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RÉSUMÉ

La texture est souvent définie comme étant la disposition spatiale des motifs, des couleurs et des intensités apparaissant dans un contenu visuel. La description d'un contenu visuel se fait souvent par ses deux composantes de base : la couleur et la texture.

L'analyse et la description de la texture sont parmi les problèmes les plus difficiles en vision par ordinateur. De nombreux algorithmes ont été proposés pour l'extraction de caractéristiques de texture au cours des dernières années et ce domaine de recherche fait toujours l'objet de nombreuses investigations [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]3,4,[START_REF] Thanh | Statistical binary patterns for rotational invariant texture classification[END_REF][START_REF] Qi | LOAD: Local orientation adaptive descriptor for texture and material classification[END_REF][START_REF] Wang | Local N -Ary pattern and its extension for texture Classification[END_REF][START_REF] Zhang | Scale invariant texture representation based on frequency decomposition and gradient orientation[END_REF][START_REF] André R Backes | Texture analysis using graphs generated by deterministic partially self-avoiding walks[END_REF].

Plusieurs méthodes ont été mises au point pour l'analyse de la texture et ont trouvé des applications dans divers domaines, tels que : domaine biomédical [START_REF] Scalco | Texture analysis of medical images for radiotherapy applications[END_REF][START_REF] Castellano | Texture analysis of medical images[END_REF][START_REF] Latha | Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain[END_REF], automatisation industrielle [START_REF] Kumar | Defect detection in textured materials using Gabor filters[END_REF][START_REF] Pérez-Barnuevo | Automated recognition of drill core textures: A geometallurgical tool for mineral processing prediction[END_REF], télédétection [START_REF] Chica | Computing geostatistical image texture for remotely sensed data classification[END_REF][START_REF] Pham | Attribute profiles on derived textural features for highly textured optical image classification[END_REF], reconnaissance faciale [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF], récupération d'images basée sur le contenu [START_REF] Deok | Content-based image retrieval using multiresolution color and texture features[END_REF]. L'une des méthodes les plus récentes introduites dans le domaine de l'analyse de texture est l'entropie [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] John | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF][START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]23,24,[START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF]. Comme l'entropie, issue de la théorie de l'information, permet d'étudier l'irrégularité des signaux et des images, nous proposons de l'utiliser pour l'analyse de texture de données en niveaux de gris et couleurs.

Nous développons d'abord l'entropie bidimensionnelle floue, F uzEn 2D , et sa version multiéchelle pour étudier l'irrégularité et la complexité des images texturées. Après cela, nous proposons des approches colorées basées sur F uzEn 2D pour étudier des images texturées colorées. Nous avons employé l'approche colorée pour révéler l'information cachée dans les composants de couleur. Nous présentons tout d'abord l'approche mono-canal F uzEnC 2D . Puis l'approche multicanal F uzEnV 2D qui s'inspire du concept volumétrique. Enfin, l'approche multicanal modifiée F uzEnM 2D est présentée comme une amélioration de F uzEnV 2D . Les algorithmes que nous proposons ont trouvé des applications prometteuses dans l'analyse de texture pour différents cas médicaux tels que le mélanome, le pseudoxanthome élastique et l'analyse de la microcirculation cutanée.

Suite aux résultats encourageants obtenus avec les mesures bidimensionnelles (2D) développées, une mesure d'entropie tridimensionnelle pour l'étude de volumes, ainsi que son extension multiéchelle, sont proposés. Ils ont été utilisés pour étudier des tomographies (CT), des tomographies haute résolution (HRCT), et des images obtenues par résonance magnétique (IRM). Ceci nous a permis de traiter des examens volumétriques pour les patients atteints de COVID-19, de fibrose pulmonaire idiopathique et de fibrome utérin.

Dans ce manuscrit, plusieurs tests de validation communs sont présentés pour les méthodes développées, en plus des tests spécialement conçus pour chacune d'elles. Les mesures sont validées sur la base: des modifications des paramètres initiaux, leur capacité à quantifier les degrés d'irrégularité croissants aux niveaux bidimensionnel et tridimensionnel, et leur capacité d'évaluation de la complexité dans les images et les volumes à travers l'approche multiéchelle. Nos résultats montrent que les méthodes développer permettent d'analyser l'irrégularité des images en niveaux de gris, des images colorées, et enfin des volumes [START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF][START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF][START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF][START_REF] Hilal | Skin alterations in pseudoxanthoma elasticum patients highlighted by the bi-dimensional sample entropy algorithm[END_REF][START_REF] Sofia | Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images[END_REF].

Plan du manuscrit

Le manuscrit est organisé comme suit :

-Le chapitre 1 présente l'analyse bibliographique en lien avec nos travaux. 

INTRODUCTION Introduction

Texture is often referred to as the spatial arrangement of the visual patterns, colors, and intensities appearing in a visual content. The description of a visual content is often done by its two basic components: color and texture.

Texture analysis and description are among the most challenging problems in computer vision. Many algorithms have been proposed for texture features extraction in the past years and this research area is still the subject of many investigations [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]3,4,[START_REF] Thanh | Statistical binary patterns for rotational invariant texture classification[END_REF][START_REF] Qi | LOAD: Local orientation adaptive descriptor for texture and material classification[END_REF][START_REF] Wang | Local N -Ary pattern and its extension for texture Classification[END_REF][START_REF] Zhang | Scale invariant texture representation based on frequency decomposition and gradient orientation[END_REF][START_REF] André R Backes | Texture analysis using graphs generated by deterministic partially self-avoiding walks[END_REF].

Several methods have been developed for texture analysis and found application in various domains, such as: biomedical field [START_REF] Scalco | Texture analysis of medical images for radiotherapy applications[END_REF][START_REF] Castellano | Texture analysis of medical images[END_REF][START_REF] Latha | Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain[END_REF], industrial automation [START_REF] Kumar | Defect detection in textured materials using Gabor filters[END_REF][START_REF] Pérez-Barnuevo | Automated recognition of drill core textures: A geometallurgical tool for mineral processing prediction[END_REF], remote sensing [START_REF] Chica | Computing geostatistical image texture for remotely sensed data classification[END_REF][START_REF] Pham | Attribute profiles on derived textural features for highly textured optical image classification[END_REF], face recognition [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF], content-based image retrieval [START_REF] Deok | Content-based image retrieval using multiresolution color and texture features[END_REF].

Texture analysis through entropy measures (issued from the information theory field) is at its very beginning but revealed promising results [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] John | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF][START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]23,24,[START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF]. In this PhD manuscript work, we propose to extend these preliminary studies and we propose new entropy measures for texture analysis in the gray scale and colored spaces.

We first develop the bidimensional fuzzy entropy, F uzEn 2D , and its multiscale version to study the texture images' irregularity and complexity. The choice for using the fuzzy entropy concept is based on several previous publications, comparison tests that we performed on unidiemnsional and bidimensional levels, and the advantages of using fuzzy entropy over other entropy measures.

After that, we propose colored approaches based on F uzEn 2D to study colored texture images. We employ the colored approach to reveal information hidden within the color components of our studied images. We thus first present the single-channel approach F uzEnC 2D and then the multi-channel approach for colored images F uzEnV 2D which is inspired by the volumetric concept. Finally, the modified multi-channel colored approach F uzEnM 2D is proposed as an enhancement for F uzEnV 2D . Our proposed algorithms find promising applications in texture analysis for different medical cases such as melanoma, pseudoxanthoma elasticum, and cutaneous microcirculation analysis.

After the encouraging results with the developed bidimensional (2D) measures, a tridimensional entropy measure and its multiscale extension to study volumes are proposed. These measures extend our possible applications to volumetric scans. They are employed to study computed tomography (CT) scans, HRCT scans, and magnetic resonance imaging (MRI) scans. The medical investigation using our algorithms handle volumetric scans for COVID-19, idiopathic pulmonary fibrosis, and uterine fibroma patients.

In this manuscript, several common validation tests are presented for the developed methods, in addition to the specially designed tests for each. The measures are validated upon: changes in the initial parameters, their ability to quantify the increasing irregularity degrees in the bidimensional and tridimensional levels, and their complexity evaluation ability in images and volumes through the multiscale approach. These methods are illustrated to possess an ability to analyze irregularity of gray scale images, colored images, and finally volumes [START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF][START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF][START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF][START_REF] Hilal | Skin alterations in pseudoxanthoma elasticum patients highlighted by the bi-dimensional sample entropy algorithm[END_REF][START_REF] Sofia | Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images[END_REF].

In this thesis manuscript, we present entropy measures based on the information theory concept that illustrated a significant ability in this field.

In order to avoid having certain major errors that might occur due to the subjective judgment of a medical doctor sometimes, computer based measures come to be of great importance. They provide an objective assessment based on certain components that cannot be always identified or linked visually.

Moreover, as the medical field in several cases proves the need for computer based platforms for validating the diagnosis, for assisting in prognosis and for giving objective decisions, the research for computerized methods becomes essential. Computer based analysis methods could aid medical doctors and unify the worldwide decision making platformswith a specific importancefor rare medical cases by being accessible all over the planet, by providing fast outcome based on the concrete background in comparison, and unifying the diagnosis criteria. The medical doctors' monitoring remains indispensable, however can be accompanied by a more objective computer based tool that could unify the medical decision making worldwide.

Outline of the thesis

This manuscript is organized as follows:

-Chapter 1 presents the background literature review of our work. In this chapter we define the entropy concept, the previously developed measures in this field, and the medical cases on which our proposed measures will be applied. -Chapter 2 presents the bidimensional entropy measures that we developed. We first explain the algorithm behind bidimensional fuzzy entropy F uzEn 2D and its multiscale extension M SF 2D . Then, the algorithms behind the colored bidimensional fuzzy entropy measures are defined, F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D . -Chapter 3 presents the tridimensional entropy measures that we propose to extend our application to volumetric data. First, an approach directly based on M SF 2D to deal with volumetric data is presented, pseudo-tridimensional multiscale fuzzy entropy measure, pM F uzEn 3D . Then, tridimensional fuzzy entropy F uzEn 3D and its multiscale extension M SF 3D are described in details with their corresponding equations. -Chapter 4 presents the validation tests employed for each developed measure.

-Chapter 5 presents the results obtained with our measures for the 2D and 3D medical images. Our 2D measures find application for dermoscopic images of melanoma, pseudoxanthoma elasticum, and cutaneous microcirculation analysis. For the 3D volumetric scans, our measures find application for COVID-19, idiopathic pulmonary fibrosis, and uterine fibroma patients.

Chapter 1

WORK BACKGROUND

In this chapter we will first present a number of the existing texture analysis methods and detail some of them (section 1.1). One of the most recent methods introduced into the domain of texture analysis is entropy [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] John | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF][START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]23,24,[START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF]. As information theory entropy studies the irregularity of signals and images, we propose its application for texture analysis in the gray scale and colored spaces. For this purpose, we will define, in section 1.2, entropy in various fields: thermodynamics and information theory. In the information theory field, we will detail the entropy algorithms that are used to assess irregularity of time series, unidimensional (1D) data (section 1.4.1). We will also present the very recent developments that have been proposed to assess irregularity of bidimensional (2D) data images (section 1.4.2). In this chapter, we will finally present the medical cases on which our developed entropy measures were applied. This involves:

-pseudoxenthoma elasticum, PXE -cutaneous microcirculation -melanoma and melanocytic nevi -chronic obstructive pulmonary diseases, COPD, mainly emphysema and chronic bronchitis -idiopathic pulmonary fibrosis, IPF -uterine fibroids, UF -COVID-19

Texture Analysis

Texture is often referred to as the spatial arrangement of the visual patterns, colors, and intensities appearing in an image. The description of a visual content is often done by its two basic components: color and texture. Developing tools for image analysis are first tested on texture images and their ability to analyze image textures of different irregularity degrees, patterns, and colors is assessed, before they are employed as texture analysis tools. So textures form the evaluation platform allowing fast escalation in this field. Texture analysis finds application in various domains, such as: biomedical field [START_REF] Scalco | Texture analysis of medical images for radiotherapy applications[END_REF][START_REF] Castellano | Texture analysis of medical images[END_REF][START_REF] Latha | Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain[END_REF], industrial automation [START_REF] Kumar | Defect detection in textured materials using Gabor filters[END_REF][START_REF] Pérez-Barnuevo | Automated recognition of drill core textures: A geometallurgical tool for mineral processing prediction[END_REF], remote sensing [START_REF] Chica | Computing geostatistical image texture for remotely sensed data classification[END_REF][START_REF] Pham | Attribute profiles on derived textural features for highly textured optical image classification[END_REF], face recognition [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF], content-based image retrieval [START_REF] Deok | Content-based image retrieval using multiresolution color and texture features[END_REF].

Several 2D datasets were created for serving image analysis purposes and training computer aided tools [START_REF] Brodatz | Textures: a photographic album for artists and designers[END_REF][START_REF] Abdelmounaime | New Brodatz-based image databases for grayscale color and multiband texture analysis[END_REF][START_REF]Brodatz texture dataset[END_REF][START_REF]Artificial periodic and their synthesized textures[END_REF][START_REF] Bianconi | Automatic classification of granite tiles through colour and texture features[END_REF][START_REF] Fernández | Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification[END_REF]. They are often used for evaluating and comparing texture measures, their sensitivity to noise, and geometric transforms. An example is Kylberg texture dataset shown in Figure 1.1. It is composed of 28 classes with 160 unique samples in each class. The samples are 576 × 576 pixels large and stored as gray scale 8-bit png-images [START_REF] Kylberg | The Kylberg Texture Dataset v. 1.0[END_REF]. Some other datasets that we used in our work will be detailed in section 4.2.4. Texture analysis and description are among the most challenging problems in computer vision. Many algorithms have been proposed for texture features extraction in the past years and this research area is still the subject of many investigations [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]3,4,[START_REF] Thanh | Statistical binary patterns for rotational invariant texture classification[END_REF][START_REF] Qi | LOAD: Local orientation adaptive descriptor for texture and material classification[END_REF][START_REF] Wang | Local N -Ary pattern and its extension for texture Classification[END_REF][START_REF] Zhang | Scale invariant texture representation based on frequency decomposition and gradient orientation[END_REF][START_REF] André R Backes | Texture analysis using graphs generated by deterministic partially self-avoiding walks[END_REF]. Texture features are of the utmost importance in segmentation, classification, synthesis of images and many other image processing steps. However, no precise definition of texture has been adopted yet.

Although texture has no exact definition, it has long been an essential subject in human perception [START_REF] Liu | Near-regular texture analysis and manipulation[END_REF]. Precisely, regularity has been illustrated to play a major role in texture perception [START_REF] Rao | Identifying high level features of texture perception[END_REF]. For example, a study by [START_REF] Liu | Near-regular texture analysis and manipulation[END_REF] propose quantitative measurements to characterize near-regular textures based two main components, see Figure 1.2. Other studies propose six major textural features: coarseness, contrast, directionality, line-likeness, regularity, and roughness, to be considered in computation [START_REF] Tamura | Textural features corresponding to visual perception[END_REF]. Some other studies rely on the visual identification of irregularity or other visual perception features. Recently, a review paper proposed to classify the texture feature extraction methods into seven classes [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF]: statistical approaches (among which we can find the well-known co-occurrence matrices), structural approaches, transform-based approaches (Fourier transform-based approaches, among others), model-based approaches (such as the random field models), graph-based approaches (as the local graph structures), learning-based approaches, and entropy-based approaches. The two latter classes (learning-based approaches and entropy-based approaches) are the most recent ones. Several studies showed that the entropy-based measures are promising for texture analysis [23,[START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] Eduardo | Two-dimensional multiscale entropy analysis: applications to image texture evaluation[END_REF][START_REF] Humeau-Heurtier | Bi-dimensional multiscale entropy: relation with discrete Fourier transform and biomedical application[END_REF]. Despite the fact that they have the great advantage of relying on well-known unidimensional, 1D, entropy-based measures (issued from the information theory field), these studies are only at their beginning.

Texture analysis methods

As mentioned above, texture analysis methods can be divided into seven categories [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF]. We list them herein and detail the ones with the widest utilization in the field of image processing. The selected texture analysis methods usually depend on the target application. For instance, some applications require more focus on the texture patterns, others are more concerned about the pixel intensities or image regions identification. In what follows we will briefly present class of the statistical approaches (as some of these approaches will be used in our work) and list the other classes. Several texture databases were created or adapted to become compatible for texture analysis purposes and classification [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF][START_REF] Hossain | Texture databases-a comprehensive survey[END_REF][START_REF] Bianconi | An appendix to "Texture databases-A comprehensive survey[END_REF].

Statistical approaches

Statistical approaches for texture analysis rely on the non-deterministic properties of the gray level distribution in the texture images. They consider the local features reflecting the spatial distribution of gray values. They are divided into 3 main categories: first order statistics, second order statistics, and higher order statistics. These methods include: gray level co-occurrence matrices (GLCM), gray level run-length matrix, autocorrelation-based approaches, histogram of gradient magnitudes, local mapped patterns-based approaches, local energy pattern, variogram, Tamura features, local binary patterns and variants, shape index histograms, weber local descriptor, and deterministic walk [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF].

GLCM are probably the most common texture analysis technique, not only as a statistical approach, but also as a straight forward, easily implemented, and popular image analysis method used in several fields [START_REF] Mohanaiah | Image texture feature extraction using GLCM approach[END_REF]. This technique is detailed below as it was used in our work.

Gray level co-occurrence matrices

Gray level co-occurrence matrices (GLCM) are a very well known image analysis technique that allows features extraction from gray scale images. Later, they were also upgraded for colored images using the approaches that will be detailed in the following section.

GLCM are first calculated by defining directions and an interpixel distances, d. Then, pixels seperated by d are counted for each given direction separately; i.e. a count of the occurrence of pixel pairs that have a given distribution of gray level values is grouped into a GLCM for a given orientation and d. This is repeated for all d values in each orientation. For GLCM, four main orientations are usually chosen and a number of interpixel values. For a better illustration, please consider the following example in Figure 1.3, for a small 4×4 pixels gray scale image, for simplicity reasons. The same procedure is calculated for all pixel pairs in the chosen direction and d. Adapted from [START_REF] Larroza | Texture analysis in magnetic resonance imaging: review and considerations for future applications[END_REF].

After that, Haralick features are calculated from the GLCM matrices and used in classification, identification, and analysis of image textures. In fact, among the 14 features originally proposed by Haralick et al. [START_REF] Robert M Haralick | Textural features for image classification[END_REF], only six are commonly employed by researchers due to their correlation with the other eight, see Table 1.1. This GLCM concept is upgraded also to 3D to study volumetric data [START_REF] Philips | Directional invariance of co-occurrence matrices within the liver[END_REF]. Usually co-occurrence matrices are calculated for four main directions or orientations (0 • , 45 ) in the 2D case and for 13 orientations in the 3D case, taking different interpixel or intervoxel distances d (we chose 4 interpixel distances d=1, 2, 4, and 8). Moreover, 8 gray levels (N g =8) are usually considered. Therefore, the aforementioned parameters will be employed during our 2D and 3D co-occurrence matrices calculations.

Other methods

Other texture analysis techniques are classified into [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF][START_REF] Zhang | Brief review of invariant texture analysis methods[END_REF][START_REF] Materka | Texture analysis methods-a review[END_REF][START_REF] Castellano | Texture analysis of medical images[END_REF][START_REF] Scalco | Texture analysis of medical images for radiotherapy applications[END_REF]:

-Structural approaches in which textures are divided into texels or basic small elements. The difference among the structural approaches is in the way the elements are chosen. [START_REF] Robert M Haralick | Textural features for image classification[END_REF].

Haralick feature Annotation Uniformity (Energy)

i j P 2 (i, j) Contrast Ng-1 n=0 n 2 ( Ng i=1 Ng j=1 P (i, j)), |i -j| = n Correlation i j (ij)P (i, j) -µ x µ y /σ x σ y Variance i j (i -µ) 2 P (i, j) Homogeneity i j P (i, j) /(1 + ((i -j) 2 ) Entropy -i j P (i, j) log P (i, j)
where P represents the elements of the co-occurrence matrices and µx, µy , σx, and σy are the means and standard deviations of row and column sums, respectively.

-Transform-based approaches, in which textures are considered in a space that can be interpreted in a similar way to texture characteristics. They include mainly the Fourier transform-based, Gabor decomposition-based, wavelet-based methods as well as filter banks (Law's texture features). -Model-based approaches in which a texture image is taken as a probability model; 

Colored texture analysis methods

Beside texture, color is essential not only in human perception for images but also in digital image processing [START_REF] Palm | Color texture classification by integrative co-occurrence matrices[END_REF][START_REF] André | Color texture analysis based on fractal descriptors[END_REF][START_REF] Drimbarean | Experiments in colour texture analysis[END_REF][START_REF] Xu | Color texture analysis using the wavelet-based hidden Markov model[END_REF][START_REF] Arvis | Generalization of the cooccurrence matrix for colour images: application to colour texture classification[END_REF][START_REF] Alata | Choice of a pertinent color space for color texture characterization using parametric spectral analysis[END_REF]. It is becoming of a greater impact. Unlike the intensity that is translated as scalar gray values for a gray scale image, color is a vectorial feature that is appointed to each pixel for a colored image [START_REF] Palm | Color texture classification by integrative co-occurrence matrices[END_REF]. In contrast to gray scale images that could be handled in a straight forward manner, colored images could be analyzed in several possible ways. This depends on many factors, such as the need to analyze texture or color, separately or combined, directly from the image or through a transformation, among other factors [START_REF] Palm | Color texture classification by integrative co-occurrence matrices[END_REF][START_REF] Alata | Choice of a pertinent color space for color texture characterization using parametric spectral analysis[END_REF][START_REF] Bianconi | Theoretical and experimental comparison of different approaches for color texture classification[END_REF].

Only few studies were performed on colored texture analysis and most of them were by adapting the application of gray scale textures analysis methods (listed in Section 1.1.1) to be applied on colored images. Therefore, in the following, we will state the possible approaches to handle colored images.

A study on colored texture analysis methods proposed dividing the colored texture analysis methods into three categories [START_REF] Palm | Color texture classification by integrative co-occurrence matrices[END_REF]:

-Parallel approaches: seperate the color and texture concepts. Color is measured from the color histogram neglecting the local neighboring pixels characteristics. Texture is measured from the relationship of the intensities (gray scale version of images) neglecting the color properties. Color and texture results are combined to form a final feature vector. -Sequential approaches: consider the color analysis from the color histogram. They employ a segmentation procedure in which the images' color histograms are labeled and then the features are extracted. -Integrative approaches: combine the analysis of color and textural concepts, through which the information dependency between the two is taken into consideration. Those could be divided into single-or multi-channel strategies.

Parallel approaches are the most commonly employed as they can utilize the known gray-scale analysis methods directly. Sequential approaches were shown to be reliable in certain fields. However, they rely on the segmentation procedure that considers several parameters and, therefore, do not provide reproducible results. Finally, integrative approaches have the advantages of accounting for the color and textural features in a colored image simultaneously [START_REF] Palm | Color texture classification by integrative co-occurrence matrices[END_REF]. Moreover, the single-channel strategies possess an easily implemented adaptation from gray scale image analysis techniques and show significantly improved results compared to the parallel approaches [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF]. Multi-channel strategies analyze two or more color channels at the same time. They have been also adapted for some well known feature extraction methods.

Several gray scale image analysis techniques have been extended for colored image analysis mostly as parallel approaches, such as: local linear transforms, Gabor filters [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF], co-occurrance matrices [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF][START_REF] Palm | Color texture classification by integrative co-occurrence matrices[END_REF], wavelet based Markov model [START_REF] Xu | Color texture analysis using the wavelet-based hidden Markov model[END_REF], and fractal descriptors [START_REF] André | Color texture analysis based on fractal descriptors[END_REF].

Entropy

Life is Chaos! The universe tends to be in disorder.

If you look at it thoroughly, you can see that, the aging of a human body, the natural evolution of all living beings, the structure of things tend to become in disorder unless we perform an action to force them to become ordered. Such as the simple example of our room: our spontaneous behavior leads to an unorganized room and this is normal, so the possibility of our room being totally ordered upon our spontaneous natural behavior is unlikely with a very low probability. However, now when we want to clean our room and put it back into order we are exerting an effort to force things to get back to the organized state. Putting a system in order requires other systems to be unorganized, to continue with the example: to organize our room it requires putting into disorder our spontaneous behavior and following a certain pattern of moves to achieve our target.

"Any spontaneous process increases the disorder or randomness of the universe". Well if we take a second to think about it logically, it is True! Among the few possibilities of things to be in a perfect order there are infinite possibilities for them to be in all the other states: from daily life events and the physical placement of objects in our apartment, street, and office to the particles and energy in this universe. This is a simple explanation of the actual established second law of thermodynamics by Boltzmann that was later refined to state that: The total entropy of a closed system cannot decrease. However, within a system, entropy of one system can decrease by raising entropy of another system. "A given system can never of its own accord go over into another equally probable state but only into a more probable one [START_REF] Boltzmann | The second law of thermodynamics[END_REF]"

The more probable state is always the degraded state and never back to the initial state. In thermodynamics world, Entropy is this measure of this disorder. First established by Boltzmann as:

S = k B ln Ω, (1.1)
where S is the entropy value, k B Boltzmann constant and Ω is the number of microstates. The microstates are the properties of the system at a certain instant. This equation relates

Entropy

the microscopic properties of the system (microstates) to the macroscopic thermodynamic behavior. In the case of a process where the system is moving from a less probable to a more probable state, there is a change in entropy that reflects the actual change of the system's properties. With Ω 1 as the initial number of microstates and Ω 2 as the final number of microstates, change in entropy could be calculated as:

∆S = k B ln Ω 2 Ω 1 . (1.2)
After several decades, in 1948 [START_REF] Elwood | A mathematical theory of communication[END_REF], Shannon introduced the revolutionary notion of "Information Entropy" which will be detailed in section 1.3. In information theory and thermodynamics Entropy is a fundamental quantity. It is a common concept for various scientific fields. In simple words it is the measure of disorder in a system. However this might not be always a very precise definition. In thermodynamics world, entropy is the measure of energy distribution in a system; the more spread it is, the higher the entropy is and vice versa. However, in information theory world, the entropy is the measure of uncertainty. The more obvious and certain an outcome is, the lower the entropy value and vice versa.

As an illustration, consider the three different states of water: solid (ice), liquid (water), and gas (vapor), Figure 1.4. If we want to relate entropy characterization for each of them, we would say that the ice has the lowest entropy values because it has fixed particles;

i.e. we can always know how the particles are arranged, they are steady. Liquid state water has a medium entropy as it reflects a bigger spread of the particles and more possible arrangements. However, the water vapor has the highest entropy value among them because the arrangement of particles is so random, there is a bigger spread of the particles and they are more free to move. Now translating that into the information theory concept, in the ice cube we have the highest knowledge (certainty) about the particles' location and possible distribution which is rendered into low entropy value as it carries low information. However, for the vapor (gas) we have the lowest knowledge about the particles distribution and they are free to spread, thus it has a high entropy value as the system contains the highest information. When moving our system from one state to another, we can visualize the change in entropy values. As an ice cube melts, we can obviously visualize the increase in entropy value (increase in disorder) as its particles become more randomly distributed and spread. We then have less knowledge about their arrangement (more possibilities). In other words, In simple words, if we need to pick a ball from each state, we have 100% certainty of picking 'W' in the solid state. This percentage decreases gradually for liquid and gas states as we become less certain about the outcome of our random pick. Adapted from [61].

we become more uncertain about their arrangement, thus its state carries more information. The key explanation of information theory is that:

-Entropy is inversely proportional to certainty of a system. -Entropy of a variable reflects its amount of information.

Entropy in Information Theory

Entropy measures are being used in several scientific disciplines, such as: information theory, statistical mechanics, chaos theory, neural networks, mathematical linguistics, and taxonomy [START_REF] Borowska | Entropy-based algorithms in the analysis of biomedical signals[END_REF]. In dynamics system world, entropy is the rate of information production. It was first established by Shannon as an average measure of disorder or uncertainty in a system [START_REF] Elwood | A mathematical theory of communication[END_REF].

The entropy of a variable is the amount of information contained in it. The variable could be a phone call, a signal, a sequence of letters, the news, or any other form. For one message state or event E, the information content I is calculated as:

I(E) = log( 1 P (E) ) = -log(P (E)), (1.3) 
with E being the message and P (E) the message's probability of occurrence. Intuitively, high probability messages carry low information content because they are already predictable, whereas the low probability messages that are the least expected carry high information content [START_REF] Dougherty | Digital image processing for medical applications[END_REF][START_REF] Lesne | Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics[END_REF]. Let us use a numerical example to better explain the idea:

If we have two equally possible events, E1 and E2, with P (E1) = P (E2) = 1 2 then

I(E1) = I(E2) = -log 2 ( 1 2
) = 1 bit of information. On the other side, if one event is more likely to occur than the other such as having P (E1) = 3 4 and

P (E2) = 1 4 ,
for example, then the information outcome would be

I(E1) = -log 2 ( 3 4 
) = 0.415 and

I(E2) = -log 2 ( 1 4 ) = 2.
The event with a higher probability carries lower information content and vise versa [START_REF] Dougherty | Digital image processing for medical applications[END_REF]. We present the Shannon entropy herein. Consider a discrete random variable X with elements {x i } = {x 1 , x 2 , ......, x n } and probability distribution p(x). The entropy H x is defined as:

H x = x X

p(x)I(X).

