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General introduction 

Background and motivation 

Solar energy, as typical renewable energy, presents various merits [1]. It is pollution-

free and causes no greenhouse gases (like carbon dioxide, methane, and nitrous oxide) 

to be emitted after installation [2]. Besides, this clean power is available all the year, 

even under cloudy days [3]. In recent years, the solar photovoltaic (PV) installed 

capacity has experienced rapid growth [4]. The global total cumulative installed 

capacity in 2020 has reached more than 758.9 GW [5]. China leads the cumulative 

capacity share with 253.4 GW, followed by the European Union (151.2 GW) and the 

USA (93.2 GW). Among the countries in the European Union, Germany is at the top 

with 53.9 GW, then followed by Italy (21.7 GW), Spain (12.7 GW), France (10.9 GW), 

and the Netherlands (10.2 GW).  

In fact, for the year 2020, the COVID-19 pandemic has resulted in a severe economic 

downturn and social damage. However, this pandemic did not significantly impact the 

PV market development [5]. According to BP World Energy & Ember, global power 

generation from PV increased by 20.2% in 2020, to 844.4 TWh [6]. With this increase, 

the solar PV share in global electricity generation has reached about 3.3%. Thus, the 

resiliency of the PV market is remarkable and shows the potential to limit the impact 

brought by the pandemic. As for the future scope, according to the “Net Zero Emissions 

by 2050” scenario of the WEO 2020, the worldwide installed PV capacity would 

increase to 3929 GW by 2030 [7]. According to this scenario, solar electricity will reach 

about 5420 TWh or 15.9% of the global energy production [8].  

In addition to the environmental goals, the prosperity of the PV industry is also due to 

the gradual falling prices of PV modules and the progress in plant engineering and 

construction. Actually, the competitiveness of PV projects measured by the Levelized 

Cost of Electricity (LCOE) has also continuously decreased in recent years [9]. In this 

context, the energy generation of a PV power plant plays a significant role in the market 

assessment of PV projects. In the fact sheets on PV, IEA has announced that “PV is the 

cheapest electricity source almost everywhere” [10].  

With the rapid development of the PV industry and the increase in the installed capacity, 

efficient operation and maintenance strategies are increasingly required [8]. In fact, 

manufacturing, transportation, installation, and operating conditions can cause PV cell 

or module failures [11], [12]. In the case of a PV array or power plant, which is 

composed of several electrically connected modules, any fault in one cell or module 

affects the performance of the whole array or system. The PV faults could cause a 

severe safety hazard, e.g., fire risk, electrical shock, physical danger [13], or power loss 
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[14]. Therefore, to assure the reliability, availability and safety of the PV installations, 

their health status should be monitored regularly to prevent from failures and contribute 

to an efficient condition-based maintenance policy. To this end, efficient PV fault 

detection and diagnosis (FDD) strategies are required. 

The cornerstone of a PV FDD strategy is the PV data, of which the electrical types are 

the most common ones because they are able to reflect the actual operating condition 

of a PV module or array [15]. Among the PV electrical data, the current-voltage 

characteristic (I-V curve) contains the most information about the health condition of a 

PV module or array, which should allow for a more accurate diagnosis [16]. As for the 

availability of I-V curves, common I-V tracers already support the measurement for a 

single module or small-scale string or array. In recent years, the hardware solutions 

(integrated at inverter level) have become commercially available to measure I-V 

curves periodically at the power plant level [17], [18]. Therefore, it is expected in the 

near future that I-V curve data will be measurable from almost all the common PV 

facilities. With this in mind, this thesis aims to propose a strategy based on I-V curve 

data for accurate and robust diagnosis of common faults in PV arrays. 

Problem statement 

▪ Lack of effective use of the full I-V curve information for the PV FDD 

In the literature, different approaches are proposed to manipulate the I-V curve for PV 

diagnosis, like key parameters extraction [19]–[21], derivative calculation [22], [23], 

and construction of feature matrix based on resampling [24]. However, these 

approaches all have major limits. For example, the methods based on the extraction of 

key parameters [19]–[21] (like open circuit voltage, short circuit current, voltage and 

current at maximum power point) capture only partial information from the I-V curve, 

and thus sometimes fail to classify similar fault conditions, like when one or more 

modules are shaded in one PV string. The method based on the first or second-order 

derivative of the whole curve is only suitable to identify partial shading (PS) fault [22], 

[23]. Authors in [24] integrate resampled full I-V curves with irradiance (G) and 

module temperature (Tm) into 4-column matrices (named IVGT matrix) as features for 

FDD. However, the duplication of information compromises the diagnosis accuracy. 

Therefore, effective use of the full I-V curve for the diagnosis of multiple PV faults is 

still an opened research topic. 

▪ Lack of an evaluation of correction procedures for I-V curves of faulty PV panels  

Since field-measured I-V curves are recorded under varying environmental conditions, 

the correction of curves to a common specific environmental condition is generally 

performed to ensure a fair comparison and facilitate the FDD task. However, to the best 
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of our knowledge, there are no specific methods proposed for the correction of faulty 

I-V curves. Therefore, most of the researchers adopt the original or simplified 

correction procedures from the standard IEC 60891 [25]. It should be noted that these 

procedures are all initially designed for the correction of curves measured from healthy 

PV panels. The suitability of these procedures for the correction of faulty panels I-V 

curves is rarely investigated, and even less if the fault characteristics are distorted by 

the correction and thus lead to a diagnostic error. Yet, all these issues are decisive for 

the diagnosis of PV faults [26]. Besides, due to the difference between I-V curves from 

faulty and healthy PV panels, special correction procedures are expected to be designed 

for the curves of faulty PV panels. 

▪ Lack of efficient feature transformation methods to improve the discriminability of 

I-V curve features under different faulty conditions 

For the I-V curves showing similar shapes but from PV panels under different faulty 

conditions, the features extracted from these curves may only show little discrepancy 

and therefore are prone to be misclassified. The common I-V curve features in the 

literature (key parameters, derivatives, IVGT matrix) are based on direct extraction of 

features but without further processing. Therefore, the discriminability of these 

extracted features under different conditions is almost the same as that of original I-V 

curves. Under tricky fault classification cases, like when dealing with similar curves, 

the discriminability of features is expected to be increased with adequate 

transformations. This would help to improve the FDD performance. To the best of our 

knowledge, these methods have not been yet explored for PV FDD. 

Thesis outline 

Following these findings, this thesis proposes a new PV FDD methodology, which is 

based on an improved correction of the I-V curves of defective PV panels, achieves an 

efficient integration of the full I-V curves as features for diagnosis, and also deals with 

the transformation of the features to improve the FDD performance. To be specific, this 

thesis consists of the following four main chapters: 

▪ Chapter I: A state of the art of the common PV array faults is presented. The fault 

causes, fault classification, impact of faults on the power loss and safety risk, and 

the frequency of fault occurrence will be all analyzed. A method for classifying the 

faults according to the level is proposed, i.e., at the cell, module, or array level. 

Through this classification method, the usual faults are presented based on a 

literature review. With joint consideration of fault impact, frequency of occurrence 

and reproducibility, the faults considered in this thesis are selected. 
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▪ Chapter II: The common FDD techniques for PV faults in literature are reviewed 

through two categories: visual inspection and automatic analysis. The automatic 

FDD methods will be described in a four-step scheme: modeling, pre-processing, 

feature extraction, and feature analysis. The proposed FDD strategy in our thesis 

will also be accordingly presented. 

▪ Chapter III: The correction procedures in the IEC standard are evaluated for I-V 

curves from faulty PV arrays. The correction performance on the whole curve and 

the key curve parameters are addressed. Besides, the impact of fault severity on the 

correction performance is also analyzed. A new correction procedure will be 

proposed and compared with the existing ones in the IEC standard. 

▪ Chapter IV: A novel PV FDD methodology based on full I-V curves is presented. 

This methodology will be detailed from the four-step FDD scheme. The modeling 

of a PV array and the preparation of the simulated dataset will be presented. Three 

methods to extract fault features from full I-V curves for diagnosis are proposed, 

where one is based on the resampled vectors of current, and the other two are based 

on feature transformation. Six common machine learning classifiers are tuned and 

evaluated for PV fault classification. The configuration of the classifiers, the 

diagnosis results, and the impact of various factors are analyzed. Finally, the best-

trained classifier will be validated with field-measured dataset.  

▪ Conclusions and perspectives of the thesis will be given. Besides, the summary in 

French is also presented at the end. 

Contribution of thesis 

The contribution of this thesis lies in the following points: 

▪ A four-step FDD scheme is firstly applied in the PV FDD domain, which allows a 

systematic comprehension of the various PV FDD cases and facilitates the 

comparison from the modeling, pre-processing, feature extraction, and feature 

analysis steps; 

▪ An improved I-V curve correction procedure is proposed and tested exhibiting 

overall better performance than the traditional single-curve-based correction 

procedures proposed in IEC 60891 standard; 

▪ A new methodology based on full I-V curves is proposed and outperforms 

traditional methodology based on partial use of I-V curves; 

▪ Two feature transformation techniques are applied to I-V curves, and proved able 

to improve the discriminability of features, which allows the MLT classifiers to 
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have higher robustness to additional disturbance and better classification 

performance with both simulation and field dataset. 
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 Introduction 

A photovoltaic (PV) array fault is a defect that either affects the output power or poses 

a safety risk, while the difference in appearance due to fabrication that is not inducing 

safety risk or power loss will not be considered as fault [27]. Due to various internal 

and external factors, outdoor PV arrays are subject to a great variety of faults, which 

could occur in nearly all the components of the PV array. These faults may lead to 

different levels of degradation, power loss or sometimes even fire risk. Before the 

design of effective detection and diagnosis strategies, it is essential to understand the 

common faults in PV array well.  

This chapter aims to provide a comprehensive state of the art on common PV array 

faults. Section I.2 introduces the leading causes of PV faults, while in Section I.3, we 

present the faults in detail through a classification method. In Section I.4, we analyze 

the impact of faults in terms of power loss and safety.  The frequency of occurrence of 

faults will be presented in Section I.5. Section I.6 introduces the faults studied in our 

work, and Section I.7 closes the chapter. 

 Faults causes 

I.2.1. Defects due to human error 

Manual operations, from transport to installation of PV modules, are one of the first 

sources of PV faults.  

Transport is the first critical stage of the life cycle [28]. Shocks, vibrations, lack of a 

rigid support pallet during transport, or dropping during unstacking can lead to glass 

breakage or cell cracking [29].  

During installation, clamping is a frequent cause of glass breakage [30], especially 

when mounting multiple PV modules. Screws that are too tight, clamps that are too 

short or too narrow can generate high mechanical stresses and lead to glass breakage. 

Another potential risk is the incorrect wiring of connectors. Poorly fitted or crimped 

connectors can lead to an open circuit, line fault, earth fault, or power loss [31]. Worse 

still, in most cases, connectors are usually placed near flammable materials, such as 

wooden roof beams or thermal insulation components. Under these conditions, arcing 

faults can lead to fires. 

I.2.2. Environmental factors 

Outdoor PV modules are exposed to long-term harsh environmental conditions, which 

poses a great risk to the normal operation of a PV system. The environmental factors 

could be classified into permanent and non-permanent types [32]. The permanent ones 
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result in irreversible fault of PV module or components, like lightning [33], heavy snow 

[27], or hail [34] , causing mechanical damages (detachment, breakage) to the PV 

module frames or glasses [15]. The glass breakage leads to the penetration of oxygen 

and moisture into the PV module and causes the corrosion of electrical circuits, which 

provokes the loss of performance. 

Contrastingly, the non-permanent factors can be of short duration, e.g., dust, soiling, 

shadow of buildings or trees. They lead to shading fault and may cause localized heating 

or hot spot [35]. These causes can generally be removed automatically or manually by 

the maintenance team. 

I.2.3. Material interaction 

A PV module consists of multiple layers of different materials bonded adhesively. For 

the PV modules occupying the main commercial market share, i.e., crystalline silicon 

(c-Si) and thin film type, the common structure usually includes the layers of front glass, 

encapsulant layer, solar cells/ thin film substrate, and back sheet. The interactions at the 

various interfaces, e.g., front glass/ encapsulant, encapsulant/ solar cell, encapsulant/ 

back sheet, can be responsible for PV faults. 

 

Figure I-1: Structure of standard crystalline silicon and thin film PV module [36] 

The interactions can give rise to visible phenomena such as discoloration of the 

encapsulant (yellowing or browning), corrosion, cell crack or delamination. In addition, 

these interactions can also result in electrical degradations such as disconnection of 

cells, short circuits, and potential induced degradation (PID) which have no visual 

effects.  

It should be noted that environmental factors (humidity, heat, UV radiation, etc.) can 

also accelerate the formation of these defects, which is also related to climatic 

conditions. A global study [37] of 1.9 million modules installed in different climates 

found that climatic conditions have a strong impact on the occurrence of defects due to 

Front glass

Encapsulant

Metallization

Thin film substrate

Encapsulant

Back sheet

Junction box

Encapsulant
Front glass

Solar cells
Encapsulant

Back sheet

Junction box

Crystalline Silicon Thin film



Chapter I  Photovoltaic array faults: State of the art  

9 

 

material interactions. These effects are more pronounced in hot arid climates than in 

tropical and temperate climates. 

I.2.4. Cause-effect circle 

In fact, the mechanism of most defects in photovoltaic modules can be quite complex. 

It is difficult, and sometimes impossible, to attribute a single origin to the formation of 

a defect. Indeed, the occurrence of a defect is often accompanied by a change in other 

properties of the PV module: mechanical, chemical or electrical, which will in turn 

aggravate the original defect or generate other defects.  

Cause and effect relationships between faults are complex but need to be understood or 

otherwise identified to improve design and monitoring. It is also important to analyze 

and identify the faults impact. In [38], a causal circle is established between mismatch 

and degradation as shown in Figure I-2. The mismatch is recognized as the intermediary 

fault mode, which could be caused by different operating parameters (temperature, 

voltage, current) and external factors (environmental factors and human errors).  

 

Figure I-2: Cause-effect circle between mismatch and degradation [38] 
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The causal circle reveals the relationship between mismatch and degradation. Besides, 

other intermediary fault modes have also been identified. For example, mismatch due 

to operating conditions or external factors can lead to the high or non-uniform 

distribution of module temperature, which, combined with other causes, induces the 

commonly encountered PV faults displayed in the central column. Then, these faults, 

directly or indirectly, are responsible for non-uniform degradation and power loss. The 

non-uniformity of the degradation, in turn, aggravates the mismatch level and closes 

the causal circle. 

 Presentation of faults 

After identifying the causes, we present in this section the different PV panel defects in 

detail. First, we summarize the popular classifications of PV faults in the literature. 

Then, a new three-level classification is proposed, based on which the common PV 

panel faults are categorized and presented.  

I.3.1. Fault classification 

A well-designed fault classification permits a better understanding of the similarities 

and differences between the PV faults under different categories.  

In the literature, several classifications have been proposed for common PV faults. They 

are based on different criteria, such as duration, degree of severity, location, cause, or 

nature. Table I-1 shows some classical classification approaches. 
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Table I-1: Common classification of PV faults 

Ref. 
Classification 

criteria 
Categories PV faults 

[32] Duration and 

degree of severity 

Permanent Cell crack, line-line fault, ground fault, arc 

fault, bypass diode fault, junction box fault, etc. 

Intermittent Shading, soiling, heavy snow, hail, etc. 

Incipient Abnormal degradation, corrosion, snail, 

delamination, etc. 

[26] Components of 

PV system 

Module faults Cell crack, hot spot, corrosion, PID, Light 

induced degradation (LID), back sheet adhesion 

loss, shading/soiling, etc. 

Inverter faults Manufacturing and design faults, control faults, 

electrical components faults, etc. 

Others Bypass diode fault, junction box fault, 

mismatch, line-line fault, ground fault, arc fault, 

etc. 

[39] Cause and nature 

of PV faults 

Physical Cell crack, bypass diode fault, temperature 

anomaly, abnormal degradation, etc. 

Environmental Partial shading, bird drop, soiling, etc. 

Electrical Line-line fault, ground fault, open-circuit, arc 

fault, maximum power point tracking (MPPT) 

fault, converter switch fault, battery bank fault, 

islanding operation fault, grid faults, etc. 

 

It can be observed that classification criteria may be vague, not allowing for the proper 

classification of certain PV defects. For example, in [32], defects categorized as 

incipient are likely to develop into permanent defects such as delamination or corrosion. 

In [39], defects are classified according to their cause and nature. However, some 

defects may meet several criteria simultaneously. For example, a line fault, an earth 

fault, may also be caused by physical damage, and classified as a physical type. 

Similarly, some physical faults, like bypass diode faults and abnormal degradation, 

could also affect the PV electrical features and hinder output power. 

The proposal based on the location or components of the PV system allows a more 

distinct classification of PV faults, as in [26]. However, the 3 proposed categories are 

still relatively coarse, and some PV faults are grouped in the "other" category. We 

propose a three-level fault classification: cell, module and array, as shown in Figure I-3.  
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Figure I-3: Three-level PV fault tree classification 

Most of the common PV faults presented in Table I-1 are categorized in the ‘PV fault 

tree’, except for LID, because LID has to be taken into account by manufacturers for 

the power rating as required in the standard EN 50380 [40]. Therefore, LID is generally 
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array faults, the faults related to the DC conditioning units (like converter, inverter, 

battery bank) are also excluded. Besides, faults occurring at the AC side of a grid-

connected or standalone PV system are not considered. These faults can be detected 

and isolated using the protection standards specified in [41], [42].  

I.3.2. PV array faults 

Based on the proposed ‘PV fault tree’ (Figure I-3), we will detail in the following the 

typical PV faults related to the three levels. 

I.3.2.1. Cell-level faults 

Cell-level faults refer to the PV faults affecting a single PV cell. These faults might 

spread over adjacent areas over time, but generally will not cause an overall impact on 

the whole surface of the PV module. These faults are introduced in Table I-2 with 

corresponding images. 
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Table I-2: Cell-level faults 

Fault Description Example 

Cell crack Cell cracks are the cracks induced by mechanical stress 

in the silicon substrate of the photovoltaic cells, which 

usually are invisible by naked eyes. It could rise from the 

production, transport, installation, and operation stages. 

The shape of crack has different lengths and orientation 

in one solar cell. Cell crack could lead to different levels 

of power loss, which depends on the ‘inactive’ area of 

the cell. 

 [43] 

Discoloration Discoloration is generally related to the PV modules 

using EVA (Ethylene Vinyl Acetate) as the encapsulant 

material. Discoloration refers to the yellowing or 

browning of PV cells. It causes a change in the 

transmission of solar irradiance reaching the cell surface 

and consequently a reduction in production. Nowadays, 

this fault is greatly eased for the PV modules with new 

encapsulant material. For example, for thermoplastic 

polyolefin, the discoloration rate is reported around 9 

times lower [44]. 

 [45] 

Snail track Snail track is grey/black discoloration of the silver paste 

of the front metallization of screen-printed solar cells. 

The discoloring typically occurs 3 months to 1 year after 

installation of the PV modules. The origin of snail track 

is not clear, may be due to silver particles which contains 

sulfur, phosphorus, or carbon. The growth speed of the 

snail track discoloration may be very slow [27], or it 

saturates directly after the first occurrence. 

[46] 

Delamination Delamination is the adhesion loss between the glass, 

encapsulant, active layer and back layer. For thin-film 

PV type, the Transparent conductive oxide (TCO) may 

as well delaminate from the adjacent glass layer. Bubble 

is also a form of delamination. Delamination will lead to 

optical reflection and therefore cause the decrease in 

power output. It also causes moisture penetration, which 

then leads to various chemical and physical degradation. 

[37] 

 

I.3.2.2. Module-level faults 

At the module level, the common PV faults could be categorized into shading, structure, 

and electrical faults. Further, hot spot, as a joint result of diode fault and partial shading 

or mismatch, is also a type of module-level fault. Detailed presentation of these faults 

is given in Table I-3. 
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Table I-3: Module-level faults 

Fault Description Example 

Shading/soiling Shading and partial shading (PS) are usually caused by 

building, tree, moving cloud and so on; Soiling refers to 

snow, dirt, dust, and other particles that cover the 

surface of PV module. Shading/soiling could be 

classified into hard or soft type, or permanent/temporary 

type. [47] 

Frame 

breakage 

The main cause of frame breakage is heavy snow load, 

which will creep downhill and intrude into the space 

between frame and glass. It leads to deformation of 

module, detachment of frame from the PV glass, which 

will result in power loss. 

[27] 

Back sheet 

adhesion loss 

Depending on the material type of back sheet adopted in 

PV, causes for back sheet adhesion loss are similar to 

that of delamination, including temperature, moisture, 

mechanical stress, etc. It results in isolation default, 

therefore, increase the exposure to active electrical 

component, especially when happen near a junction box 

or edge of module. 
[48] 

Junction box 

fault 

Observed junction box fault includes poor fixing, bad 

wiring, broken connection, etc. They are mainly caused 

by energy overstress, rework cable during installation 

and rework connector, together with long heat exposure. 

It could result in moisture ingress, internal arcing and 

power loss. [27] 

Diode fault Common diode fault happens to the bypass diode 

(BPD), caused by excessive current level and improper 

or insufficient heat sinking. The lack of air flow in the 

junction box is also crucial to diode fault, particularly in 

the case of fast transitions shadow-sun-shadow. Burnt 

BPD could cause short or open circuit of the diode, and 

therefore different level of power loss. 
[49] 

Burn mark Partial shading + BPD fault or other mismatch fault (like 

low resistance defect in c-Si) could lead to energy 

consumption on the mismatched area instead of 

generation, therefore local high temperature of cell and 

induce burn mark. Besides, DC arc fault could also lead 

to burn mark. It may cause overheating, delamination or 

melting of material; 
[50] 

Shunt hot spot Partial shading could cause the cell turn to status of 

reverse biased voltage, to which thin film cells are 

extremely sensitive. Module current will concentrate on 

the shunt path and lead to hot spot. The behavior is quite 

different to c-Si hot spot as the BPD could not limit the 

reserved voltage. It is not likely to cause overheating but 

cause glass breakage and increase the risk of electrical 

shock. 

[51] 
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Short circuit 

(SC) / Open 

circuit (OC) 

module 

Corrosion and structure damage are the main causes for 

open or short circuit of module. It leads to different level 

of power loss or shutdown of system and the risk of 

electrical shock or even arc fire. 

[52] 

PID Voltage difference between grounded framework and 

PV modules could establish path for leakage current and 

cause PID. Shunting type (PID-s) in p-type c-Si is the 

most frequently observed effect, which is mainly caused 

by migration of Na ions. Na ions drift anti-reflect 

coating under negatively biased condition, penetrate 

crystal defects, result in large shunting of cells and 

degrade the efficiency. It should be noted that PID is 

more common to the PV modules with EVA as 

encapsulant material. With a PID resistant material (e.g. 

polyolefin) gradually replacing EVA as an encapsulant, 

this defect has almost disappeared. [53]. 

[27] 

Abnormal 

degradation 

Abnormal degradation is a comprehensive reflection of 

various faults, like delamination, bubbles, snail track, 

PID, and the related corrosion process of PV module 

[38]. This can be also seen via the cause-effect circle in 

Figure I-2. Its intuitive influence reflects in the power 

loss and the change of slope of the I-V curve of the 

module. 

- 

 

I.3.2.3. Array-level faults 

At the array level, the main type of fault is the connection fault, which generally 

includes the earth fault, the line fault and the arc fault, as shown in Table I-4. 
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Table I-4: Array-level faults 

Fault Description Illustration 

Ground 

fault 

(GF) 

It is caused by un unintentional low 

impedance path between Current Carrying 

Conductor (CCC) and the ground get 

established. For grounded PV system, GF 

causes a high current to flow through an 

intentional circulating path. For ungrounded 

PV system, it generates residual magnetic 

field between the forward and backward 

current flow. It causes a change in insulation 

resistance and a lasting loss of power. 

[54] 

Line-

line 

fault 

(LLF) 

LLF rises from an unintentional low 

resistance path between two CCC with 

different electrical potential. It is caused by 

poor insulation of string connectors, 

accidental short-circuit between CCC, fault 

mounting, or external damage. It leads to 

high reverse current (depends on the 

potential difference of the location where the 

LLF happens) flowing to the faulty path and 

a lasting loss of power. LLF has 2 types, 

intra-string, and cross-string LLF. [54] 

Arc 

fault 

(AF) 

Several external factors could lead to the 

discontinuity or insulation fault of CCC and 

establish an air path for arc fault. Arc fault 

has two types: series and parallel AF (intra-

string, cross-string and parallel to ground). It 

could occur in almost all the connection 

points or structures in the PV array, like cell, 

busbar, module, diode, string, safety devices, 

etc. It leads to transient but extremely high 

temperature that may burn the metal coating 

of the module. Besides, it generates high-

frequency components causing serious 

nonlinear distortions in current and voltage. 

[54] 

 

 Impact of faults 

A PV fault can result in both a safety hazard and a power loss. In this section, safety 

and power loss problems will first be defined with the specified impact categories. Then, 

the common PV faults presented in Section I.3 will be analyzed comparatively from 

these two aspects. 

I.4.1. Safety hazard categorization  
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A safety hazard refers to the risks to personnel working on the installation or to 

bystanders. In Table I-5, three safety categories [27] are defined, which are useful in 

assessing the necessary action to be taken when the fault occurs. 

Table I-5: Definition of safety risk categories 

Safety level Description 

SR0: safe Fault poses no clear threat to the safety. 

SR1: medium 
Medium possibility or potential threat to causing a fire, an electrical shock to 

working personnel or physical danger. 

SR2: danger 
High possibility to causing a fire, an electrical shock to working personnel or 

physical danger. 

 

In addition, the action required at fault occurrence depends on the application class of 

the PV system, which is defined in the standard IEC 61730-1 [55]. 

I.4.2. Power loss categorization  

Another important factor in assessing the impact of PV faults is the power loss level, 

which directly determines the functionality of the PV system. The power loss levels 

describe the evolution of the power variation between the initial value and the one 

produced over time. In most cases, this difference between the reference values can 

lead to inconsistent results, as the power indicated in the datasheet can deviate 

significantly from its actual initial value.  

For legal application, to evaluate the power loss, the power printed on the PV module 

datasheet could be used as the reference value. For practical application, the initial 

power could be adopted as a reference value. For various PV array faults, the power 

loss level is not easy to evaluate as it could vary from case to case and is mainly 

determined by the fault severity and spread. However, the common trend of the power 

loss due to these faults can generally be categorized. In Table I-6, five classic trends of 

power loss over time are defined [27]. 
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Table I-6: Definition of categories of power loss evolution over time 

Power loss level Description 

PL0 Minimal power loss under detection threshold 

PL-L Linear-shaped degradation of power over time 

PL-S 
Saturated degradation over time (beyond a certain threshold, the power 

loss no longer evolves) 

PL-H 
Hybrid degradation over time (different evolutions at different stages or 

irregular evolution of the degradation) 

PL-E Exponential-shaped degradation of power over time 

 

I.4.3. Summary of fault impact 

Based on the definitions of the safety risk and loss of power loss categories, the impact 

of the common faults at cell, module and array levels are summarized in Table I-7. 
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Table I-7: Summary of the impact of common PV faults 

PV fault Safety risk Power loss evolution 

Level Fault SR0 SR1 SR2 PL0 PL-L PL-S PL-H PL-E 

Cell 

level 

Delamination  ⚫     ⚫  ⚫  ⚫  

Bubble  ⚫   ⚫      

Discoloration  ⚫     ⚫  ⚫   

Cell crack ⚫  ⚫   ⚫  ⚫  ⚫    

Snail track  ⚫    ⚫     

Module 

level 

PID ⚫     ⚫     

Shading/soiling ⚫  ⚫    ⚫  ⚫    

Burn mark  ⚫     ⚫    

Hot spot  ⚫     ⚫    

Junction box fault  ⚫   ⚫      

Diode fault ⚫  ⚫   ⚫   ⚫    

OC  ⚫  ⚫    ⚫    

SC  ⚫  ⚫    ⚫    

Frame breakage  ⚫  ⚫    ⚫    

Back sheet adhesion 

loss 

 ⚫   ⚫      

 Abnormal degradation ⚫  ⚫    ⚫  ⚫    

Array 

level 

Ground fault   ⚫    ⚫    

Line-line fault   ⚫    ⚫    

Arc fault   ⚫  ⚫      

(When a PV fault corresponds to several categories of risk for safety or power loss, this fault can 

induce all these effects depending on its severity level) 

From the summary of fault impact, for the safety risk, most of the common PV faults 

result in SR1 level impact, i.e., medium safety risk of fire, electrical shock, or physical 

danger. However, it should be noted that some electrical faults (like open/short circuit 

module, ground fault, line-line fault, arc fault) and frame breakage may induce SR2 

level impact, i.e., high-level danger. As for the power loss evolution, PL-S (saturated), 

PL-L (linear), and PL0 (negligible) are the more common. It should be noted that, for 

some faults of PL-S type like the electrical faults SC, OC, although the loss of power 

does not degrade at the first fault occurrence, the initial power loss level could still be 

quite high. Therefore, in order to analyze the impact of faults on power, it is necessary 

to examine both the initial level of loss and its evolution over time. Overall, faults with 
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a significant impact on safety and power loss are those that need to be detected in time 

as part of PV system health monitoring. 

