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Abstract

Flow and dynamics of driven and active amorphous materials: a
multi-scale modeling approach

by Magali Le Goff

Soft glassy materials below their glass transition and far beyond jamming (at low
temperature and high density) exhibit divergent relaxation timescales and behave es-
sentially as solids in the absence of driving or biological activity. In this thesis, we
investigate the dynamics, rheology and large scale organization of various types of
athermally driven soft amorphous materials resulting either from an externally im-
posed driving (shear or vibration), from a local activity, or both. The main questions
behind the different projects constituting this thesis are: how do distinct sources of
mechanical noise affect the fluidization and large scale organization of soft amorphous
materials and how do we account for them in coarse-grained descriptions? To this aim,
we use a multi-scale modeling approach, from microscopic simulations to continuum
modeling, with a main focus on mesoscale elasto-plastic models.

The first topic of this thesis concerns shear localization in the flow of soft amor-
phous materials. We first consider the case of inertial dynamics at the microscopic
scale as a rate-weakening mechanism and show, using a continuum model, that perma-
nent shear bands observed in particle-based simulations can be explained in terms of
softening due to kinetic heating of the system under shear, with a shear rate-dependent
kinetic temperature.

In a second part, we study how permanent shear bands are affected by an external
source of noise leading to the random activation of plastic rearrangements. We show,
using a mesoscale elasto-plastic model with two different models of noise, that an
increasing external noise leads to vanishing shear bands, and that the transition from
heterogeneous to homogeneous flow can be interpreted as a nonequilibrium critical
point. Our findings suggest that the critical exponents associated with this transition
do not depend on the details of the activation dynamics for the noise, and are also
consistent with recent experimental results on vibrated granular media.

Fluidization by a rate-independent noise is an ubiquitous phenomenon, observed
not only in vibrated granular media, but also in active or biological systems, where
the noise is of active origin. In a third part, we study how active sources of noise
resulting from the active deformation of particles can induce a fluidization of the
system. Using inputs from microscopic simulations, we build a tensorial mesoscale
elasto-plastic model for the dynamics of actively deforming particles. Our first results
suggest that this active elasto-plastic model exhibits a fluidization transition similar
to the one reported in particle-based simulations and also shares similarities with inert
amorphous systems driven with an oscillatory shear protocol.

In a last part, motivated by experiments in the lab, we study the emergence of
collective oscillations of the cell velocity in a model of confined epithelial tissue. We
consider a Voronoi-based model of epithelium and find that a feedback mechanism
between the cell self-propulsion direction and velocity is required to observe oscilla-
tions, and that the type of oscillation observed depends upon the confinement length
as reported in experiments.
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Écoulement et dynamique de matériaux amorphes forcés et actifs :
modélisation multi-échelle

Les matériaux amorphes loin de leur transition vitreuse et de blocage (basse tem-
pérature et haute densité) relaxent sur des échelles de temps inaccessibles expérimen-
talement et, en l’absence de forçage, ont essentiellement un comportement de solide
élastique. Dans cette thèse, nous étudions la dynamique, la rhéologie et l’organisation
à grande échelle de différents systèmes vitreux “mous” soumis à un forçage soit ex-
terne (cisaillement ou vibration) soit résultant d’une activité (biologique) locale. La
principale question scientifique à l’origine de ce travail peut être formulée ainsi : “Com-
ment des sources distinctes de bruit mécanique peuvent-elles affecter la fluidisation
et l’organisation à grande échelle de matériaux amorphes et comment peut-on décrire
ces effets à l’échelle mésoscopique ?” Nous abordons cette question en employant
une approche de modélisation multi-échelle, allant de simulations de particules à des
modèles continus en se concentrant particulièrement sur les modèles élasto-plastiques
à l’échelle mésoscopique.

Le premier thème abordé dans cette thèse concerne l’écoulement hétérogène de
matériaux amorphes, sous la forme de bandes de cisaillements. Nous considérons tout
d’abord le cas d’un mécanisme d’auto-fluidisation induit par une dynamique inertielle
et proposons un modèle continu basé sur une description de l’inertie en terme de
température cinétique. Nous montrons que ce modèle décrit l’émergence de bandes
de cisaillement telles qu’observées dans des simulations de particules.

Dans une deuxième partie, nous étudions comment une source de bruit externe
à l’origine de l’activation d’évènements plastiques (sous la forme de vibrations par
exemple) affecte un tel écoulement hétérogène. Nous montrons, à l’aide d’un modèle
élasto-plastique sur réseau, qu’augmenter le bruit externe conduit à une disparition
des bandes de cisaillement et que cette transition entre un écoulement hétérogène et un
écoulement homogène peut s’interpréter comme un point critique hors équilibre. Nos
résultats suggèrent par ailleurs que les exposant critiques sont indépendants du détail
de la dynamique d’activation du bruit et compatibles avec des expériences récentes
sur des granulaires cisaillés et vibrés.

La fluidisation de fluides à seuil par des sources de bruit indépendantes de l’écoulement
peut être observée dans divers contextes, comme par exemple dans des systèmes act-
ifs ou biologiques. Dans une troisième partie, nous étudions comment une source de
bruit d’origine active, résultant de la déformation active de particules, peut induire
la fluidisation d’un matériau amorphe. En se basant sur un modèle microscopique de
particules dont le rayon oscille au cours du temps, nous construisons un modèle élasto-
plastique tensoriel actif. Nos premiers résultats montrent que ce modèle présente une
transition de fluidisation similaire à celle observée dans les simulations microscopiques,
analogue à la transition vers l’écoulement rapportée dans les travaux de cisaillement
oscillatoire des systèmes amorphes inertes.

Dans une dernière partie, nous présentons un travail réalisé en collaboration avec
des expérimentateurs du LIPhy sur l’émergence de dynamique oscillatoire dans la
migration collective de cellules dans un tissu épithélial confiné. A l’aide d’un modèle
de type Voronoi, nous montrons qu’un mécanisme de rétroaction entre la direction
de l’auto-propulsion des cellules et de leur vitesse est nécessaire pour observer des
oscillations, et que le type d’oscillations observé dépend de la longueur du confinement,
tel qu’observé dans les expériences.
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Chapter 1

Introduction and context

Résumé : Introduction et contexte de la thèse

Les systèmes denses désordonnés constituent une large classe de matériaux, allant des
verres, aux suspensions granulaires denses jusqu’aux tissus biologiques.

Les verres traditionnels sont généralement obtenus par trempe d’un liquide en
dessous de sa température de transition vitreuse Tg, en évitant la cristallisation.
Lorsque la température du liquide est abaissée, la viscosité du liquide dit “surfondu”
augmente, jusqu’à atteindre des valeurs tellement grandes que le système semble solide
aux échelles de temps accessibles expérimentalement. En d’autres termes, le système
relaxe sur des échelles de temps beaucoup plus grandes que la durée typique d’une
expérience. Cette transition entre un état “fluide” et un état apparemment “solide” est
appelée transition vitreuse, et se produit à une température Tg, définie empiriquement.

La physique des systèmes vitreux couvre cependant un champ plus large que celui
des liquides surfondus. Un système est dit “vitreux” si son temps de relaxation typique
est grand devant la durée typique d’une expérience ou d’une simulation numérique.
Avec cette définition, de nombreux systèmes tombent dans la catégorie des systèmes
vitreux, comme le montre la Fig. 1.1. Il y a bien sûr d’une part les verres d’oxydes,
les verres métalliques ou les verres de polymères, constitués de particules de taille
variant entre 0.1 et 10 nanomètres environ. Ces matériaux ont un module élastique
de l’ordre du GigaPascal, et auront tendance à se fracturer lorsque soumis à un forçage
mécanique suffisamment important. Il existe d’autre part des systèmes vitreux “mous”
tels que les mousses ou les émulsions. Ces systèmes sont composés de bulles ou
gouttelettes de taille allant du micromètre au millimètre, et leur module élastique est
beaucoup plus faible que celui des verres durs (de l’ordre de quelques centaines de
Pascal). Lorsque ces matériaux sont déformés, ils auront tendance à s’écouler comme
un fluide si la contrainte appliquée est supérieure à une contrainte seuil. Ces “fluides à
seuil” constituent eux-mêmes une large classe de matériaux, puisqu’ils incluent, outre
ces deux exemples, les suspensions denses (colloïdales ou granulaires), les milieux
granulaires secs, ou, comme proposé plus récemment, les tissus biologiques (Preziosi
et al., 2010; Matoz-Fernandez et al., 2017a; Popovic et al., 2020).

Tous les systèmes denses désordonnés partagent un certain nombre de propriétés
communes. Ils exhibent à la fois des propriétés solides et des propriétés fluides.
L’encombrement stérique lié à la grande densité de particules en interaction (qui peu-
vent être des atomes, des grains, des cellules) limite le mouvement de ces particules,
et les mécanismes de relaxation résultants sont non triviaux. Par ailleurs, comme la
phase vitreuse (solide) ne correspond pas à un minimum d’énergie libre du système,
le système continue d’évoluer très lentement au cours du temps, donnant lieu à des
propriétés dites de “vieillissement”. D’autres propriétés physiques remarquables des
verres peuvent être citées, comme par exemple le fluage, la réponse non linéaire, le
“rajeunissement”, etc.
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Lorsque la taille des particules est suffisamment grande pour que les fluctuations
thermiques soient négligeables, on parle de système “athermique”. Il faut alors appli-
quer un forçage pour observer une dynamique dans de tels systèmes. Dans cette thèse,
nous nous intéressons à deux classes de systèmes denses désordonnés athermiques :
les systèmes forcés et les systèmes actifs. Alors que dans les systèmes forcés (soumis
à un cisaillement par exemple), l’injection d’énergie se fait à l’échelle macroscopique
à travers les parois, l’énergie est convertie localement dans les systèmes actifs. En
d’autres termes, un système actif est constitué de particules capables de prélever de
l’énergie (sous forme chimique par exemple) dans leur environnement afin de réaliser
des processus actifs, comme par exemple se déplacer ou se diviser.

Plusieurs analogies ont été proposées dans la littérature entre les systèmes denses
thermiques ou forcés et les systèmes actifs. En particulier, l’étude de la transition
solide-liquide dans des systèmes de particules actives (essentiellement auto-propulsées)
et les analogies possibles avec la transition vitreuse à l’équilibre ont suscité un intérêt
grandissant au cours de cette dernière décennie (Berthier et al., 2019; Janssen, 2019).
De façon plus générale, on peut se demander comment décrire l’activité biologique
de façon effective, en supposant celle-ci comme étant à l’origine de sources de bruit
additionnelles dans la dynamique de solides désordonnés. Des questions émergent
alors sur les caractéristiques de ce bruit : ressemble-t-il à un bruit thermique, et pour
quels types de dynamique active ? Et de façon encore plus générale : quel est le rôle
de sources de bruit additionnelles dans la dynamique de solides désordonnés ? Quel
seront les conséquences sur la rhéologie et l’organisation de l’écoulement ?

C’est autour de ces questions que s’organise le travail présenté dans cette thèse.
La thèse est constituée de chapitres relativement indépendants, et abordant différents
aspects de la dynamique des solides amorphes forcés et actifs. Nous focalisons notre
étude sur les systèmes athermiques et le rôle de sources de bruit additionnelles dans
leur dynamique et leur rhéologie (bruit résultant de la dynamique microscopique ou
d’origine externe). La modélisation de ces mécanismes sera abordée à différentes
échelles de description, dans le but d’établir un lien entre les modèles microscopiques
et des approches plus phénoménologiques à l’échelle macroscopique ou mésoscopique.
Nous abordons en particulier les aspects suivants:

• Quelles sont les conséquences de mécanismes d’autofluidisation (liés
à une source de bruit endogène) sur l’organisation de l’écoulement
? Nous nous intéressons en particulier (dans le Chapitre 3) au cas où une
dynamique inertielle est responsable d’une instabilité de l’écoulement homogène
et de la formation de bandes de cisaillement (tel qu’observé dans des simulations
microscopiques à température nulle), et proposons une description continue à
l’aide d’un champ de température cinétique décrivant le “bruit” généré par la
dynamique inertielle.

• Quelles conséquences pour l’écoulement lors de la compétition de mé-
canismes d’autofluidisation (bruit endogène) et d’une fluidisation par
un bruit externe ? Dans le Chapitre 4, nous montrons, dans le cadre d’un
modèle élasto-plastique à l’échelle mésoscopique, que la compétition de ces deux
mécanismes peut conduire à l’émergence d’un point critique, tel qu’observé dans
des expériences de granulaires cisaillés et vibrés par Wortel et al. (2016).

• Les modèles élasto-plastiques, décrivant de nombreux aspects de la
rhéologie des fluides à seuil cisaillés, peuvent-il être étendus pour
décrire des systèmes denses actifs où le forçage serait alors local?
Dans le Chapitre 5, nous proposons un modèle élasto-plastique décrivant une
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assemblée dense de particules dont la dynamique résulte d’oscillations du volume
des particules et étudions la transition solide-fluide induite par l’amplitude des
oscillations.

Les différentes questions soulevées ci-dessus nécessitent d’introduire une partie de
l’état de l’art concernant la physique des systèmes denses forcés et actifs ainsi que
certaines approches de modélisation. L’objectif du Chapitre 1 est d’introduire d’une
part la phénoménologie des systèmes denses, en particulier la rhéologie des systèmes
désordonnés athermiques, d’autre part la phénoménologie des systèmes denses actifs,
et enfin, les approches de modélisation à différentes échelles de description. Le cas
de la modélisation élasto-plastique à l’échelle mésoscopique sera brièvement introduit,
mais sera abordé plus en détail dans le Chapitre 2, qui lui est dédié. Un résumé en
français des trois grandes parties du Chapitre 1 est donné ci dessous.

Rhéologie des systèmes désordonnés athermiques

La rhéologie de systèmes désordonnés athermiques constitue un domaine de recherche
actif. Ces systèmes ont ceci de remarquable qu’ils présentent un comportement de
solide élastique au repos ou lorsqu’une faible contrainte est appliquée, et s’écoulent
comme des fluides (écoulement plastique sous la forme de réarrangements localisés
de particules) lorsque la contrainte appliquée Σ dépasse une contrainte seuil Σy. On
parle alors de “fluide à seuil”.

Une direction de recherche importante consiste à étudier la transition de mise en
écoulement (yielding en anglais), soit (i) en imposant une déformation à un matériau
initialement au repos et en étudiant la dynamique (transitoire) lorsque celui-ci com-
mence à s’écouler, soit (ii) en imposant un écoulement stationnaire à petit taux de
déformation (γ̇ → 0) et en étudiant la dynamique de la relaxation dans le système.
Dans le cas (i), la transition vers l’écoulement peut dans certains cas être discontinue
et associée à un écoulement hétérogène (par bandes) de façon transitoire. La phase
de déformation élastique pouvant fortement dépendre de l’état inital du matériau,
des études récentes basées sur un protocole de cisaillement oscillatoire ont permis
d’étudier plus en détail les mécanismes microscopiques en jeu lors de la transition
vers l’écoulement. Dans le cas (ii), de nombreuses études indiquent un écoulement
intermittent à faible taux de cisaillement, au cours duquel des phases de “chargement
élastique” alternent avec des phases de relaxation plastique brutales dans le matériau.
Ces avalanches de plasticité ont été étudiées dans le contexte des transitions de phase
hors équilibre comme associée à l’existence d’un point critique, au voisinage duquel
le taux de cisaillement γ̇ évolue comme γ̇ ∼ (Σ − Σy)1/n (reformulation de la loi
rhéologique de Herschel-Bulkley).

Le régime d’écoulement stationnaire à taux de cisaillement γ̇ fini présente aussi une
phénoménologie riche. Alors que dans le cas de fluides à seuil “simples”, l’écoulement
stationnaire est homogène, il peut, dans les cas où il existe un mécanisme “d’auto-
fluidisation”, être hétérogène. On parle dans ce cas de bandes de cisaillement per-
manentes, qui peuvent s’expliquer par des effets de couplage entre l’écoulement et la
microstructure (thixotropie) ou la concentration locale du matériau. Des approches
théoriques consistant à coupler l’écoulement (décrit par des champs de contrainte et
de vitesse) avec un champ auxiliaire décrivant la structure ou la concentration du sys-
tème ont permis de prédire l’existence de bandes de cisaillement dans ces systèmes.
Dans le cas de systèmes désordonnés qui ne présentent pas d’évolution de structure
ou de concentration particulière sous écoulement (typiquement le cas pour des sys-
tèmes de particules molles répulsives), il n’existe pas de consensus sur l’origine des
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bandes de cisaillement. Plusieurs scénarios ont été proposés pour expliquer l’auto-
fluidisation dans ces systèmes, comme par exemple l’existence d’une échelle de temps
microscopique liée à la restructuration du système après une déformation plastique
locale (Coussot et al., 2010). Une dynamique inertielle peut également entraîner
une fluidisation du système, par des effets cinétiques (Nicolas et al., 2016). Cette
autofluidisation est d’ailleurs associée à des bandes de cisaillement permanentes, tel
que le montrent des travaux récents menés dans le groupe à Grenoble. Le premier
chapitre de résultats de cette thèse consistera à proposer un modèle effectif couplant
les équations pour l’écoulement à des équations décrivant l’évolution d’une “tempéra-
ture cinétique”, résultant d’une dynamique sous-amortie, afin de décrire les bandes de
cisaillement permanentes observées dans des simulations de particules inertielles.

Cet écoulement hétérogène, par bandes, est parfois interprété dans la littérature
comme un scénario de séparation de phase associé à une transition du premier or-
dre dans le contexte des transitions de phases hors équilibre. Par analogie avec un
scénario d’équilibre, on peut imaginer que, en variant un paramètre décrivant une
forme de bruit dans le système (analogue à la température), ce régime de séparation
de phase puisse se terminer par un point critique. C’est en effet ce qui a été suggéré
récemment par des expériences sur des milieux granulaires cisaillés et soumis à des
vibrations verticales (Wortel et al., 2016). Alors que la rhéologie en l’absence de vi-
bration présente un comportement de fluide à seuil avec un régime d’autofluidisation
(évolution non monotone de la contrainte en fonction du taux de cisaillement), les vi-
brations induisent une fluidisation à faible contrainte, et, sous l’effet de grandes ampli-
tudes de vibrations, la rhéologie devient monotone. La transition entre une rhéologie
non monotone et une rhéologie monotone est associée à des fluctuations géantes du
taux de cisaillement, évoquant une dynamique critique à la transition. Les approches
de modélisation macroscopiques telles qu’utilisées dans le Chapitre 3 ne permettent
toutefois pas de décrire les fluctuations dans la dynamique des systèmes denses dé-
sordonnés. Les modèles élasto-plastiques (EP) sur réseau, intermédiaires entre une
description microscopique à l’échelle des particules et une description macroscopique,
permettent une description à grande échelle de la dynamique et des fluctuations des
fluides à seuil. Dans le Chapitre 4, nous étendons un modèle EP décrivant un fluide
à seuil avec un régime d’autofluidisation de façon à introduire un bruit externe dans
la dynamique. Nous montrons alors qu’un bruit externe, sous la forme d’activation
de réarrangements plastiques localisés, est capable de fluidiser le système à faible con-
trainte, et qu’un point critique émerge pour une amplitude de bruit critique. Dans les
modèles considérés, le bruit mécanique additionnel est générique, et son origine n’est
pas spécifiée. Ce bruit pourrait résulter de vibrations mécaniques (comme dans les
granulaires), d’évènements locaux comme la coalescence dans les mousses par exemple,
ou encore d’une activité biologique locale.

Quel lien peut être établi entre la dynamique de fluides à seuil en présence de
sources de bruit additionnelles et la dynamique de systèmes actifs denses, où l’activité
locale est elle-même source de bruit mécanique? Pour comprendre quelles analogies
peuvent être établies, il convient d’abord de résumer la phénoménologie des systèmes
actifs denses tels que les tissus biologiques.

Dynamique des systèmes actifs denses

Les systèmes actifs denses ou vitreux ont suscité un intérêt grandissant ces dernières
années, comme en témoignent les revues récentes sur le sujet (Berthier et al., 2019;
Janssen, 2019). Plusieurs exemples de systèmes, d’origine synthétique et biologique,
seront donnés dans le corps du chapitre d’introduction, et nous n’évoquerons ici que
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certains aspects de la dynamique des tissus biologiques, exemple emblématique de
système actif dense.

Les tissus biologiques sont constitués d’une assemblée de cellules, objets déformables
pouvant réaliser différents types de processus actifs tels que contraction, auto-propulsion,
croissance, division ou mort cellulaire. Les propriétés mécaniques des tissus épithéli-
aux, constitués d’une monocouche de cellules jointives, sont particulièrement étudiées
dans le domaine de la biophysique, d’une part puisqu’elles jouent un rôle important
dans le développement embryonnaire, et d’autre part parce que la dynamique de ces
tissus présente certaines similarités avec celle des verres. Suivant les conditions ex-
périmentales (densité de cellules, tissu sain ou pathologique, etc.), des états “fluides”
ou “solides” du tissu ont été décrits, associés à la présence ou non de réarrangements
de cellules (autrement dit, d’échanges de voisins ou intercalations).

L’étude des transitions solide-liquide dans les systèmes actifs a même dépassé le
cadre de la biophysique, puisque celles-ci constituent des exemples de transitions de
phase dans des systèmes hors équilibre. Plusieurs analogies ont été proposées dans la
littérature entre les transitions solide-liquide dans les systèmes actifs et les systèmes
denses thermiques ou forcés. Dans le cas des systèmes de particules auto-propulsées
par exemple, qui constituent l’un des systèmes actifs les plus étudiés, la transition
entre un état solide et un état fluide (en augmentant la force d’autopropulsion) est
analogue à une transition vitreuse d’équilibre dans un système thermique si le temps
de corrélation de la direction de propulsion est suffisamment faible (Berthier et al.,
2019). Des déviations au cas d’équilibre sont cependant observées lorsque le temps
de persistence de la direction de propulsion augmente, et il n’existe pas d’analogie
simple dans ce régime. La dynamique observée à la transition dans la limite des longs
temps de persistance semble, elle, être analogue à la transition de “mise en écoulement”
(yielding) dans les systèmes amorphes athermiques soumis à un cisaillement (Mandal
et al., 2020a). Cet exemple montre qu’il n’existe pas de scénario simple (et générique)
pour décrire les transitions solide-fluide dans les systèmes actifs, et que les analogies
possibles avec des systèmes non actifs peuvent différer fortement suivant la région du
diagramme de phase explorée.

Outre les aspects de fluidisation, de nombreuses études portent sur l’émergence de
mouvements collectifs dans les systèmes denses de particules auto-propulsées, souvent
en lien avec la dynamique collective des cellules observée dans les tissus (Alert et
al., 2019). Dans le Chapitre 6, nous étudions l’émergence de mouvement collectif de
cellules sous la forme d’oscillations de vitesse dans un modèle microscopique de tissu
(de type Voronoi).

Même si l’autopropulsion constitue le type d’activité le plus étudié, on peut citer
d’autres systèmes actifs fluidisés sous l’effet d’une activité locale. Les systèmes consti-
tués de particules pouvant se diviser ou mourir par exemple, modèles simples de tissus
biologiques, présentent un comportement de fluide viscoélastique, dont le temps de
relaxation est fixé par le taux de mort ou de division. Cet effet peut être compris au
niveau champ moyen dans un modèle mésoscopique conçu initialement pour la rhéolo-
gie de fluides à seuil, en considérant une source supplémentaire de bruit mécanique,
indépendant de l’écoulement, tel que montré par Matoz-Fernandez et al. (2017a). Les
courbes d’écoulement obtenues dans ce cas sont d’ailleurs semblables à celles obtenues
pour des milieux granulaires soumis à un cisaillement et à des vibrations, suggérant
une analogie possible entre les deux systèmes.

Enfin, un autre type de système actif, constitué de particules dont le volume
peut fluctuer au cours du temps, a été utilisé pour modéliser la dynamique de tissus
biologiques (dont le volume des cellules fluctue) ainsi que des changements de con-
formation de protéines dans le cytoplasme de bactéries (Tjhung et al., 2017; Oyama
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et al., 2019). Ce modèle présente une transition de fluidisation lorsque l’amplitude
des fluctuations de volume est variée, et la nature de cette transition dépend de la
dynamique temporelle du changement de volume. Lorsque le volume des particules
évolue périodiquement, la transition est discontinue, analogue à une transition de mise
en écoulement telle qu’observée dans des systèmes amorphes soumis à un cisaillement
oscillatoire. Lorsque le volume évolue suivant un processus stochastique corrélé en
temps (bruit coloré), la transition est continue, et analogue au cas des particules
auto-propulsées. Afin de tester ces analogies, nous proposons, dans le Chapitre 5, un
modèle élasto-plastique à l’échelle mésoscopique décrivant le même type de dynamique
active, où le forçage résulte de la déformation active de particules. Nous montrons
qu’il existe bien une transition solide-fluide dans ce modèle lorsque l’amplitude des
oscillations augmente, et que cette transition partage des caractéristiques communes
avec la transition de mise en écoulement observée dans un protocole de cisaillement
oscillatoire.

Pour résumer ces deux parties, le lien entre les échelles de description micro-
scopiques et macroscopiques commence à être bien compris dans le cas des solides
amorphes cisaillés grâce, entre autres, au développement de modèles mésoscopiques.
Ce lien est cependant moins clair dans le cas des systèmes actifs. Plusieurs approches
de modélisation existent et nous en présentons quelques unes dans la dernière par-
tie. Dans cette thèse, en nous basant sur les diverses analogies proposées dans la
littérature entre systèmes forcés et systèmes actifs, nous explorons la voie des modèles
mésoscopiques élasto-plastiques actifs.

Approches de modélisation pour les systèmes denses forcés et actifs

La modélisation des systèmes présentés préalablement peut s’envisager à différentes
échelles de description.

Les simulations numériques de modèles microscopiques, ou “expériences numériques”
sont largement utilisées pour étudier les systèmes denses désordonnés puisqu’elles per-
mettent un contrôle précis des paramètres d’intérêt et donnent accès à des informa-
tions sur la structure et les trajectoires résolues à l’échelle des particules. Suivant le
but visé, ces simulations peuvent soit employer des modèles réalistes d’interaction (si
le but est de reproduire le comportement d’un matériau en particulier), soit utiliser
des modèles d’interaction simples (Lennard-Jones par exemple) afin d’identifier des
propriétés génériques des matériaux amorphes denses. Ce type d’approche présente
l’avantage de donner accès à un grand nombre d’observables, qui permettent de guider
la construction de modèles théoriques à plus grande échelle, comme des modèles sur
réseau ou des théories continues.

En particulier, les études mettant en évidence un scénario générique pour la dé-
formation plastique des solides désordonnés ont conduit à l’émergence de modèles
mésoscopiques sur réseau, permettant de s’affranchir d’une description détaillée à
l’échelle des particules. Dans ces modèles élasto-plastiques, un matériau est modélisé
comme une collection de blocs mésoscopiques dont la taille correspond à la taille typ-
ique d’un groupe de particules subissant un réarrangement plastique. Le nombre de
particules impliquées dans un tel réarrangement dépend en réalité du système consid-
éré (de quatre bulles dans une mousse bidimensionnelle, à quelques dizaines d’atomes
dans un verre de silice par exemple), mais l’échelle mésoscopique considérée permet
de s’affranchir de ces différences et de se focaliser sur la physique à grande échelle
de ces systèmes. L’élasticité joue un rôle essentiel dans ces systèmes, et donne lieu à
des interactions entre les blocs mésoscopiques distants. Lorsqu’un bloc se déforme de
façon plastique (i.e. lorsqu’il y a un réarrangement localisé de particules), alors il y a
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localement relaxation de la contrainte, et redistribution aux autres sites du système
via un propagateur élastique. Il existe plusieurs façons de traiter ces interactions, qui
seront présentées dans le corps du chapitre.

Outre les approches microscopiques et mésoscopiques, les approches de modélisa-
tion à l’échelle macroscopique (ou modèles continus) consistent à décrire l’état d’un
système par des champs de contrainte, de déformation, et éventuellement des champs
auxiliaires décrivant par exemple la structure ou une température effective dans le
système.

Ces trois types d’approche de modélisation sont employées de façon complémen-
taire pour aborder les questions de cette thèse, même si les principaux développements
sont réalisés en utilisant des modèles mésoscopiques. Dans le Chapitre 3, des obser-
vations faites dans des simulations de particules (par V.Vasisht, alors post-doctorant
dans le groupe) ont motivé le développement d’un modèle continu qui est ensuite
étudié analytiquement et numériquement, et dont les résultats peuvent être comparés
aux simulations microscopiques. Dans le Chapitre 4, nous étudions le rôle d’une source
de bruit additionnelle dans la rhéologie de solides amorphes en introduisant un nou-
veau mécanisme d’activation d’évènements plastiques dans un modèle élasto-plastique
à l’échelle mésoscopique. Dans le Chapitre 5, nous proposons de construire un modèle
élasto-plastique pour les systèmes denses actifs, basé sur l’étude d’un modèle de par-
ticules actives introduit par Tjhung et al. (2017). Enfin, dans le Chapitre 6, l’étude
de mouvements collectifs dans des tissus épithéliaux est basée sur un modèle micro-
scopique de tissu biologique (de type modèle de Voronoi actif) que nous comparons à
des expériences réalisées au laboratoire.
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Introduction

Let us consider a dense assembly of units, which can be molecules, colloids, droplets,
cells, grains or even macroscopic units like robots, animals, individuals, etc. For
small densities, these units can easily move, and their motion is enabled by thermal
fluctuations if particles are small enough, or chemical reactions, internal motors, etc.
We will refer to these systems as being in a “fluid”-like state. As the density is
increased, particles are prevented to move over large distances. The competition
between particle crowding and energy injection will result in a transition from a fluid
to a dynamically arrested state, where the particles are caged by their neighbors and
their motion is limited to small “in-cage” displacements. We will refer to these systems
as being in an arrested “solid”-like state. For systems made of identical particles in
thermal equilibrium, such an increase in density can lead to crystallization. For other
systems where the particle size is distributed for instance, the arrested state will
more likely be disordered, and we get what is called an “amorphous solid”. The
transition between an equilibrium fluid and an arrested disordered state is called the
glass transition.

The behavior of amorphous solids below the glass transition may depend upon
the nature of their constituents. When the elementary units are large enough to
neglect Brownian motion (micron-sized particles or larger), the materials are said to be
athermal. This the case of dry granular packings, dense granular suspensions, foams,
emulsions, or dense assemblies of biological cells, and this is the class of materials we
will be considering in this thesis. For these systems, a driving force is required to
activate their dynamics and induce configurational changes.1

A drive can be applied externally by imposing a shear deformation or stress to
the material for instance. In these driven systems, energy is injected at the macro-
scopic scale through the boundaries. On the other hand, active forces (of biological
origin for instance) acting at the particle scale can also induce a dynamics. “Active
particles” generally refer to particles with the ability to consume energy (taken from
their environment) in order to perform directed active motion or other types of active
processes such as deformation, division, etc. With this definition, biological cells can
for instance be seen as active particles. Although it can seem that a sheared granular
suspension and a living biological tissue have little in common, several recent studies
highlight possible analogies between driven and active dense disordered systems (Bi
et al., 2014; Tjhung et al., 2017; Tjhung et al., 2020; Mandal et al., 2020a; Henkes
et al., 2020; Morse et al., 2020).

In driven systems, even though the driving is homogeneous and continuous, the
response of the system to shear can be localized and intermittent, due to the interplay
of disorder and elasticity. The role of the mechanical noise arising in such systems
is central and many efforts have been made to describe it theoretically (Nicolas et
al., 2018a). Additional sources of mechanical noise can also affect the dynamics of
amorphous systems, originating either from external perturbations (e.g., mechanical
vibrations) or from internal processes (e.g., coarsening in foams or biological activity).

A general question motivating this thesis is: how do distinct sources of mechan-
ical noise affect the fluidization and the organization of the flow of soft amorphous
materials?

1The classification of thermal vs athermal systems may depend upon the question and protocol
used in a particular study. For instance, while thermal fluctuations are not sufficient to activate
particle rearrangements in dry granular media, the temperature is known to play an important role
in granular dynamics through dilation effects or by affecting the properties of frictional contacts
(Divoux et al., 2008; Géminard et al., 2010).
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Why studying dense active systems?

There have been increasing evidences that some of the phenomena observed in biolog-
ical systems can be understood in the framework of the physics of dense systems (such
as jamming or glassy physics). For instance, it has been recently observed that the
compaction dynamics during the self-assembly of progenitor cell aggregates behaves
similarly as relaxing granular piles (Smeets et al., 2019). Other examples include
bacterial colonies undergoing self-driven jamming (Delarue et al., 2016), or glassy dy-
namics observed in biological tissues (Angelini et al., 2011; Schoetz et al., 2013) or in
the cytoplasm of cells (Nishizawa et al., 2017).

Glass-like transitions in living tissues, and more generally the origin of the me-
chanical properties of tissues (solid- or fluid-like states), have attracted an increasing
interest in the past decade since they are thought to play an important role in biolog-
ical processes such as embryonic development, wound healing, or cancer progression
(Park et al., 2016; Oswald et al., 2017). For example, the fluid- or solid-like behav-
ior of tissues can influence the spreading of malignant tumors (Streitberger et al.,
2020). Understanding the mechanisms driving the fluid-to-solid transitions in bio-
logical tissues thus remains an important challenge. More generally, understanding
how emergent material properties and tissue rheology are determined by single-cell
properties such as the nature of interactions or the forces exerted at the local scale
has now become an important goal in the field.

What will be this thesis about?

In this thesis, we will question how small changes in the microscopic dynamics affect
the large scale properties of athermal dense disordered systems. In particular, we
will focus on how distinct sources of mechanical noise affect the fluidization and the
organization of the flow of soft amorphous materials, which will be the main focus of
chapters 3, 4 and 5. The possible analogies between the description of active biological
systems and athermally driven systems will be mainly discussed in Chapter 5.

In Chapter 3, motivated by molecular simulations of sheared underdamped disor-
dered particle systems exhibiting shear localization, we study how a flow instability
induced by inertia can be described at the continuum level by introducing a kinetic
temperature field. In Chapter 4, we study the effect of an additional source of noise
on the rheology in terms of new activated plastic events in the dynamics within a
mesoscale elasto-plastic model, and the emergence of critical dynamics for systems
exhibiting a shear banding instability. In Chapter 5, we consider another type of me-
chanical noise, arising due to the perturbation of stress and strain fields by actively
deforming particles. Inspired by the work of Tjhung et al. (2017), we build a mesoscale
model to study the solid-to-fluid transition induced by activity and we present the
first preliminary results obtained with this model. The work presented in Chapter 6
was motivated by experiments in LIPhy and concerns a slightly different topic than
the rest of the thesis. It concerns the emergence of collective velocity oscillations in a
model of confined epithelial monolayer.

The different projects of this thesis cover a wide range of topics at the interface
between the physics of driven and active dense disordered systems, from flow local-
ization in yield stress fluids to the emergence of collective migration modes in models
of biological tissues. Modeling approaches at various scales are used, from particle-
based simulations to continuum modeling approaches, with a main focus on mesoscale
elasto-plastic modeling.
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Organization of the chapter

In this chapter, we present the context, both phenomenological (sections 1.1, 1.2, 1.3)
and methodological (section 1.4), that motivated the questions raised in this thesis.
A large number of studies regarding the comparison of passive amorphous systems
and dense active systems have focused on how a biological activity affects the glass
transition (Berthier et al., 2011; Janssen, 2019). Hence, although our work focuses
on athermally driven systems, we summarize in this chapter the important findings
regarding the active glass transition, and, prior to that, introduce the phenomenology
of passive glasses.

Section 1.1 concerns the physics of dense systems. We present the phenomenology
of glassy materials and introduce the different types of solid-to-fluid transitions (glass,
jamming, yielding) observed in passive systems. This section is mainly based on the
review paper by Berthier et al. (2011): “Theoretical perspectives on the glass transition
and amorphous materials”.

In section 1.2, we focus on the flow properties of athermal amorphous materials
undergoing a yielding transition. We first present the macroscopic rheology, before
explaining the mechanism for plasticity in amorphous materials and the shear banding
phenomenon. We finally present a few studies investigating the role of additional
sources of mechanical noise in the flow of soft amorphous materials. This section
is mainly based on the following review papers: Bonn et al. (2017): “Yield stress
materials in soft condensed matter”, Nicolas et al. (2018a): “Deformation and flow of
amorphous solids: insights from elasto-plastic models”, Divoux et al. (2016): “Shear
Banding of Complex Fluids”.

In section 1.3, we present the phenomenology of active glassy systems. We first give
examples of biological and synthetic systems falling into this category and then discuss
how different types of activity influence the dynamics. This section is mainly based
on the following review papers: Berthier et al. (2019): “Perspective: nonequilibrium
glassy dynamics in dense systems of active particles”, Janssen (2019): “Active glasses”
and Khalilgharibi et al. (2016): “The dynamic mechanical properties of cellularised
aggregates”.

In section 1.4 we introduce the modeling approaches for dense driven and active
systems at various lengthscales, from particle-based or vertex-based models at the
microscopic scale, to mesoscopic approaches (that enable to get rid of microscopic
details) and continuum approaches at the macroscopic level.

Finally, the scientific context given in this chapter enables us to introduce in more
details the questions raised in this thesis in section 1.5.

1.1 Phenomenology of amorphous systems

1.1.1 Introduction

Glassy or amorphous materials are ubiquitous in our everyday life and widely used in
industrial applications. Nonetheless, a complete theoretical description of this state
of matter is still lacking and remains an important challenge for modern statistical
physics. A remarkable aspect of glasses is that they share similarities with both
liquids and crystalline solids: their structure exhibits no structural order like liquids,
but they behave mechanically as solids. This makes their theoretical description
particularly difficult, and there has been, so far, no derivation of a complete and well
accepted theory of disordered materials (see Berthier et al. (2011) for a review). In
this section, we will not review the (numerous) different theoretical approaches to the
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simple assumptions to connect the microsopic phenomenol-
ogy to the macroscopic behavior and therefore have a central
position in the endeavor to bridge scales in the field (Rodney,
Tanguy, and Vandembroucq, 2011). To some extent, EPM
can be compared to classical lattice models of magnetic
systems, which permit the exploration of a number of
fundamental and practical issues, by retaining a few key
features such as local exchange and long-range dipolar
interactions, spin dynamics, local symmetries, etc., without
explicit incorporation of the more microscopic ingredients
about the electronic structure.
This review aims to articulate a coherent overview of the

state of the art of these EPM, starting in Sec. II with the
microscopic observations that guided the coarse-graining
efforts. We will discuss several possible practical implemen-
tations of coarse-grained systems of interacting elastoplastic
elements, considering the possible attributes of the building
blocks (Sec. III) and the more technical description of their
mutual interactions (Sec. IV). Section V is then concerned

with the widespread approximations of the effect of the stress
fluctuations resulting from these interactions. In Sec. VI we
describe the current understanding of strain localization based
on the study of EPM. Section VII focuses on the statistical
marks of criticality encountered when the system is driven
extremely slowly, especially in terms of the temporal and
spatial organization of stress fluctuations in “avalanches,”
while Sec. VIII describes the bulk rheology of amorphous
solids in response to a shear deformation. Section IX gives a
short perspective on the much less studied phenomena of
creep and aging. The review ends on a discussion of the
relation between EPM and several other descriptions of
mechanical response in disordered systems, in Sec. X, and
some final outlooks.
These sections are largely self-contained and can thus be

read separately. Sections II and III are both particularly well
suited as entry points for newcomers in the field, while
Secs. IV and V might be more technical and of greater
relevance for the experts interested in the implementation of

FIG. 1. Overview of amorphous solids. From left to right, top row: (1) golf club made of metallic glass, (2) toothpaste, (3) mayonnaise,
(4) coffee foam, and (5) soya beans. Second row: a transmission electron microscopy (TEM) image of a fractured bulk metallic glass
(Cu50Zr45Ti5) by X. Tong et al. (Shanghai University, China). Adapted from Tong et al., 2016. TEM image of blend (PLLA/PS)
nanoparticles obtained by miniemulsion polymerization, from L. Becker Peres et al. (UFSC, Brazil). Adapted from Peres et al., 2015.
Emulsion of water droplets in silicon oil observed with an optical microscope by N. Bremond (ESPCI Paris). From Bremond, Thiam,
and Bibette, 2008. A soap foam filmed in the lab by M. van Hecke (Leiden University, Netherlands). From Deen, 2016. Thin nylon
cylinders of different diameters pictured with a camera by B. Metzger (Aix Marseille University, France). From Miller et al., 2013. The
white scale bars are approximate. Just below, a chart of different amorphous materials classified by the size and the damping regime of
their elementary particles. Bottom: some popular modeling approaches, arranged according to the length scales of the materials for
which they were originally developed. STZ stands for the shear transformation zone theory of Langer (2008), and SGR for the soft
glassy rheology theory of Sollich et al. (1997).