(1.4)

where by observing X and knowing its probability distribution p(x), I(X) is the measure of information perceived by us. This quantity is defined by Shannon as I(X) = -log 2 (p(x)) [START_REF] Elwood | A mathematical theory of communication[END_REF]. So, finally, the entropy definition is Eq. 1.5. The maximum entropy is obtained when the events have equal probabilities [START_REF] Elwood | A mathematical theory of communication[END_REF][START_REF] Lesne | Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics[END_REF].

H x = - x X p(x) log 2 (p(x)).
(1.5)

Entropy Measures

Biomedical signal processing methods have attained major importance by being able to extract information that is not identified visually from signals. Information is of great interest. It enables scientists to detect behavior, redundancy, or noise information from the biomedical signals [START_REF] Borowska | Entropy-based algorithms in the analysis of biomedical signals[END_REF]. A number of entropy measures-based on some concepts in information theory-have been developed to serve this purpose: one dimensional approximate entropy (ApEn 1D ) [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF][START_REF] Pincus | Approximate entropy (ApEn) as a complexity measure[END_REF], sample entropy (SampEn 1D ) [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF], fuzzy entropy (F uzEn 1D ) [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF], distribution entropy (DistrEn 1D ) [START_REF] Li | Assessing the complexity of short-term heartbeat interval series by distribution entropy[END_REF], permutation entropy (P ermEn 1D ) [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF], and dispersion entropy (DispEn 1D ) [START_REF] Rostaghi | Dispersion entropy: A measure for timeseries analysis[END_REF][START_REF] Azami | Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[END_REF]. Besides, these entropy measures have been implemented in various fields within the biomedical domain through their application to physiological time series, such as, electroencephalographic (EEG) [START_REF] Cirugeda-Roldan | Comparative study of entropy sensitivity to missing biosignal data[END_REF][START_REF] Cao | Characterization of complexity in the electroencephalograph activity of Alzheimer's Disease based on fuzzy entropy[END_REF][START_REF] Rostaghi | Dispersion entropy: A measure for timeseries analysis[END_REF], electrocardiographic (ECG) [START_REF] Bornas | Sample entropy of ECG time series of fearful flyers: preliminary results[END_REF][START_REF] Li | Assessing the complexity of short-term heartbeat interval series by distribution entropy[END_REF], electromyographic (EMG) [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF][START_REF] Mosabber | A multivariate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis[END_REF], and electrohysterographic (EHG) signals [START_REF] Dariusz | A multivariate sample entropy of differentiated electrohysterographical signals for an identification of an uterine labor activities[END_REF]. Due to the successful findings on the unidimensional level, bidimensional definitions were later proposed [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] John | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF][START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]23,24,[START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF]. In the following, we will describe the unidimensional entropy methods that are the most often used to analyze time series, the definitions of some of them and their various applications.

Unidimensional entropy measures

Unidimensional approximate and sample entropy measures

Entropy measures were first established in the discipline of understanding complex phenomena. The first developed entropy measure as a regularity quantifier is ApEn 1D [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF]. Thus, in 1991, Pincus [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF] established ApEn 1D as a measure of information in a finite data series based on vectors' similarity within the signal. ApEn 1D , by definition, is a measure of the likelihood that a consecutive number of points (defined by a window m) of a time series that are similar (within a range lower than or equal to a parameter r) remain similar on the next incremental comparisons (when adding one extra point).

ApEn 1D was applied to clinical cardiovascular studies: in heart rate data in specific, it can significantly discriminate healthy controls from diseased subjects [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF][START_REF] Steven | Approximate entropy: a regularity measure for fetal heart rate analysis[END_REF]. It also found application in EEG classification for psychiatric diseases, like schizophrenia [START_REF] Sabeti | Entropy and complexity measures for EEG signal classification of schizophrenic and control participants[END_REF], epilepsy [START_REF] Rajendra | Automated diagnosis of epileptic EEG using entropies[END_REF], and addiction. However, ApEn 1D considers self matches, has certain bias, and is heavily dependent on the signal's length [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF].

Therefore, to handle the sensitivity of ApEn 1D to the length of signals and avoid self similarity considerations, SampEn 1D was later proposed by Richman and Moorman [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF][START_REF] Joshua S Richman | Sample entropy[END_REF]. As illustrated in Figure 1.5, ApEn 1D shows a high risk of obtaining undefined ( log(0) ) values if no matches were found for each and every template of lengths m and (m + 1). This suggested adding a value of 1 to the numerator and denominator of the equation (in each comparison). However, SampEn 1D solved this issue by introducing the idea of summing all the number of matches before introducing the natural logarithmic function. The latter led to excluding self matches, obtaining more accurate assessment, and saving computation time.

In SampEn 1D , by definition, "each" time series template of length m is compared to its neighboring m-length templates by scanning the whole time series for similar matches; if the difference between the corresponding scalar components is less than or equal to a value r × standard deviation(time series),r is the tolerance levelthen the patterns are considered similar. Thus, a unit value is added to the number of matches of length m (A i in Figure 1.5). However, if the difference between the corresponding scalar components is greater than r × standard deviation(time series) then nothing is added. Similarly, B i for matches of (m + 1)-length templates is calculated. After that, A i and B i for m-and (m + 1)-length templates, respectively, are summed and the natural negative logarithm is calculated. It is important to mention that, the similarity degree in ApEn 1D and SampEn 1D is based on a two-state binary classifier determined by r. Therefore the outcome is highly dependent on the choice of the parameter r and the results are also sensitive to any slight change in this value. SampEn 1D found applications for various physiological time series such as: clinical cardiovascular datasets [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF], ECG [START_REF] Alcaraz | A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms[END_REF], EMG [START_REF] Zhang | Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes[END_REF], among others. ApEn 1D and SampEn 1D algorithms definition:

For ApEn 1D and SampEn 1D calculations, the time series length N , length of the compare sequence m (moving template), and the tolerance for accepting matches r are defined. Tolerance is usually multiplied by the standard deviation, std, of the series, u. However, for a normalized series std(u) = 1 so r × std(u) = r. At first a vector sequence

x m i = {u i , u i+1 , ..., u i+m-1 } (i = 1, ... , N -m) is formed. x m i = {u i , u i+1 , ....., u i+m-1 }. (1.6)
Similarly, x m+1 i for m + 1 points is formed. The distance d m x i ,x j between vectors x m i and x m j is defined as the maximum difference between their corresponding scalar components:

d m i,j = d[x m i , x m j ] = max k∈(0,m-1) |(u(i + k) -u(j + k))|. (1.7)
Define B i as the number of vectors x m j within r of vectors x m i and A i as the number of vectors x m+1 j within r of x m+1 i . Thus for each x i , B i and A i are incremented by:

   1 if d is ≤ r (similar patterns) 0 if d is > r (non -similar patterns)    (1.8)
Then each of ApEn 1D and SampEn 1D is defined as follows [START_REF] Joshua S Richman | Sample entropy[END_REF]:

ApEn 1D = - 1 N -m N -m i=1 ln( A i B i ) (1.9)
SampEn 1D = -ln( N -m i=1 A i N -m i=1 B i ) (1.10)
As stated previously, both ApEn 1D and SampEn 1D showed promising results but are too sensitive to their parameters and may even result in misleading findings. That is because the vectors' similarity is defined based on the Heaviside function that has a rigid boundary [START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF]. The Heaviside function is a two-state binary classifier that gives a unity value if the difference in distance between the compared vectors is within threshold r; otherwise it gives a zero value, please see Figure 1.6. There is no intermediate value. Thus, any slight change in r will probably change the entropy value [START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF]. As an enhancement, Chen et al. [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF] utilized the concept of fuzzy membership function and developed the F uzEn 1D method that will be extensively detailed below. 

Unidimensional fuzzy entropy

In 2007, F uzEn 1D was first proposed as a measure for surface EMG time series regularity to overcome the poor statistical stability of ApEn 1D and SampEn 1D [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF]. In the research of information theory and complex systems analysis, several studies suggested that F uzEn 1D outperforms ApEn 1D and SampEn 1D [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF][START_REF] Liu | Analysis of heart rate variability using fuzzy measure entropy[END_REF][START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF][START_REF] Xiong | A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction[END_REF]. Since then, it has been used for characterizing different types of biomedical signals such as electromyogram (EMG) [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF], heart rate variability [START_REF] Liu | Analysis of heart rate variability using fuzzy measure entropy[END_REF][START_REF] Cirugeda-Roldan | Comparative study of entropy sensitivity to missing biosignal data[END_REF], and electroencephalogram (EEG) [START_REF] Cirugeda-Roldan | Comparative study of entropy sensitivity to missing biosignal data[END_REF].

Unlike ApEn 1D and SampEn 1D , F uzEn 1D gives a membership value to each element of a time series based on fuzzy sets and membership degree functions. For evaluating the similarity degree in F uzEn 1D , Chen et al. [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF] proposed replacing the Heaviside function used in ApEn 1D and SampEn 1D -that assigns a value of 0 or 1 to the elements compared by a continuous exponential function as their membership degree. Therefore, all the time series elements have contributions in the final entropy output by a continuous function as their membership degree.

F uzEn 1D is computed as follows [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF]: For an N sample time series u, {u(i) : 1 ≤ i ≤ N }, given an embedding dimension m, a vector sequence x m i = {u i , u i+1 , ..., u i+m-1 } (i = 1, ... , N -m) is formed. Every element of the vector sequence is generalized by removing the sequence's baseline {u 0

(i) = 1 m m-1 j=0 u i+j }: x m i = {u i , u i+1 , ....., u i+m-1 } -u 0 (i). (1.11)
Similarly, x m+1 i for m + 1 points is formed. The distance d m i,j between vectors x m i and x m j is defined as the maximum difference between their corresponding scalar components:

d m i,j = d[x m i , x m j ] = max k∈(0,m-1) |(u(i + k) -u 0 (i)) -(u(j + k) -u 0 (j))|. (1.12)
Given tolerance level r and fuzzy power n, the similarity degree D m i,j (n, r) between x m i and x m j is calculated through a fuzzy function { µ(d m i,j , n, r) } as:

D m i,j (n, r) = µ(d m i,j , n, r) = exp(- (d m i,j ) n r ). (1.13)
Then, the functions Φ m and Φ m+1 are defined as:

Φ m (n, r) = 1 N -m N -m i=1 Φ m i (r), (1.14) Φ m+1 (n, r) = 1 N -m N -m i=1 Φ m+1 i (r), (1.15) 
where Φ m i and Φ m+1 i are the average of all the similarity degrees of vectors x m i and x m+1 i , respectively, with their neighboring vectors x m j and x m+1 j :

Φ m i (n, r) = 1 N -m -1 N -m j=1,j =i D m i,j , (1.16 
)

Φ m+1 i (n, r) = 1 N -m -1 N -m j=1,j =i D m+1 i,j .
(1.17)

Then F uzEn 1D measure is defined as:

F uzEn 1D (m, n, r) = lim N -→∞ [ ln Φ m (n, r) -ln Φ m+1 (n, r) ]. (1.18)
It is estimated by the statistics for finite datasets, i.e. time series in our case:

F uzEn 1D (u, m, n, r) = ln Φ m (n, r) -ln Φ m+1 (n, r). (1.19)
Finally, F uzEn 1D is formulated as: .20) In addition to the above detailed entropy measures, some other unidimensional entropy measures were later developed: distribution entropy 1D (DistrEn 1D ) [START_REF] Li | Assessing the complexity of short-term heartbeat interval series by distribution entropy[END_REF], dispersion entropy 1D (DispEn 1D ) [START_REF] Rostaghi | Dispersion entropy: A measure for timeseries analysis[END_REF][START_REF] Azami | Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[END_REF], permutation entropy (P ermEn 1D ) [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF]. We will detail the bidimensional versions of the aforementioned measures in section 1.4.2.

F uzEn 1D (u, m, n, r) = ln Φ m (n, r) Φ m+1 (n, r) . ( 1 

Unidimensional multiscale approach

In the unidimensional domain, the previously detailed entropy measures ApEn 1D [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF],

SampEn 1D [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF], and F uzEn 1D [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF] are able to quantify the irregularity of physiological time series. However no analysis was performed on multiple scale factors until Costa et al. [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF] proposed the concept of coarse-graining process with entropy measures. They introduced the multiscale entropy (MSE 1D ) and studied the biological series behavior over several scale factors to explain the fact that some pathologic processes have a lower complexity than healthy processes [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]. In fact, MSE can be considered as a filter bank of overlapping band-pass filters [START_REF] Azami | Coarse-graining approaches in univariate multiscale sample and dispersion entropy[END_REF].

Unidimensional multiscale approach MSE 1D

MSE is a two-step procedure: first coarse-graining the original time series, then applying SampEn 1D to each coarse-grained time series. Elements of the coarse-grained time series are obtained from the original one x = {x 1 , x 2 , x 3 , ....x N } with length N by the equation: y

(τ ) j = 1 τ jτ i=(j-1)τ +1 x i , 1 ≤ j ≤ N τ ,
given a scale factor τ [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF][START_REF] Humeau-Heurtier | The multiscale entropy algorithm and its variants: a review[END_REF], see Figure 1.7. It involves dividing the original time series into consecutive non-overlapping windows and averaging the data points within each window to obtain multiple average values that form the new coarse-grained time series y (τ ) [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF][START_REF] Humeau-Heurtier | The multiscale entropy algorithm and its variants: a review[END_REF][START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF]. The length of the coarse-grained time series is the length of the original time series divided by the scale factor: N/τ . At scale one, the coarse-grained time series is the original time series itself. After that, SampEn 1D is calculated for each coarse-grained time series and plotted as a function of the scale factor τ .

For the M SE analysis, two major patterns should be considered [START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF]:

-For two time series a and b, if the entropy values at most of the scale factors for a are higher than those for b, then a is more complex than b.

-If entropy values decrease monotonically with scale then the significant information is only found at the smallest scales of the original time series. It has been shown that it is better to study the complexity of biological systems on the multiscale level because they naturally operate across multiple temporal scales [START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF].

Modified multiscale entropy MMSE 1D

Modified multiscale entropy MMSE 1D [START_REF] Wu | Modified multiscale entropy for short-term time series analysis[END_REF] is composed of two main steps like MSE 1D : first coarse-graining the original time series x = {x k } = {x 1 , x 2 , x 3 , ....x N }, of length N , then applying SampEn 1D to each coarse-grained time series. However, the coarse graining procedure is performed using overlapping moving templates. The length of the τ coarsegrained time series is N-τ +1. The algorithm is defined as follows:

-An overlapping moving template scans the whole original time series to form the coarse-grained versions y (τ ) = {y (τ ) j } as:

y (τ ) j = 1 τ k=jτ k=(j-1)τ +1 x k , ( 1.21) 
where j goes from 1 to ( N τ + 1) (rounded down). -For each coarse-grained time series y (τ ) , SampEn 1D is computed.

Unidimensional multiscale fuzzy entropy MSF 1D

Similar to the previously defined multiscale analysis, MSF 1D [START_REF] Azami | Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[END_REF] is a two-step procedure: first coarse-graining the original time series following [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF], then applying F uzEn 1D to each coarse-grained time series. It involves dividing the original time series into consecutive non-overlapping windows and averaging the data points within each window to obtain multiple average values that form the new coarse-grained time series y (τ ) .

-Elements of the coarse-grained time series are obtained from the original one x = {x 1 , x 2 , x 3 , ....x N } with length N by the equation: y

(τ ) j = 1 τ jτ i=(j-1)τ +1 x i , 1 ≤ j ≤ N τ
, given a scale factor τ -The obtained coarse-grained time series are evaluated using F uzEn 1D .

Bidimensional entropy measures

In the field of biomedical signal processing, several unidimensional (1D) entropy measures have been developed to characterize the irregularity of physiological signals, as mentioned above. Successful findings based on entropy measures on 1D data [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF][START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF][START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF], signals, encourage the development of bidimensional (2D) entropy metrics for 2D data, images. Starting in 2011, the bidimensional entropy measures for studying images irregularity emerged and showed promising findings [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] John | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF][START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]23,24,[START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF]. The 2D entropy measures can extract some 2D information from an image and study the irregularity within its patterns in a similar manner to that implemented for signals [START_REF] Humeau-Heurtier | Texture feature extraction methods: A survey[END_REF]. In the following we will mention all the existing bidimensional entropy measures, including the most recent ones. Furthermore, we will thoroughly explain the first developed bidimensional measure: bidimensional sample entropy, SampEn 2D .

Bidimensional sample entropy

In 2011, Yeh et al. [23] followed by the work of Silva et al. [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF] proposed the first 2D entropy measure, 2D sample entropy (SampEn 2D ) for quantifying the irregularity of images as an extension of 1D sample entropy (SampEn 1D ) [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF].

For an image U={u(i, j)} j=1,2,.......,W i=1,2,.......,H with height H and width W :

1. Let V m (i, j) be the m-length square window of U with origin at u(i, j):

V m (i, j) =         u(i, j) ... u(i, j + m -1) u(i + 1, j) ... u(i + 1, j + m -1) ... ... ... u(i + m -1, j) ... u(i + m -1, j + m -1)         . (1.22)
Let N m be the total number of square windows within U that are generated for m and m + 1 size:

N m = (W -m) × (H -m).
For a similarity threshold r, compute G m (r) as:

G m (r) = 1 N m i=H-m,j=W -m i=1,j=1 G m ij (r), (1.23) 
where,

G m ij (r) = 1 N m -1 × number of V m (a, b) such that d [V m (i, j), V m (a, b)] ≤
r, where a and b range from 1 to H -m and from 1 to W -m, respectively. The distance d is calculated as follows:

d[V m (i, j), V m (a, b)] = max 0≤k≤m-1, 0≤l≤m-1 |u(i + k, j + l) -u(a + k, b + l)|. (1.24)
2. Then, compute G1 m (r) as:

G1 m (r) = 1 N m i=H-m,j=W -m i=1,j=1 G1 m ij (r), (1.25) 
where,

G1 m ij (r)= 1 N m -1 × number of V m+1 (a, b) such that d [V m+1 (i, j), V m+1 (a, b)] ≤ r,
where a and b range from 1 to H -m and from 1 to W -m, respectively. This means the similarity is considered as:

   1 if d is ≤ r (similar patterns) 0 if d is > r (non -similar patterns)    (1.26)
3. Finally, calculate the bidimensional Sample entropy, SampEn 2D :

SampEn 2D (m, r, U) = -ln( G1 m (r) G m (r) ). (1.27) 
4. In SampEn 2D , two patterns are considered to match if the absolute difference between all their corresponding components is lower than the threshold r.

SampEn 2D was tested on synthetic images, texture images, and real biological images. SampEn 2D is similar to its unidimensional definition SampEn 1D [START_REF] Joshua | Physiological time-series Analysis using approximate entropy and sample entropy[END_REF]. As an illustration for pattern comparisons using SampEn 2D please see Figure 1.8. The results obtained by SampEn 2D were very promising and illustrated its ability to extract some meaningful 2D features of an image. It was applied to nerves histological images [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF]. However, SampEn 2D still has the drawback of resulting in undefined values especially for small sized images [START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]. Moreover, it is very sensitive to its parameters' values, like its 1D version. The latter will be shown in our manuscript as well (Chapter 4).

Bidimensional distribution entropy

Later, in 2017, Azami et al. developed the 2D distribution entropy (DistrEn 2D ) [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF].

DistrEn 2D was developed based on its unidimensional DistrEn 1D [START_REF] Li | Assessing the complexity of short-term heartbeat interval series by distribution entropy[END_REF] concept that showed advantages in the results over other unidimensional entropy measures for short signals [START_REF] Li | Assessing the complexity of short-term heartbeat interval series by distribution entropy[END_REF]. Thus, DistrEn 2D -its 2D versiondeals especially with small-sized texture images.

DistrEn 2D is based on a histogram approach with M bins to estimate the empirical probability density function (ePDF) of the distance matrix (D), where D is the greatest absolute difference between the compared patterns. DistrEn 2D algorithm is explained below. Consider an image U={u i,j } j=1,2,.......,w i=1,2,.......,h of size H × W : 1. U is normalized to 0 to 1 range. Then template matrices of m H × m W size are created X m k,l (Eq. 1.28) where

k = 1, 2, ..., H -(m H -1) and l = 1, 2, ..., W - (m W -1). The embedding dimension vector m is taken as [m H , m W ]. X m i,j =         u i,j ... u i,j+m W -1 u i+1,j ... u i+1,j+m W -1 ... ... ... u i+m H -1,j ... u i+m H -1,j+m W -1        
.

(1.28)

2. Then, the distance matrix D is calculated as the absolute difference between the corresponding scalar components of X m k,l and X m a,b , in which, variables a and b range from 1 to H -(m H -1) and from 1 to W -(m W -1), respectively, excluding (k, l) = (a, b) to reduce bias.

3. After that, the histogram approach is implemented with M bins to estimate the empirical probability density function (ePDF) of the distance matrix (D). The probability of each bin is represented by p t (frequency).

4. Finally the 2D distribution entropy, DistrEn 2D , is calculated as:

DistrEn 2D (U, m, M ) = - M t=1 p t × log 2 (p t ). (1.29)
For testing DistrEn 2D , a set of synthetic images based on several concepts in image processing, including power of noise and degree of randomness, and real texture datasets were employed [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF]. DistrEn 2D results in defined entropy values for images where SampEn 2D is not defined.

Bidimensional dispersion entropy

In 2019, as an extension of DispEn 1D [START_REF] Rostaghi | Dispersion entropy: A measure for timeseries analysis[END_REF][START_REF] Azami | Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[END_REF], DispEn 2D [START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF] was introduced for 2D data. In DispEn 2D , the pixels of an image are mapped into classes and then correspondingly into dispersion patterns. The relative frequency for each dispersion pattern is calculated. Afterwards, those relative frequencies of the dispersion patterns are summed up by a definition based on Shannon entropy to obtain the final entropy value. Consider an image U={u(i, j)} j=1,2,.......,W i=1,2,.......,H of H × W size:

1. Map u(i, j) elements into c classes, using linear and non-linear methods [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF], to form z c i,j = round(c × y i,j + 0.5). The number of classes c could be an integer from 3 till 9. In order to avoid having most of the u(i, j) elements in few classes out of the 1 to c, a sigmoid function is often used where:

y i,j = 1 σ √ 2π u i,j -∞ e -(t-µ) 2 2σ 2 dt, ( 1.30) 
with µ and σ being the mean and standard deviation of the original image U.

2. Let m be the embedding dimension vector [m H , m W ] to define z m,c k,l such as:

z m,c k,l =         z c k,l z c k,l+1 • • • z c k,l+(m W -1) z c k+1,l z c k+1,l+1 • • • z c k+1,l+(m W -1) • • • • • • • • • • • • z c k+(m H -1),l z c k+(m H -1),l+1 • • • z c k+(m H -1),l+(m W -1)         , ( 1.31) 
where k range from 1 to w -(m W -1) and l ranges from 1 to h -(m H -1).

3. After that, map z m,c k,l to a dispersion pattern π υ 0 ,υ 1 ...υ m H ×m W -1 . For each z m,c k,l , c m H ×m W dispersion patterns can be formed.

Calculate the relative frequency for each of the c m

H ×m W dispersion patterns π υ 0 ,υ 1 ...υ m H ×m W -1 : p(π υ 0 ,υ 1 ...υ m H ×m W -1 ) = #{k, l, z m,c k,l has type π υ 0 ,υ 1 ...υ m H ×m W -1 } (h -(m H -1))(w -(m W -1)) , ( 1.32) 
where

l ≤ w -(m W -1) and k ≤ h -(m H -1).
5. Finally, DispEn 2D is calculated as:

DispEn 2D (U, m, c) = - c m H ×m W π=1 p(π υ 0 ,υ 1 ...υ m H ×m W -1 ) × ln(p(π υ 0 ,υ 1 ...υ m H ×m W -1 )).
(1.33)

DispEn 2D was also tested on several synthetic images and real datasets [START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]. It illustrated successful performance, especially regarding the speed of calculations. In comparison to SampEn 2D , DispEn 2D is faster, more stable, and leads to less undefined values.

Bidimensional approximate entropy

In addition, 2D approximate entropy (ApEn 2D ) [START_REF] John | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF] was developed as a structure metric to detect some image structural details that are unrecognized by the gray scale metrics. It was applied to raw computed tomography (CT) and cone beam computed tomography (CBCT) images and compared to the 2D Laplace transformation of their corresponding raw images. ApEn 2D operates in a different way compared to SampEn 2D , and DistrEn 2D , it re-displays the image showing its structural details by defining the entropy measure around each pixel of the image. Thus, it is not actually a measure of image's irregularity.

Complexity-entropy causality plane

Complexity-entropy causality plane is a method introduced recently as a combination of the permutation entropy concept with a relative entropy concept [START_REF] Haroldo | Complexity-entropy causality plane as a complexity measure for two-dimensional patterns[END_REF]24].

Permutation entropy [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF], P ermEn 1D , is another popular metric in this field. Although this method is fast, it is too sensitive to noise and does not address the problem of equal values in embedding vectors [24]. This method relies on linking symbolic sequences to portions of the time series. This relies on the presence of local order in these portions. After that, the probability distribution of these symbolic sequences is calculated.

The nature of P ermEn 1D allowed to extend it to higher dimension data. Consider a two-dimensional array, i.e. an image, {y j i } i=1,.....nx j=1,.....,ny with size n x × n y . The bidimensional extension of P ermEn 1D , P ermEn 2D [START_REF] Haroldo | Complexity-entropy causality plane as a complexity measure for two-dimensional patterns[END_REF] is defined as follows:

1. d x × d y dimensional matrices, (s x , s y ), with d x , d y > 1 are defined as: 

(s x , s y ) →                      y sy-(dy-1) sx-(dx-1) y sy-(dy-1) sx-(dx-2) ... y sy-(dy-1) sx-1 y sy-(dy-1) sx y sy-(dy-2) sx-(dx-1) y sy-(dy-2) sx-(dx-2) ... y sy-(dy-2) sx-1 y sy-(dy-
y sy sx                      , with s x = d x , d x + 1, .....n x and s y = d y , d y + 1, .....n y .
2. Then the possible permutation is evaluated for the (n x -d x + 1)(n y -d y + 1) matrices: π = (r 0 , u 0 ), (r 1 , u 0 ), ...., (r dx-1 , u 0 ), ...., (r 0 , u dy-1 ), (r 1 , u dy-1 ), ....., (r dx-1 , u dy-1 ), of (0, 1, ....., d x d y -1) defined by :y

sy-u dy -1 sx-r dx-1 ≤ y sy-u dy -1 sx-r dx-2 ≤ ..... ≤ y sy-u dy -1 sx-r 1 ≤ y sy-u dy -1 sx-r 0 ≤ ..... ≤ y sy-u 0 sx-r dx-1 ≤ y sy-u 0 sx-r dx-2 ≤ ..... ≤ y sy-u dy -1 sx-r 1 ≤ y sy-u dy -1 sx-r 0
3. After that the system can access the (d x d y )! states. Then the probability distribution is calculated P={p(π)} as relative frequencies:

p(π) = #s x , s y |s x ≤ n x -d x and s y ≤ n y -d y + 1; (s x , s y ) (n x -d x + 1)(n y -d y + 1) (1.34)
4. See Figure 1.9 for an illustrative example. The patterns for π are ordered column by column.

Figure 1.9 -Schematic diagram for the two dimensional extension of permutation entropy. Adapted from [24].

Permutation entropy has two major drawbacks: some amplitude information are ignored and it is highly sensitive to noise [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF][START_REF] Azami | Two-dimensional dispersion entropy: An informationtheoretic method for irregularity analysis of images[END_REF]. Note that F uzEn 1D has generally a better performance in this scope.

Multiscale Bidimensional Entropy Measures

One-and two-dimensional entropy methods, such as sample entropy, are used to quantify the irregularity of signals or images at one scale. They assess repetitive patterns and return maximum values for completely random processes (e.g., white noise). However, such approaches are very sensitive to high frequency components and may fail to account for the multiple scales inherent in data [START_REF] Azami | Coarse-graining approaches in univariate multiscale sample and dispersion entropy[END_REF]. To deal with the problem, multiscale entropy-based techniques were proposed to quantify the irregularity of a signal or image over multiple scale factors to illustrate their corresponding complexity. This is achieved by evaluating the entropy measure for the original and coarse-grained versions of the data under study.

