IneqDj), is left open. We mention that on all considered instances
in numerical experiments, the linear bound of formulation (Dom) was better than
the linear bound of formulation (Lay).

8.3 Polyhedral characterization for special cases

In this section, we provide polyhedral characterizations of AnchRobPSP for two
special cases, under box uncertainty and 1-disruption uncertainty.

195

Chapter 8. Dominance-based formulation

8.3.1 Box uncertainty

This section is devoted to box uncertainty, which is the special case of budgeted
uncertainty where Γ = |J |, and thus δ̂ ∈ ∆. In Section 6.4.1 of Chapter 6, a
polynomial algorithm for AnchRobPSP under box uncertainty was provided. This
algorithm is as follows: compute x the earliest schedule of G(p+ δ̂) and x the latest
schedule of G(p) such that xt = M ; let H∗ = {i ∈ J | xi ≤ xi} and xi = min{xi, xi}
for every i ∈ J ; return (x,H∗).

The main result is that in this case the polytope Q of anchored sets is charac-
terized by inequalities (4).

Theorem 8.2. For box uncertainty,

Q = {h ∈ [0, 1]J : h satisfies (4)}.

Proof. Consider schedules x and x, defined by xj = LG(p+δ̂)(s, j) and xj = M−L0
jt

for every j ∈ J . Note first that for box uncertainty, L∆
sj = LG(p+δ̂)(s, j) = xj. In-

equality (4) writes in this case: hj ≤
⌊
M−(L0

sj+L
0
jt)

L∆
sj−L0

sj

⌋
=
⌊
xj−L0

sj

xj−L0
sj

⌋
. Equivalently,

it implies hj ≤ 1 if j ∈ H∗, and hj ≤ 0 if j /∈ H∗. Hence {h ∈ [0, 1]J :
h satisfies (4)} = [0, 1]H

∗ × {0}J\H∗ .
Every extreme point of [0, 1]H

∗ × {0}J\H∗ is the incidence vector of a set H ⊆
H∗. Since any subset of an anchored set is anchored, and H∗ is anchored, then
[0, 1]H

∗×{0}J\H∗ ⊆ Q. Conversely, if H is an anchored set, its incidence vector χH

satisfies valid inequalities (4): thus H ⊆ H∗. Hence Q ⊆ [0, 1]H
∗ × {0}J\H∗ .

Note that Theorem 8.2 also holds for any ∆ that has a greatest element δ̂. This
case is more general than ∆ being a box, as mentioned in Section 8.1.

8.3.2 1-disruption uncertainty

In this section, set ∆ is a 1-disruption uncertainty set, i.e., a budgeted uncertainty
set with Γ = 1 and δ̂i = δ̂0 for every i ∈ J . In Section 8.3.2.1 the polyhedral
characterization is shown for the special case with processing times equal to zero.
In Section 8.3.2.2 it is extended to any critical precedence graph, with possibly
non-zero processing times.

8.3.2.1 The Unitary AnchRobPSP

Consider first the case of zero processing times. W.l.o.g. δ̂0 = 1. This is the
Unitary AnchRobPSP (U-AnchRob) studied in Section 6.4.2.2, page 124. For unit

196

Chapter 8. Dominance-based formulation

anchoring weights, it was identified as a polynomial case by an equivalence with a
problem on posets for which a min/max theorem is known (Schrijver, 2003).

An instance is the precedence graph G = (J,A), p = 0, δ̂0 = 1, integer deadline
M , and anchoring weights. Indeed deadline M can be assumed integer. If M is
not integer, it can be replaced with bMc w.l.o.g.: indeed, since p and δ̂ are integer,
for any H the earliest schedule of for which H is anchored is integer-valued with
integer makespan.

For (U-AnchRob) our main result is a characterization of the polytope through
formulation (Dom). It relies on the polyhedral result of Theorem 8.3. Let (J,≺) be
a poset with s (resp. t) a least (resp. greatest) element. Consider the inequalities

zi − zs ≥ 0 ∀i ∈ J (a)
zt − zi ≥ 0 ∀i ∈ J (b)
zt ≤M (c)
zj − zi ≥ hj ∀i, j ∈ J , i ≺ j (d)
zj ≥ 0 ∀j ∈ J (e)
hj ≤ 1 ∀j ∈ J (f)
hj ≥ 0 ∀j ∈ J (g)

and let P = {(z, h) ∈ RJ × RJ : (a)− (g)}.

Theorem 8.3. The polytope P is integer.

Proof. Consider the polytope P formed with all pairs (z, h) ∈ RJ
+ ×RJ

+ satisfying
the constraints (a)–(g). To prove integrality of P , the main idea is to define an
auxiliary extended polyhedron where h variables can be expressed linearly from
z variables and additional z′ variables. Let us define the auxiliary polyhedron P ′
formed with all triplets (z, z′, h) ∈ RJ

+ × RJ
+ × RJ satisfying the constraints

zj − zi ≥ 0 ∀(i, j) ∈ A (i)
z′j − z′i ≥ 0 ∀(i, j) ∈ A (ii)
z′j − zi ≥ 1 ∀(i, j) ∈ A (iii)
zj − z′j ≥ −1 ∀j ∈ J (iv)
zj − z′j ≤ 0 ∀j ∈ J (v)
zt ≤M (vi)
hj = 1 + zj − z′j ∀j ∈ J (vii)

Let us prove the following claim. Claim 1. P = Projz,h(P ′).
First, given (z, h) ∈ P , let us prove the existence of z′ such that (z, z′, h) ∈ P ′.
Define z′j = 1 + zj − hj for every j ∈ J , and z′s = zs, z

′
t = 1 + zt. Then the

(in)equalities (i) to (vii) can be checked for the triplet (z, z′, h) as follows.
– (i) and (vi) hold by assumption on z, and (vii) by definition of z′;

197

Chapter 8. Dominance-based formulation

– (ii): if j 6= t then z′j − z′i = zj − zi − hj + hi ≥ hi ≥ 0 by (d); if j = t then
z′j − z′i = zt − zi + hi ≥ hi ≥ 0 by (b);

– (iii): if j 6= t then z′j − zi = 1 + zj − hj − zi ≥ 1 by (d); if j = t, follows
from (b);

– (iv) and (v): zj − z′j = −1 + hj ∈ [−1, 0] since hj ∈ [0, 1].
Conversely, let (z, z′, h) ∈ P ′. Let us check inequalities (a)–(g) for (z, h).

– (a) holds by sum of (i) along an s−i path;
– (b) holds by sum of (i) along an i−t path;
– (c) is clear;
– (d): for i ≺ j we have zj − zi = zj − z′j + z′j − zk + zk − zi, where k is the

last vertex distinct from j on a path from i to j in the precedence graph
(possibly k = i). Then (k, j) ∈ A so z′j − zk ≥ 1 by (iii). Also zk − zi ≥ 0 by
summing (i) along the i−k path. Hence zj − zi ≥ zj − z′j + 1 + 0 = hj by
(vii). Hence (d) is satisfied;

– (f) (resp. (g)) comes from (vii) and (iv) (resp. (vii) and (v)).
This completes the proof of Claim 1. �

Now we prove: Claim 2. P ′ is integer.
Let (z, z′, h) be an extreme point of P ′. It satisfies the n equalities (vii) and it
saturates 2(n + 2) linearly independent inequalities among (i)–(vi). Thus (z, z′)

is an extreme point of {(z, z′) ∈ RJ
+ × RJ

+ : (i)-(vi)}. The constraint matrix of
(i)–(vi) is totally unimodular, and the right-hand side is integer since M is integer.
Hence (z, z′) is integer and so is (z, z′, h). This ends the proof of Claim 2. �

By Claim 1, P = Projz,h(P ′). It holds that for any extreme point (z, h) of
P there exists z′ such that (z, z′, h) is an extreme point of P ′. By Claim 2, such
(z, z′, h) is integer, hence (z, h) is integer. This proves the integrality of P .

Theorem 8.3 implies the following polyhedral characterization

Proposition 8.3. Formulation (Dom) yields a polyhedral characterization for (U-
AnchRob).

Proof. Let us prove that the linear relaxation of (Dom) correponds to the polytope
P from Theorem 8.3. For (U-AnchRob) for every i, j ∈ J such that i ≺ j we have
L0
ij = 0 since p = 0. The worst-case longest paths values are as follows. For every

j ∈ J , L∆
sj = 0 if j has no predecessor except s, and L∆

sj = 1 otherwise. For every
i ≺ j with i 6= s, L∆

ij = 1. For a pair i ≺ j with i 6= s, inequality (3) thus writes
zj − zi ≥ hj, which is inequality (d) or (b) from the definition of P . For a pair
s ≺ j, inequality (3) writes zj−zs ≥ 0 if j has no predecessor in J , and zj−zs ≥ hj
otherwise. If j has no predecessor in J , it is inequality (a) from the definition of
P . Otherwise j has a predecessor k ∈ J and inequality zj − zs ≥ hj is dominated
by inequalities zk − zs ≥ 0 and zj − zk ≥ hk. Hence it is satisfied by any element
of P . Thus PDom = P .

198

Chapter 8. Dominance-based formulation

By Theorem 8.3, P is integer, hence Projh(P) is integer. Namely, each extreme
point of Projh(P) is the incidence vector of an anchored set. Thus Projh(PDom) =
Projh(P) = Q, and (Dom) yields a polyhedral characterization for the problem.

Note that Proposition 8.3 implies also the integrality of schedule variables z,
which are not required to be integer in general.

As a corollary, a complexity result is that Theorem 8.3 generalizes the polyno-
mial case of (U-AnchRob) proven in Chapter 6 for unit anchoring weights, to any
non-negative anchoring weights.

8.3.2.2 Critical precedence graphs

Let us now consider processing times p ∈ RJ
+ and consider the case of critical

precedence graphs. Recall that the precedence graph G(p) is critical if the length
of all s−t paths is the same.

Properties of critical precedence graphs. A case where G(p) is critical is
when processing times are equal to zero, since the length of all s−t paths is zero.
Also if G is a path, for any p the precedence graph G(p) is critical since there is
a unique s−t path. Let us say that the precedence graph G(p) is quasi-critical
if every job i ∈ J belongs to a critical path, i.e., L0

si + L0
it = L0

st. Note that
if G(p) is critical, a necessary condition is that it is quasi-critical. For non-zero
processing times, it can also be proven that for some precedence graphs, if G(p) is
quasi-critical then it is critical. This holds for series-parallel precedence graphs.

Proposition 8.4. If G is series-parallel and G(p) is quasi-critical, then G(p) is
critical.

Proof. If G is a path, then G(p) is critical. If G is obtained by series composition
of G1 and G2; then any s−t path is formed by an s1−t1 path in G1 and an
s2−t2 path in G2. Hence if G1 and G2 are critical, it follows that G is critical.
If G is obtained by parallel composition of G1 and G2, both critical, let i ∈ G1

and j ∈ G2. Then every s−t path going through G1 (resp. G2) has length
LG1(s, t) = LG1(s, i) + LG1(i, t) (resp. LG2(s, t) = LG2(s, j) + LG2(j, t)). If G is
quasi-critical, LG(s, i) + LG(i, t) = LG(s, j) + LG(j, t), and it follows that all s−t
paths of G have same length.

This result is used for numerical results in Section 8.4 to generate critical
precedence graphs.

199

Chapter 8. Dominance-based formulation

Let us now show

Proposition 8.5. If G(p) is critical, then the assumption (IneqDj) is satisfied for
values Dj = LG(p+δ̂)(s, j)− LG(p)(s, j), for any uncertainty set ∆ ⊆ RJ

+.

Proof. Let i ≺ j. By definition of Dj, it holds that Dj ≥ L∆
sj − L0

sj. Because
G(p) is critical, it holds that L0

sj = L0
si + L0

ij. Hence Dj ≥ L∆
sj − L0

si − L0
ij. By

definition of the L∆
ij values, it holds that L∆

sj ≥ L0
si +L∆

ij . Hence Dj ≥ L∆
ij −L0

ij as
claimed.

Hence by Proposition 8.2, for critical precedence graphs, formulation (Dom) is
stronger than formulation (Lay).

Polyhedral characterization for critical precedence graphs. Let us now
consider a critical precedence graph G(p), and extend the polyhedral characteri-

zation result obtained in Section 8.3.2.1. It is assumed that M = L0
st + δ̂0M

′ with

M ′ integer. Indeed M can be tightened to L0
st + δ̂0

⌊
(M − L0

st)/δ̂0

⌋
w.l.o.g. Under

this assumption we prove that

Theorem 8.4. For 1-disruption uncertainty and critical precedence graph,
formulation (Dom) yields a polyhedral characterization of AnchRobPSP.

Proof. Let I denote an instance of AnchRobPSP for 1-disruption uncertainty with
deviation δ̂0, critical precedence graph G(p), and deadline M . Let z∗ be the earliest
schedule of G(p), namely z∗i = L0

si for every i ∈ J . Since G(p) is critical, for every
i ≺ j it holds that L0

si + L0
ij + L0

jt = L0
sj + L0

jt, hence L0
ij = z∗j − z∗i . Also

L∆
ij = z∗j − z∗i + δ̂0. Inequalities (3) then write zj − zi ≥ (z∗j − z∗i) + δ̂0hj, or

equivalently
zj−z∗j
δ̂0
− zi−z∗i

δ̂0
≥ hj. Similarly the deadline constraint is equivalent

to
zt−z∗t
δ̂0
≤ M−z∗t

δ̂0
. Consider a new instance I ′ of (U-AnchRob) defined by: the

precedence graph G, zero processing times, and M ′ =
M−L0

st

δ̂0
. Then M ′ is integer

by assumption on M . Solution (z, h) is feasible for (Dom) in instance I if and
only if solution (z−z

∗

δ̂0
, h) is feasible for (Dom) in instance I ′. Hence if (z, h) is an

extreme point of PDom then (z−z
∗

δ̂0
, h) is extreme for the (U-AnchRob) instance.