Nicolas et al.: Deformation and flow of amorphous solids: …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045006-3

Figure 1.1: From Nicolas et al. (2018a) (see references therein):
Overview of amorphous solids. From left to right, top row: (1)
golf club made of metallic glass, (2) toothpaste, (3) mayonnaise, (4)
coffee foam, and (5) soya beans. Second row: (1) Transmission elec-
tron microscopy (TEM) image of a fractured bulk metallic glass (2)
TEM image of blend (PLLA/PS) nanoparticles. (3) Emulsion of water
droplets in silicon oil observed with an optical microscope. (4) Soap
foam picture. (5) Thin nylon cylinders of different diameters. Below:
different amorphous materials classified by their size (left to right) and

by the damping regime (top to bottom) of their constituents.

glass transition, but rather focus on the main phenomenological aspects of amorphous
materials.

A glass can be obtained by rapid quench of a liquid below its glass temperature Tg.
A rapid quench is necessary in order to prevent crystallization. Unlike the first-order
transition leading to a crystal phase, the glass “transition” is not a thermodynamic
transition since the glass transition temperature Tg is only empirically defined. It
corresponds to the temperature at which the viscosity reaches 1012 Pa · s, preventing
the observation of flow on experimental timescales. However, liquids quenched to the
glass phase continue to evolve very slowly towards an equilibrium state they cannot
reach on experimental timescales. As a consequence, all the macroscopic observables
are time dependent and slowly evolve in time in out-of-equilibrium states, leading to
the so-called “aging” of glasses.

The glass transition is also observed in systems made of units much larger than
molecular sizes in which the dynamics is controlled by the volume fraction, as in
colloidal suspensions (with some polydispersity to avoid crystallization). Dynamical
arrest occurs at a critical volume fraction φg that depends on the details of interactions
between particles (φg ' 0.58 for hard spheres for example).

The subject of “glass physics” is actually much broader than the study of the fluid-
to-solid transition observed upon an increase of density or decrease in temperature in
molecular and colloidal systems. Materials are said to be “glassy” when their typical
relaxation timescale becomes larger (possibly by several orders of magnitude) than
the typical duration of an experiment or a numerical simulation. With this generic
definition, a large number of systems fall into the class of glassy materials. Examples
of such systems are shown in Fig. 1.1 (Nicolas et al., 2018a). Materials such as metallic
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or oxide glasses as well as polymer glasses, termed as “hard amorphous materials”, are
made of units with a typical linear size comprised between 0.1 and 10 nanometers.
Their elastic modulus is in the tens to hundreds of GigaPascal range, and they will
tend to break if submitted to large stresses, undergoing only little plastic deformation
before failure. On the other hand, foams and emulsions, made of micrometer to
millimeter size bubbles or droplets are often called “soft amorphous materials”. They
remain solids at rest due to surface tension, but their elastic modulus is much smaller
than metallic glasses and is in the range of a few hundred Pascals. When deformed
with a stress exceeding their yield stress, they tend to reach a plastic flow regime.
These so-called “Yield Stress Fluids” (YSF) encompass also other types of systems:
colloidal pastes, granular materials and dense granular suspensions, and will be the
main focus of this thesis.

For all these materials, glassy dynamics can be observed in some part of their
phase diagram. It is associated with a rich phenomenology: solid and liquid behav-
iors, non-trivial relaxation, dynamic heterogeneity, aging, nonlinear response, creep,
rejuvenation, memory effects, etc. (Berthier et al., 2011). In summary, these exam-
ples show that glass physics covers a broad range of lengthscales and a large variety
of materials.

1.1.2 Signatures of glassy behavior

Let us introduce in this section the main characteristics of glassy dynamics (as ob-
served in glass forming liquids), that will also be useful to introduce the physics of
dense active systems in section 1.3.

Dynamical arrest and kinetic fragility

The hallmark of glassiness is the dramatic increase of the viscosity in the super-
cooled liquid state, which is the metastable state achieved when cooling the system
fast enough to avoid crystallization. The temperature dependence of the viscosity
(or equivalently of the relaxation time), usually represented in an “Angell plot” (An-
gell, 1991) gives insights into the nature of the relaxation mechanisms in the super-
cooled liquid. Supercooled liquids can thus be classified depending upon their “kinetic
fragility”: “strong” glass formers have an Arrhenius-type relaxation, and “fragile” glass
formers exhibit a super-Arrhenius relaxation, with the viscosity being well fitted by
η = expDT0/(T − T0) (Vogel-Fulcher-Tamman fit). The physical picture in that case
is that there is an increase of energy barriers when lowering the temperature, sug-
gesting that glass formation is a collective phenomenon for fragile supercooled liquids.
This fitting form also suggests a divergence of the viscosity at finite temperature T0,
possible indicator of a phase transition.

Other possible indicators of a phase transition were also suggested by looking
at thermodynamic aspects (excess entropy of the supercooled liquid with respect to
the entropy of the crystal, providing information about the number of metastable
states), although this point was discussed in the literature (Berthier et al., 2011). Let
us mention that although some aspects of the phenomenology (diverging timescale
and singularity in the thermodynamics) could suggest that the glass transition is
a problem not so different from studying other phase transitions, the difficulty of
studying the glass transition comes from the fact that static correlation functions are
quite featureless in the supercooled regime, despite dramatic changes in the dynamics.
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Analysing the dynamical structure: Liquid or glass?

Wuttke et al. (1996) Horbach & Kob (2001)

Experiment on glycerol Computer simulations of a silica model

Intermediate scattering function

T

The glass transition

Figure 1.2: Intermediate scattering functions. (left) From Wut-
tke et al. (1996): Obtained in neutron scattering experiments on glyc-
erol, φ~q(t)=F (~q,t)/F (~q,0) with ~q corresponding to the first peak in the
static structure factor and (right) From Horbach et al. (2001): ob-

tained from computer simulations of a silica model.

For instance, the structure factor, defined as

S(~q) = 〈 1

N
ρ~qρ−~q〉 (1.1)

with ρ~q the Fourier component of the density field, N the number of particles, does
not provide indications of a diverging lengthscale at the transition. Signatures of the
glass phase are however found when turning to dynamical correlation functions.

Dynamical correlation functions

The intermediate scattering function F (~q, t) (Fourier transform of the Van Hove func-
tion) is a useful quantity since it is accessible in light and neutron scattering experi-
ments:

F (~q, t) = 〈 1

N
ρ~q(t)ρ−~q(0)〉 (1.2)

The intermediate scattering function F (~q, t) is actually the autocorrelation function
at time interval t of density fluctuations for a given mode ~q. Examples of intermediate
scattering function curves are shown in Fig. 1.2 for both experiments and computer
simulations of glass forming systems. At short time, there is a small plateau (bal-
listic regime where the interaction does not affect the motion of particles) followed
by a relaxation. This first regime (very short times) is not accessible in experiments.
At high temperature, the relaxation is simply exponential. When the temperature
approaches the glass transition, a plateau appears due to particles vibrating inside a
cage formed by their neighbors. This caging effects lasts longer and longer as the tem-
perature is decreased. Cage-breaking eventually occurs at longer timescales, leading
to a second relaxation phase (“α-relaxation”). At low temperature, the timescale of
relaxation becomes larger and the exponential form becomes stretched. The behavior
of the intermediate scattering function in the supercooled liquid regime suggests that
by decreasing further the temperature to be in the glass phase, the “caging” will last
forever.

Numerical simulations of glasses have enabled researchers to measure individual
particle displacements (more details on simulation methods in section 1.4). In par-
ticular, the mean squared displacement can be computed from individual particle
trajectories, as depicted in Fig. 1.3(a). At short times, the mean squared displace-
ment follows a ballistic regime. At high temperatures, this regime is immediately
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(a) (b)

Figure 1.3: From Berthier et al. (2011): (a) Mean squared dis-
placement of individual particles in computer simulations of a simple
model of a glass-forming liquid composed of Lennard-Jones particles
for various temperatures (decreasing temperatures from left to right).
(b) Time-resolved squared displacements of individual particles.

followed by a diffusive regime, while at low temperature, it reaches first a plateau
regime at intermediate timescales. As for the intermediate scattering function, the
plateau is related to particles vibrating in a cage formed by their neighbors. Particles
eventually escape their cage to reach the long time diffusive regime. The duration of
the plateau increases as the temperature is decreased.

When looking at trajectories of individual particles (Fig. 1.3(b)), one observes
that an individual particle undergoes a succession of periods during which it vibrates
around a mean position interrupted by rapid jumps. Moreover, when particles of
some regions are vibrating around their mean position, particles in other regions
may undergo large displacements. This dynamics cannot be inferred from average
properties, highlighting the importance of fluctuations around the average dynamical
behavior in glass forming systems.

Several studies show that the relaxation is spatially heterogeneous, with slow and
fast relaxing regions. Since supercooled liquids are ergodic, a fast relaxing region will
eventually become slow and vice-versa, meaning that these heterogeneities have a finite
lifetime. These heterogeneities, characterized using 4-points correlation functions,
are thought to explain the non-exponential relaxation behavior of the intermediate
scattering function. Moreover, regions of fast and slow moving particles are correlated
over a dynamical lengthscale that grows upon approaching the glass transition. These
dynamical heterogeneities, which result directly from crowding, lead to important
collective phenomena in glassy materials, which is also an important feature of active
glasses.

Concluding remarks

Dynamical slowdown, two-step dynamical correlation functions and dynamical het-
erogeneities are the main aspects that are usually considered when addressing the
question of the existence of a signature of glassy behavior in a system (e.g., active sys-
tem). There are however other important aspects of glassy dynamics that we will not
discuss here, such as violation of the Stokes-Einstein relation, stretched exponential
dynamics, aging, etc. (Berthier et al., 2011).

The potential energy landscape (PEL) picture, as introduced by Goldstein (1969),
is useful to understand some features of the dynamics of glassy systems, such as
aging mechanisms. Aging, as mentioned in introduction, is generically described as
a non-equilibrium phenomenon occurring when a system gradually evolves towards
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an underlying equilibrium state. In the PEL representation, the whole configuration
of the system (particles positions and velocities) is considered as a “state point” Γ
evolving on top of a hypersurface V (Γ) representing the total potential energy. The
hypersurface V (Γ) is a high-dimensional object since its dimension is proportional to
the number of particles N . It can be viewed as a rugged landscape with a large number
of local minima (that grow exponentially with N). Glassy states do not minimize the
free energy of the system (unlike crystals), and aging observed in thermal systems
is simply an evolution towards the lowest-energy states through random thermally
activated barrier-crossing events. As the state point of the system reaches deeper and
deeper minima, the jumps become more rare and the dynamics slows down.

1.1.3 Other fluid-to-solid transitions

In the previous section, we presented the phenomenological behavior of glass forming
liquids. Fluid-to-solid transitions are actually ubiquitous and can be found in very
diverse systems. First of all, let us recall that colloidal suspensions also undergo
a glass transition upon compression (or increase of volume fraction), going from a
(metastable) thermal equilibrium state to an arrested state, similarly to glass forming
liquids (Hunter et al., 2012). Then, in athermal systems (non-Brownian suspensions,
foams, granular media), a fluid-to-solid transition upon an increase in volume fraction
is also observed, and is called the (geometrical) “jamming transition” (Liu et al.,
2010).2 Finally, while soft glassy materials deep in the glass phase behave like solids
at rest, they can start to flow like fluids when driven with a sufficient stress, exhibiting
a solid-to-fluid transition upon the applied load (Bonn et al., 2017).

These different scenarios of fluid-to-solid transitions have been summarized in
the well-known “jamming diagram” of Liu et al. (1998), depicted in Fig. 1.4(left),
where the three different axes indicate how an increase of temperature, a decrease of
density or an increase in loading can lead to a transition from an arrested solid-like
state to a fluid-like state. In this diagram, thermal and athermal systems appear as a
single “jammed” phase, while theoretical studies suggested that the jamming transition
occurs well inside the nonergodic glassy phase (Jacquin et al., 2011). This diagram
is thus limited to an “illustrative” purpose as these three transitions (glass, jamming,
yielding) are very different in nature, and concern usually different types of systems
(or at least different regions of their phase diagram) (Ikeda et al., 2012).

Fluid-to-solid transitions in active systems

Transitions from a fluid-like to a solid-like state are ubiquitous, not only for molecular,
colloidal or granular systems, but also in a large variety of active or biological systems,
where the constituents of the material can be active colloids, cells, or self-propelled
grains (Sadati et al., 2013; Berthier et al., 2019; Janssen, 2019). It is thus tempting to
draw analogies between dense passive and active systems, as illustrated for instance
in Fig. 1.4(right) by the hypothetical jamming phase diagram for cell monolayers pro-
posed by Sadati et al. (2013). Biological systems can undergo solid-to-fluid transitions
linked to a large variety of biochemical and biophysical factors. In this diagram for
instance, a cellular monolayer becomes fluid upon a decrease in density, an increase
of motility or a decrease of cell-cell adhesion. As in amorphous solids, different types
of transitions may be observed depending on the type of biological activity, and this
point will be addressed in more details in section 1.3.

2Another phenomenon termed as “shear-induced jamming” occurs when an applied shear strain
yields rigidity in suspensions (Bertrand et al., 2002).
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on short time scales and a viscous response on long time 
scales [50, 52].

Another liquid property which can also be found in tissues 
is wetting , which describes the spreading of liquid drops on 
a substrate. Depending on substrate-cell interfacial tension, 
substrate-medium interfacial tension and cell-medium interfa-
cial tension, non-wetting, partial wetting or complete wetting 
can be observed for multicellular spheroids (see figure 5(D)) 
[44–46]. For cell aggregates with low cohesion, complete wet-
ting can be followed by the escape of single cells from the 
monolayer similar to a 2D liquid-gas transition [46]. Cells and 
cellular monolayers placed on non-wettable substrates (e.g. 
agarose gel, PEG-PLL) also form 3D aggregates by nuclea-
tion and growth, which is called dewetting [53, 54].

2.2. Liquid tissue models

To account for the liquid properties tissues shown in experi-
ments, different models have been developed. As mentioned 
above, cell sorting is proposed to be the result of differing 
tissue surface tensions between the two cell populations. 
Steinberg and coworkers suggested that these differences 
arise from varying cell–cell adhesion forces mediated by 
cadherins [38, 41]. This hypothesis is called the differential 
adhesion hypothesis (DAH) and seems to hold true for certain 
cell types [41]. However, other explanations for the origin of 
TST have been suggested. The differential surface contraction 
hypothesis (DSCH) proposed by Harris states that TST arises 
from cell contractility rather than adhesion [55]. Brodland 
and coworkers proposed an extension of this hypothesis, the 
differential interfacial tension hypothesis (DITH), which 
includes both contractility and adhesion but neglects the influ-
ence of adhesion strength [56]. Experimental evidence for this 
hypothesis was found for gastrulating zebrafish embryos [57]. 

Another extension of the DAH was proposed by Manning and 
coworkers [35, 58, 59], which states that adhesion and corti-
cal tension are co-regulated since cadherins are coupled to the 
actin cortex. Thus, down-regulation of cortex tension can lead 
to increased contact areas which in turn increases cohesion. 
This contradicts the prediction of DITH, where downregula-
tion of cortex tension would lead to decreased surface tension. 
However, our own recent results on the sorting of breast can-
cer cell lines could not verify any of these hypotheses [35].

Another approach was presented by Basan et  al using a 
continuum model for tissue dynamics [60]. Here, the steady 
state of the tissue is characterised by a homeostatic pres-
sure which is set by division and apoptosis rates. Within this 
model, it has been shown that tissues behave as elastic solid 
in the absence of cell division and apoptosis, while other-
wise they can be treated as viscoelastic fluid, with a relaxa-
tion time depending on rates of division and apoptosis [61]. 
The interface dynamics between two cell populations is also 
governed by their relative homeostatic pressures and displays 
two distinct regimes: a diffusive regime, where expansion is 
dominated by relative fluxes, and a propulsive regime, where 
convective flows occur due to proliferation [62].

Cells consume energy and create active forces. 
Consequently, some models treat them as active liquids in 
contrast to simple, passive liquids. Besides active motile 
forces which are included in most theoretical descriptions of 
cellular systems, epithelial monolayers can create active ten-
sion that scales linearly with the size of single cells [63]. The 
active tensile modulus depends on myosin concentration and 
on the specific cell type.

In contrast to the description of cell layers as active fluids, 
they have been proposed to behave as active granular two-
dimensional matter [64]. The authors observed a solidification 
process in monolayers depending on the effective interparticle 
interaction potentials, but not primarily on density.

Figure 4. Left: jamming phase diagram proposed by [30]. Reprinted by permission from Macmillan Publishers Ltd: Nature [30], Copyright 
1998. Right: hypothetical jamming phase diagram for a cellular monolayer. Reprinted from [7], Copyright 2013, with permission from Elsevier.
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Figure 1.4: Hypothetical “jamming” phase diagrams. (Left)
From Liu et al. (1998): different routes to undergo a transition be-
tween solid-like and fluid-like states: by increasing the temperature,
decreasing the density or increasing the driving load. (Right) From
Sadati et al. (2013): Hypothetical phase diagram for cellular mono-
layers that could become fluid-like upon an increase in cell motility, a

decrease in density or a decrease in cell-cell adhesion.

Depending upon the scientific community, the fluid-solid transitions in active sys-
tems have often been referred to as active “jamming” transitions rather than glass
transitions. The distinction between jamming and glass transitions has however been
made quite clear in the recent years (Ikeda et al., 2012). According to recent re-
view papers on the topic (Berthier et al., 2019; Janssen, 2019), the competition be-
tween crowding and particle agitation (due to thermal or active processes such as cell
motility) generally leads to a glass transition, while jamming is seen as a geometric
transition (no agitation, no dynamics) between rigid and non-rigid states. With this
definition, particles with non zero activity cannot undergo jamming.

Fluid-to-solid transitions in driven (sheared) systems

Arrested materials can also be driven out of equilibrium by driving forces under the
form of an externally applied mechanical load. Unlike in the case of active forces,
energy injection occurs at a macroscopic scale, e.g., by imposing a shear flow or
applying a constant shear stress. An arrested material with no source of agitation
(negligible thermal fluctuations, no activity), subjected to an external load responds
essentially as an elastic solid for small applied stresses. For larger stresses, the response
becomes non linear, and for stresses larger than a “yield stress”, the system starts to
deform plastically and eventually flows at a fixed rate with a potentially driving-
dependent viscosity, like a complex fluid. The yielding transition is thus another
form of solid-to-fluid transition upon the application of a shear stress. Note that
dense amorphous systems can also be driven by applying a fixed deformation rate. In
that case, the system is never dynamically arrested and constantly undergoes plastic
rearrangements, which will be discussed in the next section.

The response of dense amorphous materials to an external load has become an
active field of research in the past decades (Bonn et al., 2017; Nicolas et al., 2018a)
and is one of the main topics of this thesis. In the next section, we will review the
main features of the rheology of dense amorphous systems, focusing on the case where
thermal fluctuations play a negligible role (athermally driven systems).
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Summary of section 1.1

• A glass can be obtained by rapid quench of a molecular liquid below its
glass temperature or by increasing the density of a colloidal suspension
above a critical volume fraction.

• A glassy behavior is characterized by divergent relaxation timescales that
can be revealed by dynamical correlations functions, whereas static cor-
relation functions are quite featureless in the supercooled regime.

• Two-step dynamics of the dynamical correlation functions and mean
squared displacement of particles in a supercooled liquid reveal a caging
effect; in the glass phase, a particle would remain caged by its neighbors
forever.

• The relaxation is spatially heterogeneous with slow and fast relaxing re-
gions. These dynamical heterogeneities lead to important collective phe-
nomena.

• Athermal (non-active) systems undergo a transition from a fluid-like to a
solid-like state upon an increase of density called the jamming transition.

• Materials below their glass or jamming transition behave as solids at
rest but can start to flow like fluids when a sufficient load is applied,
undergoing a solid-to-fluid transition termed as“yielding”.

• Solid-to-fluid transitions have also been evidenced in active or biological
systems such as cells and tissues and analogies with solid-to-fluid transi-
tions in inert systems have been proposed.

1.2 Rheology of athermally driven amorphous materials

How do soft solids flow upon loading? We describe in this part the mechanisms for the
flow of soft amorphous materials such as foams, emulsions, dense granular or colloidal
suspensions or granular media. We first describe the rheology and the phenomenology
of the flow, before discussing the mechanisms at the origin of plasticity in amorphous
solids. We then explain the phenomenon of shear banding and present a few studies
addressing the role of external sources of noise on the flow of yield stress fluids.

1.2.1 Phenomenology of the flow

Macroscopic rheology

When shearing amorphous materials using a rheometer, one can control either the
torque or the angular velocity, which is equivalent to either imposing the shear stress
Σ or the shear rate γ̇ in the system. Fig. 1.5(a) depicts the typical stress-strain curve
measured when imposing a constant shear rate γ̇ to a dense amorphous system (shear
start-up protocol). For small applied deformations, the system responds essentially
elastically as depicted by the linear stress-strain evolution in Fig. 1.5(a). When the
stress becomes larger, the system starts to exhibit irreversible plastic deformation. If
the stress becomes larger than a threshold called the (static) “yield stress”, the material
yields: this results in irreversible plastic deformation for hard brittle materials such
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The transition between the solidlike elastic response and the
irreversible plastic deformation is known as the yielding
transition. Statistical physicists are inclined to regard it as a
dynamical phase transition, an out-of-equilibrium phenome-
non with characteristics similar to equilibrium phase
transitions (Jie Lin et al., 2014; Lin et al., 2015; Jaiswal
et al., 2016).

2. Thermal systems

Thermal fluctuations, on the other hand, may play a role in
materials with small enough (≲1 μm) elementary constituents,
such as colloidal and polymeric glasses, colloidal gels, silicate,
and metallic glasses. Still, these materials are out of thermo-
dynamic equilibrium and they do not sample the whole
configuration space under the influence of thermal fluctuations.
It follows that different preparation routes (and, in particular,
different cooling rates) tend to produce mechanically distinct
systems. Even thewaiting time between the preparation and the
experiment matters, because the system’s configuration
evolves meanwhile through activated events. The evolution
of the mechanical properties with the time since preparation,
usually making the system more solid, is called aging. In
particular, the high cooling rates used for quenching generate a
highly heterogeneous internal stress field in the material
(Ballauff et al., 2013). In some regions, particles manage to
rearrange geometrically, minimizing in part the interaction
forces among them, but many other regions are frozen in a
highly strained configuration. Slow rearrangements will take
place at finite temperature and tend to relax locally strained
configurations (“particles break out of the cages made by their
neighbors”) along with the stress accumulated in them.
That being said, the elastic moduli are usually only weakly

affected by the preparation route, i.e., the cooling rate (Ashwin,
Bouchbinder, and Procaccia, 2013) and the waiting time
(Divoux, Barentin, and Manneville, 2011b), while other key
features of the transient response to the applied shear are often
found to dependon it. This sensitivity to preparation particularly
affects the overshoot in the stress versus strain curve depicted in
Fig. 3 and used to define the static yield stress Σmax. It is
observed in experiments (Divoux, Barentin, and Manneville,
2011b) as well as numerical simulations (Rottler and Robbins,
2005; Patinet, Vandembroucq, and Falk, 2016). In softmaterials

amenable to stationary flow, this issue may be deemed secon-
dary; the flow creates a nonequilibrium stationary state, and the
memory of the initial preparation state is erased after a finite
deformation. On the other hand, in systems that break at finite
deformation, the amount of deformation before failure is of
paramount importance, and so is its possible sensitivity to the
preparation scheme, due to different abilities of the system to
localize deformations (see Sec. VI).

3. Potential energy landscape

The potential energy landscape (PEL) picture offers an
illuminating perspective to understand the changes associated
with aging in thermal systems (Goldstein, 1969; Doliwa and
Heuer, 2003a, 2003b). The whole configuration of the system
(particle coordinates and, possibly, velocities) is considered as
a “state point” Γ that evolves on top of a hypersurface VðΓÞ
representing the total potential energy. Despite the high
dimension of such a surface (proportional to the number N
of particles), it can be viewed as a rugged landscape, with hills
and nested valleys; the number of local minima generally
grows exponentially with N (Wales and Bogdan, 2006).
Contrary to crystals, glassy (disordered) states do not mini-
mize the free energy of the system; aging thus consists of an
evolution toward lower-energy states (on average) through
random, thermally activated jumps over energy barriers, or
more precisely saddle points of the PEL. As the state point
reaches deeper valleys, the jumps become rarer and rarer; the
structure stabilizes, even though some plasticity is still
observed locally (Ruta et al., 2012).
External driving restricts the regions of the PEL that can be

visited by the state point to, say, those with a (usually time-
dependent) macroscopic strain γ. Mathematically, this con-
straint is enforced by means of a Lagrange multiplier, which
effectively tilts VðΓÞ into

VσðΓ; γÞ≡ VðΓÞ −Ω0Σγ; ð2Þ

where Ω0 is the volume of the system and Σ the macroscopic
stress. The system’s dynamics are then controlled by ∂Vσ=∂Γ,
instead of ∂V=∂Γ, which results in major changes, as we shall
see next. Typically, driven systems respond on much shorter
times than quiescent aging ones. Accordingly, some thermal

(a) (b)

FIG. 3. Schematic macroscopic response of amorphous solids to deformation. (a) Evolution of the shear stress Σ with the imposed
shear strain γ, with a stress overshoot Σmax. In the event of material failure, which is generally preceded by strain localization, the stress
dramatically drops down. (b) Steady-state flow curve, i.e., dependence of the steady-state shear stress Σss on the shear rate _γ, represented
with semilogarithmic axes. If the flow is split into macroscopic shear bands, a stress plateau is generally observed.

Nicolas et al.: Deformation and flow of amorphous solids: …

Rev. Mod. Phys., Vol. 90, No. 4, October–December 2018 045006-5

Figure 1.5: From Nicolas et al. (2018a): Schematic macroscopic
response of amorphous solids to an applied deformation. (a)
Macroscopic shear stress Σ as a function of the applied shear strain
γ, with a stress overshoot Σmax that can be followed either by failure
(for “hard” materials) or by a steady state plastic flow (for “soft” glassy
materials). (b) Flow curve: steady-state shear stress as a function of

the applied strain rate.

as silica glass (Taylor, 1949; Kermouche et al., 2016) and steady-state plastic flow for
the soft amorphous materials we are interested in.

The steady state flow of soft amorphous materials is usually characterized by the
flow curve, that is, the relation between the applied shear rate γ̇ and the macroscopic
shear stress Σ in steady state, as depicted in Fig. 1.5(b). For many soft amorphous
systems, the flow curve can be fitted by a Herschel-Bulkley (HB) equation (Herschel
et al., 1926):

Σ = Σy +Aγ̇n (1.3)

with Σy the dynamical yield stress, A a constant and an exponent n close to 0.5.

Avalanches in the slow flow regime (γ̇ → 0)

An important question concerns the link between the macroscopic rheology and the
spatial organization of the flow of amorphous solids in the slow flowing regime (γ̇ → 0).
Although the response to shear depicted in the scheme of Fig. 1.5(a) seems smooth and
very different in the case of hard and soft materials, looking carefully at experimental
stress-strain curves reveals that the actual response is jagged. Fig. 1.6(b) depicts
the stress as a function of strain for a sheared bubble raft (shown in Fig. 1.6(a))
(Lauridsen et al., 2002). Instead of smooth deformation, one observes a succession
of loading phases of the material until a breaking point, where an abrupt relaxation
occurs, as in “stick-slip” phenomena. In other words, potential energy V accumulates
in the material in the form of elastic strain until some rupture threshold, leading
to a plastic event releasing the stored energy associated with a stress drop. The
distributions of stress drops observed in the stress strain curve at small shear rates
(Fig. 1.6(c)) exhibit a power-law behavior that is related to the presence of long-range
elastic interactions in the system (Nicolas et al., 2018a) that we will further discuss
in section 1.2.3.

Dynamics at the yielding transition and insights from oscillatory shear

Beside studies of avalanches in sheared amorphous solids, various studies have been
dedicated to the transition to failure or to a steady-state flow in amorphous solids
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(a) (b) (c)

Figure 1.6: From Lauridsen et al. (2002): Avalanche dynamics
in a bubble raft. (a) Image of a section of a typical bubble raft
(scale bar: 3.6 mm). (b) Stress versus strain for a strain rate γ̇ =

3.1 · 10−3s−1. (c) Stress drop probability distribution function.

upon increasing strain, as depicted in Fig. 1.5(a), termed as “yielding transition”.
Understanding the microscopic mechanisms at the origin of changes in mechanical
behavior and avalanches between pre- and post-yielding deformation has implications
in glass physics (Jaiswal et al., 2016; Wisitsorasak et al., 2017; Jin et al., 2018) but
also in mechanical engineering (Telford, 2004).

Studying the pre-yielding regime can however be difficult due to large sample-to-
sample variations when imposing a uniform shear flow, in contrast with the universal
behavior seen in the post-yielding regime. Oscillatory shear driving thus offers a
convenient approach to probe the mechanical behavior below and above yielding, as
demonstrated by various recent numerical works (Fiocco et al., 2014; Leishangthem
et al., 2017; Yeh et al., 2020). Note that dynamic oscillatory shear tests are commonly
used in rheological experiments. Small amplitude oscillations are generally used to
probe the linear viscoelastic response of complex fluids, while large amplitude oscilla-
tions (LAOS) can be used to probe the non linear response and the onset of plastic
deformation.

Studies based on oscillatory shear driving in athermal conditions have demon-
strated that yielding is associated with irreversibility of particle trajectories (Fiocco
et al., 2014; Regev et al., 2015; Kawasaki et al., 2016). The transition is associated
with a sudden change in particle dynamics, evolving from nondiffusive motion to ir-
reversible diffusive motion upon increasing the amplitude of oscillatory strain, γ0, as
depicted in Fig. 1.7(a) (Kawasaki et al., 2016). Moreover, the stress as a function
of maximum strain (denoted γmax in the quasi-static protocol of Leishangthem et al.
(2017)) under oscillatory driving is found to vary abruptly at the yield point even
if it varies smoothly in uniform strain as it is generally the case for soft amorphous
materials (Fig. 1.7(c)). For strain amplitudes γ0 below the yield strain γy, harden-
ing effects are observed, leading to an increase of glass stability sometimes termed as
“mechanical annealing”. This is reflected in the energy of the system which decreases
with increasing strain until the yield point γy (Fig. 1.7(d)). For strain amplitudes
above yielding, the system deforms plastically and accesses higher energy states, lead-
ing to an increase of energy with γ0. The yielding point is thus characterized by
a minimum in the system’s energy (at least for soft amorphous materials exhibiting
ductile yielding behavior, and more generally by a cusp for materials exhibiting brittle
yielding (Yeh et al., 2020)). It was also found that the number of cycles required to
reach steady state increases when approaching the yield point (Fig. 1.7(b)). Studies
of particle-based simulations as well as a mesoscale model have further revealed that
the deformation in the regime γ0 > γy (but close to γy) can be heterogeneous and
organize into macroscopic shear bands (see section 1.2.4) (Radhakrishnan et al., 2016;
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(a)

(b)

(c)

(d)

Figure 1.7: Yielding transition under oscillatory shear driv-
ing. From Kawasaki et al. (2016): (a) Time averaged displacement
during one cycle of oscillation for various strain amplitudes and system
sizes. (b) Divergence of the average time to reach an immobile state
(zero displacement). From Leishangthem et al. (2017): (c) Average
stress-strain curve for uniform (solid lines) and oscillatory shear with
an athermal quasi-static shear protocol (symbols). (d) Asymptotic
energy per particle measured at a strain γ = 0 as a function of the

maximum strain amplitude γmax.

Yeh et al., 2020; Liu et al., 2020b).
Recent works have further shown that the nature of yielding can depend upon

the glass stability (well annealed versus poorly annealed samples), changing from
brittle to ductile yielding behavior and associated with distinct shear band formation
mechanisms (Ozawa et al., 2018; Yeh et al., 2020).

In summary, the transition to flow in soft amorphous materials is characterized
by the appearance of irreversible plastic deformation. What is the nature of the
microscopic processes leading to plastic deformation in amorphous solids?

1.2.2 Localized plastic rearrangements

Since direct visualization of atoms or molecules displacements in atomic or molecular
glasses is impossible, early works in the 1970’s made use of the analogy between
bubbles rafts and glasses to study plastic deformation in glasses (Argon et al., 1979).
The analogy between the deformation of foams and metals was already pointed out in
crystals by Bragg et al. (1947), who evidenced that yielding in a bubble raft started
with a dislocation. Argon et al. (1979) evidenced rapid localized rearrangements
involving a few number of bubbles, and singularities in the deformation. In foams,
these shear transformations were identified by Princen et al. (1986) as local topological
changes involving four neighboring bubbles coming to share a vertex, also called “T1
events”, as depicted in Fig. 1.8. At mechanical equilibrium, bubbles in a bidimensional
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FIG. 1. (a) Two-dimensional unit cell in shear strain for 
4~ = 1. Note that angles between films remain at 120 °. (b) 
Vertices A and B move parallel to shear direction. Angles 
between films deviate from 120 ° . 
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g = - = 2a (small strain) [16] 
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(a) Our 2-D Model 

Comparison of Eqs. [15]-[17] and Eqs. [10]- 
[12] shows that Derjaguin's approach, when 
applied to the 2-D model, leads to an over- 
estimate of G by exactly a factor of 2. Although 
this does not necessarily translate into the same 
factor for 3-D, polydisperse systems, we shall 
provide strong evidence that this is neverthe- 
less the case. 

parallel to the shear direction, with horizontal 
displacements that are simply 2 and ~ that of 
the top of the unit cell. Clearly, this picture 
violates the minimum energy principle, since 
the films no longer continue to intersect at 
angles of 120 ° . Moreover, when carded to 
larger stain, it is incapable of  predicting a yield 
stress. The drops simply continue to elongate 
and increasingly align themselves with the 
shear direction as the strain is increased. Ac- 
cording to this model, the stress per unit cell 
would asymptotically reach a value of 2a at 
infinite strain. 

To analyze the stress behavior at small 
strain (Fig. lb, center), let AXbe the horizontal 
displacement of the top of the unit cell, mea- 
sured in units of the cell height, so that 

3" = AX. [13] 

Vertex B, which is located at a distance ~ above 
O, has moved a distance BB' = AX/3 tO the 
right, so that ff is given by 

tan - ~ ~ -  g, = BB'/BO 
= AX = 3' (small strain). [14] 

The corresponding shear stress equals the hor- 
izontal component  of  the tension of  film OB', 
i.e., 

F= 2acos¢= 2asin(7-~b)= 2a3" [15] 

so that the cell's contribution to the shear 
modulus is 

EXPERIMENTAL 

Comments on previous work. Both Derja- 
guin and Obuchov (5) and Stamenovic and 
Wilson (4) set out to test Eq. [3] using foams 
that were presumably sufficiently well-drained 
to justify the condition ~b ~ 1. Ironically, both 
teams of  investigators determined S/V indi- 
rectly, namely via 

S 3 
V - 2a (/~i - Pc) (~b ~ 1), [181 

where/~ - Pe is the mean excess pressure inside 
the foam, which can be obtained from the 
measured increase in pressure above the foam 
as it completely collapses inside a closed con- 
tainer. Equation [ 18] was derived first by Der- 
jaguin (3), and later by Ross (8). 

Equation [3], when combined with Eq. [18], 
yields 1 

2 
G = ~ ( f f i - P e )  ( t ~  1). [191 

Thus, in both studies, the test of the theory 
was reduced to a test of the factor ~ in 
Eq. [19]. 

Derjaguin and Obuchov (5) measured G 
from the period of oscillation of a cylindrical 
rod immersed in the foam. The arrangement 
was similar to that of  a Couette viscometer. 
End effects and complications due to wall slip 

t Unfortunately, in a popular reference book on foams 
(9), Derjaguin's equation [19] has been clearly misrepre- 
sented as being an expression for the yield stress, rather 
than the shear modulus.  
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Figure 1.8: From Princen et al. (1986): Sketch of a shear trans-
formation, or “T1 event” in a bidimensional foam.

foam meet at an angle of 120 degrees, leading to vertices shared by three neighboring
bubbles. When sheared, the bubbles deform elastically until they reach a configuration
where four neighboring bubbles share a vertex. This four-fold vertex configuration
being unstable, a transition to the above configuration is observed, associated with
the “flip” of one soap film, the so called “T1 transition”.

Shear transformations were also evidenced in experiments on colloidal glasses by
Schall et al. (2007) and granular media by Amon et al. (2012). Atomistic simulations
have also shed light on the nature of these shear transformations, due to the diffi-
culty to perform measurements at the particle scale in experiments (Falk et al., 1998;
Maloney et al., 2006; Tanguy et al., 2006).

Characterizing plastic rearrangements

Particle rearrangements in amorphous materials correspond to local inelastic defor-
mations of the material. Various quantitative tools to describe them have been in-
troduced, as for instance the “D2

min” introduced by Falk et al. (1998). In practice,
such tools rely on subtracting the local affine elastic deformation in order to measure
nonaffine transformations characterizing plastic rearrangements.

Generally speaking, these methods have evidenced that at low shear rate, plastic
events are strongly localized, with a few active regions separated by regions of (locally)
affine elastic deformation. The characteristics of plastic rearrangements may vary
depending upon the material under consideration. First, the size of the rearrangement
can vary from a few particles in foams, emulsions, colloidal suspensions, to tens or a
hundred of atoms in metallic glasses. The shape of the rearrangement may also vary,
and thermally activated rearrangements may differ from mechanically activated ones
(Nicolas et al., 2018a). This picture of clearly separated plastic events should however
be nuanced in the case of hard particles like grains (Bouzid et al., 2015).

A detailed numerical characterization of plastic events in amorphous silicon has
been conducted by Albaret et al. (2016). By fitting the particles displacement during
a plastic event to the elastic response to an idealized circular shear transformation (see
section 1.2.3), the authors have been able to extract the size and typical plastic strain
of the rearranging cluster of particles, finding that a robust quantity to characterize
rearrangements is the product of the strain ε∗ with the inclusion volume Vin. They also
show that the transformation undergone by the group of rearranging particles is mostly
shear, as the mean strain Tr(ε∗)/3 doesn’t exceed 5 % of the shear components and
its sign (dilation or contraction) depends on the details of the interaction potential.
Moreover, using the fitted values of ε∗ and of a (strain-dependent) shear modulus,
they have been able to reproduce the macroscopic stress-strain curve, indicating that
plastic rearrangements surrounded by an elastic response of the medium constitute
the key mechanism of plasticity in amorphous solids.
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Predicting plastic rearrangements

Understanding what leads a specific region of the material to rearrange is a long
standing question in the field (Nicolas et al., 2018a). A common general idea is that
the deformation will take place in “weak” zones of the material, where particles have
an increased mobility.