Moreover, in analyzing biological systems in specific (biomedical signals and images) it is of importance to study the overall complexity, i.e., at several scale factors, as previously addressed in [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF][START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF]. Single scale measurements could be misleading in determining the actual complexity of a system. Taking the classical example of pink and white noise, it has already been shown in several papers that the entropy value of white noise shows higher irregularity than pink noise ( 1f ) but as the evaluation is performed over several scale factors, white noise shows a decrease in irregularity with scale factor whereas pink noise shows higher entropy values with scale factors and eventually a higher complexity. This agrees with the fact that pink noise is of long term correlations whereas white noise is of short term correlations and is thus less complex. This is also reflected in the biological system's behavior where some pathologic processes have a lower complexity than healthy processes unlike what is indicated by the traditional entropy measurement on the single scale factor [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF].

Only one bidimensional entropy measure (beside our work) has been extended to its multiscale version. Multiscale bidimensional sample entropy based on two different coarsegraining methods will be explained below.

Multiscale bidimensional sample entropy M SE 2D

We start by introducing the multiscale bidimensional sample entropy, MSE 2D [START_REF] Eduardo | Two-dimensional multiscale entropy analysis: applications to image texture evaluation[END_REF]. It is a two-step procedure based on the Bidimensional Sample Entropy, SampEn 2D , detailed in section 1.4.2. For an image U of W width and H height, a coarse-graining procedure is performed. Then SampEn 2D is applied to each coarse-grained version

G (τ ) = {g (τ ) i,j }.
The whole procedure is therefore the following:

1. a non-overlapping window scans the whole original image to form the coarsegrained versions {G (τ ) } as:

g (τ ) i,j = 1 τ 2 k=iτ,l=jτ k=(i-1)τ +1,l=(j-1)τ +1 u k,l , (1.35) 
where i goes from 1 to [ H τ ] and j goes from 1 to [ W τ ]. 2. for each coarse-grained image G (τ ) , SampEn 2D (see section 1.4.2) is computed.

Modified multiscale bidimensional sample entropy M odM SE 2D

The modified multiscale bidimensional sample entropy was proposed to overcome the image size limitations when dealing with small images in specific. In fact, the coarse-graining procedure used for M SE 2D reduces the images sizes considerably. Thus, M odM SE 2D is proposed to tackle this issue.

Similar to the MSE 2D concept, M odM SE 2D is also a two step procedure in which SampEn 2D is calculated for the coarse-grained versions of an original image [START_REF] Eduardo | Two-dimensional multiscale entropy analysis: applications to image texture evaluation[END_REF]. However the coarse-grained versions are composed differently. It is defined as follows:

1. an overlapping window scans the whole original image to form the coarse-grained versions

Q (τ ) = {q (τ )
i,j } as: .36) where i goes from 1 to (H -τ + 1) and j goes from 1 to (W -τ + 1)

q (τ ) i,j = 1 τ 2 k=i+τ -1,l=j+τ -1 k=i,l=j u k,l . ( 1 
2. for each coarse-grained image Q (τ ) , SampEn 2D (see section 1.4.2) is computed.

Medical Applications

Imaging modality: dermoscopy

Dermoscopy or Epiluminescence Microscopy (ELM), is one of the well-known non-invasive techniques used for cutaneous diseases inspection and diagnosis on which most research studies are conducted. Dermoscopy is a noninvasive imaging modality that allows obtaining an in vivo evaluation of colors and microstructures of the epidermis, the dermoepidermal junction, and the papillary dermis that cannot be seen by the naked eye [START_REF] Caron M Grin | Dermoscopy: a review[END_REF][START_REF] Matthew | Techniques for a structural analysis of dermatoscopic imagery[END_REF][START_REF]Chapter 3 -Dermoscopy[END_REF][START_REF] Kittler | Diagnostic accuracy of dermoscopy[END_REF]. Figure 1.10 shows a simple illustration for the structure of a dermoscope coupled with a digital camera. Usually, gel is applied to the skin surface. The transparent spacer is placed in a firm position in contact with the skin. Moderate pressure is applied in a way to avoid having air bubbles between the transparent spacer and the skin, while at the same time, avoiding to exert a lot of pressure on the skin surface. Then, the macro converging lense and high resolution digital camera are positioned.

The use of dermoscopy in a clinical exam is an essential part, as it provides diagnostic information that are invisible to the naked eye. A dermoscope could be thought of as the dermatologist's stethoscope, as it is easy to use and carry around [START_REF] Lallas | Management rules to detect melanoma[END_REF][START_REF]Chapter 3 -Dermoscopy[END_REF]. Dermoscopy was first used for the identification of melanocytic skin lesions (nevi and melanoma), then it became used for the inspection of several other cutaneous tumors: nonmelanocytic pigmented and nonpigmented lesions. However, dermoscopy alone is not always sufficient. In fact, it has been shown that dermoscopy may lower the accuracy of diagnosis for several medical cases if handled by inexperienced dermatologists [START_REF] Binder | Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists[END_REF][START_REF] Matthew | Techniques for a structural analysis of dermatoscopic imagery[END_REF]. Also for melanoma identification, several studies emphasized that only for "experienced dermatologists" dermoscopy provides more accurate diagnosis than naked eye clinical examination. Knowing that, un-aided eye diagnosis is about 60% accurate [START_REF] Kittler | Diagnostic accuracy of dermoscopy[END_REF]. In addition, even experienced clinicians have diagnostic accuracy below 85% [START_REF] Paštar | Dermoscopy and early melanoma[END_REF]. Thus, it could be stated that the dermoscopy accuracy is directly related to the examiners' experience degree. Furthermore, a dermatologist's decision based on dermoscopy alone remains subjective; so computer-based analysis techniques would be of great importance to give objective judgment and diagnosis for the dermoscopic images and aid the medical doctors in clinical decision making. Consequently, for the dermoscopy field images we employed our developed measures.

Skin: microcirculation

Skin is the largest body organ that is the primary barrier against external agents, a thermoregulator, a platform for perceiving sensation, and an excreter for some forms of body wastes (ex. minerals and water) among other functions. To achieve some of its roles, skin has a high-vessel density structure, known as cutaneous microcirculation. This microcirculation consists of two important horizontal plexuses in the dermis [START_REF] Irwin M Braverman | The cutaneous microcirculation[END_REF][START_REF] Pires | Endothelial Function in Skin Microcirculation[END_REF]:

-the upper horizontal plexus located at 1 -1.5 mm from the skin surface (at the level of the dermal papillae), and -the lower horizontal plexus at the dermal subcutaneous junction. Referring to Figure 1.11, we can notice that the upper dermal plexus contains the capillary network and that the two aforementioned plexuses are linked by the ascending arterioles and descending venules.

Microcirculation is the key central element of the cardiovascular system. It has the role of delivering nutrients and oxygen, providing the essential fluids exchange, and getting rid of waste products between the blood circulation and body tissues. The microcirculation represents the arteries with diameter less than 150 µm, arterioles, capillaries, and venules [START_REF] Roustit | Assessment of endothelial and neurovascular function in human skin microcirculation[END_REF], please see Figure 1.12.

The arterioles are vessels with an external diameter between 17 and 26 µm. They have a smooth muscle layer that allows them to control the pressure gradient according to the tissues' metabolic demand, by their ability to adjust their diameters. Capillaries have an external diameter smaller than 12 µm. They are the structures in which the exchange of gasses, nutrients, and cellular excreta happens. They are very thin such that their walls are of 2 to 3 µm thickness to allow the flow of fluids. Venules are vessels with an external diameter between 18 and 23 µm. They are extensions of capillaries (with thicker walls) and form parallel structures to the arterioles. Moreover, venules do not have the smooth muscle layer [START_REF] Franco | Recent advances in bedside microcirculation assessment in critically ill patients[END_REF][START_REF] Roustit | Assessment of endothelial and neurovascular function in human skin microcirculation[END_REF][START_REF] Pires | Endothelial Function in Skin Microcirculation[END_REF]. For patients with critical illness, shock, and other bedridden cases, establishing "hemodynamic coherence" [START_REF] Ince | Hemodynamic coherence and the rationale for monitoring the microcirculation[END_REF] is one of the important targets for resuscitation. Besides monitoring the macrocirculatory segments (heart rate, blood pressure, etc.), assessing the microcirculatory segments should be considered to supervise the highly probable dissociation between micro-and macrocirculatory aspects, i.e. loss of hemodynamic coherence [START_REF] Hariri | Narrative review: clinical assessment of peripheral tissue perfusion in septic shock[END_REF][START_REF] Franco | Recent advances in bedside microcirculation assessment in critically ill patients[END_REF]. This fact supports the need to develop a fast and accessible method for analyzing the microcirculatory blood flow and monitoring its accordance with the global blood flow control. Simultaneously, skin is the largest organ, the most accessible in critical cases, and could provide direct access for possible microcirculatory alterations [START_REF] Hariri | Narrative review: clinical assessment of peripheral tissue perfusion in septic shock[END_REF]. Thus, it would be compelling to develop a computerized cutaneous microcirculation evaluation technique [START_REF] Hariri | Narrative review: clinical assessment of peripheral tissue perfusion in septic shock[END_REF].

The study of cutaneous microcirculation has gained increasing interest in the past few years because it was associated with a number of pathological processes [START_REF] Eriksson | Non-invasive imaging of microcirculation: a technology review[END_REF][START_REF] Humeau-Heurtier | Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends[END_REF]. Furthermore, endothelial dysfunction is progressively perceived as an early key element in pathogenesis of cardiovascular pathologic conditions such as hypertension, coronary artery condition, hypercholesterolemia etc. [START_REF] Carl | Clinical implications of endothelial dysfunction[END_REF][START_REF] Franco | Recent advances in bedside microcirculation assessment in critically ill patients[END_REF]. Therefore, the assessment of tissue microcirculation and comparing it to the macro-hemodynamic parameters is important. Although such practices are not fully created and integrated in the clinical applications yet [START_REF] Franco | Recent advances in bedside microcirculation assessment in critically ill patients[END_REF], they may become achievable in the near future as several research studies cover this topic including our recent study [START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF]. The study dealing with cutaneous microcirculation is performed in collaboration with the department of dermatology at Angers university hospital -Angers, France represented by Pr Ludovic Martin and Dr Clemence Berthin.

Pseudoxanthoma elasticum (PXE)

Despite the crucial medical research advancements, some diseases are still incurable. Pseudoxanthoma elasticum (PXE) is one of these diseases, also known as Grönblad-Strandberg syndrom. It is also known as Gronblad-Strandberg syndrome. PXE is rare, with an approximate worldwide prevalence in 1 per 25,000 -70,000 people [START_REF] Naouri | Manifestations of Pseudoxanthoma Elasticum in childhood[END_REF]. It is a hereditary disorder caused by mutations in the ABCC6 gene encoding a transporter protein. In fact, PXE is an autosomal recessive disease, which means if the parents are carriers with no apparent symptoms there is 25 % possibility that the children would have PXE; i.e. if they obtained the mutated gene from both parents, see Figure 1.13. PXE is accompanied by calcification of soft tissues and degeneration of elastic fibers [START_REF] Chassaing | Pseudoxanthoma Elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 Mutations[END_REF][START_REF] Kawashima | Dermoscopic features of Pseudoxanthoma Elasticum[END_REF]. It targets the skin, retina, and cardiovascular system. The elastic fibers in these sites degenerate and slowly become calcified (mineralized), eventually losing their elastic function [START_REF] Chassaing | Pseudoxanthoma Elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 Mutations[END_REF][START_REF] Kawashima | Dermoscopic features of Pseudoxanthoma Elasticum[END_REF][START_REF] Marconi | Pseudoxanthoma Elasticum and skin: Clinical manifestations, histopathology, pathomechanism, perspectives of treatment[END_REF][START_REF] John F Klement | Targeted ablation of the ABCC6 gene results in ectopic mineralization of connective tissues[END_REF][START_REF] Quaglino | The multifaceted complexity of genetic diseases: a lesson from pseudoxanthoma elasticum[END_REF]. PXE is known for its systemic manifestations, usually first in skin as yellow cutaneous papules of 1 -5 mm diameter on the lateral neck (see Figure 1.14) and supraclavicular regions that are generally the primary physical signs of developing PXE. These physical signs gradually extend to more distal flexural sites over several years followed by a loss of elasticity [START_REF] Kenneth | Pseudoxanthoma elasticum[END_REF][START_REF] Chassaing | Pseudoxanthoma Elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 Mutations[END_REF][START_REF] Kawashima | Dermoscopic features of Pseudoxanthoma Elasticum[END_REF][START_REF] John F Klement | Targeted ablation of the ABCC6 gene results in ectopic mineralization of connective tissues[END_REF][START_REF] Quaglino | The multifaceted complexity of genetic diseases: a lesson from pseudoxanthoma elasticum[END_REF]. The degenerative calcification of the body's elastic structures is manifested mainly in [START_REF] Kenneth | Pseudoxanthoma elasticum[END_REF][START_REF] Chassaing | Pseudoxanthoma Elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 Mutations[END_REF][START_REF] Kawashima | Dermoscopic features of Pseudoxanthoma Elasticum[END_REF][START_REF] John F Klement | Targeted ablation of the ABCC6 gene results in ectopic mineralization of connective tissues[END_REF][START_REF] Quaglino | The multifaceted complexity of genetic diseases: a lesson from pseudoxanthoma elasticum[END_REF]:

-skin's mid and deep dermis elastic fibers (see Figure 6.1 in the Annexes) especially on the neck, underarms, back of the knee, and any skin area that touches when joint bends. -the eye by lesions of the posterior segment of the eye including peau d'orange, it causes the calcification of the Bruch's membrane and subsequently cracks causing angioid streaks (see Figure 1.15). -the cardiovascular system's endocardium and arteries causing several complications leading to several cardiovascular diseases and eventually death. -No evidence for its effect on the lung's elastic tissue has been yet observed. The diagnosis of PXE relies mainly on the physical skin manifestations that usually appear during childhood or adolescence [START_REF] Naouri | Manifestations of Pseudoxanthoma Elasticum in childhood[END_REF]. These manifestations progress in an unpredictable manner during adulthood and are followed by serious ophthalmic and cardiovascular manifestations due to the degenerative transformations in the elastic tissues [START_REF] Naouri | Manifestations of Pseudoxanthoma Elasticum in childhood[END_REF][START_REF] Chassaing | Pseudoxanthoma Elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 Mutations[END_REF]. Figure 1.16 presents an illustration of the mineralisation in the connective tissues, in specific the elastic structures of several body organs. Despite the fact that there is no definite treatment for PXE yet the diagnosis in the very early stage (skin manifestations) is essential. It aids the implementation of prophylactic lifestyle, preventive diet plans, psychological guidance, and better surveillance of the possible clinical complications that would arise [START_REF] Marconi | Pseudoxanthoma Elasticum and skin: Clinical manifestations, histopathology, pathomechanism, perspectives of treatment[END_REF][START_REF] Kenneth | Pseudoxanthoma Elasticum[END_REF][START_REF] Kenneth | Pseudoxanthoma elasticum[END_REF]. Several therapeutic measures might be implemented at the early stages. These measures could at least enhance the quality of the patient's life and result in less complications during the natural clinical course of PXE.

One of the imaging modalities used for detecting PXE's primary skin symptoms is dermoscopy because papules alter the skin texture. However, dermoscopy alone is not always sufficient. In fact, it has been shown that dermoscopy may lower the accuracy of diagnosis if handled by inexperienced dermatologists [START_REF] Binder | Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists[END_REF]. Therefore, in order to reduce diagnostic errors that result from the difficulty and subjectivity of visual interpretation, and the possible variability of human perception, the development of computerized image analysis techniques is of great importance [START_REF] Matthew | Techniques for a structural analysis of dermatoscopic imagery[END_REF]. The study on PXE is performed in collaboration with the department of dermatology at Angers university hospital -Angers, France represented by Pr Ludovic Martin and Dr Clemence Berthin.

Melanoma

According to the World Health Organization, one in every three diagnosed cancer cases is a skin cancer and the incidence rate has been increasing over the past years. In cancer diagnosis, the number of melanoma (skin cancer) cases is augmenting more than any other cancer type. The real challenge is in the early detection for melanoma because it is often mistaken for the benign melanocytic nevi and cannot be always identified in dermoscopic images; even experienced clinicians have diagnostic accuracy below 85% [START_REF] Paštar | Dermoscopy and early melanoma[END_REF], see Figure 1 Dermoscopy is one of the well-known non-invasive techniques used for skin cancer diagnosis on which most research studies are conducted, please refer to section 1.6.1. However, visual diagnosis alone might be misleading and subjective even when performed by experts. Thus, dermoscopy image analysis (DIA) using computer-aided diagnosis (CAD) systems is essential to help medical doctors. Several studies proposed computer-extracted texture features for cutaneous lesions diagnosis, in specific for the most aggressive type, melanoma [START_REF] Emre | Dermoscopy image analysis: overview and future directions[END_REF][START_REF] Talavera-Martınez | Computational Texture Features of Dermoscopic Images and Their Link to the Descriptive Terminology -A Survey[END_REF][START_REF] Barata | A survey of feature extraction in dermoscopy image analysis of skin cancer[END_REF]. Melanoma is metastatic, thus, its early diagnosis and excision would definitely increase the survival rate. Some DIA methods focus only on the dermoscopic images structure/patterns [START_REF] Machado | Classification of reticular pattern and streaks in dermoscopic images based on texture analysis[END_REF][START_REF] Garnavi | Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis[END_REF], others rely on colors [START_REF] Sáez | Statistical detection of colors in dermoscopic images with a texton-based estimation of probabilities[END_REF][START_REF] Gola Isasi | Melanomas non-invasive diagnosis application based on the ABCD rule and pattern recognition image processing algorithms[END_REF][START_REF] Emre | Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification[END_REF], and certain consider both [START_REF] Emre | A methodological approach to the classification of dermoscopy images[END_REF], for more details please refer to [START_REF] Emre | Dermoscopy image analysis: overview and future directions[END_REF][START_REF] Talavera-Martınez | Computational Texture Features of Dermoscopic Images and Their Link to the Descriptive Terminology -A Survey[END_REF][START_REF] Barata | A survey of feature extraction in dermoscopy image analysis of skin cancer[END_REF]. Nevertheless, most studies propose learning-based approaches and only few, until now, suggest entropy-based measures. Consequently, in this manuscript we will be presenting entropy measures and evaluating melanoma and melanocytic nevi images in gray scale and colored dermoscopic images.

Chronic obstructive pulmonary diseases (COPD)

Chronic Obstructive Pulmonary Diseases (COPD) are a group of progressive lung diseases. The most common are emphysema and chronic bronchitis. Emphysema is manifested by the destruction of alveoli's elastic fibers which are the basic structures for gas exchange between the external environment and the blood circulation. They become severely damaged and lose their elastic properties. In chronic bronchitis, inflammation and excess mucus causes narrowing of the bronchitis (bronchoconstriction) and eventually causing airflow limitation. For illustration, please see Figure 1.18. COPD is characterized by a progressive and irreversible decline in lung function [START_REF] Møller | The effect of comorbidities on COPD assessment: a pilot study[END_REF][START_REF] Voelkel | The Spectrum of Pulmonary Disease in COPD[END_REF]. It causes shortness in breathing (dyspnea) and chronic cough with irreversible effects. In 2015, COPD affected about 174.5 million (2.4%) of the global population and resulted in 3.2 million deaths. According to the World Health Organization (WHO) it is expected that by year 2030 it will become the 4 th leading cause of death worldwide.

In addition, according to a study made on the numbers between 1990-2015, COPD is among the leading causes of death in the world already (rank 14 th ) [START_REF] Vos | Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[END_REF]. There is no treatment for COPD yet, however early diagnosis and potential treatment measures can help ease the symptoms, lower the chance of complications, and generally improve quality of life [START_REF] Møller | The effect of comorbidities on COPD assessment: a pilot study[END_REF].

Lung diseases are one of the main causes of death worldwide. Identifying their phenotypes and staging their severity can be obtained through computed tomography (CT) images of the pathological site. However, CT can lead to a huge amount of data (many 2D-scans for one region are studied to represent its volume) that can be difficult to analyze and interpret.

In our work we propose a new entropy-based measure, termed pseudo-tri dimensional multiscale fuzzy entropy, to quantify the irregularity of high resolution CT scans (HRCT). This work is performed in collaboration with Dr Lars Pilegaard Thomsen at the Aalborg university-Denmark for a presentation in an invited session entitled "Identification of Cardiopulmonary Function" at IEEE EMBC 2019. Data are obtained from University Hospital of Aalborg-Department of Respiratory Diseases (Aalborg, Denmark). Data from three groups of subjects are processed: one normal group and two other groups with chronic obstructive pulmonary diseases characterized by a progressive and permanent decline in lung function. The results are interesting for HRCT scan slices, allowing us to further extend this study to a larger number of patients in the future. Also, a very recent study on lung CT images of COPD patients shows texture analysis as a promising quantitative measure [START_REF] Shi | Prediction of progression in idiopathic pulmonary fibrosis using CT scans at baseline: A quantum particle swarm optimization-Random forest approach[END_REF]. Thus, the scope of our study comes to be innovative and encouraging.

Idiopathic pulmonary fibrosis (IPF)

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and destructive lung disease with irreversible effect. It has no known cure yet, but a lung transplant might be an option in some cases. IPF causes shortness in breath and chronic dry cough and symptoms that worsen with time.

IPF is a similar disease to COPD. The main difference between IPF and COPD is the kind of physical lung damage that each of them causes. IPF results in scarring of lungs that causes the alveolar sacs to thicken and the lungs become stiff. Consequently, this reduces the gas exchange and oxygen intake specifically; see Figure 1.19.

As we can notice that for the normal lung, Figure 1.19 (A), a capillary network sur- rounds the alveoli to ensure the gas passage into the blood stream. However, for lungs with IPF, Figure 1.19 (B), scars known as fibrosis are formed between the alveoli, eventually decreasing drastically the ability for gas exchange. This causes shortage in oxygen intake, progressive dyspnea, and chronic cough.

The diagnosis of IPF usually relies on HRCT scans or lung biopsy. In HRCT, medical doctors try to identify the fibrosis or lung inflammation and often localize a pattern known as "honey comb". In a lung biopsy, they scan the tissue for signs of changes or scars, in specific patterns of usual interstitial pneumonitis (UIP) [136,[START_REF] Thomas | Idiopathic pulmonary fibrosis[END_REF][START_REF] Talmadge | Idiopathic pulmonary fibrosis[END_REF][START_REF] Lynch | Idiopathic pulmonary fibrosis[END_REF][START_REF] Shi | Prediction of progression in idiopathic pulmonary fibrosis using CT scans at baseline: A quantum particle swarm optimization-Random forest approach[END_REF].

In this manuscript, we propose an entropy measure and apply it to volumetric HRCT scans for healthy individuals and IPF patients to characterize the entropy behavior and irregularity of both cases. This work is performed in collaboration with University of Coimbra-Portugal represented by Pr João Cardoso, Dr Pedro G. Vaz, and Andreia Sofia F. Gaudêncio, and the competence center for rare pulmonary diseases in the department of Respiratory Medicine at Rennes University Hospital-France represented by Dr Guillaume Mahé and Dr Mathieu Lederlin. The main goal is to differentiate the two groups successfully using our proposed entropy measure. This could be a useful tool in the evaluation of HRCT of patients with IPF for early detection and quantification of the UIP

Uterine fibroids

Uterine fibroids are benign growth in the uterus muscle. One of the possible treatments for uterine fibroids is the non-surgical uterine artery embolization (UAE). This procedure involves injecting embolic agents into the blood vessels that supply the uterus. Thus, the blood flow is cut off the fibroids so that they become smaller and then destroyed, see Figure 1.20. This leads to shrinking fibroids and easing their symptoms in a minimally invasive manner.

In our study we also performed the texture analysis of uterine fibroids on MRI scans before and after arterial embolization. There is no software for performing this task yet. However, recent promising studies are still investigating the possibility of depending on texture analysis.

Figure 1.20 -The embolic agents which are very small particles are injected into the arteries that supply the uterus using a small catheter. These agents stay in the arteries supplying the fibroids and cut off the blood flow reaching them. Eventually, the fibroids shrink and die. Adapted from [START_REF]Uterine embolization[END_REF].

Several recent studies are encouraging radiomic analysis and feature extraction methods for MRI images of prostate cancer, uterine sarcoma, and rectal cancer among others [START_REF] Ueno | Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification-a preliminary analysis[END_REF][START_REF] Horvat | MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy[END_REF][START_REF] Wibmer | Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[END_REF][START_REF] Xie | Preliminary utilization of radiomics in differentiating uterine sarcoma from atypical leiomyoma: Comparison on diagnostic efficacy of MRI features and radiomic features[END_REF][START_REF] Lakhman | Differentiation of uterine leiomyosarcoma from atypical leiomyoma: diagnostic accuracy of qualitative MR imaging features and feasibility of texture analysis[END_REF] and they showed promising possible future outcomes. That is why in this manuscript, we present a preliminary work for analyzing MRI uterine images of uterine fibroids before and after embolization in two time intervals (after 10 days and after 6 months from embolization). This study is performed in collaboration with Brest University Hospital-France represented by Pr Michel Nonent and Sonia Saib, and the Lebanese University-Lebanon represented by Pr Jamal Charara and Rakelle Haidar.

COVID-19

The first officially reported human case of COVID-19 case was dated back December 2019 referring to WHO reports on the situation. Soon after that, the severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, virus causing COVID-19 showed a huge spread worldwide [START_REF] Chan | A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster[END_REF][START_REF] Ye | Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review[END_REF][START_REF] Bernheim | Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection[END_REF]. SARS-CoV-2 is the seventh known type coronavirus to infect human beings [START_REF] Bernheim | Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection[END_REF] and the one with the widest spread.

The SARS-CoV-2 infection leads to pulmonary interstitial damages, which may cause severe pneumonia, acute respiratory distress syndrome, multiple organ failure, and death [START_REF] Ye | Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review[END_REF][START_REF] Bernheim | Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection[END_REF][START_REF] Jalaber | Chest CT in COVID-19 pneumonia: a review of current knowledge[END_REF][START_REF] Fang | Sensitivity of chest CT for COVID-19: comparison to RT-PCR[END_REF][START_REF] Vincent | Escalating infection control response to the rapidly evolving epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong[END_REF].

According to [START_REF] Chen | Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[END_REF], with a study done on 99 patients, most of them showed fever (83%) cough (82%), and considerable percentage showed shortness of breath (31%). Adapted from [START_REF] Ye | Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review[END_REF].

COVID-19 is perhaps the most famous disease nowadays. Everyone is talking about it, its causes, its effects, and its long term consequences. This pandemic spread made the people of almost the whole planet change their lifestyles and adapt to the new circumstances. In our turn, we performed a study on CT scans for clinically confirmed COVID-19 patients and presented the results analysis. This study is performed in collaboration with University of Coimbra-Portugal represented by Pr João Cardoso, Dr Pedro G. Vaz, and Andreia Sofia F. Gaudêncio, and the competence center for rare pulmonary diseases in the department of Respiratory Medicine at Rennes University Hospital-France represented by Dr Guillaume Mahé and Dr Mathieu Lederlin.

Conclusion

In this chapter we presented the most common texture analysis methods and the important role of texture analysis in several fields. Then, we explained one of the recently introduced methods that is developing entropy measures based on information theory concept. The latter is our proposed basic concept for texture analysis throughout this manuscript. After that, we introduced the medical cases and types of images that we will handle in Chapter 5. This includes: PXE, melanoma, cutaneous microcirculation structure, COPD, IPF, UAE, and COVID-19.

Chapter 2

METHODOLOGY: DEVELOPED BIDIMENSIONAL ENTROPY MEASURES

Introduction

F uzEn 2D is based on the unidimensional Fuzzy Entropy (F uzEn 1D ) that is a result of integrating fuzzy logic with the research of complex systems and nonlinear dynamics. It exploits the concept of fuzzy membership function to study the irregularity of dynamic systems. F uzEn 1D was also used to provide a noise floor for denoising signals [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF][START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF][START_REF] Xie | Fuzzy entropy and its application for enhanced subspace filtering[END_REF]. Another F uzEn 1D application is epileptic seizures detection and classification [START_REF] Xiang | The detection of epileptic seizure signals based on fuzzy entropy[END_REF].

Consequently, due to the importance of studying images irregularity, the advantages of F uzEn 1D over other 1D irregularity measures [START_REF] Liu | Analysis of heart rate variability using fuzzy measure entropy[END_REF][START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF], and several tests that we performed, we decided to introduce the 2D version of the fuzzy entropy technique, F uzEn 2D , as a measure of images irregularity (based on fuzzy logic), section 2.2. We also propose its multiscale extension, M SF 2D , in section 2.3. After that, we implement M SF 2D to come up with the pseudo-multiscale fuzzy entropy 3D, pM F uzEn 3D (see section 3.2).

Moreover, due to the encouraging results for gray scale images in the bidimensional application, we propose several fuzzy-entropy-based measures to analyze colored textures: the single-channel approach, F uzEnC 2D (see section 2.4.1), the multi-channel approach, F uzEnV 2D (see section 2.4.2), and the modified multi-channel approach, F uzEnM 2D (see section 2.4.3).

