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pour les nombreux échanges que nous avons eu aussi bien au niveau professionnel qu’au
niveau personnel.
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épreuve.

i
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Introduction

Au cours de ces dernières décennies, les conduits magnétiques ont suscité un vif intérêt
dans le champ de la spintronique. Ces structures permettent l’étude d’une variété de
phénomènes tels que la formation de textures magnétiques, la dynamique d’aimantation
sous un courant appliqué et la propagation d’ondes de spin. En raison de l’interaction
entre l’aimantation et le spin des électrons, ces conduits sont de bons candidats pour
le développement d’applications telles que les mémoires magnétiques [1], la logique de
spin [2] et plus récemment, les dispositifs neuromorphiques [3].

Un des phénomènes les plus étudiés en spintronique, à la fois expérimentalement et
théoriquement, est le mouvement de paroi de domaines. Le mouvement de paroi initiale-
ment considéré sous un champ magnétique appliqué [4, 5] a été étendu depuis le début
des années 2000 aux cas sous courant, basés sur les effets du transfert de spin [6], et
plus récemment aux cas soumis aux couples spin-orbite [7] et d’autres effets comme des
gradients de chaleur [8], de la tension mécanique [9], des ondes de spins [10] etc. Il existe
des caractéristiques communes du mouvement de paroi sous l’influence soit d’un champ
soit d’un courant qui sont: un état de propagation stationnaire pour de faibles intensités,
ainsi qu’un régime précessionnel au-dessus d’un seuil, avec un processus transitoire appelé
instabilité de Walker. Ce régime induit des oscillations d’aimantations indésirables ou des
changements chaotiques des degrés de liberté internes des parois de domaines.

Jusqu’à récemment, les nanorubans plats avec des parois de domaines sont les types
de conduits les plus étudiés, en raison de techniques de fabrication bien établies comme
la lithographie. Des études extensives ont été faites sur le mouvement de paroi de do-
maines à l’intérieur de nanorubands magnétiquement doux sous un champ appliqué ou
sous courant [11, 12]. Cependant, des contraintes technologiques liées à l’intégration de
telles nanostructures 2D dans un dispositif réel suscitent un intérêt pour des nanostruc-
tures naturellement 3D [13], comme par exemple des nanofils cylindriques ou des tubes.
Ces géométries sont maintenant disponibles pour des études expérimentales grâce aux
avancées des techniques de fabrication [14].

L’extension des nanostructures 2D vers une troisième dimension donne lieu à des
textures de spins non conventionnelles, dans lesquelles de nouveaux effets physiques liés à
la géométrie, la topologie et la chiralité sont présents. Par exemple, on trouve deux types
de paroi de domaines qui sont stables ou métastables selon le diamètre du fil [15]. Sous
un seuil d’environ sept fois la longueur d’échange, la configuration la plus stable est une
paroi transverse ou transverse-vortex. Cette paroi est caractérisée par une aimantation
transverse par rapport à l’axe du fil, ce qui en fait un analogue de la paroi transverse dans
un nanoruban plat, spécifiquement dans des petits diamètres. Pour des diamètres un peu
plus larges, cette paroi commence à acquérir une vorticité par rapport à sa composante
transverse. Au-dessus du diamètre seuil précédemment mentionné, la configuration la plus
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stable est la paroi point de Bloch [15], aussi appelée paroi vortex [16]. Cette paroi est
caractérisée par une vorticité de l’aimantation autour de l’axe du fil. Cette configuration
donne lieu à un point de Bloch [17, 18], où l’aimantation est évanescente. C’est la seule
singularité tri-dimensionnelle connue dans le micromagnétisme et c’est aussi un défaut
topologique du point de vue de la topologie. En raison de sa vorticité, la paroi point de
Bloch est caractérisée par une circulation qui peut influencer son comportement sous un
stimulus.

Dans le but de développer des applications, plusieurs caractéristiques clés de la dy-
namique de paroi de domaines dans les fils devraient être soigneusement quantifiées. Le
contrôle des propriétés des systèmes, telles que la stabilité de la paroi, sa vitesse sous un
stimulus, et l’existence de l’instabilité de Walker, est crucial pour le fonctionnement opti-
mal de dispositifs basés sur le mouvement de parois de domaines. Dans un dispositif réel,
la position des parois de domaines doit être contrôlée précisément. Cela peut être réalisé
en élaborant, par exemple, des centres de piégeage bien définis, que ce soit en changeant
la composition du fil [19] ou en introduisant des inhomogénéités géométriques durant le
processus de fabrication [20–25]. Dans le dernier cas, les modulations de diamètre de
fils, synthétisées par électrodéposition, peuvent être utilisées pour contrôler la position
d’une paroi de domaines en réduisant localement l’énergie de la paroi dans des régions de
plus petites sections. Ainsi, les modulations de diamètres jouent le rôle de barrières de
potentiel ce qui implique qu’une certaine force seuil doit être appliquée pour franchir ces
barrières.

Pour les parois transverse-vortex et point de Bloch dans un fil cylindrique, des com-
portements très différents sous un champ ou un courant appliqué sont attendus. La
dynamique de la paroi transverse-vortex est similaire à celle de la paroi transverse dans
un ruban plat au-dessus de l’instabilité de Walker [11, 26, 27], avec une mobilité réduite
à cause de la précession autour de l’axe du fil. En revanche, il est attendu que la paroi
point de Bloch s’affranchit de l’instabilité de Walker, ce qui permet d’atteindre une vitesse
de paroi de domaine très haute [28]. L’instabilité de Walker n’apparait pas dans le cas
d’une paroi point de Bloch, puisque cela requerrait une énergie d’origine dipolaire trop
importante.

Plusieurs études analytiques et micromagnétiques, existant dans la littérature, traitent
des aspects variés du comportement de paroi de domaines dans un fil cylindrique. Ainsi,
de nombreuses études ont considéré des modulations de diamètre et de composition pour
le piégeage de paroi de domaines, numériquement [29–32] et analytiquement [33]. Cepen-
dant, aucun modèle théorique quantifiant clairement la force directrice de seuil comme une
fonction des paramètres géométriques n’a été rapporté jusqu’à récemment. D’autres sim-
ulations micromagnétiques décrivent le comportement de la paroi point de Bloch dans des
fils cylindriques parfaits sous l’action d’un champ [26, 34] ou d’un courant [35] appliqué.
Certaines d’entre elles ont relevé l’existence d’un seuil au-delà duquel la circulation de la
paroi point de Bloch se renverse, rendant ces structures instables sous certaines conditions
particulières. Cependant, récemment, nous avons montré que la situation expérimentale
est drastiquement différente [28]. Les parois point de Bloch restent stables, avec une
vitesse supérieure à 600m/s, inscrivant un record expérimental pour le cas conduit pure-
ment par transfert de spin. Dans cette étude, la circulation résultante était étroitement
liée au champ Œrsted généré par le courant appliqué. Ainsi, la raison de la robustesse de
la paroi point de Bloch dans les expériences est attribuée au champ Œrsted azimutal, un
ingrédient complétement négligé dans les simulations précédentes.

Etant donné le manque de descriptions théoriques de phénomènes critiques dans les
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nanofils cylindriques, dans ma thèse, j’ai fait l’effort de combiner des simulations mi-
cromagnétiques avec des descriptions analytiques, pour fournir une vue d’ensemble des
paramètres clés, utiles à la prédiction et la compréhension des expériences.

Ce manuscrit est divisé en 4 chapitres incluant la description du contexte théorique, la
description de notre logiciel numérique et deux chapitres résumant les résultats originaux
obtenus durant ma thèse.

Le chapitre 1 introduit les notions de base de la théorie micromagnétique et l’équation
Landau-Lifshitz-Gilbert (LLG) qui décrit l’évolution en temps de l’aimantation avec des
termes supplémentaires correspondant aux effets induits par le courant : les effets du
transfert de spin et le champ Œrsted. Le chapitre décrit aussi les deux types de paroi
de domaines (paroi transverse-vortex et paroi point de Bloch) qui peuvent exister dans
des nanofils magnétiquement doux et cylindrique. Enfin, il résume quelques résultats
théoriques récents sur le mouvement de paroi de domaines sous l’influence d’un champ ou
d’un courant appliqué connus de la littérature.

Le chapitre 2 introduit notre logiciel micromagnétique basé sur les éléments finis,
feeLLGood (Finite ElEment Landau-Lifshitz-Gilbert object oriented development), et les
mathématiques sous-jacentes. Le chapitre discute aussi des limites du micromagnétisme
numérique.

Le chapitre 3 est dédié à l’étude analytique et numérique de la dynamique sous champ
magnétique et la dynamique sous courant d’une paroi de domaines transverse dans un
nanofil à section circulaire avec une modulation de diamètre. Il commence avec une
description plus en profondeur du contexte du piégeage de paroi de domaines, suivi de
dérivations analytiques et d’estimations numériques du champ critique et du courant cri-
tique nécessaire pour que la paroi de domaine franchisse la modulation.

Le chapitre 4 est dédié à l’étude de la dynamique sous courant d’une paroi point de
Bloch dans des nanofils à section circulaire et des tubes épais. Pour motiver cette étude,
un résumé bref du travail expérimental effectué dans notre laboratoire est présenté dans
ce chapitre. Il s’en suit une analyse de l’instabilité d’une paroi transverse-vortex sous un
courant appliqué et sa transformation en une paroi point de Bloch. Enfin, le chapitre
quantifie l’impact du champ Œrsted sur la stabilité de la circulation de la paroi point de
Bloch et sur la dynamique de la paroi sous un courant appliqué.
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Chapitre 1

Ce chapitre décrit les éléments théoriques que j’ai utilisés pour effectuer l’étude des sujets
précédemment introduits ainsi que quelques résultats généraux sur la dynamique de parois
de domaines dans des nanofils.

La théorie micromagnétique repose sur l’hypothèse que l’aimantation, la densité de mo-
ment magnétique d’un matériau magnétique, peut être décrite par une fonction continue
l’espace que l’on appelle champ d’aimantation M(r, t). Il est assumé que la configura-
tion magnétique doit varier lentement à l’échelle atomique et que la norme d’aimantation
est supposée égale à l’aimantation spontanée qui dépend uniquement de la température
‖M‖ = Ms(T ). Pour trouver les configurations d’aimantation à l’équilibre, le micro-
magnétisme est basé sur un principe variationnel où une fonctionnelle d’énergie libre est
minimisée. Cette fonctionnelle est composée de plusieurs termes dont le nombre se limit-
era, dans le cadre de cette thèse, à ceux jouant un rôle prédominant dans les matériaux
magnétiquement doux. Une énergie d’échange qui décrit une tendance des moments
magnétiques à s’aligner localement. Elle est minimale lorsque l’aimantation locale est
uniforme. Une énergie démagnétisante, qui provient de l’interaction entre l’aimantation
locale et le champ dipolaire associé au champ d’aimantation. Cette énergie est minimale
lorsque les moments magnétiques forment une fermeture du flux magnétique. Une énergie
Zeeman, qui provient de l’interaction entre l’aimantation locale et un champ magnétique
appliqué (tel qu’un champ magnétique extérieur ou bien le champ Œrsted généré par un
courant appliqué). Cette énergie est minimale lorsque l’aimantation locale est alignée
avec le champ.

Afin de décrire la dynamique de textures magnétiques telles que des parois, on utilise
une équation qui décrit l’évolution de l’aimantation, appelée équation de Landau-Lifshitz-
Gilbert. Cette équation est composée de deux termes. Un premier terme décrivant un
mouvement de précession de l’aimantation locale autour d’un champ effectif dérivé de
la fonctionnelle d’énergie introduite précédemment. Un deuxième terme décrivant un
mouvement d’amortissement de l’aimantation locale vers le champ effectif. Cette équation
a été généralisée au cas d’un courant appliqué en considérant l’effet de transfert de spin,
par l’ajout de deux termes appelé terme adiabatique et non-adiabatique. Cette équation
a été utilisée afin de prédire les textures magnétiques stables, ainsi que leur comportement
sous l’influence d’un champ magnétique et/ou d’un courant électrique. Dans mon cas, on
s’intéresse la dynamique de parois de domaines dans des nanofils magnétiquement doux
à section circulaire.

Il a été prédit théoriquement et observé expérimentalement qu’il existe deux types de
parois dans ces fils dont la stabilité et la métastabilité dépend du diamètre du fil. Sous
un seuil d’environ sept fois la longueur d’échange, la configuration la plus stable est une
paroi transverse ou transverse-vortex. Cette paroi est caractérisée par une aimantation
transverse par rapport à l’axe du fil, ce qui en fait un analogue de la paroi transverse dans
un nanoruban plat, spécifiquement dans des petits diamètres. Pour des diamètres un peu
plus larges, cette paroi commence à acquérir une vorticité par rapport à sa composante
transverse. Au-dessus du diamètre seuil précédemment mentionné, la configuration la plus
stable est la paroi point de Bloch, aussi appelée paroi vortex. Cette paroi est caractérisée
par une vorticité de l’aimantation autour de l’axe du fil. Cette configuration donne lieu
à un point de Bloch, où l’aimantation est évanescente. C’est la seule singularité tri-
dimensionnelle connue dans le micromagnétisme et c’est aussi un défaut topologique du
point de vue de la topologie. En raison de sa vorticité, la paroi point de Bloch est
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caractérisée par une circulation qui peut influencer son comportement sous un stimulus.
Sous l’influence d’un champ magnétique, la paroi-transverse vortex est dans un régime

précessionnel dès que le champ est appliqué. Il a été prédit qu’elle se propage à une
vitesse v ∝ α∆Happ où α est l’amortissement ∆ la largeur de paroi et Happ le champ
appliqué. Pour la paroi point de Bloch, son comportement sous champ va dépendre de sa
circulation. Si la circulation initiale est favorisée par le champ appliqué, alors sa vitesse
est proportionnelle à 1/α. Si la circulation initiale est défavorisée, la paroi passera par
une transformation qui résultera en une paroi point de Bloch avec la circulation favorisée.

Sous l’influence d’un courant, la paroi transverse-vortex est dans un régime précessionnel
dès que le courant est appliqué, dans le cas où β 6= α. Il a été montré à travers des sim-
ulations micromagnétiques que la vitesse de propagation a un comportement linéaire par
rapport au courant appliqué (i.e. v ∝ u). Pour une paroi point de Bloch, la circulation de
la paroi influence le comportement sous courant de la paroi. Dans le cas où la circulation
est favorisée par le courant, le mouvement de la paroi est stationnaire. Dans ce régime la
vitesse v ∝ β

α
u. Pour la circulation opposée, la paroi point de Bloch va d’abord ajuster

sa configuration, résultant en un mouvement de recul. Après transformation, la paroi
est maintenant caractérisée par la circulation favorisée, ce qui induit le même mouve-
ment stationnaire prédit précédemment. Comme cela sera montré dans le chapitre 4, ce
phénomène de changement de circulation peut se produire dans des fils plus gros (> 7 `ex)
à cause de la présence du champ Œrsted.
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Chapitre 2

Ce chapitre introduit le logiciel FeLLGood que j’ai utilisé pour obtenir mes résultats.
L’idée est de résoudre l’équation Landau-Lifshitz-Gilbert afin de trouver des configura-
tions magnétiques à l’équilibre et de décrire leur dynamique sous l’influence d’un champ
magnétique ou d’un courant appliqué. Cependant, pour la plupart des systèmes con-
sidérés, il n’y a pas de solution analytique au problème posé, ce qui nécessite l’usage
de méthodes numériques pour le résoudre. Dans ce chapitre, j’aborde trois points: la
discrétisation du problème en espace et en temps, le calcul du champ démagnétisant et la
problématique liée au traitement numérique d’un point de Bloch.

D’abord, pour utiliser les méthodes numériques, le problème doit être discrétisé en
espace et en temps. Pour la discrétisation en espace, il existe deux méthodes très utilisées,
appelées méthodes aux différences finies et méthodes aux éléments finis respectivement.
Ici je ne mentionne que la méthode des éléments finis. La méthode des éléments finis est
utilisée pour résoudre des problèmes impliquant des équations différentielles. Elle est basée
sur une reformulation sous forme faible du problème. C’est à dire qu’au lieu de résoudre
directement l’équation Landau-Lifshitz-Gilbert, cette équation va être projetée sur une
base de fonctions test, puis intégrée sur tout le domaine. Les fonctions test sont choisies de
manière à préserver les propriétés du problème. Dans notre cas, la norme de l’aimantation
doit être préservée. C’est pour cette raison que le mathématicien Alouges a proposé
de choisir l’espace des fonctions test comme étant le plan tangent à l’aimantation [36].
Pour résoudre le problème, il va donc falloir évaluer des intégrales sur tout le domaine.
Pour cela, la méthode repose sur une discrétisation spatiale en sous-domaines appelés
éléments finis. On distingue les éléments de volumes des éléments de frontières. Ces
éléments sont généralement des tétraèdres qui permettent de bien approximer des formes
curvilinéaires tel que des fils ou des tubes ainsi que des formes plus complexes telles
que des modulations géométriques. La solution du problème est approximée par une
fonction résultant de l’interpolation de fonctions de base (dans notre cas des polynomes
de Lagrange dit P1) définies sur chaque élément. Il en résulte que l’intégrale sur le domaine
peut être décomposée en une somme d’intégrales élémentaires sur chaque élément. On
considère ici des éléments dits affines, que l’on peut transformer en un élément de référence.
En transformant chaque élément (ainsi que les fonctions de bases qui leur sont associées) en
cette élément de référence, nous pouvons évaluer chaque intégrale élémentaire en utilisant
la quadrature de Gauss-Legendre. Il en résulte un système d’équations linéaires (un pour
chaque élément) qui est transformé sous forme matricielle. Les matrices élémentaires sont
ensuite assemblées de telle sorte qu’elles forment une matrice creuse. Il en résulte donc
un système d’équations linéaires représentant le système entier qui est résolu en utilisant
la méthode itérative du gradient bi-conjugué.

Pour la discrétisation en temps, l’idée est de diviser le temps de simulation en pas de
temps k. Ce pas de temps peut être fixe ou adaptatif. L’aimantation est ensuite calculée à
chaque pas de temps. On note mn et mn+1 le champ d’aimantation évalué aux instants nk
et (n+1)k respectivement. Le calcul de mn+1 peut être fait en utilisant un développement
de Taylor tronqué au terme d’ordre p au temps nk ce qui donne mn+1 = mn + O(kp).
On dit alors que ce schéma temporel est précis jusqu’à l’ordre p avec une erreur locale
O(kp+1). C’est pourquoi afin de calculer mn+1, nous devons estimer la dérivée tem-
porelle qui au premier ordre correspond à ∂tm

n qui est obtenue en résolvant le problème
de l’équation Landau-Lifshitz-Gilbert. Il est souvent intéressant d’essayer d’augmenter
l’ordre du schéma temporel afin de pouvoir utiliser un pas de temps plus grand en ayant
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la même précision, réduisant le temps de simulation. Cependant, l’augmentation de l’ordre
du schéma peut être difficile, car le schéma peut devenir instable. L’augmentation vers
l’ordre deux du schéma temporel de FeeLLGood n’est pas décrite en détail dans cette
thèse mais est exposée dans l’article [37]. Plus de détails sur le logiciel sont exposés sur
le site [38].

Ensuite, il y a le calcul du champ démagnétisant. La méthode de calcul du champ
démagnétisant implémentée dans le logiciel est la méthode multipolaire rapide. L’idée
est de créer une structure en arbre où l’on va diviser successivement le domaine de calcul
en sous-domaines appelés boites (quatre pour le cas 2D et huit pour le cas 3D) jusqu’à
un niveau appelé niveau feuille. Le nombre de niveaux est déterminé par le nombre de
noeuds du maillage (ici les sommets des tétraèdres). L’idée est alors de calculer pour
chaque niveau, le potentiel magnétostatique généré au centre de chaque boite dite cible
par des boites dites sources, bien-séparées (un minimum d’une boite d’écart avec la boite
cible), en utilisant l’approximation du champ lointain. On exprime alors le potentiel
comme une expansion multipolaire. L’idée est alors de récupérer le calcul du potentiel
pour chaque niveau en utilisant des translations d’expansions inter-niveaux afin de réduire
la complexité de l’algorithme.

Enfin, il y a la problématique liée au traitement numérique d’un point de Bloch. Le
micromagnetisme est basée sur la définition du champ continu d’aimantation dont la
norme est supposée constante. Il n’est donc pas possible mathématiquement de décrire
une singularité telle que le point de Bloch où l’aimantation est évanescente. Dans la
méthodes des éléments finis, la contrainte sur la norme de l’aimantation est imposée aux
noeuds du maillages. Dans chaque éléments de volumes, l’aimantation est interpolée
linéairement, avec une norme pouvant être grandement réduite. Cela permet l’existence
d’un point de Bloch à l’intérieur d’un élément. Ainsi sous l’influence d’un champ ou d’un
courant, le point de Bloch va pouvoir se déplacer d’éléments en éléments moyennant un
coup en énergie qui se manifeste par une force de friction artificielle qui dépend de la taille
du maillage. Cela peut provoquer le piégeage du point de Bloch dans le maillage. Pour
cette raison, j’ai considéré deux cas: celui d’un fil et celui d’un tube épais. Strictement
parlant, il n’y a plus de point de Bloch au sein du tube épais pour une paroi point de
Bloch, c’est pour cela que nous le référons à paroi pseudo point de Bloch. Ce type de paroi
est appelé paroi vortex dans la littérature. La différence principale entre cette paroi et la
paroi point de Bloch est l’absence du point de Bloch dans le cas du tube. J’ai comparé
leur structure et leur dynamique. Il en résulte que leur structure à la surface est très
similaire mais à l’intérieur du volume, elles diffèrent.
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Chapitre 3

Ce chapitre concerne l’étude du piégeage d’une paroi transverse dans un nanofil à section
circulaire présentant une modulation de diamètre. Cela s’inscrit dans le contexte du
contrôle de la position de parois de domaines dans des nanofils pour les applications
mémoires. En effet, il est possible de modifier le paysage énergétique du fil afin de créer
des régions agissant comme des puits de potentiel dans lesquels les parois vont se stabiliser,
appelées sites de piégeages. Cela éviterait que lorsque les parois sont déplacées elles ne
s’annihilent entre elles, ce qui conduirait à des pertes de données.

Il existe essentiellement deux manières de créer ces sites de piégeage. La première
consiste à créer des modulations géométriques comme une variation locale de diamètre
ou, plus exotique, une variation comme l’alternance de fils et de tubes. La seconde consiste
à créer une alternance de matériaux. Cette thèse se restreint à l’étude d’une modulation
de diamètre d’un fil.

Il existe dans la littérature des études micromagnétiques de modulations de diamètres.
Cependant, les processus de nucléation aux bords du fil et de passage de la paroi à travers
la modulation ne sont pas étudiés séparément, décrivant succinctement le dernier. Dans
cette étude, je présente une dérivation de modèles analytiques pour décrire comment
une paroi de domaines pourrait franchir la modulation de diamètre dans un nanofil à
section circulaire, sous l’influence d’un champ magnétique ou d’un courant polarisé en
spin. Les lois d’échelles obtenues dans ce chapitre pourraient guider les expérimentateurs
dans l’élaboration de modulations ayant les propriétés désirées.

J’ai examiné deux cas: une modulation abrupte et une modulation douce. Pour
chaque cas, j’ai calculé analytiquement la valeur seuil du champ magnétique appliqué
et du courant appliqué comme une fonction des paramètres géométriques. La pertinence
de ces résultats analytiques a été confirmée par des simulations micromagnétiques, qui
révèlent un accord quantitatif pour chaque modulation géométrique. J’ai obtenu des ex-
pressions de courants seuils qui sont proportionnelles aux champs seuils, à la largeur de
paroi ∆, au facteur R2(z)/R2

1 provenant de la conservation du courant, et à l’aimantation
spontanée Ms. Indépendamment du type de modulation, le courant critique augmente
bien plus rapidement en fonction de la différence des diamètres que le champ critique.
Cela est lié à la décroissance de la densité locale de courant, ainsi que l’augmentation de
la taille de la paroi. De plus, si nous comparons les modulations abruptes et douces, les
seuils critiques dans le premier cas augmente plus rapidement que dans le deuxième cas.
En d’autres termes, le piégeage semble plus efficace avec une modulation abrupte.
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Chapitre 4

Nous avons rapporté récemment le rôle clé joué par le champ Œrsted dans des nanofils
cylindriques, magnétiquement doux, dans la stabilisation des parois point de Bloch at-
teignant une vitesse > 600 m · s−1 sous l’influence du transfert de spin [28].