The idea that the local free volume per particle correlates with the ability of a
region to undergo plastic rearrangements has been introduced long ago, and is a key
ingredient for various modeling approaches for glassy materials, such as the Shear
Transformation Zone (STZ) theory introduced by Falk et al. (1998). Regions with
small elastic moduli have also been shown to be correlated with an increased average
plastic activity, but no general criterion has been found (Tsamados et al., 2009).
Studies of the vibrational modes of amorphous packings have revealed that particles
associated with the softest modes are more likely to rearrange (Rottler et al., 2014).
More recently, numerical measurements of local yield stresses (by applying an affine
deformation of the outer medium) by Patinet et al. (2016) have offered a promising
approach to predict future plastic rearrangements. Alternative approaches based on
machine learning techniques have also been developed (Cubuk et al., 2015; Zhang
et al., 2020). Overall, identifying the relevant structural indicators to predict plastic
rearrangements is still an ongoing active research field (Richard et al., 2020).

Concluding remarks

Localized particle rearrangements are a generic feature of the plasticity of amorphous
solids and have been evidenced both in experiments and simulations. The charac-
teristics of these shear transformations (size, shape) may depend on the details of
the system under consideration. Predicting where plastic rearrangements will occur
is still an open question, despite access to local quantities in numerical simulations.
Simulations have in particular enabled one to characterize in detail the long-range
stress and strain response to such a shear transformation, which leads to non-local
effects in the dynamics.

1.2.3 Non-local effects

Once a shear transformation has occurred, it deforms the medium over large distances
and may trigger other rearrangements in the material, thus leading to non-local effects.

Stress redistribution following a shear transformation

A single shear transformation (ST) can be approximated (in 2d) as a deformation
ε∗ = εxy. This corresponds to a stretch along the direction θ = π/4 (modulo π)
and a contraction along the perpendicular direction. The induced displacement field
in the surrounding elastic matrix follows the same symmetry, with displacements
pointing outwards the ST along the directions θ = π/4 and displacement pointing
inwards along the direction θ = 3π/4, and has thus a dipolar symmetry in the far
field. The deformation field (i.e., the symmetrized gradient of the displacement field)
has therefore a quadrupolar symmetry. Following incompressible linear elasticity,
the stress response to a punctual shear transformation (located at the origin) for an
infinite system as computed by Picard et al. (2004) has thus the following form (and
is displayed in Fig. 1.9(c)):

σxy ∝
cos(4θ)

r2
(1.4)
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deformation, say ϵðr ≈ 0Þ ¼ ð01
1
0Þ in two dimensions (2D),

consists of a stretch along the direction θ ¼ ðπ=4Þ½π%, in polar
coordinates, and a contraction along the perpendicular direc-
tion. The induced displacement field u simply mirrors this
symmetry, with displacements that point outward along θ ¼
ðπ=4Þ½π% and inward along θ ¼ ð3π=4Þ½π%. This leads to a
dipolar azimuthal dependence for u and a fourfold (“quad-
rupolar”) one for its symmetrized gradient ϵ. More precisely,
by imposing mechanical equilibrium on the stress Σ, viz.,

∇ · Σ ¼ 0

in an incompressible medium (∇ · u ¼ 0) with a linear elastic
law Σdev ∝ ϵdev (where the superscript denotes the deviatoric
part), Picard et al. (2004) derived the induced strain field
in 2D,

ϵxyðr; θÞ ∝
cos ð4θÞ

r2
: ð4Þ

Here only one of the strain components is expressed, but
the derivation is straightforwardly extended to a tensorial
form (Nicolas and Barrat, 2013a; Budrikis et al., 2017).
Experiments on colloidal suspensions (Schall, Weitz, and
Spaepen, 2007; Jensen, Weitz, and Spaepen, 2014) and
emulsions (Desmond and Weeks, 2015) as well as numerical
works (Kabla and Debrégeas, 2003; Maloney and Lemaître,
2006; Tanguy, Leonforte, and Barrat, 2006) have confirmed
the relevance of Eq. (4), as illustrated in Fig. 6.

2. Exact induced field and variations

The strain field of Eq. (4) is valid in the far field or for a
strictly pointwise ST. Yet the response can be calculated in the
near field following Eshelby (1957), by modeling the ST as an
elastic inclusion bearing an eigenstrain ϵ⋆, i.e., spontaneously
evolving toward the deformed configuration ϵ⋆. This handling
adds near-field corrections to Eq. (4), whose analytical
expression is derived by Weinberger, Cai, and Barnett
(2005) and Jin et al. (2016) for an ellipsoidal inclusion in
3D on the basis of a method based on Green’s function, which
is probably more accessible than the original paper by Eshelby

(1957) [see Jin et al. (2017) for the 2D version of the
problem].
Describing a plastic rearrangement with an elastic eigen-

strain is imperfect in principle, but the difference mostly
affects the dynamics of stress relaxation (Nicolas and Barrat,
2013a). In fact, Eshelby’s expression perfectly reproduces the
average displacement field induced by an ideal circular ST in a
2D binary Lennard-Jones glass (Puosi, Rottler, and Barrat,
2014), although significant fluctuations around this mean
response arise because of elastic heterogeneities. The numeri-
cal study was then extended to the deformation of a spherical
inclusion in 3D, and to the nonlinear regime, by Priezjev
(2015). [Also see Puosi, Rottler, and Barrat (2016) for the
nonlinear consequences of artificially triggered STs in a
2D glass.]
Besides elastic heterogeneity, further deviations from the

Eshelby response result from the difference between an actual
plastic rearrangement and the idealized ST considered here.
Cao, Park, and Lin (2013) reported differences in the medium
or far-field response to rearrangements between the shear-
driven regime and the thermal regime; only the former would
quantitatively obey Eshelby’s formula. It might be that the
dilational component of the rearrangement, discarded in the
ideal ST, is important in the thermal regime.
The salient points discussed in the rheology of amorphous

solids seem to build a coherent scenario, consisting of periods
of elastic loading interspersed with swift localized rearrange-
ments of particles. These plastic events may interact via the
long-range anisotropic elastic deformations that they induce.
These elements are the phenomenological cornerstones of the
EPM described in the following section.

III. THE BUILDING BLOCKS OF EPM

A. General philosophy of the models

The simplicity and genericity of the basic flow scenario has
led to the emergence of multiple, largely phenomenological,
coarse-grained models. These models are generally described
as elastoplastic or “mesoscopic” models for amorphous
plasticity, or sometimes “discrete automata.” To mimic the
basic flow scenario, the material is split into mesoscopic
blocks, presumably of the typical size of a rearrangement.

FIG. 6. Average stress redistribution around a shear transformation in 2D. (a) Experimental measurement in very dense emulsions.
Adapted from Desmond and Weeks, 2015. (b) Average response to an imposed ST obtained in atomistic simulations with the binary
Lennard-Jones glass used by Puosi, Rottler, and Barrat (2014). (c) Simplified theoretical form, given by Eq. (4). FromMartens, Bocquet,
and Barrat, 2012. Note that the absolute values are not directly comparable between the graphs and that in (b) and (c) the central blocks
are artificially colored.

Nicolas et al.: Deformation and flow of amorphous solids: …
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Figure 1.9: From Nicolas et al. (2018a): Average shear stress re-
distribution around a shear transformation. (a) From Desmond
et al. (2015): Experimental measurements in dense emulsions. (b)
From Puosi et al. (2014): average response measured in molecular sim-
ulations (binary Lennard-Jones glass). (c) Simplified theoretical form.
The values of shear stress (colorbar) are not comparable between the
different panels and the central blocks are artificially colored in panels

(b) and (c).

Experiments on colloidal suspensions or dense emulsions (Schall et al., 2007; Desmond
et al., 2015) as well as numerical simulations have confirmed this form for the far field,
as shown in Fig. 1.9(a) and (b).

Eq. 1.4 is valid in the far field (as it is computed for a punctual shear transfor-
mation). Following the computation of Eshelby (1957), it is possible to compute the
stress response in the near field as well. Eshelby’s inclusion solution describes well the
average displacement field induced by an ideal circular ST in molecular simulations of
glasses (Puosi et al., 2014). Deviations from Eshelby’s solutions are due to several as-
pects such as: the fluctuations due to heterogeneous elastic constants in the material,
the difference between an idealized circular ST and an actual plastic rearrangements,
as well as the effect of walls and finite system sizes.

Evidence and consequences of non-local effects

Beside the direct measurements of long-range strain and stress fields, non-local effects
can be studied by looking at the correlations of the plastic deformation field which
also obey a long-range decay with a quadrupolar form, as evidenced in experiments
of colloidal glasses or granular media for instance (Schall et al., 2007; Le Bouil et al.,
2014). The stress redistribution induced by a plastic event in an Eshelby fashion
activates new plastic events, thus inducing correlations with the same geometry as
the stress redistribution.

Consequences of these non-local effects have been evidenced in channel flows of
dense emulsions by Goyon et al. (2008) or in sheared granular media by Nichol et al.
(2010). These studies reveal that immobile regions in a sheared system can exhibit a
vanishing yield stress and hence a fluid-like behavior although they are not flowing.
This can be explained by the long-range interactions discussed above, as the redistri-
bution of stress following local plastic events is responsible for mechanical fluctuations
in the system.

These non-local effects have a strong impact on the modeling of the flow of soft
glassy materials, as it excludes the possibility for an intrinsic local flow rule. In-
teractions between different regions of the material must then be incorporated into
the modeling approaches, and different possible strategies will be explained in section
1.4 and Chapter 2. Beside treating explicitly spatial interactions between different
regions of the material, some modeling approaches have focused on the mechanical
fluctuations resulting from this coupling.
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Mechanical fluctuations in athermal systems

The mechanical noise generated by localized plastic rearrangements (perturbations of
the stress and strain fields in the material due to long-range elastic interactions) is
a key ingredient to understand the dynamics of these systems, as it can trigger new
rearrangements in an avalanche-like fashion.

A widely used approach to model the flow of soft glassy materials consists in
interpreting the fluctuating mechanical noise as an effective activation temperature
as done in the context of the “Soft Glassy Rheology” model (Sollich et al., 1997). In
this model, shear lowers the energy barrier that needs to be overcome to realize a
plastic event and a temperature-like parameter χ controls the activation dynamics,
accounting for mechanical noise.

This approach has however been challenged in the context of athermal systems
by Nicolas et al. (2014a), based on the escape time statistics of a mesoscale region
subjected only to the “kicks” due to the mechanical noise resulting from plastic events
in an elastic medium. They find that the escape time statistics does not follow an
Arrhenius-type activation dynamics as it would be expected from a thermally ac-
tivated process, but exhibits rather a power-law dependence on the energy barrier.
These findings point towards the non-existence of a mechanical noise temperature,
and suggest that modeling approaches should include mechanical fluctuations in a
self-consistent manner (Hébraud et al., 1998).

The physical picture is that mechanical noise fluctuations, by tilting the PEL
(as done by shear), persistently modify the local energy landscape thus leading to a
cumulative effect, while thermal fluctuations have a short-time effect and exceptional
sequences of fluctuations would be required to observe a cumulative effect leading
to barrier-crossing. Note that self-consistent modeling for the noise seems to be an
important point when modeling athermal systems. However, the picture may be very
different in the case of thermal systems, where shear might be seen as “facilitating”
thermally activated events, potentially leading to different statistics for the noise.

Concluding remarks

Elastic interactions in amorphous solids induce mechanical noise in the system and
are responsible for non-local effects that can be seen for instance in the correlations
between plastic events. These cooperative effects yield rich flow behaviors such as
avalanches in the low shear rate limit, and, in some cases, heterogeneous flow patterns
in the form of macroscopic shear bands that can be either transient or permanent.

1.2.4 Heterogeneous flow

When subjected to a homogeneous shear stress above the yield stress value, soft amor-
phous materials start to flow. This flow can be either homogeneous or heterogeneous,
exhibiting “shear localization” or “shear banding” (Divoux et al., 2016). This shear
banding phenomenon can be either transient or permanent.

Transient shear banding is usually associated with a stress overshoot in the stress-
strain curve measured in shear start-up experiments, as shown schematically in Fig. 1.5(a).
In that case, shear bands can persist for a long time that depends upon the initial
age of the system, the applied shear rate and the damping (Vasisht et al., 2019). The
flow will nonetheless eventually reach a homogeneous steady state if the flow curve
is monotonic (i.e., of Herschel-Bulkley type, as shown in Fig. 1.5(b)). Note that, as
mentioned earlier, shear bands are also reported in the case of oscillatory shear driving
(Radhakrishnan et al., 2016; Yeh et al., 2020), and are also thought to be related to
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Figure 4
Sketches of the flow curves σ versus γ̇ and the velocity profiles v( y) expected in (a) materials undergoing a mechanical instability or a
shear-induced transition, such as semidilute wormlike micellar solutions or lamellar and cubic phases; (b) a yield stress material with
steady-state shear banding below a critical shear rate γ̇c; and (c) a yield stress material that follows a Herschel-Bulkley rheology and
flows homogeneously in the steady state. σ p stands for the value of the stress plateau in panel a, and σ c and σ st denote the apparent
yield stress and the static yield stress, respectively, in panels b and c. In the sketched velocity profiles, the blue dotted lines indicate the
case of a Newtonian fluid. v0 stands for the velocity of the moving wall. These three different types of flow curves are illustrated
for (d ) a cubic phase of a triblock copolymer made of ethylene and propylene oxide, showing two successive stress plateaus; (e) a
colloidal suspension of Ludox silica spheres; and ( f ) microgels with different cross-link densities made of acrylate chains bearing
methacrylic acid units. In panel f, σ has been rescaled by the yield stress σ c, and γ̇ has been rescaled by the inverse of the fluid
microstructural relaxation time inferred from light-scattering experiments τβ . The continuous line is the best Herschel-Bulkley fit.
Panels d–f adapted with permission from Eiser et al. (2000a), Møller et al. (2008), and Cloitre et al. (2003), respectively, copyright by
the American Physical Society. Abbreviation: MRI, magnetic resonance imaging.

been recognized that, depending on the nature of the fluid microstructure and on the interactions
between its constituents, shear banding in SGM originates from one or a combination of the fol-
lowing causes: (a) an underlying shear-induced phase transition, (b) the competition between shear
and the attractive interactions between the constituents, or (c) flow–concentration coupling. For
instance, a dilute assembly of monodisperse colloidal hard spheres may develop a shear band ow-
ing to flow-induced crystallization (Shereda et al. 2010), whereas more concentrated and slightly
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Figure 1.10: From Divoux et al. (2016): Shear banding in com-
plex and yield stress fluids. Sketches of flow curves σ versus γ̇ and
velocity profiles v(y) (along the gradient direction y) expected in (a)
complex fluids undergoing a mechanical instability or a shear-induced
transition (b) a yield stress material with steady state shear band-
ing below a critical shear rate γ̇c; (c) a yield stress material with a
Herschel-Bulkley rheology which flows homogeneously in steady state.
Flow curves illustrated for (d) a cubic phase of a triblock copolymer
made of ethylene and propylene oxide, showing two successive stress
plateaus (Eiser et al., 2000); (e) a colloidal suspension of Ludox silica
spheres (Møller et al., 2008); and (f) microgels with different cross-
link densities made of acrylate chains bearing methacrylic acid units

(Cloitre et al., 2003).
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a stress overshoot in the stress-strain curve, although there is no unifying picture of
shear banding at the yielding transition yet.

On the other hand, steady state or permanent shear bands are usually related to
an underlying material instability. They have been reported in a large class of sys-
tems (not only yield stress fluids) and have been widely studied in the past decades
(Olmsted, 2008; Schall et al., 2010; Fielding, 2014; Divoux et al., 2016). Among the
different scenarios leading to permanent shear banding, the case of polymeric systems
and wormlike micelle solutions seems to be well understood. The typical scenario
observed in these systems is shown in Fig. 1.10(a). Shear induced structuration leads
to the coexistence of regions flowing at different shear rates γ̇1 and γ̇2, even when the
system is driven homogeneously (Lerouge et al., 2009; Olmsted, 2008; Divoux et al.,
2016; Dhont, 1999; Dhont et al., 2008; Fielding et al., 2003). In the framework of
continuum mechanics, these permanent shear bands have been understood as a conse-
quence of a material instability, e.g., resulting from a non-monotonic constitutive flow
curve (Fig. 1.10(a)). The negative-slope part of the flow curve being mechanically
unstable (Yerushalmi et al., 1970), it is usually not observed in experiments (at least
for sufficiently large systems). A stress plateau associated with phase coexistence is
observed instead, as shown in Fig. 1.10(d), with the two boundaries of the plateau
determining the shear rates in the two bands respectively. When the globally applied
shear rate lies within the stress plateau range, the applied shear-rate is generally de-
composed into volume-weighted averages of the shear rates in the two bands, obeying
a so-called classic “lever rule”.

Permanent shear bands in yield stress fluids

Permanent shear banding was also reported in the case of dense amorphous materials
that are the focus of this thesis (Schall et al., 2010; Fielding, 2014; Divoux et al.,
2010). Fig. 1.10(b) depicts a typical permanent shear banding scenario in yield stress
materials. The material separates into a flowing region (at a shear rate γ̇c) and an
arrested region, while the stress remains homogeneous in the system.

Although there is lack of consensus on the origin of shear banding in yield stress flu-
ids, the mechanisms leading to permanent shear banding have been identified in a few
cases, such as flow-structure or flow-concentration coupling. Regarding flow-structure
coupling, an example of experimental data is shown in Fig. 1.10(e) for a dense colloidal
system (made of attractive colloids) (Møller et al., 2008), exhibiting a non-monotonic
flow curve (where the unstable part is accessed through measurements in the transient
state). This type of system is usually strongly shear-history dependent (thixotropic),
because the microstructure evolves with the flow. Theoretical approaches based on
coupling the flow fields with the micro-structure have been successful in predicting
permanent shear bands (Fielding et al., 2009; Mansard et al., 2011). In dense hard
sphere suspensions, shear banding can occur due to a flow-concentration coupling
mechanism (Besseling et al., 2010; Jin et al., 2014; Gross et al., 2018). Similarly to
flow-structure coupling, theoretical approaches based on coupling the flow fields with
the concentration field have been able to predict permanent shear bands.

The case of dense suspensions of soft particles, where neither significant structural
nor volume fraction inhomogeneities are observed (Ovarlez et al., 2013; Bonn et al.,
2017), remains however unclear. The role of attractive or adhesive interactions, pro-
posed to lead to permanent shear banding, is debated in the literature (Bécu et al.,
2006; Chaudhuri et al., 2012; Ovarlez et al., 2013). Alternatively, an intrinsic timescale
for “restructuration” at the microscopic scale is suggested as a mechanism to induce
local weakening leading to shear banding (Coussot et al., 2010; Martens et al., 2012).
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(a ) (b )

Figure 1.11: From Nicolas et al. (2016). Non-monotonic flow
curves and kinetic temperature due to inertia in a binary
Lennard-Jones glass. (a) Flow curve for athermal underdamped sys-
tems (data points and solid lines) for three different values of the
damping coefficient (from top to bottom Q = 102, Q = 103 and
Q = 104). The damping coefficient is defined as Q = τdamp/τvib, with
τdamp = m/ζ (with ζ the damping coefficient, m the mass of the parti-
cle) and τvib =

√
ma2/ε (with a and ε being the average diameter and

energy scale of the interaction potential for the particles). The x-axis
corresponds to Ei = γ̇τvib. Dotted lines indicate fits using a function
of the kinetic temperature in the system. (b) Kinetic temperature due
to shear as a function of QEi measured in underdamped samples, in
the athermal case (apart from O symbols where Tγ̇ = TK − T0 with

T0 = 0.2).

The underlying idea is that once a region of the material has deformed plastically,
a typical time is needed to reform bounds or adhesion between particles, before the
material can locally sustain elastic stress again. This induces a softening of the system
(decrease in stress) with an increase in shear rate, thus leading to a non-monotonic
constitutive flow curve. This mechanism was proposed to explain the emergence of
shear bands in dense suspensions of associative microgels with short-range attractive
forces (Mattiello, 2018; Cloitre, 2018). It was also shown to induce shear bands in a
mesoscale elasto-plastic model for the flow of soft glassy materials by Martens et al.
(2012). This class of models (and their use to model shear bands) will be introduced
in more detail further section 1.4 and Chapter 2. In Chapter 4, we will study how
an external noise can affect shear bands induced by a long restructuring time in a
mesoscale elasto-plastic model.

Inertia as a mechanism for shear banding in soft glassy materials?

Recent works, looking at the role of inertia on the flow behavior of yield stress materi-
als (Salerno et al., 2012; Karimi et al., 2016; Karimi et al., 2017; Nicolas et al., 2016)
have demonstrated rate-weakening mechanisms resulting in non-monotonic macro-
scopic flow curves, as shown in Fig. 1.11(a). This effect has been rationalized by
Nicolas et al. (2016) in terms of kinetic heating of the system due to inertia. A kinetic
temperature due to shear in the system can be measured (by removing the thermal
temperature contribution or considering athermal simulations), and is found to in-
crease with increasing shear rate and decreasing damping (see Fig. 1.11(b).) The idea
to define a temperature derived from the local kinetic energy is a well established
concept in the framework of sheared granular materials (Campbell et al., 1985; Wal-
ton et al., 1986; Losert et al., 2000). However, although it has been shown that the
inertial heating effect on the microscopic scale can indeed lead to non-monotonic flow
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curves (Nicolas et al., 2016), no evidence of shear localization due to inertial effects
has been reported in that first study. Shear bands were reported in a finite-element-
based elasto-plastic model with inertial dynamics by Karimi et al. (2016) and were
shown not to obey a lever-rule, but this effect was attributed to the small systems sizes
considered in this study and the characteristics of the shear bands remained unclear.

More recently, particle-based simulations performed in the group in Grenoble by
Vasisht et al. (2018) have evidenced permanent shear bands in systems with under-
damped dynamics when considering sufficiently large system sizes (we will further
present these results in Chapter 3). One of the works conducted in this thesis in
collaboration with V. Vasisht and J.L. Barrat consists in building an effective con-
tinuum model based on a kinetic temperature field description coupled to the flow
fields (similarly to the flow-structure or flow-concentration coupling approaches men-
tioned above) in order to describe the permanent shear banding instability observed
in particle-based simulations of inertial systems.

1.2.5 Fluidization of yield stress fluids by flow-independent noises

In section 1.2.3, we discussed the properties of the mechanical noise in the flow of
soft glassy materials arising from elastic coupling within the material. Besides this
self-generated mechanical noise there can be additional (external or internal) sources
of noise, which can be regarded as a first approximation as independent of the shear-
induced one. This is for example the case of thermally induced (Chattoraj et al., 2010;
Ikeda et al., 2012) or vibration activated irreversible deformations. Other mostly rate-
independent fluctuations can also result from local processes such as coarsening in
foams (Cohen-Addad et al., 2004), or internal active processes (Mandal et al., 2016;
Tjhung et al., 2017; Matoz-Fernandez et al., 2017a). One important aspect of such
external noise sources is that they can induce a fluidization of the system at small
imposed external stresses.

Fluidization by mechanical vibrations

In the case of granular materials, it appears that very small vibrations amplitudes are
sufficient to fluidize the system (vanishing yield stress), as shown by the flow curves
obtained for various vibration magnitudes in Fig. 1.12(a-b). The same phenomenology
was reported in the case of wet granular suspensions (Fig. 1.12(c)) (Hanotin, 2014;
Gaudel et al., 2017). The rheology in the low shear rate regime is close to being
Newtonian for wet granular suspensions (Hanotin et al., 2012; Gaudel et al., 2017)
(see inset of Fig. 1.12(c)), while more complex behaviors can be observed for dry
granular media (see the flow curves of Dijksman et al. (2011), Fig. 1.12(b)).

The elimination of the yield stress by small amplitude vibrations was confirmed
in creep experiments by Pons et al. (2015) where vibrated granular systems would
eventually flow for applied stress values below the dynamical yield stress of the sys-
tem. A whole literature is actually dedicated to the study of the effect of mechanical
vibrations on the rheology of granular media. Without being exhaustive, we can cite
for instance the works by D’anna et al. (2003), Caballero-Robledo et al. (2009), Jia
et al. (2011), Hanotin et al. (2012), Melhus et al. (2012), and Gnoli et al. (2016). A
comparison between the effect of random noise with periodic vibrations in numerical
simulations of sheared granular media, done by Melhus et al. (2012), suggested that a
relevant quantity to rationalize the fludization effect was the injected power, regardless
of the details of the dynamics. Note that studies of the response of sheared granular
media to external vibrations have often been conducted in the context of understand-
ing dynamic earthquake triggering (Melhus et al., 2012; Griffa et al., 2013). It was
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Frictional yield stress fluids (YSFs)

(a)

Non frictional YSFs

(d)

(e)
(b) (c)

Figure 1.12: Effect of vibration on frictional and non fric-
tional yield stress fluids (left and right panel respectively, with
the arrows showing increasing vibration amplitudes). (a) From Koch
et al. (2019): Flow curve for a wet granular medium exhibiting an
elimination of the yield stress when vibration is applied by inserting a
vibrating probe in the medium. (b) From Dijksman et al. (2011): flow
curve of a dry granular material with small amplitude vertical vibra-
tions exhibiting an elimination of the yield stress for any amplitude of
vibration. (c) From Gaudel et al. (2017): flow curve for a wet vibrated
granular suspension exhibiting a qualitatively similar behavior as (b).
(d) From Koch et al. (2019): Flow curve of Carbopol in water, using
the same protocol as in (a), not qualitatively altered by vibration. (e)
From Gibaud et al. (2020): calcite gel subjected to ultrasonic vibra-
tions (45 kHz) exhibiting a decrease of yield stress with an increase in

the vibration magnitude.

for instance found that stick-slip events triggered in presence of vibrations occur in
advance compared to samples that are only sheared (Griffa et al., 2013), and this may
have an impact in understanding fault dynamics in geophysics.

Different results on the effect of mechanical vibrations were however reported in
the case of non-frictional yield stress fluids. A direct comparison between frictional
and non-frictional YSFs was done in a study by Koch et al. (2019). Fig. 1.12(a) and
(d) depict the flow curves obtained for uniformly vibrated samples in the case of (a)
a suspension of glass beads in silicon oil (hard frictional system) and (b) of carbopol
(soft frictionless system). While small vibrations amplitudes are sufficient to fluidize
a wet granular suspension, this does not affect the rheology of carbopol. This can
be understood qualitatively due to the nature of plasticity in these two classes of
materials. While in frictional systems, plasticity can occurs both at the particle level
(neighbor exchanges) and at the contact (asperity) level, it is restricted to neighbor
exchanges in frictionless systems (Andreotti et al., 2013; McNamara et al., 2016).
The amplitude of the perturbation needed to induce plasticity in frictionless systems
is thus expected to be higher than in the frictional case, since a local stress threshold
for neighbor exchanges must be overcome.

Recent experiments using ultrasonic vibrations to tune the rheological properties
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(a) (b)

(c)

(d)

(e)

Figure 1.13: From Wortel et al. (2016): Critical dynamics at
finite shear and vibration rates in granular media. (a) Flow
curves obtained in a vibrated granular media sheared in a split-bottom
cell (schematic): dimensionless torque T as function of the rotation
rate (ω) expressed by the dimensionless parameter S = log(ω) for
various vibration magnitudes Γ, changing from a monotonic to non
monotonic behavior for a critical magnitude Γc. (b) Fluctuation mag-
nitude (standard deviation of the rotation rate) as a function of the
torque T . (c) Maximum fluctuation magnitude as a function of the
reduced vibration magnitude Γ∗ = Γ − Γc exhibiting a power-law de-
cay. (d) Correlation time of the rotation rate as a function of T . (e)

Maximum correlation time as a function of Γ∗

of colloidal gels (Gibaud et al., 2020) have evidenced that the rheology of frictionless
yield stress fluids (such as calcite gel) could be affected by mechanical vibrations.
Instead of an elimination of the yield stress, a systematic decrease of the yield stress
with an increase of the vibration intensity is observed (Fig. 1.12(e)).

Competition between self-generated noise and external noise

The flow curves shown in Fig. 1.12(b) and (e) in absence of mechanical vibration
exhibit a negative slope for a range of shear rate γ̇ < γ̇c, γ̇c corresponding to the shear
rate at which the flow curve exhibits a positive slope again, and varies depending
upon the system. As discussed in the previous section (1.2.4), this branch is usually
interpreted as the signature of a flow instability that can lead to localized (shear-
banded) or metastable flow. Interestingly, in these two cases, this non-monotonic flow
curve progressively gives rise to a monotonically increasing flow curve upon increasing
vibration magnitude.

In the case of frictional granular systems, this transition from a non-monotonic to
a monotonic flow curve (Fig. 1.13(a)) was linked to the existence of a critical point
in a study by Wortel et al. (2016). This scenario was supported by measurements of
increasingly large fluctuations of the macroscopic shear rate at the approach of the
transition, as shown in Fig. 1.13(b-c). It was found that both the magnitude and
the correlation time of the fluctuations diverge at the transition, obeying power-law
scalings (Fig. 1.13(b-e)).

In the framework of statistical physics, the characteristics of a critical point (expo-
nents describing the scaling of both average quantities and fluctuations) are supposed
not to depend on details of the system, but rather only on generic properties shared
by a broad class of systems. Do soft glassy materials share a generic critical point in
the case of a competition between self-generated and external sources of noise? Can
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it be captured using a minimal model for the flow of YSFs? This will be one of the
questions addressed in this thesis (Chapter 4).

Internal active noise as another type of flow-independent noise

We mainly discussed so far the case of external sources of noise. Local events such as
those induced by a biological activity can also contribute to the mechanical noise in
the system, and induce a fluidization of systems exhibiting a yield stress in absence
of activity (Mandal et al., 2016; Tjhung et al., 2017; Matoz-Fernandez et al., 2017a;
Czajkowski et al., 2019). The next section is dedicated to the dynamics of dense
active systems, with a specific focus on the fluidization mechanisms induced by a
local activity and the possible analogies between driven and active systems.
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Summary of section 1.2

• Soft glassy materials (deep in the glass phase) behave as an elastic solid at
rest and can reach a steady state plastic flow if the applied stress exceeds
a dynamical yield stress, with a non linear rheology in the flowing regime.

• In the slow driving regime, the stress response to an applied strain is
characterized by a succession of loading phases and abrupt relaxation
phases as in stick-slip phenomena and the distribution of stress drops
follows a power-law behavior related to long-range elastic interactions in
the system.

• The “yielding” transition upon increasing strain can be studied using os-
cillatory shear driving, revealing a sharp transition between a regime of
reversible particle trajectories at small strain and a regime where the
system deforms plastically and in which particle trajectories become ir-
reversible.

• Plasticity occurs through localized rearrangements of particles that dis-
turb the elastic strain and stress fields in the material, inducing a me-
chanical noise that can activate other plastic events, thus leading to cor-
relations between localized plastic events and cooperative effects.

• Permanent shear bands can be observed when the rheology is non-
monotonic, due to rate weakening effect that can result from diverse
microscopic processes like, e.g., flow-structure coupling or inertia at the
microscopic scale. Shear weakening due to inertia can be rationalized as
a kinetic heating effect inducing softening in the system. Whether kinetic
heating due to inertia can actually lead to shear banding and how it can be
described at the continuum level remains an open question (Chapter 3).

• Beside the self-generated noise due to plastic events, external sources
of noise (independent of the shear rate) can also affect the dynamics
and fluidize the system. Such external sources of noise encompass for
example thermal noise, external mechanical perturbation or local sources
of biological activity. The type of softening or fluidization observed may
depend upon the nature of the external noise (Chapter 4 and 5).

• The competition of endogenous noise leading to a rate-weakening effect
and fluidizing external noise (mechanical vibrations) has been shown to
lead to critical dynamics in experiments on granular systems. The gener-
icity of this scenario remains however to be tested (Chapter 4).

1.3 Dense active materials

Dense active systems, or “active glasses” have been intensively studied in the past
decade, as revealed by various recent reviews on the subject (Berthier et al., 2019;
Janssen, 2019). Examples of such systems encompass assemblies of biological cells at
high density forming a tissue or a biofilm, intracellular medium, or synthetic active
systems such as dense suspensions of colloids powered by chemical reactions. These
systems have been shown to exhibit glassy dynamics and dynamical arrest although
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they are far from equilibrium as, in most cases, thermal fluctuations play no role
and the dynamics results from a local (possibly biological) activity. Depending upon
the type of activity, the transition to arrested states can take various different forms
(Berthier et al., 2019). Moreover, although biological activity is often seen as a factor
that tends to fluidize a system that would be glassy in the absence of activity, it was
shown in the case of self-propelled particles that departure from equilibrium due to
activity can both enhance or diminish glassy dynamics (Berthier et al., 2017).

Beside the interest to study active systems in the framework of non-equilibrium
statistical mechanics, motivation to study dense active materials comes from the fact
that it is now clear that mechanics plays an important role in various biological pro-
cesses. It is for instance well accepted that the mechanical properties of biological
tissues play an important role in physiological processes such as embryonic develop-
ment, wound healing and cancer invasion (Alert et al., 2019). Understanding what
governs the mechanical properties of dense tissues from the perspective of (active)
dense amorphous materials is thus a novel and promising research area. A remarkable
example is given by the work of Bi et al. (2015) and Park et al. (2015), where the
authors show that the solid-to-fluid transition observed in asthmatic epithelial tissues
is related to an underlying geometric jamming transition appearing in a vertex model
for epithelial tissues.3

This section is organized as follows. We first review some experimental studies
of glassy dynamics in active materials. We then emphasize how distinct sources of
activity (self-propulsion in different persistence regimes, cell division or death, volume
fluctuations) can lead to transitions to dynamical arrest with very different features,
and how they can be understood by drawing analogy with (either equilibrium or
driven) passive systems. We finally present studies addressing the mechanical response
of cells aggregates to deformation and discuss the mechanical response of a material
to local active events, and how it could be used as a building block of coarse-grained
theoretical descriptions.

1.3.1 Evidences of glassy dynamics in dense active systems

Many phenomena associated with glass physics have been reported in active matter
systems in the last decade. In this section, we summarize the main findings regarding
glassy dynamics in active matter systems like active colloids, intracellular medium
and biological tissues.

Synthetic dense active matter systems

Active colloidal systems have been designed using Janus particles for instance (parti-
cles made of one part covered with a catalyst leading to self-propulsion). While many
studies focus on the single particle or the low density regime of active colloidal systems,
the dense regime was only studied recently (Klongvessa et al., 2019a; Klongvessa et
al., 2019b). In this study, glassy dynamics was evidenced upon increasing the density
of colloids, and the dynamics was shown to exhibit a nonmonotonic behavior upon
tuning the self-propulsion, preventing a simple mapping onto a passive glassy system.

3Let us remind that although the terms jamming and glassy are often encountered in the active
glass literature, we will refer to the term “glass transition” whenever we are talking about a transition
leading to dynamical arrest as a result of a competition between crowding and particle motion
(motored by thermal fluctuations or active processes such as self-propulsion), while jamming implies
a purely geometrical transition in absence of any dynamics (thermal or active), as suggested by recent
review papers on the topic (Berthier et al., 2019; Janssen, 2019).
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C(a) (b)

Figure 1.14: Glassy dynamics in biological systems. (a) From
Nishizawa et al. (2017), bacterial cytoplasm: Relative viscosity as a
function of the scaled concentration c/cg (Angell plot) for a bovine
serum albumin (BSA) solution (red circles), for cell extracts from E.
coli (green triangles), and for cytoplasm in a living cell (pink dia-
monds). The thick solid line indicates Arrhenius behavior. (b) From
Angelini et al. (2011), epithelial tissue: A, B: Confluent epithelial
monolayer of MDCK cells exhibiting spatially heterogeneous motion.
C: Inverse of the self diffusion coefficient of cells as a function of the

scaled cell density σ/σg.

Let us mention that other synthetic active matter systems exist, such as colloidal
rolling particles (Bricard et al., 2013) or granular systems driven at the level of indi-
vidual particles through shaking of their substrate (Deseigne et al., 2010), but most
studies were conducted in intermediate density regimes.

Intracellular dynamics

The link between intracellular cytoplasmic properties and glass-like properties was
first established by Zhou et al. (2009). The mechanical properties of eukaryotic cells
are generally thought to be governed by the properties of their cytoskeleton as well as
the content of their intracellular space. In their study, Zhou et al. (2009) find that the
intracellular space becomes progressively stiffer with increasing osmotic compression,
accompanied by a slowing down of the relaxation in the cytoplasm, analogous to the
colloidal glass transition (Mattsson et al., 2009). Is is further found that altering
the metabolic activity of the cell (by depleting ATP) affects the glass transition,
supporting the idea that nonequilibrium processes may modulate the glassy behavior.

Bacterial cells, unlike eukaryotic cells lack motor proteins enabling propulsion of
macromolecules in the cytoplasm, and transport properties are thought to by domi-
nated by crowding effects, as found by Parry et al. (2014). They also find that while
metabolically inactive bacteria exhibit glassy dynamics (very slow and dynamically
heterogeneous transport properties), metabolic activity fluidizes the cytoplasm.

In another study, Nishizawa et al. (2017) study both eukaryotic and prokaryotic
cells, in both in vivo and in vitro conditions, where the metabolic components and
cytoskeleton of the cell have been removed. Their results are depicted in Fig. 1.14(a).
They find that living cells are usually associated with a strong glass former kinetic
behavior (Arrhenius-type growth of the viscosity upon crowding) and that inactive
cells (in vitro conditions) exhibit a fragile kinetic behavior. Interestingly, computer
simulations of a minimal model for actively deforming particles by Oyama et al. (2019)
yield similar conclusions (model further discussed in section 1.3.2).



1.3. Dense active materials 35

Intercellular dynamics (biological tissues)

An increasing number of studies indicates that glass physics is also encountered at the
intercellular level in multicellular systems such as biological tissues. Most of the recent
studies are conducted on epithelial monolayers: two-dimensional confluent amorphous
cell sheets (i.e., with a packing fraction of unity).

Madin–Darby Canine Kidney (MDCK) monolayers are a widely used model system
to study the dynamics of epithelial tissues (Fig. 1.14(b)-A). In their study, Angelini
et al. (2011) evidence both a slowing down of the relaxation dynamics (as quantified
from, e.g., the self-diffusion coefficient of cells in Fig. 1.14(b)-C) and an increase in
the dynamical heterogeneity across the MDCK monolayer as the cell density increases
during the experiment. Slowing down of the dynamics with increasing cell density
is also reported by Garcia et al. (2015) in another type of epithelium, constituted
of human bronchial epithelial cells (HBEC). Interestingly, non-trivial correlations in
the instantaneous cell velocity are found, which constitutes a major difference with
equilibrium systems, where instantaneous velocities are uncorrelated. The interpre-
tation of Garcia et al. (2015) is however slightly different as it points towards aging
features that do not depend on the density, but rather on maturation of cell-cell and
cell-substrate adhesions during the experiment, which has no equivalent in the physics
of passive glasses. It is also important to mention that although the phenomenology of
epithelial monolayers resembles, in some aspects, that of conventional glass-forming
systems, the relaxation mechanisms at play in these systems have a fundamentally
different origin. In epithelial layers, the dynamics is governed by the self-generated
propulsion of cells, but also by additional active processes such as cell division (mito-
sis), programmed cell death (apoptosis) and active cell deformations such as volume
fluctuations. All these processes are absent in inert systems such as colloidal glass-
forming systems, and their impact onto the dynamics and the transition to dynamical
arrest will be addressed in the next section (section 1.3.2).