Finally, we establish the tridimensional entropy versions of F uzEn 2D , tridimensional fuzzy entropy measure F uzEn 3D and its multiscale version M SF 3D , in the following chapter, sections 3.3 and 3.4.

Bidimensional Fuzzy Entropy

Due to the advantages of F uzEn 1D over other unidimensional entropy measures [START_REF] Liu | Analysis of heart rate variability using fuzzy measure entropy[END_REF][START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF], and the importance of having image irregularity and complexity measures, we introduce F uzEn 2D . Our F uzEn 2D measure maintains the original F uzEn 1D properties and extends its application to images. F uzEn 2D is defined as the negative natural logarithm of the conditional probability that two patterns similar for their corresponding m × m points will remain similar when the (m + 1) × (m + 1) points are considered. Thus, images with repeating-periodic structures (regular patterns) would hold a low entropy value. On the contrary, images with non-repeating structures (irregular unpredictable patterns) would hold a high entropy value. The membership degree µ of an element x in a set is expressed by a continuous graduated similarity classifier which is an exponential function. This exponential function associates each element with a value of membership between 0 and 1. The closer the exponential function's value to unity is, the higher the membership degree of the element in the set will be. In fuzzy entropy, this concept is imported using a family of exponential functions exp(-(d m ij ) n /r) to describe the degree of similarity between vectors based on their shapes [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF].

Definition of F uzEn 2D

Let us consider a standardized image U with width W and height H, see Figure 2.1. Define X m i,j as the m-length square window or pattern of origin u(i, j). X m i,j represents the group of pixels in the image U of indices ranging from line i to i + m -1 and from column j to j + m -1 as follows:

X m i,j =         u i,j ... u i,j+m-1 u i+1,j ... u i+1,j+m-1 ... ... ... u i+m-1,j ... u i+m-1,j+m-1         . (2.1)
Similarly, X m+1 i,j

is defined as the (m + 1) square window. Let N m = (W -m)(H -m) be the total number of square windows in U that can be generated for both the m=[m,m] and (m+1)=[ m + 1, m + 1] sizes. The last m-length line and m-length column of the image are excluded to ensure that X m i,j and X m+1 i,j

are defined for all indices 1 ≤ i ≤ H -m and 1 ≤ j ≤ W -m. For X m i,j and its neighboring windows X m a,b , the distance function 

d m ij,ab = d[X m i,j , X m a,b ] = max k,l∈(0,m-1) (|u(i + k, j + l) -u(a + k, b + l)|). (2.2)
Herein, we did not remove the local mean of the compared windows X m i,j before obtaining the distance function as Chen et al. did for sequences [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF]. Removing the local mean accounts only for local characteristics of the studied sequence, unlike sample and approximate entropy measures that consider the sequence's global characteristics [START_REF] Azami | Fuzzy entropy metrics for the analysis of biomedical signals: assessment and comparison[END_REF]. Thus, we suggest studying the global characteristics for images as well and using that in our following applications. However, we introduce the local F uzEn 2D algorithm, F uzEnL 2D , in the next section (see section 2.2.2). In addition, F uzEn 2D avoids some unnecessary similarity considerations that could be caused by the local mean removal. Some studies (e.g., Liu et al. [START_REF] Liu | Analysis of heart rate variability using fuzzy measure entropy[END_REF]) proposed the calculation of F uzEn 1D using the local and global characteristics of a signal. Please see Figure 2.2 as an illustration for the F uzEn 2D algorithm.

The similarity degree D m ij,ab of X m i,j with its neighboring patterns X m a,b is defined by a (2.3)

Then, the similarity degree of each pattern is averaged to obtain:

Φ m i,j (n, r) = 1 N m -1 a=H-m,b=W -m a=1,b=1 D m ij,ab , (2.4) 
with (a, b) = (i, j), to construct:

Φ m (n, r) = 1 N m i=H-m,j=W -m i=1,j=1
Φ m i,j (n, r).

(2.5)

Similarly for m + 1, to obtain Φ m+1 (n, r). Finally, bidimensional fuzzy entropy of the image U is:

F uzEn 2D (U, m, n, r) = ln Φ m (n, r) Φ m+1 (n, r) . (2.6)
For most F uzEn 2D tests we choose r = 0.25 which is within the range recommended by some previous studies on 1D [START_REF] Cao | Characterization of complexity in the electroencephalograph activity of Alzheimer's Disease based on fuzzy entropy[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF][START_REF] Xie | Cross-fuzzy entropy: a new method to test pattern synchrony of bivariate time series[END_REF][START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF], n = 2, and we study the sensitivity of

F uzEn 2D to different embedding dimension m × m values.

Definitions of F uzEnL 2D and F uzEnGL 2D

We also developed the local version of F uzEn 2D , F uzEnL 2D , that considers the local characteristics of the image's patterns. Even if this measure finds less application for our medical images we present in what follows the equations behind its algorithm and few tests in Chapter 4. Finally, we will present F uzEnGL 2D , that considers both the local and global characteristics of the studied images.

In a similar concept to the preceding algorithm, consider a standardized image U having W width and H height. Define X m i,j as the m × m square window of origin u(i, j) that is generalized by removing the the window's baseline; i.e. removing {u

0 (i, j) = 1 m×m m-1 I=0 m-1 J=0 u i+I,j+J }. Thus, X m i,j for F uzEnL 2D
is the group of pixels in the image U defined as follows:

X m i,j =         u i,j ... u i,j+m-1 u i+1,j ... u i+1,j+m-1 ... ... ... u i+m-1,j ... u i+m-1,j+m-1         -u 0 (i, j).
(2.7)

Similarly, X m+1 i,j is defined for m+1×m+1 points. Let N m = (W -m)×(H -m) be the total number of square windows in U that could be generated for both m × m and (m + 1) × (m + 1) sizes. We define the distance function d m ij,ab between X m i,j and its neighboring windows X m a,b as the maximum absolute difference between their corresponding scalar components (with a from 1 to H -m and b from 1 to W -m having (a, b) = (i, j)):

d m ij,ab = d[X m i,j , X m a,b ] = max k,l∈(0,m-1) (|(u(i + k, j + l) -u 0 (i, j)) -(u(a + k, b + l) -u 0 (a, b))|).
(2.8)

The similarity degree D m ij,ab of X m i,j with its neighboring patterns X m a,b is defined by a fuzzy function µ(d m ij,ab , n, r) as:

D m ij,ab (n, r) = µ(d m ij,ab , n, r) = exp(-(d m ij,ab ) n /r).
(2.9)

Afterwards, the average of the similarity degree of each pattern is obtained by:

Φ m i,j (n, r) = 1 N m -1 a=H-m,b=W -m a=1,b=1 D m ij,ab , (2.10) 
with (a, b) = (i, j), to construct:

Φ m (n, r) = 1 N m i=H-m,j=W -m i=1,j=1
Φ m i,j (n, r).

(2.11)

Similarly for m + 1 to obtain Φ m+1 i,j (n, r) and Φ m+1 (n, r). Finally, the bidimensional local fuzzy entropy of image U is defined as:

F uzEnL 2D (m, n, r, U) = ln Φ m (n, r) Φ m+1 (n, r) .
(2.12)

Moreover, we also established the bidimensional version of Liu et al. [START_REF] Liu | Analysis of heart rate variability using fuzzy measure entropy[END_REF] fuzzy measure entropy, F uzEnGL 2D , that considers both the global and local characteristics of the studied images. F uzEnGL 2D consists of summing the local fuzzy entropy value and the global value obtained by F uzEnL 2D and F uzEn 2D , respectively.

F uzEnGL 2D = F uzEn 2D + F uzEnL 2D .
(2.13)

For our following developed measures, F uzEn 2D concept will be employed due to its significance, less computation cost, and the fact that it considers the global characteristics of an image.

Multiscale Bidimensional Fuzzy Entropy

The complexity-based approaches include two main steps: (1) a coarse-graining process: removing high-frequency signal or image components with a digital low-pass filter and downsampling the filtered data by scale factor τ ; and (2) the calculation of an entropy value for each coarse-grained data at each scale τ [START_REF] Azami | Coarse-graining approaches in univariate multiscale sample and dispersion entropy[END_REF]. Nevertheless, most entropy measures were used to deal with unidimensional signals until recently. For the bidimensional multiscale approach (MSE 2D ), a 2D extension of the 1D coarse-graining process is used to study the complexity of images, i.e., over several scale factors τ [START_REF] Humeau-Heurtier | Bi-dimensional multiscale entropy: relation with discrete Fourier transform and biomedical application[END_REF]. The interpretation of its results is as follows: if there is no noticeable change in entropy values over the first several scale factors, this means that the image contains complex structures across multiple scale factors (complex image). However, if there is a considerable decrease in entropy values over scale factors, the image can be irregular but not structurally complex. In fact, in the complexity-based methods, high to low frequency-components (from low to high scale factors) are considered, whereas a single-scale entropy technique tends to deal with higher frequency components [START_REF] Azami | Coarse-graining approaches in univariate multiscale sample and dispersion entropy[END_REF]. Only SampEn 2D was extended to its multiscale version until now, so herein we introduce our proposed multiscale bidimensional fuzzy entropy using two different coarse-graining versions.

After illustrating the advantages of fuzzy entropy measures on the 1D and 2D levels, we propose herein two methods based on the fuzzy bidimensional approach, the multiscale bidimensional fuzzy entropy, M SF 2D , and the modified multiscale bidimensional fuzzy entropy M M SF 2D . M SF 2D and M M SF 2D are based on Costa's [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF] and Wu's [START_REF] Wu | Modified multiscale entropy for short-term time series analysis[END_REF] methods, respectively, for the coarse-graining procedure. Let us consider an image U={u i,j } with width W and height H. M SF 2D and M M SF 2D algorithms are explained in the following sections.

Multiscale bidimensional fuzzy entropy M SF 2D

M SF 2D is defined as a two-step procedure explained below. i,j }, with 1 ≤ i ≤ (H -τ + 1) and 1 ≤ j ≤ (W -τ + 1), given a scale factor τ are defined as:

y (τ ) i,j = 1 τ 2 a=i+τ -1,b=j+τ -1 a=i,b=j u a,b .
(2.14)

2. F uzEn 2D is applied to each coarse-grained image. 

M SF 2D = {F uzEn 2D (m, n, r, Y (τ ) )} (2.15)

Modified multiscale bidimensional fuzzy entropy M M SF 2D

M M SF 2D is defined as a two-step procedure similar to M SF 2D . However, the coarsegraining procedure is different from the latter and is based on the work performed by Wu et al. [START_REF] Wu | Modified multiscale entropy for short-term time series analysis[END_REF] for the 1D multiscaling. M M SF 2D is calculated as follows:

1. An overlapping 2D window scans the whole image and the pixels of each window are averaged. The obtained averaged values form the coarse-grained images Z (τ ) , which are not subsets of the original image. Alternatively, they carry information about the whole original image.

Z (τ ) = {z (τ )
i,j }, with 1 ≤ i ≤ H τ and 1 ≤ j ≤ W τ , given a scale factor τ are defined as:

z (τ ) i,j = 1 τ 2 a=iτ,b=jτ a=(i-1)τ +1,b=(j-1)τ +1 u a,b .
(2.16)

2. F uzEn 2D is applied to each coarse-grained image.

M M SF 2D = {F uzEn 2D (m, n, r, Z (τ ) )} (2.17)

Colored Fuzzy Entropy Measures

Only few studies proposed bi-dimensional entropy-based measures for color image textures [START_REF] Fernando | Multidimensional and fuzzy sample entropy (SampEnMF) for quantifying H&E histological images of colorectal cancer[END_REF] including two recent publications by our team [START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF][START_REF] Sofia | Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images[END_REF]. Nevertheless, color and texture are probably the most important components of visual features. Many biomedical images are color-textured: dermoscopy images, histological images, endoscopy data, fundus and retinal images, among others. Most published studies investigate the texture features for gray images only.

At first, we developed bidimensional fuzzy entropy, F uzEn 2D and its multiscale extension M SF 2D [START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF]. These entropy measures revealed interesting results for some dermoscopic images but were limited to gray scale images. Therefore, based on F uzEn 2D , we propose two approaches to deal with colored images: the single-channel bidimensional fuzzy entropy, F uzEnC 2D [START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF][START_REF] Sofia | Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images[END_REF], which considers the characteristics of each channel independently, and the multi-channel bidimensional fuzzy entropy, F uzEnV 2D , which takes into consideration the inter-channel characteristics (presented in the section 2.4.2). After that we present the modified colored bidimensional fuzzy entropy, F uzEnM 2D , see section 2.4.3. Our measures are developed for images composed of three color spaces. They could be easily adapted in our future work for multi-spectral applications as well.

For a colored image U of W width, H height, and K channels (W × H × K pixels) the initial parameters: tolerance level r, fuzzy power n, and embedding dimension m are first set (see below). The algorithms to compute F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D are presented in the following sections.

Single-channel approach F uzEnC 2D

U is separated into its corresponding color channels K1, K2, and K3, as U K1 , U K2 , and U K3 , respectively (see Figure 2.4 (a)). For each channel composed of u K (i, j) elements, X m i,j,K is designated as the m × m square window:

        u K (i, j) ... u K (i, j + m -1) u K (i + 1, j) ... u K (i + 1, j + m -1) ... ... ... u K (i + m -1, j) ... u K (i + m -1, j + m -1)         , ( 2.18) 
with K = K1, K2, or K3. The (m + 1) × (m + 1) square window, X m+1 i,j,K is defined in the same way. In each of U K1 , U K2 , and U K3 , the total number of defined square windows for both m and m+1 sizes is Based on the original fuzzy entropy, F uzEn 1D , definition [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF], a distance function d m ij,ab,K between X m i,j,K and its neighboring windows X m a,b,K is defined as the maximum absolute difference of their corresponding scalar components. Please also see Figure 2.5 as an illustration for the F uzEnC 2D algorithm.

N m = (W -m)(H -m).
We compose d m ij,ab,K as follows:

d m ij,ab,K = d[X m i,j,K , X m a,b,K ] = max s,t∈(0,m-1) (|u K (i + s, j + t) -u K (a + s, b + t)|), (2.19) 
with a ranging from 1 to H -m and b ranging from 1 to W -m. The similarity degree D m ij,ab,K of X m i,j,K with its neighboring patterns X m a,b,K is defined by a continuous fuzzy function µ(d m ij,ab,K , n, r):

D m ij,ab,K (n, r) = µ(d m ij,ab,K , n, r) = exp(-(d m ij,ab,K ) n /r).
(2.20) Then, the similarity degree of each X m i,j,K is averaged to obtain:

Φ m i,j,K (n, r) = 1 N m -1 a=H-m,b=W -m a=1,b=1 D m ij,ab,K , (2.21) 
with (a, b) = (i, j), to construct:

Φ m K (n, r) = 1 N m i=H-m,j=W -m i=1,j=1 Φ m i,j,K (n, r). (2.22)
Similarly, for (m + 1) × (m + 1) patterns to obtain Φ m+1 K (n, r). Consequently, F uzEn 2D of each channel is calculated as:

F uzEnC K2D (m, n, r, U K ) = ln Φ m K (n, r) Φ m+1 K (n, r) . (2.23)
Finally, F uzEnC 2D is defined in each channel as the natural logarithm of the conditional probability that similar patterns with m × m pixels would remain similar for the next (m + 1) × (m + 1) pixels:

F uzEnC 2D (m, n, r, U) = [F uzEnC K1,2D , F uzEnC K2,2D , F uzEnC K3,2D ]. (2.24)
For better illustration, we show in Figure 2.4 an example for F uzEnC 2D of an RGB color space image for an embedding dimension of m= [START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]; i.e. m × m pixels for each channel. This single-channel approach treats each channel independently. It has the advantage of allowing us to selectively study certain channels which is of special importance when it comes to images in different color spaces and natures (intensity, color, and texture). In our study we used n = 2. Thus, the similarity degree is expressed by a Gaussian function exp(-(d m ij,ab,K ) 2 /r).

Multi-channel approach F uzEnV 2D

For image U composed of u i,j,k voxels,

X m i,j,k is defined as the m × m × m cube. X m i,j,k
represents the group of voxels in the image U of indices from line i to i + m -1, column j to j + m -1 and the depth k to k + m -1 as follows:

u i,j,k+m-1 • • • u i,j+m-1,k+m-1 . . . • • • . . . u i+m-1,j,k+m-1 • • • u i+m-1,j+m-1,k+m-1 • • • • • • • • • • • • • • • . . . . . . . . . u ,j,k+1 • • • • • • u ,j,k+1 • • • • • • • • • u i,j,k • • • u i,j+m-1,k . . . . . . . . . u i+m-1,j,k • • • u i+m-1,j+m-1,k (2.25)
Similarly, X m+1 i,j,k is defined as the (m + 1) For X m i,j,k and its neighboring cubes X m a,b,c , the distance function d m ijk,abc between them is defined as the maximum absolute difference of their corresponding scalar components, knowing that a, b, and c range from 1 to H -m, W -m, and K -m, respectively. Having (a, b, c) = (i, j, k), the distance function is depicted as follows:

× (m + 1) × (m + 1) cube. Let N m = (W -m)(H -m)(K -m)
d m ijk,abc = d[X m i,j,k , X m a,b,c ] = max e,f,g∈(0,m-1) (|u(i+e, j +f, k +g)-u(a+e, b+f, c+g)|). (2.26)
The similarity degree D m ijk,abc of X m i,j,k with its neighboring cubes X m a,b,c is defined by a fuzzy function µ(d m ijk,abc , n, r):

D m ijk,abc (n, r) = µ(d m ijk,abc , n, r) = exp(-(d m ijk,abc ) n /r). (2.27)
Then, the similarity degree of each cube is averaged to obtain:

Φ m i,j,k (n, r) = 1 N m -1 a=H-m,b=W -m,c=K-m a=1,b=1,c=1 D m ijk,abc , (2.28) 
with (a, b, c) = (i, j, k), to construct:

Φ m (n, r) = 1 N m i=H-m,j=W -m,k=K-m i=1,j=1,k=1 Φ m i,j,k (n, r). (2.29)
Similarly, for (m + 1) × (m + 1) × (m + 1) size cubes, to obtain Φ m+1 (n, r). Finally, the multi-channel bidimensional fuzzy entropy of the colored image U is defined as the natural logarithm of the conditional probability that cubes similar for their m × m × m points would remain similar for their (m + 1) × (m + 1) × (m + 1) points:

F uzEnV 2D (m, n, r, U) = ln Φ m (n, r) Φ m+1 (n, r) .
(2.30)

For better illustration, we show in Figure 2.6 an example for F uzEnV 2D of an RGB color space image for an embedding dimension of m= [START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]. The multi-channel approach has the advantage of extracting inter-channel features. However, we limit our study herein to 3-channel colored images. Thus, the embedding dimension m values could be equal to [1, 1, 1] or [2, 2, 2]; i.e. moving cubic template of 1×1×1 or 2×2×2 voxels for m, to avoid exceeding the maximum possible 3×3×3 voxels cubes for the m+1 calculations. Herein, n is taken to be 2 ( Gaussian function, exp(-(d m ijk,abc ) 2 /r)).

Modified multi-channel approach F uzEnM 2D

F uzEnV 2D gave very promising results and proved proper assessment for colored texture images. Based on its encouraging results and the fact that its embedding dimension window size was limited to m= [1, 1, 1] and m= [2, 2, 2], we introduce herein a modified colored multi channel approach that can take up to any m value. This method is similar to F uzEnV 2D except for the fact that the embedding dimension is a cuboid of m × m × 3 voxels for F uzEnM 2D .

For image U composed of u i,j,k voxels, X m i,j,k is defined as the m × m × 3 cuboid. X m i,j,k represents the group of voxels in the image U of indices from line i to i + m -1, column j to j + m -1 and the depth of K-channels as follows:

u i,j,3 • • • u i,j+m-1,3 . . . • • • . . . u i+m-1,j,3 • • • u i+m-1,j+m-1,3 • • • • • • • • • . . . . . . . . . • • • • • • • • • • • • • • • • • • • • • u i,j,1 • • • u i,j+m-1,1 . . . . . . . . . u i+m-1,j,1 • • • u i+m-1,j+m-1,1 (2.31)
Similarly, X m+1 i,j,k is defined as the (m+1)×(m+1)×3 cuboid. Let N m = (W -m)(H-m) be the total number of cuboids that can be generated from U for both m and m+1 sizes. Sizes m and m+1 stand for [m, m, 3] and [m + 1, m + 1, 3] that are made up of m × m × 3 and (m + 1) × (m + 1) × 3 voxels, respectively.

For X m i,j,k and its neighboring cuboids X m a,b,c , the distance function d m ijk,abc between them is defined as the maximum absolute difference of their corresponding scalar components, knowing that a and b range from 1 to H -m and W -m, respectively, whereas c is 1.

Having (a, b, c) = (i, j, k), the distance function is depicted as follows:

d m ijk,abc = d[X m i,j,k , X m a,b,c ] = max e,f ∈(0,m-1)g∈(0,2) (|u(i + e, j + f, k + g) -u(a + e, b + f, c + g)|).
(2.32)

The similarity degree D m ijk,abc of X m i,j,k with its neighboring cuboids X m a,b,c is defined by a fuzzy function µ(d m ijk,abc , n, r):

D m ijk,abc (n, r) = µ(d m ijk,abc , n, r) = exp(-(d m ijk,abc ) n /r). (2.33)
Then, the similarity degree of each cuboid is averaged to obtain:

Φ m i,j,k (n, r) = 1 N m -1 a=H-m,b=W -m,c=K-m a=1,b=1,c=1 D m ijk,abc , (2.34) 
with (a, b, c) = (i, j, k), to construct:

Φ m (n, r) = 1 N m i=H-m,j=W -m,k=K-m i=1,j=1,k=1
Φ m i,j,k (n, r).

(2.35)

Similarly, for (m + 1) × (m + 1) × 3 cuboids, to obtain Φ m+1 (n, r). Finally, multi-channel bidimensional fuzzy entropy of the colored image U is defined as the natural logarithm of the conditional probability that cuboids similar for their m × m × 3 voxels would remain similar for their (m + 1) × (m + 1) × 3 voxels:

F uzEnM 2D (m, n, r, U) = ln Φ m (n, r) Φ m+1 (n, r) . ( 2 

.36)

For better illustration, we show in Figure 2.7 an example for F uzEnM 2D of an RGB color space image for an embedding dimension of m= [START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]3]; i.e. moving m sized cuboid is 2 × 2 × 3. F uzEnM 2D has the advantage of extracting inter-channel features and always considering all the color channels of texture images. However, as mentioned previously, we limit our study herein to 3-channel colored images which could be adapted to higher number as well. Herein, n is taken to be 2 (Gaussian function, exp(-(d m ijk,abc ) 2 /r)). 

Conclusion

In this chapter we introduced our F uzEn 2D and its multiscale version to study the texture images' irregularity and complexity. After that we define the proposed colored approaches based on F uzEn 2D . We present the single-channel approach F uzEnC 2D , that is a direct extension of F uzEn 2D . Then, the multi-channel approach for colored images F uzEnV 2D which is inspired by the volumetric concept, yet limited to embedding dimension m= [START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF][START_REF] Song | Spatially weighted order binary pattern for color texture classification[END_REF]. Finally, the modified multi-channel colored approach F uzEnM 2D as an enhancement for F uzEnV 2D .

Chapter 3

METHODOLOGY: DEVELOPED TRIDIMENSIONAL ENTROPY MEASURES

Tridimensional Entropy Measures

The bidimensional entropy measures that we developed led to promising results for several kinds of medical applications. This is why we proposed to developed the tridimensional forms for some of them. These tridimensional versions study volumes in a similar way to images. However, they deal with cubes of data instead of 2D patterns. We applied these tridimensional entropy measures to CT and HRCT scans, as well as to MRI scans. They could be also employed for any other type of tridimensional data. Studying 3D volumes provides additional information-content to be analyzed and extends the possible application of entropy measures to almost all types of medical images so far. As mentioned previously, computer aided diagnosis methods are necessary for faster, more objective, and more precise medical decision making.

Excluding our work, there is no developed entropy measure to evaluate volumes, following the original entropy measures definitions as irregularity and complexity quantifiers yet. Nevertheless, ApEn 3D was established by [START_REF] Moore | The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images[END_REF][START_REF] Marchant | Novel 3D Approximate Entropy parameter for Quality Assessment of CT/CBCT Images[END_REF][START_REF] Marchant | Quantifying structure regularity in fluorescence microscopy cell images using a novel multi-dimensional approximate entropy metric[END_REF] based on its original definition proposed by Pincus et al. [START_REF] Steven | Approximate entropy: a regularity measure for fetal heart rate analysis[END_REF] for signals. Nonetheless, unlike ApEn 1D , ApEn 3D does not study the irregularity of the whole volume. It calculates the local entropy values for small cubes inside the studied volume and re-displays the obtained values as the new volume to be analyzed. Thus, it is an entropy measure-inspired study but not actually an entropy method for volumes that reflects the irregularity: it provides new images to be analyzed and not actual features.

Pseudo-tridimensional Multiscale Fuzzy Entropy

Measure pM F uzEn 3D

We propose first, a pseudo-tridimensional multiscale fuzzy entropy measure (pM F uzEn 3D ) to process computed tomography (CT) scan volumes based on our developed M SF 2D . pM F uzEn 3D consists in computing F uzEn 2D for each scan at several scale factors and to gather all the entropy measures on the same plot. Consider a volume composed of several scans S = {S1, S2, ...., Sn}. pM F uzEn 3D is computed as:

pM F uzEn 3D (m, n, r, S, τ ) =         M SF 2D (S1) M SF 2D (S2) .... M SF 2D (Sn)         =         {F uzEn 2D (m, n, r, S1 (1) )} {F uzEn 2D (m, n, r, S2 (2) )} .... {F uzEn 2D (m, n, r, Sn (n) )}         (3.1)
We studied high resolution CT scans of patients with chronic obstructive pulmonary diseases (COPD) using pM F uzEn 3D . The results and procedure will be detailed and discussed in Chapter 5 section 5.5. This study inspired our following work on actual volumetric quantification for data. 

Tridimensional Fuzzy Entropy FuzEn 3D

After developing the F uzEn 2D for studying image textures, we propose the tridimensional fuzzy entropy measure, F uzEn 3D , to study volumes using the information theory concept and fuzzy function. Following its bidimensional definition, F uzEn 3D studies the irregularity in volumes.

F uzEn 3D is the natural negative logarithm of the conditional probability that two cubes within a volume that are similar for their corresponding m × m × m voxels (m = [m,m,m]), will remain similar for (m + 1) × (m + 1) × (m + 1) voxels. F uzEn 3D also uses the concept of membership degree represented by a continuous function. It associates each element with a value of membership between 0 and 1 to express the cubes' membership degree. The more the value approaches unity, the higher the degree of membership is. 

F uzEn 3D definition

Let us consider a volume V = {v i,j,k } of dimensions W × L × H with W width, L length, and H height. The indices i, j, and k could go from 1 to W , 1 to L, and 1 to H, respectively. The embedding dimension of template m is defined. We then define the cubic templates of V, C m i,j,k of origin v i,j,k with size of m × m × m:

v i,j,k+m-1 • • • v i,j+m-1,k+m-1 . . . • • • . . . v i+m-1,j,k+m-1 • • • v i+m-1,j+m-1,k+m-1 • • • • • • • • • • • • • • • . . . . . . . . . v ,j,k+1 • • • • • • v ,j,k+1 • • • • • • • • • v i,j,k • • • v i,j+m-1,k . . . . . . . . . v i+m-1,j,k • • • v i+m-1,j+m-1,k (3.2)
Similarly, we define the cubic templates C m+1 i,j,k as the (m + 1) × (m + 1) × (m + 1) volume cubes, see Figure 3.2 for an illustration of m = [5,5,5] embedding dimension case.