Utilisant des simulations micromagnétiques, j’ai considéré une paroi transverse-vortex
sous l’influence du champ Œrsted et montré qu’il se transforme en une paroi point de
Bloch avec la même circulation que le champ. Cette transformation est caractérisée par
le mouvement du vortex et de l’anti-vortex qui constitues la paroi, de l’un vers l’autre. Il
s’en suit alors leur annihilation qui injecte un point de Bloch (préservant la polarité de
la paroi) à l’intérieur du volume. Le courant seuil qui déclenche cette transformation est
d’un ordre de grandeur inférieur à celui des courants utilisés dans l’expérience [28]. Cela
montre que le champ Œrsted stabilise la paroi point de Bloch.

J’ai considéré une paroi point de Bloch sous l’influence du champ Œrsted pour chaque
circulation. Pour chaque cas, l’aimantation dans les domaines tend à s’aligner avec le
champ. Lorsque la circulation de la paroi point de Bloch est la même que le champ, la
largeur de la paroi augmente jusqu’à atteindre un maximum. Lorsque la circulation est
opposée à celle du champ, la paroi se contracte jusqu’à ce qu’elle atteigne une largeur
minimale. Si le courant est supérieur à un seuil, la paroi se transforme en une paroi point
de Bloch avec une circulation opposée. Nous avons montré que le courant seuil est du
même ordre que celui de l’expérience [28], ce qui montre que le champ Œrsted joue le rôle
principale dans le phénomène de renversement de circulation observé. Ce seuil semble
suivre une dépendance en 1/R3 et devrait s’appliquer pour les matériaux doux.

Concernant, le mécanisme de renversement de circulation, il ne s’agit pas d’un ren-
versement cohérent du champ d’aimantation, mais il implique la création et l’annihilation
de paires vortex-anti-vortex et de points de Bloch. Malgré cette complexité, le type
des objets qui apparaissent durant la transformation doit respecter une certaine règle
topologique résultant de la continuité du champ d’aimantation. Ce qui veut dire, que le
changement du nombre d’enroulement associé à la surface correspond au changement du
nombre d’enroulement associé au volume.

Par ailleurs, le renversement de circulation se produit également pour la paroi pseudo
point de Bloch pour un courant seuil légèrement plus haut que celui de la paroi point
de Bloch. Le mécanisme de renversement est plus complexe à cause à la présence de la
surface interne du tube qui permet la création et l’annihilation de pairs vortex-anti-vortex
et de points de Bloch.

Finalement, concernant la vitesse de la paroi de domaine, elle est largement déterminée
pas l’effet de transfert de spin pour le cas d’une paroi point de Bloch avec la même
circulation que celle du champ Œrsted.
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Conclusion et perspectives

Pour conclure, ce manuscrit présente une étude théorique sur la dynamique sous courant
de parois de domaines, et leurs phénomènes critiques associés, dans deux types de nanofils
à section circulaire. J’ai combiné des calculs analytiques et des simulations micromagnétiques
réalisées avec notre propre logiciel FeeLLgood. Le chapitre 3 est focalisé sur le comporte-
ment d’une paroi transverse dans la région de plus petit diamètre d’un nanofil présentant
une modulation locale de diamètre. Une telle modulation agit comme une barrière de
potentiel, ce qui implique qu’une force motrice seuil doit être appliquée pour franchir
la barrière. Nous avons calculé analytiquement la valeur seuil à la fois pour un champ
magnétique appliqué et pour un courant appliqué, comme une fonction des paramètres
géométriques. Le modèle analytique développé est une simple loi d’échelle, qui pourrait
être utile dans la résolution de problèmes expérimentaux et de nanofabrications.

Alors que le chapitre 3 traite une seule modulation (une partie d’une protrusion
géométrique) pour établir la base du phénomène de piégeage, des investigations plus
approfondies devraient être focalisées sur une protrusion et plusieurs protrusions, ce qui
serait pertinent pour les applications. Dans un travail récent, concernant juste un champ
appliqué avec une protrusion [39], nous avons montré que la longueur de la protrusion est
un paramètre clé supplémentaire qui pourrait influencer les conditions de piégeage. Cette
étude devrait être poursuivie et généralisée pour le cas d’un courant appliqué.

Alors que le contrôle de la position d’une paroi de domaines peut être fait en utilisant
des modulations géométriques étudiées dans ce manuscrit, d’autres alternatives et des
contraintes de nanofabrication sont discutées dans la littérature. Par exemple, plusieurs
études sont dédiées à des fils segmentés avec une alternance de matériaux ferromagnétiques
différents ou des géométries cylindriques comme une alternance de segments de tube
et de fil. Chaque situation offre une liste de questions ouvertes devant être étudiées
théoriquement. Une généralisation plus approfondie impliquerait des fils avec plusieurs
protrusions et parois de domaines, et un réseau de ces nanofils. Il a été montré pour les
nanorubans que les parois de domaines interagissent entre elles quand elles sont soit dans
des fils adjacents soit dans le même fil. Aussi, le champ Œrsted généré par les fils adjacents
devrait être considéré. La considération de ces aspects est nécessaire pour atteindre de
hautes densités de stockage dans les applications mémoires.

Un autre phénomène devant être considéré serait le comportement des parois point
de Bloch en présence de modulations de diamètre et de paramètres matériaux. Ces
textures magnétiques, naturellement plus stable dans les fils à larges diamètres, sont
particulièrement intéressante pour la réduction du champ de fuite généré, un effet non
désirable dans les réseaux denses de fils. De plus, la paroi point de Bloch démontre
une dynamique rapide, cruciale pour des enregistrements à haute vitesse et inaccessible
dans des systèmes avec des paroi transverses tel que les fils à section circulaire de petits
diamètres. Cependant, le diamètre minimum requis pour stabiliser la paroi point de Bloch
(> 7 `ex), implique qu’un compromis doit être trouvé entre la densité de stockage et la
vitesse d’opération de l’application mémoire. Le chapitre 4 présente une étude théorique
de l’impact du champ d’Œrsted et du transfert de spin sur une paroi point de Bloch dans
un fil cylindrique. Cette étude a partiellement été motivée par notre travail récent [28],
dans lequel nous rapportons le rôle clé joué par le champ d’Œrsted dans la stabilisation
des parois point de Bloch, qui sont capable t’atteindre des vitesses jusqu’à > 600 m · s−1

sous un courant appliqué.

Durant cette thèse, j’ai utilisé des simulations micromagnétiques, de la modélisation
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analytique et des arguments de topologie pour comprendre en détail et quantitativement
les phénomènes sous-jacents. En particulier le renversement de circulation de négative à
positive d’une paroi point de Bloch par rapport au courant appliqué. Le résultat principal
est la dépendance en 1/R3 du courant seuil de renversement, avec R le rayon du fil, avec
l’effet du champ Œrsted qui prédomine pour un rayon au-dessus de 30 nm. Inversement,
la vitesse des parois reste largement déterminée par le transfert de spin seul, dans un
régime stationnaire (sous courant de Walker). Grace à la renormalisation des longueurs
et des densités de courant, le résultat peut être appliqué pour des fils fait d’un matériau
magnétiquement doux.

Nous sommes conscients que la dynamique des points de Bloch dans les simulations
micromagnétique doit être traitée avec prudence. Une manière de redéfinir le traite-
ment numérique de la dynamique de point de Bloch pourrait être l’usage d’un modèle
multi-échelle où les approches atomistiques et continues sont fusionnées. La comparaison
entre chaque méthode numérique pourrait aider à quantifier les limites de la modélisation
purement micromagnétique de la dynamique sous courant d’une paroi point de Bloch.

Un autre problème important est lié à l’imagerie expérimentales des parois point
de Bloch (et autres textures magnétiques). Par exemple, plusieurs méthodes pour la
caractérisation nanoscopique dans l’espace direct (i.e. l’image) sont en développement
à SPINTEC (X-ray Magnetic Dichroism, Magn. Force Imaging, Electron Holography
etc) et utilisant des équipements internationaux (Time-resolved X-ray imaging, Vecto-
rial Field tomography with electrons). Jusqu’à maintenant, chaque développements (les
outils théoriques sophistiqués et les instruments expérimentaux couteux) ne profitent pas
efficacement de chacun d’eux et de comparaisons précises. Dans ce contexte, des efforts
devraient être fait pour convertir les sorties usuelles de FeLLGood en sorties compatibles
avec celles des expériences d’imageries en utilisant un module extérieur à notre logiciel.

En plus des fils fait d’un matériau, le progrès continu de la nanofabrication donne
lieu à une nouvelle variété de géométries cœur-coquille multicouches. Dans le cas d’un
cœur fait de métal lourd avec un couplage spin-orbite fort, l’injection directe d’électrons
polarisés en spin à l’intérieur de la coquille, ferromagnétique, due à l’effet Hall de spin
permettrait la possibilité de combiner l’efficacité du couple spin-orbite avec les hautes
vitesses de paroi de domaines à l’intérieur du même objet. Ce type de système requerra
l’extension du modèle physique utilisé dans la version actuelle de notre logiciel.
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Introduction

Context

Over the last decades, a great interest has arisen for magnetic conduits in the field of
spintronics. These structures allow the study of a variety of phenomena such as magnetic
textures formation, magnetization dynamics under applied current and spin-waves prop-
agation. Due to the interaction between magnetization and electron spins, these conduits
are good candidates for the development of applications such as magnetic memory [1],
spin logic [2] and more recently, neuromorphic devices [3].

One of the most investigated phenomenon in spintronics, both experimentally and
theoretically, is the domain wall motion. The initially considered domain wall motion
under an applied magnetic field [4, 5] has been extended since the early 2000’s to the
current-driven cases, based on the spin-transfer effects [6], and more recently to spin-
orbit-torques-driven cases [7] and other effects such as heat gradients [8], strain [9], spin
waves [10] etc. Common features of motion under both field and current are the steady-
state propagation under low stimulus as well as a precessional regime above a threshold,
with a crossover process called the Walker breakdown. This regime leads to undesirable
magnetization oscillations or to chaotic changes of the internal degrees of freedom of
domain walls.

Until recently, flat nanostrips with domain walls have been the most investigated type
of conduits, due to well-established fabrication techniques such as lithography. Exten-
sive studies were conducted on the motion of the domain walls inside magnetically soft
patterned nanowires under applied field or current [11, 12]. However, technological con-
straints related to the integration of such 2D nanostructures into a real device raise an
interest for natural 3D nanostructures [13], for example cylindrical nanowires and tubes.
These geometries are now available for experimental studies due to the advances in fab-
rication techniques [14].

The extension of 2D nanostructures into three dimensions gives rise to unconventional
spin textures, in which novel physical effects related to geometry, topology and chirality
are involved. For instance, two types of domain walls are found to be stable or metastable
depending on the wire diameter [15]. Below a threshold of about seven times the exchange
length, the most stable configuration is found to be a transverse or transverse-vortex
wall. This wall is characterized by a transverse magnetization component with respect to
the wire axis, making it analog to the transverse wall in a flat strip, specifically at low
diameters. For slightly larger diameters, this wall starts to acquire a curling with respect
to its transverse component. Above the previously mentioned diameter threshold, the
most stable configuration is the Bloch-point wall (BPW) [15], also called vortex wall [16].
This wall is characterized by a curling of magnetization around the wire axis. This
configuration leads to the presence of a Bloch-point [17, 18], where the magnetization
vanishes. It is the only three-dimensional singularity known in micromagnetism and is
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also a topological defect from the point of view of topology. Due to its curling, the BPW
is characterized by a circulation which may dictates its behavior under a stimulus.

In order to develop applications, several key features of the domain wall dynamics
in the wires should be carefully quantified. The control of system properties such as
the domain wall stability, its speed under the external stimulus, and the existence of
the Walker breakdown, is crucial for the optimal functioning of the domain-wall-based
device. In a real device, the domain wall position must also be precisely controlled.
This can be achieved for example by designing well-defined pinning centers, whether by
changing the composition of the wire [19] or by introducing geometrical inhomogeneities
during the fabrication process [20–25]. In the latter case, diameter modulations of the
nanowire synthesized by electrodeposition can be used to control the domain wall position
by locally reducing its magnetostatic and exchange energies in the smaller cross-sectional
parts. Thus, diameter modulations play the role of a potential barrier which implies that
some threshold driving force must be applied to overcome the barrier.

Transverse-vortex walls and Bloch-point walls in a cylindrical wire are expected to
have very different behaviors under an applied field or an applied current. The dynamics
of the transverse-vortex wall is similar to that of a transverse wall in a flat strip above the
Walker breakdown [11, 26, 27], with a low mobility due to its precession around the wire
axis. In contrast, the Bloch-point wall is expected to prevent the usual Walker breakdown,
and thus enable a very high domain wall speed [28]. The Walker breakdown does not occur
in the case of the Bloch-point wall, as it would require too large a dipolar-origin energy.

Several analytical and micromagnetic studies exist in the literature which treat var-
ious aspects of the domain wall behavior in a cylindrical wires. Thus, several studies
considered diameter and composition modulations for the domain wall pinning numer-
ically [29–32] and analytically [33]. However, no theoretical model quantifying clearly
the threshold driving force as a function of geometric parameters has yet been reported
until recently. Other micromagnetic simulations described the Bloch-point wall behavior
in perfect cylindrical nanowires under an applied field [26, 34] or current [35]. Some of
them have pointed out the existence of the threshold above which the Bloch-point wall
circulation switch making these structures unstable under some particular conditions.
However, recently, we showed that the experimental situation is drastically different [28].
Bloch-point walls remain stable and with speed exceeding 600m/s, setting an experimen-
tal record for a purely spin-transfer-driven case. In this study, the resulting circulation
was closely related to the Oersted field generated by the applied current. Thus, the reason
for the robustness of the BPW in the experiments was attributed to the azimuthal Œrsted
field, an ingredient completely disregarded in previous simulations.

Given the lack of theoretical description of critical phenomena in cylindrical nanowires,
in my PhD thesis I made an effort to combine micromagnetic simulations with analytical
descriptions, to provide an overview of key parameters, useful in predicting and under-
standing experiments.
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Manuscript outline

This manuscript is divided into 4 chapters including the description of the theoretical
background, the description of our numerical software and two chapters summarizing
original results obtained during my thesis.

Chapter 1 introduces the basic notions of the micromagnetic theory and the so-called
Landau-Lifshitz-Gilbert (LLG) equation describing the magnetization evolution in time
with additional terms corresponding to the current-induced effects: spin-transfer effects
and the Œrsted field. The chapter also describes the two types of the domain wall
(transverse-vortex wall and Bloch-point wall) that may exist inside magnetically soft
cylindrical nanowires. Finally, it summarizes some recent theoretical results on the do-
main wall motion under either an applied magnetic field or an applied current knowing
from the literature.

Chapter 2 introduces our micromagnetic finite element based software feeLLGood (Fi-
nite ElEment Landau-Lifshitz-Gilbert object oriented development) and the underlying
mathematics. The chapter also discusses the limits of numerical micromagnetism.

Chapter 3 is dedicated to the analytical and micromagnetical study of the magnetic
field-driven dynamics and current-driven dynamics of a transverse domain wall in a cir-
cular cross section nanowire with a single modulation in diameter. It starts with a more
in-depth description of the context of domain wall pinning and follows with the analytic
derivations and numerical estimations of both the critical field and the critical current
necessary for the domain wall to pass the modulation.

Chapter 4 is dedicated to the study of the current-driven dynamics of a Bloch-point
wall in circular cross section nanowires and thick-walled nanotubes. As a motivation of
this study, a brief summary of the experimental work done in our laboratory presented
in this chapter. It is followed by an analysis of the instability of the transverse-vortex
wall under the applied current and its transformation into a Bloch-point wall. Finally,
chapter quantifies the impact of the Œrsted field on the BPW circulation stability and
BPW dynamics under applied current.
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Chapter 1

Micromagnetism and domain walls

1.1 Elements of micromagnetism

Ferromagnetic materials exhibit a wide variety of phenomena. One of them is the exis-
tence of magnetic domains separated by boundaries, also called domain walls. At first,
these domain walls were considered as objects with no thickness in the framework of
the domain theory. Later, Brown showed the limits of this theory, which is unable to
describe the internal structure of the magnetic domain walls [40]. He initiated the micro-
magnetic theory which gives us a framework to study these magnetic structures at the
sub-micrometer scale. Because domain walls are characterized by a width which generally
extends to tens of nanometers, the atomic scale is not relevant for the study of the motion
of domain walls. Hence, this theory relies on the continuum approximation which discards
the atomic structure. The magnetic configuration of a ferromagnet is therefore described
by a continuous vector field M(r, t) whose the norm corresponds to the local average of
magnetic moments, the magnetization. This magnetization field is constrained by certain
assumptions: The magnetic configuration should be varying slowly at the atomic scale and
the norm is supposed to be equal to the spontaneous magnetization which depends only
on temperature, thus ‖M‖ = Ms(T ). For convenience, we define the unit magnetization
field as m(r, t) = M(r, t)/Ms.

1.1.1 Micromagnetic energies

In order to find the equilibrium configurations of magnetization, micromagnetism is based
on a variational principle where a free-energy functional is minimized. This energy func-
tional is composed of several terms. In this section, we limit ourselves to the definition of
the energy densities that play a predominant role in magnetically soft materials.

Exchange energy

In a ferromagnet, neighboring spins tend to align along the same direction. This is due to
Coulomb’s repulsion of two neighboring electrons, usually on neighboring atoms, acting
in conjunction with Pauli’s principle, which forbids the two electrons to enter the same
quantum state. The exchange energy is derived from the Heisenberg exchange model [41]
using classical vectors in the limits of infinitesimal rotations of spins. The resulting energy
density is

εex = A
∑
i

(∇mi)
2 , (1.1)
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Chapter 1. Micromagnetism and domain walls

where i = x, y, z. This energy density is minimized when the magnetization is locally
aligned along one direction.

Demagnetizing energy

Magnetization generates a magnetic field over the whole space. This magnetic field can
be separated into two contributions. A field defined inside the material, usually called
demagnetizing field Hd, and a field defined outside the material, usually called stray
field. The former got its name from the fact that this field tend to be opposed to the
magnetization field. From classical electrodynamics, we define the demagnetizing energy
as follows:

εd = −µ0Ms

2
Hd ·m. (1.2)

The factor 1/2 is here to avoid counting interactions twice. This energy is considered to
be the hardest to calculate since the demagnetizing field is non local. The expression for
the field is derived from the following Maxwell equations:

∇ ·B = 0, (1.3)

∇×H = 0, (1.4)

where B is the magnetic induction which is related to the magnetic field H by:

B = µ0(H + M). (1.5)

We can solve equation (1.5) and (1.4) with:

H = −∇ϕm, (1.6)

where ϕm is a scalar potential, we call magnetostatic potential, which is the solution to
the equation:

∆ϕm = ∇ ·M. (1.7)

One common way to write this potential is to use the concept of fictious magnetic charge
densities where ρm = −∇ ·M is the volume charge density and σm = M · n is the surface
charge density (where n is the outward-pointing normal to the surface of the system) [42].
This gives the following expression:

ϕm(r) =

∫
ρm(r′)

4π|r− r′|
d3r′ +

∮
σm(r′)

4π|r− r′|
dS ′. (1.8)

In simple cases, this energy density can be minimized using the pole avoidance principle.
It states that magnetization will tends to avoid the formation of magnetostatic charges.
This is usually achieved by the formation of a flux closure distribution.

Zeeman energy

When a magnetic moment interacts with an external magnetic field Hext, it tends to align
with it [42]. The resulting energy density often called Zeeman energy density is:

εz = −µ0Ms Hext ·m. (1.9)

This energy density is minimized when the magnetization is aligned with the magnetic
field.
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1.2. Magnetization dynamics

Œrsted energy

In the present thesis, we consider an electric current passing through the wire. It generates
a magnetic field HŒ also called Œrsted field. Its expression can be derived from the
integral form of the Maxwell-Ampere equation∮

∂Σ

HŒ · d` =

∫∫
Σ

Jf · dS, (1.10)

where Jf is the free current passing through the surface Σ and ∂Σ is the contour of this
surface. In a system with cylindrical symmetry (a tube or a wire for example), we define
the cylindrical coordinates (ρ, ϕ, z) with respect to its vector base {êρ, êϕ, êz}. Since the
system has a rotational invariance, the Œrsted field is oriented along the azimuth which
corresponds to the êϕ direction. As a result:

HŒ = HŒêϕ. (1.11)

Considering a uniform and steady current, the Œrsted field expression for a tube of
internal radius Ri and external radius R is:

HŒ(ρ) =
Jρ

2

(
1− R2

i

ρ2

)
, (1.12)

for Ri < ρ < R. From this field we can also define an Œrsted energy density similar to a
Zeeman energy density

εŒ = −µ0Ms HŒ ·m. (1.13)

Thus, this energy density is minimized when the magnetization is aligned with the Œrsted
field.

1.1.2 Equilibrium conditions

In order to find the equilibrium configurations, one way is to first define an energy func-
tional for the system resulting from the previous energies. In our case we consider mag-
netically soft materials such as permalloy for 1D structure, thus any source of anisotropy
is considered neglectable compare to the dipolar energy. As a result the energy functional
reads as:

Etot[m] =

∫ (
A
∑
i

(∇mi)
2 − µ0MsHŒ ·m−

µ0Ms

2
Hd ·m

)
dV. (1.14)

The equilibrium state corresponds to the configuration of magnetization field that
minimizes locally this energy functional:

δE[m] = 0 (1.15)

δ2E[m] > 0. (1.16)

1.2 Magnetization dynamics

In this section we introduce the equation that drives magnetization under the influence
of either a magnetic field or a spin polarized current.
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Chapter 1. Micromagnetism and domain walls

Figure 1.1: Evolution of local magnetization described by the Landau-Lifshitz-Gilbert equa-
tion. (a) The precession around the effective field, (b) the damped motion toward the effective
field and (c) the motion including both precession and damping. Adapted from [43].

1.2.1 Magnetic field-driven dynamics

The equation that governs the magnetization dynamics is the Landau-Lifshitz-Gilbert
equation [44]:

∂m

∂t
= −γ0m×Heff + αm× ∂m

∂t
, (1.17)

where γ0 = µ0|γ| with γ, the gyromagnetic ratio, and α, the Gilbert damping parameter.
The first term referred as ”precessional term” corresponds to the precession of mag-

netization around an effective field (Fig. 1.1 (a)). This effective field is derived from the
total energy density ε by the relation

Heff = − 1

µ0Ms

δε

δm
. (1.18)

The second term introduced phenomenologically takes into account the energy dissi-
pation of the system that manifests as a damped motion of the magnetization toward the
effective field (Fig. 1.1 (b)). It is often referred as ”damping term”. The combination of
these two terms gives the kind of motion represented Fig. 1.1 (c).

The LLG equation has an interesting property with respect to energy. The time
derivative of the total energy reads as:

Ėtot =

∫
δε

δm
· ∂m

∂t
dV, (1.19)

which corresponds to

Ėtot = −αµ0Ms

γ0

∫ (
∂m

∂t

)2

dV. (1.20)

This expression shows that it always reduces the total energy over time. This is the
reason why the LLG equation can be used to find equilibrium states by starting with a
reasonable guess. This is what has been done in this thesis. It also shows that if there is
no dissipation (α = 0), the energy will be conserved :

Ėtot = 0. (1.21)
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1.3. Domain walls in magnetically soft nanowires with a circular cross section

+ -

Figure 1.2: Schematic of the domain wall polarity for (left) a head-to-head wall and (right) a
tail-to-tail wall with their respective volume magnetostatic charge.