As already mentioned in the introduction, studying the glassy behavior of an ep-
ithelial tissue may be relevant for pathological conditions such as asthma, as realized
by Park et al. (2015). Their study of HBEC monolayers reveals that the cell dynamics
of non-asthmatic donors undergoes a transition from a fluid-like state to a glass-like
state as the tissue matures over time, while asthmatic epithelia remain mobile and
exhibit a delayed glass-like transition. They also remark that fluid-like tissues are
characterized by an average shape ratio between the cell perimeter and the square
root of the cell area larger than 3.81 while solid-like tissues are characterized by small
values of this shape ratio. The link between structural (or geometrical) and dynam-
ical properties of tissues plays a crucial role in understanding the rigidity transitions
observed in dense tissues (Bi et al., 2014; Bi et al., 2015). In particular, it has led to
the development of numerous vertex-based models for the dynamics of tissues, which
will be further discussed in section 1.4.

Glassy dynamics was also reported in three-dimensional assemblies of cells, as
shown for instance in tissue explants of zebrafish embryos by Schoetz et al. (2013).
It now is believed that solid-to-fluid transitions may play an important role during
development, where both phases of collective cell migration and arrested glass-like
states are observed (Park et al., 2016). This has been evidenced in vivo by Mongera
et al. (2018) in a recent work studying the process of zebrafish vertebrate body axis
elongation. During this developmental process, the mean displacement of progenitor
cells is found to decrease as they move from a region (mesodermal progenitor zone,
MPZ) to another (presomitic mesoderm, PSM), where they get arrested. By per-
forming measurements of the local mechanical response, Mongera et al. (2018) further
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evidence the existence of a yield stress in the tissue, with a gradual increase from
MPZ to PSM correlated with the concentration of adhesion proteins. The study also
reveals stress fluctuations above the yield stress in the MPZ phase (and below the
yield stress in the PSM), consistent with a picture of fluidization by active processes
at the cell-cell contact level generating stress fluctuations leading to cell intercalations
and hence to a fluid-like behavior. This study thus suggests that a spatio-temporal
control of fluid-like and solid-like properties of tissues may represent a mechanism at
play during embryonic morphogenesis.

Concluding remarks

It is now clear that dense active and living systems exhibit several hallmarks of glassy
dynamics. This has been evidenced both at the intracellular and intercellular level, in
two and three dimensions, and in various biological contexts (in healthy and patho-
logical tissues, in developing tissues, etc.).

Beside developmental processes, let us mention that glassy dynamics also poten-
tially plays an important role in cancer invasion (see Park et al. (2016) and Oswald
et al. (2017) for a review), which is related to the ability of cells to move collectively.
Actually, the topic of collective cell migration is even a broader topic than the physics
of active glasses or the physics of cancer, and has attracted a great interest in the past
decade (Ladoux et al., 2017; Alert et al., 2019). A large variety of collective migration
modes (flocks, swirls, velocity oscillations, etc.) has been reported in dense tissues,
and a more detailed introduction to this topic will be given in Chapter 6, which is
dedicated to modeling collective wave-like dynamics of the cell velocities in epithelial
monolayers.

Various distinct active processes are at play in living tissues, and it is often difficult
to disentangle the contributions of distinct sources of activity. Various experimental
approaches exist, such as turning down metabolic activity by depleting ATP, inhibit-
ing cell division or cell contractility using targeted drugs, etc., but they are often
difficult to control as many coupled phenomena and feedback mechanisms are at play
in biological systems. Computer simulations thus constitute a powerful complemen-
tary approach to study active glasses since they allow to tune specifically the relevant
parameter controlling activity, and, by resolving single particle trajectories, enable
one to compute a large number of observables. Numerical studies have thus shed light
on the nature of the solid-fluid transitions observed in dense active systems, and we
will review the main outputs of these studies in the next section. The different types
of numerical approaches will be the topic of section 1.4.

1.3.2 Solid-to-fluid transitions in dense active matter

In all of the active systems mentioned in the previous section, the motion of particles is
controlled by the magnitude of the active driving of biological, chemical, or mechanical
origin. The dynamics is fully arrested when activity is turned off, and the particles may
start to diffuse and exhibit rich dynamics for finite levels of activity. The description of
the transition between a dense amorphous solid and a fluid controlled by active forces
remains a largely open question (Berthier et al., 2019). What type of microscopic
dynamics can be expected at the transition? How does it depend on the type of
activity? Can this be described theoretically using simplified models of active matter?
We review in this section the main numerical and theoretical findings regarding active
solid-to-fluid transitions for different types of activity: self-propulsion of particles,
active deformation, cell division and cell death.
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(a) (b) (c)

Figure 1.15: Self-intermediate scattering function for distinct
local active processes in 2d particle-based models. (a) From Matoz-
Fernandez et al. (2017b): System of self-propelled particles in the small
persistence time regime, for various values of the self-propulsion ve-
locity v0, exhibiting a glass-like transition. (b) System of particles
endowed with division and death mechanisms at rates d0 and a re-
spectively, always exhibiting a fluid-like behavior. (c) From Tjhung
et al. (2017): System of actively deforming particles exhibiting a dis-
continuous fluidization at a deformation amplitude a = ac ' 0.049

Self-propulsion

In self-propelled particle systems, the motion of particles is governed, aside from
particle interactions, by active self-propulsion forces that are often characterized by
two parameters: the magnitude of the self-propulsion force and its persistence time
(time before changing direction). This brings two additional parameters, in addition
to temperature and density. Temperature is often neglected to reduce the parameter
space of the model and we will focus here on athermal active systems. More details
on microscopic simulations can be found in section 1.4.

Models of self-propelled particles Let us first present the two main classes of
microscopic models used to study the role of self-propulsion: active Brownian particles
(ABPs) (Romanczuk et al., 2012) and active Ornstein–Uhlenbeck particles (AOUPs)
(Szamel, 2014). In ABP models, particles have a constant self-propulsion velocity
and propel along a polarity vector rotating by a slow rotational diffusion. This model,
intended to represent active colloids, has been used to study motility-induced phase
separation (Cates et al., 2015) but also active glassy dynamics (Ni et al., 2013; Fily
et al., 2014), and as a minimal model of epithelial tissues (Henkes et al., 2020). On
the other hand, for AOUPs, each component of the self-propulsion velocity follows a
Ornstein-Uhlenbeck stochastic process, leading to a persistent random walk dynamics
characterized by a persistence time and an effective temperature which quantifies the
magnitude of the active force. These two models are generally considered in the
overdamped limit and both reduce, in the limit of vanishing persistence time, to a
passive Brownian system.

Non-equilibrium glass transition for self-propelled particles In a study of
ABP model with a hard sphere potential, Ni et al. (2013) find that when increasing the
self-propulsion velocity the apparent volume fraction of the glass transition moves to
larger values. Fily et al. (2014), using a soft repulsive potential, also report an arrested
phase at low activity and large density. They find that in the limit of small persistence
time, the system reduces to an equilibrium system with an effective temperature Teff ∝
v2

0 with v0 the self-propulsion velocity. The intermediate scattering function measured
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for various self-propulsion velocities (Matoz-Fernandez et al., 2017b) is depicted in
Fig. 1.15(a) and resembles that of Fig. 1.2 for equilibrium glasses.

A more detailed study of the glass transition was conducted by Berthier and co-
workers for the AOUP model with a WCA interaction potential (Weeks et al., 1971)
(see Berthier et al. (2019) and references therein). In their work, they fix the effective
temperature Teff and study how the glassy behavior is affected by departing from
equilibrium, i.e., increasing the persistence time τp. They find that the structure of
the supercooled liquid (as characterized by the pair correlation function) is affected
by an increase of τp, leading, depending upon the Teff range, to an effective short-
range attraction resulting from the competition between repulsion and self-propulsion
(predominant at low Teff) and/or to an increase of the effective particle radius with
τp (predominant at high Teff) (Berthier et al., 2017). They also evidence non-trivial
velocity correlations for finite persistence time, implying a form of collective motion
(Szamel et al., 2015). Moreover, increasing the persistence time affects the glass
transition in a nonmonotonic way. While at low Teff, an increase in the persistence
time shifts the glass transition towards larger densities, the opposite effect is observed
for larger Teff. This non-trivial dependence shows that departing from equilibrium
can either promote or depress glassy dynamics.

Large persistence time: possible analogy with sheared amorphous solids
The large (but finite) persistence time limit of athermal ABPs was recently studied
by Mandal et al. (2020a). Interestingly, this regime is characterized by intermittent
dynamics in the kinetic energy, as a consequence of long arrested periods followed
by bursts of plastic yielding (cage breaking by self-propelled particles) associated
with Eshelby deformations fields (see Fig. 1.18(b)), akin to the response of dense
amorphous solids to an externally imposed shear (Fig. 1.18(a)). Note that for an
infinite persistence time, the system can reach a state of dynamical arrest where all
active forces are balanced.

Models with aligning mechanisms Studies attempting to describe epithelial tis-
sues have used more sophisticated models, incorporating aligning mechanisms (see,
e.g., the review by Camley et al. (2017)). In the seminal work of Henkes et al. (2011),
an additional coupling mechanism incorporated in ABPs tends to align the direction
of self-propulsion to the direction of velocity at the single cell level. This results in
large-scale coordinated motion, and slow oscillations of the cellular packing. Other
types of interactions (Viscek-like for instance (Vicsek et al., 1995)) have been con-
sidered to model collective oscillations in epithelial tissues as done by Deforet et al.
(2014). We will come back to this point in Chapter 6, when studying a model for the
emergence of collective oscillations in an epithelium.

Note that the influence of other forms of motility has also been addressed in the
literature, such as, e.g., the solid-to-fluid transition observed in a system of active
particles endowed with an active torque (self-rotation mechanism) by Ravazzano et
al. (2020) (inspired by the dynamics of microswimmers such as Chlamydomonas rein-
hardtii).

Cell division and apoptosis

Cell division and apoptosis are important phenomena governing the dynamics of bio-
logical tissues. Large apoptosis rates can lead to a vanishing tissue, while cell division
can lead to tissue growth. If cell death and division are statistically balanced, the
system can reach a non-equilibrium steady state.
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Matoz-Fernandez et al. (2017b) have studied the effect of cell division and cell
death on the dynamics of a numerical model of soft particles. The system exhibits a
rich phase diagram, and they find that, in the dense confluent regime, the system is
fluidized for any positive rate of cell apoptosis and division, in agreement with Ranft
et al. (2010). As a consequence, no glass phase is observed, as illustrated by the
self-intermediate scattering function in Fig. 1.2(b), always relaxing at long time for
any rate of activity. Similar results are reported by Malmi-Kakkada et al. (2018) in a
model of growing tri-dimensional tissue.

This result has however been contrasted in a recent work by Czajkowski et al.
(2019), where the authors report the existence of a glassy phase in vertex-based sim-
ulations for small enough death and division rates. Various differences between the
two models (and dynamical rules) could contribute to these contrasted results, but
there is, so far, no consensus on the existence of a solid-like phase in a dense system
of particles endowed with division and death processes.

To summarize, including both cell division and apoptosis in the dynamics leads to
nonequilibrium steady states where the number of particles is conserved on average.
This case has been studied both in the context of particle-based and vertex-based
models (Ranft et al., 2010; Matoz-Fernandez et al., 2017b; Czajkowski et al., 2019)
and was shown to lead to a visco-elastic behavior, where the long time flow behavior
is governed by the rate of cell division/ apoptosis, as proposed theoretically by Ranft
et al. (2010).

Note that in the case where cell division is not compensated by cell death, as
studied by Tjhung et al. (2020), this leads to a global growth of the tissue. Although
energy injection still occurs at the particle scale, this results in a global macroscopic
driving, in the form of an expansion rate. The dynamics in that case is similar to that
of a soft glassy material subjected to a global shear rate, leading to plasticity and flow.
The microscopic dynamics of the system is thus never arrested but shows dynamical
features directly controlled by the global radial growth rate. The plasticity observed
in that case results both from cell division events and from the global macroscopic
driving.

Active deformation

Active deformations of cells in epithelial tissues are a widely observed phenomenon,
that can originate from, e.g., active fluctuations of cell-cell interfaces (Guillot et al.,
2013) and important cell volume fluctuations (Spring et al., 1982; Zehnder et al.,
2015a; Dasgupta et al., 2018). A large variety of spatio-temporal dynamics of active
deformations has been reported, from highly fluctuating dynamics to oscillations of
synchronized groups of cells (Curran et al., 2017; Zehnder et al., 2015a). Moreover,
cell deformation is an active process that may be coupled to both internal and external
forces and biochemical signals, potentially leading to complex feedback mechanisms.

Recent works have addressed the solid-to-fluid transition resulting from active
fluctuations of the junction tension resulting in cell-cell contact length fluctuations
using the framework of vertex models (Krajnc, 2020; Kim et al., 2020). Krajnc et
al. (2018) find a solid-to-fluid transition very similar to the transition induced by a
change in target shape index in vertex models, suggesting that the mechanism for this
transition may be independent of the underlying source of fluctuation. In their study,
Kim et al. (2020) develop a computational framework including features of both vertex
and particle-based models (accounting for extracellular space) and evidence a solid-
to-fluid transition governed by active tension fluctuations occurring both in confluent
and non-confluent systems. Their work highlights a complex interplay of cell adhesion,
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Parameter Model Reference and description Proposed
transition

Target shape
index Vertex Bi et al. (2014) “rigidity”/jamming

Interfacial
tension Cellular Potts Chiang et al. (2016) glass

Berthier (2014) (AOUPs) glass
Fily et al. (2014) (ABPs) glass

Self-
propulsion Particle Mandal et al. (2020a):

large persistence time
yielding

(avalanche dynamics)
Ravazzano et al. (2020): self rotation n.s.

Vertex
and Voronoi

Czajkowski et al. (2019)
Bi et al. (2016) and Sussman et al. (2018) glass

Cellular Potts Chiang et al. (2016) glass
Cell division
apoptosis Particle Ranft et al. (2010): steady state

Matoz-Fernandez et al. (2017b) none (fluid)

Tjhung et al. (2020): expanding system none (rate imposed flow)
Vertex Czajkowski et al. (2019): steady state glass

Active
deformation Particle Tjhung et al. (2017): oscillatory

or random radius fluctuation
discontinuous yielding

glass

Vertex Krajnc (2020) and Kim et al. (2020):
active junctions fluctuations n.s.

Table 1.1: Examples of solid-to-fluid transitions in numerical
models of (athermal) dense active systems (n.s. stands for non

specified)

cell tension and density explaining the mechanical behavior of the tissue, which may
reconciliate findings of particle and vertex-based models (see section 1.4).

Cell volume fluctuations have been studied within a particle-based model by
Tjhung et al. (2017). In this model, the only source of activity is given by active
changes of the particle volume (by prescribing a dynamics for the radius of each parti-
cle). In the case of a random driving (persistent random walk of the particle radius),
the authors find a fluid-to-solid transition upon decreasing the activity that has the
features of an ordinary equilibrium like glassy dynamics. On the other hand, a sharp
fluid-to-solid transition is observed for a purely periodic driving (or if the frequencies
are weakly distributed), that does not resemble glassy dynamics (see the intermedi-
ate scattering function in Fig. 1.2(c)). This transition between an arrested state for
small volume fluctuations and a fluidized state occurs at a finite activity magnitude
and appears discontinuous, resembling a nonequilibrium first-order transition. The
authors argue that, in this case, the proper analogy with the physics of glasses is not
with the glass transition itself but rather with the yielding transition of amorphous
solids driven with an oscillatory shear protocol. The physical picture is that volume
fluctuations act as a slow driving force in the material, and local fluidization occurs
when that force exceeds a threshold, as for yielding.

Concluding remarks

It is clear that biological activity can induce a transition from a solid-like to a fluid-like
state, although the type of transition can differ depending upon the source of activity
(or type of interaction), as summarized in Table 1.1. As illustrated in the last column
of Table 1.1, various different analogies have been proposed between the solid-to-fluid
transitions observed in dense active systems and in inert systems (thermal or driven).
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Recent studies address the origin of these similarities from a theoretical perspective
(Morse et al., 2020), although a general framework is still lacking. In particular, the
type of dynamics expected at the transition depending upon the type of local activity
and its temporal dynamics remains a largely open question.

The case of particles with active volume fluctuations, where the temporal dynamics
can be easily tuned from purely oscillatory to colored random noise as done by Tjhung
et al. (2017), constitutes an example of simple model to approach questions such as: (i)
What are the mechanisms at the origin of the fluidization? (ii) What is the influence
of having a local driving versus a global driving in a dense system? (iii) How is
the fluidization transition affected by a change in temporal dynamics of the activity?
The work of Tjhung et al. (2017), conducted in parallel with studies on the yielding
of amorphous solids in oscillatory shear driving (Kawasaki et al., 2016; Yeh et al.,
2020), suggests that there are indeed strong similarities between oscillatory volume
fluctuations at the particle level and systems sheared with an oscillatory driving. In
this thesis, we want to further investigate these similarities at a coarse-grained level,
using mesoscale elasto-plastic models for the deformation of amorphous solids. This
approach enables us to probe in particular what are the minimal ingredients required
to explain the fluidization observed in a system of actively deforming particles (see
Chapter 5).

We briefly mentioned the existence of feedback mechanisms between biochemical
and mechanical processes in biological tissues. An important consequences of these
complex feedback loops is that, unlike inert materials where phase changes (e.g., from
a solid-like to a fluid-like state) are controlled by externally tuned parameters such
as temperature or density, living materials can tune themselves into different states
through regulatory biochemical and/or genetic pathways acting on cell motility, cell
cycle and phenotype changes. Famous examples include contact inhibition of cell
division (Martz et al., 1972) and contact inhibition of cell locomotion (Mayor et al.,
2010) upon an increase in cell density in tissues. To what extent these behaviors can
emerge from simple physical rules remains however an open question (Recho et al.,
2019; Bertrand et al., 2020; Buttenschön et al., 2020).

The (time-dependent) rheology of tissues is therefore affected by active processes
occurring at various length and timescales, and by their regulation due to the cross-
talk between mechanical and chemical signaling. In the next section, we present
a few experimental studies of tissue rheology and some of the biological processes
contributing to the observed behavior.

1.3.3 Rheology of dense active and biological systems

Understanding how local active processes influence the relaxation in dense active
systems and hence the macroscopic rheology when a system is subjected to mechanical
forcing has been the focus of various studies in the recent years. This has not only
implications in modeling the mechanics of biological tissues, but also in understanding
biological morphogenetic processes: how do local active events contribute to shaping
tissues? How does a tissue maintain mechanical integrity despite large scale flows of
cells during developmental stages? (Collinet et al., 2015; Mongera et al., 2018)

Let us mention that the rheology of biological materials is an extended research
field that we will not cover here. It is much broader than the mechanics of epithelial
tissues and covers for instance the rheology of single cells, as well as its sub-cellular
elements constituting the cytoskeleton (actin gels for instance), the rheology of con-
nective or contractile tissues, etc. (Verdier et al., 2009).
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(b)
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(a)
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Figure 1.16: (a) From Harris et al. (2012): Mechanical character-
ization of a cell monolayer. A: Creep response exhibiting a strain
plateau at low stress and a continuous strain increase at high stress.
B: Stress-extension curves displaying three distinct regimes of load-
ing: initial loading phase (blue box), linear extension regime (green
box) from which an elastic modulus can be calculated, and a plateau
(red box) corresponding to plastic deformation and eventual failure.
C: Bright field microscopy images of the deformed monolayer under
stretch at 0 and >80 % extension. (b) From Tlili et al. (2020): Ex-
periment of an MDCK epithelial monolayer migrating around
a circular obstacle. Cell deformation as a function of the cell re-
arrangement rate indicating a viscoelastic behavior with a relaxation
time of about 70 min. (c) From Matoz-Fernandez et al. (2017a) Flow
curve for a particle-based model of tissue with cell division
and apoptosis exhibiting a Herschel-Bulkley rheology in absence of
activity and a Newtonian rheology at low shear rate with a viscosity

depending on the apoptosis rate.
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Rheological behavior of tissues

On the experimental side, experiments performed on embryonic tissues (Petridou et
al., 2019), multicellular spheroids (Marmottant et al., 2009; Guevorkian et al., 2010),
or cell monolayers with or without substrate (Harris et al., 2012; Nnetu et al., 2013;
Vincent et al., 2015; Tlili et al., 2020) have evidenced elastic, plastic and viscous
flows behavior depending on the forces applied and on the timescale of observation
(Wyatt et al., 2016). Fig. 1.16 depicts two examples of experiments performed to
characterize the rheological behavior of epithelial monolayers: by imposing a tensile
deformation to a freely suspended monolayer (Fig. 1.16(a), from Harris et al. (2012))
or by studying the dynamics of an epithelial tissue migrating around an obstacle on
a substrate (Fig. 1.16(b), from Tlili et al. (2020)). These two experiments exhibit
elastic, viscoelastic and plastic deformation regimes (see caption of Fig. 1.16).

Living tissues are thus generally seen as viscoelastic materials with both physical
and biological mechanisms contributing to their time-dependent material properties.
Over relatively short timescales (of the order of 10 seconds), tissues respond essen-
tially as passive elastic media. They often display non-linear response to deformation,
suggesting that some constituents may be solicited above a certain strain threshold
(Phillips et al., 1978; Harris et al., 2012). On the other hand, on longer timescales (tens
of minutes to hours), tissues exhibit a liquid-like behavior, associated with (plastic)
cell rearrangements (Phillips et al., 1978; Guevorkian et al., 2010). On intermedi-
ate timescales (tens of minutes), cell aggregates behave as viscoelastic materials as
many soft matter systems like gels, polymer melts, etc. In this regime, the stress
is not totally dissipated, indicating the existence of structures able to sustain elastic
deformation and some slow relaxation processes occur leading to slow flow (or creep)
behavior (Harris et al., 2012; Guillot et al., 2013).

Processes at the origin of tissue mechanical properties

The different mechanical regimes in tissues can be explained by various dynamical pro-
cesses occurring at diverse length and timescales as shown in Fig. 1.17 (from Khalil-
gharibi et al. (2016)).

Intracellular processes The rheological properties of single cells indeed affect the
mechanical behavior of the tissue. The cell cytoskeleton is generally thought as the
most important mechanical structure of the cell, playing an important role in cell
shape and motility. The rheology of the actomyosin network, an important com-
ponent of the cytoskeleton, has been studied in great detail and depends upon the
turnover rate of actin filaments, the dynamics of cross-linker proteins as well as the
dynamics of myosin motors (Fletcher et al., 2010). All these processes can moreover
be regulated by biochemical signaling pathways. At the continuum level (and within
a near-equilibrium assumption), active gel theories have been able to account for the
rheological behavior of actomyosin gels (Prost et al., 2015). Myosin contractility is
also thought to play an important role in tissue dynamics and rheology. Note that
on very short timescales (second or shorter), biochemical reactions within the cell,
intracellular fluid flows and poroelastic effects may also have an impact on the tissue
mechanical response (Kollmannsberger et al., 2011; Moeendarbary et al., 2013).

Intercellular processes Short time (and small strain) measurements of the me-
chanical response of tissues reveal stiffness values that can be of the order of or larger
than (by a few orders of magnitude) that of single cells. Intercellular junctions are
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the large number of parameters involved. A more eco-
nomical design is to average the relevant biophysical
processes occurring at smaller length-scales and faster
time-scales than the phenomenon under consideration
in the form of effective rheological parameters, an ap-
proach called homogenization in mechanics (Figure 2 ).
When the time-scales and length-scales of the participat-
ing phenomena are well separated, homogenization can
represent a particularly efficient approach compared to
more comprehensive models, both in terms of computa-
tional speed and understanding. For example, models
seeking to understand the longer time-scales of tissue
mechanics need not incorporate the dynamics of intersti-
tial cytoplasmic flow or the actin cytoskeleton turnover
because these will be in quasi-static equilibrium for time-
scales longer than a few minutes.

A first class of models reduces cells to their centre of
mass and considers pairwise interactions of particles

subjected to forces such as short range repulsion due
to contact inhibition [59 ] and long range attraction due
to intercellular adhesion [60,61 ]. Such approaches have
yielded insights into phenomena across various time-
scales to understand collective cell dynamics [62 ], jam-
ming where cells become caged by their neighbours
[63 ], visco-plastic flows [64 ], and over longer time-
scales, the emergence of an homeostatic state [65]
viewed as a stable mechanical equilibrium between cell
division and apoptosis. However, this approach cannot
account for cell morphology and therefore fails to accu-
rately describe the role of cell junctions in tissue me-
chanics.

To interpret changes in intercellular contact morpholo-
gies and sorting experiments [66], models incorporating
intercellular adhesion energies, cortical tensions and a
bulk elastic modulus emerged, such as vertex models
(reviewed in [67 ]) and cellular Potts models [68 ].

Dynamic mechanics of cellularised aggregates Khalilgharibi et al. 117
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Coarse graining and time averaging can guide which phenomena are included in modelling. Phenomena participating in cellularised aggregate
rheology classified by length-scale and time-scale. Computational models can exclude structures smaller than a chosen scale, a process known
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Figure 1.17: From Khalilgharibi et al. (2016). Modeling biologi-
cal tissues at various lengthscales (molecular, cellular, cohort
of cells and tissue) and timescales. Biological processes contribut-
ing to aggregate rheology classified according to their lengthscale and
timescale. A computational model can exclude structures smaller than
a chosen scale (process known as coarse-graining, red arrow), and can
seek to represent dynamics only above a chosen timescale (time aver-

aging, blue).
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thus thought to mechanically stabilize the tissue (Guillot et al., 2013). Cell contacts
result from the competition of adhesion forces that stabilize cell-cell interfaces and cor-
tical tension exerted by the actomyosin network of each cell that tends to reduce cell
contacts (Lecuit et al., 2007). Adhesive contacts between cells (adherens junctions
mainly mediated by cadherin molecules) link the actin cytoskeleton of neighboring
cells, thus contributing to an overall tissue tension (Harris et al., 2012).

Dynamical processes like mechanotransduction signaling (i.e., transduction of a
mechanical signal into a biochemical response) at the junctions or in the cytoskeleton
or biochemical turnover within the junction occur at intermediate timescale (minutes
to hours) and may contribute to the visco-elastic relaxation observed at intermedi-
ate timescales in tissues, like slow creep or viscoelastic flow behaviors. On longer
timescales, junction remodeling occurring during cell rearrangements, cell division,
extrusion, etc. contributes to the liquid-like behavior (Guillot et al., 2013).

Although these different mechanisms start to be well characterized, the relative
importance of junctional actomyosin, cortical tension and cadherin mediated adhesion
in explaining tissue mechanics is still an open question in the field (Khalilgharibi et
al., 2016). Cellular events like cell rearrangements, divisions, etc., may contribute
importantly to tissue mechanical properties. Their impact may further depend on
their orientation with respect to the stress field, as evidenced in Drosophila embryonic
development for instance (Etournay et al., 2015). Such events also disturb the stress
and strain fields and can induce mechanical noise in the system, as we will see in the
next section.

Modeling biological processes at diverse lengthscales and timescales It is
often difficult to capture, within a unique model, the different “short time” phenom-
ena occurring in tissues and at the same time the viscous-like behavior observed on
long timescales. Some computational models attempt to describe in detail molecular
scale mechanisms and couple biochemical signaling and mechanics, but this approach
requires a large number of parameters and can be computationally expensive (Brod-
land, 2015). A more commonly used approach consists in averaging the processes
occurring at length and timescales smaller than the phenomenon under study in order
to construct effective rheological parameters (a procedure called “homogeneization”
in mechanics). This approach is particularly efficient when there is a clear timescale
separation between the phenomenon under study (e.g., long time tissue relaxation)
and molecular scale processes (such as actin cytoskeleton turnover).

At the numerical level, particle-based models have been used to understand col-
lective cell dynamics, crowding effects, and the role of particular cell-scale processes
like self-propulsion and cell division or apoptosis, as presented in the previous sec-
tion. Studies addressing more specifically the rheology will be presented in the next
section. Particle-based methods are however not suited to describe cell morphologies
and the role of cell-cell junctions in tissue rheology, and vertex-based or cellular Potts
models are preferred in that case as they explicitly describe cell morphologies and
incorporate ingredients such as intercellular adhesion energies, cortical tensions and
bulk elasticity.

Finally, coarse-grained descriptions at scales larger than the cell scale lead to
continuum models for tissue mechanics. It is interesting to note that while Ranft
et al. (2010) model a tissue as an active elastic medium exhibiting an effective viscous
behavior at long time, Blanch-Mercader et al. (2017a) show, describing an epithelial
monolayer as an active viscous fluid, that an effective tensile elastic modulus can
emerge as resulting from active dynamics. These examples illustrate that both elastic
and viscous constitutive modeling can be used to describe the dynamics of tissues,
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and are able to reproduce experimental observations such as velocity oscillations in
epithelial monolayers (see Banerjee et al., 2019 for a review), provided that mechanical
variables are coupled to internal degrees of freedom such as contractile activity, cell
division or cell polarity. All these modeling approaches will be presented in greater
detail in section 1.4.

To summarize, a large number of biological processes at diverse lengthscales and
timescales affect the rheology of biological tissues. When it comes to modeling, a
practical approach is to choose a particular scale and average (“coarse-grain”) the
dynamical mechanisms occurring at smaller scales. Even using this coarse-graining
procedure, there are still several distinct processes at play in tissue dynamics, as
summarized in the second column of Fig. 1.17, such as cell motility, cell division and
death, cell volume changes, etc. From a more fundamental point of view, one may be
interested in understanding how a specific active process at the cellular scale affects
the rheology of the system (in a similar way we asked how it could affect the solid-
or fluid-like state in the previous section). In the following, we present a few studies
investigating how such processes may affect the rheology of dense active systems.

Tissues as fluidized yield stress materials

Biological tissues can be seen as yield stress materials where active dynamics induces
stress fluctuations that lead to fluidization of the system (Matoz-Fernandez et al.,
2017a; Mongera et al., 2018; Kim et al., 2020; Popovic et al., 2020). The experimental
evidences of glassy behavior and, more generally, of various types of solid-to-fluid
transitions induced by activity support this scenario. Understanding how these local
active mechanisms (e.g., active fluctuations of junctional tension, cell division and
apoptosis events, etc.) are related to the long time visco-elastic relaxation times
measured in tissue deformation experiments remains an important question (Ranft
et al., 2010; Matoz-Fernandez et al., 2017a; Czajkowski et al., 2019; Tlili et al., 2020).
There is no global picture yet, and little is known about the additivity of the different
active sources of stress fluctuations in the system (Czajkowski et al., 2019).

Macroscopic picture A theoretical study by Ranft et al. (2010) shows that while
the tissue is described as an active elastic medium at short timescales, it behaves
effectively as a viscoelastic fluid when accounting for the disturbance of stress field by
division and apoptosis events, with a viscoelastic relaxation time set by the rates of
division and apoptosis. Matoz-Fernandez et al. (2017a) further find, using particle-
based simulations, that the rheology is actually non linear, with a Herschel-Bulkley
type flow curve in the absence of biological activity and a fluidized branch at low shear
rates (when the shear rate is of the order of the apoptosis rate), reminiscent of the
flow curves observed for vibrated granular media, as shown in Fig. 1.16(c).

On the other hand, by studying the rheology of a freely migrating epithelial mono-
layer using a Stokes experiment, Tlili et al. (2020) reveal a visco-elastic behavior with
a relaxation time much shorter than the one associated with cell division, and thus
not affected by changes in the division rate (Fig. 1.16(b)). The relaxation time is
however found to increase when myosin contractility is inhibited, indicating that in
this case, contractility is key to fluidize the tissue. It is also found to depend on the
migrating velocity, suggesting a rheo-fluidizing behavior.

Mongera et al. (2018), by performing in vivo measurements in zebrafish embryo,
evidence a finite yield stress in the tissue and show that fluid-like regions have higher
stress fluctuations correlated with higher cell-cell contact length fluctuations. Re-
ducing myosin contractility leads to smaller cell-cell contact length fluctuations and
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an increased yield stress value, also supporting the scenario of contractility-mediated
fluidization.

Microscopic picture The effect of a specific local active event on the strain and
stress fields can be investigated in microscopic simulations of active models. In
Fig. 1.18, we show the displacement fields of particles surrounding individual localized
events in the case of (a) a localized rearrangement in sheared amorphous solids (Puosi
et al., 2014), (b) self-propelled particles with a large persistence time (Mandal et al.,
2020a) and (c) division and apoptosis (Czajkowski et al., 2019).

This kind of measurement has been used to characterize the elastic response of a
material to a localized rearrangement of particles in sheared systems, which follows an
Eshelby-like quadrupolar response with a radial decay 1/r for the displacement mag-
nitude (see section 1.2), as depicted in Fig. 1.18(a). Interestingly, similar responses
are observed in the case of local active events. In Fig. 1.18(b), Mandal et al. (2020a)
study a model of self-propelled particles in a relatively large persistence time regime,
where self-propulsion leads to avalanche-like dynamics. They find that cage-breaking
events due to self-propulsion forces induce an Eshelby-like displacement field in the
surrounding material. In Fig. 1.18(c), Czajkowski et al. (2019) measure the response
to individual cell division and apoptosis events in a vertex-based model for epithelial
tissues, and also report an elastic response following a 1/r radial decay for the dis-
placement magnitude, with an anisotropic response in the case of cell division and an
isotropic response in the case of apoptosis.

Mesoscopic picture The long-range elastic response to these local active events
supports the idea that activity will generate an additional mechanical noise in the
system. This opens new perspectives to model dense active systems at the mesoscopic
scale, by including mechanical interactions due to the response to local active events
in a similar way it is done for the elastic response to shear transformations in elasto-
plastic models for sheared amorphous solids.

This path was already followed at the continuum level by Ranft et al. (2010), by
treating tissues as an active elastic medium at short timescales, and considering active
stress increment sources due to division and apoptosis events. In the framework of
elasto-plastic models, Matoz-Fernandez et al. (2017a) have introduced an additional
mechanical noise in the Hébraud-Lequeux mean-field model (Hébraud et al., 1998) to
account for the effect of cell division and apoptosis.

In this thesis, we develop spatially-resolved elasto-plastic models to account for ac-
tive dynamics. A first simple approach is to consider that activity induces additional
plastic rearrangements (and hence systematically fluidizes the system) without con-
sidering the detailed mechanisms at play. We study this type of model in Chapter 4
for two different activation dynamics. Another approach is to focus on a particular
type of activity and to describe explicitly the elastic response of the surrounding ma-
terial as depicted for self-propulsion, division and apoptosis in Fig. 1.18(b-c). In this
case, activity results in active stress sources that can induce plastic rearrangements of
particles and hence relaxation in the system. We explore this approach in Chapter 5
to study the fluidization induced by actively deforming particles (in the form of an
oscillatory radius change), as studied at the microscopic level by Tjhung et al. (2017).
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Figure 1.18: Elastic responses to local events in microscopic
simulations. (a) Local plastic rearrangement in a Lennard-Jones
glass (Puosi et al., 2014) (b) Self-propulsion of a particle in a Lennard-
Jones glass with a long persistent time for the direction of motion
(Mandal et al., 2020a). (c) Cell division and cell death in a vertex-
based model (Czajkowski et al., 2019). All the dashed lines are guides

to the eye with a slope of 1/r.
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Summary of section 1.3

• Various active and biological systems exhibit glassy features in some part
of their phase diagram, both at the intra- and intercellular level (e.g.,
dynamical heterogeneities, dynamical slowdown, caged dynamics).

• Different types of solid-to-fluid transitions have been reported in computer
simulations of dense active systems and analogies with glass, yielding
and jamming transition in passive systems have been proposed depending
upon the type of active dynamics.

• The rheology of biological tissue is characterized by a rich behavior (elas-
tic, plastic and viscous) depending upon the loading and observation time
considered, related to a large variety of physical and biochemical processes
at various length and timescales.

• It is in general difficult to capture all these effects within a unique the-
oretical model and various modeling approaches have been developed to
describe tissue mechanics. A possible approach to build mechanical mod-
els is to consider biological tissues as yield stress materials fluidized by
active sources of stress.

• The elastic responses to local active events resemble the response to local
plastic rearrangements observed in sheared systems, suggesting a possible
common elasto-plastic framework to model the dynamics of sheared and
active dense materials.
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1.4 Multi-scale modeling of driven and active amorphous
materials

We have seen in the previous sections that driven and active amorphous materials
exhibit a rich behavior, including large scale coordinated dynamics and dynamical
slowdown, and that events occurring at the scale of particles play a crucial role in
the dynamics. Modeling this kind of systems is thus particularly challenging since it
spans a wide range of length and timescales. We introduce in this last section the
main different approaches used to model driven and active soft amorphous materials
at various scales, focusing mainly on the approaches used in this thesis (summarized
in Table 1.2).

Modeling approaches for dense cellular amorphous materials essentially fall into
two classes: discrete cell-based (or microscopic) simulations and continuum models.
In discrete cell-based models, individual particles or cells are endowed with some
geometric and mechanical properties and the global behavior of the system is obtained
by simulating a large number of these particles. This approach enables one to test the
effect of specific cell-scale ingredients (and feedback mechanisms) on the large scale
properties of the system. There is no other lengthscale incorporated in the model
than the one given by the particle size.

On the other hand, building continuum models requires an intermediate length-
scale, which is larger than the particle size and smaller than the spatial extension of
the material and beyond which the relevant fields (stress, strain) vary smoothly. The
macroscopic rheology is captured through a constitutive equation relating the stress
and deformation tensors. It is then incorporated into the model through conservation
laws (mass, momentum). One difficulty generally lies in finding the right constitutive
equation, which can be left to some phenomenological considerations. A continuum
model can then be tested by extracting continuum information (spatially averaged
quantities) from other sources such as simulations of discrete models or experiments
with particle-scale resolution.

Beside microscopic and continuum approaches, intermediate “mesoscopic” models
are based on “coarse-graining” microscopic details, i.e., including only the essential
details of the interactions or mechanisms at play, thus enabling one to reduce the de-
grees of freedom of the system. In this thesis, we will focus on lattice-based mesoscale
models,4 which aim at bridging the gap between microscopic dynamics and macro-
scopic properties. In these models, continuum fields are discretized onto a lattice, and
their evolution is determined by dynamical rules and interactions between lattice sites.
Well known mesoscopic models include lattice Boltzmann models for fluid dynamics,
which enable one to describe the flow of small scale or heterogeneous systems, where
continuum Navier-Stokes approaches find their limits. Here, we focus on mesoscale
Elasto-Plastic Models (EPMs) that were developed to describe the rheology of ma-
terials exhibiting both solid-like and fluid-like behaviors (Yield Stress Fluids, YSFs),
which often deform plastically in a heterogeneous way. Building mesoscopic models
relies on either phenomenological rules or coarse-graining of microscopic simulations
(usually both).

In this work, we combine modeling approaches at different scales to address the
scientific questions introduced in the previous sections. We use continuum modeling to
study the emergence of permanent shear bands in particle-based simulations of YSFs

4Note that, depending upon the scientific community, “mesoscopic models” may also include
particle-based models, as for instance the commonly used Dissipative Particle Dynamics in soft mat-
ter simulations where simulating solvent molecules explicitly would be too costly computationally
(Schiller et al., 2018).
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(Chapter 3), we use mesoscale EPMs to study the effect of additional mechanical noises
in the flow of YSFs (Chapters 4 and 5, combined with particle-based simulations), and
finally, we use a vertex-based model to study collective cell migration in confined 2d
tissues (Chapter 6). These different classes of models are presented in the following.
Starting from microscopic approaches (particle-based simulations, vertex models), we
will then introduce mesoscale EPMs (which will be described in details in Chapter 2)
and briefly introduce continuum modeling approaches.