Let N m = (W -m)(L -m)(H -m) be the total number of cubic patterns that could be created from V for both m and m+1 sizes. For C m i,j,k and its neighboring cubes C m a,b,c , the distance function d m ijk,abc between them is defined as the maximum absolute difference of their corresponding scalar components, knowing that a, b, and c range from 1 to W -m, L -m, and H -m, respectively. The distance function is defined as follows, knowing that (a, b, c) = (i, j, k) to avoid self similarities:

d m ijk,abc = d[C m i,j,k , C m a,b,c ] = max e,f,g∈(0,m-1) (|u(i + e, j + f, k + g) -u(a + e, b + f, c + g)|). (3.3)
We define the similarity degree D m ijk,abc of C m i,j,k with its neighboring cubes C m a,b,c by a continuous fuzzy function µ(d m ijk,abc , n, r):

D m ijk,abc (n, r) = µ(d m ijk,abc , n, r) = exp(-(d m ijk,abc ) n /r). (3.4)
Then, the similarity degree of each cubic template is averaged to obtain:

Φ m i,j,k (n, r) = 1 N m -1 a=W -m,b=L-m,c=H-m a=1,b=1,c=1 D m ijk,abc , (3.5) 
with (a, b, c) = (i, j, k), to construct:

Φ m (n, r) = 1 N m i=W -m,j=L-m,k=H-m i=1,j=1,k=1 Φ m i,j,k (n, r). (3.6)
Similarly, for (m + 1) × (m + 1) × (m + 1) cubic templates, to obtain:

Φ m+1 i,j,k (n, r) = 1 N m -1 a=W -m,b=L-m,c=H-m a=1,b=1,c=1 D m+1 ijk,abc , (3.7) 
with (a, b, c) = (i, j, k), to construct:

Φ m+1 (n, r) = 1 N m i=W -m,j=L-m,k=H-m i=1,j=1,k=1 Φ m+1 i,j,k (n, r). (3.8)
Finally, tridimensional fuzzy entropy measure, F uzEn 3D , for a volume V is defined as the natural logarithm of the conditional probability that two cubic templates similar for their m × m × m voxels would remain similar for the next (m + 1) × (m + 1) × (m + 1) voxels:

F uzEn 3D (m, n, r, V) = ln Φ m (n, r) Φ m+1 (n, r) .
(3.9)

Multiscale Tridimensional Fuzzy Entropy M SF 3D

Thus, encouraged by the interesting results with M SF 1D and M SF 2D we introduce the multiscale tridimensional fuzzy entropy measure, M SF 3D . In order to study, not only the irregularity in volumes, but also the actual complexity, M SF 3D is used. First, scale factor τ is defined and the volume is coarse-grained into Y (τ ) volumes. For a volume V of dimensions W × L × H we obtain τ coarse-grained volumes each of size W τ × L τ × H τ voxels. M SF 3D consists of two main steps:

1. A non-overlapping cube scans the whole image and the pixels of each cubic pattern are averaged. The obtained averaged values form the coarse-grained volumes. The coarse-grained volumes are modeled as:

Y (τ ) = {y (τ ) i,j,k }, (3.10) 
where,

y (τ ) i,j,k = 1 τ 3 a=iτ b=jτ c=kτ a=(i-1)τ +1 b=(j-1)τ +1 c=(k-1)τ +1 v a,b,c , (3.11) with 1 ≤ i ≤ W τ , 1 ≤ j ≤ L τ , and 1 ≤ k ≤ H τ . 2.
Applying F uzEn 3D for each coarse-grained volume (with each scale factor τ ).

M SF 3D = {F uzEn 3D (m, n, r, Y (τ ) )} (3.12)
The result would be τ values of F uzEn 3D that reflect the actual complexity of the studied volume. The coarse-grained volumes carry information about the whole original image over several scale factors. Figure 3.3 shows an example of coarse-grained versions of an original volume for τ = 1 , 2 , and 3.

Conclusion

In this chapter, we first presented our 3D adapted pM F uzEn 3D . Then, in section 3.3 we introduced our F uzEn 3 D for studying volumes and its multiscale version M SF 3D (section 3.4). These measures extend the application of entropy based methods to the tridimensional domain and enable possible applications on all kinds of 3D medical images analysis. The testing for the aforementioned measures will be shown in Chapter 4 and the results for their applications on medical images will be illustrated in Chapter 5. (1) , Y (2) , and Y (3) of an original volume, having τ = 1, 2, and 3.

Chapter 4

VALIDATION TESTS AND ANALYSIS

Introduction

In this chapter we present the validation tests for our proposed entropy measures. We investigate their sensitivity to the choice of initial parameters, their behavior with different degrees of irregularity, and also perform adapted tests for each measure separately.

In Figure 4.1 we show the continuous function, fuzzy functions, employed as similarity degrees for some n and r values for all our developed fuzzy entropy measures. Nevertheless, we use exp(-(d m ij ) 2 /r) in the case of our fuzzy entropy measures. Parameter r is usually chosen within the range recommended by some previous studies on 1D [START_REF] Cao | Characterization of complexity in the electroencephalograph activity of Alzheimer's Disease based on fuzzy entropy[END_REF][START_REF] Xie | Complexity analysis of the biomedical signal using fuzzy entropy measurement[END_REF][START_REF] Xie | Cross-fuzzy entropy: a new method to test pattern synchrony of bivariate time series[END_REF][START_REF] Chen | Measuring complexity using fuzzyen, apen, and sampen[END_REF]. Moreover, we study the variability of the results with the different choices of m and r for each proposed measure. In what follows, and for simplicity reasons, we will use the notation m for the embedding dimension value as explained in Chapters 2 and 3 for each entropy measure. Take an example m = 2 instead of: m = 2, m = [2,2], or m = [2,2,2], for the uni-, bi-, or tridimensional approaches, respectively.

Evaluation Data

To evaluate our proposed measures, we use several synthetic and real images: various noise data with different power spectra (1/f β ), W GN , MIX(p) processes, artificial periodic textures and their synthesized textures, and different synthetic images of varying sizes with repetitions. In what follows, we briefly present some of the testing data. We should note that the test images were all normalized by removed the mean and dividing by the standard deviation. This serves in comparing all images with the same interval and consequently the background intensity would not affect in the texture discrimination process. 

MIX(p) processes MIX 1D (p) processes

MIX 1D (p) was first introduced by Pincus et al. [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF] to test the properties of unidimensional entropy measures. MIX 1D (p) is a family of stochastic random processes that replaces a sine function points with completely random dynamics according to the value of p (p ranges from 0 to 1) [START_REF] Steven | Approximate entropy as a measure of system complexity[END_REF]. MIX 1D (p) is an N-point sine wave time series, where N × p randomly chosen points are replaced with random noise. For p = 0, the signal is a periodic sine wave. The higher the value of p is, the more random the signal will be, see Figure 4.2.

MIX 2D (p) processes

Based on the MIX 1D (p) definition, the MIX 2D (p) processes were established [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF]. In fact, they are images of varying white noise levels as p increases from 0 (totally periodic sinusoidal images) to 1 (highly irregular images). The higher the value of p, the lower the spatial regularity of the image is, see Figure 4.3. That is the image has always the same background periodic image (sinusoid) and a p-percentage of pixels (out of the total number of pixels) are replaced by uniformly distributed random values (white noise). MIX 2D (p) allows us to evaluate the ability of our proposed methods in quantifying images with 

MIX 3D (p) processes

Based on the bidimensional MIX 2D (p) we also introduce the three-dimensional MIX 3D (p) processes [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF]. They are volumes of varying irregularity degrees as p increases from 0 (totally periodic volume) up to 1 (highly irregular volume), see Figure 4 

Noise images with different power spectra

Tests using 1/f β noise data allow us to illustrate the ability of our proposed measures to quantify the dynamical variability of different kinds of noises, i.e. for several coarse-grained versions of the original data. These types of noise data were of particular importance to evaluate the performance of our multiscale algorithms. 1/f β noise data are studied with β being the power-law scaling exponent: pink (β = 1), brownian (β = 2), blue (β = -1), and white noise (β = 0). Figure 4.5 shows the power spectral density (PSD) of four noise-based data, adapted from [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF]. 

Artificial periodic and synthesized texture images

In order to evaluate F uzEn 2D 's behavior when an artificial periodic texture is transformed into its corresponding synthesized texture, we employed 3 pairs of periodic textures and their synthesized ones from [START_REF]Artificial periodic and their synthesized textures[END_REF]. These 256×256 pixels textures are presented in Figure 4.6. We also rescaled those images to different sizes (50×50 pixels, 100×100 pixels, 150×150 pixels, and 200×200 pixels) to evaluate the consistency of F uzEn 2D upon different texture sizes.

Other texture datasets Brodatz and colored Brodatz datasets

Brodatz gray scale texture album [START_REF] Brodatz | Textures: a photographic album for artists and designers[END_REF][START_REF]Brodatz texture dataset[END_REF] is a very well known texture database that has been widely used as a validation dataset for image processing techniques. It is made Colored Brodatz database is an extension for the original gray scale Brodatz dataset into its colored version [START_REF] Abdelmounaime | New Brodatz-based image databases for grayscale color and multiband texture analysis[END_REF][START_REF]Brodatz texture dataset[END_REF]. Examples of those images will be displayed later in the manuscript.

Mondial Marmi dataset

Mondial Marmi dataset is a collection of granite classes images for image processing purposes [START_REF] Bianconi | Automatic classification of granite tiles through colour and texture features[END_REF][START_REF] Fernández | Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification[END_REF]. The images have been acquired under controlled lighting conditions. Hardware-rotated images are taken in nine rotation angles. In addition, the dataset provides software-rotated images obtained through bilinear and bicubic interpolation, for more information about the dataset please refer to [START_REF] Bianconi | Automatic classification of granite tiles through colour and texture features[END_REF][START_REF] Fernández | Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification[END_REF]. Examples of Mondial Marmi dataset images will be shown later in the manuscript.

Pattern-based volumes

We generated six pattern-based cubes of 50×50×50 voxels size to test the differentiation ability of F uzEn 3D of different textural/pattern behavior [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF]. The cubes are displayed in Figure 4.8.

Please find below the cubes' description according to which their irregularity outcome could be pre-assumed:

-cube 1: all black volume with voxels values as low as 1 × 10 -9 , see It is observed that cubes 1 till 4 possess a more regular pattern behavior than cubes 5 and 6. An assumption could be also made regarding the regularity order of those patterns in theory and visually according to their nature.

F uzEn 2D and M SF 2D Validation Tests

As F uzEn 2D represents the basic measure for most our developed methods, we present in this section a thorough analysis for its behavior and its multiscale extension M SF 2D . First, we compare F uzEn 2D to its unidimensional version over multiple scale factors. Then, we study its sensitivity to initial parameters compared to the already existing SampEn 2D . After that, we introduce some validation tests for its behavior with texture images with different irregularity degrees.

Comparing F uzEn 2D to F uzEn 1D

To compare the behavior of F uzEn 2D and F uzEn 1D [START_REF] Chen | Characterization of surface EMG signal based on fuzzy entropy[END_REF], we applied multiscale F uzEn 2D and multiscale F uzEn 1D on white Gaussian noise (WGN) and pink noise. We set the initial parameters as: n = 2, m= 2, r = 0.25, and scale factor τ from 1 to 20. The comparison was performed using F uzEn 2D and F uzEn 1D for 300×300 pixels image size and 3000 points signal length, respectively.

As we can observe in Figure 4.9, at scale factor τ = 1 and for both the 1D and 2D cases, WGN has a higher entropy value than pink noise. However, as the scale factor increases, the entropy value for WGN monotonically decreases and the pink noise maintains higher entropy values than WGN. This is in agreement with the literature and the fact that WGN contains information only in the smallest scale factors whereas pink noise contains complex structures across multiple scale factors. The difference between F uzEn 1D and F uzEn 2D lies in the fact that for unidimensional pink noise, the entropy value for the higher scale factors is almost constant, showing equivalent complex structure over the different scale factors (equivalent irregularity per scale). Nevertheless, for the bidimensional pink noise, fuzzy entropy values decreases with the scale factor but still shows the presence of more complex structures in pink noise than WGN. The same is observed for WGN 2D and bidimensional pink noise when evaluated by SampEn 2D (defined in section 1.4.2).

Sensitivity to variation in parameters r, m, and n

For testing the sensitivity of F uzEn 2D to r and m, we performed F uzEn 2D calculations for 256 × 256 pink noise images while changing tolerance level r from 0.06 up to 0.48 (step 0.06) for m= 1, 2, and 3 and compared them to those obtained using SampEn 2D [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF]. In addition, for testing the sensitivity of F uzEn 2D to the fuzzy function's power n, we evaluated twenty 200×200 pixels WGN 2D images using F uzEn 2D . The parameters were set to: m= 2, r = 0.25, and fuzzy power increased from n = 2 to n = 352.

When changing m and r, F uzEn 2D showed much lower sensitivity than SampEn 2D , see Figure 4.10. This refers mainly to the fact that patterns' similarity in sample entropy is defined based on the two-state classifier (Heaviside function) with a rigid boundary depending on the value of r. However, in fuzzy entropy, the patterns are always associated with a continuous membership degree and all the pixels contribute in the final entropy value. Moreover, upon varying n, for the twenty generated WGN 2D images, F uzEn 2D showed low sensitivity as indicated by Figure 4.11. Thus F uzEn 2D is proven to be a measure that has low sensitivity to the changes in parameters. For SampEn 2D the similarity degree represented by the Heaviside function has a rigid boundary. The Heaviside function is a two-state binary classifier that gives a unity value if the difference in distance between the compared vectors is within threshold r; otherwise it gives a zero value. Thus, any slight change in r will probably change the entropy value. It judges the vectors as either "similar" or "dissimilar" with no intermediate states. However, in the fuzzy entropy the vectors are always associated with a continuous membership degree. This ensures continuity and smoothness for different values of r and leads to the contribution of all the time series elements in the final entropy output.

Rotation and translation

To study the effect of rotation we used the Mondial Marmi dataset [START_REF] Bianconi | Automatic classification of granite tiles through colour and texture features[END_REF][START_REF] Fernández | Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification[END_REF]. We chose an image from each of the four different granite classes shown in Figure 4.12, each image is of size 544×544 pixels. To study the effect of translation, we employed three Brodatz images [START_REF] Brodatz | Textures: a photographic album for artists and designers[END_REF][START_REF]Brodatz texture dataset[END_REF] and translated them with 10×10, 100×100, and 500×500 pixels. Translation, by definition, is a 2D geometric transformation which maps the position of each pixel in an input image into a new position in an output image, where the dimensionality of the two images often is the same.

Results for Mondial Marmi dataset upon software and hardware rotations are displayed in Figure 4.13. As we can observe, F uzEn 2D shows invariance upon hardware, bicubic, and bilinear rotated images. Based on those results and due to the fact that rotations in images would also rotate reference patterns in F uzEn 2D , the membership degree values would be the same. Therefore, F uzEn 2D is invariant to rotation. The same reasoning can be applied to image translation and proven by the results of Table 4.1. This leads to the conclusion that F uzEn 2D is translation invariant as well. Being translation and rotation invariant, F uzEn 2D can be considered a useful tool for studying medical images especially because those images are not always taken from the same angle of view.

Shuffling

Theoretically, shuffling increases the irregularity of data. Thus entropy values are expected to increase upon shuffling. We tested the change in bidimensional entropy values for DistrEn 2D [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF], F uzEn 2D , and SampEn 2D [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF]. The objective was to compare the outcomes of the three bidimensional entropy measures. We generated a MIX 2D (0.1) image and 10 shuffled images from it. Then, we calculated the bidimensional entropy values for the original MIX 2D (0.1) and its corresponding shuffled images. 

Shuffling data decreased the

F uzEn 2D for MIX 2D (p) images

We generated 256×256 pixels MIX 2D (p) images and analyzed them by F uzEn 2D and SampEn 2D . We set m= 1, 2, 3, p = 0 to 1 with a step of 0.1, and repeated the calculation for 10 images each. The results, presented in Figure 4.14, concur with the fact that a higher entropy corresponds to a MIX 2D (p) image with a higher p value, see Figure 4.3. In fact, a higher p value in a MIX 2D (p) image describes a higher spatial irregularity. F uzEn 2D , unlike SampEn 2D , does not have the problem of undefined entropy values for m= 1, 2, and 3. Moreover, for MIX 2D (0.9) and MIX 2D (1) with m= 2, SampEn 2D quantifies a lower irregularity than that of MIX 2D (0.8) which is misleading due to the fact that MIX 2D (p) describes a higher spatial irregularity when p increases.

Thus, F uzEn 2D can be considered as an appropriate metric for quantifying the images' irregularity as it is able to correctly quantify the irregularity of MIX 2D (p) images. It is also observed to outperform SampEn 2D , especially for m= 2 and 3. 

W GN 2D and 1/f β noise images

To assess the ability of F uzEn 2D to evaluate small images irregularity, validate repeatability, and better understand the effect of image size on the results, we created W GN 2D and 1/f β (β = -1, 1, and 2) noise images with sizes ranging from 20×20 to 200×200 pixels (with a step of 20×20 pixels). Forty images were generated for each size and F uzEn 2D was calculated for m= 1, 2, and 3. Same calculations were performed using SampEn 2D for comparison purposes. The results are displayed as box plots in Figure 4.16. The upper plots demonstrate the stability and consistency of F uzEn 2D upon forty repetitions and its low sensitivity for varying image sizes as well as the low sensitivity to the change in m. In addition, F uzEn 2D shows clear differentiation ability between the four noise types, especially for images larger than 20×20 pixels. However, upon repetition, F uzEn 2D parameters were set as: embedding dimension m= 2, threshold r = 0.24, and fuzzy power n = 2. The results are shown in Tables 4.4 and 4.5. A higher entropy value is observed when W GN 2D of higher mean and variance is added. Moreover, adding a higher density of SPN to the gray scale image leads to a higher entropy value as well. These results illustrate the ability of F uzEn 2D to detect different amounts of W GN 2D and SPN. By adding noise to gray scale images, we wanted to prove the ability of F uzEn 2D to detect different degrees of added noise to the original image, and thus the ability to quantify accordingly even slight changes in the studied images. F uzEn 2D should be able to spot any changed textural behavior and behave upon its degree. In other words, we have a higher entropy value for a higher added noise degree which is logically the expected performance. The results are in agreement with those obtained by Azami et al. for DistrEn 2D [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF].

F uzEn 2D for artificial periodic and synthesized texture images

F uzEn 2D was calculated for three artificial periodic texture images and their corresponding synthesized textures depicted in Figure 4.6, setting m= 2. The results, illustrated in Table 4.6, show that F uzEn 2D values are higher for synthesized textures than those of their corresponding periodic textures. This demonstrates that F uzEn 2D is able to discriminate periodic from synthesized textures and to quantify the images' periodicity. The results are in agreement with those presented by Azami et al. for DistrEn 2D [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF]. The images were also resized to evaluate the differentiation ability of F uzEn 2D upon variation in image sizes. We studied the original 256×256 pixels artificial periodic texture images and their synthesized textures as well as their corresponding versions of 50×50 pixels up to 200×200 pixels (step of 50×50 pixels) with m= 1, 2, and 3. The results show that all the values for the periodic textures are lower than those of their corresponding synthesized ones (data not shown here). This demonstrates that F uzEn 2D is able to properly discriminate periodic from synthesized textures by assigning lower entropy values for periodic textures (highly ordered textures), for different m and image sizes.

Multiscale F uzEn 2D for 1/f β noise images

For assessing M SF 2D behavior and comparing it to MSE 2D , we employed noise images of known nature in terms of complexity, i.e. outcome over several scales factors. We utilized pink, brownian, blue, and white, namely the 1/f β noise images. Ten images from each kind of noise were generated and evaluated using M SF 2D and MSE 2D . We set the initial parameters as m= 2 and scale factor τ from 1 to 15. The results are displayed in Figure 4.18.

M SF 2D results for brownian and pink noise images show that they possess complex structures over scale factors, which agrees with the fact that they are described as persistent processes with long term correlations. However, white and blue noise images show a decrease in entropy value with scale factor, as by definition they are of short term memory anti-correlated processes [START_REF] Girault | Centered and averaged fuzzy entropy to improve fuzzy entropy precision[END_REF]. This illustrates the ability of M SF 2D to quantify the degree of complexity in the studied images and its consistency. Compared to MSE 2D , M SF 2D shows a lower standard deviation and better consistency upon repetition. Moreover, MSE 2D for Brownian noise images from τ =6 shows undefined values. To compare the actual behavior of F uzEn 2D and SampEn 2D (i.e., at scale factor τ =1) we zoomed in on the first scale factor values, see Figure 4.18 (small box). We can notice that F uzEn 2D is able to identify the different noise images in the proper order of irregularity as: white → blue → pink → brownian, from highest to lowest, whereas SampEn 2D shows overlapping values with no clear differentiation ability.

Multiscale F uzEn 2D for synthetic images

We evaluated M SF 2D for WGN 2D , MIX 2D (0.2), and pink noise images for parameters m= 2 and scale factor τ from 1 to 20. We compared the results with those of MSE 2D . We increased image size from 50×50 pixels to 600×600 pixels with an increment of 50×50 pixels, see Figure 4.19. The results for M SF 2D show that the entropy values are stable for all scale factors starting from 50×50 pixels images for the three image types. However, for MSE 2D the entropy values look stable from 100×100 pixels for WGN 2D and from 150×150 pixels for MIX 2D (0.2) and pink noise images. For both entropy measures, the results for MIX 2D (0.2) show a lower complexity than those for WGN 2D and pink noise images, as expected theoretically.

The results for WGN 2D and pink noise images agree with the literature for the irregularity quantification at each scale factor [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF][START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF]. Entropy values for WGN 2D show higher irregularity than pink noise for small scale factors (τ =1). However, as the scale factor increases, WGN 2D shows a decrease in irregularity with scale factor, whereas pink noise shows higher entropy values and also a higher overall complexity. This is in accordance with the fact that pink noise has long term correlations whereas white noise has short-term correlations and thus is not structurally complex [START_REF] Girault | Centered and averaged fuzzy entropy to improve fuzzy entropy precision[END_REF][START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF][START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]. This is also reflected in the biological systems' behavior where some pathologic processes have a lower complexity than healthy processes unlike what is indicated by the traditional entropy measurement at a single scale [START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF][START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]. Therefore, the results suggest that M SF 2D is a proper complexity measure for images. It is able to quantify images complexity properly, i.e., at different scale factors (as illustrated by the multiscale tests) and shows a consistent outcome for increasing image sizes from 50×50 to 600×600 pixels. These results, compared with those for MSE 2D , suggest that M SF 2D overcomes the drawback of undefined MSE 2D values especially for small-sized images. 

Test for fuzzy entropy measures

To test the discrimination ability and the sensitivity to tolerance level r of F uzEn 2D (global fuzzy entropy), F uzEnL 2D , and F uzEnGL 2D , we generated MIX 2D (0.1 ), MIX 2D (0.5 ), and MIX 2D (0.9 ) images and processed them by those fuzzy entropy measures while varying tolerance r from 0.06 to 0.48 with a step of 0.06. F uzEn 2D , F uzEnL 2D , and F uzEnGL 2D were able to differentiate between the different MIX 2D (p) images, see Figure 4.20. F uzEnGL 2D showed a better discrimination ability for the different r values but also illustrated a high sensitivity to the choice of r (see the lowest and highest value for the fuzzy entropy for one of the MIX 2D (p) images). The three fuzzy entropy measures, F uzEn 2D , F uzEnL 2D , and F uzEnGL 2D , illustrate a capability to differentiate MIX 2D (0.1 ), MIX 2D (0.5 ), and MIX 2D (0.9 ), but the F uzEn 2D and F uzEnL 2D are shown to be the more stable than F uzEnGL 2D even when r varies. Although F uzEnGL 2D shows the highest discrimination, it has a much higher sensitivity to the choice of r.

Multiscale test for fuzzy entropy measures

To compare the fuzzy entropy measures on the multiscale level, we generated 300×300 pixels of WGN 2D and pink noise images. These images were analyzed by the multiscale extensions of F uzEn 2D , F uzEnL 2D and F uzEnGL 2D . The parameters were defined as: n = 2, r = 0.25, scale factor τ from 1 to 20, and m varied from 1 to 6. The results are previewed in the following figures 4.21 and 4.22.

There was no drastic difference between the multiscale F uzEn 2D and F uzEnL 2D in the above described tests: they show a very similar behavior on pink and WGN 2D . On the other side F uzEnGL 2D could be described as an amplifier for the preceding results for a better view and better discrimination between pink and WGN 2D . The results are in agreement with the literature and the fact that WGN 2D has a higher irregularity for small scale factors but pink noise express a higher irregularity for higher scale factor thus it is more complex.

Computation cost

For comparing the computational cost of F uzEn 2D and F uzEnL 2D with that of F uzEnGL 2D , we performed the entropy calculations for thirty 256 × 256 pixels of pink noise images and calculated the average time in seconds taken by each entropy measure. We set the initial parameters as n = 2, m= 2, and r = 0.24 for all bidimensional entropy measures. The simulations were carried out by Windows 10 laptop equipped with 8-GB RAM and Intel(R) Core(TM) i7-6500U CPU processor using Matlab R2017a.

F uzEnGL 2D 's computational cost is found to be almost double that of F uzEn 2D , see Table 4.7. Even though F uzEnGL 2D shows higher discrimination ability for some cases, the computation time taken by F uzEn 2D is considerably the lowest. Medical images in general are large images that would favor a high speed performance in the processing algorithm. Thus, based on the higher computational cost for both F uzEnL 2D and F uzEnGL 2D , and the higher sensitivity to the change in tolerance level of F uzEnGL 2D , we decided to use F uzEn 2D . Moreover, it is better to consider the global characteristics of an image rather than the local ones to better assess the actual overall irregularity on the single scale calculations and the overall complexity for the multiscale calculations.

M SF 2D and M M SF 2D Comparison

In order to study the effect of downsampling we performed some tests to compare M SF 2D to M M SF 2D . We proposed M M SF 2D that consists of an overlapping window to coarse grain the images based on [START_REF] Wu | Modified multiscale entropy for short-term time series analysis[END_REF] and compared the results to those downsampled with a non-overlapping window using M SF 2D . We calculated M SF 2D for WGN 2D , pink, and MIX 2D (0.2) noise images for parameters: n = 2, m= 2, r = 0.25, and scale τ from 1 to 20, see The results for both methods were consistent and showed proper behavior with noise images. However, with M M SF 2D the results took a longer time to be obtained. Thus, a computation cost comparison will be presented in the following section.

A wider study will be performed later on handling this issue in specific and the different possible methods for coarse-graining by referring to the papers "Coarse-Graining Approaches in Univariate Multiscale Sample and Dispersion Entropy", [START_REF] Azami | Coarse-graining approaches in univariate multiscale sample and dispersion entropy[END_REF], "Two-dimensional Multiscale Entropy Analysis: Applications to Image Texture Evaluation", [START_REF] Eduardo | Two-dimensional multiscale entropy analysis: applications to image texture evaluation[END_REF], and "Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis" [START_REF] Azami | Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[END_REF].

Computation cost

For the computation cost comparison we performed a test using pink and white noise 256×256 pixels images for 30 repetitions. The parameters were set to m=2, r=0.24, n=2, and τ max =15. The mean and standard deviation for the time taken by both algorithms for 30 repetitions are displayed in Table 4.8. The simulations were carried out by Windows 10 computer equipped with 8-GB RAM and Intel(R) Xeon(R) E5-1603 CPU processor using Matlab R2017a. The results show the huge difference in the computation time taken by both algorithms. The average time taken by M M SF 2D algorithm in seconds is almost 12 times larger than that taken by M SF 2D . This comes back to the fact that with M SF 2D the images are downsampled and become of a smaller size with increasing τ value. Consequently, M SF 2D is the measure that we use for all our coming work based on the original coarse-graining method proposed by [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF].

First Colored Fuzzy Entropy Approach

F uzEnC 2D

We started with tests using the first developed colored fuzzy entropy approach F uzEnC 2D [START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF][START_REF] Sofia | Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images[END_REF] without normalizing the testing images. The results are presented below.

Sensitivity to change in tolerance level r

We studied the effect of changes in r by evaluating a 256×256 pixels colored Brodatz image [START_REF] Abdelmounaime | New Brodatz-based image databases for grayscale color and multiband texture analysis[END_REF] using F uzEnC 2D , see Figure 4.25 (b). r was defined from 0.06 to 0.48 (step of 0.06) and windows' length m= 1, 2, and 3. The results in Figure 4.26 prove that F uzEnC 2D is defined upon variation of r and m and we note its low sensitivity for the three channels (U R , U G , and U B ). This proves the reliability of F uzEnC 2D for different choices of initial parameters. 

MIX 2D (p)

We generated checker board image as alternating white and black squares with periodic behavior and expected zero entropy value, see Figure 4.25 (a). Then MIX 2D (p) [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF] were added to the checker board image. p being from 0 (periodic sinusoidal image) to 1 (totally random image). Ten MIX 2D (p) images were generated for each p value to validate the consistency of our results. The parameters were set as r = 0.2 and m= 1, 2, and 3. As we can observe in Figure 4.27, F uzEnC 2D values for each channel increase as p increases. Thus, the results for background checker board images added with MIX 2D (p) processes illustrate that F uzEnC 2D has the ability to distinguish different degrees of added randomness and has a relatively low sensitivity to the choice of m.

Colored Brodatz images

Colored Brodatz images of 640×640 pixels (see Figure 4.28) were divided into 4 equal sub-images of 320×320 pixels and all of them were evaluated by F uzEnC 2D . The pa- rameters are chosen to be r = 0.2, m= 2, and n = 2. F uzEnC 2D values for the original 640×640 pixels textures and the mean and standard deviation of the 4 sub-images are displayed in Tables 4.9 and 4.10, respectively. For the sub-images, F uzEnC 2D shows results similar to those of Table 4.9 with a small standard deviation (≤ 0.04). This shows the ability of F uzEnC 2D to recognize sub-images belonging to the same textural behavior. 

Tests

After our first successful application on colored images using F uzEnC 2D we developed other entropy measures based on different concepts for analyzing a colored image. We limited our study for trichromatic color space images. In what follows we study F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D applied to images of several color spaces.