1.2.2 Current-driven dynamics

From the early works of Slonczewski [45], it has been predicted that an electric current can
induce a torque on magnetization through an exchange s-d interaction. As a result, this
spin transfer effect can cause the motion of domain walls. This effect has been introduced
in the LLG equation through the addition of two terms [46, 47]:

∂m

∂t
= −γ0m×Heff + αm× ∂m

∂t
− (u ·∇)m + βm× (u ·∇)m, (1.22)

where

u = −gµBP

2eMs

j (1.23)

is the velocity field, with g the gyromagnetic factor, µB the Bohr magneton, P the polar-
ization ratio of the spins of flowing conduction electrons, e the elementary charge and j
the electric current density. The first additional term describes the adiabatic process of
the non-equilibrium conduction electrons. It is often called ”adiabatic” term. The second
additional term is related to the spatial mistracking of spins between conduction electrons
and local magnetization. It is often called ”non-adiabatic” term.

1.3 Domain walls in magnetically soft nanowires with

a circular cross section

In this thesis, we consider only magnetically soft materials. This implies that the mag-
netic structures are largely determined by magnetostatics. Hence, for conduit such that
cylindrical nanowires, the magnetization field tends to be aligned along the wire axis in
order to minimize the demagnetizing energy. It results that domain walls carry a mag-
netostatic charge which is defined by the domains. If the magnetization field in both
domains points towards (resp. outwards from) the center of the wall, we call this domain
wall a head-to-head (resp. tail-to-tail) domain wall. We call this property the wall polar-
ity (Fig. 1.2). This magnetostatic charge is discussed in more details in the appendix A.1
using a 1D model.

So far we did not discuss on the inner structure of such domain walls. In what follows,
we describe the two types of domain walls that were found to be stable or metastable
depending on the wire diameter [15].

1.3.1 Transverse(-vortex) wall

For diameters inferior to about 7 `ex (where `ex =
√

2A
µ0M2

s
is the exchange-dipolar length),

the most stable type of wall is called a transverse wall. The transverse wall is characterized
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(a) (b)
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Figure 1.3: (a) Sections of a transverse wall. (b) Section of a transverse-vortex wall (top).
Unrolled map of surface magnetization (bottom). The color codes the radial component mρ.
The dashed lines correspond to mϕ = 0 and the solid lines correspond to mz = 0. V and A
highlight surface vortex and antivortex, respectively. The images (a) and (b) (top) are adapted
from [15].

by a magnetization which is mostly transverse to the wire axis (Fig. 1.3(a)). However,
when the diameter is larger (up to about 7 `ex), the magnetization acquires a curling fea-
ture at its center (Fig. 1.3 (b)(top)) which forms a vortex and an anti-vortex, diametrically
opposed (Fig. 1.3 (b)(bottom)). These topological objects preserve the transverse aspect
of the wall by having opposite polarities . This wall has been called transverse-vortex
wall in [15] but also asymmetric transverse wall in the work [16].

From a topological aspect, we can continuously deform the transverse-vortex wall to
obtain a transverse wall and conversely. However, we can not deform this wall and obtain
a Bloch-point wall as it will be discussed more in details in section 4.2.

1.3.2 Bloch-point wall

When the diameter is above 7`ex, another wall has been found to be more stable than
the transverse wall. As opposed to the transverse(-vortex) wall, it is characterized by a
curling of the magnetization field around the wire axis, which led to the ”vortex wall”
denomination by some authors [48, 49]. This can be explained by the fact that this
configuration creates a flux closure, which reduces the magnetostatic energy.

It has been demonstrated by Feldtkeller [17] that because of the curling, the mag-
netization field at the center of the wall should vanish. This is incompatible with the
constraint on the norm of the magnetization field that must be constant everywhere. As
a result, this point where magnetization is null is a singularity (the only one in three
dimensions) which is called a Bloch-point. This is why it has been called a Bloch-point
Wall (BPW) [11]. Strictly speaking, the micromagnetism is not suitable to describe such
singularity. This matter has been discussed in the case of the reversal of a vortex core in
a permalloy disc [50]. It has been shown that despite this, micromagnetics can still be
used to gain insight into physics.

The presence of a Bloch-point induces a small radial component to the magnetization
field which depends on the wall polarity. If we consider a head-to-head (resp. tail-to-
tail) wall, the radial component will point outwards (resp. inwards) (see Fig. 1.4 (a) and
Appendix A.1).

Due to the curling of magnetization, the BPW is characterized by a circulation (Fig. 1.4
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1.3. Domain walls in magnetically soft nanowires with a circular cross section

(a) (b)

(c)

Figure 1.4: (a) Schematics of the radial tilt of a head-to-head (left) and a tail-to-tail domain
wall (right). (b) Schematics of a Bloch-point wall with: a negative circulation (top) and a
positive circulation (bottom) with respect to the wire axis z. (c) Longitudinal section of a
nanowire of 80 nm diameter of with a BPW. Adapted from [15].

(b)). In this thesis, it will be defined as positive or negative with respect to either, the wire
axis, or the current direction. Despite their differences, all these configurations (head-to-
head or tail-to-tail with positive or negative circulation) are degenerated in energy for the
static equilibrium state. We will show in the next section and the chapter 4 that when
we consider a stimulus, such as a field or a current, it is no longer the case.

1.3.3 Domain walls motion

The domain wall motion has been extensively studied in nanostrips both theoretically
and experimentally. In cylindrical nanowires wires, the motion of domain walls has been
theorytically investigated by using analytical 1D models and micromagnetic simulations.
In this section, we briefly show the main results on domain wall motion under field and
applied current.

Motion under an applied magnetic field

The field-driven domain wall motion of transverse wall was first studied in nanowires with
square section [11]. For the transverse wall, contrary to the case of nanostrips, the wall
directly moves in a corck-screw regime with a linear propagation speed with respect to the
applied field. Its behavior is really well described by the 1D model in which are defined
the collective coordinates q, the wall position and φ the tilt angle that the transverse wall
has with respect to a reference plan (e.g. (x-z) plan). This model gives an expression for
the propagation speed
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0

(a) (b)

a0 a

Figure 1.5: (a) Transverse-wall speed in a square nanowire (edge size 5 nm, mesh size 5 nm).
(b) Simulation of a Bloch-point wall in a permalloy nanowire with square cross section of 40 nm.
The wall average speed for two different circulation. Black dot for positive circulation and white
dot for negative circulation. The field Ha is applied along the wire axis. Adapted from [11].

q̇ =
γ0

1 + α2
α∆Ha, (1.24)

where ∆ is the wall width parameter, and the angular speed

φ̇ =
γ0

1 + α2
Ha. (1.25)

The BPW dynamics has been studied in square section nanowires [11] and later in
circular section [26]. We have seen in the previous section, that a BPW is characterized
by a radial tilt whose sign depends on the wall polarity. Under an applied field, this tilt
will be modified depending on the orientation of the applied field. Hence, in the presence
of a BPW with a certain circulation and an applied field along the nanowire , we expect
a different behavior of the magnetization field, depending on the sign of the field. The
resulting speed is presented Fig. 1.5 (b). It results that the motion of the Bloch-point
under field is dependent on the initial circulation. At low field, the speed of the BPW
with the favored circulation shows a linear behavior with respect to the applied field and
is proportional to 1/α. However, as we increase the field, the speed of the BPW with
the opposite circulation reaches a plateau. It is followed by an abrupt change toward
the speed of the BPW with the favored circulation. Thus, there exist a threshold field
for which the BPW with the unfavored circulation will change its circulation. At higher
fields, the speed saturates, which correspond to a magnonic regime [26].

Motion under an applied spin-polarized current

Micromagnetic simulations have been performed using Eq. (1.22) for flat strips (see
review [12]). In flat strips, different regimes exist. A stationary regime, where the domain
propagates without distorsions and the speed is proportional to the current. Beyond a
certain threshold, the wall enters a transient regime called the Walker breakdown where
the domain wall structure no longer holds resulting in the propagation of vortex anti
vortex leading to a drastic reduction of the wall speed. In cylindrical nanowires, it has
been shown that such breakdown does not exist [35, 51].

For the transverse wall, it is analogous to say that it is already in a precessional regime
as soon as the current is applied in the case β 6= α [51]. It is shown throught micromagnetic
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1.3. Domain walls in magnetically soft nanowires with a circular cross section

(b)(a)

Figure 1.6: (a) Simulated TW velocity as a function of the current density j for four different
values of β in the case of a 10 nm round Py wire (damping parameter α = 0.02). The solid line
comes from (1.26) (b) Simulation of a vortex wall (a BPW) in a cylindrical permalloy nanowire of
8d2 diameter where d2 is the next nearest-neighbor distance. The damping parameter α = 0.02.
Adapted from [27, 35].

simulations that the propagation speed (Fig. 1.6 (a)) have a linear behavior with respect
to the applied current density, which is well predicted by the 1D model through the
expression

q̇ = −1 + αβ

1 + α2
u, (1.26)

The speed of precession is given by

φ̇ =
β − α
1 + α2

u

∆
. (1.27)

We will briefly talk about this precession in the section 3.4.1 in a different context (pinned
state).

For a Bloch-point wall, similar to the field-driven case, its dynamics is circulation
dependent. It as been shown in [35], for the favored circulation, the wall’s motion is steady
(Fig. 1.6 (b)). It is analogous to say that the Walker current tends towards infinity. In
this regime, the speed of the domain wall is given by

v =
β

α
u. (1.28)

For the other circulation, the BPW will react by adjusting first its configuration,
resulting in a slightly backward motion [35]. After its transformation, the BPW has the
favored circulation, which result in the steady propagation previously described. As it
will be shown in the chapter 4 of this thesis, this phenomenon of circulation switching
will also occur in wider nanowires (> 7 `ex) due to the presence of the Œrsted field.
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Chapter 2

The Finite elements based software
feeLLGood

Considering a micromagnetic system, one is generally interested into the problems of
finding the equilibrium states (magnetic textures) and describing their dynamics under a
magnetic field or/and an electric current for example. One way to find the equilibrium
states is to solve an energy minimization problem i.e. involving an energy functional like
the one previously introduced in section 1.1.2. An other way is to integrate the LLG
equation. In our case, the latter is more suitable because we study the domain walls
dynamics which is obtained by solving this LLG equation. Moreover, it allows us to take
into account additional terms that can’t be derived from an energy. However, for most
of systems, these problems lack of analytical solutions. Hence, we need to reformulate
(approximate) these problems in order to use numerical methods to solve them. These
methods that rely on computers can only solve a discrete form of the problems. In our
case, the LLG equation implies a discretization both in time and space.

The idea of time discretization (leading to a time scheme) is first to divide the sim-
ulation time into time steps k. This time step can either be fixed or adaptive. Second,
the magnetization field is computed at a later time (usually one step further) from an
initial configuration. We note mn and mn+1 the magnetization field evaluated at instants
t = nk and t = (n+1)k respectively. Computation of mn+1 can be done using a truncated
Taylor expansion up to order p at time nk which gives mn+1 = mn +O(kp). This scheme
is said to be accurate up to the p-order with a local error O(kp+1). Hence, to calculate
mn+1 we needs to estimate its time derivatives which up to order one (∂tm

n) is obtained
by solving the LLG problem. Usually, it is interesting to increase the order of a scheme,
since it allows the use of a larger time step for the same accuracy, hence reducing the
simulation time. The increase of order however can be challenging since it can destabilize
the scheme. This problem will be tackled in the section 2.2 of the chapter.

Existing numerical methods involve different approach of space discretization. Two of
the most used methods are the finite differences and the finite elements methods (FEM).
The finite differences method is based on a direct approximation of the differential oper-
ators using Taylor series expansions. The domain is usually approximated by a regular
mesh. The advantage of this method is that it is easily implemented, can be really fast
and accurate. However, for a system with a curvilinear geometry, the lattice symmetries
will introduce an artificial anisotropy inside the system.

The finite element method is used to solve problems involving partial differential equa-
tions in their weak form. It is based on a discretization of the domain into finite sub-
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Chapter 2. The Finite elements based software feeLLGood

domains called finite elements which do not overlap. We make the distinction between
volume elements and boundary elements. These elements are usually polyhedron (tetra-
hedrons in our case) that allows to approximate nicely any complex geometries. This why
this method has been chosen since we are interested into curvilinear geometries such has
wires or tubes. The solution is approximated by a function resulting from the interpola-
tion of basis functions (in our case Lagrange polynomials P1) defined on each element.
As a result, the integral over the domain can be decomposed into a sum of integrals over
each element (elementary integrals). It is important to note that each element is affine-
equivalent to a reference element. By transforming each element (and their respective
basis functions) to this reference element, one can evaluate the previous elementary inte-
grals using the Gauss-Legendre quadrature(or method) on the reference element integral.
It results a linear system of equation (one per element) that is conveniently transformed
into its matrix form. Then each elementary matrices are assembled in such way that it
forms a sparse matrix. The result is a linear system of equation representing the whole
system that will be solved using the iterative method of bi-conjugate gradient.

The power of FEM is what motivated the creation of the software called FeeLLGood
(Finite element Landau-Lifshitz-Gilbert object oriented development). In this thesis all
the results have been obtained with it, so we will describe how the problem has been
implemented. Complementary informations can be found on the website [38].

2.1 Notion of weak formulation of the LLG equation

The weak form of the micromagnetic problem involving the LLG equation is obtained by
projecting this equation on a basis of a test function space. The term weak comes form
the fact that this form weakened the condition of differentiability of the solution. The
unknown of the LLG equation is ∂tm. A solution of LLG should belong to a function space
that respects the boundary conditions and the magnetization properties. For instance
since |m| = 1, ∂tm must be orthogonal to m. Hence, v = ∂tm must belong to the space

Km =

{
v =

∑
i

viφi : ∀i,vi ·mi = 0

}
(2.1)

where φi are basis function P 1 linear in each element, mi are the values of magnetization
at each nodes. This space (tangent plane) has been proposed by Alouges [36].

In the same work, Alouges suggested to transform the LLG equation (1.17) to a form
similar to a diffusion equation. He proposed to do the cross-product between m and the
LLG equation. We obtain the following strong form:

α
∂m

∂t
+ m× ∂m

∂t
= γ0 (Heff − (m ·Heff)m) (2.2)

Then this equation is projected on test functions that belong to Km. Indeed, in the
Galerkin method, both the test functions space and the solution space are the same. In
order to keep the formalism simple γ0 = 1. We get the following weak form

α

∫
Ω

v ·Ψdx +

∫
Ω

(m× v) ·Ψdx =

∫
Ω

Heff(m) ·Ψdx−
∫

Ω

(m ·Heff)m ·Ψdx (2.3)

where the last term is null when both m and Ψ are evaluated at the same time.
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2.2. Temporal scheme

The effective field can be decomposed in two terms:

Heff = Hex + Hr (2.4)

where Hex = 2A
µ0Ms

∆m and Hr contain other contributions (demagnetizing field, external

field etc...). For simplicity, the factor in front of the laplacian is considered to be equal to
1 and Hr is discarded. Replacing the effective field by the exchange field in (2.3) we get

α

∫
Ω

v ·Ψdx +

∫
Ω

(m× v) ·Ψdx =

∫
Ω

∆m ·Ψdx (2.5)

Integrating by part the exchange term allows us to consider both the domain and its
boundary ∫

Ω

∆m ·Ψdx = −
∫

Ω

∇m · ∇Ψdx +

∫
∂Ω

(∇m · n) ·Ψ (2.6)

where n is the normal to the surface. This allows us to include directly the boundary
conditions, called Brown conditions:

∂m

∂n
= 0 (2.7)

leading to the weak form

α

∫
Ω

v ·Ψdx +

∫
Ω

(m× v) ·Ψdx = −
∫

Ω

∇m · ∇Ψdx (2.8)

2.2 Temporal scheme

The problem needs to be discretized in time. Considering a simulation duration T, we
divide it into time intervals k. In the following, we note mn, the magnetization configu-
ration and v the magnetization evolution at the instant nk. Hence, the weak form (2.8)
at instant nk writes:

α

∫
Ω

v ·Ψdx +

∫
Ω

(mn × v) ·Ψdx = −
∫

Ω

∇mn · ∇Ψdx (2.9)

This is an explicit scheme where magnetization mn+1 at time (n+1)k is obtained by
a Taylor expansion up to the first order :

mn,1 = mn + kv (2.10)

Due to the constraint m ·∂tm = 0, whatever the scheme which is used, the resulting mn,1

must be normalized:

mn+1 :=
mn + kv

|mn + kv|
=

mn + kv√
1 + k2v2

(2.11)

The stability of a scheme is determined by the evolution of the energy. Previously, it
has been seen that the energy should always decrease. Hence, a stable scheme means that
it preserve this dissipation process. This explicit scheme is stable under the condition
that k/h2 is bounded, where h is greatest mesh element size (see Fig. 2.1). There is a
compromise to be found between the time step and the greatest mesh element size. As it
has been said previously, h cannot be higher than `ex and a too small time step can lead
to a high increase of the calculation time.
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hk

ρk

Figure 2.1: 2D triangle element k and the two characteristic lengths: hk the element size and
ρk the diameter of an inscribded circle centered at the intersection of the three internal angle
bissectors.

2.2.1 Order 1

This is the reason why a θ-scheme has been implemented. This scheme is usually used
with the heat diffusion problem. The idea is to replace mn in the exchange term by an
intermediate configuration mn,θ = mn+ θkv where θ ∈ [0, 1] where v is evaluated at time
(n+θ)k. Adding this term is equivalent to add a sort of filter that will attenuate the noise
propagation thus stabilize the scheme. Although the tangent plane and v are no longer
evaluated at the same time, the last nonlinear term of the expression (2.3) is deliberately
discarded. The resulting weak form writes

α

∫
Ω

v ·Ψdx +

∫
Ω

(mn × v) ·Ψdx + θk

∫
Ω

∇v · ∇Ψdx = −
∫

Ω

∇mn · ∇Ψdx (2.12)

Note that we could have considered the replacement of mn in the last term of (2.3).
However, it produces a non linear term v2 which can’t be properly treated. This problem
will be approached in the section 2.2.2.

The stability of this scheme is determined by calculating the energy difference between
two time steps. The trick is that (2.12) is valid for any Ψ so we can chose Ψ = v since
they belong to the same space. Thus, we get the dissipated power:

α

∫
Ω

v · vdx + θk

∫
Ω

∇v · ∇vdx = −
∫

Ω

∇mn · ∇vdx (2.13)

We define the exchange energy difference between instant (n+1)k and nk after nor-
malization by :

∆E =

∫
Ω

(∇mn+1)2 − (∇mn)2 (2.14)

It has been demonstrated by Bartels [52] that for element with angles inferior to π/2, the
normalization reduces the exchange energy:∫

Ω

(∇mn+1)2 ≤
∫

Ω

(∇mn,1)2 (2.15)

As a result the difference in exchange energy between instant (n+1)k and nk after nor-
malization is smaller:

∆E ≤
∫

Ω

(∇mn,1)2 − (∇mn)2 (2.16)
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In order to see how the θ parameter affects the stability of the scheme, we need to expand
the first term of the right hand side∫

Ω

(∇mn,1)2 =

∫
Ω

(∇mn)2 + 2k∇mn · ∇v + k2(∇v)2 (2.17)

Replacing the second member of the right hand side using (2.13) and using (2.16) we
finally get

∆E ≤ −2kα

∫
Ω

v · vdx− (2θ − 1)k2

∫
Ω

∇v · ∇vdx (2.18)

As a result, we see that the stability is determined by θ.

� For θ > 1/2, the energy decreases and the scheme is unconditionally stable.

� For θ < 1/2, we are in the case where the scheme is stable under a condition.

� For θ = 1/2, the scheme seems to be the most stable and has been chosen.

We know that the renormalization procedure prevents us from perfectly reaching order
2 but its effect remains minor in the limit of small time steps compared to the nonlin-
ear term of the expression (2.3) which has been removed in the formulation (2.12). Its
reintroduction will be the subject of the next paragraph.

2.2.2 Toward order 2

Increasing to the order 2 would allow the use of even bigger time steps for the same ac-
curacy. Therefore, the previous scheme has been modified in the work [37] and will be
briefly introduced here. So far, we have just modified the magnetization for the exchange
term by replacing mn with mn,θ. We need to consider directly mn,θ starting from (2.3):

α

∫
Ω

v·Ψdx+

∫
Ω

(mn,θ×v)·Ψdx =

∫
Ω

Heff(mn,θ)·Ψdx−
∫

Ω

(mn,θ ·Heff)mn,θ ·Ψdx. (2.19)

To simplify again, we consider only the exchange field. Discarding the terms in v2, the
last term gives one term similar to the damping α term:

∫
Ω

(α− θk(∇mn)2)v ·Ψdx +

∫
Ω

(mn×v) ·Ψdx + θk

∫
Ω

∇v ·∇Ψdx = −
∫

Ω

∇mn ·∇Ψdx.

(2.20)
The damping term (α− θk(∇mn)2) leads to two problematic situations. First, it can be
negative which means the positive definiteness and unicity of the solution is threatened.
Second, if this damping is too big, this might destabilise the scheme. Hence, this term
needs to be bounded. By posing X = (∇mn)2 and C = 2αr/k where r is set to 0.1, we
get

ϕ(m) =

{
α

1+ k
2α
min(−X,C)

X < 0

α +min(X,C) X ≥ 0
(2.21)
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However, this is not sufficient to transform this scheme into an unconditionably stable
one. Thus, the second highest order term is modified by adding a function ρ(k):∫

Ω

ϕM(mn)v ·Ψdx+

∫
Ω

(mn×v) ·Ψdx+θk

∫
Ω

(1+ρ(k))∇v ·∇Ψdx = −
∫

Ω

∇mn ·∇Ψdx.

(2.22)
Until now we considered only the contribution from the exchange for the sake of

demonstration. This scheme has been extended to the total effective field leading to the
true implementation:

∫
Ω

ϕM(mn)v ·Ψ + mn × vn ·Ψdx +
k

2

∫
Ω

(1 + ρ(k))
∂Heff

∂m
(v) ·Ψ

=

∫
Ω

Heff(m) ·Ψdx.

(2.23)

2.3 Coupling LLG with transport

In order to consider the effect of the current, we used the model introduced in section
1.2.2. The additional terms have been added using an explicit scheme. Hence, by doing
the vector product of magnetization and the form (1.22) we obtain the following strong
form:

α
∂m

∂t
+ m× ∂m

∂t
= γ0Heff − (m ·Heff)m−m× (u ·∇)m− β(u ·∇)m. (2.24)

By considering the previously derived weak form, the one that has been implemented in
the code is

∫
Ω

ϕM(mn)vn ·Ψ + mn × vn ·Ψdx +
k

2

∫
Ω

(1 + ρ(m))
∂Heff

∂m
(v) ·Ψ

=

∫
Ω

Heff(m) ·Ψdx +

∫
Ω

(mn × (u · ∇)mn) ·Ψ + β(u · ∇)mn ·Ψdx

(2.25)

I have contributed to the implementation of the Œrsted field introduced in section 1.1.1.

2.4 Demagnetizing field computation: The Fast Mul-

tipole Method

As previously introduced in section 1.1.1, the demagnetizing field is derived from a mag-
netostatic potential ϕm. Again, in order to solve this magnetostatic problem we need to
discretize it. The first step consist in transforming the continuous charge densities ρ and
σ into a discrete distribution of N point charges. This formulation corresponds then to a
N-body problem. Such a pair-wise problem shows a complexity of O(N2) which induces a
significant simulation time. It is a real challenge when it comes to reduce the computation
times. Different existing methods are able to reduce the complexity. The FEM is able
to reduce it down to O(N4/3). The Fast-Fourier Transform in a NFFT algorithm [53] for
rectangular system decreasing complexity down to O(NlogN). For our systems, the hier-
archical multipole method and its improved version, the Fast Multipole Method (FMM),
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reduces the complexity down to O(NlogN) and O(N) respectively. This last method
is the one that has been implemented in the code and hence will be introduced in this
section.