By Proposition 8.3, vector h is integer. Hence the claimed result.

Theorem 8.4 thus yields a polyhedral characterization of polynomial size for
this special case. We mention that this is a polynomial case of AnchRobPSP that
was not identified in Chapter 6.

200

Chapter 8. Dominance-based formulation

8.4 Numerical results

We investigate the impact of theoretical polyhedral results from Section 8.3 on the
performance of formulations (Lay), (Std), (Dom) for various instance classes. In
Section 8.4.1, instances and settings are presented. Section 8.4.2 is dedicated to
budgeted uncertainty, and Section 8.4.3 to partition-budgeted and mixed-budgeted
uncertainty sets.

8.4.1 Instances and settings

Instances are randomly generated as follows. We consider instance classes with a
four-field label F1 F2 F3 F4:

• Field F1 concerns precedence graph G
– ER: precedence graphs randomly generated according to Erdos-Renyi

model, i.e., arc (i, j) is in G with probability pr = 10/n.
– SP: Series-Parallel precedence graphs, inductively generated by drawing

randomly series or parallel compositions.
• Field F2 denotes processing times p

– pZero: pi = 0 for every i ∈ J ;
– pRand: pi is randomly generated in range [5, 20];
– pQCri: p is obtained by applying the following procedure: start from

the values generated for class pRand; increase the processing time of a
randomly selected job until every job is on a critical path. Hence G(p)
is quasi-critical.

• Field F3 denotes deviation δ̂
– dRand: for instances pRand and pQCri, δ̂i is randomly generated in

[1, 1
2
pi] for every i ∈ J ; for instances pZero, δ̂ is equal to the values

generated for instances pQCri;
– dUnif: δ̂i = δ̂0 for every i ∈ J . Value δ̂0 is randomly selected in the

deviation values of instances dRand.
• Field F4 denotes the uncertainty set

– Γ1, Γ2, Γ3 correspond to budgeted uncertainty with deviation defined
by F3 and Γ = 1, 2, 3 respectively.

– Partition: jobs are partitioned into two subsets J1 and J2, every job
being in J1 with probability 0.75. Given the deviation δ̂ defined by
F3, the deviation vector of the Partition instance is b0.1δ̂ic for every

i ∈ J1, and δ̂i for every i ∈ J2. Budgets are Γ1 = 10 and Γ2 = 1.
– Mixed: ∆ = ∆1 ∪ ∆2 where ∆1 has deviation δ̂ defined by F3 and

Γ1 = 1, and ∆2 has deviation τ δ̂, with τ = 0.2 and δ̂ defined by F3 and
Γ2 = 10.

201

Chapter 8. Dominance-based formulation

Each label corresponds to a class of 10 instances.

By Proposition 8.4 classes SP pQCri yield critical precedence graphs. Note also
that classes ER pRand (resp. ER pQcri) are generated with the same generation
scheme as instances ER (resp. ERC) from Chapter 6.

The number of jobs is set to n = 300. Anchoring weights are unitary. Deadline
M is set to M

1
2 = 1

2
(LG(p)(s, t) + LG(p+δ̂)(s, t)), that is, it is halfway between the

min makespan of any schedule of G(p) and the min makespan of a robust-static

schedule. Unreported results showed that choosing a deadline other than M
1
2

leads to similar results in terms of the comparison of formulations. For budgeted
uncertainty, the budget is Γ ∈ {1, 2, 3}. The choice of a small uncertainty budget
was previously motivated in the literature, see, e.g., (Herroelen and Leus, 2004),
and in the numerical results of Chapter 6.

For each instance, formulations (Dom), (Std), and (Lay) have been imple-
mented using Julia 0.6.2, JuMP 0.18.5. Mixed-integer programs are solved with
CPLEX 12.8 on a PC under Windows 10 with Intel Core i7-7500U CPU 2.90GHz
and 8 Go RAM. The time limit is 300 seconds.

The valid inequalities (4) appear to be added by CPLEX on the fly. Thus they
are not hardcoded in formulations.

8.4.2 Impact of instance parameters under budgeted
uncertainty

Let us first investigate the case of budgeted uncertainty. Table 8.1 and Table 8.2
present the results for ER and SP instances respectively. Each table presents the
results relative to 8 instance classes: the first 6 instance classes are with Γ = 1 and
with all combinations of processing times and deviations, and the last 2 instance
classes are with Γ = 2 and Γ = 3. For each instance class, checkmarks in the first
three columns indicate if the assumptions of Theorem 8.4 are matched:

– crit.: the precedence graph G(p) is critical;

– unif.: deviation δ̂ is uniform;
– Γ1: Γ = 1.

The tables feature:

202

Chapter 8. Dominance-based formulation

– opt: average optimal value for instances solved optimally;
– for each formulation (Lay), (Std) and (Dom):

– #solved: number of instances, out of 10, solved optimally within the
time limit;

– gap: average final gap of unsolved instances;
– time: average computation time for solved instances in seconds;

– LPGap: average gap b−opt
opt

between integer optimum opt and linear
bound b;

– CPXGap: average gap obtained by CPLEX at root node.

The computation times do not include the preprocessing time for computing
L∆
ij values. The computation is done by a dynamic programming algorithm linear

in Γ|A|. Its running time is negligible with respect to MIP computation time: on
average 0.153 seconds for ER instances and 0.161 seconds for SP instances.

Let us now comment on the impact of the instance parameters.

Polyhedral characterization cases. Instance classes ER pZero dUnif Γ1, SP -

pZero dUnif Γ1, and SP pQCri dUnif Γ1, correspond to polyhedral characteri-
zation cases. As expected, formulation (Dom) solves the problem in less than one
second and LPGap = 0%. Formulation (Lay) has non-zero LPGap, but CPLEX
adds suitable cuts to close the gap at root node.

Impact of uniform deviation. Consider now the 6 instance classes F1 F2 -

dUnif Γ1. These are the first three row entries of Table 8.1 and the first three
row entries of Table 8.2. On these 6 instance classes, formulations (Dom) and
(Lay) still behave well. (Dom) solves all instances in less than one second. In
particular, its LPGap is still very small: at most 0.42%. (Lay) also performs well,
the LPGap of (Lay) is larger, but CPXGap is comparable for (Dom) and (Lay).
We note that uniform deviation has an important impact on the performance of
formulations. Consider, e.g., instance classes SP pZero dUnif Γ1 and SP pZero -

dRand Γ1. For uniform deviation (Dom) is integer ; for non-uniform deviation it
has 9.70% CPXGap and solves only 4 instances out of 10 within the time limit.
By contrast with (Dom) and (Lay) on these instances, formulation (Std) performs
very poorly and solves only 41 instances out of 120 (vs. 107 out of 120 for (Dom)).

Impact of the precedence graph. The impact of the precedence graph being
critical is limited, as shown for example by the comparison of instances ER pZero

and ER pQCri. Both are efficiently solved, while the precedence graph is critical
for the former, and not critical for the latter. Even more, instances with pRand

appear to be easy instances, while they do not have critical precedence graphs. An
interpretation is that for such instances, a large number of jobs are not on critical

203

Chapter 8. Dominance-based formulation

paths and thus they can be anchored; note, e.g., that the optimal value is greater
for pRand instances than for others.

Impact of uncertainty budget. When Γ is increased, the performance of (Lay)
deteriorates. It gets even worse than (Std) for ER instances, see ER pZero dUnif -

Γ3 where (Std) solves 3 instances and (Lay) solves 1 instance. Importantly, the
size of formulation (Lay) increases with Γ. For (Dom) and (Std) only the values
of the coefficients L∆

ij depend on the budget, and not the size of the formulation.

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
ER pZero dUnif Γ1 X X X 271.90 (Lay) 10 - 1 9.20% 0.90%

(Std) 1 1.19% 144 5.14% 3.07%
(Dom) 10 - <1 0% 0%

ER pQCri dUnif Γ1 X X 274.30 (Lay) 10 - 26 8.39% 0.87%
(Std) 0 2.05% - 8.04% 4.29%

(Dom) 10 - 1 0.42% 0.24%
ER pRand dUnif Γ1 X X 290.40 (Lay) 10 - <1 3.06% 0.06%

(Std) 10 - 30 3.02% 1.62%
(Dom) 10 - <1 0.10% 0%

ER pZero dRand Γ1 X X 214.77 (Lay) 9 2.84% 21 34.15% 7.93%
(Std) 9 4.92% 65 28.53% 4.68%

(Dom) 9 1.81% 11 21.13% 3.28%
ER pQCri dRand Γ1 X 225.80 (Lay) 8 0.98% 21 28.54% 7.70%

(Std) 6 2.30% 41 30.25% 5.41%
(Dom) 10 - 31 18.09% 3.69%

ER pRand dRand Γ1 X 290.20 (Lay) 10 - <1 3.00% 0.36%
(Std) 10 - <1 3.02% 1.74%

(Dom) 10 - <1 0.82% 0.07%
ER pZero dUnif Γ2 X X 255.50 (Lay) 2 1.88% 113 15.11% 9.93%

(Std) 1 4.20% 237 10.93% 7.58%
(Dom) 10 - 53 3.91% 2.46%

ER pZero dUnif Γ3 X X 243.50 (Lay) 1 4.41% 111 19.77% 13.69%
(Std) 3 5.48% 153 15.76% 7.78%

(Dom) 10 - 105 7.18% 3.51%

Table 8.1: ER instances, budgeted uncertainty

204

Chapter 8. Dominance-based formulation

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
SP pZero dUnif Γ1 X X X 255.90 (Lay) 10 - <1 17.09% 0%

(Std) 0 3.34% - 8.64% 6.81%
(Dom) 10 - <1 0% 0%

SP pQCri dUnif Γ1 X X X 255.90 (Lay) 10 - <1 17.09% 0%
(Std) 0 6.88% - 14.82% 8.96%

(Dom) 10 - <1 0% 0%
SP pRand dUnif Γ1 X X 262.80 (Lay) 10 - <1 14.19% 0.42%

(Std) 0 6.86% - 13.36% 7.29%
(Dom) 10 - <1 0.05% 0%

SP pZero dRand Γ1 X X 247.00 (Lay) 4 3.72% 3 32.46% 16.43%
(Std) 2 18.60% 11 25.97% 20.07%

(Dom) 4 9.12% 15 16.42% 9.70%
SP pQCri dRand Γ1 X X 247.00 (Lay) 4 3.52% 3 32.38% 16.72%

(Std) 2 23.58% 30 35.21% 27.94%
(Dom) 4 9.83% 14 16.54% 9.90%

SP pRand dRand Γ1 X 268.60 (Lay) 10 - 3 11.51% 6.97%
(Std) 1 6.09% 193 11.05% 9.34%

(Dom) 10 - 16 2.26% 0.92%
SP pQCri dUnif Γ2 X X 246.66 (Lay) 7 0.85% 45 22.65% 10.58%

(Std) 0 11.80% - 20.92% 16.63%
(Dom) 9 0.77% 31 2.44% 1.35%

SP pQCri dUnif Γ3 X X 246.14 (Lay) 5 2.77% 57 26.40% 16.38%
(Std) 1 17.42% 215 25.47% 20.68%

(Dom) 7 2.19% 38 3.92% 3.29%

Table 8.2: SP instances, budgeted uncertainty

8.4.3 Beyond budgeted uncertainty

Let us now present results when ∆ is an uncertainty set with several budgets.

8.4.3.1 Partition-budgeted uncertainty set

Table 8.3 and Table 8.4 give computational results for ER and SP instances under
Partition uncertainty. In this case, the L∆

ij values were computed by a dynamic
programming algorithm with complexity linear in Γ1Γ2|A|. The computation was
done in 4.364 seconds on average for ER instances, and 4.916 seconds on average
for SP instances.

It comes that (Dom) solves all 60 ER instances, and 54 SP instances, which is
better than for budgeted uncertainty. For SP instances, the results are comparable
to those of budgeted uncertainty. By contrast, ER instances appear to be very easy
for this uncertainty set. Hence solving the MIP formulation (Dom) for Partition
uncertainty does not seem harder than for budget Γ1. This highlight that (Dom)
can be readily used to handle several budget constraints.

205

Chapter 8. Dominance-based formulation

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
ER pZero dUnif Partition X X 286.50 (Lay) - - - - -

(Std) 10 - <1 2.17% 0.07%
(Dom) 10 - <1 0% 0%

ER pQCri dUnif Partition X 284.30 (Lay) - - - - -
(Std) 10 - 1 4.92% 0.22%

(Dom) 10 - <1 1.53% 0%
ER pRand dUnif Partition X 294.50 (Lay) - - - - -

(Std) 10 - <1 1.72% 0.05%
(Dom) 10 - <1 0.34% 0%

ER pZero dRand Partition X 246.10 (Lay) - - - - -
(Std) 10 - <1 22.03% 0%

(Dom) 10 - <1 20.22% 0%
ER pQCri dRand Partition 260.70 (Lay) - - - - -

(Std) 10 - <1 14.45% 0%
(Dom) 10 - <1 12.13% 0%

ER pRand dRand Partition 293.10 (Lay) - - - - -
(Std) 10 - <1 2.14% 0%

(Dom) 10 - <1 0.77% 0%

Table 8.3: ER instances, Partition uncertainty

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
SP pZero dUnif Partition X X 274.70 (Lay) - - - - -

(Std) 8 1.36% 14 4.48% 2.01%
(Dom) 10 - <1 0% 0%

SP pQCri dUnif Partition X X 273.44 (Lay) - - - - -
(Std) 4 7.42% 43 10.57% 8.29%

(Dom) 9 3.22% 14 1.43% 0.84%
SP pRand dUnif Partition X 284.90 (Lay) - - - - -

(Std) 8 2.12% 57 4.89% 2.71%
(Dom) 10 - <1 0.17% 0%

SP pZero dRand Partition X 246.87 (Lay) - - - - -
(Std) 7 11.40% 1 23.12% 4.54%

(Dom) 8 4.05% 33 19.43% 2.79%
SP pQCri dRand Partition X 247.42 (Lay) - - - - -

(Std) 7 13.46% 1 27.36% 5.16%
(Dom) 7 3.28% <1 19.33% 2.66%

SP pRand dRand Partition 279.10 (Lay) - - - - -
(Std) 7 4.89% 44 7.10% 5.05%

(Dom) 10 - 1 1.85% 0.41%

Table 8.4: SP instances, Partition uncertainty

206

Chapter 8. Dominance-based formulation

8.4.3.2 Mixed-budgeted uncertainty sets

Table 8.5 and Table 8.6 give computational results for ER and SP instances under
Mixed uncertainty. In this case ∆ = ∆1∪∆2 where ∆1 is the uncertainty set corre-
sponding to instance classes with fourth field Γ1. The L∆

ij values were precomputed
by the same dynamic programming algorithm as for budgeted uncertainty. This
computation was done in 0.152 seconds on average for ER instances, and 0.154
seconds on average for SP instances.