F uzEnC 2D 's algorithm is the same as that one tested in the previous section. However we enhanced its computation speed (using the Matlab parallel computing toolbox) and added images' normalization for all the studied texture images.

To validate the proposed colored bidimensional entropy measures, we studied their sensitivity to different parameters values. We also applied the algorithms to images with different degrees of randomness and colored Brodatz dataset [START_REF] Abdelmounaime | New Brodatz-based image databases for grayscale color and multiband texture analysis[END_REF]. The images were normalized by subtracting their mean and dividing by their standard deviation before processing and all the tests were performed using Matlab.

In addition to the most common trichromatic color space RGB (Red, Green, Blue) we transform the studied texture images into two other color spaces [START_REF] Getreuer | Colorspace Transformations[END_REF]: HSV (Hue and Saturation: chrominance, Value: intensity) and YUV (Y: luminance, U and V: chrominance) to investigate the effect of color space transformations on F uzEnC 2D and F uzEnV 2D outcomes. By the latter, we choose one of each of the most widely used color spaces families: the primary color spaces (RGB), the perceptual color spaces (HSV), and the luminance-chrominance color spaces (YUV). In RGB color space, the intensity and color are combined to give us the final display, whereas for HSV and YUV color spaces intensity and color are separated.

Sensitivity to initial parameters

To study the sensitivity of our proposed measures, F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D to different embedding dimensions m and tolerance levels r, we evaluated 100×100 pixels of a colored Brodatz image (Figure 4.35 (f)) using different parameters choices.

-For F uzEnC 2D , the embedding dimension m was taken as 1, 2, 3, 4, and 5, and the tolerance level r from 0.06 up to 0.48 (step 0.06). The results are displayed in Figure 4.29. -For F uzEnV 2D , the embedding dimension m was taken as 1 and 2, since the maximum possible cube volume for (m + 1)-length cubes is 3 × 3 × 3 pixels (the 3 color channels). The results are displayed in Figure 4.30. -For F uzEnM 2D , the embedding dimension m was taken as 1, 2, 3, 4, and 5, and the tolerance level r from 0.06 up to 0.48 (step 0.06). The results are displayed in Figure 4.31.

We observe that F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D remain defined for different chosen initial parameters. Also the algorithms show low variability upon changes in r and m. This proves their low sensitivity to r and m, allowing a certain degree of freedom in our choice of initial parameters without restrictions. [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF] is a family of images of stochastic processes that are moderated by the probability of irregularity, p, see section 4.2.1. We used MIX 2D (p) for the single-channel approach, and MIX 3D (p), our proposed volumetric extension for MIX 2D (p) [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF], for the multi-channel approach.

Detecting colored image irregularity

MIX 2D (p)
We generated 256 × 256 pixels MIX 2D (p) in three channels and 256 × 256 × 3 pixels MIX 3D (p) images and analyzed them by single channel (F uzEnC 2D ) and multi-channel approaches (F uzEnV 2D and F uzEnM 2D ), respectively.

-F uzEnC 2D : we set r = 0.15, m= 1, 2, 3, 4, 5, and p = 0 to 1 with a step of 0.1, and repeated the calculation for 10 images each. The results are depicted in Figure 4.32. -F uzEnV 2D : we set r = 0.15, m= 1 and 2 (as the maximum possible cube volume for m + 1 could only be 3 × 3 × 3 pixels), p = 0 to 1 with a step of 0.1, and repeated The results show that, the single, multi-channel, and the modified approaches, lead to increasing entropy values with increasing irregularity degree, p. This illustrates their ability to properly quantify increasing irregularity degrees and their consistency upon repetition.

Studying texture images

For texture validation tests we used the very well known Colored Brodatz Texture (CBT) [START_REF]Colored Brodatz Texture[END_REF] images, see Figure 4.35. CBT presents colored textures with different degrees of visible irregularity. We can notice that, for example, the CBT images (a), (b), and (e) show more regularity and periodic repetitive patterns than (c), (f), and (i). The nine CBT [START_REF] Abdelmounaime | New Brodatz-based image databases for grayscale color and multiband texture analysis[END_REF][START_REF]Colored Brodatz Texture[END_REF] images of 640×640 pixels, see Figure 4.35, were split into 144 sub-images of sizes 50×50 pixels. F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D were calculated for these sub-images and for a 300×300 pixels region from each corresponding original CBT image. The parameters r and m were set to 0.15 and 2, respectively. The results are depicted in Figures 4.36, 4.37, and 4.38. We observe that, especially for the RGB color space, most of the F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D averages of the sub-images overlap with or are very similar to the value of their corresponding image's 300×300 pixels region. Moreover, we notice their differentiation ability between different CBT images. In the HSV and YUV color spaces, the multi-channel approaches (Figures 4.37 and 4.38) overperforms F uzEnC 2D (Figure 4.36) in differentiating the CBT images. We can also observe that for the RGB color space the CBT images that are per-ceived visually to be of higher irregularity, Figure 4.35 (c), (f), and (g), obtained higher entropy values than the others, whereas those that appear to be of periodic well defined repetitive patterns, Figure 4.35 (a), (b), and (e), resulted in lower entropy values for the three measures F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D . This is in accordance with the literature of entropy measures and information theory concept applied to gray level texture images [START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] Eduardo | Two-dimensional multiscale entropy analysis: applications to image texture evaluation[END_REF][START_REF] Humeau-Heurtier | Bi-dimensional multiscale entropy: relation with discrete Fourier transform and biomedical application[END_REF][START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF]. calculations for ten times. The parameters were set as r = 0.15 and m= 2. The results are displayed in Table 4.11. The simulations were carried out by Windows 10 laptop equipped with 8-GB RAM and Intel(R) Core(TM) i7-6500U CPU processor using Matlab R2020a. F uzEnM 2D showed the lowest computational cost. This indicates that it will be more suitable for large images, more particularly with the fact that medical images are often of a large size.

F uzEn 3D and M SF 3D Validation Tests

The behavior of our proposed 3D entropy measures is validated using several tests such as: sensitivity to parameters test, ability to identify several degrees of irregularity, and pattern-based volumes quantification among others.

Sensitivity to variation in parameters r and m

For testing the sensitivity of F uzEn 3D to r and m, we performed F uzEn 3D calculations for white noise cubes with a varying tolerance level r between 0.06 and 0.48 (step of 0.06) using m= 1, 2, and 3. The results in Figure 4.39 show the consistency of F uzEn 3D for varying r and m values and the low standard deviation of the results upon repetition. These results are similar to those obtained by the uni-and bidimensional fuzzy entropy, providing low limitations for the possible choices in the initial parameters.

F uzEn 3D for MIX 3D (p) volumes

Ten cubes of MIX 3D (p) volumes for each p value were generated and analyzed by F uzEn 3D . The parameters were set as r = 0.2, n = 2, p increased from 0 till 1 with a step of 0.1 and m varied as = 1, 2, and 3. The results illustrated in Figure 4.40 show the ability of F uzEn 3D to properly quantify increasing irregularity degrees. F uzEn 3D values increased gradually with the increase in p value from 0 to 1. The results were consistent for the three m values which shows the low sensitivity to the choice of m. We also note the low standard deviation upon repetition. This is an important characteristic of the developed methods because it shows the ability of repeatability for the obtained results range. This is achieved even when dealing with random textures such as MIX 3D (p) processes and illustrates the method's consistency. For quantifying irregularity of different degrees the uni-, bi-, and tri-dimensional entropy measures illustrate a similar behavior [START_REF] Eduardo | Two-dimensional multiscale entropy analysis: applications to image texture evaluation[END_REF][START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF][START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF]. For the upcoming test the parameters are chosen as m= 3 and r = 0.2 within the range verified in our validation tests and that recommended by some previous publications.

Shuffling

Theoretically, shuffling increases the irregularity of data. Thus entropy values are expected to increase upon shuffling. We tested the change in entropy calculations for ten MIX 3D (p) cubes and their ten shuffled versions for each p. The results are plotted as the mean and standard deviation of the results obtained. The parameters were defined as m= 3, r = 0.2, n = 2 and p increased from 0 till 1 with a step of 0.1. The results in Figure 4.41 are in accordance with the theoretical assumption where all the shuffled cubes show higher entropy values than the original MIX 3D (p) cubes. The results are also similar to those obtained with F uzEn 2D and DistrEn 2D [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF].

Pattern-based volumes

Similar to the test performed by [START_REF] Moore | The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images[END_REF], we generated six pattern-based cubes to test the differentiation ability of F uzEn 3D to different textural/pattern behaviors. The cubes were displayed previously in Figure 4.8. The results are presented in Table 4.12. As we can observe, F uzEn 3D illustrates a proper evaluation for the cubes' irregularity degree in accordance with our visual interpretation and the theoretical assumption of the irregularity order. As indicated by the cubes' patterns, cube 1 till 4 show very regular patterns and consecutive alteration between white and black pixels for cubes 2, 3, and 4. This justifies the very low entropy values in the first 4 cubes. To be more precise, cube 2 of half black and half white pixels, reflects a higher entropy value than that of the black cube however a lower value than that of the diagonal striped cube. This agrees with the fact that the black stripes cube is more irregular than cube 2. For cubes 1 and 3 the zero values reflect the high predictably and regularity of the aforementioned cube patterns. This could be also justified by the distance function that is always constant no matter which cubes we consider or m embedding dimension. Now for cubes 5 and 6, F uzEn 3D shows a proper assessment for their order of irregularity. As we can observe the cube 5 (Gaussian distribution) shows a much higher entropy value than the totally regular volumetric patterns. However the most irregular among them, cube 6, uniform random distribution, illustrates the highest entropy value.

In other words, periodic repetitive patterns reflect a low entropy value i.e. low irregularity (highly expected behavior), whereas more random textural behavior reflects higher entropy values (low predictability). The latter is shown in the F uzEn 3D results proving its ability to gradually quantify the volumes' irregularity degrees.

M SF 3D for noise volumes

To verify the consistency of M SF 3D on the multiscale level, we study the evaluation of F uzEn 3D for the color noise cubes over several scale factors; i.e. M SF 3D for the colored noise cubes. We employ ten noise cubes of 50×50×50 voxels with different power spectra (1/f β ): white, pink, brown, and blue noise cubes. The initial parameters are set as m= 3, r = 0.2, n = 2, and τ max =10. As illustrated previously, white noise is of highly irregular nature. However when studied over several scale factors it has a low complexity. Then comes the blue noise that is less irregular than white noise but it also has low complexity over several scale factors (when down-sampled). On the other hand, pink and brown noise types are of long term correlations, where they show lower irregularity than white and blue noises but they possess a higher complexity. This is illustrated by their relatively higher entropy values over several scale factors.

In agreement with the theoretical explanation and the results of other uni-and bidi-mensional entropy measures, M SF 3D shows an ability to properly evaluate the actual irregularity and complexity of the studied noise volumes. The results are depicted in Figure 4.42. The results of scale factor τ =1 are magnified. They illustrate the proper order in irregularity for the evaluated noise volumes.

The results are in accordance with the uni-and bidimensional entropy measures' behavior with noise data [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF][START_REF] Eduardo | Two-dimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF][START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF][START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF].

Conclusion

In this chapter we presented the validation tests for the developed entropy measures. They illustrate low sensitivity to change in parameters, consistency upon repetition, and promising results with the validation tests that were designed for each specific measure.

As a summary, we compared the unidimensional F uzEn 1D measure to the herein proposed bidimensional version F uzEn 2D . F uzEn 2D forms a basic measure for the methods that are proposed afterwards. Consequently, thorough validation exams were performed to validate its behavior at first and compare it with other uni-and bidimensional entropy measures. Moreover, we employed some verification tests for the multiscale approach M SF 2D that analyzes texture images over several scale factors. After the successful application of F uzEn 2D on gray scale images, we upgraded the fuzzy entropy concept to deal with colored images through three different approaches to handle trichromatic images. The validation tests are also promising and shows good potential for application on colored image textures Afterwards, we utilized some validation tests for the tridimensional entropy measures in their single and multiple scale approach. F uzEn 3D shows low sensitivity to change in parameters, consistency upon repetition, proper quantification for the volumes' irregularity, and promising multiscale behavior in the assessment of noise volumes.

Chapter 5

MEDICAL APPLICATIONS AND DISCUSSION

Introduction

In this chapter we present our findings on medical images and discuss them. The results are obtained for bidimensional medical images (dermoscopic images) and tridimensional scans (HRCT and MRI). First, we start with the PXE dermoscopic images in gray scale and colored space which were evaluated with M SF 2D and colored fuzzy entropy measures, respectively. Then, we present our findings on dermoscopic melanoma and melanocytic nevi images also in gray scale and colored spaces. In addition, for the bidimensional applications, we perform a study for microcirculatory assessment using our proposed F uzEnC 2D . Finally, we integrate the bidimensional concept in the volumetric application to study the scans of HRCT images for COPD patients using pM F uzEn 3D .

After that, for the 3D applications, we present the results obtained using M F En 3D on HRCT images for IPF patients and on MRI images for uterine fibroma after uterine artery embolization. Finally, we will present our very recent findings on COVID-19 patients CT scans.

Bidimensional Entropy for PXE Dermoscopic Images

A bidimensional entropy method estimates the irregularity of an image or texture based on repetitions of its patterns. Consequently and based on the fact that the primary PXE manifestation is by the appearance of papules that show some patterns in the texture of dermoscopic images, we propose to analyze those dermoscopic images using the bidimensional entropy measures. Note that in the PXE patients' skin dermoscopic images, the changed textural behavior cannot be always objectively identified. This fact makes a computer-based image analysis technique of a greater importance.

As mentioned previously, bidimensional entropy measures evaluate irregularity within the studied images and have the ability to recognize textures with different degrees of irregularity. Thus, we analyze PXE dermoscopic images using F uzEn 2D and compare our results to those of the well-known SampEn 2D . The analysis is performed not only at the first scale factor, but also over several scale factors to deal with their high and low frequency components and uncover the in depth information and assess the actual complexity of the aforementioned dermoscopic images using M SF 2D and MSE 2D presented in section 5.2.1. Then, we analyze those dermoscopic images as colored using F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D to reveal the possible important information in the color of those PXE images presented in section 5.2.2.

We studied the dermoscopic images for 15 PXE patients from a reference center for PXE in the department of dermatology of Angers Hospital, France. The diagnosis of PXE was based on a combination of established criteria for indisputable PXE (clinically suggestive skin lesions, angioid streaks on fundoscopy, histological demonstration of fragmented and calcified elastic fibers on skin biopsy) as well as ABCC6 gene mutations. The images were taken using FotoFinder bodystudio ATBM for total body mapping and dermoscopy, see Figure 5.1. Please note that such a number of subjects is noticeable for this rare disease. Before images acquisition, the patients signed written assents and the study was performed in agreement with the Declaration of Helsinki, (CB 2009-01 and # of ClinicalTrials.gov: NCT01446380).

A dermoscopic image from the neck showing papules and a dermoscopic image from a normal skin zone (ventral zone) were taken from each of the 15 patients. Examples of two patients' dermoscopic images for healthy skin regions and neck regions showing papules are displayed in Figure 5.2.

Gray scale dermoscopic images

After converting the 30 images obtained to gray scale, we normalized them by subtracting their mean and dividing the result by the standard deviation. A random region of 489×490 pixels from the recorded dermoscopic images was studied using both M SF 2D and MSE 2D .

The results for PXE dermoscopic images are depicted in Figure 5.3. To evaluate the performance of M SF 2D vs. MSE 2D in discriminating the diseased from healthy groups, we considered their statistical significance and effect size. To test if a significant statistical difference is found between the entropy values of the two skin regions, we employed the paired t-test at each scale factor. A statistical significance was defined for corrected p-values strictly lower than 0.05. The obtained p-values were corrected for multiple comparisons over scale factors by the Bonferroni correction method. For MSE 2D , no statistical significance was found. However, M SF 2D is able to significantly discriminate the group of neck images with papules from that of normal skin images at scale factors τ = 1 and τ = 2. The corrected p-values, p cor , were respectively 0.03 and 0.04. Moreover, a higher spread of MSE 2D values was observed. For the other scale factors, no significant statistical difference between the two skin regions was observed.

After verifying statistically the presence of a deterministic difference between entropy values of the two kinds of skin regions, we considered the size of this difference and evaluated the strength of our statistical claim by calculating the effect size using Cohen's d [START_REF] Cohen | Statistical power analysis for the behavioral sciences[END_REF][START_REF] Hentschke | Computation of measures of effect size for neuroscience data sets[END_REF][START_REF] Lee | Effect size (ES)[END_REF]]. Cohen's d evaluates how different two groups are (herein, entropy values for healthy zones compared to those with papules at each τ ) [START_REF] Cohen | Statistical power analysis for the behavioral sciences[END_REF]. The higher the d value is, the larger the difference or effect size will be. Table 5.1 explains the significance of the d values [START_REF] Cohen | Statistical power analysis for the behavioral sciences[END_REF][START_REF] Shlomo | New effect size rules of thumb[END_REF]. The d values for M SF 2D and MSE 2D for τ = 1, 2, 3, and 4 are displayed in Table 5.2. It is found that the d values for M SF 2D represent a "Large" size of difference between the compared groups (especially for the above verified τ = 1 and 2). However, the d values for MSE 2D represent "Small" or "Medium" effect sizes. On the whole, the results show that M SF 2D has a statistically significant ability to differentiate the two studied groups at the first 2 scale factors with noticeable large effect size values suggesting the advantage of our developed M SF 2D over MSE 2D . Therefore, subject) where a p -value < 0.05 shows a statistical validated ability for a method to distinguish the two sample groups. We obtained statistical significance in differentiating the healthy from the papules skin zone for the Blue channel using F uzEnC 2D with p = 0.02, see Figure 5.4. Furthermore, with F uzEnV 2D we obtained p = 0.005, see Figure 5.5. F uzEnM 2D showed p=0.05, which cannot be considered as statistically significant, however, we display the results in Figure 5.6. neck with papules) and healthy skin region (NZ: normal zone). The colors red, green, and blue represent the R, G, and B channels, respectively. Statistical significance is obtained for the blue channel (p=0.02). The * signifies the presence of statistically significant difference between the two groups.

Moreover, we calculate the Cohen's d value for evaluating the actual effect size of the statistically significant difference. We obtain Large effect size values, d = 0.71 and d = 0.81 for F uzEnC B2D and F uzEnV 2D , respectively. This also confirms our statistical claim and better validates our results for the Blue channel using F uzEnC 2D and for the whole images using F uzEnV 2D in identifying healthy from PXE affected skin zones.

Conclusion

PXE is a rare disease that causes several cutaneous, cardiovascular, and ophthalmic complications. Thus, the earlier the diagnosis is, the better the monitoring and preven- tion will be. PXE establishes a certain textural behavior that cannot be always identified visually even through dermoscopy. This creates an essential need for developing an objective technique that can identify the presence of this disease in its early stages (the initial cutaneous symptoms). The primary fuzzy entropy results seem to be promising in distinguishing a group of healthy skin images from diseased ones. In the future, it would also be interesting to use the proposed measures to track how the skin pathology evolves upon potential treatment follow up, due to the fact that there is no definite treatment for this disorder yet. This contribution would influence the research in this field and could help in its escalation.

Apart from that and before developing F uzEn 2D , we performed a brief study using SampEn 2D , but we present it in the Annex as it is less relevant herein, please see section 6.2.

Melanoma and Melanocytic Nevi

The target of the medical application of our study in this section is to differentiate the deadliest type of skin cancer, melanoma, from the benign melanocytic nevi. These two widely spread types of pigmented skin lesions are often mistaken in diagnosis and detection, especially in their early stages. Moreover, early diagnosis and excision could vastly increase the survival rate [START_REF] Emre | Dermoscopy image analysis: overview and future directions[END_REF][START_REF] Talavera-Martınez | Computational Texture Features of Dermoscopic Images and Their Link to the Descriptive Terminology -A Survey[END_REF][START_REF] Barata | A survey of feature extraction in dermoscopy image analysis of skin cancer[END_REF].

To achieve our goal, we process dermoscopic images of melanoma (see section 1.6.4) and melanocytic nevi. For the application to dermoscopic images (gray scale and colored), we used samples from the "Human Against Machine with 10000 training images", HAM10000 [START_REF] Tschandl | The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF]. The dataset is composed of dermoscopic images for pigmented lesions. It contains dermoscopic images of: melanocytic nevi, melanoma, dermatofibroma, actinic keratoses, basal cell carcinoma, and benign keratosis [START_REF] Tschandl | The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF][START_REF] Tschandl | The HAM10000 dataset: A large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF]. The data collection was approved by the ethics review committee at the Medical University of Vienna and the University of Queensland. For more detailed information about the dermoscopic dataset please refer to [START_REF] Tschandl | The HAM10000 dataset: A large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF].

Gray scale dermoscopic images

We employed 30 dermoscopic images randomly chosen from two different diagnostic categories (see examples in 5.1. Box plots for the significantly different scale factors are presented in Figure 5.8. The scale factor τ = 1 shows an outlier for melanocytic nevi but still accounts for a significant statistical difference. The results illustrate the ability of M SF 2D to distinguish melanoma from melanocytic nevi on the specified scale factors. Thus, M SF 2D forms a potential diagnostic tool for helping clinicians categorizing skin dermoscopic images as benign or malignant lesions and assisting in early diagnosis.

Our findings proved F uzEn 2D being a suitable measure for medical use on dermoscopic images through its extension, M SF 2D . This opens up the opportunity to employ F uzEn 2D and M SF 2D on other medical images and extend this study for a larger number of subjects. Those results were presented in our publication [START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF]. The * signifies the presence of statistically significant differences between the two groups.

Colored dermoscopic images

For this application on medical images, we study the effect of different color spaces and compare our results to those obtained with gray level co-occurrence matrices [START_REF] Robert M Haralick | Textural features for image classification[END_REF], the probably most used texture analysis technique. We employed the co-occurrence matrices of each channel (integrative way) for comparing the results to our single-channel approach, and its extended 3D co-occurrence matrices [START_REF] Philips | Directional invariance of co-occurrence matrices within the liver[END_REF] for comparing the results to our multichannel approaches. We thus adopted the following procedure: -2D co-occurrence matrices were created considering 4 orientations (0 • , 45 Then, we calculated the Haralick features for each co-occurrence matrix (for each orientation and distance). Finally, the average of features for all matrices was calculated to be compared with F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D values. Among the 14 features originally proposed by Haralick et al. [START_REF] Robert M Haralick | Textural features for image classification[END_REF], only six are commonly employed by researchers due to their correlation with the other eight, see Table 1.1.

We calculated F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D for 40 melanoma images and 40 melanocytic nevi images from the HAM10000 dataset [START_REF] Tschandl | The HAM10000 dataset: A large collection of multi-source dermatoscopic images of common pigmented skin lesions[END_REF] in the color spaces RGB, HSV, and YUV. For choosing the region of interest (ROI) of melanoma and melanocytic nevi images, we segmented the lesion as shown in Figure 5.9. Then, the central region of 128×128 pixels was selected, see Figure 5.9 (d). By adopting this procedure, we ensured that the same number of pixels was processed (equally sized images) and that no region outside the lesion was included. The parameters r and m were set to 0.15 and 2, respectively. To validate the statistical significance of F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D in differentiating melanoma from melanocytic nevi images, we used the Mann-Whitney U test. The resulting p-values are presented in Table 5.4. F uzEnC 2D shows statistical significance (for p cor <0.05) in differentiating melanoma and melanocytic nevi for the R, G, B, H, Y, and V channels. The p values were corrected using the Bonferroni method for the 40 subjects, p cor . In addition, using F uzEnV 2D and F uzEnM 2D , melanoma and melanocytic nevi images are identified as statistically different for the 3 color spaces. In addition, we calculate the Cohen's d to further validate our obtained statistical results, see Table 5.3. Most d values reflect "Large", "very Large", and "Huge" effect size (refer to Table 5.1), which validates the differentiation ability of our proposed measures. Furthermore, we compared F uzEnC 2D results with Haralick features from 2D cooccurrence matrices. The results show that F uzEnC 2D obtains lower p-values than Haralick features for the G, H, Y, and U channels and none of the methods result in statistical significance for the S channel. Additionally, we compared F uzEnV 2D and F uzEnM 2D results with Haralick features from 3D co-occurrence matrices, see Figures 5.10 F uzEnC K1 F uzEnC K2 F uzEnC K3 F uzEnV 2D F uzEnM 2D RGB 3.35×10 -9 7.07×10 -12 3.47×10 -11 9.01 ×10 -13 4.11 ×10 -12 HSV 2.90×10 -5

5.74×10 -2 1.53 ×10 -1 2.90 ×10 -5 2.90 ×10 -5 YUV 9.80×10 -6

1.79×10 -3 5.81×10 -4 4.59 ×10 -5 1.11 ×10 -5

In addition to the p-values test, the receiver operating characteristic (ROC) and area under the ROC curve (AUROC) of the results can be used as a criterion to measure the discriminative ability of our proposed measures. Since the best results (lowest p-values) were obtained for the RGB color space, we further plot the ROC curves (using [START_REF] Martínez-Cagigal | MATLAB Central File Exchange[END_REF]) for its F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D results, see Figures 5.12, 5.13, and 5.14, respectively.

Moreover, the AUC, sensitivity, specificity, accuracy, and precision are determined for the RGB, HSV, and YUV color spaces in Tables 5.5, 5.6, and 5.7, respectively. The results show that F uzEnC 2D has high accuracy and AUC values for R, G, B, H, Y, U, and V channels and the multichannel approaches (F uzEnV 2D and F uzEnM 2D ) for all the color spaces. For all entropy measures, the best accuracy and AUC were obtained for the RGB color space. Finally, we can say that the three entropy measures were able to differentiate both pigmented skin lesions. This was validated statistically by p-values, especially in the RGB color space. In the latter, F uzEnC 2D , achieved accuracies of 83.7%, 88.7%, 86.2% and AUC of 88.4%, 94.5%, 93%. On the other hand, F uzEnV 2D , reached an accuracy of 93.7% and AUC of 96.4%. In addition, F uzEnM 2D showed an accuracy of 91.2% and AUC of 95.0%. Moreover, F uzEnV 2D and F uzEnM 2D outperform both F uzEnC 2D and the classical descriptors, Haralick features, in differentiating the two similar malignant melanoma and benign melanocytic nevi dermoscopic images. These preliminary results could be the groundwork for developing an objective computer-based tool for helping medical doctors in melanoma that is often mistaken with the benign melanocytic nevi or is properly diagnosed in its late stages. We limited our investigation to three-channel color images. Consequently, future work could be directed towards multi-spectral color images. Moreover, we intend to compare our results with other texture analysis algorithms.

Cutaneous Microcirculation Assessment

In this section, we evaluate dermoscopic images showing skin regions at rest and during heating using F uzEnC 2D [START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF]. The goal is to test if our method is able to distinguish two kinds of microcirculation states, i.e. resting state and vasodilated microcirculation. For more details about the cutaneous microcirculation please refer to Chapter 1, section 1.6.2. This is of special importance as several studies stated that microvascular dysfunction might be a direct indicator for cardiovascular diseases. Moreover, monitoring hemodynamic coherence between the micro-and macro-circulations using a fast and easily-accessible manner is particularly important for bedridden patients surveillance [START_REF] Hariri | Narrative review: clinical assessment of peripheral tissue perfusion in septic shock[END_REF][START_REF] Franco | Recent advances in bedside microcirculation assessment in critically ill patients[END_REF][START_REF] Ince | Hemodynamic coherence and the rationale for monitoring the microcirculation[END_REF].

The dermoscopic images of nine healthy volunteers (8 women and 1 man, age: 36.5 ±11 years) were studied. The nine volunteers provided written consents for participating and the study was performed in accordance with the Declaration of Helsinki. We employed 18 skin dermoscopy images (256×256 pixels) for 2 different cutaneous microcirculatory states: at rest (normal) and during heating (vasodilation). The images were taken at the department of dermatology of Angers Hospital, France using a Medicam800HD system with a resolution of 1920×1080 full HD and 2 megapixels. Vasodilation is the state of blood vessel dilatation which is accomplished by warming up the inspected skin region in our study. Applying heat locally dilates the microcirculatory vessels and eventually increases local skin blood flow. Heat (> 40 • C) was applied for a duration of 2 minutes to a region at 3 cm from the antecubital fossa on the left arm of every volunteer.

Results

For our application on dermoscopic medical images, the results are shown in Figure 5.15. To validate the significance of our results we used the Wilcoxon signed rank test where a statistically proven significance is defined for p < 0.05. We obtained statistical significance for the red and green channels (U R and U G ) with p-values 0.01 and 0.03 respectively.

We used Haralick texture descriptorsthe probably most commonly used image texture descriptorsfor comparing the results with those of our proposed F uzEnC 2D (for more details please refer to section 1.1.1). The results are presented in Table 5.8. The "-" sign replaces the undefined values. Using Wilcoxon signed rank test, no statistically proven significance was found between the two microcirculation states using the Haralick features. This proves an advantage for F uzEnC 2D by its ability to statistically differentiate the vasodilated and normal microvascular states whereas Haralick texture descriptors cannot.