2.4.1 The multipoles expansion

The magnetostatic potential ϕ generated by N sources at the target point r writes:

ϕ(r) =
N∑
i

G(r, r′) qi (2.26)

where qi correspond to the charge at the ith node and r′ its position and G the previously
introduced Green function (also called a kernel). The equation (2.26) in its matrix form
clearly shows that its direct computation has a complexity of O(N2) (N × N matrix).
We will now introduce the hierarchical multipole method by presenting a 2D case being
simpler and also intuitive than the 3D case. This allows us to use the complex plan which
simplifies the notations. Hence, the magnetic potential at affixe z generated by one point
charge at affixe zi writes

ϕi(z) = ln |z − zi| qi (2.27)

This can be expanded the follow:

ϕi(z) = qi log z − qi
∞∑
k=1

1

k

(zi
z

)k
(2.28)

The total potential is obtained by a multipole expansion

ϕ(z) = R log z +
∞∑
k=1

ak
zk

(2.29)

where

R =
m∑
i=1

qi, and ak

m∑
i=1

−qizki
k

(2.30)

The error verifies ∣∣∣∣∣
∞∑

k=p+1

ak
zk

∣∣∣∣∣ ≤ A
∞∑

k=p+1

rk

k|z|k
(2.31)

with A =
∑

i|qi|. This term itself is majored by

A

p+ 1

∞∑
k=p+1

(
r

|z|

)k
=

A

(p+ 1)(1− r/|z|)

(
r

|z|

)p+1

(2.32)

We see that the error decreases with p faster the lower is r/|z|. In other words, it
decreases with p faster the further the target point is from the sources. To sum up, all
the contributions from m sources can be expressed by a multipole expansion at the center
of a ball that contains all the sources. If the target point is faraway, we can take a larger
ball, thus taking into account more sources with the same accuracy.
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Figure 2.2: Schematic of a discrete distribution of charges.

Figure 2.3: The level 2 (left) and a combination of the level 2 and 3 (right) of the tree. The
light gray boxes correspond to the well separated boxes that needs to be calculated. The dark
gray boxes correspond to the well separated boxes that are already calculated. The white boxes
correspond to the near neighbors of the box that contain the target.

2.4.2 The hierarchical Multipoles Method

The idea is to generate a tree structure by subsequently dividing the computational do-
main. The 0th level is the computational domain which as an example is a box. It is
divided into four parts called children and the children follows the same process. The
last refinement level called the leaf is obtained by limiting the number of particles (here
nodes) that it contains.

Two boxes that are at the same level and share boundary points are called near
neighbors. On the contrary, boxes of the same level that are not near neighbors are said
to be well separated.

The idea is to consider clusters of particles that interacts. For each level, the calcula-
tion is performed only for well separated boxes. For level 0 and 1, this situation does not
occur. It starts with the level 2 shown in Fig. 2.3 (left) with the well separated boxes are
the light gray ones.

Hence if we wants to calculate the contributions for the neighboring boxes we need to
reach the next level Fig. 2.3 (right). The source charges are gathered to form clusters.
These clusters are divided into two groups the source and the target.
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Figure 2.4: Expansion translation from children to parent (left), from parent to children
(right).

2.4.3 The Fast Multipoles Method

It is possible to decrease further the complexity down to O(N). The idea is to keep the
computation by translating the expansions (Fig. 2.3). Thus, an expansion calculated at
the center of a box can be translated to the center of its parent. Hence the expansions are
computed by translation of children’s expansion without having to calculate again from
the sources. The translation from point z0 to origin is based on

1

(z − z0)k
=
∞∑
l=k

Ck−1
l−1

zl−k0

zl
(2.33)

If the initial expansion is valid outside a ball of radius r, the translated one is valid
outside a ball of radius |z0|+ r, which include the first one. The error done by truncation
up to order p is (

|z0|+ r

|z|

)p+1

(2.34)

for a target in z. Each term of the translated expansion is obtained in p operations over
the terms of the initial expansion. The total cost of the translation is then p2. All the
boxes of the system that gives their expansion to their parent, and supposing there are s
sources per leaf boxes for a total of about M/s boxes, the expansions of all the boxes are
calculated in time Mp2/s = O(N). The previous method was in O(NlogN). However,
there were an other problem in O(NlogN), the evaluation. For each target, 27 expansion
for each levels needed to be evaluated. The idea is the follow: we would like to evaluate the
expansions of only one level, the last one, plus one expansion that come from the parent
which accumulates information from inferior levels. We are interested is the sequence
of boxes that contain the target and the well separated boxes. The contributions from
the well separated boxes can not be summed directly. We can convert them in Taylor
expansion in the self-contained sequence where they are summed in one expansion until
the current level and transmitted to the children for the next level. The conversion of a
multipolar expansion in a ”local” Taylor expansion is based on

1

(z − z0)k
=

1

(−z0)k

(
1

1− z
z0

)k

(2.35)

1

(z − z0)k
=

1

(−z0)k

∞∑
l=k

Ck−1
l−1

zl−k0

zl
(2.36)
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This two expansions are respectively valid in two separated balls of same radius r. One can
show that the error done by truncation of the local expansion to p order is in (r/d)p+1,d
being the distance of the local ball to the center of multipole expansion z0. Each term
of the local expansion is obtained in p operations over the terms of multipole expansion,
cost of conversion is p2. All the boxes, convert their expansions to their 27 well separated
neighbors, their local expansion of all the boxes are calculated in 27Mp2/s. After what
starting from the first level, the M/4s boxes transmit their expansions to their children
in Mp2s. Only the expansion of the last level are evaluated at the targets in Np and
the calculations in near field are always O(N). The Fast Multipole Method is then an
accelerated version of the previous method thanks to translation and conversion operators.
The 3D case is similar but is based on octrees (one box is divided into 8 boxes) and the
expansion are spherical harmonics with p2 terms instead of p. The translations are done
in p4 and can be reduced p3 by combining them with rotation of coordinate systems [54].

2.5 Limits of numerical micromagnetism

A key hypothesis of the micromagnetic theory [40] is the description of magnetization with
a continuous vector field of uniform and constant modulus. It is therefore not suitable
mathematically to describe a Bloch point, involving a singularity in the vector field.
In numerical micromagnetism, this mismatch induces artefacts like the pinning on the
discrete numerical lattice during magnetization dynamics, or the logarithmic convergence
of magnetization processes such as nucleation [50]. For example, in the finite element
approach, the constraint on the magnetization norm is imposed at the mesh nodes. Within
every volume element magnetization is interpolated linearly, with its norm possibly greatly
reduced, allowing a magnetic object resembling a Bloch point to be centered inside. This
magnetic object may move from one volume element to a neighboring one, however over
an energy barrier, inducing a numerical frictional force that depends on the mesh size [34].

An atomistic model obviously provides an improvement, the mesh being scaled down to
the ultimate size of atoms. However, due to the logarithmic convergence mentioned above,
an intrinsic pinning field remains on the lattice, of the order of a few mT [55]. This effect
may be responsible for the excitation of helical instabilities sometimes evidenced during
motion of the BPW under a large driving force [56]. The question may arise, to which
extent this reflects experimental physics. Indeed, in the atomistic models implemented
so far, the magnetic moments keep a fixed magnitude on every lattice site. This is not
realistic for band magnetism such as for Fe, Co, Ni and their alloys, for which one expects
a local reduction of band splitting and thus atomic moment, allowing to reduce the total
energy of the system [57].

The Landau-Lifshitz-Bloch (LLB) formalism aims to describe such situations, allowing
for a spatial variation of magnetization by introducing a longitudinal susceptibility [58].
The Bloch point has been described by a LLB model, down to a cell size of 0.5 nm [59],
however the impact on pinning has not been evaluated. Also, from a fundamental point
of view, it is not clear to which extent the fitting of LLB parameters to macroscopic
quantities such as the Curie temperature, adequately reflects sub-nm physics with strong
gradients of magnetization in the case of band magnetism.

Thus, at this stage we consider that it remains an open question, to which extent
Bloch points may be described suitably by simulation, especially regarding their motion.
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Figure 2.5: (a) Domain wall width (Thiele definition) versus the external radius, expressed in
real length (top and right axis) and normalized with the dipolar exchange length `ex (bottom
and left axis) (b) Section in the xz plane of the wire. The colors represent the z component
of the normalized magnetization. The contour lines represent isovalues of mz. The solid lines
correspond to the wire, the dotted lines to the tube. Adapted from [62].

The thick-walled tube ansatz

In the course of the present report we sometimes consider and compare two situations:
that of a wire, and that of a thick-wall tube (i.e., a wire with an empty core of very
small radius, 5 nm). Strictly speaking there is no more Bloch point in a thick-walled
tube for a BPW at rest, so that in the manuscript we refer to the wall as pseudo-Bloch-
point wall (PBPW). This type of wall in a nanotube is often called a vortex wall, in the
literature.

Qualitatively, the physics of domain walls in wires and tubes indeed displays many
similarities, such as the possible absence of Walker breakdown and the magnonic regime
[11, 60]. Quantitatively, features of tubes tend to converge to wires, when the thickness
of the tubes is increased [61]. Below we compare the two situations at equilibrium, to
provide a basis for our ansatz.

We characterized both walls through their width, following Thiele definition:

∆T =
2S∫

V(∂m
∂z

)2dV
, (2.37)

where S is the section of the nanowire or nanotube. Fig.2.5a shows that ∆T increases with
radius R for both situations. This graph is plotted with lengths scaled to `ex, to provide
a material-independent curve. First, note that while different materials fall on the same
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curve for wires, a slight shift exists for tubes. This arises as through normalizing with `ex,
the inner radius kept constant to 5 nm converts in a slightly different geometry. However,
the main point in this plot is the sizable difference of width between a BPW and a PBPW,
although the difference in section S is only a few percent. To understand this, we examine
the micromagnetic distribution of both walls in the xz plane (Fig.2.5b). The two walls
share a similar configuration near the outer surface, while they differ significantly close to
the axis. Indeed, the absence of Bloch point in the tube removes the need for the pinching
of magnetization, explaining a larger width there. It is because the Thiele definition puts
a larger weight on locations with a large magnetization gradient, that the resulting width
is significantly different although the volume with significant differences is rather small.
The similarity of the two maps of magnetization on the outer part of the structure, where
the Œrsted field driving the dynamics is largest, makes us confident that a thick-walled
tube is a reasonable ansatz for a wire.

26



Chapter 3

Current-driven dynamics of a
transverse wall in a modulated
cylindrical nanowire

This chapter focuses on the current-driven transverse domain wall dynamics in a circular
cross-section nanowire presenting a single modulation in diameter. On my arrival to
SPINTEC my colleagues have been working on the domain wall dynamics induced by the
applied magnetic field in these modulated geometries. Quite naturally, my first experience
with massive micromagnetic calculations followed in the footsteps of my predecessor J.
Fernandez-Roldan [63]. In the frame of my thesis I went beyond the field-induced case
and studied micromagnetically the current-induced behavior of the domain wall, as well
as developed simplified analytical description of this situation. The text of this chapter
is largely adapted from a chapter to which I contributed, namely Domain wall pinning
in a circular cross-section wire with modulated diameter of the book Magnetic Nano-
and Microwires (Elsevier 2020) [39]. The text published previously has been completed
here by more details in most of the sections (except the section 3.1) such as a more
detailed 1D model under current 3.4.1 and new results with the abrupt modulation of the
current-driven case 3.4.2.

3.1 Motivation

3.1.1 Fundamental and technological motivations for domain
wall pinning

The interest for domain walls in one-dimensional conduits is both for the sake of physics
and for technological concepts. As regards physics, considering domain walls in nearly
one-dimensional systems allows one to reduce the number of internal degrees of freedom to
a minimum. In the limit of cylindrical wires with a diameter typically below seven times
the dipolar exchange length lex =

√
2Aex/µ0M2

s , with Aex the exchange stiffness and Ms

spontaneous magnetization, one can neglect variations of magnetization across the wire
section, boiling down the description of the domain wall to a one-dimensional problem
[11]. In any case, compared with extended thin films this reduces the possible complexity
of the wall, obviously easing the understanding of any phenomenon related with domain-
wall motion, e.g. precessional dynamics and spin-torques. As regards technology, domain
walls have been proposed as means to store [64–66], transport and process information
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[2, 67].

It may be desirable to modulate the energy landscape of a domain-wall in such a
one-dimensional conduit. This may include potential barriers or potential wells. On
the applied side, such modulations can allow to repeatedly initialize the system with a
domain wall at a precise location. This is especially useful to implement time-resolved
measurements in a pump-probe scheme, which requires the averaging of reproducible
events, including the preparation of a given type of domain wall [68]. Also, energy barriers
may be used to confine a domain wall in a segment of finite length to ease its investigation
[69]. On the applied side, a digital memory device requires that bits of information
are allocated a specific physical location. Thus, domain walls may be forced to remain
in potential wells, or conversely, be separated by energy barriers. Among others, this
prevents that successive walls in a conduit merge together, which would induce the loss of
information. Also, similar to the argument given above for fundamental devices, defining
a precise starting position can be helpful to clock circuits, for instance in the case of logic
functions involving several domain walls.

The modulation of potential along the conduit has been largely developed and ex-
ploited in planar strips based on thin film and lithography technologies. Most are based
on the modulation of geometry, which is easily achievable with lithography. This includes
notches [68, 70], protrusions [71] or more complex designs such as connection to other
magnetic pads [72]. Other means have been demonstrated, such as stray field from neigh-
boring magnetic pads [73] or domain walls [74], ion irradiation [75, 76] or reprogrammable
electric-field gating [77].

3.1.2 Types of pinning for nanowires

In the present chapter we focus on cylindrical conduits, which we will call nanowires.
Magnetic nanowires have been synthesized routinely for several decades, mostly by e.g.
electroplating in polymer or anodized aluminum templates [78–80]. This synthesis meth-
ods presents constraints to design modulations of the potential for domain walls, however
also offers opportunities, with respect to flat strips. There exist essentially two designs,
which have been developed experimentally and considered theoretically in the past ten
years.

The first route for creating a potential landscape, is through the geometry of the wire,
involving the longitudinal modulation of the diameter (Fig. 3.1). Indeed, the energy of a
domain wall sensitively depends on the wire (local) diameter, involving changes in both
exchange and dipolar energy. The most commons means to achieve such a modulation
are multistep anodization [80, 81] or pulsed anodization [82] of aluminum. While the
versatility is lower than with lithography for strips, a large variety of designs has been
demonstrated. More exotic routes exist, such as pulsed plating followed by etching [31],
or the alternation of wire and tubes [83, 84]. The focus of the present work is restricted
to the diameter modulation of a plain wire.

The second route for creating a potential landscape, is through the longitudinal modu-
lation of the material. While this is analogous to strips processed with local irradiation or
gating, it is more straightforward and versatile to achieve in nanowires, by changing the
growth conditions during synthesis. The ways to achieve this are multibath anodization
for more versatility, or pulsing the plating potential in a bath with several metal salts,
for a faster implementation [85, 86]. Note that one may use various magnetic materials,
especially varying the composition of compounds [32], or non-magnetic materials such as
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Cu [86, 87].

3.1.3 Existing theories and experiments

The one-dimensional landscape model for domain walls is probably one of the earliest
problems tackled in magnetism to explain the physics of coercivity, as described by the
Becker-Kondorski model [88–91]. A key conclusion is that while domain walls are found
at the bottom of energy wells at rest, the depinning field is associated with local maxima
of slope of the potential, themselves coinciding with inflection points of the potential
curve. We will see that this concept is still applicable for the more specific theories
developed in our contribution. Later on, the one-dimensional landscape model was used
again in specific cases by A. Aharoni and followers, again in the context of the physic
of coercivity. Potential wells and steps [92], slopes [93] and others, were introduced and
described. These effective models have been made more specific to the geometry of a
nanowire, highlighting the local slope

A number of micromagnetic simulations have been made, considering linear modula-
tions [29], sharp single modulations [30], sharp constrictions [31], smooth modulations of
various length [32]. However, often the processes of domain-wall nucleation at a wire’s end
and the process of going through the modulation are not studied separately, thus not well
describing the latter. Besides, some detailed models of walls at modulations have been
proposed [33], however their complexity does not allow to shed a general picture on the
phenomenon of pinning. Overall, the existing literature shows interesting features, how-
ever does not provide a comprehensive view. This lack has been driven the present work,
to deriving simple analytical scaling laws, and compare the field-driven and current-driven
cases.

Finally, note that experimental reports of the interaction of domain walls at modula-
tions of diameter are still scarce and incomplete. Letting aside reports of magnetometry
of large assemblies of wires still in a matrix, or experiments on single wires, however not
separating the physics of nucleation from the one of going through the modulation, only
a handful of reports exist of domain-walls in diameter-modulated single wires [21]. These
do not provide a comprehensive quantitative picture at present
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Figure 3.1: (a) and (b) Scanning electron micrographs illustrating the existence of two different
diameter transition geometries in the multisegmented aluminum oxide membranes from [69]
and [94]. (c) Topography of isolated multisegmented nanowire and magnetic force microscopy
image showing the domain wall displacement after application of dc field [94]. Adapted from [39].

3.2 Theoretical background

In the following section, we introduce the framework we use to derive the analytical mod-
els of the dynamics of a transverse wall passing through a single modulation of diameter.
For the simulations we considered a wire of Fe20Ni80 (permalloy) with the exchange stiff-
ness Aex = 1× 10−11 J ·m−1 and the spontaneous magnetization Ms = 8× 105 A ·m−1.
The dipolar exchange length lex =

√
2Aex/µ0M2

s is about 5 nm. The tetrahedrons that
compose the meshes have a characteristic length of 2 nm, which is inferior to the exchange
length. We considered a spin polarization rate P = 0.7.

3.2.1 Geometry of modulation and potential barrier

In presence of a domain wall inside a cylindrical nanowire, the internal energy of the
system increases with the radius (Fig. 3.2). Hence, a modulation of diameter induces a
variation of the internal energy of the system which depends on the position of the domain
wall zw. In the following, we study two types of modulation, which connect a smaller cross
section with radius R1, to a larger cross section with radius R2: the abrupt modulation
and the circular-based (smooth) modulation shown in Fig. 3.3(a).

The abrupt modulation is modeled by the simple step-function

R(z) =

{
R1, z < 0,
R2, z ≥ 0.

(3.1)

The circle-based profile allows for a smooth transition between smaller and larger cross
section parts

R(z) =


R1, z < −λ/2,
y1 −

√
R2

mod − (z + λ/2)2, −λ/2 < z < 0,

y2 +
√
R2

mod − (z − λ/2)2, 0 < z < λ/2,
R2, z > λ/2,

(3.2)

30



3.2. Theoretical background

Figure 3.2: (a) Micromagnetic distribution of longitudinal magnetization for the transverse-
like head-to-head domain wall for radius R1 = 5 nm and R2 = 10 nm, obtained numerically
using equation (1.17). (b) Simulated domain wall energy vs. diameter, in a straight wire. The
dashed curve corresponds is a third-order polynomial fit serving as a guide to the eye. Adapted
from [39].

Figure 3.3: (a) Type of modulation geometry considered and (b) corresponding internal energy
vs. its position zw, from micromagnetic simulations. Parameters used for the energy plots are
R1 = 5 nm, R2 = 7.5 nm, λ = 100 nm and µ0Ms = 1 T. Grey horizontal lines correspond to the
energy of a straight wire with R = 5 nm and R = 7.5 nm. Adapted from [39].
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where λ is the modulation length,

Rmod = [(R2 −R1)2 + λ2]/[4(R2 −R1)]

y1 = (R2
2 + 2R1R2 − 3R2

1 + λ2)/[4(R2 −R1)]

y2 = (3R2
2 − 2R1R2 −R2

1 − λ2)/[4(R2 −R1)].

It has been used in subsections 3.3.2 and 3.4.3 for the micromagnetic simulations. For
the analytic calculations, the circle-based wire profile was approximated by the tanh-based
profile

R(z) = [R1 +R2 + (R2 −R1) tanh(4z/λ)]/2. (3.3)

This is an analytic function which approximates well the circle-based profile in the case
of the gently sloping modulations ((R2 −R1) << λ) studied in 3.3.2 and 3.4.3.

To illustrate the energy modification induced by the modulation, we show Fig. 3.3(b)
the internal energy E0 as a function of the position of the domain wall. These curves
were obtained by solving the LLG equation (1.17) numerically for domain walls drifting
from the broader part toward the thinner part of the wire in the absence of any external
driving force. In that case we used α = 1, to approach a quasistatic situation. Far from
the modulation, the value of E0 corresponds to the one of a straight wire, as depicted
by horizontal grey lines. One can see that in both abrupt and smooth cases, the energy
shows a smooth transition. While it can be expected for the smooth modulation case,
one could expect a step-like behavior for the abrupt modulation. We explain this smooth
transition from the fact that the domain wall is characterized by a certain width. In the
abrupt case, the width of the transition seems to correspond approximately to the width
of the domain wall. In the smooth modulation case the width of the transition between
the lower and upper values of E0 seems to correspond approximately to the modulation
length λ.

3.2.2 Magnetic charges

Figure 3.4: Schematics of magnetic charges distribution in (a) uniformly magnetized cylindrical
wire, (b) cylindrical wire with head-to-head domain wall and (c) modulated diameter nanowire
with head-to-head domain wall placed in the thinner part. Red color corresponds to the positive
magnetic charge and blue one to the negative magnetic charge. Adapted from [39].

By analogy with electrostatics based on Maxwell’s equations, the magnetic volume
and surface charges ρm = −Ms∇·m and σm = Ms (m · n), may be introduced as a source
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3.2. Theoretical background

Figure 3.5: Magnetic potential φm distribution for different positions of the head-to-head
domain wall. Red (resp. blue) color corresponds to positive (resp. negative) values of φm.
Adapted from [39].

of the dipolar field Hd [41, 95], where n is the outward-pointing unit vector normal to the
system surface. The expression for the dipolar field reads:

Hd(r) =

∫
ρm(r′)(r− r′)

4π|r− r′|3
d3r′ +

∮
σm(r′)(r− r′)

4π|r− r′|3
dS ′. (3.4)

where r′ is the position vector of a source and r is the position vector of the target point. In
the case of the uniformly magnetized cylindrical wire (Fig. 3.4 (a)), each of the wire’s end
possesses the magnetic charge q1 = ±πMsR

2
1 leading to a total charge of zero. In the case

of a head-to-head domain wall in a cylindrical nanowire (Fig. 3.4 (b)), the wire’s ends carry
the same charge q1 = −πMsR

2
1. Hence the wall bears a magnetic charge which is largely

determined by these boundaries and tend to neutralizes them. In fact, in the general case,
the lateral surface can add a certain contribution. By neglecting the contribution from the
lateral surface, the volume charge carried is approximately qDW = 2πMsR

2
1. It is exact in

the special case of 1D transverse wall where the total surface charge carried by the wall is
0 (see Appendix A.1). Note that it does not mean that the dipolar field generated by these
surface charges is zero. In the case of a modulation of diameter, the two end charges are
different: q1 = −πMsR

2
1 and q2 = −πMsR

2
2. Considering for instance the case where the

domain wall is clearly in the smaller-diameter part, the volume charge qDW = 2πMsR
2
1.

Given this configuration, the modulation carries a charge qmod = πMs(R
2
2 −R2

1) (Fig. 3.4
(c)). At this stage, we did not discuss which type of charge (volume or surface) contributes
to this charge. An example of distribution of the magnetic potential φm related to the
charge distribution (Hd = −∇φm) is given in Fig. 3.5. Most notably, the modulation
charge qmod gives rise to a magnetic field Hmod, which we calculate in the next section.
We show that it tends to move the domain wall away from the modulation.

