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General introduction

Background and motivation

Solar energy, as typical renewable energy, presents various merits [1]. It is pollution-
free and causes no greenhouse gases (like carbon dioxide, methane, and nitrous oxide)
to be emitted after installation [2]. Besides, this clean power is available all the year,
even under cloudy days [3]. In recent years, the solar photovoltaic (PV) installed
capacity has experienced rapid growth [4]. The global total cumulative installed
capacity in 2020 has reached more than 758.9 GW [5]. China leads the cumulative
capacity share with 253.4 GW, followed by the European Union (151.2 GW) and the
USA (93.2 GW). Among the countries in the European Union, Germany is at the top
with 53.9 GW, then followed by Italy (21.7 GW), Spain (12.7 GW), France (10.9 GW),
and the Netherlands (10.2 GW).

In fact, for the year 2020, the COVID-19 pandemic has resulted in a severe economic
downturn and social damage. However, this pandemic did not significantly impact the
PV market development [5]. According to BP World Energy & Ember, global power
generation from PV increased by 20.2% in 2020, to 844.4 TWh [6]. With this increase,
the solar PV share in global electricity generation has reached about 3.3%. Thus, the
resiliency of the PV market is remarkable and shows the potential to limit the impact
brought by the pandemic. As for the future scope, according to the “Net Zero Emissions
by 2050” scenario of the WEO 2020, the worldwide installed PV capacity would
increase to 3929 GW by 2030 [7]. According to this scenario, solar electricity will reach
about 5420 TWh or 15.9% of the global energy production [8].

In addition to the environmental goals, the prosperity of the PV industry is also due to
the gradual falling prices of PV modules and the progress in plant engineering and
construction. Actually, the competitiveness of PV projects measured by the Levelized
Cost of Electricity (LCOE) has also continuously decreased in recent years [9]. In this
context, the energy generation of a PV power plant plays a significant role in the market
assessment of PV projects. In the fact sheets on PV, IEA has announced that “PV is the
cheapest electricity source almost everywhere” [10].

With the rapid development of the PV industry and the increase in the installed capacity,
efficient operation and maintenance strategies are increasingly required [8]. In fact,
manufacturing, transportation, installation, and operating conditions can cause PV cell
or module failures [11], [12]. In the case of a PV array or power plant, which is
composed of several electrically connected modules, any fault in one cell or module
affects the performance of the whole array or system. The PV faults could cause a
severe safety hazard, e.g., fire risk, electrical shock, physical danger [13], or power loss
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[14]. Therefore, to assure the reliability, availability and safety of the PV installations,
their health status should be monitored regularly to prevent from failures and contribute
to an efficient condition-based maintenance policy. To this end, efficient PV fault
detection and diagnosis (FDD) strategies are required.

The cornerstone of a PV FDD strategy is the PV data, of which the electrical types are
the most common ones because they are able to reflect the actual operating condition
of a PV module or array [15]. Among the PV electrical data, the current-voltage
characteristic (I-V curve) contains the most information about the health condition of a
PV module or array, which should allow for a more accurate diagnosis [16]. As for the
availability of I-V curves, common I-V tracers already support the measurement for a
single module or small-scale string or array. In recent years, the hardware solutions
(integrated at inverter level) have become commercially available to measure I-V
curves periodically at the power plant level [17], [18]. Therefore, it is expected in the
near future that I-V curve data will be measurable from almost all the common PV
facilities. With this in mind, this thesis aims to propose a strategy based on I-V curve
data for accurate and robust diagnosis of common faults in PV arrays.

Problem statement

= | ack of effective use of the full I-V curve information for the PV FDD

In the literature, different approaches are proposed to manipulate the I-V curve for PV
diagnosis, like key parameters extraction [19]-[21], derivative calculation [22], [23],
and construction of feature matrix based on resampling [24]. However, these
approaches all have major limits. For example, the methods based on the extraction of
key parameters [19]-[21] (like open circuit voltage, short circuit current, voltage and
current at maximum power point) capture only partial information from the I-V curve,
and thus sometimes fail to classify similar fault conditions, like when one or more
modules are shaded in one PV string. The method based on the first or second-order
derivative of the whole curve is only suitable to identify partial shading (PS) fault [22],
[23]. Authors in [24] integrate resampled full I-V curves with irradiance (G) and
module temperature (Tm) into 4-column matrices (named IVGT matrix) as features for
FDD. However, the duplication of information compromises the diagnosis accuracy.
Therefore, effective use of the full 1-V curve for the diagnosis of multiple PV faults is
still an opened research topic.

= Lack of an evaluation of correction procedures for I-V curves of faulty PV panels

Since field-measured I-V curves are recorded under varying environmental conditions,
the correction of curves to a common specific environmental condition is generally
performed to ensure a fair comparison and facilitate the FDD task. However, to the best



of our knowledge, there are no specific methods proposed for the correction of faulty
I-V curves. Therefore, most of the researchers adopt the original or simplified
correction procedures from the standard IEC 60891 [25]. It should be noted that these
procedures are all initially designed for the correction of curves measured from healthy
PV panels. The suitability of these procedures for the correction of faulty panels I-V
curves is rarely investigated, and even less if the fault characteristics are distorted by
the correction and thus lead to a diagnostic error. Yet, all these issues are decisive for
the diagnosis of PV faults [26]. Besides, due to the difference between I-V curves from
faulty and healthy PV panels, special correction procedures are expected to be designed
for the curves of faulty PV panels.

= Lack of efficient feature transformation methods to improve the discriminability of
I-V curve features under different faulty conditions

For the I-V curves showing similar shapes but from PV panels under different faulty
conditions, the features extracted from these curves may only show little discrepancy
and therefore are prone to be misclassified. The common I-V curve features in the
literature (key parameters, derivatives, IVGT matrix) are based on direct extraction of
features but without further processing. Therefore, the discriminability of these
extracted features under different conditions is almost the same as that of original I-V
curves. Under tricky fault classification cases, like when dealing with similar curves,
the discriminability of features is expected to be increased with adequate
transformations. This would help to improve the FDD performance. To the best of our
knowledge, these methods have not been yet explored for PV FDD.

Thesis outline

Following these findings, this thesis proposes a new PV FDD methodology, which is
based on an improved correction of the I-V curves of defective PV panels, achieves an
efficient integration of the full I-V curves as features for diagnosis, and also deals with
the transformation of the features to improve the FDD performance. To be specific, this
thesis consists of the following four main chapters:

= Chapter I: A state of the art of the common PV array faults is presented. The fault
causes, fault classification, impact of faults on the power loss and safety risk, and
the frequency of fault occurrence will be all analyzed. A method for classifying the
faults according to the level is proposed, i.e., at the cell, module, or array level.
Through this classification method, the usual faults are presented based on a
literature review. With joint consideration of fault impact, frequency of occurrence
and reproducibility, the faults considered in this thesis are selected.



= Chapter Il: The common FDD techniques for PV faults in literature are reviewed
through two categories: visual inspection and automatic analysis. The automatic
FDD methods will be described in a four-step scheme: modeling, pre-processing,
feature extraction, and feature analysis. The proposed FDD strategy in our thesis
will also be accordingly presented.

= Chapter IlI: The correction procedures in the IEC standard are evaluated for 1-V
curves from faulty PV arrays. The correction performance on the whole curve and
the key curve parameters are addressed. Besides, the impact of fault severity on the
correction performance is also analyzed. A new correction procedure will be
proposed and compared with the existing ones in the IEC standard.

= Chapter IV: A novel PV FDD methodology based on full I-V curves is presented.
This methodology will be detailed from the four-step FDD scheme. The modeling
of a PV array and the preparation of the simulated dataset will be presented. Three
methods to extract fault features from full I-V curves for diagnosis are proposed,
where one is based on the resampled vectors of current, and the other two are based
on feature transformation. Six common machine learning classifiers are tuned and
evaluated for PV fault classification. The configuration of the classifiers, the
diagnosis results, and the impact of various factors are analyzed. Finally, the best-
trained classifier will be validated with field-measured dataset.

= Conclusions and perspectives of the thesis will be given. Besides, the summary in
French is also presented at the end.

Contribution of thesis

The contribution of this thesis lies in the following points:

= A four-step FDD scheme is firstly applied in the PV FDD domain, which allows a
systematic comprehension of the various PV FDD cases and facilitates the
comparison from the modeling, pre-processing, feature extraction, and feature
analysis steps;

= An improved I-V curve correction procedure is proposed and tested exhibiting
overall better performance than the traditional single-curve-based correction
procedures proposed in IEC 60891 standard;

= A new methodology based on full I-V curves is proposed and outperforms
traditional methodology based on partial use of I-V curves;

= Two feature transformation techniques are applied to I-V curves, and proved able
to improve the discriminability of features, which allows the MLT classifiers to
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have higher robustness to additional disturbance and better classification
performance with both simulation and field dataset.
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Chapter I Photovoltaic array faults: State of the art

I.1. Introduction

A photovoltaic (PV) array fault is a defect that either affects the output power or poses
a safety risk, while the difference in appearance due to fabrication that is not inducing
safety risk or power loss will not be considered as fault [27]. Due to various internal
and external factors, outdoor PV arrays are subject to a great variety of faults, which
could occur in nearly all the components of the PV array. These faults may lead to
different levels of degradation, power loss or sometimes even fire risk. Before the
design of effective detection and diagnosis strategies, it is essential to understand the
common faults in PV array well.

This chapter aims to provide a comprehensive state of the art on common PV array
faults. Section 1.2 introduces the leading causes of PV faults, while in Section 1.3, we
present the faults in detail through a classification method. In Section 1.4, we analyze
the impact of faults in terms of power loss and safety. The frequency of occurrence of
faults will be presented in Section 1.5. Section 1.6 introduces the faults studied in our
work, and Section 1.7 closes the chapter.

[.2. Faults causes

1.2.1. Defects due to human error

Manual operations, from transport to installation of PV modules, are one of the first
sources of PV faults.

Transport is the first critical stage of the life cycle [28]. Shocks, vibrations, lack of a
rigid support pallet during transport, or dropping during unstacking can lead to glass
breakage or cell cracking [29].

During installation, clamping is a frequent cause of glass breakage [30], especially
when mounting multiple PV modules. Screws that are too tight, clamps that are too
short or too narrow can generate high mechanical stresses and lead to glass breakage.
Another potential risk is the incorrect wiring of connectors. Poorly fitted or crimped
connectors can lead to an open circuit, line fault, earth fault, or power loss [31]. Worse
still, in most cases, connectors are usually placed near flammable materials, such as
wooden roof beams or thermal insulation components. Under these conditions, arcing
faults can lead to fires.

1.2.2. Environmental factors

Outdoor PV modules are exposed to long-term harsh environmental conditions, which
poses a great risk to the normal operation of a PV system. The environmental factors
could be classified into permanent and non-permanent types [32]. The permanent ones
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result in irreversible fault of PV module or components, like lightning [33], heavy snow
[27], or hail [34] , causing mechanical damages (detachment, breakage) to the PV
module frames or glasses [15]. The glass breakage leads to the penetration of oxygen
and moisture into the PV module and causes the corrosion of electrical circuits, which
provokes the loss of performance.

Contrastingly, the non-permanent factors can be of short duration, e.g., dust, soiling,
shadow of buildings or trees. They lead to shading fault and may cause localized heating
or hot spot [35]. These causes can generally be removed automatically or manually by
the maintenance team.

1.2.3. Material interaction

A PV module consists of multiple layers of different materials bonded adhesively. For
the PV modules occupying the main commercial market share, i.e., crystalline silicon
(c-Si) and thin film type, the common structure usually includes the layers of front glass,
encapsulant layer, solar cells/ thin film substrate, and back sheet. The interactions at the
various interfaces, e.g., front glass/ encapsulant, encapsulant/ solar cell, encapsulant/
back sheet, can be responsible for PV faults.

Cry Thin film

Front glass
Encapsulant
Metallization

Thin film substrate
Encapsulant

Back sheet

Encapsulant
Back sheet

Junction box Junction box

Figure 1-1: Structure of standard crystalline silicon and thin film PV module [36]

The interactions can give rise to visible phenomena such as discoloration of the
encapsulant (yellowing or browning), corrosion, cell crack or delamination. In addition,
these interactions can also result in electrical degradations such as disconnection of
cells, short circuits, and potential induced degradation (PID) which have no visual
effects.

It should be noted that environmental factors (humidity, heat, UV radiation, etc.) can
also accelerate the formation of these defects, which is also related to climatic
conditions. A global study [37] of 1.9 million modules installed in different climates
found that climatic conditions have a strong impact on the occurrence of defects due to
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material interactions. These effects are more pronounced in hot arid climates than in
tropical and temperate climates.

1.2.4. Cause-effect circle

In fact, the mechanism of most defects in photovoltaic modules can be quite complex.
It is difficult, and sometimes impossible, to attribute a single origin to the formation of
a defect. Indeed, the occurrence of a defect is often accompanied by a change in other
properties of the PV module: mechanical, chemical or electrical, which will in turn
aggravate the original defect or generate other defects.

Cause and effect relationships between faults are complex but need to be understood or
otherwise identified to improve design and monitoring. It is also important to analyze
and identify the faults impact. In [38], a causal circle is established between mismatch
and degradation as shown in Figure 1-2. The mismatch is recognized as the intermediary
fault mode, which could be caused by different operating parameters (temperature,
voltage, current) and external factors (environmental factors and human errors).
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Figure 1-2: Cause-effect circle between mismatch and degradation [38]
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The causal circle reveals the relationship between mismatch and degradation. Besides,
other intermediary fault modes have also been identified. For example, mismatch due
to operating conditions or external factors can lead to the high or non-uniform
distribution of module temperature, which, combined with other causes, induces the
commonly encountered PV faults displayed in the central column. Then, these faults,
directly or indirectly, are responsible for non-uniform degradation and power loss. The
non-uniformity of the degradation, in turn, aggravates the mismatch level and closes
the causal circle.

[.3. Presentation of faults

After identifying the causes, we present in this section the different PV panel defects in
detail. First, we summarize the popular classifications of PV faults in the literature.
Then, a new three-level classification is proposed, based on which the common PV
panel faults are categorized and presented.

1.3.1. Fault classification

A well-designed fault classification permits a better understanding of the similarities
and differences between the PV faults under different categories.

In the literature, several classifications have been proposed for common PV faults. They
are based on different criteria, such as duration, degree of severity, location, cause, or
nature. Table I-1 shows some classical classification approaches.
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Table I-1;: Common classification of PV faults

Classification

Ref. o Categories PV faults
criteria
[32] Duration and Permanent Cell crack, line-line fault, ground fault, arc
degree of severity fault, bypass diode fault, junction box fault, etc.
Intermittent Shading, soiling, heavy snow, hail, etc.
Incipient Abnormal degradation, corrosion, snail,
delamination, etc.
[26] Components of Module faults Cell crack, hot spot, corrosion, PID, Light
PV system induced degradation (LID), back sheet adhesion
loss, shading/soiling, etc.
Inverter faults Manufacturing and design faults, control faults,
electrical components faults, etc.
Others Bypass diode fault, junction box fault,
mismatch, line-line fault, ground fault, arc fault,
etc.
[39] Cause and nature Physical Cell crack, bypass diode fault, temperature
of PV faults anomaly, abnormal degradation, etc.
Environmental Partial shading, bird drop, soiling, etc.
Electrical Line-line fault, ground fault, open-circuit, arc

fault, maximum power point tracking (MPPT)
fault, converter switch fault, battery bank fault,
islanding operation fault, grid faults, etc.

It can be observed that classification criteria may be vague, not allowing for the proper
classification of certain PV defects. For example, in [32], defects categorized as
incipient are likely to develop into permanent defects such as delamination or corrosion.
In [39], defects are classified according to their cause and nature. However, some
defects may meet several criteria simultaneously. For example, a line fault, an earth
fault, may also be caused by physical damage, and classified as a physical type.
Similarly, some physical faults, like bypass diode faults and abnormal degradation,
could also affect the PV electrical features and hinder output power.

The proposal based on the location or components of the PV system allows a more
distinct classification of PV faults, as in [26]. However, the 3 proposed categories are
still relatively coarse, and some PV faults are grouped in the "other" category. We
propose a three-level fault classification: cell, module and array, as shown in Figure 1-3.

11



Chapter | Photovoltaic array faults: State of the art

o B o o o

s e Array level faults |
1
4 Module level faults i
[ i
P Cell level faults : ] !
P Shading faults I | Connection faults | |
! Structure faults - i
| 1 1
P Cell crack . i :
Pl Soiling Frame I | Ground fault | |
1
oy Discoloration _ breakage i i
Pl Partial 1 Line-line !
P : shading Back sheet i fault H
i ' Snail track | adhesion loss | | i
i E Erectrical fault i Arcfault i
L Delamination ezl M | Diode fault i |
P ' ’
L || Short circuit - : i
P module | | Junction box : |
| | Hot spot fault I i
1
1 1 . . 1 :
I Open circuit
i i Burn mark — pmodule i i
(. Abnormal H !
Pl Shunt degradation I !
! 1 hot spot — PID I H
1 1 1
(AN Y i
| e o o e ]
\ 7

Figure 1-3: Three-level PV fault tree classification

Most of the common PV faults presented in Table I-1 are categorized in the ‘PV fault
tree’, except for LID, because LID has to be taken into account by manufacturers for
the power rating as required in the standard EN 50380 [40]. Therefore, LID is generally
not defined as a module fault [27]. In addition, as this thesis concentrates on the PV
array faults, the faults related to the DC conditioning units (like converter, inverter,
battery bank) are also excluded. Besides, faults occurring at the AC side of a grid-
connected or standalone PV system are not considered. These faults can be detected
and isolated using the protection standards specified in [41], [42].

1.3.2. PV array faults

Based on the proposed ‘PV fault tree’ (Figure 1-3), we will detail in the following the
typical PV faults related to the three levels.

1.3.2.1. Cell-level faults

Cell-level faults refer to the PV faults affecting a single PV cell. These faults might
spread over adjacent areas over time, but generally will not cause an overall impact on
the whole surface of the PV module. These faults are introduced in Table 1-2 with
corresponding images.
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Table 1-2: Cell-level faults

Fault Description Example

Cell crack Cell cracks are the cracks induced by mechanical stress
in the silicon substrate of the photovoltaic cells, which
usually are invisible by naked eyes. It could rise from the
production, transport, installation, and operation stages.
The shape of crack has different lengths and orientation
in one solar cell. Cell crack could lead to different levels
of power loss, which depends on the ‘inactive’ area of
the cell.

[43]

Discoloration Discoloration is generally related to the PV modules
using EVA (Ethylene Vinyl Acetate) as the encapsulant
material. Discoloration refers to the yellowing or
browning of PV cells. It causes a change in the

transmission of solar irradiance reaching the cell surface
and consequently a reduction in production. Nowadays, s [45]
this fault is greatly eased for the PV modules with new

encapsulant material. For example, for thermoplastic

polyolefin, the discoloration rate is reported around 9

times lower [44].

Snail track Snail track is grey/black discoloration of the silver paste

of the front metallization of screen-printed solar cells.
The discoloring typically occurs 3 months to 1 year after

installation of the PV modules. The origin of snail track
is not clear, may be due to silver particles which contains

sulfur, phosphorus, or carbon. The growth speed of the

snail track discoloration may be very slow [27], or it

saturates directly after the first occurrence.

Delamination Delamination is the adhesion loss between the glass,
encapsulant, active layer and back layer. For thin-film
PV type, the Transparent conductive oxide (TCO) may
as well delaminate from the adjacent glass layer. Bubble
is also a form of delamination. Delamination will lead to
optical reflection and therefore cause the decrease in
power output. It also causes moisture penetration, which
then leads to various chemical and physical degradation.

1.3.2.2. Module-level faults

At the module level, the common PV faults could be categorized into shading, structure,
and electrical faults. Further, hot spot, as a joint result of diode fault and partial shading
or mismatch, is also a type of module-level fault. Detailed presentation of these faults
is given in Table I-3.
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Table I-3: Module-level faults

Fault

Description

Example

Shading/soiling

Frame
breakage

Back sheet

adhesion loss

Junction box

fault

Diode fault

Burn mark

Shunt hot spot

Shading and partial shading (PS) are usually caused by
building, tree, moving cloud and so on; Soiling refers to
snow, dirt, dust, and other particles that cover the
surface of PV module. Shading/soiling could be
classified into hard or soft type, or permanent/temporary

type.

The main cause of frame breakage is heavy snow load,
which will creep downhill and intrude into the space
between frame and glass. It leads to deformation of
module, detachment of frame from the PV glass, which
will result in power loss.

Depending on the material type of back sheet adopted in
PV, causes for back sheet adhesion loss are similar to
that of delamination, including temperature, moisture,

mechanical stress, etc. It results in isolation default,
therefore, increase the exposure to active electrical
component, especially when happen near a junction box
or edge of module.

Observed junction box fault includes poor fixing, bad
wiring, broken connection, etc. They are mainly caused
by energy overstress, rework cable during installation
and rework connector, together with long heat exposure.
It could result in moisture ingress, internal arcing and
power loss.

Common diode fault happens to the bypass diode
(BPD), caused by excessive current level and improper
or insufficient heat sinking. The lack of air flow in the

junction box is also crucial to diode fault, particularly in
the case of fast transitions shadow-sun-shadow. Burnt
BPD could cause short or open circuit of the diode, and
therefore different level of power loss.

Partial shading + BPD fault or other mismatch fault (like
low resistance defect in c¢-Si) could lead to energy
consumption on the mismatched area instead of
generation, therefore local high temperature of cell and
induce burn mark. Besides, DC arc fault could also lead
to burn mark. It may cause overheating, delamination or
melting of material;

Partial shading could cause the cell turn to status of
reverse biased voltage, to which thin film cells are
extremely sensitive. Module current will concentrate on
the shunt path and lead to hot spot. The behavior is quite
different to c-Si hot spot as the BPD could not limit the
reserved voltage. It is not likely to cause overheating but
cause glass breakage and increase the risk of electrical
shock.

[50]

[51]
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Short circuit Corrosion and structure damage are the main causes for
(SC) / Open open or short circuit of module. It leads to different level

circuit (OC) of power loss or shutdown of system and the risk of
module electrical shock or even arc fire.
PID Voltage difference between grounded framework and

PV modules could establish path for leakage current and
cause PID. Shunting type (PID-s) in p-type c-Si is the
most frequently observed effect, which is mainly caused
by migration of Na ions. Na ions drift anti-reflect
coating under negatively biased condition, penetrate
crystal defects, result in large shunting of cells and
degrade the efficiency. It should be noted that PID is
more common to the PV modules with EVA as
encapsulant material. With a PID resistant material (e.g.
polyolefin) gradually replacing EVA as an encapsulant,
this defect has almost disappeared. [53].

Abnormal Abnormal degradation is a comprehensive reflection of
degradation various faults, like delamination, bubbles, snail track,
PID, and the related corrosion process of PV module
[38]. This can be also seen via the cause-effect circle in
Figure 1-2. Its intuitive influence reflects in the power
loss and the change of slope of the I-V curve of the
module.

1.3.2.3. Array-level faults

At the array level, the main type of fault is the connection fault, which generally
includes the earth fault, the line fault and the arc fault, as shown in Table 1-4.
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Table I-4: Array-level faults

Fault

Description

Illustration

Ground

fault
(GF)

Line-
line
fault

(LLF)

It is caused by un unintentional low
impedance path between Current Carrying
Conductor (CCC) and the ground get
established. For grounded PV system, GF
causes a high current to flow through an
intentional circulating path. For ungrounded
PV system, it generates residual magnetic
field between the forward and backward

current flow. It causes a change in insulation

resistance and a lasting loss of power.

LLF rises from an unintentional low
resistance path between two CCC with
different electrical potential. It is caused by
poor insulation of string connectors,

3
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M
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grounding

accidental short-circuit between CCC, fault
mounting, or external damage. It leads to
high reverse current (depends on the
potential difference of the location where the
LLF happens) flowing to the faulty path and
a lasting loss of power. LLF has 2 types,
intra-string, and cross-string LLF.

seedesey = messbeay

Several external factors could lead to the A ' : T '
discontinuity or insulation fault of CCC and § _'I<l|<}‘ *1(]‘—
establish an air path for arc fault. Arc fault o
has two types: series and parallel AF (intra-
string, cross-string and parallel to ground). It
could occur in almost all the connection
points or structures in the PV array, like cell,
busbar, module, diode, string, safety devices,
etc. It leads to transient but extremely high
temperature that may burn the metal coating
of the module. Besides, it generates high-
frequency components causing serious
nonlinear distortions in current and voltage.

Arc
fault
(AF)

Combiner box

--------------- | P .

Iy

................

Inira-string parallel arc faull

parallel arc fault to ground

[.4.

A PV fault can result in both a safety hazard and a power loss. In this section, safety
and power loss problems will first be defined with the specified impact categories. Then,
the common PV faults presented in Section 1.3 will be analyzed comparatively from
these two aspects.

Impact of faults

1.4.1. Safety hazard categorization
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A safety hazard refers to the risks to personnel working on the installation or to
bystanders. In Table I-5, three safety categories [27] are defined, which are useful in
assessing the necessary action to be taken when the fault occurs.

Table 1-5: Definition of safety risk categories

Safety level Description
SRO: safe Fault poses no clear threat to the safety.
SR1: medium Medium possibility or potential threat to causing a fire, an electrical shock to

working personnel or physical danger.

High possibility to causing a fire, an electrical shock to working personnel or

SR2: danger physical danger.

In addition, the action required at fault occurrence depends on the application class of
the PV system, which is defined in the standard IEC 61730-1 [55].

1.4.2. Power loss categorization

Another important factor in assessing the impact of PV faults is the power loss level,
which directly determines the functionality of the PV system. The power loss levels
describe the evolution of the power variation between the initial value and the one
produced over time. In most cases, this difference between the reference values can
lead to inconsistent results, as the power indicated in the datasheet can deviate
significantly from its actual initial value.