The results show statistically proven differentiation for the red and green channels patients with emphysema is presented in Figure 5.16. The latter shows that pM F uzEn 3D is able to reveal entropy differences with scales and between slices. Continuing this work for a larger number of HRCT scans could lead us to some useful medical findings in the field of COPD. Further studies will also be developed for groups with different degrees of emphysema.

These results came from our first application for adapting bidimensional entropy measures to volumetric data, using pM F uzEn 3D . The results were promising and encouraged us to develop the 3D based entropy measures. For the other applications on 3D medical data, we will be employing the volumetric entropy measures directly.

With all what is going on in the world right now and the spread of the new SARS-CoV-2 virus which is a type of pulmonary diseases, this study gains more attention. Provided the sufficient resources we should continue in analyzing those images to probably provide a digital tool to aid medical doctors in identifying and staging the encountered lung diseases using a computer-based objective method. This study was submitted as a one page paper and presented in an invited session for "Identification of Cardiopulmonary Function" at the EMBC 2019.

Idiopathic Pulmonary Fibrosis (IPF)

After performing validation tests for our tridimensional entropy measure and its multiscale approach, we applied it to lung HRCT scans of healthy and Idiopathic Pulmonary Fibrosis (IPF) patients. M F E 3D algorithm was applied to a dataset of 52 volumetric HRCT scans for 26 healthy subjects and 26 IPF patients. The study included 43 male and 9 female subjects. The average age of the subjects was 76.8 ± 8.5 years which is in agreement with the typical age of IPF incidence. This work was performed in collaboration with university of Coimbra, Portugal.

The patients with IPF were recruited at the competence center for rare pulmonary diseases in the department of Respiratory Medicine at Rennes University Hospital, Rennes-France. These patients were diagnosed with stable IPF, as defined in multidisciplinary discussions, having no infection or exacerbation in the 8 weeks preceding their first appointment. The study was performed in accordance with the Declaration of Helsinki under the IRB approval number 19.82.

The healthy individuals for this study are subjects who underwent HRCT scans to rule out various pathologies. Their HRCT scans were verified by an expert chest radiologist to confirm the absence of abnormal structures within the lung parenchyma and thus be considered as healthy.

All the HRCT scans were obtained with a dose of 100 kVp and 120 kVp for 32 and 20 subjects, respectively, and the reconstruction matrices were of 512×512 pixels per scan, with a pixel spacing mean value of 0.731 ± 0.046 mm. Most of the scans were performed without IV contrast. The slice thickness was either 1.25 mm (34 subjects), 1.00 mm (14 subjects), or 0.625 mm (4 subjects). For each individual, a volume of 50×50×50 voxels, from the basal and sub-pleural pulmonary region, has been segmented, resulting in volume heights up to 62.5 mm when considering 50 slices along the z-axis.

The segmentation procedure was performed by scanning the HRCT scans bottom-up, searching for a volume with less of 5% zero-values pixels (totally dark region) to avoid external regions of the lung. The bottom-up procedure was adopted due to the typical basal and peripheral predominance of IPF, because IPF patients are mostly affected in the basal and peripheral regions of the lungs [START_REF] David | Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper[END_REF][START_REF] Raghu | Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline[END_REF]. The first volume fitting the description was the one being selected. The volume selection is clearly illustrated by [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF] knowing that the HRCT scans are composed of 512×512× N z voxels, see Figure 5.17. These volumes were segmented from the right lung (as a random selection). Based on that, the segmentation procedure was generalized and automatically performed for all the subjects. Within these volumes, typical UIP (usual interstitial pneumonitis) patterns were evaluated using our proposed entropy measure M F E 3D .

The average of F uzEn 3D values at each scale factor τ for the HRCT scans of healthy individuals and IPF patients are presented in Figure 5.18. The parameters were set as m = 3, r = 0.2, n = 2, and τ max =10. It is observed that for most scale factors the average F uzEn 3D for healthy subjects are lower than those of IPF patients.

To validate the statistical significance of the results obtained a Wilcoxon rank sum test (for independent groups) was performed. Statistically significant differences were considered for p-values strictly less than 0.05. This was observed for five scale factors: τ =3, 4, 6, 7, and 8 with p-values 2.9×10 -5 , 7.0×10 -6 , 1.9×10 -5 , 3.9×10 -5 , and 2.5×10 -5 , respectively. An " * " sign is indicated in Figure 5.18 for the scale factors on which F uzEn 3D is statistically significantly different for healthy and IPF lung scans.

The results showed M SF 3D 's ability to distinguish healthy from IPF HRCT scans on five scale factors. This is illustrated especially for scale factors: τ =3, 4, 6, 7, and 8. Moreover, the effect size (Cohen's d) was calculated for the statistically significant scale factors results and "Large" to "very Large" effect size values were obtained. The latter validated even more the ability of M SF 3D to distinguish the two compared groups, healthy and IPF suffering subjects. Based on those promising results, M SF 3D could be seen as a potential screening tool aimed to do a preliminary identification of UIP patterns in the future.

The development of a multiscale tridimensional fuzzy entropy algorithm could be a useful tool in the evaluation of HRCT of patients with IPF for early detection and quantification of the UIP patterns, through a irregularity and complexity assessment. The study on IPF patients was published as a journal paper in the IEEE journal of biomedical health and informatics, JBHI [START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF].

COVID-19

The outbreak of this novel version of coronavirus (SARS-CoV-2) causing COVID-19, encouraged intensive research race to provide answers for all the questions raised concerning:

-its background or origin -its diagnosis -the evolution of the disease with time -the long term effects on patients -and of course the possible cure.

Starting from our responsibility and the ability of the image processing tools that we have developed, we performed a study on COVID-19 patients scans (for medically confirmed cases) and compared them to the results obtained for IPF in the previous section. This work was also performed in collaboration with the University of Coimbra, Portugal.

The acquisition of the studied COVID-19 patients' CT scans was performed at the University Hospital of Rennes, France between March 26 and April 17 of 2020, under the IRB approval number 19.6 in accordance with the Declaration of Helsinki. The COVID-19 patients underwent a reverse transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2 and then a non-contrast chest CT scan for the positive SARS-CoV-2 patients was acquired.

The IPF patients were diagnosed with stable IPF and were followed up with, at the competence center for rare pulmonary diseases, Department of Respiratory Medicine, patients, a significant reduction in mean uterine volume and in dominant fibroid volume was noted after the embolization. All patients had an excellent recuperation and were able to return to their normal activity. After the procedure, few patients experienced minimal bleeding. Three (15%) of participants had persisting urinary signs after procedure. None reported any new clinical issue during the follow-up period.

The first step in the data processing was to extract the fibroid region for each patient. The smallest volume selected was 96×96×28 voxels and the largest sized 210×210×28 voxels. The fibroids selection was customized for each patient due to the fact that for each case the fibroids existed at a different location and were of various sizes. For patients with several fibroids, the largest was considered. After that, the selected fibroids volumes were processed using M SF 3D . The parameters were set as m= 2, r = 0.24, n = 2, and

τ max =10.
Then a complexity index, CI, based on [START_REF] Madalena | Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series[END_REF] is calculated. This values is unique for each ROI and is defined as the sum of the entropy values for some consecutive scale factors from τ 1 to τ 2 as:

CI = τ 2 τ 1 F uzEn 3D .
(5.2)

For our findings, we choose τ 1 =8 and τ 2 =10 based on the curves' behavior. Between the aforementioned scale factors the curves behave in a similar way, that is why we chose those exact two values for the complexity index. The results are depicted in Figure 5.21. Then for validating the statistical significance for differentiating the three acquisitions (D0, D10, and M6) we calculated the p-values between each 2 groups using the Wilcoxon rank sum test. The p-values are displayed in Table 5.11. The three p-values are less than 0.05. This indicates that M SF 3D was able to distinguish the three MRI set of images of the three states D0, D10, and M6 for a complexity index composed between the scale factors τ =8 and τ =10. for UAE patients at the three time intervals D0, D10, and M6. The parameters for M SF 3D were set as m= 2, r = 0.24, n = 2, and τ max =10.

Conclusion

In this chapter we presented our results on medical data. We employed our developed measures to study bidimensional gray scale and colored dermoscopic images of PXE, melanoma, and melanocytic nevi. We also performed a study on the colored dermoscopic images for cutaneous microcirculation assessment. These studies illustrated promising results so we continued with applying our developed tridimensional measures on volumetric medical data. We presented herein analysis for CT, HRCT, and MRI data for different medical cases such as COPD, IPF, UAE, and COVID-19. Some of the results are preliminary but they illustrated to be very promising. Several continuation paths could be taken based on those results.

CONCLUSION AND PERSPECTIVES

Developing computer-based measures for applications in the medical field helps improve prognostic, diagnostic, follow up, and predictive ability. It provides objective assessment for the data and aids medical doctors in making decisions, identifying abnormalities, and eventually saving lives.

As presented in this manuscript, we have developed entropy measures based on the information theory concept [START_REF] Hilal | Bidimensional Multiscale Fuzzy Entropy and its application to pseudoxanthoma elasticum[END_REF][START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF][START_REF] Hilal | Bidimensional fuzzy entropy: Principle analysis and biomedical applications[END_REF][START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF][START_REF] Hilal | Skin alterations in pseudoxanthoma elasticum patients highlighted by the bi-dimensional sample entropy algorithm[END_REF][START_REF] Sofia | Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images[END_REF]. These methods were illustrated to possess an ability to analyze gray scale images, colored images, and finally volumes. Several validation tests were performed for each measure separately. In addition to the specially designed tests for each measure, they are were validated upon:

-changes in the initial parameters: tolerance level, moving template size, and similarity degree function -ability to quantify the increasing irregularity degrees in the bidimensional and tridimensional levels -complexity evaluation for the analyzed gray scale images and volumes through the multiscale approach

Our proposed texture analysis tools found successful applications on different kinds of medical images.

Since the 2010's, entropy measures have been extended from the 1D to the 2D case to deal with images and are forming potent bidimensional irregularity measures. In our work, we studied a new 2D entropy measurethe so-called bidimensional fuzzy entropy (F uzEn 2D ) -that outperforms existing bidimensional entropy measures. We first assessed its sensitivity to parameters, then analyzed its behavior upon rotation and translation, and finally showed its multiscale application in the biomedical field (dermoscopic images). To validate the output of the newly introduced F uzEn 2D and its multiscale extension, a set of synthetic images based on several concepts in image processing (including power of noise and degree of randomness) and texture datasets were used. The results for synthetic images illustrate that F uzEn 2D has low sensitivity to the chosen parameters and it is rotation and translation invariant. Moreover, it outperforms the already existing bidimensional entropy measures. We then employed our developed measure. and its multiscale version M SF 2D , to PXE dermoscopic images. PXE is a rare disease that causes several cutaneous, cardiovascular, and ophthalmic complications. Thus, the earlier the diagnosis is, the better the monitoring and prevention will be. PXE establishes a certain textural behavior on the skin that cannot be always identified visually even through dermoscopy. This creates an essential need for developing an objective technique that can identify the presence of this disease in its early stages (the initial cutaneous symptoms).

We proposed an image processing framework to help in the detection of papules from dermoscopic images. We employed our newly developed M SF 2D on a PXE dermoscopic images dataset. The primary M SF 2D results seem to be promising in distinguishing a group of healthy skin images from diseased ones with statistically significant values for the first two scale factors with noticeable large effect sizes.

In the future, it would also be interesting to use M SF 2D to track how the skin pathology evolves upon potential treatment follow up, due to the fact that there is no definite treatment for this disorder yet. This contribution would influence the research in this field and could help in its escalation. The results of F uzEn 2D and M SF 2D for the synthetic and real images illustrate the potential of the proposed method in analyzing various images in different possible applications.

Moreover, using M SF 2D we evaluated dermoscopic melanoma (malignant lesion) and melanocytic nevi (benign lesion) images and the results are found to be interesting for a potential diagnostic application. Furthermore, after the successful finding on gray scale images using M SF 2D we employed the colored approach to reveal the information hidden within the color components of our studied PXE images and other dermoscopic images.

Texture analysis is a subject of intensive focus in research due to its significant role in the field of image analysis. It is a fast-evolving research topic. However, few are the studies focusing on colored texture analysis. Therefore, based on the importance of the information that could be revealed by colors in images, we introduced the new colored bidimensional fuzzy entropy measure in its single-channel approach, F uzEnC 2D , and multi-channel approaches, F uzEnV 2D and F uzEnM 2D . We investigated their sensitivity to parameters and ability to identify images with different irregularity degrees. Moreover, we studied their behavior with colored Brodatz images in different color spaces. After verifying the results with test images, we employed those methods for analyzing dermoscopic images of the deadliest type of skin cancer, melanoma, and the benign melanocytic nevi. Furthermore, we investigated the PXE colored images for potential important findings besides the gray scale analysis using M SF 2D . In addition, a preliminary study on the cutaneous microcirculation assessment for dermoscopy images was performed.

The bidimensional proposed algorithms showed very promising results for 2D medical images. To expand our medical application we developed a tridimensional entropy measure and its multiscale approach as well to study volumetric scans. F uzEn 3D and M SF 2D were applied to CT scans, HRCT scans, and MRI scans belonging to patients of COVID-19, IPF, and uterine fibroma, respectively. This application was unique and allowed us to investigate volumetric data differently. The results are very encouraging and urged us to continue in this scope for the coming research work as well.

Perspectives and future steps

Several interesting research work pathways could be taken based on the work performed in this manuscript. The research world is leaning towards computer aided diagnosis tools in which our developed algorithms could play an important role. First we could start by comparing all the results obtained by our developed entropy measures with those given by other texture feature extraction algorithms (different from the ones found in the manuscript). This would provide validation on a larger scale. Then, based on those results, we could increase the number of processed images or volumetric scans and use also other datasets for the discussed medical cases in order to guarantee reproducible results with different datasets.

Nevertheless, remote diagnosis is also being considered as one of the important topics nowadays. The COVID-19 outbreak highlighted again the need for remote diagnosis using the available platforms especially for such highly infectious diseases. Enhancement of computer based diagnosis methods, including our developed algorithms, could highly serve this domain with ensuring the least possible contact between the medical doctors and patients. In addition, long term monitoring for some diseases could be made much easier with computer based methods over distance. Diagnosis could become more accessible and feasible globaly.

As the discipline of non-linear statistics continues to prove its encouraging results, we would suggest introducing our methods into the machine learning applications as a future step. Our developed measures have proven their consistency each applied separately. However, in machine learning we could combine their outputs and investigate their classification efficiency when employed all together. This path could be employed for bidimensional gray scale and colored images measures, as well as, the volumetric measures.

Upgrading to end-to-end analysis might lead to even better results. As the obtained medical images, especially for 3D scans, pass through some major pre-processing steps adapted to the human visual perception, we would propose starting trial with end-to-end analysis. In other words, introducing images directly from the machine to the algorithm without passing by the image enhancement and pre-processing techniques might have even better results.

Expanding the colored entropy measures study and investigating adapted application and analysis for each of the different color space families. As the colored texture image domain is very wide with utilization in various fields.

Although the used fuzzy function (exp(-(d m ) 2 /r)) led to interesting results, other fuzzy functions could be also investigated.

Last but not least, several multiscale approaches could emerge based on our work. For the bidimensional entropy measures, a multiscale approach could be also introduced for the colored textures. This should reveal some extra in depth information contained in the coarse-grained versions of the colored texture images. Moreover, different coarsegraining methods could be employed for the bidimensional and tridimensional entropy measures. We only utilized two coarse-graining methods in this manuscript. Thus, it would be interesting to investigate all the others for the gray scale, colored, and volumetric data. 

Workshops and other responsibilities

I had the chance to co-supervise an engineering student and a research masters student during their internships at LARIS. It was such an important experience in my professional career and taught me a lot. I attended a total of 150 hours of classes and workshops among which there was some pedagogic trainings, machine learning workshops, scientific communications classes, and team management skills.

I also participated at the IUT international week in its 2018 and 2019 editions. It was an enriching experience. I had the chance to be envolved and meet teachers and researchers from different countries. I participated in the Nuit des Chercheurs that took place for 2 consecutive years at Le Quai -Angers and attended the scientific communication workshop. These two experiences allowed me to improve my communication skills and my ability to explain a complex scientific idea to people of different backgrounds, ages, and education levels.

I attended with GdR ISIS (Information, Signal, Image and ViSion) the following workshops: 2 nd meeting on medical image analysis and IA for COVID-19 (May 2020), Evaluation de la qualité subjective et objective de données 3D (June 2020), Journée "Carrières en Signal, Image & Vision" à destination des doctorants (March 2019).

work was based on the recently-introduced bidimensional version of the sample entropy measure, SampEn 2D . This study was published as a conference paper [START_REF] Hilal | Skin alterations in pseudoxanthoma elasticum patients highlighted by the bi-dimensional sample entropy algorithm[END_REF].

In our work, the parameters chosen for the computation of the bidimensional sample entropy were m= 2 and r = 0.15. The results obtained from SampEn 2D are shown in Figure 6.2. From the latter, we observe that the mean bidimensional entropy value of the Figure 6.2 -Boxplots of the bidimensional sample entropy (SampEn 2D ) values obtained from dermoscopy images recorded in PXE patients on the neck (zone with papules) and on a normal zone. The * signifies the presence of statistically significant differences between the two groups neck images is lower than the one of the normal zone. A statistical analysis is performed to analyze if these differences could be considered as significant. For this purpose, the Wilcoxon signed rank test was used. A p-value strictly less than 0.05 was considered to define statistical significance. The results show that p = 0.03125. The bidimensional sample entropy values are therefore statistically significantly lower for dermoscopic images recorded in the neck than for dermoscopic images recorded in a normal zone.

Afterwards we developed this study using our newly developed F uzEn 2D and extended it to the multiscale approach for a larger population gray scale dermoscopic images, see Section 5.2.1. Later on, we studied the dermoscopic images using the colored entropy 182 measures, see Section 5.2.2. Titre : Mesures basées sur la théorie de l'information pour l'analyse d'images : Développement de mesures d'entropie bidimensionnelles et tridimensionnelles pour l'évaluation de la texture des images et applications au domaine biomédical.

Mot clés : Entropie, theorie de l'information, textures, irrégularité, complexité.

Résumé : Le développement de mesures informatisées pour le domaine médical contribue à améliorer la capacité de diagnostic, de pronostic et de suivi. Cela fournit une évaluation objective des données et aide les médecins à identifier des anomalies et à prendre des décisions. Dans ce manuscrit de thèse, nous avons développé des mesures d'entropie basées sur la théorie de l'information. Nous montrons que ces méthodes ont la capacité de quantifier l'irrégularité des images en niveaux de gris, des images couleurs, et enfin des volumes. Nos algorithmes ont trouvé des applications prometteuses dans l'analyse de texture pour différents cas cliniques : traite-ment d'images de dermoscopie de mélanome, de pseudoxanthome élastique et l'analyse de la microcirculation cutanée. En outre, après des résultats concluants sur des images en niveaux de gris, nous avons utilisé l'approche couleurs sur l'images de dermoscopie. Enfin, pour étendre nos applications médicales, nous avons utilisé nos mesures d'entropie tridimensionnelles pour analyser des acquisitions volumétriques. Ces méthodes ont permis d'étudier des tomographies, des tomographies haute résolution et des volumes IRM dans des cas cliniques de COVID-19, de fibrose pulmonaire idiopathique et de fibrome utérin, respectivement.

Title: Information-theory based measures for image analysis: Development of two-and threedimensional entropy measures for image texture evaluation and their application to the biomedical field.

Keywords: Entropy, information theory, textures, irregularity, complexity, medical images.

Abstract: Developing computer-based measures for applications in medical field helps to improve prognostic, diagnostic, follow up, and predictive abilities. It provides objective assessment for the data and aids medical doctors in making decisions, identifying abnormalities, and eventually saving lives. In this thesis manuscript, we developed entropy measures based on the information theory concept. These methods were illustrated to possess an ability to analyze irregularity of gray scale images, colored images, and finally volumes. Our proposed algorithms found promis-ing applications in texture analysis for different medical cases such as melanoma, pseudoxanthoma elasticum, and cutaneous microcirculation analysis. Furthermore, after the successful findings on gray scale images, we employed the colored approach for dermoscopic images. Finally, to expand the medical applications, we used our tridimensional entropy measure to study volumetric scans. These methods were employed to study CT scans, HRCT scans, and MRI scans for COVID-19, idiopathic pulmonary fibrosis, and uterine fibroma cases, respectively.
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 11 Figure 1.1 -Example of texture images from Kylberg dataset.
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 12 Figure 1.2 -Example of texture images ordered from regular to stochastic (left to right) based on two quantitative measures. Adapted from [39].
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 13 Figure 1.3 -(a) An example of a 4×4 gray scale matrix showing 3 levels; (b) Numerical values for the matrix's gray levels. Circled in black: choosing interpixel distance d=1 and horizontal direction (0 • ), we consider the occurrence of two neighboring (1, 2) pixels; (c) The occurrence of paired pixels is counted and indicated in the GLCM. As shown above it is three times for (1, 2) horizontal pixel pairs (circled).The same procedure is calculated for all pixel pairs in the chosen direction and d. Adapted from[START_REF] Larroza | Texture analysis in magnetic resonance imaging: review and considerations for future applications[END_REF].

  i.e. a set of basic functions form the texture through a linear combination. Those approaches include fractal model and Markov model. -Graph-based approaches such as local graph structures and shortest paths in graphs. -Learning-based approaches; i.e. machine and deep learning methods that are attaining more and more attention recently in several fields of application. They basically include training of texture images and then classification based on several features. They require very large dataset for optimal results and effective training. -Entropy-based approaches use the information theory concept applied to signals at first and then recently developed for textures. They study the patterns within images and could be optimized through the initial defined parameters. Those will be detailed in section 1.4.2.
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 14 Figure 1.4 -Example of water states illustrating entropy as a function of the distribution and spread of particles. Blue balls 'W' represent water molecules and green balls 'S' represent any other molecule.In simple words, if we need to pick a ball from each state, we have 100% certainty of picking 'W' in the solid state. This percentage decreases gradually for liquid and gas states as we become less certain about the outcome of our random pick. Adapted from[61].
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 15 Figure 1.5 -Schematic demonstration for ApEn 1D and SampEn 1D . Adapted from [82].

Figure 1 . 6 -

 16 Figure 1.6 -Heaviside function compared to an exponential function. Adapted from [86]).

Figure 1 . 7 -

 17 Figure 1.7 -Illustration of MSE 1D for time series. τ is the number of points taken in each window to form the new coarse grained time series y (τ ) .

Figure 1 . 8 -

 18 Figure 1.8 -An illustration for pattern comparisons using SampEn 2D depicted from [19]. (a) is an example of a gray image with a certain irregularity degree. (b) is an amplified view of a window to explain the similarity calculations. Two patterns (dotted yellow squares) are considered to be similar if the difference between all their corresponding scalar components is lower than or equal a tolerance value r; i.e. |u(12, 18) -u(9, 21)| ≤ r, |u(12, 19) -u(9, 22)| ≤ r, ...., |u(14, 20) -u(11, 23)| ≤ r.
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 110 Figure 1.10 -Schematic diagram for a dermoscope. Adapted from [100].

Figure 1 . 11 -

 111 Figure 1.11 -Schematic demonstration of the dermal and subdermal plexus. We can notice two important dermal horizontal plexuses: the upper horizontal plexus located at 1 -1.5 mm from the skin surface (at the level of dermal papillae), and the lower horizontal plexus at the dermal subcutaneous junction. Adapted from [104].
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 112 Figure 1.12 -Schematic demonstration for microcirculation anatomy. It shows the arteriole and venule connected by the capillaries where the main exchange of nutrients happens. Adapted from [106].

Figure 1 . 13 -

 113 Figure 1.13 -PXE is a hereditary autosomal recessive disease for which the probability of occurrence in the children if the parents are carriers is illustrated above. Adapted from [113].

Figure 1 .

 1 Figure 1.14 -PXE skin manifestations: cutaneous papules appearing on the neck of a PXE patient in an advanced stage. CHU Angers -department of Dermatology.

Figure 1 . 15 -

 115 Figure 1.15 -PXE ophthalmic manifestations: florescent angiogram for the the Bruch's membrane cracks "Angiod streaks" caused by the calcification due to PXE proliferation. Adapted from [114].

Figure 1 .

 1 Figure 1.16 -PXE manifestations in the body targeting the elastic fibers and connective tissues mainly in the eyes, arteries, and skin. Adapted from [120].

  .

  [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF]

  .

Figure 1 . 17 -

 117 Figure 1.17 -Image of melanoma (right) and melanocytic nevi (left).
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 118 Figure 1.18 -Illustration of the manifestation of COPD in the respiratory system: chronic bronchitis (top pannel) where bronchoconstriction occurs and emphysema (bottom pannel) where the alveolus become damaged. Both cause shortness in breath (dyspnea) and chronic cough. Adapted from [133].

Figure 1 . 19 -

 119 Figure 1.19 -Idiopathic Pulmonary Fibrosis (IPF) main lung symptoms. Adapted from [136].

  Those remain the most common symptoms in most COVID-19 case. Upon showing symptoms, COVID-19 patients are confirmed to have the disease through a reverse transcription polymerase chain reaction (RT-PCR) test. Two examples for COVID-19 manifestation in the lungs are shown in Figure 1.21.

Figure 1 .

 1 Figure 1.21 -(a) COVID-19 patient of 35 years old presenting fever and headache for one day. A pure ground glass opacity is shown in the right lower lobe. (b) COVID-19 patient of 47 years old presenting fever for 7 days. Consolidation is shown in the right lobe subpleural area. the right lower lobe (red frame).Adapted from[START_REF] Ye | Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review[END_REF].
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 21 Figure 2.1 -Illustration for F uzEn 2D of a gray scale image with m = 3.

Figure 2 . 2 -

 22 Figure 2.2 -Illustrative schema for F uzEn 2D algorithm.

Figure 2 .

 2 3 illustrates an example for τ = 1, 2, and 3. 1. A non-overlapping 2D window scans the whole image and the pixels of each window are averaged. The obtained mean values form the coarse-grained images Y (τ ) , which are not subsets of the original image. Alternatively, they carry information about the whole original image. Y (τ ) = {y (τ )

Figure 2 . 3 -

 23 Figure 2.3 -Illustration for M SF 2D of an image U = {u i,j } for τ = 1, 2, and 3.

  Sizes m and m+1 stand for [m,m] and [m + 1,m + 1] that are made up of m × m and (m + 1) × (m + 1) pixels, respectively.

Figure 2 . 4 -

 24 Figure 2.4 -Illustration for F uzEnC 2D of an RGB color space image. (a) the image U is split into its corresponding channels U R , U G , and U B , respectively from left to right; (b) the embedding dimension pattern of size m × m having m= [2, 2]; (c) X m i,j,K and X m a,b,K for K = K1, K2, and K3 being the R, G, and B color channels, respectively.

Figure 2 . 5 -

 25 Figure 2.5 -Illustrative schema for F uzEnC 2D algorithm.

  be the total number of cubes that can be generated from U for both m and m+1 sizes. Sizes m and m+1 stand for [m, m, m] and [m + 1, m + 1, m + 1] that are made up of m × m × m and (m + 1) × (m + 1) × (m + 1) voxels, respectively.
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 26 Figure 2.6 -Illustration for F uzEnV 2D of an RGB color space image having m= [2, 2, 2]. (a) represents a portion of the colored image U with its R, G, and B channels; (b) the scanning pattern or embedding dimension with m= [2, 2, 2] that is a 2 × 2 × 2 cube; (c) X m i,j,k and X m a,b,c .

Figure 2 . 7 -

 27 Figure 2.7 -Illustration for F uzEnM 2D of RGB color space image having m= [2, 2, 3].

Figure 3 .

 3 1 presents a simplified visual illustration for pM F uzEn 3D .

Figure 3 . 1 -

 31 Figure 3.1 -Illustration for pM F uzEn 3D of a volume of several 2D scans. pM F uzEn 3D is the F uzEn 2D measure values from the original volume and its coarse-grained 2D scans.

Figure 3 . 2 -

 32 Figure 3.2 -Illustration for F uzEn 3D of a volume having m = [5,5,5]. (a) represents a portion of the volume V to be studied; (b) the fixed C m i,j,k and scanning C m a,b,c cubic patterns for m = [5,5,5] size; (c) a voxel v i,j,k from V.
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 33 Figure 3.3 -Illustration for M SF 3D coarse-grained volumes Y(1) , Y(2) , and Y(3) of an original volume,

Figure 4 . 1 -

 41 Figure 4.1 -A representation for the exponential function exp(-(d m ij ) n /r) with different parameters choice. (a) Exponential function for fixed fuzzy power n = 2 and varied r (0.1, 0.2, 0.3, and 0.4). (b) Exponential function for fixed r = 0.15 and varied n (2, 4, 6, and 8).
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 42 Figure 4.2 -MIX 1D (p) family of signals. The higher the p value is, the higher the degree of the irregularity will be (p ranging from 0 to 1).

