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RÉSUMÉ

La texture est souvent définie comme étant la disposition spatiale des motifs, des
couleurs et des intensités apparaissant dans un contenu visuel. La description d’un contenu
visuel se fait souvent par ses deux composantes de base : la couleur et la texture.

L’analyse et la description de la texture sont parmi les problèmes les plus difficiles
en vision par ordinateur. De nombreux algorithmes ont été proposés pour l’extraction de
caractéristiques de texture au cours des dernières années et ce domaine de recherche fait
toujours l’objet de nombreuses investigations [1, 2, 3, 4, 5, 6, 7, 8, 9].

Plusieurs méthodes ont été mises au point pour l’analyse de la texture et ont trouvé des
applications dans divers domaines, tels que : domaine biomédical [10, 11, 12], automati-
sation industrielle [13, 14], télédétection [15, 16], reconnaissance faciale [17], récupération
d’images basée sur le contenu [18].

L’une des méthodes les plus récentes introduites dans le domaine de l’analyse de
texture est l’entropie [19, 20, 21, 22, 23, 24, 25]. Comme l’entropie, issue de la théorie de
l’information, permet d’étudier l’irrégularité des signaux et des images, nous proposons
de l’utiliser pour l’analyse de texture de données en niveaux de gris et couleurs.

Nous développons d’abord l’entropie bidimensionnelle floue, FuzEn2D, et sa version
multiéchelle pour étudier l’irrégularité et la complexité des images texturées. Après cela,
nous proposons des approches colorées basées sur FuzEn2D pour étudier des images tex-
turées colorées. Nous avons employé l’approche colorée pour révéler l’information cachée
dans les composants de couleur. Nous présentons tout d’abord l’approche mono-canal
FuzEnC2D. Puis l’approche multicanal FuzEnV2D qui s’inspire du concept volumétrique.
Enfin, l’approche multicanal modifiée FuzEnM2D est présentée comme une amélioration
de FuzEnV2D. Les algorithmes que nous proposons ont trouvé des applications promet-
teuses dans l’analyse de texture pour différents cas médicaux tels que le mélanome, le
pseudoxanthome élastique et l’analyse de la microcirculation cutanée.

Suite aux résultats encourageants obtenus avec les mesures bidimensionnelles (2D)
développées, une mesure d’entropie tridimensionnelle pour l’étude de volumes, ainsi que
son extension multiéchelle, sont proposés. Ils ont été utilisés pour étudier des tomographies
(CT), des tomographies haute résolution (HRCT), et des images obtenues par résonance
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magnétique (IRM). Ceci nous a permis de traiter des examens volumétriques pour les
patients atteints de COVID-19, de fibrose pulmonaire idiopathique et de fibrome utérin.

Dans ce manuscrit, plusieurs tests de validation communs sont présentés pour les
méthodes développées, en plus des tests spécialement conçus pour chacune d’elles.
Les mesures sont validées sur la base: des modifications des paramètres initiaux, leur
capacité à quantifier les degrés d’irrégularité croissants aux niveaux bidimensionnel et
tridimensionnel, et leur capacité d’évaluation de la complexité dans les images et les
volumes à travers l’approche multiéchelle. Nos résultats montrent que les méthodes
développer permettent d’analyser l’irrégularité des images en niveaux de gris, des images
colorées, et enfin des volumes [26, 27, 28, 29, 30, 31].

Plan du manuscrit

Le manuscrit est organisé comme suit :
— Le chapitre 1 présente l’analyse bibliographique en lien avec nos travaux. Nous

définissons ainsi le concept d’entropie, les mesures précédemment développées dans
ce domaine, et les cas médicaux sur lesquels nos mesures proposées seront ap-
pliquées.

— Le chapitre 2 présente les mesures d’entropie bidimensionnelle que nous avons
élaborées. Nous expliquons d’abord l’algorithme sous-jacent à l’entropie bidimen-
sionnelle floue FuzEn2D et son extension multiscale MSF2D. Ensuite, les al-
gorithmes des mesures d’entropies floues bidimensionnelles colorées sont définis,
FuzEnC2D, FuzEnV2D, et FuzEnM2D.

— Le chapitre 3 présente les mesures d’entropies tridimensionnelles que nous avons
proposées pour étendre notre application aux données volumétriques. Tout d’abord,
une approche directement basée surMSF2D pour traiter les données volumétriques
est présentée: une mesure multiéchelle pseudo-tridimensionnelle d’entropie floue,
pMFuzEn3D. Ensuite, l’entropie floue tridimensionnelle FuzEn3D et son extension
multiéchelle MSF3D sont décrites en détail avec leurs équations correspondantes.

— Le chapitre 4 présente les tests de validation utilisés pour chaque mesure dévelop-
pée.

— Le chapitre 5 présente les résultats obtenus avec nos mesures pour les images
médicales 2D et 3D. Nos mesures 2D sont appliquées à des images dermoscopiques
de mélanome, de psuedoxanthome élastique et pour l’analyse de la microcirculation
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cutanée. Pour les examens volumétriques 3D, nos mesures ont permis l’étude de
données enregistrées dans le cas de COVID-19, de fibrose pulmonaire idiopathique
et de fibrome utérin.
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Introduction

Texture is often referred to as the spatial arrangement of the visual patterns, colors,
and intensities appearing in a visual content. The description of a visual content is often
done by its two basic components: color and texture.

Texture analysis and description are among the most challenging problems in computer
vision. Many algorithms have been proposed for texture features extraction in the past
years and this research area is still the subject of many investigations [1, 2, 3, 4, 5, 6, 7,
8, 9].

Several methods have been developed for texture analysis and found application in
various domains, such as: biomedical field [10, 11, 12], industrial automation [13, 14],
remote sensing [15, 16], face recognition [17], content-based image retrieval [18].

Texture analysis through entropy measures (issued from the information theory field)
is at its very beginning but revealed promising results [19, 20, 21, 22, 23, 24, 25]. In this
PhD manuscript work, we propose to extend these preliminary studies and we propose
new entropy measures for texture analysis in the gray scale and colored spaces.

We first develop the bidimensional fuzzy entropy, FuzEn2D, and its multiscale ver-
sion to study the texture images’ irregularity and complexity. The choice for using the
fuzzy entropy concept is based on several previous publications, comparison tests that we
performed on unidiemnsional and bidimensional levels, and the advantages of using fuzzy
entropy over other entropy measures.

After that, we propose colored approaches based on FuzEn2D to study colored texture
images. We employ the colored approach to reveal information hidden within the color
components of our studied images. We thus first present the single-channel approach
FuzEnC2D and then the multi-channel approach for colored images FuzEnV2D which is
inspired by the volumetric concept. Finally, the modified multi-channel colored approach
FuzEnM2D is proposed as an enhancement for FuzEnV2D. Our proposed algorithms find
promising applications in texture analysis for different medical cases such as melanoma,
pseudoxanthoma elasticum, and cutaneous microcirculation analysis.
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After the encouraging results with the developed bidimensional (2D) measures, a tridi-
mensional entropy measure and its multiscale extension to study volumes are proposed.
These measures extend our possible applications to volumetric scans. They are employed
to study computed tomography (CT) scans, HRCT scans, and magnetic resonance imag-
ing (MRI) scans. The medical investigation using our algorithms handle volumetric scans
for COVID-19, idiopathic pulmonary fibrosis, and uterine fibroma patients.

In this manuscript, several common validation tests are presented for the developed
methods, in addition to the specially designed tests for each. The measures are validated
upon: changes in the initial parameters, their ability to quantify the increasing irregularity
degrees in the bidimensional and tridimensional levels, and their complexity evaluation
ability in images and volumes through the multiscale approach. These methods are illus-
trated to possess an ability to analyze irregularity of gray scale images, colored images,
and finally volumes [26, 27, 28, 29, 30, 31].

In this thesis manuscript, we present entropy measures based on the information
theory concept that illustrated a significant ability in this field.

In order to avoid having certain major errors that might occur due to the subjective
judgment of a medical doctor sometimes, computer based measures come to be of great
importance. They provide an objective assessment based on certain components that
cannot be always identified or linked visually.

Moreover, as the medical field in several cases proves the need for computer based
platforms for validating the diagnosis, for assisting in prognosis and for giving objec-
tive decisions, the research for computerized methods becomes essential. Computer based
analysis methods could aid medical doctors and unify the worldwide decision making plat-
forms − with a specific importance − for rare medical cases by being accessible all over
the planet, by providing fast outcome based on the concrete background in comparison,
and unifying the diagnosis criteria. The medical doctors’ monitoring remains indispens-
able, however can be accompanied by a more objective computer based tool that could
unify the medical decision making worldwide.
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Outline of the thesis

This manuscript is organized as follows:
— Chapter 1 presents the background literature review of our work. In this chapter

we define the entropy concept, the previously developed measures in this field, and
the medical cases on which our proposed measures will be applied.

— Chapter 2 presents the bidimensional entropy measures that we developed. We first
explain the algorithm behind bidimensional fuzzy entropy FuzEn2D and its mul-
tiscale extension MSF2D. Then, the algorithms behind the colored bidimensional
fuzzy entropy measures are defined, FuzEnC2D, FuzEnV2D, and FuzEnM2D.

— Chapter 3 presents the tridimensional entropy measures that we propose to extend
our application to volumetric data. First, an approach directly based on MSF2D

to deal with volumetric data is presented, pseudo-tridimensional multiscale fuzzy
entropy measure, pMFuzEn3D. Then, tridimensional fuzzy entropy FuzEn3D and
its multiscale extension MSF3D are described in details with their corresponding
equations.

— Chapter 4 presents the validation tests employed for each developed measure.
— Chapter 5 presents the results obtained with our measures for the 2D and 3D medi-

cal images. Our 2D measures find application for dermoscopic images of melanoma,
pseudoxanthoma elasticum, and cutaneous microcirculation analysis. For the 3D
volumetric scans, our measures find application for COVID-19, idiopathic pul-
monary fibrosis, and uterine fibroma patients.
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Chapter 1

WORK BACKGROUND

In this chapter we will first present a number of the existing texture analysis meth-
ods and detail some of them (section 1.1). One of the most recent methods introduced
into the domain of texture analysis is entropy [19, 20, 21, 22, 23, 24, 25]. As information
theory entropy studies the irregularity of signals and images, we propose its application
for texture analysis in the gray scale and colored spaces. For this purpose, we will define,
in section 1.2, entropy in various fields: thermodynamics and information theory. In the
information theory field, we will detail the entropy algorithms that are used to assess ir-
regularity of time series, unidimensional (1D) data (section 1.4.1). We will also present the
very recent developments that have been proposed to assess irregularity of bidimensional
(2D) data images (section 1.4.2). In this chapter, we will finally present the medical cases
on which our developed entropy measures were applied. This involves:

— pseudoxenthoma elasticum, PXE
— cutaneous microcirculation
— melanoma and melanocytic nevi
— chronic obstructive pulmonary diseases, COPD, mainly emphysema and chronic

bronchitis
— idiopathic pulmonary fibrosis, IPF
— uterine fibroids, UF
— COVID-19

1.1 Texture Analysis

Texture is often referred to as the spatial arrangement of the visual patterns, colors,
and intensities appearing in an image. The description of a visual content is often done by
its two basic components: color and texture. Developing tools for image analysis are first
tested on texture images and their ability to analyze image textures of different irregular-
ity degrees, patterns, and colors is assessed, before they are employed as texture analysis
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tools. So textures form the evaluation platform allowing fast escalation in this field. Tex-
ture analysis finds application in various domains, such as: biomedical field [10, 11, 12],
industrial automation [13, 14], remote sensing [15, 16], face recognition [17], content-based
image retrieval [18].

Several 2D datasets were created for serving image analysis purposes and training
computer aided tools [32, 33, 34, 35, 36, 37]. They are often used for evaluating and
comparing texture measures, their sensitivity to noise, and geometric transforms. An
example is Kylberg texture dataset shown in Figure 1.1. It is composed of 28 classes with
160 unique samples in each class. The samples are 576 × 576 pixels large and stored as
gray scale 8-bit png-images [38]. Some other datasets that we used in our work will be
detailed in section 4.2.4.

Figure 1.1 – Example of texture images from Kylberg dataset.

Texture analysis and description are among the most challenging problems in computer
vision. Many algorithms have been proposed for texture features extraction in the past
years and this research area is still the subject of many investigations [1, 2, 3, 4, 5, 6, 7, 8,
9]. Texture features are of the utmost importance in segmentation, classification, synthesis
of images and many other image processing steps. However, no precise definition of texture
has been adopted yet.

Although texture has no exact definition, it has long been an essential subject in human
perception [39]. Precisely, regularity has been illustrated to play a major role in texture
perception [40]. For example, a study by [39] propose quantitative measurements to char-
acterize near-regular textures based two main components, see Figure 1.2. Other studies
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propose six major textural features: coarseness, contrast, directionality, line-likeness, reg-
ularity, and roughness, to be considered in computation [41]. Some other studies rely on
the visual identification of irregularity or other visual perception features.

Figure 1.2 – Example of texture images ordered from regular to stochastic (left to right) based on two
quantitative measures. Adapted from [39].

Recently, a review paper proposed to classify the texture feature extraction methods
into seven classes [1]: statistical approaches (among which we can find the well-known
co-occurrence matrices), structural approaches, transform-based approaches (Fourier
transform-based approaches, among others), model-based approaches (such as the ran-
dom field models), graph-based approaches (as the local graph structures), learning-based
approaches, and entropy-based approaches. The two latter classes (learning-based ap-
proaches and entropy-based approaches) are the most recent ones. Several studies showed
that the entropy-based measures are promising for texture analysis [23, 19, 25, 20, 42,
43]. Despite the fact that they have the great advantage of relying on well-known unidi-
mensional, 1D, entropy-based measures (issued from the information theory field), these
studies are only at their beginning.

1.1.1 Texture analysis methods

As mentioned above, texture analysis methods can be divided into seven categories [1].
We list them herein and detail the ones with the widest utilization in the field of image
processing. The selected texture analysis methods usually depend on the target applica-
tion. For instance, some applications require more focus on the texture patterns, others
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are more concerned about the pixel intensities or image regions identification. In what fol-
lows we will briefly present class of the statistical approaches (as some of these approaches
will be used in our work) and list the other classes. Several texture databases were created
or adapted to become compatible for texture analysis purposes and classification [1, 44,
45].

Statistical approaches

Statistical approaches for texture analysis rely on the non-deterministic properties
of the gray level distribution in the texture images. They consider the local features
reflecting the spatial distribution of gray values. They are divided into 3 main categories:
first order statistics, second order statistics, and higher order statistics. These methods
include: gray level co-occurrence matrices (GLCM), gray level run-length matrix,
autocorrelation-based approaches, histogram of gradient magnitudes, local mapped
patterns-based approaches, local energy pattern, variogram, Tamura features, local
binary patterns and variants, shape index histograms, weber local descriptor, and
deterministic walk [1].

GLCM are probably the most common texture analysis technique, not only as a sta-
tistical approach, but also as a straight forward, easily implemented, and popular image
analysis method used in several fields [46]. This technique is detailed below as it was used
in our work.

Gray level co-occurrence matrices

Gray level co-occurrence matrices (GLCM) are a very well known image analysis tech-
nique that allows features extraction from gray scale images. Later, they were also up-
graded for colored images using the approaches that will be detailed in the following
section.

GLCM are first calculated by defining directions and an interpixel distances, d. Then,
pixels seperated by d are counted for each given direction separately; i.e. a count of the
occurrence of pixel pairs that have a given distribution of gray level values is grouped into
a GLCM for a given orientation and d. This is repeated for all d values in each orientation.
For GLCM, four main orientations are usually chosen and a number of interpixel values.
For a better illustration, please consider the following example in Figure 1.3, for a small
4×4 pixels gray scale image, for simplicity reasons.
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Figure 1.3 – (a) An example of a 4×4 gray scale matrix showing 3 levels; (b) Numerical values for the
matrix’s gray levels. Circled in black: choosing interpixel distance d=1 and horizontal direction (0◦), we
consider the occurrence of two neighboring (1, 2) pixels; (c) The occurrence of paired pixels is counted
and indicated in the GLCM. As shown above it is three times for (1, 2) horizontal pixel pairs (circled).
The same procedure is calculated for all pixel pairs in the chosen direction and d. Adapted from [47].

After that, Haralick features are calculated from the GLCM matrices and used in
classification, identification, and analysis of image textures. In fact, among the 14 features
originally proposed by Haralick et al. [48], only six are commonly employed by researchers
due to their correlation with the other eight, see Table 1.1.

This GLCM concept is upgraded also to 3D to study volumetric data [49]. Usually
co-occurrence matrices are calculated for four main directions or orientations (0◦, 45◦, 90◦,
and 135◦) in the 2D case and for 13 orientations in the 3D case, taking different interpixel
or intervoxel distances d (we chose 4 interpixel distances d=1, 2, 4, and 8). Moreover, 8
gray levels (Ng=8) are usually considered. Therefore, the aforementioned parameters will
be employed during our 2D and 3D co-occurrence matrices calculations.

Other methods

Other texture analysis techniques are classified into [1, 50, 51, 11, 10]:
— Structural approaches in which textures are divided into texels or basic small ele-

ments. The difference among the structural approaches is in the way the elements
are chosen.
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Table 1.1 – Definition of the computed Haralick features [48].

Haralick feature Annotation
Uniformity (Energy) ∑

i

∑
j P

2 (i, j)
Contrast ∑Ng−1

n=0 n2(∑Ng
i=1

∑Ng
j=1 P (i, j)), |i− j| = n

Correlation ∑
i

∑
j(ij)P (i, j)− µxµy/σxσy

Variance ∑
i

∑
j (i− µ)2 P (i, j)

Homogeneity ∑
i

∑
j P (i, j) /(1 + ((i− j)2)

Entropy −∑
i

∑
j P (i, j) log P (i, j)

where P represents the elements of the co-occurrence matrices and µx, µy , σx, and σy are the means

and standard deviations of row and column sums, respectively.

— Transform-based approaches, in which textures are considered in a space that can
be interpreted in a similar way to texture characteristics. They include mainly the
Fourier transform-based, Gabor decomposition-based, wavelet-based methods as
well as filter banks (Law’s texture features).

— Model-based approaches in which a texture image is taken as a probability model;
i.e. a set of basic functions form the texture through a linear combination. Those
approaches include fractal model and Markov model.

— Graph-based approaches such as local graph structures and shortest paths in
graphs.

— Learning-based approaches; i.e. machine and deep learning methods that are at-
taining more and more attention recently in several fields of application. They ba-
sically include training of texture images and then classification based on several
features. They require very large dataset for optimal results and effective training.

— Entropy-based approaches use the information theory concept applied to signals
at first and then recently developed for textures. They study the patterns within
images and could be optimized through the initial defined parameters. Those will
be detailed in section 1.4.2.

1.1.2 Colored texture analysis methods

Beside texture, color is essential not only in human perception for images but also
in digital image processing [52, 53, 54, 55, 56, 57]. It is becoming of a greater impact.
Unlike the intensity that is translated as scalar gray values for a gray scale image, color
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is a vectorial feature that is appointed to each pixel for a colored image [52]. In contrast
to gray scale images that could be handled in a straight forward manner, colored images
could be analyzed in several possible ways. This depends on many factors, such as the need
to analyze texture or color, separately or combined, directly from the image or through a
transformation, among other factors [52, 57, 58].

Only few studies were performed on colored texture analysis and most of them were by
adapting the application of gray scale textures analysis methods (listed in Section 1.1.1)
to be applied on colored images. Therefore, in the following, we will state the possible
approaches to handle colored images.

A study on colored texture analysis methods proposed dividing the colored texture
analysis methods into three categories [52]:

— Parallel approaches: seperate the color and texture concepts. Color is measured
from the color histogram neglecting the local neighboring pixels characteristics.
Texture is measured from the relationship of the intensities (gray scale version of
images) neglecting the color properties. Color and texture results are combined to
form a final feature vector.

— Sequential approaches: consider the color analysis from the color histogram. They
employ a segmentation procedure in which the images’ color histograms are labeled
and then the features are extracted.

— Integrative approaches: combine the analysis of color and textural concepts,
through which the information dependency between the two is taken into con-
sideration. Those could be divided into single- or multi-channel strategies.

Parallel approaches are the most commonly employed as they can utilize the known
gray-scale analysis methods directly. Sequential approaches were shown to be reliable
in certain fields. However, they rely on the segmentation procedure that considers sev-
eral parameters and, therefore, do not provide reproducible results. Finally, integrative
approaches have the advantages of accounting for the color and textural features in a col-
ored image simultaneously [52]. Moreover, the single-channel strategies possess an easily
implemented adaptation from gray scale image analysis techniques and show significantly
improved results compared to the parallel approaches [54]. Multi-channel strategies ana-
lyze two or more color channels at the same time. They have been also adapted for some
well known feature extraction methods.

Several gray scale image analysis techniques have been extended for colored image
analysis mostly as parallel approaches, such as: local linear transforms, Gabor filters [54],
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co-occurrance matrices [54, 52], wavelet based Markov model [55], and fractal descrip-
tors [53].

1.2 Entropy

Life is Chaos! The universe tends to be in disorder.

If you look at it thoroughly, you can see that, the aging of a human body, the natural
evolution of all living beings, the structure of things tend to become in disorder unless we
perform an action to force them to become ordered. Such as the simple example of our
room: our spontaneous behavior leads to an unorganized room and this is normal, so the
possibility of our room being totally ordered upon our spontaneous natural behavior is
unlikely with a very low probability. However, now when we want to clean our room and
put it back into order we are exerting an effort to force things to get back to the organized
state. Putting a system in order requires other systems to be unorganized, to continue
with the example: to organize our room it requires putting into disorder our spontaneous
behavior and following a certain pattern of moves to achieve our target.

“Any spontaneous process increases the disorder or randomness of the universe”. Well
if we take a second to think about it logically, it is True! Among the few possibilities of
things to be in a perfect order there are infinite possibilities for them to be in all the other
states: from daily life events and the physical placement of objects in our apartment, street,
and office to the particles and energy in this universe. This is a simple explanation of the
actual established second law of thermodynamics by Boltzmann that was later refined
to state that: The total entropy of a closed system cannot decrease. However, within a
system, entropy of one system can decrease by raising entropy of another system.

“A given system can never of its own accord go over into another equally probable state
but only into a more probable one [59]”

The more probable state is always the degraded state and never back to the initial
state. In thermodynamics world, Entropy is this measure of this disorder. First established
by Boltzmann as:

S = kB ln Ω, (1.1)

where S is the entropy value, kB Boltzmann constant and Ω is the number of microstates.
The microstates are the properties of the system at a certain instant. This equation relates
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the microscopic properties of the system (microstates) to the macroscopic thermodynamic
behavior. In the case of a process where the system is moving from a less probable to a
more probable state, there is a change in entropy that reflects the actual change of the
system’s properties. With Ω1 as the initial number of microstates and Ω2 as the final
number of microstates, change in entropy could be calculated as:

∆S = kB ln Ω2

Ω1
. (1.2)

After several decades, in 1948 [60], Shannon introduced the revolutionary notion of
“Information Entropy” which will be detailed in section 1.3. In information theory and
thermodynamics Entropy is a fundamental quantity. It is a common concept for various
scientific fields. In simple words it is the measure of disorder in a system. However this
might not be always a very precise definition. In thermodynamics world, entropy is the
measure of energy distribution in a system; the more spread it is, the higher the entropy
is and vice versa. However, in information theory world, the entropy is the measure of
uncertainty. The more obvious and certain an outcome is, the lower the entropy value and
vice versa.

As an illustration, consider the three different states of water: solid (ice), liquid (water),
and gas (vapor), Figure 1.4. If we want to relate entropy characterization for each of them,
we would say that the ice has the lowest entropy values because it has fixed particles;
i.e. we can always know how the particles are arranged, they are steady. Liquid state
water has a medium entropy as it reflects a bigger spread of the particles and more
possible arrangements. However, the water vapor has the highest entropy value among
them because the arrangement of particles is so random, there is a bigger spread of the
particles and they are more free to move. Now translating that into the information theory
concept, in the ice cube we have the highest knowledge (certainty) about the particles’
location and possible distribution which is rendered into low entropy value as it carries
low information. However, for the vapor (gas) we have the lowest knowledge about the
particles distribution and they are free to spread, thus it has a high entropy value as the
system contains the highest information.

When moving our system from one state to another, we can visualize the change in
entropy values. As an ice cube melts, we can obviously visualize the increase in entropy
value (increase in disorder) as its particles become more randomly distributed and spread.
We then have less knowledge about their arrangement (more possibilities). In other words,
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Figure 1.4 – Example of water states illustrating entropy as a function of the distribution and spread
of particles. Blue balls ‘W’ represent water molecules and green balls ‘S’ represent any other molecule.
In simple words, if we need to pick a ball from each state, we have 100% certainty of picking ‘W’ in the
solid state. This percentage decreases gradually for liquid and gas states as we become less certain about
the outcome of our random pick. Adapted from [61].

we become more uncertain about their arrangement, thus its state carries more infor-
mation. The key explanation of information theory is that:

— Entropy is inversely proportional to certainty of a system.
— Entropy of a variable reflects its amount of information.

1.3 Entropy in Information Theory

Entropy measures are being used in several scientific disciplines, such as: information
theory, statistical mechanics, chaos theory, neural networks, mathematical linguistics, and
taxonomy [62]. In dynamics system world, entropy is the rate of information production.
It was first established by Shannon as an average measure of disorder or uncertainty in a
system [60].

The entropy of a variable is the amount of information contained in it. The variable
could be a phone call, a signal, a sequence of letters, the news, or any other form. For one
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message state or event E, the information content I is calculated as:

I(E) = log( 1
P (E)) = − log(P (E)), (1.3)

with E being the message and P (E) the message’s probability of occurrence. Intuitively,
high probability messages carry low information content because they are already pre-
dictable, whereas the low probability messages that are the least expected carry high
information content [63, 64]. Let us use a numerical example to better explain the idea:

If we have two equally possible events, E1 and E2, with P (E1) = P (E2) = 1
2 then

I(E1) = I(E2) = − log2(1
2) = 1 bit of information. On the other side, if one event

is more likely to occur than the other such as having P (E1) = 3
4 and P (E2) = 1

4,

for example, then the information outcome would be I(E1) = − log2(3
4) = 0.415 and

I(E2) = − log2(1
4) = 2. The event with a higher probability carries lower information

content and vise versa [63]. We present the Shannon entropy herein. Consider a discrete
random variable X with elements {xi} = {x1, x2, ......, xn} and probability distribution
p(x). The entropy Hx is defined as:

Hx =
∑
xεX

p(x)I(X). (1.4)

where by observing X and knowing its probability distribution p(x), I(X) is the mea-
sure of information perceived by us. This quantity is defined by Shannon as I(X) =
− log2(p(x)) [60]. So, finally, the entropy definition is Eq. 1.5. The maximum entropy is
obtained when the events have equal probabilities [60, 64].