For legal application, to evaluate the power loss, the power printed on the PV module
datasheet could be used as the reference value. For practical application, the initial
power could be adopted as a reference value. For various PV array faults, the power
loss level is not easy to evaluate as it could vary from case to case and is mainly
determined by the fault severity and spread. However, the common trend of the power
loss due to these faults can generally be categorized. In Table I-6, five classic trends of
power loss over time are defined [27].
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Table 1-6: Definition of categories of power loss evolution over time

Power loss level Description
PLO Minimal power loss under detection threshold
PL-L Linear-shaped degradation of power over time
PL-S Saturated degradation over time (beyond a certain threshold, the power

loss no longer evolves)

Hybrid degradation over time (different evolutions at different stages or

PL-H irregular evolution of the degradation)

PL-E Exponential-shaped degradation of power over time

1.4.3. Summary of fault impact

Based on the definitions of the safety risk and loss of power loss categories, the impact
of the common faults at cell, module and array levels are summarized in Table I-7.

18



Chapter | Photovoltaic array faults: State of the art

Table I-7: Summary of the impact of common PV faults

Level Fault SRO SR1 SR2 PLO PL-L PL-S PL-H PL-E
Cell Delamination () ® () ()
level
Bubble o )
Discoloration o ) )
Cell crack ® o () ) )
Snail track (] ®
Module PID () ()
level
Shading/soiling ° ° ° °
Burn mark (] ®
Hot spot ® [ )
Junction box fault o )
Diode fault (] () ® ()
oC ® ° °
SC (] (] ®
Frame breakage ° ° °
Back sheet adhesion o )
loss
Abnormal degradation ® ® ) )
Array Ground fault o L
level
Line-line fault (] ()
Arc fault ® )

(When a PV fault corresponds to several categories of risk for safety or power loss, this fault can
induce all these effects depending on its severity level)

From the summary of fault impact, for the safety risk, most of the common PV faults
result in SR1 level impact, i.e., medium safety risk of fire, electrical shock, or physical
danger. However, it should be noted that some electrical faults (like open/short circuit
module, ground fault, line-line fault, arc fault) and frame breakage may induce SR2
level impact, i.e., high-level danger. As for the power loss evolution, PL-S (saturated),
PL-L (linear), and PLO (negligible) are the more common. It should be noted that, for
some faults of PL-S type like the electrical faults SC, OC, although the loss of power
does not degrade at the first fault occurrence, the initial power loss level could still be
quite high. Therefore, in order to analyze the impact of faults on power, it is necessary
to examine both the initial level of loss and its evolution over time. Overall, faults with
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a significant impact on safety and power loss are those that need to be detected in time
as part of PV system health monitoring.

I.5. Frequency of fault occurrence

The frequency of fault occurrence is an important factor to design appropriate and
relevant health monitoring and prevention strategies for PV system. In [56], a
comprehensive survey on the PV system faults is carried out worldwide, covering
different climate zones, and PV technologies. The results of this survey are presented
in Figure I-4. PV modules from moderate climate areas or multi-crystalline silicon (mc-
Si) technology constitute most of the objects surveyed. The frequency of occurrence of
the different faults is presented in Figure 1-5, where the most frequent faults and those
that induce a measurable power loss are presented. The frequency of abrupt and gradual
faults is also shown.

@)
10%

= Moderate = Multicrystalline

= Hot and dry
Cold and snow
Hot and humid

19%
= Mono crystalline

Thin film

Figure 1-4: Relative composition of survey (a) climate zones (b) PV technologies [56]
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Figure 1-5: Occurrence distribution of PV faults over years [56]

((a): Total occurrence of all types of faults, (b): Occurrence of detected faults causing
measurable power l0ss)
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For gradual PV faults, it is observed that the cell crack is usually reported at the very
beginning (after the first or second year) of the PV system operation. The PID shunt
(PID-s) appears mainly from year 3 or 4 onwards. Disconnection (for cells or strings in
the module) starts from year 4 and covers the whole operating period. Discoloration of
the encapsulant starts after year 3 and also extends over the years. In addition, the
discoloration related to power loss reaches a high accumulation after 18 years of
operation. The diode defect extends over the first 10 years of operation. The total
occurrence of the other defects is too rare to allow a detailed analysis.

As far as abrupt PV failures are concerned, they are more related to environmental
causes. It can be seen that dust souling is more frequently reported and extends over
several years compared to the other types of defects.

Comparing the statistical results of the occurrence of all faults and faults leading to
power loss, the results coincide with the study of the impact of faults on power loss in
Section 1.4. Some faults, e.g., junction box fault, delamination, although frequent, have
a negligible impact on power output. Furthermore, some faults, e.g., delamination,
although they may appear at the beginning of operation, the impact on power loss is not
immediate but evolves and becomes measurable after years. Therefore, by combining
both the impact and the distribution of occurrence of common PV faults, it is easier to
indicate which PV faults should be prioritized for the different stages of operation of
the PV array.

[.6. Studied fault cases

After having reviewed the state of the art on PV array faults, we have chosen in this
work to study the faults taking into account their impact, their frequency of occurrence,
the reproducibility in simulation and in real conditions. The faults chosen are PS, SC
module, OC string, and abnormal degradation.

PS is chosen because of its universality under real conditions and ease of reproduction.
SC and OC faults are the common electrical faults in PV panels that are likely to cause
large power losses. Abnormal degradation reflects various defects, such as
delamination, bubbles, snail marks and the associated corrosion process of PV modules.
Moreover, it is easily reproducible in simulations and field tests. Thus, it is also
considered in this thesis. The detailed configuration of these faults and the presentation
of the PV array to be studied will be detailed in the following chapters.
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[.7. Conclusion

In this section, we have presented a state of art on PV array faults. The three main
origins of faults and the causal relationships between mismatch and abnormal
degradation have been identified.

The main PV fault classification tools reported in the literature are analyzed and
summarized. We have proposed a method for classifying faults according to their level:
at the cell, module, or array level. Finally, through this approach, the usual faults are
presented based on a literature review.

The impact of each fault is studied with regard to power loss and safety risk.

It should be noted that the different faults occur at different stages of the PV field
operation. Thus, the frequency of occurrence of faults over time is also addressed. With
a joint consideration of fault impact, frequency of occurrence and reproducibility, the
faults PS, SC module, OC string, and abnormal degradation are chosen as the faults to
be addressed in this thesis.
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I1.1. Introduction

Fault detection and diagnosis (FDD) is a fundamental issue to ensure the normal
operation of a PV system. It can prevent damage and eliminate potential fire risks [57].
The main task of detection for photovoltaic panels is to certify with the greatest
certainty that faults have occurred and that the system is no longer operating in its
healthy operating range. The fault diagnosis focuses on fault identification, fault
severity estimation, and fault isolation. The whole process is based on a priori
knowledge, estimation and field measurements [16].

The PV FDD methods can be classified into visual inspection and automatic analysis,
which will be discussed in this section.

I1.2. Visual inspection for fault diagnosis

Visual inspection is a quick and effective method to identify faults of PV modules. It
could be performed before and after the module has experienced environmental,
electrical or stress test in the laboratory or operation in the field. The common
detectable PV faults by visual inspection are listed in Table I1-1.

Table 11-1 List of detectable PV module faults by visual inspection

PV module component PV module faults
Front/Back of PV module Bubbles, delamination, yellowing, browning
PV cells Cracked cell, discolored anti reflection
Cell metallization Burned, oxydized
Frame Bent, broken, misaligned
Junction box Broken, loose, oxydation, corrosion
Wires, connectors Detachment, broken, exposed electrical parts
Bypass diode Burned, broken connection

Besides, PV images captured by various PV imaging techniques (electroluminescence,
infrared, etc.) can also be examined by humans. These types of images could reveal
some mechanical or electrical failures inside PV modules. A detailed presentation of
these imaging techniques will be given in Section 11.3.1.2.1. Despite its effectiveness,
visual inspection is time-consuming and requires expensive equipment and personnel.
According to [57], visual inspection is more appropriate for small-scale facilities where
they can be frequent and cost-effective.
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Some PV module faults that lead to performance degradation (e.g., induced partial
discharge, broken internal interconnection) are usually invisible to the naked eye and
cameras or sensors adopted for visual inspection. Detection of these types of faults
requires other information and the implementation of more advanced methods.

I11.3. Automatic information analysis for fault diagnosis

Automatic information analysis is playing an increasingly important role in PV FDD
techniques. On the one hand, this is due to the increasing availability of PV data with
the rapid development of the PV industry and, on the other hand, to the growing demand
for automated and accurate monitoring of the health status of PV systems.

Automatic information analysis for PV FDD relies on a great variety of methods and
techniques. The methods can be decomposed into four steps: modelling, pre-processing,
feature extraction and feature analysis [58], as shown in Figure I1-1.

~

Modellin . . . -
J + Physics-based models (electrical equivalent circuit)

+ Data-based models (electrical data, environmental
data, PV images)

Pre-

processing » Format unification (normalization, resizing ,...)

+ Data cleaning (filter, denoising, ...)
+ Data augmentation (flip, rotation, clip, ...)
» Format transformation

Feature
extraction

« Statistical parameters (centrale tendency, variability, ...)

* Signal processing methods (Fourier, wavelet, ...)

* Image processing methods (segmentation, GLCM, ...)

* Multivariant transformation methods
(by PCA, LDA, ICA, ...)

+ Estimation and control methods

Feature

. » Threshold analysis
analysis

« Statistical analysis (regression, discriminant analysis)
» Machine learning techniques (unsupervised, semi-
supervised, supervised)

Figure 11-1 Four-step PV FDD scheme

A feature refers to an individual measurable property or characteristic of a phenomenon.
Generally, features are numeric, but structural types such as strings and graphs are also
possible. In this four-step based scheme, under some circumstances, the pre-processing
and feature extraction step could be skipped. In addition, it should be noted that the
same techniques can be used in different steps. For example, Machine learning
techniques (MLT) can be adopted for pre-processing, feature extraction, and feature
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analysis. Based on this four-step scheme, the common automatic PV FDD methods will
be analyzed in the following.

11.3.1. Modelling

A model is a representation of knowledge. It can be:

e Analytical: based on mathematical relationships between inputs and outputs, which
describe the physical phenomena occurring in the system,

e Numerical: based on data measured in the system during operation,
e Descriptive: based on the expression of operating modes.

PV modelling plays an important role in the design, characterization, and maintenance
of PV systems [59]. In order to use the PV module model for diagnosis, it must be able
to accurately simulate the operating points of a PV system under varying environmental
conditions. Therefore, modelling the PV module is an essential step for fault detection
and diagnosis [60].

In the current state of knowledge, the model of a PV system is either analytical (also
denoted as physics-based) or numerical (denoted as data-driven).

11.3.1.1. Physics-based modelling

The models of a PV module are based on the description of the photoelectricity at a cell
level. The cell models are combined in series and parallel to obtain the model of a
module. They represent the relation between environmental inputs (irradiance and
temperature) and the electrical signals, output current and voltage. The most common
models are electrical equivalent circuit (one or two diode model [61], Merten’s model
[62]), semi-empirical “point” model [63], Evans model or called simple efficiency
model [64] ). Thanks to their simplicity and efficacity, the one or two diode models are
the most used ones to estimate the operational parameters and characterize PV array.
The electrical equivalent circuits for the two models are displayed in Figure 11-2 and
Figure 11-3, respectively. It should be noted that the accuracy of the models depends on
the accuracy of the model parameters, which can be extracted by various estimation
methods [65], [66].

In the single-diode model: Ipn is the photocurrent, Iq the diode current representing the
diffusion phenomenon, Rsh the shunt resistance representing leakage current path
caused by the distributed manufacturing defects inside the solar cell, Rs the series
resistance representing the power dissipation caused by the thermal effect in the whole
junction substrates, and the electrical contacts.
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Figure 11-2 Equivalent circuit of the single-diode model

The double-diode model has two diodes in parallel. It takes the recombination
phenomena into consideration, and therefore could achieve a better characterization
[67]. This model provides more a reliable estimation of the internal parameters, which
can better reflect the phenomena occurring inside the solar wafer.
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Figure 11-3 Equivalent circuit of the two-diode model

11.3.1.2. Data-based modelling

Data-driven modelling is based on historical measurements made during the operation
of the PV module (electrical and environmental measurements) or images captured by
ground cameras or unmanned aerial vehicles (UAV)

11.3.1.2.1. PV images

The images of PV modules can be classified into four groups, which are detailed in the
following, and compared in Table I1-2.

e Visible image

Conventional imaging devices provide visible (Vis.) images similar to those obtained
by human visual inspection (presented in Section 1.2). In contrast, the images adopted
for automatic fault diagnosis are usually obtained by UAVSs, which are more suitable
for large PV installations [68].These systems allow a large number of images to be
available for analysis.

¢ Infrared thermography image

Infrared (IR) thermography imaging is a non-destructive measurement technique,
which can provide rapid, real-time, and two-dimensional distributions of the
characteristic features of PV modules [68]. The IR images permit the identification of
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various PV faults causing temperature anomalies, e.g., PID, partial shading, invisible
cell, crack, hot spots, bypass diode faults, OC or SC of cell/diode/module. IR imaging
cameras can also be embedded on UAV devices.

e Electroluminescence image

Electroluminescence (EL) images are captured by silicon charged coupled device (CCD)
camera, which detects light emission caused by the radiative recombination of carriers
when external DC current is fed into a PV module [69]. Therefore, EL imaging requires
a dark environment. The light intensity increases with the local voltage, so that areas
with poor contact appear dark [70].

e Ultraviolet fluorescence image

Ultraviolet fluorescence (UVF) [71] imaging is realized by exposing a PV cell or
module to ultraviolet (UV) light to excite fluorophores in the material into higher
energy states. The reemitted light has a longer wavelength than the absorbed radiation
[72]. This light is visible to naked eyes and can be captured with a camera or analyzed
with a UV/Visible spectrometer using a limited bandwidth source and long-pass filters.

Table 11-2 The four types of PV images

Visible IR EL UVF
Examples
"m
0 i
[68] [27]
Environmental None None Darkness Darkness
requirement
Disconnection of No No Yes No
modules
External source None None DC current UV light
Typical Discoloration, Cell crack, Hot Cell crack, PID, Cell crack,
detectable faults burn mark, PS, spot, PS, SC, OC, diode fault, disconnection
delamination PID, diode fault disconnection

The PV image data from a variety of imaging techniques permits to detect the faults
that have no significant impact on the electrical parameters of PV modules but still need
to be noticed, like cell crack, discoloration, and delamination. However, as for the limits,
the imaging devices are generally costly, and the image acquisition process could be
complicated and time-consuming if external sources or specific light conditions are
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required, especially for large-scale PV plants. The UAV-based imaging may provide
solutions for the imaging of large-scale PV plants. However, an automatic identification
and segmentation of PV modules from aerial images requires further study [73].

11.3.1.2.2. Environmental measurements

There are three environmental measurements commonly adopted for PV diagnosis, as
specified in the following.

e Inplane irradiance

Irradiance is the instantaneous measurement of the radiant power from the sun captured
by a solar cell or module per unit area [74]. For performance analysis or health
monitoring of PV modules, the global irradiance received in the plane (Gpoa) 0f a PV
module is commonly adopted [74]. The measurement of Gpoa is generally done by a
pyranometer or a reference cell. There are two types of pyranometer: thermopile and
photodiode pyranometer. A thermopile pyranometer measures the irradiance in the
range of 300 to 2800 nm with a flat spectral sensitivity, while the photodiode measures
a portion of the solar spectrum between 400 nm and 1100 nm [75]. The reference cell
provides measurement as the effective irradiance. It must be made of the same material
as the PV module under study [76].

e Module temperature

Module temperature (Tm) is the second contributing factor to the output power of a PV
module (primary factor is the irradiance), especially when the temperature is above the
value of 25<C defined in the Standard Test Condition (STC). Tn is generally measured
by two means:

1) Contact methods: sensor attached to the module back sheet.

2) Contactless methods: the temperature is estimated from ambient temperature (Ta)
and irradiance [63], or extracted from the relationship between open circuit voltage
(Voc) and Tm [77]. Infrared cameras, if calibrated, can also measure the operating
temperature [78].

e Meteorological data

Except Gpoa and Tm, meteorological data are sometimes needed to understand the
module performance better and evaluate its stability. The common data includes
ambient temperature Ta, wind speed and direction, humidity, air pressure, Global
Horizontal Irradiance (GHI) [79], Diffuse Horizontal Irradiance (DHI) [80], spectral
irradiance [81].

11.3.1.2.3. Electrical measurements
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Electrical measurements are also among the common features used for FDD. The
typical ones can be classified depending on their locations, as presented in Table 11-3.

Table 11-3 Common electrical measurements in PV system

Location Measurements

DC side e  Voltage and current adjusted by maximum power
point trackers (MPPT) (Vwmee, Imep)

e  Open circuit voltage (Voc)
e Short-circuit current (Isc)

e  Current-voltage characteristic (I-V curve)

DC/AC conditioning unit e  Voltage and current of the inverter

e  Voltage and current of the battery bank

AC side e  Voltage and current (Vac, lac)

For monitoring the health status of PV panels, electrical measurements on the DC side
are more commonly adopted. Among these measurements, the 1-V curve contains the
most information: Viee, Impp, Voc and lsc, the fill factor (FF), and the slopes of the
curve. I-V curves are usually obtained with an I-V plotter or by hardware solutions
integrated in PV inverters, the latter allowing a periodic characterization of a PV
module, string or plant in operation [18].

11.3.2. Pre-processing

The pre-processing of raw data is an essential step for automatic diagnosis of PV
modules. Pre-processing techniques are applied to prepare the data for efficient features
extraction. They can be categorized into format unification, data cleaning, data
augmentation and format transformation.

11.3.2.1. Format unification

Measurements in the PV system are obtained by different sensors and acquisition
systems. They may therefore have very different formats (variation intervals, length,
sampling periods, etc.). In order to avoid biased analyses, it is recommended first to
standardize the formats. For time or frequency-domain electrical signals, resampling
or window cutting are the common operations [82]. Resampling is also required for I-
V curves with a different number of points or current-voltage distribution [19]. In
addition, when several non-commensurable PV system variables are used for FDD
analysis, a normalization [83] is usually performed to standardize the range of variation
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of the characteristics into [0, 1] or [-1, 1]. For images, the most common format
unification operations are resizing [84], RGB separation [85], graying [86].

11.3.2.2. Data cleaning

Raw PV data may contain interference or invalid information that is removed by filters
[87]. Advanced signal processing methods can also be used, such as wavelet denoising
[88] or smoothing [89], to remove unwanted noise and fluctuations. For images,
denoising is applied to remove external interference and restore the real image [90].

11.3.2.3. Data augmentation

Statistical and more generally machine learning techniques are more effective when
they have a large amount of data that is sufficiently representative of all operating
modes. However, this is a serious challenge for measurement systems, even more so
for image measurements.

There are two main obstacles to construct a large PV image dataset: 1) insufficient
quantity of images due to the limited number of PV modules or the complexity of
imaging procedure; 2) unbalanced dataset, i.e., the number of images of healthy
modules and faulty modules is different [91]. These two obstacles can significantly
hinder the learning performance of machine learning models. Therefore, data
augmentation [92] is usually adopted to increase the number of images or balance the
number of images among the different classes (operating conditions). The most
common techniques include rotation, flip, clip, blurring addition, and adjustment of the
brightness [93].

11.3.2.4. Format transformation

The format transformation of PV data is sometimes performed before analysis. These
transformations are mainly done for two reasons: 1) to find a more appropriate
representation for FDD analysis, 2) to combine different PV data format into an
identical one.

There are various transformations that are realized either by a simple rearrangement of
data or signals into images or matrixes, or by special techniques. Some examples are
presented in Table I1-4.
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Table 11-4 Some format transformations for PV FDD

Ref. Original Transformed Description Example of transformed features

features features

[82] Vand Isignals Image Save sequential
waveform of V
and | as image
[94] G, Tm Voc,lsc,  Scalogram Continuous ‘ w '
Vwpe, Ivpp, Pm Wavelet
Transform .
y

(CWT) [95]

Health OC string LLF
PS1 PS2 AF
[24] 1-Vcurve, G Matrix Construction of TGl |V,
and T, a feature matrix
T(G| L |V,
T|IG| IV,
T | G| lyp|Vy
40X 4 feature matrix
[96] | signal Matrix Rearrange signal ST T o
into a square - -‘-;." .!"1! .'F'i."
matrix b [ |r e E;"»-'
w | o
wFANIL i‘\'.‘-r’-: -
Healthy Arc fault
[25] I-Vcurve, G Corrected I-  Correction of I- -
and T, V curve V curveto a
certain
environmental
condition

11.3.3. Feature extraction

After pre-processing the raw data, the feature extraction step aims to extract from the
data the most significant features representing the defects. The extracted features or
fault signatures should be highly informative and not redundant. For cost-effective and
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reduced computation time, the extracted features should also be of reduced dimension.
However, the extraction of the features should not degrade the overall FDD
performance. Common feature extraction techniques for PV FDD can be classified into
five categories as shown in Figure 11-4: statistical parameters, signal transformation,
image processing, multivariate transformation, and estimation & control techniques.
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Figure 11-4 Common techniques of feature extraction for FDD

11.3.3.1. Statistical parameters

Measures of central tendency, and measures of variability are used to extract relevant
basic statistical properties from PV data [97].

11.3.3.1.1. Measures of central tendency

As the most common statistical descriptive measures, central tendency estimates the
central location of one univariate PV data by calculating the mean, median or mode
[98]. Each of these measures has its pros and limitations. The mean reflects each value
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of the dataset but is particularly prone to outlier values. Comparatively, the median is a
more suitable measure when the dataset includes outliers. The mode could represent the
value that appears most often. It should be noted that there is no restriction on using
only one of these measures of central tendency.

11.3.3.1.2. Measures of variability

Measures of variability or dispersion of univariate PV dataset can provide relevant
information on the data distribution [99]. The three popular measures of variability are
range, variance, and standard deviation. The selected measures depend on the data
type, the shape of the distribution and the corresponding measure of central tendency
used [100]. When combined with the measures of central tendency, the data exploration
is significantly enhanced. For the application in PV FDD, authors in [101] calculates
the mean and the standard deviation of V, I and P to detect PS, SC module and OC
string fault.

11.3.3.2. Signal transformation methods

Signal transformation methods are used to extract local features from pre-processed
raw measurements in the time domain, such as coving peak, crest factor, signal-to-noise
ratio (SNR), Root Mean Square (RMS) level [102].

In the case of the I-V curve, which contains information on voltage and current signal,
several parameters can be obtained: the open circuit voltage (V, ), short circuit current
(Is¢), voltage and current at maximum power point (Vypp), (Iypp), fill factor (FF),
equivalent series resistance (R,) and shunt resistance (R) [103].

The signal processing techniques can also be used to transform the time-series data into
the frequency domain for further analysis.

e Fourier transform (FT)

The FT [104] is used to determine the frequency components of a signal. The main
variants of FT include Continuous Fourier Transform, Fourier Series, Discrete Fourier
Transform, and Fast Fourier Transform [105]. For example, in [106], FFT is adopted to
extract the frequency content of the current to detect arc fault (AF) in a PV array.

e Wavelet transform (WT)

WT is a transform, which decomposes an input signal into subsets. Each subset is
constituted with time series of coefficients characterizing the evolution of the signal in
the corresponding frequency band [107]. There are two types of WT: Continuous
Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). CWT uses an
infinite number of scales and locations, while DWT uses a finite set of wavelets [108].
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WT can extract local spectral and temporal information simultaneously. The
performance of the transformation depends on the choice of the mother wavelet
function and the translation and expansion coefficients to tune time and frequency
resolutions. For the application in PV FDD, authors in [109] have adopted DWT to
extract features from the AC current (lac) to identify AF. Similarly, authors in [110]
have used DWT with AC voltage (Vac) and lac to classify LLF and GF.

11.3.3.3. Image processing methods

In the case of images of PV modules or arrays, the data can have a complex structure
and a high dimension. Therefore, to extract the most relevant features, the images
should be processed. Some examples are given below.

e Segmentation

Images in the PV domain are mainly recorded at array or power plant levels, less often
at smaller scales for obvious technological reasons. However, for health monitoring,
the analysis should be conducted at the cell or module level. The segmentation of large-
scale images at the target scale can be realized manually or automatically. For example,
authors in [111] perform an automatic segmentation to cell level via edge identification
of module-level images obtained from EL. In [112], authors have used deep learning to
segment aerial images to PV panel images for diagnosis.

e Grey level co-occurrence matrix (GLCM)

GLCM is used to analyze the spatial distribution of pixel intensity to calculate several
image texture features [113]. In the case of PV, it is often exploited to extract 1D
features such as contrast, homogeneity, or entropy parameters for fault diagnosis. For
example, GLCM has been used to extract textural features from visual inspection
images of PV modules to assess soiling [114]. GLCM has also been used to extract
features like contrast and correlation from IR images of a PV module to detect hot spot
[115].

e Filter operation

To extract 2D areas of interest from one PV image, filtering is a common operation.
Several filters can be used, depending on the use case. For example, authors in [116],
inspired by Sobel filter [117], have designed a specific filter to extract Hough and
percentile regions from cell images as shown in Figure 11-5.
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Figure 11-5 Hlustration of feature extraction from PV EL images [55]

Deep learning techniques can also be used for filtering. For example, authors in [118]
have used denoising convolutional neural network (DNnCNN) [119] to extract soiling
layer from PV module images, as shown in Figure 11-6.

Conv-+ReLU |

. 4

| Conv+BN+ReLU |

| Conv+BN+ReLU |

| Conv.+Bl\‘;+ReLU |

I Conv. Output image

Figure 11-6 Extraction of soiling layer of PV module images using denoising CNN [118]

11.3.3.4. Multivariate transformation techniques

When input data are diverse or low-separable in current space, it may be necessary to
perform transformations or projections, especially for multivariate features. These
allow the dimensionality to be reduced and the selection of features to be refined before
the analysis stage. Therefore, the techniques can be broadly categorized into feature
selection and dimensionality reduction type.