3.2.3 Magnetic field generated by the modulation

The goal is to calculate the magnetic field generated by the modulation. While the total
charge of the modulation is fixed, its distribution over surface and volume contributions
is not straightforward. Thus, some approximation that conserves the total charge of the
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modulation should be done. We assume that the magnetization field in the modulation is
uniform in the section and is aligned along wire axis (m(r′) = ±êz). This simplification
limits the magnetic charge of the modulation to the surface charge σm only, while volume
charges are zero i.e ρm = 0. The surface charge approximation allows us to estimate the
amplitude of the magnetic field generated by the modulation analytically in some specific
cases. This field can be seen as a subset of the closed surface integral of the dipolar field
(3.4). With these assumptions, we write the field generated by the modulation as:

Hmod(r) =

∫
Smod

σm(r′)(r− r′)

4π|r− r′|3
dS ′ (3.5)

If we consider the presence of a head-to-head domain wall, the sign of the surface charge
density σm will depends on the position of the domain wall zw such that m(r′) = sgn(zw−
z′)êz where sgn(zw−z′) = |zw−z′|/(zw−z′). This approximation is suitable if: the domain
wall is far away from the modulation and the modulation is abrupt or really smooth
(slowly varying). It is incorrect when the domain wall hits or is inside the modulation.
We can find a simple analytic expression for the field evaluated on the wire axis (i.e where
r = zêz). Hence for simplicity, we assume the average field over a section to be equal to
the field amplitude at the center (overestimation). The distance vector between a surface
charge element and the target point (r− r′) = −ρ′ cosϕ′êx − ρ′ sinϕ′êy + (z − z′)êz. On
the wire axis, the axial symmetry implies that integration over the angle ϕ′ vanish i.e.
Hx = Hy = 0. Hence, Hmod(z) = Hz(z)êz. For convenience we rename Hz into Hmod.
The field expression writes

Hmod(z) =
Ms

4π

∫
Smod

sgn(zw − z′)nz(r′)(z − z′)
(ρ′2 + (z − z′)2)3/2

dS ′ (3.6)

Figure 3.6: (a) Sketch of the magnetic field generated by the elements of the magnetically
charged axisymmetric surface in the presence of the head-to-head domain wall at the position
zw for abrupt modulation. Red color corresponds to the positive surface charge and blue color
to the negative one. d is the distance |r − r′|. (b) Magnetic field generated by the abrupt
modulation µ0Hmod vs. domain wall position zw for several values of R2. Parameters used for
this plot are R1 = 5 nm and µ0Ms = 1 T. Adapted from [39].

Abrupt modulation. Besides being close to applicable in some experimental cases, the
abrupt modulation is a text-book case, from which the general features of the impact of
a modulation on domain-wall motion can be easily illustrated. The abrupt modulation
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3.2. Theoretical background

is described by Eq. (3.1). Thus, the normal vector is aligned with the wire axis i.e.
nz(r

′) = −1. The situation for a head-to-head wall is shown Fig. 3.6(a). Also the surface
element dS ′ = ρ′dρ′dϕ′. If the modulation is centered at 0, z′ = 0 and m(r′) = sgn(zw)êz,
the expression of the field writes:

Hmod(z) = −Ms sgn(zw)z

2

∫ R2

R1

ρ′

(ρ′2 + z2)3/2
dρ′. (3.7)

giving

Hmod(z) = −Ms sgn(zw)z

2

(
1√

R2
1 + z2

− 1√
R2

2 + z2

)
(3.8)

Evaluating the field at the domain center position (i.e. z = zw) we get

Hmod(zw) = −Ms|zw|
2

(
1√

R2
1 + z2

w

− 1√
R2

2 + z2
w

)
(3.9)

which is plotted in Figure 3.6(b). The Hmod always opposes the head-to-head domain
wall movement to the right, being negative for all zw. In other words, the charges at
the modulation tend to favor motion towards the part with smaller radius, similar to the
energy of the domain wall itself.

Charged surface with arbitrary profile. While the main physics is captured by the
abrupt modulation, it is associated with an unphysical cusp of Hmod at the very center
of the modulation. Besides, it may not be realistic for slowly-varying modulations such
as found in some experimental cases. The present paragraph intends to describe such
situations. Following the same method and assuming only surface charges, let us calculate
the magnetic field generated by the modulation with an arbitrary profile given by the
smooth function R(z′). As shown in Figure 3.7(a) the corresponding modulation surface
is charged positively to the right of the head-to-head domain wall and negatively to the
left of it. We may assume a stepwise jump of surface charges across the domain-wall, in
the case of gentle modulations. The differential element dS ′ = |∂ϕ′r′ × ∂z′r′|dϕ′dz′. The
normal unit vector is defined:

n(r′) ≡ ∂ϕ′r′ × ∂z′r′

|∂ϕ′r′ × ∂z′r′|
(3.10)

and gives

n(r′) =
(
1 + (∂z′R(z′))2

)− 1
2 (cosϕ′êx + sinϕ′êy − ∂z′R(z′)êz) (3.11)

Replacing it into (3.6), the expression of field and evaluating it at z = zw:

Hmod(zw) = −Ms

2

∫ ∞
−∞

|zw − z′|∂z′R(z′)R(z′)

(R2(z′) + (zw − z′)2)3/2
dz′ (3.12)

Figure 3.7(b) depicts Hmod for a tanh-based profile given by the formula (3.3). Similar to
the case of abrupt modulation, Hmod opposes the head-to-head domain wall movement to
the right. However, there is now no more cusp at zw = 0, and the maximum magnitude
of Hmod is now found at the center of the modulation. Note that this maximum decreases
sharply with increasing modulation length λ.
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Figure 3.7: (a) Sketch of the magnetic field generated by the elements of the magnetically
charged axisymmetric surface in the presence of the head-to-head domain wall at the position
zw for the modulation of arbitrary profile given by the continuous function R(z). Red color
corresponds to the positive surface charge and blue color to the negative one. d is the distance
|r− r′|. (b) Magnetic field generated by the tanh-based profile modulation of the length λ vs.
domain wall position zw for several values of λ. Parameters used for this plot are R1 = 5 nm,
R2 = 10 nm and µ0Ms = 1 T. Adapted from [39].

3.2.4 Domain wall energy

The micromagnetic energy has been introduced in section 1.1.1. It is composed of the
exchange energy, the demagnetizing energy and the Zeeman energy. This energy can
be approximated by a reformulation of the problem. We define a domain wall internal
energy Eint that depends on the wall position zw. It can be viewed as a subset of the
internal energy of the system. It is therefore composed of the exchange energy and of
the dipolar energy that originate from the wall only (that will be detailed in subsection
3.3.2). In addition to that we define the energy of interaction between the wall and the
field generated by the modulation charges. Hence this energy will be defined as a Zeeman
energy. As a result this leads to the following total energy expression

E = Eint + Ez + Emod (3.13)

The derivative of energy with respect to the wall position, can be written under the form
of an effective field. The one associated with the supplementary energy term Emod is
reads, for an axisymmetrical wire:

∂Emod

∂zw

= −µ0qDWHmod(zw). (3.14)

It is unlikely that Emod has an analytic expression in the case of an arbitrary modulation
profile and arbitrary domain wall profile. In contrast, the field distribution Hmod(zw)
can be derived analytically by making some assumptions, as shown in subsection 3.2.3.
Besides, the z-derivative of energy may be sufficient, for example, to calculate the domain
wall depinning field. In this case we do not need the energy Emod expression but only its
derivative, as the minimization of the total energy gives the domain wall pinned position.
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3.3. Modulation under applied magnetic field

Figure 3.8: Head-to-head domain wall displacement under the applied magnetic field Happ.
The color scale bar indicates the longitudinal magnetization mz. Adapted from [39].

3.3 Modulation under applied magnetic field

In this section we focus on the case of domain wall behavior under a magnetic field
applied along the wire’s axis (Fig. 3.8). In particular we aim to calculate the critical
field needed to depin the domain wall. As both the internal and the Zeeman energies are
conservative, one may derive the critical field Hcrit and corresponding critical domain wall
position zcrit on the basis of the position-dependent domain wall energy. In the majority
of cases the purely analytical treatment of this problem is tricky or even impossible. For
this reason, below we propose an analytical estimation of the Hcrit in particular limit
cases, which implies a number of simplifying hypothesis. Despite the limitations of the
simplified approach, our analytical analysis focuses on the key ingredients and gives a
very reasonable estimation of the behavior of the critical depinning field in response to
the modulation parameters. The cases for which the assumptions used below are too
drastic should be covered by micromagnetic simulations.

3.3.1 Abrupt modulation

In this subsection we estimate the critical applied field Hcrit needed to depin the domain
wall in a wire with an abrupt modulation of diameter, described by equation (3.1) and
visualized in Fig. 3.8. The wire axis was taken as the z direction. The modulation was
centered at z = 0 and L is the total length of the wire. The head-to-head domain wall
was prepared in the narrow section of the wire, and driven toward the larger section by
applying a magnetic field.

Micromagnetic simulations suggest that for such a modulation, the transition be-
tween the two energy levels (or the potential barrier) is relatively sharp (Fig. 3.3(b)).
Moreover, magnetization is mostly perpendicular to the modulation surface, which gives
the surface charge σm = Ms(m · n) and thus generates the large magnetic field of the
modulation (Eq. (3.9)) and Fig. 3.6(b)). In this case it is reasonable to assume that
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Figure 3.9: (a) Total energy EZ + Emod versus domain wall position zw for several values of
the applied field and R2 = 10 nm. Vertical arrows show the pinned domain wall positions. (b)
Critical field value Hcrit as a function of the larger radius R2. Solid line corresponds to the
analytic formula (3.17), solid circles and open squares correspond to micromagnetic simulations
with Aex = 1× 1011 J ·m−1 and reduced Aex = 0.25× 1011 J ·m−1. All curves are plotted for
µ0Ms = 1 T and R1 = 5 nm. Adapted from [39].

the key ingredient in domain wall pinning is the competition between the applied mag-
netic field Happ and the magnetic field generated by the modulation Hmod when the
wall is not in contact with the modulation. Besides, the abrupt jump of diameter and
thus domain wall energy when crossing the modulation, makes that this model can
probably not describe realistically the total depinning process. Rather, it is illustra-
tive to describe the rather long-range competition between the applied field contribution
EZ = −2µ0MsHappπR

2
1zw + Cste and the energy of interaction between the domain wall

and the modulation Emod = −2µ0MsπR
2
1

∫
Hmod(z)dz + Cste. This explains the non-

monotonic energy profile with domain wall position zw, as shown in Fig. 3.9(a). Note
also, that we neglected the inner structure of the domain wall to derive these energies,
instead we considered two adjacent uniformly magnetized domains on either sides of the
domain wall’s center position, zw.

The energy shows two stationary points (i.e. ∂(EZ + Emod)/∂zw = 0) a maximum at
zmax and a minimum at zmin. The latter corresponds to the domain wall pinned position.
Using equations (3.9), (3.14) and applied field contribution, we obtain the expression
which relates the applied magnetic field to the energy minimum:

Happ =
Ms|zmin|

2

(
1√

R2
1 + z2

min

− 1√
R2

2 + z2
min

)
. (3.15)

Since Happ = −Hmod when a equilibrium is reached, this suggests the existence of a zmin

in the large section. This will be discussed later in 3.4.2. However here, in the field
driven case, the domain wall always stops before the modulation center. When reaching a
critical value of applied field Hcrit the inflection point between both extrema zmin and zmax

becomes stationary. Hence, the critical position zcrit for which ∂2(EZ + Emod)/∂z2
w = 0

corresponds to the final pinned position of the domain wall:

zcrit = − R
2/3
1 R

2/3
2√

R
2/3
1 +R

2/3
2

, (3.16)
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and the corresponding Hcrit needed to depin the domain wall reads

Hcrit =
Ms|zcrit|

2

(
1√

R2
1 + z2

crit

− 1√
R2

2 + z2
crit

)
. (3.17)

Figure 3.9(b) compares formula (3.17) with micromagnetic simulation. This comparison
reveals qualitatively and quantitatively similar tendencies. Note that simulations con-
ducted with a value of Aex reduced in comparison to that of the Permalloy-like material,
fits slightly better the analytic results. Is may be explained by the more compact domain
wall which probably better suits the model assumptions.

3.3.2 Smooth modulation

Figure 3.10: (a)Schematic illustration of the uniformly-charged sphere corresponding to the
domain wall. (b) Domain wall energy E0 + EZ as a function of the domain wall position, for
several values of applied magnetic field. (c) Critical field Hcrit as a function of modulation length
λ for R2 = 6 nm. (d) Critical field Hcrit as a function of larger radius R2 for λ = 100 nm. All
curves are plotted for µ0Ms = 1 T and R1 = 5 nm. Adapted from [39].

In this subsection we estimate the critical applied fieldHcrit needed to depin the domain
wall in a smooth diameter modulation described by equation (3.3) and schematized in
figure 3.10(a). We show that we can also describe E(zmod) at an arbitrary position
including inside the modulation. In practice, the modulation with length λ was centered
at z = 0, and L is the total length of the wire. The head-to-head domain wall was prepared
in the narrow section of the wire and was driven towards the larger section by applying a
magnetic field. To determine the qualitative expression forHcrit, we considered the domain
wall internal and Zeeman energies Eint and Ez (from section 3.2.4). For simplicity, here
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we omit the energy of interaction Emod between the domain wall and the field generated
by the charges of the modulation. It has been shown in [63] for smooth modulations,
that the extension of the present model by including the Emod does not have a qualitative
impact, and results only in a slight shift in the total energy minima and maxima. Below,
we introduce the approximations that can be used to estimate each energy term. The
details of calculation may be found in [63].

For the dipolar energy, we considered that the magnetic charge qDW = 2MsπR
2 [96]

carried by the head-to-head wall was uniformly distributed within a plain sphere of radius
R, thus with a magnetic charge density ρm = 3qDW/4πR

3. The real distribution of the
magnetic charge is much more complex [16], [56]. Nevertheless, our approximation leads
to a compact analytical expression for the different energy terms and gives a reasonable
order of magnitude. Note that this magnetic charge depends on the domain wall position
zw, through R(zw).

By analogy with electrostatics, a dipolar field Hd is generated by the charged plain
sphere, with a total magnetostatic contribution 3πµ0M

2
s R

3/5. This contribution rapidly
grows with the wire radius like R3 which is consistent with the micromagnetic simulations
of the domain wall energy plotted in Fig. 3.2(b) as a function of R. The exchange energy
contribution can be estimated by applying the one-dimensional spin chain model [95] with
slowly varying magnetization. In this case [∇m(r)]2 ≈ (π/2R)2, so that the total exchange
energy contribution equals Aexπ

3R/3. To estimate the Zeeman energy contribution, we
neglected the inner structure of the domain wall and considered the Zeeman energy of
two adjacent uniformly magnetized domains located at the domain wall’s center position,
zw. The wall energy excluding the integration constant then becomes:

E(zw) =
3π

5
µ0M

2
s R

3(zw) +
Aex

3
π3R(zw)− 2µ0MsHappπ

∫ zw

−L/2
R2(z)dz (3.18)

and is depicted in figure 3.10(b). Note that is it compulsory analytically to consider the
finite length of the wire, so that the Zeeman energy is finite.

Both local minima and local maxima are found using energy minimization ∂E(zw)/∂zw=0,
which gives:

∂R(zw)

∂zw

(
18

5
+

l2exπ
2

3R2(zw)

)
− 4Happ

Ms

= 0 (3.19)

with lex =
√

2Aex/µ0M2
s . For a tanh-based profile and smooth modulation with (R2 −

R1)/(R2 +R1) << 1, the coordinates of minimum and maximum of energy reads

zmax,min = ±λ
4

arctanh
√

1− aHapp, (3.20)

where a = 5λ
9Ms(R2−R1)

[
1 + 10l2exπ

2

27(R1+R2)2

]−1

. The coordinate of the energy minimum zmin

corresponds to the domain wall pinned position. It corresponds to an internal effective
field Heff experienced at this point by the center of the domain wall:

Heff = −Happ = −1

a

(
1− tanh2(

4zmin

λ
)

)
. (3.21)

The domain wall depinning condition, at a given critical applied field value Hcrit, can be
defined as the convergence of two energy extrema at the same point, zmin = zmax (red
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3.4. Modulation under applied current

Figure 3.11: (a)Illustration of the domain wall under applied current in a modulated diameter
wire. (b) Spherical coordinate basis {er, eθ, eφ} for magnetization vector m and Cartesian
spatial coordinates x, y and z. The magnetization vector is drawn in the particular position
corresponding to θ = π/2, so that eθ = −ez. Adapted from [39].

curve in figure 3.10(b)). Here we derive zcrit = 0 for (R2 − R1)/(R2 + R1) << 1 (the
numerical solution of the equation (3.19) without this assumption gives slightly different
result [63]). The corresponding critical field Hcrit reads:

Hcrit =
9Ms(R2 −R1)

5λ

(
1 +

10l2exπ
2

27(R1 +R2)2

)
(3.22)

and is depicted in figure 3.10(c) and 3.10(d) as a function of the modulation parameters.
The domain wall repulsion from a modulation due Hmod, when not negligible, shifts
Hcrit towards higher values. Nevertheless, the analytical formula (3.22) provides a good
estimation of Hcrit and the relation between Hcrit and geometric parameters. A key finding
is that the critical field is proportional to the slope of the modulation (R2 −R1)/λ, with
a negligibly small exchange correction for small diameters.

The comparison between analytical formula (3.22) and micromagnetic simulations
reveals qualitatively similar tendencies. Moreover, small R2/R1 ratios and long λ, corre-
sponding to gently sloping modulations, ensure the best fit between the simulations and
the analytical expression. The cases for which the assumptions used in this model are too
drastic should be covered by micromagnetic simulations.

3.4 Modulation under applied current

In this section we describe the domain wall behavior under an applied current. As pre-
viously mentionned, the motion of a transverse wall in one dimensional structures (flat
strips, square and cylindrical section wire) has been described by a 1D model [27, 35, 47].
The idea is to use the same approach as this model to obtain an expression of the critical
current necessary to apply in order for the TDW to pass the modulation. Hence, we
will consider equilibrium states where the torque responsible for the wall motion induced
by the current is exactly compensated by the one induced by the internal field. This
approach is linked to the results of the previous section 3.3. We show that despite its
simplicity, it succeeds to describe qualitatively and, surprisingly, quantitatively, the be-
havior of this critical current. We adapted this expression for the two cases of abrupt and
smooth modulation previously introduced.
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3.4.1 The 1D model

As previously mentionned in section 1.2, the magnetization field under an applied spin-
polarized current obeys the LLG equation generalized with the spin torque

TST = −PµB

eMs

(j · ∇)m + β
PµB

eMs

m× (j · ∇)m (3.23)

We consider the current density j to be stationnary. When there is a geometric modula-
tion, the current density will adapt to it (see current density field lines in Fig. 3.11(a)).For
simplicity, we assume that it is constant in a cross section and parallel to the wire axis z
i.e. j = jz(z)êz. This approximation is suitable for a smooth modulation and valid away
from the abrupt modulation center. As a result the LLG equation simplifies to:

ṁ = −γ0m×Heff + αm× ṁ− PµB

eMs

jz∂zm + β
PµB

eMs

m× (jz∂zm) (3.24)

It is convenient to express the magnetization vector using the spherical coordinates (θ, φ)
(Fig. 3.11(b)) which gives m = (sin θ cosφ, sin θ sinφ, cos θ). Hence, with respect to the
(local) basis (êr, êθ, êφ), m = êr and Heff = Hrêr +Hθêθ +Hφêφ. By using the property
∂µm = ∂µθ êθ + sin θ∂µφ êφ with µ ∈ {x, y, z, t} induced by the constant norm constraint,
we get from (3.24) the following equations of motion:

θ̇ + α sin θφ̇ = +γ0Hφ −
PµB

eMs

jz∂zθ − β
PµB

eMs

jz∂zφ sin θ (3.25)

sin θφ̇− αθ̇ = −γ0Hθ −
PµB

eMs

jz∂zφ sin θ + β
PµB

eMs

jz∂zθ (3.26)

where Hθ = − 1
µ0Ms

δε
δθ

and Hφ = − 1
µ0Ms sin θ

δε
δφ

. We use the well known ansatz of the 1D

model (for a head-to-head wall):

θ(z, t) = 2 tan−1 exp

(
z − zw(t)

∆

)
(3.27)

φ(z, t) = φw(t) (3.28)

where zw, φw and ∆ are the domain wall’s position, angle and width respectively. These
are the so called collective coordinates [47, 97]. Here we want to emphasize that ∆ is
usually considered as a ”slave coordinate” that depends on φw(t). Here we will instead
consider it as a parameter that depends on the wall position (shown later). Using (3.28)
one can show (see appendix B.1) that the energy density doesn’t change w.r.t. the az-
imuthal angle φ, thus ∂φε = 0 leading to Hφ = 0. Using this ansatz, we can obtain by
substitutions from (3.25) and (3.26) the well known following equations:

θ̇ =
γ0

1 + α2
αHθ −

1 + αβ

1 + α2

sin θ

∆

PµB

eMs

jz, (3.29)

sin θφ̇ = − γ0

1 + α2
Hθ +

β − α
1 + α2

sin θ

∆

PµB

eMs

jz, (3.30)

Here we applied the useful property of (3.27) which is ∂zθ = sin θ/∆. We are interested
only in the equilibrium states where the domain wall settles at a given position zeq, for
a given value of applied current Japp. Knowing that θ̇ = −żw sin θ/∆, it corresponds to
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3.4. Modulation under applied current

the situation where the wall speed żw = 0, thus θ̇ = 0. The current density jz is related
to the applied current density Japp through jz = R2

1Japp/R
2(z). When we consider the

domain wall at position zw = zeq and we consider only the center of the wall, i.e. z = zw

(where the dipolar field is the strongest) we obtain this relation

Japp =
γ0α

(1 + αβ)

eMs

PµB

2R3(zeq)

R2
1

Hθ(zeq) (3.31)

where we estimated the size of the wall width ∆ ≈ 2R(zeq) (in concordance with our
simulation). Note that at the transverse wall center êθ = −êz. In the field driven case, if
we consider Hθ as an effective field such as Hθ = Hint + Happ, the equilibrium is reached
when:

Happ = −Hint(zeq) (3.32)

We observed in simulation that the internal energy of the system as a function of the wall
position does not change much as function of either the applied field or the current. This
is a manifestation of a quasi-rigid motion of the wall in the sens that only geometry will
deform the wall. It implies that the êθ component of the torque exerted by the internal
field Hθ (composed of exchange and dipolar contribution) is the same in both field-driven
and current-driven case. It means that we can use the expressions of the applied field
(3.17) and (3.22) derived in section 3.3 to estimate using (3.32), the internal field Hθ(zeq)
in (3.31) at the critical position z = zcrit. This position correspond to the last position
where the domain wall is at equilibrium. As a result we obtain

Jcrit =
γ0α

(1 + αβ)

eMs

PµB

2R3(zc)

R2
1

Hcrit (3.33)

where Hcrit ≡ Hθ(zc). For completeness, we can also obtain using (3.31) in (3.30) an
expression for the frequency of rotation of the wall (knowing φ̇w = 2πf):

f(zeq) =
PµB

4πeMs

R2
1Japp

αR3(zeq)
. (3.34)

Hence when blocked, the transverse domain wall is rotating at a fixed frequency.