Hx = −
∑
xεX

p(x) log2(p(x)). (1.5)

1.4 Entropy Measures

Biomedical signal processing methods have attained major importance by being able
to extract information that is not identified visually from signals. Information is of great
interest. It enables scientists to detect behavior, redundancy, or noise information from
the biomedical signals [62]. A number of entropy measures−based on some concepts
in information theory−have been developed to serve this purpose: one dimensional
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approximate entropy (ApEn1D) [65, 66], sample entropy (SampEn1D) [67], fuzzy
entropy (FuzEn1D) [68], distribution entropy (DistrEn1D) [69], permutation entropy
(PermEn1D) [70], and dispersion entropy (DispEn1D) [71, 72]. Besides, these entropy
measures have been implemented in various fields within the biomedical domain through
their application to physiological time series, such as, electroencephalographic (EEG) [73,
74, 71], electrocardiographic (ECG) [75, 69], electromyographic (EMG) [68, 76, 77],
and electrohysterographic (EHG) signals [78]. Due to the successful findings on the
unidimensional level, bidimensional definitions were later proposed [19, 20, 21, 22, 23, 24,
25]. In the following, we will describe the unidimensional entropy methods that are the
most often used to analyze time series, the definitions of some of them and their various
applications.

1.4.1 Unidimensional entropy measures

Unidimensional approximate and sample entropy measures

Entropy measures were first established in the discipline of understanding complex
phenomena. The first developed entropy measure as a regularity quantifier is ApEn1D [65].
Thus, in 1991, Pincus [65] established ApEn1D as a measure of information in a finite data
series based on vectors’ similarity within the signal. ApEn1D, by definition, is a measure
of the likelihood that a consecutive number of points (defined by a window m) of a time
series that are similar (within a range lower than or equal to a parameter r) remain similar
on the next incremental comparisons (when adding one extra point).

ApEn1D was applied to clinical cardiovascular studies: in heart rate data in specific,
it can significantly discriminate healthy controls from diseased subjects [65, 79]. It also
found application in EEG classification for psychiatric diseases, like schizophrenia [80],
epilepsy [81], and addiction. However, ApEn1D considers self matches, has certain bias,
and is heavily dependent on the signal’s length [67].

Therefore, to handle the sensitivity of ApEn1D to the length of signals and avoid self
similarity considerations, SampEn1D was later proposed by Richman and Moorman [67,
82]. As illustrated in Figure 1.5, ApEn1D shows a high risk of obtaining undefined ( log(0) )
values if no matches were found for each and every template of lengths m and (m + 1).
This suggested adding a value of 1 to the numerator and denominator of the equation
(in each comparison). However, SampEn1D solved this issue by introducing the idea of
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summing all the number of matches before introducing the natural logarithmic function.
The latter led to excluding self matches, obtaining more accurate assessment, and saving
computation time.

In SampEn1D, by definition, “each” time series template of length m is compared to
its neighboring m-length templates by scanning the whole time series for similar matches;
if the difference between the corresponding scalar components is less than or equal to
a value r × standard deviation(time series), - r is the tolerance level − then the pat-
terns are considered similar. Thus, a unit value is added to the number of matches of
length m (Ai in Figure 1.5). However, if the difference between the corresponding scalar
components is greater than r × standard deviation(time series) then nothing is added.
Similarly, Bi for matches of (m+ 1)-length templates is calculated. After that, Ai and Bi

for m− and (m + 1)−length templates, respectively, are summed and the natural neg-
ative logarithm is calculated. It is important to mention that, the similarity degree in
ApEn1D and SampEn1D is based on a two-state binary classifier determined by r. There-
fore the outcome is highly dependent on the choice of the parameter r and the results
are also sensitive to any slight change in this value. SampEn1D found applications for
various physiological time series such as: clinical cardiovascular datasets [67], ECG [83],
EMG [84], among others.

Figure 1.5 – Schematic demonstration for ApEn1D and SampEn1D. Adapted from [82].

ApEn1D and SampEn1D algorithms definition:
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For ApEn1D and SampEn1D calculations, the time series length N , length of the
compare sequence m (moving template), and the tolerance for accepting matches r are
defined. Tolerance is usually multiplied by the standard deviation, std, of the series, u.
However, for a normalized series std(u) = 1 so r × std(u) = r. At first a vector sequence
xmi = {ui, ui+1, ..., ui+m−1} (i = 1, ... , N −m) is formed.

xmi = {ui, ui+1, ....., ui+m−1}. (1.6)

Similarly, xm+1
i for m + 1 points is formed. The distance dmxi,xj between vectors xmi and

xmj is defined as the maximum difference between their corresponding scalar components:

dmi,j = d[xmi ,xmj ] = max
k∈(0,m−1)

|(u(i+ k)− u(j + k))|. (1.7)

Define Bi as the number of vectors xmj within r of vectors xmi and Ai as the number
of vectors xm+1

j within r of xm+1
i . Thus for each xi, Bi and Ai are incremented by:

1 if d is ≤ r (similar patterns)
0 if d is > r (non− similar patterns)

 (1.8)

Then each of ApEn1D and SampEn1D is defined as follows [82]:

ApEn1D = − 1
N −m

N−m∑
i=1

ln(Ai
Bi

) (1.9)

SampEn1D = − ln(
∑N−m
i=1 Ai∑N−m
i=1 Bi

) (1.10)

As stated previously, both ApEn1D and SampEn1D showed promising results but
are too sensitive to their parameters and may even result in misleading findings. That
is because the vectors’ similarity is defined based on the Heaviside function that has a
rigid boundary [85]. The Heaviside function is a two-state binary classifier that gives a
unity value if the difference in distance between the compared vectors is within threshold r;
otherwise it gives a zero value, please see Figure 1.6. There is no intermediate value. Thus,
any slight change in r will probably change the entropy value [85]. As an enhancement,
Chen et al. [68] utilized the concept of fuzzy membership function and developed the
FuzEn1D method that will be extensively detailed below.
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Figure 1.6 – Heaviside function compared to an exponential function. Adapted from [86]).

Unidimensional fuzzy entropy

In 2007, FuzEn1D was first proposed as a measure for surface EMG time series reg-
ularity to overcome the poor statistical stability of ApEn1D and SampEn1D [68]. In the
research of information theory and complex systems analysis, several studies suggested
that FuzEn1D outperforms ApEn1D and SampEn1D [68, 86, 85, 76, 87]. Since then, it has
been used for characterizing different types of biomedical signals such as electromyogram
(EMG) [68], heart rate variability [86, 73], and electroencephalogram (EEG) [73].

Unlike ApEn1D and SampEn1D, FuzEn1D gives a membership value to each element
of a time series based on fuzzy sets and membership degree functions. For evaluating the
similarity degree in FuzEn1D, Chen et al. [68] proposed replacing the Heaviside function
used in ApEn1D and SampEn1D − that assigns a value of 0 or 1 to the elements compared
− by a continuous exponential function as their membership degree. Therefore, all the time
series elements have contributions in the final entropy output by a continuous function as
their membership degree.

FuzEn1D is computed as follows [68]:
For an N sample time series u, {u(i) : 1 ≤ i ≤ N}, given an embedding dimension

m, a vector sequence xmi = {ui, ui+1, ..., ui+m−1} (i = 1, ... , N − m) is formed. Every
element of the vector sequence is generalized by removing the sequence’s baseline {u0(i) =
1
m

∑m−1
j=0 ui+j}:

xmi = {ui, ui+1, ....., ui+m−1} − u0(i). (1.11)

Similarly, xm+1
i for m+ 1 points is formed. The distance dmi,j between vectors xmi and xmj
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is defined as the maximum difference between their corresponding scalar components:

dmi,j = d[xmi ,xmj ] = max
k∈(0,m−1)

|(u(i+ k)− u0(i))− (u(j + k)− u0(j))|. (1.12)

Given tolerance level r and fuzzy power n, the similarity degree Dm
i,j(n, r) between xmi

and xmj is calculated through a fuzzy function { µ(dmi,j, n, r) } as:

Dm
i,j(n, r) = µ(dmi,j, n, r) = exp(−

(dmi,j)n

r
). (1.13)

Then, the functions Φm and Φm+1 are defined as:

Φm(n, r) = 1
N −m

N−m∑
i=1

Φmi (r), (1.14)

Φm+1(n, r) = 1
N −m

N−m∑
i=1

Φm+1
i (r), (1.15)

where Φmi and Φm+1
i are the average of all the similarity degrees of vectors xmi and xm+1

i ,
respectively, with their neighboring vectors xmj and xm+1

j :

Φmi (n, r) = 1
N −m− 1

N−m∑
j=1,j 6=i

Dm
i,j, (1.16)

Φm+1
i (n, r) = 1

N −m− 1

N−m∑
j=1,j 6=i

Dm+1
i,j . (1.17)

Then FuzEn1D measure is defined as:

FuzEn1D(m,n, r) = lim
N−→∞

[ lnΦm(n, r)− lnΦm+1(n, r) ]. (1.18)

It is estimated by the statistics for finite datasets, i.e. time series in our case:

FuzEn1D(u,m, n, r) = lnΦm(n, r)− lnΦm+1(n, r). (1.19)

Finally, FuzEn1D is formulated as:

FuzEn1D(u,m, n, r) = ln Φm(n, r)
Φm+1(n, r) . (1.20)
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In addition to the above detailed entropy measures, some other unidimensional entropy
measures were later developed: distribution entropy 1D (DistrEn1D) [69], dispersion en-
tropy 1D (DispEn1D) [71, 72], permutation entropy (PermEn1D) [70]. We will detail the
bidimensional versions of the aforementioned measures in section 1.4.2.

Unidimensional multiscale approach

In the unidimensional domain, the previously detailed entropy measures ApEn1D [65],
SampEn1D [67], and FuzEn1D [68] are able to quantify the irregularity of physiological
time series. However no analysis was performed on multiple scale factors until Costa
et al. [88] proposed the concept of coarse-graining process with entropy measures. They
introduced the multiscale entropy (MSE1D) and studied the biological series behavior
over several scale factors to explain the fact that some pathologic processes have a lower
complexity than healthy processes [88]. In fact, MSE can be considered as a filter bank
of overlapping band-pass filters [89].

Unidimensional multiscale approach MSE1D

MSE is a two-step procedure: first coarse-graining the original time series, then apply-
ing SampEn1D to each coarse-grained time series. Elements of the coarse-grained time
series are obtained from the original one x = {x1, x2, x3, ....xN} with lengthN by the equa-
tion: y(τ)

j = 1
τ

∑jτ
i=(j−1)τ+1 xi, 1 ≤ j ≤ N

τ
, given a scale factor τ [88, 90], see Figure 1.7. It

involves dividing the original time series into consecutive non-overlapping windows and
averaging the data points within each window to obtain multiple average values that form
the new coarse-grained time series y(τ) [88, 90, 91]. The length of the coarse-grained time
series is the length of the original time series divided by the scale factor: N/τ . At scale
one, the coarse-grained time series is the original time series itself. After that, SampEn1D

is calculated for each coarse-grained time series and plotted as a function of the scale
factor τ .

For the MSE analysis, two major patterns should be considered [91]:
— For two time series a and b, if the entropy values at most of the scale factors for

a are higher than those for b, then a is more complex than b.
— If entropy values decrease monotonically with scale then the significant information

is only found at the smallest scales of the original time series.
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Figure 1.7 – Illustration of MSE1D for time series. τ is the number of points taken in each window to
form the new coarse grained time series y(τ).
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It has been shown that it is better to study the complexity of biological systems on the
multiscale level because they naturally operate across multiple temporal scales [91].

Modified multiscale entropy MMSE1D

Modified multiscale entropy MMSE1D [92] is composed of two main steps like MSE1D:
first coarse-graining the original time series x = {xk} = {x1, x2, x3, ....xN}, of length N ,
then applying SampEn1D to each coarse-grained time series. However, the coarse graining
procedure is performed using overlapping moving templates. The length of the τ coarse-
grained time series is N-τ+1. The algorithm is defined as follows:

— An overlapping moving template scans the whole original time series to form the
coarse-grained versions y(τ) = {y(τ)

j } as:

y
(τ)
j = 1

τ

k=jτ∑
k=(j−1)τ+1

xk, (1.21)

where j goes from 1 to (N
τ

+ 1) (rounded down).
— For each coarse-grained time series y(τ), SampEn1D is computed.

Unidimensional multiscale fuzzy entropy MSF1D

Similar to the previously defined multiscale analysis, MSF1D [72] is a two-step proce-
dure: first coarse-graining the original time series following [88], then applying FuzEn1D

to each coarse-grained time series. It involves dividing the original time series into con-
secutive non-overlapping windows and averaging the data points within each window to
obtain multiple average values that form the new coarse-grained time series y(τ).

— Elements of the coarse-grained time series are obtained from the original one x =
{x1, x2, x3, ....xN} with length N by the equation: y(τ)

j = 1
τ

∑jτ
i=(j−1)τ+1 xi, 1 ≤ j ≤

N
τ
, given a scale factor τ

— The obtained coarse-grained time series are evaluated using FuzEn1D.

1.4.2 Bidimensional entropy measures

In the field of biomedical signal processing, several unidimensional (1D) entropy mea-
sures have been developed to characterize the irregularity of physiological signals, as
mentioned above. Successful findings based on entropy measures on 1D data [65, 67, 68],
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signals, encourage the development of bidimensional (2D) entropy metrics for 2D data,
images. Starting in 2011, the bidimensional entropy measures for studying images irregu-
larity emerged and showed promising findings [19, 20, 21, 22, 23, 24, 25]. The 2D entropy
measures can extract some 2D information from an image and study the irregularity
within its patterns in a similar manner to that implemented for signals [1]. In the follow-
ing we will mention all the existing bidimensional entropy measures, including the most
recent ones. Furthermore, we will thoroughly explain the first developed bidimensional
measure: bidimensional sample entropy, SampEn2D.

Bidimensional sample entropy

In 2011, Yeh et al. [23] followed by the work of Silva et al. [19] proposed the first
2D entropy measure, 2D sample entropy (SampEn2D) for quantifying the irregularity of
images as an extension of 1D sample entropy (SampEn1D) [67].

For an image U={u(i, j)}j=1,2,.......,W
i=1,2,.......,H with height H and width W :

1. Let Vm(i, j) be the m-length square window of U with origin at u(i, j):

Vm(i, j) =


u(i, j) ... u(i, j +m− 1)

u(i+ 1, j) ... u(i+ 1, j +m− 1)
... ... ...

u(i+m− 1, j) ... u(i+m− 1, j +m− 1)

 . (1.22)

Let Nm be the total number of square windows within U that are generated for m
and m+ 1 size: Nm = (W −m) × (H −m). For a similarity threshold r, compute
Gm(r) as:

Gm(r) = 1
Nm

i=H−m,j=W−m∑
i=1,j=1

Gm
ij (r), (1.23)

where, Gm
ij (r) = 1

Nm − 1× number of Vm(a, b) such that d [Vm(i, j),Vm(a, b)] ≤
r, where a and b range from 1 to H −m and from 1 to W −m, respectively. The
distance d is calculated as follows:

d[Vm(i, j),Vm(a, b)] = max
0≤k≤m−1, 0≤l≤m−1

|u(i+ k, j + l)− u(a+ k, b+ l)|. (1.24)
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2. Then, compute G1m(r) as:

G1m(r) = 1
Nm

i=H−m,j=W−m∑
i=1,j=1

G1mij (r), (1.25)

where, G1mij (r)=
1

Nm − 1× number of Vm+1(a, b) such that d

[Vm+1(i, j),Vm+1(a, b)] ≤ r, where a and b range from 1 to H − m and
from 1 to W −m, respectively. This means the similarity is considered as:

1 if d is ≤ r (similar patterns)
0 if d is > r (non− similar patterns)

 (1.26)

3. Finally, calculate the bidimensional Sample entropy, SampEn2D:

SampEn2D(m, r,U) = − ln(G1m(r)
Gm(r) ). (1.27)

4. In SampEn2D, two patterns are considered to match if the absolute difference
between all their corresponding components is lower than the threshold r.

SampEn2D was tested on synthetic images, texture images, and real biological images.
SampEn2D is similar to its unidimensional definition SampEn1D [67]. As an illustration
for pattern comparisons using SampEn2D please see Figure 1.8. The results obtained
by SampEn2D were very promising and illustrated its ability to extract some meaning-
ful 2D features of an image. It was applied to nerves histological images [19]. However,
SampEn2D still has the drawback of resulting in undefined values especially for small sized
images [22]. Moreover, it is very sensitive to its parameters’ values, like its 1D version.
The latter will be shown in our manuscript as well (Chapter 4).

Bidimensional distribution entropy

Later, in 2017, Azami et al. developed the 2D distribution entropy (DistrEn2D) [20].
DistrEn2D was developed based on its unidimensional DistrEn1D [69] concept that
showed advantages in the results over other unidimensional entropy measures for short
signals [69]. Thus, DistrEn2D − its 2D version − deals especially with small-sized texture
images.

DistrEn2D is based on a histogram approach with M bins to estimate the empirical
probability density function (ePDF) of the distance matrix (D), where D is the greatest
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Figure 1.8 – An illustration for pattern comparisons using SampEn2D depicted from [19]. (a) is an
example of a gray image with a certain irregularity degree. (b) is an amplified view of a window to
explain the similarity calculations. Two patterns (dotted yellow squares) are considered to be similar if
the difference between all their corresponding scalar components is lower than or equal a tolerance value
r; i.e. |u(12, 18)− u(9, 21)| ≤ r, |u(12, 19)− u(9, 22)| ≤ r, ...., |u(14, 20)− u(11, 23)| ≤ r.
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absolute difference between the compared patterns. DistrEn2D algorithm is explained
below. Consider an image U={ui,j}j=1,2,.......,w

i=1,2,.......,h of size H ×W :

1. U is normalized to 0 to 1 range. Then template matrices of mH × mW size are
created Xm

k,l (Eq. 1.28) where k = 1, 2, ..., H − (mH − 1) and l = 1, 2, ..., W −
(mW − 1). The embedding dimension vector m is taken as [mH ,mW ].

Xm
i,j =


ui,j ... ui,j+mW−1

ui+1,j ... ui+1,j+mW−1

... ... ...

ui+mH−1,j ... ui+mH−1,j+mW−1

 . (1.28)

2. Then, the distance matrix D is calculated as the absolute difference between the
corresponding scalar components of Xm

k,l and Xm
a,b, in which, variables a and b

range from 1 to H− (mH−1) and from 1 to W − (mW −1), respectively, excluding
(k, l) = (a, b) to reduce bias.

3. After that, the histogram approach is implemented with M bins to estimate the
empirical probability density function (ePDF) of the distance matrix (D). The
probability of each bin is represented by pt (frequency).

4. Finally the 2D distribution entropy, DistrEn2D, is calculated as:

DistrEn2D(U,m,M) = −
M∑
t=1

pt × log2(pt). (1.29)

For testing DistrEn2D, a set of synthetic images based on several concepts in im-
age processing, including power of noise and degree of randomness, and real texture
datasets were employed [20]. DistrEn2D results in defined entropy values for images
where SampEn2D is not defined.

Bidimensional dispersion entropy

In 2019, as an extension of DispEn1D [71, 72], DispEn2D [22] was introduced for
2D data. In DispEn2D, the pixels of an image are mapped into classes and then corre-
spondingly into dispersion patterns. The relative frequency for each dispersion pattern is
calculated. Afterwards, those relative frequencies of the dispersion patterns are summed
up by a definition based on Shannon entropy to obtain the final entropy value.
Consider an image U={u(i, j)}j=1,2,.......,W

i=1,2,.......,H of H× W size:
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1. Map u(i, j) elements into c classes, using linear and non-linear methods [93], to
form zci,j = round(c× yi,j + 0.5). The number of classes c could be an integer from
3 till 9. In order to avoid having most of the u(i, j) elements in few classes out of
the 1 to c, a sigmoid function is often used where:

yi,j = 1
σ
√

2π

∫ ui,j

−∞
e

−(t−µ)2

2σ2 dt, (1.30)

with µ and σ being the mean and standard deviation of the original image U.

2. Let m be the embedding dimension vector [mH ,mW ] to define zm,c
k,l such as:

zm,c
k,l =


zck,l zck,l+1 · · · zck,l+(mW−1)

zck+1,l zck+1,l+1 · · · zck+1,l+(mW−1)

· · · · · · · · · · · ·
zck+(mH−1),l zck+(mH−1),l+1 · · · zck+(mH−1),l+(mW−1)

 , (1.31)

where k range from 1 to w − (mW − 1) and l ranges from 1 to h− (mH − 1).

3. After that, map zm,c
k,l to a dispersion pattern πυ0,υ1...υmH×mW−1 . For each zm,c

k,l ,
cmH×mW dispersion patterns can be formed.

4. Calculate the relative frequency for each of the cmH×mW dispersion patterns
πυ0,υ1...υmH×mW−1 :

p(πυ0,υ1...υmH×mW−1) =
#{k, l, zm,c

k,l has type πυ0,υ1...υmH×mW−1}
(h− (mH − 1))(w − (mW − 1)) , (1.32)

where l ≤ w − (mW − 1) and k ≤ h− (mH − 1).

5. Finally, DispEn2D is calculated as:

DispEn2D(U,m, c) = −
cmH×mW∑

π=1
p(πυ0,υ1...υmH×mW−1)× ln(p(πυ0,υ1...υmH×mW−1)).

(1.33)

DispEn2D was also tested on several synthetic images and real datasets [22]. It illustrated
successful performance, especially regarding the speed of calculations. In comparison to
SampEn2D, DispEn2D is faster, more stable, and leads to less undefined values.
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Bidimensional approximate entropy

In addition, 2D approximate entropy (ApEn2D) [21] was developed as a structure
metric to detect some image structural details that are unrecognized by the gray scale
metrics. It was applied to raw computed tomography (CT) and cone beam computed
tomography (CBCT) images and compared to the 2D Laplace transformation of their
corresponding raw images. ApEn2D operates in a different way compared to SampEn2D,
and DistrEn2D, it re-displays the image showing its structural details by defining the
entropy measure around each pixel of the image. Thus, it is not actually a measure of
image’s irregularity.

Complexity-entropy causality plane

Complexity-entropy causality plane is a method introduced recently as a combination
of the permutation entropy concept with a relative entropy concept [94, 24].

Permutation entropy [70], PermEn1D, is another popular metric in this field. Although
this method is fast, it is too sensitive to noise and does not address the problem of equal
values in embedding vectors [24]. This method relies on linking symbolic sequences to
portions of the time series. This relies on the presence of local order in these portions.
After that, the probability distribution of these symbolic sequences is calculated.

The nature of PermEn1D allowed to extend it to higher dimension data. Consider a
two-dimensional array, i.e. an image, {yji }

i=1,.....nx
j=1,.....,ny with size nx × ny. The bidimensional

extension of PermEn1D, PermEn2D [94] is defined as follows:

1. dx × dy dimensional matrices, (sx, sy), with dx, dy > 1 are defined as:

(sx, sy)→



y
sy−(dy−1)
sx−(dx−1) y

sy−(dy−1)
sx−(dx−2) ... y

sy−(dy−1)
sx−1 ysy−(dy−1)

sx

y
sy−(dy−2)
sx−(dx−1) y

sy−(dy−2)
sx−(dx−2) ... y

sy−(dy−2)
sx−1 ysy−(dy−2)

sx

: : . . . : :
: : . . . : :

y
sy−1
sx−(dx−1) y

sy−1
sx−(dx−2) ... y

sy−1
sx−1 ysy−1

sx

y
sy
sx−(dx−1) y

sy
sx−(dx−2) ... y

sy
sx−1 ysysx



,

with sx = dx, dx + 1, .....nx and sy = dy, dy + 1, .....ny.
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2. Then the possible permutation is evaluated for the (nx − dx + 1)(ny − dy + 1)
matrices:

π = (r0, u0), (r1, u0), ...., (rdx−1, u0), ...., (r0, udy−1), (r1, udy−1), ....., (rdx−1, udy−1),

of (0, 1, ....., dxdy − 1) defined by :ysy−udy−1
sx−rdx−1 ≤ y

sy−udy−1
sx−rdx−2 ≤ ..... ≤ y

sy−udy−1
sx−r1 ≤

y
sy−udy−1
sx−r0 ≤ ..... ≤ y

sy−u0
sx−rdx−1 ≤ y

sy−u0
sx−rdx−2 ≤ ..... ≤ y

sy−udy−1
sx−r1 ≤ y

sy−udy−1
sx−r0

3. After that the system can access the (dxdy)! states. Then the probability distribu-
tion is calculated P={p(π)} as relative frequencies:

p(π) = #sx, sy|sx ≤ nx − dx and sy ≤ ny − dy + 1; (sx, sy)
(nx − dx + 1)(ny − dy + 1) (1.34)

4. See Figure 1.9 for an illustrative example. The patterns for π are ordered column
by column.

Figure 1.9 – Schematic diagram for the two dimensional extension of permutation entropy. Adapted
from [24].

Permutation entropy has two major drawbacks: some amplitude information are ig-
nored and it is highly sensitive to noise [70, 22]. Note that FuzEn1D has generally a better
performance in this scope.
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1.5 Multiscale Bidimensional Entropy Measures

One- and two-dimensional entropy methods, such as sample entropy, are used to quan-
tify the irregularity of signals or images at one scale. They assess repetitive patterns and
return maximum values for completely random processes (e.g., white noise). However,
such approaches are very sensitive to high frequency components and may fail to ac-
count for the multiple scales inherent in data [89]. To deal with the problem, multiscale
entropy-based techniques were proposed to quantify the irregularity of a signal or image
over multiple scale factors to illustrate their corresponding complexity. This is achieved
by evaluating the entropy measure for the original and coarse-grained versions of the data
under study.

Moreover, in analyzing biological systems in specific (biomedical signals and images)
it is of importance to study the overall complexity, i.e., at several scale factors, as
previously addressed in [88, 91]. Single scale measurements could be misleading in
determining the actual complexity of a system. Taking the classical example of pink and
white noise, it has already been shown in several papers that the entropy value of white
noise shows higher irregularity than pink noise ( 1

f
) but as the evaluation is performed

over several scale factors, white noise shows a decrease in irregularity with scale factor
whereas pink noise shows higher entropy values with scale factors and eventually a higher
complexity. This agrees with the fact that pink noise is of long term correlations whereas
white noise is of short term correlations and is thus less complex. This is also reflected in
the biological system’s behavior where some pathologic processes have a lower complexity
than healthy processes unlike what is indicated by the traditional entropy measurement
on the single scale factor [88].

Only one bidimensional entropy measure (beside our work) has been extended to its
multiscale version. Multiscale bidimensional sample entropy based on two different coarse-
graining methods will be explained below.

Multiscale bidimensional sample entropy MSE2D

We start by introducing the multiscale bidimensional sample entropy, MSE2D [42]. It
is a two-step procedure based on the Bidimensional Sample Entropy, SampEn2D, detailed
in section 1.4.2. For an image U of W width and H height, a coarse-graining procedure
is performed. Then SampEn2D is applied to each coarse-grained version G(τ) = {g(τ)

i,j }.
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The whole procedure is therefore the following:

1. a non-overlapping window scans the whole original image to form the coarse-
grained versions {G(τ)} as:

g
(τ)
i,j = 1

τ 2

k=iτ,l=jτ∑
k=(i−1)τ+1,l=(j−1)τ+1

uk,l, (1.35)

where i goes from 1 to [H
τ

] and j goes from 1 to [W
τ

].

2. for each coarse-grained image G(τ), SampEn2D (see section 1.4.2) is computed.

Modified multiscale bidimensional sample entropy ModMSE2D

The modified multiscale bidimensional sample entropy was proposed to overcome
the image size limitations when dealing with small images in specific. In fact, the
coarse-graining procedure used for MSE2D reduces the images sizes considerably. Thus,
ModMSE2D is proposed to tackle this issue.