11.3.3.4.1. Feature selection techniques

A feature selection algorithm can be considered as the combination of a search
technique to construct new feature subsets, combined with an evaluation measure which
scores the different feature subsets. There are three main types of feature selection
algorithms: wrappers, filters, and embedded methods. Wrapper method applies a
predictive model to score feature subsets [120]. A model is trained for each new subset
and tested on a hold-out set. Counting the error rate of the model on the hold-out set,
the best subset is determined. Filter methods adopts a proxy measure to score a feature
subset instead of the error rate [121]. The choice of the measure needs to be fast to
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compute, while still conserve the usefulness of the feature set. Embedded methods
combine the qualities of filter and wrapper methods on performing feature selection
during the model construction [122]. An example for the application in the domain of
PV FDD is given in [123], where the embedded method is used to select 5 features from
originally 11 PV features to detect PS and SC module.

11.3.3.4.2. Dimensionality reduction techniques
e Principal component analysis (PCA)

PCA is the process of computing the principal components to perform a change of basis
of the original data [124]. It is an efficient tool to reduce the dimension of the original
features by projecting original data onto the first several principal components, which
allows to obtain lower-dimensional features but can still preserve as much of the
variation of original data as possible. Features of lower dimension permit to efficiently
control the complexity of diagnosis models, especially for data-driven methods.
Concerning PV FDD, [20] reduces three PV electrical features into two by selecting the
first two components to detect PS. [125] adopts PCA to reduce the 280 wavelet
coefficients into 20 for the detection of AF.

For the components extracted by PCA, two indices, the Hoteling’s T-squared (T?)
statistic and the Q-statistic (also known as the squared prediction error (SPE)), can be
further extracted [126]. For example, in [127], both T2 and Q-statistic are extracted from
the PCA model that is applied for a total of 9 original PV features. These two statistic
features are then used to classify PS, connection fault and sensor fault.

e Discriminant analysis

Discriminant analysis is a category of techniques to analyze the data when the criterion
or the dependent variable is categorical and the predictor or the independent variable is
interval in nature [128]. Discriminant analysis encompasses methods that can be used
for dimensionality reduction. Linear discriminant analysis (LDA) is particularly
popular because it is both a classifier and a dimensionality reduction technique [129].
Quadratic discriminant analysis (QDA) is a variant of LDA that allows for non-linear
separation of data [130]. Regularized discriminant analysis (RDA) is a compromise
between LDA and QDA, it is particularly useful when there are many features that are
potentially correlated [131]. An example of application in PV feature extraction is given
in [132], where LDA is employed to extract two projected features from Vuep, Impp and
Pm for the diagnosis of PS.

e Independent Component Analysis (ICA)

ICA is a computational method for separating a multivariate data into additive
subcomponents [133]. This is realized by assuming that all the subcomponents are non-
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Gaussian features and are statistically independent from each other. ICA can be used
for dimensionality reduction by extracting the directions that are as statistically
independent as possible and projecting the process data onto the associated basis
vectors. For example, in [134], ICA is applied to extract 2-3 features from 20 electrical
signals in a PV array for the FDD of different PV faults, like OC string, PS, SC module,
etc.

e t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a non-linear dimensionality reduction technique for visualizing high-
dimensional data by assigning each data a location in a two or three-dimensional space
[135]. To be specific, t-SNE models each high-dimensional data by a two- or three-
dimensional point. In this way, similar data are gathered by nearby points and dissimilar
data are mapped by distant points with high probability. For PV FDD, [136] applied t-
SNE to extract two features from originally 25 PV features to detect inverter fault. In
addition, t-SNE is also commonly adopted for the visualization of high-dimensional
features in PV FDD. For example, in [137], t-SNE is used to project the 4 PV features
G, Tm, Vmep and Ivep into a two-dimensional space to analyze the discriminability of
features for the classification of 8 PV faults, like SC, PS, degradation, etc.

11.3.3.5. Estimation and control techniques

The model of PV array, once established, can be used to estimate the operating
parameters under different environmental conditions. The estimation process may
require the input of real-time measurement: irradiance, temperature, meteorological
data. The estimated parameters are generally the electrical parameters. For FDD
analysis, these estimated parameters can either be used directly or used to generate
residuals. The performance of the extracted features for analysis depends on the
accuracy of the PV model. For example, authors in [21] generate a residual from
measured and estimated Pwvpp (via single diode model) to classify PS, OC string, and
diode fault. Also, based on the single diode model, authors in [138] estimates intrinsic
model parameters from dynamic I-V curves for the diagnosis of cell crack.

11.3.4. Feature analysis for FDD

After modelling, pre-processing and feature extraction, their analysis is the last step in
the FDD methodology. As in the previous steps, several techniques can be used
depending on the application domain, the nature of the data, the information domain
and the desired performance. These techniques can be mono or multidimensional and
rely on threshold, statistical analysis, or machine learning techniques (MLT), which are
summarized in Figure 11-7.
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Figure 11-7 Techniques for feature analysis in FDD

The common techniques or algorithms of these three categories will be detailed in the
following. Application cases in the field of PV FDD will also be given after the
presentation of each technique.

11.3.4.1. Threshold analysis

Threshold logic is the most basic tool for making a binary decision [139]. The crossing
of a threshold, by the feature, gives an indication of whether the system is healthy or
faulty. The threshold can be variable or constant:

e A variable threshold generally requires a model of the PV array, which
parameters are updated in real-time. For the application in the PV field, the
measured Pwvpp is compared with its real-time estimated from the single-diode
model to detect the presence of PS [140]. In [141], the performance ratio (PR)
is compared with a simulated value obtained from the double-diode model to
identify the GF.

e A constant threshold can be set based on: simulation of PV model, field
experiments, or empirical knowledge. For example, in [142], from the past
measurements, a threshold is set for the PR to detect power losses. In [143], a
limit is determined for the array’s Impp by empirical knowledge to identify hot
spot.

11.3.4.2. Statistical analysis

As already mentioned for feature extraction, the statistical properties of the features can
also be used for decision making. There are several tools available in the literature for
statistical analysis [144], detailed in the following.

e Regression analysis
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Regression analysis is a set of statistical processes for estimating the relationships
between a feature or state and one or more independent features [145]. The objective
of the regression is to find the coefficients of the curve (linear or non-linear) that most
closely fits the data according to an optimization criterion. Regression analysis can be
employed for prediction or classification. For the application in PV field, a regression
model has been used to detect the power loss of a PV array by analyzing Gpoa, Tm, Vmpp
and lvpp [146]. In [147], the Gaussian regression is applied to analyze Vwmep, Imep and
Pwpp for the classification of PS and inverter fault.

e PCA and discriminant analysis

PCA and discriminant analysis methods (LDA, QDA and RDA), already presented in
Section 11.3.3.4.2 for dimensionality reduction, can also be used for classification [148].
To perform the classification, each new data sample is projected into the representation
space previously built with one of these techniques, and then assigned to its class.
Authors in [20] adopts PCA to detect array PS. QDA is used in [123] to analyze Gpoa,
Tm, Ta, Vmep, Ivpe and P for the diagnosis of PS and SC module. Besides, in [127], a
discriminant analysis model is developed to classify PS, connection fault and sensor
fault in a GCPVs by analyzing the T2 and Q-statistic features.

11.3.4.3. Machine learning techniques

Thanks to the development of PV power plants and their increased digitalization,
operators have collected a huge amount of data over the past years. At the same time,
data analysis tools, especially MLTSs, have also grown tremendously. MLTs, are
powerful tools that can deal with large amount of data [149]. MLTs can automatically
analyze the relationships between variables and build an accurate model. Once the
model has been established and evaluated during the training and validation processes,
it can be used with new input samples for classification or prediction. This allows MLTs
to be applied for the tedious task of FDD in PV field [147]. As a hot research topic for
a long time, several MLTs have been developed, and applied to fault diagnosis in PV
field. These techniques can be categorized into unsupervised, semi-supervised and
supervised learning techniques.

11.3.4.3.1. Unsupervised learning technique

Unsupervised learning algorithms are designed to find the underlying structures in
unlabeled input data [150]. The aim is then to assign any new sample to one of its
structures. A typical unsupervised learning algorithm is clustering.

Clustering consists of forming groups (denoted clusters) in which objects with common
properties are grouped together [151]. There are several clustering algorithms that differ
according to how clusters are constructed and differentiated: k-means [152], DBSCAN
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[153], OPTICS [154], hierarchical clustering [155]. For the application in PV FDD, k-
means-based clustering has been applied in [156] by analyzing Gpoa, Tm, Vmprp, Ivpp,
Vac and Iac to detect PS and OC string, and in [157], [158] to evaluate the power loss.
The density-peak type uses Vmep, Impp, Voc, Isc in [159] to identify OC string, and LLF
of a GCPVs.

11.3.4.3.2. Semi-supervised learning technique

Semi-supervised learning combines a small amount of labeled data with a large amount
of unlabeled data during the training phase [160]. It is a special case of weak supervision.
Common semi-supervised learning techniques encompass graph-based methods [161],
heuristic approaches [162], generative models [163]. In [164], Graph-Based Semi-
Supervised Learning (GBSSL) analyzes Vwrp, Impp, Voc, Isc at array level to classify
PS, LLF, OC in a GCPVs. Similar application with GBSSL is conducted in [165] to
detect LLF, SC module, OC string in a PV array.

11.3.4.3.3. Supervised learning techniques

Unlike unsupervised learning, supervised learning infers a function from labeled
training data, that maps an input to an output via a model [166]. The common
supervised learning techniques are detailed in the following.

e Artificial Neural Network (ANN)

ANN, inspired by biological neural networks, works as a hierarchical model [167]. It
generally includes one input layer, several hidden layers, and one output layer, as
depicted in Figure 11-8. Each layer is composed of several connected units (named
neurons), each one associated to an activation function [168]. It operates as parallelized
processors to deal with complex systems. There are several variants of ANN, like
Multilayer Perceptron neural network (MLP) [169], Radial basis function neural
network (RBF) [170], Probabilistic neural network (PNN) [171], Extension neural
network (ENN) [172], Extreme learning machine (ELM) [173].

Input layer Output layer
Hidden layers

Figure 11-8 Basic structure of ANN

Regarding the application to feature analysis for PV FDD, Gpoa, Tm, Vmpp and lvep are
used as input features to a MLP model to detect SC module, and OC string faults [174].
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Using the same features, a PNN model is used to identify LLF and OC string faults
[175]. A WNN model is used in [176] to analyze Vwmep, Ivep, Isc and Voc for the
classification of PS, SC module, OC string and degradation. In [177], features from PV
EL cell images are analyzed by a MLP model to identify cell crack.

e Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) [178] belongs to the category of ANN but
generally exhibits much more complicated network structure. It is the most
representative deep learning technique, which is skilled at learning and classifying 2D
features, i.e., PV images or transformed 2D features. A typical CNN model consists of
one input layer, several groups of convolutional and pooling layers, several fully
connected layers and one output layer as depicted in Figure 11-9 [179] . Since the
structure of the CNN can be pretty complex, various types of CNNs with a different
number of layers and connections have been designed over time. The most classical
CNN structures are: LeNet [180], GoogLeNet [181], VGG [182], R-CNN [183],

ResNet [184], AlexNet [185], MobileNet [186], Attention U-Net [187], and YOLO
[188].

\ Filters 3
< >

Feature extraction Classification

Figure 11-9 Basic architecture of CNN

For PV FDD, LeNet model is used to analyze PV EL cell images to identify cell crack
[189]. PV IR module images are used as input of MobileNet to detect hot spot [190].
A CNN with 9 layers is used to classify delamination, soiling, snail track and
discoloration from UAV-measured PV visible module images [191]. Time series
graphs of | and V at array level are taken as features for a ResNet to detect LLF, SC
module, OC string faults [82].

e Fuzzy logic (FL)

FL is a form of many-valued logic in which the truth value of variables may be any real
number between 0 and 1 both inclusive [192]. It is employed to handle the concept of
partial truth, where the truth value may range between completely true and false. FL
assigns the numerical input of a system to fuzzy sets with some degree of membership.
The common membership functions include the singleton, Gaussian, trapezoidal, and
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triangular types. In PV FDD, a FL with triangle as membership function is developed
in [193] to study Vwmpp, Pm to detect array PS. [194] proposes a FL with trapezoid
function to classify PS, PID and degradation by analyzing features extracted from 1-V
curve and irradiance. In [195], a FL with combination of triangle and trapezoid
functions is built to detect LLF with features extracted from array Vimep and Ivpee.

e Support Vector Machine (SVM)

SVM constructs a hyperplane to achieve the largest separation or margin between
classes [196]. For non-linear classification, SVM maps the inputs into high-dimensional
feature spaces via a kernel function. Common kernels include polynomial (degree of 1,
2 or 3), Radial basis function (RBF). The use of kernel avoids the expensive
calculations of the dot product in feature space. To achieve multiclass SVM, one-
versus-all (OVA) or one-versus-one (OVO) strategies can be adopted. Concerning PV
FDD, [197] developed a RBF-based OVO SVM to classify OC module, SC module,
PS with array Vwmee, Impp , Isc and Voc as features. In [110], features extracted from PV
module images are used to evaluate the module soiling via a polynomial SVM.

e k-Nearest Neighbors (KNN)

KNN is a non-parametric lazy classification method, all the training data is needed
during the testing phase [198], [199]. An object is classified in the category to which
its k nearest neighbors in the space of the characteristics identified during the learning
process belong. The common distance metrics are Euclidean, City block, or Chebyshev.
Regarding PV FDD, a kNN model with Euclidean distance to analyze Gpoa, Vmpp and
Impp for the diagnosis of PS, BPD fault, and inverter fault [200]. The same model has
been used to classify PS, OC string and SC module with the features Gpoa , Tm, Vmpp,
Impp and Pupp [201].

e Decision Tree (DT)

DT is a decision-making tool that applies a tree-like model [202]. It usually works from
top to bottom, by choosing a variable at each step that best splits the set of items [203].
It generally consists of 3 types of nodes: root node, children node and leaf node. The
key issue of designing a DT is to determine the best splits. To this end, different
algorithms with different metrics can be used, which generally include 1D3 [204], C4.5
[205], CART [206]. For PV FDD, [165] built a C4.5 DT with G, Ta, Ve, Impp as
features to classify LLF, SC module, OC string faults. In [164], G, Vwmpe, Pvpep, Voc and
FF are used to construct a DT to detect PS, LLF and OC string faults in a PV array.

e Random Forest (RF)

RF is an ensemble learning method for classification that constructs multiple decision
trees during training phase and outputs the class by majority voting [207]. Each sub tree
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is trained on different parts of the same training set, with the goal of reducing the
variance [208]. RF mitigates the overfitting of DT during training and thus generally
outperforms DT [209]. Concerning PV FDD, in [210], RF is applied to analyze features
extracted from I-V curves to classify PS, OC, SC and degradation fault in a PV array .
A similar approach is used in [211] for the classification of PS, LLF, OC string, and
degradation fault. A RF model is used with Vipp, Impp, and Tm as features to detect and
analyze the soiling rate [212].

e Naive Bayes classifier (NBC)

NBC, based on Bayes' theorem [213], assumes that the variables are conditionally
independent. NBC assigns observations to the most probable class based on the
maximum a posteriori decision rule [214]. Explicitly, NBC estimates the densities of
the variables within each class. Then, it models posterior probabilities according to the
Bayes rule. Finally, it classifies a new sample by estimating the posterior probability
for each class, and then assigns the sample to the class yielding the maximum posterior
probability. In [215], a NBC is developed to analyze the texture features extracted from
thermal PV module images to detect hot spot. NBC with KNN and SVM are used to
identify the array LLF with 15 features reconstructed from I-V curves [216].

The main properties of these MLTs reported in literature are summarized in Table 11-5.
It should be noted that Table I1-5 is not a technically rigorous comparison of these
techniques, which, in fact, is quite tricky to perform due to the variability of each MLT
and the application cases.

Table 11-5 Main properties of common MLTs applied in PV FDD

MLTs Pros Cons
ANN e  Fast decision making e Appears as Black Box
[217], [218] e Good approximation of e Slow training

nonlinear relationships . .
P o Overfitting risk

CNN e  Fast decision making e Appears as Black Box
[217], [218] e  Efficient in learning 2D e  Large amount of labelled 2D
features features required
e  Transfer learning permits e High computational complexity

easier tuning of model

FL e  Flexible structure and e  Low reliability

[192], [219] modifiable rules e  Completely depend on human

knowledge and expertise
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SVM
[220], [221]

kNN
[198], [221]

DT
[222], [223]

RF
[207], [208]

NBC
[214], [215]

e  Fast decision making °
e  Outliers have less impact

e Relatively memory efficient

e  Easy implementation

e  Easy to understand and
interpret

. No need for normalization

e Reduce overfitting, higher
accuracy than a single DT

e  Mitigate the curse of o

dimensionality

Slow training, especially for large
dataset

Poor performance with overlapped
classes

e Overfitting risk

e  Slow decision making

e  Must store all training data

. Prone to be non-robust

e Overfitting risk

Lack of the intrinsic interpretability
of DT

Often fails to produce a good
estimate of the correct probabilities

11.3.5.

Ilustration of the four-step automatic PV FDD scheme

The four-step PV FDD methodology (modelling, pre-processing, feature extraction and
feature analysis) has been detailed. This scheme can be applied to analyze most of the
application cases in the PV field. To better illustrate how this four-step automatic FDD
scheme is performed, based on the abundant literature, some typical use cases have
been selected and analyzed in the light of this approach, as described in Table 11-6.

Table 11-6 Hlustration of the four-step automatic PV FDD scheme with several use cases

Ref. Modelling Pre-processing Feature Feature Target Accuracy
extraction analysis fault
Physics- Measurands e
based
model
[21] Yes Pwpp - Residual ~ Threshold  PS, OC, 90.3%
generation BPD fault
[224] No I-V curve - MSD SVM LLF 94.7%
[225]  Yes Vwee, Ivpe~ Normalization - PNN LLF, SC, 97%
oC
[82] No V, I'signal  Transformation - CNN LLF, SC, 99.5%
oC
[226] No EL images Data Segmentation ~ CNN Cell crack  88.4%
augmentation
[118] No Vis. images Data DnCNN ResNet Soiling 90%

augmentation
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[227] No IR images Resizing PCA GoogleNet Hot spot, 97.9%
cell crack

From Table I1-6, it is observed that not all the four steps in the scheme are clearly
addressed. For example, authors in [21], [228] have no pre-processing step and the
methods in [82], [225] have no feature extraction step. However, with this four-step
scheme, every use case can be interpreted step by step, which significantly facilitates
the understanding and comparison of PV FDD cases.

I1.4. FDD proposal

In this part, based on the summary of the fault diagnosis methods in the literature, the
proposal of our FDD strategy will be presented.

11.4.1. Summary of fault diagnosis methods

The two main categories of PV FDD methods, i.e., visual inspection and automatic
methods, have been presented. From the aspect of application, the typical properties of
these techniques for PV FDD are summarized in Table I1-7 from the aspects of pros
and limits. For the automatic FDD methods, the three main types of feature analysis are
also addressed. It should be noted that Table 11-7 is just a presentation of the properties
reported in the literature or related to the application in PV FDD. It is not dedicated to
conducting an elaborated comparison of these techniques, which is difficult to perform.

Table 11-7 Main properties of FDD methods in PV field

FDD methods Pros Cons
Visual inspection e  Easy implementation e  Unsuitable for large-scale PV
. lan
[27], [57] e  Practical plants

e Only detect visible PV faults

e  Completely depend on human
knowledge and experts

Automatic ~ Threshold e  Easy implementation e Accuracy depends on the quality
analysis analysis . .. . f threshold limit
4 y e  Rapid decision making ot threshold fimtes
[139], [229] . . e Prone to noise interference
e  Commercially effective
Statistical e  Rapid decision making e Assumptions may not be exact
analysis

[16], [144] ° Clear pattern and correlations e  Prone to misinterpret causation
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Machine e  Easily identifiestrendsand e  Large amount of data required
learning patterns

analysis . High computational complexity

e  Variety of mature models
[217], [218] available for application in
different conditions

e  Good at handling multi-
dimensional and multi-variate
data

e  Continuous improvement of
performance with increasing
amount of data

From Table II-7, it is observed that automatic analysis is more suitable than visual
inspection for the FDD of large-scale PV array or PV power plants. Among the three
categories of feature analysis techniques, machine learning is more promising. The
application of MLTs for FDD in the PV field will be less constrained by the rapid
development of powerful processors and adequate instrumentation.

11.4.2. Description of the proposed FDD strategy

Among visual inspection and automatic information analysis, since visual inspection is
unsuitable for monitoring large-scale PV array and detecting invisible fault, the
automatic information analysis is adopted. This strategy will be discussed from the
four-step PV FDD scheme in detail:

e Modelling: Due to the rapid development of PV power plants and their increased
digitalization, operators have collected a huge amount of data for PV FDD. Thus,
our FDD strategy focuses on the data-based modelling. As for the measurands, the
I-V curve, as containing rich information for assessing the health of the PV
modules and arrays, is chosen for analysis. Besides, G and Tm will also be used
since they provide critical environmental information additional to the I-V curve.

e Feature pre-processing: To eliminate the impact of environmental condition on the
I-V curve, the correction of 1-V curve to an identical environmental condition is
executed using G and Tm. Besides, as one key point of our FDD strategy is to
employ complete I-V curve for PV FDD, a resampling of the corrected I-V curve
will also be performed.

e Feature extraction: To improve the quality and the discriminability of features,
special feature extraction methods, i.e., Recurrence Plot (RP) and Gramian Angular
Difference Field (GADF), will be applied. These methods, efficient in the signal
transformation, have not been employed for PV FDD in the literature. Then, PCA,
a typical dimensionality reduction technique, will be applied to reduce the
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dimension of the transformed features. Besides, t-SNE, a useful tool of visualizing
high-dimensional data, will also be used to analyze the extracted features.

e Feature analysis for PV FDD: The MLTs, powerful in handling big data and multi-
condition classification, are chosen as the analysis technigues. Since the 1-V curves
are obtained under known PV conditions, common supervised learning techniques
like ANN, SVM, kNN will be practiced to analyze the features for the classification
of PV faults (presented in Section 1.6).

I1.5. Conclusion

The fault detection and diagnosis methods have been discussed through two categories:
visual inspection, and automatic analysis.

Visual inspection permits to conduct simple and fast examination. However, it is
obviously not suitable for monitoring large-scale PV array and detecting invisible faults.
In addition, it poses problems of reproducibility and reliability because observations
may vary from one operator to another.

The availability of large amounts of operational data and the development of computing
resources encourages automatic learning methods. The automatic FDD methodology
can be described in a four-step scheme: modelling, pre-processing, feature extraction
and feature analysis.

e Modelling: it includes physics-based and data-based modelling. Common PV data
adopted for FDD task consists of 3 types, i.e., PV images, environmental
measurements, and electrical measurements. The electrical ones, especially the |-
V curve, contains useful information for assessing the health of the PV modules
and arrays.

e Feature pre-processing: it is usually optionally applied with different purposes:
format unification, data cleaning, data augmentation and format transformation.

e Feature extraction: typical techniques applied for PV FDD include statistical
methods, signal processing methods, image processing methods, transformation
methods and estimation methods. Although feature extraction may be optional, it
may help to further process the PV features and improve the quality and
discriminability of features for automatic FDD analysis.

e Feature analysis for PV FDD: these techniques are classified into threshold
analysis, statistical analysis, and machine learning analysis. The MLTs, showing a
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great feasibility in handling big data and exhibiting a good generalization capability,
are very promising.

From the above analysis, we have decided to adopt the I-V curve, G and Tn as input
data of automatic four-step FDD methodology for an application in the PV field.
Specific pre-processing and extraction methods will be designed and evaluated to
enhance the discriminability capability of fault features. Finally, MLTs will be used to
analyze the features for classifying PV array faults.
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I11.1. Introduction

The I-V curves measured from a faulty PV module or array (hereinafter, termed as faulty I-V
curve) contain valuable information on its health status [20], [230]. However, because field-
measured I-V curves are recorded under varying environmental conditions, the comparison
between different curves would not be relevant if they are not brought to a same condition.
Thus, each I-V curve is corrected for a specific environmental condition (usually STC,
1000W/m? and 25<C) in order to make the curves measured under different environmental
conditions comparable.

In literature, various parameters, like V¢, Isc, Viypp, Iypp and B, are commonly extracted
from corrected I-V curves for fault diagnosis [19], [231], [232] or power loss analysis [233].
In addition, equivalent R or R, are also commonly calculated from corrected 1-V curves to
analyze the degradation mode of PV networks [234], [235].

Therefore, if there are significant errors in the corrected curves or in the parameters extracted
from the curves, the accuracy of the diagnosis will be seriously compromised. As a
consequence, the performance of the I-V curve correction is an important step in the diagnostic
process of PV modules.

To the best of our knowledge, there are no specific methods proposed for the correction of
faulty 1-V curves. Consequently, most of the researchers adopt the original or simplified IEC
60891 [25] correction procedures [236], [237]. For example, several authors have adopted the
procedure 1 in IEC 60891 to correct I-V curves measured under partial shading (PS) [238],
potential induced degradation (PID) [239], dust soiling [240], [241], or hot spot [242]. Besides,
the procedure 2 of IEC 60891 is also used to correct the key parameters (like V¢, Isc, P, €tC.)
on I-V curves [19]. In [19], these parameters can then be used as inputs of a classifier to
automatically identify the fault types (PS, OC, SC, or R degradation). Similar applications
can also be found in [243].