 Frequency of fault occurrence  

The frequency of fault occurrence is an important factor to design appropriate and 

relevant health monitoring and prevention strategies for PV system. In [56], a 

comprehensive survey on the PV system faults is carried out worldwide, covering 

different climate zones, and PV technologies. The results of this survey are presented 

in Figure I-4. PV modules from moderate climate areas or multi-crystalline silicon (mc-

Si) technology constitute most of the objects surveyed. The frequency of occurrence of 

the different faults is presented in Figure I-5, where the most frequent faults and those 

that induce a measurable power loss are presented. The frequency of abrupt and gradual 

faults is also shown.  

 

Figure I-4: Relative composition of survey (a) climate zones (b) PV technologies [56] 
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Figure I-5: Occurrence distribution of PV faults over years [56] 

((a): Total occurrence of all types of faults, (b): Occurrence of detected faults causing 

measurable power loss) 
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For gradual PV faults, it is observed that the cell crack is usually reported at the very 

beginning (after the first or second year) of the PV system operation. The PID shunt 

(PID-s) appears mainly from year 3 or 4 onwards. Disconnection (for cells or strings in 

the module) starts from year 4 and covers the whole operating period. Discoloration of 

the encapsulant starts after year 3 and also extends over the years. In addition, the 

discoloration related to power loss reaches a high accumulation after 18 years of 

operation. The diode defect extends over the first 10 years of operation. The total 

occurrence of the other defects is too rare to allow a detailed analysis.  

As far as abrupt PV failures are concerned, they are more related to environmental 

causes. It can be seen that dust souling is more frequently reported and extends over 

several years compared to the other types of defects. 

Comparing the statistical results of the occurrence of all faults and faults leading to 

power loss, the results coincide with the study of the impact of faults on power loss in 

Section I.4. Some faults, e.g., junction box fault, delamination, although frequent, have 

a negligible impact on power output. Furthermore, some faults, e.g., delamination, 

although they may appear at the beginning of operation, the impact on power loss is not 

immediate but evolves and becomes measurable after years. Therefore, by combining 

both the impact and the distribution of occurrence of common PV faults, it is easier to 

indicate which PV faults should be prioritized for the different stages of operation of 

the PV array. 

 Studied fault cases  

After having reviewed the state of the art on PV array faults, we have chosen in this 

work to study the faults taking into account their impact, their frequency of occurrence, 

the reproducibility in simulation and in real conditions. The faults chosen are PS, SC 

module, OC string, and abnormal degradation.  

PS is chosen because of its universality under real conditions and ease of reproduction. 

SC and OC faults are the common electrical faults in PV panels that are likely to cause 

large power losses. Abnormal degradation reflects various defects, such as 

delamination, bubbles, snail marks and the associated corrosion process of PV modules. 

Moreover, it is easily reproducible in simulations and field tests. Thus, it is also 

considered in this thesis. The detailed configuration of these faults and the presentation 

of the PV array to be studied will be detailed in the following chapters. 
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 Conclusion 

In this section, we have presented a state of art on PV array faults. The three main 

origins of faults and the causal relationships between mismatch and abnormal 

degradation have been identified.  

The main PV fault classification tools reported in the literature are analyzed and 

summarized. We have proposed a method for classifying faults according to their level: 

at the cell, module, or array level. Finally, through this approach, the usual faults are 

presented based on a literature review. 

The impact of each fault is studied with regard to power loss and safety risk.  

It should be noted that the different faults occur at different stages of the PV field 

operation. Thus, the frequency of occurrence of faults over time is also addressed. With 

a joint consideration of fault impact, frequency of occurrence and reproducibility, the 

faults PS, SC module, OC string, and abnormal degradation are chosen as the faults to 

be addressed in this thesis. 
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 Introduction 

Fault detection and diagnosis (FDD) is a fundamental issue to ensure the normal 

operation of a PV system. It can prevent damage and eliminate potential fire risks [57]. 

The main task of detection for photovoltaic panels is to certify with the greatest 

certainty that faults have occurred and that the system is no longer operating in its 

healthy operating range. The fault diagnosis focuses on fault identification, fault 

severity estimation, and fault isolation. The whole process is based on a priori 

knowledge,  estimation and field measurements [16]. 

The PV FDD methods can be classified into visual inspection and automatic analysis, 

which will be discussed in this section. 

 Visual inspection for fault diagnosis 

Visual inspection is a quick and effective method to identify faults of PV modules. It 

could be performed before and after the module has experienced environmental, 

electrical or stress test in the laboratory or operation in the field. The common 

detectable PV faults by visual inspection are listed in Table II-1. 

Table II-1 List of detectable PV module faults by visual inspection 

PV module component PV module faults 

Front/Back of PV module Bubbles, delamination, yellowing, browning 

PV cells Cracked cell, discolored anti reflection 

Cell metallization Burned, oxydized 

Frame Bent, broken, misaligned 

Junction box Broken, loose, oxydation, corrosion 

Wires, connectors Detachment, broken, exposed electrical parts 

Bypass diode Burned, broken connection 

 

Besides, PV images captured by various PV imaging techniques (electroluminescence, 

infrared, etc.) can also be examined by humans. These types of images could reveal 

some mechanical or electrical failures inside PV modules. A detailed presentation of 

these imaging techniques will be given in Section II.3.1.2.1. Despite its effectiveness, 

visual inspection is time-consuming and requires expensive equipment and personnel. 

According to [57], visual inspection is more appropriate for small-scale facilities where 

they can be frequent and cost-effective. 
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 Some PV module faults that lead to performance degradation (e.g., induced partial 

discharge, broken internal interconnection) are usually invisible to the naked eye and 

cameras or sensors adopted for visual inspection. Detection of these types of faults 

requires other information and the implementation of more advanced methods.  

 Automatic information analysis for fault diagnosis 

Automatic information analysis is playing an increasingly important role in PV FDD 

techniques. On the one hand, this is due to the increasing availability of PV data with 

the rapid development of the PV industry and, on the other hand, to the growing demand 

for automated and accurate monitoring of the health status of PV systems. 

Automatic information analysis for PV FDD relies on a great variety of methods and 

techniques. The methods can be decomposed into four steps: modelling, pre-processing, 

feature extraction and feature analysis [58], as shown in Figure II-1.  

 

Figure II-1 Four-step PV FDD scheme  

A feature refers to an individual measurable property or characteristic of a phenomenon. 

Generally, features are numeric, but structural types such as strings and graphs are also 

possible. In this four-step based scheme, under some circumstances, the pre-processing 

and feature extraction step could be skipped. In addition, it should be noted that the 

same techniques can be used in different steps. For example, Machine learning 

techniques (MLT) can be adopted for pre-processing, feature extraction, and feature 

Modelling
• Physics-based models (electrical equivalent circuit)

• Data-based models (electrical data, environmental 

data, PV images)

Pre-
processing • Format unification (normalization, resizing ,...)

• Data cleaning (filter, denoising, ...)

• Data augmentation (flip, rotation, clip, ...)

• Format transformation

Feature 
extraction

• Statistical parameters (centrale tendency, variability, …)

• Signal processing methods (Fourier, wavelet, …)

• Image processing methods (segmentation, GLCM, …)

• Multivariant transformation methods 

(by PCA, LDA, ICA, …)

• Estimation and control methods

Feature 
analysis

• Threshold analysis

• Statistical analysis (regression, discriminant analysis)

• Machine learning techniques (unsupervised, semi-

supervised, supervised)
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analysis. Based on this four-step scheme, the common automatic PV FDD methods will 

be analyzed in the following. 

II.3.1. Modelling 

A model is a representation of knowledge. It can be: 

• Analytical: based on mathematical relationships between inputs and outputs, which 

describe the physical phenomena occurring in the system, 

• Numerical: based on data measured in the system during operation, 

• Descriptive: based on the expression of operating modes. 

PV modelling plays an important role in the design, characterization, and maintenance 

of PV systems [59]. In order to use the PV module model for diagnosis, it must be able 

to accurately simulate the operating points of a PV system under varying environmental 

conditions. Therefore, modelling the PV module is an essential step for fault detection 

and diagnosis [60]. 

In the current state of knowledge, the model of a PV system is either analytical (also 

denoted as physics-based) or numerical (denoted as data-driven). 

II.3.1.1. Physics-based modelling 

The models of a PV module are based on the description of the photoelectricity at a cell 

level. The cell models are combined in series and parallel to obtain the model of a 

module. They represent the relation between environmental inputs (irradiance and 

temperature) and the electrical signals, output current and voltage. The most common 

models are electrical equivalent circuit (one or two diode model [61], Merten’s model 

[62]), semi-empirical “point” model [63], Evans model or called simple efficiency 

model [64] ). Thanks to their simplicity and efficacity, the one or two diode models are 

the most used ones to estimate the operational parameters and characterize PV array. 

The electrical equivalent circuits for the two models are displayed in Figure II-2 and 

Figure II-3, respectively. It should be noted that the accuracy of the models depends on 

the accuracy of the model parameters, which can be extracted by various estimation 

methods [65], [66].  

In the single-diode model: Iph is the photocurrent, Id the diode current representing the 

diffusion phenomenon, Rsh the shunt resistance representing leakage current path 

caused by the distributed manufacturing defects inside the solar cell, Rs the series 

resistance representing the power dissipation caused by the thermal effect in the whole 

junction substrates, and the electrical contacts.  



Chapter II  Fault detection and diagnosis of photovoltaic array: State of the art 

29 

 

 

Figure II-2 Equivalent circuit of the single-diode model 

The double-diode model has two diodes in parallel. It takes the recombination 

phenomena into consideration, and therefore could achieve a better characterization 

[67]. This model provides more a reliable estimation of the internal parameters, which 

can better reflect the phenomena occurring inside the solar wafer.  

  

Figure II-3 Equivalent circuit of the two-diode model 

II.3.1.2. Data-based modelling 

Data-driven modelling is based on historical measurements made during the operation 

of the PV module (electrical and environmental measurements) or images captured by 

ground cameras or unmanned aerial vehicles (UAV)  

II.3.1.2.1. PV images 

The images of PV modules can be classified into four groups, which are detailed in the 

following, and compared in Table II-2. 

• Visible image 

Conventional imaging devices provide visible (Vis.) images similar to those obtained 

by human visual inspection (presented in Section I.2).  In contrast, the images adopted 

for automatic fault diagnosis are usually obtained by UAVs, which are more suitable 

for large PV installations [68].These systems allow a large number of images to be 

available for analysis. 

• Infrared thermography image 

Infrared (IR) thermography imaging is a non-destructive measurement technique, 

which can provide rapid, real-time, and two-dimensional distributions of the 

characteristic features of PV modules [68]. The IR images permit the identification of 
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various PV faults causing temperature anomalies, e.g., PID, partial shading, invisible 

cell, crack, hot spots, bypass diode faults, OC or SC of cell/diode/module. IR imaging 

cameras can also be embedded on UAV devices. 

• Electroluminescence image 

Electroluminescence (EL) images are captured by silicon charged coupled device (CCD) 

camera, which detects light emission caused by the radiative recombination of carriers 

when external DC current is fed into a PV module [69]. Therefore, EL imaging requires 

a dark environment. The light intensity increases with the local voltage, so that areas 

with poor contact appear dark [70].  

• Ultraviolet fluorescence image 

Ultraviolet fluorescence (UVF) [71] imaging is realized by exposing a PV cell or 

module to ultraviolet (UV) light to excite fluorophores in the material into higher 

energy states. The reemitted light has a longer wavelength than the absorbed radiation 

[72]. This light is visible to naked eyes and can be captured with a camera or analyzed 

with a UV/Visible spectrometer using a limited bandwidth source and long-pass filters.  

Table II-2 The four types of PV images 

 Visible IR EL UVF 

Examples 

 
[68] [68] [14] [27] 

Environmental 

requirement 

None None Darkness Darkness 

Disconnection of 

modules 

No No Yes No 

External source None None DC current UV light 

Typical 

detectable faults 

Discoloration, 

burn mark, PS, 

delamination 

Cell crack, Hot 

spot, PS, SC, OC, 

PID, diode fault 

Cell crack, PID, 

diode fault, 

disconnection 

Cell crack, 

disconnection 

 

The PV image data from a variety of imaging techniques permits to detect the faults 

that have no significant impact on the electrical parameters of PV modules but still need 

to be noticed, like cell crack, discoloration, and delamination. However, as for the limits, 

the imaging devices are generally costly, and the image acquisition process could be 

complicated and time-consuming if external sources or specific light conditions are 
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required, especially for large-scale PV plants. The UAV-based imaging may provide 

solutions for the imaging of large-scale PV plants. However, an automatic identification 

and segmentation of PV modules from aerial images requires further study [73]. 

II.3.1.2.2. Environmental measurements 

There are three environmental measurements commonly adopted for PV diagnosis, as 

specified in the following. 

• In plane irradiance 

Irradiance is the instantaneous measurement of the radiant power from the sun captured 

by a solar cell or module per unit area [74]. For performance analysis or health 

monitoring of PV modules, the global irradiance received in the plane (Gpoa) of a PV 

module is commonly adopted [74]. The measurement of Gpoa is generally done by a 

pyranometer or a reference cell. There are two types of pyranometer: thermopile and 

photodiode pyranometer. A thermopile pyranometer measures the irradiance in the 

range of 300 to 2800 nm with a flat spectral sensitivity, while the photodiode measures 

a portion of the solar spectrum between 400 nm and 1100 nm [75]. The reference cell 

provides measurement as the effective irradiance. It must be made of the same material 

as the PV module under study [76]. 

• Module temperature 

Module temperature (Tm) is the second contributing factor to the output power of a PV 

module (primary factor is the irradiance), especially when the temperature is above the 

value of 25°C defined in the Standard Test Condition (STC). Tm is generally measured 

by two means: 

1) Contact methods: sensor attached to the module back sheet. 

2) Contactless methods: the temperature is estimated from ambient temperature (Ta) 

and irradiance [63], or extracted from the relationship between open circuit voltage 

(VOC) and Tm [77]. Infrared cameras, if calibrated, can also measure the operating 

temperature [78]. 

• Meteorological data 

Except Gpoa and Tm, meteorological data are sometimes needed to understand the 

module performance better and evaluate its stability. The common data includes 

ambient temperature Ta, wind speed and direction, humidity, air pressure, Global 

Horizontal Irradiance (GHI) [79], Diffuse Horizontal Irradiance (DHI) [80], spectral 

irradiance [81]. 

II.3.1.2.3. Electrical measurements 
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Electrical measurements are also among the common features used for FDD. The 

typical ones can be classified depending on their locations, as presented in Table II-3. 

Table II-3 Common electrical measurements in PV system 

Location  Measurements 

DC side • Voltage and current adjusted by maximum power 

point trackers (MPPT) (VMPP, IMPP) 

• Open circuit voltage (VOC) 

• Short-circuit current (ISC) 

• Current-voltage characteristic (I-V curve) 

DC/AC conditioning unit • Voltage and current of the inverter 

• Voltage and current of the battery bank 

AC side • Voltage and current (VAC, IAC) 

 

For monitoring the health status of PV panels, electrical measurements on the DC side 

are more commonly adopted. Among these measurements, the I-V curve contains the 

most information: VMPP, IMPP, VOC and ISC, the fill factor (FF), and the slopes of the 

curve. I-V curves are usually obtained with an I-V plotter or by hardware solutions 

integrated in PV inverters, the latter allowing a periodic characterization of a PV 

module, string or plant in operation [18]. 

II.3.2. Pre-processing 

The pre-processing of raw data is an essential step for automatic diagnosis of PV 

modules. Pre-processing techniques are applied to prepare the data for efficient features 

extraction. They can be categorized into format unification, data cleaning, data 

augmentation and format transformation. 

II.3.2.1. Format unification  

Measurements in the PV system are obtained by different sensors and acquisition 

systems. They may therefore have very different formats (variation intervals, length, 

sampling periods, etc.). In order to avoid biased analyses, it is recommended first to 

standardize the formats.  For time or frequency-domain electrical signals, resampling 

or window cutting are the common operations [82]. Resampling is also required for I-

V curves with a different number of points or current-voltage distribution [19]. In 

addition, when several non-commensurable PV system variables are used for FDD 

analysis, a normalization [83] is usually performed to standardize the range of variation 
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of the characteristics into [0, 1] or [-1, 1]. For images, the most common format 

unification operations are resizing [84], RGB separation [85], graying [86]. 

II.3.2.2. Data cleaning 

Raw PV data may contain interference or invalid information that is removed by filters 

[87]. Advanced signal processing methods can also be used, such as wavelet denoising 

[88] or smoothing [89], to remove unwanted noise and fluctuations. For images, 

denoising is applied to remove external interference and restore the real image [90]. 

II.3.2.3. Data augmentation 

Statistical and more generally machine learning techniques are more effective when 

they have a large amount of data that is sufficiently representative of all operating 

modes. However, this is a serious challenge for measurement systems, even more so 

for image measurements. 

There are two main obstacles to construct a large PV image dataset: 1) insufficient 

quantity of images due to the limited number of PV modules or the complexity of 

imaging procedure; 2) unbalanced dataset, i.e., the number of images of healthy 

modules and faulty modules is different [91]. These two obstacles can significantly 

hinder the learning performance of machine learning models. Therefore, data 

augmentation [92] is usually adopted to increase the number of images or balance the 

number of images among the different classes (operating conditions). The most 

common techniques include rotation, flip, clip, blurring addition, and adjustment of the 

brightness [93]. 

II.3.2.4. Format transformation 

The format transformation of PV data is sometimes performed before analysis. These 

transformations are mainly done for two reasons: 1) to find a more appropriate 

representation for FDD analysis, 2) to combine different PV data format into an 

identical one.  

There are various transformations that are realized either by a simple rearrangement of 

data or signals into images or matrixes, or by special techniques. Some examples are 

presented in Table II-4. 
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Table II-4 Some format transformations for PV FDD 

Ref. Original  

features 

Transformed 

features 

Description Example of transformed features 

[82] V and I signals Image Save sequential 

waveform of V 

and I as image 

 

[94] G, Tm, VOC, ISC, 

VMPP, IMPP, Pm 

Scalogram Continuous 

Wavelet 

Transform 

(CWT) [95] 

 

[24] I-V curve, G 

and Tm 

Matrix Construction of 

a feature matrix  

 

[96] I signal Matrix Rearrange signal 

into a square 

matrix 

 

[25] I-V curve, G 

and Tm  

Corrected I-

V curve 

Correction of I-

V curve to a 

certain 

environmental 

condition 

- 

 

II.3.3. Feature extraction 

After pre-processing the raw data, the feature extraction step aims to extract from the 

data the most significant features representing the defects. The extracted features or 

fault signatures should be highly informative and not redundant. For cost-effective and 

Healthy OC string LLF

PS1 PS2 AF

T G I1 V1

T G I2 V2

T G I3 V3

… … … …

T G I40 V40

404 feature matrix

Healthy Arc fault
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reduced computation time, the extracted features should also be of reduced dimension. 

However, the extraction of the features should not degrade the overall FDD 

performance. Common feature extraction techniques for PV FDD can be classified into 

five categories as shown in Figure II-4: statistical parameters, signal transformation, 

image processing, multivariate transformation, and estimation & control techniques. 

 

Figure II-4 Common techniques of feature extraction for FDD 

II.3.3.1. Statistical parameters  

Measures of central tendency, and measures of variability are used to extract relevant 

basic statistical properties from PV data [97]. 

II.3.3.1.1. Measures of central tendency 

As the most common statistical descriptive measures, central tendency estimates the 

central location of one univariate PV data by calculating the mean, median or mode 

[98]. Each of these measures has its pros and limitations. The mean reflects each value 
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of the dataset but is particularly prone to outlier values. Comparatively, the median is a 

more suitable measure when the dataset includes outliers. The mode could represent the 

value that appears most often. It should be noted that there is no restriction on using 

only one of these measures of central tendency. 

II.3.3.1.2. Measures of variability 

Measures of variability or dispersion of univariate PV dataset can provide relevant 

information on the data distribution [99]. The three popular measures of variability are 

range, variance, and standard deviation. The selected measures depend on the data 

type, the shape of the distribution and the corresponding measure of central tendency 

used [100]. When combined with the measures of central tendency, the data exploration 

is significantly enhanced. For the application in PV FDD, authors in [101] calculates 

the mean and the standard deviation of V, I and Pm to detect PS, SC module and OC 

string fault. 

II.3.3.2. Signal transformation methods 

Signal transformation methods are used to extract local features from pre-processed 

raw measurements in the time domain, such as coving peak, crest factor, signal-to-noise 

ratio (SNR), Root Mean Square (RMS) level [102].  

In the case of the I-V curve, which contains information on voltage and current signal, 

several parameters can be obtained: the open circuit voltage (𝑉𝑂𝐶), short circuit current 

(𝐼𝑆𝐶), voltage and current at maximum power point (𝑉𝑀𝑃𝑃), (𝐼𝑀𝑃𝑃), fill factor (FF), 

equivalent series resistance (𝑅𝑠) and shunt resistance (𝑅𝑠ℎ) [103].  

The signal processing techniques can also be used to transform the time-series data into 

the frequency domain for further analysis. 

• Fourier transform (FT) 

The FT [104] is used to determine the frequency components of a signal. The main 

variants of FT include Continuous Fourier Transform, Fourier Series, Discrete Fourier 

Transform, and Fast Fourier Transform [105]. For example, in [106], FFT is adopted to 

extract the frequency content of the current to detect arc fault (AF) in a PV array. 

• Wavelet transform (WT) 

WT is a transform, which decomposes an input signal into subsets. Each subset is 

constituted with time series of coefficients characterizing the evolution of the signal in 

the corresponding frequency band [107]. There are two types of WT: Continuous 

Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). CWT uses an 

infinite number of scales and locations, while DWT uses a finite set of wavelets [108]. 
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WT can extract local spectral and temporal information simultaneously. The 

performance of the transformation depends on the choice of the mother wavelet 

function and the translation and expansion coefficients to tune time and frequency 

resolutions. For the application in PV FDD, authors in [109] have adopted DWT to 

extract features from the AC current (IAC) to identify AF. Similarly, authors in [110] 

have used DWT with AC voltage (VAC) and IAC to classify LLF and GF. 

II.3.3.3. Image processing methods 

In the case of images of PV modules or arrays, the data can have a complex structure 

and a high dimension. Therefore, to extract the most relevant features, the images 

should be processed. Some examples are given below. 

• Segmentation 

Images in the PV domain are mainly recorded at array or power plant levels, less often 

at smaller scales for obvious technological reasons. However, for health monitoring, 

the analysis should be conducted at the cell or module level. The segmentation of large-

scale images at the target scale can be realized manually or automatically. For example, 

authors in [111] perform an automatic segmentation to cell level via edge identification 

of module-level images obtained from EL. In [112], authors have used deep learning to 

segment aerial images to PV panel images for diagnosis. 

• Grey level co-occurrence matrix (GLCM) 

GLCM is used to analyze the spatial distribution of pixel intensity to calculate several 

image texture features [113]. In the case of PV, it is often exploited to extract 1D 

features such as contrast, homogeneity, or entropy parameters for fault diagnosis. For 

example, GLCM has been used to extract textural features from visual inspection 

images of PV modules to assess soiling [114]. GLCM has also been used to extract 

features like contrast and correlation from IR images of a PV module to detect hot spot 

[115]. 

• Filter operation 

To extract 2D areas of interest from one PV image, filtering is a common operation. 

Several filters can be used, depending on the use case. For example, authors in [116], 

inspired by Sobel filter [117], have designed a specific filter to extract Hough and 

percentile regions from cell images as shown in Figure II-5. 
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Figure II-5 Illustration of feature extraction from PV EL images [55] 

Deep learning techniques can also be used for filtering. For example, authors in [118] 

have used denoising convolutional neural network (DnCNN) [119] to extract soiling 

layer from PV module images, as shown in Figure II-6. 

 

Figure II-6 Extraction of soiling layer of PV module images using denoising CNN [118] 

II.3.3.4. Multivariate transformation techniques 

When input data are diverse or low-separable in current space, it may be necessary to 

perform transformations or projections, especially for multivariate features. These 

allow the dimensionality to be reduced and the selection of features to be refined before 

the analysis stage. Therefore, the techniques can be broadly categorized into feature 

selection and dimensionality reduction type. 

II.3.3.4.1. Feature selection techniques 

A feature selection algorithm can be considered as the combination of a search 

technique to construct new feature subsets, combined with an evaluation measure which 

scores the different feature subsets. There are three main types of feature selection 

algorithms: wrappers, filters, and embedded methods. Wrapper method applies a 

predictive model to score feature subsets [120]. A model is trained for each new subset 

and tested on a hold-out set. Counting the error rate of the model on the hold-out set, 

the best subset is determined. Filter methods adopts a proxy measure to score a feature 

subset instead of the error rate [121]. The choice of the measure needs to be fast to 
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compute, while still conserve the usefulness of the feature set. Embedded methods 

combine the qualities of filter and wrapper methods on performing feature selection 

during the model construction [122]. An example for the application in the domain of 

PV FDD is given in [123], where the embedded method is used to select 5 features from 

originally 11 PV features to detect PS and SC module. 

II.3.3.4.2. Dimensionality reduction techniques 

• Principal component analysis (PCA) 

PCA is the process of computing the principal components to perform a change of basis 

of the original data [124]. It is an efficient tool to reduce the dimension of the original 

features by projecting original data onto the first several principal components, which 

allows to obtain lower-dimensional features but can still preserve as much of the 

variation of original data as possible. Features of lower dimension permit to efficiently 

control the complexity of diagnosis models, especially for data-driven methods. 

Concerning PV FDD, [20] reduces three PV electrical features into two by selecting the 

first two components to detect PS. [125] adopts PCA to reduce the 280 wavelet 

coefficients into 20 for the detection of AF. 

For the components extracted by PCA, two indices, the Hoteling’s T-squared (T2) 

statistic and the Q-statistic (also known as the squared prediction error (SPE)), can be 

further extracted [126]. For example, in [127], both T2 and Q-statistic are extracted from 

the PCA model that is applied for a total of 9 original PV features. These two statistic 

features are then used to classify PS, connection fault and sensor fault. 

• Discriminant analysis 

Discriminant analysis is a category of techniques to analyze the data when the criterion 

or the dependent variable is categorical and the predictor or the independent variable is 

interval in nature [128]. Discriminant analysis encompasses methods that can be used 

for dimensionality reduction. Linear discriminant analysis (LDA) is particularly 

popular because it is both a classifier and a dimensionality reduction technique [129]. 