1.4.1 Microscopic simulations of driven amorphous materials

Computer simulations of microscopic models, or “numerical experiments”, are now a
widely used tool to study glass-forming materials as they allow for a fine control of
the relevant parameters and provide particle-resolved information on the structure
and dynamics of the system under consideration.

When the aim is to study the properties of a material with a specific composition
at the microscopic scale, the use of advanced molecular dynamics methods involving
effective potentials taking into account specific interatomic potentials allows for quan-
titative predictions of the mechanical properties (Leach et al., 2001). On the other
hand, when the purpose is to understand generic properties of amorphous systems,
independently of the details of the potential, a commonly used model of amorphous
system is a Lennard-Jones particles mixture (which, to avoid crystallization is either
bidisperse or polydisperse). Other types of potential are also commonly used, such
as the Lennard-Jones potential cut at the minimum (also called Weeks-Chandler-
Andersen, WCA), hard-sphere potentials to study colloidal glasses, harmonic spheres
to model soft systems such as foams, etc. (Berthier et al., 2011).

In order to obtain glassy states, samples are prepared by a quench of a high-
temperature liquid sample and different quenching methods lead to amorphous sys-
tems with different structures, which will affect the transient mechanical response to
an applied shear. The preparation protocol will however not affect the steady state
flow properties, where the memory of the initial state is lost (Bonn et al., 2017; Nicolas
et al., 2018b). Obtaining well annealed samples in simulations has been an important
challenge in the field, since it requires slow quenches and an important computational
effort. Recent methods such as the SWAP Monte Carlo method have led to important
advances (Ninarello et al., 2017).

Different types of microscopic dynamics

Different types of dynamics can be used for simulations of glassy systems. Newtonian
dynamics, mainly used in numerical work on supercooled liquids, consists in com-
puting the trajectories of individual atoms following Newton’s equation of motion.
Each atom is characterized by an instantaneous position and velocity and one can
define a temperature in the system as being proportional to the total kinetic energy.
When modeling larger molecules in a solvent (which is often the case in soft mat-
ter physics, where the molecule and the solvent molecules have well separated length
and timescales) it is convenient to use stochastic simulations such as Langevin or
Dissipative particle dynamics (DPD). These “mesoscale” particle methods enable one
to account for dissipative and random forces exerted by the solvent on the particle.
Temperature is controlled as in a thermostat, approximating the canonical ensemble
in statistical mechanics. It was found that the global relaxation dynamics in glassy
systems does not depend on the type of microscopic dynamics used in simulations. It
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seems that these details act at very short timescales and do not affect the slow dy-
namics on much longer timescales (Berthier et al., 2019). The details of the methods
specifically used in this thesis will be presented in the corresponding chapters.

Sheared systems

Shearing a sample in particle-based simulations can be done either by deforming a
simulation box using periodic boundary conditions (PBC) or by moving a rigid wall
extending along the axis of the flow direction. The main difference is that using PBC
enable particles to diffuse along the gradient direction over distances larger than the
box size, while rigid walls prevent it.5

Two different protocols are also often found for the dynamics: either quasi-static
shear or finite shear rate. In quasi-static simulations, a small displacement increment
is imposed to the top wall in a rigid wall protocol (or a small strain increment to
the system in the case of PBC), and the system is then left to relax to its nearest
local energy minimum using some energy minimization algorithm, before a new dis-
placement/strain increment is applied. On the other hand, a finite shear rate protocol
is achieved by enforcing either a constant velocity translation on the top wall (rigid
walls) or by deforming the simulation box at a given shear rate. Quasi-static simu-
lations have been used extensively to study the behavior of amorphous solids in the
limit of vanishing shear rates where avalanches occur (Maloney et al., 2004).

1.4.2 Microscopic simulations for active systems

Particle-based simulations

Following the modeling approaches for glasses, minimal particle-based models of active
matter have been built considering isotropic particles interacting via soft potentials
such as Lennard-Jones, WCA or harmonic potentials. Many studies in the dense
regime aim at simulating the dynamics of assemblies of biological cells in a tissue,
for which the dynamics is generally considered to be overdamped. The equation of
motion for the center of mass of particle i can be written as:

~0 = ~F friction
i + ~F active

i + ~F cell-cell interaction
i (1.5)

The friction force is usually given by ~F friction
i = −γd~xi/dt (describing, e.g., friction

on a solid substrate for two-dimensional systems), ~F active
i is the active force and

~F cell-cell interaction
i derives from an interaction potential. As mentioned in section 1.3.2,

a large variety of active particle-based models have been built. The most studied type
of activity is the self-propulsion of particles, and various models (ABPs, AOUPs) exist
(Berthier et al., 2019), including some accounting for aligning interactions (Henkes et
al., 2011), that will lead to different forms for ~F active

i . Other types of active processes
have been included in particle-based simulations, such as cell division and cell death
(Ranft et al., 2010; Matoz-Fernandez et al., 2017a; Tjhung et al., 2020) or volume fluc-
tuations (Tjhung et al., 2017; Oyama et al., 2019), and were shown to lead to different
types of fluidization (see section 1.3). Beside active processes, more realistic interac-
tion potentials, including adhesive interactions between particles are used in order to
mimic cell-cell adhesion (Drasdo et al., 2007; Schoetz et al., 2013; Matoz-Fernandez
et al., 2017b). Matoz-Fernandez et al. (2017b) report that adhesive interactions are
responsible for a rich phase diagram, exhibiting a gel-like phase (clusters of cells) for

5Note that different types of boundary conditions can also be used for the thermostat: either the
heat is exchanged by the walls, or in the bulk.
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Figure 1.19: From Janssen (2019): Vertex and Voronoi models
of epithelial tissues. Illustration of (a) the vertex model and (b)
the Voronoi model for confluent cells. The purple and green circles
represent the respective degrees of freedom in these models. Panel
(c) shows the differences between the cell boundaries of MDCK cells
obtained via imaging methods (blue) and a Voronoi tessellation of the

cell nuclei (yellow).

large adhesion strengths. Schoetz et al. (2013) found that tissues tend to be more
solid-like when the ratio between cell-cell adhesion and cortical tension is high.

In particle-based models, the transition from solid-like to fluid-like states results
from a competition between crowding and activity, and resembles what is observed in
inert systems (Berthier et al., 2019). However, in many morphogenetic processes, the
tissue is confluent or nearly confluent and so the system cannot become more crowded.
Yet, cells are observed to change their behavior from fluid-like to solid-like depending
on the developmental stage (Mongera et al., 2018). Another class of models, vertex-
based models, seem to be better-suited to account for these types of observations since
they are built to describe fully confluent tissues.

Vertex-based models for active systems

Vertex-like models, initially introduced to model inorganic system such as foams or
grains growth (Kawasaki et al., 1989; Okuzono et al., 1995), have become very popular
to model confluent biological tissues (see Fletcher et al. (2014) for a review). Vertex-
like models encompass two types of models: the actual Vertex model and the Voronoi
model.

In vertex models, the cells are described by an ensemble of vertices, which are the
degrees of freedom on which the forces and the noise are acting (see Fig. 1.19(a)).
The energy of a configuration of the system E is computed as:

E =

Ncells∑

i=1

Ki

2
(Ai −A0)2 +

Ncells∑

i=1

Γi
2
P 2
i +

∑

〈µ,ν〉

Λµν
2
lµν (1.6)

where Ncells is the total number of cells, Ai is the area of the cell i, A0 is the target
area, Ki is the area modulus (a constant with units of energy per area squared that
can be seen as the rest length of a spring). Pi is the cell perimeter and Γi (with units
of energy per length squared) is the perimeter modulus that determines how hard it
is to change the perimeter Pi. lµν is the length of the junction between vertices µ and
ν and Λµν is the tension of that junction (with units of energy per length), resulting
from a competition between cortical tension and cell-cell adhesion. 〈µ, ν〉 in the last
term denotes the sum over all pairs of vertices that share a junction.
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This model undergoes a density-independent rigidity transition (sometimes termed
as jamming transition) governed by the competition between surface and bulk energy
terms, controlled by a control parameter p0 termed as effective shape index with
p0 = P0/

√
A0 where P0 = −Λ/Γ , the perimeter rest length (assuming that Γi and

Λµν are the same for all cells and junctions) (Bi et al., 2015). For values p0 < pc0 (with
pc0 ' 3.81) the system’s response is essentially that of a solid, while for p0 > pc0, the
response is fluid-like, and the energy barriers for cell intercalations to occur vanish
(Bi et al., 2014). An important feature of the vertex model is that an increased
adhesion will lead to larger values of p0 and hence to a more fluid-like behavior, unlike
in particle-based models. A recent model introduced by Kim et al. (2020), sharing
features with both particle-based and vertex-based model, may elucidate the dual role
of adhesion in models of tissues. They find that while increasing adhesion in a non-
confluent system leads to higher volume fraction, making it more solid-like, increasing
adhesion in a confluent system leads to lower energy barriers for neighbor exchange
and a more fluid-like system.

In the Voronoi model, the cells are modeled as Voronoi volumes defined by their
neighbors and the degrees of freedom are the Voronoi cell centers (Fig. 1.19(b)). Ap-
proximating cell shapes by the Voronoi tessellation of the center of mass of their nuclei
is often found to be a reasonable approximation as shown for instance in Fig. 1.19(c)
(Kaliman et al., 2016). The expression of energy in the Voronoi model is the same as
in the standard Vertex model.

Both vertex and Voronoi models have been studied in the presence of either thermal
noise (equilibrium), or self-propulsion forces with a a finite persistence time (Bi et al.,
2016; Czajkowski et al., 2019). Fluid-to-solid transitions with the signature of glassy
dynamics have been reported in the model with self-propulsion. Cell division and
apoptosis have also been encoded in this type of model (Czajkowski et al., 2019),
and a fluid-to-solid transition was also reported, unlike in the case of particle-based
simulations with cell division and apoptosis (Matoz-Fernandez et al., 2017a). One
thus needs to keep in mind that beside the effect of a particular type of activity, the
model choice and the details of rules for the active events may play an important role
in determining the type of fluidization due to a biological activity. The fluidization
induced by active fluctuations of the junctional tension has been studied in vertex
models by prescribing a dynamics (e.g., Ornstein-Uhlenbeck process for instance) to
the junction tension Λµν (Krajnc et al., 2018; Kim et al., 2020).

More complex dynamics have also been incorporated in self-propelled vertex-like
models, such as including an alignment mechanism at the single cell level between the
direction of self-propulsion and that of velocity. Giavazzi et al. (2018) show that this
mechanism could explain the formation of flocks of migrating cells in confluent tissues.
More generally, this type of feedback mechanism, also studied in particle-based models,
plays an important role in the emergence of collective motion such as flocks or velocity
oscillations in models of confluent tissues. We will show in Chapter 6 that this type
of feedback mechanism could possibly explain the spatio-temporal oscillations of cell
velocities observed experimentally in confined epithelial tissues.

Let us mention that other rules have also been recently included in self-propelled
vertex models, such as delayed T1 transitions to account for the fact that remodeling
at cell-cell junctions is not an instantaneous process (Das et al., 2020). These delayed
T1 transitions are shown to affect the glass transition and lead to an effective cohesion
of the tissue, favoring large scale collective motion of cells.
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Other microscopic models

Other microscopic models include for instance the cellular Potts model, phase fields
models, or models including subcellular elements. The Cellular Potts model is a
stochastic model where cells in a monolayer are represented as a subset of sites of a
lattice sharing the same cell identity (ID) (the cell ID being analogous to the spin in
the original Potts models) (Marée et al., 2007). The model is based on a Hamiltonian
that includes interfacial tension, area conservation and active motility, and a Monte
Carlo algorithm is used to find the pattern of cell shapes that minimizes the sum of all
the cellular energies. Depending on the parameters controlling the interfacial energy
and the cell mobility, a transition from fluid-like to solid-like behavior is observed
(Chiang et al., 2016). This transition is accompanied by a change of cell shape, as
in vertex-based model (shapes are more elongated in the fluid regime where cells can
intercalate and more roundish in the solid regime, where cells are caged).

Phase field models are also used in the context of the modeling of active systems
such as migrating biological cells (Moure et al., 2019). Cell migration can be thought
of as a moving boundary problem, where the boundary represents the cell membrane.
The phase field φ, defined on the entire domain, indicates the location of the cell
(φ = 1 inside the cell and φ = 0 outside) and obeys the evolution equation of a
diffusive interface, derived from an energy functional. The velocity of each cell can
also have its own active dynamics in order to mimic self-propulsion, and may include
feedback mechanisms between the direction of motion and the force, as done in the
work of Peyret et al. (2019).

Let us finally mention the existence of models including subcellular elements (sub-
volumes of the cytoskeleton) and accounting for intra- and intercellular interactions of
these elements (Newman, 2005). The advantage of these models is the resulting cell-
shape dynamics and the possibility to incorporate intracellular biological mechanisms.
They are however costly to simulate in the context of large multi-cellular systems.

Concluding remarks

The choice of a particular microscopic model for dense active matter simulations is
highly system and context (question) dependent. Particle-based models have only a
few number of parameters and are easy to simulate, which make them suitable for
large scale simulations running over long times. However, the particles remain essen-
tially spherical (or circular in 2d) and the interaction potential becomes unrealistic at
high density. Potts and Vertex models, relying on an effective energy, have a larger
number of parameters and require a larger computational time, but they are more
suited to describe changes of cell shape, especially in the large density (confluent)
regime. They are moreover well suited for direct comparison with experiments on
epithelial tissues. Note that Potts models are suited to describe both confluent and
non-confluent tissues. Vertex models, on the other hand, are slightly simpler since
they are restricted to confluent tissues, and are widely used to study different types
of solid-to-fluid transitions.

Our modeling approach follows the above lines: in Chapter 5, we use a simple
particle-based model of actively deforming particles as an input to build a coarse-
grained mesoscale model, while in Chapter 6, we use a vertex-based model to describe
the dynamics of confined confluent tissues in a more realistic way in order to compare
our results to experiments.
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Elastic deformation Plastic event Stress redistribution

Figure 1.20: From Bocquet et al. (2009): Sketch of plastic de-
formation in amorphous media. Deformation occurs via elastic
deformation, localized plastic events, and nonlocal redistribution of
the elastic stress, potentially triggering other plastic events. These in-
gredients are incorporated into lattice-based elasto-plastic models with

mesoscale blocks interacting via elastic interactions.

1.4.3 Mesoscopic approaches for the flow of amorphous materials

The generic features of the plastic deformation of disordered solids (see section 1.2)
have led to the emergence of multiple coarse-grained models. Mesoscale modeling
enables one to get rid of microscopic details such as the particle type and size and the
interaction potential between particles. Mesoscale elasto-plastic models (EPMs) rely
on the ideas of Argon et al. (1979) which consist in considering an elementary unit of
plasticity in disordered systems that corresponds to a localized group of rearranging
particles, as demonstrated in numerous experimental and simulation works (see sec-
tion 1.2). A possible formalism for this type of model will be introduced in detail in
Chapter 2, and we only give here the general principle and some examples of EPMs.

Let us first remind the generic mechanism for plasticity in amorphous media, as
depicted in Fig. 1.20. Flow occurs through a succession of global elastic deformations
and localized plastic rearrangements resulting from local yielding events. These events
induce non-local elastic redistribution of the stress in the system, thereby creating
cooperative flowing regions. In EPMs, the amorphous medium is described in terms of
“mesoscopic” blocks, of the typical size of a rearrangement of particles. Each block can
thus hold a single “shear transformation” (ST). Depending upon the system (colloidal
glass, foam, etc.) a shear transformation can involve a varying number of particles
or droplets. This variability is erased at the mesoscopic scale (where the basic length
unit is that of a rearrangement), which enables one to focus on the generic large scale
physics of deformed amorphous materials. Upon driving, these blocks are loaded
elastically until a condition for yielding is fulfilled, which leads to a local plastic
deformation associated with stress relaxation and stress redistribution through the
elastic interactions.

Various variants of EPMs exist, with different dynamics for the plastic regions
and coupling mechanisms between mesoscopic blocks. In particular, two main aspects
must be considered in order to choose a particular model: (i) is the coupling between
different regions of the material explicitly taken into account (lattice-based spatial
EPMs), or is it described in an effective manner through a mechanical noise term
(mean-field EPMs)? (ii) Do thermal fluctuations play a role in the activation of
plastic rearrangements? Is the activation due to a real thermodynamic or to an
effective temperature?
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Mean-field elasto-plastic models

Mean-field EPMs discard any explicit spatial information about the location of yield-
ing events, and stress propagation is described in a mean-field way. We briefly intro-
duce two types of mesoscopic models with different spirits: the “Soft Glassy Rheology
Model” and the “Hébraud-Lequeux” model.

Soft Glassy Rheology model The Soft Glassy Rheology (SGR) model of Sollich
et al. (1997) is based on a Potential Energy Landscape (PEL) representation of the
configurations of the system. Each mesoscopic block evolves in a landscape of traps
whose depths are randomly drawn from an exponential distribution, as in Bouchaud’s
trap model (Bouchaud, 1992). The external driving, by deforming each region, fa-
cilitates hops from trap to trap, and random kicks due to mechanical noise activate
hops at a rate governed by an Arrhenius law with an effective temperature x. Sollich
et al. (1997) have proposed a mean-field analysis of this model, based on a master
equation for the (joint) probability distribution of the local energy barrier and strain.
They find that as the effective temperature x is decreased, the system transits from a
Newtonian liquid behavior to a power-law regime and then to a yield stress fluid with
a Herschel-Bulkley rheology.

In this model, the mechanical noise temperature x is fixed externally. Another
variant of the model was introduced by Fielding et al. (2009), describing the dynamics
of x as depending on the rearrangement rate and obeying a diffusive dynamics (but
still relaxing to an externally fixed equilibrium value x0). This variant was shown to
exhibit localization, depending upon the form of the coupling to the rearrangement
rate.

Note that other models such as the Shear Transformation Zone theory are based
on thermally activated events with an effective temperature describing the propensity
of a given region to yield (regions associated with a large free volume density) (Falk et
al., 1998). Even earlier than these developments, Bulatov et al. (1994) had proposed
a lattice-based model with thermal activation of plastic events.

Hébraud-Lequeux model Unlike in the previous cases, the model introduced by
Hébraud et al. (1998), neglects any thermal activation processes, doesn’t account for
any effective temperature and treats the mechanical noise in a self-consistent manner.

The elasto-plastic scenario is essentially the one explained above: the macroscopic
drive contributes to an increase of the local stress, until a yielding event occurs at a rate
τ−1
pl once the stress has exceeded the (unique) local stress threshold. When yielding
occurs, the local stress is instantaneously reset to 0 and some stress is redistributed to
the rest of the material inducing mechanical noise in the system. Hébraud et al. (1998)
have studied a mean-field version of the model, by describing stress redistribution as a
Gaussian white noise, leading to a diffusive contribution to the probability distribution
of the stress P (σ; t). By choosing a diffusion constant proportional to the average
rate of plastic events in the system (with a coupling constant α), this leads to a self-
consistent equation. This model predicts a transition from a Newtonian fluid to a yield
stress fluid behavior for a coupling constant value α = 1/2 (Herschel-Bulkley rheology
with an exponent 0.5 for α < 1/2). Let us mention that this model was extended
by Agoritsas et al. (2015) to account for a distribution of local thresholds σc, which
did not affect qualitatively the results, whereas the disorder is a key aspect to get a
yield stress fluid behavior in SGR model, thus underlying the difference between these
two mean-field approaches. Beside the macroscopic rheology, this model was shown to
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reproduce the creep behavior of soft amorphous solids (Liu et al., 2018), and extended
to account for an additional noise of active origin (Matoz-Fernandez et al., 2017a).

Lattice-based elasto-plastic models

In lattice-based EPMs, the mesoscopic blocks are described as nodes of a regular
lattice. Elastic interactions between blocks are treated explicitly, using an Eshelby
propagator. The first spatial models that have been introduced are extremal models,
accounting for the elastic interactions between blocks but ignoring any dynamical
aspects, thus suitable to study the “quasi-static” limit (γ̇ → 0) of the flow of amorphous
systems (Chen et al., 1991; Baret et al., 2002; Dahmen et al., 2009), as in athermal
quasi-static (AQS) particle simulations.

The first dynamical model has been introduced by Picard et al. (2005), treating
the local dynamics of the deformation and stress fields (with stochastic rules to transit
from local elastic to plastic states). This model, based on simple stochastic rules with
a unique local yield stress, predicts a yield stress rheology as well as the emergence of
shear bands for long durations of plastic events, but does not capture the Herschel-
Bulkley exponent (close to 0.5) often observed in soft amorphous materials, and always
leads to discontinuous stress-strain curves (with a stress overshoot) in shear start-
up conditions. A more realistic model has been introduced later by Nicolas et al.
(2013a), based on a distribution of local yield stress and accounting for more realistic
rules for the local dynamics. This model leads to a Herschel-Bulkley rheology with
an exponent close to 0.5, and to continuous stress-strain curves. Many variants of
dynamical lattice-based EPMs now exist, including stress-controlled protocols, and
some of these models will be detailed in Chapter 2.

Concluding remarks

In the last decade, EPMs have become a widely used tool to understand the flow of
amorphous solids. They have been successful in capturing a large number of features
of the rheology of yield stress materials, including transient features (flow curves, creep
behavior, shear bands, avalanches, etc.). They are particularly suited to study large
scale and long timescales features of amorphous solids, like those arising in critical
phenomena (Nicolas et al., 2018a). In Chapter 4, we will address, within a mesoscale
EPM, the question of the existence of a critical point at finite shear rate in the presence
of an additional source of noise (see section 1.2). Our modeling framework will be
presented in Chapter 2.

1.4.4 Continuum approaches

Beside microscopic and mesoscopic models as presented above, continuum models aim
at describing a material without accounting for its structure at the particle or cellular
scale. In continuum modeling approaches, stress, strain rate, as well as other state
variable such as “effective temperatures” or “active stresses” are treated as contin-
uum fields. These quantities are related through macroscopic constitutive laws and
momentum and mass conservation determine their dynamical evolution.

Constitutive models for the flow of amorphous materials

Constitutive models for the flow of soft amorphous materials range from those built us-
ing bottom up approaches from microscopic descriptions (e.g., mode coupling theories)
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or based on mesoscopic models (spatially-resolved mean-field elasto-plastic models),
to top-down approaches based on the macroscopic phenomenology.

Microscopic or mesoscopic derived models Mode-coupling theories (MCT) are
microscopically derived theories for dense colloidal suspensions, starting from a liquid
state description. Initially built to describe the glass transition (approaching from the
liquid side), it was then extended to account for flow, based on ergodicity restoration
in steady flow (Fuchs et al., 2002). Starting from the probability distribution of the
position of Brownian particles (neglecting hydrodynamic interactions), a series of ap-
proximations leads to a constitutive equation for the macroscopic stress, using as an
input the material’s static and dynamic structure factors for the density correlation
functions. MCT has been used in a variety of studies addressing steady shear as well as
time-dependent shear (Brader et al., 2007). These theories are however based on tech-
nically involved calculations and more or less controlled approximations, sometimes
hindering their practical use.

Mean-field elasto-plastic models such as Soft Glassy Rheology or Hébraud-Lequeux
models predict various features of the flow of soft glassy materials (Hébraud et al.,
1998; Fielding et al., 2000; Liu et al., 2018), but are limited to bulk quantities and
cannot be used to predict flow in a specific geometry. Spatially-resolved adaptations
of these models have thus been introduced to study the flow of yield stress fluids in
various geometries and driving protocols, as done for instance in the work of Moorcroft
et al. (2011), Radhakrishnan et al. (2016), and Fielding (2020) using the Soft Glassy
Rheology framework. Bocquet et al. (2009) have proposed a kinetic elasto-plastic
(KEP) model, that can be seen as a spatial extension of the Hébraud-Lequeux model,
where interactions between blocks are approximated as stress diffusion in the system.
The authors propose a coarse-graining procedure leading to a non-local constitutive
law for the flow, where the key dynamic quantity is the local rate of plastic events, or
“fluidity”. It appears that the fluidity correlates with a “flow cooperativity” lengthscale
ξ, which quantifies the spatial extent of plastic activity due to non-local elastic cou-
pling in the system. This model has enabled one to rationalize experimental findings
about flow cooperativity and size effects in the flow of yield stress fluids (Goyon et al.,
2008).

Microscopic or mesoscopic derived models reproduce well the general features of
the flow of soft amorphous materials while keeping track of the underlying physics,
but their practical use is often limited when it comes to modeling a flow in complex
geometry and/or time-dependent driving protocol. To this end, a large variety of
macroscopic phenomenological model were developed, and are often better suited to
complex flow geometries and dynamics. On the downside, they usually contain many
parameters not easily related to the underlying mesoscopic physics.

Macroscopic phenomenological approaches Early works have proposed phe-
nomenological constitutive relations relating stress and deformation to describe the
flow of yield stress fluids, such as the models of Bingham, Herschel-Bulkley, Oldroyd,
etc., describing the behavior before yielding either as a rigid or elastic solid, and the
flow behavior after yielding either as a Newtonian or power-law fluid. More recently,
elasto-visco-plastic models have described materials as viscoelastic solids at low stress,
and as a viscoelastic fluid if the stress is above the yield stress (Saramito, 2007).

Macroscopic models for materials undergoing an evolution of their structure with
shear (thixotropy) usually contain both an equation for the stress tensor and an aux-
iliary equation for the time evolution of an internal variable describing the structure
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of the material. In most models, the link between the structure and the bulk rhe-
ological properties is phenomenological. Kinematic hardening mechanisms have for
instance been introduced to model the Bauschinger effect observed in shear-reversal
experiments (Dimitriou et al., 2014), although their microscopic origin (polarization
of local yield stresses) was only recently investigated (Patinet et al., 2020).

The use of auxiliary fields coupled to the flow is particularly relevant when it comes
to modeling heterogeneous flows. Effective temperatures are often used as auxiliary
fields to describe strain localization in amorphous solids (Manning et al., 2007). In
the case of hard spheres suspensions, shear concentration coupling mechanisms were
shown to induce shear localization (Besseling et al., 2010; Gross et al., 2018).

Continuum approaches for dense active and living systems

Various continuum approaches for dense active systems such as biological tissues have
been developed. In the most general case, a continuum model describing the dynamics
of tissues should include viscous, elastic and plastic behaviors as observed at different
timescales and applied forces in experiments, but as mentioned in section 1.3, it is
often difficult to capture all these phenomena within a unique model. In practice,
continuum models usually focus on a given timescale (and lengthscale) (Khalilgharibi
et al., 2016). Building continuum models for tissue mechanics can be done using
different approaches: building elasto-visco-plastic models (Preziosi et al., 2010), us-
ing a hydrodynamic approach based on a near-equilibrium thermodynamic formalism
(Prost et al., 2015; Tlili et al., 2015), etc. We will not go into the details of the
derivation of such models, but only give a few examples.

Active gel models constitute a wide class of models where a tissue is described
as a fluid or an elastic continuum in which the mechanical variables are coupled to
internal degrees of freedom that account for the extent of the chemical reaction (ATP
hydrolysis) driving active processes, such as contractility and cell polarization (Ranft
et al., 2010; Notbohm et al., 2016; Duclos et al., 2018a). One of the first questions one
may ask is whether biological tissues are better described as active elastic solids or as
active fluids, as discussed for instance in a recent review by Banerjee et al. (2019). The
choice of a particular approach may indeed depend on the type of tissue considered
(and the timescale of the phenomenon under study). It is for instance well accepted
that the Drosophila embryo at early developmental stages can be modeled as a viscous
fluid (Wessel et al., 2015). However, in the case of collective cell migration in epithelial
tissues on a substrate, models accounting for elastic or viscous description have been
able to capture a large number of features, including the emergence of waves patterns
in the migration velocity (Banerjee et al., 2019) (see the introduction of Chapter 6 for
more details).

The above-cited models, although they reproduce a number of experimental facts
and provide testable predictions, often lack a clear link with the underlying cell-scale
processes, such as the deformation induced by cell plastic rearrangements or cell divi-
sion. Other models are based on the decomposition of the total tissue deformation into
the contribution of cell shape changes and topological transitions (cell rearrangement,
division, and death), as done by Tlili et al. (2015), Popović et al. (2017), and Ishihara
et al. (2017). In their study, Ishihara et al. (2017) build a continuum model describ-
ing coarse-grained cell shape, based on an energy function similar to vertex-based or
cellular Potts models, thus accounting for cellular-level mechanical ingredients such
as cell area elasticity and cell junction tension. The model, derived using a thermo-
dynamic framework, is able to reproduce features of developmental dynamics such as
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Scale Approach Driven systems Active systems

Microscopic Particle-based
simulations

Maloney et al. (2006)
Tanguy et al. (2006) Berthier et al. (2019)

Vertex and
Voronoi models Okuzono et al. (1995) Fletcher et al. (2014)

Phase field models Xie et al. (2016) Raina et al. (2016)
Cellular Potts models Jiang et al. (1999) Graner et al. (1992)

Sub-cellular
elements models Newman (2005)

Mesoscopic Lattice-based Elasto-Plastic
Models (EPMs) Nicolas et al. (2018a) ———

Mean-field Mean-field EPMs Hébraud et al. (1998) Matoz-Fernandez et al. (2017a)
no space Sollich et al. (1997)

Macroscopic
Continuum Coarse-grained EPMs Bocquet et al. (2009) ———

Fielding (2020)
Mode coupling theories Brader et al. (2009) Nandi et al. (2017)

Visco-elasto-plastic models Saramito (2007) Preziosi et al. (2010)

Active gel theories Kruse et al. (2005) (fluid)
Notbohm et al. (2016) (elastic)

Table 1.2: Examples of models for driven and active soft
dense amorphous systems. References correspond to review arti-
cles or examples of studies based on the corresponding methods (non-

exhaustive list).

the relaxation following an axial stretching as well as a non-linear rheology in the form
of a shear-thinning rheological behavior.

Another approach to describe the non-linear rheology of tissues starting from a
mesoscale description is to include active terms (potentially leading to viscous behav-
ior at long times) in elasto-plastic models describing non-linear flow curves as done at
the mean-field level (extending Hébraud-Lequeux model) by Matoz-Fernandez et al.
(2017a). Including such active terms into (spatially-resolved) fluidity models (Boc-
quet et al., 2009) would in principle be another way to obtain continuum models for
dense active systems, either by adding a phenomenological active term in the (macro-
scopic) fluidity model, or by coarse-graining spatially-resolved mesoscale active elasto-
plastic models (horizontal lines in Table 1.2). Including active terms in lattice-based
mesoscale elasto-plastic models is one of the objective of this thesis (Chapter 5), and
could constitute a first step in this direction.
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Summary of section 1.4

• Microscopic models allow for a fine control of parameters and provide
particle-resolved information. They are suited to study the role of specific
microscopic ingredients and characterize in details the spatio-temporal
dynamics.

• Mesoscale models like EPMs enable one to get rid of microscopic details
(e.g., interaction potential between particles) and include only generic
mesoscopic ingredients. They can be used to test mesoscale physics in-
gredients, and perform large scale and long time studies of the dynamics.

• Continuum models rely on constitutive equations relating the mechanical
variables and possible internal variables such as effective temperatures, ac-
tive stresses, etc. They are either built phenomenologically, using inputs
from experiments or microscopic simulations, or derived from microscopic
or mesoscopic theories.

• A complementary use of these three approaches can be useful to build con-
tinuum models based on microscopic and mesoscopic ingredients. In the
case of sheared amorphous solids, particle-based simulations provide in-
puts like the response to local rearrangements or yield stress distributions
that enable one to build spatially-resolved mesoscale EPMs. Mean-field
approximations can then lead to continuum models.

1.5 Conclusion and overview of the thesis

Among the large variety of glassy systems, athermal systems require a form of drive
to activate their dynamics, that can be either global (shear) or local (biological ac-
tivity). Sheared amorphous materials share common features that have motivated
the development of generic mesoscale elasto-plastic models (EPMs) to describe their
plasticity. Their flow is governed by local yielding events and long-range elastic stress
redistribution within the material. The mechanical noise induced by elastic interac-
tions plays an important role in the dynamics, as it can trigger important correlations
and avalanches in the system. While spatially-resolved EPMs treat explicitly the elas-
tic interactions in the system using an Eshelby propagator, mean-field EPMs neglect
spatial correlations and treat elastic interactions as a noise acting on the local stress
(Hébraud et al., 1998). Continuum models such as the fluidity model describe the
effect of the mechanical noise as leading to non-local effects in the flow equations
(Bocquet et al., 2009).

Yield stress materials can exhibit steady state shear localization, but the origin
of these flow patterns remains unclear in many cases. Sources of endogenous noise,
like local softening or inertial dynamics, can be responsible for self-fluidization and
hence lead to shear banding. In this thesis, we study the emergence of shear banding
in systems with underdamped dynamics by building a continuum model based on
an effective (kinetic) temperature field description of inertia. This model is tested
by comparing its predictions to particle-based simulations of a model glass (work in
collaboration with V. Vasisht and J.L. Barrat).

Moreover, sources of noise independent of the flow, such as mechanical vibrations
in granular media for instance, can affect the rheological properties of soft glassy
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materials and even lead to critical dynamics if the material exhibits a rate-weakening
behavior (Wortel et al., 2016). It is however not clear if this scenario is generic in
fluidized soft glassy materials, and if the critical features depend on microscopic details
of the system. The role of an external source of noise has already been studied in a
mean-field EPM (Matoz-Fernandez et al., 2017a), and shown to lead to a Newtonian
regime at low shear rate. In this thesis, we study the role of additional sources of noise
in spatially-resolved EPMs, using different models for the noise. We study in particular
how an external noise (in the form of the random activation of plastic events) affects
the organization of the flow in an EPM with a rate-weakening mechanism inducing
shear bands, and test the scenario of a critical point.

The physics of “active glasses” has recently emerged as a research field and is
becoming increasingly popular, not only as a new topic in statistical physics but also
as a framework to study materials like biological tissues. Various works evidence glass-
like states in tissues, characterized by dynamical heterogeneities and caged dynamics.
However, the long-time dynamics of tissues is generally found to be fluid-like and this
viscous behavior is often thought to be related to local active processes such as self-
propulsion of cells, cell division, apoptosis or self-deformation, leading to a mechanical
noise of active origin. How to account for this activity in mesoscopic or macroscopic
models is still an open question and various different approaches can be used, by
building active fluid or active solid models. Recent numerical works have evidenced
long-range elastic responses of the material to local active events, in a way similar
to the response of amorphous solids to local plastic rearrangement of particles. It
is thus likely that these active microscopic events lead to an additional mechanical
noise in the system due to elasticity, which could trigger particle rearrangements and
hence fluidize the system. In this thesis, we explore this idea to build an active elasto-
plastic model for a system of actively deforming cells, using inputs from active particle
simulations.

The main part of this thesis is organized as follows:

• In Chapter 2, we present in more details mesoscale elasto-plastic models using
a generic framework that enables us to introduce the variants of the model used
in Chapters 4 and 5.

• In Chapter 3, we present a work in collaboration with V. Vashist and J.L. Barrat
(LIPhy) in which we propose an effective continuum model to describe a shear
banding instability due to inertial dynamics in particle-based simulations. This
work is submitted for publication in Soft Matter (second author).

• In Chapter 4, using elasto-plastic models, we study how external sources of
noise fluidize soft glassy materials. In particular, we show that external sources
of noise competing with a self-fluidizing noise can lead to critical dynamics
associated with giant fluctuations of the shear rate. This work is published in
Phys. Rev. Lett. 123, 108003 (2019) and J. Phys. Mater. 3, 025010 (2020)
(first author).

• In Chapter 5, we build an active elasto-plastic model to describe the dynamics of
actively deforming particles in order to characterize the solid-to-fluid transition
induced by activity (preliminary results, ongoing work).

• In Chapter 6, we present a work conducted in collaboration with experimental-
ists in LIPhy, for which we have used a vertex-based model in order to model
velocity oscillations in confined epithelial tissues. This work is published in
Phys. Rev. Lett. 122, 168101 (2019) (second author).
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Chapter 2

Mesoscale elasto-plastic models for
the flow of amorphous solids

Résumé : Modèles élasto-plastique pour l’écoulement de
solides amorphes

Ce chapitre vise à introduire de façon plus détaillée les modèles élasto-plastiques à
l’échelle mésoscopique sur lesquels sont basées les études présentées dans les chapitres
4 et 5 de cette thèse.

La plupart des modèles élasto-plastiques récents sont basés sur les travaux de Ar-
gon et al. (1979), proposant que l’unité de plasticité élémentaire dans les systèmes
denses désordonnés corresponde au réarrangement d’un groupe de particules localisé
dans l’espace. Dans ces travaux précurseurs, Argon et al. (1979) mettent en évidence
ces réarrangements dans un radeau de bulles (mousse bidimensionnelle constituée
d’une monocouche de bulles) polydisperse cisaillé et proposent une analogie entre la
déformation des verres métalliques et des mousses, inspiré par les travaux de Bragg
et al. (1947). Depuis, ce mécanisme pour la plasticité des solides amorphes a été mis
en évidence dans d’autres systèmes (Princen et al., 1986; Schall et al., 2007; Amon
et al., 2012) et est généralement accepté. Dans ce scénario, générique à de nombreux
systèmes amorphes, des évènements plastiques peuvent être activés soit par des fluc-
tuations thermiques soit sous l’effet d’un forçage. Ceci a motivé la construction de
modèles mésoscopiques phénoménologiques pour décrire la dynamique et la rhéologie
de solides amorphes (Bulatov et al., 1994; Baret et al., 2002; Picard et al., 2005). Ces
modèles sont généralement divisés en deux catégories: (i) les modèles ne prenant pas
en compte les corrélations spatiales entre réarrangements plastiques et (ii) les modèles
tenant compte des interactions entre évènements plastiques, et décrivant l’activation
de cascades de réarrangements plastiques (avalanches). Dans ce chapitre, nous nous
concentrons essentiellement sur cette deuxième catégorie de modèles, bien que des
modèles simplifiés sans interaction puissent dans certains cas être utilisés pour avoir
des prédictions analytiques concernant la rhéologie, comme nous le verrons dans la
section 2.4.

Dans une première partie (section 2.1), les ingrédients de la modélisation élasto-
plastique, déjà introduits dans le chapitre précédent, sont présentés plus en détail.
Plusieurs aspects sont abordés : l’origine de la plasticité dans les solides amorphes sous
la forme de réarrangements localisés de particules, le rôle des interactions élastiques à
longue portée, le rôle joué par le désordre structurel ainsi que les aspects de dynamique
temporelle.

Dans une deuxième partie (section 2.2), une formulation générale de ce type de
modèle, telle qu’introduite par Liu (2016) est présentée. Cette formulation permet
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d’introduire différentes versions du modèle utilisées dans la littérature: versions ten-
sorielles ou scalaires, protocoles à contrainte ou taux de cisaillement imposé, ainsi que
plusieurs variantes pour la dynamique stochastique. Le détail de l’implémentation
de ces différentes versions est ensuite présenté dans la section 2.3. Enfin, dans la
section 2.4, nous résumons les résultats de la littérature concernant les propriétés
de l’écoulement prédit par ce type de modèle, en se concentrant en particulier sur
les modèles introduits par Picard et al. (2005) et Nicolas et al. (2013a), puisque ces
derniers constituent le socle du travail présenté dans les chapitres 4 et 5.

Introduction

A large number of studies indicate that the macroscopic plastic flow behavior of soft
amorphous materials relies on a spatially heterogeneous behavior at smaller scales.
Bridging the scales of descriptions at the microscopic level (particle dynamics) and
at the macroscopic level (rheological response) remains an important challenge in
the physics of dense disordered materials and building approximate models at the
mesoscopic scale is a way to approach this question (Nicolas et al., 2018a).