Figure 4 . 3 -

 43 Figure 4.3 -MIX 2D (p) family of images. The higher the p value is, the higher the degree of the irregularity will be (p ranging from 0 to 1).

  .

  4. 

Figure 4 . 4 -

 44 Figure 4.4 -MIX 3D (p) family of volumes. The higher the p value is, the higher the degree of the irregularity will be (p ranging from 0 to 1).

Figure 4 . 5 -

 45 Figure 4.5 -Power spectral density (PSD) of four noise-based volumes of 1/f β : brown (dark red), pink (light pink), white (black), and blue (dark blue) noise. The trend-lines are presented as thicker lines.Adapted from[START_REF] Sofia | Three-dimensional Multiscale Fuzzy Entropy Applied To CT Scans Of Idiopathic Pulmonary Fibrosis Patients[END_REF].

Figure 4 . 6 -

 46 Figure 4.6 -Artificial periodic textures a, b, c (top panels) and their corresponding synthesized textures (bottom panels) from [35].

Figure 4 .

 4 8(a). -cube 2: half white and half black volume, see Figure 4.8(b). -cube 3: volumetric checkerboard pattern, see Figure 4.8(c). -cube 4: volumetric diagonal stripes, see Figure 4.8(d). -cube 5: Gaussian distribution of voxels with mean µ=0 and standard deviation σ=1, see Figure 4.8(e). -cube 6: integer values between 1 and 10 following a uniform random distribution, see Figure 4.8(f).
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 49 Figure 4.9 -Multiscale F uzEn 1D and F uzEn 2D for WGN and pink noises with n = 2, m= 2, and r = 0.25.

Figure 4 .

 4 Figure 4.10 -F uzEn 2D and SampEn 2D for a 256 × 256 pink noise image with varying tolerance level r.

Figure 4 .

 4 Figure 4.11 -F uzEn 2D for twenty WGN 2D images upon increasing n.
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 412 Figure 4.12 -Four randomly chosen Mondial Marmi granite images.

Figure 4 . 13 -

 413 Figure 4.13 -The results for hardware, bicubic, and bilinear rotated images from left to right.

Figure 4 . 14 -

 414 Figure 4.14 -Ten F uzEn 2D and SampEn 2D repetitions for 256×256 pixels of MIX 2D (p) images (m= 1, 2, 3).

Figure 4 . 15 -

 415 Figure 4.15 -Ten F uzEn 2D and SampEn 2D repetitions for MIX 2D (p) images of varying size in pixels (m= 2).

Figure 4 . 17 -

 417 Figure 4.17 -The widely used 512 × 512 pixels Lena gray scale image.
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 464 F uzEn 2D for artificial periodic textures and their synthesized textures (please see Figure

Figure 4 .

 4 Figure 4.18 -M SF 2D and MSE 2D for ten pink, brownian, blue and white 2D noise images.

Figure 4 .

 4 Figure 4.19 -M SF 2D and MSE 2D for W GN 2D , pink noise, and MIX 2D (0.2) images (from left to right) with m= 2, and r = 0.25.

4. 4 F

 4 uzEn 2D , F uzEnL 2D , and F uzEnGL 2D Comparison We performed some other tests to compare global bidimensional fuzzy entropy approach, F uzEn 2D , the local bidimensional fuzzy entropy approach F uzEnL 2D , and F uzEnGL 2D that considers both the global and local characteristics. The tests use pink and WGN 2D images.

Figure 4 . 20 -

 420 Figure 4.20 -Bidimensional fuzzy entropy measures for a 200 × 200 MIX 2D (0.1 ), MIX 2D (0.5 ), and MIX 2D (0.9 ).

Figure 4 . 21 -

 421 Figure 4.21 -Multiscale bidimensional fuzzy entropy measures for a 300 × 300 WGN 2D and pink noise images, m from 1 to 3.

Figure 4 . 22 -

 422 Figure 4.22 -Multiscale bidimensional Fuzzy entropies for a 300 × 300 WGN 2D and pink noise images, m from 4 to 6.

Figure 4 . 23 .

 423 Similarly we repeat this test without downsampling the coarse grained images using M M SF 2D , Figure4.24.

Figure 4 .

 4 Figure 4.23 -M SF 2D for W GN 2D , pink noise, and MIX 2D (0.2) images (from left to right) with n = 2, m= 2, and r = 0.25.

Figure 4 .

 4 Figure 4.24 -M M SF 2D for W GN 2D , pink noise, and MIX 2D (0.2) images (from left to right) with n = 2, m= 2, and r = 0.25 without downsampling.

Figure 4 . 25 -

 425 Figure 4.25 -Images used for evaluating F uzEnC 2D : 256×256 pixels checker board image (a), 256×256 pixels colored Brodatz texture (b).

Figure 4 . 26 -

 426 Figure 4.26 -Sensitivity of F uzEnC 2D to variation in the values of r and m.

Figure 4 .

 4 Figure 4.27 -F uzEnC 2D for checker board pattern added with MIX 2D (p).

Figure 4 . 28 -

 428 Figure 4.28 -640x640 pixels colored Brodatz textures.

FuzEn

  R2D FuzEn G2D FuzEn B2D texture (a) 0.19±0.02 0.22±0.02 0.23±0.03 texture (b) 0.55±0.01 0.78±0.02 0.52±0.01 texture (c) 0.33±0.00 0.61±0.01 0.52±0.01 texture (d) 0.26±0.02 0.30±0.02 0.24±0.02 texture (e) 0.35±0.03 0.35±0.03 0.41±0.04 texture (f) 0.82±0.02 0.78±0.02 0.56±0.01 4.7 F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D Validation
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 429 Figure 4.29 -F uzEnC 2D results for the red, green, and blue channels (left to right) of the colored Brodatz image, Figure 4.35 (f), with varying r and m.

Figure 4 .

 4 Figure 4.30 -F uzEnV 2D results with varying r and m of the colored Brodatz image, Figure 4.35 (f).
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 431 Figure 4.31 -F uzEnM 2D results with varying r and m of the colored Brodatz image, Figure 4.35 (f).

Figure 4 . 32 -

 432 Figure 4.32 -F uzEnC 2D mean and standard deviation for MIX 2D (p) images with 10 repetitions.

Figure 4 . 33 -

 433 Figure 4.33 -F uzEnV 2D mean and standard deviation for MIX 3D (p) images with 10 repetitions.

Figure 4 . 34 -

 434 Figure 4.34 -F uzEnM 2D mean and standard deviation for MIX 3D (p) images with 10 repetitions.
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 435 Figure 4.35 -Colored Brodatz texture images, CBT.

Figure 4 .

 4 Figure 4.36 -F uzEnC 2D results for the 144 sub-images and 300×300 pixels of the CBT in the three color spaces: RGB, HSV, and YUV, with K1, K2, and K3 being the first, second, and third channel, respectively. The mean of the 144 subimages is displayed as a "•" sign and the value for the 300×300 pixels is displayed as " * ".

Figure 4 .

 4 Figure 4.37 -F uzEnV 2D results for the 144 sub-images and 300×300 pixels of the CBT in the three color spaces: RGB, HSV, and YUV. The mean of the 144 subimages is displayed as a "•" sign and the value for the 300×300 pixels is displayed as " * ".

4. 7 . 4

 74 Computation cost of F uzEnC 2D , F uzEnV 2D , and F uzEnM2D For comparing the computation cost for the three developed measures for colored textures we employed 100×100 pixels colored Brodatz image (D12) and repeated the

Figure 4 .

 4 Figure 4.38 -F uzEnM 2D results for the 144 sub-images and 300×300 pixels of the CBT in the three color spaces: RGB, HSV, and YUV. The mean of the 144 subimages is displayed as a "•" sign and the value for the 300×300 pixels is displayed as " * ".

Figure 4 .

 4 Figure 4.39 -F uzEn 3D for white noise cubes with a varying tolerance level r between 0.06 and 0.48 using m= 1, 2, and 3.

Figure 4 . 40 -

 440 Figure 4.40 -Mean and standard deviation of F uzEn 3D for ten reptitions applied to MIX 3D (p) using m= 1, 2, and 3.

Figure 4 .

 4 Figure 4.41 -F uzEn 3D for MIX 3D (p) of ten original and ten shuffled volumes for each p.

Figure 4 .

 4 Figure 4.42 -M SF 3D for ten noise cubes with different power spectra (1/f β ): white, pink, brown, and blue noise.

Figure 5 . 1 -

 51 Figure 5.1 -FotoFinder bodystudio ATBM for total body mapping and dermoscopy. Adapted from [163].

Figure 5 . 2 -

 52 Figure 5.2 -Dermoscopic images for: (a) and (c) zones with papules, (b) and (d) normal zones.

Figure 5 . 4 -

 54 Figure 5.4 -F uzEnC 2D for 30 colored dermoscopic images of a region showing PXE papules (NP:

Figure 5 . 5 -

 55 Figure 5.5 -F uzEnV 2D for 30 dermoscopic images of a region showing PXE papules (neck with papules)and a healthy skin region (normal zone). Statistical significance is obtained with p=0.005. The * signifies the presence of statistically significant difference between the two groups.

Figure 5 . 6 -

 56 Figure 5.6 -F uzEnM 2D for 30 dermoscopic images of a region showing PXE papules (neck with papules) and a healthy skin region (normal zone). F uzEnM 2D showed p=0.05.

  Figure 5.7). The studied dermoscopic images are for 15 patients with melanoma (a malignant neoplasm) and 15 patients with melanocytic nevi (a benign neoplasm). M SF 2D was applied to the central 430×450 pixels of those dermoscopic images. We used M SF 2D with parameters: n = 2, m = 2, r = 0.25, and scale factor τ from 1 to 20.
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 57 Figure 5.7 -Image of melanoma (right) and melanocytic nevi (left) in gray scale.

Figure 5 . 8 -

 58 Figure 5.8 -M SF 2D for 15 melanoma (yellow) and 15 melanocytic nevi (green) dermoscopic images.

Figure 5 . 9 -

 59 Figure 5.9 -Dermoscopic images segmentation for choosing the ROI.

  and 5.11. 

Figure 5 .

 5 Figure 5.10 -F uzEnV 2D and Haralick features p-values of 40 melanoma and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV. d represents the interpixel distances for the co-occurance matrices.

Figure 5 .

 5 Figure 5.11 -F uzEnM 2D and Haralick features p-values of 40 melanoma and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV. d represents the interpixel distances for the co-occurance matrices.
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 512 Figure 5.12 -ROC curves for F uzEnC 2D results of the 40 melanoma and 40 melanocytic nevi images in the RGB color space. The curves are for F uzEnC R2D , F uzEnC G2D , and F uzEnC B2D from left to right.

Figure 5 . 13 -

 513 Figure 5.13 -ROC curve for F uzEnV 2D results of the 40 melanoma and 40 melanocytic nevi images in the RGB color space.

Figure 5 . 14 -

 514 Figure 5.14 -ROC curve for F uzEnM 2D results of the 40 melanoma and 40 melanocytic nevi images in the RGB color space.

Figure 5 .

 5 Figure 5.16 -pM F uzEn 3D for HRCT scans of: (a) normal (b) a patient with emphysema and (c) airways diseases.

Figure 5 . 17 -

 517 Figure 5.17 -Illustration for the selection process of the volume to be evaluated by M SF 3D from the HRCT scans. Adapted from [27].

Figure 5 . 18 -

 518 Figure 5.18 -Mean M SF 3D results for the CT scans of healthy individuals and IPF patients, for parameters m = 3, r = 0.2, and n = 2. The * signifies the presence of statistically significant differences between the two groups.

Figure 5 . 19 -

 519 Figure 5.19 -Mean and standard deviation for the M SF 3D values for healthy subjects, idiopathic pulmonary fibrosis (IPF), and COVID-19 patients for scale factors τ = 1 to 10.

Table 5 .

 5 10 -Mann-Whitney U test p-values and Cohen's d values for M SF 3D results of healthy, IPF, and COVID-19 confirmed subjects. The * sign indicates the presence of a statistically significant difference between the compared groups at a given scale factor.

Table 5 . 11 -

 511 The p-values for the complexity index for τ 1 =8 and τ 2 =10 between pairs of D0, D10, and M6. p-value 4.2× 10 -4 3.2× 10 -4 1.9×10-4 

Figure 5 . 21 -

 521 Figure 5.21 -Mean and standard deviation for the complexity index for M SF 3D from τ =8 till τ =10

TeachingI
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  F uzEnC2D , F uzEnV 2D , et F uzEnM 2D . -Le chapitre 3 présente les mesures d'entropies tridimensionnelles que nous avons proposées pour étendre notre application aux données volumétriques. Tout d'abord, une approche directement basée sur M SF 2D pour traiter les données volumétriques est présentée: une mesure multiéchelle pseudo-tridimensionnelle d'entropie floue, pM F uzEn 3D . Ensuite, l'entropie floue tridimensionnelle F uzEn 3D et son extension multiéchelle M SF 3D sont décrites en détail avec leurs équations correspondantes. -Le chapitre 4 présente les tests de validation utilisés pour chaque mesure développée. -Le chapitre 5 présente les résultats obtenus avec nos mesures pour les images médicales 2D et 3D. Nos mesures 2D sont appliquées à des images dermoscopiques de mélanome, de psuedoxanthome élastique et pour l'analyse de la microcirculation cutanée. Pour les examens volumétriques 3D, nos mesures ont permis l'étude de données enregistrées dans le cas de COVID-19, de fibrose pulmonaire idiopathique et de fibrome utérin.

Nous définissons ainsi le concept d'entropie, les mesures précédemment développées dans ce domaine, et les cas médicaux sur lesquels nos mesures proposées seront appliquées. -Le chapitre 2 présente les mesures d'entropie bidimensionnelle que nous avons élaborées. Nous expliquons d'abord l'algorithme sous-jacent à l'entropie bidimensionnelle floue F uzEn 2D et son extension multiscale M SF 2D . Ensuite, les algorithmes des mesures d'entropies floues bidimensionnelles colorées sont définis,

Table 1 .

 1 1 -Definition of the computed Haralick features

Table 4 . 1 -

 41 F uzEn 2D results upon translation of 3 Brodatz images.

	Translation Pixels 10×10 100×100 500×500
	Brodatz 1	1.0258	1.0258	1.0258
	Brodatz 2	1.2378	1.2378	1.2378
	Brodatz 3	1.8836	1.8836	1.8836

Table 4 . 2 -

 42 DistrEn 2D values whereas it increased the F uzEn 2D and SampEn 2D values, see Table 4.2. As shuffling increases the irregularity of data, F uzEn 2D and SampEn 2D are more reliable than DistrEn 2D from this perspective. The results illustrate the advantage of F uzEn 2D and SampEn 2D over DistrEn 2D in this issue. DistrEn 2D , SampEn 2D , and F uzEn 2D values for shuffled images

		DistrEn 2D	SampEn 2D	F uzEn 2D
	Original	0.7188	1.7411	1.4193
	Shuffled 0.6914 ± 0.0015 2.5645 ± 0.0527 1.9056 ± 0.0321

Table 4 .

 4 3 -CVs for F uzEn 2D and SampEn 2D of 100×100 pixels W GN 2D and 1/f β noise image.

		m Blue Brownian W GN 2D Pink
	F uzEn 2D	1 0.003	0.053	0.003	0.005
		2 0.005	0.056	0.005	0.007
		3 0.008	0.071	0.008	0.011
	SampEn 2D 1 0.017	0.048	0.018	0.020
		2	-	0.056	-	-
		3	-	-	-	-

Table 4 .

 4 4 -F uzEn 2D for a gray scale image (Lena image) added with different levels of W GN 2D .

	Noise type	Level added	Entropy value
	original image	-	0.2887
	W GN 2D	mean and variance 0.01	1.2465
	W GN 2D	mean and variance 0.05	2.5782
	W GN 2D	mean and variance 0.09	3.0927

Table 4 .

 4 

	Noise type	Level added Entropy value
	original image	-	0.2887
	SPN	density 0.01	0.4513
	SPN	density 0.05	1.0509
	SPN	density 0.09	1.5723

5 -F uzEn 2D for a gray scale image (Lena image) added with different densities of SPN noise.

Table 4 .

 4 7 -Average calculation time for F uzEn 2D , F uzEnL 2D , and F uzEnGL 2D (see text for details on the computer performance).

	Entropy	Average time taken per image
	F uzEn 2D	324.15 ±3.04s
	F uzEnL 2D	345.94 ±16.8s
	F uzEnGL 2D	646.99 ±49.8s

Table 4 .

 4 8 -M SF 2D and M M SF 2D computation cost comparison in seconds (see text for details on the computer performance).

		M SF 2D time in seconds M M SF 2D time in seconds
	Pink noise	350.39 ±1.26	4.365×10 3 ±9.96
	White noise	349.96±0.84	4.359×10 3 ±8.99

Table 4 .

 4 9 -F uzEnC 2D for colored Brodatz textures (640×640 pixels).

		FuzEn R2D FuzEn G2D FuzEn B2D
	texture (a)	0.19	0.22	0.24
	texture (b)	0.55	0.78	0.52
	texture (c)	0.34	0.61	0.52
	texture (d)	0.26	0.30	0.24
	texture (e)	0.35	0.34	0.41
	texture (f)	0.82	0.78	0.56

Table 4 .

 4 10 -Mean and standard deviation of F uzEnC 2D for colored Brodatz textures sub-images (320×320 pixels).

Table 4 .

 4 11 -Mean and standard deviation of the computation time for F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D for a 100×100 pixels colored Brodatz image. F uzEnC 2D F uzEnV 2D F uzEnM 2D Computation time (s) 48.59±89.66 28.65±0.52 21.76±0.68

Table 4 .

 4 [START_REF] Latha | Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain[END_REF] -F uzEn 3D results for pattern-based volumes.

	Cubes	Cube 1 Cube 2 Cube 3 Cube 4 Cube 5 Cube 6
	F uzEn 3D 0.0000 0.0443 0.0000 0.1404 10.1504 26.6905

Table 5 .

 5 

		1 -Interpretation of the Cohen's d values [164, 167].	
	Effect's size Very small Small Medium Large Very large Huge
	d	0.01	0.20	0.50	0.80	1.20	2.0

Table 5 .

 5 2 -Cohen's d values for M SF 2D and MSE 2D at τ = 1, 2, 3, and 4 for the normal skin regions vs. the regions with papules in pseudoxanthoma elasticum images.

	τ	1	2	3	4
	d for F uzEn 2D 0.977 0.952 0.777 0.508
	d for SampEn 2D 0.226 0.669 0.773 0.531

Table 5 .

 5 3 -Cohen's d-values for F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D of 40 melanoma and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV. 2D and F uzEnM 2D clearly surpassed Haralick features as p-values obtained for the results of both entropy measure are mostly lower than those of Haralick features. Moreover, using Haralick features some results do not show statistical significance (p<0.05), whereas all the three colored entropy measures show evident statistical significance in differentiating melanoma from melanocytic nevi, except in F uzEnC 2D results in S and V channels.

		F uzEnC K1 F uzEnC K2 F uzEnC K3 F uzEnV 2D F uzEnM 2D
	RGB	1.50	1.89	1.97	2.71	2.19
	HSV	1.14	0.23	0.27	1.14	1.14
	YUV	1.10	0.58	0.70	1.00	1.09
	F uzEnV					

Table 5 .

 5 

4 -Mann-Whitney u test p-values for F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D of 40 melanoma and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV.

Table 5 .

 5 5 -ROC analysis for F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D results of 40 melanoma and 40 melanocytic nevi images in RGB.

			F uzEnC 2D		F uzEnV 2D F uzEnM 2D
		U R	U G	U B	U	U
	AUC	0.884 0.945 0.930	0.964	0.950
	Sensitivity 0.825 0.925 0.900	0.925	0.925
	Specificity 0.850 0.850 0.825	0.950	0.900
	Accuracy 0.837 0.887 0.862	0.937	0.912
	Precision 0.846 0.860 0.837	0.948	0.902

Table 5 .

 5 6 -ROC analysis for F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D results of 40 melanoma and 40 melanocytic nevi images in HSV.

			F uzEnC 2D		F uzEnV 2D F uzEnM 2D
		U H	U S	U V	U	U
	AUC	0.771 0.376 0.406	0.771	0.771
	Sensitivity 0.650 0.325 0.225	0.650	0.650
	Specificity 0.850 0.600 0.850	0.850	0.850
	Accuracy 0.750 0.462 0.5375	0.750	0.750
	Precision 0.812 0.448 0.600	0.812	0.812

Table 5 .

 5 7 -ROC analysis for F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D results of 40 melanoma and 40 melanocytic nevi images in YUV.

			F uzEnC 2D		F uzEnV 2D F uzEnM 2D
		U Y	U U	U V	U	U
	AUC	0.787 0.703 0.723	0.765	0.785
	Sensitivity 0.725 0.750 0.700	0.750	0.725
	Specificity 0.750 0.650 0.700	0.725	0.750
	Accuracy 0.737 0.700 0.700	0.737	0.737
	Precision 0.743 0.681 0.700	0.731	0.743

SampEn 2D shows overlapping values for pink, blue, and W GN 2D with m=1, inconsistency for small images, and inability to differentiate noise types for large images with m=2, and undefined outcome with m=3 for the four noise types, see Furthermore, we calculated the coefficients of variation (CV) of F uzEn 2D for the 100×100 pixels W GN 2D and 1/f β noise images with m= 1, 2, and 3. The CVs are presented in Table 4.3 (-shows undefined CV). The results illustrate that F uzEn 2D leads to more stable results (lower CVs) than SampEn 2D for different kinds of noises. Note that as M SF 2D uses F uzEn 2D for multiple scale factors, it could be inferred that M SF 2D , compared with MSE 2D , will result in more stable entropy values.

Gray scale image with additive noise

We used Lena 512 × 512 pixels gray scale image, see Figure 4.17, added with different noise amounts to evaluate the ability of F uzEn 2D to detect different levels of W GN 2D and salt and pepper noise (SPN). The images were standardized by subtracting their mean and dividing them by the standard deviation. Different levels of W GN 2D (increasing its mean and variance: 0.01, 0.05, and 0.09) and different densities of SPN (0.01, 0.05, and 0.09) were added.

M SF 2D could form a useful tool to help clinicians in the early diagnosis of PXE accurately (using the results for τ = 1 and 2). Furthermore, normal skin regions show higher complexity compared to the regions with papules because of the higher over all F uzEn 2D values over several scale factors, see Figure 5.3. This is in agreement with the literature in which healthy body systems are expected to have higher complexity than diseased systems [START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF][START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]. 

Colored dermoscopic images

After the successful findings on gray scale images using M SF 2D we employ the colored entropy algorithms, F uzEnC 2D , F uzEnV 2D , and F uzEnM 2D , to reveal the information hidden within the color components of our studied PXE images.

We employed the same database as the one mentioned in the previous section and the same region of interest, ROI. The images were obtained as colored and processed using the single-and multi-channel bidimensional colored fuzzy entropy measures. The parameters were set as n=2, m=2, and r=0.15.

To validate the results obtained, we performed the Wilcoxon signed rank test for paired samples (because both dermoscopic images are from the same patients for every whereas no statistical significance was found using Haralick features. Only F uzEnC 2D was used for analyzing the dermoscopic microcirculation images in this study, because it was our first experiment in applying colored entropy measures to dermoscopic images. Based on these promising results, we started developing the other colored entropy approaches.

For the other studies presented in this manuscript on colored images, we use the three developed colored entropy measures.

In the future we will be continuing this study for a larger number of individuals and once validated, it would serve as an interesting technique helping medical doctors in the assessment of cutaneous microcirculation states. This is of particular importance for bedridden patients. It would provide a feasible, non-invasive, and fast microcirculation assessment technique. Furthermore, having the ability to study irregularity of colored images and textures enables us to extend the application to various fields and different medical images. This study was published as a conference paper [START_REF] Hilal | Bidimensional colored fuzzy entropy measure: a cutaneous microcirculation study[END_REF].

Chronic Obstructive Pulmonary Diseases (COPD)

We proposed a pseudo-three dimensional multiscale fuzzy entropy measure (pM F uzEn 3D ) to analyze CT scan volumes based on our developed M SF 2D . We process high resolution CT scans (HRCT) of patients with chronic obstructive pulmonary diseases (COPD). pM F uzEn 3D consists in computing F uzEn 2D for each scan at different scales and gathering all the entropy results on the same plot. In our study, we used pM F uzEn 3D to process HRCT scans from 22 subjects divided into 3 groups: 10 scans of subjects with emphysema, 8 scans for normal lung subjects, and 4 scans of subjects with airways disease. The scans were taken at the respiratory outpatient clinic at Aalborg University Hospital and the associated Rehabilitation Center, Danemark. The people involved wrote written consents in according to the declaration of Helsinki and agreed on the participation in the studies on COPD [START_REF] Møller | The effect of comorbidities on COPD assessment: a pilot study[END_REF]. The scans were acquired using Discovery CT750HD CT machine (General Electric Company, Fairfield, CT, USA). They were handled and inspected by a team of three physicians, pulmonologist, and two radiologists.

We calculated pM F uzEn 3D for the mentioned HRCT scans. For this purpose, the parameter m, threshold r, and fuzzy membership function were 2, 0.25, and Gaussian distribution, respectively. The scale factor τ varied from 1 to 20. The results for one of the University Hospital of Rennes, France. The healthy subjects were those who had chest CT scans that were verified by expert radiologists to show no abnormal lung structures. For more information about this dataset please refer to the previous section 5. [START_REF] Qi | LOAD: Local orientation adaptive descriptor for texture and material classification[END_REF].

The whole dataset is composed of a total of 103 CT scans: 51 of patients diagnosed by COVID-19, 26 patients diagnosed by IPF, and 26 healthy subjects, see Table 5.9 for more details. The selected volumes to be evaluated followed the bottom to top scanning and a 50×50×50 voxels region of interest (ROI) is chosen from the right lung for all subjects. The segmentation procedure and volumes selection is detailed in the previous section 5.6, see Figure 5.17. M SF 3D is calculated for the 103 scans and the parameters are defined as: m= 3, r = 0.2, n = 2, and τ max =10. The results are depicted in Figure 5.19 as the mean and standard deviation for the entropy values.

We can observe a unique curve for the results of each group of subjects, however in order to prove their statistical significance, we used the Mann-Whitney U test in a pair-wise comparison. In addition, the Cohen's d for effect size is calculated for each statistical result. The statistical results are displayed in Table 5.10. Refer to Table 5.1 for the interpretation of Cohen's d.

The results indicate that M SF 3D was able to differentiate IPF from healthy scans for 5 scale factors τ = 3, 4, 6, 7, and 8. Moreover, for COVID-19 compared to healthy scans, a statistically proven differentiation ability is revealed for all scale factors τ , except τ = 2 with "Large" to "very Large" effect size values. The latter validates even more our statistically significant results. In addition, for distinguishing IPF scans from COVID-19 scans, the statistical results showed that M SF 3D was capable of doing so for all calculated τ , except τ =5 and 10.

The results came to be very encouraging, especially that they illustrate a promising outcome for COVID-19 patients. This study is submitted and under revision.

We also suggested calculating the complexity index CI for unique for from τ 1 = 1 to τ 2 = 8, see Figure 5.20. CI is unique for each ROI and is defined as the sum of the entropy values for some consecutive scale factors from τ 1 to τ 2 as:

(5.1)

Figure 5.20 -Complexity index for COVID-19, IPF, and healthy subjects' results.

Uterine Artery Embolization (UAE)

The clinical dataset processed in this work is composed of 60 volumetric magnetic resonance images (MRI) collected from twenty women diagnosed with uterine fibroids and qualified for uterine artery embolization (UAE). These images were recorded in the Centre Hospitalier Régional Universitaire (CHRU) -Brest, France.

The purpose of this study is to evaluate the efficacy of (UAE) by applying our developed measure to MRI data recorded at three different time intervals, just before, ten days after, and six months after UAE (D0, D10, and M6).

The average age of the patients was 43 ± 4 years which is in line with the standard incidence age of uterine fibroids. Five (25%) of participants were symptomatic (bleeding, pelvic pain, urinary signs, etc.). T2 sagittal without gadolinium MRI images taken before UAE were compared to those taken 10 days and 6 months after the procedure. For all
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Annex Chapter 5

Gray scale dermoscopic images using SampEn 2D

Before developing F uzEn 2D we performed a brief study using SampEn 2D (section 1.4.2) on dermoscopic images of 7 patients (6 women and 1 man; 53.1 ± 14.6 years old) [START_REF] Hilal | Skin alterations in pseudoxanthoma elasticum patients highlighted by the bi-dimensional sample entropy algorithm[END_REF]. We considered 7 dermoscopic images from a healthy region and 7 dermoscopic images from a region showing papules (neck region). The images are from the same database as the one described in section 5.2.

Our objective was also suggesting an image processing framework to help the clinician in distinguishing healthy skin from skin with papules, in dermoscopic data. Our frame-