Quadratic discriminant analysis (QDA) is a variant of LDA that allows for non-linear 

separation of data [130]. Regularized discriminant analysis (RDA) is a compromise 

between LDA and QDA, it is particularly useful when there are many features that are 

potentially correlated [131]. An example of application in PV feature extraction is given 

in [132], where LDA is employed to extract two projected features from VMPP, IMPP and 

Pm for the diagnosis of PS. 

• Independent Component Analysis (ICA) 

ICA is a computational method for separating a multivariate data into additive 

subcomponents [133]. This is realized by assuming that all the subcomponents are non-



Chapter II  Fault detection and diagnosis of photovoltaic array: State of the art 

40 

 

Gaussian features and are statistically independent from each other. ICA can be used 

for dimensionality reduction by extracting the directions that are as statistically 

independent as possible and projecting the process data onto the associated basis 

vectors. For example, in [134], ICA is applied to extract 2-3 features from 20 electrical 

signals in a PV array for the FDD of different PV faults, like OC string, PS, SC module, 

etc. 

• t-distributed Stochastic Neighbor Embedding (t-SNE) 

t-SNE is a non-linear dimensionality reduction technique for visualizing high-

dimensional data by assigning each data a location in a two or three-dimensional space 

[135]. To be specific, t-SNE models each high-dimensional data by a two- or three-

dimensional point. In this way, similar data are gathered by nearby points and dissimilar 

data are mapped by distant points with high probability. For PV FDD, [136] applied t-

SNE to extract two features from originally 25 PV features to detect inverter fault. In 

addition, t-SNE is also commonly adopted for the visualization of high-dimensional 

features in PV FDD. For example, in [137], t-SNE is used to project the 4 PV features 

G, Tm, VMPP and IMPP into a two-dimensional space to analyze the discriminability of 

features for the classification of 8 PV faults, like SC, PS, degradation, etc. 

II.3.3.5. Estimation and control techniques 

The model of PV array, once established, can be used to estimate the operating 

parameters under different environmental conditions. The estimation process may 

require the input of real-time measurement: irradiance, temperature, meteorological 

data. The estimated parameters are generally the electrical parameters. For FDD 

analysis, these estimated parameters can either be used directly or used to generate 

residuals. The performance of the extracted features for analysis depends on the 

accuracy of the PV model. For example, authors in [21] generate a residual from 

measured and estimated PMPP (via single diode model) to classify PS, OC string, and 

diode fault. Also, based on the single diode model, authors in [138] estimates intrinsic 

model parameters from dynamic I-V curves for the diagnosis of cell crack. 

II.3.4. Feature analysis for FDD 

After modelling, pre-processing and feature extraction, their analysis is the last step in 

the FDD methodology. As in the previous steps, several techniques can be used 

depending on the application domain, the nature of the data, the information domain 

and the desired performance. These techniques can be mono or multidimensional and 

rely on threshold, statistical analysis, or machine learning techniques (MLT), which are 

summarized in Figure II-7. 
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Figure II-7 Techniques for feature analysis in FDD 

The common techniques or algorithms of these three categories will be detailed in the 

following. Application cases in the field of PV FDD will also be given after the 

presentation of each technique. 

II.3.4.1. Threshold analysis 

Threshold logic is the most basic tool for making a binary decision [139]. The crossing 

of a threshold, by the feature, gives an indication of whether the system is healthy or 

faulty. The threshold can be variable or constant:  

• A variable threshold generally requires a model of the PV array, which 

parameters are updated in real-time. For the application in the PV field, the 

measured PMPP is compared with its real-time estimated from the single-diode 

model to detect the presence of PS [140]. In [141], the performance ratio (PR) 

is compared with a simulated value obtained from the double-diode model to 

identify the GF. 

• A constant threshold can be set based on: simulation of PV model, field 

experiments, or empirical knowledge. For example, in [142], from the past 

measurements, a threshold is set for the PR to detect power losses. In [143], a 

limit is determined for the array’s IMPP by empirical knowledge to identify hot 

spot. 

II.3.4.2. Statistical analysis 

As already mentioned for feature extraction, the statistical properties of the features can 

also be used for decision making. There are several tools available in the literature for 

statistical analysis [144], detailed in the following. 

• Regression analysis 
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Regression analysis is a set of statistical processes for estimating the relationships 

between a feature or state and one or more independent features [145]. The objective 

of the regression is to find the coefficients of the curve (linear or non-linear) that most 

closely fits the data according to an optimization criterion. Regression analysis can be 

employed for prediction or classification. For the application in PV field, a regression 

model has been used to detect the power loss of a PV array by analyzing Gpoa, Tm, VMPP 

and IMPP [146]. In [147], the Gaussian regression is applied to analyze VMPP, IMPP and 

PMPP for the classification of PS and inverter fault. 

• PCA and discriminant analysis  

PCA and discriminant analysis methods (LDA, QDA and RDA), already presented in 

Section II.3.3.4.2 for dimensionality reduction, can also be used for classification [148]. 

To perform the classification, each new data sample is projected into the representation 

space previously built with one of these techniques, and then assigned to its class. 

Authors in [20] adopts PCA to detect array PS. QDA is used in [123] to analyze Gpoa, 

Tm, Ta, VMPP, IMPP and Pm for the diagnosis of PS and SC module. Besides, in [127], a 

discriminant analysis model is developed to classify PS, connection fault and sensor 

fault in a GCPVs by analyzing the T2 and Q-statistic features.  

II.3.4.3. Machine learning techniques 

Thanks to the development of PV power plants and their increased digitalization, 

operators have collected a huge amount of data over the past years. At the same time, 

data analysis tools, especially MLTs, have also grown tremendously. MLTs, are 

powerful tools that can deal with large amount of data [149]. MLTs can automatically 

analyze the relationships between variables and build an accurate model. Once the 

model has been established and evaluated during the training and validation processes, 

it can be used with new input samples for classification or prediction. This allows MLTs 

to be applied for the tedious task of FDD in PV field [147]. As a hot research topic for 

a long time, several MLTs have been developed, and applied to fault diagnosis in PV 

field. These techniques can be categorized into unsupervised, semi-supervised and 

supervised learning techniques. 

II.3.4.3.1. Unsupervised learning technique 

Unsupervised learning algorithms are designed to find the underlying structures in 

unlabeled input data [150]. The aim is then to assign any new sample to one of its 

structures. A typical unsupervised learning algorithm is clustering.   

Clustering consists of forming groups (denoted clusters) in which objects with common 

properties are grouped together [151]. There are several clustering algorithms that differ 

according to how clusters are constructed and differentiated: k-means [152], DBSCAN 
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[153], OPTICS [154], hierarchical clustering [155]. For the application in PV FDD, k-

means-based clustering has been applied in [156] by analyzing Gpoa, TM, VMPP, IMPP, 

VAC and IAC to detect PS and OC string, and in [157], [158] to evaluate the power loss. 

The density-peak type uses VMPP, IMPP, VOC, ISC in [159] to identify OC string, and LLF 

of a GCPVs. 

II.3.4.3.2. Semi-supervised learning technique 

Semi-supervised learning combines a small amount of labeled data with a large amount 

of unlabeled data during the training phase [160]. It is a special case of weak supervision. 

Common semi-supervised learning techniques encompass graph-based methods [161], 

heuristic approaches [162], generative models [163]. In [164], Graph-Based Semi-

Supervised Learning (GBSSL) analyzes VMPP, IMPP, VOC, ISC at array level to classify 

PS, LLF, OC in a GCPVs. Similar application with GBSSL is conducted in [165] to 

detect LLF, SC module, OC string in a PV array.  

II.3.4.3.3. Supervised learning techniques 

Unlike unsupervised learning, supervised learning infers a function from labeled 

training data, that maps an input to an output via a model [166]. The common 

supervised learning techniques are detailed in the following.  

• Artificial Neural Network (ANN) 

ANN, inspired by biological neural networks, works as a hierarchical model [167]. It 

generally includes one input layer, several hidden layers, and one output layer, as 

depicted in Figure II-8. Each layer is composed of several connected units (named 

neurons), each one associated to an activation function [168]. It operates as parallelized 

processors to deal with complex systems. There are several variants of ANN, like 

Multilayer Perceptron neural network (MLP) [169], Radial basis function neural 

network (RBF) [170], Probabilistic neural network (PNN) [171], Extension neural 

network (ENN) [172], Extreme learning machine (ELM) [173].  

…

… …

…

Hidden layers

Input layer Output layer

 

Figure II-8 Basic structure of ANN 

Regarding the application to feature analysis for PV FDD, Gpoa, Tm, VMPP and IMPP are 

used  as input features to a MLP model to detect SC module, and OC string faults [174]. 
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Using the same features, a PNN model is used to identify LLF and OC string faults 

[175]. A WNN model is used in [176] to analyze VMPP, IMPP, ISC and VOC for the 

classification of PS, SC module, OC string and degradation. In [177], features from PV 

EL cell images are analyzed by a MLP model to identify cell crack. 

• Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) [178] belongs to the category of ANN but 

generally exhibits much more complicated network structure. It is the most 

representative deep learning technique, which is skilled at learning and classifying 2D 

features, i.e., PV images or transformed 2D features. A typical CNN model consists of 

one input layer, several groups of convolutional and pooling layers, several fully 

connected layers and one output layer as depicted in Figure II-9 [179] . Since the 

structure of the CNN can be pretty complex, various types of CNNs with a different 

number of layers and connections have been designed over time. The most classical 

CNN structures are: LeNet [180], GoogLeNet [181], VGG [182], R-CNN [183], 

ResNet [184], AlexNet [185], MobileNet [186], Attention U-Net [187], and YOLO 

[188]. 

Input layer

Convolutional layer

…

…

Filters

Pooling layer

…

Fully-connected layer

Output layer

Feature extraction Classification  

Figure II-9 Basic architecture of CNN 

For PV FDD, LeNet model is used to analyze PV EL cell images to identify cell crack 

[189].  PV IR module images are used as input of MobileNet to detect hot spot [190]. 

A CNN with 9 layers is used to classify delamination, soiling, snail track and 

discoloration from UAV-measured PV visible module images [191]. Time series 

graphs of I and V at array level are taken as features for a ResNet to detect LLF, SC 

module, OC string faults [82]. 

• Fuzzy logic (FL) 

FL is a form of many-valued logic in which the truth value of variables may be any real 

number between 0 and 1 both inclusive [192]. It is employed to handle the concept of 

partial truth, where the truth value may range between completely true and false. FL 

assigns the numerical input of a system to fuzzy sets with some degree of membership. 

The common membership functions include the singleton, Gaussian, trapezoidal, and 
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triangular types. In PV FDD, a FL with triangle as membership function is developed 

in [193] to study VMPP, Pm to detect array PS. [194] proposes a FL with trapezoid 

function to classify PS, PID and degradation by analyzing features extracted from I-V 

curve and irradiance. In [195], a FL with combination of triangle and trapezoid 

functions is built to detect LLF with features extracted from array VMPP and IMPP. 

• Support Vector Machine (SVM) 

SVM constructs a hyperplane to achieve the largest separation or margin between 

classes [196]. For non-linear classification, SVM maps the inputs into high-dimensional 

feature spaces via a kernel function. Common kernels include polynomial (degree of 1, 

2 or 3), Radial basis function (RBF). The use of kernel avoids the expensive 

calculations of the dot product in feature space. To achieve multiclass SVM, one-

versus-all (OVA) or one-versus-one (OVO) strategies can be adopted. Concerning PV 

FDD, [197] developed a RBF-based OVO SVM to classify OC module, SC module, 

PS with array VMPP, IMPP , ISC and VOC as features. In [110], features extracted from PV 

module images are used to evaluate the module soiling via a polynomial SVM.  

• k-Nearest Neighbors (kNN) 

kNN is a non-parametric lazy classification method, all the training data is needed 

during the testing phase [198], [199]. An object is classified in the category to which 

its k nearest neighbors in the space of the characteristics identified during the learning 

process belong. The common distance metrics are Euclidean, City block, or Chebyshev. 

Regarding PV FDD, a kNN model with Euclidean distance to analyze Gpoa, VMPP and 

IMPP for the diagnosis of PS, BPD fault, and inverter fault [200]. The same model has 

been used to classify PS, OC string and SC module with the features Gpoa , Tm, VMPP, 

IMPP and PMPP [201]. 

• Decision Tree (DT) 

DT is a decision-making tool that applies a tree-like model [202]. It usually works from 

top to bottom, by choosing a variable at each step that best splits the set of items [203]. 

It generally consists of 3 types of nodes: root node, children node and leaf node. The 

key issue of designing a DT is to determine the best splits. To this end, different 

algorithms with different metrics can be used, which generally include ID3 [204], C4.5 

[205], CART [206]. For PV FDD, [165] built a C4.5 DT with G, Ta, VMPP, IMPP as 

features to classify LLF, SC module, OC string faults. In [164], G, VMPP, PMPP, VOC and 

FF are used to construct a DT to detect PS, LLF and OC string faults in a PV array. 

• Random Forest (RF) 

RF is an ensemble learning method for classification that constructs multiple decision 

trees during training phase and outputs the class by majority voting [207]. Each sub tree 
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is trained on different parts of the same training set, with the goal of reducing the 

variance [208]. RF mitigates the overfitting of DT during training and thus generally 

outperforms DT [209]. Concerning PV FDD, in [210], RF is applied to analyze features 

extracted from I-V curves to classify PS, OC, SC and  degradation fault in a PV array . 

A similar approach is used in [211] for the classification of PS, LLF, OC string, and 

degradation fault. A RF model is used with VMPP, IMPP, and Tm as features to detect and 

analyze the soiling rate [212].  

• Naive Bayes classifier (NBC) 

NBC, based on Bayes' theorem [213], assumes that the variables are conditionally 

independent. NBC assigns observations to the most probable class based on the 

maximum a posteriori decision rule [214]. Explicitly, NBC estimates the densities of 

the variables within each class. Then, it models posterior probabilities according to the 

Bayes rule. Finally, it classifies a new sample by estimating the posterior probability 

for each class, and then assigns the sample to the class yielding the maximum posterior 

probability. In [215], a NBC is developed to analyze the texture features extracted from 

thermal PV module images to detect hot spot. NBC with kNN and SVM are used to 

identify the array LLF with 15 features reconstructed from I-V curves [216]. 

The main properties of these MLTs reported in literature are summarized in Table II-5. 

It should be noted that Table II-5 is not a technically rigorous comparison of these 

techniques, which, in fact, is quite tricky to perform due to the variability of each MLT 

and the application cases. 

Table II-5 Main properties of common MLTs applied in PV FDD 

MLTs  Pros Cons 

ANN 

[217], [218] 

• Fast decision making 

• Good approximation of 

nonlinear relationships 

• Appears as Black Box 

• Slow training 

• Overfitting risk 

CNN 

[217], [218] 

• Fast decision making 

• Efficient in learning 2D 

features 

• Transfer learning permits 

easier tuning of model 

• Appears as Black Box 

• Large amount of labelled 2D 

features required 

• High computational complexity 

FL 

[192], [219] 

• Flexible structure and 

modifiable rules 

• Low reliability 

• Completely depend on human 

knowledge and expertise 
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SVM 

[220], [221] 

• Fast decision making 

• Outliers have less impact 

• Relatively memory efficient 

• Slow training, especially for large 

dataset 

• Poor performance with overlapped 

classes 

• Overfitting risk 

kNN 

[198], [221] 

• Easy implementation • Slow decision making 

• Must store all training data 

DT 

[222], [223] 

• Easy to understand and 

interpret 

• No need for normalization 

• Prone to be non-robust  

• Overfitting risk 

RF 

[207], [208] 

• Reduce overfitting, higher 

accuracy than a single DT 

• Lack of the intrinsic interpretability 

of DT 

NBC 

[214], [215] 

• Mitigate the curse of 

dimensionality  

• Often fails to produce a good 

estimate of the correct probabilities 

 

II.3.5. Illustration of the four-step automatic PV FDD scheme 

The four-step PV FDD methodology (modelling, pre-processing, feature extraction and 

feature analysis) has been detailed. This scheme can be applied to analyze most of the 

application cases in the PV field. To better illustrate how this four-step automatic FDD 

scheme is performed, based on the abundant literature, some typical use cases have 

been selected and analyzed in the light of this approach, as described in Table II-6. 

Table II-6 Illustration of the four-step automatic PV FDD scheme with several use cases 

Ref. Modelling Pre-processing Feature 

extraction 

Feature 

analysis  

Target  

fault 

Accuracy 

Physics-

based 

model 

Measurands 

[21] Yes PMPP - Residual 

generation 

Threshold  PS, OC, 

BPD fault 

90.3% 

[224] No I-V curve - MSD SVM LLF 94.7% 

[225] Yes VMPP, IMPP Normalization - PNN LLF, SC, 

OC 

97% 

[82] No V, I signal Transformation - CNN LLF, SC, 

OC 

99.5% 

[226] No EL images Data 

augmentation 

Segmentation CNN Cell crack 88.4% 

[118] No Vis. images Data 

augmentation 

DnCNN ResNet Soiling 90% 
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[227] No IR images Resizing PCA GoogleNet Hot spot, 

cell crack 

97.9% 

 

From Table II-6, it is observed that not all the four steps in the scheme are clearly 

addressed. For example, authors in  [21], [228] have no pre-processing step and the 

methods in [82], [225] have no feature extraction step. However, with this four-step 

scheme, every use case can be interpreted step by step, which significantly facilitates 

the understanding and comparison of PV FDD cases.  

 FDD proposal 

In this part, based on the summary of the fault diagnosis methods in the literature, the 

proposal of our FDD strategy will be presented. 

II.4.1. Summary of fault diagnosis methods 

The two main categories of PV FDD methods, i.e., visual inspection and automatic 

methods, have been presented. From the aspect of application, the typical properties of 

these techniques for PV FDD are summarized in Table II-7 from the aspects of pros 

and limits. For the automatic FDD methods, the three main types of feature analysis are 

also addressed. It should be noted that Table II-7 is just a presentation of the properties 

reported in the literature or related to the application in PV FDD. It is not dedicated to 

conducting an elaborated comparison of these techniques, which is difficult to perform. 

Table II-7 Main properties of FDD methods in PV field 

FDD methods Pros Cons 

Visual inspection  

[27], [57] 

• Easy implementation 

• Practical 

• Unsuitable for large-scale PV 

plants 

• Only detect visible PV faults 

• Completely depend on human 

knowledge and experts 

Automatic 

analysis 

Threshold 

analysis  

[139], [229] 

• Easy implementation 

• Rapid decision making 

• Commercially effective  

• Accuracy depends on the quality 

of threshold limits 

• Prone to noise interference 

Statistical 

analysis 

[16], [144] 

• Rapid decision making 

• Clear pattern and correlations 

• Assumptions may not be exact 

• Prone to misinterpret causation 
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From Table II-7, it is observed that automatic analysis is more suitable than visual 

inspection for the FDD of large-scale PV array or PV power plants. Among the three 

categories of feature analysis techniques, machine learning is more promising. The 

application of MLTs for FDD in the PV field will be less constrained by the rapid 

development of powerful processors and adequate instrumentation. 

II.4.2. Description of the proposed FDD strategy 

Among visual inspection and automatic information analysis, since visual inspection is 

unsuitable for monitoring large-scale PV array and detecting invisible fault, the 

automatic information analysis is adopted. This strategy will be discussed from the 

four-step PV FDD scheme in detail: 

• Modelling: Due to the rapid development of PV power plants and their increased 

digitalization, operators have collected a huge amount of data for PV FDD. Thus, 

our FDD strategy focuses on the data-based modelling. As for the measurands, the 

I-V curve, as containing rich information for assessing the health of the PV 

modules and arrays, is chosen for analysis. Besides, G and Tm will also be used 

since they provide critical environmental information additional to the I-V curve. 

• Feature pre-processing: To eliminate the impact of environmental condition on the 

I-V curve, the correction of I-V curve to an identical environmental condition is 

executed using G and Tm. Besides, as one key point of our FDD strategy is to 

employ complete I-V curve for PV FDD, a resampling of the corrected I-V curve 

will also be performed. 

• Feature extraction: To improve the quality and the discriminability of features, 

special feature extraction methods, i.e., Recurrence Plot (RP) and Gramian Angular 

Difference Field (GADF), will be applied. These methods, efficient in the signal 

transformation, have not been employed for PV FDD in the literature. Then, PCA, 

a typical dimensionality reduction technique, will be applied to reduce the 

Machine 

learning 

analysis  

[217], [218] 

• Easily identifies trends and 

patterns 

• Variety of mature models 

available for application in 

different conditions 

• Good at handling multi-

dimensional and multi-variate 

data 

• Continuous improvement of 

performance with increasing 

amount of data 

• Large amount of data required 

• High computational complexity 
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dimension of the transformed features. Besides, t-SNE, a useful tool of visualizing 

high-dimensional data, will also be used to analyze the extracted features. 

• Feature analysis for PV FDD: The MLTs, powerful in handling big data and multi-

condition classification, are chosen as the analysis techniques. Since the I-V curves 

are obtained under known PV conditions, common supervised learning techniques 

like ANN, SVM, kNN will be practiced to analyze the features for the classification 

of PV faults (presented in Section I.6). 

 Conclusion 

The fault detection and diagnosis methods have been discussed through two categories: 

visual inspection, and automatic analysis.  

Visual inspection permits to conduct simple and fast examination. However, it is 

obviously not suitable for monitoring large-scale PV array and detecting invisible faults. 

In addition, it poses problems of reproducibility and reliability because observations 

may vary from one operator to another. 

The availability of large amounts of operational data and the development of computing 

resources encourages automatic learning methods. The automatic FDD methodology 

can be described in a four-step scheme: modelling, pre-processing, feature extraction 

and feature analysis.  

• Modelling: it includes physics-based and data-based modelling. Common PV data 

adopted for FDD task consists of 3 types, i.e., PV images, environmental 

measurements, and electrical measurements. The electrical ones, especially the I-

V curve, contains useful information for assessing the health of the PV modules 

and arrays.  

• Feature pre-processing: it is usually optionally applied with different purposes: 

format unification, data cleaning, data augmentation and format transformation. 

• Feature extraction: typical techniques applied for PV FDD include statistical 

methods, signal processing methods, image processing methods, transformation 

methods and estimation methods. Although feature extraction may be optional, it 

may help to further process the PV features and improve the quality and 

discriminability of features for automatic FDD analysis. 

• Feature analysis for PV FDD: these techniques are classified into threshold 

analysis, statistical analysis, and machine learning analysis. The MLTs, showing a 
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great feasibility in handling big data and exhibiting a good generalization capability, 

are very promising. 

From the above analysis, we have decided to adopt the I-V curve, G and Tm as input 

data of automatic four-step FDD methodology for an application in the PV field. 

Specific pre-processing and extraction methods will be designed and evaluated to 

enhance the discriminability capability of fault features. Finally, MLTs will be used to 

analyze the features for classifying PV array faults. 
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  Introduction 

The I-V curves measured from a faulty PV module or array (hereinafter, termed as faulty I-V 

curve) contain valuable information on its health status [20], [230]. However, because field-

measured I-V curves are recorded under varying environmental conditions, the comparison 

between different curves would not be relevant if they are not brought to a same condition. 

Thus, each I-V curve is corrected for a specific environmental condition (usually STC, 

1000W/m2 and 25°C) in order to make the curves measured under different environmental 

conditions comparable.  

In literature, various parameters, like 𝑉𝑂𝐶 , 𝐼𝑆𝐶 , 𝑉𝑀𝑃𝑃 , 𝐼𝑀𝑃𝑃  and 𝑃𝑚  are commonly extracted 

from corrected I-V curves for fault diagnosis [19], [231], [232] or power loss analysis [233]. 

In addition, equivalent 𝑅𝑠 or 𝑅𝑠ℎ are also commonly calculated from corrected I-V curves to 

analyze the degradation mode of PV networks [234], [235]. 

Therefore, if there are significant errors in the corrected curves or in the parameters extracted 

from the curves, the accuracy of the diagnosis will be seriously compromised. As a 

consequence, the performance of the I-V curve correction is an important step in the diagnostic 

process of PV modules. 

To the best of our knowledge, there are no specific methods proposed for the correction of 

faulty I-V curves. Consequently, most of the researchers adopt the original or simplified IEC 

60891 [25] correction procedures [236], [237]. For example, several authors have adopted the 

procedure 1 in IEC 60891 to correct I-V curves measured under partial shading (PS) [238], 

potential induced degradation (PID) [239], dust soiling [240], [241], or hot spot [242]. Besides, 

the procedure 2 of IEC 60891 is also used to correct the key parameters (like 𝑉𝑂𝐶, 𝐼𝑆𝐶 , 𝑃𝑚, etc.) 

on I-V curves [19]. In [19], these parameters can then be used as inputs of a classifier to 

automatically identify the fault types (PS, OC, SC, or 𝑅𝑠 degradation). Similar applications 

can also be found in [243]. 

It should be noted that these procedures based on the IEC 60891 standard have been all initially 

designed for the correction of curves measured from healthy PV panels. Furthermore, in the 

literature, the suitability of these procedures for the correction of the I-V curves of faulty 

panels is rarely investigated, and even less so if the fault characteristics are distorted by the 

correction and thus lead to a diagnostic error. Yet, all these issues are decisive for the diagnosis 

of PV faults [26].  

With this in mind, this chapter aims to evaluate the performance of current procedures for 

correcting faulty I-V curves. A new procedure will then be proposed.  

Section III.2 presents the preparation of I-V curves for correction with the modeling of a PV 

array detailed. Section III.3 introduces the common correction procedures and the new 
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proposal. Section III.4 defines the metrics for the evaluation of correction performance. 

Sections III.5 presents the correction performance using single or multiple-curves-based 

procedures under constant or varying fault severity. A discussion of the performance of these 

procedures is done in Section III.6.  

 Preparation of I-V curves for correction 

Since our target is to evaluate the error caused by the correction procedures, it is essential to 

avoid the effects of other factors, like the measurement uncertainty on in-plane irradiance G, 

module temperature Tm and I-V curve, which could be up to 5 % according to [74]. Therefore, 

the curves to be corrected are generated in simulation rather than from field measurement to 

ensure all the parameters used in the correction formula have no bias. 

III.2.1. PV array modeling 

To address several fault types, a PV array is modeled under Simulink® to generate the I-V 

curves. The regulable ‘PV array’ block [244] provided in the ‘Simscape’ library is chosen as 

the basic model. It requires the following parameters: 

• PV scale parameters: number of cells per module, number of series-connected modules 

per string, number of parallel strings, 

• PV electrical parameters: 𝑉𝑂𝐶 , 𝐼𝑆𝐶 , 𝑉𝑀𝑃𝑃 , 𝐼𝑀𝑃𝑃  temperature coefficient (TC) of 𝐼𝑆𝐶  (𝛼), 

temperature coefficient of 𝑉𝑂𝐶 (𝛽). 

From the parameter setting, it is easy to find out that this block can be easily configured into 

a PV cell, module, or array. In this study, a PV array is built based on the repetition and 

combination of the block. To introduce the array’s model, the structure and principle will be 

detailed in the following starting from the cell and module level. 

III.2.1.1. Cell-level modeling 

To characterize a PV cell, the single-diode and double-diode models are the most common 

ones adopted in the literature. Among them, the single diode model is the most popular due to 

its simplicity and the capability to well reproduce the main characteristics of PV cells. The 

electrical equivalent circuit of this model is illustrated in Figure III-1. 

 

Figure III-1: Electrical equivalent circuit of single diode model 
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This model consists of a current source that produces the photocurrent 𝐼𝑝ℎ proportional to Gpoa 

(to facilitate the presentation, Gpoa is hereafter showed simplified as G if without special notes) 

and a single diode in anti-parallel with a diode current 𝐼𝑑.  