Soft amorphous materials, also called “yield stress fluids” (YSFs), encompassing
foams, emulsions, dense suspensions, colloidal glasses, etc., behave essentially as elastic
solids when subjected to small stresses or deformations, while they can reach a steady-
state flow regime at large stress. Driven amorphous materials are thus an example
of systems exhibiting an out of equilibrium steady state, a topic of current interest
in statistical physics. On the other hand, understanding their flow behavior in order
to predict their mechanical response is an important topic in mechanical engineering.
Modeling the flow of soft amorphous materials is thus at the intersection of various
research fields, such as statistical physics, solid mechanics and complex fluids rheology.

While the aim, in statistical physics, is generally to understand the general behav-
ior of driven disordered systems using minimal or “toy” models (with a small number
of parameters), material scientists often try to model quantitatively the behavior of
a given system, employing models with a large number of parameters. Elasto-plastic
models (EPMs) lie at the interface of these two approaches. They rely on simple
assumptions connecting the microscopic dynamics to the macroscopic flow behavior
of amorphous systems and aim at describing the general phenomenology of amor-
phous materials, regardless of the details of microscopic constituents and interactions.
Nonetheless, they generally include a sufficiently large number of parameters so they
can predict a realistic macroscopic behavior for a given material.

EPMs are based on the precursor work of Argon (1979), who has first proposed the
idea, now well accepted, that the elementary unit of plasticity in amorphous materials
corresponds to a spatially localized cluster of rearranging particles in an essentially
elastic medium. As a consequence, long-range elastic interactions can lead to cas-
cading rearrangements in the form of avalanches in the material. Let us mention
that earlier studies of dislocations in crystalline solids had already shed light on the
elasto-plastic deformation of solids and possible analogies between materials consti-
tuted of atomic scale and macroscopic scale components (e.g., crystalline solids and
mono-dispersed bubble rafts) (Bragg et al., 1947). This generic elasto-plastic sce-
nario, evidenced in many systems (Princen et al., 1986; Schall et al., 2007; Amon
et al., 2012), has motivated the construction of phenomenological mesoscale mod-
els, based on coarse-grained quantities such as stress and strain fields and material
properties described by elastic moduli and local yielding barriers. The ingredients of
these mesoscopic models often remain phenomenological, although some models were



Chapter 2. Mesoscale elasto-plastic models for the flow of amorphous solids 67

successfully fitted to simulations or experiments, such as the fluidity model (Goyon
et al., 2008; Mansard et al., 2013). Recent developments have however contributed to
establish a quantitative link between EPMs and the microscopic dynamics measured
in particle-based simulations (Puosi et al., 2014; Agoritsas et al., 2015; Puosi et al.,
2015; Albaret et al., 2016; Patinet et al., 2016). In a very recent work by Liu et al.
(2020a), using input quantities from microscopic simulations such as coarse-grained
stress and yield stress distributions, a mesoscale EPM has been shown to reproduce
features of both the steady state and transient rheology of a Lennard-Jones glass,
validating the use of a simple Eshelby-based elasto-plastic description.

In EPMs, an amorphous material is described as an assembly of mesoscopic el-
ements that alternate between an elastic response to driving and plastic relaxation.
These models fall into two main categories: (i) mean-field like models that describe
the dynamics of a single site (that can either account for fluctuations due to interac-
tions in the system or not depending upon the model considered) and (ii) models with
a spatial structure accounting explicitly for interactions between mesoscale blocks. In
this chapter, we focus mainly on the second category of models, although we refer in
some cases to models without explicit spatial interactions that can be useful to get
analytical predictions for the rheology.

Let us now discuss briefly how the different types of modeling approaches discussed
so far would be suited to address the questions raised in this thesis. As mentioned in
Chapter 1, the flow behavior of YSFs can be studied using particle-based simulations,
by choosing a particular microscopic model and performing averages of the relevant
quantities. This enables one to study the behavior of both average quantities and
fluctuations, as well as getting spatial information on any relevant field, but leads to
high computational costs. The average flow behavior of YSFs can be also described
at the continuum level using empirical laws such as the Herschel-Bulkley relation-
ship (Herschel et al., 1926), or continuum descriptions, such as visco-elasto-plastic
(Marmottant et al., 2007; Saramito, 2007) and fluidity models (Bocquet et al., 2009;
Fielding, 2014), but these approaches do not describe the fluctuations of the stress
and strain fields resulting from elastic interactions in the system. In spatially-resolved
EPMs, elastic interactions between mesoscopic regions of the material are considered,
making these models suitable to study the role of mechanical noise in amorphous
materials while containing a minimal number of ingredients.

Lattice-based elasto-plastic models are thus good candidates to address the ques-
tions raised in this thesis regarding the role of additional sources of mechanical noise
in the dynamics and rheology of soft amorphous systems. Our questions are moti-
vated by experiments and simulations on the fluidization of dense disordered systems
by sources of noise that can be either external (mechanical vibrations) or due to an
internal biological activity. While these studies were performed on a large variety of
systems (granular media, colloidal gels, particle or vertex-based models for biological
tissues, etc.), a modeling approach based on EPMs enables us to investigate generic
noise-induced fluidization scenarii in soft amorphous materials.

Different types of noise can be considered at the mesoscale level. In Chapter 4,
we first study a scalar EPM with an additional mechanism of random activation of
plastic events (beside those generated by the internal mechanical noise). We then
consider in Chapter 5 a tensorial version of the EPM with a local active dynamics
that disturbs the local stress and strain field and can lead, indirectly, to the activation
of additional plastic events. Since different variants of the model are used in this thesis,
we introduce in this chapter the main ingredients of elasto-plastic modeling as well as
a generic theoretical framework accounting for the different variants of EPMs that we
use.
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This chapter is organized as follows: we first present the generic ingredients of
elasto-plastic modeling (section 2.1), and then formulate the model using a general
framework (section 2.2). Numerical implementation aspects are discussed in sec-
tion 2.3. In the final section (2.4), we present the properties of the flow obtained
by numerical resolution of the EPM, focusing on the scalar and tensorial implemen-
tations of the models introduced by Picard et al. (2005) and Nicolas et al. (2013b).

2.1 Ingredients of elasto-plastic modeling

We focus in this chapter on modeling athermal amorphous materials (see Chapter 1,
section 1.2), for which external forces are required to activate the dynamics and gener-
ate configurational changes. This can be done by imposing shear (or gravity) induced
flows (as in granular packings and suspensions, foams, emulsions), or using active
forces (as in synthetic or biological active systems).

When sheared, these systems respond elastically to a small applied stress or strain.
For larger stresses, they start to exhibit irreversible plastic deformation and reach a
steady-state flowing regime if the applied stress exceeds the dynamical yield stress.
Plastic deformation occurs via localized plastic rearrangements of particles that dis-
turb the strain and stress field and may then activate new plastic events. Modeling
localized plastic events in an elastic matrix as interacting shear transformations is
the main building block of coarse-grained elasto-plastic models. The key ingredients
behind these models are thus (i) the nature of the local shear transformation or plas-
tic events, (ii) elastic interactions between individual plastic events, (iii) the disorder
associated with the amorphous structure of the system and (iv) the dynamical rules
that govern the plastic deformation. These four points are discussed below.

2.1.1 Irreversible localized plastic events in an elastic medium

As mentioned in the previous chapter (section 1.2.2), measurements of non-affine
motion in experiments or in particle-based simulations of amorphous solids reveal that
plastic rearrangements take place at very localized regions while the displacement field
in other regions is mostly affine with respect to the global strain. These observations
support the scenario of local plastic events embedded in an overall elastic medium
which constitutes the foundation of EPMs.

The number of particles involved in a single plastic event can vary depending upon
the system under consideration and provides a lengthscale to build coarse-grained
models. In EPMs, the size of a mesoscopic block is set by the size of a rearranging
cluster of particles, which becomes the elementary unit length of the model. At this
mesoscopic level, the details of the rearrangement are thus discarded, enabling one to
build generic models for athermal systems.

An important point is that local plastic rearrangements such as “T1” events in
bubbles rafts (Argon et al., 1979) are irreversible and the topology remains changed
even after releasing the loading, while the rest of the system recovers its initial config-
uration. This can be described phenomenologically as plastically deforming inclusions
in a system deforming elastically under shear. This idea, first proposed by Bulatov
et al. (1994), consists in describing an amorphous system as a collection of mesoscopic
blocks deforming elastically and that can undergo plastic events (with some activation
rules and interactions that will be discussed below).
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2.1.2 Elastic interactions

In most spatially-resolved EPMs, once a block has undergone a plastic event, it is
treated as an Eshelby inclusion in an elastic matrix, i.e., the stress released by a local
plastic event within a block is redistributed through the system according to the Es-
helby propagator computed from mechanical equilibrium (Eshelby, 1957) (more details
below). The description of interactions between blocks using an Eshelby quadrupolar
propagator is supported by experiments and simulations (see section 1.2.3). The main
assumptions commonly used in EPMs are (i) that linear elasticity holds everywhere
in the material and (ii) that the elastic constants are homogeneous in space.

Regarding the assumption of linear elasticity, it is generally accepted that amor-
phous materials below the yield stress behave as an isotropic elastic solid. Their bulk
elasticity is well described by Hooke’s law, with most of the deformation being affine
to the global compression. Under shear loading conditions however, particle displace-
ments are highly non-affine to the macroscopic strain, and local shear moduli must be
measured carefully from the local stress-strain curve for instance, as done by Mizuno
et al. (2013). An amorphous material can thus be seen as an assembly of blocks
that satisfy linear elasticity (if the size of the block exceeds typically 5 interatomic
distances (Tsamados et al., 2009)).

Elastic constants are however found to be highly heterogeneous and to evolve dur-
ing the loading (Tsamados et al., 2009; Mizuno et al., 2013). Assuming homogeneous
elastic constants thus seems to be an unrealistic hypothesis to describe the deforma-
tion of amorphous materials. Puosi et al. (2014) performed detailed measurements
of the displacement field generated by a cluster of rearranging particles in a Lennard
Jones glass, and found that, when averaging over 50 rearrangements, the response
is reasonably well described by an Eshelby kernel assuming spatially constant elastic
moduli. It is thus important to keep in mind that, although they describe materi-
als deforming in a heterogeneous fashion at the mesoscopic scale, EPMs describe an
averaged (“coarse-grained”) microscopic behavior.

Eshelby inclusion

Let us consider a circular inclusion undergoing a plastic deformation εpl
0 such that

it is transformed into an ellipse embedded in a homogeneous elastic material. The
deformed inclusion induces internal elastic strain (and stress) in the material as de-
picted by the colormap of Fig. 2.1(left) (from Tyukodi et al. (2016a)). Following the
approach of Eshelby (1957), is appears that the elastic stress field is constant within
the inclusion, while it exhibits a quadrupolar symmetry outside the inclusion (being
negative along the axes at 0 and 90 degrees and positive along the directions + and -
45 degrees). The complete expression for the elastic stress field depends on the details
of the rearranging region (see McNamara et al. (2016) for instance), but simplifies, in
the far field, to:

σel = µεpl
0 a

cos(4θ)

r2
(2.1)

with µ the shear modulus, εpl
0 the plastic strain and a the area of the inclusion. In

other words, an increment of plastic strain δεpl
0 at a position ~x′ in the material leads

to an increment of stress at position ~x in the material.

δσel(~x) = G
(
~x, ~x′

)
δεpl

0 (~x′) (2.2)
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44 CHAPTER 3. BUILDING ELASTIC KERNELS: ALL ABOUT ESHELBY

not fall into the mean field universality class. The reason for this difference lies in the in-
ner properties of the elastic kernel that allows for localization. These properties, namely
the possibility of soft deformation modes are particularly sensitive to the construction
of the kernel. In this chapter thus we first review the various strategies used to build
such a kernel and then test the impact of the actual kernels to the fluctuations. Fluctu-
ations are traditionally downplayed in engineering studies and only effective properties
as considered. Recall however that the yielding transition shows critical properties, in-
cluding correlated, large-scale fluctuations. The importance of these fluctuations cannot
be disregarded as these are the ones leading to material failure.

3.1 Building elastic kernels

3.1.1 The Eshelby inclusion

To accomplish coarse graining, shear transformations are considered as material inclu-
sions undergoing an irreversible (plastic) deformation. In mesomodels, the shear transfor-
mations are substituted by material inclusions, thus, although the material is regarded
as continuous, the interaction between the shear transformations is preserved. These
inclusions are known as Eshelby inclusions [57, 20, 40, 71, 85, 178, 193, 194].

Most of the elastoplastic models developed so far use an equivalent coarse graining. In
the coarse grained picture thus we end up with a number of Eshelby inclusions embedded
into an elastic matrix that interact through the surrounding material (Figure 2.8). This
coarse graining allows for a continuum description of elasticity, but it comes at the price
that local anisotropies and inhomogeneities in the elastic constants [183] are smeared
out.

Figure 3.1 – A circular inclusion undergoing a pure shear plastic deformation. The
principal axis of the plastic deformation are oriented along 0 and π/2. The color scale
indicates the total strain on the right plot.

Details regarding the computation of the elastic fields induced by an Eshelby inclusion
are provided in Appendix A. The most important result for us is that of the far-field shear

Figure 2.1: From Tyukodi et al. (2016a). Strain fields for a plas-
tic inclusion in an elastic matrix. A circular inclusion undergoing
a pure shear plastic deformation (principal axis of the plastic deforma-
tion oriented along 0 and π/2) inducing elastic strain in the system.
The color scale indicates the total strain in the right panel and the
mesh is deformed according to the displacement field induced by the

inclusion.

with G the so-called Eshelby elastic propagator. The long-range and quadrupolar form
of the stress redistributed after a local plastic event are key ingredients of EPMs. The
long-range nature (power law decay in 1/r2) is at the origin of non-local effects and
the anisotropy leads to flow localization in the form of shear bands, associated with
the existence of “soft modes” of the interaction kernel (Tyukodi et al., 2016b).

Note that the use of periodic boundary conditions in numerical simulations re-
quires some care due to the long-range nature of the interactions (see Appendix A.1).
Beside Eshelby’s approach, other approaches to compute the response to localized
shear transformations have been introduced. Plastically deforming inclusions embed-
ded in an elastic matrix can for instance be modeled as point-forces in an infinite
elastic medium as done by Picard et al. (2004) to compute the far field response.

2.1.3 Including disorder in mesoscale models

An important characteristic of amorphous materials is spatial disorder of their me-
chanical properties, like local elastic moduli and energy barriers to yield (Baret et al.,
2002; Tsamados et al., 2009; Barbot et al., 2018). However, the role played by struc-
tural disorder on the rheological properties of amorphous solids remains unclear, as
illustrated by the variety of mesoscale models. While a distribution of local energy
barriers to yield seems to be a key ingredient to observe a non-Newtonian rheology
in the Soft Glassy Rheology model (Sollich et al., 1997), other models do not account
for such heterogeneities (Hébraud et al., 1998; Picard et al., 2005).

Two main strategies have been developed to account for disorder in the existing
coarse-grained elasto-plastic models: disorder can either be included into the land-
scape (Baret et al., 2002) or into the dynamics (Picard et al., 2005). Including disor-
der through the landscape would correspond to quenched disorder. In that case, the
value of the local yielding threshold is drawn from a distribution, and is renewed only
once the site has yielded (which occurs when the local stress exceeds the local thresh-
old). On the other hand, including disorder using stochastic dynamics can be done for
instance using a time-delayed model (Picard et al., 2005). Once the local stress has
reached the (uniquely defined) yield stress, yielding does not occur instantaneously,
but with a given probability per unit time.

In this thesis, we will use the two types of models depending upon the question
raised. It was argued that including a distribution of local yield stress was a more
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realistic choice for the dynamics and was shown to lead to a Herschel-Bulkley type flow
curve (Nicolas et al., 2014a), as observed in experiments or molecular simulations. On
the other hand, time-delayed models are simpler since their flow features simply result
from a competition of timescales, and are in some cases more suited to derive simple
mean field arguments for the rheology (Martens et al., 2012). The different timescales
at play in the flow of amorphous solids are discussed in the following section.

2.1.4 Elasto-plastic dynamics

Material and driving timescales

Various models consider a finite duration of plastic events in the form of a “restruc-
turing time” τel,1 time during which the material undergoes local plastic deformation
while stress relaxation occurs (Picard et al., 2005; Martens et al., 2012). If τel com-
petes with the driving timescale τγ̇ = γy/γ̇ (with γ̇ the shear rate and γy the local
yield strain) then plastic events are disrupted by the driving, leading to a shear rate
dependence of the macroscopic stress (Nicolas et al., 2014a).

At lower driving rates τel � τγ̇ , individual plastic events are not disrupted by
the driving. Avalanches observed in this regime (i.e., the cascades of plastic events
triggered by an initially shear-induced event) are however characterized by a duration
τav(L) which depends upon the system size and can also depend on the delays due to
elastic shear wave propagation, although this aspect has often been neglected in EPMs
apart from recent studies (Nicolas et al., 2015; Karimi et al., 2016). When neither
individual events nor avalanches are disrupted by the driving, the so-called “quasi-
static” limit is reached (characterized by τel � τγ̇ and τav(L) � τγ̇). In this regime,
the material’s response to shear is independent of the driving rate. As mentioned
in Chapter 1, quasi-static particle-based simulations can be performed by applying
a strain step followed by an energy minimization step; equivalent approaches have
been developed in the context of EPMs, called extremal or quasi-static models (Baret
et al., 2002; Talamali et al., 2011).

Criteria for yielding

As discussed in Chapter 1, numerous studies have attempted to correlate plastic events
with local properties of amorphous materials (e.g., local density, free volume, shear
modulus, etc.) and it was recently argued that the local yield stress is the most
relevant quantity to predict plastic events (Patinet et al., 2016). Most EPMs rely on
a yielding criteria based on the value of the local yield stress: generally speaking, a
plastic event occurs when the value of the local stress exceeds the value of the local
yield stress.

The details of the sequence associated with a yielding event may however vary
depending upon the model (Nicolas et al., 2018a). The local yield stress can for
instance either be fixed or randomly drawn from a distribution after each yielding
event. Yielding can be either instantaneous once the threshold is reached, or instead
delayed. In that case, the yielding rate above the threshold can either be constant
(Picard et al., 2005) or stress-dependent (Nicolas et al., 2013a; Ferrero et al., 2019).

Regarding the dynamics once a site has yielded, plastic events can be either in-
stantaneous (Hébraud et al., 1998; Baret et al., 2002; Lin et al., 2014) or have a finite
duration (Picard et al., 2005). It was further argued that choosing a finite strain

1The terminology τel can be understood as “typical time to become elastic again”; τres is also often
encountered.
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rather than a finite time would appear more physical to set the duration of a plastic
event (Nicolas et al., 2014a), but this approach can be problematic at low shear rate.

Constitutive behavior in plastic regions

The constitutive behavior is modified locally when a plastic rearrangement occurs:
rearranging regions are generally treated as fluid-like inclusions that relax stress.

An unconstrained inclusion would spontaneously relax its stress σ at a rate τ−1, τ
being an intrinsic relaxation timescale of the material. However, due to the constraint
of the surrounding elastic medium, the relaxation only occurs at a rate |G0|/τ , with
0 < |G0| < 1 the local value of the elastic stress propagator. Note that while relaxation
is at play, elastic loading still occurs as in a Maxwell’s viscoelastic model.

The viscous dynamics of the plastically deforming inclusion is not always con-
sidered in EPMs, and a common simplification consists in considering instantaneous
stress relaxation. While the two approaches are equivalent in the low shear rate (quasi-
static) limit, the choice of a particular type of dynamics can influence the flow curve
at larger shear rates.

Further, the clear distinction of local elasticity and local plasticity in the EPM
remains phenomenological. In practice, this approach is supported (for soft systems)
by the numerical work of Albaret et al. (2016), who have been able to account for the
macroscopic stress-strain curve of a material based on a decomposition onto local elas-
tic and plastic strain. This distinction can however be relaxed at the mesoscale when
using continuum approaches based on a potential energy landscape representation
(Jagla, 2007).

2.1.5 Concluding remarks

We presented in this section the main ingredients of mesoscale elasto-plastic models,
emphasizing the large variety of dynamical rules for the plasticity and yielding criteria
which often remain phenomenological.

The different rules for yielding and recovering an elastic behavior mentioned in sec-
tion 2.1.4 have often been used in different contexts (e.g., different scientific questions,
driving protocols, shear rate regimes), making their comparison difficult. Moreover,
while there start to be insight from molecular simulations regarding aspects like the
distribution of local yield stress or initial stress configurations (Patinet et al., 2016;
Liu et al., 2020a), no microscopic measurements have shed light on the dynamics of
the plastic events yet, leaving the choice of a specific rule to purely phenomenological
considerations. In practice, the choice of a particular model is often guided by the
scientific goals. For example, models accounting for a yield stress distribution and
a recovery criterion based on accumulated strain (Nicolas et al., 2014a) reproduce
well the Herschel-Bulkley rheology observed in molecular simulations and are suited
for comparisons with microscopic simulations (Liu et al., 2016). On the other hand,
simpler models based on competing timescales as introduced by Picard et al. (2005)
do not yield a very realistic rheological curve, but are suited to test simple arguments
and derive theoretical predictions for the rheology using single-site approximations
(Martens et al., 2012).

We did not mention implementation issues yet, such as strategies for spatial dis-
cretization, the use of pseudo-spectral methods, etc., where an important variety is
also observed (Nicolas et al., 2018a). Treating elastic interactions using an Eshelby
kernel is a widespread choice in EPMs, and, as discussed earlier, is supported by mi-
croscopic data. However, the choice of a particular discretization strategy may have
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Figure 2.2: Building mesoscale elasto-plastic models. (a) An
amorphous medium (simulation snapshot from Weaire et al. (2010))
is coarse-grained into elementary cells that can deform elastically and
undergo plastic rearrangements (depicted with the red arrows) which
lead to stress redistribution to the surrounding elastic matrix. (b)
This is modeled as interacting blocks: the block undergoing a plastic
event (green) redistributes stress to the rest of the system. (c) The
state of a cell located in ~x (magenta block) is described by its stress
σαβ(~x), its local threshold σy(~x) and its plastic activity n(~x). The
stress δσαβ(~x) redistributed to the site located in ~x due to a plastic
deformation εγδ(~x′) occurring in ~x′ is computed using an Eshelby-type

elastic propagator Gαβ,γδ(~x− ~x′)

an impact on the outcome of the model. It was for instance suggested that choosing a
regular lattice obeying the same symmetries as the elastic kernel would lead to over-
estimated correlations between plastic events in EPMs (Nicolas et al., 2018a). Some
of the technical aspects of the implementation will be further discussed in section 2.3
and in Appendix A.1.

2.2 Formulation

In this section, we introduce a general formalism for the elasto-plastic model including
the ingredients introduced above and summarized in Fig. 2.2. We consider a system
made of an assembly of elementary (homogeneous) mesoscale blocks, represented as
sites of a regular lattice (Fig. 2.2, right panel) which all have the same elastic mod-
ulus. Each block can undergo plastic deformation and elastic deformation using a
linear elasticity assumption. The dynamics is heterogeneous since blocks can indi-
vidually undergo plastic events and the interactions between blocks result from the
elastic response to plastically deforming blocks, computed from mechanical equilib-
rium following Eshelby’s problem.

Following the approach of Liu (2016), we first describe the elastic response to a
heterogeneous plastic deformation field (section 2.2.1). Then, we introduce external
driving in the model and explain how to account for either a stress-controlled or a
shear-rate-controlled protocol. We finally present the dynamical rules for the local
plasticity.

2.2.1 Elastic response to a heterogeneous plastic deformation field

In this first part, we describe the response of an elastic material to a heterogeneous
field of plastic deformation (due to localized plastic events).
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Displacement and strain fields

We define a displacement field in the material at time t = t0 + ∆t with respect to
a reference state of the material at time t0: ~u(~x, t0 + ∆t) ≡ uα(xβ, t0 + ∆t) (using
indicial notations, i.e., summation over repeated indices, α, β standing for x, y or
z). We decompose the displacement field uα into an elastic contribution and a plastic
contribution:

uα = uel
α + upl

α (2.3)

A material element centered in ~x ≡ xα, subjected to a displacement uα = uel
α + upl

α

during a time ∆t undergoes a total deformation: ε∆t
αβ = εel,∆t

αβ + εpl,∆t
αβ , with

εel,∆t
αβ =

1

2

(
∂uel

β

∂xα
+
∂uel

α

∂xβ

)
and εpl,∆t

αβ =
1

2

(
∂upl

β

∂xα
+
∂upl

α

∂xβ

)
(2.4)

The reference state (at t = t0), noted R, can be arbitrarily chosen as long as it respects

mechanical equilibrium, i.e.,
∂σRαβ
∂xβ

= 0. In linear elasticity, a non-zero stress field in
the reference state implies a non-zero elastic deformation field in the reference state:
σRαβ = λδαβε

el,R
γγ + 2µεel,R

αβ , with λ and µ being the Lamé coefficients.
The plastic deformation field εpl

αβ , that can be heterogeneous, describes the con-
tribution of localized irreversible plastic events occurring in the system during a time
∆t. We write as ~xa the position of a plastic event occurring during ∆t and εpl,a,∆t

αβ the
plastic strain associated with this event. We can compute the total plastic strain in
the system during ∆t as (with A(~x) = 1 (or 0) if ~x is inside (or outside) the plastically
deforming region):

εpl,∆t
αβ =

∑

~xa

A(~x− ~xa)εpl,a,∆t
αβ (2.5)

Mechanical equilibrium

In a static state, the elastic deformation εel,∆t
αβ during ∆t can be seen as the response

of a homogeneous elastic material to a heterogeneous plastic strain field εpl,∆t
αβ . Using

linear elasticity, the stress perturbation induced after a time ∆t (with respect to a
reference state R) is given by

σ∆t
αβ = λδαβε

el,∆t
γγ + 2µεel,∆t

αβ (2.6)

In the following, we drop the ∆t labels to lighten notations. Using εel
αβ = εαβ − εpl

αβ ,
mechanical equilibrium reads

∂σαβ
∂xβ

=
∂

∂xβ

(
λδαβ(εγγ − εpl

γγ) + 2µ(εαβ − εpl
αβ)
)

= 0 (2.7)

which yields:

λ
∂εγγ
∂xα

+ 2µ
∂εαβ
∂xβ

= λ
∂εpl

γγ

∂xα
+ 2µ

∂εpl
αβ

∂xβ
(2.8)

We rewrite this equation in terms of displacement field:

(λ+ µ)
∂

∂xα

∂uγ
∂xγ

+ µ
∂

∂xβ

(
∂uα
∂xβ

)
= λ

∂εpl
γγ

∂xα
+ 2µ

∂εpl
αβ

∂xβ
(2.9)
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This equation actually reduces to the Navier equation for a static state of the material:

(λ+ µ)
∂

∂xα

∂uγ
∂xγ

+ µ
∂

∂xβ

(
∂uα
∂xβ

)
= −fα (2.10)

with a body force fα = −λ∂ε
pl
γγ

∂xα
− 2µ

∂εplαβ
∂xβ

.

Incompressible medium assumption

If we assume that the elastic medium is incompressible, Eq. 2.10 reduces to:

− ∂P

∂xα
+ µ

∂2uα
∂x2

β

+ fα = 0 (2.11)

∂uα
∂xα

= 0 (2.12)

Solving the above equation is actually analogous to solving a well-known problem in
hydrodynamics, which consist in looking for the flow solution when a force is applied
to a point particle immersed in a viscous liquid in the case of an incompressible flow
(Stokeslet) (Hancock, 1953). Due to the linearity of this equation, it is conveniently
expressed in Fourier space:

iqαP̃ − µqβqβũα + f̃α = 0 (2.13)

− iqαũα = 0 (2.14)

By multiplying Eq. 2.13 by the wavevector qα (taking the divergence of the equation,
which yields a Poisson equation for the pressure):

iqαqαP̃ − µqαqβqβũα + qαf̃α = 0 (2.15)

and using the incompressibility condition (Eq. 2.14), we can express the pressure as
(with q2 = qαqα):

P̃ = i
qαf̃α
q2

(2.16)

By inserting the expression for the pressure in Eq. 2.13, we get:

ũα =
1

µq2

(
f̃α −

qαqγ
q2

f̃γ

)
(2.17)

One recognizes here the Oseen tensor, relating the displacement field to the force,
with f̃α = 2iµqβ ε̃

pl
αβ . Then, using σαβ = 2µεel

αβ = 2µ
(
εαβ − εpl

αβ

)
:

σ̃αβ = −iµ (qαũβ + qβũα)− 2µε̃pl
αβ (2.18)

By inserting Eq. 2.17 into Eq. 2.18, we get:

σ̃αβ = 2µ

(
δβδqαqγ + δαγqβqδ

q2
− 2

qαqβqγqδ
q4

− δαγδβδ
)
ε̃pl
γδ (2.19)

which can be rewritten as

σ̃αβ = 2µG̃∗αβ,γδ ε̃
pl
γδ with G̃∗αβ,γδ =

δβδqαqγ + δαγqβqδ
q2

− 2
qαqβqγqδ

q4
− δαγδβδ (2.20)
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The propagator G̃∗αβ,γδ is not defined for wavevectors |~q| = 0. The stress response for a
zero wavevector is such that the integral over the whole space of the stress response to
an internal plastic event is equal to zero. If we note the total stress response function
G̃αβ,γδ, we thus get:

G̃αβ,γδ(|~q| = 0) = 0 (2.21)
G̃αβ,γδ(|~q| 6= 0) = G̃∗αβ,γδ (2.22)

To summarize, G̃αβ,γδ describes the stress response to a heterogeneous plastic defor-
mation field in the system, which corresponds to a macroscopically stress-free state.
The above expression is general (valid for any dimension and both tensorial and scalar
models), and we will specify in the following the two types of models that we use in
this thesis.

2.2.2 External driving

Superimposition of stress fields

We note σint
αβ the internal stress field due to a heterogeneous plastic deformation field,

as described above. In real space, it is defined as the convolution of the plastic strain
field with the elastic kernel G,

σint(~x, t) = 2µ

∫
dd~x′Gαβ,γδ(~x− ~x′)εpl

γδ(
~x′, t) (2.23)

If a driving (external or local) is applied to the material, this will induce an additional
stress field in the system, σdriv

αβ . The total stress field thus reads:

σαβ(~x, t) = σint
αβ(~x, t) + σdriv

αβ (~x, t) (2.24)

with
1

V

∫
dd~x′σint

αβ(~x, t) = 0 (2.25)

and the macroscopic stress reads

Σαβ = 〈σαβ〉 =
1

V

∫
dd~x′σαβ(~x, t) =

1

V

∫
dd~x′σdriv

αβ (~x, t) (2.26)

To summarize, the medium, assumed to be in mechanical equilibrium at all times,
is characterized by a heterogeneous plastic deformation field εpl

αβ which induces an
internal stress field σint

αβ . An additional stress field due to driving (that can take any
arbitrary form), σdriv

αβ (~x, t) adds up to the internal stress field, yielding the total stress
field in the system. In elastic regions (regions that are not undergoing plastic defor-
mation), the elastic strain field is related to the total stress field by linear elasticity,
which reads, for an incompressible material: σαβ = 2µεel

αβ .

Stress-controlled dynamics

The dynamics of the system results from the fact that at each time, the internal stress
field must fulfill mechanical equilibrium in the system. The underlying hypothesis is
that the dynamics of the system is overdamped, so that inertial contributions are neg-
ligible. From equations 2.23 and 2.24, the state of the system at time t is determined
by two independent contributions: the internal plastic deformation field εpl

αβ(~x, t) and
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the external driving σdriv
αβ (~x, t). The time evolution of these two quantities will thus

set the dynamics of the system.
Two main aspects must be considered to determine the dynamics of εpl

αβ(~x, t): (i)
where and when does a plastic event occur ? When does it terminate? and (ii) When
a localized plastic event occurs in a given region, how does the plastic strain evolve
with respect to the other variables (e.g., stress)? As mentioned in section 2.1, there
exist several ways of modeling the dynamics of εpl

αβ(~x, t), and we will introduce the
dynamical rules used in this thesis in the next section.

The dynamics of σdriv(~x, t) depends on the system under consideration and on the
driving protocol used. In the case of a passive amorphous system with an externally
imposed uniform shear stress, σdriv

αβ (~x, t) = σdriv
αβ is constant over the system. In the

case where a uniform pressure gradient is imposed along the x direction in a 2d channel,
∂P/∂x = Cp, mechanical equilibrium and symmetries yield: σdriv

xy (x, y) = Cpy + K1

(K1 being a constant) and σdriv
xx = −σdriv

yy = K2 (K2, a constant). Finally, in the case
where local active processes induce heterogeneous stresses in an active or biological
system, σdriv

αβ (~x, t) can take an arbitrary form depending upon the type of activity.
We will see an example in Chapter 5, where the local driving results from the (coarse-
grained) response to the active deformation of particles.

In the framework introduced in this section, it is natural to model flows using a
stress-controlled driving protocol. However, it is common, both in experiments and
simulations, to impose the macroscopic shear rate rather than the macroscopic stress
to the system. This framework can be generalized to account for shear-rate-controlled
driving protocols.

Shear-rate-controlled dynamics

The global strain in the system is defined as:

〈εαβ(t)〉 =
1

Ld

∫
d~xdεαβ(~x, t) = 〈εpl

αβ(t)〉+ 〈εel
αβ(t)〉 (2.27)

The elastic strain is further decomposed into two parts: one resulting from the internal
stress σint

αβ , whose average is equal to 0 (by definition of σint
αβ), 〈ε

el,int
αβ (t)〉 = 0, and one

resulting from the driving stress σdriv
αβ , 〈εel,driv

αβ (t)〉 6= 0. In order to impose a global
deformation rate 〈ε̇αβ〉 to the system, one needs to adjust the value of the driving
stress depending upon the total deformation rate:

σ̇driv
αβ (t) = 2µ

(
〈ε̇αβ(t)〉 − 〈ε̇pl

αβ(t)〉
)

(2.28)

The dynamics of the local stress reads:

∂σαβ(~x, t)

∂t
= σ̇driv

αβ (t) + σ̇int
αβ(~x, t) (2.29)

Using Eq. 2.28 and Eq. 2.23, we get:

∂σαβ(~x, t)

∂t
= 2µ

(
〈ε̇αβ(t)〉 − 〈ε̇pl

αβ(t)〉
)

+
∂

∂t
2µ

∫
dd~x′Gαβ,γδ(~x− ~x′)εpl

γδ(
~x′, t) (2.30)

We finally get, by introducing the shear rate γ̇ = 2µ〈 ˙εαβ(t):

∂σαβ(~x, t)

∂t
= µγ̇ + 2µ

∫
dd~x′

(
Gαβ,γδ(~x− ~x′)− 1

V

)
∂εpl

γδ(
~x′, t)

∂t
(2.31)
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When using shear-controlled protocols, it is thus convenient to define the propa-
gator Gshear

αβ,γδ(~x− ~x′) = Gαβ,γδ(~x− ~x′)− 1
V for which the integral of σint

αβ over the whole
volume is not zero.

2.2.3 Dynamics of the local plasticity

If a mesoscopic block centered in ~x deforms plastically (εpl
αβ(~x, t) 6= 0), then the block

is said to be in a “plastic state”. We introduce a Boolean variable, n(~x, t), to account
for the local state: n(~x, t) = 0 when the block deforms elastically and n(~x, t) = 1
when the block deforms plastically. The evolution rules for n(~x, t) encode the physical
mechanisms governing the elasto-plastic behavior of amorphous materials.

The transition from an elastic to a plastic state occurs once the local stress exceeds
a local threshold (local yield stress σy) and is determined by a von Mises yield criterion
σv > σy, with in 2d:

σv =

√
(σxx − σyy)2 + 4σ2

xy

2
(2.32)

The choice for the local barrier values σy and the yielding rules may differ between
the different elasto-plastic models found in the literature. In the following, we use two
different sets of stochastic rules: in Chapter 4 we use the model introduced by Picard
et al. (2005) based on transition rates and where all sites have the same barrier σy and
in Chapter 5 we use a model based on distributed yield stress values as introduced by
Nicolas et al. (2014a).

Dynamics of the plastic deformation

Once a site has yielded (n(~x, t) = 1), plastic deformation accumulates locally. As
mentioned earlier, each mesoscopic block is then modeled as a viscoelastic Maxwell
element i.e., with an Hookean spring (undergoing elastic deformation εel

ij) in series
with a dashpot (undergoing plastic deformation εpl

ij). The local plastic strain rate is
thus given by:

∂εpl
αβ(~x, t)

∂t
= n(~x, t)

σαβ(~x, t)

2µτ
(2.33)

with τ the timescale associated with viscous damping, which sets the time units of
the model.

Stochastic dynamics for the local activity n(~x, t) in Picard’s model

In Picard’s model, to account for the fact that a region has a finite probability to yield
when the local stress becomes too large, a stochastic dynamics for n(~x, t) is introduced

with a transition rate 1/τpl for the transition n : 0
1/τpl−−−→ 1 if σv > σy. The yield stress

σy has a unique value and is identical for all the blocks. Once it has yielded, a site

becomes elastic again after a typical time τel: n : 1
1/τel−−−→ 0. The typical evolution of

a local stress is depicted in Fig. 2.3.

Stochastic dynamics based on a yield stress distribution

An alternative approach is to consider instantaneous yielding once the local stress has
exceeded a threshold σy, the yield stress value σy being a random variable renewed
after each yielding event (Nicolas et al., 2014a).
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Figure 2.3: Sketch of the local stress dynamics in the model

introduced by Picard et al. (2005).

The local threshold σy is drawn form a probability distribution independently
for each block. A stress threshold σy would correspond to an energy barrier Ey =
|σy|2
4µ . We consider an exponential distribution of energy barriers (as in the Soft Glass

Rheology model (Sollich et al., 1997)), bounded by a minimum value Emin
y and a

maximum value Emax
y :

P (Ey) = Θ(Ey − Emin
y )Θ(Emax

y − Ey)λ exp−λ(Ey − Emin
y ) (2.34)

with Θ(x) the Heaviside function and λ a parameter chosen such that the average
yield strain γy takes a realistic value (as compared to experiments), around, e.g., 10%
for emulsions (Hébraud et al., 1997). Note that no upper bound for the energy barrier
distribution was considered in the original implementation of this model (Emax

y →∞)
(Nicolas et al., 2014a). We added this feature to ensure that, when using stress-
controlled protocols, the system would not always become arrested in the long time
limit as a consequence of a statistical hardening effect (because all the barriers would
eventually become larger than the local stress).

Regarding the elastic recovery, Nicolas et al. (2014a) proposed a criterion based on
the accumulated plastic strain, arguing it was a more realistic physical picture than
setting a fixed duration of events. In our work, we will however consider the same
recovery rule as in Picard’s model (with a fixed event duration τel), to avoid potential
issues in the low driving limit (where the rule of Nicolas et al. (2014a) can lead to
never ending plastic events).

2.3 Implementation

The formulation presented above was general, and neither the spatial dimension nor
the tensoriality of the model was specified. In this thesis, we focus on 2d elasto-plastic
models. Note that the dimensionality of the model is found to affect only slightly the
dynamical features of the flow such as avalanche dynamics (Liu et al., 2016).

We use different variants of the elasto-plastic model introduced previously: scalar
and tensorial implementations, stress- and strain-controlled protocol, and, as already
mentioned, different sets of stochastic rules. Let us now present these different vari-
ants, discuss some aspects of their numerical implementation before comparing their
rheological behavior in section 2.4.
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Scalar and tensorial models

Both scalar and tensorial implementations of elasto-plastic models have been used in
the literature (Nicolas et al., 2018a). It is known that the direction of the plastic
events is biased by the external driving (Nicolas et al., 2018b). When the driving
is uniform (such as simple shear), it can be convenient to consider only one stress
component, σxy, corresponding to the geometry of an externally imposed strain γxy.
Scalar models are however simplifications of the general model formulated above since
stress redistribution via the elastic propagator leads to non-zero values for the other
stress components, as shown in Fig. 2.4.