3.4.2 Abrupt modulation

In the field driven case for an abrupt modulation, we derived the expression (3.17) of the
critical field. It is important to note that the critical position observed in the simulations
belong to the small diameter part. That is why we considered only the case where zw < 0
(region 1) when calculating the energy. If we also consider the case where zw > 0 (region
2), we obtain the following energies expressions:

E1(zw) = −2µ0MsHappπR
2
1zw + µ0M

2
s πR

2
1

(√
R2

2 + z2
w −

√
R2

1 + z2
w

)
+ C1 (3.35)

E2(zw) = −2µ0MsHappπR
2
2zw + µ0M

2
s πR

2
2

(
−
√
R2

2 + z2
w +

√
R2

1 + z2
w

)
+ C2 (3.36)

where C1,2 contain the wall energy Ew and the two constants coming from Ez and Emod.
These energies are represented Fig. 3.12(a) (the constants have been neglected for the
sake of lisibility). For an applied field of 20 mT and 50 mT, there exist a minimum and
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nanowire

Figure 3.12: (a)Energies (3.35) and (3.36) (without constants) vs wall position for different
values of applied magnetic field. The black curves correspond to cases where inflection points of
both sides are non-stationary. The red curves correspond to cases where inflection point of the
left side become stationary. (b) Position of minimum of energies vs the applied field. The small
radius R1 = 5 nm and the large radius R2 = 7.5 nm.

an inflection point on the right side as well. However, when the critical field is applied
(77 mT) this inflection point also becomes stationary meaning that the domain wall cannot
being trapped in the large section. Finding the minima of (3.35), we get the estimated
position of the TDW as function of the applied field (shown Fig. 3.12(b)).

Under an applied current it has also been observed in simulations that for low cur-
rents, the wall can be trapped in the small section (Fig.3.13(a) top). However, for a higher
current, the critical position seems to be located in the largest section region (Fig. 3.13(a)
bottom). This is a consequence of the electric charge conservation, which implies a ge-
ometric dependence of the current density. Thus, the current density is reduced in the
largest diameter part. Qualitatively, this situation can be mimicked using an energetic
picture. Using the energies (3.35) and (3.36) we can artificially replace the Happ using
the expressions (3.31) and (3.32) with R(zw) = R1 and R2 respectively. This gives us two
expression for the applied field as function of the applied current density

H1 =
(1 + αβ)

λγ0α

PµB

eMs

1

2R1

Japp (3.37)

H2 =
(1 + αβ)

λγ0α

PµB

eMs

R2
1

2R3
2

Japp (3.38)

The resulting energies are represented in Fig. 3.13(b). For low value of current (black
curve), we can see the existence of two minimums, one in both regions (notice also the
inflection points). It means that at low currents, the domain wall is expected to be trapped
in the small diameter section. For J = 1.3× 1011 A ·m−2 (red curve), the first inflection
point become stationary, but the second one is still non-stationary (the minimum still
exist) which implies that the domain wall should be trapped on the large section part.
For the critical current density (blue curve), the second inflection point becomes stationary
which suggest the domain wall will pass the modulation. Finding the minimums of (3.35)
and (3.36) with the applied fields (3.37) and (3.38) respectively, we get the estimated
position of the TDW as function of the applied current density (shown Fig. 3.13(c)).
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3.4. Modulation under applied current

Figure 3.13: (a) TDW trapped in (top) the little section and (bottom) the large section with
current density J = 1× 1011 A ·m−2 and J = 5× 1011 A ·m−2 respectively. The colorcode
represent mz.(b) Energies (3.35) and (3.36) with the applied fields (3.37) and (3.38) respectively
vs wall position for different value of applied magnetic field. The black curves correspond to
cases where inflection points of both sides are non-stationary. The red curves correspond to
cases where inflection point of the left side become stationary. The blue curve correspond to
the case where the inflection on the right side become stationary. (c) Position of minimum of
energies vs the applied current. The small radius R1 = 5 nm and the large radius R2 = 7.5 nm.

Knowing that the critical position of the wall is located in the large section region, we
can determine the expression of the critical current for this abrupt modulation case by
replacing the critical field in (3.33) by (3.17) with the positive zcrit (3.16) and R(zw) = R2:

Jcrit =
γ0α

(1 + αβ)

eMs

PµB

2R3
2

R2
1

Ms|zcrit|
2

(
1√

R2
1 + z2

crit

− 1√
R2

2 + z2
crit

)
. (3.39)

Comparing this expression with the simulation results (Fig. 3.14) we see a remarkably
nice qualitative and quantitative match between the two. However, since we know that
the estimation of the critical field seems to not give such a good quantitative match, it
seems like the quantitative agreement is the result of a compensation of the errors made
with the approximations of both field and current driven models.

3.4.3 Smooth modulation

In the field driven case for a smooth modulation, we derived the expression (3.22) of the
critical field. By using it in (3.33), we obtain
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Figure 3.14: Critical current density vs radius of the large section of the abrupt modulation.
The simulation results (points), expression (3.39) (solid line). The small radius R1 = 5 nm.

Figure 3.15: Critical current density vs (a) radius of the large section, (b) vs the modulation
length. The simulation results (points), expression (3.40) (solid line). The modulation length
λ = 100 nm for (a) and the large radius R2 = 7.5 nm for (b). The small radius R1 = 5 nm and
µ0Ms = 1 T.
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3.4. Modulation under applied current

Figure 3.16: Frequencies of rotation of the TDW vs the applied current density. The solid
line correspond to the equation (3.34) and the dots correspond to simulation results. The small
radius R1 = 5 nm, the large radius R2 = 7.5 nm and the modulation length λ = 100 nm. Adapted
from [39].

Jcrit =
9αγ0eM

2
s

20PµB

(R1 +R2)3(R2 −R1)

R2
1λ

(
1 +

10l2exπ
2

27(R1 +R2)2

)
. (3.40)

Here, similar to subsection 3.3.2, we have assumed zcrit
∼= 0, and ∆ ∼= 2R(zcrit) =

R1 + R2. If we compare the domain wall behavior under applied field (Fig. 3.10(d)) and
under applied current (Fig. 3.15(a)) in a smooth modulation, there is a major difference in
the efficiency of the driving force in both cases. The critical field Hcrit is almost linear with
R2 whereas Jcrit shows a 4th order polynomial of R2 dependence. The reason is twofold:
the current density decreases and the wall width increases as the section broadens. In
other words, the efficiency of spin torque decreases faster with the diameter increase than
the torque exerted by an external field.

Figure 3.15 compares the analytical solution with micromagnetic simulations. The
tendencies are similar, with even an excellent quantitative agreement in the limit of gentle
modulation. This validates the model, and the above conclusion.

The model also predicts the frequency of precession of the transverse component of
magnetization of the wall:

f =
PµB

2πeMs

R2
1Japp

αR2(z)∆
. (3.41)

The dominant effect is that of the internal field and not of the non-adiabatic spin torque,
resulting in the 1/(α∆) coefficient in this equation. This frequency is shown is plotted in
figure 3.16, for which similar to subsection 3.3.2, we estimated the wall-width parameter
∆ as ∆ ∼= 2R(z). Again, a good qualitative agreement is found with numerical simulation.
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3.5 Conclusion

We have derived analytical models to describe how a magnetic domain wall may go
through a modulation of diameter in a cylindrical nanowire, under the stimulus of ei-
ther a magnetic field or a spin-polarized current. Scaling laws obtained here may guide
experimentalists in designing the modulation with desirable properties. We examined two
opposite cases: the abrupt (step-like) and gently sloping modulation. For each case, we
calculated analytically the threshold value of the applied magnetic field and the applied
current as a function of the geometrical parameters. The relevance of the analytical re-
sults was confirmed by micromagnetic simulations, which reveal a quantitative agreement
for both modulation geometries. We obtained expressions of the threshold currents that
are proportional to the threshold fields, the domain wall width ∆, the factor R2(z)/R2

1

coming from the current conservation, and the spontaneous magnetization Ms. Indepen-
dently on the modulation type, the critical current increases much faster as a function of
the diameter difference in comparison to the critical field. It is related to the decrease
of the local current density, and the increase of the domain wall width. Moreover, if we
compare abrupt and smooth modulations, the critical thresholds in the first case increase
faster than in the second one. In other words, the pinning occurs to be more efficient with
an abrupt modulation.
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Chapter 4

Œrsted field impact on the
current-driven dynamics of a
Bloch-point wall

This chapter is focused on the Bloch-point wall behavior in a cylindrical nanowire under
applied current including spin-transfer and Oersted field effects. My theoretical work
benefited from a tight interaction with experimentalists and in particular from the inputs
of M. Schobitz, also a PhD student at SPINTEC. In this context, I took charge of massive
micromagnetic simulations, developed a large variety of dedicated post-treatment scripts
and methods for micromagnetic data, and contributed to the development of the analyt-
ical description of the Bloch-point wall behavior under Oersted field. The text of this
chapter is largely adapted from an article published in Physical Review B in which I con-
tributed, namely Mechanism of fast domain wall motion via current-assisted Bloch-point
domain wall stabilization [62]. The text has been also extended by unpublished details
and discussions in sections 4.2 and 4.5.

4.1 Motivation

The existence of the BPW was confirmed experimentally at rest in 2014 [98] using the
x-ray magnetic circular dichroism photo-emission electron microscopy (XMCD-PEEM) in
shadow mode (Fig. 4.1). However, the first report of its motion under magnetic field was
disappointing [99]: unexpectedly, a change of topology occurs between the BPW and the
TVW, expected to lead to instabilities and low speed. More recently however, we showed
that the situation is drastically different for motion driven with a spin-polarized current
[28]. BPWs remain stable and with speed exceeding 600 m · s−1, setting an experimental
record for a purely STT-driven case. We also showed that the circulation of observed
BPWs was deterministically linked by the last current pulses (Fig. 4.2 (a) and (b)) for
an amplitude superior to a certain threshold. In fact, a BPW with a circulation negative
with respect to the current direction will switch its circulation.

The current-induced dynamics of BPWs inside cylindrical nanowire has already been
theoretically studied in [35] by considering the spin-transfer torque. It has been shown
that during its propagation, the BPW (called vortex in that work) can change it’s cir-
culation. However, it predicted that the switch of circulation should happen for BPWs
with circulation positive with respect to the current direction, thus the opposite of what
is observed in the work [28]. As a result the spin-transfer torque alone can’t explain
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Figure 4.1: Schematic of shadow XMCD-PEEM and the contrast resulting from a BPW.
Adapted from [28].

(a)

(b)

1 μm

Figure 4.2: (a), (b) Consecutive XMCD-PEEM images of a nanowire with a tilted x-ray
beam (orange arrow). The azimuthal circulation of the four BPWs seen in the nanowire shadow
is indicated by the white arrows, consistent with the Œrsted field of the previously applied
current (blue and red arrows in the right-hand schematic, respectively). From (a) to (b), a 15 ns
and 1.4× 1011 A ·m−2 current pulse switches 75% of BPWs. DW displacement from (a) to (b)
cannot be discussed as directly resulting from spin-transfer torque, and the density of current
lies below the threshold for free motion. Adapted from [28].
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4.2. Transformation of the TVW into a BPW

such behavior. This phenomenon is explained by the presence of the magnetic field gen-
erated by the current itself, the Œrsted field. Thus, the Œrsted field seems crucial for
understanding the unusually-high speed of BPWs experimentally, and as such, deserves
a thorough investigation.

The purpose of this chapter is to provide a comprehensive picture of the effect of the
Œrsted field on domain walls in cylindrical nanowires, to set the ground for future experi-
mental investigations, and for example guide the search for the magnonic regime occurring
around 1 km · s−1, also called the spin-Cherenkov effect [60]. First, we examine the pro-
cesses involved in the stabilization and selection of a specific circulation of the BPW, and
then revisit the expected speed of BPWs under both spin-transfer and Œrsted field. For
the simulations we considered two materials: Fe20Ni80 (permalloy) with the exchange stiff-
ness Aex = 1× 10−11 J ·m−1 and the spontaneous magnetization Ms = 8× 105 A ·m−1

and Co20Ni80 with Aex = 1.1× 10−11 J ·m−1 and Ms = 6.7× 105 A ·m−1. The dipolar
exchange length lex =

√
2Aex/µ0M2

s is about 5 nm and 6.25 nm for each materials, re-
spectively. The tetrahedrons that compose the meshes have a characteristic length of 4
nm, which is inferior to the exchange length of both materials. We considered a spin po-
larization rate P = 0.7 for both materials. In this chapter, we present results with units
of length and current normalized with micromagnetic quantities, making the present work
scalable to any soft magnetic material.

4.2 Transformation of the TVW into a BPW

Experimentally, soft magnetic nanowires exhibit domain walls of both TVW and BPW
types, in the as-grown state as well as following ac demagnetization along a direction
transverse to their axis [98, 100, 101], or motion of walls under magnetic field [99]. To
the contrary, only BPWs are observed following the application of pulses of current [28],
which is not explained by considering the effect of spin-transfer alone [35].

To understand this, we simulated the response of TVWs in Co20Ni80 nanowires subject
to current pulses, taking into account the effect of the resulting Œrsted field only. We
evidenced the existence of a threshold current, below which the structure of the TVW is
only deformed, while above it the TVW is converted to a BPW. This occurs through the
peripheral motion of the surface vortex and antivortex towards each other (Fig. 4.3(a)-
(b)), until they merge, nucleating a Bloch point that then moves radially towards the
axis, ending in a BPW (Fig. 4.3(c)-(d)). The BPW then reaches a steady configuration
under the current pulse, and remains upon removal of the Œrsted field, with a circulation
positive with respect to the direction of applied current j. From a topological perspective,
this process is similar to the dynamical transformation of a TVW subject to a longitu-
dinal magnetic field [99]. Handwavingly, in the present case, the transformation can be
understood, as the BPW and the Œrsted field share the same azimuthal symmetry, thus
lowering the energy of the system against a TVW.

For a diameter of 90 nm, our simulations point at a threshold current for the TVW-
BPW transformation of 2.8× 1011 A ·m−2. This explains why in [28], one observes only
BPWs after current pulses, whose magnitude was rather around 1012 A ·m−2, suitable for
the spin-transfer torque motion of domain walls.
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(a) (b) (c) (d)
π

-π

φ

z
n

V

A

BB

50 nm

z

+1-1 0

mρ

0.00 ns 1.57 ns 2.87 ns 3.51 ns

B

V

A

V

A

V

A

Figure 4.3: TVW transformation into a BPW under Œrsted field coming from a current
density j = 0.4× 1012 A ·m−2, based on four snap shots over time (a to d), in Co20Ni80 wire
with diameter 90 nm. The top row consists of unrolled maps of surface magnetization, the
color coding its radial component mρ. The dashed lines correspond to mϕ = 0 and the solid
lines correspond to mz = 0. The bottom row is the map of surface magnetization viewed with
perspective from the inside of the wire, to which is added a volumic isoline corresponding to
|mρ| = 1 and possibly a dot corresponding to the position of the Bloch-point. V and A highlight
surface vortex and antivortex, respectively.
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4.3 Switching of circulation of the Bloch-point wall

In this section we examine in detail the impact of the Œrsted field on the circulation
of a BPW which may switch its circulation to the opposite direction. We provide a
phenomenological description, a microscopic and a topological understanding, and the
threshold of current required for the selection.

4.3.1 Phenomenology of the switching of circulation

We describe here what becomes of a BPW when subject to an Œrsted field, depending on
its initial circulation. In the present context we define the sign of circulation with respect
to the êϕ-axis, itself defined against the êz direction : for positive circulation C+ the
azimuthal magnetization is parallel to the êϕ-axis, and for negative circulation C− it is
antiparallel to êϕ-axis. First we consider a head-to-head wall with no loss of generality, as
a head-to-head domain wall and a tail-to-tail domain wall are equivalent through applying
time-reversal and symmetry operation with respect to the xy plane. In sections 4.3.2 and
4.3.3 we nevertheless compare both. At this stage we disregard spin-transfer effects, so
that following inertia-related motion in the first stages of dynamics, the walls remain
immobile after reaching their final configuration.

Unless otherwise stated, the simulations have been conducted using α = 1. This is
an unphysically-large damping, however suitable to describe quasistatic situations in a
realistic sample, such as pulses of current with rise time of a few nanoseconds, relevant
to our experimental situation [28]. Therefore, we describe here a situation close to the
minimum-energy path for magnetization processes. Considering a realistic damping value
with sub-nanosecond rise time would induce complex ringing effects, like for precessional
switching of macrospins [102]. We performed simulations with both wires and thick-wall
tubes, leading to negligible differences. Here, we illustrate the process with a Permalloy
wire with diameter 90 nm.

Figure 4.4 describes the behavior of the BPWs initially C− or C+, while applying
a positive current, thus favoring C+. Figure 4.4(a) qualitatively illustrates the rotation
of magnetic moments in domains towards the Œrsted field at the wire surface and the
evolution of the domain wall width up to the switching process. Figures 4.4(b)-(e) show
the value over time of four quantities illustrating the process at play: (b) the Thiele wall
parameter, (c) micromagnetic energies, the maxima and minima of the (d) azimuthal and
(e) radial components of magnetization at the external surface. The BPW with initially
positive circulation increases its width, reaching a plateau after about 0.5 ns (Fig. 4.4(b)).
This is explained by the tilt of magnetization towards the azimuthal direction in the
domains, thereby lowering the effective anisotropy inside the domain wall against the
azimuthal direction, and thus increasing its width. The tilt reflects in the initial varia-
tion of max(mϕ) also evidenced for C− (Fig. 4.4(d)), which is discussed in more detail
in Appendix C.3. The exchange energy increases as domains display a partial curling,
the dipolar energy decreases as the head-to-head wall gets wider, and the Zeeman energy
due to the Œrsted field decreases both in the domains and in the domain wall. The
behavior of the BPW with negative circulation depends on the magnitude of the current.
Below a critical current density Jc, the BPW contracts until it reaches a stable width.
Above this threshold, the wall width decreases further until it reaches a minimum, before
increasing rapidly towards the width of the BPW with positive circulation, all energies
also coinciding (Fig. 4.4(c)). This suggests a reversal of circulation of the wall, con-
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Figure 4.4: (a) Schematic of the circulation switching for a BPW initially C−. (b)-(e) Time
evolution of four quantities illustrating the response of BPWs under the Œrsted field in a permal-
loy wire with diameter 90 nm and the applied current density 1.2× 1012 A ·m−2, corresponding
to an Œrsted field of 34 mT at the external surface: (b) the Thiele wall parameter, (c) micro-
magnetic energies, and the maxima and minima of the (d) azimuthal and (e) radial components
of magnetization at the surface of the wire. The a, b, c, d, e, f labels correspond to timestamps
of Fig.4.5. The solid line stands for initially negative circulation C− and dashed line for initially
positive positive circulation C+. Adapted from [62].

firmed by Fig. 4.4(d): in the initial state min(mϕ) = −1 reflects the negative circulation,
while max(mϕ) = 0 reflects magnetization in the domains. In the final state, i.e., after
switching, max(mϕ) = +1 now reflects the positive circulation, while min(mϕ) reflects
the tilted magnetization in the domains. The variation of the radial component mρ is by
far more complex (Fig.4.4(e)), suggesting a non-trivial switching process, detailed in the
next section.

4.3.2 Details of the circulation switching mechanism

The BPW texture displays the rotational symmetry at rest. This symmetry is not con-
served through the switching process, which is far from a simple coherent rotation of
the wall’s inner degree of freedom. The nontrivial evolution in time of the out-of-plane
magnetization component mρ is illustrated in Figure 4.5. To follow the magnetization
transformation both at the wire surface as well as in the volume we plotted the unrolled
maps of mρ on the external wire surface (top row) and the same mρ surface maps seen
from inside as a 3D view, completed with BP trajectories in the volume (bottom row).

Under the applied current, [Fig.4.5(a)], magnetization in the domains rotates towards
the azimuthal direction to follow the Œrsted field. Given the azimuthal rotation in the
domains, the surface map has some similarity with a 180° domain wall in a thin film,
made of a central micro-domain delimited by mϕ = 0 isovalues (dashed back lines) and
surrounded by two 90°-like walls. The central micro-domain is characterized by an outward
radial component (mρ > 0), a well-documented fact [11, 60] for a wire at equilibrium and
visible on Fig.4.4(e) at t = 0. Its sign results from positive magnetic charges of the
head-to-head domain wall considered. On Fig.4.5(a) an instability is developing, with
locus of maximum or minimum of mρ at mϕ = 0. At these locations the torque due to
Œrsted field is maximum as it is perpendicular to the local magnetization.The instability
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Figure 4.5: Snapshots illustrating the switching mechanism of BPW circulation in a permal-
loy wire with diameter 90 nm, for applied current amplitude j = +1.2× 1012 A ·m−2. (a)-(f)
correspond to the time labels in Fig.4.4(e). Top row: unrolled maps of mρ at the wire surface.
n indicates the direction of the outer normal of the wire surface. Dashed lines correspond to
mϕ = 0 isovalues. Solid lines correspond to mz = 0 isovalues. Bottom row: same surface maps
of mρ seen from inside of the wire as a 3D view. Colored lines correspond to |mρ| = 1 isoval-
ues. Green dots show the position of the BP. V and A highlight surface vortex and antivortex,
respectively. Adapted from [62].
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Figure 4.6: Snapshots illustrating the switching mechanism in a permalloy tube with diam-
eter 90 nm for applied current amplitude j = +1.0× 1012 A ·m−2. The mρ colored maps seen
from inside of the tube are the counterparts of Fig.4.5. Colored lines correspond to |mρ| = 1 iso-
values. Green dots show the position of the BP. V and A highlight surface vortex and antivortex,
respectively. Adapted from [62].
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Figure 4.7: Unrolled mρ colored maps at the wire surface illustrating the switching mechanism
in a permalloy wire with a head-to-head BPW (top row) and tail-to-tail BPW (bottom row).
In both cases the circulation is initially negative C−, while the Œrsted field direction promotes
positive circulation C+. Dashed lines correspond to mϕ = 0 isovalues. Solid lines correspond
to mz = 0 isovalues. V and A highlight surface vortex and antivortex, respectively. The normal
n indicates the direction of the outer normal to the wire surface. All maps are plotted for the
wire diameter 90 nm and for applied current amplitude j = +1.4× 1012 A ·m−2, corresponding
to an Œrsted field of 39.5 mT at the external wire surface. Adapted from [62].

is accompanied with the deformation of the mz = 0 isoline (solid black line). This behavior
is consistent with the physics of walls in thin films, which tend to be of asymmetric Néel
type or Bloch type to reduce the magnetostatic energy [95].

When reaching locally |mρ| = 1, the instability develops in a pair of vortex (V) and an-
tivortex (AV) at the wire surface [Fig.4.5(b)]. This corresponds to event b on Fig.4.4(e),
following a progressive decrease of min(mρ) and reflecting the rise of the instability. For
topological reasons (discussed in the next section), these V and AV result from the con-
tinuous deformation of the ground state and thus share the same polarity (the same sign
of mρ). The polarity happens to be negative, possibly because it allows to decrease the
demagnetizing energy. Then, the V and AV move away one from another along the wire
perimeter, which leaves in-between an area largely parallel to the magnetization direction
in the domains [Fig.4.5(c)]. The phenomenon at play is clear: it is similar to a nucleation-
propagation process, however not for an extended domain, but for the internal degree of
freedom of a domain wall, such as the switching of the core of a vortex [50], or of the Néel
cap in a Bloch wall [103].

The isolines |mρ| = 1 in the 3D view allows to track the extent of the radial pocket
inside the wire. From Fig.4.5(b) to (c) (bottom row), it extends towards the axis, even-
tually reaching the existing Bloch point. After that, the Bloch point starts to move along
this isoline towards the surface vortex, until it vanishes from the volume. The latter
event [Fig.4.5(d)] is accompanied with the change of the vortex polarity. In Fig. 4.4(e)
this event correspond to the abrupt change in max (mρ) due to the small size of the BP,
and the instantaneous character of a change of topology. At this stage the wall is of
transverse-vortex type, for which the transformation back to the Bloch point under ex-
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4.3. Switching of circulation of the Bloch-point wall

ternal stimulus is similar to the situation described in Ref. [104]: the V and AV move
further along the wire perimeter, until they merge [Figs.4.5(e),(f)]. This corresponds to
event f on Fig.4.4(e), which this time is associated with merge of V and AV of the same
polarity and thus the creation of a BP. Finally, the new BP moves towards the center of
the wire, ending in an immobile BPW with positive circulation.

We highlight below a few other features of the switching mechanism. First, it is similar
in thick-walled tubes, except the lack of the BP in the volume originally [Fig.4.6(a)]. The
latter implies the additional step of a BP nucleation by means of V/AV pair creation and
transformation [Fig.4.6(b)] at the inner surface. Then the BP travels towards the outer
surface[Fig.4.6(c)]. Later a new one is created, travels towards the inner surface and
annihilates[Fig.4.6(d)].