Similar to the MSE2D concept, ModMSE2D is also a two step procedure in which
SampEn2D is calculated for the coarse-grained versions of an original image [42]. However
the coarse-grained versions are composed differently. It is defined as follows:

1. an overlapping window scans the whole original image to form the coarse-grained
versions Q(τ) = {q(τ)

i,j } as:

q
(τ)
i,j = 1

τ 2

k=i+τ−1,l=j+τ−1∑
k=i,l=j

uk,l. (1.36)

where i goes from 1 to (H − τ + 1) and j goes from 1 to (W − τ + 1)

2. for each coarse-grained image Q(τ), SampEn2D (see section 1.4.2) is computed.
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1.6 Medical Applications

1.6.1 Imaging modality: dermoscopy

Dermoscopy or Epiluminescence Microscopy (ELM), is one of the well-known
non-invasive techniques used for cutaneous diseases inspection and diagnosis on which
most research studies are conducted. Dermoscopy is a noninvasive imaging modality that
allows obtaining an in vivo evaluation of colors and microstructures of the epidermis,
the dermoepidermal junction, and the papillary dermis that cannot be seen by the
naked eye [95, 96, 97, 98]. Figure 1.10 shows a simple illustration for the structure of a
dermoscope coupled with a digital camera. Usually, gel is applied to the skin surface. The
transparent spacer is placed in a firm position in contact with the skin. Moderate pressure
is applied in a way to avoid having air bubbles between the transparent spacer and the
skin, while at the same time, avoiding to exert a lot of pressure on the skin surface.
Then, the macro converging lense and high resolution digital camera are positioned.

The use of dermoscopy in a clinical exam is an essential part, as it provides diagnostic
information that are invisible to the naked eye. A dermoscope could be thought of as the
dermatologist’s stethoscope, as it is easy to use and carry around [99, 97]. Dermoscopy
was first used for the identification of melanocytic skin lesions (nevi and melanoma),
then it became used for the inspection of several other cutaneous tumors: nonmelanocytic
pigmented and nonpigmented lesions.

Figure 1.10 – Schematic diagram for a dermoscope. Adapted from [100].
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However, dermoscopy alone is not always sufficient. In fact, it has been shown that
dermoscopy may lower the accuracy of diagnosis for several medical cases if handled by
inexperienced dermatologists [101, 96]. Also for melanoma identification, several studies
emphasized that only for “experienced dermatologists” dermoscopy provides more accu-
rate diagnosis than naked eye clinical examination. Knowing that, un-aided eye diagnosis
is about 60% accurate [98]. In addition, even experienced clinicians have diagnostic accu-
racy below 85% [102]. Thus, it could be stated that the dermoscopy accuracy is directly
related to the examiners’ experience degree. Furthermore, a dermatologist’s decision based
on dermoscopy alone remains subjective; so computer-based analysis techniques would be
of great importance to give objective judgment and diagnosis for the dermoscopic images
and aid the medical doctors in clinical decision making. Consequently, for the dermoscopy
field images we employed our developed measures.

1.6.2 Skin: microcirculation

Skin is the largest body organ that is the primary barrier against external agents,
a thermoregulator, a platform for perceiving sensation, and an excreter for some forms
of body wastes (ex. minerals and water) among other functions. To achieve some of its
roles, skin has a high-vessel density structure, known as cutaneous microcirculation. This
microcirculation consists of two important horizontal plexuses in the dermis [103, 104]:

— the upper horizontal plexus located at 1 − 1.5 mm from the skin surface (at the
level of the dermal papillae), and

— the lower horizontal plexus at the dermal subcutaneous junction.

Figure 1.11 – Schematic demonstration of the dermal and subdermal plexus. We can notice two impor-
tant dermal horizontal plexuses: the upper horizontal plexus located at 1− 1.5 mm from the skin surface
(at the level of dermal papillae), and the lower horizontal plexus at the dermal subcutaneous junction.
Adapted from [104].
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Referring to Figure 1.11, we can notice that the upper dermal plexus contains the
capillary network and that the two aforementioned plexuses are linked by the ascending
arterioles and descending venules.

Microcirculation is the key central element of the cardiovascular system. It has the role
of delivering nutrients and oxygen, providing the essential fluids exchange, and getting
rid of waste products between the blood circulation and body tissues. The microcircu-
lation represents the arteries with diameter less than 150 µm, arterioles, capillaries, and
venules [105], please see Figure 1.12.

The arterioles are vessels with an external diameter between 17 and 26 µm. They have
a smooth muscle layer that allows them to control the pressure gradient according to the
tissues’ metabolic demand, by their ability to adjust their diameters. Capillaries have an
external diameter smaller than 12 µm. They are the structures in which the exchange of
gasses, nutrients, and cellular excreta happens. They are very thin such that their walls
are of 2 to 3 µm thickness to allow the flow of fluids. Venules are vessels with an external
diameter between 18 and 23 µm. They are extensions of capillaries (with thicker walls)
and form parallel structures to the arterioles. Moreover, venules do not have the smooth
muscle layer [106, 105, 104].

Figure 1.12 – Schematic demonstration for microcirculation anatomy. It shows the arteriole and venule
connected by the capillaries where the main exchange of nutrients happens. Adapted from [106].

For patients with critical illness, shock, and other bedridden cases, establishing “hemo-
dynamic coherence” [107] is one of the important targets for resuscitation. Besides moni-
toring the macrocirculatory segments (heart rate, blood pressure, etc.), assessing the mi-
crocirculatory segments should be considered to supervise the highly probable dissociation
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between micro- and macrocirculatory aspects, i.e. loss of hemodynamic coherence [108,
106]. This fact supports the need to develop a fast and accessible method for analyzing
the microcirculatory blood flow and monitoring its accordance with the global blood flow
control. Simultaneously, skin is the largest organ, the most accessible in critical cases,
and could provide direct access for possible microcirculatory alterations [108]. Thus, it
would be compelling to develop a computerized cutaneous microcirculation evaluation
technique [108].

The study of cutaneous microcirculation has gained increasing interest in the past
few years because it was associated with a number of pathological processes [109, 110].
Furthermore, endothelial dysfunction is progressively perceived as an early key element
in pathogenesis of cardiovascular pathologic conditions such as hypertension, coronary
artery condition, hypercholesterolemia etc. [111, 106]. Therefore, the assessment of tissue
microcirculation and comparing it to the macro-hemodynamic parameters is important.
Although such practices are not fully created and integrated in the clinical applications
yet [106], they may become achievable in the near future as several research studies cover
this topic including our recent study [29]. The study dealing with cutaneous microcir-
culation is performed in collaboration with the department of dermatology at Angers
university hospital − Angers, France represented by Pr Ludovic Martin and Dr Clemence
Berthin.

1.6.3 Pseudoxanthoma elasticum (PXE)

Despite the crucial medical research advancements, some diseases are still incurable.
Pseudoxanthoma elasticum (PXE) is one of these diseases, also known as Grönblad-
Strandberg syndrom. It is also known as Gronblad-Strandberg syndrome. PXE is rare,
with an approximate worldwide prevalence in 1 per 25,000 − 70,000 people [112]. It is
a hereditary disorder caused by mutations in the ABCC6 gene encoding a transporter
protein. In fact, PXE is an autosomal recessive disease, which means if the parents are
carriers with no apparent symptoms there is 25 % possibility that the children would have
PXE; i.e. if they obtained the mutated gene from both parents, see Figure 1.13.

PXE is accompanied by calcification of soft tissues and degeneration of elastic
fibers [114, 115]. It targets the skin, retina, and cardiovascular system. The elastic fibers
in these sites degenerate and slowly become calcified (mineralized), eventually losing their
elastic function [114, 115, 116, 117, 118]. PXE is known for its systemic manifestations,
usually first in skin as yellow cutaneous papules of 1 − 5 mm diameter on the lateral
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Figure 1.13 – PXE is a hereditary autosomal recessive disease for which the probability of occurrence
in the children if the parents are carriers is illustrated above. Adapted from [113].
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neck (see Figure 1.14) and supraclavicular regions that are generally the primary physical
signs of developing PXE. These physical signs gradually extend to more distal flexural
sites over several years followed by a loss of elasticity [119, 114, 115, 117, 118].

Figure 1.14 – PXE skin manifestations: cutaneous papules appearing on the neck of a PXE patient in
an advanced stage. CHU Angers - department of Dermatology.

The degenerative calcification of the body’s elastic structures is manifested mainly
in [119, 114, 115, 117, 118]:

— skin’s mid and deep dermis elastic fibers (see Figure 6.1 in the Annexes) especially
on the neck, underarms, back of the knee, and any skin area that touches when
joint bends.

— the eye by lesions of the posterior segment of the eye including peau d’orange, it
causes the calcification of the Bruch’s membrane and subsequently cracks causing
angioid streaks (see Figure 1.15).

— the cardiovascular system’s endocardium and arteries causing several complications
leading to several cardiovascular diseases and eventually death.

— No evidence for its effect on the lung’s elastic tissue has been yet observed.

Figure 1.15 – PXE ophthalmic manifestations: florescent angiogram for the the Bruch’s membrane
cracks “Angiod streaks” caused by the calcification due to PXE proliferation. Adapted from [114].

The diagnosis of PXE relies mainly on the physical skin manifestations that usually
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appear during childhood or adolescence [112]. These manifestations progress in an unpre-
dictable manner during adulthood and are followed by serious ophthalmic and cardiovas-
cular manifestations due to the degenerative transformations in the elastic tissues [112,
114]. Figure 1.16 presents an illustration of the mineralisation in the connective tissues,
in specific the elastic structures of several body organs.

Figure 1.16 – PXE manifestations in the body targeting the elastic fibers and connective tissues mainly
in the eyes, arteries, and skin. Adapted from [120].

Despite the fact that there is no definite treatment for PXE yet the diagnosis in the
very early stage (skin manifestations) is essential. It aids the implementation of prophy-
lactic lifestyle, preventive diet plans, psychological guidance, and better surveillance of
the possible clinical complications that would arise [116, 121, 119]. Several therapeutic
measures might be implemented at the early stages. These measures could at least en-
hance the quality of the patient’s life and result in less complications during the natural
clinical course of PXE.

One of the imaging modalities used for detecting PXE’s primary skin symptoms is
dermoscopy because papules alter the skin texture. However, dermoscopy alone is not
always sufficient. In fact, it has been shown that dermoscopy may lower the accuracy of
diagnosis if handled by inexperienced dermatologists [101]. Therefore, in order to reduce
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diagnostic errors that result from the difficulty and subjectivity of visual interpretation,
and the possible variability of human perception, the development of computerized
image analysis techniques is of great importance [96]. The study on PXE is performed
in collaboration with the department of dermatology at Angers university hospital −
Angers, France represented by Pr Ludovic Martin and Dr Clemence Berthin.

1.6.4 Melanoma

According to the World Health Organization, one in every three diagnosed cancer
cases is a skin cancer and the incidence rate has been increasing over the past years. In
cancer diagnosis, the number of melanoma (skin cancer) cases is augmenting more than
any other cancer type. The real challenge is in the early detection for melanoma because
it is often mistaken for the benign melanocytic nevi and cannot be always identified in
dermoscopic images; even experienced clinicians have diagnostic accuracy below 85% [102],
see Figure 1.17.

Figure 1.17 – Image of melanoma (right) and melanocytic nevi (left).

Dermoscopy is one of the well-known non-invasive techniques used for skin cancer diag-
nosis on which most research studies are conducted, please refer to section 1.6.1. However,
visual diagnosis alone might be misleading and subjective even when performed by ex-
perts. Thus, dermoscopy image analysis (DIA) using computer-aided diagnosis (CAD)
systems is essential to help medical doctors. Several studies proposed computer-extracted
texture features for cutaneous lesions diagnosis, in specific for the most aggressive type,
melanoma [122, 123, 124]. Melanoma is metastatic, thus, its early diagnosis and exci-
sion would definitely increase the survival rate. Some DIA methods focus only on the
dermoscopic images structure/patterns [125, 126], others rely on colors [127, 128, 129],
and certain consider both [130], for more details please refer to [122, 123, 124]. Never-
theless, most studies propose learning-based approaches and only few, until now, suggest
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entropy-based measures. Consequently, in this manuscript we will be presenting entropy
measures and evaluating melanoma and melanocytic nevi images in gray scale and colored
dermoscopic images.

1.6.5 Chronic obstructive pulmonary diseases (COPD)

Chronic Obstructive Pulmonary Diseases (COPD) are a group of progressive lung
diseases. The most common are emphysema and chronic bronchitis. Emphysema is man-
ifested by the destruction of alveoli’s elastic fibers which are the basic structures for
gas exchange between the external environment and the blood circulation. They become
severely damaged and lose their elastic properties. In chronic bronchitis, inflammation
and excess mucus causes narrowing of the bronchitis (bronchoconstriction) and eventually
causing airflow limitation. For illustration, please see Figure 1.18. COPD is characterized
by a progressive and irreversible decline in lung function [131, 132]. It causes shortness in
breathing (dyspnea) and chronic cough with irreversible effects.

Figure 1.18 – Illustration of the manifestation of COPD in the respiratory system: chronic bronchi-
tis (top pannel) where bronchoconstriction occurs and emphysema (bottom pannel) where the alveolus
become damaged. Both cause shortness in breath (dyspnea) and chronic cough. Adapted from [133].

In 2015, COPD affected about 174.5 million (2.4%) of the global population and
resulted in 3.2 million deaths. According to the World Health Organization (WHO) it
is expected that by year 2030 it will become the 4th leading cause of death worldwide.
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In addition, according to a study made on the numbers between 1990-2015, COPD is
among the leading causes of death in the world already (rank 14th) [134]. There is no
treatment for COPD yet, however early diagnosis and potential treatment measures can
help ease the symptoms, lower the chance of complications, and generally improve quality
of life [131].

Lung diseases are one of the main causes of death worldwide. Identifying their phe-
notypes and staging their severity can be obtained through computed tomography (CT)
images of the pathological site. However, CT can lead to a huge amount of data (many
2D-scans for one region are studied to represent its volume) that can be difficult to analyze
and interpret.

In our work we propose a new entropy-based measure, termed pseudo-tri dimensional
multiscale fuzzy entropy, to quantify the irregularity of high resolution CT scans (HRCT).
This work is performed in collaboration with Dr Lars Pilegaard Thomsen at the Aalborg
university−Denmark for a presentation in an invited session entitled “Identification of
Cardiopulmonary Function” at IEEE EMBC 2019. Data are obtained from University
Hospital of Aalborg−Department of Respiratory Diseases (Aalborg, Denmark). Data from
three groups of subjects are processed: one normal group and two other groups with
chronic obstructive pulmonary diseases characterized by a progressive and permanent
decline in lung function. The results are interesting for HRCT scan slices, allowing us
to further extend this study to a larger number of patients in the future. Also, a very
recent study on lung CT images of COPD patients shows texture analysis as a promising
quantitative measure [135]. Thus, the scope of our study comes to be innovative and
encouraging.

1.6.6 Idiopathic pulmonary fibrosis (IPF)

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and destructive lung disease with
irreversible effect. It has no known cure yet, but a lung transplant might be an option
in some cases. IPF causes shortness in breath and chronic dry cough and symptoms that
worsen with time.

IPF is a similar disease to COPD. The main difference between IPF and COPD is the
kind of physical lung damage that each of them causes. IPF results in scarring of lungs
that causes the alveolar sacs to thicken and the lungs become stiff. Consequently, this
reduces the gas exchange and oxygen intake specifically; see Figure 1.19.

As we can notice that for the normal lung, Figure 1.19 (A), a capillary network sur-
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Figure 1.19 – Idiopathic Pulmonary Fibrosis (IPF) main lung symptoms. Adapted from [136].

rounds the alveoli to ensure the gas passage into the blood stream. However, for lungs
with IPF, Figure 1.19 (B), scars known as fibrosis are formed between the alveoli, even-
tually decreasing drastically the ability for gas exchange. This causes shortage in oxygen
intake, progressive dyspnea, and chronic cough.

The diagnosis of IPF usually relies on HRCT scans or lung biopsy. In HRCT, medical
doctors try to identify the fibrosis or lung inflammation and often localize a pattern known
as “honey comb”. In a lung biopsy, they scan the tissue for signs of changes or scars, in
specific patterns of usual interstitial pneumonitis (UIP) [136, 137, 138, 139, 135].

In this manuscript, we propose an entropy measure and apply it to volumetric HRCT
scans for healthy individuals and IPF patients to characterize the entropy behavior and
irregularity of both cases. This work is performed in collaboration with University of
Coimbra−Portugal represented by Pr João Cardoso, Dr Pedro G. Vaz, and Andreia Sofia
F. Gaudêncio, and the competence center for rare pulmonary diseases in the department
of Respiratory Medicine at Rennes University Hospital−France represented by Dr Guil-
laume Mahé and Dr Mathieu Lederlin. The main goal is to differentiate the two groups
successfully using our proposed entropy measure. This could be a useful tool in the eval-
uation of HRCT of patients with IPF for early detection and quantification of the UIP
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patterns, through an irregularity assessment.

1.6.7 Uterine fibroids

Uterine fibroids are benign growth in the uterus muscle. One of the possible treatments
for uterine fibroids is the non-surgical uterine artery embolization (UAE). This procedure
involves injecting embolic agents into the blood vessels that supply the uterus. Thus, the
blood flow is cut off the fibroids so that they become smaller and then destroyed, see
Figure 1.20. This leads to shrinking fibroids and easing their symptoms in a minimally
invasive manner.

In our study we also performed the texture analysis of uterine fibroids on MRI scans
before and after arterial embolization. There is no software for performing this task yet.
However, recent promising studies are still investigating the possibility of depending on
texture analysis.

Figure 1.20 – The embolic agents which are very small particles are injected into the arteries that
supply the uterus using a small catheter. These agents stay in the arteries supplying the fibroids and cut
off the blood flow reaching them. Eventually, the fibroids shrink and die. Adapted from [140].

Several recent studies are encouraging radiomic analysis and feature extraction
methods for MRI images of prostate cancer, uterine sarcoma, and rectal cancer among
others [141, 142, 143, 144, 145] and they showed promising possible future outcomes.
That is why in this manuscript, we present a preliminary work for analyzing MRI uterine
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images of uterine fibroids before and after embolization in two time intervals (after 10
days and after 6 months from embolization). This study is performed in collaboration
with Brest University Hospital−France represented by Pr Michel Nonent and Sonia Saib,
and the Lebanese University−Lebanon represented by Pr Jamal Charara and Rakelle
Haidar.

1.6.8 COVID-19

The first officially reported human case of COVID-19 case was dated back December
2019 referring to WHO reports on the situation. Soon after that, the severe acute res-
piratory syndrome coronavirus-2, SARS-CoV-2, virus causing COVID-19 showed a huge
spread worldwide [146, 147, 148]. SARS-CoV-2 is the seventh known type coronavirus to
infect human beings [148] and the one with the widest spread.

The SARS-CoV-2 infection leads to pulmonary interstitial damages, which may
cause severe pneumonia, acute respiratory distress syndrome, multiple organ failure, and
death [147, 148, 149, 150, 151].

According to [152], with a study done on 99 patients, most of them showed fever
(83%) cough (82%), and considerable percentage showed shortness of breath (31%). Those
remain the most common symptoms in most COVID-19 case. Upon showing symptoms,
COVID-19 patients are confirmed to have the disease through a reverse transcription
polymerase chain reaction (RT-PCR) test. Two examples for COVID-19 manifestation in
the lungs are shown in Figure 1.21.

Figure 1.21 – (a) COVID-19 patient of 35 years old presenting fever and headache for one day. A pure
ground glass opacity is shown in the right lower lobe. (b) COVID-19 patient of 47 years old presenting
fever for 7 days. Consolidation is shown in the right lobe subpleural area. the right lower lobe (red frame).
Adapted from [147].

COVID-19 is perhaps the most famous disease nowadays. Everyone is talking
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about it, its causes, its effects, and its long term consequences. This pandemic spread
made the people of almost the whole planet change their lifestyles and adapt to the
new circumstances. In our turn, we performed a study on CT scans for clinically
confirmed COVID-19 patients and presented the results analysis. This study is per-
formed in collaboration with University of Coimbra−Portugal represented by Pr João
Cardoso, Dr Pedro G. Vaz, and Andreia Sofia F. Gaudêncio, and the competence
center for rare pulmonary diseases in the department of Respiratory Medicine at Rennes
University Hospital−France represented by Dr Guillaume Mahé and Dr Mathieu Lederlin.

1.7 Conclusion

In this chapter we presented the most common texture analysis methods and the
important role of texture analysis in several fields. Then, we explained one of the recently
introduced methods that is developing entropy measures based on information theory
concept. The latter is our proposed basic concept for texture analysis throughout this
manuscript. After that, we introduced the medical cases and types of images that we
will handle in Chapter 5. This includes: PXE, melanoma, cutaneous microcirculation
structure, COPD, IPF, UAE, and COVID-19.
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Chapter 2

METHODOLOGY: DEVELOPED

BIDIMENSIONAL ENTROPY MEASURES

2.1 Introduction

FuzEn2D is based on the unidimensional Fuzzy Entropy (FuzEn1D) that is a result
of integrating fuzzy logic with the research of complex systems and nonlinear dynamics.
It exploits the concept of fuzzy membership function to study the irregularity of dynamic
systems. FuzEn1D was also used to provide a noise floor for denoising signals [68, 85, 76,
153]. Another FuzEn1D application is epileptic seizures detection and classification [154].

Consequently, due to the importance of studying images irregularity, the advantages of
FuzEn1D over other 1D irregularity measures [86, 85, 76], and several tests that we per-
formed, we decided to introduce the 2D version of the fuzzy entropy technique, FuzEn2D,
as a measure of images irregularity (based on fuzzy logic), section 2.2. We also propose its
multiscale extension, MSF2D, in section 2.3. After that, we implement MSF2D to come
up with the pseudo-multiscale fuzzy entropy 3D, pMFuzEn3D (see section 3.2).

Moreover, due to the encouraging results for gray scale images in the bidimensional
application, we propose several fuzzy-entropy-based measures to analyze colored textures:
the single-channel approach, FuzEnC2D (see section 2.4.1), the multi-channel approach,
FuzEnV2D (see section 2.4.2), and the modified multi-channel approach, FuzEnM2D (see
section 2.4.3).

Finally, we establish the tridimensional entropy versions of FuzEn2D, tridimensional
fuzzy entropy measure FuzEn3D and its multiscale version MSF3D, in the following
chapter, sections 3.3 and 3.4.
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2.2 Bidimensional Fuzzy Entropy

Due to the advantages of FuzEn1D over other unidimensional entropy measures [86,
85, 76], and the importance of having image irregularity and complexity measures, we
introduce FuzEn2D. Our FuzEn2D measure maintains the original FuzEn1D properties
and extends its application to images. FuzEn2D is defined as the negative natural log-
arithm of the conditional probability that two patterns similar for their corresponding
m×m points will remain similar when the (m+ 1)× (m+ 1) points are considered. Thus,
images with repeating-periodic structures (regular patterns) would hold a low entropy
value. On the contrary, images with non-repeating structures (irregular unpredictable
patterns) would hold a high entropy value. The membership degree µ of an element x in
a set is expressed by a continuous graduated similarity classifier which is an exponential
function. This exponential function associates each element with a value of membership
between 0 and 1. The closer the exponential function’s value to unity is, the higher the
membership degree of the element in the set will be. In fuzzy entropy, this concept is
imported using a family of exponential functions exp(−(dmij )n/r) to describe the degree of
similarity between vectors based on their shapes [68].

2.2.1 Definition of FuzEn2D

Let us consider a standardized image U with width W and height H, see Figure 2.1.
Define Xm

i,j as the m-length square window or pattern of origin u(i, j). Xm
i,j represents the

group of pixels in the image U of indices ranging from line i to i+m−1 and from column
j to j +m− 1 as follows:

Xm
i,j =


ui,j ... ui,j+m−1

ui+1,j ... ui+1,j+m−1

... ... ...

ui+m−1,j ... ui+m−1,j+m−1

 . (2.1)

Similarly, Xm+1
i,j is defined as the (m+ 1) square window. Let Nm = (W −m)(H −m) be

the total number of square windows in U that can be generated for both the m=[m,m]
and (m+1)=[ m + 1, m + 1] sizes. The last m-length line and m-length column of the
image are excluded to ensure that Xm

i,j and Xm+1
i,j are defined for all indices 1 ≤ i ≤ H−m

and 1 ≤ j ≤ W − m. For Xm
i,j and its neighboring windows Xm

a,b, the distance function
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Figure 2.1 – Illustration for FuzEn2D of a gray scale image with m = 3.

dmij,ab between them is defined as the maximum absolute difference of their corresponding
scalar components. Knowing that a goes from 1 to H −m and b goes from 1 to W −m
with (a, b) 6= (i, j), the distance function is expressed as follows:

dmij,ab = d[Xm
i,j,Xm

a,b ] = max
k,l∈(0,m−1)

(|u(i+ k, j + l)− u(a+ k, b+ l)|). (2.2)

Herein, we did not remove the local mean of the compared windows Xm
i,j before obtain-

ing the distance function as Chen et al. did for sequences [68]. Removing the local mean
accounts only for local characteristics of the studied sequence, unlike sample and approx-
imate entropy measures that consider the sequence’s global characteristics [155]. Thus,
we suggest studying the global characteristics for images as well and using that in our
following applications. However, we introduce the local FuzEn2D algorithm, FuzEnL2D,
in the next section (see section 2.2.2). In addition, FuzEn2D avoids some unnecessary
similarity considerations that could be caused by the local mean removal. Some studies
(e.g., Liu et al. [86]) proposed the calculation of FuzEn1D using the local and global char-
acteristics of a signal. Please see Figure 2.2 as an illustration for the FuzEn2D algorithm.

The similarity degree Dm
ij,ab of Xm

i,j with its neighboring patterns Xm
a,b is defined by a
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Figure 2.2 – Illustrative schema for FuzEn2D algorithm.

fuzzy function µ(dmij,ab, n, r):

Dm
ij,ab(n, r) = µ(dmij,ab, n, r) = exp(−(dmij,ab)2/r). (2.3)

Then, the similarity degree of each pattern is averaged to obtain:

Φmi,j(n, r) = 1
Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm
ij,ab, (2.4)

with (a, b) 6= (i, j), to construct:

Φm(n, r) = 1
Nm

i=H−m,j=W−m∑
i=1,j=1

Φmi,j(n, r). (2.5)

Similarly for m + 1, to obtain Φm+1(n, r). Finally, bidimensional fuzzy entropy of the
image U is:

FuzEn2D(U,m, n, r) = ln Φm(n, r)
Φm+1(n, r) . (2.6)

For most FuzEn2D tests we choose r = 0.25 which is within the range recommended
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by some previous studies on 1D [74, 76, 156, 85], n = 2, and we study the sensitivity of
FuzEn2D to different embedding dimension m×m values.

2.2.2 Definitions of FuzEnL2D and FuzEnGL2D

We also developed the local version of FuzEn2D, FuzEnL2D, that considers the local
characteristics of the image’s patterns. Even if this measure finds less application for our
medical images we present in what follows the equations behind its algorithm and few
tests in Chapter 4. Finally, we will present FuzEnGL2D, that considers both the local
and global characteristics of the studied images.