Under solar irradiation, the output current I is expressed by the photocurrent 𝐼𝑝ℎ, the diode 

current 𝐼𝑑 and the leakage one 𝐼𝑠ℎ following the relationship as: 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (III-1) 

The photocurrent 𝐼𝑝ℎ is determined by the characteristics of the semiconductor. It depends on 

the G and the cell temperature (Tc) as follows: 

 𝐼𝑝ℎ =
𝐺

𝐺𝑆𝑇𝐶
[𝐼𝑠𝑐 + 𝛼(𝑇𝑐 − 𝑇𝑐_𝑆𝑇𝐶)] (III-2) 

where, 𝛼 represents the absolute temperature coefficient of current (expressed as A/°C), which 

is usually provided in the datasheet. 𝐺𝑆𝑇𝐶 and 𝑇𝑐_𝑆𝑇𝐶 are the irradiance and cell temperature at 

STC, equaling 1000W/m2 and 25°C, respectively. 

Based on the Shockley diode equation, the diode current 𝐼𝑑 is expressed as: 

 𝐼𝑑 = 𝐼0 [exp (
𝑉 + 𝑅𝑠𝐼

𝑛𝑉𝑡
) − 1]  (III-3) 

where, 

• 𝐼0 refers to the saturation current of the diode 

• n: the ideality or the quality factor of the diode, generally between 1 and 2 

• 𝑉𝑡 is the thermal voltage, which is given by 𝑉𝑡 = 𝑘𝐵𝑇𝑐/𝑞 

• 𝑘𝐵: Boltzmann constant (𝑘𝐵 = 1.38 × 10−23 J/K) 

• q: constant absolute value of electron’s charge (1.6 × 10-19 C), 

Regarding the diode saturation current 𝐼0, there are various equivalent calculation methods in 

the literature [245]. In this model, 𝐼0 is defined as in [246]: 

 𝐼0 = 𝐼0_𝑆𝑇𝐶 (
𝑇𝑐

𝑇𝑐_𝑆𝑇𝐶
)

3

exp (
𝐸𝑔_𝑆𝑇𝐶

𝑘𝑇𝑐_𝑆𝑇𝐶
−

𝐸𝑔

𝑘𝑇𝑐
) (III-4) 

where, 𝐼0_𝑆𝑇𝐶 is the saturation current at STC, which can be measured by flash test [247] or 

estimated by parameter extraction method from module datasheet [65]. 𝐸𝑔  is the material 
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bandgap energy, and 𝐸𝑔_𝑆𝑇𝐶 is the STC value. For silicon PV cells, typical 𝐸𝑔_𝑆𝑇𝐶 is 1.12eV. 

𝐸𝑔  shows a small temperature dependency with cell temperature and its relationship with 

𝐸𝑔_𝑆𝑇𝐶  can be expressed as 𝐸𝑔 = 𝐸𝑔_𝑆𝑇𝐶 [1 − 𝐶𝐸𝑔
(𝑇𝑐 − 𝑇𝑐_𝑆𝑇𝐶)] . 𝐶𝐸𝑔

 is the temperature 

coefficient for bandgap energy. It is commonly a small value, e.g., 2.67×10-4 for silicon cells 

[246]. 

The leakage current 𝐼𝑠ℎ is determined by the Ohm's Law as: 

 𝐼𝑠ℎ =
𝑉 + 𝑅𝑠𝐼

𝑅𝑠ℎ
 (III-5) 

Substituting 𝐼𝑑 and 𝐼𝑠ℎ in (III-1), the output current of the single diode model becomes: 

 
𝐼 = 𝐼𝑝ℎ − 𝐼0 [exp (

𝑉 + 𝑅𝑠𝐼

𝑛𝑉𝑡
) − 1] −

𝑉 + 𝑅𝑠𝐼

𝑅𝑠ℎ
 

(III-6) 

In Simulink, with the datasheet values given, the modelling of a PV cell is obtained through 

the resolution of equation (III-6) under different irradiances and temperatures. 

III.2.1.2. Module-level modeling 

Although the ‘PV array’ block provided in the Simulink library can be directly configured into 

a PV module, the structure of this type of PV module is different from common real modules 

used in the field. The main difference is that this type of PV module contains only series-

connected PV cells with no bypass diodes, which are mandatory to ensure the safe operation 

of real PV modules.  

Therefore, in this study, a PV module is built with a combination of PV cells and a bypass 

diode. Specifically, the module is based on the FranceWatt single-crystalline silicon (sc-Si) 

PV module -FL60-250MBP, which consists of 60 PV cells in series and 3 bypass diodes (each 

diode in parallel to 20 cells). In this study, as the faults to study do not include those that cause 

non-uniform distribution of G or Tm on one module, the module is thus built with a PV block 

containing 60 cells in series and a bypass diode in anti-parallel to simplify the simulation, as 

shown in Figure III-2. Detailed module parameters are listed in Table III-1. 
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Figure III-2: Structure of PV module model 

As seen from Figure III-2, G and Tm are the two inputs of the module. Under real conditions, 

Tc may vary slightly from cell to cell. And Tm is generally different with Tc due to the isolation 

between the cell layer and back sheet layer with a difference up to 2-3 °C depending on the 

structure and the mount of a PV module [63]. In this simulation study, to avoid introducing 

additional uncertainty factors from the aspect of temperature, all the cells are considered to 

have the same Tc and this value is equal to the input Tm. In healthy condition, all the cells share 

the same irradiance and temperature. Under irradiance mismatch conditions, the bypass diode 

provides a current path to prevent the faulty module from overheat. 

Table III-1: Parameter of FL60-250MBP PV module 

Variable Value Variable Value 

𝐼𝑆𝐶  8.64 A 𝑉𝑀𝑃𝑃  30.51 V 

𝑉𝑂𝐶  37.68 V 𝛼𝑟𝑒𝑙  0.02 %/˚C 

𝐼𝑀𝑃𝑃 8.21 A 𝛽𝑟𝑒𝑙  -0.36 %/˚C 

(𝛼𝑟𝑒𝑙  and 𝛽𝑟𝑒𝑙  are the relative TC of 𝐼𝑆𝐶  and 𝑉𝑂𝐶 , respectively) 

 

III.2.1.3. Array-level modeling 

In this study, we consider a PV array with two strings in parallel. Each string is composed of 

three FL60-250MBP modules in series, as shown in Figure III-3. To simulate the I-V curve, 

the array is connected to a controlled voltage source to simulate the I-V tracer. There are also 

additional resistances or gain blocks to generate specific faulty conditions, which will be 

detailed in Section III.2.3. 

=

G

Tm

+

-

PV module
Internal structure of PV module
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Figure III-3: Structure of PV array model 

(The structure of each module is presented in Figure III-2) 

The output voltage of the PV array is determined by the voltage of each string, which depends 

on the number of modules connected in series. In healthy condition, the numbers of functional 

modules of each string are identical and corresponding string voltages are also the same. 

However, when the output voltage of one module in one string decreases, e.g., become SC, 

the voltage of this string also decreases, which then forces the array voltage down to this value 

as all these strings are connected in parallel.  

As for the array current, according to Kirchhoff laws, it is the sum of the current of each string. 

And within each string, the output current of each module is forced to be identical as they are 

connected in series. When the current of one module becomes different, e.g., under PS, the 

bypass diodes will be activated to bypass this faulty module. This could keep the string current 

at the normal level outputted by healthy modules but decreases the string voltage. 

For the array presented in Figure III-3, the array parameters are summarized in Table III-2. 

Table III-2: Parameter of the simulated PV array 

Variable Value Variable Value 

𝐼𝑆𝐶  17.28 A 𝑉𝑀𝑃𝑃  91.53 V 

𝑉𝑂𝐶  113.04 V 𝐼𝑀𝑃𝑃  16.42 A 
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III.2.2. Environmental settings 

The form of the array’s I-V curve is mainly determined by the G and Tm. The short-circuit 

current 𝐼𝑆𝐶  increases with G while the open-voltage 𝑉𝑂𝐶  decreases with Tm, as depicted in 

Figure III-4. 

 

Figure III-4: Impact of G and Tm on I-V curve of healthy PV array 

((a): impact of varying G with Tm =25°C, (b): impact of varying Tm with G=1000W/m2) 

The setting of G and Tm to prepare the dataset for correction varies with the correction 

procedure for evaluation. For example, for correction procedures based on a single I-V curve, 

the G and Tm will be selected from field-measured pairs of G and Tm. For correction procedures 

based on multiple I-V curves, i.e., the correction of one I-V curve requires multiples curves, 

the G and Tm of these curves to correct could be quite different. Detailed explanation will be 

given in Sections III.5.1.1 and III.5.2.1. 

III.2.3. Configuration of faults 

With the gain block and the additional resistances, the model shown in Figure III-3 can 

simulate PV array under healthy and faulty conditions. In this study, specifically, five typical 

faults are considered:  

• Partial Shading (PS): one module is shaded by adjusting the value of the gain block 

(i.e., GainPS) in the range [0, 1] to control the irradiation of the module. The 

corresponding PS degree varies from 0 to 100%; 

• Short-Circuit (SC): one module is short-circuited by connecting the resistance 𝑅𝑆𝐶  in 

parallel; 

• Open-Circuit (OC): one string is open-circuited by connecting the resistance 𝑅𝑂𝐶 in 

series; 

• Rs degradation: increases the equivalent series resistance of the array (𝑅𝑠_𝑑𝑒𝑔𝑟𝑎);  

(a) (b)



Chapter III  Correction of PV I-V curve measured under faulty condition 

61 

 

• Rsh degradation: decreases the equivalent shunt resistance of the array (𝑅𝑠ℎ_𝑑𝑒𝑔𝑟𝑎); 

Table III-3 summarizes the different fault parameters and their corresponding ranges of 

variation that will be used. The analyses of the impact of fault severity on the correction 

performance will be presented in Sections III.5.1 and III.5.2. 

Table III-3: Parameter setting for the different operating conditions 

Condition PS degree (%) 𝑹𝑺𝑪 (Ω) 𝑹𝑶𝑪 (Ω) 𝑹𝒔_𝒅𝒆𝒈𝒓𝒂 (Ω) 𝑹𝒔𝒉_𝒅𝒆𝒈𝒓𝒂 (Ω) 

Healthy 0 105 10-5 10-5 105 

PS 1 module [0 - 100] 105 10-5 10-5 105 

SC 1 module 0 10-5 10-5 10-5 105 

OC 1 string 0 105 105 10-5 105 

Rs degradation 0 105 10-5 [10-5 - 2] 105 

Rsh degradation 0 105 10-5 10-5 [105 - 20] 

 

III.2.4. Impact of faults on I-V curves 

In fact, the five faulty conditions could lead to different distortions of the I-V curve. To 

illustrate their impact, I-V curves under STC are simulated. The I-V curves of healthy and five 

types of faulty array are compared in Table III-4. For PS, Rs and Rsh degradations, the severity 

of the fault is varied with several representative values to show its impact on the shape of the 

I-V curve. 
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Table III-4: Impact of faults on I-V curves 

Condition Impact on I-V curve Examples 

Healthy None 

 

PS 1 module Appearance of an inflection point  

The voltage change at the 

inflection point occurs at about 

2/3 of 𝑉𝑂𝐶  under healthy 

condition since there are three 

modules in one string while one 

module is shaded; larger the PS 

degree, lower is the current of the 

inflection point. 
 

SC 1 module Voltage decrease 

The 𝑉𝑂𝐶  on SC curve decreases 

by 1/3 of 𝑉𝑂𝐶  in healthy condition 

since one out of three modules is 

SC. 

 

OC 1 string Current decrease  

The 𝐼𝑆𝐶  on OC curve decreases by 

1/2 of 𝐼𝑆𝐶  in healthy condition 

since one out of two strings is 

OC. 

 

Rs degradation Slope decreases in the voltage 

region 

The greater the value of the added 

resistance is, the smaller the slope 

in the voltage area is. 

 



Chapter III  Correction of PV I-V curve measured under faulty condition 

63 

 

Rsh degradation Slope increases in the current 

region  

The smaller the value of the 

added resistance is, the greater the 

slope is. 

 

 

  I-V curve correction procedures 

In this section, the usual I-V curve correction procedures and a new proposal are presented. 

III.3.1. Usual correction procedures 

Through the literature review, the most common I-V curve correction procedures are based on 

the three procedures proposed in IEC 60891 [25]. These procedures are either based on single 

curve for correction, like procedures 1 and 2, or based on multiple curves, like procedure 3, 

all of which are detailed in the following. Since STC (G =1000 W/m2 and Tm =25 °C) is more 

commonly adopted as the target condition for I-V curve-based diagnosis, in the following, if 

not stated, the correction of I-V curves refers to the correction to STC. 

III.3.1.1. Procedure 1 (P1) 

The P1 is based on the following equations: 

 𝐼2 = 𝐼1 + 𝐼𝑆𝐶1 (
𝐺2

𝐺1
− 1) + 𝛼(𝑇𝑚2 − 𝑇𝑚1) (III-7) 

 𝑉2 = 𝑉1 − 𝑅𝑠(𝐼2 − 𝐼1) − 𝜅𝐼2(𝑇𝑚2 − 𝑇𝑚1) + 𝛽(𝑇𝑚2 − 𝑇𝑚1) (III-8) 

where, 𝐼1  and 𝐼2 , 𝑉1  and 𝑉2 , 𝑇𝑚1 and 𝑇𝑚2 , 𝐺1 and 𝐺2  are the currents, voltages, module 

temperature, and irradiances before and after correction, respectively; 𝐼𝑆𝐶1 is the short-circuit 

current before correction; 𝛼 and 𝛽 are the PV module absolute TC of 𝐼𝑆𝐶  and 𝑉𝑂𝐶, respectively; 

𝛼 = 𝛼𝑟𝑒𝑙  ∙ 𝐼𝑆𝐶
𝑆𝑇𝐶, 𝛽 = 𝛽𝑟𝑒𝑙  ∙ 𝑉𝑂𝐶

𝑆𝑇𝐶, 𝛼𝑟𝑒𝑙 and 𝛽𝑟𝑒𝑙 are the relative TC of 𝐼𝑆𝐶  and 𝑉𝑂𝐶 (presented 

in Table III-1); 𝑅𝑠 is the internal series resistance and 𝜅 is the curve correction factor. These 

coefficients can be determined using the methods in [25].  

III.3.1.2. Procedure 2 (P2) 

The P2 is based on the following equations: 
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 𝐼2 =
𝐼1(1 + 𝛼𝑟𝑒𝑙(𝑇𝑚2 − 𝑇𝑚1))𝐺2

𝐺1
 (III-9) 

 
𝑉2 = 𝑉1 + 𝑉𝑂𝐶1 [𝛽𝑟𝑒𝑙(𝑇𝑚2 − 𝑇𝑚1) + 𝑎 ⋅ 𝑙𝑛 (

𝐺2

𝐺1
)] − 𝑅𝑠(𝐼2 − 𝐼1)

− 𝜅 ⋅ 𝐼2(𝑇𝑚2 − 𝑇𝑚1)  

(III-10) 

where, 𝑉𝑂𝐶1 is the open-circuit voltage before correction; 𝑎 is the irradiance correction factor; 

𝑅𝑠 and 𝜅 may not be the same value used in P1, but determined by the procedure detailed in 

[25]. 

In fact, the determination of the coefficients 𝑎, 𝑅𝑠 and 𝜅 for P1 and P2 requires a group of I-

V curves at the same G or at the same Tm according to [25], which is troublesome and time-

consuming to fulfill in real life. Therefore, in most applications of P1 and P2, these coefficients 

are either tuned via simulation under healthy condition [235], or neglected [238] but to the 

detriment of poorer performance. Therefore, in this study, these coefficients will not be 

neglected and will be determined following the standard routine, i.e., via the simulation under 

healthy condition. In this case study, the determined coefficient of P1 and P2 and the TC used 

are presented in Table III-5. 

Table III-5: Correction coefficients of P1 and P2 

Correction 

procedure 

Correction coefficients Temperature coefficients 

𝑎 𝑅𝑠 (Ω) 𝜅 𝛼 (A/°C) 𝛼𝑟𝑒𝑙  

(%/°C) 

𝛽 (V/°C) 𝛽𝑟𝑒𝑙  (%/°C) 

P1 - 0.512 0.0026 0.0035 - -0.41 - 

P2 0.0413 0.473 0.0025 - 0.02 - -0.36 

 

The examples of the correction of an I-V curve (simulated using the array model in Figure 

III-3) to STC using P1 and P2 are illustrated in Figure III-5. 
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Figure III-5: Example of correction procedure P1 &P2 to STC using an I-V curve of a healthy array 

((a): using P1, (b): using P2. Grey lines link the corresponding points on the original and corrected I-

V curves, the voltage and current of which are calculated by (III-7), (III-8) for P1 and (III-9), 

(III-10)for P2) 

From Figure III-5, it is observed that, sometimes, for both P1 and P2, the corrected I-V curve 

(before extended) shifts to the right, as seen from the part near 𝑉𝑂𝐶. This is due to the corrected 

voltage is larger than the original one of each point on the original I-V curve at certain 

environmental conditions, which can be seen from the gray lines connecting each point before 

and after correction in Figure III-5. To obtain a complete I-V curve (voltage starting from 0), 

the corrected curve is extended by extrapolation using Phang’s method [248], [249]. 

In Figure III-5, the I-V curve simulated at STC is also presented. It is observed that the 

corrected-to-STC curve is a little bit different with that simulated-at-STC (hereinafter called 

real curve), especially when using P2, which means that even after the correction, the I-V 

curve still cannot completely correspond to the real curve. To quantify this difference, different 

metrics will be adopted, which will be then presented in Section III.4. 

III.3.1.3. Procedure 3 (P3) 

Different from P1 and P2, P3 is free from correction coefficients but requires an interpolation 

constant 𝛾: 

 𝐼3 = 𝐼1 + 𝛾(𝐼2 − 𝐼1) (III-11) 

 𝑉3 = 𝑉1 + 𝛾(𝑉2 − 𝑉1) (III-12) 

According to [25], P3 requires at least two reference curves to obtain one corrected curve at 

specified G or Tm by calculating 𝛾 using (III-13) or (III-14). Thus, in order to correct to a 

condition with requirements on both G and Tm, at least three curves are necessary. 
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 𝐺3 = 𝐺1 + 𝛾(𝐺2 − 𝐺1) (III-13) 

 𝑇3 = 𝑇1 + 𝛾(𝑇2 − 𝑇1) (III-14) 

The three reference curves based P3 is the most common type of application of P3 due to its 

less requirement of reference curves. It is conducted by two steps according to [25]. An 

illustration of this correction methodology on Tm (G) plot is shown in Figure III-6 and an 

example given in Figure III-7. 

 

Figure III-6: Illustration of two-step correction procedure with three curves on Tm (G) plot  

(Step1: use reference curves 1 and 2 to generate the intermediate curve; Step 2: use reference curve 3 

and the intermediate curve to get the final corrected curve) 

 

Figure III-7: Example of correction using P3 based on 3 reference curves 

((a): step 1, (b): step 2. Grey lines link the corresponding points on the original and corrected I-V 

curves, the voltage and current of which are calculated by (III-11), (III-12)) 

In summary, the implementation of P1 and P2 requires only one single I-V curve, while P3 

requires multiple curves. For P1 and P2, in fact, they do not perform well for the correction of 

I-V curves under all the tested faulty conditions regarding the correction of voltage or current. 

Thus, a new correction procedure is introduced. 

25
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III.3.2. New correction procedure 

A P2-based procedure denoted NewP2 is proposed. It uses the same formula as P2 for current 

correction. But for the voltage correction, the term ‘ 𝑉𝑂𝐶1 ’ in (III-10) is replaced by 

‘𝑉𝑂𝐶1[1 + 𝛽𝑟𝑒𝑙(𝑇𝑚2 − 𝑇𝑚1)]’. The reason for this change is to improve the poor voltage 

correction of P2 by combining the merit of P1. The effect of this change on the correction 

performance will be presented in detail in Section III.5.1.2. In this way, the equations for 

NewP2 are: 

 𝐼2 =
𝐼1(1 + 𝛼𝑟𝑒𝑙(𝑇𝑚2 − 𝑇𝑚1))𝐺2

𝐺1
 (III-15) 

 
𝑉2 = 𝑉1 + 𝑉𝑂𝐶1[𝟏 + 𝜷𝒓𝒆𝒍(𝑻𝒎𝟐 − 𝑻𝒎𝟏)] [𝛽𝑟𝑒𝑙(𝑇𝑚2 − 𝑇𝑚1) + 𝑎 ⋅ 𝑙𝑛 (

𝐺2

𝐺1
)]

− 𝑅𝑠(𝐼2 − 𝐼1) − 𝜅 ⋅ 𝐼2(𝑇𝑚2 − 𝑇𝑚1) 

(III-16) 

 Metrics for the evaluation of correction performance 

The evaluation of correction performance will be conducted from 2 aspects, i.e., from the 

entire I-V curve and from single extracted parameters (e.g., maximum power 𝑃𝑚, 𝑉𝑂𝐶 and 𝐼𝑆𝐶). 

Two corresponding metrics are adopted to quantify the correction performance from these two 

aspects. 

III.4.1.1. Metric for the evaluation of correction of the entire curve 

Firstly, for the entire I-V curve, curve error (𝐸𝑐𝑢𝑟𝑣𝑒) is adopted as the metric. It is calculated 

by the normalized root-mean-square error between the corrected curve and the real curve. It 

should be noted that the real curve only means that G and Tm are at STC, but the array health 

status could be either healthy or faulty. 

 
𝐸𝑐𝑢𝑟𝑣𝑒 =

√1
𝑁

∑ (𝐼𝑖
𝑐 − 𝐼𝑖

𝑟𝑒𝑎𝑙)2𝑁
𝑖=1

𝐼𝑆𝐶
𝑟𝑒𝑎𝑙 × 100 

(III-17) 

where, 𝐼𝑖
𝑐  and 𝐼𝑖

𝑟𝑒𝑎𝑙  are the current values from the corrected and real curve for the same 

voltage 𝑉𝑖 , respectively. 𝑉𝑖  is the ith element of a voltage vector with N points linearly 

distributed in [0, 𝑉𝑚𝑎𝑥] range with a constant step (𝑉𝑚𝑎𝑥 is constant for all the conditions). 

𝑉𝑚𝑎𝑥 could be set a little larger than the array’s 𝑉𝑂𝐶 at STC in healthy condition to avoid that 

the voltage of improperly corrected curve exceeds this range. In this study, 𝑉𝑚𝑎𝑥 is set as 120V 

and 𝑁 at 100. 𝐼𝑆𝐶
𝑟𝑒𝑎𝑙 refers to the 𝐼𝑆𝐶  extracted from the real curve. 

III.4.1.2. Metric for the evaluation of correction of single parameters 
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Then, regarding the single parameters, the relative error (RE) is adopted to evaluate the 

correction: 

 𝑅𝐸𝑋 =
𝑋𝑐  − 𝑋𝑟𝑒𝑎𝑙

𝑋𝑟𝑒𝑎𝑙
∗ 100 (III-18) 

where, 𝑋𝑐 and 𝑋𝑟𝑒𝑎𝑙 are the parameters from the corrected and real (i.e. simulated at STC) 

curves, respectively. 𝑋 can be straightforward curve parameters (such as 𝑃𝑚, 𝑉𝑂𝐶  or 𝐼𝑆𝐶) or the 

single-diode equivalent model’s parameters (𝑅𝑠 or 𝑅𝑠ℎ) considered as fault parameters.  

  Correction performance 

In this section, the three correction procedures proposed in IEC 60891 (P1, P2, and P3) and 

the new one (NewP2) will be evaluated. However, it should be noted that P3 is based on 

multiple I-V curves for correction. Its principle is different from the others that are based on a 

single I-V curve. Therefore, the evaluation of these procedures will be conducted separately: 

Section III.5.1 compares the correction procedures using a single I-V curve (P1, P2, NewP2) 

and Section III.5.2 evaluates the correction procedure using multiple I-V curves (P3). 

III.5.1. Performance of correction procedures using single I-V 

curve 

In this part, we focus on the correction procedures based on a single I-V curve, i.e., P1, P2, 

and NewP2. Firstly, the selection of G and Tm to generate the curves is presented in Section 

III.5.1.1. Then, the correction performance (using the metrics 𝐸𝑐𝑢𝑟𝑣𝑒 and RE) will be evaluated 

using the curves simulated under constant or variable fault severity in Sections III.5.1.2 and 

III.5.1.3, respectively. 

III.5.1.1. Selection of G and Tm based on field-measurements 

To evaluate the correction procedures with real environmental conditions, the selection of G 

and Tm to generate the curves is based on field-measurements (in SIRTA meteorological and 

climate observatory [250], France) of the sc-Si FL60-250MBP PV module (identical to those 

used in the simulations in Section 2.1.1) during summer as illustrated in Figure III-8. The G is 

measured by a reference cell and Tm by a Pt100 probe attached to the back side of the module. 

To minimize the correction error, commonly, the irradiance of the curves for correction is 

selected in a higher range [251]. In our case studies, the lower bound of G is set as 800 W/m2. 
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Figure III-8: Selected G and Tm based on field-measurements during summer for one sc-Si PV 

module  

In Figure III-8, the blue points represent the measured G and Tm, while the red ones are those 

selected for the simulations. Totally, a group of 174 pairs of G and Tm is selected based on a 

quasi-uniform distribution within the area enclosed by the blue points. 

III.5.1.2. Correction performance with constant fault severity 

In order to investigate the impact of the selected G and Tm, the fault severity is firstly required 

to be settled. In this study, the severity for PS, Rs, and Rsh degradation needs to be set with 

values detailed in the following. These severities are the example values that could result in a 

relatively clear change to the I-V curves, as presented in Figure III-9. Other values of severity 

will be studied in Section III.5.1.3 using the same analysis approach. 

➢ PS degree = 80% for partial shading,  

➢ 𝑅𝑠_𝑑𝑒𝑔𝑟𝑎= 1 Ω for series resistance degradation,  

➢ 𝑅𝑠ℎ_𝑑𝑒𝑔𝑟𝑎 = 30 Ω for shunt resistance degradation  

 

Figure III-9: I-V curves of PS, Rs and Rsh degradation under set fault severity 
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With the environmental setting and fault severity configured, the database of the curves to 

correct can be simulated. With this database, the correction performance is now evaluated 

from the shape of the corrected curves and the performance evaluation metrics. 

• Form of corrected I-V curve  

Using P1, P2, and NewP2, the curves before and after correction are displayed in Figure III-10. 

 

Figure III-10: Correction results using three procedures under eight conditions 

((a): curves simulated for correction (each condition contains 174 curves with field-measured 

combinations of G and Tm at constant fault severity), (b): corrected curves using P1, (c): corrected 

curves using P2, (d): corrected curves using NewP2 (the displayed color of each curve is determined 

by the irradiance value with the colorbar on the right side of the figure, the circles on the curves 

represent the MPP)) 

For the corrected curves, using all three procedures, clear deviations from the real I-V curve 

can be observed for most faulty conditions. These deviations are due to the joint effect of 
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voltage and current corrections, reflected along the x-axis, and along the y-axis, respectively. 

They are now analyzed as follows:  

▪ Voltage correction: 

Seen from the 𝑉𝑂𝐶, the deviations due to voltage corrections are observable in all the cases 

when using P2, but only for SC and Rs degradation when using P1 and for SC when using the 

NewP2. To analyze these results, we rearrange the voltage correction formulas (III-8), (III-10) 

and (III-16) in one single equation as it follows: 

 
𝑉2 = 𝑘1 ∙ 𝑉1 + 𝑘2 ∙ (𝑇𝑚2

− 𝑇𝑚1) + k3 ∙ ln (
𝐺2

𝐺1
) 

+𝑘4 ∙  (𝐼2 − 𝐼1)  + 𝑘5 ∙ 𝐼2 ∙ (𝑇𝑚2
− 𝑇𝑚1) 

(III-19) 

where the different coefficients 𝑘𝑖  (𝑖 = 1,… ,5) for each procedure, are given in Table III-6.  