First, (Dom) solves optimally 59 ER instances and 42 SP instances for Mixed,
in comparison with 59 ER instances and 48 SP instances for budgeted uncertainty
(Γ = 1). That is, the performance of the formulation is not very sensitive to the
change of uncertainty set.

Some conclusions given in Section 8.4.2 also hold for Mixed uncertainty. Namely,
instances with dUnif are easier than instances with dRand. It can be related to the
influence of uniform deviation on the performance of (Dom), in connection with
the polyhedral characterization result.

The optimal number of anchored jobs is often the same for ∆ or ∆1. Namely,
the value of opt can be compared between Table 8.1 and Table 8.5 for ER instances,
and between Table 8.2 and Table 8.6 for SP instances. For example for instance
classes SP pZero dRand Γ1 and SP pZero dRand Mixed the average optimal value
is equal to 247.00, hence all instances have the same optimal value for uncertainty
set ∆ and ∆1. This means that the uncertainty set can be extended from ∆1 to
∆ = ∆1 ∪∆2 without deteriorating the number of anchored jobs.

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
ER pZero dUnif Mixed X X 271.90 (Lay) - - - - -

(Std) 1 1.17% 286 5.14% 3.06%
(Dom) 10 - <1 0% 0%

ER pQCri dUnif Mixed X 274.20 (Lay) - - - - -
(Std) 0 2.13% - 8.08% 4.28%

(Dom) 10 - 1 0.45% 0.24%
ER pRand dUnif Mixed X 290.40 (Lay) - - - - -

(Std) 10 - 26 3.02% 1.62%
(Dom) 10 - <1 0.10% 0.03%

ER pZero dRand Mixed X 214.77 (Lay) - - - - -
(Std) 9 5.35% 66 28.53% 4.61%

(Dom) 9 1.83% 13 21.13% 3.22%
ER pQCri dRand Mixed 225.80 (Lay) - - - - -

(Std) 7 2.61% 77 30.19% 5.09%
(Dom) 10 - 22 18.09% 3.49%

ER pRand dRand Mixed 290.20 (Lay) - - - - -
(Std) 10 - <1 3.02% 1.78%

(Dom) 10 - <1 0.82% 0.07%

Table 8.5: ER instances, Mixed uncertainty

207

Chapter 8. Dominance-based formulation

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
SP pZero dUnif Mixed X X 255.70 (Lay) - - - - -

(Std) 0 3.60% - 8.72% 6.84%
(Dom) 10 - 1 0.06% 0%

SP pQCri dUnif Mixed X X 246.75 (Lay) - - - - -
(Std) 2 24.10% 37 35.77% 24.48%

(Dom) 4 10.15% 13 16.59% 9.99%
SP pRand dUnif Mixed X 262.80 (Lay) - - - - -

(Std) 0 6.74% - 13.36% 7.64%
(Dom) 10 - 1 0.05% 0%

SP pZero dRand Mixed X 247.00 (Lay) - - - - -
(Std) 2 19.25% 16 26.63% 19.47%

(Dom) 4 9.43% 13 16.40% 10.19%
SP pQCri dRand Mixed X 247.00 (Lay) - - - - -

(Std) 2 23.86% 30 35.52% 25.37%
(Dom) 4 9.15% 12 16.26% 10.19%

SP pRand dRand Mixed 268.40 (Lay) - - - - -
(Std) 1 6.03% 179 11.00% 9.48%

(Dom) 10 - 26 2.34% 1.08%

Table 8.6: SP instances, Mixed uncertainty

8.4.4 Conclusion on numerical experiments

In the numerical experiments, we evaluated the performance of formulations for
budgeted uncertainty sets, and uncertainty sets obtained by union or intersec-
tion of budgeted uncertainty sets. For budgeted uncertainty sets, numerical tests
showed that (Dom) outperforms the previously known formulation (Lay), that was
dedicated to budgeted uncertainty. An advantage of formulation (Dom) over (Lay)
is that the size of (Dom) is independent of the budget Γ, while (Lay) has O(nΓ)
variables.

We then investigated the impact of the parameters on the performance of
(Dom). The influence of uniform deviation and small uncertainty budget is im-
portant, while the impact of critical precedence graphs is not significant on the
efficiency of the formulation. Interestingly (Dom) is efficient for instances that

are not matching the polyhedral characterization case, but where deviation δ̂ is
uniform and Γ is small.

The proposed approach is to precompute the L∆
ij values, then solve the ob-

tained MIP formulation. This allowed us to solve the problem for a variety of
new uncertainty sets. The precomputing time remains small (at most 5 seconds
for partition-budgeted uncertainty sets) on the considered instances, and the MIP
computation time for (Dom) is comparable to that under budgeted uncertainty.
While it was expected that (Dom) would outperform standard linearization (Std),
the computational interest of applying the dominance is highlighted by the number
of solved instances: on a total number of 400 instances, 358 are solved by (Dom),

208

Chapter 8. Dominance-based formulation

only 191 by (Std).

Conclusion

In this chapter we investigated a versatile mixed-integer programming approach
for the AnchRobPSP problem. This led to a linear formulation that is applicable
to any uncertainty set, provided that an algorithm for precomputing the worst-
case longest paths values is available. This widens the range of uncertainty sets
for which MIP formulations for AnchRobPSP are known. The keypoint for estab-
lishing a strong MIP formulation is the analysis of the combinatorial properties
of AnchRobPSP, among which a dominance property played a major role. This
property allows for a characterization of the anchored sets polytope in interesting
special cases. The theoretical positive results for the dominance-based formulation
also go together with good numerical performances around the polyhedral char-
acterization case, for both budgeted uncertainty and uncertainty sets with several
budgets.

A research direction would be to apply the same dominance idea to the Anchor-
Robust RCPSP studied in Chapter 7. Inequalities could be obtained, to strengthen
the formulation based on the layered graph. This would require to combine the
L∆
ij computation with the sequence variables. It is worth investigating whether

dominance may help again in the design of efficient linear formulations, or linear
formulations applicable to new uncertainty sets.

209

Chapter 8. Dominance-based formulation

210

Chapter 9

The combinatorial structure of
the Anchor-Robust Project
Scheduling Problem

In this chapter, we investigate the combinatorial structure of the AnchRobPSP
problem defined in Chapter 6. It was mentioned that the combinatorial decisions
lie in the choice of the anchored set, rather than in the baseline schedule. We inves-
tigate formulations for (AnchRob) with binary anchoring h variables only. A new
cover formulation (Cov) is proposed, that is non-compact. Separation algorithms
are provided. We then revisit results obtained on mixed-integer formulations (Lay)
and (Dom) from Chapter 6 and Chapter 8 respectively. Both (Lay) and (Dom)
can be projected out to obtain formulations in h variables only. These projections
are obtained explicitly, through new families of inequalities. We propose a unified
picture of linear formulations (Lay), (Dom) and (Cov): with both a projected form
in h variables, and an extended form with additional continuous variables. The
three formulations are compared in the space of h variables. A polyhedral study of
the polytope of anchored sets is then undertaken. Facial properties of inequalities
from the formulations are exhibited, and new valid inequalities are obtained to
strengthen the formulations. Algorithmic perspectives are presented.

9.1 Formulations in anchoring variables

This section is devoted to linear formulations for the (AnchRob) problem in the
space of anchoring variables. A new cover formulation is first proposed. Then it is
shown how to project mixed-integer formulations from previous chapters, onto the
space of h variables. Finally results are given on the comparison of the polytope

211

Chapter 9. Combinatorial Structure of AnchRobPSP

of these formulations.

9.1.1 A cover formulation

Let C denote the set of chains of the poset (J,≺). Given C ∈ C, let j1, . . . , j|C|
denote the jobs of C, ordered for ≺. Note that for C ∈ C, a subset C ′ ⊆ C is also
an element of C. By definition of the poset (J,≺), chains of C are in one-to-one
correspondence with the set of jobs along an s−t path in the transitive closure
G. Indeed chain C formed with jobs j1, . . . , j|C| can be associated with the s−t
path (s, j1), (j1, j2), . . . , (j|C|, t) in G. Given C ∈ C, let A(C) denote the arcs of
the associated path from j1 to j|C|, i.e., A(C) = {(j1, j2), . . . , (j|C|−1, j|C|)}. Let
A(s, C) = {s, j1} ∪ A(C).

Let `∆(C) denote the length of C in G∆, that is,

`∆(C) =
∑

(i,j)∈A(s,C)

L∆
ij + L0

j|C|t
.

A chain C ∈ C is long if `∆(C) > M , short otherwise. Let C>M (resp. C≤M)
denote the set of long chains (resp. short chains). Importantly, function `∆ is not
monotone: it can be that C ′ ⊆ C and `∆(C ′) > `∆(C). That is, a short chain may
have a long subchain, as shown in Example 9.1.

Example 9.1. Consider a set of 4 jobs. The precedence arcs are (1, 2), (2, 4), (1, 3),

(3, 4). Let p = (1, 1, 1, 1). Consider budgeted uncertainty with deviation δ̂ and

budget Γ = 1. Then L∆
12 = 1 + δ̂1, L∆

24 = 1 + δ̂2 and L∆
14 = 2 + max{δ̂1, δ̂2, δ̂3}.

Consider the chain C = (1, 2, 4) and its subchain C ′ = (1, 4). Then `∆(C) =

0 + 2 + δ̂1 + δ̂2 + 1 and `∆(C ′) = 0 + 2 + max{δ̂1, δ̂2, δ̂3}+ 1. E.g. for δ̂ = (1, 1, 3, 1)
it comes that `∆(C) < `∆(C ′). �

A consequence of the graph model from Chapter 6 is as follows. By Theo-
rem 6.1, a set H ⊆ J is anchored if and only if every chain contained in H is
short, or equivalently, `∆(C ∩H) ≤ M for every C ∈ C. Hence the AnchRobPSP
problem is

AnchRobPSP: max w(H)
s.t. `∆(C ∩H) ≤M ∀C ∈ C

Consider the constraint `∆(C ∩ H) ≤ M . It can be written as: if C ∈ C>M ,
then not all elements of C should be selected in set H. It yields the long chain
cover inequalities

h(C) ≤ |C| − 1 ∀C ∈ C>M (LCCov)

212

Chapter 9. Combinatorial Structure of AnchRobPSP

where h(C) is a shorthand notation for
∑

i∈C hi. Consider the following polytope,
defined by (LCCov) inequalities

PCov = {h ∈ [0, 1]J : h satisfies (LCCov)}

Let (Cov) be the formulation defined by linear inequalities from PCov and inte-
grality constraints h ∈ {0, 1}J . It comes that

Proposition 9.1. The formulation (Cov) is valid for AnchRobPSP.

It gives a first formulation in h variables for AnchRobPSP. The family of in-
equalities (LCCov) has exponential size. Let us write the corresponding separation
problem.

Separation of (LCCov)
Input: G∆, M ≥ 0, h∗ ∈ [0, 1]J

Problem: find C ∈ C such that `∆(C) > M and h∗(C) >
|C| − 1, or answer that there is no such chain.

Theorem 9.1. Separation of (LCCov) is NP-hard.

Proof. Let us prove the NP-hardness result, by a reduction from the Knapsack
problem. Let IKP be an instance of the Knapsack problem with m items integer
weights wi and integer values vi, knapsack capacity W and target value V . Assume
w.l.o.g. that every item fits in the knapsack: wi ≤ W . Let us build an instance
ISep of Separation of (LCCov) as follows. The construction of the instance is
similar to the reduction in proof of Theorem 6.5.
• The set of jobs is J = {0, 1, . . . ,m} where the items 1, . . . ,m are indexed by

increasing value: v1 ≤ · · · ≤ vm; and 0 is an additional job.
• The precedence graph is the path (s, 0, 1, . . . ,m, t) and processing times are

zero.
• Deviations are defined by δ̂i = vi+1 for every i ∈ {0, 1 . . . ,m − 1} (hence

δ̂i ≤ δ̂i+1 for every i) and δ̂m = 0.
• Budget is Γ = 1

Arc-weights of G∆ are then: L∆
ij = δ̂j−1 = vj for every i ∈ J ∪ {s}, j ∈ J and

L0
jt = 0 for every j ∈ J . The rest of the instance ISep is
• M = V − 1
• h∗i = 1− wi

W+1
for every i ∈ {1, . . . ,m} and h∗0 = 0.