In a similar concept to the preceding algorithm, consider a standardized image U
having W width and H height. Define Xm

i,j as the m × m square window of ori-
gin u(i, j) that is generalized by removing the the window’s baseline; i.e. removing
{u0(i, j) = 1

m×m
∑m−1
I=0

∑m−1
J=0 ui+I,j+J}. Thus, Xm

i,j for FuzEnL2D is the group of pixels in
the image U defined as follows:

Xm
i,j =


ui,j ... ui,j+m−1

ui+1,j ... ui+1,j+m−1

... ... ...

ui+m−1,j ... ui+m−1,j+m−1

− u0(i, j). (2.7)

Similarly,Xm+1
i,j is defined form+1×m+1 points. Let Nm = (W−m)×(H−m) be the

total number of square windows in U that could be generated for both m×m and (m+
1)× (m+ 1) sizes. We define the distance function dmij,ab between Xm

i,j and its neighboring
windows Xm

a,b as the maximum absolute difference between their corresponding scalar
components (with a from 1 to H −m and b from 1 to W −m having (a, b) 6= (i, j)):

dmij,ab = d[Xm
i,j,Xm

a,b ]
= max

k,l∈(0,m−1)
(|(u(i+ k, j + l)− u0(i, j))− (u(a+ k, b+ l)− u0(a, b))|).

(2.8)

The similarity degree Dm
ij,ab of Xm

i,j with its neighboring patterns Xm
a,b is defined by a

fuzzy function µ(dmij,ab, n, r) as:

Dm
ij,ab(n, r) = µ(dmij,ab, n, r) = exp(−(dmij,ab)n/r). (2.9)
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Afterwards, the average of the similarity degree of each pattern is obtained by:

Φmi,j(n, r) = 1
Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm
ij,ab, (2.10)

with (a, b) 6= (i, j), to construct:

Φm(n, r) = 1
Nm

i=H−m,j=W−m∑
i=1,j=1

Φmi,j(n, r). (2.11)

Similarly for m+ 1 to obtain Φm+1
i,j (n, r) and Φm+1(n, r). Finally, the bidimensional local

fuzzy entropy of image U is defined as:

FuzEnL2D(m,n, r,U) = ln Φm(n, r)
Φm+1(n, r) . (2.12)

Moreover, we also established the bidimensional version of Liu et al. [86] fuzzy measure
entropy, FuzEnGL2D, that considers both the global and local characteristics of the
studied images. FuzEnGL2D consists of summing the local fuzzy entropy value and the
global value obtained by FuzEnL2D and FuzEn2D, respectively.

FuzEnGL2D = FuzEn2D + FuzEnL2D. (2.13)

For our following developed measures, FuzEn2D concept will be employed due to its
significance, less computation cost, and the fact that it considers the global characteristics
of an image.

2.3 Multiscale Bidimensional Fuzzy Entropy

The complexity-based approaches include two main steps: (1) a coarse-graining
process: removing high-frequency signal or image components with a digital low-pass
filter and downsampling the filtered data by scale factor τ ; and (2) the calculation of
an entropy value for each coarse-grained data at each scale τ [89]. Nevertheless, most
entropy measures were used to deal with unidimensional signals until recently. For the
bidimensional multiscale approach (MSE2D), a 2D extension of the 1D coarse-graining
process is used to study the complexity of images, i.e., over several scale factors τ [43]. The
interpretation of its results is as follows: if there is no noticeable change in entropy values
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over the first several scale factors, this means that the image contains complex structures
across multiple scale factors (complex image). However, if there is a considerable decrease
in entropy values over scale factors, the image can be irregular but not structurally
complex. In fact, in the complexity-based methods, high to low frequency-components
(from low to high scale factors) are considered, whereas a single-scale entropy technique
tends to deal with higher frequency components [89]. Only SampEn2D was extended
to its multiscale version until now, so herein we introduce our proposed multiscale
bidimensional fuzzy entropy using two different coarse-graining versions.

After illustrating the advantages of fuzzy entropy measures on the 1D and 2D levels,
we propose herein two methods based on the fuzzy bidimensional approach, the multiscale
bidimensional fuzzy entropy,MSF2D, and the modified multiscale bidimensional fuzzy en-
tropyMMSF2D.MSF2D andMMSF2D are based on Costa’s [88] and Wu’s [92] methods,
respectively, for the coarse-graining procedure. Let us consider an image U={ui,j} with
width W and height H. MSF2D and MMSF2D algorithms are explained in the following
sections.

2.3.1 Multiscale bidimensional fuzzy entropy MSF2D

MSF2D is defined as a two-step procedure explained below. Figure 2.3 illustrates an
example for τ = 1, 2, and 3.

1. A non-overlapping 2D window scans the whole image and the pixels of each window
are averaged. The obtained mean values form the coarse-grained imagesY(τ), which
are not subsets of the original image. Alternatively, they carry information about
the whole original image. Y(τ) = {y(τ)

i,j }, with 1 ≤ i ≤ (H − τ + 1) and 1 ≤ j ≤
(W − τ + 1), given a scale factor τ are defined as:

y
(τ)
i,j = 1

τ 2

a=i+τ−1,b=j+τ−1∑
a=i,b=j

ua,b. (2.14)

2. FuzEn2D is applied to each coarse-grained image.

MSF2D = {FuzEn2D(m,n, r,Y(τ))} (2.15)
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Figure 2.3 – Illustration for MSF2D of an image U = {ui,j} for τ = 1, 2, and 3.
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2.3.2 Modified multiscale bidimensional fuzzy entropy MMSF2D

MMSF2D is defined as a two-step procedure similar to MSF2D. However, the coarse-
graining procedure is different from the latter and is based on the work performed by
Wu et al. [92] for the 1D multiscaling. MMSF2D is calculated as follows:

1. An overlapping 2D window scans the whole image and the pixels of each window
are averaged. The obtained averaged values form the coarse-grained images Z(τ),
which are not subsets of the original image. Alternatively, they carry information
about the whole original image. Z(τ) = {z(τ)

i,j }, with 1 ≤ i ≤ H
τ

and 1 ≤ j ≤ W
τ
,

given a scale factor τ are defined as:

z
(τ)
i,j = 1

τ 2

a=iτ,b=jτ∑
a=(i−1)τ+1,b=(j−1)τ+1

ua,b. (2.16)

2. FuzEn2D is applied to each coarse-grained image.

MMSF2D = {FuzEn2D(m,n, r,Z(τ))} (2.17)

2.4 Colored Fuzzy Entropy Measures

Only few studies proposed bi-dimensional entropy-based measures for color image tex-
tures [25] including two recent publications by our team [29, 31]. Nevertheless, color and
texture are probably the most important components of visual features. Many biomed-
ical images are color-textured: dermoscopy images, histological images, endoscopy data,
fundus and retinal images, among others. Most published studies investigate the texture
features for gray images only.

At first, we developed bidimensional fuzzy entropy, FuzEn2D and its multiscale ex-
tension MSF2D [26, 28]. These entropy measures revealed interesting results for some
dermoscopic images but were limited to gray scale images. Therefore, based on FuzEn2D,
we propose two approaches to deal with colored images: the single-channel bidimensional
fuzzy entropy, FuzEnC2D [29, 31], which considers the characteristics of each channel in-
dependently, and the multi-channel bidimensional fuzzy entropy, FuzEnV2D, which takes
into consideration the inter-channel characteristics (presented in the section 2.4.2). After
that we present the modified colored bidimensional fuzzy entropy, FuzEnM2D, see sec-
tion 2.4.3. Our measures are developed for images composed of three color spaces. They
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could be easily adapted in our future work for multi-spectral applications as well.
For a colored image U of W width, H height, and K channels (W ×H×K pixels) the

initial parameters: tolerance level r, fuzzy power n, and embedding dimension m are first
set (see below). The algorithms to compute FuzEnC2D, FuzEnV2D, and FuzEnM2D are
presented in the following sections.

2.4.1 Single-channel approach FuzEnC2D

U is separated into its corresponding color channels K1, K2, and K3, as UK1, UK2,
andUK3, respectively (see Figure 2.4 (a)). For each channel composed of uK(i, j) elements,
Xm
i,j,K is designated as the m×m square window:


uK(i, j) ... uK(i, j +m− 1)

uK(i+ 1, j) ... uK(i+ 1, j +m− 1)
... ... ...

uK(i+m− 1, j) ... uK(i+m− 1, j +m− 1)

 , (2.18)

with K = K1, K2, or K3. The (m+ 1)× (m+ 1) square window, Xm+1
i,j,K is defined in the

same way. In each of UK1, UK2, and UK3, the total number of defined square windows
for both m and m+1 sizes is Nm = (W −m)(H−m). Sizes m and m+1 stand for [m,m]
and [m+ 1,m+ 1] that are made up of m×m and (m+ 1)× (m+ 1) pixels, respectively.

Based on the original fuzzy entropy, FuzEn1D, definition [68], a distance function
dmij,ab,K between Xm

i,j,K and its neighboring windows Xm
a,b,K is defined as the maximum

absolute difference of their corresponding scalar components. Please also see Figure 2.5
as an illustration for the FuzEnC2D algorithm.

We compose dmij,ab,K as follows:

dmij,ab,K = d[Xm
i,j,K ,Xm

a,b,K ] = max
s,t∈(0,m−1)

(|uK(i+ s, j + t)− uK(a+ s, b+ t)|), (2.19)

with a ranging from 1 to H −m and b ranging from 1 to W −m. The similarity degree
Dm
ij,ab,K of Xm

i,j,K with its neighboring patterns Xm
a,b,K is defined by a continuous fuzzy

function µ(dmij,ab,K , n, r):

Dm
ij,ab,K(n, r) = µ(dmij,ab,K , n, r) = exp(−(dmij,ab,K)n/r). (2.20)
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Figure 2.4 – Illustration for FuzEnC2D of an RGB color space image. (a) the image U is split into its
corresponding channels UR, UG, and UB , respectively from left to right; (b) the embedding dimension
pattern of size m×m having m= [2, 2]; (c) Xm

i,j,K and Xm
a,b,K for K = K1, K2, and K3 being the R, G,

and B color channels, respectively.

83



Chapter 2 – Methodology: Developed Bidimensional Entropy Measures

Figure 2.5 – Illustrative schema for FuzEnC2D algorithm.

Then, the similarity degree of each Xm
i,j,K is averaged to obtain:

Φmi,j,K(n, r) = 1
Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm
ij,ab,K , (2.21)

with (a, b) 6= (i, j), to construct:

ΦmK(n, r) = 1
Nm

i=H−m,j=W−m∑
i=1,j=1

Φmi,j,K(n, r). (2.22)

Similarly, for (m + 1) × (m + 1) patterns to obtain Φm+1
K (n, r). Consequently, FuzEn2D

of each channel is calculated as:

FuzEnCK2D(m,n, r,UK) = ln ΦmK(n, r)
Φm+1
K (n, r)

. (2.23)

Finally, FuzEnC2D is defined in each channel as the natural logarithm of the conditional
probability that similar patterns with m × m pixels would remain similar for the next
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(m+ 1)× (m+ 1) pixels:

FuzEnC2D(m,n, r,U) = [FuzEnCK1,2D, FuzEnCK2,2D, FuzEnCK3,2D]. (2.24)

For better illustration, we show in Figure 2.4 an example for FuzEnC2D of an RGB
color space image for an embedding dimension of m= [2, 2]; i.e. m × m pixels for each
channel. This single-channel approach treats each channel independently. It has the ad-
vantage of allowing us to selectively study certain channels which is of special importance
when it comes to images in different color spaces and natures (intensity, color, and tex-
ture). In our study we used n = 2. Thus, the similarity degree is expressed by a Gaussian
function exp(−(dmij,ab,K)2/r).

2.4.2 Multi-channel approach FuzEnV2D

For image U composed of ui,j,k voxels, Xm
i,j,k is defined as the m×m×m cube. Xm

i,j,k

represents the group of voxels in the image U of indices from line i to i+m− 1, column
j to j +m− 1 and the depth k to k +m− 1 as follows:

ui,j,k+m−1 · · · ui,j+m−1,k+m−1

... · · · ...
ui+m−1,j,k+m−1 · · · ui+m−1,j+m−1,k+m−1

· · · · · · · · · · · · · · ·
... . . . ...

u,j,k+1 · · · · · · u,j,k+1 · · · · · · · · ·

ui,j,k · · · ui,j+m−1,k

... . . . ...
ui+m−1,j,k · · · ui+m−1,j+m−1,k

(2.25)

Similarly, Xm+1
i,j,k is defined as the (m + 1) × (m + 1) × (m + 1) cube. Let Nm =

(W −m)(H−m)(K−m) be the total number of cubes that can be generated from U for
both m and m+1 sizes. Sizes m and m+1 stand for [m, m, m] and [m+ 1, m+ 1, m+ 1]
that are made up of m×m×m and (m+ 1)× (m+ 1)× (m+ 1) voxels, respectively.

For Xm
i,j,k and its neighboring cubes Xm

a,b,c, the distance function dmijk,abc between them
is defined as the maximum absolute difference of their corresponding scalar components,
knowing that a, b, and c range from 1 to H−m, W −m, and K−m, respectively. Having
(a, b, c) 6= (i, j, k), the distance function is depicted as follows:

dmijk,abc = d[Xm
i,j,k,Xm

a,b,c ] = max
e,f,g∈(0,m−1)

(|u(i+e, j+f, k+g)−u(a+e, b+f, c+g)|). (2.26)
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The similarity degree Dm
ijk,abc of Xm

i,j,k with its neighboring cubes Xm
a,b,c is defined by

a fuzzy function µ(dmijk,abc, n, r):

Dm
ijk,abc(n, r) = µ(dmijk,abc, n, r) = exp(−(dmijk,abc)n/r). (2.27)

Then, the similarity degree of each cube is averaged to obtain:

Φmi,j,k(n, r) = 1
Nm − 1

a=H−m,b=W−m,c=K−m∑
a=1,b=1,c=1

Dm
ijk,abc, (2.28)

with (a, b, c) 6= (i, j, k), to construct:

Φm(n, r) = 1
Nm

i=H−m,j=W−m,k=K−m∑
i=1,j=1,k=1

Φmi,j,k(n, r). (2.29)

Similarly, for (m + 1) × (m + 1) × (m + 1) size cubes, to obtain Φm+1(n, r). Finally, the
multi-channel bidimensional fuzzy entropy of the colored imageU is defined as the natural
logarithm of the conditional probability that cubes similar for their m × m × m points
would remain similar for their (m+ 1)× (m+ 1)× (m+ 1) points:

FuzEnV2D(m,n, r,U) = ln Φm(n, r)
Φm+1(n, r) . (2.30)

For better illustration, we show in Figure 2.6 an example for FuzEnV2D of an
RGB color space image for an embedding dimension of m= [2, 2, 2]. The multi-channel
approach has the advantage of extracting inter-channel features. However, we limit our
study herein to 3-channel colored images. Thus, the embedding dimension m values
could be equal to [1, 1, 1] or [2, 2, 2]; i.e. moving cubic template of 1×1×1 or 2×2×2
voxels for m, to avoid exceeding the maximum possible 3×3×3 voxels cubes for the m+1
calculations. Herein, n is taken to be 2 (Gaussian function, exp(−(dmijk,abc)2/r)).

2.4.3 Modified multi-channel approach FuzEnM2D

FuzEnV2D gave very promising results and proved proper assessment for colored tex-
ture images. Based on its encouraging results and the fact that its embedding dimension
window size was limited to m= [1, 1, 1] and m= [2, 2, 2], we introduce herein a modified
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Figure 2.6 – Illustration for FuzEnV2D of an RGB color space image having m= [2, 2, 2]. (a) represents
a portion of the colored image U with its R, G, and B channels; (b) the scanning pattern or embedding
dimension with m= [2, 2, 2] that is a 2× 2× 2 cube; (c) Xm

i,j,k and Xm
a,b,c.

colored multi channel approach that can take up to any m value. This method is similar
to FuzEnV2D except for the fact that the embedding dimension is a cuboid of m×m× 3
voxels for FuzEnM2D.

For image U composed of ui,j,k voxels, Xm
i,j,k is defined as the m×m×3 cuboid. Xm

i,j,k

represents the group of voxels in the image U of indices from line i to i+m− 1, column
j to j +m− 1 and the depth of K-channels as follows:

ui,j,3 · · · ui,j+m−1,3

... · · · ...
ui+m−1,j,3 · · · ui+m−1,j+m−1,3

· · · · · · · · ·
... . . . ...

· · · · · · · · · · · · · · · · · · · · ·

ui,j,1 · · · ui,j+m−1,1

... . . . ...
ui+m−1,j,1 · · · ui+m−1,j+m−1,1

(2.31)

Similarly,Xm+1
i,j,k is defined as the (m+1)×(m+1)×3 cuboid. LetNm = (W−m)(H−m)

be the total number of cuboids that can be generated from U for both m and m+1 sizes.
Sizes m and m+1 stand for [m, m, 3] and [m+1, m+1, 3] that are made up of m×m×3
and (m+ 1)× (m+ 1)× 3 voxels, respectively.

ForXm
i,j,k and its neighboring cuboidsXm

a,b,c, the distance function dmijk,abc between them
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is defined as the maximum absolute difference of their corresponding scalar components,
knowing that a and b range from 1 to H −m and W −m, respectively, whereas c is 1.
Having (a, b, c) 6= (i, j, k), the distance function is depicted as follows:

dmijk,abc = d[Xm
i,j,k,Xm

a,b,c ] = max
e,f∈(0,m−1)g∈(0,2)

(|u(i+ e, j + f, k + g)− u(a+ e, b+ f, c+ g)|).
(2.32)

The similarity degree Dm
ijk,abc of Xm

i,j,k with its neighboring cuboids Xm
a,b,c is defined

by a fuzzy function µ(dmijk,abc, n, r):

Dm
ijk,abc(n, r) = µ(dmijk,abc, n, r) = exp(−(dmijk,abc)n/r). (2.33)

Then, the similarity degree of each cuboid is averaged to obtain:

Φmi,j,k(n, r) = 1
Nm − 1

a=H−m,b=W−m,c=K−m∑
a=1,b=1,c=1

Dm
ijk,abc, (2.34)

with (a, b, c) 6= (i, j, k), to construct:

Φm(n, r) = 1
Nm

i=H−m,j=W−m,k=K−m∑
i=1,j=1,k=1

Φmi,j,k(n, r). (2.35)

Similarly, for (m+ 1)× (m+ 1)× 3 cuboids, to obtain Φm+1(n, r). Finally, multi-channel
bidimensional fuzzy entropy of the colored image U is defined as the natural logarithm of
the conditional probability that cuboids similar for their m×m× 3 voxels would remain
similar for their (m+ 1)× (m+ 1)× 3 voxels:

FuzEnM2D(m,n, r,U) = ln Φm(n, r)
Φm+1(n, r) . (2.36)

For better illustration, we show in Figure 2.7 an example for FuzEnM2D of an RGB
color space image for an embedding dimension of m= [2, 2, 3]; i.e. moving m sized cuboid
is 2×2×3. FuzEnM2D has the advantage of extracting inter-channel features and always
considering all the color channels of texture images. However, as mentioned previously,
we limit our study herein to 3-channel colored images which could be adapted to higher
number as well. Herein, n is taken to be 2 (Gaussian function, exp(−(dmijk,abc)2/r)).
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Figure 2.7 – Illustration for FuzEnM2D of RGB color space image having m= [2, 2, 3].

2.5 Conclusion

In this chapter we introduced our FuzEn2D and its multiscale version to study the
texture images’ irregularity and complexity. After that we define the proposed colored
approaches based on FuzEn2D. We present the single-channel approach FuzEnC2D, that
is a direct extension of FuzEn2D. Then, the multi-channel approach for colored images
FuzEnV2D which is inspired by the volumetric concept, yet limited to embedding dimen-
sion m= [2, 2, 2]. Finally, the modified multi-channel colored approach FuzEnM2D as an
enhancement for FuzEnV2D.
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Chapter 3

METHODOLOGY: DEVELOPED

TRIDIMENSIONAL ENTROPY MEASURES

3.1 Tridimensional Entropy Measures

The bidimensional entropy measures that we developed led to promising results for
several kinds of medical applications. This is why we proposed to developed the tridimen-
sional forms for some of them. These tridimensional versions study volumes in a similar
way to images. However, they deal with cubes of data instead of 2D patterns. We ap-
plied these tridimensional entropy measures to CT and HRCT scans, as well as to MRI
scans. They could be also employed for any other type of tridimensional data. Study-
ing 3D volumes provides additional information-content to be analyzed and extends the
possible application of entropy measures to almost all types of medical images so far. As
mentioned previously, computer aided diagnosis methods are necessary for faster, more
objective, and more precise medical decision making.

Excluding our work, there is no developed entropy measure to evaluate volumes, fol-
lowing the original entropy measures definitions as irregularity and complexity quantifiers
yet. Nevertheless, ApEn3D was established by [157, 158, 159] based on its original def-
inition proposed by Pincus et al. [79] for signals. Nonetheless, unlike ApEn1D, ApEn3D

does not study the irregularity of the whole volume. It calculates the local entropy values
for small cubes inside the studied volume and re-displays the obtained values as the new
volume to be analyzed. Thus, it is an entropy measure-inspired study but not actually an
entropy method for volumes that reflects the irregularity: it provides new images to be
analyzed and not actual features.
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3.2 Pseudo-tridimensional Multiscale Fuzzy Entropy
Measure pMFuzEn3D

We propose first, a pseudo-tridimensional multiscale fuzzy entropy measure
(pMFuzEn3D) to process computed tomography (CT) scan volumes based on our de-
veloped MSF2D. pMFuzEn3D consists in computing FuzEn2D for each scan at several
scale factors and to gather all the entropy measures on the same plot. Consider a volume
composed of several scans S = {S1,S2, ....,Sn}. pMFuzEn3D is computed as:

pMFuzEn3D(m,n, r,S, τ) =


MSF2D(S1)
MSF2D(S2)

....

MSF2D(Sn)

 =


{FuzEn2D(m,n, r,S1(1))}
{FuzEn2D(m,n, r,S2(2))}

....

{FuzEn2D(m,n, r,Sn(n))}

 (3.1)

We studied high resolution CT scans of patients with chronic obstructive pulmonary
diseases (COPD) using pMFuzEn3D. The results and procedure will be detailed and
discussed in Chapter 5 section 5.5. This study inspired our following work on actual
volumetric quantification for data. Figure 3.1 presents a simplified visual illustration for
pMFuzEn3D.

Figure 3.1 – Illustration for pMFuzEn3D of a volume of several 2D scans. pMFuzEn3D is the FuzEn2D
measure values from the original volume and its coarse-grained 2D scans.
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3.3 Tridimensional Fuzzy Entropy FuzEn3D

After developing the FuzEn2D for studying image textures, we propose the tridimen-
sional fuzzy entropy measure, FuzEn3D, to study volumes using the information theory
concept and fuzzy function. Following its bidimensional definition, FuzEn3D studies the
irregularity in volumes.

FuzEn3D is the natural negative logarithm of the conditional probability that two
cubes within a volume that are similar for their corresponding m ×m ×m voxels (m =
[m,m,m]), will remain similar for (m+ 1)× (m+ 1)× (m+ 1) voxels. FuzEn3D also uses
the concept of membership degree represented by a continuous function. It associates each
element with a value of membership between 0 and 1 to express the cubes’ membership
degree. The more the value approaches unity, the higher the degree of membership is.

Figure 3.2 – Illustration for FuzEn3D of a volume having m = [5,5,5]. (a) represents a portion of the
volume V to be studied; (b) the fixed Cm

i,j,k and scanning Cm
a,b,c cubic patterns for m = [5,5,5] size; (c)

a voxel vi,j,k from V.
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FuzEn3D definition

Let us consider a volume V = {vi,j,k} of dimensions W × L × H with W width, L
length, and H height. The indices i, j, and k could go from 1 to W , 1 to L, and 1 to
H, respectively. The embedding dimension of template m is defined. We then define the
cubic templates of V, Cm

i,j,k of origin vi,j,k with size of m×m×m:

vi,j,k+m−1 · · · vi,j+m−1,k+m−1

... · · · ...
vi+m−1,j,k+m−1 · · · vi+m−1,j+m−1,k+m−1

· · · · · · · · · · · · · · ·
... . . . ...

v,j,k+1 · · · · · · v,j,k+1 · · · · · · · · ·

vi,j,k · · · vi,j+m−1,k

... . . . ...
vi+m−1,j,k · · · vi+m−1,j+m−1,k

(3.2)

Similarly, we define the cubic templates Cm+1
i,j,k as the (m + 1) × (m + 1) × (m + 1)

volume cubes, see Figure 3.2 for an illustration of m = [5,5,5] embedding dimension case.

Let Nm = (W −m)(L−m)(H −m) be the total number of cubic patterns that could
be created from V for both m and m+1 sizes. For Cm

i,j,k and its neighboring cubes Cm
a,b,c,

the distance function dmijk,abc between them is defined as the maximum absolute difference
of their corresponding scalar components, knowing that a, b, and c range from 1 toW−m,
L−m, and H−m, respectively. The distance function is defined as follows, knowing that
(a, b, c) 6= (i, j, k) to avoid self similarities:

dmijk,abc = d[Cm
i,j,k,Cm

a,b,c ] = max
e,f,g∈(0,m−1)

(|u(i+e, j+f, k+g)−u(a+e, b+f, c+g)|). (3.3)

We define the similarity degree Dm
ijk,abc of Cm

i,j,k with its neighboring cubes Cm
a,b,c by a

continuous fuzzy function µ(dmijk,abc, n, r):

Dm
ijk,abc(n, r) = µ(dmijk,abc, n, r) = exp(−(dmijk,abc)n/r). (3.4)

Then, the similarity degree of each cubic template is averaged to obtain:

Φmi,j,k(n, r) = 1
Nm − 1

a=W−m,b=L−m,c=H−m∑
a=1,b=1,c=1

Dm
ijk,abc, (3.5)
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with (a, b, c) 6= (i, j, k), to construct:

Φm(n, r) = 1
Nm

i=W−m,j=L−m,k=H−m∑
i=1,j=1,k=1

Φmi,j,k(n, r). (3.6)

Similarly, for (m+ 1)× (m+ 1)× (m+ 1) cubic templates, to obtain:

Φm+1
i,j,k (n, r) = 1

Nm − 1

a=W−m,b=L−m,c=H−m∑
a=1,b=1,c=1

Dm+1
ijk,abc, (3.7)

with (a, b, c) 6= (i, j, k), to construct:

Φm+1(n, r) = 1
Nm

i=W−m,j=L−m,k=H−m∑
i=1,j=1,k=1

Φm+1
i,j,k (n, r). (3.8)

Finally, tridimensional fuzzy entropy measure, FuzEn3D, for a volume V is defined as
the natural logarithm of the conditional probability that two cubic templates similar for
their m×m×m voxels would remain similar for the next (m + 1)× (m + 1)× (m + 1)
voxels:

FuzEn3D(m,n, r,V) = ln Φm(n, r)
Φm+1(n, r) . (3.9)

3.4 Multiscale Tridimensional Fuzzy Entropy MSF3D

Thus, encouraged by the interesting results with MSF1D and MSF2D we introduce
the multiscale tridimensional fuzzy entropy measure, MSF3D. In order to study, not only
the irregularity in volumes, but also the actual complexity, MSF3D is used. First, scale
factor τ is defined and the volume is coarse-grained into Y(τ) volumes. For a volume V
of dimensions W × L × H we obtain τ coarse-grained volumes each of size W

τ
× L

τ
× H

τ

voxels. MSF3D consists of two main steps:

1. A non-overlapping cube scans the whole image and the pixels of each cubic pattern
are averaged. The obtained averaged values form the coarse-grained volumes. The
coarse-grained volumes are modeled as:

Y(τ) = {y(τ)
i,j,k}, (3.10)
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where,

y
(τ)
i,j,k = 1

τ 3

a=iτ
b=jτ
c=kτ∑

a=(i−1)τ+1
b=(j−1)τ+1
c=(k−1)τ+1

va,b,c, (3.11)

with 1 ≤ i ≤ W
τ
, 1 ≤ j ≤ L

τ
, and 1 ≤ k ≤ H

τ
.