It should be noted that these procedures based on the IEC 60891 standard have been all initially
designed for the correction of curves measured from healthy PV panels. Furthermore, in the
literature, the suitability of these procedures for the correction of the I-V curves of faulty
panels is rarely investigated, and even less so if the fault characteristics are distorted by the
correction and thus lead to a diagnostic error. Yet, all these issues are decisive for the diagnosis
of PV faults [26].

With this in mind, this chapter aims to evaluate the performance of current procedures for
correcting faulty I-V curves. A new procedure will then be proposed.

Section 111.2 presents the preparation of 1-V curves for correction with the modeling of a PV
array detailed. Section 111.3 introduces the common correction procedures and the new
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proposal. Section I11.4 defines the metrics for the evaluation of correction performance.
Sections I11.5 presents the correction performance using single or multiple-curves-based
procedures under constant or varying fault severity. A discussion of the performance of these
procedures is done in Section 111.6.

I11.2. Preparation of I-V curves for correction

Since our target is to evaluate the error caused by the correction procedures, it is essential to
avoid the effects of other factors, like the measurement uncertainty on in-plane irradiance G,
module temperature Ty and I-V curve, which could be up to 5 % according to [74]. Therefore,
the curves to be corrected are generated in simulation rather than from field measurement to
ensure all the parameters used in the correction formula have no bias.

11.2.1. PV array modeling

To address several fault types, a PV array is modeled under Simulink® to generate the 1-V
curves. The regulable ‘PV array’ block [244] provided in the ‘Simscape’ library is chosen as
the basic model. It requires the following parameters:

e PV scale parameters: number of cells per module, number of series-connected modules
per string, number of parallel strings,

e PV electrical parameters: Voc, Isc, Viypp, Iypp temperature coefficient (TC) of Is. (@),
temperature coefficient of V. (B).

From the parameter setting, it is easy to find out that this block can be easily configured into
a PV cell, module, or array. In this study, a PV array is built based on the repetition and
combination of the block. To introduce the array’s model, the structure and principle will be
detailed in the following starting from the cell and module level.

1.2.1.1. Cell-level modeling

To characterize a PV cell, the single-diode and double-diode models are the most common
ones adopted in the literature. Among them, the single diode model is the most popular due to
its simplicity and the capability to well reproduce the main characteristics of PV cells. The
electrical equivalent circuit of this model is illustrated in Figure 111-1.

R, |

|
ph lg lsh +
Rsh V
O

Figure I11-1: Electrical equivalent circuit of single diode model
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This model consists of a current source that produces the photocurrent I,,, proportional to Gpoa
(to facilitate the presentation, Gpoa is hereafter showed simplified as G if without special notes)
and a single diode in anti-parallel with a diode current 1.

Under solar irradiation, the output current | is expressed by the photocurrent I,,,, the diode
current I; and the leakage one Ig; following the relationship as:
I ES Iph - Id - ISh (I“'l)

The photocurrent I, is determined by the characteristics of the semiconductor. It depends on
the G and the cell temperature (T¢) as follows:

G
Iph = G [Isc +a(T, — TC_STC)] (“I'2)
STC

where, a represents the absolute temperature coefficient of current (expressed as A/<C), which
is usually provided in the datasheet. Gsr¢ and T, s are the irradiance and cell temperature at
STC, equaling 1000W/m? and 25<C, respectively.

Based on the Shockley diode equation, the diode current 1, is expressed as:

v+ Rsl) — 1] (11-3)

anfonl2
t

where,

e [, refers to the saturation current of the diode

n: the ideality or the quality factor of the diode, generally between 1 and 2

V; is the thermal voltage, which is given by V, = kzT./q

kg: Boltzmann constant (kg = 1.38 %10 2 J/K)
e  (: constant absolute value of electron’s charge (1.6 x 10" C),

Regarding the diode saturation current I,, there are various equivalent calculation methods in
the literature [245]. In this model, I, is defined as in [246]:

3
Tc Eg STC Eg
I, =1 _ = -4
0 0-5T¢ <TC_STC> exp (ch_STC ch) ( )

where, I src is the saturation current at STC, which can be measured by flash test [247] or
estimated by parameter extraction method from module datasheet [65]. E, is the material
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bandgap energy, and E; r¢ is the STC value. For silicon PV cells, typical E; gr¢ is 1.12eV.
E,4 shows a small temperature dependency with cell temperature and its relationship with
E, stc can be expressed as E; = Eg or¢ [1 — Cg, (T¢ —TC_STC)]. Ck, is the temperature
coefficient for bandgap energy. It is commonly a small value, e.g., 2.67>10 for silicon cells
[246].

The leakage current I, is determined by the Ohm's Law as:

V4R
sh — Rsh

(111-5)

Substituting I; and Ig, in (111-1), the output current of the single diode model becomes:

V+RJ) 4 V + Rl

I =L, —1 [ (
ph — lo [€XP v, Ry, (11-6)

In Simulink, with the datasheet values given, the modelling of a PV cell is obtained through
the resolution of equation (111-6) under different irradiances and temperatures.

11.2.1.2. Module-level modeling

Although the ‘PV array’ block provided in the Simulink library can be directly configured into
a PV module, the structure of this type of PV module is different from common real modules
used in the field. The main difference is that this type of PV module contains only series-
connected PV cells with no bypass diodes, which are mandatory to ensure the safe operation
of real PV modules.

Therefore, in this study, a PV module is built with a combination of PV cells and a bypass
diode. Specifically, the module is based on the FranceWatt single-crystalline silicon (sc-Si)
PV module -FL60-250MBP, which consists of 60 PV cells in series and 3 bypass diodes (each
diode in parallel to 20 cells). In this study, as the faults to study do not include those that cause
non-uniform distribution of G or Ty, on one module, the module is thus built with a PV block
containing 60 cells in series and a bypass diode in anti-parallel to simplify the simulation, as
shown in Figure 111-2. Detailed module parameters are listed in Table I11-1.
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Internal structure of PV module

PV module BT
L% Conn2
Cells 1-60 O

2

Figure 111-2: Structure of PV module model

As seen from Figure 111-2, G and T are the two inputs of the module. Under real conditions,
Tc may vary slightly from cell to cell. And T is generally different with T. due to the isolation
between the cell layer and back sheet layer with a difference up to 2-3 <C depending on the
structure and the mount of a PV module [63]. In this simulation study, to avoid introducing
additional uncertainty factors from the aspect of temperature, all the cells are considered to
have the same T and this value is equal to the input Tm. In healthy condition, all the cells share
the same irradiance and temperature. Under irradiance mismatch conditions, the bypass diode
provides a current path to prevent the faulty module from overheat.

Table 111-1: Parameter of FL60-250MBP PV module

Variable Value Variable Value
Isc 8.64 A Vipp 3051V
Voc 37.68V Aol 0.02 %/°C

Lypp 8.21 A Brel -0.36 %/°C

(a,e; @and B, are the relative TC of Is; and V., respectively)

11.2.1.3. Array-level modeling

In this study, we consider a PV array with two strings in parallel. Each string is composed of
three FL60-250MBP modules in series, as shown in Figure 111-3. To simulate the 1-V curve,
the array is connected to a controlled voltage source to simulate the I-V tracer. There are also
additional resistances or gain blocks to generate specific faulty conditions, which will be
detailed in Section 111.2.3.
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PV array with 6 modules
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"
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Figure 111-3: Structure of PV array model
(The structure of each module is presented in Figure 111-2)

The output voltage of the PV array is determined by the voltage of each string, which depends
on the number of modules connected in series. In healthy condition, the numbers of functional
modules of each string are identical and corresponding string voltages are also the same.
However, when the output voltage of one module in one string decreases, e.g., become SC,
the voltage of this string also decreases, which then forces the array voltage down to this value
as all these strings are connected in parallel.

As for the array current, according to Kirchhoff laws, it is the sum of the current of each string.
And within each string, the output current of each module is forced to be identical as they are
connected in series. When the current of one module becomes different, e.g., under PS, the
bypass diodes will be activated to bypass this faulty module. This could keep the string current
at the normal level outputted by healthy modules but decreases the string voltage.

For the array presented in Figure I11-3, the array parameters are summarized in Table 111-2.

Table I11-2: Parameter of the simulated PV array

Variable Value Variable Value
Isc 17.28 A Vipp 9153V
Voc 113.04 V Ivpp 16.42 A
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11.2.2. Environmental settings

The form of the array’s I-V curve is mainly determined by the G and Tm. The short-circuit

current Is. increases with G while the open-voltage V. decreases with T, as depicted in
Figure 111-4.

ealthy ealthy
() Health (b) Health
N ——G=400W/m? 2 Tm=15°C
= m m=
20 G=600W/m? 20 Tm=25°C
< i = e — Tm=35°C
z1° G=1000w/m?| = 19176 ’ Tm=45°C
o — G- 2| O — TrEEo
£ 10 G=1200Wim?| £ 401175 | Tm=55°C
O O
: N —
0 0.5
0 0
0 50 100 0 50 100
Voltage (V) Voltage (V)

Figure I11-4: Impact of G and T on I-V curve of healthy PV array
((a): impact of varying G with T =25<C, (b): impact of varying Tm with G=1000W/m?)

The setting of G and Tm to prepare the dataset for correction varies with the correction
procedure for evaluation. For example, for correction procedures based on a single I-V curve,
the G and T will be selected from field-measured pairs of G and Tm. For correction procedures
based on multiple I-V curves, i.e., the correction of one I-V curve requires multiples curves,
the G and Tm of these curves to correct could be quite different. Detailed explanation will be
given in Sections 111.5.1.1 and 111.5.2.1.

11.2.3. Configuration of faults

With the gain block and the additional resistances, the model shown in Figure I11-3 can
simulate PV array under healthy and faulty conditions. In this study, specifically, five typical
faults are considered:

e Partial Shading (PS): one module is shaded by adjusting the value of the gain block
(i.e., GainPS) in the range [0, 1] to control the irradiation of the module. The
corresponding PS degree varies from 0 to 100%;

e Short-Circuit (SC): one module is short-circuited by connecting the resistance Rg in
parallel,

e Open-Circuit (OC): one string is open-circuited by connecting the resistance R, in
series;

e Rsdegradation: increases the equivalent series resistance of the array (R gegra);
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e Rsn degradation: decreases the equivalent shunt resistance of the array (Rsp,_gegra);

Table 111-3 summarizes the different fault parameters and their corresponding ranges of
variation that will be used. The analyses of the impact of fault severity on the correction
performance will be presented in Sections 111.5.1 and 111.5.2.

Table 111-3: Parameter setting for the different operating conditions

Condition PS degree (%) Rgc (Q) Roc (Q) R gegra () Rgp degra ()

Healthy 0 10° 10° 10° 10°
PS 1 module [0 - 100] 10° 10° 10° 10°
SC 1 module 0 10° 10° 10° 10°
OC 1 string 0 10° 10° 10° 10°
Rs degradation 0 10° 10° [105- 2] 10°

Rsh degradation 0 10° 10° 10° [10°- 20]

111.2.4. Impact of faults on 1-V curves

In fact, the five faulty conditions could lead to different distortions of the I-V curve. To
illustrate their impact, I-V curves under STC are simulated. The I-V curves of healthy and five
types of faulty array are compared in Table I11-4. For PS, Rs and Rsh degradations, the severity
of the fault is varied with several representative values to show its impact on the shape of the
I-V curve.
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Table I11-4: Impact of faults on I-V curves

Condition Impact on I-V curve Examples
Healthy None 20 Healthy
15
<
E, 10
S
© 5
0
0 50 100
Voltage (V)
PS 1 module Appearance of an inflection point 20 PS 1 module
The voltage change at the
inflection point occurs at about e
2/3 of V¢ under healthy = |——PSdeg=100%
condition since there are three g 10| —— Psdeg=s0%

: A . 5 PSdeg=60%
modules in one string while one © 5 PSdeg=40%
module is shaded; larger the PS PSdeg=20%

. Healthy
degree, lower is the current of the 0
inflection point 0 °0 10
point. Voltage (V)
SC 1 module Voltage decrease 20 SC 1 module
The V. on SC curve decreases
by 1/3 of V, in healthy condition <P
since one out of three modules is €10
SC. £
(@]
5/[—sc
Healthy
0
0 50 100
Voltage (V)
OC 1 string Current decrease 20 OC 1 string
The Is; on OC curve decreases by
1/2 of I in healthy condition =z
since one out of two strings is €10
OC. £
O
5 —O0C
Healthy
0
0 50 100
Voltage (V)
Rs degradation Slope decreases in the voltage 20 Rs degradation
region
The greater the value of the added i
resistance is, the smaller the slope =
. ; © 10 f|——Added Rs=20Q
in the voltage area is. E || ——Added Rs=150
o Added Rs=10

Added Rs=0.5Q
Healthy

50
Voltage (V)

100
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Rsh degradation Slope increases in the current 20 Rsh degradation
region L
The smaller the value of the i
added resistance is, the greater the =
slope is @ 10 |—— Added Rsh=100
pes. 5 Added Rsh=150
© 5 Added Rsh=30Q
Added Rsh=100Q
Healthy
0
0 50 100

Voltage (V)

I11.3. 1-V curve correction procedures

In this section, the usual 1-V curve correction procedures and a new proposal are presented.

111.3.1. Usual correction procedures

Through the literature review, the most common I-V curve correction procedures are based on
the three procedures proposed in IEC 60891 [25]. These procedures are either based on single
curve for correction, like procedures 1 and 2, or based on multiple curves, like procedure 3,
all of which are detailed in the following. Since STC (G =1000 W/m? and Tm =25 <C) is more
commonly adopted as the target condition for 1-V curve-based diagnosis, in the following, if
not stated, the correction of I-V curves refers to the correction to STC.

11.3.1.1. Procedure 1 (P1)

The P1 is based on the following equations:

G
I =11 + Iscq <G_i - 1) + a(Tpz — Tm1) (1n-7)
Vo =V1 = Rs(I; = Iy) — kI3 (Tinz — Tina) + B(Timz — Tina) (111-8)

where, I, and I,, V; and V,, T,,; and T,,,, G, and G, are the currents, voltages, module
temperature, and irradiances before and after correction, respectively; s, is the short-circuit
current before correction; a and g are the PV module absolute TC of Is. and Vy, respectively;
= Qe 1356, B = Brer " VSrC, e and By, are the relative TC of I and V. (presented
in Table 111-1); Ry is the internal series resistance and « is the curve correction factor. These
coefficients can be determined using the methods in [25].

111.3.1.2. Procedure 2 (P2)

The P2 is based on the following equations:
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I, = 11(1 + arel(TmZ - Tml))GZ

, : (11-9)

G
Vo=Vi+Voc1 [.Brel(TmZ —Tp1) ta-In (G—Z)] —R;(I; - 1)
1
— K- IZ(TmZ - Tml)

where, V¢ is the open-circuit voltage before correction; a is the irradiance correction factor;
R, and x may not be the same value used in P1, but determined by the procedure detailed in
[25].

(111-10)

In fact, the determination of the coefficients a, R and k for P1 and P2 requires a group of I-
V curves at the same G or at the same T according to [25], which is troublesome and time-
consuming to fulfill in real life. Therefore, in most applications of P1 and P2, these coefficients
are either tuned via simulation under healthy condition [235], or neglected [238] but to the
detriment of poorer performance. Therefore, in this study, these coefficients will not be
neglected and will be determined following the standard routine, i.e., via the simulation under
healthy condition. In this case study, the determined coefficient of P1 and P2 and the TC used
are presented in Table I11-5.

Table 111-5: Correction coefficients of P1 and P2

Correction Correction coefficients Temperature coefficients
procedure
a Rs (Q) K a (A/CC) Arel :8 (V/T) ,Brel (%/T)
(%/<C)
P1 - 0.512 0.0026 0.0035 - -0.41
P2 0.0413 0.473 0.0025 - 0.02 - -0.36

The examples of the correction of an I-V curve (simulated using the array model in Figure
[11-3) to STC using P1 and P2 are illustrated in Figure I11-5.
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(a) Example of correction using P1 (b) Example of correction using P2
20 2 20 2
G=1000W/m*“ Tm=25°C G=1000W/m*“ Tm=25°C
L y'd L £
15 15
< 7 < b
?E’ G=815W/m? Tm=44°C ?E’ G=815W/m? Tm=44°C
[9) [9)
E10r E10r
> >
O O
5F Original 1 5F Original
Corrected to STC Corrected to STC
Extended correted Extended correted
— — —-Simulated at STC — ——-Simulated at STC

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Voltage (V) Voltage (V)

Figure 111-5: Example of correction procedure P1 &P2 to STC using an I-V curve of a healthy array

((a): using P1, (b): using P2. Grey lines link the corresponding points on the original and corrected I-
V curves, the voltage and current of which are calculated by (111-7), (111-8) for P1 and (I11-9),
(111-10)for P2)

From Figure I11-5, it is observed that, sometimes, for both P1 and P2, the corrected I-V curve
(before extended) shifts to the right, as seen from the part near V. This is due to the corrected
voltage is larger than the original one of each point on the original I-V curve at certain
environmental conditions, which can be seen from the gray lines connecting each point before
and after correction in Figure I11-5. To obtain a complete I-V curve (voltage starting from 0),
the corrected curve is extended by extrapolation using Phang’s method [248], [249].

In Figure 111-5, the I-V curve simulated at STC is also presented. It is observed that the
corrected-to-STC curve is a little bit different with that simulated-at-STC (hereinafter called
real curve), especially when using P2, which means that even after the correction, the 1-V
curve still cannot completely correspond to the real curve. To quantify this difference, different
metrics will be adopted, which will be then presented in Section I11.4.

111.3.1.3. Procedure 3 (P3)

Different from P1 and P2, P3 is free from correction coefficients but requires an interpolation
constant y:
I=0L+y(U,— 1) (1-11)

V3 == Vl + )/(Vz - Vl) (“I'12)

According to [25], P3 requires at least two reference curves to obtain one corrected curve at
specified G or Tm by calculating y using (111-13) or (111-14). Thus, in order to correct to a
condition with requirements on both G and T, at least three curves are necessary.
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G3 = Gl + )/(GZ - Gl) (“I'13)

T3 = T1 + Y(TZ - Tl) (|||'14)

The three reference curves based P3 is the most common type of application of P3 due to its
less requirement of reference curves. It is conducted by two steps according to [25]. An
illustration of this correction methodology on Tm (G) plot is shown in Figure 111-6 and an
example given in Figure I11-7.

Correction procedure

A T,y (°C) Reference
m @ curve3l
\
\
v @ Reference
N\ curve 1
,,,, q‘ Step 1
o | Intermediate
\
Reference \ curve
curve 2 \‘
\ Step 2
\ .
Final
21T
' corrected curve

: >
1000 G (W/m2)

Figure 111-6: Hlustration of two-step correction procedure with three curves on Tr (G) plot

(Stepl: use reference curves 1 and 2 to generate the intermediate curve; Step 2: use reference curve 3
and the intermediate curve to get the final corrected curve)

(a) Correction step 1 of P3 (b) Correction step 2 of P3
20 l. .......................................... G=1194W/m? 20
. Tm=46°C [l ™ T SRS
b ; ~
4 ‘._‘% a
15| G=1038W/m? AYE 15 | G=1069W/m? G=1000Wim2
< Tm=56°C G=1117Wim* \\: < | Tm=a0°c Loge
= Tm=51°"C = Tm25°C
c c
210t 210¢
> ]
O O
Intermediate curve
5 Reference curve 1 5 r|= = :Reference curve 3
--------- Reference curve 2 Final corrected curve
Intermediate curve |  \lz | | [seeeenen Real curve at STC
0 - : : - - 0 : - : : —
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Voltage (V) Voltage (V)

Figure 111-7: Example of correction using P3 based on 3 reference curves

((a): step 1, (b): step 2. Grey lines link the corresponding points on the original and corrected 1-V
curves, the voltage and current of which are calculated by (111-11), (111-12))

In summary, the implementation of P1 and P2 requires only one single I-V curve, while P3
requires multiple curves. For P1 and P2, in fact, they do not perform well for the correction of
I-V curves under all the tested faulty conditions regarding the correction of voltage or current.
Thus, a new correction procedure is introduced.
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111.3.2. New correction procedure

A P2-based procedure denoted NewP2 is proposed. It uses the same formula as P2 for current
correction. But for the voltage correction, the term V-, in (I11-10) is replaced by
“Voc1l1 + Brei(Tmz — Tima)]’. The reason for this change is to improve the poor voltage
correction of P2 by combining the merit of P1. The effect of this change on the correction
performance will be presented in detail in Section 111.5.1.2. In this way, the equations for
NewP2 are:

I, = 11(1 + arel(TmZ - Tml))GZ
5 =
Gy

(111-15)

G
V,=V; + V0C1[1 + ﬂrel(Tmz — Tn1)] [,Brel(TmZ - Tml) t+a-in (G_2>
1

—Rs(I; = 1) — k- I;(Tyy — Tiny)

] (111-16)

I11.4. Metrics for the evaluation of correction performance

The evaluation of correction performance will be conducted from 2 aspects, i.e., from the
entire I-V curve and from single extracted parameters (e.g., maximum power B,,, Vo and Igc).
Two corresponding metrics are adopted to quantify the correction performance from these two
aspects.

11.4.1.1. Metric for the evaluation of correction of the entire curve

Firstly, for the entire 1-V curve, curve error (E.,.) IS adopted as the metric. It is calculated
by the normalized root-mean-square error between the corrected curve and the real curve. It
should be noted that the real curve only means that G and Tn, are at STC, but the array health
status could be either healthy or faulty.

Rt = ey

11-17
Ecvrve = e x 100 ( )

where, If and I7°% are the current values from the corrected and real curve for the same
voltage V;, respectively. V; is the i element of a voltage vector with N points linearly
distributed in [0, V4, ] range with a constant step (V;,,4 1S constant for all the conditions).
Vmax could be set a little larger than the array’s V. at STC in healthy condition to avoid that
the voltage of improperly corrected curve exceeds this range. In this study, 1}, is setas 120V
and N at 100. IZ¢% refers to the I extracted from the real curve.

111.4.1.2. Metric for the evaluation of correction of single parameters
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Then, regarding the single parameters, the relative error (RE) is adopted to evaluate the
correction:

Xc — real

where, X¢ and X"¢® are the parameters from the corrected and real (i.e. simulated at STC)
curves, respectively. X can be straightforward curve parameters (such as B,,, Vo or Igc) or the
single-diode equivalent model’s parameters (R Or Rg,) considered as fault parameters.

I11.5. Correction performance

In this section, the three correction procedures proposed in IEC 60891 (P1, P2, and P3) and
the new one (NewP2) will be evaluated. However, it should be noted that P3 is based on
multiple 1-V curves for correction. Its principle is different from the others that are based on a
single I-V curve. Therefore, the evaluation of these procedures will be conducted separately:
Section 111.5.1 compares the correction procedures using a single I-V curve (P1, P2, NewP2)
and Section 111.5.2 evaluates the correction procedure using multiple 1-V curves (P3).

111.5.1. Performance of correction procedures using single -V
curve

In this part, we focus on the correction procedures based on a single I-V curve, i.e., P1, P2,
and NewP2. Firstly, the selection of G and Tm to generate the curves is presented in Section
I11.5.1.1. Then, the correction performance (using the metrics E,;,. and RE) will be evaluated
using the curves simulated under constant or variable fault severity in Sections 111.5.1.2 and
111.5.1.3, respectively.

111.5.1.1. Selection of G and T based on field-measurements

To evaluate the correction procedures with real environmental conditions, the selection of G
and Tm to generate the curves is based on field-measurements (in SIRTA meteorological and
climate observatory [250], France) of the sc-Si FL60-250MBP PV module (identical to those
used in the simulations in Section 2.1.1) during summer as illustrated in Figure 111-8. The G is
measured by a reference cell and Ty by a Pt100 probe attached to the back side of the module.
To minimize the correction error, commonly, the irradiance of the curves for correction is
selected in a higher range [251]. In our case studies, the lower bound of G is set as 800 W/m?.
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Distribution of field-measured G and Tm
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Figure 111-8: Selected G and Tr, based on field-measurements during summer for one sc-Si PV
module

In Figure 111-8, the blue points represent the measured G and Tm, While the red ones are those
selected for the simulations. Totally, a group of 174 pairs of G and Tn is selected based on a
quasi-uniform distribution within the area enclosed by the blue points.

11.5.1.2. Correction performance with constant fault severity

In order to investigate the impact of the selected G and Tm, the fault severity is firstly required
to be settled. In this study, the severity for PS, Rs, and Rsh degradation needs to be set with
values detailed in the following. These severities are the example values that could result in a
relatively clear change to the I-V curves, as presented in Figure 111-9. Other values of severity
will be studied in Section 111.5.1.3 using the same analysis approach.

» PS degree = 80% for partial shading,
> R gegra= 1 Q for series resistance degradation,

> Rgn gegra = 30 Q for shunt resistance degradation

PS Rs degra Rsh degra
20 20 20
15 15 15
g’ 10 i-:’ 10 §’ 10
5 | |=———PSdeg=80% 5 Rs_degra=10Q 5 Rsh_degra=300Q
Healthy Healthy Healthy
0 0 0
0 50 100 0 50 100 0 50 100
V(V) V(V) V(V)

Figure 111-9: 1-V curves of PS, Rs and R, degradation under set fault severity
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With the environmental setting and fault severity configured, the database of the curves to
correct can be simulated. With this database, the correction performance is now evaluated
from the shape of the corrected curves and the performance evaluation metrics.

e Form of corrected I-V curve

Using P1, P2, and NewP2, the curves before and after correction are displayed in Figure 111-10.