Let C ⊆ J be a subset of jobs, and S the associated subset of items defined by
S = C \ {0}. Let us show that S is a subset of items of the knapsack such that∑

i∈S vi ≥ V and
∑

i∈S wi ≤ W if and only if the (LCCov) inequality associated
with C is violated in ISep. Note first that `∆(C) =

∑
i∈S vi. Hence `∆(C) > M is

213

Chapter 9. Combinatorial Structure of AnchRobPSP

equivalent to
∑

i∈S vi > V − 1, or
∑

i∈S vi ≥ V since V and the vi’s are integer.
Also

∑
j∈C(1 − h∗j) = (

∑
i∈S wi)/(W + 1), hence h(C) > |C| − 1 is equivalent to

(
∑

i∈S wi)/(W + 1) < 1, or
∑

i∈S wi ≤ W since W and the wi’s are integer. This
proves the claimed NP-hardness result.

Theorem 9.2. Separation of (LCCov) admits a pseudo-polynomial algorithm.
In an integer point h ∈ {0, 1}J , separation of constraints (LCCov) can be done in
polynomial time.

Proof. Note that the separation problem can be cast as a constrained longest path
problem in G∆. The problem is to find a path C ∈ C such that `∆(C) > M
and

∑
i∈C(1 − h∗i) is minimized. If the minimum value is less than 1, then an

optimal solution C∗ yields a violated (LCCov) inequality; otherwise, all (LCCov)
inequalities are satisfied at h∗.

This problem can be solved in pseudo-polynomial time. Let us describe the
dynamic programming algorithm when all L∆

ij and L0
ij are integers. Let L̄ be the

length of the longest s−t path in G∆ (then L̄ > M). For every L ∈ {0, . . . , L̄},
for every j ∈ J , let λj[L] be a label representing the minimum of

∑
i∈C′(1 − h∗i)

where C ′ ∈ C has last vertex j|C′| = j and
∑

(i,i′)∈A(s,C′) L
∆
ii′ = L. Then the λ labels

satisfy the dynamic programming equations:

λs[L] = 0 ∀L ∈ {0, . . . L̄}
λj[L] = mini≺j

(
λi[L− L∆

ij] + 1− h∗j
)
∀j ∈ J , ∀L ∈ {0, . . . , L̄}

λt[L] = mini∈J (λi[L− L0
it]) ∀L ∈ {0, . . . L̄}

and the optimal value of the constrained longest path problem is

min
L∈{M+1,...,L̄}

λt[L].

If h∗ ∈ {0, 1}J , the inequality h∗(C) > |C| − 1 is equivalent to h∗j = 1 for every
j ∈ C. Let H be the set with incidence vector h∗. The separation problem can
then be solved in polynomial time as follows. Compute the longest s−t path in
the subgraph of G∆ induced by H: if it is greater than M , return a longest path
C∗, otherwise all (LCCov) inequalities are satisfied.

214

Chapter 9. Combinatorial Structure of AnchRobPSP

9.1.2 Formulations obtained by projections or extensions

9.1.2.1 Projections

We previously obtained formulations for AnchRobPSP involving two categories
of variables: anchoring h variables and additional schedule variables. Formulation
(Lay) was introduced in Chapter 6 and formulation (Dom) introduced in Chapter 8.
We refer to Chapter 8, pages 192–193 for definitions of both formulations. We now
show how to project explicitly those two formulations on the space of h variables.
The projections then are valid formulations in h variables only.

Let PLay (resp. PDom) denote the polytope of formulation (Lay) (resp. of for-
mulation (Dom)). Recall that they are not in the same variable space, since (Lay)

uses continuous variables (xγ)γ∈{0,...,Γ} ∈ RJ×{0,...,Γ} and (Dom) uses continuous

variables z ∈ RJ .

Theorem 9.3. Consider the family of inequalities∑
(i,j)∈A(s,C)

(
L0
ij + (L∆

ij − L0
ij)hj

)
+ L0

j|C|t
≤M ∀C ∈ C (CDom)

The projection of (Dom) formulation onto h variables is defined by inequalities
(CDom), that is,

Projh(PDom) =
{
h ∈ [0, 1]J : h satisfies (CDom)

}
.

Proof. Let h ∈ [0, 1]J . Let G∆(h) denote the transitive closure of G, where arc
(i, j) is given the weight L0

ij + (L∆
ij − L0

ij)hj, with ht = 0 for the ease of notation.
Then (z, h) ∈ PDom if and only if z is a schedule of G∆(h) with makespan zt ≤
M , by definition of formulation (Dom). The existence of such z is equivalent to
LG∆(h)(s, t) ≤M ; or equivalently, every s−t path in G∆(h) has length at most M .
The length of path C ∈ C in G∆(h) is exactly the left-hand side of the proposed
inequality, hence the result.

Theorem 9.4. Consider the family of inequalities∑
(i,j)∈A(s,C)

(
L∆
ij −Dj(1− hj)

)
+ L0

j|C|t
≤M ∀C ∈ C (CLay)

The projection of (Lay) formulation onto h variables is defined by inequalities
(CLay), that is,

Projh(PLay) =
{
h ∈ [0, 1]J : h satisfies (CLay)

}
.

215

Chapter 9. Combinatorial Structure of AnchRobPSP

Proof. Let h ∈ [0, 1]J . Let `Glay(h)(R) denote the length of a path R in the layered
graph Glay(h). It holds that h ∈ Projh(PLay) if and only if there exists x a schedule
of Glay(h) such that xΓ

t ≤M . The existence of x is equivalent to the longest path
condition: LGlay(h)(s

Γ, tΓ) ≤ M ; or equivalently, `Glay(h)(R) ≤ M for every path R
from sΓ to tΓ in the layered graph Glay(h). Let us now show that it is equivalent
to
∑

(i,j)∈A(s,C)

(
L∆
ij −Dj(1− hj)

)
+ L0

j|C|t
≤M for every C ∈ C.

Assume first `Glay(h)(R) ≤ M for every path R from sΓ to tΓ in Glay(h). Let
C ∈ C be an s−t path in the transitive closure of G. Consider an associated sΓ−tΓ
path R∗ in the layered graph built as follows: for every arc (i, j) ∈ A(s, C), path
R∗ contains the subpath of length L∆

ij going from iΓ to a copy jγ of j, and the
vertical arc (jγ, jΓ); path R∗ also contains the subpath of length L0

j|C|t
going from

j|C|
Γ to tΓ. Then R∗ is an sΓ−tΓ path in Glay(h), by assumption it has length at

most M , hence
∑

(i,j)∈A(s,C)

(
L∆
ij −Dj(1− hj)

)
+ L0

j|C|t
≤M .

Conversely assume
∑

(i,j)∈A(s,C)

(
L∆
ij −Dj(1− hj)

)
+ L0

j|C|t
≤M for every C ∈

C. Let R be an sΓ−tΓ path in Glay(h). Let C∗ be the subset of successive jobs j
such that R contains a vertical arc (jγ, jΓ); then C∗ ∈ C. For every (i, j) ∈ C∗,
let R(i,j) denote the subpath of R from iΓ to a copy jγ of job j. Since R(i,j) uses
at most Γ transversal arcs, it comes `Glay(h)(R

(i,j)) ≤ L∆
ij . Similarly, let R(j|C∗|,t)

denote the subpath of R between j|C∗|
Γ and tΓ, then `Glay(h)(R

(j|C∗|,t)) ≤ L0
j|C∗|t

.

The total length of R is `Glay(h)(R) =
∑

(i,j)∈A(s,C∗)(`Glay(h)(R
(i,j))−Dj(1− hj)) +

`Glay(h)(R
(j|C∗|,t)), thus upper-bounded by

∑
(i,j)∈A(s,C∗)(L

∆
ij −Dj(1− hj)) +L0

j|C∗|t
.

By assumption this quantity is at most M since C∗ ∈ C, hence `Glay(h)(R) ≤ M .
This proves the claimed result.

Both projections are defined by an exponential number of inequalities, since C
has exponential size. Note that by contrast with (LCCov) inequalities, inequalities
(CLay) and (CDom) concern all chains, and not only long chains.

Inequalities (CDom) and (CLay) can both be separated in polynomial time,
since the corresponding separation problem can be cast as a longest path problem.
Formulations (Lay) and (Dom) can be regarded as extended formulations for the
polytopes defined by (CLay) and (CDom) respectively. For example for formula-
tion (Dom), the separation of (CDom) inequalities is to compute a longest path in
G∆(h). Schedule z corresponds to labels for computing such a longest path by dy-
namic programming. Note that only a polynomial number of additional schedule
variables suffices to obtain a compact valid extended formulation.

9.1.2.2 Extended form of formulation (Cov)

By contrast, the formulation (Cov) was natively obtained in exponential form.
The separation problem was solved in pseudo-polynomial time by dynamic pro-

216

Chapter 9. Combinatorial Structure of AnchRobPSP

gramming, as shown in Theorem 9.2. The dynamic programming scheme can be
used to design an extended formulation for (Cov) that has pseudo-polynomial size.
Consider a real decision variable λLj for every j ∈ J , L ∈ {0, . . . , L̄}.

Proposition 9.2. Consider the polytope PExt(Cov) defined by inequalities

λLj ≤ λ
L−L∆

ij

i + 1− hj ∀i ≺ j, j 6= t ∀L ∈ {L∆
ij , . . . , L̄}

λLt ≤ λ
L−L0

it
i ∀i ∈ J ∀L ∈ {L0

it, . . . , L̄}
λLt ≥ 1 ∀L ∈ {M + 1, . . . , L̄}
λLj ≥ 0 ∀j ∈ J ∀L ∈ {0, . . . , L̄}
hj ∈ [0, 1] ∀j ∈ J

Then Projh(PExt(Cov)) = PCov.

Proof. Let h ∈ PCov. Since h satisfies all (LCCov) inequalities, applying the
dynamic programming algorithm of Theorem 9.2 we obtain λ labels such that
minL∈{M+1,...,L̄} λt[L] ≥ 1. Then it is clear that the λ labels satisfy all inequalities

defining PExt(Cov). Hence h ∈ Projh(PExt(Cov)).

Conversely, let h /∈ PCov. The output of the dynamic programming algorithm
is thus a label λt[L

t] < 1 for some Lt ∈ {M+1, . . . , L̄}. Backtracking the algorithm
we obtain a path (s, Ls), . . . , (i, Li), . . . , (t, Lt) such that for every successive i, j,
Lj = Li + L∆

ij , and the sum of 1 − hj values along the path is less than one.

Consider the inequalities in the definition of PExt(Cov): summing along this path
yields the inequality λL

t

t ≤
∑

j∈C(1 − hj) < 1, in contradiction with inequality

λL
t

t ≤ 1. Thus h /∈ Projh(PExt(Cov)).

In particular, this implies that the inequalities defining PExt(Cov) and integrality
constraints h ∈ {0, 1}J define a valid formulation for AnchRobPSP, with a pseudo-
polynomial size.

The obtained results show that we obtained three formulations (Lay), (Dom),
(Cov), each of them with an exponential-size projected form in h variables only;
and a polynomial or pseudo-polynomial extended form with additional variables.
The whole picture of formulations is summarized in Figure 9.1.

217

Chapter 9. Combinatorial Structure of AnchRobPSP

∆ Formulations

budgeted (Lay) Projected form
∑

(i,j)∈A(s,C)

(
L∆
ij −Dj(1− hj)

)
+ L0

j|C|t
≤M ∀C ∈ C (CLay)

separation: polynomial

Extended form x schedule of Glay(h) such that xΓ
t ≤M

#vars: (n+ 2)(Γ + 1)

any with L∆ (Dom) Projected form
∑

(i,j)∈A(s,C)

(
L0
ij + (L∆

ij − L0
ij)hj

)
+ L0

j|C|t
≤M ∀C ∈ C (CDom)

separation: polynomial

Extended form z schedule of G∆(h) such that zt ≤M
#vars: n+ 2

any with L∆ (Cov) Projected form
∑

j∈C hj ≤ |C| − 1 ∀C ∈ C>M (LCCov)

separation: NP-hard

Extended form λ labels of dynamic programming from Thm. 9.2

#vars: (n+ 2)(L̄+ 1)

Figure 9.1: Formulations for AnchRobPSP in projected and extended forms.

9.1.3 Comparison of formulations

In this section, we address the comparison of formulations (Lay), (Dom) and (Cov).
We compare their associated polytope, and thus their linear bounds.

Formulations (Lay) and (Dom). Recall that it was proven in Chapter 8
that formulation (Dom) is stronger than formulation (Lay), i.e., Projh(PDom) ⊆
Projh(PLay) under assumption (IneqDj). This was proven by building a point in
the (x, h) space associated with a vector h ∈ Projh(PDom).

Using the explicit description of projections from Theorem 9.3 and Theorem 9.4
this result can now be seen easily. Consider the left-hand sides of (CLay) and
(CDom) inequalities. For every i ≺ j, it holds that L∆

ij −Dj(1−hj) ≤ L0
ij + (L∆

ij −
L0
ij)hj: indeed it is equivalent to (Dj−L∆

ij +L0
ij)hj ≤ Dj−L∆

ij +L0
ij which is clearly

satisfied for every hj ∈ [0, 1], since assumption (IneqDj) ensures Dj−L∆
ij +L0

ij ≥ 0
for every i ≺ j. Hence the inequalities defining the projection of (Dom) are tighter
than the inequalities defining the projection of (Lay).

Formulations (Lay) and (Cov). Let us first compare formulation (Cov) to
formulation (Lay), in the case of budgeted uncertainty. Let C ∈ C>M . Let us say
that C is minimal if for every C ′ ⊆ C, the subchain C ′ is short.

Proposition 9.3. Let h ∈ PCov. Then h satisfies (CLay) inequality for every
C ∈ C≤M and for every C ∈ C>M that is minimal.

218

Chapter 9. Combinatorial Structure of AnchRobPSP

Proof. Let h ∈ PCov. Note that inequality (CLay) rewrites as∑
j∈C Dj(1− hj) ≥ `∆(C)−M

The left-hand side is non-negative since h ∈ [0, 1]J . For C ∈ C≤M the right-hand
side `∆(C)−M is non-positive, so the inequality is satisfied by h.