2. Applying FuzEn3D for each coarse-grained volume (with each scale factor τ).

MSF3D = {FuzEn3D(m,n, r,Y(τ))} (3.12)

The result would be τ values of FuzEn3D that reflect the actual complexity of the studied
volume. The coarse-grained volumes carry information about the whole original image over
several scale factors. Figure 3.3 shows an example of coarse-grained versions of an original
volume for τ = 1 , 2 , and 3.

3.5 Conclusion

In this chapter, we first presented our 3D adapted pMFuzEn3D. Then, in section 3.3
we introduced our FuzEn3D for studying volumes and its multiscale version MSF3D

(section 3.4). These measures extend the application of entropy based methods to the
tridimensional domain and enable possible applications on all kinds of 3D medical images
analysis. The testing for the aforementioned measures will be shown in Chapter 4 and the
results for their applications on medical images will be illustrated in Chapter 5.
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Figure 3.3 – Illustration forMSF3D coarse-grained volumes Y(1), Y(2), and Y(3) of an original volume,
having τ = 1, 2, and 3.
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Chapter 4

VALIDATION TESTS AND ANALYSIS

4.1 Introduction

In this chapter we present the validation tests for our proposed entropy measures. We
investigate their sensitivity to the choice of initial parameters, their behavior with different
degrees of irregularity, and also perform adapted tests for each measure separately.

In Figure 4.1 we show the continuous function, fuzzy functions, employed as similarity
degrees for some n and r values for all our developed fuzzy entropy measures. Nevertheless,
we use exp(−(dmij )2/r) in the case of our fuzzy entropy measures. Parameter r is usually
chosen within the range recommended by some previous studies on 1D [74, 76, 156, 85].
Moreover, we study the variability of the results with the different choices of m and r

for each proposed measure. In what follows, and for simplicity reasons, we will use the
notation m for the embedding dimension value as explained in Chapters 2 and 3 for each
entropy measure. Take an example m = 2 instead of: m = 2, m = [2,2], or m = [2,2,2],
for the uni-, bi-, or tridimensional approaches, respectively.

4.2 Evaluation Data

To evaluate our proposed measures, we use several synthetic and real images: various
noise data with different power spectra (1/fβ),WGN , MIX(p) processes, artificial periodic
textures and their synthesized textures, and different synthetic images of varying sizes
with repetitions. In what follows, we briefly present some of the testing data. We should
note that the test images were all normalized by removed the mean and dividing by
the standard deviation. This serves in comparing all images with the same interval and
consequently the background intensity would not affect in the texture discrimination
process.

99



Chapter 4 – Validation Tests and Analysis

Figure 4.1 – A representation for the exponential function exp(−(dmij )n/r) with different parameters
choice. (a) Exponential function for fixed fuzzy power n = 2 and varied r (0.1, 0.2, 0.3, and 0.4). (b)
Exponential function for fixed r = 0.15 and varied n (2, 4, 6, and 8).

4.2.1 MIX(p) processes

MIX1D(p) processes

MIX1D(p) was first introduced by Pincus et al. [65] to test the properties of unidi-
mensional entropy measures. MIX1D(p) is a family of stochastic random processes that
replaces a sine function points with completely random dynamics according to the value
of p (p ranges from 0 to 1) [65]. MIX1D(p) is an N-point sine wave time series, where
N × p randomly chosen points are replaced with random noise. For p = 0, the signal is a
periodic sine wave. The higher the value of p is, the more random the signal will be, see
Figure 4.2.

MIX2D(p) processes

Based on the MIX1D(p) definition, the MIX2D(p) processes were established [19, 26].
In fact, they are images of varying white noise levels as p increases from 0 (totally periodic
sinusoidal images) to 1 (highly irregular images). The higher the value of p, the lower the
spatial regularity of the image is, see Figure 4.3. That is the image has always the same
background periodic image (sinusoid) and a p-percentage of pixels (out of the total number
of pixels) are replaced by uniformly distributed random values (white noise). MIX2D(p)
allows us to evaluate the ability of our proposed methods in quantifying images with
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Figure 4.2 – MIX1D(p) family of signals. The higher the p value is, the higher the degree of the
irregularity will be (p ranging from 0 to 1).
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different irregularity/randomness degrees.

Figure 4.3 – MIX2D(p) family of images. The higher the p value is, the higher the degree of the
irregularity will be (p ranging from 0 to 1).

MIX3D(p) processes

Based on the bidimensional MIX2D(p) we also introduce the three-dimensional
MIX3D(p) processes [27]. They are volumes of varying irregularity degrees as p increases
from 0 (totally periodic volume) up to 1 (highly irregular volume), see Figure 4.4.

Figure 4.4 – MIX3D(p) family of volumes. The higher the p value is, the higher the degree of the
irregularity will be (p ranging from 0 to 1).

4.2.2 Noise images with different power spectra

Tests using 1/fβ noise data allow us to illustrate the ability of our proposed mea-
sures to quantify the dynamical variability of different kinds of noises, i.e. for several
coarse-grained versions of the original data. These types of noise data were of particular
importance to evaluate the performance of our multiscale algorithms. 1/fβ noise data are
studied with β being the power-law scaling exponent: pink (β = 1), brownian (β = 2),
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blue (β = −1), and white noise (β = 0). Figure 4.5 shows the power spectral density
(PSD) of four noise-based data, adapted from [27].

Figure 4.5 – Power spectral density (PSD) of four noise-based volumes of 1/fβ : brown (dark red), pink
(light pink), white (black), and blue (dark blue) noise. The trend-lines are presented as thicker lines.
Adapted from [27].

4.2.3 Artificial periodic and synthesized texture images

In order to evaluate FuzEn2D’s behavior when an artificial periodic texture is
transformed into its corresponding synthesized texture, we employed 3 pairs of periodic
textures and their synthesized ones from [35]. These 256×256 pixels textures are
presented in Figure 4.6. We also rescaled those images to different sizes (50×50 pixels,
100×100 pixels, 150×150 pixels, and 200×200 pixels) to evaluate the consistency of
FuzEn2D upon different texture sizes.

4.2.4 Other texture datasets

Brodatz and colored Brodatz datasets

Brodatz gray scale texture album [32, 34] is a very well known texture database that
has been widely used as a validation dataset for image processing techniques. It is made
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Figure 4.6 – Artificial periodic textures a, b, c (top panels) and their corresponding synthesized textures
(bottom panels) from [35].

up of 112 gray scale images that represent a large variety of natural gray scale textures.
Some of them are shown in Figure 4.7.

Colored Brodatz database is an extension for the original gray scale Brodatz dataset
into its colored version [33, 34]. Examples of those images will be displayed later in the
manuscript.

Mondial Marmi dataset

Mondial Marmi dataset is a collection of granite classes images for image processing
purposes [36, 37]. The images have been acquired under controlled lighting conditions.
Hardware-rotated images are taken in nine rotation angles. In addition, the dataset pro-
vides software-rotated images obtained through bilinear and bicubic interpolation, for
more information about the dataset please refer to [36, 37]. Examples of Mondial Marmi
dataset images will be shown later in the manuscript.

Pattern-based volumes

We generated six pattern-based cubes of 50×50×50 voxels size to test the differen-
tiation ability of FuzEn3D of different textural/pattern behavior [27]. The cubes are
displayed in Figure 4.8.

Please find below the cubes’ description according to which their irregularity outcome
could be pre-assumed:
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Figure 4.7 – Example of Brodatz texture images. The labels beneath each image are those used in the
original Brodatz album.

Figure 4.8 – Pattern based volumes created for FuzEn3D evaluation.
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— cube 1: all black volume with voxels values as low as 1× 10−9, see Figure 4.8(a).
— cube 2: half white and half black volume, see Figure 4.8(b).
— cube 3: volumetric checkerboard pattern, see Figure 4.8(c).
— cube 4: volumetric diagonal stripes, see Figure 4.8(d).
— cube 5: Gaussian distribution of voxels with mean µ=0 and standard deviation

σ=1, see Figure 4.8(e).
— cube 6: integer values between 1 and 10 following a uniform random distribution,

see Figure 4.8(f).
It is observed that cubes 1 till 4 possess a more regular pattern behavior than cubes 5
and 6. An assumption could be also made regarding the regularity order of those patterns
in theory and visually according to their nature.

4.3 FuzEn2D and MSF2D Validation Tests

As FuzEn2D represents the basic measure for most our developed methods, we present
in this section a thorough analysis for its behavior and its multiscale extension MSF2D.
First, we compare FuzEn2D to its unidimensional version over multiple scale factors.
Then, we study its sensitivity to initial parameters compared to the already existing
SampEn2D. After that, we introduce some validation tests for its behavior with texture
images with different irregularity degrees.

4.3.1 Comparing FuzEn2D to FuzEn1D

To compare the behavior of FuzEn2D and FuzEn1D [68], we applied multiscale
FuzEn2D and multiscale FuzEn1D on white Gaussian noise (WGN) and pink noise.
We set the initial parameters as: n = 2, m= 2, r = 0.25, and scale factor τ from 1 to 20.
The comparison was performed using FuzEn2D and FuzEn1D for 300×300 pixels image
size and 3000 points signal length, respectively.

As we can observe in Figure 4.9, at scale factor τ = 1 and for both the 1D and 2D cases,
WGN has a higher entropy value than pink noise. However, as the scale factor increases,
the entropy value for WGN monotonically decreases and the pink noise maintains higher
entropy values than WGN. This is in agreement with the literature and the fact that WGN
contains information only in the smallest scale factors whereas pink noise contains complex
structures across multiple scale factors. The difference between FuzEn1D and FuzEn2D

106



4.3. FuzEn2D and MSF2D Validation Tests

Figure 4.9 – Multiscale FuzEn1D and FuzEn2D for WGN and pink noises with n = 2, m= 2, and
r = 0.25.

lies in the fact that for unidimensional pink noise, the entropy value for the higher scale
factors is almost constant, showing equivalent complex structure over the different scale
factors (equivalent irregularity per scale). Nevertheless, for the bidimensional pink noise,
fuzzy entropy values decreases with the scale factor but still shows the presence of more
complex structures in pink noise than WGN. The same is observed for WGN2D and
bidimensional pink noise when evaluated by SampEn2D (defined in section 1.4.2).

4.3.2 Sensitivity to variation in parameters r, m, and n

For testing the sensitivity of FuzEn2D to r and m, we performed FuzEn2D calcu-
lations for 256 × 256 pink noise images while changing tolerance level r from 0.06 up
to 0.48 (step 0.06) for m= 1, 2, and 3 and compared them to those obtained using
SampEn2D [19]. In addition, for testing the sensitivity of FuzEn2D to the fuzzy func-
tion’s power n, we evaluated twenty 200×200 pixels WGN2D images using FuzEn2D. The
parameters were set to:m= 2, r = 0.25, and fuzzy power increased from n = 2 to n = 352.

When changing m and r, FuzEn2D showed much lower sensitivity than SampEn2D,
see Figure 4.10. This refers mainly to the fact that patterns’ similarity in sample entropy
is defined based on the two-state classifier (Heaviside function) with a rigid boundary
depending on the value of r. However, in fuzzy entropy, the patterns are always associated
with a continuous membership degree and all the pixels contribute in the final entropy
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value. Moreover, upon varying n, for the twenty generated WGN2D images, FuzEn2D

showed low sensitivity as indicated by Figure 4.11. Thus FuzEn2D is proven to be a
measure that has low sensitivity to the changes in parameters.

Figure 4.10 – FuzEn2D and SampEn2D for a 256× 256 pink noise image with varying tolerance level
r.

Figure 4.11 – FuzEn2D for twenty WGN2D images upon increasing n.

For SampEn2D the similarity degree represented by the Heaviside function has a rigid
boundary. The Heaviside function is a two-state binary classifier that gives a unity value if
the difference in distance between the compared vectors is within threshold r; otherwise it
gives a zero value. Thus, any slight change in r will probably change the entropy value. It
judges the vectors as either "similar" or "dissimilar" with no intermediate states. However,
in the fuzzy entropy the vectors are always associated with a continuous membership
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degree. This ensures continuity and smoothness for different values of r and leads to the
contribution of all the time series elements in the final entropy output.

4.3.3 Rotation and translation

To study the effect of rotation we used the Mondial Marmi dataset [36, 37]. We chose
an image from each of the four different granite classes shown in Figure 4.12, each image
is of size 544×544 pixels.

Figure 4.12 – Four randomly chosen Mondial Marmi granite images.

To study the effect of translation, we employed three Brodatz images [32, 34] and
translated them with 10×10, 100×100, and 500×500 pixels. Translation, by definition, is
a 2D geometric transformation which maps the position of each pixel in an input image
into a new position in an output image, where the dimensionality of the two images often
is the same.

Results for Mondial Marmi dataset upon software and hardware rotations are displayed
in Figure 4.13. As we can observe, FuzEn2D shows invariance upon hardware, bicubic,
and bilinear rotated images. Based on those results and due to the fact that rotations in
images would also rotate reference patterns in FuzEn2D, the membership degree values
would be the same. Therefore, FuzEn2D is invariant to rotation. The same reasoning can
be applied to image translation and proven by the results of Table 4.1. This leads to the
conclusion that FuzEn2D is translation invariant as well. Being translation and rotation
invariant, FuzEn2D can be considered a useful tool for studying medical images especially
because those images are not always taken from the same angle of view.

4.3.4 Shuffling

Theoretically, shuffling increases the irregularity of data. Thus entropy values are ex-
pected to increase upon shuffling. We tested the change in bidimensional entropy values
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Figure 4.13 – The results for hardware, bicubic, and bilinear rotated images from left to right.

Table 4.1 – FuzEn2D results upon translation of 3 Brodatz images.

Translation Pixels 10×10 100×100 500×500
Brodatz 1 1.0258 1.0258 1.0258
Brodatz 2 1.2378 1.2378 1.2378
Brodatz 3 1.8836 1.8836 1.8836

for DistrEn2D [20], FuzEn2D, and SampEn2D [19]. The objective was to compare the
outcomes of the three bidimensional entropy measures. We generated a MIX2D(0.1) image
and 10 shuffled images from it. Then, we calculated the bidimensional entropy values for
the original MIX2D(0.1) and its corresponding shuffled images.

Shuffling data decreased the DistrEn2D values whereas it increased the FuzEn2D and
SampEn2D values, see Table 4.2. As shuffling increases the irregularity of data, FuzEn2D

and SampEn2D are more reliable than DistrEn2D from this perspective. The results
illustrate the advantage of FuzEn2D and SampEn2D over DistrEn2D in this issue.

Table 4.2 – DistrEn2D, SampEn2D, and FuzEn2D values for shuffled images

DistrEn2D SampEn2D FuzEn2D
Original 0.7188 1.7411 1.4193
Shuffled 0.6914 ± 0.0015 2.5645 ± 0.0527 1.9056 ± 0.0321
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4.3.5 FuzEn2D for MIX2D(p) images

We generated 256×256 pixels MIX2D(p) images and analyzed them by FuzEn2D and
SampEn2D. We setm= 1, 2, 3, p = 0 to 1 with a step of 0.1, and repeated the calculation
for 10 images each. The results, presented in Figure 4.14, concur with the fact that a higher
entropy corresponds to a MIX2D(p) image with a higher p value, see Figure 4.3. In fact,
a higher p value in a MIX2D(p) image describes a higher spatial irregularity. FuzEn2D,
unlike SampEn2D, does not have the problem of undefined entropy values for m= 1, 2,
and 3. Moreover, for MIX2D(0.9) and MIX2D(1) withm= 2, SampEn2D quantifies a lower
irregularity than that of MIX2D(0.8) which is misleading due to the fact that MIX2D(p)
describes a higher spatial irregularity when p increases.

Thus, FuzEn2D can be considered as an appropriate metric for quantifying the images’
irregularity as it is able to correctly quantify the irregularity of MIX2D(p) images. It is
also observed to outperform SampEn2D, especially for m= 2 and 3.

Figure 4.14 – Ten FuzEn2D and SampEn2D repetitions for 256×256 pixels of MIX2D(p) images
(m= 1, 2, 3).

Another test was to study MIX2D(p) with different sizes to understand the reliability of
our proposed FuzEn2D method, compared with SampEn2D, by measuring the irregularity
of images with different sizes. We calculated FuzEn2D and SampEn2D for MIX2D(p)
with an increase in the size of images from 50×50 to 200×200 pixels, m= 2, p = 0 to 1
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with a step of 0.1, and 10 repetitions each. The results for FuzEn2D show a consistent
profile with the change in image size, see Figure 4.15 (a). In contrast, SampEn2D leads to
some undefined values for small-sized images and has a higher standard deviation upon
repetition, see Figure 4.15 (b). This illustrates that FuzEn2D has a low sensitivity to
change in image size, whereas SampEn2D shows a high sensitivity to change in image size
and inconsistent behavior upon repetition.

Figure 4.15 – Ten FuzEn2D and SampEn2D repetitions for MIX2D(p) images of varying size in pixels
(m= 2).

4.3.6 WGN2D and 1/fβ noise images

To assess the ability of FuzEn2D to evaluate small images irregularity, validate re-
peatability, and better understand the effect of image size on the results, we created
WGN2D and 1/fβ (β = −1, 1, and 2) noise images with sizes ranging from 20×20 to
200×200 pixels (with a step of 20×20 pixels). Forty images were generated for each size
and FuzEn2D was calculated for m= 1, 2, and 3. Same calculations were performed
using SampEn2D for comparison purposes. The results are displayed as box plots in Fig-
ure 4.16. The upper plots demonstrate the stability and consistency of FuzEn2D upon
forty repetitions and its low sensitivity for varying image sizes as well as the low sensitivity
to the change in m. In addition, FuzEn2D shows clear differentiation ability between the
four noise types, especially for images larger than 20×20 pixels. However, upon repetition,
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SampEn2D shows overlapping values for pink, blue, and WGN2D with m=1, inconsis-
tency for small images, and inability to differentiate noise types for large images with
m=2, and undefined outcome with m=3 for the four noise types, see Figure 4.16.

Figure 4.16 – FuzEn2D and SampEn2D for 40 WGN2D, blue, pink, and brownian noise images of
sizes 20×20 up to 200×200 pixels (with m= 1, m= 2, and m= 3).

Furthermore, we calculated the coefficients of variation (CV) of FuzEn2D for the
100×100 pixels WGN2D and 1/fβ noise images with m= 1, 2, and 3. The CVs are
presented in Table 4.3 (− shows undefined CV). The results illustrate that FuzEn2D

leads to more stable results (lower CVs) than SampEn2D for different kinds of noises.
Note that as MSF2D uses FuzEn2D for multiple scale factors, it could be inferred that
MSF2D, compared with MSE2D, will result in more stable entropy values.

4.3.7 Gray scale image with additive noise

We used Lena 512× 512 pixels gray scale image, see Figure 4.17, added with different
noise amounts to evaluate the ability of FuzEn2D to detect different levels ofWGN2D and
salt and pepper noise (SPN). The images were standardized by subtracting their mean
and dividing them by the standard deviation. Different levels of WGN2D (increasing its
mean and variance: 0.01, 0.05, and 0.09) and different densities of SPN (0.01, 0.05, and
0.09) were added.
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Table 4.3 – CVs for FuzEn2D and SampEn2D of 100×100 pixels WGN2D and 1/fβ noise
image.

m Blue Brownian WGN2D Pink
FuzEn2D 1 0.003 0.053 0.003 0.005

2 0.005 0.056 0.005 0.007
3 0.008 0.071 0.008 0.011

SampEn2D 1 0.017 0.048 0.018 0.020
2 − 0.056 − −
3 − − − −

Figure 4.17 – The widely used 512× 512 pixels Lena gray scale image.
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FuzEn2D parameters were set as: embedding dimension m= 2, threshold r = 0.24,
and fuzzy power n = 2. The results are shown in Tables 4.4 and 4.5. A higher entropy
value is observed when WGN2D of higher mean and variance is added. Moreover, adding
a higher density of SPN to the gray scale image leads to a higher entropy value as well.
These results illustrate the ability of FuzEn2D to detect different amounts of WGN2D

and SPN.

Table 4.4 – FuzEn2D for a gray scale image (Lena image) added with different levels of
WGN2D.

Noise type Level added Entropy value
original image − 0.2887
WGN2D mean and variance 0.01 1.2465
WGN2D mean and variance 0.05 2.5782
WGN2D mean and variance 0.09 3.0927

Table 4.5 – FuzEn2D for a gray scale image (Lena image) added with different densities
of SPN noise.

Noise type Level added Entropy value
original image − 0.2887

SPN density 0.01 0.4513
SPN density 0.05 1.0509
SPN density 0.09 1.5723

By adding noise to gray scale images, we wanted to prove the ability of FuzEn2D

to detect different degrees of added noise to the original image, and thus the ability
to quantify accordingly even slight changes in the studied images. FuzEn2D should be
able to spot any changed textural behavior and behave upon its degree. In other words,
we have a higher entropy value for a higher added noise degree which is logically the
expected performance. The results are in agreement with those obtained by Azami et al.
for DistrEn2D [20].

4.3.8 FuzEn2D for artificial periodic and synthesized texture im-
ages

FuzEn2D was calculated for three artificial periodic texture images and their corre-
sponding synthesized textures depicted in Figure 4.6, setting m= 2. The results, illus-
trated in Table 4.6, show that FuzEn2D values are higher for synthesized textures than
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those of their corresponding periodic textures. This demonstrates that FuzEn2D is able
to discriminate periodic from synthesized textures and to quantify the images’ periodicity.
The results are in agreement with those presented by Azami et al. for DistrEn2D [20].

Table 4.6 – FuzEn2D for artificial periodic textures and their synthesized textures (please
see Figure 4.6).

texture (a) texture (b) texture (c)
0.0965 0.0904 0.1191

synthesized texture (a) synthesized texture (b) synthesized texture (c)
0.1852 0.1036 0.1343

The images were also resized to evaluate the differentiation ability of FuzEn2D upon
variation in image sizes. We studied the original 256×256 pixels artificial periodic texture
images and their synthesized textures as well as their corresponding versions of 50×50
pixels up to 200×200 pixels (step of 50×50 pixels) with m= 1, 2, and 3. The results show
that all the values for the periodic textures are lower than those of their corresponding
synthesized ones (data not shown here). This demonstrates that FuzEn2D is able to
properly discriminate periodic from synthesized textures by assigning lower entropy values
for periodic textures (highly ordered textures), for different m and image sizes.

4.3.9 Multiscale FuzEn2D for 1/fβ noise images

For assessingMSF2D behavior and comparing it to MSE2D, we employed noise images
of known nature in terms of complexity, i.e. outcome over several scales factors. We
utilized pink, brownian, blue, and white, namely the 1/fβ noise images. Ten images from
each kind of noise were generated and evaluated using MSF2D and MSE2D. We set the
initial parameters as m= 2 and scale factor τ from 1 to 15. The results are displayed in
Figure 4.18.

MSF2D results for brownian and pink noise images show that they possess complex
structures over scale factors, which agrees with the fact that they are described as per-
sistent processes with long term correlations. However, white and blue noise images show
a decrease in entropy value with scale factor, as by definition they are of short term
memory anti-correlated processes [160]. This illustrates the ability of MSF2D to quantify
the degree of complexity in the studied images and its consistency. Compared to MSE2D,
MSF2D shows a lower standard deviation and better consistency upon repetition. More-
over, MSE2D for Brownian noise images from τ=6 shows undefined values. To compare
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Figure 4.18 – MSF2D and MSE2D for ten pink, brownian, blue and white 2D noise images.

the actual behavior of FuzEn2D and SampEn2D (i.e., at scale factor τ=1) we zoomed in
on the first scale factor values, see Figure 4.18 (small box). We can notice that FuzEn2D

is able to identify the different noise images in the proper order of irregularity as: white→
blue→ pink→ brownian, from highest to lowest, whereas SampEn2D shows overlapping
values with no clear differentiation ability.

4.3.10 Multiscale FuzEn2D for synthetic images

We evaluated MSF2D for WGN2D, MIX2D(0.2), and pink noise images for parameters
m= 2 and scale factor τ from 1 to 20. We compared the results with those of MSE2D. We
increased image size from 50×50 pixels to 600×600 pixels with an increment of 50×50
pixels, see Figure 4.19. The results forMSF2D show that the entropy values are stable for
all scale factors starting from 50×50 pixels images for the three image types. However, for
MSE2D the entropy values look stable from 100×100 pixels for WGN2D and from 150×150
pixels for MIX2D(0.2) and pink noise images. For both entropy measures, the results for
MIX2D(0.2) show a lower complexity than those for WGN2D and pink noise images, as
expected theoretically.

The results for WGN2D and pink noise images agree with the literature for the irregu-
larity quantification at each scale factor [88, 91]. Entropy values for WGN2D show higher
irregularity than pink noise for small scale factors (τ=1). However, as the scale factor
increases, WGN2D shows a decrease in irregularity with scale factor, whereas pink noise
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shows higher entropy values and also a higher overall complexity. This is in accordance
with the fact that pink noise has long term correlations whereas white noise has short-term
correlations and thus is not structurally complex [160, 91, 88]. This is also reflected in
the biological systems’ behavior where some pathologic processes have a lower complexity
than healthy processes unlike what is indicated by the traditional entropy measurement at
a single scale [91, 88]. Therefore, the results suggest that MSF2D is a proper complexity
measure for images. It is able to quantify images complexity properly, i.e., at different
scale factors (as illustrated by the multiscale tests) and shows a consistent outcome for
increasing image sizes from 50×50 to 600×600 pixels. These results, compared with those
for MSE2D, suggest that MSF2D overcomes the drawback of undefined MSE2D values
especially for small-sized images.

Figure 4.19 – MSF2D and MSE2D forWGN2D, pink noise, and MIX2D(0.2) images (from left to right)
with m= 2, and r = 0.25.

4.4 FuzEn2D, FuzEnL2D, and FuzEnGL2D Compari-
son

We performed some other tests to compare global bidimensional fuzzy entropy ap-
proach, FuzEn2D, the local bidimensional fuzzy entropy approach FuzEnL2D, and
FuzEnGL2D that considers both the global and local characteristics. The tests use pink
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and WGN2D images.

Test for fuzzy entropy measures

To test the discrimination ability and the sensitivity to tolerance level r of FuzEn2D

(global fuzzy entropy), FuzEnL2D, and FuzEnGL2D, we generated MIX2D(0.1 ),
MIX2D(0.5 ), and MIX2D(0.9 ) images and processed them by those fuzzy entropy measures
while varying tolerance r from 0.06 to 0.48 with a step of 0.06. FuzEn2D, FuzEnL2D,
and FuzEnGL2D were able to differentiate between the different MIX2D(p) images, see
Figure 4.20. FuzEnGL2D showed a better discrimination ability for the different r values
but also illustrated a high sensitivity to the choice of r (see the lowest and highest value
for the fuzzy entropy for one of the MIX2D(p) images).

Figure 4.20 – Bidimensional fuzzy entropy measures for a 200 × 200 MIX2D(0.1 ), MIX2D(0.5 ), and
MIX2D(0.9 ).

The three fuzzy entropy measures, FuzEn2D, FuzEnL2D, and FuzEnGL2D, illustrate
a capability to differentiate MIX2D(0.1 ), MIX2D(0.5 ), and MIX2D(0.9 ), but the FuzEn2D

and FuzEnL2D are shown to be the more stable than FuzEnGL2D even when r varies.
Although FuzEnGL2D shows the highest discrimination, it has a much higher sensitivity
to the choice of r.