Table III-6: Coefficients for voltage correction in P1, P2, and NewP2 

Coefficient P1 P2 NewP2 

𝑘1 1 1 1 

𝑘2 𝛽𝑟𝑒𝑙 ∙ 𝑉𝑂𝐶
𝑆𝑇𝐶 𝛽𝑟𝑒𝑙 ∙ 𝑉𝑂𝐶1 𝛽𝑟𝑒𝑙 ∙ 𝑉𝑂𝐶1 ∙ [𝟏 + 𝜷𝒓𝒆𝒍(𝑻𝒎𝟐

∗ − 𝑻𝒎𝟏)] 

𝑘3 0 𝑎 ∙ 𝑉𝑂𝐶1 𝑎 ∙ 𝑉𝑂𝐶1 ∙ [𝟏 + 𝜷𝒓𝒆𝒍(𝑻𝒎𝟐
∗ − 𝑻𝒎𝟏)] 

𝑘4 -𝑅𝑠 -𝑅𝑠 -𝑅𝑠 

𝑘5 -𝜅 -𝜅 -𝜅 

* In this study, we correct the curves to STC, thus 𝑇𝑚2 =25 °C 

At first, we compare P1 and P2. For the two procedures, 𝑘4 and 𝑘5 exhibit the same form of 

variables. Based on the tuning procedure in the standard IEC 60891, these coefficients are also 

obtained with similar values as presented in Table III-5. As for 𝑘3, it is 0 in P1. In P2, since 

both coefficients a and ‘𝑙𝑛(𝐺2/𝐺1)’ are small values, their product is a second-order term and 

its contribution is negligible (within 0.3 %). As a consequence, the main difference between 

P1 and P2 lies in 𝑘2. It is noteworthy that 𝑘2 for P1 is constant, while for P2, it depends on 

𝑉𝑂𝐶1 (𝑉𝑂𝐶 of the I-V curve to correct). In Figure III-10 (b), there is almost no distortion of the 

corrected curves when using P1 under healthy condition, which demonstrates the voltage’s 

correction efficiency. As for P2, since 𝑇𝑚 of the curves to correct (𝑇𝑚1) are all higher than the 

target 𝑇𝑚 (𝑇𝑚2  = 25°C), 𝑉𝑂𝐶1  is thus always lower than 𝑉𝑂𝐶
𝑆𝑇𝐶  (impact of G on 𝑉𝑂𝐶1  is 

negligible compared to Tm). Accordingly, 𝑘2 ∙ (𝑇𝑚2 − 𝑇𝑚1)  in P2 is lower than in P1. 

Therefore, the corrected voltage in P2 is lower than in P1. That is the reason why in Figure 

III-10 (c), we can observe the slight distortions of the corrected curves shifted on the left side 

of the real curve near the open-circuit point.  
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Besides, the significant correction error under SC and PS for P1 and P2 also originates from 

the setting of 𝑘2. For SC, to be specific, short-circuit is introduced in one module of one string. 

As a consequence, 𝑉𝑂𝐶
𝑟𝑒𝑎𝑙

 is different from 𝑉𝑂𝐶
𝑆𝑇𝐶 (value from datasheet, i.e., in healthy case), 

and is equal to around 2/3 of 𝑉𝑂𝐶
𝑆𝑇𝐶. Therefore, in P1, the corrected voltage is higher than the 

real value. As for P2, 𝑉𝑂𝐶1, although varying with Tm, is still closer to 𝑉𝑂𝐶
𝑟𝑒𝑎𝑙. Consequently, 

voltage correction is more efficient with P2. Regarding PS (one module shaded), during the 

process of I-V scan, when the bypass diodes get activated, the shaded module can be 

considered as SC. That explains why a similar deviation near the inflection point is also 

observed.  

From the above analysis, P1 and P2 have their pros and cons in voltage correction. 

Accordingly, NewP2 is designed by combining their advantages. As observed before, in 𝑘2, 

using 𝑉𝑂𝐶
𝑆𝑇𝐶 (like in P1) could generally lead to better voltage correction than using 𝑉𝑂𝐶1 (like 

in P2) except under SC. The exception is because 𝑉𝑂𝐶
𝑆𝑇𝐶 fails to reflect 𝑉𝑂𝐶

𝑟𝑒𝑎𝑙. Therefore, in 

NewP2, 𝑉𝑂𝐶1 is replaced by 𝑉𝑂𝐶1 ∙ [1 + 𝛽𝑟𝑒𝑙(𝑇𝑚2 − 𝑇𝑚1)], which corrects the simulated 𝑉𝑂𝐶1 

to the 𝑉𝑂𝐶 under STC of the real curve and, therefore, could better approximate 𝑉𝑂𝐶
𝑟𝑒𝑎𝑙 under 

any condition. In this way, as shown in Figure III-10 (d), the correction errors near the open-

circuit point using P1 (under SC) and using P2 (under other cases) are attenuated. 

▪ Current correction: 

For the current of corrected curves, noticeable dispersion along the y-axis is observed under 

PS near the inflection point using P1. In fact, the output current of PV module is mainly 

affected by G, while the impact of Tm is limited. Therefore, to analyze this phenomenon, for 

simplification, the contribution of ‘(𝑇𝑚2 − 𝑇𝑚1)’ is neglected. Then we can derive from (III-7) 

and (III-9): 

For P1: 

 𝐼2 ≈ 𝐼1 + 𝐼𝑆𝐶1(𝐺2/𝐺1 − 1) = 𝐼𝑆𝐶1 ∙ 𝐺2/𝐺1 + 𝐼1 − 𝐼𝑆𝐶1 (III-20) 

For P2:  

 𝐼2 ≈ 𝐼1 ∙ 𝐺2/𝐺1 (III-21) 

Comparing these two expressions, for P2, the corrected current (𝐼2) is proportional to the 

current to correct ( 𝐼1 ). While for P1, there is always a bias that degrades correction’s 

performance, particularly around the inflection point (where 𝐼1 is only half of 𝐼𝑆𝐶1), like in 

Figure III-10 (b) under PS. Therefore, P2 performs relatively better than P1 for current 

correction. That also explains why, for NewP2, the current formula of P2 is chosen, and the 

same performance is achieved in Figure III-10 (d). For Rsh degradation, it is observed a clear 

correction error near the 𝐼𝑆𝐶  part for all the three procedures. This phenomenon will be 
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investigated from the aspect of current extrapolation in the analysis of 𝑅𝐸𝐼𝑆𝐶
, presented in the 

next part.  

• 𝑬𝒄𝒖𝒓𝒗𝒆 and RE of key curve parameters 

Based on the corrected curves, the performance evaluation metrics (𝐸𝑐𝑢𝑟𝑣𝑒, 𝑅𝐸𝑃𝑚
, 𝑅𝐸𝑉𝑂𝐶

 and 

𝑅𝐸𝐼𝑆𝐶
) are calculated. Considering that G and Tm are both varying for the 174 curves to correct, 

the statistics of the metrics are presented in Figure III-11. 

 

Figure III-11: Four metrics to present the correction performance of P1, P2, and NewP2 

 ((a) 𝐸𝑐𝑢𝑟𝑣𝑒, (b) RE of 𝑃𝑚, (c) RE of 𝑉𝑂𝐶, (d) RE of 𝐼𝑆𝐶  (the bars represent the mean value for the 

correction of 174 curves, while the horizontal whiskers represent the standard deviation (std), these 

two values are marked as ‘mean’±‘std’)) 

These metrics are analyzed as follows: 
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➢ 𝐸𝑐𝑢𝑟𝑣𝑒: The value of 𝐸𝑐𝑢𝑟𝑣𝑒, which reflects the correction error on the entire I-V curve, 

corresponds to the observations in Figure III-11. As expected, high 𝐸𝑐𝑢𝑟𝑣𝑒 is found 

under SC using P1, and PS using all the methods. None of P1 and P2 outperforms in 

all the conditions, but the proposed NewP2 performs better with generally lower and 

more stable 𝐸𝑐𝑢𝑟𝑣𝑒. The overall average 𝐸𝑐𝑢𝑟𝑣𝑒 (2.37 %) of NewP2 decreased by 31.3 % 

compared to the average 𝐸𝑐𝑢𝑟𝑣𝑒 of P2 (3.45 %) and by 47.3% to that of P1 (4.5%); 

➢ 𝑅𝐸𝑃𝑚
: Similarly, NewP2 performs better correction of 𝑃𝑚  except under heathy 

condition with the mean 𝑃𝑚 of -0.2% higher than the P1 of -0.02%. However, it should 

be noticed that 𝑅𝐸𝑃𝑚
 is positive under nearly all the conditions for all the methods. 

This indicates that the fault impact on 𝑃𝑚 is underestimated. The mean maximum value 

is up to 9.1 %, which could hinder the detection of incipient PV fault if 𝑃𝑚 is used as 

a fault indicator; 

➢ 𝑅𝐸𝑉𝑂𝐶
: The results are consistent with our previous observations, i.e., the corrected 

𝑉𝑂𝐶 with P2 is always lower than the real value under all conditions, while the 𝑉𝑂𝐶  

using P1 is relatively better corrected except under SC, where the maximum value of 

the mean 𝑅𝐸𝑉𝑂𝐶
 could reach 5.7 %. And NewP2 effectively reduces 𝑅𝐸𝑉𝑂𝐶

 compared 

with P1 (in SC), and P2 (in other cases); 

➢ 𝑅𝐸𝐼𝑆𝐶
: The performance of the three methods is similar. It should be noted that, based 

on (III-8) and (III-10), the voltage of the short-circuit point on the original curve (i.e., 

equals 0), after correction, is positive. This phenomenon is also observed in [248]. 

Therefore, to retrieve the 𝐼𝑆𝐶  (according to the definition, the corresponding voltage 

should be 0), the corrected curve must be extrapolated. Here, the extrapolation method 

in [248] is adopted. In this way, although the current value corrected from the original 

𝐼𝑆𝐶  (𝐼𝑆𝐶1) is close to the real 𝐼𝑆𝐶 , there is still a difference that depends on the initial 

slope of the corrected curve. Indeed, for all the conditions except Rsh degradation, 

where the slope is mild, 𝑅𝐸𝐼𝑆𝐶
 is low (within 0.5 %). But for Rsh degradation, where 

the current at MPP is severely lowered down, the slope is steep, and 𝑅𝐸𝐼𝑆𝐶
 is larger. 

• RE of fault parameters 

Now, we evaluate the correction performance for one or two typical curve parameters, selected 

as follows: 

➢ PS: The voltage and current at the inflection point, named 𝑉𝑟𝑝 and 𝐼𝑟𝑝 respectively. 

𝐼𝑟𝑝 could reflect the shading level, and 𝑉𝑟𝑝 the number of activated bypass diodes of 

PV modules in one string; 

➢ SC: The open-circuit voltage 𝑉𝑂𝐶; 
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➢ OC: The short-circuit current 𝐼𝑆𝐶; 

➢ Rs degradation: The extracted 𝑅𝑠 calculated by the reciprocal of the slope of the I-V 

curve near the 𝑉𝑂𝐶 side [252]; 

➢ Rsh degradation: The extracted 𝑅𝑠ℎ calculated by the reciprocal of the slope of the I-

V curve near the 𝐼𝑆𝐶  side [252]; 

For each fault parameter, the RE is calculated from the values obtained from the corrected and 

real curves. The results are summarized in Figure III-12 with the type of misestimation of 

parameters also marked.  

 

Figure III-12: Correction performance of fault parameters using P1, P2 and NewP2 

(Values are presented in mean ± std) 

From Figure III-12, We can observe large misestimation (absolute mean RE >2 %) with 𝑉𝑟𝑝, 

𝐼𝑟𝑝, 𝑉𝑂𝐶  and 𝑅𝑠 when using P1, and 𝑉𝑟𝑝, 𝑅𝑠 and 𝑅𝑠ℎ when using P2 and NewP2. Worse yet, 

nearly all these large errors (except 𝑅𝑠ℎ using P2 and NewP2) lead to underestimating fault 

parameters, which will affect the detection of incipient faults. Similarly, none of the three 

methods outperforms for all the fault parameters. Except for Rs and Rsh degradation, in all 

other fault conditions, P2 and NewP2 have higher or similar performance than P1. Compared 

to P2, NewP2 achieves almost the same accuracy but greatly decreases the 𝑅𝐸𝑅𝑠
. Thus, overall, 

NewP2 has a more stable performance with an average of the absolute RE of 3.1% compared 

to 4.37% for P2. 

III.5.1.3. Correction performance with varying fault severity 

In this subsection, the impact of each fault severity on correction performance is investigated. 

The severities of PS, Rs, and Rsh degradations are varied in the following ranges one separately: 
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PS degree = 0:10:100 %, 𝑅𝑠_𝑑𝑒𝑔𝑟𝑎 =10-5:0.2:2 Ω or 𝑅𝑠ℎ_𝑑𝑒𝑔𝑟𝑎=101:1:5 Ω. For each fault level, 

the curves are simulated for the selected 174 pairs of G and Tm (presented in Section III.5.1.1) 

and corrected using the three single curve-based methods.  

• 𝑬𝒄𝒖𝒓𝒗𝒆 and RE of key curve parameters 

The performance metrics extracted from these corrected curves are now presented in Figure 

III-13 as a function of fault severity. 

 

Figure III-13: Correction on the curve error and key curve parameters using the three procedures with 

varying fault severity 

((a) PS, (b) Rs degradation, (c) Rsh degradation (the marked line represents the mean of 174 values 

obtained from the correction of 174 curves under each fault severity, while the band area behind 

represents the standard deviation; the x-axis for Rsh degradation is set as log scale; the degree of 

severity is presented from healthy to severe on the x-axis from left to right)) 

From Figure III-13, several remarks can be drawn: 

➢ Nearly all the metrics have a monotonic variation with the fault severities (except the 

relatively stable variation of 𝐸𝑐𝑢𝑟𝑣𝑒 under Rs degradation using P2 and the surge on the 

𝑅𝐸𝑃𝑚
 under PS using P2 and new P2, which is analyzed from the remark on 𝑅𝐸𝑃𝑚

 in 

the following); 

➢ 𝐸𝑐𝑢𝑟𝑣𝑒 is mainly sensitive to PS and severe Rsh degradation; 

➢ 𝑅𝐸𝑃𝑚
 is more sensitive to severe Rsh degradation and PS. The surge observed for PS is 

due to the shifting of MPP. Examples are presented in Figure III-14. In Figure III-14 

(a), where PS degree=40%, the MPP of both real and corrected curves are at the ‘lower 
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stair’ (lower flat part of I-V curve). When PS degree=60%, due to the correction error, 

part of the MPP on the corrected curves shift to the ‘upper stair’ (upper flat part of I-

V curve). When PS degree=80%, all the MPP have arrived at the ‘upper stair’. Thus, 

during the unsynchronized shifting process between the MPP of corrected and real 

curves, a surge on the 𝑅𝐸𝑃𝑚
 under PS is resulted in;  

➢ 𝑅𝐸𝑉𝑂𝐶
 and 𝑅𝐸𝐼𝑆𝐶

 are almost insensitive to all faults regardless of their level of severity, 

except for 𝑅𝐸𝐼𝑆𝐶
 under severe Rs degradation; 

➢ The overall performance of NewP2 is better than P1 and P2 with relatively lower 

𝐸𝑐𝑢𝑟𝑣𝑒 and RE for key curve parameters. 

 

Figure III-14: Corrected curves using P1, P2, and NewP2 under three fault severities of PS 

((a) PS degree=40%, (b) PS degree=60%, (c) PS degree=80% (the displayed color of corrected 

curves and MPP depends on the G of the curve to correct, the circles on the curves represent the 

MPP, 𝑅𝐸𝑃𝑚
 are marked as ‘mean’‘std’)) 

Moreover, it should be noted that, for 𝑃𝑚, which serves as an essential indicator for the health 

status of PV devices, its RE is nearly always positive (except low RE values at low fault 

severity) and gradually increases with the fault severity. This means that using these correction 

methods could result in a significant underestimation of the fault impact on 𝑃𝑚. Worse, the 

underestimation increases with the fault severity. 

• RE of fault parameters 
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The impact of fault severity on fault parameters is also investigated, as illustrated in Figure 

III-15. 

 

Figure III-15: RE of fault parameters under PS, Rs, and Rsh degradations with variable fault severity  

(the marked line represents the mean of 174 values obtained from the correction of 174 curves under 

each fault severity, while the band area behind represents the standard deviation; the x-axis for Rsh 

degradation is set as log scale; the degree of severity is presented from healthy (except for 𝑉𝑟𝑝 and 𝐼𝑟𝑝 

as these parameters do not exist under healthy condition) to severe on the x-axis from left to right) 

With regard to the fault parameters as a function of fault severity, different trends are observed: 

for the parameters 𝑉𝑟𝑝  and 𝑅𝑠  using all the three methods and for 𝑅𝑠ℎ  using P1, the RE 

decreases as the severity of the defect increases, while the opposite trend is observed for the 

other cases. This is due to the difference between the changing rate of the absolute error of 

one parameter and the changing rate of the real value, as defined in (III-18). Overall, NewP2 

performs relatively better with lower and more stable RE. 

It should be noted that within the range of severity of the defects tested, all the parameters are 

underestimated with the three methods. Therefore, if they are used as defect signatures, which 

is common for PV module degradation analyses that typically use 𝑅𝑠  or 𝑅𝑠ℎ . This could 

hamper the detection and diagnosis of these defects. 

III.5.2. Performance of correction methods using multiple I-V 

curves 

In this section, the method based on multiple I-V curves (P3) is evaluated. Section III.5.2.1 

presents the selection of G and Tm for the reference curves. Sections III.5.2.2 and III.5.2.3 

present the correction performance using simulated curves with the selected G and Tm, for 

constant and variable fault severity.  

III.5.2.1. Selection of G and Tm for reference curves 

Before the simulation of these curves, G and Tm need to be determined. In order to cover as 

many real situations as possible, the field-measured distributions of G and Tm of the same sc-

Si module employed in the simulation are used. As shown in Figure III-6, three reference 

curves form one group of curves to get one corrected-to-STC curve. The G and Tm of these 

reference curves are determined by one-day measurement, covering both sunny and cloudy 

conditions, where the latter ones exhibit larger fluctuations of Tm. Besides, for both sunny and 
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cloudy conditions, three possible conditions are also considered for the irradiance: 1) lower 

than 1000 W/m2, 2) around 1000 W/m2, and 3) higher than 1000 W/m2. In total, 120 groups 

of G and Tm are manually selected. Some examples are shown in Figure III-16. 

  

Figure III-16: Examples of selected G and Tm from different summer days 

((a, b, c) clear sunny days, (d, e, f) cloudy days ((a, d): the 3 selected G all <1000 W/m2, (b, e): 

selected G around 1000 W/m2, (c, f): selected G all > 1000 W/m2)) 

III.5.2.2. Correction performance with constant fault severity 

Regarding the fault severity setting, firstly, we use the same fault configurations presented in 

Section III.5.1.2 and simulate 120 groups of reference curves. Then, P3 is applied to obtain 

120 corrected curves, as shown in Figure III-17. The corresponding performance of key curve 

parameters and fault parameters are summarized in Figure III-18 and Figure III-19, respectively. 

 

Figure III-17: Corrected I-V curves using P3  

(For PS, due to the large fluctuations, the corrected curves are plotted with dot line for better 

presentation)  
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Figure III-18: Four metrics to present the correction performance using P3 

(Values are presented in mean ± std) 

 

Figure III-19: Impact of correction on fault parameters using P3 

(Values are presented in mean ± std) 

From the results, clearly, except for PS, P3 achieves good correction (mean of all metrics 

within ±1 %) for all the types of PV array conditions (both healthy and faulty).  

In the following, we analyze the ‘catastrophic’ correction error near the inflection point under 

PS. As illustrated in Figure III-6, the correction procedure using P3 is in two steps. An example 

of these steps under PS is shown in Figure III-20. In step 1, due to the unsynchronized 

appearance of inflection points on reference curves 1 and 2 (i.e., 𝑉𝑟𝑝 are not identical), another 

inflexion point is created on the intermediate curve, so that in step 2, a strange curve shape is 
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introduced. This phenomenon could lead to a significant error on 𝑃𝑚 (15.75%) but with no 

significant impact on 𝑉𝑜𝑐 and 𝐼𝑆𝐶 .  

 

Figure III-20: Correction procedure under PS using three reference curves based on P3 

((a) correction step 1, (b) correction step 2) 

In addition, it should be noted that the fault impact on all the fault parameters is underestimated. 

As expected, the most significant error occurs under PS. Under the other conditions, the RE is 

within ±0.5 %. 

III.5.2.3. Correction performance with variable fault severity 

In this subsection, the impact of fault severity on correction performance using P3 is 

investigated. The severity for PS, Rs, and Rsh degradations is varied using the same settings as 

in Section III.5.1.3. The performance metrics as a function of fault severity are presented in 

Figure III-21.  

 

Figure III-21: Correction of curve error and key parameters for P3 under 3 faulty cases with variable 

fault severity 
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((a) PS, (b) Rs degradation, (c) Rsh degradation (the circled line represents the mean value for the 120 

corrected curves at each fault severity, while the band area behind represents the standard deviation; 

the x-axis for Rsh degradation is set as log scale; the degree of severity is presented from healthy to 

severe on the x-axis from left to right)) 

From these results, the following remarks could be drawn: 

▪ Regarding Rs and Rsh degradations, all the metrics are insensitive to the fault level; 

▪ Regarding PS, only 𝐸𝑐𝑢𝑟𝑣𝑒 and 𝑅𝐸𝑃𝑚
 vary according to the fault severity. 𝐸𝑐𝑢𝑟𝑣𝑒 has 

a monotonic variation, while 𝑅𝐸𝑃𝑚
 exhibits a non-monotonic variation. This 

phenomenon is due to the displacement of the maximum power point (MPP) as 

illustrated in Figure III-22. 

 

Figure III-22: Corrected curves using P3 under three fault severities of PS 

((a) PS degree=20%, where MPP of real and corrected curves are all at ‘lower stair,’ (b) PS 

degree=70%, where MPP of real is at ‘upper stair’ while MPP of most corrected curves at ‘lower 

stair’ (c) PS degree=100%, MPP of real and most corrected curves are all at ‘upper stair’ (for each 

case, 𝑅𝐸𝑃𝑚
 is marked as ‘mean’±‘std’)) 

The behaviors of fault parameters are also investigated with the comparison of identified 

parameters from both corrected and real I-V curves presented in Figure III-23 and the 

corresponding relative errors in Figure III-24.  

 

Figure III-23: Identified parameter from corrected (using P3) and original I-V curve for the fault of 

variable severity  

(the circled line represents the mean, while the shadow band area represents the standard deviation; 

the values of 𝑅𝑠 or 𝑅𝑠ℎ identified from I-V curve are not equal to the additional resistance (illustrated 

in Figure III-3) due to the existence of inherent equivalent 𝑅𝑠 (0.74 Ω) or 𝑅𝑠ℎ (708.36 Ω) of PV 

arrays) 
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Figure III-24: RE of fault parameters under PS, Rs, and Rsh degradations for the fault of variable 

severity using P3 

(the circled line represents the mean, while the shadow band area represents the standard deviation) 

The large dispersion observed for 𝑅𝐸𝑉𝑟𝑝  and 𝑅𝐸𝐼𝑟𝑝  confirms the poor performance of the 

correction near the inflection point under PS. The values of 𝑅𝑠 and 𝑅𝑠ℎ extracted from the 

original and corrected curves are very close, as confirmed in Figure III-23. This is also 

reflected in the low values of 𝑅𝐸𝑅𝑠
 and 𝑅𝐸𝑅𝑠ℎ

 displayed in Figure III-24. The mean value of 

𝑅𝐸𝑅𝑠
 lies within ±0.1 % and that of 𝑅𝐸𝑅𝑠ℎ

 within ±0.2 %, and both are relatively insensible to 

the varying fault severity. It is also noted that the standard deviations of 𝑅𝐸𝑅𝑠
 and 𝑅𝐸𝑅𝑠ℎ

 

exhibit a decreasing trend when the fault severity increases. In all, with varying faults, P3 

achieves quite good and robust correction under Rs and Rsh degradation.  

 Discussion 

The correction performance using three single and one multiple curves-based methods has 

been evaluated. Each method has its own pros and cons listed in Table III-7. 
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Table III-7: Pros and Cons of correction methods 

 Single curve-based methods Multiple curves-based 

method (P3) 
P1 P2 NewP2 

Pros • Best overall 

voltage 

correction 

(except 

under OC) 

• Best 

overall 

current 

correction 

• Best overall 

correction on entire 

I-V curve 

• Improve the voltage 

correction under OC 

compared to P1 

• Similar performance 

as P2 for current 

correction but with 

more stable accuracy 

• High-precision 

correction performance 

for most PV array 

conditions (except PS) 

• Free of correction 

coefficients 

(For P1, P2, New P2) 

• Suitable for rapid field diagnosis 

Cons (For P1, P2, New P2) 

• Needs to determine the correction coefficients 

• Prone to large underestimation of 𝑃𝑚 and fault parameters 

• Not suitable for rapid 

field diagnosis 

• Needs at least three 

well-chosen reference 

curves 

• Poor correction near 

inflection point under PS 

with high effect on 𝑃𝑚  

 

All these single curve-based correction methods, once established (i.e., correction coefficients 

determined), can conduct rapid correction of measured I-V curves. This allows their 

integration in real-time health monitoring of PV devices. However, as discussed in Section 

III.3.1, the determination of correction coefficients is a troublesome task. The coefficients 

determined by using simulated data do not always fit the real values, especially for the installed 

PV panels after a long-time operation. The proposed NewP2, which combines the advantages 

of P1 and P2, leads to better average correction performance on the entire I-V curve and key 

parameters for the tested faults. In fact, NewP2 only modifies the equation of voltage 

correction based on P2. Due to the inherent drawback of P2 on voltage correction and the 

independent relationship between V and I, NewP2 still does not outperform with all the faults. 

It introduces large correction error in the case of PS of one PV module, degradation of Rs and 

Rsh compared to healthy conditions, SC of one module and OC of one string. 

As for the multiple-curves-based method (P3), except under PS, excellent correction is 

obtained. However, the selection of reference curves is still a manual process [25], [253], 

which could hinder its application in rapid or on-line field correction.  
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 Conclusion 

In this section, the 3 procedures proposed in IEC 60891, originally designed for the correction 

of I-V curves of healthy PV module or array, have been evaluated for the correction of I-V 

curves simulated on the defective PV array. It has been shown that all the procedures introduce 

significant errors due to G, Tm, and the severity of the defects. We have pointed out that using 

the Procedure 1 (P1) from the standard, a distortion of the curve’s shape is commonly 

introduced with a relative error up to 13.8%. For 𝑃𝑚 and the fault parameters extracted from 

the corrected curves, estimation errors also occur frequently. And worse still, most significant 

errors result in an underestimation of the parameters, up to 9.1% for 𝑃𝑚 using Procedure 2 

(P2). This can affect the detection of incipient PV defects if these parameters are used as 

signatures of alarm. 

Among the single curve-based methods (P1 and P2), none of them could outperform for the 

correction of I-V curves simulated on all the PV array faulty conditions. Therefore, a P2-based 

improved method (NewP2) has been proposed. NewP2 modifies a coefficient in the equation 

of the voltage correction of P2 to reduce its correction error of voltage near 𝑉𝑂𝐶 part. At the 

same time, it keeps the original equation for the current correction of P2. NewP2 has exhibited 

more robust average performance than P1 and P2 with the decrease of average curve error 

from 3.45 % (using P2), 4.5 % (using P1) to 2.37% under constant fault severity. With varying 

fault severity, NewP2 also shows an overall better performance than P1 and P2 on the curve 

error, most of the key curve and fault parameters. 