Consider C ∈ C>M that is minimal. Let us prove the following claim: for every
j ∈ C, `∆(C) −M ≤ Dj. Fix some j ∈ C. Let us partition the chain C into
C≺j = {i ∈ C : i ≺ j}, {j} and C�j = {i ∈ C : j ≺ i}. Arcs from chain C are
either in C≺j ∪ {j} or C�j ∪ {j}. It holds that

`∆(C)−M = (`∆(C≺j ∪ {j})− L0
jt) + (`∆(C�j ∪ {j})− L∆

sj)−M.

Note that the value LG(p+δ̂)(s, j) is greater than the length of any s−j path in G∆,

namely LG(p+δ̂)(s, j) ≥ `∆(C≺j ∪ {j}) − L0
jt. Since Dj = LG(p+δ̂)(s, j) − L0

sj, we

have Dj ≥ `∆(C≺j ∪ {j})− L0
jt − L0

sj. Hence

`∆(C)−M ≤ Dj + L0
sj + `∆(C�j ∪ {j})− L∆

sj −M .

Denote by k the first vertex of C�j. It holds that L0
sj + L∆

jk ≤ L∆
sk by definition of

the L∆ values. Thus L0
sj + `∆(C�j ∪ {j})−L∆

sj ≤ `∆(C�j). The subchain C�j is a
subchain of C hence by assumption on C, it is short, i.e., `∆(C�j) ≤ M . Finally
we obtain `∆(C)−M ≤ Dj and the claim is proven.

Let us now prove the main result. It holds that
∑

j∈C Dj(1−hj) ≥ Dj∗(
∑

j∈C(1−
hj)) where Dj∗ = minj∈C Dj. Since h ∈ PCov and C ∈ C>M , the (LCCov) in-
equality gives

∑
j∈C(1 − hj) ≥ 1. Then

∑
j∈C Dj(1 − hj) ≥ Dj∗ ≥ `∆(C) −M

by the claim. This proves that h satisfies the (CLay) inequality associated with
chain C.

An open question is whether h ∈ PCov also satisfies (CLay) for long chains that
are not minimal. If so, formulation (Cov) would be proven stronger than (Lay).
Note that for a large enough value of the Dj values, formulation (Cov) would be
stronger than (Lay).

Formulations (Dom) and (Cov). Let us now answer the question of the com-
parison between the formulations (Cov) and (Dom).

Theorem 9.5. There exists an instance of AnchRobPSP where PCov and Projh(PDom)
are not comparable, in the sense that

PCov \ Projh(PDom) 6= ∅ and Projh(PDom) \ PCov 6= ∅.

219

Chapter 9. Combinatorial Structure of AnchRobPSP

h2

h3

h4

h2

h3

h4

h2

h3

h4

Figure 9.2: Polytopes Q, PCov, Projh(PDom) on the instance from proof of Theorem 9.5.

Proof. Let us define an instance of AnchRobPSP as follows. Let G be a chain
of 4 jobs. Let pi = 0 for every i ∈ J , let δ̂ = [6, 8, 7, 0] and Γ = 1 (recall that

processing times and δ̂n have no influence on the problem when G is a chain). Let
M = 8. Let us compute polytopes Q, PCov, Projh(PDom). They are illustrated in
Figure 9.2.

Polytope Q. It can be checked that anchored sets are: the empty set, {2}, {3},
{4}, and {1}, {1, 2}, {1, 3}, {1, 4}. In particular job 1 can always be added to the
anchored set. Hence Q = [0, 1] × conv{χ∅, χ{2}, χ{3}, χ{4}}. We have Q = {h ∈
[0, 1]J : h2 + h3 + h4 ≤ 1}. In the space of h2, h3, h4 it yields a tetrahedron.

Polytope PCov. Here PCov = {h ∈ [0, 1]J : hi + hj ≤ 1 ∀i, j ∈ {2, 3, 4}, h2 +
h3 + h4 ≤ 2}. This last inequality is dominated. Consider the restriction to the
space of h2, h3, h4: it is a polytope with 5 extreme points χ∅, χ{2}, χ{3}, χ{4} and
h∗ = (1

2
, 1

2
, 1

2
).

Polytope Projh(PDom) is defined by inequalities (CDom) of form
∑

(i,j)∈C L
∆
ijhj

≤ M for C a chain in C. It can be checked that the non-dominated (CDom)
inequalities are 6h2 + 8h4 ≤ 8 and 6h2 + 8h3 + 7h4 ≤ 8. Hence Projh(PDom) =
{h ∈ [0, 1]J : 3

4
h2 + h4 ≤ 1, 3

4
h2 + h3 + 7

8
h4 ≤ 1}. The restriction to the space of

h2, h3, h4 is a polytope with extreme points χ∅, χ{2}, χ{3}, χ{4} and also (among
others) the point h◦ = (1, 1

32
, 1

4
).

To prove the theorem, it is sufficient to see that the point h∗ = (1
2
, 1

2
, 1

2
) violates

the inequality 3
4
h2 + h3 + 7

8
h4 ≤ 1, and h◦ = (1, 1

32
, 1

4
) violates the inequality

h2 + h4 ≤ 1.

Note that in this example, the anchored set polytope has a facet defined by
inequality h2 +h3 +h4 ≤ 1. This inequality is not in family (LCCov) nor (CDom).
This motivates the study of the anchored set polytope, to strengthen inequalities
(LCCov) or (CDom), identify new valid inequalities, and facets.

220

Chapter 9. Combinatorial Structure of AnchRobPSP

9.2 Polyhedral study of the polytope of

anchored sets

In this section we study the polytope

Q = conv{χH : H anchored set}.
In Section 9.2.1 simple facets are identified. In Section 9.2.2 polyhedral char-
acterization cases are considered and a minimal description of Q is given. In
Section 9.2.3 and Section 9.2.4 we propose new valid inequalities to strengthen
(LCCov) inequalities.

9.2.1 Preliminaries

Let us start with some standard polyhedral results on Q. Let Jout = {i ∈ J : L∆
si+

L0
it > M}. Job i is in Jout when the singleton {i} is not an anchored set. Note

that if i ∈ Jout then no anchored set contains job i. Then the dimension of Q is
|J | − |Jout|. Indeed the polytope Q is included in

⋂
i∈Jout{hi = 0} hence it has

dimension at most n − |Jout|. The vectors χ{i} for i /∈ Jout are in Q and linearly
independent.

Proposition 9.4. The inequality hi ≥ 0 defines a facet of Q for every i ∈ J .

Proof. The vectors χ∅, χ{j} for j 6= i are n vectors of the face Q ∩ {h : hi = 0}
that are affinely independent.

Proposition 9.5. Every facet of Q distinct from non-negativity can be written as
αTh ≤ β with α ∈ RJ

+ and β ∈ R+.

Proof. Consider the facet F = Q ∩ {αTh = β} with any α, β. If all points in
F satisfy hi = 0 for some i ∈ J then the facet is induced by the non-negativity
constraint hi ≥ 0. Otherwise, for i ∈ J there exists h ∈ F such that hi = 1, and
αi + αT (h− χ{i}) = β. Since h− χ{i} ∈ Q, αT (h− χ{i}) ≤ β, hence αi ≥ 0. Then
β ≥ 0 follows.

Proposition 9.6. Let i ∈ J . The inequality hi ≤ 1 defines a facet if and only if
for every j 6= i, the pair {i, j} can be anchored.

Proof. If {i, j} is not anchored for some j 6= i, then the inequality hi + hj ≤ 1
is valid for Q and it dominates hi ≤ 1. Assume {i, j} can be anchored for every
j 6= i. Consider the family of n vectors χ{i}, χ{i,j} for j 6= i: they are affinely
independent vectors of Q satisfying hi = 1. Hence hi ≤ 1 defines a facet.

Remark that the inequality hi + hj ≤ 1 used in the necessity proof is of form
(LCCov); indeed it writes h(C) ≤ |C| − 1 with C = (s, i, j, t) (w.l.o.g. i ≺ j). It
holds that C ∈ C>M when {i, j} is not anchored.

221

Chapter 9. Combinatorial Structure of AnchRobPSP

9.2.2 Integrality cases

In this section we revisit integrality cases established in Chapter 8 and exhibit
minimal representation for the anchored sets polytope Q in that cases.

Box uncertainty. For box uncertainty, a polyhedral characterization was ob-
tained in Theorem 8.2, page 196, with inequalities

hj ≤
⌊
M − (L0

sj + L0
jt)

L∆
sj − L0

sj

⌋

The right-hand side can be rewritten as
⌊
1− L∆

sj+L
0
jt−M

L∆
sj−L0

sj

⌋
, hence it is 0 if j ∈ Jout, 1

otherwise. It was mentioned in Chapter 8 that these inequalities can be derived by
rounding from (CDom) inequalities. They also are directly in the family (LCCov),
since they write h(C) ≤ |C| − 1 with C = {j}, and j ∈ Jout is equivalent to
C ∈ C>M . These inequalities are trivially facets ofQ, hence we obtain the following
result.

Proposition 9.7. For box uncertainty, a minimal characterization of Q is hj = 0
for every j ∈ Jout, hj ∈ [0, 1] for every j /∈ Jout.

Unitary case. Let us now consider the unitary case U-AnchRobPSP, as defined
page 124. For U-AnchRobPSP, a polyhedral characterization was obtained with
formulation (Dom) in Proposition 8.3, page 198. Let M ≥ 1. In the h space the
polyhedral characterization corresponds to inequalities (CDom) that are h(C) ≤
M for every C ∈ C.

A question is to identify, among inequalities (CDom), those which are facet-
defining for U-AnchRobPSP. Let us now give a minimal representation of Q in
that case.

Proposition 9.8. For the U-AnchRobPSP, a minimal representation of Q is given
by the inequalities

hj ≥ 0 ∀j ∈ J
hj ≤ 1 ∀j ∈ J
h(C) ≤M ∀C ∈ C : C maximal, |C| > M .

Proof. Using Theorem 8.3 for the polyhedral characterization, and Proposition 9.4
and Proposition 9.6, it is sufficient to prove that h(C) ≤ M is a facet if and only
if the chain C is maximal and |C| > M .

Let us prove necessity. Assume C is not maximal. There exists C ′ ∈ C such
that C (C ′: then inequality h(C ′) ≤M dominates inequality h(C) ≤M . Assume

222

Chapter 9. Combinatorial Structure of AnchRobPSP

|C| ≤ M . Then |C| = M , otherwise no element of Q satisfies h(C) = M . Every
element of Q such that h(C) = M = |C| also satisfies hi = 1 for every i ∈ C.
Hence inequality h(C) ≤M is not facet-defining.

Let us now prove sufficiency. Let {h : αTh = β} be a hyperplane containing
Q ∩ {h : h(C) = M}. Let us first prove that vector α is zero outside of chain
C. Let i /∈ C. Since C is maximal chain, C ∪ {i} is not a chain, and there exists
j ∈ C such that i 6≺ j and j 6≺ i. Let C ′ be a subset of C such that |C ′| = M
and j ∈ C ′. Let h∗ = χC

′∪{i}. The set C ′ ∪ {i} does not contain a chain of size
M + 1 by definition of j and C ′, hence h∗ ∈ Q. Hence h∗ ∈ Q ∩ {h : h(C) = M}
and

∑
k∈C′ αk + αi = β. Similarly since χC

′ ∈ Q ∩ {h : h(C) = M}, it comes∑
k∈C′ αk = β. Thus αi = 0. Let us now prove that all non-zero coordinates

of vector α are equal. Let i, j ∈ C, i 6= j. Let C ′ be a subset of C such that
i /∈ C ′, j ∈ C, and |C ′| = M . Such a set exists whenever M < |C|. Let
C ′′ = (C ′ \ {j}) ∪ {i}. It holds that χC

′
, χC

′′ ∈ Q ∩ {h : h(C) = M}. Hence∑
k∈C′ αk = β and

∑
k∈C′′ αk =

∑
k∈C′ αk − αj + αi = β. Thus αi = αj. Therefore

h(C) ≤M is facet-defining.

9.2.3 Conflict graph

Let us now introduce new valid inequalities based on a so-called conflict graph.
Given an instance of AnchRobPSP, let G⊥ = (J,E⊥) be an undirected graph
defined by (i, j) ∈ E⊥ if {i, j} cannot be anchored, i.e., L∆

si + L∆
ij + L0

jt > M
(w.l.o.g. i ≺ j). Clearly if (i, j) ∈ E⊥, in any anchored set at most one job among
i and j can be anchored. That is, any anchored set corresponds to a stable set in
the conflict graph. Let STAB(G⊥) denote the stable set polytope of G⊥. It comes
that

Q ⊆ STAB(G⊥)

hence all valid inequalities for the stable set polytope can be used for the anchored
set polytope. In particular, a classical class of inequalities are clique inequalities.
Let K ⊆ J be a clique in G⊥. Then the clique inequality

h(K) ≤ 1

is valid for Q. A classical result is that

Proposition 9.9. Let K be a clique of G⊥. The clique inequality h(K) ≤ 1 defines
a facet of Q if and only if K is an inclusion-wise maximal clique in G⊥.

Indeed maximality is necessary to have the clique inequality non-dominated.
The face Q∩ {h : h(K) = 1} contains the n vectors χ{i}, i ∈ K,χ{i,k}, i /∈ K for a
fixed k ∈ K. These vectors are affinely independent.

223

Chapter 9. Combinatorial Structure of AnchRobPSP

Remark that in the example of Theorem 9.5, the anchored set polytope has a
facet h2 + h3 + h4 ≤ 1 which is a clique inequality.

The conflict graph G⊥ is not any graph but it has structural properties implied
by the underlying AnchRobPSP instance. Concerning cliques, we obtain that

Proposition 9.10. For every clique K of the conflict graph, it holds that K ∈ C.