Multiscale test for fuzzy entropy measures

To compare the fuzzy entropy measures on the multiscale level, we generated 300×300
pixels of WGN2D and pink noise images. These images were analyzed by the multiscale
extensions of FuzEn2D, FuzEnL2D and FuzEnGL2D. The parameters were defined as:
n = 2, r = 0.25, scale factor τ from 1 to 20, and m varied from 1 to 6. The results are
previewed in the following figures 4.21 and 4.22.

There was no drastic difference between the multiscale FuzEn2D and FuzEnL2D in
the above described tests: they show a very similar behavior on pink and WGN2D. On
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Figure 4.21 – Multiscale bidimensional fuzzy entropy measures for a 300× 300 WGN2D and pink noise
images, m from 1 to 3.

120



4.4. FuzEn2D, FuzEnL2D, and FuzEnGL2D Comparison

Figure 4.22 – Multiscale bidimensional Fuzzy entropies for a 300×300 WGN2D and pink noise images,
m from 4 to 6.
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the other side FuzEnGL2D could be described as an amplifier for the preceding results
for a better view and better discrimination between pink and WGN2D. The results are
in agreement with the literature and the fact that WGN2D has a higher irregularity for
small scale factors but pink noise express a higher irregularity for higher scale factor thus
it is more complex.

Computation cost

For comparing the computational cost of FuzEn2D and FuzEnL2D with that of
FuzEnGL2D, we performed the entropy calculations for thirty 256 × 256 pixels of pink
noise images and calculated the average time in seconds taken by each entropy measure.
We set the initial parameters as n = 2, m= 2, and r = 0.24 for all bidimensional en-
tropy measures. The simulations were carried out by Windows 10 laptop equipped with
8-GB RAM and Intel(R) Core(TM) i7-6500U CPU processor using Matlab R2017a.
FuzEnGL2D’s computational cost is found to be almost double that of FuzEn2D, see
Table 4.7. Even though FuzEnGL2D shows higher discrimination ability for some cases,
the computation time taken by FuzEn2D is considerably the lowest.

Table 4.7 – Average calculation time for FuzEn2D, FuzEnL2D, and FuzEnGL2D (see
text for details on the computer performance).

Entropy Average time taken per image
FuzEn2D 324.15 ±3.04s
FuzEnL2D 345.94 ±16.8s
FuzEnGL2D 646.99 ±49.8s

Medical images in general are large images that would favor a high speed perfor-
mance in the processing algorithm. Thus, based on the higher computational cost for
both FuzEnL2D and FuzEnGL2D, and the higher sensitivity to the change in tolerance
level of FuzEnGL2D, we decided to use FuzEn2D. Moreover, it is better to consider
the global characteristics of an image rather than the local ones to better assess the ac-
tual overall irregularity on the single scale calculations and the overall complexity for the
multiscale calculations.
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4.5 MSF2D and MMSF2D Comparison

In order to study the effect of downsampling we performed some tests to compare
MSF2D to MMSF2D. We proposed MMSF2D that consists of an overlapping window
to coarse grain the images based on [92] and compared the results to those downsampled
with a non-overlapping window using MSF2D. We calculated MSF2D for WGN2D, pink,
and MIX2D(0.2) noise images for parameters: n = 2, m= 2, r = 0.25, and scale τ from
1 to 20, see Figure 4.23. Similarly we repeat this test without downsampling the coarse
grained images using MMSF2D, Figure 4.24.

Figure 4.23 – MSF2D for WGN2D, pink noise, and MIX2D(0.2) images (from left to right) with n = 2,
m= 2, and r = 0.25.

Figure 4.24 – MMSF2D for WGN2D, pink noise, and MIX2D(0.2) images (from left to right) with
n = 2, m= 2, and r = 0.25 without downsampling.

The results for both methods were consistent and showed proper behavior with noise
images. However, with MMSF2D the results took a longer time to be obtained. Thus, a
computation cost comparison will be presented in the following section.
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A wider study will be performed later on handling this issue in specific and
the different possible methods for coarse-graining by referring to the papers “Coarse-
Graining Approaches in Univariate Multiscale Sample and Dispersion Entropy”, [89],
“Two-dimensional Multiscale Entropy Analysis: Applications to Image Texture Evalua-
tion”, [42], and “Refined multiscale fuzzy entropy based on standard deviation for biomed-
ical signal analysis” [72].

Computation cost

For the computation cost comparison we performed a test using pink and white noise
256×256 pixels images for 30 repetitions. The parameters were set to m=2, r=0.24, n=2,
and τmax=15. The mean and standard deviation for the time taken by both algorithms for
30 repetitions are displayed in Table 4.8. The simulations were carried out by Windows
10 computer equipped with 8-GB RAM and Intel(R) Xeon(R) E5-1603 CPU processor
using Matlab R2017a.

Table 4.8 – MSF2D and MMSF2D computation cost comparison in seconds (see text for
details on the computer performance).

MSF2D time in seconds MMSF2D time in seconds
Pink noise 350.39 ±1.26 4.365×103 ±9.96
White noise 349.96±0.84 4.359×103 ±8.99

The results show the huge difference in the computation time taken by both algorithms.
The average time taken by MMSF2D algorithm in seconds is almost 12 times larger than
that taken byMSF2D. This comes back to the fact that withMSF2D the images are down-
sampled and become of a smaller size with increasing τ value. Consequently, MSF2D is
the measure that we use for all our coming work based on the original coarse-graining
method proposed by [88].

4.6 First Colored Fuzzy Entropy Approach
FuzEnC2D

We started with tests using the first developed colored fuzzy entropy approach
FuzEnC2D [29, 31] without normalizing the testing images. The results are presented
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below.

4.6.1 Sensitivity to change in tolerance level r

We studied the effect of changes in r by evaluating a 256×256 pixels colored Brodatz
image [33] using FuzEnC2D, see Figure 4.25 (b). r was defined from 0.06 to 0.48 (step
of 0.06) and windows’ length m= 1, 2, and 3. The results in Figure 4.26 prove that
FuzEnC2D is defined upon variation of r and m and we note its low sensitivity for the
three channels (UR, UG, and UB). This proves the reliability of FuzEnC2D for different
choices of initial parameters.

Figure 4.25 – Images used for evaluating FuzEnC2D: 256×256 pixels checker board image (a), 256×256
pixels colored Brodatz texture (b).

4.6.2 MIX2D(p)

We generated checker board image as alternating white and black squares with peri-
odic behavior and expected zero entropy value, see Figure 4.25 (a). Then MIX2D(p) [19]
were added to the checker board image. p being from 0 (periodic sinusoidal image) to 1
(totally random image). Ten MIX2D(p) images were generated for each p value to validate
the consistency of our results. The parameters were set as r = 0.2 and m= 1, 2, and
3. As we can observe in Figure 4.27, FuzEnC2D values for each channel increase as p
increases. Thus, the results for background checker board images added with MIX2D(p)
processes illustrate that FuzEnC2D has the ability to distinguish different degrees of
added randomness and has a relatively low sensitivity to the choice of m.

4.6.3 Colored Brodatz images

Colored Brodatz images of 640×640 pixels (see Figure 4.28) were divided into 4 equal
sub-images of 320×320 pixels and all of them were evaluated by FuzEnC2D. The pa-
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Figure 4.26 – Sensitivity of FuzEnC2D to variation in the values of r and m.

Figure 4.27 – FuzEnC2D for checker board pattern added with MIX2D(p).
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Figure 4.28 – 640x640 pixels colored Brodatz textures.

rameters are chosen to be r = 0.2, m= 2, and n = 2. FuzEnC2D values for the original
640×640 pixels textures and the mean and standard deviation of the 4 sub-images are dis-
played in Tables 4.9 and 4.10, respectively. For the sub-images, FuzEnC2D shows results
similar to those of Table 4.9 with a small standard deviation (≤ 0.04). This shows the
ability of FuzEnC2D to recognize sub−images belonging to the same textural behavior.

Table 4.9 – FuzEnC2D for colored Brodatz textures (640×640 pixels).

FuzEnR2D FuzEnG2D FuzEnB2D
texture (a) 0.19 0.22 0.24
texture (b) 0.55 0.78 0.52
texture (c) 0.34 0.61 0.52
texture (d) 0.26 0.30 0.24
texture (e) 0.35 0.34 0.41
texture (f) 0.82 0.78 0.56
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Table 4.10 – Mean and standard deviation of FuzEnC2D for colored Brodatz textures
sub-images (320×320 pixels).

FuzEnR2D FuzEnG2D FuzEnB2D
texture (a) 0.19±0.02 0.22±0.02 0.23±0.03
texture (b) 0.55±0.01 0.78±0.02 0.52±0.01
texture (c) 0.33±0.00 0.61±0.01 0.52±0.01
texture (d) 0.26±0.02 0.30±0.02 0.24±0.02
texture (e) 0.35±0.03 0.35±0.03 0.41±0.04
texture (f) 0.82±0.02 0.78±0.02 0.56±0.01

4.7 FuzEnC2D, FuzEnV2D, and FuzEnM2D Validation
Tests

After our first successful application on colored images using FuzEnC2D we developed
other entropy measures based on different concepts for analyzing a colored image. We lim-
ited our study for trichromatic color space images. In what follows we study FuzEnC2D,
FuzEnV2D, and FuzEnM2D applied to images of several color spaces.

FuzEnC2D’s algorithm is the same as that one tested in the previous section. However
we enhanced its computation speed (using the Matlab parallel computing toolbox) and
added images’ normalization for all the studied texture images.

To validate the proposed colored bidimensional entropy measures, we studied their
sensitivity to different parameters values. We also applied the algorithms to images with
different degrees of randomness and colored Brodatz dataset [33]. The images were normal-
ized by subtracting their mean and dividing by their standard deviation before processing
and all the tests were performed using Matlab.

In addition to the most common trichromatic color space RGB (Red, Green, Blue) we
transform the studied texture images into two other color spaces [161]: HSV (Hue and Sat-
uration: chrominance, Value: intensity) and YUV (Y: luminance, U and V: chrominance)
to investigate the effect of color space transformations on FuzEnC2D and FuzEnV2D

outcomes. By the latter, we choose one of each of the most widely used color spaces
families: the primary color spaces (RGB), the perceptual color spaces (HSV), and the
luminance−chrominance color spaces (YUV). In RGB color space, the intensity and color
are combined to give us the final display, whereas for HSV and YUV color spaces intensity
and color are separated.
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4.7.1 Sensitivity to initial parameters

To study the sensitivity of our proposed measures, FuzEnC2D, FuzEnV2D, and
FuzEnM2D to different embedding dimensions m and tolerance levels r, we evaluated
100×100 pixels of a colored Brodatz image (Figure 4.35 (f)) using different parameters
choices.

— For FuzEnC2D, the embedding dimension m was taken as 1, 2, 3, 4, and 5, and
the tolerance level r from 0.06 up to 0.48 (step 0.06). The results are displayed in
Figure 4.29.

— For FuzEnV2D, the embedding dimension m was taken as 1 and 2, since the
maximum possible cube volume for (m+ 1)−length cubes is 3× 3× 3 pixels (the
3 color channels). The results are displayed in Figure 4.30.

— For FuzEnM2D, the embedding dimension m was taken as 1, 2, 3, 4, and 5, and
the tolerance level r from 0.06 up to 0.48 (step 0.06). The results are displayed in
Figure 4.31.

We observe that FuzEnC2D, FuzEnV2D, and FuzEnM2D remain defined for different
chosen initial parameters. Also the algorithms show low variability upon changes in r and
m. This proves their low sensitivity to r and m, allowing a certain degree of freedom in
our choice of initial parameters without restrictions.

4.7.2 Detecting colored image irregularity

MIX2D(p) [19] is a family of images of stochastic processes that are moderated by the
probability of irregularity, p, see section 4.2.1. We used MIX2D(p) for the single-channel
approach, and MIX3D(p), our proposed volumetric extension for MIX2D(p) [27], for the
multi-channel approach.

We generated 256 × 256 pixels MIX2D(p) in three channels and 256 × 256 × 3 pixels
MIX3D(p) images and analyzed them by single channel (FuzEnC2D) and multi-channel
approaches (FuzEnV2D and FuzEnM2D), respectively.

— FuzEnC2D: we set r = 0.15, m= 1, 2, 3, 4, 5, and p = 0 to 1 with a step of
0.1, and repeated the calculation for 10 images each. The results are depicted in
Figure 4.32.

— FuzEnV2D: we set r = 0.15, m= 1 and 2 (as the maximum possible cube volume
for m+1 could only be 3×3×3 pixels), p = 0 to 1 with a step of 0.1, and repeated

129



Chapter 4 – Validation Tests and Analysis

Figure 4.29 – FuzEnC2D results for the red, green, and blue channels (left to right) of the colored
Brodatz image, Figure 4.35 (f), with varying r and m.
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Figure 4.30 – FuzEnV2D results with varying r and m of the colored Brodatz image, Figure 4.35 (f).

Figure 4.31 – FuzEnM2D results with varying r and m of the colored Brodatz image, Figure 4.35 (f).
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Figure 4.32 – FuzEnC2D mean and standard deviation for MIX2D(p) images with 10 repetitions.
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the calculation for 10 images each. The results are depicted in Figure 4.33.

Figure 4.33 – FuzEnV2D mean and standard deviation for MIX3D(p) images with 10 repetitions.

— FuzEnM2D: we set r = 0.15, m= 1, 2, 3, and 4, and p = 0 to 1 with a step of
0.1, and repeated the calculation for 10 images each. The results are depicted in
Figure 4.34.

Figure 4.34 – FuzEnM2D mean and standard deviation for MIX3D(p) images with 10 repetitions.

The results show that, the single, multi-channel, and the modified approaches, lead to in-
creasing entropy values with increasing irregularity degree, p. This illustrates their ability
to properly quantify increasing irregularity degrees and their consistency upon repetition.

4.7.3 Studying texture images

For texture validation tests we used the very well known Colored Brodatz Texture
(CBT) [162] images, see Figure 4.35. CBT presents colored textures with different degrees
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of visible irregularity. We can notice that, for example, the CBT images (a), (b), and (e)
show more regularity and periodic repetitive patterns than (c), (f), and (i).

Figure 4.35 – Colored Brodatz texture images, CBT.

The nine CBT [33, 162] images of 640×640 pixels, see Figure 4.35, were split into
144 sub-images of sizes 50×50 pixels. FuzEnC2D, FuzEnV2D, and FuzEnM2D were cal-
culated for these sub-images and for a 300×300 pixels region from each corresponding
original CBT image. The parameters r and m were set to 0.15 and 2, respectively. The
results are depicted in Figures 4.36, 4.37, and 4.38. We observe that, especially for the
RGB color space, most of the FuzEnC2D, FuzEnV2D, and FuzEnM2D averages of the
sub-images overlap with or are very similar to the value of their corresponding image’s
300×300 pixels region. Moreover, we notice their differentiation ability between different
CBT images. In the HSV and YUV color spaces, the multi-channel approaches (Fig-
ures 4.37 and 4.38) overperforms FuzEnC2D (Figure 4.36) in differentiating the CBT
images. We can also observe that for the RGB color space the CBT images that are per-
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ceived visually to be of higher irregularity, Figure 4.35 (c), (f), and (g), obtained higher
entropy values than the others, whereas those that appear to be of periodic well defined
repetitive patterns, Figure 4.35 (a), (b), and (e), resulted in lower entropy values for
the three measures FuzEnC2D, FuzEnV2D, and FuzEnM2D. This is in accordance with
the literature of entropy measures and information theory concept applied to gray level
texture images [19, 20, 42, 43, 26, 28].

Figure 4.36 – FuzEnC2D results for the 144 sub-images and 300×300 pixels of the CBT in the three
color spaces: RGB, HSV, and YUV, with K1, K2, and K3 being the first, second, and third channel,
respectively. The mean of the 144 subimages is displayed as a "◦" sign and the value for the 300×300
pixels is displayed as "∗".

Figure 4.37 – FuzEnV2D results for the 144 sub-images and 300×300 pixels of the CBT in the three
color spaces: RGB, HSV, and YUV. The mean of the 144 subimages is displayed as a "◦" sign and the
value for the 300×300 pixels is displayed as "∗".

4.7.4 Computation cost of FuzEnC2D, FuzEnV2D, and FuzEnM2D

For comparing the computation cost for the three developed measures for colored
textures we employed 100×100 pixels colored Brodatz image (D12) and repeated the
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Figure 4.38 – FuzEnM2D results for the 144 sub-images and 300×300 pixels of the CBT in the three
color spaces: RGB, HSV, and YUV. The mean of the 144 subimages is displayed as a "◦" sign and the
value for the 300×300 pixels is displayed as "∗".

calculations for ten times. The parameters were set as r = 0.15 and m= 2. The results are
displayed in Table 4.11. The simulations were carried out by Windows 10 laptop equipped
with 8-GB RAM and Intel(R) Core(TM) i7-6500U CPU processor using Matlab R2020a.

Table 4.11 – Mean and standard deviation of the computation time for FuzEnC2D,
FuzEnV2D, and FuzEnM2D for a 100×100 pixels colored Brodatz image.

FuzEnC2D FuzEnV2D FuzEnM2D
Computation time (s) 48.59±89.66 28.65±0.52 21.76±0.68

FuzEnM2D showed the lowest computational cost. This indicates that it will be more
suitable for large images, more particularly with the fact that medical images are often
of a large size.

4.8 FuzEn3D and MSF3D Validation Tests

The behavior of our proposed 3D entropy measures is validated using several tests
such as: sensitivity to parameters test, ability to identify several degrees of irregularity,
and pattern-based volumes quantification among others.

4.8.1 Sensitivity to variation in parameters r and m

For testing the sensitivity of FuzEn3D to r and m, we performed FuzEn3D calcula-
tions for white noise cubes with a varying tolerance level r between 0.06 and 0.48 (step
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of 0.06) using m= 1, 2, and 3.

Figure 4.39 – FuzEn3D for white noise cubes with a varying tolerance level r between 0.06 and 0.48
using m= 1, 2, and 3.

The results in Figure 4.39 show the consistency of FuzEn3D for varying r andm values
and the low standard deviation of the results upon repetition. These results are similar
to those obtained by the uni- and bidimensional fuzzy entropy, providing low limitations
for the possible choices in the initial parameters.

4.8.2 FuzEn3D for MIX3D(p) volumes

Ten cubes of MIX3D(p) volumes for each p value were generated and analyzed by
FuzEn3D. The parameters were set as r = 0.2, n = 2, p increased from 0 till 1 with a
step of 0.1 and m varied as = 1, 2, and 3. The results illustrated in Figure 4.40 show
the ability of FuzEn3D to properly quantify increasing irregularity degrees. FuzEn3D

values increased gradually with the increase in p value from 0 to 1. The results were
consistent for the three m values which shows the low sensitivity to the choice of m. We
also note the low standard deviation upon repetition. This is an important characteristic
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of the developed methods because it shows the ability of repeatability for the obtained
results range. This is achieved even when dealing with random textures such as MIX3D(p)
processes and illustrates the method’s consistency.

Figure 4.40 – Mean and standard deviation of FuzEn3D for ten reptitions applied to MIX3D(p) using
m= 1, 2, and 3.

For quantifying irregularity of different degrees the uni-, bi-, and tri-dimensional en-
tropy measures illustrate a similar behavior [42, 26, 28, 27]. For the upcoming test the
parameters are chosen as m= 3 and r = 0.2 within the range verified in our validation
tests and that recommended by some previous publications.

4.8.3 Shuffling

Theoretically, shuffling increases the irregularity of data. Thus entropy values are ex-
pected to increase upon shuffling. We tested the change in entropy calculations for ten
MIX3D(p) cubes and their ten shuffled versions for each p. The results are plotted as the
mean and standard deviation of the results obtained. The parameters were defined as
m= 3, r = 0.2, n = 2 and p increased from 0 till 1 with a step of 0.1.
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Figure 4.41 – FuzEn3D for MIX3D(p) of ten original and ten shuffled volumes for each p.

139



Chapter 4 – Validation Tests and Analysis

The results in Figure 4.41 are in accordance with the theoretical assumption where
all the shuffled cubes show higher entropy values than the original MIX3D(p) cubes. The
results are also similar to those obtained with FuzEn2D and DistrEn2D [20, 28].

4.8.4 Pattern-based volumes

Similar to the test performed by [157], we generated six pattern-based cubes to test
the differentiation ability of FuzEn3D to different textural/pattern behaviors. The cubes
were displayed previously in Figure 4.8. The results are presented in Table 4.12.

Table 4.12 – FuzEn3D results for pattern-based volumes.

Cubes Cube 1 Cube 2 Cube 3 Cube 4 Cube 5 Cube 6
FuzEn3D 0.0000 0.0443 0.0000 0.1404 10.1504 26.6905

As we can observe, FuzEn3D illustrates a proper evaluation for the cubes’ irregularity
degree in accordance with our visual interpretation and the theoretical assumption of the
irregularity order. As indicated by the cubes’ patterns, cube 1 till 4 show very regular
patterns and consecutive alteration between white and black pixels for cubes 2, 3, and 4.
This justifies the very low entropy values in the first 4 cubes. To be more precise, cube 2
of half black and half white pixels, reflects a higher entropy value than that of the black
cube however a lower value than that of the diagonal striped cube. This agrees with the
fact that the black stripes cube is more irregular than cube 2. For cubes 1 and 3 the zero
values reflect the high predictably and regularity of the aforementioned cube patterns.
This could be also justified by the distance function that is always constant no matter
which cubes we consider or m embedding dimension. Now for cubes 5 and 6, FuzEn3D

shows a proper assessment for their order of irregularity. As we can observe the cube
5 (Gaussian distribution) shows a much higher entropy value than the totally regular
volumetric patterns. However the most irregular among them, cube 6, uniform random
distribution, illustrates the highest entropy value.

In other words, periodic repetitive patterns reflect a low entropy value i.e. low
irregularity (highly expected behavior), whereas more random textural behavior reflects
higher entropy values (low predictability). The latter is shown in the FuzEn3D results
proving its ability to gradually quantify the volumes’ irregularity degrees.
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4.8.5 MSF3D for noise volumes

To verify the consistency of MSF3D on the multiscale level, we study the evaluation
of FuzEn3D for the color noise cubes over several scale factors; i.e. MSF3D for the
colored noise cubes. We employ ten noise cubes of 50×50×50 voxels with different power
spectra (1/fβ): white, pink, brown, and blue noise cubes. The initial parameters are set
as m= 3, r = 0.2, n = 2, and τmax=10.

Figure 4.42 – MSF3D for ten noise cubes with different power spectra (1/fβ): white, pink, brown, and
blue noise.

As illustrated previously, white noise is of highly irregular nature. However when
studied over several scale factors it has a low complexity. Then comes the blue noise
that is less irregular than white noise but it also has low complexity over several scale
factors (when down-sampled). On the other hand, pink and brown noise types are of long
term correlations, where they show lower irregularity than white and blue noises but they
possess a higher complexity. This is illustrated by their relatively higher entropy values
over several scale factors.

In agreement with the theoretical explanation and the results of other uni- and bidi-
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mensional entropy measures, MSF3D shows an ability to properly evaluate the actual
irregularity and complexity of the studied noise volumes. The results are depicted in Fig-
ure 4.42. The results of scale factor τ=1 are magnified. They illustrate the proper order
in irregularity for the evaluated noise volumes.

The results are in accordance with the uni- and bidimensional entropy measures’ be-
havior with noise data [27, 19, 88, 91, 26].

4.9 Conclusion

In this chapter we presented the validation tests for the developed entropy measures.
They illustrate low sensitivity to change in parameters, consistency upon repetition, and
promising results with the validation tests that were designed for each specific measure.

As a summary, we compared the unidimensional FuzEn1D measure to the herein pro-
posed bidimensional version FuzEn2D. FuzEn2D forms a basic measure for the methods
that are proposed afterwards. Consequently, thorough validation exams were performed
to validate its behavior at first and compare it with other uni- and bidimensional en-
tropy measures. Moreover, we employed some verification tests for the multiscale approach
MSF2D that analyzes texture images over several scale factors. After the successful ap-
plication of FuzEn2D on gray scale images, we upgraded the fuzzy entropy concept to
deal with colored images through three different approaches to handle trichromatic im-
ages. The validation tests are also promising and shows good potential for application on
colored image textures

Afterwards, we utilized some validation tests for the tridimensional entropy measures
in their single and multiple scale approach. FuzEn3D shows low sensitivity to change in
parameters, consistency upon repetition, proper quantification for the volumes’ irregular-
ity, and promising multiscale behavior in the assessment of noise volumes.
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Chapter 5

MEDICAL APPLICATIONS AND

DISCUSSION

5.1 Introduction

In this chapter we present our findings on medical images and discuss them. The results
are obtained for bidimensional medical images (dermoscopic images) and tridimensional
scans (HRCT and MRI). First, we start with the PXE dermoscopic images in gray scale
and colored space which were evaluated withMSF2D and colored fuzzy entropy measures,
respectively. Then, we present our findings on dermoscopic melanoma and melanocytic
nevi images also in gray scale and colored spaces. In addition, for the bidimensional
applications, we perform a study for microcirculatory assessment using our proposed
FuzEnC2D. Finally, we integrate the bidimensional concept in the volumetric application
to study the scans of HRCT images for COPD patients using pMFuzEn3D.

After that, for the 3D applications, we present the results obtained usingMFEn3D on
HRCT images for IPF patients and on MRI images for uterine fibroma after uterine artery
embolization. Finally, we will present our very recent findings on COVID-19 patients CT
scans.

5.2 Bidimensional Entropy for PXE Dermoscopic
Images

A bidimensional entropy method estimates the irregularity of an image or texture
based on repetitions of its patterns. Consequently and based on the fact that the primary
PXE manifestation is by the appearance of papules that show some patterns in the tex-
ture of dermoscopic images, we propose to analyze those dermoscopic images using the
bidimensional entropy measures. Note that in the PXE patients’ skin dermoscopic images,
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the changed textural behavior cannot be always objectively identified. This fact makes a
computer-based image analysis technique of a greater importance.

As mentioned previously, bidimensional entropy measures evaluate irregularity within
the studied images and have the ability to recognize textures with different degrees of
irregularity. Thus, we analyze PXE dermoscopic images using FuzEn2D and compare
our results to those of the well-known SampEn2D. The analysis is performed not only at
the first scale factor, but also over several scale factors to deal with their high and low
frequency components and uncover the in depth information and assess the actual com-
plexity of the aforementioned dermoscopic images using MSF2D and MSE2D presented
in section 5.2.1. Then, we analyze those dermoscopic images as colored using FuzEnC2D,
FuzEnV2D, and FuzEnM2D to reveal the possible important information in the color of
those PXE images presented in section 5.2.2.

We studied the dermoscopic images for 15 PXE patients from a reference center for
PXE in the department of dermatology of Angers Hospital, France. The diagnosis of
PXE was based on a combination of established criteria for indisputable PXE (clinically
suggestive skin lesions, angioid streaks on fundoscopy, histological demonstration of frag-
mented and calcified elastic fibers on skin biopsy) as well as ABCC6 gene mutations.
The images were taken using FotoFinder bodystudio ATBM for total body mapping and
dermoscopy, see Figure 5.1. Please note that such a number of subjects is noticeable for
this rare disease. Before images acquisition, the patients signed written assents and the
study was performed in agreement with the Declaration of Helsinki, (CB 2009-01 and #
of ClinicalTrials.gov: NCT01446380).