As for the procedure based on multiple curves, i.e., Procedure 3 (P3), it generally has higher 

performance than those based on a single curve except for the correction of I-V curves of PV 

array under PS. Under PS, due to the unsynchronized appearance of inflection points on 

reference curves, an additional inflection point will be created and then cause great distortion 

to the curve near the inflection point. With varying fault severity, similarly, except under PS, 

P3 is robust in the curve error (within ±1 %) and estimated fault parameters (within ±0.2 %). 

Besides, due to the requirement of at least three reference curves at different G and Tm for the 

correction of one curve, P3 is thus not suitable for the application of rapid field diagnosis.  

PV health monitoring using I-V curves is a promising approach. In the next chapter, a complete 

PV FDD strategy using I-V curves will be investigated using the new proposed correction 

procedure (New P2). 
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 Introduction 

Among the various types of PV electrical data (like output power, output voltage or 

current at DC or AC side as presented in Section II.3.1.2.3), the I-V curve generally 

embeds rich information about the health status of a PV module or array. Thus, I-V 

curve-based PV FDD is a promising topic [254]. As for acquiring I-V curves, common 

I-V tracers already support the measurement for a single module or small-scale string 

or array. In recent years, the hardware solutions (integrated at inverter level) have 

become commercially available to measure I-V curves periodically at the power plant 

level [17], [18]. In this sense, the I-V curve-based diagnosis approaches could be 

applied to all the common PV facilities. 

One I-V curve, essentially, is determined by one vector of voltage and one of current. 

In the literature, there are different methods to manipulate the I-V curve to extract 

features for PV FDD. The typical practices include: (1) extract directly key features 

from the curve (like VOC, ISC, VMPP, IMPP, FF [19]–[21], or Rs, Rsh [234], [255]) for 

analysis; (2) calculate the first or second-order derivative of a curve as features to 

identify partial shading (PS) fault [22], [23]; (3) use complete I-V curves and compare 

it with simulated ones to generate residuals for analysis [256]. Their pros and cons are 

summarized in Table IV-1. 

Table IV-1: Typical properties of common practices of I-V curves for PV FDD in 

literature 

Methodologies Pros Cons 

Use extracted key 

curve features 
• Simple feature 

extraction 

• Suitable for multi-

faults diagnosis 

• Partial information 

• Sensible to noise and outliers 

• Hard to extract Rs, Rsh from curves 

of irregular shape 

Calculate the 1st or 2nd 

derivative of the curve 
• Able to identify the 

number of inflection 

points on the I-V curve 

under PS 

• Sensible to noise and outliers 

• Only application to detect PS 

Generate residual 

between measured 

complete I-V curve and 

simulated one 

• Complete information 

• Suitable for multi-

faults diagnosis (like 

PS , OC, SC, 

degradation) 

• Require simulation model for real 

time simulation 

• Sensible to measurement error and 

environmental noise 

 

Based on the comparison, it is observed that the common I-V curve-based diagnosis 

approaches all have their limits, especially lack an efficient usage of the complete I-V 
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curve information. For a given I-V curve, a complete usage is expected to capture richer 

information and achieve better diagnosis performance than a partial usage (like using 

only several extracted features). 

Seen in this research gap, a novel PV diagnosis methodology is proposed in this section, 

which applies three different methods to embed complete I-V curves into input features 

for PV FDD. Since MLT commonly acts as a powerful tool for intelligent classification 

tasks [257], in this study, based on the popularity and applicability (like the dimension 

of input features), six common MLT classifiers are tuned and evaluated for PV fault 

classification. It is noticeable that we do not limit ourselves to one certain type of MLT 

but try to tune and test different MLTs simultaneously. This permits us to find out the 

best possible performance that could be achieved when using different types of input 

features. 

This section is principally organized based on the four-step FDD scheme presented in 

Section II.3: Section IV.2 firstly presents the configuration of the I-V curve database; 

Section IV.3 then introduces the pre-processing of I-V curves; Section IV.4 presents 

the feature extraction, where the three methods to embed complete I-V curve 

information will be addressed; Section IV.5 performs the feature analysis results using 

different MLTs, where the FDD results using simulated data and validation using 

experimental data will be presented; Section IV.6 compares the proposed methodology 

with other common I-V curve based FDD techniques; Section IV.7 concludes the 

section. 

  Configuration of the simulated datasets 

IV.2.1. PV array model configuration 

A PV array model similar to that used in Section III.2.1 to study the correction of the I-

V curve is constructed as shown in Figure IV-1. The module parameters are based on 

Wiltec 62391-50W sc-Si module. This type of module is used in the experimental test 

and its power is within the measurement range of the I-V tracer in the laboratory. The 

array structure and parameters (detailed in Table IV-2) also fully correspond to that 

used in the experimental test (presented in Section IV.5.3). This permits the classifier 

tuned by simulated data could be applied to the diagnosis of the real PV array with the 

same configuration. 
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Figure IV-1: Simulation model of the PV array 

Table IV-2: Parameter setting of PV array 

Variable Value Variable Value 

𝐼𝑆𝐶  6.48 A 𝑉𝑀𝑃𝑃  52.65 V 

𝑉𝑂𝐶  64.74 V 𝐼𝑀𝑃𝑃  5.70 A 

 

In total, eight configurations of PV array are studied, i.e., healthy and seven faulty 

conditions:  

▪ PS: 2 types, 1 or 2 modules in 1 string are shaded (abbreviated as PS1 and PS2, 

respectively) by adjusting the block gain value (Gain_PS) that controls the 

module’s irradiance;  

▪ SC: 2 types, 1 or 2 modules in 1 string is short-circuited (abbreviated as SC1 and 

SC2, respectively) by connecting a resistance 𝑅𝑠𝑐 in parallel; 

▪ OC: 1 string is open-circuited by connecting a resistance 𝑅𝑜𝑐 in series; 

▪ Rs degradation (Rs degra): increase of array equivalent series resistance, controlled 

by a resistance 𝑅𝑠_𝑑𝑒𝑔𝑟𝑎 added in series;  

▪ Rsh degradation (Rsh degra): decrease of array equivalent shunt resistance, 

controlled by a resistance 𝑅𝑠ℎ_𝑑𝑒𝑔𝑟𝑎 added in parallel; 

Some examples of the I-V curves under these conditions are shown in Figure IV-2. 
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Figure IV-2: Examples of simulated I-V curves under 8 PV array conditions 

From Figure IV-2, it is observed that these conditions could induce different changes 

on the I-V curves and these changes are useful for the following diagnosis. 

IV.2.2. Generation of datasets 

Based on the array model, two datasets are generated, one for training and another for 

the test. For each curve in both datasets, G is randomly varied in [400, 1200] W/m2 and 

Tm in [20, 80] °C. Globally, Tm is set linear with G but varies in a range of 30 °C to 

cover more randomness of the real environment. An example of a generation of 300 

pairs of (G, Tm) is shown in Figure IV-3. 

 

Figure IV-3: Examples of the distribution of G and Tm 

The corresponding controlling parameters of I-V curves in these two datasets are 

identical as presented in Table IV-3. Besides, for PS, Rs, and Rsh degradation, the fault 

severity is also varied with the corresponding parameters covering uniformly the range 

listed in Table IV-3.  

 



Chapter IV  PV fault diagnosis using I-V curves and machine learning classifiers 

92 

 

Table IV-3: Parameter setting for the healthy and faulty conditions 

Condition PS degree (%) 𝑹𝒔𝒄 (Ω) 𝑹𝒐𝒄  (Ω) 𝑹𝒔_𝒅𝒆𝒈𝒓𝒂 (Ω) 𝑹𝒔𝒉_𝒅𝒆𝒈𝒓𝒂 (Ω) 

Healthy 1 105 10-5 10-5 105 

PS (1 or 2 modules) 10%-100% 105 10-5 10-5 105 

SC (1 or 2 modules) 1 10-5 10-5 10-5 105 

OC (1 string) 1 105 105 10-5 105 

Rs degradation 1 105 10-5 0.5-5 105 

Rsh degradation 1 105 10-5 10-5 20-200 

 

It is noted that the variation range for PS and degradation faults in Table IV-3 and Table 

III-3 are not identical. The variation ranges used in this chapter are relatively smaller 

than Chapter III. This setting is to avoid samples at too incipient fault severity, which 

may be confused with the ones at healthy condition. Examples of the curves of these 

conditions are presented in Figure IV-4. To better illustrate the impact of fault severity, 

the presented curves are generated under STC. 

 

Figure IV-4: I-V curves (STC) under PS1, PS2, Rs, and Rsh degradation  

(For PS2, the shading level for the two modules could be the same or different as shown in 

Figure IV-1. For Rsh degradation, the shape of the curve does not vary linearly with the 

Rsh_degra as this additional resistance is added in parallel to the array) 

In fact, the curves obtained from simulation are all under ideal conditions, i.e., without 

any measurement error or fluctuation. Therefore, to train the classifiers with the 

samples with greater variability and closer to the field-measured ones, an estimated 

disturbance is added to the simulated I-V curve, specifically, to the vector of V and I 

that compose an I-V curve. Environmental noise and measurement random error are 

emulated. Additional disturbance vectors are firstly generated following a normal 

distribution and then added to the original V and I. The disturbance vector of V or I is 

generated randomly with the zero mean and a standard deviation value denoted 

𝜎𝑑𝑖𝑠_𝑟𝑎𝑛𝑑  for the random error and 𝜎𝑑𝑖𝑠_𝑒𝑛𝑣  for the environmental noise. They are 

determined by (IV-1) and (IV-2) , respectively.  
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𝐸𝑑𝑖𝑠_𝑟𝑎𝑛𝑑 = 𝜎𝑑𝑖𝑠𝑟𝑎𝑛𝑑

/𝜎𝑆 × 100% (IV-1) 

 
𝑅𝑑𝑖𝑠_𝑒𝑛𝑣 = 10log10(𝜎𝑆

2/𝜎𝑑𝑖𝑠_𝑒𝑛𝑣
2 ) (IV-2) 

where, 𝜎𝑆 is the standard deviation of the signal S, which refers to the vector of either 

V or I. 𝐸𝑑𝑖𝑠_𝑟𝑎𝑛𝑑 is the error rate of random error (presented in percentage), set as 0.5% 

for both V and I. 𝑅𝑑𝑖𝑠_𝑒𝑛𝑣 is the ratio of environmental noise, presented in decibel of 

35dB for V and I. These values are determined by combing the datasheets of our 

measurement equipment used in field tests and the commonly reported measurement 

uncertainty in literature [258], [259].  

For each simulated I-V curve (without additional disturbance), the above process is 

repeated five times. The original training dataset contains 2400 I-V curves simulated 

under all eight conditions (each condition has 300). With the additive disturbance, in 

total, the training dataset contains 12000 I-V curves (each condition has 1500 curves). 

The test dataset, with disturbance added, contains a total of 2400 curves where each 

condition is described with 300 curves. Both these two datasets will undergo the 

following pre-processing operations. 

  Pre-processing of I-V curves 

The pre-processing of I-V curves contains two principal steps: correction and 

resampling. These operations will be detailed in succession. 

IV.3.1. Correction of I-V curves 

Under various environmental conditions (different G and Tm), simulated or measured I-

V curves could have distinct shape forms. Thus, to allow the classifiers to learn the 

curve shape better, the I-V curves are corrected to the same environmental condition, 

here, STC. The correction method (New P2) proposed in Section III.3.2 is adopted to 

correct the I-V curves. 

IV.3.2. Resampling of I-V curves 

After the correction, resampling of I-V curves is performed. This operation not only 

permits to make every I-V curve have an identical number of points, but also, which is 

more important, to guarantee uniform distribution of voltage curves points. This 

operation is particularly indispensable when treating new I-V curves with a different 

number of points or distribution, e.g., real array I-V curves measured by different I-V 

tracers. Thus, resampling is conducted here to ensure the general applicability of the 

proposed FDD methodology. Specifically, it is performed via the following steps:  
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1) Construct a voltage vector with N points uniformly distributed in [0, Vmax] with a 

constant step (Vmax is a constant for all the conditions, which could be set a little 

larger than the array 𝑉𝑜𝑐  at STC in healthy condition to avoid the voltage of 

improperly-corrected curve exceeding this range). An illustration of the voltage 

vector is marked in Figure IV-5 as markers of ‘triangle’; 

2) At each voltage point, find the nearest point on the original curve and record its 

current value, as shown in Figure IV-5. It should be noted that, for the I-V curve 

after correction, the curves are generally shifted towards the right side on the I-V 

figure, i.e., the voltage of the far-left point not starting from 0, as discussed in 

Figure III-5. Thus, similarly, the extrapolation of I-V curve by Phang’s method 

[249] is performed to obtain a complete I-V curve (voltage starting from 0). This 

permits the resampling based on the voltage on [0, Vmax]. The extrapolation step is 

set at 0.2 V. 

3) Form up a current vector of N points, where the N must be lower than the number 

of points on the original I-V curve to allow a down resampling. 

 

Figure IV-5: Illustration of resampling of an I-V curve from healthy array  

It is easy to find out that the more points there are, the more information is captured. 

To determine N, the efficiency of resampling needs to be quantified. Here, the area error 

(𝐸𝑎𝑟𝑒𝑎) [260] is adopted as the metric, as defined in (IV-3). 

 𝐸𝑎𝑟𝑒𝑎 =
𝑆𝐴𝑟𝑒𝑎 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟

𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 100%  (IV-3) 

where, 𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the size of the area enclosed by the original I-V curve and coordinate 

axis, 𝑆𝐴𝑟𝑒𝑎 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 is the size of the area enclosed by the original and resampled I-V 

curve. An example of the illustration of the resampling (N =10 or 50) of a real I-V curve 
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for a PV array under PS2 (the original number of points is 363) is presented in Figure 

IV-6. 

 

Figure IV-6: Example of resampling of an I-V curve from the array under PS2 

Taking the I-V curves under the eight conditions, the mean and standard variation of 

𝐸𝑎𝑟𝑒𝑎 with the varying N are presented in Figure IV-7. The number of points of these 

original curves is not constant but varies between 298 to 363, which is due to the setting 

of the variable time step in the simulation. 

 

Figure IV-7: 𝐸𝑎𝑟𝑒𝑎 of resampling of I-V curves as a function of N 

 (the blue line refers to the mean value while the band represents the standard deviation) 

It is observed that, when N surpasses 40, the 𝐸𝑎𝑟𝑒𝑎 becomes relatively small (~0.75%) 

and stable. However, it should be noted that, except for the efficiency of resampling, 

the complexity of the model (more points, larger complexity of classifier) also needs to 

be considered. Therefore, in this study, N is taken as a trade-off (N=50) to guarantee 

both good resampling performance and low methodology complexity. In this way, after 

resampling, for each I-V curve, one vector of current with 50 features is obtained. 

(a) (b)
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 Feature extraction 

After the pre-processing, feature extraction is performed to prepare the features with 

higher discriminability and lower redundancy. To this end, two operations are 

conducted, feature transformation and dimensionality reduction. Both are described in 

the following. 

IV.4.1. Feature transformation 

For the resampled current vectors, two types of approaches are proposed to further 

extract features. The first type is to use these vectors directly as input for classifiers 

(this method is named hereafter ‘direct I-V’). The second one is to transform the 1D 

vector of the current values to 2D matrix. Specifically, two 1D-to-2D transformation 

techniques, commonly practiced in the transformation of time-series signal, are adopted 

in this research: Recurrence plot (RP) and Gramian Angular Difference Field (GADF) 

IV.4.1.1. Recurrence Plot (RP) 

RP is a visualization tool that aims to explore the time series data via a 2D 

representation graph of its recurrences [261]. It reveals all the time dependency of 

vectors and constructs a square matrix by calculating the inner distance among all the 

points in the phase space [262]. The phase space is generated by embedding a delay (τ) 

of the input vector. In this study, it is noted that, in fact, the I-V curve is not a time 

series signal. However, as the voltage vector is uniformly resampled, the resampled 

current information then can be considered as a timely discretized information (as 

presented in Section IV.3.2). This allows us to use the time series assumption and apply 

RP to transform the resampled current vector. 

Given a vector 𝒙 (𝑥1, 𝑥2, … , 𝑥𝑁) (𝑁  is the number of points), here, referring to the 

resampled current vector, the extracted trajectories in phase space are: 

 𝑥𝑖⃗⃗  ⃗ = (𝑥𝑖 , 𝑥𝑖+𝜏), 𝑖 ∈ {1, … ,𝑁 − 𝜏} (IV-4) 

The RP matrix, denoted R, is the pairwise distance between the trajectories 

 𝑅𝑖,𝑗 = Θ(𝜖 − ‖𝑥𝑖⃗⃗  ⃗ − 𝑥𝑗⃗⃗  ⃗‖), 𝑖, 𝑗 ∈ {1, … ,𝑁 − 𝜏} (IV-5) 

where; ‖. ‖  is the norm function, Θ(. )  is the Heaviside function, ϵ is a threshold 

distance,  𝑥𝑖  and 𝑥𝑗  refers to 𝑖𝑡ℎ  and 𝑗𝑡ℎ  value in the resampled current vector 𝒙 , 

respectively. Based on ((IV-5), a RP matrix with binary values could be obtained. 

However, it should be noted that the operation of a threshold-based Heaviside function 

could lead to a loss of information [263]. Therefore, in this study, we directly take the 

pairwise distance to construct the RP matrix with 𝑅𝑖,𝑗 = ‖𝑥𝑖⃗⃗  ⃗ − 𝑥𝑗⃗⃗  ⃗‖, 𝑖, 𝑗 ∈ {1, … ,𝑁 − 𝜏}. 
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The R-matrix reveals textures which are single dots, diagonal lines as well as vertical 

and horizontal lines. For example, fading to the upper left and lower right corners 

demonstrates that the original signal exhibits a trend or drift; or vertical and horizontal 

lines/clusters mean that some states do not change or change slowly for some time and 

this can be interpreted as laminar states [261]. The size of feature Dmatrix of RP equals 

(N−τ)2. In this study, by finding the local minimum of the average mutual information 

of input vectors in phase space, τ is optimized to be 1, thus, Dmatrix=2401. Some 

examples of RP transformations are illustrated in Figure IV-9 

IV.4.1.2. Gramian Angular Difference Field (GADF) 

GADF calculates the inner product of the input vector via the characterization of 

angular difference and preserves the temporal dependency [262]. Similar to the 

application case of RP, as the voltage vector is uniformly resampled, the current 

information can be considered as a timely discretized information. Therefore, GADF 

can be applied to the resampled current vector. GADF creates a matrix of temporal 

correlations for each pair (𝑥𝑖, 𝑥𝑗) (𝑖, 𝑗 ∈ {1, … , 𝑁}, 𝑥𝑖 and 𝑥𝑗 refers to 𝑖𝑡ℎ and 𝑗𝑡ℎ value 

in the resampled current vector 𝒙, respectively). To be specific, firstly it normalizes the 

vector into a range [-1, 1] with 𝑥𝑖 normalized to 𝑥𝑖
′ : 

𝑥𝑖
′ = 2 ×

𝑥𝑖 − min (𝒙)

max(𝒙) − min (𝒙)
− 1,   ∀𝑖 ∈ {1,… ,𝑁} (IV-6) 

Then it computes the polar coordinates of the scaled vector by arccosine function. 

 𝜙𝑖 = arccos(𝑥𝑖
′),   ∀𝑖 ∈ {1,… ,𝑁} (IV-7) 

Finally, it computes the sine of the difference of the angles to form a GADF matrix. 

 𝐺𝐴𝐷𝐹𝑖 = sin(𝜙𝑖 − 𝜙𝑗),   ∀𝑖, 𝑗 ∈ {1,… ,𝑁} (IV-8) 

The size of the generated matrix Dmatrix =N2. In this sense, when N=50, each current 

vector is transformed to one squared matrix with Dmatrix =2500. An illustration of the 

transformation is shown in Figure IV-8. 

 

Figure IV-8:  Process of the GADF transformation based on a resampled current vector 

((a) resampled current vector, (b) polar coordinate graph, (c) GADF matrix) 

(a) (b) (c)
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Examples of GADF for other conditions are also illustrated in Figure IV-9.  

 

Figure IV-9: Examples of matrices transformed by GADF and RP 

 ((a) Healthy, (b) PS, (c) PS2, (d) Rs degradation, (e) Rsh degradation (the value of each 

component on the matrix is marked by colormap)) 

From the examples of transformation, it is observed that the values in both RP and 

GADF matrix are symmetric, and the diagonal values are 0. When the value of current 

vector exhibits a decline, a ‘square’ will correspondingly appear, as seen from the PS 

and PS2 cases. When the slope near the 𝑉𝑂𝐶 or 𝐼𝑆𝐶  part of the I-V curve changes, the 

diagonal area in the matrix will also shrink along with different directions. In this way, 

all the changes in the I-V curve could be reflected in the transformed matrix. 

These transformation operations increase the complexity of features for analysis. 

However, the discriminability of features under different conditions could be improved, 

which will be reflected in the diagnosis results and further discussed in Section IV.5.2.4. 

All the presented three feature extraction methods (direct I-V, RP, and GADF) capture 

complete information from the current vectors resampled from original I-V curves. In 

addition to the proposed three feature extraction methods, one typical traditional feature 

extraction method for PV FDD, which uses partial I-V curve information by extracting 

key parameters, will also be evaluated for comparison. This method, denoted as 

‘8paras’, uses G, Tm, 𝑉𝑀𝑃𝑃, 𝐼𝑀𝑃𝑃, 𝑉𝑂𝐶, 𝐼𝑆𝐶 , 𝑅𝑠 and 𝑅𝑠ℎ as features for analysis. The 𝑅𝑠 

and 𝑅𝑠ℎ are calculated by the reciprocal of the slope of the I-V curve near the 𝑉𝑂𝐶 side 

and 𝐼𝑆𝐶  side, respectively. In fact, 𝑅𝑠  and 𝑅𝑠ℎ  are not easily obtained due to the 

manipulation of the whole I-V curve, but they can present the variation trends of the 

curve, which are also the key information. 
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IV.4.2. Dimensionality reduction of features 

For the features extracted by direct I-V, RP, or GADF, it is easy to recognize the large 

redundancy of information. For example, the current vector used in direct I-V may 

contain points of similar current value, especially for the points resampled from the part 

of the I-V curve with a gentle variation. Each of these points, in fact, all corresponds to 

a feature. Thus, redundancy of information is involved in the original feature. To reduce 

the complexity of classifiers and speed up the training process, a reduction in the 

number of features is performed. One commonly adopted technique, PCA [124], is 

applied. The number of principal components is determined by explaining at least 98% 

of the variance of the original data. This permits the final samples used for classification 

to preserve quasi-complete information of original I-V curves. In addition, the 

diagnosis performance without PCA will also be discussed in Section IV.5.2.3. 

 Feature analysis and FDD results 

After the feature extraction, the four types of features (8paras, direct I-V, RP, or GADF) 

will be analyzed for PV FDD. The analysis procedure is presented in Figure IV-10.  

MLTs are adopted as feature analysis tools. For each type of feature, six common types 

of MLTs (presented in Section IV.5.1) will be employed. For each type of MLT, 

candidate models with different hyperparameters will be built. Specifically, the training 

database (presented in Section IV.2.2) is divided into 80% for training and 20% for 

validation. The validation dataset is used to select the trained candidate models of one 

type of MLT with the best performance. Then, the test database (presented in Section 

IV.2.2) is used to evaluate the 6 selected MLT models and find the best one. The 

corresponding diagnosis results will be presented in Section IV.5.2. This model will 

then be further evaluated by the field test dataset, which will be detailed in Section 

IV.5.3. 

 

Figure IV-10: Feature analysis procedure 

Diagnosis results using 
experimental test dataset

Test results using 
simulated test dataset

validationtraining

80% 20% Test dataset (simulated)
3000 I-V curves
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Best
classifier
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classifier6 types of MLT classifiers

(hyperparameter optimized)
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IV.5.1. Analysis techniques-machine learning classifiers 

Based on the literature review of applications of MLT in PV FDD (presented in Section 

II.3.4.3), in this study, 6 common MLT classifiers are applied: ANN, SVM, kNN, DT, 

RF, and NBC. To build up each type of MLT, various hyperparameters need to be 

determined, e.g., the neuron numbers and the layer numbers for ANN, kernel function, 

kernel scale and penalty for SVM. The hyperparameters of these MLT classifiers to be 

tuned are listed in Table IV-4. 

Table IV-4: Configuration of MLT classifiers 

MLT Configuration 

All types Common setting 

• Normalization: [-1,1] 

• 5-fold validation 

• Hyperparameter optimization method: grid search or Bayesian method 

ANN • Structure: 1 or 2 hidden layers (5-50 neurons) 

• Loss function: Cross entropy 

• Train algorithm: Scaled conjugate gradient  

• Function: tansig (hidden layer), softmax (output layer) 

SVM • Multiclass method: one-vs-one 

• Kernel scale: optimized 

• Penalty: optimized 

• Kernel function: Linear, Quadratic, Cubic, Gaussian, or RBF 

kNN • Number of neighbors: optimized 

• Distance metric: Euclidean, City block, or Chebyshev 

DT • Max number of splits: optimized 

• Split criterion: Gini's diversity index 

• Minimum number of leaf nodes: optimized 

RF • Max number of splits: optimized 

• Minimum number of leaf nodes: optimized 

• Number of predictors selected for each split: optimized 

NBC • Distribution type: Gaussian, or Kernel 

• Kernel Type: Gaussian, Box, Epanechnikov, or Triangle 

• Kernel smoothing window width: optimized 

 

Relying on the toolbox ‘Classifier learning’ in Matlab, for each type of MLT, classifiers 

with different hyperparameter settings are built up as candidate models. These models 
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will then be validated by the validation dataset. Specifically, the 5-fold cross-validation 

is applied. The original dataset is randomly partitioned into 5 equal-sized subsamples. 

Of these subsamples, a single subsample is used as the validation dataset, and the 

remaining 4 are used as the training dataset. This cross-validation process is repeated 5 

times, with each of these subsamples used exactly once as the validation dataset. Then, 

the average classification performance is used to select the best model among the 

candidate models of different hyperparameters. In this way, using each type of input 

feature, 6 MLT models (ANN, SVM, kNN, DT, RF, and NBC) are built up. 

IV.5.2. Diagnosis results using simulated data 

For each type of input feature, the 6 MLT models are evaluated using the test dataset. 

The diagnosis results, robustness to additional disturbance, discussion on the impact of 

PCA and the feature transformation (RP and GADF) will be addressed in the section. 

IV.5.2.1. Performance of fault classification 

The test accuracy of the 6 classifiers using the 4 types of input features (8paras, direct 

I-V, RP, or GADF) is presented in Figure IV-11. The details of the best classifier are 

listed in Table IV-5 and the corresponding confusion matrices are illustrated in Figure 

IV-12-Figure IV-15. 

 

Figure IV-11: Test accuracy of all classifiers 

(the best accuracy is marked in red bold) 

Table IV-5: Details of the best classifiers 

Type of input features Best classifier Test accuracy Classifier hyperparameters 

8paras SVM 94.83% Kernel: Polynomial 2, 

BoxConst=29.3 

direct I-V ANN 99.92% #Neurons of hidden layer =15 

RP ANN 99.96% #Neurons of hidden layer =10 

GADF ANN 100% #Neurons of hidden layer =32 
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Figure IV-12: Confusion matrix of the best classifier when using 8paras as input feature 

 

Figure IV-13: Confusion matrix of the best classifier when using direct I-V as the input 

feature 

 

Figure IV-14: Confusion matrix of the best classifier when using RP as the input feature 
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Figure IV-15: Confusion matrix of the best classifier when using GADF as the input feature 

From the view of input feature types, it is found that the complete I-V curve-based 

features (i.e., direct I-V, RP, and GADF) permit the classifiers to achieve globally 

higher classification accuracy than that based on partial I-V curve information (i.e., 

8paras). For 8paras type, the best test accuracy only achieves 94.83%. Large 

misclassification occurs to PS1, PS2, and Rs degradation. This is logical since, under 

these conditions, the MPPs of some of the curves could have similar or even identical 

positions, especially with the existence of measurement noise. Therefore, if only 𝑉𝑀𝑃𝑃, 

𝐼𝑀𝑃𝑃, 𝑉𝑂𝐶, 𝐼𝑆𝐶 , 𝑅𝑠 and 𝑅𝑠ℎ are adopted as curve features, less satisfying performance 

will be resulted in.  