Corrected |-V (color depends on G) Real |-V MPP of corrected I-V O MPP of real |-V ‘

(@)  original IV curves (b)20 Corrected by P1  (C) P Corrected by P2 (d)2 Corrected by NewP2
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Healthy < 210 210 210 £
=10 \ = = = S
G
G——— L 0 0 0 H 800
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20 H\ n 1150
“—
PS <y s} =
= -_"\ =
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ostesmeon 1\ | i
0 50 100 y(v) 0 50 100 v(v) 0 50 100 v(v) 0 50 100 v(v)
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“«—
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Figure 111-10: Correction results using three procedures under eight conditions

((@): curves simulated for correction (each condition contains 174 curves with field-measured
combinations of G and T at constant fault severity), (b): corrected curves using P1, (c): corrected
curves using P2, (d): corrected curves using NewP2 (the displayed color of each curve is determined
by the irradiance value with the colorbar on the right side of the figure, the circles on the curves
represent the MPP))

For the corrected curves, using all three procedures, clear deviations from the real I-V curve
can be observed for most faulty conditions. These deviations are due to the joint effect of
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voltage and current corrections, reflected along the x-axis, and along the y-axis, respectively.
They are now analyzed as follows:

= Voltage correction:

Seen from the V., the deviations due to voltage corrections are observable in all the cases
when using P2, but only for SC and Rs degradation when using P1 and for SC when using the
NewP2. To analyze these results, we rearrange the voltage correction formulas (111-8), (111-10)
and (I11-16) in one single equation as it follows:

G,
VZ = kl'V1+k2 (TmZ _Tm1)+k3 ln(G_>
1 (1-19)
tky (I — 1) +ks Iy (Tmz —Tin1)
where the different coefficients k; (i = 1, ...,5) for each procedure, are given in Table I11-6.

Table 111-6: Coefficients for voltage correction in P1, P2, and NewP2

Coefficient P1 P2 NewP2
ky 1 1 1
ka Brei - Voc© Brer " Voci Bret " Voc1 " [1 + Bret(Tmz — Tma)]
ks 0 a-Voci a-Vocr  [1 4 Bret(Trmz — Tm1)]
k, R, R, R,
ks -K -K -K

* |n this study, we correct the curves to STC, thus T,,, =25 C

At first, we compare P1 and P2. For the two procedures, k, and k< exhibit the same form of
variables. Based on the tuning procedure in the standard IEC 60891, these coefficients are also
obtained with similar values as presented in Table 111-5. As for k5, itis 0 in P1. In P2, since
both coefficients a and ‘In(G,/G,)’ are small values, their product is a second-order term and
its contribution is negligible (within 0.3 %). As a consequence, the main difference between
P1 and P2 lies in k,. It is noteworthy that k, for P1 is constant, while for P2, it depends on
Voc1 (Voc of the I-V curve to correct). In Figure 111-10 (b), there is almost no distortion of the
corrected curves when using P1 under healthy condition, which demonstrates the voltage’s
correction efficiency. As for P2, since T,, of the curves to correct (T,,,,) are all higher than the
target T, (T = 25C), Ve is thus always lower than V5I¢ (impact of G on V¢ is
negligible compared to Tm). Accordingly, k; - (T, — Tne) in P2 is lower than in P1.
Therefore, the corrected voltage in P2 is lower than in P1. That is the reason why in Figure
[11-10 (c), we can observe the slight distortions of the corrected curves shifted on the left side
of the real curve near the open-circuit point.
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Besides, the significant correction error under SC and PS for P1 and P2 also originates from
the setting of k,. For SC, to be specific, short-circuit is introduced in one module of one string.
As a consequence, V3¢% is different from V5L¢ (value from datasheet, i.e., in healthy case),
and is equal to around 2/3 of V;5%¢. Therefore, in P1, the corrected voltage is higher than the
real value. As for P2, V¢, although varying with Tn, is still closer to V;¢%. Consequently,
voltage correction is more efficient with P2. Regarding PS (one module shaded), during the
process of I-V scan, when the bypass diodes get activated, the shaded module can be
considered as SC. That explains why a similar deviation near the inflection point is also

observed.

From the above analysis, P1 and P2 have their pros and cons in voltage correction.
Accordingly, NewP2 is designed by combining their advantages. As observed before, in k,,
using V52¢ (like in P1) could generally lead to better voltage correction than using V¢, (like
in P2) except under SC. The exception is because V5L fails to reflect V5. Therefore, in
NewP2, V¢, is replaced by Vg * [1 + Bret(Timz — Tima)1, which corrects the simulated Vi ¢y
to the V, under STC of the real curve and, therefore, could better approximate V€% under
any condition. In this way, as shown in Figure 111-10 (d), the correction errors near the open-

circuit point using P1 (under SC) and using P2 (under other cases) are attenuated.
= Current correction:

For the current of corrected curves, noticeable dispersion along the y-axis is observed under
PS near the inflection point using P1. In fact, the output current of PV module is mainly
affected by G, while the impact of Tr is limited. Therefore, to analyze this phenomenon, for

simplification, the contribution of ‘(T,,; — Ty,1)’ is neglected. Then we can derive from (111-7)
and (111-9):

For P1:

Iy = Iy + Isc1 (G2 /Gy — 1) = Igcq - G /Gy + 11 — Iscq (111-20)
For P2:

12 %Il'GZ/Gl (“I'21)

Comparing these two expressions, for P2, the corrected current (I,) is proportional to the
current to correct (I;). While for P1, there is always a bias that degrades correction’s
performance, particularly around the inflection point (where I, is only half of Ig-;), like in
Figure 111-10 (b) under PS. Therefore, P2 performs relatively better than P1 for current
correction. That also explains why, for NewP2, the current formula of P2 is chosen, and the
same performance is achieved in Figure 111-10 (d). For Rsh degradation, it is observed a clear
correction error near the Is- part for all the three procedures. This phenomenon will be
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investigated from the aspect of current extrapolation in the analysis of RE, ., presented in the

next part.

e E_.v.and RE of key curve parameters

Based on the corrected curves, the performance evaluation metrics (Ecyyye, REp , REy . and

RE,) are calculated. Considering that G and T are both varying for the 174 curves to correct,

the statistics of the metrics are presented in Figure 111-11.
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Figure 111-11: Four metrics to present the correction performance of P1, P2, and NewP2

((@) Ecyrpe, (b) RE Of By, (€) RE of V¢, (d) RE of g (the bars represent the mean value for the
correction of 174 curves, while the horizontal whiskers represent the standard deviation (std), these

two values are marked as ‘mean’+‘std’))

These metrics are analyzed as follows:
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» E.ve: The value of E,,,e, Which reflects the correction error on the entire 1-V curve,
corresponds to the observations in Figure 111-11. As expected, high E,,-. is found
under SC using P1, and PS using all the methods. None of P1 and P2 outperforms in
all the conditions, but the proposed NewP2 performs better with generally lower and
more stable E,,,v.. The overall average E ., (2.37 %) of NewP2 decreased by 31.3 %
compared to the average E,,-. Of P2 (3.45 %) and by 47.3% to that of P1 (4.5%);

> REp_: Similarly, NewP2 performs better correction of P, except under heathy
condition with the mean B,, of -0.2% higher than the P1 of -0.02%. However, it should
be noticed that REp_ is positive under nearly all the conditions for all the methods.
This indicates that the fault impact on P,, is underestimated. The mean maximum value
is up to 9.1 %, which could hinder the detection of incipient PV fault if B,, is used as
a fault indicator;

> REy,.: The results are consistent with our previous observations, i.e., the corrected

Vo with P2 is always lower than the real value under all conditions, while the V.
using P1 is relatively better corrected except under SC, where the maximum value of
the mean REy . could reach 5.7 %. And NewP2 effectively reduces REy,, . compared

with P1 (in SC), and P2 (in other cases);

> RE,,: The performance of the three methods is similar. It should be noted that, based

on (111-8) and (I11-10), the voltage of the short-circuit point on the original curve (i.e.,
equals 0), after correction, is positive. This phenomenon is also observed in [248].
Therefore, to retrieve the Is. (according to the definition, the corresponding voltage
should be 0), the corrected curve must be extrapolated. Here, the extrapolation method
in [248] is adopted. In this way, although the current value corrected from the original
Isc (Isc1) 1S close to the real Ige, there is still a difference that depends on the initial
slope of the corrected curve. Indeed, for all the conditions except Rsn degradation,
where the slope is mild, RE . is low (within 0.5 %). But for Rs» degradation, where

the current at MPP is severely lowered down, the slope is steep, and RE, . is larger.

e RE of fault parameters

Now, we evaluate the correction performance for one or two typical curve parameters, selected
as follows:

> PS: The voltage and current at the inflection point, named V;., and I, respectively.
L., could reflect the shading level, and V;., the number of activated bypass diodes of
PV modules in one string;

» SC: The open-circuit voltage Vy;
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» OC: The short-circuit current Ig.;

» Rs degradation: The extracted R, calculated by the reciprocal of the slope of the I-V
curve near the V. side [252];

> Rsn degradation: The extracted Ry, calculated by the reciprocal of the slope of the I-
V curve near the g side [252];

For each fault parameter, the RE is calculated from the values obtained from the corrected and
real curves. The results are summarized in Figure 111-12 with the type of misestimation of
parameters also marked.

RE of fault parameters
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Figure 111-12: Correction performance of fault parameters using P1, P2 and NewP2
(Values are presented in mean =std)

From Figure 111-12, We can observe large misestimation (absolute mean RE >2 %) with 1/,

Ly, » Rs and Rg, when using P2 and NewP2. Worse yet,
nearly all these large errors (except Ry, using P2 and NewP2) lead to underestimating fault
parameters, which will affect the detection of incipient faults. Similarly, none of the three
methods outperforms for all the fault parameters. Except for Rs and Rsn degradation, in all
other fault conditions, P2 and NewP2 have higher or similar performance than P1. Compared

to P2, NewP2 achieves almost the same accuracy but greatly decreases the REg_. Thus, overall,

Voc and R when using P1, and V.

NewP2 has a more stable performance with an average of the absolute RE of 3.1% compared
to 4.37% for P2.

111.5.1.3. Correction performance with varying fault severity

In this subsection, the impact of each fault severity on correction performance is investigated.
The severities of PS, Rs, and Rsh degradations are varied in the following ranges one separately:
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PS degree = 0:10:100 %, Rs gegrq =10°:0.2:2 Q or Rep_gegrq=10""° Q. For each fault level,

the curves are simulated for the selected 174 pairs of G and Tm (presented in Section 111.5.1.1)
and corrected using the three single curve-based methods.

e E_ .. and RE of key curve parameters

The performance metrics extracted from these corrected curves are now presented in Figure
I11-13 as a function of fault severity.

Performance (E ) Performance (REPm) Performance (RE,, ) Performance (RE,_)

Isc

curve

Voc

S
(a) a,g
>
PS uj
[\4
& 86600888080
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
PS degree (%) PS degree (%) PS degree (%) PS degree (%)
10 20 4
—6—P1 10
b & [~EP2 S R 2 9
®) o —A— NewP2 ~ 10 = éu
Rs s 5 E <) 2]
S = o4 TR
3 w
x \e
, 0 2EeeeaaEaa T Trwee)
0 04 08 12 16 2 0 04 08 12 16 2 0 04 08 12 16 2 0 04 08 12 16 2
Rs_degra (Q2) Rs_degra (2) Rs_degra (Q2) Rs_degra (2)
4
—e—P1
—8—P2 * 2
3
W 02
L.
10° 10* 10® 102 10 10° 10* 10 102 10 10°  10* 10® 102 10 10° 10* 10 10?2 10
Rsh_degra (2) Rsh_degra (2) Rsh_degra (2) Rsh_degra (2)

Figure 111-13: Correction on the curve error and key curve parameters using the three procedures with
varying fault severity

((a) PS, (b) Rs degradation, (c) Rs, degradation (the marked line represents the mean of 174 values
obtained from the correction of 174 curves under each fault severity, while the band area behind
represents the standard deviation; the x-axis for Rs, degradation is set as log scale; the degree of

severity is presented from healthy to severe on the x-axis from left to right))

From Figure 111-13, several remarks can be drawn:
> Nearly all the metrics have a monotonic variation with the fault severities (except the
relatively stable variation of E_,,,. under Rs degradation using P2 and the surge on the

REp_  under PS using P2 and new P2, which is analyzed from the remark on REp_ in
the following);

» E..ve 1S mainly sensitive to PS and severe Rsh degradation;

> REp_ is more sensitive to severe Rsn degradation and PS. The surge observed for PS is

due to the shifting of MPP. Examples are presented in Figure I11-14. In Figure 111-14
(a), where PS degree=40%, the MPP of both real and corrected curves are at the ‘lower
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stair’ (lower flat part of I-V curve). When PS degree=60%, due to the correction error,
part of the MPP on the corrected curves shift to the ‘upper stair’ (upper flat part of I-
V curve). When PS degree=80%, all the MPP have arrived at the “upper stair’. Thus,
during the unsynchronized shifting process between the MPP of corrected and real

curves, a surge on the REp_ under PS is resulted in;

except for RE; .. under severe Rs degradation;

E..rve @nd RE for key curve parameters.

Current (A)

Current (A)

Figure 111-14: Corrected curves using P1, P2, and NewP2 under three fault severities of PS

((a) PS degree=40%, (b) PS degree=60%, (c) PS degree=80% (the displayed color of corrected
curves and MPP depends on the G of the curve to correct, the circles on the curves represent the

Moreover, it should be noted that, for B,,, which serves as an essential indicator for the health
status of PV devices, its RE is nearly always positive (except low RE values at low fault
severity) and gradually increases with the fault severity. This means that using these correction
methods could result in a significant underestimation of the fault impact on P,,. Worse, the

REy,. and RE|,. are almost insensitive to all faults regardless of their level of severity,

The overall performance of NewP2 is better than P1 and P2 with relatively lower
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MPP, REp are marked as ‘mean’+‘std’))

underestimation increases with the fault severity.

RE of fault parameters
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The impact of fault severity on fault parameters is also investigated, as illustrated in Figure
[11-15.

PS parameter 1'REVrp PS parameter 2'RElrp Rs degra parameter-RERS ;)sh degra parameter-RERsh

—o—P1
—&—P2

- - -20
20 40 60 80 100 20 40 60 80 100 0 04 08 12 16 2 105 10* 10° 102 10

PS degree (%) PS degree (%) Rs_degra () Rsh_degra ()

Figure I11-15: RE of fault parameters under PS, Rs, and Rs, degradations with variable fault severity

(the marked line represents the mean of 174 values obtained from the correction of 174 curves under
each fault severity, while the band area behind represents the standard deviation; the x-axis for Rsn
degradation is set as log scale; the degree of severity is presented from healthy (except for V., and I,

as these parameters do not exist under healthy condition) to severe on the x-axis from left to right)

With regard to the fault parameters as a function of fault severity, different trends are observed:
for the parameters V., and R, using all the three methods and for Ry, using P1, the RE
decreases as the severity of the defect increases, while the opposite trend is observed for the
other cases. This is due to the difference between the changing rate of the absolute error of
one parameter and the changing rate of the real value, as defined in (I11-18). Overall, NewP2
performs relatively better with lower and more stable RE.

It should be noted that within the range of severity of the defects tested, all the parameters are
underestimated with the three methods. Therefore, if they are used as defect signatures, which
is common for PV module degradation analyses that typically use R or Rg,. This could
hamper the detection and diagnosis of these defects.

111.5.2. Performance of correction methods using multiple 1-V
curves

In this section, the method based on multiple 1-V curves (P3) is evaluated. Section 111.5.2.1
presents the selection of G and Tn for the reference curves. Sections 111.5.2.2 and 111.5.2.3
present the correction performance using simulated curves with the selected G and Tm, for
constant and variable fault severity.

111.5.2.1. Selection of G and T, for reference curves

Before the simulation of these curves, G and Trm need to be determined. In order to cover as
many real situations as possible, the field-measured distributions of G and Tr, of the same sc-
Si module employed in the simulation are used. As shown in Figure I11-6, three reference
curves form one group of curves to get one corrected-to-STC curve. The G and Tr of these
reference curves are determined by one-day measurement, covering both sunny and cloudy
conditions, where the latter ones exhibit larger fluctuations of Tr. Besides, for both sunny and
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cloudy conditions, three possible conditions are also considered for the irradiance: 1) lower
than 1000 W/m?, 2) around 1000 W/m?, and 3) higher than 1000 W/m?. In total, 120 groups
of G and T are manually selected. Some examples are shown in Figure 111-16.

(a) 20180625 (b) 20180803 (c) 20180714
80 Measured 80 80
—~ ® Selected | — W PR g .
O 60 f" O 60 O 60 M 8
S a0l " E 40 & 40
20 STC 20 STC 20 STC
800 1000 1200 800 1000 1200 800 1000 1200
G (W/m?) G (W/m?) G (W/m?)
(d) 20180609 (e) 20180707 () 20180703
80 80 80
— —_ ' — g
O 60 [ ikl < - O 60 e, o ‘
P T | EERp
g [™e £ . S & K
= 40 = 40 =40 "
20 STC 20 STC 20 STC
800 1000 1200 800 1000 1200 800 1000 1200
G (W/m?) G (W/m?) G (W/m?)

Figure 111-16: Examples of selected G and Ty, from different summer days

((a, b, ) clear sunny days, (d, €, f) cloudy days ((a, d): the 3 selected G all <1000 W/m?, (b, e):
selected G around 1000 W/m?, (c, f): selected G all > 1000 W/m?))

111.5.2.2. Correction performance with constant fault severity

Regarding the fault severity setting, firstly, we use the same fault configurations presented in
Section 111.5.1.2 and simulate 120 groups of reference curves. Then, P3 is applied to obtain
120 corrected curves, as shown in Figure 111-17. The corresponding performance of key curve
parameters and fault parameters are summarized in Figure 111-18 and Figure 111-19, respectively.

_20 Healthy bt B3 _
< < <
3 E :0.18 £ 0.1% 3 E :3.67 + 2.38% 3 E :0.28 + 0.Y16%
o ourve 018 E01% | | O [EgyneS-07 2387 o o eurve™ < ik Laid]
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Voltage (V) Voltage (V) Voltage (V)

Corrected I-V

Real I-V O MPP of corrected I-V O MPP of real I—V‘

Figure 111-17: Corrected 1-V curves using P3

(For PS, due to the large fluctuations, the corrected curves are plotted with dot line for better
presentation)
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Correction performance using P3
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Figure 111-18: Four metrics to present the correction performance using P3

(Values are presented in mean =%std)
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Figure I11-19: Impact of correction on fault parameters using P3

(Values are presented in mean =std)

From the results, clearly, except for PS, P3 achieves good correction (mean of all metrics

within 1 %) for all the types of PV array conditions (both healthy and faulty).

In the following, we analyze the ‘catastrophic’ correction error near the inflection point under
PS. As illustrated in Figure I11-6, the correction procedure using P3 is in two steps. An example
of these steps under PS is shown in Figure 111-20. In step 1, due to the unsynchronized
appearance of inflection points on reference curves 1 and 2 (i.e., V., are not identical), another

inflexion point is created on the intermediate curve, so that in step 2, a strange curve shape is
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introduced. This phenomenon could lead to a significant error on B, (15.75%) but with no
significant impact on V. and Ig..

Correction step 1 (P3 for PS) Correction step 2 (P3 for PS)
20 1 20 ¢ MPP of
real curve
~ 15 ~ 15 \ O\ MPPof
< < RE, =15.75% corrected
< z \ curve
10t 10 —— o
jm} S5
O O
Interim curve
5 Reference curve 1 1 5 f|= = :Reference curve 3
====:Reference curve 2 Final corrected curve
Interimcurve |\ | [[eeeesen Real curve
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Voltage (V) Voltage (V)

Figure 111-20: Correction procedure under PS using three reference curves based on P3
((a) correction step 1, (b) correction step 2)

In addition, it should be noted that the fault impact on all the fault parameters is underestimated.
As expected, the most significant error occurs under PS. Under the other conditions, the RE is
within #0.5 %.

111.5.2.3. Correction performance with variable fault severity

In this subsection, the impact of fault severity on correction performance using P3 is
investigated. The severity for PS, Rs, and Rsh degradations is varied using the same settings as
in Section 111.5.1.3. The performance metrics as a function of fault severity are presented in
Figure 111-21.
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Figure 111-21: Correction of curve error and key parameters for P3 under 3 faulty cases with variable
fault severity
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((a) PS, (b) Rs degradation, (c) Rs, degradation (the circled line represents the mean value for the 120
corrected curves at each fault severity, while the band area behind represents the standard deviation;
the x-axis for Rsh degradation is set as log scale; the degree of severity is presented from healthy to
severe on the x-axis from left to right))

From these results, the following remarks could be drawn:
» Regarding Rs and Rsh degradations, all the metrics are insensitive to the fault level,

= Regarding PS, only E,. and REp  vary according to the fault severity. E,,,, has
a monotonic variation, while REp ~exhibits a non-monotonic variation. This

phenomenon is due to the displacement of the maximum power point (MPP) as
illustrated in Figure 111-22.
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Figure 111-22: Corrected curves using P3 under three fault severities of PS

((a) PS degree=20%, where MPP of real and corrected curves are all at ‘lower stair,” (b) PS
degree=70%, where MPP of real is at “‘upper stair’ while MPP of most corrected curves at ‘lower
stair’ (c) PS degree=100%, MPP of real and most corrected curves are all at ‘upper stair’ (for each
case, REp is marked as ‘mean’+std’))

The behaviors of fault parameters are also investigated with the comparison of identified
parameters from both corrected and real 1-VV curves presented in Figure 111-23 and the
corresponding relative errors in Figure 111-24.
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Figure 111-23: Identified parameter from corrected (using P3) and original I-V curve for the fault of
variable severity

(the circled line represents the mean, while the shadow band area represents the standard deviation;
the values of R, or Ry, identified from I-V curve are not equal to the additional resistance (illustrated
in Figure 111-3) due to the existence of inherent equivalent R (0.74 Q) or Ry, (708.36 Q) of PV
arrays)
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Figure 111-24: RE of fault parameters under PS, Rs, and R, degradations for the fault of variable
severity using P3

(the circled line represents the mean, while the shadow band area represents the standard deviation)

The large dispersion observed for REy,,, and RE},.,, confirms the poor performance of the

correction near the inflection point under PS. The values of R and R, extracted from the
original and corrected curves are very close, as confirmed in Figure 111-23. This is also
reflected in the low values of RER_and REg_, displayed in Figure 111-24. The mean value of

RER lies within 0.1 % and that of REx_, within 20.2 %, and both are relatively insensible to
the varying fault severity. It is also noted that the standard deviations of REr_and REg_,

exhibit a decreasing trend when the fault severity increases. In all, with varying faults, P3
achieves quite good and robust correction under Rs and Rsh degradation.

I11.6. Discussion

The correction performance using three single and one multiple curves-based methods has
been evaluated. Each method has its own pros and cons listed in Table I11-7.
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Table I11-7: Pros and Cons of correction methods

Single curve-based methods Multiple curves-based
method (P3)
P1 P2 NewP2
Pros e Bestoverall e  Best e  Bestoverall e  High-precision

voltage overall correction on entire correction performance

correction current I1-V curve for most PV array

(except correction conditions (except PS)

e Improve the voltage

under OC) . .
correctionunder OC e  Free of correction
compared to P1 coefficients

e  Similar performance
as P2 for current
correction but with
more stable accuracy

(For P1, P2, New P2)

e  Suitable for rapid field diagnosis

Cons (For P1, P2, New P2) e  Not suitable for rapid

. Needs to determine the correction coefficients field diagnosis

. Needs at least three
well-chosen reference
curves

e  Prone to large underestimation of B,, and fault parameters

e  Poor correction near
inflection point under PS
with high effect on B,

All these single curve-based correction methods, once established (i.e., correction coefficients
determined), can conduct rapid correction of measured I-V curves. This allows their
integration in real-time health monitoring of PV devices. However, as discussed in Section
[11.3.1, the determination of correction coefficients is a troublesome task. The coefficients
determined by using simulated data do not always fit the real values, especially for the installed
PV panels after a long-time operation. The proposed NewP2, which combines the advantages
of P1 and P2, leads to better average correction performance on the entire I-V curve and key
parameters for the tested faults. In fact, NewP2 only modifies the equation of voltage
correction based on P2. Due to the inherent drawback of P2 on voltage correction and the
independent relationship between V and I, NewP2 still does not outperform with all the faults.
It introduces large correction error in the case of PS of one PV module, degradation of Rs and
Rsh compared to healthy conditions, SC of one module and OC of one string.

As for the multiple-curves-based method (P3), except under PS, excellent correction is
obtained. However, the selection of reference curves is still a manual process [25], [253],
which could hinder its application in rapid or on-line field correction.
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I11.7. Conclusion

In this section, the 3 procedures proposed in IEC 60891, originally designed for the correction
of 1-V curves of healthy PV module or array, have been evaluated for the correction of 1-V
curves simulated on the defective PV array. It has been shown that all the procedures introduce
significant errors due to G, Tm, and the severity of the defects. We have pointed out that using
the Procedure 1 (P1) from the standard, a distortion of the curve’s shape is commonly
introduced with a relative error up to 13.8%. For P,, and the fault parameters extracted from
the corrected curves, estimation errors also occur frequently. And worse still, most significant
errors result in an underestimation of the parameters, up to 9.1% for B,, using Procedure 2
(P2). This can affect the detection of incipient PV defects if these parameters are used as
signatures of alarm.

Among the single curve-based methods (P1 and P2), none of them could outperform for the
correction of 1-V curves simulated on all the PV array faulty conditions. Therefore, a P2-based
improved method (NewP2) has been proposed. NewP2 modifies a coefficient in the equation
of the voltage correction of P2 to reduce its correction error of voltage near V. part. At the
same time, it keeps the original equation for the current correction of P2. NewP2 has exhibited
more robust average performance than P1 and P2 with the decrease of average curve error
from 3.45 % (using P2), 4.5 % (using P1) to 2.37% under constant fault severity. With varying
fault severity, NewP2 also shows an overall better performance than P1 and P2 on the curve
error, most of the key curve and fault parameters.