Proof. For every edge (i, j) ∈ E⊥ note that i ≺ j or j ≺ i, otherwise {i, j} could
be anchored. Hence K is a set of jobs that are all pairwise comparable with ≺,
i.e., K ∈ C.

In particular, all cliques can be found by following a path of the precedence
graph. The jobs of a clique can be ordered with precedence relation ≺.

9.2.4 Rank inequalities

A classical family of valid inequalities is defined using the rank of a subset, defined
as follows.

Rank. Given X ⊆ J , let r(X) be the maximum number of jobs of X that can
be anchored, that is

r(X) = max{|Y | : Y ⊆ X, Y anchored}

Then clearly, the rank inequality

h(X) ≤ r(X) ∀X ⊆ J

is a valid inequality for the polytope of anchored sets Q. A first question is the
complexity of computing the rank of a subset.

Rank computation
Input: G∆, M , X ⊆ J
Problem: compute r(X).

Observation 9.1. Rank Computation is as hard as the AnchRobPSP problem
with given G∆ and unit anchoring weights, whose complexity is open.

Note indeed that the optimum of AnchRobPSP for unit anchoring weights is
exactly the maximum number of jobs that can be anchored, that is, the rank r(J).
Computing the rank of a subset X is exactly solving AnchRobPSP for anchoring
weights equal to one on X, and zero on J \X.

224

Chapter 9. Combinatorial Structure of AnchRobPSP

Chain-rank. Because the computation of the rank inherits from the complexity
of the AnchRobPSP problem, we now define another notion which is the chain-
rank. The chain-rank is defined on chains C ∈ C (instead of any subset X for the
rank). The chain-rank r̃(C) of chain C ∈ C is the max-size of a short subchain Y
of C, that is,

r̃(C) = max{|Y | : Y ⊆ C, `∆(Y) ≤M}.

Let us point out the difference between the rank and the chain-rank of a chain.
The rank of chain C is r(C) = max{|Y | : Y ⊆ C, `∆(Y ∩C ′) ≤M ∀C ′ ∈ C}. The
maximum is attained for a set Y that is anchored. For the chain-rank, only Y
must be short. The maximum can be attained in some Y that is not necessarily
anchored because it may contain a long subchain.

For every C ∈ C it holds that r(C) ≤ r̃(C) for every C ∈ C. It follows that the
chain-rank inequalities are valid

h(C) ≤ r̃(C) ∀C ∈ C

and they are weaker than rank inequalities.

Let us now show that chain-rank inequalities subsume some of the inequalities
introduced previously.

Proposition 9.11. Chain-rank inequalities with right-hand side equal to one, are
exactly clique inequalities.

Proof. As noted in Proposition 9.10, a clique K is in C. The chain-rank of a clique
is then r̃(K) = 1. Indeed, under the assumption that Jout = ∅, r̃(K) ≥ 1. For
any pair of vertices Y = {i, j} ⊆ K, we have `∆(Y) > M by definition of the
conflict graph. Thus the clique inequality h(K) ≤ 1 corresponds to the chain-rank
inequality h(K) ≤ r̃(K). Conversely if a set C has chain-rank equal to one, it
follows that it is a clique in the conflict graph.

Proposition 9.12. Inequalities of family (LCCov) are dominated by chain-rank
inequalities.

Indeed for every long chain C ∈ C>M , the right-hand side of (LCCov) inequality
|C|− 1 is an upper-bound for r̃(C). Hence the (LCCov) inequality h(C) ≤ |C|− 1
is dominated by the chain-rank inequality h(C) ≤ r̃(C).

A question is when chain-rank inequalities are facet-defining for Q. Necessary
conditions are the following. The set C must be non-separable, i.e., there exists
no non-trivial partition of C into C1 and C2 such that r̃(C1) + r̃(C2) ≤ r̃(C). The
set C must be r̃-maximal, i.e., for every C ′ ∈ C such that C (C ′, it holds that
r̃(C) ≤ r̃(C ′).

225

Chapter 9. Combinatorial Structure of AnchRobPSP

Let us now give complexity results for the algorithmic aspects of chain-rank
inequalities. First we consider the problem of computing the chain-rank.

Chain-Rank computation
Input: G∆, M , C ∈ C
Problem: compute r̃(C).

Proposition 9.13. Problem Chain-Rank computation is solvable in polyno-
mial time.

Proof. The problem is to find a subset Y ⊆ C, or equivalently, an s−t path in G∆

with vertex-set Y , such that `∆(Y) ≤ M and |Y | is maximized. It is a longest
path problem with objective function being the number of arcs in the path, which
is solvable in polynomial time, by dynamic programming.

This is in contrast with the result for the rank, since the complexity of rank
computation is an open question. The polynomiality of Chain-Rank Compu-
tation suggests that inequalities on chains such as (LCCov) could be separated
(either heuristically or exactly), then reinforced by computing the chain-rank.

9.3 Linear bounds evaluation

To compare formulations (Lay), (Dom) and (Cov) for the problem, a first question
is to evaluate the strength of the linear bound of these formulations. For such
preliminary computations, the linear bound of (Lay) and (Dom) can be computed
in a straightforward manner since the formulations are compact. For (Cov), using
Proposition 9.2 the linear bound can be computed solving the linear relaxation of
the extended form of (Cov).

Linear bound computations were carried out on the instances ER pQcri dRand

from Chapter 8, with budget Γ = 1, 2, 3, and n = 100, 300, 400. This instance class
corresponds to class ERC from Chapter 6. As shown in Chapter 8, it is a class
where compact formulations have a large LP gap (see Table 8.1, page 204).

In Table 9.3, for each class of 10 instances, and each formulation (Lay), (Dom),
and (Cov), we report:
- timeLP: the LP computation time, in milliseconds;
- optLP the linear bound, i.e., the optimal value of the LP;
- %imprLP for (Dom) and (Cov), the improvement of the linear bound w.r.t.

(Lay), expressed as a percentage of optLP for (Lay).

226

Chapter 9. Combinatorial Structure of AnchRobPSP

It can be observed that formulations (Dom) and (Cov) both have tighter linear
bounds than (Lay). The improvement is around 9% for (Dom), and up to more
than 25% for (Cov). The linear bound of (Cov) largely improves over the linear
bounds of the other formulations. However the computation time for the linear
bound of (Cov) is two orders of magnitude larger than the computation time for
continuous relaxations of (Dom) and (Lay). This is due to the size of the extended
formulation for (Cov), which is pseudo-polynomial.

timeLP(ms) optLP %imprLP
n = 100 Γ = 1 (Lay) 30.7 96.177

(Dom) 52.8 87.376 -9.15%
(Cov) 1512.0 80.436 -16.36%

Γ = 2 (Lay) 37.9 94.146
(Dom) 54.7 84.191 -10.57%
(Cov) 1586.1 71.521 -24.03%

Γ = 3 (Lay) 65.6 93.139
(Dom) 58.1 83.181 -10.69%
(Cov) 1488.7 68.616 -26.32%

n = 300 Γ = 1 (Lay) 115.4 288.773
(Dom) 614.7 265.610 -8.02%
(Cov) 20310.8 235.601 -18.41%

Γ = 2 (Lay) 175.0 282.487
(Dom) 431.1 257.087 -8.99%
(Cov) 17426.4 209.210 -25.93%

Γ = 3 (Lay) 183.7 279.339
(Dom) 303.0 253.678 -9.18%
(Cov) 19120.8 200.924 -28.07%

n = 400 Γ = 1 (Lay) 1085.2 386.030
(Dom) 498.4 355.365 -7.94%
(Cov) 40547.9 321.997 -16.58%

Γ = 2 (Lay) 341.6 378.757
(Dom) 488.3 344.816 -8.96%
(Cov) 37364.1 290.498 -23.30%

Γ = 3 (Lay) 344.5 375.232
(Dom) 538.3 340.700 -9.20%
(Cov) 35816.1 280.250 -25.31%

Figure 9.3: Linear bounds of formulations (Lay) (Dom) and (Cov) for instances ER pQcri dRand,
with budget Γ = 1, 2, 3.

The implementation of (Cov) requires separation algorithms for (LCCov) in-
equalities, in a Branch&Cut algorithm. A straightforward implementation of (LC-
Cov) separation gave somehow poor results, because of the large number of in-
equalities separated. These tests are unreported.

Theoretical results from this chapter give promising perspectives to reach an
efficient implementation of formulation (Cov). The (LCCov) inequalities could be

227

Chapter 9. Combinatorial Structure of AnchRobPSP

reinforced using polyhedral results, e.g., chain-rank inequalities. We note that the
evaluation of formulations would require a specific work on the instance bench-
mark. Indeed numerical performance of formulations are likely to depend strongly
on the precedence graph, its density, or the numerical values of deviations. An-
other perspective is to combine formulations (Dom) and (Cov). Indeed as noted
in Theorem 9.5 the two formulations are not comparable. A hybrid formulation
could benefit from (Dom) to ensure validity with a compact number of variables
and constraints, and from the tight linear bound of (Cov).

Conclusion

We studied the AnchRobPSP problem in the space of anchoring variables. These
variables are the combinatorial decisions in AnchRobPSP. First a new cover expo-
nential formulation was proposed. For formulations obtained previously, we were
able to establish explicit projections onto the space of anchoring variables. This al-
lows for a comparison of the formulations’ polytopes, in a common variable space.
We highlighted the connection between longest path separation problems, and
additional variables appearing in extended formulations. The variety of valid in-
equalities obtained for the problem motivated a polyhedral study of the anchored
set polytope. In special cases with a polyhedral characterization, the list of all
facets was obtained. New inequalities were proposed based on conflict graph or
rank, their facial properties were considered.

Theoretical questions could be further investigated on the anchored set poly-
tope. Concepts such as the conflict graph or the rank are quite generic; a question
is thus to analyze their structure in the case of AnchRobPSP to obtain more dedi-
cated results. Another perspective is to investigate the similarity with the knapsack
problem, since anchoring variables must satisfy knapsack constraints along chains,
as shown, e.g., by (CDom) inequalities.

A research direction is also to perform numerical experiments to assess the per-
formance of exponential formulations. An efficient implementation of separation
algorithms for (Cov) could lead to an efficient Branch&Cut algorithm, benefiting
from the tight linear bound of this formulation. Since (Dom) and (Cov) are not
comparable, we could design a hybrid formulation, where a compact formulation
such as (Dom) is used for validity, and separation of (Cov) is used for reinforce-
ment.

228

Chapter 9. Combinatorial Structure of AnchRobPSP

230

Conclusion and research perspectives

In this thesis we investigated anchored solutions for discrete optimization problems
under uncertainty. Anchored solutions appear to be a quite simple yet practically
attractive concept, and a new idea in robust optimization. The anchor-robust prob-
lem produces a baseline solution with bounded cost, and a subset of anchored de-
cisions. As emphasized throughout the manuscript, it is a middle ground between
static and adjustable-robustness, and it gives control over the price of robustness.
The anchor-robust problem belongs to the class of robust 2-stage problems, which
is computationally challenging. In spite of its conceptual simplicity, the problem
can be very hard to solve. We thus thoroughly investigated the tractability of
the anchor-robust problem, first by a study of its complexity and combinatorial
structure, then by the design of algorithmic approaches based on mixed-integer
programming. This led to a dedicated work, first on combinatorial problems such
as spanning trees and matchings, then on project scheduling problems.

For problems written as integer programs in binary variables, we studied the
complexity of anchor-reoptimization and anchor-robust optimization under cost
uncertainty. We investigated formulations through linear programs (via polyhedral
characterization) or mixed-integer programs (via reformulations). The focus was
on polynomial combinatorial problems, such as matroid bases.

An important research direction is to extend the results to other combinatorial
problems, and in particular NP-hard ones. For the anchor-reoptimization problem,
a question is to study the polytope of k-red classical problems, for which new facets
arise, starting with the k-red matching polytope. For the anchor-robust problem,
a question is to extend the applicability range of the anchor-robust problem to any
combinatorial problem with a valid formulation. This implies to design algorithmic
approaches where an efficient polyhedral characterization of the original problem
is not explicitly required. The price of anchor-robustness should also be further
investigated, both theoretically and based on numerical experiments.

For project scheduling problems with starting times as continuous variables, the
anchoring level led to new rescheduling problems. We extended the polynomiality
result to generalized precedence and tolerance. We pointed out the boundary

231

Conclusion and perspectives

between polynomial and NP-hard anchored rescheduling problems. The anchor-
robust approach was then investigated for project scheduling. It differentiates itself
from the project scheduling literature, that contained mainly proactive problems
with continuous stability measures, or adjustable-robust approaches producing no
baseline. An important part of the thesis is dedicated to anchor-robust project
scheduling.

We first proposed the Anchor-Robust Project Scheduling Problem (AnchRob-
PSP) in the case of precedence constraints. This problem can be seen as the
core of anchor-robustness for project scheduling. We studied the combinatorial
structure of the problem and proposed two dedicated graph models, one based
on the transitive closure of the precedence graph, the other one on a layered
graph dedicated to budgeted uncertainty. The complexity of AnchRobPSP was
analyzed for various polyhedral uncertainty sets (box, budgeted, any polytope).
In particular, we highlighted the connection with the complexity of computing the
worst-case value of longest paths in the precedence graph. Polynomial cases were
exhibited, depending on the uncertainty set and the precedence graph.

We proposed mixed-integer programming formulations for AnchRobPSP, stren-
gthened by a study of their polyhedral properties. We obtained first a formulation
based on the layered graph, valid for budgeted uncertainty. We then provided
other formulations that are applicable to more uncertainty sets, based on the
transitive closure graph model. A dominance property was a keypoint to obtain
a stronger formulation, which is still compact. A non-compact formulation was
also proposed. We showed the connection between the different variable spaces,
through projections or extensions of our formulations. This leads to a variety of
MIP tools for the problem. They appear to be quite efficient in practice, which
is a good sign for the practical implementability of anchor-robustness in project
scheduling.