Comparatively, for the complete I-V curve-based methods (direct I-V, RP, and GADF), 

the quasi-whole curve information is embedded in the input features. Thus, the 

classifiers can learn the variation trend of the curves and achieve better classification 

results with the best performance all higher than 99.9%. For GADF, using ANN as the 

classifier could achieve 100% classification. For direct I-V and RP, there are 1 or 2 I-

V curves wrongly classified.  

To further understand these results, the output values of the neurons in the output layer 

are studied. A zoom on the output layer of the ANN model is presented in Figure IV-16, 

where there are eight neurons in the output layer. Each neuron corresponds to one 

condition. The sum of all the output values equals 1 as the SoftMax activation function 

is applied in the output layer. The predicted class is assigned to the condition whose 

corresponding neuron outputs the largest value. In this way, by analyzing the neuron 

output values, the confidence of decision-making could be understood. 
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Figure IV-16: Illustration of the output neurons in ANN models 

For these wrongly-classified cases presented in the confusion matrices, the neuron 

outputs, the wrongly identified I-V curves and the original I-V curves without 

disturbance added are illustrated together in Figure IV-17- Figure IV-19.  

 

Figure IV-17: Detailed test results using direct I-V +ANN under PS2 

((a): upper figure presents the predicted class as a function of number of samples, lower 

figure presents the value of 8 neurons in the output layer of ANN classifier, each neuron 

corresponds to one condition, the predicted class is assigned to the condition whose 

corresponding neuron outputs the largest value; (b): misclassified I-V curve and the curves of 

the wrong class used in training) 

Seen from Figure IV-17 (a), there is one red ‘diamond’ marked in upper graph and in 

the lower neuron output, the corresponding gray point (presenting the neuron output of 

Rsh degradation) surpasses the yellow one (that of PS2). These correspond to the result 

that there is one I-V curve of PS2 misclassified as Rsh degradation. This misclassified 

I-V curve is shown in Figure IV-17 (b), in which it is clearly within the area surrounded 

by the I-V curves under Rsh degradation used for training. This means that this PS2 
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curve is similar to the ones under Rsh degradation, especially the ones with low fault 

severity. This suggests that this curve is prone to be misclassified as Rsh degradation. 

 

Figure IV-18: Detailed test results using direct I-V +ANN under Rsh degradation 

When using direct I-V +ANN, there is one I-V curve under Rsh degradation 

misclassified as PS, as seen from Figure IV-18(a). In Figure IV-18 (b), similarly, the 

shape of the misclassified I-V curve is like those under PS used in training (at low PS 

degree). 

 

Figure IV-19: Detailed test results using RP +ANN under PS2 

When using RP as features for FDD, there is only one curve misclassified, i.e., the same 

one in Figure IV-17 when using direct I-V as the feature. This suggests, when using 

direct I-V and RP to extract features from this curve, these features are easily confused 

with those from curves under Rsh degradation. Nevertheless, it could be noted from 

Figure IV-15 that, when using GADF to extract features, all the I-V curves are correctly 

classified, even for this PS2 curve. This means GADF is capable to better extract the 

fault features from this curve and distinguish it from the others, as can be observed from 

the neuron outputs under PS2 shown in Figure IV-20. 



Chapter IV  PV fault diagnosis using I-V curves and machine learning classifiers 

106 

 

 

Figure IV-20: Detailed test results using GADF +ANN under PS2 

Among direct I-V, RP, and GADF, if we count the average accuracy of all the 6 types 

of MLT classifiers, it is the RP and GADF that achieve higher global accuracy. This 

demonstrates that the transformation of features permits all the types of MLT classifiers 

easier to achieve better classification performance. This could also be seen from the t-

SNE [264] graphs shown in Figure IV-21, which visualize the discriminability of these 

features in 2D graphs. 

 

Figure IV-21: t-SNE graphs of 4 types of input features extracted from the test database 

((a) 8paras, (b) direct I-V, (c) RP, (d) GADF) 

From the t-SNE graphs, it is easy to find out that the clusters of features- 8paras are 

nearly all mixed up, which shows up its low discriminability and corresponds to its less 

satisfying performance. For RP and GADF, the clusters are relatively more separated 

than that of direct I-V, like among PS1, PS2, and Rsh degradation, which is clearer for 
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GADF. This means, using RP or GADF, the discriminability of input features is 

enforced, which therefore allow all the MLT classifiers easier to achieve better 

classification, as presented in Figure IV-11. 

IV.5.2.2. Robustness to additional disturbance 

In this part, the best MLT classifiers for the 4 types of input features (presented in Table 

IV-5) will be tested by new test datasets to evaluate the robustness of the classifiers. In 

these datasets, the added disturbance level of random measurement error and 

environmental noise will be varied independently from 0 to a higher level than that used 

in previous test dataset. The corresponding best classification results when using the 4 

types of input features are presented in Figure IV-22. 

 

 

Figure IV-22: Best classification accuracy using test dataset with varying level of added 

disturbance  

((a): varying random error of V and I; (b): varying environmental noise of V and I. The 

disturbance level adopted in the training dataset is marked in ‘diamond’) 

It is observed that, globally, the best test accuracy when using the 4 types of features 

all gradually decreases with the increase of disturbance level. The complete I-V curve-

based features (direct I-V, RP, and GADF) once more show superiority than the partial 

curve-based feature (8paras).  

As for direct I-V, RP, and GADF, the best test accuracy shows a similar variation trend 

at a low disturbance level. However, GADF experiences a slighter decrease of 

performance with the increase of disturbance, especially with the increase of random 

error on V and I, e.g., from the confusion matrix of test results depicted in Figure IV-23 

when the random error is at 4%.  

(a) (b)
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Figure IV-23: Confusion matrix of test results using the best classifier with the random error 

of V and I at 4% in the test dataset 

From Figure IV-18, when the random error of V and I in the test dataset reaches a high 

level of 4% (compared to the 0.5% used in training), the classification performance 

when using all the types of complete I-V curve-based features decreases, which can 

also be seen from Figure IV-23. Nevertheless, it is observed that GADF clearly 

outperforms direct I-V and RP, with fewer I-V curves under heathy and Rsh 

degradation misclassified into other conditions. This demonstrates that the classifier 

using GADF to extract features has overall better robustness to the additional 

disturbance than using other types of feature extraction methods. 

IV.5.2.3. Influence of PCA 

As presented in Section IV.4.2, for direct I-V, RP, or GADF, the dimension of features 

will be reduced by PCA before fed into MLT classifiers. In this scenario, the impact of 

this operation on the diagnosis performance will be discussed. Specifically, the 

processing time and the test accuracy with and without PCA are compared as shown in 

Table IV-6. In this study, the platform is Matlab R2020b with a CPU of Intel(R) Xeon(R) 

E-2174G CPU @ 3.80GHz and RAM of 32Go. 
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Table IV-6: Influence of PCA on time and accuracy 

Input feature type PCA Computation 

duration (s) 

Test duration (s) Test accuracy 

direct I-V 
Yes 41.96 0.01 99.92% 

No 59.02 0.01 99.88% 

RP 
Yes 146.03 0.01 99.96% 

No 1298.56 0.13 99.92% 

GADF 
Yes 80.63 0.01 100% 

No 717.79 0.11 100% 

 

From the comparison, it is observed that PCA operation allows the following merits:  

▪ No compromise on the diagnosis accuracy 

▪ Reduce the total computation duration (pre-processing + training), especially for 

RP and GADF with the time with PCA taking only about 11% of that without PCA. 

▪ Increase the prediction speed (less test duration) 

Thus, it is favorable to conduct the dimension reduction operation by PCA, especially 

for high-dimensional features, like RP and GADF. 

IV.5.2.4. Influence of transformation 

In Section IV.4.1, in addition to direct I-V, we have introduced two feature 

transformation methods, RP and GADF. Clearly, the feature dimension after 

transformation greatly increases as the current vector is transformed into a square 

matrix. This, of course, could increase the complexity of FDD methodology, like the 

longer time needed to perform dimensionality reduction and training, which can also 

be seen from Table IV-6. 

On the other side, it should be noted that the transformation is able to increase the 

discriminability of features, as presented in the t-SNE graph in Figure IV-17. This can 

also be noted from the neuron output. From the test results given in Figure IV-13 -

Figure IV-15, for the I-V curves of the array under healthy condition, direct I-V, RP 

and GADF all could achieve 100% classification. However, if we focus on the detailed 

output results of the best classifier, the difference in the confidence of classification 

could be observed, e.g., from the results under healthy condition, as shown in Figure 

IV-24.  
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Figure IV-24: Neuron output of the best classifier under heathy condition using direct I-V, RP 

and GADF 

((a): direct I-V, (b): RP, (c): GADF) 

For these 3 types of features, ANN is the best classifier. The output values of the 8 

neurons in the output layer (corresponding to the 8 conditions) are presented. For each 

prediction of class, the sum of all the 8 neuron outputs equals 1, the predicted class is 

assigned to the class whose neuron outputs the largest. In this way, the larger the 

difference between the neuron outputs is, the more confidence in prediction making. 

To quantify the neuron output difference, ∆𝑜𝑢𝑡𝑝𝑢𝑡 is defined, which equals the largest 

neuron output minus the second largest output. The larger the ∆𝑜𝑢𝑡𝑝𝑢𝑡  is, the more 

confident the classifier is to make this decision. In Figure IV-24, the mean of the 

∆𝑜𝑢𝑡𝑝𝑢𝑡 (∆𝑜𝑢𝑡𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅) for the 300 test I-V curves under healthy condition is also presented. 

From the results, ∆𝑜𝑢𝑡𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅ of direct I-V and RP are similar with the one of RP a little bit 

larger, while the ∆𝑜𝑢𝑡𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅ of GADF is the largest reaching 0.996. This means, using 

GADF as features, the best classifier is more confident to make correct classification, 

which once more reflects the merit of performing feature transformation. 

In addition, it is also a manifestation that the robustness to the additional disturbance 

when using RP and GADF is enforced to that using direct I-V, as seen from Figure 

IV-18, especially for GADF. 

To investigate why the transformation could increase the discriminability of features, 

we analyze the difference between features under different conditions after 

transformation. In fact, the I-V curves of the array under incipient fault conditions (like 

low PS degree, low additional 𝑅𝑠, large additional 𝑅𝑠ℎ) are prone to be confused with 

those under healthy conditions, as seen from the wrongly-classified I-V curves shown 

in Figure IV-17 to Figure IV-19. Therefore, taking the features of the I-V curve under 

healthy condition as a reference, we quantify the difference between the reference and 

the features from the I-V curve under PS, Rs or Rsh degradation with different fault 

(a) (b) (c)
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severity as shown in Figure IV-25 -Figure IV-27. Here, we use the RMSE as the metric, 

defined as: 

 
𝑅𝑀𝑆𝐸 =

√∑ (𝑋𝑖 − 𝑋𝑖𝑟𝑒𝑓
)
2

𝑛
1

𝑛
 

(IV-9) 

where, 𝑋𝑖 is the 𝑖𝑡ℎ element in the transformed feature 𝑋, 𝑛 is the number of elements 

in the feature. 𝑋 could be the current vector built by the direct I-V method or the matrix 

built by RP or GADF method. Since the values of the three types of features are 

different, in order to fairly compare their RMSE and the variation trend with fault 

severity, it is the normalized value (normalized in the range [0,1] [99]) that is presented 

in Figure IV-25 -Figure IV-27.  

 

Figure IV-25: RMSE of features between healthy and PS condition 

 

Figure IV-26: RMSE of features between healthy and Rs degradation condition 
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Figure IV-27: RMSE of features between healthy and Rsh degradation condition 

From Figure IV-25 -Figure IV-27, it is observed that the normalized RSME of direct I-

V and RP exhibit a similar evolution trend under the three conditions, while that of 

GADF increases clearly faster than RP and direct I-V, especially under PS and Rsh 

degradation. This means, with the aggravation of fault severity, the difference of GADF 

feature between the current condition and the healthy condition becomes more 

significant than that of direct I-V and RP. This allows the classifiers easier to distinguish 

the current condition from the healthy one, especially under incipient fault conditions. 

In other words, the discriminability of features under different conditions is enforced 

with the feature transformation, especially GADF. 

IV.5.3. Diagnosis results using experimental data 

IV.5.3.1. Description of experimental platform 

To evaluate the trained classifiers under real case, an experimental PV array of 6 sc-Si 

modules (Wiltec 62391-50W) is constructed, as shown in Figure IV-28. The parameters 

of PV modules in the simulation and field tests are identical. A reference cell (RG100) 

measures G, and a Pt100 probe (class A) measures the back-sheet Tm of one module 

continuously. 2 multimeters (Keithley 2440 and 175) record the measured G and Tm. 

The I-V tracer (Chauvin-Arnoux FTV200) records the array I-V curve. 

All the 8 PV array conditions are produced to record the corresponding I-V curves. 

Some fault setups are shown in Figure IV-29. The setting of fault severity is detailed in 

Table IV-7 on covering the range used for training presented in Table IV-3. For PS, the 

module is not fully covered by shelters but it could have same impact as in the 

simulation. In total, 120 I-V curves are recorded for the test with each condition of 15 

curves. Some examples of the measured I-V curves under these conditions are shown 

in Figure IV-30.  
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To quantify the matching degree between simulated and real I-V curves, the 𝐸𝑐𝑢𝑟𝑣𝑒 

(defined in (III-17) and used in Chapter III) is used. The average 𝐸𝑐𝑢𝑟𝑣𝑒 between the 

measured 120 curves and simulated ones is 1.9%, which shows a good match between 

the simulation model and the real array. 

 

Figure IV-28: Field test setup 

 

Figure IV-29: Examples of fault setup  



Chapter IV  PV fault diagnosis using I-V curves and machine learning classifiers 

114 

 

 

Figure IV-30: Examples of corrected real and simulated I-V curves  

Table IV-7: Setting of fault severity 

Condition Varying fault severity 

Healthy, SC, SC2, OC None 

PS, PS2 PS degree controlled by 3 different distance between the 

shelter and panels 

Rs degradation Added resistance in series: 1Ω, 2Ω, 4Ω 

Rsh degradation Added resistance in parallel: 30Ω, 50Ω, 150Ω 

 

IV.5.3.2. Experimental test result 

After the pre-processing (correction, resampling) and feature extraction (using the 4 

feature extraction selected methods: 8paras, direct I-V, RP, or GADF), the processed 

samples are then fed into the best-tuned classifiers (trained by simulated data, presented 

in Table IV-5) for classification. The diagnosis results are presented in Figure IV-31. 

Simulated

Real
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Figure IV-31: Test results using field-measured data 

From the results, similar to the previous observation in simulation, the classifiers using 

the features based on complete I-V curve in direct or transformed feature space (direct 

I-V, RP, and GADF) outperform that using partial information (8 paras). For 8 paras, 

the main misclassification happens between PS/PS2 and Rs/Rsh degradation, which 

corresponds to the result in Figure IV-12. For the 3 types of features based on the 

complete I-V curve, except one I-V curve wrongly classified when using direct I-V, the 

classification performance could reach 100% (when using GADF and RP). This 

experimental test validates the effectiveness of the tuned classifiers using simulated 

data and also once demonstrates the superiority of using features based on complete I-

V curve information for PV FDD. 

 Comparative studies based on the same benchmark 

From one I-V curve, there are other different methods, either proposed in the literature, 

or possible to be adopted, to extract features for PV FDD. Based on the established 

simulated and experimental database adopted in Section IV.5, these methods will also 

be evaluated to perform a comparative study. 

IV.6.1. Methods for comparison 
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On the whole, the common methods are categorized into partial usage and complete 

usage of I-V curve information as illustrated in Figure IV-32. These methods [19]–[21], 

[24], [82], [234], [265] all rely on I-V curves to extract features for PV FDD. Detailed 

presentation of each method is given in the following. 

 

Figure IV-32: Feature extraction methods of I-V curve for comparison study 

IV.6.1.1. Methods based on partial usage of I-V curves 

The methods of partial usage of I-V curve mainly refers to the ones that adopt key I-V 

curve parameters as features for PV FDD [19]–[21], [234], [265]. The ‘8paras’ 

evaluated in Section IV.5 is an example. For comparative study, other common 

combinations of key curve parameters for PV FDD will also be tested as listed in Table 

IV-8.  

Table IV-8: Parameters used in 4 methods based on partial usage of I-V curve 

Technique 

name 

Correction 

of I-V curve 

Parameter used 

G Tm 𝑉𝑂𝐶  𝐼𝑆𝐶  𝑉𝑀𝑃𝑃 𝐼𝑀𝑃𝑃  𝑅𝑠* 𝑅𝑠ℎ* 

8paras No ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  

6parasA Yes   ✓  ✓  ✓  ✓  ✓  ✓  

6parasB No ✓  ✓  ✓  ✓  ✓  ✓    

4paras Yes   ✓  ✓  ✓  ✓    

*𝑅𝑠 and 𝑅𝑠ℎ are calculated from the slope of I-V curve [252] 

For 6parasA and 4paras, the parameters are extracted from the I-V curve after the 

correction to STC, in which the G and Tm information is already involved. Thus, these 

two techniques do not require to include G and Tm in the features. For 8paras and 

6parasA, the estimated 𝑅𝑠 and 𝑅𝑠ℎ of I-V curves are also taken as the features for FDD.  

IV.6.1.2. Methods based on full usage of I-V curves 

direct I-VWith resampling

Without resampling

I-V curve
(Vectors of 

V and I)
Vectors of 
V and I

Single resample One 
Vector of I

MLT 
classifiers

Transformed 
into matrix 
(GADF, RP)

Vectors of 
V and I I-V curve image

VI vectors

(based on a fixed 
vector of V)

Double resample

(based on fixed 
vector of V and I)

Vector of I
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(concatenate V and I vectors into one)

IVGT
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IV.6.1.2.1. Methods with resampling of I-V curves 

• Single resampling 

The proposed PV FDD methodology in this thesis contains the step of resampling. 

Specifically, it is of the single resampling type, i.e., based on a fixed vector of voltage 

to construct a resampled vector of current as presented in Section IV.3.2. 

• Double resampling 

In literature, there is one double resampling of I-V curves for PV FDD proposed in [24]. 

Firstly, 20 data points are resampled from one I-V curve based on a voltage vector with 

the range of [0, 𝑉𝑂𝐶], while other 20 points are resampled along the current axis with a 

current vector [0, 𝐼𝑆𝐶]. Then, the 40 new resampled data points are combined and sorted 

following descending order of the voltage. To consider the impact of G and Tm, the G 

and Tm are repeated to construct a vector with an identical length of the I-V curve, 

respectively. Then, the G vector, Tm vector and I-V curve matrix are combined to finally 

construct the feature of a 40×4 matrix, as illustrated in Figure IV-33. 

 

Figure IV-33: Feature extraction based double resampling of I-V curve [24] 

IV.6.1.2.2. Methods without resampling of I-V curves 

With a full usage of the I-V curve, it is also possible to avoid performing resampling 

on keeping all the raw I-V curve information. The typical techniques include: 

• VI vector 
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As one I-V curve is formed by a vector of V and a vector I, this method thus directly 

concatenates them into one vector as features. However, there is one thing that should 

be paid attention to. That is, the number of points in vectors should always be identical, 

whatever the ones used for training by simulation or the ones measured in the field test. 

In this study, the number of points in V and I vector is set as 300 (larger than that of the 

measured I-V tracer (FTV200)). The concatenated vector is thus of 600 points. For the 

curves not reaching 300 points, the vectors will be padded by 0. An illustration for the 

construction of VI vector feature is shown in Figure IV-34. 

 

Figure IV-34: Illustration of the VI vector feature 

• I-V curve image 

Another resampling-free usage of the complete I-V curve as the feature is to directly 

save the I-V curve figures as images. Then, these images will be processed by deep 

neural networks that are proficient in pattern recognition via images. A similar 

application can be found in [82]. In this comparison study, I-V curves are saved as 

images with voltage range in [0, 70] V and current [0, 10] A. The images are square 

and grayscale. Examples of I-V curve images are given in Figure IV-35. 

 

Figure IV-35: Examples of I-V curve images (each image is 100*100 pixels) 

IV.6.2. Comparison results 

… …
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• Vector of V (300 points)
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The features extracted by the aforementioned methods will be processed by the MLTs 

presented in Section IV.5.1 for PV FDD. For each type of new feature, the MLT 

classifiers will all be re-tuned. Then, the best classifier will be validated by the same 

field-measured dataset. The accuracy and time are now summarized in Table IV-9. 

Table IV-9: Comparison of PV FDD results of different methods 

Usage of  

I-V curve 
Resample Method 

Accuracy Time 

Train  Test 
Field 

test  

Pre-

process 

+train  

Test  
Field 

test* 

Partial 

usage 
- 

8 paras 96.21% 94.83% 91.67% 3.08s 0.05s 0.09s 

6 parasA 95.41% 94.04% 90.83% 3.59s 0.05s 0.05s 

6 parasB 95.08% 93.54% 89.17% 5.86s 0.03s 0.05s 

4 paras 94.59% 93.00% 87.50% 4.16s 0.04s 0.04s 

Complete 

usage 

Yes 

(single) 

direct I-V 100% 99.92% 99.17% 41.96s 0.01s 0.17s 

RP 100% 99.96% 100% 146.03s 0.01s 0.29s 

GADF 100% 100% 100% 80.63s 0.01s 0.21s 

Yes 

(double) 
IVGT 99.75% 98.83% 97.5% 38.62s 0.01s 2.13s 

No 

VI vector 100% 99.96% 15.00% 69.21s 0.01s 0.15s 

I-V image 100% 99.58% 95.00% 1214.84s 13.9s 29.4s 

* Time includes pre-processing, extraction and analysis 

The methods based on partial usage of the I-V curve present similar performance and 

require less time in the pre-processing and training steps than the others. Among these 

partial usage methods, the 8 paras, free of I-V curve correction and containing more 

curve information than 6 parasB and 4 paras, exhibits higher accuracy in training, test, 

and field test. Nevertheless, it should be noted that the calculation of 𝑅𝑠  and 𝑅𝑠ℎ 

requires the measurement of a full I-V curve, unlike 𝑉𝑂𝐶 and 𝐼𝑆𝐶 , which can be more 

easily obtained by setting the array at OC or SC condition, respectively. Therefore, the 

choose of methods based on the partial usage of I-V curve will be a trade-off between 

the FDD performance and complexity of data acquisition. 

Concerning the methods based on complete usage of the I-V curve, the proposed 3 

methods in this thesis (i.e., direct I-V, RP and GADF) show better classification 

accuracy than the other methods. Additionally, the decision-making time in the field 

test is also rapid, all within 0.3s. The IVGT method is also based on resampling but 
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performs worse than the proposed 3 methods. This is supposedly due to a lack of 

efficient integration of G and Tm information into the features. As seen from Figure 

IV-33, the resampled V and I vectors in the IVGT matrix feature are from the I-V curves 

without correction, the shape of which greatly depends on G and Tm. The G and Tm 

information are integrated into the features by adding two vectors with repeated values 

of G and Tm, respectively, which inevitably results in information duplication.  

For the methods free of resampling, VI vector also achieves quite good performance in 

training and simulation tests but has an inferior performance in the field test with the 

classification accuracy of 15%. This is due to the different spacing of points in the I-V 

curve used in training and field test, for example, under the healthy condition shown in 

Figure IV-36. As no resampling is performed for VI vector, this different spacing of 

points leads to the fact that the classifiers trained by simulated I-V curves do not fit the 

real I-V curves recorded by the I-V tracer. Thus, poor classification result is led to as 

observed from the field test accuracy in Table IV-9. In fact, the spacing of points of real 

I-V curves could vary from case to case, depending on the environmental condition, I-

V tracer type, I-V characterization technology, etc. Therefore, to ensure the adaptability 

of one trained classifier, a pre-processing step is needed to bring about an identical 

spacing of points. That is why the resampling is performed in our PV FDD methodology. 

As for the I-V image method, its performance is similar with the IVGT method, but still 

inferior to the proposed methods. Besides, due to the complexity of dealing with image 

data, the training and field test time are extremely longer than the other methods. This 

renders this method less competitive for the application in rapid field PV FDD tasks. 

 

Figure IV-36: Examples of simulated and measured I-V curves of healthy array  

To summarize, compared with other I-V curve-based feature extraction methods, the 

proposed 3 methods (direct I-V, RP and GADF), on the one hand, achieve the best 

classification performance in both simulation and field test; on the other hand, they do 

not introduce large time complexity in the pre-processing and training steps, and 

guarantee a rapid decision making in the field test. Therefore, these feature extraction 

(a) (b)
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methods together with the whole FDD methodology, are promising to be applied for 

PV FDD. 

 Conclusion 

A PV FDD methodology based on complete I-V curve information and MLT classifiers 

has been presented in this section based on the four-step FDD scheme, i.e., modeling 

(configuration of I-V curve dataset), pre-processing, feature extraction, and feature 

analysis. Besides, a comparative study is also performed. 

• Configuration of dataset: I-V curves of a PV array under healthy and 7 fault 

conditions are simulated to construct training and test datasets. In addition, an 

experimental test is also conducted to collect the real I-V curves for the field test. 

• Pre-processing of I-V curves: two operations are performed, i.e., correction and 

resampling. The proposed NewP2 correction method is adopted to correct I-V 

curves to STC. Then, the I-V curve is resampled based on a fixed voltage vector to 

generate a current vector. The number of points is selected as 50 on considering 

both the goodness of resampling and the complexity of the feature. 

• Feature extraction: 3 methods, i.e., direct I-V, RP and GADF, are proposed to 

embed complete I-V curve information into features. Then, PCA is applied to 

reduce the dimensionality of extracted features. 

• Feature analysis for FDD: six common MLT classifiers are all tuned to process 

the extracted features. The classification results using features based on complete 

I-V curve outperform that using partial curve information. The best test accuracy 

(using simulated test data) could reach 100% using GADF as features and ANN as 

the classifier. The tuned model also achieves 100% classification accuracy via the 

field test. Besides, GADF exhibits higher robustness to the additional disturbance 

in the test data than the other features. It is discussed that performing PCA could 

reduce the total training time and increase the prediction speed. It is also 

demonstrated that the transformation of features into 2D features, especially into 

GADF, could augment the discriminability of features, which helps to ameliorate 

the performance and increase the reliability of classifiers. 

• Comparative study: the proposed 3 feature extraction methods have been compared 

with other methods based on partial and complete I-V curve information. The 

proposed ones achieve the best classification performance in both simulation and 

field tests on also guaranteeing rapid decision making. 



Chapter IV  PV fault diagnosis using I-V curves and machine learning classifiers 

122 

 

This proposed FDD methodology (including the correction, resampling, feature 

transformation with GADF) is promising to be applied and further explored for future 

fault detection and diagnosis of PV modules. 
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Conclusion and perspectives 

Conclusion 

Based on a comprehensive state-of-the-art of PV faults and FDD techniques, in this 

work we have developed a new FDD strategy for PV systems using full I-V curves. 

This strategy proposes an improved method for correcting the I-V curves of faulty PV 

panels and uses full I-V curves as features for diagnosis. Besides, the feature 

transformation is also studied to improve FDD performance. 

In Chapter I, a state-of-the-art for PV array faults is presented. The fault causes, impact 

(on power loss and safety risk), frequency of occurrence, and the causal relationships 

between mismatch and abnormal degradations have been identified. The main PV fault 

classification tools reported in the literature have been summarized. We have also 

proposed a method for classifying the faults according to their level, i.e., at the cell, 

module, or array level. Through this approach, the usual faults have been presented. 

Finally, with joint consideration of fault impact, frequency of occurrence, and 

reproducibility, partial shading, module short-circuit, string open-circuit, and abnormal 

degradations have been selected as study cases. 