Second, the mechanism may become more complex for higher current densities, imply-
ing several pairs of V/AV. For example, Fig.4.7(a)-(d) show the case of a permalloy wire
with diameter 90 nm and j = 1.4× 1012 A ·m−2. The switching process now involves two
pairs of V/AV. One pair interacts first with the BP on the axis, switching the polarity
of the vortex. At the end of the process the V/AV pair with the same polarity does not
nucleate a BP, while the V/AV with opposite polarity does, leading again to the same
final state, a BPW with positive circulation.

Third, Figure 4.7(e)-(h) also illustrates the equivalence of behavior of head-to-head
and tail-to-tail domain walls, as expected. The situations displayed in the top and bot-
tom rows of Fig.4.7 are equivalent through applying two symmetry operations: time-
reversal (reversing both magnetization and applied current) and mirror symmetry around
a plane containing the axis (e.g., flipping top and bottom in the surface maps displayed).
Accordingly, it can be checked that the top and bottom rows are equivalent under these
two symmetries.

4.3.3 Topological description of the switching of circulation

In this section we analyze the switching process from a topological point of view. To do
so, we calculate the so-called winding numbers, which measure the magnetization vector
curling. This allows one to establish general features for the switching process.

For isotropic spherical spins, parametrized as m = (m1,m2,m3), the S2-winding num-
ber reads [105], [106]:

w =
1

4π

∫
M

m · (∂1m× ∂2m) dx1dx2, (4.1)

where x1 and x2 are arbitrary curvilinear coordinates in real space, and ∂i = ∂/∂xi.
In Cartesian coordinates this expression is often referred to as skyrmion number. The
manifold M is usually understood to be either the compactified plane R2 (V and AV in a
thin film), or a 2-sphere S2 (BP in the volume).

In practice, the application of Eq.4.1 to the surface texture with possibly a V or
AV yields locally a half-integer number w = qp/2, where q is usually referred to as the
topological charge (or topological vorticity, or S1-winding number), and p the polarization
[107]. V and AV are characterized by opposite topological charges: q = +1 and q = −1,
correspondingly. The positive polarization p = +1 indicates the parallel alignment of
the V/AV core with the outer normal and the negative p = −1 indicates the antiparallel
alignement. The pair of V/AV with the same polarity has total w = 0 and thus may
be deformed continuously into an uniform state. In the case of BP texture in volume,
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Eq.4.1 yields w = ±1, where positive sign indicates tail-to-tail BP type and negative sign
head-to-head type.

In our study we consider topological objects in the volume (BP) and at the wire
surface (V/AV). Strictly speaking, their winding numbers obtained with the same Eq.4.1
cannot be directly compared, and their sum should not obey any conservation law due to
their contrasting geometrical nature. Conservation law may be established, for example,
for purely flat nanomagnets which topological objects share the same manifold [108].
Nevertheless, the assessment of the total winding number change at the surface wsurf and,
separately, in the volume wvol reveals empirical rules for all switching processes described
in this paper.

All snapshots in Figure 4.5 may be classified into three topological situations: the
BP is in the volume (a)-(c), the BP left the volume and caused a change of V polarity
(d)-(e), the BP reenters the volume (f). Corresponding winding numbers are summarized
in Table 4.1.

Table 4.1: Winding numbers calculated for Figure 4.5.

figure labels (a), (b), (c) (d), (e) (f)
ωsurf 0 +1 0
ωvol −1 0 −1

The change in wsurf and wvol between (c) and (d) events, as well as between (e) and
(f) events obeys

∆ωsurf = ∆ωvol. (4.2)

This condition is also followed for thick-walled tubes [Fig.4.6] in the presence of inner and
outer tube surfaces with normals pointing, correspondingly, towards negative and positive
ρ-direction. Corresponding winding numbers are summarized in Table 4.2.

Table 4.2: Winding numbers calculated for Figure 4.6.

figure labels (a) (b) (c) (d)
ωin

surf+ω
out
surf 0 + 0 −1 + 0 −1 + 1 −1 + 0

ωvol 0 −1 0 −1

Moreover, the condition Eq.4.2 is also satisfied in the case of multiple V/AV pairs
formation, which happens with rising current amplitude. Figure 4.7 illustrates the sit-
uation for which the initial instability creates the first V/AV pair of V and AV of the
same polarity similar to Fig.4.5 and further evolves towards a more complex texture with
two extra V/AV pairs identified by mz = 0 and mϕ = 0 isolines crossing. The shared
polarity of each new V/AV pair is not necessarily the same as for the previously created
pair. Moreover, in most cases we note that each additional pair has opposite polarization
with respect to the previous pair, which is consistent with the hypothesis of the overall
out-of-plane component minimization and the reduction of associated demagnetizing field
penalty in the system. The corresponding winding numbers assessment is summarized in
Table 4.3.

The situation looks equivalent for head-to-head and tail-to-tail BPWs, except that in
the first case the BP interacts with a V by changing its polarity and in the second case
with an AV in order to satisfy Eq.4.2. No matter how many intermediate V/AV pairs
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4.3. Switching of circulation of the Bloch-point wall

Table 4.3: Winding numbers calculated for Figure 4.7.

figure labels (a), (b) (c) (d) (e),(f) (g) (h)
ωsurf 0 +1 0 0 −1 0
ωvol −1 0 −1 +1 0 +1

were created during the switching process, the starting V/AV creation and final V/AV
annihilation events always follow the same pattern.

The V/AV pair creation implies the additional exchange energy cost [Fig. 4.4(c)], and
thus the threshold to be overcome for BP circulation switching. In the next section we
calculate the corresponding critical current.

4.3.4 Critical current density of the switching of circulation

Here we are interested in describing the minimum current Jc required to switch the cir-
culation of a BPW, from initially antiparallel to parallel to the Œrsted field. The deter-
mination of a switching threshold against field or current is a delicate issue in numerical
micromagnetism. Indeed, the computation time needs be finite in practice, so that a
criterium is required to decide whether switching would not occur for a more extended
time. A standard method to circumvent this difficulty is through performing a scaling of
a parameter, for instance susceptibility below the threshold [109, 110], or the switching
time about the threshold [111, 112]. An interpolation through a few points and intercept
with an axis then provides the threshold with high accuracy. In the present case, we
consider the critical time τc required for switching, above the threshold current.

The first step is to exhibit a criterium to define τc, as the complex and parameters-
dependent dynamics revealed in section 4.3.2 does not leave us with an ubiquitous one.
After examination of various possibilities, the most robust choice turned out to be the
time it takes for min(mϕ) at the external surface of the wire to change sign, directly
highlighting the change of BPW circulation. In practice, the precise time for the change
of sign is derived by fitting the curve in Fig.4.4(d) using an atanh function.

The second step is to perform an interpolation, which requires a guess for the associated
scaling law. A simple physical view is the following: the threshold current Jc is associated
with a critical slowing down of dynamics, and thus to the divergence of the characteristic
time. A current density j applied above the threshold suddenly brings the system out-of-
equilibrium, giving rise to an effective field linear with j−Jc, to first order. The associated
Kittel precessional frequency is expected to scale with this quantity, so that the switching
time shall scale with (j − Jc)

−1. The inverse critical time indeed behaves fairly linearly
versus the current density whatever the material or geometry, wire or tube [Fig.4.8(a)].
The slight curvature arises probably because the Kittel’s view for precession is too crude
for the highly non-uniform process considered. To account for this curvature, in practice
we used the phenomenological scaling law to fit these plots and extract precisely Jc:

τc = σ0(j − Jc)
−p (4.3)

In order to come closer to the experimental case, we considered more realistic damping
parameters α, and also the effect of spin transfer, besides the Œrsted field [Fig.4.8(b)].
The switching time is largely affected by these parameters, however the threshold current
Jc is not. This shows that the present results remain valid even for current pulses with a
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Figure 4.8: Inverse switching time versus applied current density, for nanowires (full symbols)
or nanotubes (open symbols) of external diameter 90 nm and composition either Fe20Ni80 or
Co20Ni80. The dashed lines corresponds to the fit using the power law of Eq.4.3. (a) Comparison
for wires and tubes, with α = 1. (b) Comparison for several α values without and with spin-
transfer torque effect for Fe20Ni80. Adapted from [62].

sub-ns rise time, and that the Œrsted field is indeed the crucial and largely dominating
reason for the switching of circulation.

Finally, to provide a complete view of the switching process, we evaluated the threshold
current Jc against the radius R, illustrated on Fig.4.9(a) based on tubes. Plotting Jc

against 1/R3 reveals a close-to-linear law [Fig.4.9(b)]:

Jc ≈ C
A

µ0MsR3
, (4.4)

with C a dimensionless coefficient. This scaling law is supported by an analytical model
balancing exchange with Œrsted Zeeman energy in the wire geometry (Appendix C.3),
and partly by dimensional analysis (Appendix C.2). Let us comment the impact of this
result. First, Eq.4.4 is valid for any magnetically soft material, upon the proper scaling
of length and current density (Appendix C.1):

j̃c = (C/2)r−3, (4.5)

with r = R/`ex the dimensionless radius. This law predicts a switching current only 20 %
larger than the experimental one. We consider that this is a fair agreement, considering
error bars on exchange stiffness, material composition, and possible sample defects or the
role of temperature during the current pulse in the experiments. Second, the switching
current reaches experimentally unpractical values below R ≈ 30 nm (circa 6`ex). This
means that the investigations published previously and neglecting the Œrsted field remain
valid in the low-radius regime, the circulation of BPWs tending to switch positive with the
direction of wall motion [11, 60], thus with the flow of electrons and hence negative with
the direction of current. Also, there must exist a threshold regime where the effect of the
Œrsted field and the chirality of the LLG equation compete, leading to an unpredictable
circulation and wall speed. Conversely, for large radius note that the azimuthal tilt of
magnetization in the domains scales with the same 1/R3 law (see Appendix C.3). This
means that circulation switching should have no limit for large radius, occurring always
for the same wall angle, around 270° following Fig.4.4.
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4.4 Spin-transfer-driven motion on the BPW under

Œrsted field

The Œrsted field proves crucial in experiments to stabilize BPWs, and it selects a sign
of circulation of the BPW opposite to the one expected from the chirality of the LLG
equation during motion, if the current is large enough [35]. Yet, the Œrsted field does
not break the symmetry between the two domains, and thus cannot drive a steady-state
motion, for which spin-transfer torque remains crucial. Here we bring together the two
effects, to elucidate to which extent the speed predicted so far based on spin-transfer
alone, remains relevant. As discussed in 2.5, to avoid the numerical pinning of the BPW
subjected to electrical current we substitute the wire by a thick-walled tube of the same
diameter with a PBPW. Figure 4.10(a) plots the PBPW speed v as a function of applied
current, including spin-transfer and Œrsted field effects. For simplicity we start directly
with the PBPW circulation favorable to the Œrsted field to avoid the circulation switching.
For current amplitudes relevant experimentally, the PBPW dynamics obeys the steady
regime equation

v =
β

α
u. (4.6)

We attribute the discrepancies between Eq.4.6 and micromagnetics at high speeds to usual
numerical artifacts related to the energy over-dissipation [37]. As expected, we did not
observe any signature of Walker breakdown and did not find any significant change in
velocity related to the presence of the Œrsted field, as illustrated in Fig.4.10(b).

4.5 Domain wall inertia

When a current is applied, we have shown that the Œrsted field will cause an expansion
or a contraction of a BPW depending on its circulation (sec. 4.3.1). While the current in
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Figure 4.10: BPW speed vs applied current density for Co20Ni80 thick-walled tube with outer
diameter 90 nm and inner diameter 10 nm. Solid black lines correspond to Eq.4.6. (a) Both
spin-transfer and Œrsted effects are considered for different values of β/α and α = 0.05. (b)
Comparison between purely spin-transfer case and spin-transfer together with Œrsted field case
for α = 0.05 and β = 0.15. The dashed line is a linear fit. Adapted from [62].

simulations is continuously applied at the same amplitude (DC current), experimenters
use current pulses. During a pulse, the domain wall will reach a propagation state of higher
energy than the initial equilibrium state. At the end of the pulse, the domain wall will
relax toward a lower energy state (the initial equilibrium state but shifted in position).
During this relaxation process, the wall will continue to move due to its inertia. It is
therefore important to know how the BPW behaves under the inertia when the current
amplitude has reached zero. I simulated two BPWs of different circulation in a Fe20Ni80

thick-walled tube with outer diameter 90 nm and inner diameter 10 nm. I considered
an applied current j = 0.8× 1012 A ·m−2 (inferior to the critical current for the case of
negative circulation) for a duration of few nanoseconds, sufficient to reach a stationary
propagation state, before cutting it off. The evolution of the position of both BPW with
opposite circulation is shown in Fig.4.11. After that the current has been cut off, we
can see (blue and red lines) that each wall propagates, due to inertia, for a duration
inferior to the nanosecond until it stops, reaching an equilibrium position. The direction
of propagation under the inertia is circulation dependent: if the circulation is negative
(respectively positive), the BPW propagates in the same (resp. opposite) direction as the
one of the electron flow. This result is expected from the LLG equation chirality. We also
see that the resulting displacement increases when the damping parameter α decreases,
giving an order of magnitude that goes from few tens of nanometers to 100 nm.
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Figure 4.11: Bloch-point wall’s position vs time for (a) negative circulation, (b) positive
circulation. The black line with squares corresponds to the case with the current applied j =
0.8× 1012 A ·m−2, and the lines with triangles correspond to the case without current for two
values of alpha. The system is a thick-walled tube of external diameter 90 nm and internal
diameter 10 nm.

4.6 Conclusion

We reported recently the key role played by the Œrsted field in cylindrical soft magnetic
nanowires, to stabilize Bloch-point walls (BPWs) and reach speed > 600 m · s−1 through
spin-transfer torque [28].

Using micromagnetic simulations, we considered a transverse-vortex wall under the
influence of the Œrsted field and showed that it transformed itself into a Bloch-point
wall with the same circulation as the field. This transformation is characterized by the
motion of both the vortex and the anti-vortex that constitute the wall, toward each other.
It is then followed by their annihilation which inject a Bloch-point (preserving the wall
polarity) inside the volume. The threshold current that triggers this transformation was
found to be one order magnitude lower than the current values used in the experiment [28].
This shows that the Œrsted field stabilizes the Bloch-point wall type.

We then considered a Bloch-point wall under the influence of the Œrsted field for
both circulations. For both cases, the magnetization in the domains tends to align with
the field. When the circulation of the BPW is the same as the field, the wall width
increases until it reaches a maximum. When the circulation is opposed to the field, the
wall contracts until its width reaches a minimum. If the current is superior to a threshold,
it breaks its structure, and the wall transform into a BPW with an opposite circulation.
We showed that the threshold current is of the same order as the experiment [28], which
shows that the Œrsted field plays the leading role in the circulation switching phenomenon
observed. This threshold seems to follow a 1/R3 dependence and should apply for any
soft material.

We also showed that the mechanism of the switching of circulation is not a coherent
switching of the magnetization field, but rather, it involves the creation and annihilation
of vortex-anti-vortex pairs and Bloch-points. Despite this complexity, the type of objects
that appears during the transformation must respect a certain topological rule resulting
from the continuity of the magnetization field. Meaning, the change of the winding number
associated to the surface correspond to the change of the winding number associated to
the volume.
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Furthermore, we considered a thick-walled tube with what we call a Pseudo-Bloch-
point wall inside. The main difference between this wall and the BPW is the absence of
a Bloch-point in the case of the tube. We compared their structure and their dynamics.
It results that the structure at the surface is very similar but inside the volume, they
are different. We also showed that the circulation switching does occur for a PBPW for
a threshold current slightly higher than the one of the BPW. Moreover, the switching
mechanism is more complex. This additional complexity is due to the presence of the
internal surface of the tube that allows the creation and annihilation of a vortex-anti-
vortex pairs and Bloch-points. Finally, we have shown that the speed of the domain wall
is largely determined by the spin transfer effect for the case of a BPW with the same
circulation than the one of the Œrsted field.
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Chapter 5

Conclusions and perspectives

To conclude, this manuscript presents a theoretical study on the current-induced dy-
namics of domain walls and associated critical phenomena, within two types of circular
section nanowires. We combined analytical calculations and micromagnetic simulations
performed with our in-house software FeeLLGood.

Chapter 3 focused on a transverse wall (TW) behavior in the smallest diameter section
of the nanowire presenting a localized modulation in diameter. Such modulation acts as
a potential barrier which implies that some threshold driving force must be applied to
overcome the barrier. We calculated analytically the threshold value of both the applied
magnetic field and the applied current as a function of the geometrical parameters. The
analytical model developed is a simple scaling law, which may be useful in resolving
experimental and nanofabrication issues.

While the chapter 3 treats a single modulation (a part of the geometrical protrusion)
to establish the basis of the pinning phenomenon, further investigations should be focus
on a single and multiple protrusions, which are relevant for applications. In our recent
work, implying only the applied field and a single protrusion [39], we have shown that
the protrusion length is the additional key parameter and may influence the pinning
conditions. This study should be pursued and should be generalized for the applied
current case.

While the control of the domain wall position may be done using geometric modu-
lations studied in this manuscript, other alternatives and related nanofabrication con-
straints are discussed in the literature. For example, several studies are dedicated to the
multisegmented nanowires with alternating ferromagnets of different magnetic parame-
ters [101, 113–115] or to the cylindrical geometries including alternating tube and wire
segments [84]. Both situations offer a list of open questions to be studied theoretically.

Further generalization may imply wires with several protrusions and domain walls,
and the array of several nanowires. It has been shown for nanostrips that domain walls
interact with each other when they are either in adjacent wires [96] or in the same wire
[116, 117]. Also, the Œrsted field generated by adjacent nanowires should be considered.
Consideration of these aspects is crucial to reach the high storage densities for memory
applications.

Other phenomenon to be considered is the Bloch-point wall (BPW) behavior in the
presence of the diameter or material properties modulations. These magnetic textures,
naturally more stable in large diameter wires, are particularly interesting for reduction of
the generated stray field, the non-desirable effect in the dense arrays of several nanowires.
Moreover, BPW demonstrate fast dynamics crucial for high speed recording and inaccessi-
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ble in systems with TWs in circular cross-section nanowires. However, the minimum wire
diameter, required for the stability of the BPW (> 7 `ex), implies that the compromise
should be found in order to accommodate the wire diameter constraint with the desirable
small size of the device.

Chapter 4 studies theoretically the impact of the Œrsted field and spin-transfer on
a BPW inside a cylindrical nanowire. This study was partly motivated by our recent
work [28], in which we reported the key role played by the Œrsted field in stabilizing
BPWs, which are able to reach speeds up to > 600 m · s−1 under applied current.

In this manuscript, we used micromagnetic simulations, analytical modeling and topo-
logical arguments to understand in detail and quantitatively the underlying phenomena.
In particular the switching from negative to positive circulation of the BPW, with respect
to the applied current. The main result is the 1/R3 dependence of the switching thresh-
old, with R the wire radius, with the effect of the Œrsted field becoming predominant for
wire radius above typically 30 nm. On the contrary, the speed of walls remains largely
determined by spin-transfer alone, in a below-Walker regime. Thanks to a generalized mi-
cromagnetic scaling of lengths and densities of current, the present result may be applied
to wires made of any soft magnetic material.

We are aware that the dynamics of Bloch-points in micromagnetic simulation should
be treated with care. One way to refine the numerical treatment of the Bloch-point
dynamics may be the use of multiscale modeling [26, 55] where the atomistic and the
continuum approaches are merged. The comparison between both numerical methods
may help to quantify the limits of purely micromagnetic modeling of the BPW current-
driven dynamics.

Other important issue is related to the BPWs (and other magnetic textures) experi-
mental imaging. For instance, several methods for the nanoscale characterization in the
direct space (i.e. imaging) are under development locally in SPINTEC (X-ray Magnetic
Dichroism, Magn. Force Imaging, Electron Holography etc) and using international fa-
cilities (Time-resolved X-ray imaging, Vectorial Field tomography with electrons). Until
now, both developments (sophisticated theoretical tools and costly experimental instru-
ments) do not benefit efficiently from each other and their accurate comparison. In this
context, efforts should be done to convert usual FeeLLGood output into experimental-
imagining-compatible output using the supplementary add-on module to our micromag-
netic software.

In addition to single material wires, the continuous progress in nanofabrication gives
rise to a new variety of multi-layered core-shell geometries. In the case of heavy metal
material core with high spin-orbit coupling, the direct injection of spin-polarized electrons
inside the ferromagnetic shell due the spin Hall effect is expected to give a possibility to
to combine the spin-orbit torque efficiency with the high domain wall velocities within
the same object. This type of systems will require the extension of physical model used
in the current version of our software.
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A.1 Magnetostatic charge carried by a π-wall

A π-wall is first characterized by its boundary conditions. If limz→±∞m = ±1, we call
it a tail-to-tail wall. If limz→±∞m = ∓1, we call it a head-to-head wall. We associate
to each one the number Q = ±1 often call the ”topological charge” for tail-to-tail and
head-to-head respectively. The only link i know between the magnetostatic volume charge
ρm = −Ms∇ ·m and the magnetostatic surface charge σm = Ms (m · n) is the divergence
theorem: ∫

Ω

∇ ·m dV =

∮
∂Ω

m · n dS (A.1)

where here Ω is a region of the wire with its respective boundary ∂Ω. Hence for the
magnetostatic charges, it gives:∫

Ω

ρm dV +

∮
∂Ω

σm dS = 0 (A.2)

For simplicity we will consider a cylindrical nanowire. The boundary can be divided
in three parts. The two sections on both sides of the wire and the lateral surface which
gives ∂Ω = S1 ∪ S2 ∪ S3. The normal vector field for wire’s end cross-sections S1 and S2

is trivial and gives n1,2 = ∓êz. One property of the π-wall is that whatever the inner
structure of the wall, the integral over both wire’s side boundaries gives always the same
result: ∫

S1,2

M · n1,2 dS = QπR2Ms (A.3)

It results a total contribution of 2QπR2Ms from sides. To compute the charge of the
lateral surface S3 , we need to define n3. We define the position vector expressed using
cylindrical coordinates:

r = ρ cosϕ êx + ρ sinϕ êy + z êz (A.4)

The normal vector is usually constructed from a vector product of two vector tangent to
the surface. In our case:

n3 = ∂ϕr× ∂zr = ρ cosϕ êx + ρ sinϕ êy (A.5)

If we normalize this vector by ||∂ϕr×∂zr|| = ρ we get the unit normal vector of the lateral
surface:

n̂3 = cosϕ êx + sinϕ êy = êρ (A.6)
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If we want to compute the charge carried by the lateral surface, we need to define an
ansatz for the magnetization field.