For the AnchRobPSP, we observed the very good numerical performance of
compact MIP formulations. An open question is whether the AnchRobPSP is
strongly NP-hard. In particular, the complexity of the AnchRobPSP under bud-
geted uncertainty and unit anchoring weights, is open. A related perspective is to
further investigate the anchored set polytope.

We extended the anchor-robust approach to the Resource-Constraint Project
Scheduling Problem, which is strongly NP-hard. In the design of an anchor-robust
problem, the keypoint was to consider restricted reoptimization, and namely, re-
optimization with fixed resource flow. This simplifies the recourse problem, as
shown by the complexity analysis of anchored rescheduling problems. Most results
obtained on the AnchRobPSP problem then carried over to the Anchor-Robust
RCPSP, such as the layered graph for budgeted uncertainty. We proposed exact
and heuristic approaches, for both the Adjustable-Robust RCPSP and the Anchor-

232

Conclusion and perspectives

Robust RCPSP. Numerical experiments showed that for exact approaches, the
computational cost for solving the Adjustable-Robust RCPSP or Anchor-Robust
RCPSP was not a lot larger than the original RCPSP. The good quality of heuris-
tic solutions was also highlighted. This is a robustness toolbox that can be used
in any practical application of the RCPSP. We highlighted the relevance of the
Anchor-Robust RCPSP on an industrial use case at EDF.

A research perspective is to further improve the proposed algorithms on hard
instances of the Anchor-Robust RCPSP. A combination of the proposed tools can
be designed, benefiting from the efficiency of rule-based heuristics for the RCPSP,
and mixed-integer programming for anchor-robustness.

A broader perspective is to extend the anchor-robust approach to other schedul-
ing problems. Note that a specific attention should then be given to the definition
of anchored decisions, in the design of new anchor-robust problems. For instance
the definition we chose for the RCPSP is structurally based on the resource flow
and processing time uncertainty. We may want, e.g., to consider a tolerance in
the definition of anchored jobs, as done in rescheduling. Resources can also be
treated differently, with non-renewable resources, or resource leveling problems
where the objective is to minimize the maximum consumption of resources. Un-
certainty on resources (e.g., machine breakdowns) is another research direction of
practical interest. Finally anchor-robustness could have an applicative interest on
other problems such as production planning problems, combining combinatorial
decisions and scheduling decisions.

233

Conclusion and perspectives

234

Appendix

Extended computational results for the

Adjustable-Robust RCPSP

Let us present complete computational results for solving the Adjustable-Robust
RCPSP with MIP formulation (Fadj). The computational settings are those de-
scribed in Chapter 7, page 161. In Tables 9.1, 9.2, 9.3 are reported the results for
Γ = 3, 5, 7 respectively. For each instance class j30x, x ∈ {1, . . . , 48}, we indicate
for (Fadj):

– the corresponding parameters NC, RF, RS;
– solved: the number of instances solved to optimality (out of 10);
– time: the computation time averaged on instances solved to optimality in

seconds;
– unsolved = 10 - solved
– gap: the final gap, averaged on instances not solved to optimality.

The results are presented in aggregated form in Chapter 7, e.g., in Table 7.1.

235

Appendix

class NC RF RS solved time(s) unsolved gap
1 1.5 0.25 0.2 10 7.21 0 -
2 1.5 0.25 0.5 10 4.34 0 -
3 1.5 0.25 0.7 10 2.36 0 -
4 1.5 0.25 1 10 1.43 0 -
5 1.5 0.5 0.2 0 - 10 16.43%
6 1.5 0.5 0.5 9 151.6 1 1.52%
7 1.5 0.5 0.7 10 9.44 0 -
8 1.5 0.5 1 10 2.56 0 -
9 1.5 0.75 0.2 0 - 10 31.38%

10 1.5 0.75 0.5 3 198.88 7 4.94%
11 1.5 0.75 0.7 8 146.67 2 1.76%
12 1.5 0.75 1 10 5.31 0 -
13 1.5 1 0.2 0 - 10 36.13%
14 1.5 1 0.5 1 23.14 9 6.69%
15 1.5 1 0.7 9 39.23 1 6.0%
16 1.5 1 1 10 4.76 0 -
17 1.8 0.25 0.2 10 4.15 0 -
18 1.8 0.25 0.5 10 2.03 0 -
19 1.8 0.25 0.7 10 1.5 0 -
20 1.8 0.25 1 10 0.94 0 -
21 1.8 0.5 0.2 1 587.97 9 10.76%
22 1.8 0.5 0.5 9 61.41 1 1.47%
23 1.8 0.5 0.7 10 14.33 0 -
24 1.8 0.5 1 10 3.69 0 -
25 1.8 0.75 0.2 0 - 10 31.53%
26 1.8 0.75 0.5 7 193.15 3 2.36%
27 1.8 0.75 0.7 10 11.97 0 -
28 1.8 0.75 1 10 4.71 0 -
29 1.8 1 0.2 0 - 10 39.4%
30 1.8 1 0.5 0 - 10 5.74%
31 1.8 1 0.7 8 42.99 2 4.14%
32 1.8 1 1 10 10.92 0 -
33 2.1 0.25 0.2 10 3.2 0 -
34 2.1 0.25 0.5 10 1.71 0 -
35 2.1 0.25 0.7 10 1.36 0 -
36 2.1 0.25 1 10 0.78 0 -
37 2.1 0.5 0.2 6 361.35 4 17.97%
38 2.1 0.5 0.5 10 55.07 0 -
39 2.1 0.5 0.7 10 5.82 0 -
40 2.1 0.5 1 10 2.83 0 -
41 2.1 0.75 0.2 0 - 10 26.36%
42 2.1 0.75 0.5 6 66.56 4 4.55%
43 2.1 0.75 0.7 10 155.76 0 -
44 2.1 0.75 1 10 4.2 0 -
45 2.1 1 0.2 0 - 10 35.24%
46 2.1 1 0.5 2 483.59 8 6.51%
47 2.1 1 0.7 6 81.55 4 4.19%
48 2.1 1 1 10 4.33 0 -

Table 9.1: Performance of the compact reformulation (Fadj) for Γ = 3.

236

Appendix

class NC RF RS solved time(s) unsolved gap
1 1.5 0.25 0.2 10 17.98 0 -
2 1.5 0.25 0.5 10 9.45 0 -
3 1.5 0.25 0.7 10 4.16 0 -
4 1.5 0.25 1 10 2.23 0 -
5 1.5 0.5 0.2 0 - 10 15.83%
6 1.5 0.5 0.5 8 162.29 2 1.62%
7 1.5 0.5 0.7 10 45.57 0 -
8 1.5 0.5 1 10 6.0 0 -
9 1.5 0.75 0.2 0 - 10 29.86%

10 1.5 0.75 0.5 4 184.07 6 5.72%
11 1.5 0.75 0.7 7 51.11 3 1.11%
12 1.5 0.75 1 10 6.61 0 -
13 1.5 1 0.2 0 - 10 36.17%
14 1.5 1 0.5 2 215.34 8 6.29%
15 1.5 1 0.7 9 26.63 1 3.1%
16 1.5 1 1 10 6.21 0 -
17 1.8 0.25 0.2 10 8.97 0 -
18 1.8 0.25 0.5 10 5.2 0 -
19 1.8 0.25 0.7 10 2.99 0 -
20 1.8 0.25 1 10 1.91 0 -
21 1.8 0.5 0.2 1 551.34 9 14.04%
22 1.8 0.5 0.5 9 126.62 1 2.68%
23 1.8 0.5 0.7 10 17.43 0 -
24 1.8 0.5 1 10 5.5 0 -
25 1.8 0.75 0.2 0 - 10 30.75%
26 1.8 0.75 0.5 7 236.67 3 2.65%
27 1.8 0.75 0.7 10 18.03 0 -
28 1.8 0.75 1 10 6.39 0 -
29 1.8 1 0.2 0 - 10 38.34%
30 1.8 1 0.5 0 - 10 6.17%
31 1.8 1 0.7 8 74.08 2 5.4%
32 1.8 1 1 10 10.13 0 -
33 2.1 0.25 0.2 10 5.98 0 -
34 2.1 0.25 0.5 10 3.65 0 -
35 2.1 0.25 0.7 10 2.82 0 -
36 2.1 0.25 1 10 1.54 0 -
37 2.1 0.5 0.2 3 327.01 7 12.39%
38 2.1 0.5 0.5 9 26.93 1 2.38%
39 2.1 0.5 0.7 10 10.6 0 -
40 2.1 0.5 1 10 4.98 0 -
41 2.1 0.75 0.2 0 - 10 26.76%
42 2.1 0.75 0.5 6 72.76 4 5.06%
43 2.1 0.75 0.7 9 69.47 1 1.23%
44 2.1 0.75 1 10 6.67 0 -
45 2.1 1 0.2 0 - 10 33.59%
46 2.1 1 0.5 3 446.55 7 6.81%
47 2.1 1 0.7 7 140.71 3 3.57%
48 2.1 1 1 10 7.15 0 -

Table 9.2: Performance of the compact reformulation (Fadj) for Γ = 5.

237

Appendix

class NC RF RS solved time(s) unsolved gap
1 1.5 0.25 0.2 10 66.63 0 -
2 1.5 0.25 0.5 10 12.67 0 -
3 1.5 0.25 0.7 10 4.66 0 -
4 1.5 0.25 1 10 3.77 0 -
5 1.5 0.5 0.2 0 - 10 17.86%
6 1.5 0.5 0.5 7 186.02 3 3.55%
7 1.5 0.5 0.7 10 25.1 0 -
8 1.5 0.5 1 10 6.53 0 -
9 1.5 0.75 0.2 0 - 10 30.86%

10 1.5 0.75 0.5 3 269.24 7 6.02%
11 1.5 0.75 0.7 7 149.01 3 2.16%
12 1.5 0.75 1 10 10.02 0 -
13 1.5 1 0.2 0 - 10 38.03%
14 1.5 1 0.5 1 45.89 9 7.24%
15 1.5 1 0.7 9 39.59 1 5.17%
16 1.5 1 1 10 9.48 0 -
17 1.8 0.25 0.2 10 16.87 0 -
18 1.8 0.25 0.5 10 5.01 0 -
19 1.8 0.25 0.7 10 3.88 0 -
20 1.8 0.25 1 10 2.39 0 -
21 1.8 0.5 0.2 1 847.24 9 15.06%
22 1.8 0.5 0.5 8 231.58 2 1.9%
23 1.8 0.5 0.7 10 18.29 0 -
24 1.8 0.5 1 10 8.74 0 -
25 1.8 0.75 0.2 0 - 10 32.62%
26 1.8 0.75 0.5 6 68.88 4 2.75%
27 1.8 0.75 0.7 10 23.98 0 -
28 1.8 0.75 1 10 12.48 0 -
29 1.8 1 0.2 0 - 10 39.47%
30 1.8 1 0.5 0 - 10 7.24%
31 1.8 1 0.7 8 47.78 2 8.07%
32 1.8 1 1 10 13.33 0 -
33 2.1 0.25 0.2 10 8.95 0 -
34 2.1 0.25 0.5 10 4.86 0 -
35 2.1 0.25 0.7 10 4.05 0 -
36 2.1 0.25 1 10 2.18 0 -
37 2.1 0.5 0.2 4 624.37 6 14.42%
38 2.1 0.5 0.5 10 44.43 0 -
39 2.1 0.5 0.7 10 18.27 0 -
40 2.1 0.5 1 10 7.03 0 -
41 2.1 0.75 0.2 0 - 10 26.71%
42 2.1 0.75 0.5 6 98.71 4 4.96%
43 2.1 0.75 0.7 8 71.07 2 1.11%
44 2.1 0.75 1 10 9.38 0 -
45 2.1 1 0.2 0 - 10 34.48%
46 2.1 1 0.5 3 589.12 7 7.56%
47 2.1 1 0.7 6 197.8 4 2.67%
48 2.1 1 1 10 8.61 0 -

Table 9.3: Performance of the compact reformulation (Fadj) for Γ = 7.

238

Bibliography

V. Aggarwal, Y. P. Aneja, and K. P. K. Nair. Minimal spanning tree subject to a
side constraint. Computers and Operations Research, 9(4):287–296, 1982.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret ver-
sions of combinatorial optimization problems: A survey. European Journal of
Operational Research, 197(2):427–438, 2009.

C. Artigues and F. Roubellat. A polynomial activity insertion algorithm in a multi-
resource schedule with cumulative constraints and multiple modes. European
Journal of Operational Research, 127(2):297–316, 2000.

C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for static and dy-
namic resource-constrained project scheduling. European Journal of Operational
Research, 149(2):249–267, 2003.

C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. ISTE/Wiley, 2008.

C. Artigues, R. Leus, and F. T. Nobibon. Robust optimization for resource-
constrained project scheduling with uncertain activity durations. Flexible Ser-
vices and Manufacturing Journal, 25:175–205, 2013.

G. Ausiello, V. Bonifaci, and B. Escoffier. Complexity and Approximation in
Reoptimization. Preprint. https://hal.archives-ouvertes.fr/hal-00906941, 2008.

J. Ayoub and M. Poss. Decomposition for adjustable robust linear optimization
subject to uncertainty polytope. Computational Management Science, 13(2):
219–239, 2016.

E. Bampis, B. Escoffier, M. Lampis, and V. T. Paschos. Multistage matchings.
In 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT
2018, June 18-20, 2018, Malmö, Sweden, pages 7:1–7:13, 2018.

239

https://hal.archives-ouvertes.fr/hal-00906941

Bibliography

A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of
Operations Research, 23(4):769–805, 1998.

A. Ben-Tal, A. P. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust
solutions of uncertain linear programs. Mathematical Programming, 99(2):351–
376, 2004.