As for the procedure based on multiple curves, i.e., Procedure 3 (P3), it generally has higher
performance than those based on a single curve except for the correction of I1-V curves of PV
array under PS. Under PS, due to the unsynchronized appearance of inflection points on
reference curves, an additional inflection point will be created and then cause great distortion
to the curve near the inflection point. With varying fault severity, similarly, except under PS,
P3 is robust in the curve error (within 1 %) and estimated fault parameters (within #0.2 %).
Besides, due to the requirement of at least three reference curves at different G and Tr, for the
correction of one curve, P3 is thus not suitable for the application of rapid field diagnosis.

PV health monitoring using I-V curves is a promising approach. In the next chapter, acomplete
PV FDD strategy using I-V curves will be investigated using the new proposed correction
procedure (New P2).
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IV.1.Introduction

Among the various types of PV electrical data (like output power, output voltage or
current at DC or AC side as presented in Section 11.3.1.2.3), the I-V curve generally
embeds rich information about the health status of a PV module or array. Thus, I-V
curve-based PV FDD is a promising topic [254]. As for acquiring I-V curves, common
I-V tracers already support the measurement for a single module or small-scale string
or array. In recent years, the hardware solutions (integrated at inverter level) have
become commercially available to measure I-V curves periodically at the power plant
level [17], [18]. In this sense, the I-V curve-based diagnosis approaches could be
applied to all the common PV facilities.

One I-V curve, essentially, is determined by one vector of voltage and one of current.
In the literature, there are different methods to manipulate the I-V curve to extract
features for PV FDD. The typical practices include: (1) extract directly key features
from the curve (like Voc, Isc, Vmpep, Ivpp, FF [19]-[21], or Rs, Rsh [234], [255]) for
analysis; (2) calculate the first or second-order derivative of a curve as features to
identify partial shading (PS) fault [22], [23]; (3) use complete I-V curves and compare
it with simulated ones to generate residuals for analysis [256]. Their pros and cons are
summarized in Table IV-1.

Table IV-1: Typical properties of common practices of I-V curves for PV FDD in
literature

Methodologies Pros Cons
Use extracted key e  Simple feature e  Partial information
curve features extraction

° Sensible to noise and outliers
° Suitable for multi-

faults diagnosis ° Hard to extract Rs, Rsh from curves

of irregular shape

Calculate the 1tor 2" o Able to identify the e  Sensible to noise and outliers
derivative of the curve number of inflection I
points on the I-V curve  * Only application to detect PS
under PS
Generate residual e  Complete information e  Require simulation model for real
between measured time simulation

e  Suitable for multi-
faults diagnosis (like e  Sensible to measurement error and
PS, OC, SC, environmental noise
degradation)

complete I-V curve and
simulated one

Based on the comparison, it is observed that the common I-V curve-based diagnosis
approaches all have their limits, especially lack an efficient usage of the complete 1-V
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curve information. For a given I-V curve, a complete usage is expected to capture richer
information and achieve better diagnosis performance than a partial usage (like using
only several extracted features).

Seen in this research gap, a novel PV diagnosis methodology is proposed in this section,
which applies three different methods to embed complete I-V curves into input features
for PV FDD. Since MLT commonly acts as a powerful tool for intelligent classification
tasks [257], in this study, based on the popularity and applicability (like the dimension
of input features), six common MLT classifiers are tuned and evaluated for PV fault
classification. It is noticeable that we do not limit ourselves to one certain type of MLT
but try to tune and test different MLTs simultaneously. This permits us to find out the
best possible performance that could be achieved when using different types of input
features.

This section is principally organized based on the four-step FDD scheme presented in
Section 11.3: Section V.2 firstly presents the configuration of the I-V curve database;
Section V.3 then introduces the pre-processing of I-V curves; Section 1V.4 presents
the feature extraction, where the three methods to embed complete I-V curve
information will be addressed; Section 1V.5 performs the feature analysis results using
different MLTs, where the FDD results using simulated data and validation using
experimental data will be presented; Section IV.6 compares the proposed methodology
with other common I-V curve based FDD techniques; Section I1V.7 concludes the
section.

IV.2. Configuration of the simulated datasets

Iv.2.1. PV array model configuration

A PV array model similar to that used in Section 111.2.1 to study the correction of the I-
V curve is constructed as shown in Figure IV-1. The module parameters are based on
Wiltec 62391-50W sc-Si module. This type of module is used in the experimental test
and its power is within the measurement range of the I-V tracer in the laboratory. The
array structure and parameters (detailed in Table 1VV-2) also fully correspond to that
used in the experimental test (presented in Section 1V.5.3). This permits the classifier
tuned by simulated data could be applied to the diagnosis of the real PV array with the
same configuration.
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PV array of 6 modules

=

Irradiance

Current
Measurement

Voltage
Measurement

-
é Rsh_degra Controlled
Voltage Source

Total PV
String Voltage

module1-3 module2-3

é Roc Continuous

Module a
Temperature

Rs_degra
Figure IV-1: Simulation model of the PV array

Table 1VV-2: Parameter setting of PV array

Variable Value Variable Value
Isc 6.48 A Vupp 52.65V
Voc 64.74 V Lypp 570 A

In total, eight configurations of PV array are studied, i.e., healthy and seven faulty
conditions:

= PS: 2 types, 1 or 2 modules in 1 string are shaded (abbreviated as PS1 and PS2,
respectively) by adjusting the block gain value (Gain_PS) that controls the

module’s irradiance;

= SC: 2 types, 1 or 2 modules in 1 string is short-circuited (abbreviated as SC1 and
SC2, respectively) by connecting a resistance R, in parallel;

= OC: 1string is open-circuited by connecting a resistance R, in series;

= Rsdegradation (Rs degra): increase of array equivalent series resistance, controlled
by a resistance R 4¢4rq added in series;

= Rsh degradation (Rsh degra): decrease of array equivalent shunt resistance,
controlled by a resistance Ry, 40 grq added in parallel;

Some examples of the I-V curves under these conditions are shown in Figure 1V-2.
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. |-V curve under 8 conditions
‘ . . ; . .

Healthy
PS1
PS2
SC1
ScC2
. oc
%= - - -Rs degra

Voltage (V)

Figure IV-2: Examples of simulated I-V curves under 8 PV array conditions

From Figure IV-2, it is observed that these conditions could induce different changes
on the I-V curves and these changes are useful for the following diagnosis.

1V.2.2. Generation of datasets

Based on the array model, two datasets are generated, one for training and another for
the test. For each curve in both datasets, G is randomly varied in [400, 1200] W/m?and
Tm in [20, 80] <C. Globally, Tn is set linear with G but varies in a range of 30 <C to

cover more randomness of the real environment. An example of a generation of 300
pairs of (G, Tm) is shown in Figure 1V-3.

80 Possible distribution range of G and Tm

20 1 L L
400 600 800 1000 1200
G (W/m?)

Figure 1V-3: Examples of the distribution of G and Tr,

The corresponding controlling parameters of I-V curves in these two datasets are
identical as presented in Table IV-3. Besides, for PS, Rs, and Rsh degradation, the fault

severity is also varied with the corresponding parameters covering uniformly the range
listed in Table 1V-3.
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Table IV-3: Parameter setting for the healthy and faulty conditions

Condition PS degree (%) R () R, () R degra () Rsp degra (2)
Healthy 1 10° 10° 10° 10°
PS (1 or 2 modules) 10%-100% 10° 10 10 10°
SC (1 or 2 modules) 1 10° 10° 10° 10°
OC (1 string) 1 105 10 10° 108
Rs degradation 1 10° 10° 0.5-5 10°
Rsh degradation 1 10° 10° 10° 20-200

It is noted that the variation range for PS and degradation faults in Table IV-3 and Table
[11-3 are not identical. The variation ranges used in this chapter are relatively smaller
than Chapter I11. This setting is to avoid samples at too incipient fault severity, which
may be confused with the ones at healthy condition. Examples of the curves of these
conditions are presented in Figure IV-4. To better illustrate the impact of fault severity,
the presented curves are generated under STC.

I-V curves at STC (PS) I-V curves at STC (PS2) I-V curves at STC (Rs degra) |-V curves at STC (Rsh degra)

1 ),
=6} v 6| : 1 o B — £ ] a6
< .4 < ‘ 4 < \}' 3 y
€45 E4‘{ —1 4t \ { 4t
) o \
= E \ -
321 "\ 321 7. \ Q! 2t ad \ 2t )
0

+Healthy

Fault severity

Current (
Current (

R ) ) ! ol ) ! ol ! ] ) |
0 20 40 60 20 40 60 0 20 40 60 0 20 40 60
Voltage (V) Voltage (V) Voltage (V) Voltage (V)

+Severe

Figure 1\VV-4: 1-V curves (STC) under PS1, PS2, Rs, and Rsh degradation

(For PS2, the shading level for the two modules could be the same or different as shown in
Figure 1VV-1. For Rsh degradation, the shape of the curve does not vary linearly with the
Rsh_degra as this additional resistance is added in parallel to the array)

In fact, the curves obtained from simulation are all under ideal conditions, i.e., without
any measurement error or fluctuation. Therefore, to train the classifiers with the
samples with greater variability and closer to the field-measured ones, an estimated
disturbance is added to the simulated 1-V curve, specifically, to the vector of V and |
that compose an I-V curve. Environmental noise and measurement random error are
emulated. Additional disturbance vectors are firstly generated following a normal
distribution and then added to the original V and I. The disturbance vector of V or I is
generated randomly with the zero mean and a standard deviation value denoted
Oais rana fOr the random error and o5 ony, for the environmental noise. They are
determined by (IV-1) and (IV-2) , respectively.
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Edis_rand = O-dismnd/o's X 100% (IvV-1)

Rdis_env = 1010g10(0'52 /O-c%is_env) (IV'Z)

where, as is the standard deviation of the signal S, which refers to the vector of either
Vorl. Egis rana 1S the error rate of random error (presented in percentage), set as 0.5%
for both V and I. Ry;s ony IS the ratio of environmental noise, presented in decibel of
35dB for V and I. These values are determined by combing the datasheets of our
measurement equipment used in field tests and the commonly reported measurement
uncertainty in literature [258], [259].

For each simulated I-V curve (without additional disturbance), the above process is
repeated five times. The original training dataset contains 2400 I-V curves simulated
under all eight conditions (each condition has 300). With the additive disturbance, in
total, the training dataset contains 12000 I-V curves (each condition has 1500 curves).
The test dataset, with disturbance added, contains a total of 2400 curves where each
condition is described with 300 curves. Both these two datasets will undergo the
following pre-processing operations.

IV.3. Pre-processing of I-V curves

The pre-processing of 1-V curves contains two principal steps: correction and
resampling. These operations will be detailed in succession.

1Vv.3.1. Correction of I-V curves

Under various environmental conditions (different G and Tm), simulated or measured |-
V curves could have distinct shape forms. Thus, to allow the classifiers to learn the
curve shape better, the I-V curves are corrected to the same environmental condition,
here, STC. The correction method (New P2) proposed in Section 111.3.2 is adopted to
correct the I-V curves.

IV.3.2. Resampling of I-V curves

After the correction, resampling of I-V curves is performed. This operation not only
permits to make every 1-V curve have an identical number of points, but also, which is
more important, to guarantee uniform distribution of voltage curves points. This
operation is particularly indispensable when treating new I-V curves with a different
number of points or distribution, e.g., real array 1-V curves measured by different I-V
tracers. Thus, resampling is conducted here to ensure the general applicability of the
proposed FDD methodology. Specifically, it is performed via the following steps:
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1)

2)

3)

Construct a voltage vector with N points uniformly distributed in [0, Vimax] with a
constant step (Vmax is a constant for all the conditions, which could be set a little
larger than the array V,. at STC in healthy condition to avoid the voltage of
improperly-corrected curve exceeding this range). An illustration of the voltage
vector is marked in Figure V-5 as markers of ‘triangle’;

At each voltage point, find the nearest point on the original curve and record its
current value, as shown in Figure 1V-5. It should be noted that, for the I-V curve
after correction, the curves are generally shifted towards the right side on the I-V
figure, i.e., the voltage of the far-left point not starting from 0, as discussed in
Figure I11-5. Thus, similarly, the extrapolation of I-V curve by Phang’s method
[249] is performed to obtain a complete 1-V curve (voltage starting from 0). This
permits the resampling based on the voltage on [0, Vmax]. The extrapolation step is
setat0.2 V.

Form up a current vector of N points, where the N must be lower than the number
of points on the original 1-V curve to allow a down resampling.

8 Resampled (30 points) of a curve under Healthy

A Vector of voltage for resampling
7 Original curve(242 points)
—6— Resampled curve(30 points)

Current (A)
B [6)]

w
——

0 10 20 30 40 50 60 70
Voltage (V)

Figure 1V-5: Illustration of resampling of an 1-V curve from healthy array

It is easy to find out that the more points there are, the more information is captured.

To determine N, the efficiency of resampling needs to be quantified. Here, the area error

(E4req) [260] is adopted as the metric, as defined in (1V-3).

E _ SArea of error
area —

x 100% (IV-3)

Soriginal

where, Soiginai 1S the size of the area enclosed by the original I-V curve and coordinate
axis, Sureq of error 1S the size of the area enclosed by the original and resampled 1-V
curve. An example of the illustration of the resampling (N =10 or 50) of a real I-V curve
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for a PV array under PS2 (the original number of points is 363) is presented in Figure
IV-6.

(a) 8 Resampled (10 points) of a curve under PS2 (b) 8 Resampled (50 points) of a curve under PS2
7T Earea=3'41% 1 7r Earea=0'77%
6
g 5
g4
5
O3
2 Original (363 points) 1 2 Original (363 points)
—6—Resampled (10 points) —O—Resampled (50 points)
1+ Area of original curve 4 1t Area of original curve
Area of error Area of error
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Voltage (V) Voltage (V)

Figure 1V-6: Example of resampling of an I-V curve from the array under PS2

Taking the I-V curves under the eight conditions, the mean and standard variation of
E .o With the varying N are presented in Figure 1V-7. The number of points of these

original curves is not constant but varies between 298 to 363, which is due to the setting
of the variable time step in the simulation.

5 T T T T T T

—o&— Earea (%)
4+ i
g3, |
®©
Q
02 1
1k |
© ‘v*‘e
0 Il 1 L L Il 1 1

10 20 30 40 50 60 70 80 90 100
Number of resampling points

Figure IV-7: E 4,04 Of resampling of I-V curves as a function of N
(the blue line refers to the mean value while the band represents the standard deviation)

It is observed that, when N surpasses 40, the E,., becomes relatively small (~0.75%)
and stable. However, it should be noted that, except for the efficiency of resampling,
the complexity of the model (more points, larger complexity of classifier) also needs to
be considered. Therefore, in this study, N is taken as a trade-off (N=50) to guarantee
both good resampling performance and low methodology complexity. In this way, after
resampling, for each I-V curve, one vector of current with 50 features is obtained.
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IV.4.Feature extraction

After the pre-processing, feature extraction is performed to prepare the features with
higher discriminability and lower redundancy. To this end, two operations are
conducted, feature transformation and dimensionality reduction. Both are described in
the following.

1vV.4.1. Feature transformation

For the resampled current vectors, two types of approaches are proposed to further
extract features. The first type is to use these vectors directly as input for classifiers
(this method is named hereafter ‘direct 1-V’). The second one is to transform the 1D
vector of the current values to 2D matrix. Specifically, two 1D-to-2D transformation
techniques, commonly practiced in the transformation of time-series signal, are adopted
in this research: Recurrence plot (RP) and Gramian Angular Difference Field (GADF)

IvV.4.1.1. Recurrence Plot (RP)

RP is a visualization tool that aims to explore the time series data via a 2D
representation graph of its recurrences [261]. It reveals all the time dependency of
vectors and constructs a square matrix by calculating the inner distance among all the
points in the phase space [262]. The phase space is generated by embedding a delay (1)
of the input vector. In this study, it is noted that, in fact, the 1-V curve is not a time
series signal. However, as the voltage vector is uniformly resampled, the resampled
current information then can be considered as a timely discretized information (as
presented in Section 1V.3.2). This allows us to use the time series assumption and apply
RP to transform the resampled current vector.

Given a vector x (x4, x5, ..., xy) (N is the number of points), here, referring to the
resampled current vector, the extracted trajectories in phase space are:

X, = (%, Xi4), L €{1, ..., N — 7} (IV-4)

The RP matrix, denoted R, is the pairwise distance between the trajectories

Rij=0(e—|x-x]|)ije{l,...N—1} (IV-5)
where; |. || is the norm function, ©(.) is the Heaviside function, ¢ is a threshold

distance, x; and x; refers to i*" and j* value in the resampled current vector x,

respectively. Based on ((IV-5), a RP matrix with binary values could be obtained.
However, it should be noted that the operation of a threshold-based Heaviside function
could lead to a loss of information [263]. Therefore, in this study, we directly take the
pairwise distance to construct the RP matrix with R; ; = ||x, = %;||, i,j € {1, ..., N — 7}
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The R-matrix reveals textures which are single dots, diagonal lines as well as vertical
and horizontal lines. For example, fading to the upper left and lower right corners
demonstrates that the original signal exhibits a trend or drift; or vertical and horizontal
lines/clusters mean that some states do not change or change slowly for some time and
this can be interpreted as laminar states [261]. The size of feature Dmatrix Of RP equals
(N—1). In this study, by finding the local minimum of the average mutual information
of input vectors in phase space, t is optimized to be 1, thus, Dmatix=2401. Some
examples of RP transformations are illustrated in Figure 1V-9

IV.4.1.2. Gramian Angular Difference Field (GADF)

GADF calculates the inner product of the input vector via the characterization of
angular difference and preserves the temporal dependency [262]. Similar to the
application case of RP, as the voltage vector is uniformly resampled, the current
information can be considered as a timely discretized information. Therefore, GADF
can be applied to the resampled current vector. GADF creates a matrix of temporal
correlations for each pair (x;, x;) (i,j € {1, ..., N}, x; and x; refers to it" and j*" value
in the resampled current vector x, respectively). To be specific, firstly it normalizes the
vector into a range [-1, 1] with x; normalized to x; :

Womgx—aTmin@ g (IV-6)
l max(x) —min (x) T

Then it computes the polar coordinates of the scaled vector by arccosine function.

¢; = arccos(x;), Vi€ {l,.., N} (IV-7)

Finally, it computes the sine of the difference of the angles to form a GADF matrix.

GADF; = sin(¢; — ¢;), Vi,j €{1,..,N} (IV-8)

The size of the generated matrix Dmarrix =N2. In this sense, when N=50, each current
vector is transformed to one squared matrix with Dmatrixk =2500. An illustration of the
transformation is shown in Figure 1V-8.

90
@ 8 Current vector (Healthy) () NP 50 60 (c) 50 1
e 150 30 30 40
A6 - XJX 20 05
< % 10 30
=4 X 180 0 0
) 20
2 ? 05
0 G 210 330 10
10 20 30 40 50 -1
240 300
Number of points 270 10 20 30 40 S0

Figure IV-8: Process of the GADF transformation based on a resampled current vector
((a) resampled current vector, (b) polar coordinate graph, (c) GADF matrix)
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Examples of GADF for other conditions are also illustrated in Figure 1V-9.

(a) Healthy (b) PS (c) PS2 (d) Rs degra (e) Rsh degra
I-V curve I-V curve I-V curve -V curve -V curve
[ SR SO . [ S [ S— [ ——— 3 E—
=5 - =5 PR ] S se— =5 3 =5f—
& & e N - o o
= 5 5 - 5 5
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0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Voltage (V Voltage (V Voltage (V) Voltage (V) Voltage (V
Transformed by GADF Transformed by GADF Transformed by GADF Transformed by GADF Transformed by GADF
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0 0 0 0 0
20 40 20 40 20 40 20 40 20 40

Figure IV-9: Examples of matrices transformed by GADF and RP

((a) Healthy, (b) PS, (c) PS2, (d) Rs degradation, (e) Rsh degradation (the value of each
component on the matrix is marked by colormap))

From the examples of transformation, it is observed that the values in both RP and
GADF matrix are symmetric, and the diagonal values are 0. When the value of current
vector exhibits a decline, a ‘square’ will correspondingly appear, as seen from the PS
and PS2 cases. When the slope near the V. or Is- part of the I-V curve changes, the
diagonal area in the matrix will also shrink along with different directions. In this way,
all the changes in the 1-V curve could be reflected in the transformed matrix.

These transformation operations increase the complexity of features for analysis.
However, the discriminability of features under different conditions could be improved,
which will be reflected in the diagnosis results and further discussed in Section 1V.5.2.4.

All the presented three feature extraction methods (direct I-V, RP, and GADF) capture
complete information from the current vectors resampled from original 1-V curves. In
addition to the proposed three feature extraction methods, one typical traditional feature
extraction method for PV FDD, which uses partial I-V curve information by extracting
key parameters, will also be evaluated for comparison. This method, denoted as
‘Bparas’, uses G, Tm, Vipp, Inpps Voc: Isc, Rs and Ry, as features for analysis. The R,
and Ry, are calculated by the reciprocal of the slope of the I-V curve near the V. side
and Ig- side, respectively. In fact, R; and Ry, are not easily obtained due to the
manipulation of the whole I-V curve, but they can present the variation trends of the
curve, which are also the key information.
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1V.4.2. Dimensionality reduction of features

For the features extracted by direct I-V, RP, or GADF, it is easy to recognize the large
redundancy of information. For example, the current vector used in direct I-V may
contain points of similar current value, especially for the points resampled from the part
of the I-V curve with a gentle variation. Each of these points, in fact, all corresponds to
a feature. Thus, redundancy of information is involved in the original feature. To reduce
the complexity of classifiers and speed up the training process, a reduction in the
number of features is performed. One commonly adopted technique, PCA [124], is
applied. The number of principal components is determined by explaining at least 98%
of the variance of the original data. This permits the final samples used for classification
to preserve quasi-complete information of original I-V curves. In addition, the
diagnosis performance without PCA will also be discussed in Section 1V.5.2.3.

IV.5.Feature analysis and FDD results

After the feature extraction, the four types of features (8paras, direct I-V, RP, or GADF)
will be analyzed for PV FDD. The analysis procedure is presented in Figure 1\V-10.

MLTs are adopted as feature analysis tools. For each type of feature, six common types
of MLTs (presented in Section 1V.5.1) will be employed. For each type of MLT,
candidate models with different hyperparameters will be built. Specifically, the training
database (presented in Section 1V.2.2) is divided into 80% for training and 20% for
validation. The validation dataset is used to select the trained candidate models of one
type of MLT with the best performance. Then, the test database (presented in Section
IV.2.2) is used to evaluate the 6 selected MLT models and find the best one. The
corresponding diagnosis results will be presented in Section 1V.5.2. This model will
then be further evaluated by the field test dataset, which will be detailed in Section
IV.5.3.

Analysis procedure
80% 20% W Training dataset (simulated) Test dataset (simulated) Field test dataset (real)
15000 I-V curves 3000 I-V curves 300 I-V curves
training  validation ~
[ 4 types of input features (8paras, direct I-V, RP matrix, GADF matrix) ]
R R — >
g 6 types of MLT classifiers Best
Determine 6 types of MLT classifiers Qe T s el e e
hyperparameters h
L ’
by valdiation / — Diagnosis results using
— Best P
6 types of MLT classifiers clas(:isfier experimental test dataset
(hyperparameter optimized)

Test results using
simulated test dataset

Figure 1V-10: Feature analysis procedure
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IV.5.1. Analysis techniques-machine learning classifiers

Based on the literature review of applications of MLT in PV FDD (presented in Section
11.3.4.3), in this study, 6 common MLT classifiers are applied: ANN, SVM, kNN, DT,
RF, and NBC. To build up each type of MLT, various hyperparameters need to be
determined, e.g., the neuron numbers and the layer numbers for ANN, kernel function,
kernel scale and penalty for SVM. The hyperparameters of these MLT classifiers to be
tuned are listed in Table IV-4.

Table 1\VV-4: Configuration of MLT classifiers

MLT

Configuration

All types Common setting

ANN .
L]

L]

L]

SVM .
[ ]

[ ]

[ ]

kNN .
[ ]

DT .
[ ]

[ ]

RF .

[ ]

[ ]

NBC .

Normalization: [-1,1]
5-fold validation

Hyperparameter optimization method: grid search or Bayesian method

Structure: 1 or 2 hidden layers (5-50 neurons)
Loss function: Cross entropy
Train algorithm: Scaled conjugate gradient

Function: tansig (hidden layer), softmax (output layer)

Multiclass method: one-vs-one
Kernel scale: optimized
Penalty: optimized

Kernel function: Linear, Quadratic, Cubic, Gaussian, or RBF

Number of neighbors: optimized

Distance metric: Euclidean, City block, or Chebyshev

Max number of splits: optimized

Split criterion: Gini's diversity index
Minimum number of leaf nodes: optimized
Max number of splits: optimized

Minimum number of leaf nodes: optimized

Number of predictors selected for each split: optimized

Distribution type: Gaussian, or Kernel
Kernel Type: Gaussian, Box, Epanechnikov, or Triangle

Kernel smoothing window width: optimized

Relying on the toolbox ‘Classifier learning’ in Matlab, for each type of MLT, classifiers
with different hyperparameter settings are built up as candidate models. These models

100



Chapter IV PV fault diagnosis using I-V curves and machine learning classifiers

will then be validated by the validation dataset. Specifically, the 5-fold cross-validation
is applied. The original dataset is randomly partitioned into 5 equal-sized subsamples.
Of these subsamples, a single subsample is used as the validation dataset, and the
remaining 4 are used as the training dataset. This cross-validation process is repeated 5
times, with each of these subsamples used exactly once as the validation dataset. Then,
the average classification performance is used to select the best model among the
candidate models of different hyperparameters. In this way, using each type of input
feature, 6 MLT models (ANN, SVM, kNN, DT, RF, and NBC) are built up.

IV.5.2. Diagnosis results using simulated data

For each type of input feature, the 6 MLT models are evaluated using the test dataset.
The diagnosis results, robustness to additional disturbance, discussion on the impact of
PCA and the feature transformation (RP and GADF) will be addressed in the section.