A dermoscopic image from the neck showing papules and a dermoscopic image from a
normal skin zone (ventral zone) were taken from each of the 15 patients. Examples of two
patients’ dermoscopic images for healthy skin regions and neck regions showing papules
are displayed in Figure 5.2.

5.2.1 Gray scale dermoscopic images

After converting the 30 images obtained to gray scale, we normalized them by sub-
tracting their mean and dividing the result by the standard deviation. A random region
of 489×490 pixels from the recorded dermoscopic images was studied using both MSF2D

and MSE2D.
The results for PXE dermoscopic images are depicted in Figure 5.3. To evaluate the

performance of MSF2D vs. MSE2D in discriminating the diseased from healthy groups,
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Figure 5.1 – FotoFinder bodystudio ATBM for total body mapping and dermoscopy. Adapted
from [163].

Figure 5.2 – Dermoscopic images for: (a) and (c) zones with papules, (b) and (d) normal zones.
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we considered their statistical significance and effect size. To test if a significant statisti-
cal difference is found between the entropy values of the two skin regions, we employed
the paired t-test at each scale factor. A statistical significance was defined for corrected
p-values strictly lower than 0.05. The obtained p-values were corrected for multiple com-
parisons over scale factors by the Bonferroni correction method. For MSE2D, no statistical
significance was found. However, MSF2D is able to significantly discriminate the group
of neck images with papules from that of normal skin images at scale factors τ = 1 and
τ = 2. The corrected p-values, pcor, were respectively 0.03 and 0.04. Moreover, a higher
spread of MSE2D values was observed. For the other scale factors, no significant statistical
difference between the two skin regions was observed.

After verifying statistically the presence of a deterministic difference between entropy
values of the two kinds of skin regions, we considered the size of this difference and
evaluated the strength of our statistical claim by calculating the effect size using Cohen’s
d [164, 165, 166]. Cohen’s d evaluates how different two groups are (herein, entropy values
for healthy zones compared to those with papules at each τ) [164]. The higher the d value
is, the larger the difference or effect size will be. Table 5.1 explains the significance of the
d values [164, 167].

Table 5.1 – Interpretation of the Cohen’s d values [164, 167].
Effect’s size Very small Small Medium Large Very large Huge

d 0.01 0.20 0.50 0.80 1.20 2.0

The d values for MSF2D and MSE2D for τ = 1, 2, 3, and 4 are displayed in Table 5.2.
It is found that the d values forMSF2D represent a “Large” size of difference between the
compared groups (especially for the above verified τ = 1 and 2). However, the d values
for MSE2D represent “Small” or “Medium” effect sizes.

Table 5.2 – Cohen’s d values for MSF2D and MSE2D at τ= 1, 2, 3, and 4 for the normal
skin regions vs. the regions with papules in pseudoxanthoma elasticum images.

τ 1 2 3 4
d for FuzEn2D 0.977 0.952 0.777 0.508
d for SampEn2D 0.226 0.669 0.773 0.531

On the whole, the results show that MSF2D has a statistically significant ability to
differentiate the two studied groups at the first 2 scale factors with noticeable large effect
size values suggesting the advantage of our developed MSF2D over MSE2D. Therefore,

146



5.2. Bidimensional Entropy for PXE Dermoscopic Images

MSF2D could form a useful tool to help clinicians in the early diagnosis of PXE accu-
rately (using the results for τ = 1 and 2). Furthermore, normal skin regions show higher
complexity compared to the regions with papules because of the higher over all FuzEn2D

values over several scale factors, see Figure 5.3. This is in agreement with the literature
in which healthy body systems are expected to have higher complexity than diseased
systems [91, 88].

Figure 5.3 – For scale factors τ= 1 till 4:MSF2D for the zones with papules (dark red) and normal skin
zones (green), and MSE2D for zones with papules (blue) and normal skin zones (yellow). The ∗ signifies
the presence of statistically significant difference between the two groups.

5.2.2 Colored dermoscopic images

After the successful findings on gray scale images usingMSF2D we employ the colored
entropy algorithms, FuzEnC2D, FuzEnV2D, and FuzEnM2D, to reveal the information
hidden within the color components of our studied PXE images.

We employed the same database as the one mentioned in the previous section and
the same region of interest, ROI. The images were obtained as colored and processed
using the single- and multi-channel bidimensional colored fuzzy entropy measures. The
parameters were set as n=2, m=2, and r=0.15.

To validate the results obtained, we performed the Wilcoxon signed rank test for
paired samples (because both dermoscopic images are from the same patients for every
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subject) where a p -value < 0.05 shows a statistical validated ability for a method to
distinguish the two sample groups. We obtained statistical significance in differentiating
the healthy from the papules skin zone for the Blue channel using FuzEnC2D with
p = 0.02, see Figure 5.4. Furthermore, with FuzEnV2D we obtained p = 0.005, see
Figure 5.5. FuzEnM2D showed p=0.05, which cannot be considered as statistically
significant, however, we display the results in Figure 5.6.

Figure 5.4 – FuzEnC2D for 30 colored dermoscopic images of a region showing PXE papules (NP:
neck with papules) and healthy skin region (NZ: normal zone). The colors red, green, and blue represent
the R, G, and B channels, respectively. Statistical significance is obtained for the blue channel (p=0.02).
The ∗ signifies the presence of statistically significant difference between the two groups.

Moreover, we calculate the Cohen’s d value for evaluating the actual effect size of
the statistically significant difference. We obtain Large effect size values, d = 0.71 and
d = 0.81 for FuzEnCB2D and FuzEnV2D, respectively. This also confirms our statistical
claim and better validates our results for the Blue channel using FuzEnC2D and for the
whole images using FuzEnV2D in identifying healthy from PXE affected skin zones.

5.2.3 Conclusion

PXE is a rare disease that causes several cutaneous, cardiovascular, and ophthalmic
complications. Thus, the earlier the diagnosis is, the better the monitoring and preven-
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Figure 5.5 – FuzEnV2D for 30 dermoscopic images of a region showing PXE papules (neck with papules)
and a healthy skin region (normal zone). Statistical significance is obtained with p=0.005. The ∗ signifies
the presence of statistically significant difference between the two groups.

Figure 5.6 – FuzEnM2D for 30 dermoscopic images of a region showing PXE papules (neck with
papules) and a healthy skin region (normal zone). FuzEnM2D showed p=0.05.

149



Chapter 5 – Medical Applications and Discussion

tion will be. PXE establishes a certain textural behavior that cannot be always identified
visually even through dermoscopy. This creates an essential need for developing an ob-
jective technique that can identify the presence of this disease in its early stages (the
initial cutaneous symptoms). The primary fuzzy entropy results seem to be promising in
distinguishing a group of healthy skin images from diseased ones. In the future, it would
also be interesting to use the proposed measures to track how the skin pathology evolves
upon potential treatment follow up, due to the fact that there is no definite treatment for
this disorder yet. This contribution would influence the research in this field and could
help in its escalation.

Apart from that and before developing FuzEn2D, we performed a brief study us-
ing SampEn2D, but we present it in the Annex as it is less relevant herein, please see
section 6.2.

5.3 Melanoma and Melanocytic Nevi

The target of the medical application of our study in this section is to differentiate
the deadliest type of skin cancer, melanoma, from the benign melanocytic nevi. These
two widely spread types of pigmented skin lesions are often mistaken in diagnosis and
detection, especially in their early stages. Moreover, early diagnosis and excision could
vastly increase the survival rate [122, 123, 124].

To achieve our goal, we process dermoscopic images of melanoma (see section 1.6.4)
and melanocytic nevi. For the application to dermoscopic images (gray scale and col-
ored), we used samples from the “Human Against Machine with 10000 training images”,
HAM10000 [168]. The dataset is composed of dermoscopic images for pigmented lesions.
It contains dermoscopic images of: melanocytic nevi, melanoma, dermatofibroma, actinic
keratoses, basal cell carcinoma, and benign keratosis [168, 169]. The data collection was
approved by the ethics review committee at the Medical University of Vienna and the
University of Queensland. For more detailed information about the dermoscopic dataset
please refer to [169].
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5.3.1 Gray scale dermoscopic images

We employed 30 dermoscopic images randomly chosen from two different diagnostic
categories (see examples in Figure 5.7). The studied dermoscopic images are for 15 patients
with melanoma (a malignant neoplasm) and 15 patients with melanocytic nevi (a benign
neoplasm).MSF2D was applied to the central 430×450 pixels of those dermoscopic images.
We used MSF2D with parameters: n = 2, m = 2, r = 0.25, and scale factor τ from 1 to
20.

Figure 5.7 – Image of melanoma (right) and melanocytic nevi (left) in gray scale.

To study the significance of results obtained with the two groups of dermoscopic
images, we performed Friedman test with Bonferroni correction and obtained statistically
significant values with pcor = 0.0022, 0.0158, 0.0158, 0.0158, 0.0022, 0.0022, for scale
factors τ = 1, 16, 17, 18, 19, 20, respectively. In addition, we calculated the Cohen’s d
values for the for scale factors τ = 1, 16, 17, 18, 19, 20, and obtained 1.21, 1.41, 1.47,
1.55, 1.63, and 1.67, respectively. The Cohen’s d values reflect “Very Large” effect size
values, which validate even more our statistical results. For the reference on the Cohen’s
d interpretation please see Table 5.1. Box plots for the significantly different scale factors
are presented in Figure 5.8. The scale factor τ = 1 shows an outlier for melanocytic nevi
but still accounts for a significant statistical difference. The results illustrate the ability
of MSF2D to distinguish melanoma from melanocytic nevi on the specified scale factors.
Thus, MSF2D forms a potential diagnostic tool for helping clinicians categorizing skin
dermoscopic images as benign or malignant lesions and assisting in early diagnosis.

Our findings proved FuzEn2D being a suitable measure for medical use on dermoscopic
images through its extension,MSF2D. This opens up the opportunity to employ FuzEn2D

andMSF2D on other medical images and extend this study for a larger number of subjects.
Those results were presented in our publication [28].
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Figure 5.8 – MSF2D for 15 melanoma (yellow) and 15 melanocytic nevi (green) dermoscopic images.
The ∗ signifies the presence of statistically significant differences between the two groups.

5.3.2 Colored dermoscopic images

For this application on medical images, we study the effect of different color spaces
and compare our results to those obtained with gray level co-occurrence matrices [48], the
probably most used texture analysis technique. We employed the co-occurrence matrices
of each channel (integrative way) for comparing the results to our single-channel approach,
and its extended 3D co-occurrence matrices [49] for comparing the results to our multi-
channel approaches. We thus adopted the following procedure:

— 2D co-occurrence matrices were created considering 4 orientations (0◦, 45◦, 90◦,
and 135◦), 4 interpixel distances (1, 2, 4, and 8), and 8 gray levels (Ng=8) to be
compared with FuzEnC2D.

— 3D co-occurrence matrices were created considering 13 orientations [49], 4 interpixel
distances (1, 2, 4, and 8), and 8 gray levels to be compared with FuzEnV2D and
FuzEnM2D.

Then, we calculated the Haralick features for each co-occurrence matrix (for each
orientation and distance). Finally, the average of features for all matrices was calculated
to be compared with FuzEnC2D, FuzEnV2D, and FuzEnM2D values. Among the 14
features originally proposed by Haralick et al. [48], only six are commonly employed by
researchers due to their correlation with the other eight, see Table 1.1.
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We calculated FuzEnC2D, FuzEnV2D, and FuzEnM2D for 40 melanoma images and
40 melanocytic nevi images from the HAM10000 dataset [169] in the color spaces RGB,
HSV, and YUV. For choosing the region of interest (ROI) of melanoma and melanocytic
nevi images, we segmented the lesion as shown in Figure 5.9. Then, the central region
of 128×128 pixels was selected, see Figure 5.9 (d). By adopting this procedure, we en-
sured that the same number of pixels was processed (equally sized images) and that no
region outside the lesion was included. The parameters r and m were set to 0.15 and 2,
respectively.

Figure 5.9 – Dermoscopic images segmentation for choosing the ROI.

To validate the statistical significance of FuzEnC2D, FuzEnV2D, and FuzEnM2D

in differentiating melanoma from melanocytic nevi images, we used the Mann-Whitney
U test. The resulting p-values are presented in Table 5.4. FuzEnC2D shows statistical
significance (for pcor<0.05) in differentiating melanoma and melanocytic nevi for the R,
G, B, H, Y, and V channels. The p values were corrected using the Bonferroni method
for the 40 subjects, pcor. In addition, using FuzEnV2D and FuzEnM2D, melanoma and
melanocytic nevi images are identified as statistically different for the 3 color spaces. In
addition, we calculate the Cohen’s d to further validate our obtained statistical results,
see Table 5.3. Most d values reflect “Large”, “very Large”, and “Huge” effect size (refer
to Table 5.1), which validates the differentiation ability of our proposed measures.

Furthermore, we compared FuzEnC2D results with Haralick features from 2D co-
occurrence matrices. The results show that FuzEnC2D obtains lower p-values than Har-
alick features for the G, H, Y, and U channels and none of the methods result in statistical
significance for the S channel. Additionally, we compared FuzEnV2D and FuzEnM2D re-
sults with Haralick features from 3D co-occurrence matrices, see Figures 5.10 and 5.11.
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Table 5.3 – Cohen’s d-values for FuzEnC2D, FuzEnV2D, and FuzEnM2D of 40 melanoma
and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV.

FuzEnCK1 FuzEnCK2 FuzEnCK3 FuzEnV2D FuzEnM2D
RGB 1.50 1.89 1.97 2.71 2.19
HSV 1.14 0.23 0.27 1.14 1.14
YUV 1.10 0.58 0.70 1.00 1.09

FuzEnV2D and FuzEnM2D clearly surpassed Haralick features as p-values obtained for
the results of both entropy measure are mostly lower than those of Haralick features. More-
over, using Haralick features some results do not show statistical significance (p<0.05),
whereas all the three colored entropy measures show evident statistical significance in
differentiating melanoma from melanocytic nevi, except in FuzEnC2D results in S and V
channels.

Table 5.4 – Mann-Whitney u test p-values for FuzEnC2D, FuzEnV2D, and FuzEnM2D
of 40 melanoma and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB,
HSV, and YUV.

FuzEnCK1 FuzEnCK2 FuzEnCK3 FuzEnV2D FuzEnM2D
RGB 3.35×10−9 7.07×10−12 3.47×10−11 9.01 ×10−13 4.11 ×10−12

HSV 2.90×10−5 5.74×10−2 1.53 ×10−1 2.90 ×10−5 2.90 ×10−5

YUV 9.80×10−6 1.79×10−3 5.81×10−4 4.59 ×10−5 1.11 ×10−5

In addition to the p-values test, the receiver operating characteristic (ROC) and area
under the ROC curve (AUROC) of the results can be used as a criterion to measure the
discriminative ability of our proposed measures. Since the best results (lowest p-values)
were obtained for the RGB color space, we further plot the ROC curves (using [170])
for its FuzEnC2D, FuzEnV2D, and FuzEnM2D results, see Figures 5.12, 5.13, and 5.14,
respectively.

Moreover, the AUC, sensitivity, specificity, accuracy, and precision are determined for
the RGB, HSV, and YUV color spaces in Tables 5.5, 5.6, and 5.7, respectively. The results
show that FuzEnC2D has high accuracy and AUC values for R, G, B, H, Y, U, and V
channels and the multichannel approaches (FuzEnV2D and FuzEnM2D) for all the color
spaces. For all entropy measures, the best accuracy and AUC were obtained for the RGB
color space.
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5.3. Melanoma and Melanocytic Nevi

Figure 5.10 – FuzEnV2D and Haralick features p-values of 40 melanoma and 40 melanocytic nevi
dermoscopic images in the 3 color spaces: RGB, HSV, and YUV. d represents the interpixel distances for
the co-occurance matrices.

Table 5.5 – ROC analysis for FuzEnC2D, FuzEnV2D, and FuzEnM2D results of 40
melanoma and 40 melanocytic nevi images in RGB.

FuzEnC2D FuzEnV2D FuzEnM2D
UR UG UB U U

AUC 0.884 0.945 0.930 0.964 0.950
Sensitivity 0.825 0.925 0.900 0.925 0.925
Specificity 0.850 0.850 0.825 0.950 0.900
Accuracy 0.837 0.887 0.862 0.937 0.912
Precision 0.846 0.860 0.837 0.948 0.902
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Figure 5.11 – FuzEnM2D and Haralick features p-values of 40 melanoma and 40 melanocytic nevi
dermoscopic images in the 3 color spaces: RGB, HSV, and YUV. d represents the interpixel distances for
the co-occurance matrices.

Table 5.6 – ROC analysis for FuzEnC2D, FuzEnV2D, and FuzEnM2D results of 40
melanoma and 40 melanocytic nevi images in HSV.

FuzEnC2D FuzEnV2D FuzEnM2D
UH US UV U U

AUC 0.771 0.376 0.406 0.771 0.771
Sensitivity 0.650 0.325 0.225 0.650 0.650
Specificity 0.850 0.600 0.850 0.850 0.850
Accuracy 0.750 0.462 0.5375 0.750 0.750
Precision 0.812 0.448 0.600 0.812 0.812
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5.3. Melanoma and Melanocytic Nevi

Figure 5.12 – ROC curves for FuzEnC2D results of the 40 melanoma and 40 melanocytic nevi images
in the RGB color space. The curves are for FuzEnCR2D, FuzEnCG2D, and FuzEnCB2D from left to
right.

Figure 5.13 – ROC curve for FuzEnV2D results of the 40 melanoma and 40 melanocytic nevi images
in the RGB color space.

Table 5.7 – ROC analysis for FuzEnC2D, FuzEnV2D, and FuzEnM2D results of 40
melanoma and 40 melanocytic nevi images in YUV.

FuzEnC2D FuzEnV2D FuzEnM2D
UY UU UV U U

AUC 0.787 0.703 0.723 0.765 0.785
Sensitivity 0.725 0.750 0.700 0.750 0.725
Specificity 0.750 0.650 0.700 0.725 0.750
Accuracy 0.737 0.700 0.700 0.737 0.737
Precision 0.743 0.681 0.700 0.731 0.743
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Figure 5.14 – ROC curve for FuzEnM2D results of the 40 melanoma and 40 melanocytic nevi images
in the RGB color space.

Finally, we can say that the three entropy measures were able to differentiate both
pigmented skin lesions. This was validated statistically by p-values, especially in the RGB
color space. In the latter, FuzEnC2D, achieved accuracies of 83.7%, 88.7%, 86.2% and
AUC of 88.4%, 94.5%, 93%. On the other hand, FuzEnV2D, reached an accuracy of 93.7%
and AUC of 96.4%. In addition, FuzEnM2D showed an accuracy of 91.2% and AUC of
95.0%.

Moreover, FuzEnV2D and FuzEnM2D outperform both FuzEnC2D and the classi-
cal descriptors, Haralick features, in differentiating the two similar malignant melanoma
and benign melanocytic nevi dermoscopic images. These preliminary results could be the
groundwork for developing an objective computer-based tool for helping medical doctors
in melanoma that is often mistaken with the benign melanocytic nevi or is properly di-
agnosed in its late stages. We limited our investigation to three-channel color images.
Consequently, future work could be directed towards multi-spectral color images. More-
over, we intend to compare our results with other texture analysis algorithms.

5.4 Cutaneous Microcirculation Assessment

In this section, we evaluate dermoscopic images showing skin regions at rest and dur-
ing heating using FuzEnC2D [29]. The goal is to test if our method is able to distin-
guish two kinds of microcirculation states, i.e. resting state and vasodilated microcircu-
lation. For more details about the cutaneous microcirculation please refer to Chapter 1,
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section 1.6.2. This is of special importance as several studies stated that microvascular
dysfunction might be a direct indicator for cardiovascular diseases. Moreover, monitor-
ing hemodynamic coherence between the micro- and macro-circulations using a fast and
easily-accessible manner is particularly important for bedridden patients surveillance [108,
106, 107].

The dermoscopic images of nine healthy volunteers (8 women and 1 man, age: 36.5 ±11
years) were studied. The nine volunteers provided written consents for participating and
the study was performed in accordance with the Declaration of Helsinki. We employed
18 skin dermoscopy images (256×256 pixels) for 2 different cutaneous microcirculatory
states: at rest (normal) and during heating (vasodilation). The images were taken at the
department of dermatology of Angers Hospital, France using a Medicam800HD system
with a resolution of 1920×1080 full HD and 2 megapixels. Vasodilation is the state of
blood vessel dilatation which is accomplished by warming up the inspected skin region
in our study. Applying heat locally dilates the microcirculatory vessels and eventually
increases local skin blood flow. Heat (> 40 ◦C) was applied for a duration of 2 minutes
to a region at 3 cm from the antecubital fossa on the left arm of every volunteer.

Results

For our application on dermoscopic medical images, the results are shown in Fig-
ure 5.15. To validate the significance of our results we used the Wilcoxon signed rank test
where a statistically proven significance is defined for p < 0.05. We obtained statistical
significance for the red and green channels (UR and UG) with p-values 0.01 and 0.03
respectively.

We used Haralick texture descriptors − the probably most commonly used image
texture descriptors − for comparing the results with those of our proposed FuzEnC2D

(for more details please refer to section 1.1.1). The results are presented in Table 5.8.
The “−” sign replaces the undefined values. Using Wilcoxon signed rank test, no statis-
tically proven significance was found between the two microcirculation states using the
Haralick features. This proves an advantage for FuzEnC2D by its ability to statistically
differentiate the vasodilated and normal microvascular states whereas Haralick texture
descriptors cannot.

The results show statistically proven differentiation for the red and green channels
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Figure 5.15 – FuzEnC2D for the dermoscopic images at rest and with vasodilation. The ∗ signifies the
presence of statistically significant differences between the two groups.

Table 5.8 – Mean and standard deviation of Haralick features for UR, UG, and UB for
dermoscopic images of 9 individuals.

Normal UR UG UB

Variance 0.184± 0.142 0.144± 0.098 0.261±0.105
Uniformity 0.666± 0.239 0.728±0.169 0.467±0.201
Distortion 0.000± 0.001 0.000±0.001 0.000± 0.004
Entropy − − −

Homogenity 0.907±0.070 0.928±0.049 0.870 ± 0.054
Inverse variance − − −
Vasodilated
Variance 0.159 ± 0.128 0.194 ±0.111 0.231 ±0.105

Uniformity 0.708 ± 0.223 0.598 ±0.225 0.521 ±0.206
Distortion 0.0003 ± 0.000 0.001 ±0.002 0.000 ±0.002
Entropy − − −

Homogeneity 0.920 ±0.064 0.903 ± 0.055 0.884±0.052
Inverse variance − − −
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whereas no statistical significance was found using Haralick features. Only FuzEnC2D was
used for analyzing the dermoscopic microcirculation images in this study, because it was
our first experiment in applying colored entropy measures to dermoscopic images. Based
on these promising results, we started developing the other colored entropy approaches.
For the other studies presented in this manuscript on colored images, we use the three
developed colored entropy measures.

In the future we will be continuing this study for a larger number of individuals and
once validated, it would serve as an interesting technique helping medical doctors in
the assessment of cutaneous microcirculation states. This is of particular importance for
bedridden patients. It would provide a feasible, non-invasive, and fast microcirculation
assessment technique. Furthermore, having the ability to study irregularity of colored
images and textures enables us to extend the application to various fields and different
medical images. This study was published as a conference paper [29].

5.5 Chronic Obstructive Pulmonary Diseases
(COPD)

We proposed a pseudo-three dimensional multiscale fuzzy entropy measure
(pMFuzEn3D) to analyze CT scan volumes based on our developed MSF2D. We
process high resolution CT scans (HRCT) of patients with chronic obstructive pulmonary
diseases (COPD). pMFuzEn3D consists in computing FuzEn2D for each scan at different
scales and gathering all the entropy results on the same plot. In our study, we used
pMFuzEn3D to process HRCT scans from 22 subjects divided into 3 groups: 10 scans of
subjects with emphysema, 8 scans for normal lung subjects, and 4 scans of subjects with
airways disease. The scans were taken at the respiratory outpatient clinic at Aalborg
University Hospital and the associated Rehabilitation Center, Danemark. The people
involved wrote written consents in according to the declaration of Helsinki and agreed on
the participation in the studies on COPD [131]. The scans were acquired using Discovery
CT750HD CT machine (General Electric Company, Fairfield, CT, USA). They were
handled and inspected by a team of three physicians, pulmonologist, and two radiologists.

We calculated pMFuzEn3D for the mentioned HRCT scans. For this purpose, the
parameter m, threshold r, and fuzzy membership function were 2, 0.25, and Gaussian
distribution, respectively. The scale factor τ varied from 1 to 20. The results for one of the
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patients with emphysema is presented in Figure 5.16. The latter shows that pMFuzEn3D

is able to reveal entropy differences with scales and between slices. Continuing this work
for a larger number of HRCT scans could lead us to some useful medical findings in the
field of COPD. Further studies will also be developed for groups with different degrees of
emphysema.

These results came from our first application for adapting bidimensional entropy mea-
sures to volumetric data, using pMFuzEn3D. The results were promising and encouraged
us to develop the 3D based entropy measures. For the other applications on 3D medical
data, we will be employing the volumetric entropy measures directly.

With all what is going on in the world right now and the spread of the new SARS-CoV-
2 virus which is a type of pulmonary diseases, this study gains more attention. Provided
the sufficient resources we should continue in analyzing those images to probably provide a
digital tool to aid medical doctors in identifying and staging the encountered lung diseases
using a computer-based objective method. This study was submitted as a one page paper
and presented in an invited session for “Identification of Cardiopulmonary Function” at
the EMBC 2019.

5.6 Idiopathic Pulmonary Fibrosis (IPF)

After performing validation tests for our tridimensional entropy measure and its mul-
tiscale approach, we applied it to lung HRCT scans of healthy and Idiopathic Pulmonary
Fibrosis (IPF) patients. MFE3D algorithm was applied to a dataset of 52 volumetric
HRCT scans for 26 healthy subjects and 26 IPF patients. The study included 43 male
and 9 female subjects. The average age of the subjects was 76.8 ± 8.5 years which is in
agreement with the typical age of IPF incidence. This work was performed in collaboration
with university of Coimbra, Portugal.

The patients with IPF were recruited at the competence center for rare pulmonary dis-
eases in the department of Respiratory Medicine at Rennes University Hospital, Rennes-
France. These patients were diagnosed with stable IPF, as defined in multidisciplinary
discussions, having no infection or exacerbation in the 8 weeks preceding their first ap-
pointment. The study was performed in accordance with the Declaration of Helsinki under
the IRB approval number 19.82.

The healthy individuals for this study are subjects who underwent HRCT scans to rule
out various pathologies. Their HRCT scans were verified by an expert chest radiologist
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(a)

(b)

(c)

Figure 5.16 – pMFuzEn3D for HRCT scans of: (a) normal (b) a patient with emphysema and (c)
airways diseases.
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to confirm the absence of abnormal structures within the lung parenchyma and thus be
considered as healthy.

All the HRCT scans were obtained with a dose of 100 kVp and 120 kVp for 32 and 20
subjects, respectively, and the reconstruction matrices were of 512×512 pixels per scan,
with a pixel spacing mean value of 0.731 ± 0.046 mm. Most of the scans were performed
without IV contrast. The slice thickness was either 1.25 mm (34 subjects), 1.00 mm (14
subjects), or 0.625 mm (4 subjects). For each individual, a volume of 50×50×50 voxels,
from the basal and sub-pleural pulmonary region, has been segmented, resulting in volume
heights up to 62.5 mm when considering 50 slices along the z-axis.