A. Ben-Tal, O. E. Housni, and V. Goyal. A tractable approach for designing piece-
wise affine policies in two-stage adjustable robust optimization. Mathematical
Programming, 182(1):57–102, 2020.

P. Bendotti, P. Chrétienne, P. Fouilhoux, and A. Quilliot. Anchored reactive
and proactive solutions to the CPM-scheduling problem. European Journal of
Operational Research, 261(1):67–74, 2017.

P. Bendotti, P. Chrétienne, P. Fouilhoux, and A. Pass-Lanneau. The Anchor-
Robust Project Scheduling Problem. Preprint. https://hal.archives-ouvertes.fr/
hal-02144834, 2019.

P. Bendotti, P. Chrétienne, P. Fouilhoux, and A. Pass-Lanneau. Dominance-based
linear formulation for the Anchor-Robust Project Scheduling Problem. Preprint.
https://hal.archives-ouvertes.fr/hal-02938158, 2020a.

P. Bendotti, P. Chrétienne, P. Fouilhoux, and A. Pass-Lanneau. Anchored
rescheduling problems under generalized precedence constraints. In M. Bäıou,
B. Gendron, O. Günlük, and A. R. Mahjoub, editors, Combinatorial Optimiza-
tion. ISCO 2020, volume 12176 of Lecture Notes in Computer Science, 2020b.

A. Berger, V. Bonifaci, F. Grandoni, and G. Schäfer. Budgeted matching and bud-
geted matroid intersection via the gasoline puzzle. Mathematical Programming,
128:355–372, 2011.

D. Bertsimas and C. Caramanis. Finite adaptability in multistage linear optimiza-
tion. IEEE Transactions on Automatic Control, 55(12):2751–2766, 2010.

D. Bertsimas and V. Goyal. On the power and limitations of affine policies in
two-stage adaptive optimization. Mathematical Programming, 134(2):491–531,
2012.

D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math-
ematical Programming, 98(1-3):49–71, 2003.

D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52:35–53,
2004.

240

https://hal.archives-ouvertes.fr/hal-02144834
https://hal.archives-ouvertes.fr/hal-02144834
https://hal.archives-ouvertes.fr/hal-02938158

Bibliography

D. Bienstock and N. Özbay. Computing robust basestock levels. Discrete Opti-
mization, 5(2):389–414, 2008.

A. Billionnet, M. Costa, and P. Poirion. 2-stage robust MILP with continuous
recourse variables. Discrete Applied Mathematics, 170:21–32, 2014.

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
2011.

H.-J. Böckenhauer, J. Hromkovič, T. Mömke, and P. Widmayer. On the hardness of
reoptimization. In V. Geffert, J. Karhumäki, A. Bertoni, B. Preneel, P. Návrat,
and M. Bieliková, editors, SOFSEM 2008: Theory and Practice of Computer
Science, pages 50–65. Springer, 2008.

M. Bold and M. Goerigk. A compact reformulation of the two-stage robust
resource-constrained project scheduling problem. Preprint. https://arxiv.org/
abs/2004.06547, 2020.

E. Boros, K. Borys, K. M. Elbassioni, V. Gurvich, and G. Rudolf. Inapproxima-
bility bounds for shortest-path network interdiction problems. Technical report,
Rutgers University, 2006.

M. Bruni, L. Di Puglia Pugliese, P. Beraldi, and F. Guerriero. An adjustable robust
optimization model for the resource-constrained project scheduling problem with
uncertain activity durations. Omega, 71:66–84, 2017.

M. Bruni, L. Di Puglia Pugliese, P. Beraldi, and F. Guerriero. A computational
study of exact approaches for the adjustable robust resource-constrained project
scheduling problem. Computers and Operations Research, 99:178–190, 2018.

C. Buchheim and J. Kurtz. Robust combinatorial optimization under convex and
discrete cost uncertainty. EURO Journal on Computational Optimization, 6(3):
211–238, 2018.

C. Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189,
2012.

C. Büsing, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks:
Γ-scenarios. In J. Pahl, T. Reiners, and S. Voß, editors, Network Optimization
- 5th International Conference, INOC 2011, Hamburg, Germany, June 13-16,
2011. Proceedings, volume 6701 of Lecture Notes in Computer Science, pages
583–588. Springer, 2011.

K. Calhoun, R. Deckro, J. Moore, J. Chrissis, and J. Hove. Planning and re-
planning in project and production scheduling. Omega, 30:155–170, 2002.

241

https://arxiv.org/abs/2004.06547
https://arxiv.org/abs/2004.06547

Bibliography

P. Chrétienne. Reactive and proactive single-machine scheduling to maintain a
maximum number of starting times. Annals of Operations Research, pages 1–
14, 2018.

G. D’Angelo, G. Di Stefano, A. Navarra, and C. Pinotti. Recoverable robust
timetables: An algorithmic approach on trees. IEEE Transactions on Comput-
ers, 60:433–446, 2011.

S. V. de Vonder, F. Ballest́ın, E. Demeulemeester, and W. Herroelen. Heuristic
procedures for reactive project scheduling. Computers and Industrial Engineer-
ing, 52(1):11–28, 2007.

F. Deblaere, E. Demeulemeester, and W. Herroelen. Reactive scheduling in the
multi-mode RCPSP. Computers and Operations Research, 38(1):63–74, 2011.

R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51(1):161–166, 1950.

J. R. Edmonds. Matroids and the greedy algorithm. Mathematical Programming,
1(1):127–136, 1971.

G. N. Frederickson and R. Solis-Oba. Increasing the weight of minimum spanning
trees. Journal of Algorithms, 33(2):244–266, 1999.

V. Gabrel, M. Lacroix, C. Murat, and N. Remli. Robust location transportation
problems under uncertain demands. Discrete Applied Mathematics, 164:100–111,
2014.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., New York, NY, USA,
1979.

A. Gupta, K. Talwar, and U. Wieder. Changing bases: Multistage optimization for
matroids and matchings. In Automata, Languages, and Programming - 41st In-
ternational Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, pages 563–575, 2014.

H. W. Hamacher and G. Ruhe. On spanning tree problems with multiple objec-
tives. Annals of Operations Research, 52:209–230, 1994.

G. A. Hanasusanto, D. Kuhn, and W. Wiesemann. K -adaptability in two-stage
robust binary programming. Operations Research, 63(4):877–891, 2015.

242

Bibliography

Ö. Hazır and G. Ulusoy. A classification and review of approaches and meth-
ods for modeling uncertainty in projects. International Journal of Production
Economics, 223:107522, 2020.

W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research, 165:289–306,
2002.

W. Herroelen and R. Leus. The construction of stable project baseline schedules.
European Journal of Operational Research, 156(3):550–565, 2004.

O. E. Housni and V. Goyal. On the optimality of affine policies for budgeted
uncertainty sets. Preprint. https://arxiv.org/abs/1807.00163, 2019.

M. Hradovich, A. Kasperski, and P. Zieliński. Recoverable robust spanning tree
problem under interval uncertainty representations. Journal of Combinatorial
Optimization, 34(2):554–573, 2017.

E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks, 40(2):
97–111, 2002.

A. Kasperski and P. Zieliński. Robust discrete optimization under discrete and
interval uncertainty: A survey. In M. Doumpos, C. Zopounidis, and E. Grig-
oroudis, editors, Robustness Analysis in Decision Aiding, Optimization, and
Analytics, pages 113–143. Springer International Publishing, 2016.

A. Kasperski and P. Zieliński. Robust recoverable and two-stage selection prob-
lems. Discrete Applied Mathematics, 233:52–64, 2017.

R. Kolisch and S. Hartmann. Heuristic algorithms for the resource-constrained
project scheduling problem: Classification and computational analysis. In
J. Weglarz, editor, Project Scheduling: Recent Models, Algorithms and Applica-
tions, pages 147–178. Springer US, Boston, MA, 1999.

R. Kolisch and A. Sprecher. PSPLIB – a project scheduling problem library.
European Journal of Operational Research, 96:205–216, 1996.

O. Koné, C. Artigues, P. Lopez, and M. Mongeau. Comparison of mixed inte-
ger linear programming models for the resource-constrained project scheduling
problem with consumption and production of resources. Flexible Services and
Manufacturing Journal, 25(1-2):24–47, 2013.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Publishing Company, Incorporated, 5th edition, 2012.

243

https://arxiv.org/abs/1807.00163

Bibliography

P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications.
Springer, 1996.

S. Lendl, B. Peis, and V. Timmermans. Matroid bases with cardinality constraints
on the intersection. Preprint. http://arxiv.org/abs/1907.04741, 2019.

C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. Robust and
Online Large-Scale Optimization, 5868:1–27, 2009.

M. Minoux. Models and algorithms for robust PERT scheduling with time-
dependent task durations. Vietnam Journal of Mathematics, 35, 2007a.

M. Minoux. Duality, Robustness, and 2-stage robust LP decision models. Appli-
cation to Robust PERT Scheduling. Annales du LAMSADE n.7, 2007b.

M. Minoux. Robust linear programming with right-hand-side uncertainty, duality
and applications. In Encyclopedia of Optimization, Second Edition, pages 3317–
3327. 2009.

K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987.

E. Nasrabadi and J. B. Orlin. Robust optimization with incremental recourse.
Preprint. http://arxiv.org/abs/1312.4075, 2013.

C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning
tree problems. Journal of the ACM, 29(2):285–309, 1982.

A. Pass-Lanneau, P. Bendotti, and L. Brunod-Indrigo. Exact and heuristic
methods for Anchor-Robust and Adjustable-Robust RCPSP. Preprint. https:
//arxiv.org/abs/2011.02020, 2020.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, Boston, MA,
4th edition, 2002.

R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The Benders decomposi-
tion algorithm: A literature review. European Journal of Operational Research,
259(3):801 – 817, 2017.

R. Ravi and M. X. Goemans. The constrained minimum spanning tree problem.
In R. Karlsson and A. Lingas, editors, Algorithm Theory — SWAT’96, pages
66–75. Springer Berlin Heidelberg, 1996.

244

http://arxiv.org/abs/1907.04741
http://arxiv.org/abs/1312.4075
https://arxiv.org/abs/2011.02020
https://arxiv.org/abs/2011.02020

Bibliography

H. Sakkout and M. Wallace. Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints, 5:359–388, 2000.

B. Schieber, H. Shachnai, G. Tamir, and T. Tamir. A theory and algorithms for
combinatorial reoptimization. Algorithmica, 80(2):576–607, 2018.

A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer-
Verlag Berlin Heidelberg, 2003.

O. Şeref, R. K. Ahuja, and J. B. Orlin. Incremental network optimization: Theory
and algorithms. Operations Research, 57(3):586–594, 2009.

S. F. Smith. Reactive Scheduling Systems, pages 155–192. Springer US, Boston,
MA, 1995.

F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Ap-
plication to the biobjective spanning tree problem. INFORMS Journal on Com-
puting, 20(3):472–484, 2008.

A. L. Soyster. Technical note – convex programming with set-inclusive constraints
and applications to inexact linear programming. Operations Research, 21(5):
1154–1157, 1973.

A. Subramanyam, C. E. Gounaris, and W. Wiesemann. K -adaptability in two-
stage mixed-integer robust optimization. Mathematical Programming Computa-
tion, 12(2):193–224, 2020.

J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, 1982.

T. Yi, K. G. Murty, and C. Spera. Matchings in colored bipartite networks.
Discrete Applied Mathematics, 121(1):261 – 277, 2002.

R. Yuster. Almost exact matchings. Algorithmica, 63:39–50, 2012.

B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a
column-and-constraint generation method. Operations Research Letters, 41(5):
457 – 461, 2013.

245

	Extended abstract
	I Anchored solutions in robust optimization
	Preliminaries
	Robust optimization: state of the art
	Robustness in discrete optimization
	Static robustness
	Two-stage robust optimization
	Solution stability in reoptimization and robust optimization

	Anchored solutions: concepts
	Anchoring level
	Anchor-Reoptimization
	Anchor-Robust optimization
	Main research directions

	II Anchored solutions to combinatorial problems
	Preliminaries
	Anchor-Reoptimization for combinatorial problems: a case study on matroid bases
	k-red matroid bases
	Illustration for the k-red spanning tree
	k-red bipartite matching

	Anchor-Robustness for combinatorial problems
	Definitions
	Complexity for discrete and polyhedral uncertainty sets
	MIP reformulations
	The price of anchor-robustness

	III Anchored solutions in project scheduling
	Preliminaries
	Anchored Rescheduling problems for project scheduling
	Anchored rescheduling under generalized precedence
	Polynomiality of eps-AnchRe(GenPrec)
	Anchored rescheduling with a deadline constraint
	Sensitivity analysis with respect to tolerance
	Towards machine rescheduling

	The Anchor-Robust Project Scheduling Problem
	The Anchor-Robust Project Scheduling Problem
	Graph models for AnchRobPSP
	Complexity of the AnchRobPSP
	Algorithms for special cases of AnchRobPSP
	Comparison to affine decision rules
	Numerical results

	The Anchor-Robust RCPSP: exact and heuristic approaches
	Preliminaries
	Anchor-Robust approach for the RCPSP
	Graph model and compact MIP reformulations
	Computational results: MIP for Adjustable-Robust RCPSP
	Computational results: Heuristics for Adjustable-Robust RCPSP
	Computational results: MIP for Anchor-Robust RCPSP
	Computational results: Heuristic for Anchor-Robust RCPSP

	Industrial use case

	IV Polyhedral approaches for AnchRobPSP
	Preliminaries
	Dominance-based linear formulation for AnchRobPSP
	Preliminaries on uncertainty sets
	Linear formulations for AnchRobPSP
	Polyhedral characterization for special cases
	Numerical results

	The combinatorial structure of AnchRobPSP
	Formulations in anchoring variables
	Polyhedral study of the polytope of anchored sets
	Linear bounds evaluation

	Conclusion and research perspectives
	Appendix
	Bibliography