1IvV.5.2.1. Performance of fault classification

The test accuracy of the 6 classifiers using the 4 types of input features (8paras, direct
I-V, RP, or GADF) is presented in Figure IV-11. The details of the best classifier are
listed in Table IV-5 and the corresponding confusion matrices are illustrated in Figure
IV-12-Figure 1V-15.
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8paras directl-V RP GADF
Figure 1\VV-11: Test accuracy of all classifiers
(the best accuracy is marked in red bold)
Table 1VV-5: Details of the best classifiers
Type of input features Best classifier Test accuracy Classifier hyperparameters
8paras SVM 94.83% Kernel: Polynomial 2,
BoxConst=29.3
direct I-V ANN 99.92% #Neurons of hidden layer =15
RP ANN 99.96% #Neurons of hidden layer =10
GADF ANN 100% #Neurons of hidden layer =32
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Figure 1\VV-12: Confusion matrix of the best classifier when using 8paras as input feature
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Figure 1V-13: Confusion matrix of the best classifier when using direct I-V as the input
feature
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Figure 1V-14: Confusion matrix of the best classifier when using RP as the input feature
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Figure 1\VV-15: Confusion matrix of the best classifier when using GADF as the input feature

From the view of input feature types, it is found that the complete I-V curve-based
features (i.e., direct I-V, RP, and GADF) permit the classifiers to achieve globally
higher classification accuracy than that based on partial 1-V curve information (i.e.,
8paras). For 8paras type, the best test accuracy only achieves 94.83%. Large
misclassification occurs to PS1, PS2, and Rs degradation. This is logical since, under
these conditions, the MPPs of some of the curves could have similar or even identical
positions, especially with the existence of measurement noise. Therefore, if only Vypp,
Ivpp, Voc: Isc, Rg and R, are adopted as curve features, less satisfying performance
will be resulted in.

Comparatively, for the complete 1-V curve-based methods (direct I-V, RP, and GADF),
the quasi-whole curve information is embedded in the input features. Thus, the
classifiers can learn the variation trend of the curves and achieve better classification
results with the best performance all higher than 99.9%. For GADF, using ANN as the
classifier could achieve 100% classification. For direct I-V and RP, there are 1 or 2 I-
V curves wrongly classified.

To further understand these results, the output values of the neurons in the output layer
are studied. A zoom on the output layer of the ANN model is presented in Figure 1V-16,
where there are eight neurons in the output layer. Each neuron corresponds to one
condition. The sum of all the output values equals 1 as the SoftMax activation function
is applied in the output layer. The predicted class is assigned to the condition whose
corresponding neuron outputs the largest value. In this way, by analyzing the neuron
output values, the confidence of decision-making could be understood.
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Figure IV-16: Illlustration of the output neurons in ANN models

For these wrongly-classified cases presented in the confusion matrices, the neuron
outputs, the wrongly identified 1-V curves and the original I-V curves without
disturbance added are illustrated together in Figure IV-17- Figure 1\V-19.
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Figure IV-17: Detailed test results using direct I-V +ANN under PS2

((a): upper figure presents the predicted class as a function of number of samples, lower
figure presents the value of 8 neurons in the output layer of ANN classifier, each neuron
corresponds to one condition, the predicted class is assigned to the condition whose
corresponding neuron outputs the largest value; (b): misclassified I-V curve and the curves of
the wrong class used in training)

Seen from Figure 1V-17 (a), there is one red ‘diamond’ marked in upper graph and in
the lower neuron output, the corresponding gray point (presenting the neuron output of
Rsh degradation) surpasses the yellow one (that of PS2). These correspond to the result
that there is one I-V curve of PS2 misclassified as Rsh degradation. This misclassified
I-V curve is shown in Figure IV-17 (b), in which it is clearly within the area surrounded
by the I-V curves under Rsh degradation used for training. This means that this PS2
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curve is similar to the ones under Rsh degradation, especially the ones with low fault
severity. This suggests that this curve is prone to be misclassified as Rsh degradation.

(a) directlV+ANN (Rsh degra) (b)8 Misclassified I-V curves
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Figure 1VV-18: Detailed test results using direct I-V +ANN under Rsh degradation

When using direct I-V +ANN, there is one I-V curve under Rsh degradation
misclassified as PS, as seen from Figure 1VV-18(a). In Figure 1V-18 (b), similarly, the
shape of the misclassified I-V curve is like those under PS used in training (at low PS
degree).
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Figure 1\VV-19: Detailed test results using RP +ANN under PS2

When using RP as features for FDD, there is only one curve misclassified, i.e., the same
one in Figure IV-17 when using direct I-V as the feature. This suggests, when using
direct I-V and RP to extract features from this curve, these features are easily confused
with those from curves under Rsh degradation. Nevertheless, it could be noted from
Figure 1VV-15 that, when using GADF to extract features, all the 1-V curves are correctly
classified, even for this PS2 curve. This means GADF is capable to better extract the
fault features from this curve and distinguish it from the others, as can be observed from
the neuron outputs under PS2 shown in Figure 1V-20.
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Figure 1V-20: Detailed test results using GADF +ANN under PS2

Among direct I-V, RP, and GADF, if we count the average accuracy of all the 6 types
of MLT classifiers, it is the RP and GADF that achieve higher global accuracy. This
demonstrates that the transformation of features permits all the types of MLT classifiers
easier to achieve better classification performance. This could also be seen from the t-
SNE [264] graphs shown in Figure IV-21, which visualize the discriminability of these

features in 2D graphs.
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Figure 1\V-21: t-SNE graphs of 4 types of input features extracted from the test database

((a) 8paras, (b) direct I-V, (c) RP, (d) GADF)

From the t-SNE graphs, it is easy to find out that the clusters of features- 8paras are
nearly all mixed up, which shows up its low discriminability and corresponds to its less
satisfying performance. For RP and GADF, the clusters are relatively more separated
than that of direct I-V, like among PS1, PS2, and Rsh degradation, which is clearer for
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GADF. This means, using RP or GADF, the discriminability of input features is
enforced, which therefore allow all the MLT classifiers easier to achieve better
classification, as presented in Figure 1V-11.

1VV.5.2.2. Robustness to additional disturbance

In this part, the best MLT classifiers for the 4 types of input features (presented in Table
IV-5) will be tested by new test datasets to evaluate the robustness of the classifiers. In
these datasets, the added disturbance level of random measurement error and
environmental noise will be varied independently from 0 to a higher level than that used
in previous test dataset. The corresponding best classification results when using the 4
types of input features are presented in Figure 1V-22.
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Figure 1\VV-22: Best classification accuracy using test dataset with varying level of added
disturbance

((a): varying random error of V and I; (b): varying environmental noise of V and I. The
disturbance level adopted in the training dataset is marked in ‘diamond”)

It is observed that, globally, the best test accuracy when using the 4 types of features
all gradually decreases with the increase of disturbance level. The complete 1-V curve-
based features (direct I-V, RP, and GADF) once more show superiority than the partial
curve-based feature (8paras).

As for direct I-V, RP, and GADF, the best test accuracy shows a similar variation trend
at a low disturbance level. However, GADF experiences a slighter decrease of
performance with the increase of disturbance, especially with the increase of random
error on V and I, e.g., from the confusion matrix of test results depicted in Figure IV-23
when the random error is at 4%.
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Figure 1VV-23: Confusion matrix of test results using the best classifier with the random error
of V and | at 4% in the test dataset

From Figure 1\V-18, when the random error of V and | in the test dataset reaches a high
level of 4% (compared to the 0.5% used in training), the classification performance
when using all the types of complete I-V curve-based features decreases, which can
also be seen from Figure 1V-23. Nevertheless, it is observed that GADF clearly
outperforms direct 1-V and RP, with fewer I-V curves under heathy and Rsh
degradation misclassified into other conditions. This demonstrates that the classifier
using GADF to extract features has overall better robustness to the additional
disturbance than using other types of feature extraction methods.

1VV.5.2.3. Influence of PCA

As presented in Section 1V.4.2, for direct I-V, RP, or GADF, the dimension of features
will be reduced by PCA before fed into MLT classifiers. In this scenario, the impact of
this operation on the diagnosis performance will be discussed. Specifically, the
processing time and the test accuracy with and without PCA are compared as shown in
Table 1V-6. In this study, the platform is Matlab R2020b with a CPU of Intel(R) Xeon(R)
E-2174G CPU @ 3.80GHz and RAM of 32Go.
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Table 1V-6: Influence of PCA on time and accuracy

Input feature type PCA Computation Test duration (s) Test accuracy
duration (s)
Yes 41.96 0.01 99.92%
direct I-V
No 59.02 0.01 99.88%
Yes 146.03 0.01 99.96%
RP
No 1298.56 0.13 99.92%
Yes 80.63 0.01 100%
GADF
No 717.79 0.11 100%

From the comparison, it is observed that PCA operation allows the following merits:
= No compromise on the diagnosis accuracy

= Reduce the total computation duration (pre-processing + training), especially for
RP and GADF with the time with PCA taking only about 11% of that without PCA.

= Increase the prediction speed (less test duration)

Thus, it is favorable to conduct the dimension reduction operation by PCA, especially
for high-dimensional features, like RP and GADF.

1IV.5.2.4. Influence of transformation

In Section 1V.4.1, in addition to direct I-V, we have introduced two feature
transformation methods, RP and GADF. Clearly, the feature dimension after
transformation greatly increases as the current vector is transformed into a square
matrix. This, of course, could increase the complexity of FDD methodology, like the
longer time needed to perform dimensionality reduction and training, which can also
be seen from Table 1V-6.

On the other side, it should be noted that the transformation is able to increase the
discriminability of features, as presented in the t-SNE graph in Figure IV-17. This can
also be noted from the neuron output. From the test results given in Figure 1V-13 -
Figure 1V-15, for the I-V curves of the array under healthy condition, direct I-V, RP
and GADF all could achieve 100% classification. However, if we focus on the detailed
output results of the best classifier, the difference in the confidence of classification
could be observed, e.g., from the results under healthy condition, as shown in Figure
IV-24.
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Figure 1V-24: Neuron output of the best classifier under heathy condition using direct I-V, RP
and GADF

((a): direct I-V, (b): RP, (c): GADF)

For these 3 types of features, ANN is the best classifier. The output values of the 8
neurons in the output layer (corresponding to the 8 conditions) are presented. For each
prediction of class, the sum of all the 8 neuron outputs equals 1, the predicted class is
assigned to the class whose neuron outputs the largest. In this way, the larger the
difference between the neuron outputs is, the more confidence in prediction making.
To quantify the neuron output difference, A,y is defined, which equals the largest
neuron output minus the second largest output. The larger the Ay py. IS, the more
confident the classifier is to make this decision. In Figure 1V-24, the mean of the
Autput (Boutpur) for the 300 test 1-V curves under healthy condition is also presented.
From the results, m of direct I-V and RP are similar with the one of RP a little bit
larger, while the A,y Of GADF is the largest reaching 0.996. This means, using
GADF as features, the best classifier is more confident to make correct classification,
which once more reflects the merit of performing feature transformation.

In addition, it is also a manifestation that the robustness to the additional disturbance
when using RP and GADF is enforced to that using direct 1-V, as seen from Figure
IV-18, especially for GADF.

To investigate why the transformation could increase the discriminability of features,
we analyze the difference between features under different conditions after
transformation. In fact, the 1-V curves of the array under incipient fault conditions (like
low PS degree, low additional R, large additional Rg;,) are prone to be confused with
those under healthy conditions, as seen from the wrongly-classified I-V curves shown
in Figure 1V-17 to Figure 1VV-19. Therefore, taking the features of the 1-V curve under
healthy condition as a reference, we quantify the difference between the reference and
the features from the I-V curve under PS, Rs or Rsh degradation with different fault
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severity as shown in Figure 1\VV-25 -Figure 1V-27. Here, we use the RMSE as the metric,
defined as:

X1 (Xi - Xiref)z (IV-9)
n

RMSE =

where, X; is the i" element in the transformed feature X, n is the number of elements
in the feature. X could be the current vector built by the direct I1-V method or the matrix
built by RP or GADF method. Since the values of the three types of features are
different, in order to fairly compare their RMSE and the variation trend with fault
severity, it is the normalized value (normalized in the range [0,1] [99]) that is presented
in Figure IV-25 -Figure 1V-27.
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Figure 1\VV-25: RMSE of features between healthy and PS condition
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Figure 1VV-26: RMSE of features between healthy and Rs degradation condition
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Figure 1\V-27: RMSE of features between healthy and Rsh degradation condition

From Figure 1V-25 -Figure IV-27, it is observed that the normalized RSME of direct I-
V and RP exhibit a similar evolution trend under the three conditions, while that of
GADRF increases clearly faster than RP and direct 1-V, especially under PS and Rsh
degradation. This means, with the aggravation of fault severity, the difference of GADF
feature between the current condition and the healthy condition becomes more
significant than that of direct I-V and RP. This allows the classifiers easier to distinguish
the current condition from the healthy one, especially under incipient fault conditions.
In other words, the discriminability of features under different conditions is enforced
with the feature transformation, especially GADF.

IV.5.3. Diagnosis results using experimental data
IV.5.3.1. Description of experimental platform

To evaluate the trained classifiers under real case, an experimental PV array of 6 sc-Si
modules (Wiltec 62391-50W) is constructed, as shown in Figure 1\VV-28. The parameters
of PV modules in the simulation and field tests are identical. A reference cell (RG100)
measures G, and a Pt100 probe (class A) measures the back-sheet Trm of one module
continuously. 2 multimeters (Keithley 2440 and 175) record the measured G and Tn.
The I-V tracer (Chauvin-Arnoux FTV200) records the array I-V curve.

All the 8 PV array conditions are produced to record the corresponding I-V curves.
Some fault setups are shown in Figure 1VV-29. The setting of fault severity is detailed in
Table IV-7 on covering the range used for training presented in Table I1VV-3. For PS, the
module is not fully covered by shelters but it could have same impact as in the
simulation. In total, 120 I-V curves are recorded for the test with each condition of 15
curves. Some examples of the measured 1-V curves under these conditions are shown
in Figure 1V-30.
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To quantify the matching degree between simulated and real 1-V curves, the E_, ;e
(defined in (111-17) and used in Chapter I11) is used. The average E ... between the
measured 120 curves and simulated ones is 1.9%, which shows a good match between
the simulation model and the real array.

Rsh degra

Figure 1\VV-29: Examples of fault setup
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Figure 1V-30: Examples of corrected real and simulated 1-V curves

Table IV-7: Setting of fault severity

Condition Varying fault severity
Healthy, SC, SC2, OC None
PS, PS2 PS degree controlled by 3 different distance between the
shelter and panels
Rs degradation Added resistance in series: 1Q, 2Q, 4Q
Rsh degradation Added resistance in parallel: 30Q, 500, 150Q

IV.5.3.2. Experimental test result

After the pre-processing (correction, resampling) and feature extraction (using the 4
feature extraction selected methods: 8paras, direct I-V, RP, or GADF), the processed
samples are then fed into the best-tuned classifiers (trained by simulated data, presented
in Table IV-5) for classification. The diagnosis results are presented in Figure 1\V-31.
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Figure 1V-31: Test results using field-measured data

From the results, similar to the previous observation in simulation, the classifiers using
the features based on complete 1-V curve in direct or transformed feature space (direct
I-V, RP, and GADF) outperform that using partial information (8 paras). For 8 paras,
the main misclassification happens between PS/PS2 and Rs/Rsh degradation, which
corresponds to the result in Figure 1V-12. For the 3 types of features based on the
complete I-V curve, except one I-V curve wrongly classified when using direct |-V, the
classification performance could reach 100% (when using GADF and RP). This
experimental test validates the effectiveness of the tuned classifiers using simulated
data and also once demonstrates the superiority of using features based on complete I-
V curve information for PV FDD.

IV.6.Comparative studies based on the same benchmark

From one I-V curve, there are other different methods, either proposed in the literature,
or possible to be adopted, to extract features for PV FDD. Based on the established
simulated and experimental database adopted in Section V.5, these methods will also
be evaluated to perform a comparative study.

IV.6.1. Methods for comparison
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Chapter IV PV fault diagnosis using 1-V curves and machine learning classifiers

On the whole, the common methods are categorized into partial usage and complete
usage of I-V curve information as illustrated in Figure 1VV-32. These methods [19]-[21],
[24], [82], [234], [265] all rely on I-V curves to extract features for PV FDD. Detailed
presentation of each method is given in the following.

Partial Vectors of Key curve parameters (G, 7, vimp, Imp, Vo, Isc, Rs, Rsh) ©
usage Vand|
pd  With resampling direct I-V
I-V curve Single resample One
(Vectors of (based on a fixed Vector of | Transformed
Vandi) Vectors of vector of V) i(nto matri))(
Vandl GADF, RP
‘< and Double resample Vector of | ’ MLT
usage s
(based on fixed + vector of V IVGT classifiers
vector of Vand 1)
N Without resampling
VI vectors (concatenate V/ and | vectors into one)
Vectors of
Vand|! I-V curve image (save I-V curve figure as images)
N~

Figure 1\VV-32: Feature extraction methods of I-V curve for comparison study

IV.6.1.1. Methods based on partial usage of I-V curves

The methods of partial usage of I-V curve mainly refers to the ones that adopt key I-V
curve parameters as features for PV FDD [19]-[21], [234], [265]. The ‘8paras’
evaluated in Section IV.5 is an example. For comparative study, other common
combinations of key curve parameters for PV FDD will also be tested as listed in Table
IV-8.

Table 1V-8: Parameters used in 4 methods based on partial usage of I-V curve

Technique  Correction Parameter used

name  OTIVEUNVE G T e e Vue  Iwe R* Ry®

8paras No v v v v v v v v
6parasA Yes v 4 v v v v
6parasB No v 4 v v 4 v

4paras Yes v v v v

*R and Ry, are calculated from the slope of I-V curve [252]

For 6parasA and 4paras, the parameters are extracted from the I-V curve after the
correction to STC, in which the G and Trm information is already involved. Thus, these
two techniques do not require to include G and Tm in the features. For 8paras and
6parasA, the estimated R, and R, of I-V curves are also taken as the features for FDD.

IV.6.1.2. Methods based on full usage of 1-V curves
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Chapter IV PV fault diagnosis using I-V curves and machine learning classifiers

1V.6.1.2.1.  Methods with resampling of I-V curves
e Single resampling

The proposed PV FDD methodology in this thesis contains the step of resampling.
Specifically, it is of the single resampling type, i.e., based on a fixed vector of voltage
to construct a resampled vector of current as presented in Section 1V.3.2.

e Double resampling

In literature, there is one double resampling of I-V curves for PV FDD proposed in [24].
Firstly, 20 data points are resampled from one I-V curve based on a voltage vector with
the range of [0, V], while other 20 points are resampled along the current axis with a
current vector [0, Isc]. Then, the 40 new resampled data points are combined and sorted
following descending order of the voltage. To consider the impact of G and Tw, the G
and Tm are repeated to construct a vector with an identical length of the I-V curve,
respectively. Then, the G vector, T vector and I-V curve matrix are combined to finally
construct the feature of a 40>4 matrix, as illustrated in Figure 1V-33.
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Figure 1\VV-33: Feature extraction based double resampling of 1-V curve [24]

1V.6.1.2.2.  Methods without resampling of I-V curves

With a full usage of the I-V curve, it is also possible to avoid performing resampling
on keeping all the raw 1-V curve information. The typical techniques include:

e VI vector
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Chapter IV PV fault diagnosis using 1-V curves and machine learning classifiers

As one 1I-V curve is formed by a vector of V and a vector I, this method thus directly
concatenates them into one vector as features. However, there is one thing that should
be paid attention to. That is, the number of points in vectors should always be identical,
whatever the ones used for training by simulation or the ones measured in the field test.
In this study, the number of points in V and | vector is set as 300 (larger than that of the
measured I-V tracer (FTV200)). The concatenated vector is thus of 600 points. For the
curves not reaching 300 points, the vectors will be padded by 0. An illustration for the
construction of VI vector feature is shown in Figure 1V-34.

L

} » Vector of V (300 points)
0 » Vector of | (300 points)

\%
1-V curve

VI vector feature (600 points)
vy [ve [+ | vooy | 10 | 1) |~ | 1300) |

Figure 1V-34: Illustration of the VI vector feature

e |-V curve image

Another resampling-free usage of the complete I-V curve as the feature is to directly
save the I-V curve figures as images. Then, these images will be processed by deep
neural networks that are proficient in pattern recognition via images. A similar
application can be found in [82]. In this comparison study, I-V curves are saved as
images with voltage range in [0, 70] V and current [0, 10] A. The images are square
and grayscale. Examples of 1-V curve images are given in Figure 1VV-35.
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Figure 1VV-35: Examples of I-V curve images (each image is 100*100 pixels)

1V.6.2. Comparison results
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Chapter IV PV fault diagnosis using 1-V curves and machine learning classifiers

The features extracted by the aforementioned methods will be processed by the MLTs
presented in Section 1V.5.1 for PV FDD. For each type of new feature, the MLT
classifiers will all be re-tuned. Then, the best classifier will be validated by the same
field-measured dataset. The accuracy and time are now summarized in Table 1V-9.

Table 1VV-9: Comparison of PV FDD results of different methods

Accuracy Time
Usage of R | Method P
esample etho . re- .
-V curve Train Test ek process  Test F'elf
test . test
+train
8 paras 96.21% 94.83% 91.67% 3.08s 0.05s  0.09s
Partial 6 parasA 95.41% 94.04% 90.83% 3.59s 0.05s  0.05s
usage 6 parasB 95.08% 93.54% 89.17% 5.86s 0.03s  0.05s
4 paras 9459% 93.00% 87.50% 4.16s 0.04s  0.04s
direct I-V 100%  99.92% 99.17%  41.96s 0.01s 0.17s
Yes
) RP 100%  99.96%  100% 146.03s  0.01s 0.29s
(single)
GADF 100% 100% 100% 80.63s 0.01s 0.21s
Complete Yes
usage IVGT 99.75% 98.83%  97.5% 38.62s 0.01s 2.13s
(double)
VI vector 100%  99.96% 15.00%  69.21s 0.01s 0.15s
No
I-V image 100%  99.58% 95.00% 1214.84s 13.9s 29.4s

* Time includes pre-processing, extraction and analysis

The methods based on partial usage of the I-V curve present similar performance and
require less time in the pre-processing and training steps than the others. Among these
partial usage methods, the 8 paras, free of 1-V curve correction and containing more
curve information than 6 parasB and 4 paras, exhibits higher accuracy in training, test,
and field test. Nevertheless, it should be noted that the calculation of Rg and Ry,
requires the measurement of a full 1-V curve, unlike V,. and Is., which can be more
easily obtained by setting the array at OC or SC condition, respectively. Therefore, the
choose of methods based on the partial usage of 1-V curve will be a trade-off between
the FDD performance and complexity of data acquisition.

Concerning the methods based on complete usage of the I-V curve, the proposed 3
methods in this thesis (i.e., direct I-V, RP and GADF) show better classification
accuracy than the other methods. Additionally, the decision-making time in the field
test is also rapid, all within 0.3s. The IVGT method is also based on resampling but
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performs worse than the proposed 3 methods. This is supposedly due to a lack of
efficient integration of G and T information into the features. As seen from Figure
IV-33, the resampled V and I vectors in the IVGT matrix feature are from the I-V curves
without correction, the shape of which greatly depends on G and Tm. The G and Tm,
information are integrated into the features by adding two vectors with repeated values
of G and T, respectively, which inevitably results in information duplication.

For the methods free of resampling, VI vector also achieves quite good performance in
training and simulation tests but has an inferior performance in the field test with the
classification accuracy of 15%. This is due to the different spacing of points in the I-V
curve used in training and field test, for example, under the healthy condition shown in
Figure 1V-36. As no resampling is performed for VI vector, this different spacing of
points leads to the fact that the classifiers trained by simulated I-V curves do not fit the
real I-V curves recorded by the I-V tracer. Thus, poor classification result is led to as
observed from the field test accuracy in Table 1V-9. In fact, the spacing of points of real
I-V curves could vary from case to case, depending on the environmental condition, |-
V tracer type, |-V characterization technology, etc. Therefore, to ensure the adaptability
of one trained classifier, a pre-processing step is needed to bring about an identical
spacing of points. That is why the resampling is performed in our PV FDD methodology.
As for the 1-V image method, its performance is similar with the IVGT method, but still
inferior to the proposed methods. Besides, due to the complexity of dealing with image
data, the training and field test time are extremely longer than the other methods. This
renders this method less competitive for the application in rapid field PV FDD tasks.

a b
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Figure 1VV-36: Examples of simulated and measured I-V curves of healthy array

To summarize, compared with other I-V curve-based feature extraction methods, the
proposed 3 methods (direct 1-V, RP and GADF), on the one hand, achieve the best
classification performance in both simulation and field test; on the other hand, they do
not introduce large time complexity in the pre-processing and training steps, and
guarantee a rapid decision making in the field test. Therefore, these feature extraction
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methods together with the whole FDD methodology, are promising to be applied for
PV FDD.