The segmentation procedure was performed by scanning the HRCT scans bottom-up,
searching for a volume with less of 5% zero-values pixels (totally dark region) to avoid
external regions of the lung. The bottom-up procedure was adopted due to the typical
basal and peripheral predominance of IPF, because IPF patients are mostly affected in
the basal and peripheral regions of the lungs [171, 172]. The first volume fitting the
description was the one being selected. The volume selection is clearly illustrated by [27]
knowing that the HRCT scans are composed of 512×512× Nz voxels, see Figure 5.17.
These volumes were segmented from the right lung (as a random selection). Based on
that, the segmentation procedure was generalized and automatically performed for all the
subjects. Within these volumes, typical UIP (usual interstitial pneumonitis) patterns were
evaluated using our proposed entropy measure MFE3D.

The average of FuzEn3D values at each scale factor τ for the HRCT scans of healthy
individuals and IPF patients are presented in Figure 5.18. The parameters were set as m
= 3, r = 0.2, n = 2, and τmax=10. It is observed that for most scale factors the average
FuzEn3D for healthy subjects are lower than those of IPF patients.

To validate the statistical significance of the results obtained a Wilcoxon rank sum
test (for independent groups) was performed. Statistically significant differences were
considered for p-values strictly less than 0.05. This was observed for five scale factors:
τ=3, 4, 6, 7, and 8 with p-values 2.9×10−5, 7.0×10−6, 1.9×10−5, 3.9×10−5, and 2.5×10−5,
respectively. An “∗” sign is indicated in Figure 5.18 for the scale factors on which FuzEn3D

is statistically significantly different for healthy and IPF lung scans.
The results showed MSF3D’s ability to distinguish healthy from IPF HRCT scans

on five scale factors. This is illustrated especially for scale factors: τ=3, 4, 6, 7, and 8.
Moreover, the effect size (Cohen’s d) was calculated for the statistically significant scale
factors results and “Large” to “very Large” effect size values were obtained. The latter
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Figure 5.17 – Illustration for the selection process of the volume to be evaluated by MSF3D from the
HRCT scans. Adapted from [27].
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Figure 5.18 – Mean MSF3D results for the CT scans of healthy individuals and IPF patients, for
parameters m = 3, r = 0.2, and n = 2. The ∗ signifies the presence of statistically significant differences
between the two groups.
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validated even more the ability ofMSF3D to distinguish the two compared groups, healthy
and IPF suffering subjects. Based on those promising results, MSF3D could be seen as a
potential screening tool aimed to do a preliminary identification of UIP patterns in the
future.

The development of a multiscale tridimensional fuzzy entropy algorithm could be
a useful tool in the evaluation of HRCT of patients with IPF for early detection and
quantification of the UIP patterns, through a irregularity and complexity assessment.
The study on IPF patients was published as a journal paper in the IEEE journal of
biomedical health and informatics, JBHI [27].

5.7 COVID-19

The outbreak of this novel version of coronavirus (SARS-CoV-2) causing COVID-
19, encouraged intensive research race to provide answers for all the questions raised
concerning:

— its background or origin
— its diagnosis
— the evolution of the disease with time
— the long term effects on patients
— and of course the possible cure.
Starting from our responsibility and the ability of the image processing tools that

we have developed, we performed a study on COVID-19 patients scans (for medically
confirmed cases) and compared them to the results obtained for IPF in the previous
section. This work was also performed in collaboration with the University of Coimbra,
Portugal.

The acquisition of the studied COVID-19 patients’ CT scans was performed at the
University Hospital of Rennes, France between March 26 and April 17 of 2020, under the
IRB approval number 19.6 in accordance with the Declaration of Helsinki. The COVID-
19 patients underwent a reverse transcription polymerase chain reaction (RT-PCR) test
for SARS-CoV-2 and then a non-contrast chest CT scan for the positive SARS-CoV-2
patients was acquired.

The IPF patients were diagnosed with stable IPF and were followed up with, at the
competence center for rare pulmonary diseases, Department of Respiratory Medicine,
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University Hospital of Rennes, France. The healthy subjects were those who had chest
CT scans that were verified by expert radiologists to show no abnormal lung structures.
For more information about this dataset please refer to the previous section 5.6.

The whole dataset is composed of a total of 103 CT scans: 51 of patients diagnosed by
COVID-19, 26 patients diagnosed by IPF, and 26 healthy subjects, see Table 5.9 for more
details. The selected volumes to be evaluated followed the bottom to top scanning and a
50×50×50 voxels region of interest (ROI) is chosen from the right lung for all subjects.
The segmentation procedure and volumes selection is detailed in the previous section 5.6,
see Figure 5.17.

Table 5.9 – Characteristics of the studied population.
Mean age Number of CT scans

Healthy subjects 48.19 ± 14.84 26
IPF patients 74.96 ± 9.38 26

COVID-19 patients 58.84 ± 14.87 51

MSF3D is calculated for the 103 scans and the parameters are defined as: m= 3,
r = 0.2, n = 2, and τmax=10. The results are depicted in Figure 5.19 as the mean and
standard deviation for the entropy values.

We can observe a unique curve for the results of each group of subjects, however
in order to prove their statistical significance, we used the Mann–Whitney U test in a
pair-wise comparison. In addition, the Cohen’s d for effect size is calculated for each
statistical result. The statistical results are displayed in Table 5.10. Refer to Table 5.1 for
the interpretation of Cohen’s d.

The results indicate that MSF3D was able to differentiate IPF from healthy scans for
5 scale factors τ= 3, 4, 6, 7, and 8. Moreover, for COVID-19 compared to healthy scans,
a statistically proven differentiation ability is revealed for all scale factors τ , except τ
= 2 with “Large” to “very Large” effect size values. The latter validates even more our
statistically significant results. In addition, for distinguishing IPF scans from COVID-19
scans, the statistical results showed thatMSF3D was capable of doing so for all calculated
τ , except τ=5 and 10.

The results came to be very encouraging, especially that they illustrate a promising
outcome for COVID-19 patients. This study is submitted and under revision.

We also suggested calculating the complexity index CI for unique for from τ1 = 1 to τ2

= 8, see Figure 5.20. CI is unique for each ROI and is defined as the sum of the entropy
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Figure 5.19 – Mean and standard deviation for the MSF3D values for healthy subjects, idiopathic
pulmonary fibrosis (IPF), and COVID-19 patients for scale factors τ = 1 to 10.

Table 5.10 – Mann–Whitney U test p-values and Cohen’s d values for MSF3D results of
healthy, IPF, and COVID-19 confirmed subjects. The ∗ sign indicates the presence of a
statistically significant difference between the compared groups at a given scale factor.

Scale factor τ Healthy − IPF Healthy − COVID-19 COVID-19 − IPF
p d p d p d

1 2.09×10−1 0.19 3.44×10−5 ∗ 0.78 1.97×10−2 ∗ 0.63
2 8.37×10−2 0.43 6.22×10−6 ∗ 1.09 2.60×10−3 ∗ 0.77
3 2.88×10−5 ∗ 1.15 0.00×10−9 ∗ 1.86 7.88×10−5 ∗ 0.94
4 7.00×10−6 ∗ 1.13 0.00×10−9 ∗ 1.89 6.01×10−4 ∗ 0.78
5 1.26×10−1 0.52 8.01×10−6 ∗ 1.00 1.30×10−1 0.40
6 1.92×10−5 ∗ 1.08 0.00×10−9 ∗ 1.45 2.34×10−3 ∗ 0.66
7 3.38×10−5∗ 0.93 0.00×10−9 ∗ 1.25 1.56×10−3 ∗ 0.51
8 2.45×10−5 ∗ 1.08 1.11×10−9 ∗ 1.23 3.00×10−3 ∗ 0.66
9 5.27×10−1 0.01 2.61×10−2 0.53 2.54×10−2 ∗ 0.48
10 7.43×10−2 0.45 1.07×10−3 ∗ 0.75 5.86×10−1 0.20
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Chapter 5 – Medical Applications and Discussion

values for some consecutive scale factors from τ1 to τ2 as:

CI =
τ2∑
τ1

FuzEn3D. (5.1)

Figure 5.20 – Complexity index for COVID-19, IPF, and healthy subjects’ results.

5.8 Uterine Artery Embolization (UAE)

The clinical dataset processed in this work is composed of 60 volumetric magnetic
resonance images (MRI) collected from twenty women diagnosed with uterine fibroids
and qualified for uterine artery embolization (UAE). These images were recorded in the
Centre Hospitalier Régional Universitaire (CHRU) − Brest, France.

The purpose of this study is to evaluate the efficacy of (UAE) by applying our devel-
oped measure to MRI data recorded at three different time intervals, just before, ten days
after, and six months after UAE (D0, D10, and M6).

The average age of the patients was 43 ± 4 years which is in line with the standard
incidence age of uterine fibroids. Five (25%) of participants were symptomatic (bleeding,
pelvic pain, urinary signs, etc.). T2 sagittal without gadolinium MRI images taken before
UAE were compared to those taken 10 days and 6 months after the procedure. For all
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5.8. Uterine Artery Embolization (UAE)

patients, a significant reduction in mean uterine volume and in dominant fibroid volume
was noted after the embolization. All patients had an excellent recuperation and were able
to return to their normal activity. After the procedure, few patients experienced minimal
bleeding. Three (15%) of participants had persisting urinary signs after procedure. None
reported any new clinical issue during the follow-up period.

The first step in the data processing was to extract the fibroid region for each patient.
The smallest volume selected was 96×96×28 voxels and the largest sized 210×210×28
voxels. The fibroids selection was customized for each patient due to the fact that for
each case the fibroids existed at a different location and were of various sizes. For patients
with several fibroids, the largest was considered. After that, the selected fibroids volumes
were processed using MSF3D. The parameters were set as m= 2, r = 0.24, n = 2, and
τmax=10.

Then a complexity index, CI, based on [173] is calculated. This values is unique for
each ROI and is defined as the sum of the entropy values for some consecutive scale factors
from τ1 to τ2 as:

CI =
τ2∑
τ1

FuzEn3D. (5.2)

For our findings, we choose τ1=8 and τ2=10 based on the curves’ behavior. Between
the aforementioned scale factors the curves behave in a similar way, that is why we chose
those exact two values for the complexity index. The results are depicted in Figure 5.21.
Then for validating the statistical significance for differentiating the three acquisitions
(D0, D10, and M6) we calculated the p-values between each 2 groups using the Wilcoxon
rank sum test. The p-values are displayed in Table 5.11.

Table 5.11 – The p-values for the complexity index for τ1=8 and τ2=10 between pairs of
D0, D10, and M6.

D0-D10 D10-M6 D0-M6
p-value 4.2× 10−4 3.2× 10−4 1.9×10−4

The three p-values are less than 0.05. This indicates that MSF3D was able to distin-
guish the three MRI set of images of the three states D0, D10, and M6 for a complexity
index composed between the scale factors τ=8 and τ=10.
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Figure 5.21 – Mean and standard deviation for the complexity index for MSF3D from τ=8 till τ=10
for UAE patients at the three time intervals D0, D10, and M6. The parameters for MSF3D were set as
m= 2, r = 0.24, n = 2, and τmax=10.

5.9 Conclusion

In this chapter we presented our results on medical data. We employed our developed
measures to study bidimensional gray scale and colored dermoscopic images of PXE,
melanoma, and melanocytic nevi. We also performed a study on the colored dermoscopic
images for cutaneous microcirculation assessment. These studies illustrated promising re-
sults so we continued with applying our developed tridimensional measures on volumetric
medical data. We presented herein analysis for CT, HRCT, and MRI data for different
medical cases such as COPD, IPF, UAE, and COVID-19. Some of the results are prelimi-
nary but they illustrated to be very promising. Several continuation paths could be taken
based on those results.
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CONCLUSION AND PERSPECTIVES

Developing computer-based measures for applications in the medical field helps
improve prognostic, diagnostic, follow up, and predictive ability. It provides objective
assessment for the data and aids medical doctors in making decisions, identifying
abnormalities, and eventually saving lives.

As presented in this manuscript, we have developed entropy measures based on the
information theory concept [26, 27, 28, 29, 30, 31]. These methods were illustrated to
possess an ability to analyze gray scale images, colored images, and finally volumes. Several
validation tests were performed for each measure separately. In addition to the specially
designed tests for each measure, they are were validated upon:

— changes in the initial parameters: tolerance level, moving template size, and simi-
larity degree function

— ability to quantify the increasing irregularity degrees in the bidimensional and
tridimensional levels

— complexity evaluation for the analyzed gray scale images and volumes through the
multiscale approach

Our proposed texture analysis tools found successful applications on different kinds
of medical images.

Since the 2010’s, entropy measures have been extended from the 1D to the 2D case
to deal with images and are forming potent bidimensional irregularity measures. In our
work, we studied a new 2D entropy measure − the so-called bidimensional fuzzy en-
tropy (FuzEn2D) − that outperforms existing bidimensional entropy measures. We first
assessed its sensitivity to parameters, then analyzed its behavior upon rotation and trans-
lation, and finally showed its multiscale application in the biomedical field (dermoscopic
images). To validate the output of the newly introduced FuzEn2D and its multiscale ex-
tension, a set of synthetic images based on several concepts in image processing (including
power of noise and degree of randomness) and texture datasets were used. The results for
synthetic images illustrate that FuzEn2D has low sensitivity to the chosen parameters
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and it is rotation and translation invariant. Moreover, it outperforms the already exist-
ing bidimensional entropy measures. We then employed our developed measure. and its
multiscale version MSF2D, to PXE dermoscopic images.

PXE is a rare disease that causes several cutaneous, cardiovascular, and ophthalmic
complications. Thus, the earlier the diagnosis is, the better the monitoring and prevention
will be. PXE establishes a certain textural behavior on the skin that cannot be always
identified visually even through dermoscopy. This creates an essential need for developing
an objective technique that can identify the presence of this disease in its early stages (the
initial cutaneous symptoms).

We proposed an image processing framework to help in the detection of papules from
dermoscopic images. We employed our newly developed MSF2D on a PXE dermoscopic
images dataset. The primary MSF2D results seem to be promising in distinguishing a
group of healthy skin images from diseased ones with statistically significant values for
the first two scale factors with noticeable large effect sizes.

In the future, it would also be interesting to use MSF2D to track how the skin pathol-
ogy evolves upon potential treatment follow up, due to the fact that there is no definite
treatment for this disorder yet. This contribution would influence the research in this field
and could help in its escalation. The results of FuzEn2D andMSF2D for the synthetic and
real images illustrate the potential of the proposed method in analyzing various images
in different possible applications.

Moreover, using MSF2D we evaluated dermoscopic melanoma (malignant lesion) and
melanocytic nevi (benign lesion) images and the results are found to be interesting for a
potential diagnostic application.

Furthermore, after the successful finding on gray scale images using MSF2D we
employed the colored approach to reveal the information hidden within the color
components of our studied PXE images and other dermoscopic images.

Texture analysis is a subject of intensive focus in research due to its significant role
in the field of image analysis. It is a fast-evolving research topic. However, few are the
studies focusing on colored texture analysis. Therefore, based on the importance of the
information that could be revealed by colors in images, we introduced the new colored
bidimensional fuzzy entropy measure in its single-channel approach, FuzEnC2D, and
multi-channel approaches, FuzEnV2D and FuzEnM2D. We investigated their sensitivity

174



to parameters and ability to identify images with different irregularity degrees. Moreover,
we studied their behavior with colored Brodatz images in different color spaces. After ver-
ifying the results with test images, we employed those methods for analyzing dermoscopic
images of the deadliest type of skin cancer, melanoma, and the benign melanocytic nevi.
Furthermore, we investigated the PXE colored images for potential important findings
besides the gray scale analysis using MSF2D. In addition, a preliminary study on the
cutaneous microcirculation assessment for dermoscopy images was performed.

The bidimensional proposed algorithms showed very promising results for 2D medical
images. To expand our medical application we developed a tridimensional entropy measure
and its multiscale approach as well to study volumetric scans. FuzEn3D andMSF2D were
applied to CT scans, HRCT scans, and MRI scans belonging to patients of COVID-19,
IPF, and uterine fibroma, respectively. This application was unique and allowed us to
investigate volumetric data differently. The results are very encouraging and urged us to
continue in this scope for the coming research work as well.

Perspectives and future steps

Several interesting research work pathways could be taken based on the work per-
formed in this manuscript. The research world is leaning towards computer aided diagno-
sis tools in which our developed algorithms could play an important role. First we could
start by comparing all the results obtained by our developed entropy measures with those
given by other texture feature extraction algorithms (different from the ones found in the
manuscript). This would provide validation on a larger scale. Then, based on those results,
we could increase the number of processed images or volumetric scans and use also other
datasets for the discussed medical cases in order to guarantee reproducible results with
different datasets.

Nevertheless, remote diagnosis is also being considered as one of the important topics
nowadays. The COVID-19 outbreak highlighted again the need for remote diagnosis using
the available platforms especially for such highly infectious diseases. Enhancement of
computer based diagnosis methods, including our developed algorithms, could highly serve
this domain with ensuring the least possible contact between the medical doctors and
patients. In addition, long term monitoring for some diseases could be made much easier
with computer based methods over distance. Diagnosis could become more accessible and
feasible globaly.

As the discipline of non-linear statistics continues to prove its encouraging results,
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we would suggest introducing our methods into the machine learning applications as a
future step. Our developed measures have proven their consistency each applied sepa-
rately. However, in machine learning we could combine their outputs and investigate their
classification efficiency when employed all together. This path could be employed for bidi-
mensional gray scale and colored images measures, as well as, the volumetric measures.

Upgrading to end-to-end analysis might lead to even better results. As the obtained
medical images, especially for 3D scans, pass through some major pre-processing steps
adapted to the human visual perception, we would propose starting trial with end-to-end
analysis. In other words, introducing images directly from the machine to the algorithm
without passing by the image enhancement and pre-processing techniques might have
even better results.

Expanding the colored entropy measures study and investigating adapted application
and analysis for each of the different color space families. As the colored texture image
domain is very wide with utilization in various fields.

Although the used fuzzy function (exp(−(dm)2/r)) led to interesting results, other
fuzzy functions could be also investigated.

Last but not least, several multiscale approaches could emerge based on our work.
For the bidimensional entropy measures, a multiscale approach could be also introduced
for the colored textures. This should reveal some extra in depth information contained
in the coarse-grained versions of the colored texture images. Moreover, different coarse-
graining methods could be employed for the bidimensional and tridimensional entropy
measures. We only utilized two coarse-graining methods in this manuscript. Thus, it would
be interesting to investigate all the others for the gray scale, colored, and volumetric data.
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EXTRA ACTIVITIES AND PUBLICATIONS

Communications

Throughout my Ph.D. studies I have been always encouraged by my supervisor, Pr
Anne Humeau-Heurtier, to expand my knowledge, communicate to other scientific groups
our findings, and have fruitful discussions. This was made possible especially by:

— Oral presentation in an invited session entitled: “Identification of Cardiopulmonary
Function” at the IEEE 41st International Engineering in Medicine and Biology
Conference, (IEEE EMBC) 2019 conference, Berlin - Germany.

— Poster presentation at IEEE EMBC 2019, Berlin-Germany.
— Oral and poster presentations at the 5th International Conference on Advances in

Biomedical Engineering, ICABME 2019, Tripoli - Liban.
— Oral presentation at the 12th International Biomechanics Medical Diagnostics Lo-

comotion and Rehabilitation Conference BIOMDLORE 2018, Białystok - Poland.
— Virtually attending the IEEE 42st International Engineering in Medicine and Bi-

ology Conference, (IEEE EMBC) 2020 conference, Montreal - Canada.
— Virtually attending the “Journée Scientifique du CRMR PXE Angers Centre de

Simulation”, CHU d’Angers-France 2020.
— and finally by our collaborations with national and international universities and

hospitals: Harvard University (Boston, US), University of Coimbra (Portugal),
Aalborg University (Denmark), Lebanese University (Lebanon), University
Hospital of Angers − Department of Dermatology (Angers, France), University
Hospital of Rennes (Rennes, France), University Hospital of Brest (Brest, France),
University Hospital of Aalborg − Department of Respiratory Diseases (Aalborg,
Denmark).
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and Health Informatics, in press.
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a texture analysis based on three-dimensional entropy. (submitted).
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and Biomedical Applications. 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), July 2019, Berlin, Alle-
magne, Proceedings p. 4811-4814.

— Hilal, M., Gaudencio, A. S. F., Berthin, C., Vaz, P. G., Cardoso, J., Martin, L.,
Humeau-Heurtier, A., Bidimensional Colored Fuzzy Entropy Measure: a Cutaneous
Microcirculation Study. 5th International Conference on Advances in Biomedical
Engineering (ICABME), Liban, October 2019, IEEE, Proceedings p. 1-4.

— Hilal, M., Berthin, C., Martin, L., Humeau-Heurtier, A., Skin Alterations in Pseu-
doxanthoma Elasticum Patients Highlighted by the Bi-Dimensional Sample En-
tropy Algorithm. 12th International Biomechanics Medical Diagnostics Locomotion
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Proceedings p. 1-6.
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Bi-dimensional colored fuzzy entropy applied to melanoma dermoscopic images.
Accepted in Entropy 2020–The Scientific tool of the 21st century that was post-
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Teaching

I have been teaching at the IUT d’Angers and Polytech Angers as a Doctorante Con-
tractuelle à Activité Complémentaire d’Enseignement (DCACE) since 2018. The modules
that I taught are detailed in the table below according to the year, discipline, establish-
ment and the number of hours. My total teaching volume is 132 hours.

Workshops and other responsibilities

I had the chance to co-supervise an engineering student and a research masters student
during their internships at LARIS. It was such an important experience in my professional
career and taught me a lot.

I attended a total of 150 hours of classes and workshops among which there was some
pedagogic trainings, machine learning workshops, scientific communications classes, and
team management skills.

I also participated at the IUT international week in its 2018 and 2019 editions. It
was an enriching experience. I had the chance to be envolved and meet teachers and
researchers from different countries.

I participated in the Nuit des Chercheurs that took place for 2 consecutive years
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at Le Quai - Angers and attended the scientific communication workshop. These two
experiences allowed me to improve my communication skills and my ability to explain a
complex scientific idea to people of different backgrounds, ages, and education levels.

I attended with GdR ISIS (Information, Signal, Image and ViSion) the following work-
shops: 2nd meeting on medical image analysis and IA for COVID-19 (May 2020), Evalua-
tion de la qualité subjective et objective de données 3D (June 2020), Journée “Carrières
en Signal, Image & Vision” à destination des doctorants (March 2019).
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Chapter 6

ANNEX

6.1 Annex Chapter 1

Extra illustrations for the skin structure 6.1.

Figure 6.1 – PXE manifestation in the skin targets the elastic fibers in the mid and deep dermis.
Adapted from [113].

6.2 Annex Chapter 5

Gray scale dermoscopic images using SampEn2D

Before developing FuzEn2D we performed a brief study using SampEn2D (sec-
tion 1.4.2) on dermoscopic images of 7 patients (6 women and 1 man; 53.1 ± 14.6 years
old) [30]. We considered 7 dermoscopic images from a healthy region and 7 dermoscopic im-
ages from a region showing papules (neck region). The images are from the same database
as the one described in section 5.2.

Our objective was also suggesting an image processing framework to help the clinician
in distinguishing healthy skin from skin with papules, in dermoscopic data. Our frame-
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work was based on the recently-introduced bidimensional version of the sample entropy
measure, SampEn2D. This study was published as a conference paper [30].

In our work, the parameters chosen for the computation of the bidimensional sample
entropy were m= 2 and r = 0.15. The results obtained from SampEn2D are shown in
Figure 6.2. From the latter, we observe that the mean bidimensional entropy value of the

Figure 6.2 – Boxplots of the bidimensional sample entropy (SampEn2D) values obtained from der-
moscopy images recorded in PXE patients on the neck (zone with papules) and on a normal zone. The ∗
signifies the presence of statistically significant differences between the two groups

neck images is lower than the one of the normal zone. A statistical analysis is performed
to analyze if these differences could be considered as significant. For this purpose, the
Wilcoxon signed rank test was used. A p-value strictly less than 0.05 was considered
to define statistical significance. The results show that p = 0.03125. The bidimensional
sample entropy values are therefore statistically significantly lower for dermoscopic images
recorded in the neck than for dermoscopic images recorded in a normal zone.

Afterwards we developed this study using our newly developed FuzEn2D and extended
it to the multiscale approach for a larger population gray scale dermoscopic images, see
Section 5.2.1. Later on, we studied the dermoscopic images using the colored entropy
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measures, see Section 5.2.2.
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Titre : Mesures basées sur la théorie de l’information pour l’analyse d’images : Développement
de mesures d’entropie bidimensionnelles et tridimensionnelles pour l’évaluation de la texture
des images et applications au domaine biomédical.

Mot clés : Entropie, theorie de l’information, textures, irrégularité, complexité.

Résumé : Le développement de mesures in-
formatisées pour le domaine médical contri-
bue à améliorer la capacité de diagnostic, de
pronostic et de suivi. Cela fournit une évalua-
tion objective des données et aide les méde-
cins à identifier des anomalies et à prendre
des décisions. Dans ce manuscrit de thèse,
nous avons développé des mesures d’entropie
basées sur la théorie de l’information. Nous
montrons que ces méthodes ont la capacité
de quantifier l’irrégularité des images en ni-
veaux de gris, des images couleurs, et enfin
des volumes. Nos algorithmes ont trouvé des
applications prometteuses dans l’analyse de
texture pour différents cas cliniques : traite-

ment d’images de dermoscopie de mélanome,
de pseudoxanthome élastique et l’analyse de
la microcirculation cutanée. En outre, après
des résultats concluants sur des images en
niveaux de gris, nous avons utilisé l’approche
couleurs sur l’images de dermoscopie. Enfin,
pour étendre nos applications médicales, nous
avons utilisé nos mesures d’entropie tridimen-
sionnelles pour analyser des acquisitions volu-
métriques. Ces méthodes ont permis d’étudier
des tomographies, des tomographies haute
résolution et des volumes IRM dans des cas
cliniques de COVID-19, de fibrose pulmonaire
idiopathique et de fibrome utérin, respective-
ment.

Title: Information-theory based measures for image analysis: Development of two- and three-
dimensional entropy measures for image texture evaluation and their application to the biomed-
ical field.

Keywords: Entropy, information theory, textures, irregularity, complexity, medical images.

Abstract: Developing computer-based mea-
sures for applications in medical field helps
to improve prognostic, diagnostic, follow up,
and predictive abilities. It provides objective
assessment for the data and aids medical doc-
tors in making decisions, identifying abnormal-
ities, and eventually saving lives. In this the-
sis manuscript, we developed entropy mea-
sures based on the information theory con-
cept. These methods were illustrated to pos-
sess an ability to analyze irregularity of gray
scale images, colored images, and finally vol-
umes. Our proposed algorithms found promis-

ing applications in texture analysis for different
medical cases such as melanoma, pseudox-
anthoma elasticum, and cutaneous microcir-
culation analysis. Furthermore, after the suc-
cessful findings on gray scale images, we em-
ployed the colored approach for dermoscopic
images. Finally, to expand the medical applica-
tions, we used our tridimensional entropy mea-
sure to study volumetric scans. These meth-
ods were employed to study CT scans, HRCT
scans, and MRI scans for COVID-19, idio-
pathic pulmonary fibrosis, and uterine fibroma
cases, respectively.
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