Tensorial implementations have thus also been considered. It was however found
that the effect of tensoriality on the rheology and avalanche properties was not signif-
icant (Nicolas et al., 2014b; Budrikis et al., 2017). However, in the case of heteroge-
neous driving such as bending, torsion or indentation tests on hard glassy materials
(Budrikis et al., 2017) or microchannel flows of soft glassy materials (Nicolas et al.,
2013a), a tensorial implementation of EPMs is necessary. In this thesis, we will con-
sider another case of heterogeneous driving in EPMs, due to a localized (biological)
activity acting as a heterogeneous source of stress in the system. Let us now introduce
a 2d tensorial implementation of the EPM, as introduced by Nicolas et al. (2013a).

2d tensorial model: We consider a two-dimensional uniform elastic incompressible
medium, for which the deviatoric part of the strain and stress tensors read:

ε =

(
εxx εxy
εxy εyy

)
and σ =

(
σxx σxy
σxy σyy

)
(2.35)

with εxx + εyy = 0 and σxx + σyy = 0. There are only two independent strain and
stress components and the notations can be condensed as:

ε =

( εxx−εyy
2
εxy

)
and σ =

(σxx−σyy
2
σxy

)
(2.36)

with εxx−εyy
2 = εxx and σxx−σyy

2 = σxx. We express the stress tensor as a function of
the plastic strain tensor in Fourier space, following the above calculation, with G̃T

2d

the elastic kernel describing the stress redistribution due to plastic deformation in the
system, (

σ̃xx
σ̃xy

)
= 2µG̃T

2d

(
ε̃pl
xx

ε̃pl
xy

)
(2.37)

From Eq. 2.20, we get:

G̃T
2d =

1

q4

[ −(q2
x − q2

y)
2 −2qxqy(q

2
x − q2

y)

−2qxqy(q
2
x − q2

y) −4q2
xq

2
y

]
(2.38)

The stress response to a plastic event of plastic strain εplxy in the center of the system
is depicted in Fig. 2.4.

2d scalar model: In the commonly used scalar EPMs (as introduced by Picard
et al. (2005)), the assumption is that all the plastic events contributing to the flow
have the same geometry as the macroscopically applied shear flow, i.e., we consider a
single component of the strain and stress tensor, εxy and σxy, thus leading to:

σ̃xy = 2µG̃S
2dε̃

pl
xy (2.39)
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Figure 2.4: Stress response to a plastic event of plastic strain
εpl
xy (εpl

xx = 0) induced artificially in the center of the system for a
lattice size Lx = Ly = 32. Left panel: σxy. Right panel: σxx

and the propagator reduces to the
(
G̃T

2d

)
22

component of Eq. 2.38.

G̃S
2d = −

4q2
xq

2
y

q4
(2.40)

Note that, in this part, we did not specify the full form of the propagators G̃T
2d and

G̃S
2d since it depends on the driving protocol (strain- or stress-controlled protocol).

Driving protocols

Numerical simulations of the elasto-plastic model have mostly considered strain-controlled
(fixed γ̇) rather than stress-controlled (fixed Σ) driving protocols. We use in this thesis
both types of dynamics as they give access to different features of the flow.

We discretize the model introduced in section 2.2 on a two-dimensional lattice.
The lattice indices (i, j) represent the discretized coordinates along x and y directions
respectively. When using a stress-controlled protocol with a driving stress σdriv

αβ , the
dynamics for the local plastic strain at site (i, j) reads:

d

dt
γpl
αβ(i, j) =

n(i, j)σαβ(i, j)

µτ
= n(i, j)

σdriv
αβ (i, j) + σint

αβ(i, j)

µτ
(2.41)

with
σint
αβ(i, j) = µ

∑

i′,j′

G2d
αβ,γδ(i, j, i

′, j′)γpl
γδ(i

′, j′) (2.42)

with γpl
γδ(i

′, j′) = 2εpl
γδ(i

′, j′). The propagator G2d is such that the average redis-
tributed stress is zero.

When using a strain-controlled protocol with an imposed shear rate γ̇, the dynam-
ics for the local stress at site (i, j) is described by:

d

dt
σαβ(i, j) = µγ̇ + µ

∑

i′,j′

G2d,shear
αβ,γδ (i, j, i′, j′)

d

dt
γpl
γδ(i

′, j′) (2.43)
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with dγpl
γδ(i, j)/dt = n(i, j)σαβ(i, j)/µτ .

The propagator G2d,shear is related to G2d by G2d,shear = G2d − 1/L2, because,
unlike G2d, G2d,shear describes the full stress field response to a plastic deformation
(and not only the stress fluctuations).

In the numerical implementation of the elasto-plastic model, we consider a dis-
cretized space and, as we focus on bulk properties, it is convenient to work with a
bounded system with periodic boundary conditions. Various numerical approaches
have been developed to compute the convolution product in Eq. 2.42 and Eq. 2.43.
Taking advantage of the periodic boundary conditions, we use a pseudo-spectral
method which consists in discretizing the elastic propagator in Fourier space which
enables us to compute the convolution as a local operation on the Fourier modes. The
numerical implementation of the model is presented in more details in Appendix A.1.

2.4 Some flow properties of elasto-plastic models

In this section, we review general flow properties of the elasto-plastic models intro-
duced in the first part of the chapter.

We simulate the two models presented above: Picard’s model (called model 1 in
the following) and the model with a yield stress distribution and fixed recovery time
(model 2) on a 2d lattice using strain- and stress-controlled protocols and scalar and
tensorial implementations using the methods presented in Appendix A.1. The elastic
modulus µ = 1 sets the stress units and the relaxation time τ sets the time units of
the model. To simulate model 1, we set the timescales of the model τpl = τel = τ = 1
and the local yield stress σy = 1. To simulate model 2, we choose a yield stress
distribution with the following parameters: Emin

y = 2.5 · 10−4, Emax
y = 1.8225 · 10−2

and λ = 701.67 (Nicolas et al., 2014a), and an elastic recovery time τel = τ = 1.

2.4.1 Rheological behavior

In Fig. 2.5(a) and (b), we show, for models 1 and 2, the stress Σxy as a function of
strain γxy obtained by imposing a constant shear rate γ̇xy starting from an initial state
characterized by σxy = 0 and n = 0 for all the sites (shear start-up protocol). There
is a clear overshoot in Picard’s model due to the fact that all the sites must reach a
stress greater than σy = 1, leading to an abrupt yielding of the system. On the other
hand, no stress overshoot is observed in model 2, where the local yield stress values
are drawn from a distribution. In this case, sites with small barriers will yield first,
leading to a smooth stress-strain response.

Numerical flow curves (stress Σxy versus shear rate γ̇xy in steady state) are shown
in Fig. 2.5(c) and (d). The rheology is only slightly affected by the tensoriality of the
model (Fig. 2.5(c)), as found by Nicolas et al. (2014a). Stress-controlled and strain-
controlled protocols also yield the same steady-state rheology, as shown in Fig. 2.5(d)
(Liu et al., 2018).

The two models lead to a yield stress fluid behavior. The flow curve of model
2 can be fitted to a Herschel-Bulkley form with an exponent comprised between 0.5
and 0.7 at sufficiently low shear rates (see legend of Fig. 2.5(d)). In Picard’s model,
the dynamical yield stress (value of the stress plateau observed at low shear rate)
differs from the static yield stress value (value at the overshoot, determined by the
uniquely defined local yield stress). An important aspect of Picard’s model is that
all the rheological data can be collapsed if the shear stress is rescaled by σy, the time
by τ and the shear rate by γ̇c = σy/µτ (Picard et al., 2005). The model can thus be
made dimensionless and the only parameters left are τpl and τel.
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(a) (b)

(c) (d)

Figure 2.5: Rheological behavior of two different elasto-
plastic models obtained from simulations of a 2d system of size
N = 128 × 128. (1) Picard’s model (a-c) and (2) model based on
a yield stress distribution with a fixed elastic recovery time (b-d). (a)
Stress as a function of strain for different imposed shear rates in a
tensorial version of Picard’s model (1) exhibiting an overshoot. (b)
For the tensorial version of model (2), no stress overshoot is observed.
(c) Shear stress versus shear rate in model (1) for both scalar and
tensorial versions of the model using a strain-rate controlled proto-
col. (d) Shear stress versus shear rate in a tensorial version of model
(2) for stress-controlled and strain-controlled protocols. The curve is
fitted with a Herschel-Bulkley form at low shear rates (γ̇xy . 10−2):
Σxy = Σy + Aγ̇nxy with an exponent n comprised between 0.5 and 0.7

depending upon the exact fitting range.
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The effect of these two timescales on the macroscopic flow curve is shown in Ap-
pendix A.2 (Fig. A.1). τel describes the time needed to regain an elastic behavior once
a site has yielded locally. This time may be related to the physico-chemistry of the
material and to the adhesion properties of its constituents, as suggested by Coussot
et al. (2010). Coussot et al. (2010) have further proposed that a longer restructuring
time could lead to local softening and be at the origin of shear banding. This aspect
was investigated using Picard’s EPM by Martens et al. (2012).

2.4.2 Nonmonotonic constitutive flow curve and shear bands

Martens et al. (2012) have shown that the bulk rheology of Picard’s model can be
captured using an analytically solvable approximation, by considering an effective
single-site dynamics. The advantage of considering a single-site dynamics is that it
ensures that the resulting rheology is that of a homogeneous system, giving access to
the constitutive (possibly nonmonotonic) flow curve.

Single-site elasto-plastic model

Let us consider a scalar EPM, with σ ≡ σxy and γ̇ ≡ γ̇xy. In the EPM, the dynamics
of the stress on a site (i, j) is written as:

∂σ(i, j)

∂t
= γ̇eff(i, j) +G(0, 0)n(i, j)σ(i, j) (2.44)

with G(0, 0) < 0 the value of the stress propagator at the origin (describing the
local plastic relaxation) and γ̇eff(i, j) the effective local shear rate due to the external
drive and to the stress redistribution due to plastic events elsewhere in the system,
γ̇eff(i, j) = γ̇ +

∑
i′,j′ G(i − i′, j − j′)n(i′, j′)σ(i′, j′). The single-site model relies on

the assumption that this effective shear rate is spatially homogeneous, and neglects
any fluctuations around its mean value Γ̇. In this case, the evolution of stress σ(t) on
a single site reads:

∂σ(t)

∂t
= Γ̇− gn(t)σ(t) (2.45)

with g = |G(0, 0)| the absolute value of the stress propagator at the origin, which
can depend on the system size in the spatial model, but which remains approximately
constant for large systems (g ' 0.57). The dynamics of the activity n(t) remains

unchanged with respect to the spatial model (see section 2.2.3: n : 0
1/τpl−−−→ 1 if σ >

σy and τel: n : 1
1/τel−−−→ 0).

In a first step, one can simulate the above stochastic dynamics for the single-site
EPM (Eq. 2.45). The steady state flow curves thus obtained by averaging the stress
in steady state are depicted by the symbols in Fig. 2.6(a) (Martens et al., 2012).

Martens et al. (2012) derived an analytical expression for the flow curve, depicted
by the solid lines in Fig. 2.6(a). The full derivation of the model is shown in Ap-
pendix A.3, we recall here only the main points. The time averaged stress 〈σ〉t can
be computed as

〈σ〉t =
τin〈σin〉t + τact〈σact〉t

τin + τact
(2.46)

with τin and τact the average times spent in the inactive and active phase respectively,
and 〈σin〉t and 〈σact〉t the associated average stress values. The computation of τin,
τact, 〈σin〉t and 〈σact〉t relies on the hypothesis that the driving is sufficiently slow
Γ̇ < g and the restructuring time τel sufficiently large to decorrelate the typical stress
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(a) (b)

(c) (d)

C
um

ulated plastic activity

Figure 2.6: From Martens et al. (2012). Shear localization in Pi-
card’s elasto-plastic model. (a) Flow curves in the single-site EPM:
numerical values (symbols) and analytical expressions (solid lines) for
restructuring times τel = 1, 2.5, 5, 7.5, 10. (b) Flow curve for τel = 10
in the single-site EPM (black ×) and in the 2d spatial model (blue
∗), plotted as a function of the effective shear rate (see text), with
the vertical dotted line indicating the critical value of γ̇ceff separating
homogeneous and shear banded flow. Inset: effective shear rate γ̇eff
vs γ̇. (c) Map of plastic activity accumulated over a strain window
∆γ = 100 with a long-range quadrupolar elastic propagator exhibiting
permanent shear bands. (d) Same map with a short range kernel: no

shear bands.



86 Chapter 2. Mesoscale elasto-plastic models for the flow of amorphous solids

values from the change of activity, and by performing an ensemble average over the
time spent in the active and inactive phases. Flow curves obtained using the analytical
model are shown as solid lines in Fig. 2.6(a) for various values of the restructuring
time τel. Above a critical value of the restructuring time, τ cel, the flow curve for the
single-site EPM exhibits a minimum. For a given value of the stress 〈σ〉t, two solutions
of effective shear rate exist, which can lead to phase coexistence in the form of a shear
banding instability in the spatial elasto-plastic model.

The flow curves obtained from the single-site dynamics (black cross symbols) and
from the full spatial model (blue stars symbols) are compared in Fig. 2.6(b), to test
the validity of the single-site approximation to approximate the full model rheology.
While the two curves are identical at large shear rate, there seems to be a stronger
impact of the fluctuations of the effective shear rate on the dynamics at smaller shear
rates, leading to a shift of the minimum of the flow curve. Overall, the single-site EPM
describes qualitatively the behavior of the full spatial model, but the fluctuations of
the effective shear rate cannot be discarded to get a quantitative description at low
shear rate.

Shear banding scenario

From the observed minimum in the homogeneous flow curve, one expects that the
plasticity localizes in some specific regions of the system in simulations of the spatial
model. This is what Martens et al. (2012) observed, as depicted in Fig. 2.6(c). Their
study further suggests that the structure of the flow localization is strongly affected
by the nature of elastic interactions: while the Eshelby-type long-range propagator
produces well-defined shear bands (Fig. 2.6(c)), a short-range propagator produces
localized regions of activity with smooth interfaces (Fig. 2.6(d)).

When imposing the shear rate to the system, the measured flow curve exhibits
a stress plateau in the unstable region (see Appendix A.2, Fig. A.1(b)). In this
regime, the homogeneous flow being unstable, the system separates in two regions: a
flowing and a non-flowing band, sharing the same stress in order to fulfill mechanical
equilibrium. When varying the shear rate in this regime, the stress and the maximum
shear rate in the system remain constant and only the width of the band varies so
as to conserve the externally applied shear rate in the overall system, following a
so-called “lever rule”. This is similar to a liquid-gas phase separation scenario in
equilibrium thermodynamics, and analogies between shear banding and first-order
phase transitions are often drawn (Fardin et al., 2012). Note however that, unlike
in equilibrium phase transitions, there is no general understanding of the criterion
leading to the selection of a specific stress plateau value in complex fluids (Olmsted,
2008; Fardin et al., 2012).

When instead of imposing a fixed strain rate, the stress of the system is controlled,
the applied stress cannot, in practice, correspond precisely to the plateau value and
hence the flow remains homogeneous. The flow instability can however manifest in
the form of hysteresis when applying ramps of increasing/decreasing stresses to the
system (as shown in granular media by Dijksman et al. (2011) for instance).

Our last remark concerns finite size effects. For an infinite system, the system will
separate between a flowing band and a non-flowing band (as sketched by the dashed
line in Fig. 2.6(b)) and the stress plateau will extend to γ̇ → 0. For a finite system
however, the shear rate in the non-flowing band does not vanish and hence the extent
of the stress plateau is limited by a system-size-dependent low shear rate value, as
shown by the negative slope in the flow curve at γ̇ ' 10−3 in Fig. A.1(b).



2.5. Conclusion 87

We introduced in this part two different variants of the EPM and discussed their
macroscopic rheology and flow organization at finite shear rate. Let us mention that
a large number of studies have rather focused on the behavior of EPMs at low shear
rates, in the regime where avalanche dynamics and important cooperative effects are
observed (Nicolas et al., 2018a).

Although EPMs give access to macroscopic quantities such as stress, strain rate
and erase particle-level details, it is possible to reconstruct the trajectories of fictitious
particles that would follow the long-range displacement field induced by the plastic
rearrangements. This allows one to study for instance the diffusion and relaxation of
tracer particles in sheared systems, as done for instance by Martens et al. (2011).

Tracer particles and cooperative dynamics

In order to study relaxation in the system, we introduce fictitious (non-interacting)
tracer particles whose trajectories follows the non-affine motion originating from the
long-range displacement fields induced by plastic events.

We compute the displacement field associated with each plastic event using the
Oseen tensor (Eq. 2.17). We assign to each lattice site a tracer particle and the fic-
titious trajectory of tracer particles is built progressively by adding up contributions
from all plastic events. The mean square displacement of these tracer particles can
then be computed from the trajectories and a diffusion coefficient D = γ̇D̃ can be
extracted with D̃ = ∆r2

4∆γ (Martens et al., 2011). Martens et al. (2011) find a direct
connection between the diffusion coefficient of tracer particles and the size of cooper-
ative regions at low shear rates, with a strong dependence on the shear rate but also
on the system size, revealing the importance of non-local effects in the dynamics.

2.5 Conclusion

Lattice-based elasto-plastic models such as Picard’s model allow one to model qualita-
tively the flow of soft glassy materials with a minimal number of ingredients. Refined
models including, e.g., yield stress distributions may be suited to reproduce more
quantitatively the experimental rheological behaviors (Nicolas et al., 2018a).

The main advantage of Picard’s model is its simplicity: as all the dynamical rules
are set by constant rates, the phenomenology of the model can be easily understood
in terms of competing timescales. It also makes possible the analytical derivation of
the flow curve within a single-site dynamics approximation (Martens et al., 2012). In
order to study the role of an external fluidizing noise in the flow of YSFs, we will, in
Chapter 4, extend Picard’s model to account for the random activation of additional
plastic events, considering either a constant rate (additional timescale in Picard’s
model), or a stress-dependent rate.

Models including local stress barriers distributions are richer since the distribution
is itself evolving dynamically. Since a barrier is renewed only when a site yields, larger
barriers accumulate, inducing a hardening of the system. This effect, that can be
seen as “mechanical annealing” is believed to play an important role at the yielding
transition in oscillatory shear driving (Priezjev, 2018; Yeh et al., 2020). In Chapter 5,
we will build an EPM for the dynamics of actively deforming particles in the form
of an oscillatory radius change. Tjhung et al. (2017) have proposed that the solid-
to-fluid transition observed upon an increased oscillation amplitude is analogous to
the yielding transition observed in amorphous solids under oscillatory shear. Hence
we expect the dynamic evolution of the yield stress distribution to be an important
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ingredient of the model. We will base our active EPM on the model 2 presented in
this chapter.
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Chapter 3

Permanent shear band instability
induced by inertial dynamics

Résumé : Bandes de cisaillement permanentes induites par
une dynamique inertielle

Dans ce chapitre, nous étudions l’apparition d’une instabilité de l’écoulement ho-
mogène au sein d’un matériau désordonné dense cisaillé sous l’effet d’une dynamique
inertielle. Nous proposons pour cela un modèle continu couplant les équations de
l’écoulement à une variable auxiliaire (température cinétique), que nous comparons à
des simulations de particules sous-amorties réalisées dans le groupe par V. Vasisht.

Cette instabilité de l’écoulement homogène se manifeste sous la forme de bandes de
cisaillement dans des simulations de dynamique moléculaire de systèmes denses désor-
donnés avec une dynamique inertielle (simulations réalisées à l’aide de LAMMPS par
V. Vasisht). L’effet d’une dynamique inertielle sur la courbe rhéologique (contrainte
en fonction du taux de cisaillement) de fluides à seuils avait déjà été étudié par Nico-
las et al. (2016), en mettant en évidence que l’inertie induit une non-monotonie de la
courbe d’écoulement (existence d’un régime où la contrainte diminue lorsque le taux
de cisaillement augmente). Comme évoqué dans l’introduction, ce type de courbe
rhéologique peut être associé à une instabilité de type bandes de cisaillement. Cepen-
dant, aucune hétérogénéité de l’écoulement sous forme de bandes n’avait été observée
dans ces précédentes simulations. Récemment, les simulations à grande échelle réal-
isées par V. Vasisht (résultats résumés en première partie du chapitre) ont permis
de mettre en évidence de telles bandes de cisaillement, ainsi que l’existence d’une
longueur minimale `c nécessaire pour que l’instabilité puisse se développer dans le
système.

Nous proposons dans ce chapitre un modèle décrivant l’émergence de ces bandes
et prédisant la forme des profils d’écoulement dans l’état stationnaire. En suivant
l’approche proposée par Nicolas et al. (2016), nous décrivons l’inertie de façon ef-
fective, en considérant un système sur-amorti (où l’inertie joue un rôle négligeable
dans la dynamique) dans lequel une température cinétique aurait un effet fluidisant
sur la rhéologie. Cette température cinétique, si elle est mesurée dans un système
athermique, n’est non nulle que si la dynamique des particules est sous-amortie et
dépend de façon monotone du taux de cisaillement. L’effet de fluidisation produit par
la température cinétique dépend donc du taux de cisaillement, et permet de décrire
les courbes d’écoulement non monotones observées dans les simulations de particules.

Afin d’étudier la dynamique de l’écoulement, nous introduisons un modèle con-
tinu décrivant la dynamique de deux champs couplés: le champ de vitesse dans le
matériau, vx(y, t) et le champ de température cinétique, T̃ (y, t). Nous utilisons un
modèle unidimensionnel, dans lequel nous décrivons l’évolution de la composante de
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vitesse vx(y, t) (supposée invariante suivant la direction de l’écoulement x dans l’état
stationnaire) suivant la direction du gradient de vitesse y. Dans un premier temps, une
analyse de stabilité linéaire de l’écoulement stationnaire homogène permet de montrer
que si la température cinétique a un effet fluidisant, alors une instabilité apparaîtra si
la taille du système est plus grande que la longueur d’onde associée à cette instabilité.
Ce scénario est en effet vérifié quantitativement dans les simulations de dynamique
moléculaire. Dans un second temps, la dynamique du modèle est étudiée numérique-
ment, et permet de vérifier que dans le cas où la solution homogène est instable, alors le
système évolue vers un état d’écoulement hétérogène stationnaire. Dans une troisième
partie, nous étudions le modèle dans l’état stationnaire, et montrons que les profils
d’écoulement prédits par le modèle sont similaires à ceux obtenus dans les simulations
de particules. En particulier, les extrema du profil de taux de cisaillement ne sont pas
indépendants du taux de cisaillement imposé. En d’autres termes, le système ne suit
pas une “loi du levier”, comme attendu dans un scénario classique de séparation de
phase. Enfin, dans une dernière partie, nous utilisons une analogie mécanique (avec
une équation de type pendule) pour expliquer la phénoménologie du modèle, et en
particulier l’absence de “loi du levier” observée.

Introduction

Flow instabilities in disordered materials are ubiquitous and have been widely stud-
ied in the last few decades (see for instance reviews by Schall et al. (2010), Fielding
(2014), and Divoux et al. (2016)). These flow instabilities manifest in terms of strong
spatial inhomogeneities in the flow, e.g., in the form of shear bands, even when the
material is homogeneously driven. Such instabilities can be either transient (although
long persisting) and related to an overshoot in the stress-strain curve in a shear start-
up protocol, or permanent and related to a rate-weakening effect (Fielding, 2014).
For both types of flow instabilities there exist continuum approaches based on cou-
pling mechanical variables to auxiliary fields such as local concentration (Dhont, 1999;
Dhont et al., 2008; Olmsted, 2008), local temperature (Dafermos et al., 1983; Shi et
al., 2007; Manning et al., 2007; Hinkle et al., 2017; Katsaounis et al., 2017) or local
microstructure (Dhont, 1999; Dhont et al., 2008).

Despite these various approaches to understand flow instabilities under homoge-
neous driving, the origin of permanent shear localization in dense disordered solids is
still debated in the literature. In this chapter, we propose a theoretical framework for
the formation of permanent shear bands in dense disordered solids where the dynamics
is influenced by a rate-weakening effect induced by microscopic inertia (Nicolas et al.,
2016).

As discussed in the introduction of this thesis, many different scenarii can lead to
permanent shear banding. Although there is lack of consensus on the origin of shear
banding in dense disordered solids, in the case of shear history-dependent materials
(Coussot et al., 2002b; Ragouilliaux et al., 2007; Møller et al., 2008) and dense hard
sphere suspensions (Besseling et al., 2010), theoretical approaches based on coupling
flow fields with either the micro-structure (Fielding et al., 2009; Mansard et al., 2011)
or concentration field (Besseling et al., 2010; Gross et al., 2018; Jin et al., 2014) have
been successful in predicting permanent shear bands.

On the other hand, dense suspensions of soft athermal particles do not exhibit
strong structural or volume fraction inhomogeneities (Ovarlez et al., 2013; Bonn et
al., 2017), and the possible mechanisms for shear band formation remain unclear.
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Proposed mechanisms for shear band formation include attractive or adhesive inter-
actions (Bécu et al., 2006; Ovarlez et al., 2013; Chaudhuri et al., 2012), or an intrinsic
timescale for “restructuration” at the microscopic scale that would lead to local weak-
ening and hence to shear banding (Coussot et al., 2010). This second mechanism,
which has been shown to lead to shear bands in elasto-plastic models by Martens
et al. (2012) (see Chapter 2) will be further studied in Chapter 4.

In this chapter, we focus on another rate-weakening mechanism, due to inertial
dynamics at the microscopic scale (Salerno et al., 2012; Karimi et al., 2016; Karimi
et al., 2017; Nicolas et al., 2016). Inertia has been shown to lead to nonmonotonic
macroscopic flow curves and this effect has been rationalized by Nicolas et al. (2016)
in terms of kinetic heating of the system (see Chapter 1, Fig. 1.11). However, al-
though inertial heating effects on the microscopic scale have been shown to lead to
nonmonotonic flow curves by Nicolas et al. (2016), no evidence of shear localization
has been reported in that study.

In this work, we show using particle-based simulations and continuum model-
ing that kinetic heating due to inertia can indeed lead to local softening and hence
shear banding. Particle-based simulations were performed in the group in LIPhy by
V. Vasisht, and motivated the development of the model presented in this chapter in
collaboration with K. Martens and J.L. Barrat.

This chapter is organized as follows: in a first part we briefly introduce the particle-
based model used in the simulations (more details can be found in Appendix B) and
describe the nonmonotonic rheology observed in underdamped conditions as well as
the emergence of shear bands for large systems (simulations performed by V. Vasisht).
In a second part, we propose a continuum model based on a kinetic temperature de-
scription of inertia, following the ideas of Nicolas et al. (2016). By performing a linear
stability analysis of the homogeneous flow solution, we show that the model exhibits
an instability due to a softening effect induced by kinetic heating, and compute the
wavelength associated with this instability, which matches the results obtained in
particle-based simulations. We then study the non-linear dynamics by numerically
integrating the continuum model and evidence that the instability actually leads to
steady-state shear bands. However, the steady-state profiles observed both in particle
based simulations and in the continuum model do not obey a “lever rule” as in usual
shear banding scenarios. We rationalize this finding in a last part, using a mechanical
analogy.

3.1 Steady-state shear band instability in particle-based
simulations with inertial dynamics

In this part, we summarize the numerical results obtained by V. Vasisht that motivated
the development of a continuum model to explain the emergence of shear bands in
systems with inertial dynamics.

3.1.1 Particle-based model

The model disordered solid considered in the particle-based simulation consists of a
dense assembly of polydisperse spheres (volume fraction φ = 70%), interacting via a
truncated and shifted Lennard-Jones potential (Weeks et al., 1971). After a standard
annealing preparation, the system is subjected to a shear deformation at a fixed shear
rate γ̇ using Lees-Edwards boundary conditions (LEBC) and evolved using dissipative
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particle dynamics (DPD) (see Appendix B). In the following, [x, y, z] dimensions refer
to flow, gradient and vorticity directions respectively.

In order to study the role played by inertia in the rheology, various values of
dissipation constants ζ are considered. We introduce the inertial quality factor Q,
similar to Nicolas et al. (2016), which is defined as Q =

τdamp

τvib
, where τdamp = m/ζ

and τvib =
√
ma2/ε, with ζ the damping coefficient, ε the energy scale of the in-

teraction potential, m the mass and a the average diameter of the particles. For an
overdamped system, Q ≤ 1, the steady-state flow curve is monotonic and can be well
fitted by a Herschel-Bulkley (HB) law σ(γ̇) = σy + Aγ̇n, with σy ≈ 2.5 the yield
stress, a coefficient A ≈ 16.5 and the HB exponent n ≈ 0.5. As the inertial quality
factor Q increases, the dynamics becomes underdamped and the flow curves exhibit a
nonmonotonic behavior as shown by Nicolas et al. (2016) (see Chapter 1, Fig. 1.11).

3.1.2 Nonmonotonic flow curve

Fig. 3.1(a) depicts an example of flow curve obtained for an inertial quality factor
Q = 104. For a cubic system (Lx = Ly = Lz = 42a, around 105 particles), we observe
a nonmonotonic flow curve which is attributed to the underdamped dynamics (Nicolas
et al., 2016). The flow curve has a minimum at γ̇ ≈ 0.1τ−1

vib . Hence one could expect a
flow instability in the region of shear rates γ̇ < 0.1τ−1

vib , where the flow curve exhibits
a negative slope. Similar to the observations of Nicolas et al. (2016) we did not find
any shear instabilities in the velocity profiles. These results remain unchanged even
for a non-cubic geometry, where Lx = Lz = 42a;Ly = 120a.

With further increase in Ly we observe a lowering of the steady-state stress for
shear rates below γ̇ = 0.1τ−1

vib , while the flow curve remains unchanged in the positive-
sloped region, suggesting the appearance of a new flow regime for large systems in the
regime γ̇ < 0.1τ−1

vib .

3.1.3 Permanent shear instability

For a larger system (Ly = 360a), we show, in Fig. 3.1(b)-(c), (for a shear rate γ̇ =
10−2τ−1

vib), that the system exhibits permanent shear heterogeneities along the gradient
direction in the flow regime mentioned above. Note that the local shear rates and
stresses were computed after the system had been sheared for around γ = 60 (or
6000% strain) and averaged over a strain window of ∆γ = 0.20. It is clear that the
system has reached a steady state both from the load curve (see Appendix B) and
from the homogeneous stress profile displayed in Fig. 3.1(c).

These simulation results indicate that the instability resulting from a negative
slope in the flow curve can only be observed above a minimum system size that can
accommodate the corresponding instability wavelength. In the following, we propose
a continuum model based on the ideas of Nicolas et al. (2016), in order to predict the
minimum length scale required to allow for such an inertia-induced flow instability.

3.2 Continuum model

3.2.1 Kinetic temperature due to inertia

The basic idea of our approach, initially proposed by Nicolas et al. (2016), consists in
interpreting inertia as causing a heating effect in the system. If we consider that inertia
is introducing a kinetic temperature T̃ to the athermal dynamics, quantified through
an excess of kinetic energy (Losert et al., 2000; Nicolas et al., 2016; Karimi et al.,
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Figure 3.1: Nonmonotonic flow curves and shear bands in
underdamped particle-based simulations. (a) Steady-state stress
as a function of the applied shear rate for an athermal underdamped
system (Q = 104) for different system sizes. (b) Steady-state local
shear rate profile along y (the coordinate along the gradient direction),
averaged over a strain window of ∆γ = 0.2, computed for a system
size N = 240731 and LY = 360a at γ̇ = 10−2τ−1

vib . (c) Corresponding
stress profile. (d) 3D rendering of a configuration from simulation
trajectory depicting shear localization (Q = 104, N = 240731, LY =
360a, γ̇ = 10−2τ−1

vib). The colormap is based on the kinetic temperature
T̃ , varying from white to black (from T̃ = 0ε/kB to 20ε/kB).

2016), one can interpret the nonmonotonic flow rheology of athermally driven inertial
systems σ(γ̇;Q,T = 0) effectively as an overdamped rheology at a finite shear-rate
dependent temperature σ(γ̇;Q = 1, T̃ (γ̇)).

These ideas are tested in particle-based simulations in Fig. 3.2. We show flow
curves (solid lines) obtained for an overdamped system (Q = 1) at different temper-
atures T , as well as the flow curve for an underdamped athermal system (Q = 104,
T = 0) (filled red circles). We can see that the stress values obtained in the over-
damped case at a finite (true) temperature can coincide with the stress values obtained
in the underdamped case at T = 0, provided a shear-rate dependence of the kinetic
temperature in the system is assumed. The measured kinetic temperature in the
underdamped system versus the true temperature for similar stress and shear rates
values (values taken at the intersection of the underdamped curve represented by the
red dots in Fig. 3.2 and the overdamped finite temperature curves) is displayed in
Appendix B (Fig. B.1), showing a strong correlation of these two quantities (although
there is not a 1:1 ratio).

We can thus interpret the underdamped rheology as the rheology of an overdamped
system with a finite rate-dependent kinetic temperature. The shear stress σ is thus not
only a function of the shear rate γ̇, but also of the kinetic temperature T̃ : σ = σ(γ̇, T̃ ).

3.2.2 Formulation of the model

Starting from the above hypothesis, that the shear stress σ = σ(γ̇, T̃ ) is not solely
depending on the shear rate γ̇ but also on the kinetic temperature T̃ accounting for
inertial effects, we aim for a derivation of continuum equations describing the evolution
of the local shear rate and the local kinetic temperature.
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Figure 3.2: Flow curves for underdamped athermal and over-
damped thermal simulations. Overdamped simulations (Q = 1)
performed at finite temperature are represented as solid lines (for a
system size of N = 104 particles). The filled circles represent the flow
curve from an underdamped simulation (Q = 104, N = 105) at T = 0.

To fix the notations we assume in the following a specific driving protocol at a
fixed externally applied shear rate γ̇ = ∂vx/∂y in a 3d planar geometry (flow direction
x, gradient direction y, and vorticity direction z). Using the continuity equations for
momentum and energy, we derive the time evolution equations for the shear compo-
nent of the velocity vx(y, t) and the kinetic temperature T̃ (y, t) similarly as Katsaounis
et al. (2017):

ρ
∂vx
∂t

=
∂σ

∂y
=
∂σ

∂T̃

∂T̃

∂y
+
∂σ

∂γ̇

∂2vx
∂y2

(3.1)

cv
∂T̃

∂t
= λT

∂2T̃

∂y2
+
∂vx
∂y

σ

(
∂vx
∂y

, T̃

)
− cv

τ
T̃ . (3.2)

where ρ is the system density, cv the volumetric heat capacity, λT the thermal con-
ductivity and τ the typical time to remove the kinetic energy (originating from the
external shear) by the thermostat (at zero temperature).

In the above model equations, the second term in Eq. 3.1, ∂σ/∂y, is the usual
expression obtained from momentum conservation in systems with a simple flow curve
relation solely depending on the shear rate. The new part in Eq. 3.1 is the term
introducing a dependence of the shear stress on the kinetic temperature ∂σ/∂T̃ . This
derivative is negative accounting for a local shear-weakening effect introduced by the
local heating, which we expect to be the source of our shear instability. The second
equation simply describes the heat evolution as a diffusive process together with a
source term given by the drive and a sink term given by the thermostat at zero
temperature.

3.2.3 Homogeneous steady state

From equations 3.1 and 3.2, it appears that in steady state (∂σ/∂t = 0; ∂σ/∂y = 0;
∂T̃ /∂t = 0) and for a uniform flow (∂γ̇/∂y = 0) and temperature field (∂T̃ /∂y = 0),
the temperature and shear rate in the (homogeneous) system are related by:

T̃ =
τ

cV
σ(γ̇)γ̇ (3.3)
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This relation is tested in particle based simulations using data for systems exhibit-
ing a nonmonotonic flow curve (underdamped, Q = 104) but small enough so they
have a homogeneous steady state (Lx = Ly = Lz = 42a). In Fig. 3.3(a), we show the
kinetic temperature T̃ measured as 0.5〈mvz〉2, with vz the particles velocity compo-
nent in the neutral vorticity direction (which is not influenced by the affine flow) as
a function of the imposed shear rate γ̇. We also show the value of T̃ computed from
Eq. 3.3, using the values of σ(γ̇), τ and cv measured in particles based simulations.
In simulations, λT and cv are system properties fixed by the interaction potential and
τ is fixed by the dissipation coefficient ζ (see Appendix B).

The good match between T̃ computed from the model (by inputting simulation
parameters) and T̃ directly measured in the simulations indicates that the continuum
model accounting for a kinetic temperature describes well underdamped simulations
in the homogeneous flow regime.
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Figure 3.3: Kinetic temperature in underdamped simula-
tions and flow curve fits. (a) Comparison of kinetic tempera-
ture T̃ measured in simulations of underdamped athermal simulations
(Q = 104) with T̃ predicted from the continuum model (Eq. 3.3),
for different shear rates. (b) Temperature dependence of the yield
stress (σy), the coefficient (A) and the exponent (n) obtained from fit-
ting the overdamped flow curves with the Herschel-Bulkley equation

σ(γ̇) = σy +Aγ̇n.

3.2.4 Constitutive flow curves

One of the assumptions of our approach is that the shear stress σ depends explicitly
on both the shear rate γ̇ and the kinetic temperature T̃ .

Constitutive flow curve in particle-based simulations

In the particle-based simulations, there is a clear dependence of the stress on the shear
rate and the (true) temperature (Fig. 3.2). If we fit the flow curves obtained in over-
damped particle-based simulations for a given temperature T with a HB expression
σ = σy(T ) +A(T )γ̇n(T ), it appears from Fig. 3.3(b) (where the fitting parameters are
reported), that the main dependence with the temperature lies in the term σy(T ), and
only a little dependence with temperature is observed for A and n. An expression of
type:

σ = σy(T = 0) +Aγ̇n + f(T ) (3.4)

would thus reasonably capture the rheological behavior of the system. We could not
however find a simple analytical expression for f(T ) that describes well the simulation
data. Moreover, the form of the constitutive flow curve (and hence f(T )) can depend
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on the details of the model (such as the interaction potential, the thermostat, etc.), as
shown by the differences between the flow curve of Nicolas et al. (2016) (see Chapter
1, Fig. 1.11) and the simulation data of V. Vasisht (Fig. 3.1), so the form of f(T )
would probably not be general.

In the following, we will either assume a simple expression for f(T ) in order to
study the theoretical model, or measure numerically ∂σ

∂T̃
when doing quantitative com-

parisons between the model and simulation data.

Constitutive flow curve to study the model

In the following, in order to study the continuum model introduced above, we use a
function f(T ) = −BTα, leading to a constitutive flow curve:

σ = σ0
y +Aγ̇n −BTα (3.5)

By using the relation between temperature and shear rate for a homogeneous steady
state (Eq. 3.3), we get an implicit expression relating the shear stress and the shear
rate:

σ = σ0
y +Aγ̇n −B

(
τ

cV
σγ̇

)α
(3.6)

The value of σ0
y and n are chosen to match approximately the flow curve for an

overdamped system in particle-based simulations (corresponding to T = 0). The
values of B and α are chosen such that the minimum of the flow curve is located at
values of shear rate γ̇min and stress σmin close to the values observed in numerical
simulations (for a quality factor Q = 104). The values of τ = 350 and cv = 3 are
measured in particle-based simulations, as explained in Appendix B. The flow curve
obtained by solving numerically Eq. 3.6 with σ0

y = 2.7, n = 0.5, B = 2.3 and α = 0.3
is depicted in Fig. 3.4. The minimum of the flow curve is located at γ̇min = 3.42 ·10−2

and σmin = 1.2208.
Note that better fits to particle-based simulations were obtained when choosing

a shear rate dependence of the exponent α(γ̇) (enabling for instance to recover a
positively sloped flow curve at low shear rate values as observed in particle-based
simulations). There is however no physical justification to such form, and keeping
a simple form for f(T ) enables us to perform the theoretical analysis presented in
Section 3.2.7.