IV.7.Conclusion

A PV FDD methodology based on complete I-V curve information and MLT classifiers
has been presented in this section based on the four-step FDD scheme, i.e., modeling
(configuration of I-V curve dataset), pre-processing, feature extraction, and feature
analysis. Besides, a comparative study is also performed.

e Configuration of dataset: I-V curves of a PV array under healthy and 7 fault
conditions are simulated to construct training and test datasets. In addition, an
experimental test is also conducted to collect the real 1-V curves for the field test.

e Pre-processing of I-V curves: two operations are performed, i.e., correction and
resampling. The proposed NewP2 correction method is adopted to correct I-V
curves to STC. Then, the I-V curve is resampled based on a fixed voltage vector to
generate a current vector. The number of points is selected as 50 on considering
both the goodness of resampling and the complexity of the feature.

e Feature extraction: 3 methods, i.e., direct I-V, RP and GADF, are proposed to
embed complete I-V curve information into features. Then, PCA is applied to
reduce the dimensionality of extracted features.

e Feature analysis for FDD: six common MLT classifiers are all tuned to process
the extracted features. The classification results using features based on complete
I-V curve outperform that using partial curve information. The best test accuracy
(using simulated test data) could reach 100% using GADF as features and ANN as
the classifier. The tuned model also achieves 100% classification accuracy via the
field test. Besides, GADF exhibits higher robustness to the additional disturbance
in the test data than the other features. It is discussed that performing PCA could
reduce the total training time and increase the prediction speed. It is also
demonstrated that the transformation of features into 2D features, especially into
GADF, could augment the discriminability of features, which helps to ameliorate
the performance and increase the reliability of classifiers.

e Comparative study: the proposed 3 feature extraction methods have been compared
with other methods based on partial and complete 1-V curve information. The
proposed ones achieve the best classification performance in both simulation and
field tests on also guaranteeing rapid decision making.
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This proposed FDD methodology (including the correction, resampling, feature
transformation with GADF) is promising to be applied and further explored for future
fault detection and diagnosis of PV modules.

122



Conclusion and perspectives

Conclusion

Based on a comprehensive state-of-the-art of PV faults and FDD techniques, in this
work we have developed a new FDD strategy for PV systems using full I-V curves.
This strategy proposes an improved method for correcting the I-V curves of faulty PV
panels and uses full 1-V curves as features for diagnosis. Besides, the feature
transformation is also studied to improve FDD performance.

In Chapter I, a state-of-the-art for PV array faults is presented. The fault causes, impact
(on power loss and safety risk), frequency of occurrence, and the causal relationships
between mismatch and abnormal degradations have been identified. The main PV fault
classification tools reported in the literature have been summarized. We have also
proposed a method for classifying the faults according to their level, i.e., at the cell,
module, or array level. Through this approach, the usual faults have been presented.
Finally, with joint consideration of fault impact, frequency of occurrence, and
reproducibility, partial shading, module short-circuit, string open-circuit, and abnormal
degradations have been selected as study cases.

In Chapter Il, the common FDD techniques for PV faults are reviewed through two
categories: visual inspection and automatic analysis. The automatic FDD methods are
described in a four-step scheme: modeling, pre-processing, feature extraction, and
feature analysis. Our FDD strategy is also determined to follow this four-step scheme.
The 1-V curve, as containing rich information for assessing the health of the PV
modules and arrays, is chosen as the data for analysis. The Machine Learning
Techniques, decisive in handling big data and multi-condition classification, are chosen
to analyze the fault features. Specific pre-processing and extraction methods are
selected to embed more efficiently complete 1-V curve information and enhance the
discriminability of features.

In Chapter IlI, the three procedures (P1, P2, P3) proposed in IEC 60891 have been
evaluated to correct simulated 1-V curves for defective PV arrays. All three procedures
introduce significant errors to the estimation of B,, and the fault parameters extracted
from the corrected curves due to irradiance G, temperature Tm, and the severity of the
defects. Moreover, worse still, most significant errors result in underestimating the
parameters, up to 9.1% for P, using the method denoted P2. Therefore, a P2-based
improved method (NewP2) has been proposed and has exhibited better average
performance than methods P1 and P2 with the decrease of the average curve error from
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3.45 % (using P2), 4.5 % (using P1) to 2.37% under constant fault severity. NewP2 also
shows an overall better performance with varying fault severity than P1 and P2 on the
curve error and most of the key curve and fault parameters. As for P3, it generally has
higher performance but is less suitable for application to rapid field diagnosis due to
the requirement of multiple reference curves.

In Chapter 1V, the proposed PV FDD methodology using full 1-V curve information
and MLT classifiers is detailed. This methodology is based on the four-step FDD
scheme. Correction (using NewP2) and resampling operations are performed to pre-
process the original curves. Direct I-V, RP, and GADF, are proposed to transform the
complete 1-V curve into relevant features. PCA is also applied to reduce the
dimensionality of the extracted features. For the analysis of fault features, six common
MLT classifiers are tuned and evaluated. The classification results have shown that
using the features based on the complete I-V curve outperform those using only
partially the information from the I-V curve. The best accuracy could reach 100% using
GADF to extract the features and ANN as the classifier for simulation and field data.
Besides, GADF exhibits higher robustness to the additional disturbance than the other
transformation techniques. It has been noted from the results that performing PCA
could increase the speed of the prediction and reduce the total training time. It has also
been shown that the transformation of features into 2D features, especially with GADF,
could increase the discriminability of the features. Thus, it helps to ameliorate the
performance and the reliability of the classifiers. Finally, the proposed methodology
has been compared with other methods from the literature. Our proposal achieves the
best classification performance for both simulation and field data with rapid decision
making.

This proposed FDD strategy (including the correction, resampling, and feature
transformation into GADF) is promising to be applied and further explored. This study
may also provide valuable experience for future researchers on how to make full use of
I-V curves for PV fault diagnosis with higher performance.

Perspectives

= Concerning the correction of I-V curves of defective PV panels:

For the single curve correction methods (P1, P2, and NewP2), the determination of the
correction coefficients in the field remains a challenging task. It is necessary to develop
a strategy for the determination of these coefficients on the basis of field data, which
differs from the procedure proposed by the IEC 60891 standard. The latter requires
controlled environmental conditions, which can only be achieved in well-equipped
laboratories. Solutions to reduce dependence on correction coefficients, such as [266],
[267], should also be further developed and validated with I-V curves of faulty panels.
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For the correction method based on multiple curves, two improvements are expected:
on the one hand, efforts are needed to improve the correction performance in the case
of partial shading; on the other hand, the development of a methodology for the
automatic and efficient selection of reference curves would facilitate the deployment of
the technique in the field.

Finally, the proposed new correction procedure (NewP2) and the existing procedures
still need to be evaluated with more types of PV faults and with field-measured data.

= Concerning the PV FDD strategy based on complete I-V curves:

In terms of modelling, the 1-V curve database should be enriched with multiple defect
cases and defects of varying severity. It would also be interesting to investigate a
combination of physics-based and data-driven models.

In the pre-processing step, the current FDD strategy relies on the correction and
resampling of 1-V curves. These two operations are relatively complex and may
introduce correction errors or information loss. Thus, these operations require further
improvement, and alternative methods are expected to be developed with the aim to
efficiently embed the environmental information into features and make better use of I-
V curves.

Feature transformation techniques (RP and GADF) square the initial dimension of the
workspace. This can become a heavy burden for data processing. Especially if the
number of modules to be monitored increases as well as the number of I-V curves.
Although dimension reduction techniques could be adopted, they increase the
complexity of the FDD strategy. Thus, feature transformation techniques should be
selected as a trade-off between limited feature-space dimension, and an enhanced
capability of discriminating fault features. The combination with analytical models can
help to shorten the duration of the calculations and allow faster decision making.

For feature analysis, a deeper analysis is required to better understand the discrepancy
of classification performance when using different combinations of features as inputs
of the machine learning-based classifiers. Special attention should be paid to the
configuration of the hyperparameters. If the amount of available data or the feature
dimension increases, the use of deep learning classifiers should be investigated.

Finally, the FDD strategy should combine measurements on the DC side with those on
the AC side to monitor not only PV modules but also power converters, sensors, and
cables.
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R&uméen francais

L'éergie solaire photovoltafue (PV), en tant qu'éergie renouvelable pré&ente divers
avantages [1]. En exploitation elle est non polluante et n'énet aucun gaz aeffet de serre
(comme le dioxyde de carbone, le mé&hane et I'oxyde nitreux) [2]. De plus, cette énergie
propre est disponible toute I'année. Mé&ne par temps nuageux, la production n’est pas
interrompue [3]. Ces derniges annees, la capacité cumulée installé& a 1’échelle
mondiale a connu une croissance rapide [4], qui a atteint en 2020 plus de 758,9 GW [5].

Pour I'année 2020, la pandénie de COVID-19 a entrameun ralentissement é&onomique
et causé des dommages sociaux. Cependant, cette pandémie n'a pas eu d'impact
significatif sur le développement du march&[5]. Selon le BP World Energy & Ember,
la part du PV dans la production mondiale d'@ectricitéa augmentéde 20,2% en 2020,
s’établissant &2844,4 TWh [6]. Avec cette augmentation, la part du solaire PV dans la
production mondiale d'@ectricitéa atteint environ 3,3%. Quant au p&imétre futur, selon
le scénario «Net Zero Emissions by 2050 >»>du WEO 2020, la capacitéPV installé&
dans le monde passerait 23929 GW d'ici 2030 [7], et I'@ectricitésolaire atteindra
environ 15,9 % de la production énergé&ique mondiale [8].

Outre les objectifs environnementaux, la prosp€&itéde I'industrie PV est &alement due
ala baisse progressive des prix des modules photovoltajues et aux progrés de
I'ingénierie et de la construction des installations. En fait, la compéitivitédes projets
PV mesurée par le cot niveléde I'd@ectricités'est éjalement continuellement améioré
ces derniéres années [9]. L'AIE a annoncéque «le PV est la source d'@ectricitéla moins
chere presque partout >>[10].

Avec le développement rapide de l'industrie PV et l'augmentation de la capacité
installeée, des stratégies d'exploitation et de maintenance efficaces sont de plus en plus
néeessaires [11]. En fait, les conditions environnementales, la fabrication, le transport,
I'installation ou de mauvaises conditions de fonctionnement peuvent provoquer des
pannes de cellules ou de modules PV [12]. Dans le cas d'un géné&ateur PV ou d'une
centrale &ectrique, qui est composéde plusieurs modules connecté& dectriquement,
tout défaut dans une cellule ou un module affecte les performances de I'ensemble du
géné&ateur ou du systéme. Les défauts PV pourraient entramer un grave danger pour la
s&urité, par exemple, risque d'incendie, choc @ectrique, danger physique [13] ou perte
de puissance [14]. Par conséguent, pour assurer la fiabilit& la disponibilitéet la s&urité
des installations photovoltamues, leur éat de santédoit &re surveilléré&ulieement
pour €viter les pannes et contribuer aune politique de maintenance conditionnelle
efficace.
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La pierre angulaire d'une strategie de déection et de diagnostic des d&auts PV (FDD)
sont les donné&s PV, dont les types @ectriques sont les plus courants car ils sont
capables de refléer I'é@at de fonctionnement ré&l d'un module ou d'un géné&ateur PV
[15]. Parmi les données @ectriques, la caract&istique courant-tension (courbe 1-V)
contient le plus d'information sur I'é&at de santéd'un module ou d'un généateur PV, ce
qui devrait permettre un diagnostic plus preeis [16]. Les traceurs I-V courants
permettent dgala mesure pour un seul module ou un string apetite &helle. Ces
derniees annees, les solutions maté&ielles (intérés au niveau de l'onduleur) sont
devenues disponibles dans le commerce pour mesurer p&iodiquement les courbes 1-V
au niveau de la centrale [17], [18]. Par conseguent, il est pré/u dans un proche avenir
que les courbes I-V seront mesurables dans presque toutes les installations PV. Dans
cette perspective, cette thése vise aproposer une strate€gie basé sur les informations
contenues dans la courbe 1-V pour le diagnostic des défauts courants dans les panneaux
PV. Pour @re preeis, cette thése se compose des quatre principaux chapitres suivants:

Dans le Chapitre I, un é&at de l'art des défauts des géné&ateurs PV est pré&enté Les
origines des défauts, leur impact (sur la puissance et le risque pour la s&urité, leur
fréguence d'occurrence et les relations causales entre I'inadéjuation et les dégradations
anormales ont &éidentifiés. Les principaux outils de classification des défauts PV
rapporté&s dans la litt&ature ont &é ré&sumé. Nous avons éjalement proposé une
méhode pour classer les défauts en fonction de leur emplacement, c'est-&dire au
niveau de la cellule, du module ou du champ. Enfin, en tenant compte conjointement
de I'impact des défauts, de la fréguence d'occurrence et de la reproductibilité I'ombrage
partiel (PS), le court-circuit d’un module (SC), le circuit ouvert d’un string (OC) et les
deégradations anormales ont &éretenus comme cas d’étude.

Dans le Chapitre 11, les techniques courantes de déection et de diagnostic des défauts
PV sont analysé & travers deux catégories: I’inspection visuelle et 1’analyse
automatique. Les mé&hodes automatiques sont déerites au travers d’un schéna en quatre
éapes : moddisation, prétraitement, extraction de caracté&istiques et analyse de
caracté&istiques. Notre stratégie est éjalement congie sur la base de ce schéma en
quatre éapes. La courbe I-V contient des informations riches pour évaluer la santédes
modules et des panneaux PV. Elle est donc ici retenue pour mod@iser le systéme éudié
Suite a I’analyse bibliographique, nous avons noté que les courbes I-V ne sont que trés
partiellement exploités pour le diagnostic. De plus, nous avons noté qu’il y avait tres
peu d’études sur les techniques de transformation des caracté&istiques pour améiorer
la séarabilitédes déauts dans diffé&entes conditions défectueuses. Par conseégjuent,
nous proposons dans ces travaux de développer un prétraitement adapté et des
mehodes d'extraction pour exploiter plus efficacement les informations issues de la
courbe I-V complée et am@iorer la séarabilitédes signatures de défauts. En ce qui
concerne 1’analyse des signatures, les techniques d'apprentissage automatique (MLT),
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deeisives dans le traitement du big data et de la classification multi-conditions, sont
retenues.

Le chapitre 11l se concentre sur les mé&hodes de correction des courbes 1-V des
panneaux PV défectueux, ce qui est une éape essentielle dans le préraitement. En effet,
les courbes I-V mesurées sur le terrain sont enregistrées dans des conditions
environnementales variables. Pour éviter de fausses interpréations, il faut ramener les
courbes I-V mesurées dans des conditions diffé&entes & la méme condition
environnementale, géné&alement la condition STC. Cependant, &notre connaissance,
aucune meéhode n'est proposés pour la correction des courbes I-V des panneaux PV
défectueux. Dans la plupart des travaux, les chercheurs adoptent les procélures de
correction originales ou simplifiés de la norme IEC 60891 [25]. Or ces procé&lures sont
toutes initialement conqies pour la correction de courbes mesurees apartir de panneaux
PV sains. L'adéjuation de ces procélures pour la correction des courbes I-V des
panneaux défectueux est rarement éudi€e, et encore moins si les caracté&istiques du
défaut sont faussees par la correction et conduisent ainsi aune erreur de diagnostic [26].

Ainsi, le chapitre 111 &alue les trois procélures (P1, P2, P3) proposées dans la norme
IEC 60891 pour la correction de courbes I-V de panneaux PV défectueux. Puisque notre
objectif est d'éaluer I'erreur causeés par les procélures de correction, il est essentiel
d'éiter les effets d'autres facteurs, comme les incertitudes de mesure. Par cons€éjuent,
les courbes &corriger sont géné&&s en simulation pour s'assurer que tous les parameétres
utilisés dans la formule de correction n'ont pas de biais. Un systéme PV, basésur le
modée adiode unique, est mod&iséavec Matlab Simulink® pour généer les courbes
I-V &corriger. Plusieurs conditions sont simulées; systéne sain, ombrage partiel (PS),
circuit ouvert (OC) dans un string, module en court-circuit (SC) et dégradation des
résistances Rs et Rsh. Les performances de correction sont é&alués apartir de la
correction sur I'ensemble de la courbe et des paramétres clé de la courbe. En outre,
I'impact de la gravitédes défauts sur les performances de correction est éalement
analysé Les résultats montrent que les trois procedures introduisent des erreurs
significatives dues al'é&lairement G, ala tempé&ature T et ala gravitédes défauts.
Nous avons montréqu'en utilisant P1, une distorsion est introduite dans la forme de la
courbe avec une erreur relative jusqu'a13,8%. On observe &jalement des erreurs
d'estimation de la puissance maximale Pn et des paramétres de défaut extraits des
courbes corrigées. Les erreurs les plus significatives se traduisent par une sous-
estimation des parametres, jusqu'a9,1% pour la P en utilisant P2. Ces erreurs peuvent
affecter la déection des défauts naissants si ces parametres sont utilis&s comme
signatures. Quant aP3, elle a géné&alement des performances plus éevees, mais elle
induit une distorsion de correction importante pour les courbes dans le cas de I’ombrage
partiel, et elle est moins adaptée aune application au diagnostic de terrain rapide du fait
qu’elle nécessite 1’usage de plusieurs courbes de réf&ence.
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Par consejuent, une nouvelle mé&hode basé sur la proc&lure P2 (NewP2) a &é
proposee. Elle consiste amodifier un coefficient dans I'éuation de la correction de
tension de P2 pour réluire son erreur de correction de tension &proximitéde la tension
de circuit ouvert Voc. En mé@ne temps, il conserve I'&juation d'origine pour la correction
actuelle de P2. NewP2 permet d’obtenir en moyenne des performances plus robustes
que P1 et P2 avec une diminution de I'erreur de 3,45 % (en utilisant P2), 4,5 % (en
utilisant P1) &2,37 % pour un défaut de s&/&itéconstante. Pour un défaut de gravité
variable, NewP2 affiche &jalement une meilleure performance globale que P1 et P2 sur
I'erreur de courbe et la plupart des parameétres clés de la courbe.

Dans le Chapitre IV, une mé&hodologie de déection et de diagnostic qui s’appuie sur
I'utilisation complée des courbes I-V et des classifieurs basé sur des techniques
d’apprentissage automatique est proposée. Elle est évalué sur une installation
constitués de six modules sc-Si Wiltec 62391-50W organisés en deux strings (pré&senté
dans Figure 1). Le mé@ne systéme est simulésous Matlab Simulink®. Au total, huit
cas sont éudiés: le cas sain, deux types dePS, OC dans un string, deux types de SC, et
la d&yradation des résistances Rs et Rsh. Deux ensembles de données sont gen&és, un
pour I’apprentissage et un autre pour le test. L'ensemble des donnéss d'apprentissage
contient 12000 courbes 1-V (1500 courbes pour chaque cas), dont 2400 sont destinés
au test. Le bruit environnemental et I'erreur alétoire de mesure sont &alement ajout&s
aux &hantillons simulé pour généer des courbes 1-V plus proches de celles mesurees.

PV array of 6 modules

L]
Irradiance B
Current
Measurement
“oltage
Measurement
-
Rsh_degra Controlled
Vaoltage Source
a
Total PV
String Voltage
module1-3
Continuous
Module

Temperature

Rs_degra

Figure 1: Modéde de simulation pour I’installation PV

La phase de pré&raitement consiste acorriger les courbes par la proc&lure NewP2 puis
ales ré&hantillonner. Le nombre de points de rééhantillonnage est fixéa50 pour
garantir ala fois de bonnes performances et limiter la charge de calcul. Pour I'extraction
des caracté&istiques, trois mé&hodes dites, direct I-V, Recurrence Plot (RP) [261] et
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Gramian Angular Difference Field (GADF) [262] sont utilisés pour transformer la
courbe I-V complete (examples pré&entés dans Figure 2). Pour ré&luire la dimension
des caracté&istiques extraites et am@iorer I'efficacitédu processus d'analyse, I'Analyse
en Composantes Principales (ACP) [124] est appliqué. Le nombre de composantes
principales est déerminé&en conservant au moins 98 % de la variance cumulé des
donnéss originales.

(a) Healthy (b) PS (c) PS2 (d) Rs degra (e) Rsh degra
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Figure 2 : Examples de caracté&istiques transformés par GADF et RP

o

((a) Cas sain, (b) PS, (c) PS2, (d) Rs degradation, (e) Rsh degradation (la valeur de chaque
composant sur la matrice de caracté&istique est marquée par colormap))

Pour I'analyse des caractéistiques des défauts, six classificateurs MLT courants sont
appliqués, y compris le ré&eau neuronal artificiel (ANN), la machine avecteurs de
support (SVM), l'arbre de de&eision (DT), la for& alétoire (RF), les voisins les plus
proches (KNN) et Classificateur na'f bayéien (NBC). Une attention particuliée est
accordés ala recherche des meilleures performances possibles lors de I'utilisation de
diffé&ents types de caractéistiques d'entrée en ré&lant bien les six classificateurs MLT.
Les réultats de la classification ont montréque I'utilisation des caracté&istiques basées
sur la courbe I-V complée surpasse celles qui n'utilisent que partiellement les
informations de la courbe I-V(cette méthode notée comme ‘8paras’) avec les résusltats
pré&entées dans Figure 3. La meilleure pré&ision pourrait atteindre 100 % en utilisant
GADF pour extraire les caractéistiques et ANN comme classificateur pour la
simulation et les données de terrain (la plateforme d'exp&imentation pré&entédans
Figure 4). De plus, GADF préente une plus grande robustesse ala perturbation
supplénentaire que les autres techniques de transformation (pré&entédans Figure 5).
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Figure 3: Preeision de classification utilisant les courbes I-V simulées pour tous les
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Figure 5: Meilleure préeision de classification utilisant les données de test avec un niveau
variable de perturbation supplénentaire

((a): Erreur alétoire variable de V et | ; (b) : Bruit environnemental variable de VV et I. Le
niveau de perturbation adoptédans les données d'apprentissage est marquéen <«<losange )

Il a &&aussi notéapartir des résultats que I'exésution de I'ACP pouvait augmenter la
vitesse de la pré&liction et ainsi ré&luire la durée de 1’apprentissage. Il a éalement &é
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montréque la transformation en 2D, notamment avec GADF, pouvait augmenter la
discriminabilitédes caract&istiques. Par consé&juent, cela contribue aam@iorer les
performances et la fiabilitédes classifieurs. Enfin, la mé&hodologie proposé& a é&é&
comparé ad'autres méhodes de la litt&ature. Notre proposition obtient les meilleures
performances de classification pour les données de simulation et exp&imentales avec
une prise de dezision rapide.

L'apport de cette these ré&side dans les points suivants :

e Un schéma de déection et de diagnostic de défaut en quatre éapes est d'abord
appligué au domaine du PV. Cette dé&omposition a permis une meilleure
analyse et compréension des diffé&entes approches présentées dans la
litt&ature en termes de mod@disation, de préraitement, d'extraction et d'analyse
de caracté&istiques ;

e Une procé&lure de correction améioree des courbes 1-V de modules en défaut a
éépropose et testé. Elle a conduit &de meilleures performances globales que
les procé&lures de correction traditionnelles proposées dans la norme IEC
60891 et basess sur une seule courbe;

e [L’exploitation de la courbe |-V complée conduit ade meilleures performances
de classification que l'utilisation partielle des courbes I-V ;

e Deux techniques de transformation de caracté&istiques sont appliquées aux
courbes I-V. Elles ont permis d'am@iorer la discriminabilitédes caracté&istiques,
ce qui permet aux classifieurs MLT d'avoir une plus grande robustesse aux
perturbations et de meilleures performances de classification aussi bien avec les
données de simulation que les mesures.

Quant aux perspectives, elles peuvent &re envisagées dans les deux directions
suivantes :

1) Concernant la correction des courbes I-V des panneaux PV défectueux :

e La déermination des coefficients de correction sur le terrain reste une t&he
difficile. Il est neésessaire de développer une stratégie efficace pour la
déermination de ces coefficients apartir des donnees de terrain.

e Des solutions pour réluire la dépendance aux coefficients de correction
devraient &jalement &re développées et validées avec des courbes I-V de
panneaux défectueux.
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2)

Pour la proc&lure P3, des efforts sont néessaires pour ameéiorer les
performances de correction en cas d'ombrage partiel. Le développement d'une
meéhodologie de séection automatique et efficace des courbes de réf&ence
faciliterait son déploiement sur le terrain.

La nouvelle procélure de correction proposé (NewP2) et les procé&lures
existantes doivent encore @re éalués avec davantage de types de défauts et
avec des données mesurées sur le terrain.

Concernant la straté&yie PV FDD basés sur des courbes I-V complées :

En termes de mod@disation, la base de données des courbes I-V devrait &re
enrichie de plusieurs cas de défauts aséé&ité variable. Il serait éjalement
inté&essant d'é@udier une approche hybride qui combinerait les modées
analytiques et les modées pilotés par les données.

Dans I'&@ape de préraitement, la strat&jie FDD actuelle repose sur la correction
et le réé&hantillonnage des courbes 1-V. Ces deux opé&ations sont relativement
complexes et peuvent introduire des erreurs de correction ou des pertes
d'informations. Ainsi, ces opé&ations doivent encore &re améiorés et des
méhodes alternatives devraient &re développées dans le but d'intégrer
efficacement les informations environnementales dans les caracté&istiques et de
mieux utiliser les courbes I-V.

Les techniques de transformation des caract€&istiques (RP et GADF) conduisent
aune augmentation de la dimension de l'espace de travail. Cela peut devenir
une lourde charge pour le traitement des donnéss. Ainsi, les techniques de
transformation de caractéistiques a retenir doivent étre le résultat d’un
compromis entre une dimension limité de lI'espace et une capacitéaméioree de
discrimination des caractéistiques. La combinaison avec des modées
analytiques pourrait raccourcir la durée des calculs et permettre une prise de
deeision plus rapide.

Pour l'analyse des caracté&istiques, une &ude plus approfondie est nesessaire
pour mieux comprendre I'éart des performances de classification lors de
I'utilisation de diffé&entes combinaisons de caract&istiques comme entréss des
classifieurs. Une attention particuliere doit &re porté ala configuration des
hyperparaméres.

La strategie FDD pourrait combiner les mesures du cGécourant continu avec
celles du cGécourant alternatif pour surveiller non seulement les modules PV
mais aussi les convertisseurs de puissance, les capteurs et les céoles.
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La strategie proposes (y compris la correction, le ré&hantillonnage, la transformation
des caracté&istiques par GADF) s’est avérée prometteuse et mériterait d’étre explorée
plus avant. Ces travaux sont une contribution au diagnostic des modules PV en
s’appuyant sur 1’exploitation des courbes I-V complées.
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