A.1.1 The transverse domain wall

The transverse wall is well described by the 1D model. It is convenient to define spherical
coordinates w.r.t. the cartesian basis where m = (sin θ cosφ, sin θ sinφ, cos θ). Using the
ansatz:

θ(z) = 2 tan−1 exp

(
−Qz

∆

)
(A.7)

φ(z) = φw (A.8)

which gives the magnetization in cartesian coordinates:

mx =
cosφw

cosh
(
z
∆

) , my =
sinφw

cosh
(
z
∆

) , mz = Q tanh
( z

∆

)
(A.9)

Surface charge

The integral over surface charges writes:∫
S3

M · n3 dS = RMs

∫ 2π

0

∫ ∞
−∞

cosφw cosϕ

cosh
(
z
∆

) +
sinφw sinϕ

cosh
(
z
∆

) dϕdz (A.10)

This double integral can be decomposed into two double integral where cosφw and sinφw

can be placed outside. While the integral∫ ∞
−∞

1

cosh
(
z
∆

) dz = ∆π, (A.11)

the integral over ϕ of cosϕ and sinϕ gives zero. As a result there is no contribution of
the lateral surface to the total surface charge. Hence∮

∂Ω

σm dS = 2QπR2Ms (A.12)

Volume charge

Given the divergence of m:

∇ ·m =
∂mx

∂x
+
∂my

∂y
+
∂mz

∂z
(A.13)

Using the ansatz, we see that only the last term remains and is:

∂mz

∂z
=

Q

λ cosh2
(
z
∆

) (A.14)

which gives: ∫
Ω

∇ ·m dV = Q

∫ R

0

ρdρ

∫ 2π

0

dϕ

∫ +∞

−∞

1

∆ cosh2
(
z
∆

)dz (A.15)
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The total volume charge is: ∫
Ω

ρm dV = −2QπR2Ms (A.16)

We just have shown that (A.2) is verified. However, for a real transverse wall, the magne-
tization is not invariant inside the section. This manifest by a non nul transverse gradient
in the volume and an asymmetric distribution of positive and negative charges at the
surface. This result in a modification of the total charge carried by the wall.

qDW =

∫
Ω

ρm dV +

∫
S3

M · n3 dS

Uniformly charged solid sphere approximation

The approximation of the uniformly charged solid sphere correspond to the definition of
a closed 3-ball B = BR[zw] ⊂ Ω of radius R centered at the wall position zw which carries
the entire charge of the wall. We assume this ball to be uniformly charged, thus with a
constant volume charge density ρB. This gives us the equation∫

B

ρBdV = −2QπR2Ms (A.17)

which gives

ρB =
3qw

4πR3
. (A.18)

where qw = −2QπR2Ms.

A.1.2 The Bloch-Point wall

The BPW does not have an analytic formulation. However, the magnetization on the
lateral surface can be approximated. It is convenient to define spherical coordinates w.r.t.
the cylindrical basis where m = (sin θ cosψ, sin θ sinψ, cos θ). Using the ansatz:

θ(z) = 2 tan−1 exp

(
−Qz

∆

)
(A.19)

ψ(z) =
π

2
− p (A.20)

where p is defined as the deviation angle or radial ”tilt”. We defined it such as p ∈ [0, 2π].
Thus the BPW has positive circulation if p = 0 and negative circulation if p = π. If
p ∈]0, π[, magnetization tilts out-of-plane outward (w.r.t. the local tangent plane) and if
p ∈]π, 2π[, magnetization tilts out-of-plane inward. We get for magnetization cylindrical
coordinates:

mρ =
sin p

cosh
(
z
∆

) , mϕ =
cos p

cosh
(
z
∆

) , mz = Q tanh
( z

∆

)
(A.21)

We will demonstrate that this tilt depends on the boundary conditions. The integral
(A.10) with this new ansatz gives:

RMs sin p

∫ 2π

0

dϕ

∫ ∞
−∞

1

cosh
(
z
∆

) dz = 2π2R∆Ms sin p (A.22)
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Hence the total surface charge with this additional contribution writes:∮
∂Ω

σm dS = 2πR2Ms

(
Q+

π∆ sin p

R

)
(A.23)

The pole avoidance principle states that a magnetic system tends to avoid the creation
of magnetostatic charges (i.e. the system tend to reduce the magnetostatic charge also
reducing the demagnetizing energy). Hence, the tilt angle is constrained: if Q = 1, sin p
must be negative, thus p ∈]π, 2π[ and if Q = −1, sin p must be positive thus p ∈]0, π[. This
explain the selection of the tilt angle of the BPW depending on the boundary conditions
(also called wall polarity). Indeed, it is observed that for a tail-to-tail wall, the tilt angle
is out-of-plane inward w.r.t. local tangent plane and is out-of-plane outward for a head-
to-head wall. Remark: If there exist other terms such as exchange or other source of
anisotropy, a compromise will be made.
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B.1 Proof that δε
δφ = 0

In section 3.4.1 we assumed the energy density invariance with respect to the magnetiza-
tion azimuthal angle φw(t). We demonstrate that this statement holds for a 1D transverse
domain wall. We remind that m = (sin θ cosφ, sin θ sinφ, cos θ) and the ansatz used is:

θ(z, t) = 2 tan−1 exp

(
z − zw(t)

∆

)
(B.1)

φ(z, t) = φw(t) (B.2)

Exchange energy density

The exchange energy density is given by

εex = A
∑
i

(∇mi)
2 (B.3)

Using the ansatz (B.1), we obtain this expression

εex = A (∂zθ)
2 (B.4)

which shows straightforwardly that ∂εex
∂φ

= 0. As a side note the θ component of the
exchange field is obtained from

∂εex

∂θ
=

A

∆2
sin 2θ (B.5)

Demagnetizing energy density

εd = −µ0Ms

2
m ·Hd (B.6)

The dipolar term is a non local term and writes:

Hd(r) =

∫
ρm(r′)(r− r′)

4π|r− r′|3
d3r′ +

∮
σm(r′)(r− r′)

4π|r− r′|3
dS.

where ρm = −Ms∇ ·m and σm = Msm · n.
Using the same ansatz the divergence reduces to ∂zmz. However, since mz = cos θ, this

implies automatically that the first integral does not depends on φ. For the surface contri-
bution we will consider the simplest case of the infinite cylinder where n = (cosϕ, sinϕ, 0).
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It can be generalized for any boundary which has revolution symmetry but for simplicity
we will keep this example.

m · n = sin θ cosφw cosϕ+ sin θ sinφw sinϕ

The surface integral writes∮
m(r′) · n(r′)(r− r′)

4π|r− r′|3
dS ′ =

∮
sin θ′ cosφw cosϕ′(r− r′)

4π|r− r′|3
dS ′+

∮
sin θ′ sinφw sinϕ′(r− r′)

4π|r− r′|3
dS ′

Using it into the energy expression we get

m ·Hd =
sin θ

4π

[
cos2 φw

∮
sin θ′ cosϕ′(r− r′)

|r− r′|3
dS ′ + sin2 φw

∮
sin θ′ sinϕ′(r− r′)

|r− r′|3
dS ′
]

(B.7)
We can prove that both integrals of B.7 are equal upon a change of variable, leading

to :

m ·Hd =
sin θ

4π

∮
sin θ′ cosϕ′(r− r′)

|r− r′|3
dS ′ (B.8)

which is independant of φw. Hence, ∂ε
∂φ

= 0
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B.2 Domain wall energy expression (abrupt case)

In the follow we will compute analytically the zeeman energies from the applied field and
the modulation field on a flat wall

m(z) =

{
+êz, −L/2 < z < zw,
−êz, zw ≤ z < L/2.

(B.9)

for the abrupt modulation profil:

R(z) =

{
R1, z < 0,
R2, z ≥ 0.

(B.10)

The zeeman energy writes:

Ez = −µ0Ms

∫
Ω

m ·HextdV (B.11)

Applied field

We consider constant external field to be along the wire axis z i.e. Happ = Haêz. In
cylindrical coordinates, the integral becomes

Ez = −2πµ0Ms

∫ L/2

−L/2

(
m ·Hext

∫ R(z)

0

ρdρ

)
dz (B.12)

We have to seperate the integral over z into three sections. Considering the wall on the
left side:

I =
Hext

2

(∫ zw

−L/2
R2

1dz −
∫ 0

zw

R2
1dz −

∫ L/2

0

R2
2dz

)
(B.13)

It results the simple expression for the zeeman energy:

Ez = −πµ0MsHext

(
2R2

1zw +
L

2
(R2

1 −R2
2)

)
(B.14)

Equivalently when the wall is on right side:

Ez = −πµ0MsHext

(
2R2

2zw +
L

2
(R2

1 −R2
2)

)
(B.15)

We can relates these energies to the volume charge of the wall qw:

Ez = −µ0Hextqwzw + C (B.16)

where C = µ0MsHext
L
2
(πR2

2 − πR2
1) The derivative w.r.t. the wall position gives:

∂Ez

∂zw

= −µ0Hextqw (B.17)
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Modulation field

Given the modulation field

Hmod(z) =
Ms sgn(zw)

2

(
z√

R2
2 + z2

− z√
R2

1 + z2

)
(B.18)

where sgn(zw) = −1 when the wall is on left side. The expression bla can be used when
we consider the wall on the left side:

I =
1

2

(∫ zw

−L/2
Hmod(z)R2

1dz −
∫ 0

zw

Hmod(z)R2
1dz −

∫ L/2

0

Hmod(z)R2
2dz

)
(B.19)

The integrals of Hmod over z is based on the following integral∫ b

a

z√
R2 + z2

dz =
[√

R2 + z2
]b
a

(B.20)

I = R2
1

(√
R2

2 + z2
w −

√
R2

1 + z2
w

)
+ C (B.21)

Hence the resulting energy associated to modulation is

Emod = µ0M
2
s πR

2
1

(√
R2

2 + z2
w −

√
R2

1 + z2
w

)
+ C (B.22)

We can relate this to the modulation field and the wall charge:

Emod =
µ0Msqw

2

(√
R2

2 + z2
w −

√
R2

1 + z2
w

)
+ C (B.23)

We can then derive w.r.t. the wall position zw which gives:

∂Emod

∂zw

=
µ0Msqw

2

(
zw√

R2
2 + z2

w

− zw√
R2

1 + z2
w

)
(B.24)

We can relate it the the modulation field evaluated at the wall position zw:

∂Emod

∂zw

= −µ0Hmod(zw)qw (B.25)

It represent a sort of magnetic force exerted on a point magnetic charge. It is analogue to
the lorentz force for the case of an electric field applied on an electric charge (F = qE).
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C.1 Dimensionless micromagnetics with Œrsted fields

It is a standard procedure to scale lengths to the dipolar exchange length in the micro-
magnetics of soft magnetic materials, so that results are material independent. Here, we
extend the scaling to include the current density j, source of the Œrsted field. The volume
density of micromagnetic energy reads:

E = A (∇ ·m)2 − 1

2
µ0M ·Hd − µ0M ·HŒ (C.1)

In Eq.C.1, HŒ = (jρ/2)êθ, with ρ the distance to the wire axis. To switch to dimension-
less variables, we normalize Eq.C.1 with the dipolar constant Kd = (1/2)µ0M

2
s , turning

to dimensionless energy e. Simultaneously, we normalize lengths with the dipolar ex-
change length `ex, the magnetization vector with spontaneous magnetization Ms, turning
into unity m, magnetic fields with spontaneous magnetization Ms, written h. These nor-
malizations are the usual ones for soft magnetic materials. In the present case, we also
normalize the volume density of charge current j with Ms/`ex, written j̃. Eq.C.1 becomes:

e = (∇u ·m)2 −m · hd − j̃ρ̃m · êθ (C.2)

∇u stands for the gradient operator against the dimensionless coordinates u, and ρ̃ is
the dimensionless distance to the axis. Thus, the results of our manuscript are valid for
any soft magnetic material, provided that the above normalization is used. We drew a
number of figures in the manuscript based on these dimensionless variables.

C.2 Critical current: dimensional analysis

Numerical simulations reported in Sec.4.3.4 have shown that the threshold current Jc

required to switch the circulation of a BPW scales with R−3, R being the radius of the
nanowire. Here, we discuss the physical meaning of this scaling law, based on dimensional
analysis.

The switching depends on the balance between different energies, related to the ex-
change interaction, the demagnetizing field and the Œrsted field. These involve the fol-
lowing physical quantities: exchange stiffness A in J ·m−1, the dipolar constant Kd =
(1/2)µ0M

2
s in J ·m−3, and the Zeeman energy involving µ0Ms. Thus, the relevant inde-

pendent physical quantities that may be involved in determining Jc are: the exchange
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stiffness A, the spontaneous magnetization Ms, the vacuum permeability µ0 and the
nanowire radius R. Therefore, an expansion of the law determining Jc must necessarily
be:

Jc ∼ Aα Rβ µγ0 M
δ
s , (C.3)

with α, β, γ and δ dimensionless coefficients to be determined. This equation can be
translated into its SI units:

A ·m−2 =
(
m · kg · s−2

)α ·mβ ·
(
m · kg · s−2 · A−2

)γ · (A ·m−1
)δ

, (C.4)

which leads to the following set of equations, related to the powers of meter, kilogram,
second and Ampere:

α + β + γ − δ = −2 (C.5)

α + γ = 0 (C.6)

−2α− 2γ = 0 (C.7)

−2γ + δ = 1 (C.8)

Eq.C.6 and Eq.C.7 are equivalent, so that this set becomes:

β = −1− 2α (C.9)

γ = −α (C.10)

δ = 1− 2α (C.11)

This set of equations is under-determined once, with α taking any possible value. Writing
α = 1 + n, we end up in:

Jc ∼
∑
n

Cn
A

µ0MsR3

(
`ex

R

)2n

(C.12)

with coefficients Cn. So, dimensional analysis alone does not allow to explain that Jc ∼
1/R3, which corresponds to a predominant C0. This suggests that the dipolar exchange
length is largely irrelevant. Said differently, the remaining term A/(µ0MsR

3) can be
decomposed as the ratio of A/R2 with µ0MsR, suggesting a competition of exchange
energy and Œrsted Zeeman energy alone, to determine the switching of circulation. A
model based on this competition is detailed below.

C.3 Critical current: analytical model for the scaling

law

Here we propose a simple argument to explain the 1/R3 dependence of the threshold
current Jc for circulation switching [Fig.4.9]. The model does not intend to be a rigorous
one, however to put forward the physical ground responsible for this scaling law.

The previous section suggested that Jc is predominantly determined by the compe-
tition of exchange and Zeeman Œrsted energies. We consider this competition in the
curling effect in the domains, for which the absence of dipolar fields, and the translational
symmetry, allow a straightforward modeling. The Œrsted field forces magnetization at
radius ρ to acquire an azimuthal component, tilting from ẑ towards êφ. We propose to
describe this tilt with a test function:

θ(ρ) = θ0 sin
(π

2

ρ

R

)
. (C.13)
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C.3. Critical current: analytical model for the scaling law
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Figure C.1: Comparison of the analytical model versus micromagnetic simulations, for the
effect of the Œrsted field on magnetization in an extended domain. We used following param-
eters: wire radius R = 45 nm, A = 1.1× 10−11 J ·m−1 and Ms = 6.7× 105 A ·m−1. The line
stand for the (linear) analytical solution [Eq.C.18], while symbols stand for micromagnetic sim-
ulations. (a) Current density j required to reach a given azimuthal tilt of magnetization θ0 on
the nanowire surface, in an initially uniformly-magnetized domain. (b) Radial variation of the
tilt of magnetization θ, for j = 1.6× 1012 A2 ·m−1. Adapted from [62].

R is the external radius and θ0 = θ(ρ = R). The volume density of exchange energy Eex

and of the Zeeman Œrsted energies, read:

Eex = A

[(
∂θ

∂ρ

)2

+
sin2 (θ)

ρ2

]
, (C.14)

EZ = −µ0Ms
jρ

2
sin (θ). (C.15)

The total energy for a wire length L is:

ET =

∫ R

0

2πρL (Eex + EZ) dρ. (C.16)

This integral may be evaluated by making use of a Taylor series expansion of sin(x) around
x = 0, and consideration of the test function for θ(ρ). Expanding to second order for θ0,
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Eq.C.16 becomes:

ξT =
π3LAθ2

0

4

(
2− π2

6
+

10π4

1728

)
− π2µ0MSLjR

3θ0

8

(
1− π2

36

)
. (C.17)

The minimization of this total energy with respect to θ0, we find a simple relation between
j, θ0 and R:

j =
4πAθ0

µ0MsR3

(
1− π2

36

)
(
2− π2

6
+ 10π4

1728

) . (C.18)

Fig.C.1a compares the relationship between θ0 and j, the linear law in the present ana-
lytical model [Eq.C.18], and micromagnetic simulations. The match is excellent at low
angle, until θ0 ≈ π/3, a range consistent with the expansion of the sin function. The
deviation beyond this point is not troublesome, as the associated density of current is too
high to be experimentally relevant. The perfect match between the simulation and the
analytical model is equally observed in the radial dependence of the tilting of magneti-
zation [Fig.C.1(b)] for low applied current densities. In conclusion, Eq.C.18 is perfectly
valid, suggesting the origin of the law Jc ∼ 1/R3 as resulting from the dominant compe-
tition between exchange and Zeeman energies.
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[14] Paulus P., Luis F., Kröll M., Schmid G. & de Jongh L. Low-temperature study of
the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires.
Journal of Magnetism and Magnetic Materials 224, 180–196 (2001).

[15] Jamet S., Rougemaille N., Toussaint J. & Fruchart O. Head-to-head domain walls
in one-dimensional nanostructures. In Magnetic Nano- and Microwires, 783–811
(Elsevier, 2015).

[16] Ferguson C. A., MacLaren D. A. & McVitie S. Metastable magnetic domain walls in
cylindrical nanowires. Journal of Magnetism and Magnetic Materials 381, 457–462
(2015).

[17] Feldtkeller E. Mikromagnetisch stetige und unstetige Magnetisierungskonfiguratio-
nen. Z. Angew. Physik 19, 530 (1965).

[18] Feldtkeller E. Continuous and Singular Micromagnetic Configurations. IEEE Trans.
Magn. 53, 1–8 (2017).

[19] Berganza E., Jaafar M., Bran C., Fernández-Roldán J. A., Chubykalo-Fesenko O.,
Vázquez M. & Asenjo A. Multisegmented nanowires: a step towards the control of
the domain wall configuration. Sci. Rep. 7, 11576 (2017).

[20] Pitzschel K., Bachmann J., Martens S., Montero-Moreno J. M., Kimling J., Meier
G., Escrig J., Nielsch K. & Görlitz D. Magnetic reversal of cylindrical nickel
nanowires with modulated diameters. J. Appl. Phys. 109, 033907 (2011).

[21] Berganza E., Bran C., Vazquez M. & Asenjo A. Domain wall pinning in fecocu
bamboo-like nanowires. Sci. Rep. 6, 29702 (2016).

[22] Esmaeily A. S., Venkatesan M., Razavian A. S. & Coey J. M. D. Diameter-modulated
ferromagnetic CoFe nanowires. Journal of Applied Physics 113, 17A327 (2013).
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[80] Staňo M. & Fruchart O. Handbook of Magnetic Materials, vol. 27, chap. Magnetic
nanowires and nanotubes (Elsevier, 2018).

[81] Salem M. S., Tejo F., Zierold R., Sergelius P., Moreno J. M. M., Görlitz D., Nielsch
K. & Escrig J. Composition and diameter modulation of magnetic nanowire arrays
fabricated by a novel approach. Nanotechnology 29, 065602 (2018).

[82] Lee W. & Kim J.-C. Highly ordered porous alumina with tailor-made pore structures
fabricated by pulse anodization. Nanotechnology 21, 485304 (2010).

[83] Salazar-Aravena D., Corona R. M., Goerlitz D. & Escrig K. J. Magnetic properties
of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube
segments. J. Magn. Magn. Mater. 346, 171 – 174 (2013).

[84] Neumann R. F., Bahiana M., Vargas N. M., Altbir D., Allende S., Görlitz D. &
Nielsch K. Domain wall control in wire-tube nanoelements. Appl. Phys. Lett. 102,
202407 (2013).

[85] Dubois S., Piraux L., George J. M., Ounadjela K., Duvail J. L. & Fert A. Evidence
for a short spin diffusion length in permalloy from the giant magnetoresistance of
multilayered nanowires. Phys. Rev. B 60, 477–484 (1999).

[86] Bochmann S., Fernandez-Pacheco A., Mačkovic̀ M., Neff A., Siefermann K. R.,
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setup for magnetic-field-induced domain wall motion in cylindrical nanowires. IEEE
Trans. Magn. 51, 4300403 (2015).

[105] Braun H.-B. Topological effects in nanomagnetism: From superparamagnetism to
chiral quantum solitons. Advances in Physics 61, 1–116 (2012).

[106] Braun H.-B. Solitons in real space: Domain walls, vortices, hedgehogs, and
skyrmions. In Springer Series in Solid-State Sciences, 1–40 (Springer International
Publishing, 2018).

[107] Tretiakov O. A. & Tchernyshyov O. Vortices in thin ferromagnetic films and the
skyrmion number. Phys. Rev. B 75, 012408 (2007).

[108] Tchernyshyov O. & Chern G. W. Fractional vortices and composite domainwalls in
flat nanomagnets. Phys. Rev. Lett. 95, 197204–7 (2005).
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Abstract

This thesis presents a theoretical study of the magnetic domain wall behavior in magnetically
soft nanowires with a circular cross section subjected to an applied electron current. My
work focuses on the domain wall dynamics and related critical phenomena such as domain
wall pinning and the internal wall structure transformations. We combined micromagnetic
simulations with simplified analytical models, to provide an overview of key parameters, useful
in predicting and understanding experiments. In particular, the manuscript quantifies two
critical phenomena. First, we discuss the control of the transverse domain wall position by
introducing geometrical inhomogeneities in the moderate diameter wires (< 7 lex). Diameter
modulations play the role of a potential barrier which implies that some threshold driving
force must be applied to overcome the barrier. We calculated the threshold current-induced
and field-induced driving force as a function of the geometrical parameters. The analytical
model developed is a simple scaling law, which may be useful in resolving experimental and
nanofabrication issues. Second, we quantify the effect of the spin-transfer torque together with
the Œrsted field generated by the electric current in large diameter wires (> 7 lex). For such
diameters, the Bloch-point walls, which exhibit several interesting features, occur to be the most
stable configurations. The Bloch-point wall is characterized by a micromagnetic singularity, the
Bloch-Point, and by a curling magnetization (thus a circulation). In the frame of this thesis, we
showed that the previously overlooked Œrsted field is key in experiments to stabilize the BPW
and reach speed above 600m/s with spin-transfer. The switching of the azimuthal circulation of
the BPW to match that of the Œrsted field occurs above a threshold current which we quantify
as a function of geometry and material parameters. We also highlight the complexity of BPW
transformation involving topological objects at the surface and in the volume.

Résumé

Cette thèse présente une étude théorique de la dynamique de parois de domaines magnétiques
sous courant dans des nanofils magnétiques doux à section circulaire. Ce travail se focalise
sur la dynamique de parois de domaines et les phénomènes critiques qui en découlent, tels que
le piègeage de parois et le changement de leur structure interne. Nous combinons des simu-
lations micromagnétiques avec des descriptions analytiques simplifiées afin de fournir une vue
d’ensemble des paramètres clés, utiles à la prédiction et à la compréhension des expériences.
En particulier, le manuscrit quantifie deux phénomènes critiques. Premièrement, nous nous
sommes intéressés au contrôle de la position d’une paroi de domaines transverse par l’introduction
d’inhomo-généités géométriques pour des fils de diamètres modérés (< 7 lex). Il peut être exercé
à l’aide de modulations de diamètre, créant une barrière de potentiel s’opposant à la propa-
gation, et donc, nécessitant une amplitude seuil (de champ ou de courant) pour la franchir.
Nous avons calculé en fonction des paramètres géométriques, le courant et le champ de seuil. Le
modèle analytique développé est une simple loi d’échelle qui peut être utilisée dans la résolution
de problèmes expérimentaux. Deuxièmement, nous quantifions les effets du transfer de spin et
du champ d’Œrsted généré par le courant éléctrique dans des fils de diamètre (> 7 `ex). Pour
de tels diamètres, les parois point-de-Bloch, qui présentent des propriétés intéressantes, sont les
configurations les plus stables. La paroi point-de-Bloch est caractérisée par une singularité, le
point-de-Bloch, et une aimantation azimuthale (donc une circulation). Dans le cadre de cette
thèse, nous avons montré que le champ d’Œrsted, généralement négligé, est essentiel à la stabil-
isation des parois point-de-Bloch, permettant d’atteindre des vitesses au delà de 600m/s sous
transfer de spin. Tout particulièrement, le manuscrit quantifie le courant de seuil necessaire
au changement de circulation de parois de Point-de-Bloch, observé expérimentalement dans un
travail récent, exprimé sous la forme d’une loi d’échelle. Nous mettons aussi en évidence la
complexité de transformation de Point-de-Bloch impliquant les objets topologiques en volume
et en surface.
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