In Chapter II, the common FDD techniques for PV faults are reviewed through two 

categories: visual inspection and automatic analysis. The automatic FDD methods are 

described in a four-step scheme: modeling, pre-processing, feature extraction, and 

feature analysis. Our FDD strategy is also determined to follow this four-step scheme. 

The I-V curve, as containing rich information for assessing the health of the PV 

modules and arrays, is chosen as the data for analysis. The Machine Learning 

Techniques, decisive in handling big data and multi-condition classification, are chosen 

to analyze the fault features. Specific pre-processing and extraction methods are 

selected to embed more efficiently complete I-V curve information and enhance the 

discriminability of features. 

In Chapter III, the three procedures (P1, P2, P3) proposed in IEC 60891 have been 

evaluated to correct simulated I-V curves for defective PV arrays. All three procedures 

introduce significant errors to the estimation of 𝑃𝑚 and the fault parameters extracted 

from the corrected curves due to irradiance G, temperature Tm, and the severity of the 

defects. Moreover, worse still, most significant errors result in underestimating the 

parameters, up to 9.1% for 𝑃𝑚 using the method denoted P2. Therefore, a P2-based 

improved method (NewP2) has been proposed and has exhibited better average 

performance than methods P1 and P2 with the decrease of the average curve error from 
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3.45 % (using P2), 4.5 % (using P1) to 2.37% under constant fault severity. NewP2 also 

shows an overall better performance with varying fault severity than P1 and P2 on the 

curve error and most of the key curve and fault parameters. As for P3, it generally has 

higher performance but is less suitable for application to rapid field diagnosis due to 

the requirement of multiple reference curves.  

In Chapter IV, the proposed PV FDD methodology using full I-V curve information 

and MLT classifiers is detailed. This methodology is based on the four-step FDD 

scheme. Correction (using NewP2) and resampling operations are performed to pre-

process the original curves. Direct I-V, RP, and GADF, are proposed to transform the 

complete I-V curve into relevant features. PCA is also applied to reduce the 

dimensionality of the extracted features. For the analysis of fault features, six common 

MLT classifiers are tuned and evaluated. The classification results have shown that 

using the features based on the complete I-V curve outperform those using only 

partially the information from the I-V curve. The best accuracy could reach 100% using 

GADF to extract the features and ANN as the classifier for simulation and field data. 

Besides, GADF exhibits higher robustness to the additional disturbance than the other 

transformation techniques. It has been noted from the results that performing PCA 

could increase the speed of the prediction and reduce the total training time. It has also 

been shown that the transformation of features into 2D features, especially with GADF, 

could increase the discriminability of the features. Thus, it helps to ameliorate the 

performance and the reliability of the classifiers. Finally, the proposed methodology 

has been compared with other methods from the literature. Our proposal achieves the 

best classification performance for both simulation and field data with rapid decision 

making. 

This proposed FDD strategy (including the correction, resampling, and feature 

transformation into GADF) is promising to be applied and further explored. This study 

may also provide valuable experience for future researchers on how to make full use of 

I-V curves for PV fault diagnosis with higher performance. 

Perspectives 

▪ Concerning the correction of I-V curves of defective PV panels: 

For the single curve correction methods (P1, P2, and NewP2), the determination of the 

correction coefficients in the field remains a challenging task. It is necessary to develop 

a strategy for the determination of these coefficients on the basis of field data, which 

differs from the procedure proposed by the IEC 60891 standard. The latter requires 

controlled environmental conditions, which can only be achieved in well-equipped 

laboratories. Solutions to reduce dependence on correction coefficients, such as [266], 

[267], should also be further developed and validated with I-V curves of faulty panels. 
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For the correction method based on multiple curves, two improvements are expected: 

on the one hand, efforts are needed to improve the correction performance in the case 

of partial shading; on the other hand, the development of a methodology for the 

automatic and efficient selection of reference curves would facilitate the deployment of 

the technique in the field.   

Finally, the proposed new correction procedure (NewP2) and the existing procedures 

still need to be evaluated with more types of PV faults and with field-measured data. 

▪ Concerning the PV FDD strategy based on complete I-V curves: 

In terms of modelling, the I-V curve database should be enriched with multiple defect 

cases and defects of varying severity. It would also be interesting to investigate a 

combination of physics-based and data-driven models.   

In the pre-processing step, the current FDD strategy relies on the correction and 

resampling of I-V curves. These two operations are relatively complex and may 

introduce correction errors or information loss. Thus, these operations require further 

improvement, and alternative methods are expected to be developed with the aim to 

efficiently embed the environmental information into features and make better use of I-

V curves. 

Feature transformation techniques (RP and GADF) square the initial dimension of the 

workspace. This can become a heavy burden for data processing. Especially if the 

number of modules to be monitored increases as well as the number of I-V curves. 

Although dimension reduction techniques could be adopted, they increase the 

complexity of the FDD strategy. Thus, feature transformation techniques should be 

selected as a trade-off between limited feature-space dimension, and an enhanced 

capability of discriminating fault features. The combination with analytical models can 

help to shorten the duration of the calculations and allow faster decision making. 

For feature analysis, a deeper analysis is required to better understand the discrepancy 

of classification performance when using different combinations of features as inputs 

of the machine learning-based classifiers. Special attention should be paid to the 

configuration of the hyperparameters. If the amount of available data or the feature 

dimension increases, the use of deep learning classifiers should be investigated. 

Finally, the FDD strategy should combine measurements on the DC side with those on 

the AC side to monitor not only PV modules but also power converters, sensors, and 

cables.
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Résumé en francais 

L'énergie solaire photovoltaïque (PV), en tant qu'énergie renouvelable présente divers 

avantages [1]. En exploitation elle est non polluante et n'émet aucun gaz à effet de serre 

(comme le dioxyde de carbone, le méthane et l'oxyde nitreux) [2]. De plus, cette énergie 

propre est disponible toute l'année. Même par temps nuageux, la production n’est pas 

interrompue [3]. Ces dernières années, la capacité cumulée installée à l’échelle 

mondiale a connu une croissance rapide [4], qui a atteint en 2020 plus de 758,9 GW [5]. 

Pour l'année 2020, la pandémie de COVID-19 a entraîné un ralentissement économique 

et causé des dommages sociaux. Cependant, cette pandémie n'a pas eu d'impact 

significatif sur le développement du marché [5]. Selon le BP World Energy & Ember, 

la part du PV dans la production mondiale d'électricité a augmenté de 20,2% en 2020, 

s’établissant à 844,4 TWh [6]. Avec cette augmentation, la part du solaire PV dans la 

production mondiale d'électricité a atteint environ 3,3%. Quant au périmètre futur, selon 

le scénario « Net Zero Emissions by 2050 » du WEO 2020, la capacité PV installée 

dans le monde passerait à 3929 GW d'ici 2030 [7], et l'électricité solaire atteindra 

environ 15,9 % de la production énergétique mondiale [8]. 

Outre les objectifs environnementaux, la prospérité de l'industrie PV est également due 

à la baisse progressive des prix des modules photovoltaïques et aux progrès de 

l'ingénierie et de la construction des installations. En fait, la compétitivité des projets 

PV mesurée par le coût nivelé de l'électricité s'est également continuellement améliorée 

ces dernières années [9]. L'AIE a annoncé que « le PV est la source d'électricité la moins 

chère presque partout » [10]. 

Avec le développement rapide de l'industrie PV et l'augmentation de la capacité 

installée, des stratégies d'exploitation et de maintenance efficaces sont de plus en plus 

nécessaires [11]. En fait, les conditions environnementales, la fabrication, le transport, 

l'installation ou de mauvaises conditions de fonctionnement peuvent provoquer des 

pannes de cellules ou de modules PV [12]. Dans le cas d'un générateur PV ou d'une 

centrale électrique, qui est composé de plusieurs modules connectés électriquement, 

tout défaut dans une cellule ou un module affecte les performances de l'ensemble du 

générateur ou du système. Les défauts PV pourraient entraîner un grave danger pour la 

sécurité , par exemple, risque d'incendie, choc électrique, danger physique [13] ou perte 

de puissance [14]. Par conséquent, pour assurer la fiabilité, la disponibilité et la sécurité 

des installations photovoltaïques, leur état de santé doit être surveillé régulièrement 

pour éviter les pannes et contribuer à une politique de maintenance conditionnelle 

efficace. 
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La pierre angulaire d'une stratégie de détection et de diagnostic des défauts PV (FDD) 

sont les données PV, dont les types électriques sont les plus courants car ils sont 

capables de refléter l'état de fonctionnement réel d'un module ou d'un générateur PV 

[15]. Parmi les données électriques, la caractéristique courant-tension (courbe I-V) 

contient le plus d'information sur l'état de santé d'un module ou d'un générateur PV, ce 

qui devrait permettre un diagnostic plus précis [16]. Les traceurs I-V courants 

permettent déjà la mesure pour un seul module ou un string à petite échelle. Ces 

dernières années, les solutions matérielles (intégrées au niveau de l'onduleur) sont 

devenues disponibles dans le commerce pour mesurer périodiquement les courbes I-V 

au niveau de la centrale [17], [18]. Par conséquent, il est prévu dans un proche avenir 

que les courbes I-V seront mesurables dans presque toutes les installations PV. Dans 

cette perspective, cette thèse vise à proposer une stratégie basée sur les informations 

contenues dans la courbe I-V pour le diagnostic des défauts courants dans les panneaux 

PV. Pour être précis, cette thèse se compose des quatre principaux chapitres suivants: 

Dans le Chapitre I, un état de l'art des défauts des générateurs PV est présenté. Les 

origines des défauts, leur impact (sur la puissance et le risque pour la sécurité), leur 

fréquence d'occurrence et les relations causales entre l'inadéquation et les dégradations 

anormales ont été identifiés. Les principaux outils de classification des défauts PV 

rapportés dans la littérature ont été résumés. Nous avons également proposé une 

méthode pour classer les défauts en fonction de leur emplacement, c'est-à-dire au 

niveau de la cellule, du module ou du champ. Enfin, en tenant compte conjointement 

de l'impact des défauts, de la fréquence d'occurrence et de la reproductibilité, l'ombrage 

partiel (PS), le court-circuit d’un module (SC), le circuit ouvert d’un string (OC) et les 

dégradations anormales ont été retenus comme cas d’étude.  

Dans le Chapitre II, les techniques courantes de détection et de diagnostic des défauts 

PV sont analysée à travers deux catégories : l’inspection visuelle et l’analyse 

automatique. Les méthodes automatiques sont décrites au travers d’un schéma en quatre 

étapes : modélisation, pré-traitement, extraction de caractéristiques et analyse de 

caractéristiques. Notre stratégie est également conçue sur la base de ce schéma en 

quatre étapes. La courbe I-V contient des informations riches pour évaluer la santé des 

modules et des panneaux PV. Elle est donc ici retenue pour modéliser le système étudié. 

Suite à l’analyse bibliographique, nous avons noté que les courbes I-V ne sont que très 

partiellement exploitées pour le diagnostic. De plus, nous avons noté qu’il y avait très 

peu d’études sur les techniques de transformation des caractéristiques pour améliorer 

la séparabilité des défauts dans différentes conditions défectueuses. Par conséquent, 

nous proposons dans ces travaux de développer un pré-traitement adapté et des 

méthodes d'extraction pour exploiter plus efficacement les informations issues de la 

courbe I-V complète  et améliorer la séparabilité des signatures de défauts. En ce qui 

concerne l’analyse des signatures, les techniques d'apprentissage automatique (MLT), 
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décisives dans le traitement du big data et de la classification multi-conditions, sont 

retenues. 

Le chapitre III se concentre sur les méthodes de correction des courbes I-V des 

panneaux PV défectueux, ce qui est une étape essentielle dans le prétraitement. En effet, 

les courbes I-V mesurées sur le terrain sont enregistrées dans des conditions 

environnementales variables. Pour éviter de fausses interprétations, il faut ramener les 

courbes I-V mesurées dans des conditions différentes à la même condition 

environnementale, généralement la condition STC. Cependant, à notre connaissance, 

aucune méthode n'est proposée pour la correction des courbes I-V des panneaux PV 

défectueux. Dans la plupart des travaux, les chercheurs adoptent les procédures de 

correction originales ou simplifiées de la norme IEC 60891 [25]. Or ces procédures sont 

toutes initialement conçues pour la correction de courbes mesurées à partir de panneaux 

PV sains. L'adéquation de ces procédures pour la correction des courbes I-V des 

panneaux défectueux est rarement étudiée, et encore moins si les caractéristiques du 

défaut sont faussées par la correction et conduisent ainsi à une erreur de diagnostic [26]. 

Ainsi, le chapitre III évalue les trois procédures (P1, P2, P3) proposées dans la norme 

IEC 60891 pour la correction de courbes I-V de panneaux PV défectueux. Puisque notre 

objectif est d'évaluer l'erreur causée par les procédures de correction, il est essentiel 

d'éviter les effets d'autres facteurs, comme les incertitudes de mesure. Par conséquent, 

les courbes à corriger sont générées en simulation pour s'assurer que tous les paramètres 

utilisés dans la formule de correction n'ont pas de biais. Un système PV, basé sur le 

modèle à diode unique, est modélisé avec Matlab Simulink® pour générer les courbes 

I-V à corriger. Plusieurs conditions sont simulées; système sain, ombrage partiel (PS), 

circuit ouvert (OC) dans un string, module en court-circuit (SC) et dégradation des 

résistances Rs et Rsh. Les performances de correction sont évaluées à partir de la 

correction sur l'ensemble de la courbe et des paramètres clés de la courbe. En outre, 

l'impact de la gravité des défauts sur les performances de correction est également 

analysé. Les résultats montrent que les trois procédures introduisent des erreurs 

significatives dues à l'éclairement G, à la température Tm et à la gravité des défauts. 

Nous avons montré qu'en utilisant P1, une distorsion est introduite dans la forme de la 

courbe avec une erreur relative jusqu'à 13,8%. On observe également des erreurs 

d'estimation de la puissance maximale Pm et des paramètres de défaut extraits des 

courbes corrigées. Les erreurs les plus significatives se traduisent par une sous-

estimation des paramètres, jusqu'à 9,1% pour la Pm en utilisant P2. Ces erreurs peuvent 

affecter la détection des défauts naissants si ces paramètres sont utilisés comme 

signatures. Quant à P3, elle a généralement des performances plus élevées, mais elle 

induit une distorsion de correction importante pour les courbes dans le cas de l’ombrage 

partiel, et elle est moins adaptée à une application au diagnostic de terrain rapide du fait 

qu’elle nécessite l’usage de plusieurs courbes de référence. 
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Par conséquent, une nouvelle méthode basée sur la procédure P2 (NewP2) a été 

proposée. Elle consiste à modifier un coefficient dans l'équation de la correction de 

tension de P2 pour réduire son erreur de correction de tension à proximité de la tension 

de circuit ouvert VOC. En même temps, il conserve l'équation d'origine pour la correction 

actuelle de P2. NewP2 permet d’obtenir en moyenne des performances plus robustes 

que P1 et P2 avec une diminution de l'erreur de 3,45 % (en utilisant P2), 4,5 % (en 

utilisant P1) à 2,37 % pour un défaut de sévérité constante. Pour un défaut de gravité 

variable, NewP2 affiche également une meilleure performance globale que P1 et P2 sur 

l'erreur de courbe et la plupart des paramètres clés de la courbe. 

Dans le Chapitre IV, une méthodologie de détection et de diagnostic qui s’appuie sur 

l'utilisation complète des courbes I-V et des classifieurs basés sur des techniques 

d’apprentissage automatique est proposée. Elle est évaluée sur une installation 

constituée de six modules sc-Si Wiltec 62391-50W organisés en deux strings  (présenté 

dans Figure  1). Le même système est simulé sous Matlab Simulink®. Au total, huit 

cas sont étudiés: le cas sain, deux types dePS, OC dans un string, deux types de SC, et 

la dégradation des résistances Rs et Rsh. Deux ensembles de données sont générés, un 

pour l’apprentissage et un autre pour le test. L'ensemble des données d'apprentissage 

contient 12000 courbes I-V (1500 courbes pour chaque cas), dont 2400 sont destinés 

au test. Le bruit environnemental et l'erreur aléatoire de mesure sont également ajoutés 

aux échantillons simulés pour générer des courbes I-V plus proches de celles mesurées. 

 

Figure  1: Modèle de simulation pour l’installation PV 

La phase de prétraitement consiste à corriger les courbes par la procédure NewP2 puis 

à les ré-échantillonner. Le nombre de points de ré-échantillonnage est fixé à 50 pour 

garantir à la fois de bonnes performances et limiter la charge de calcul. Pour l'extraction 

des caractéristiques, trois méthodes dites,  direct I-V, Recurrence Plot (RP) [261] et 
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Gramian Angular Difference Field (GADF) [262] sont utilisées pour transformer la 

courbe I-V complete (examples présentés dans Figure  2). Pour réduire la dimension 

des caractéristiques extraites et améliorer l'efficacité du processus d'analyse, l'Analyse 

en Composantes Principales (ACP) [124] est appliquée. Le nombre de composantes 

principales est déterminé en conservant au moins 98 % de la variance cumulée des 

données originales. 

 

Figure  2 : Examples de caractéristiques transformés par GADF et RP 

 ((a) Cas sain, (b) PS, (c) PS2, (d) Rs degradation, (e) Rsh degradation (la valeur de chaque 

composant sur la matrice de caractéristique est marquée par colormap)) 

Pour l'analyse des caractéristiques des défauts, six classificateurs MLT courants sont 

appliqués, y compris le réseau neuronal artificiel (ANN), la machine à vecteurs de 

support (SVM), l'arbre de décision (DT), la forêt aléatoire (RF), les voisins les plus 

proches (kNN) et Classificateur naïf bayésien (NBC). Une attention particulière est 

accordée à la recherche des meilleures performances possibles lors de l'utilisation de 

différents types de caractéristiques d'entrée en réglant bien les six classificateurs MLT. 

Les résultats de la classification ont montré que l'utilisation des caractéristiques basées 

sur la courbe I-V complète surpasse celles qui n'utilisent que partiellement les 

informations  de la courbe I-V(cette méthode notée comme ‘8paras’) avec les résusltats 

présentées dans Figure  3. La meilleure précision pourrait atteindre 100 % en utilisant 

GADF pour extraire les caractéristiques et ANN comme classificateur pour la 

simulation et les données de terrain (la plateforme d'expérimentation présenté dans 

Figure  4). De plus, GADF présente une plus grande robustesse à la perturbation 

supplémentaire que les autres techniques de transformation (présenté dans Figure  5). 
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Figure  3: Précision de classification utilisant les courbes I-V simulées pour tous les 

classificateurs et les caractéristiques 

 

Figure  4: Configuration des tests sur le terrain 

 

Figure  5: Meilleure précision de classification utilisant les données de test avec un niveau 

variable de perturbation supplémentaire  

((a): Erreur aléatoire variable de V et I ; (b) : Bruit environnemental variable de V et I. Le 

niveau de perturbation adopté dans les données d'apprentissage est marqué en « losange ») 

Il a été aussi noté à partir des résultats que l'exécution de l'ACP pouvait augmenter la 

vitesse de la prédiction et ainsi réduire la durée de l’apprentissage. Il a également été 

(a) (b)
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montré que la transformation en 2D, notamment avec GADF, pouvait augmenter la 

discriminabilité des caractéristiques. Par conséquent, cela contribue à améliorer les 

performances et la fiabilité des classifieurs. Enfin, la méthodologie proposée a été 

comparée à d'autres méthodes de la littérature. Notre proposition obtient les meilleures 

performances de classification pour les données de simulation et expérimentales avec 

une prise de décision rapide. 

L'apport de cette thèse réside dans les points suivants : 

• Un schéma de détection et de diagnostic de défaut en quatre étapes est d'abord 

appliqué au domaine du PV. Cette décomposition a permis une meilleure 

analyse et compréhension des différentes approches présentées dans la 

littérature en termes de modélisation, de prétraitement, d'extraction et d'analyse 

de caractéristiques ; 

• Une procédure de correction améliorée des courbes I-V de modules en défaut a 

été proposée et testée. Elle a conduit à de meilleures performances globales que 

les procédures de correction traditionnelles proposées dans la norme IEC 

60891 et basées sur une seule courbe; 

• L’exploitation de la courbe I-V complète conduit à de meilleures performances 

de classification que l'utilisation partielle des courbes I-V ; 

• Deux techniques de transformation de caractéristiques sont appliquées aux 

courbes I-V. Elles ont permis d'améliorer la discriminabilité des caractéristiques, 

ce qui permet aux classifieurs MLT d'avoir une plus grande robustesse aux 

perturbations et de meilleures performances de classification aussi bien avec les 

données de simulation que les mesures. 

Quant aux perspectives, elles peuvent être envisagées dans les deux directions 

suivantes : 

1) Concernant la correction des courbes I-V des panneaux PV défectueux : 

• La détermination des coefficients de correction sur le terrain reste une tâche 

difficile. Il est nécessaire de développer une stratégie efficace pour la 

détermination de ces coefficients à partir des données de terrain. 

• Des solutions pour réduire la dépendance aux coefficients de correction 

devraient également être développées et validées avec des courbes I-V de 

panneaux défectueux. 
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• Pour la procédure P3, des efforts sont nécessaires pour améliorer les 

performances de correction en cas d'ombrage partiel. Le développement d'une 

méthodologie de sélection automatique et efficace des courbes de référence 

faciliterait son déploiement sur le terrain. 

• La nouvelle procédure de correction proposée (NewP2) et les procédures 

existantes doivent encore être évaluées avec davantage de types de défauts et 

avec des données mesurées sur le terrain. 

2) Concernant la stratégie PV FDD basée sur des courbes I-V complètes : 

• En termes de modélisation, la base de données des courbes I-V devrait être 

enrichie de plusieurs cas de défauts à sévérité variable. Il serait également 

intéressant d'étudier une approche hybride qui combinerait les modèles 

analytiques et les modèles pilotés par les données. 

• Dans l'étape de prétraitement, la stratégie FDD actuelle repose sur la correction 

et le ré-échantillonnage des courbes I-V. Ces deux opérations sont relativement 

complexes et peuvent introduire des erreurs de correction ou des pertes 

d'informations. Ainsi, ces opérations doivent encore être améliorées et des 

méthodes alternatives devraient être développées dans le but d'intégrer 

efficacement les informations environnementales dans les caractéristiques et de 

mieux utiliser les courbes I-V. 

• Les techniques de transformation des caractéristiques (RP et GADF) conduisent 

à une augmentation de la dimension de l'espace de travail. Cela peut devenir 

une lourde charge pour le traitement des données. Ainsi, les techniques de 

transformation de caractéristiques à retenir doivent être le résultat d’un 

compromis entre une dimension limitée de l'espace et une capacité améliorée de 

discrimination des caractéristiques. La combinaison avec des modèles 

analytiques pourrait raccourcir la durée des calculs et permettre une prise de 

décision plus rapide. 

• Pour l'analyse des caractéristiques, une étude plus approfondie est nécessaire 

pour mieux comprendre l'écart des performances de classification lors de 

l'utilisation de différentes combinaisons de caractéristiques comme entrées des 

classifieurs. Une attention particulière doit être portée à la configuration des 

hyperparamètres. 

• La stratégie FDD pourrait combiner les mesures du côté courant continu avec 

celles du côté courant alternatif pour surveiller non seulement les modules PV 

mais aussi les convertisseurs de puissance, les capteurs et les câbles. 
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La stratégie proposée (y compris la correction, le ré-échantillonnage, la transformation 

des caractéristiques par GADF) s’est avérée prometteuse et mériterait d’être explorée 

plus avant. Ces travaux sont une contribution au diagnostic des modules PV en 

s’appuyant sur l’exploitation des courbes I-V complètes. 
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Résumé : La détection et le diagnostic des défauts sont des 

éléments essentiels pour la maintenance conditionnelle 

des panneaux photovoltaïques (PV). Cette thèse propose 

une nouvelle stratégie en quatre étapes (modélisation, 

prétraitement, extraction et analyse des signatures)  basée 

sur l'utilisation des caractéristiques courant-tension 

(courbes I-V) complètes. La modélisation s’appuie sur une 

approche pilotée par les données simulées ou mesurées. 

Pour le prétraitement, afin d’atténuer les effets des 

différentes conditions de mesure, nous avons proposé une 

procédure de correction améliorée des courbes I-V qui est 

mieux adaptée aux panneaux défectueux que celles de la 

norme, ainsi qu’un ré-échantillonnage du vecteur courant 

pour toujours disposer du même nombre de points. Pour 

l'extraction des caractéristiques après ce prétraitement, 

trois méthodes sont développées : l'utilisation directe de la 

courbe I-V ou sa transformation par la technique Gramian 

Angular Difference Field (GADF) ou celle de Recurrence 

Plot (RP). L'analyse en composantes principales (ACP) est 

également appliquée pour réduire la dimension de la 

matrice des caractéristiques. 

Pour l'analyse des caractéristiques, six techniques 

courantes d'apprentissage automatique sont évaluées: le 

réseau de neurones artificiels (ANN), la machine à 

vecteurs de support (SVM), l'arbre de décision (DT), la 

forêt aléatoire (RF), les k-plus proches voisins (kNN) , 

et le classifieur naïf bayésien (NBC). Pour évaluer les 

différentes combinaisons entre les signatures et les 

classifieurs, les critères de performances retenues sont la 

précision de la classification et la complexité du calcul. 

Huit conditions (une saine et sept défectueuses) des 

panneaux PV sont étudiées à partir de courbes I-V 

simulées et mesurées pour constituer la base de données. 

Les résultats montrent que l'utilisation des 

caractéristiques issues de la transformation GADF des 

courbes I(V) comme entrées du classifieur ANN permet 

d’obtenir une précision de classification de 100 %, aussi 

bien pour les données simulées que celles mesurées sur 

um banc de test développé au laboratoire. La robustesse 

aux perturbations, l'impact de l'ACP et de la 

transformation des caractéristiques sont également 

traités. La stratégie proposée est également comparée à 

celles qui n’utilisent que partiellement les informations 

de la courbe I-V et les techniques dans la litérature. 
 

 

Title : Health monitoring of photovoltaic modules using electrical measurements 

Keywords : PV faults, I-V curve, fault detection and diagnosis, machine learning  

Fault detection and diagnosis are essential elements for the 

condition monitoring of photovoltaic (PV) panels. This 

thesis proposes a new four-step strategy (modelling, pre-

processing, extraction, and analysis of signatures) using 

full current-voltage characteristics (I-V curves). The 

modelling is based on an approach driven by simulated or 

measured data. For the pre-processing, to mitigate the 

effects of the different measurement conditions, we 

proposed an improved I-V curve correction procedure that 

is better adapted to defective panels than the standard ones. 

Besides, the current vector is resampled to have the same 

number of points. For feature extraction after this pre-

processing, three methods are developed: direct use of the 

I-V feature or its transformation by the Gramian Angular 

Difference Field (GADF) or Recurrence Plot (RP) 

technique. Principal component analysis (PCA) is also 

applied to reduce the dimension of the feature matrix. 

For feature analysis, six common machine learning 

techniques are evaluated: artificial neural network 

(ANN), support vector machine (SVM), decision tree 

(DT), random forest (RF), k-nearest neighbour (kNN), 

and Bayesian naive classifier (NBC). To evaluate the 

different combinations of features and classifiers, the 

performance criteria used are classification accuracy 

and computational complexity. Eight conditions (one 

healthy and seven defective) of the PV panels are 

studied using simulated and measured I-V curves to 

build the database. The results show that using the 

features from the GADF transformation of the I-V 

curves as inputs to the ANN classifier achieves 100% 

classification accuracy for both simulated and measured 

data on a test bench developed in the laboratory. The 

robustness to perturbations, the impact of PCA and the 

feature transformation are also addressed. The proposed 

strategy is also compared to those that only partially use 

the I-V curve information and techniques in literature. 
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