3.2.5 Stability analysis and system size dependence

Linear stability analysis

A simple stationary solution of equations 3.1 and 3.2 corresponds to a uniform flow
and homogeneous temperature in the system: ∂γ̇/∂y = 0 and ∂T̃ /∂y = 0. In this
case, the temperature and shear rate are related by: T̃ ∗ = τ

cv
σ(γ̇∗)γ̇∗. To study the

stability of this homogeneous flow solution, we linearize the system of equations for
small perturbations of the homogeneous flow solution δvx(y, t) and of the constant
kinetic temperature field δT̃ (y, t):

vx(y, t) = γ̇y + δvx(y, t) (3.7)
T̃ (y, t) = T0 + δT̃ (y, t) (3.8)
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Increasing temperature

(a) (b)

Figure 3.4: Constitutive flow curve (shear stress as a func-
tion of shear rate) used to study the continuum model (black
solid line). (a) By showing the monotonic flow curves obtained for
various values of temperature (colored lines). (b) The black solid line

is obtained numerically using the implicit equation (Eq. 3.6).

using the ansatz:

δvx(y, t) = vx exp{λt} exp{−iky} (3.9)
δT̃ (y, t) = T̃ exp{λt} exp{−iky} (3.10)

We get the linearized equations:
[

˙δvx
˙δT̃

]
= J

[
δvx
δT̃

]
(3.11)

with J :

J =

[
−k2 1

ρ
∂σ
∂γ̇ − ik

ρ
∂σ
∂T

− ikσ
cv
− ikγ̇

cv
∂σ
∂γ̇

−λT k2
cv
− 1

τ + γ̇
cv
∂σ
∂T

]
(3.12)

The trace of the Jacobian matrix is equal to the sum of the eigenvalues:

Tr J = λ1 + λ2 = −k2(
1

ρ

∂σ

∂γ̇
+
λT
cv

)− 1

τ
+
γ̇

cv

∂σ

∂T
(3.13)

and the determinant (product of eigenvalues) reads:

det J = λ1λ2 = k4

(
λT
ρcv

∂σ

∂γ̇

)
+ k2

(
1

ρτ

∂σ

∂γ̇
+

σ

ρcv

∂σ

∂T

)
(3.14)

The expression in Eq. 3.13 for the sum of the eigenvalues is negative (because ∂σ
∂T̃

< 0),
meaning that at least one eigenvalue is negative. For the homogeneous flow to be
stable we need both eigenvalues to be negative and thus the expression for their
product (Eq. 3.14) to be positive. The first term on the right hand side of Eq. 3.14 is
positive and thus stabilizing, since we started from a monotonic flow curve assumption
in the overdamped limit ( ∂σ

∂γ̇ > 0). The sign of the second term however depends
on the competition of two contributions, a stabilizing one related to the efficiency
of the thermostat and a destabilizing one related to the sensitivity of the flow curve
to the increase in kinetic temperature. When this last term becomes predominant
in the case of weakly damped systems, we expect the homogeneous flow solution to
become unstable for large wavelength perturbations. We can thus estimate the critical
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(a) (b)

Figure 3.5: Linear stability analysis of the homogeneous flow
solution in the continuum model. (a) Eigenvalues λ1 and λ2

obtained from Eq. 3.13 and 3.14 computed for a shear rate γ̇ = 10−3

using our simple constitutive curve given by Eq. 3.6. The red dashed
line indicates the change of sign of λ1 for a wavevector k = kc. (b)
Critical length for the instability `c as a function of shear rate using
the same other parameters as in (a). The vertical dashed line indicates

the value of γ̇min = 3.42 · 10−2, the minimum of the flow curve.

wavevector kc for which the product of eigenvalues changes sign. We find:

k2
c =

1

λT

(
−cv
τ
− σ∂σ/∂T

∂σ/∂γ̇

)
(3.15)

System size dependence: comparison with particle-based simulations

From the expression of the critical wavevector kc, we get a critical wavelength `c =
2π/kc for the instability:

`c = 2π
√
λT

(
−cv

τ
− σ∂σ/∂T̃

∂σ/∂γ̇

)− 1
2

= 2π
√
λT

(
−cv

τ
+ σ

1

∂T̃ /∂γ̇

)− 1
2

(3.16)

The instability of the homogeneous flow arises for small wavevectors and hence large
wavelengths. Therefore, for system sizes smaller than this critical wavelength, L < `c,
no instability is expected even if the constitutive flow curve is nonmonotonic.

The eigenvalues obtained using the flow curve of Eq. 3.6 with a shear rate γ̇ = 10−3

and the parameters given above are shown in Fig. 3.5(a). One finds in this case a
value of kc (wave vector at which λ1 changes sign), corresponding to a critical length
`c = 2π/kc ≈ 336 (model size units). The evolution of the critical length `c with
the shear rate is depicted in Fig. 3.5(b), exhibiting a divergence for a shear rate
corresponding to the minimum of the flow curve.

From the expression in Eq. 3.16 one can clearly identify the reason for the linear
instability that arises from a competition of a stabilizing term related to the ther-
mostatting at zero temperature and a destabilizing local heating effect, quantified
through the kinetic temperature change caused by the change of the local shear rate.
In the case where this heating effect becomes negligible, as it is the case for over-
damped dynamics, the value of `c becomes infinite and the flow remains stable for
any system size as expected.

In the following we test this scenario in the particle-based simulations. We compute
`c using Eq. 3.16 inputting the values of numerically measured parameters: λT, cv and
τ . To compare with simulations, we do not assume any form for the constitutive flow
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Figure 3.6: Parametric plot (system size - shear rate) for the
emergence of shear bands. System size (represented by the length
of the gradient dimension Ly) as a function of shear rate γ̇. The sym-
bols depict the state points at which simulations were performed. Red
symbols represent the state points where we find homogeneous flow
and blue symbols represent the state points where we find a steady-
state shear instability. The value of Ly = `c computed from Eq. 3.16 is
used to define the area coloring (and depicted by the dashed line), with
the red region representing the stable homogeneous flow and the blue
region representing the flow instability. The method used to estimate
`c is discussed in Appendix B. The vertical dotted line represents the
shear rate at the minimum of the flow curve for small systems (solid

black line in Fig. 3.1).

curve, but perform a numerical estimate of ∂T̃ /∂γ̇ (see Appendix B). In the parametric
plot of Fig. 3.6, we show the simulated system size along the gradient direction Ly as
a function of γ̇. The black solid line represents `c computed from Eq. 3.16 and the
vertical dotted line represents the minimum of the flow curve (γ̇ < γ̇min), beyond which
the flow curve has a positive slope. The homogeneous flow solution is expected to be
stable (red shaded area) either (i) in the case of an increasing flow curve (γ̇ > γ̇min,
right of the vertical dotted line in Fig. 3.6) or (ii) in the case of a decreasing flow curve
but for system sizes smaller than the critical wavelength for the instability (Ly < `c,
below the dashed line in Fig. 3.6). Outside of these two regimes, the homogeneous
flow is expected to be unstable (blue shaded area). The symbols represent numerical
simulations data where we find either a homogeneous flow (red symbols) or a localized
flow (blue symbols). We find a good match between the prediction from the continuum
model and numerical simulations at intermediate shear rates. These results indicate
that our model can predict quantitatively the onset of the flow instability observed in
microscopic simulations, at least for intermediate shear rates (where there is a clear
negative slope in the flow curve). For small shear rates, it is difficult to estimate the
numerical derivative of the kinetic temperature with respect to the shear rate.

In order to investigate the dynamics in the case of an unstable homogeneous steady
state, we integrate numerically the continuum model in the next section.
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(a) (b)

Figure 3.7: Stress dynamics and flow profiles in the contin-
uum model. (a) Stress as a function of strain for an imposed shear
rate γ̇ = 10−3 and system sizes L = 330 (dashed line) and L = 380
(solid line). (b) Shear rate profiles for L = 380 at various strain values
indicated by colored dots in panel (a). L = 330 would correspond to

homogeneous flow profiles (L < `c).

3.2.6 Non linear dynamics

To go beyond the linear stability analysis, we can integrate the full non-linear con-
tinuum model (Eq. 3.1 and 3.2) using an Euler explicit scheme. We use boundary
conditions such that the shear rate and the temperature profiles obey periodic bound-
ary conditions, as in the particle-based simulations: ∂γ̇

∂y (y = 0) = ∂γ̇
∂y (y = L) and

∂T
∂y (y = 0) = ∂T

∂y (y = L). As initial configurations, we use shear rate and tempera-
ture profiles with average values equal to the imposed shear rate (and corresponding
temperature in steady state using Eq. 3.6) and with a small amplitude white noise.

As pointed out by Gross et al. (2018), the stability criterion of the explicit numer-
ical scheme depends directly on the local shear rate γ̇: ∆t < ∆x2ργ̇1−n/2An (with
∆t and ∆x the time and spatial discretization steps, γ̇ the local shear rate, A the
constant in the Herschel-Bulkley fit and n < 1 the Herschel-Bulkley exponent). For
an infinite system size, the shear rate in the non-flowing band is equal to 0, and the
steady state of the system cannot be reached using an explicit integration scheme.
For finite systems, due to the interface width between the non flowing and the flowing
regions, the minimum shear rate remains finite but tends towards increasingly small
values as the system size is increased, thus requiring an increasingly small integra-
tion timestep. The study is thus limited to rather small systems, near the instability
threshold, L ≈ `c.

In the following, we will thus discuss the dynamics of the model in the regime
L ≈ `c, in terms of evolution of the macroscopic stress and of the flow profile. We
integrate the above model imposing a macroscopic shear rate γ̇ = 10−3, yielding a
value for the critical system size `c = 336.

Evolution of the average stress

For L < `c (dashed line in Fig. 3.7(a) for L = 330), the steady-state stress is simply
given by the constitutive relationship that can be implicitly solved using the unique
T = f(γ̇) relationship valid in the homogeneous case. For L > `c (solid line in
Fig. 3.7(a) for L = 380), the steady-state stress takes a value lower than the homo-
geneous solution. The system first relaxes to the homogeneous solution state, before
the instability sets in and the stress relaxes to another steady-state stress value (that
depends upon the system size, and this point will be further discussed in the next
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section). Note that the same type of dynamics is also observed in particle-based
simulations (see Appendix B, Fig. B.4).

Evolution of flow profiles

Fig. 3.7(b) depicts shear rate profiles associated with various strain values for a sys-
tem size L = 380. As the average stress decreases, the shear rate profile becomes
increasingly heterogeneous and eventually reaches a steady state. The correspond-
ing temperature and stress profiles are shown in Appendix B (Fig. B.5). At large
strains, the average shear stress reaches a plateau and the stress becomes uniform in
the system, indicating that the system has reached a steady-state heterogeneous flow
regime.

This study enables us to evidence that once the state of the system has departed
from the homogeneous flow state, it evolves towards a new steady state corresponding
to a phase-separated profile, as in particle-based simulations. As mentioned above,
integrating the time-dependent equations until steady state is reached is restricted to
small systems due to numerical stability limitations of our explicit numerical scheme.
In the following, we study the properties of the steady state profiles by integrating
directly the continuum model equations in steady state to avoid numerical issues.

3.2.7 Steady-state flow profiles

Steady-state flow profiles obtained using the shooting method

We integrate the continuum model in steady state (Eq. 3.2 with the left-hand-side term
equal to 0) using the shooting method for single-banded profiles. This is equivalent
to solving the non-linear second order ordinary differential equation (ODE):

λ
∂2T̃

∂y2
= −σγ̇ +

cV T̃

τ
(3.17)

We invert the constitutive relation (Eq. 3.5) to get the shear rate γ̇ as a function of
the stress σ:

γ̇(σ, T̃ ) = A−1/n(σ − σy +BT̃α)1/n if σ > σy −BT̃α; (3.18)

γ̇(σ, T̃ ) = 0 otherwise (3.19)

Inserting Eq. 3.19 into Eq. 3.17, we get an ODE that we numerically solve using the
shooting method. To do so, one needs to choose initial conditions for the temperature
T̃ (y = 0) and for the temperature gradient T̃ ′(y = 0). We set T̃ ′(y = 0) = 0, and
try iteratively different values of T̃ (y = 0) such that T̃ (y = L) = T̃ (y = 0) and
T̃ ′(y = L) = 0 to satisfy the periodic boundary conditions. Additionally, we only look
for solutions with a single band (as it is the expected state in the long time limit),
i.e., solutions for which the period exactly matches the system size L. In practice, we
look for periodic steady-state solutions of Eq. 3.2 for a given value of stress σ, with
a period equal to the system size L. We set a criterion : |T̃ (y = 0) − T̃ (y = L)| < ε
with ε = 10−4 to stop the iterative procedure. From the temperature profile, we can
then reconstruct the shear rate profile using the relationship:

γ̇ =
1

σ

(
cV T̃

τ
− λ∂

2T̃

∂y2

)
(3.20)
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The macroscopic shear rate in the system can then be computed a posteriori by
integrating the shear rate profile.

Comparison with particle-based simulations: lack of lever rule

Fig. 3.8 depicts examples of flow profiles obtained both in particle-based simulations
(a) and using the continuum model (b) for a system size Ly = 2000a and for different
stress values (corresponding to different shear rates). As the shear rate is increased
in the system, both the width and the maximum of the flow profiles increase. This
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Figure 3.8: Profiles of local shear rate obtained from (a) particle-
based simulations for different applied shear rates (for a system di-
mension Lx = Ly = 22a and Ly = 360a and (b) continuum model (for
a system size Ly = 2000a), for different stresses using the shooting

method.

contrasts with usual shear banding scenarios (Divoux et al., 2016), where the maxi-
mum shear rate in the system is generally expected to be independent of the applied
shear rate (if the average stress is homogeneous). In this scenario, an increase of the
applied shear rate yields an increase of the shear band width so as to conserve the
global shear rate (so-called “lever rule”).

In Fig. 3.8(a), we show the local shear rate profiles obtained from the particle-based
simulations for different applied shear rates for a given system size (with Ly > `c(γ̇)).
The profiles show that, even though the width of the band increases with an increase
in shear rate, there is a clear absence of one chosen maximum shear rate. Instead,
the profiles exhibit a continuous interface, without a clear plateau associated with the
flowing region. Similar features are observed in the flow profiles computed from the
model (Fig. 3.8(b)). In the next part, we explain, using a mechanical analogy, the
shape of these flow profiles in the context of our continuum model.

Rationalizing the flow profiles

A stationary localized flow corresponds to a situation of coexistence between flowing
and nearly immobile regions, with a homogeneous stress profile. The determination of
the flow profile is analogous to the determination of interfacial profiles in phase coexis-
tence problems, and can be described using a classical mechanical analogy (Rowlinson
et al., 1982; Oxtoby et al., 1982).

The steady-state temperature T̃ (y) obeys equation 3.2 with ∂T̃ /∂t = 0, and this
equation can be interpreted as describing the trajectory T̃ (y) of a fictitious particle
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(a)

(b)
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~

Figure 3.9: Mechanical analogy to rationalize the shear rate
profiles. Potential U(T̃ ) (left), temperature (middle) and shear rate
profiles (right) for various stress values (from top to bottom), for sys-
tem sizes (L = 2000 or 4000) large enough to see a clear plateau in the
profiles. (a) For σ > σy (σ = 2.8): U(T̃ ) has a single extremum (at
finite temperature) corresponding to homogeneous temperature and
shear rate profiles. (b) For σ∗ < σ < σy (σ = 1.28): U(T̃ ) has
three extrema and the shear banded solutions correspond to oscilla-
tions around the minimum of U(T̃ ), where the temperature oscillates
between 0 and T̃max

flow (blue line), leading to a plateau of shear rate
close to 0 in the profile. (c) For σ = σ∗ (σ = 1.2374): the temperature
oscillates between two equal extrema of U(T̃ ), between 0 and T̃max

flow

(red line), leading to two coexisting plateaus in the profiles. (d) For
σmin < σ < σ∗ (σ = 1.23): the temperature oscillates between T̃min

flow

(magenta line) and the temperature corresponding to the second maxi-
mum of U(T̃ ) (black line), leading to a plateau at large temperature in
the profiles. (e) For σ < σmin (σ = 1.21), U(T̃ ) has a single extremum

at T̃ = 0, no flow is possible.
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in an external potential U(T̃ ), in one dimension:

λT
d2T̃

dy2
= −dU(T̃ )

dT̃
. (3.21)

In this mechanical analogy, T̃ corresponds to the position of the particle and y to
time. The effective potential is computed by integrating Eq. 3.2 in steady state with
respect to T̃ at a fixed value of the stress σ:

U(T̃ ) = σ

∫ T̃

0
γ̇(σ, T̃ ′)dT̃ ′ − cV T̃ 2/2τ (3.22)

where the function γ̇ is expressed using equations 3.18 and 3.19. The resulting po-
tential is displayed in Fig. 3.9(left) for various values of the stress, and will define
five different regimes for the possible trajectories. We first note that, by construction,
extrema of the effective potential correspond to temperatures (and shear rates) that
are solutions of the set of equations 3.3 and 3.6, which describe homogeneous flow.
The different regimes observed depending upon the value of stress in steady state are
explained below and illustrated in Fig. 3.9. Note that, as in the particle-based simu-
lations, we are only interested in periodic solutions with a period equal to the system
size, L.

No flow regime: The case σ < σmin is depicted in Fig. 3.9(e). Below a minimum
stress σ < σmin, where σmin corresponds to the minimum of the actual flow curve, the
only extremum of U(T̃ ) is obtained for T̃ = 0, which implies γ̇ = 0. For σ < σmin, no
flow is possible.

Stable homogeneous flow: For large stresses, σ > σy, the potential U(T̃ ) exhibits
a single extremum at a large value of temperature and U(T̃ ) has a finite, positive
slope at T̃ = 0. This maximum corresponds to homogeneous flow in the high shear
rate, high stress regime, as shown by the corresponding flat profiles of temperature
and shear rate in Fig. 3.9(a). The location of the maximum coincides with the stable
part of the constitutive flow curve in Fig. 3.10.

Phase separated flow regimes: For stress values σmin < σ < σy, U(T̃ ) has three
extrema: a maximum at T̃ = 0, a second maximum at T̃max, and an intermediate
minimum at 0 < T̃min < T̃max. Possible interfacial profiles correspond to oscillations
of T̃ around the minimum, with the “period” of the oscillation being equal to the size of
the system. Here, two cases must be distinguished, and we focus first on the one that
corresponds to the profiles effectively observed in simulations, with U(T̃max) > U(0),
as illustrated in Fig. 3.9(b).

• In this case (Fig. 3.9(b)), an oscillation can be obtained for values of the potential
energy U between U(Tmin) and U(0). The period of the oscillation has a value
that starts from a minimum, nonzero value for the smallest energies in the
vicinity of U(Tmin), where the oscillation is harmonic. This minimal period
defines the critical system size, below which no interface can be observed and the
system remains in a homogeneous state. We have checked that the corresponding
value of `c obtained from this analysis coincides with the one obtained from
the linear stability analysis in Eq. 3.16. As the value of the energy increases
towards U(0), the period of oscillation increases and becomes infinite at U(0),
where the trajectory spends a short “time” (i.e., space y in our system) at a finite
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Figure 3.10: Temperature-stress diagram. (a) The black line
corresponds to the constitutive temperature-stress curve (flow curve
expressed using the temperature T̃ = τσγ̇/cv). The solid black line
corresponds to a stable homogeneous flow while the dashed line corre-
sponds to a regime of unstable homogeneous flow where various tem-
peratures coexist in the system if L > Lc. The solid blue line in-
dicates the maximum temperature of the profile Tmax

flow in the regime
σ∗ < σ < σy and the solid magenta line indicates the minimum tem-
perature in the system Tmin

flow in the regime σmin < σ < σ∗. The blue
and magenta shaded area represent the coexisting temperatures in the
two regimes allowing for shear instabilities. (b) Same figure with the
x-axis shown as σ − σ0, σ0 being a value close to σmin for a better
display of the narrow region near the minimum of the flow curve.

temperature and most of the time near T̃ = 0. This corresponds to a narrow
sheared layer coexisting within a broad non-flowing part, as illustrated by the
horizontal dashed blue line in the figure, where the point marks the maximum
temperature T̃flow inside the destabilized region. The above described regime,
which accounts well for the observations made in the particle-based simulations,
is observed for values of the stress σ∗ < σ < σy.

• At σ∗, U(T̃flow) = U(0) (Fig. 3.9(c)), and for σmin < σ < σ∗, U(T̃flow) <
U(0) (Fig. 3.9(d)). As a result, for σmin < σ < σ∗, oscillating trajectories
exist between a small temperature (magenta dashed line in Fig. 3.9(d)) and
Tflow (black dashed line in Fig. 3.9(d)), with most of the “time” being spent in
the vicinity of Tflow. This situation is illustrated in the profiles of Fig. 3.9(d),
where there is a wide plateau of temperature or shear rate at Tflow coexisting
with a narrow region at lower temperature/shear rate. We have not observed
this situation in the particle-based simulations: this is not surprising, as it
corresponds to a very narrow range of stresses (see the locations of σmin and σ∗

in Fig. 3.4), approaching the minimum of the flow curve, where the critical size
for the flow instability to develop becomes increasingly large (see Fig. 3.6). Note
that in the special case where the two maxima have equal heights, U(T̃flow) =
U(0) (Fig. 3.9(c)), two bands are coexisting in the system, as in a usual shear
banding scenario.

These different regimes are summarized in Fig. 3.10. Fig. 3.10(a) and (b) depict
the stress as a function of temperature in steady state. The black line represents
the constitutive temperature-stress curve (which is directly related to the constitutive
stress-strain rate curve for a homogeneous flow using Eq. 3.3). The solid part of the
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black line corresponds to a stable homogeneous flow and is constructed from the loci
of the high temperature maxima of U(T̃ ) when varying σ. The dashed part of the
black line, constructed from the loci of the minima of U(T̃ ), corresponds to unstable
homogeneous flow leading to coexistence of various temperatures in the system if the
system size L exceeds the critical size Lc. In Fig. 3.10(a), the stress is represented
using a linear scale to make a direct link with the constitutive flow curve of Fig. 3.4.
Fig. 3.10(b) depicts the same data by zooming onto the region near the minimum of
the flow curve, by plotting the stress in a log scale as σ − σ0 (with σ0 close to σmin).

The blue solid line in Fig. 3.10 represents the maximum temperature that can
coexist in the system (in the limit of an infinite system), and corresponds to the
solution of U(T̃flow) = 0 with T̃flow 6= 0 (blue dot in Fig. 3.9(b)). The shaded blue
region thus corresponds to the values of temperatures that can exist within the profile.
Clearly the value of T̃flow, which can be defined by U(T̃flow) = U(0), depends on the
applied stress. As a result, no lever rule is expected: the total shear rate increases
as stress increases not only by broadening the sheared region, but also by increasing
temperature and strain rate inside the flowing region.

The magenta solid line in Fig. 3.10 represents the minimum temperature that can
coexist in the system (in the limit of an infinite system) in the regime σmin < σ < σ∗.
In this regime, the temperature in the profile oscillates between this magenta line
(constructed the from magenta dot in Fig. 3.9(d)) and the solid black line, as depicted
by the magenta shaded area in Fig. 3.10(b).

To sum up, this mechanical analogy enables us to understand the different steady-
state flow profiles obtained in the continuum model. Unsurprisingly, the phase sep-
aration scenario observed in particle-based simulations (Fig. 3.8(a)) corresponds to
the case observed for the largest range of stresses in the model (Fig. 3.9(b)). In our
model, the scenario of two bands coexisting (and obeying a possible lever rule) ap-
pears as a special case when σ = σ∗. One could speculate that in some systems, an
additional stress-selection mechanism would lead to a selection of this special stress
value in steady state. This is not the case in the particle-based simulations, where the
steady-state stress depends on the applied shear rate and system size as shown in the
flow curves in Fig. 3.1, and does not reach a single-valued plateau.

3.3 Discussion

In this work, we have shown how small changes in the microscopic dynamics of soft
amorphous solids can lead to the emergence of permanent shear bands.

In general, the linear instabilities in the steady state rheology of complex fluids can
be induced by spatial fluctuations of a field coupled to the flow (e.g., local concentra-
tion (Dhont, 1999; Dhont et al., 2008; Olmsted, 2008), local temperature (Dafermos
et al., 1983; Katsaounis et al., 2017) or local microstructure (Dhont, 1999; Dhont
et al., 2008)). Although this picture appears very general, there is still a lack of quan-
titative models especially in the framework of yield-stress materials, that could be
directly compared to experiments or simulations. In this work we single out a specific
destabilizing field that couples with the stress dynamics to produce permanent shear
bands. In this context, our description allows for a quantitative comparison with par-
ticle based simulations by inferring all parameters of our proposed continuum model
in simulations.

We show that a small change in the dynamics induced by microscopic inertia can
lead to a local increase of kinetic temperature which promotes local shear-weakening.
We identify this process as the leading cause for the phenomenon of shear localization.
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Hence in the continuum model, we define a destabilizing field in terms of a local kinetic
temperature. Contrary to effective fields, or parameters that enter former continuum
descriptions (Shi et al., 2007; Manning et al., 2007; Fielding, 2014; Hinkle et al., 2017),
the kinetic temperature has the advantage of having a clear microscopic definition, and
is thus easily measurable in particle based simulations (as shown in Fig. 3.1(d)) and has
been measured in some granular experiments (Losert et al., 2000). One could think
of other possible destabilizing mechanisms at play in the microscopic simulations,
such as shear-concentration coupling effects. We checked that, although there is a
slight change in density between the flowing and non-flowing regions in our system,
the concentration inhomogeneities are not sufficient to induce a local fluidization (see
Appendix B).

Effective temperatures have been discussed in a large amount of papers in the con-
text of sheared amorphous materials. For instance, in the context of the Shear Trans-
formation Zone (STZ) theory (Langer, 2004), an internal variable χ, called “effective
disorder temperature”, governs the density of structural rearrangements and thus the
plastic flow. This provides a mechanism for strain localization as a region with higher
disorder has more chances to flow under stress, and flowing regions become more dis-
ordered. Within this framework, Manning et al. (2007) reported transient shear bands
as those observed in athermal particle-based simulations (Shi et al., 2007). Similarly
to the model we proposed in this work, they consider the dynamics of the local strain
rate coupled to the dynamics of the local effective temperature χ, as well as a heat
equation to describe the dynamics of χ (including a relaxation towards its steady-state
value χ∞ and a diffusion term). At long times, the effective temperature reaches its
steady-state value χ∞ everywhere in the system, so this model accounts for transient
shear banding, as expected from their monotonic (Herschel-Bulkley type) constitutive
flow curve. They could compare qualitatively their model to the simulations of Shi
et al. (2007) under the assumption that the effective temperature χ is linearly related
to the potential energy per atom. In this sense, the effective temperature is a hidden
variable that has no explicit microscopic meaning. In our case, the kinetic tempera-
ture introduced in our model can be explicitly measured in particle-based simulations
from velocity data; there is no hidden variable. This allows for quantitative compar-
isons between model and simulations, as we are able to predict the appearance of a
linear flow instability for systems larger than a critical size Ly > `c using parameter
inputs from the simulation.

To go beyond the linear stability analysis, we showed that the qualitative features
in the stationary profiles match well between particle simulations and the continuum
model. Notably, our description allows us to understand why the stationary profiles
do not exhibit a simple band but a more complex continuous profile, leading to a lack
of lever rule. The mechanical analogy highlights a variety of possible heterogeneous
flow scenarios, with either flowing or immobile bands depending upon the stress value.
Only one of these scenarii was observed in particle-based simulations, possibly due to
the similarity between the values of σmin and σ∗ and the divergence of `c for σ = σmin.
It could be of interest to tune the parameters in microscopic simulations to attempt
to access these different shear banding regimes and further test our continuum model.

In many inertial systems the role of the kinetic temperature and its shear weaken-
ing effect is often ignored. This is, for example true in the case of granular materials
where flow instabilities have been attributed to lubrication of frictional contacts (Di-
jksman et al., 2011; DeGiuli et al., 2017). The emergence of hysteresis and shear bands
in these systems could result from a complex interplay between the different mecha-
nisms involved in the dynamics. Following a similar approach as the one suggested
in this work, a complete continuum description should couple the stress dynamics to
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several destabilizing fields, including the local kinetic temperature.

From phase separation to a critical point?

Many systems exhibit nonmonotonic flow curves associated with flow instabilities. In
the case of granular materials for instance, flow instabilities have been attributed to
lubrication of frictional contacts (Dijksman et al., 2011; DeGiuli et al., 2017). Friction
is thus at the origin of an endogenous mechanical noise that induce self-fluidization,
and hence nonmonotonic flow curves. On the other hand, external mechanical noise
(mechanical vibrations for instance) can induce a fluidization of a granular packing
(Wortel et al., 2014; Wortel et al., 2016) at small imposed stress. Interesting flow
features arise when fluctuations result from an interplay between a self-fluidizing and
an external source of noise. When the external noise dominates over the self-fluidizing
noise, this induces a transition from a nonmonotonic to a monotonic constitutive flow
curve, due to the fluidizing effect of the external noise. This transition has been
evidenced in granular media by Wortel et al. (2016), and studied in the context of
nonequilibrium phase transitions.

In the next chapter, we study the effect of competing self-fluidizing and external
noise within a generic mesoscale elasto-plastic model for the flow of soft glassy ma-
terials that account for a shear banding instability (Martens et al., 2012). Our work
suggests the existence of a generic critical point when self-fluidization competes with
an external fluidizing noise.

It would be of interest to test this scenario by adding an external source of noise
in the case where self-fluidization emerges due to inertial dynamics, as studied in this
chapter. Is the critical point restricted to “usual” shear banding scenarios obeying
a lever rule (reminiscent of equilibrium phase separation scenarios), or is it more
general?
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Chapter 4

Fluidization, giant fluctuations and
critical point in the flow of soft
glassy materials

Résumé : Fluidisation et fluctuations critiques dans l’écoulement
de solides désordonnés

Dans ce chapitre, nous nous intéressons à la rhéologie de fluides à seuils dont l’écoulement
peut être hétérogène dans l’état stationnaire (bandes de cisaillement) en présence
d’une source additionnelle de bruit mécanique.

Le rôle du bruit mécanique dans la rhéologie de systèmes denses désordonnés ainsi
que différents scénarios de fluidisation étudiés dans la littérature ont été introduit
dans le Chapitre 1 (section 1.2) et certains aspects sont rappelés en introduction de
ce chapitre. Nous insistons en particulier sur les études abordant la compétition entre
sources de bruit endogènes (résultant de l’écoulement) et sources de bruit externes, ou
indépendantes de l’écoulement. Cette compétition peut être à l’origine de fluctuations
géantes du taux de cisaillement dans l’écoulement de granulaires cisaillés et vibrés,
associées à l’existence d’un point critique tel que proposé par Wortel et al. (2016).

La question centrale de ce chapitre concerne les conséquences sur l’écoulement
de fluides à seuil d’une compétition entre sources de bruit mécanique endogène et
externe. En particulier, l’existence d’un point critique (et ses caractéristiques) est-elle
une propriété générique de ces systèmes ou dépend-elle de détails microscopiques tels
que le frottement dans les systèmes granulaires?

Nous modélisons l’écoulement de fluides à seuil en utilisant un modèle élasto-
plastique sur réseau comme décrit dans le Chapitre 2, ce qui permet d’aborder de façon
générique la question de la compétition entre diverses sources de bruit mécaniques
(endogène et externe), sans modéliser de façon détaillée la dynamique de particules.
Les modèles utilisés (décrits en détail dans le chapitre 2) sont présentés brièvement
dans la section 4.1 et les résultats sont organisés en quatre parties.

Dans une première partie (section 4.2), nous montrons comment une source de
bruit mécanique indépendante de l’écoulement peut fluidiser un fluide à seuil, en
faisant disparaître la contrainte seuil. En particulier, ce nouveau régime d’écoulement
dépend du modèle de bruit considéré, et nous discutons plusieurs arguments théoriques
qui permettent de prédire le comportement rhéologique dans le régime fluidisé.

Dans une deuxième partie (section 4.3), nous montrons comment le fait de varier
l’amplitude du bruit mécanique externe (dans deux modèles de bruit différents) peut
induire une transition entre une rhéologie non monotone associée à une instabilité de
l’écoulement homogène et une rhéologie monotone où le système s’écoule de façon ho-
mogène. Cette transition s’accompagne, dans le cas d’un forçage à contrainte imposée,
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de fluctuations géantes du taux de cisaillement macroscopique dans le système, que
nous discutons dans une troisième partie (section 4.4). Cette phénoménologie peut
s’expliquer par l’existence d’un point critique séparant les régimes dominé par le bruit
endogène et dominé par le bruit extérieur.

Dans la dernière partie (section 4.5), nous menons une étude détaillée de ce point
critique afin d’estimer les exposants critiques décrivant l’évolution de grandeurs macro-
scopiques moyennes et de leur fluctuations au voisinage de la transition. Nous mon-
trons que ces exposants ne dépendent pas du modèle de bruit considéré (et sont
compatibles avec ceux mesurés dans des expériences sur des granulaires par Wortel
et al. (2016)).

Le travail présenté dans ce chapitre suggère donc un scénario générique pour
l’émergence d’un point critique lors de la compétition de sources de bruit endogènes
(auto-fluidization sous cisaillement) et exogènes (indépendantes de l’écoulement) dans
l’écoulement de solides désordonnés.

Introduction

Understanding the mechanisms of fluidization of soft glassy materials by sources of
noise independent of the flow is a question concerning a large class of materials, ranging
from fluidization of yield stress materials due to an external noise (vibrations) (Wortel
et al., 2014; Gibaud et al., 2020) to the nature of the transitions to dynamical arrest
in active or biological systems (Janssen, 2019; Berthier et al., 2019).

In the absence of fluidizing noise, soft glassy materials behave as yield stress fluids
(YSFs), and can be described at the continuum level using empirical laws such as
the Herschel-Bulkley relationship (Herschel et al., 1926), or continuum descriptions,
such as visco-elasto-plastic (Marmottant et al., 2007; Saramito, 2007) and fluidity
models (Bocquet et al., 2009; Fielding, 2014). While such descriptions account well
for the average flow behaviour at a coarse-grained scale, it has appeared that some
flow features of YSFs are dominated by giant fluctuations of the macroscopic stress or
shear rate (Coussot et al., 2002a; Lootens et al., 2003; Cantat et al., 2006; Pastore et
al., 2011; Barés et al., 2017; Srivastava et al., 2019). This can for example lead to non-
local, strongly system-size dependent, transport coefficients for the material dynamics
(Lemaître et al., 2009; Martens et al., 2011; Tyukodi et al., 2018). Accordingly,
understanding the role of mechanical noise and its spatio-temporal features has not
only attracted a strong fundamental interest (Nicolas et al., 2018a) but is also of direct
importance in rheological applications (Bonn et al., 2017).

Part of the mechanical fluctuations in driven disordered materials are usually gen-
erated by the flow itself, for example resulting from the elastic response of the material
to localized plastic events as described in the first two chapters (Argon et al., 1979;
Schall et al., 2007). They are therefore very different in nature from thermally gen-
erated fluctuations (Nicolas et al., 2014a) and must be incorporated into modeling
approaches in a self-consistent manner (Hébraud et al., 1998; Agoritsas et al., 2015).

Interestingly, flow-induced fluctuations can be associated in some cases with a
self-fluidization of the material, i.e., a decrease in shear stress with increasing shear
rate. This leads to nonmonotonic rheological constitutive curves (Schall et al., 2010;
Mansard et al., 2011; Fielding, 2014), that can be associated with flow instabilities,
potentially leading to shear localization, metastability and hysteresis (Wortel et al.,
2014). In the case of granular materials, this self-fluidization process finds its origin
in sliding frictional contacts (Wortel et al., 2014; Wortel et al., 2016; DeGiuli et
al., 2017). In non-frictional YSFs, nonmonotonic flow curves can be explained by
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mechanisms such as inertia (Nicolas et al., 2016; Karimi et al., 2016; Vasisht et al.,
2018) or local softening following structural rearrangements (Coussot et al., 2010;
Martens et al., 2012; Cloitre, 2018).

Besides this self-generated mechanical noise, additional sources of noise can induce
a softening or even a fluidization of YSFs at small imposed external stresses. These
“external” sources of noise (in the sense that they are supposed to be independent
of the shear-induced one) can be for instance of thermal origin (Chattoraj et al.,
2010; Ikeda et al., 2012), due to an external vibration (D’anna et al., 2003; Caballero-
Robledo et al., 2009; Jia et al., 2011; Hanotin et al., 2012; Gibaud et al., 2020), or
result from local processes such as coarsening in foams (Cohen-Addad et al., 2004),
or internal activity (Mandal et al., 2016; Tjhung et al., 2017; Matoz-Fernandez et al.,
2017a).

An even more interesting case is the scenario where fluctuations result from the
interplay of a self-fluidizing and an external source of noise. Upon an increase of the
external noise magnitude, the fluidization induced by the external noise will dominate
at some critical value over the self-fluidization. This scenario can induce a change
from a nonmonotonic constitutive behavior to a simple monotonic one, due to the
fluidization effect of the external noise. This scenario has been confirmed in a recent
experimental work on sheared and vibrated granular media by Wortel et al. (2016).
In this experiment (described in Chapter 1, Fig. 1.13), mechanical vibrations fluidize
the granular packing at low shear stress and, upon a critical vibration magnitude,
induce a transition from a nonmonotonic to a monotonic flow curve. This transition
is accompanied by giant fluctuations of the macroscopic strain rate, which, in the
context of non-equilibrium phase transitions, can indicate the presence of a critical
point.

Beyond the specific case of granular materials, one can expect critical dynamics
to appear as soon as soft glassy systems exhibit both a nonmonotonic flow curve and
a fluidization mechanism. In this chapter, we explore this generic scenario for the
emergence of a critical point in the framework of elasto-plastic models for the flow
of frictionless soft glassy materials which can be tuned to exhibit a nonmonotonic
rheology (as shown in Chapter 2). We consider two different models for an external
fluidizing noise, and show that although they lead to distinct rheological behaviors at
low stress, both induce a transition from a nonmonotonic to a monotonic flow curve,
associated with the transition from shear-banded to homogeneous flow. We evidence
that the competition between the endogenous noise and an external fluidizing noise
leads to giant fluctuations in the flow of soft glassy materials, that become relevant
on the macroscopic scale. When interpreting the transition between the self-fluidized
and the externally fluidized regimes upon increasing the noise magnitude as a critical
phenomenon as done by Wortel et al. (2016), we find that critical exponents do not
depend on the model of external noise. This suggests that this type of transition might
be very generic, independent of the microscopic details in the underlying dynamics.

This chapter is organized as follows: the elasto-plastic models used in this work
(introduced in detail in Chapter 2) are briefly presented in section 4.1. Section 4.2 is
dedicated to the rheology of yield stress materials in presence of an external source of
noise. Section 4.3 concerns the effect of competing self-fluidizing and external sources
of noise on the flow, and we show evidences for a transition from a shear-banded
or hysteretic flow to homogeneous or stable flow upon increasing the external noise
magnitude. In section 4.4, we show that this transition is associated with increased
fluctuations of the macroscopic shear rate, supporting the scenario for the existence of
a critical point. Section 4.5 finally deals with the characterization of this critical point
for the two models of noise, leading to critical exponents that appear to be generic.
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4.1 Elasto-plastic models

For this study we chose to use coarse-grained elasto-plastic models (EPMs), which
provide a generic framework to describe the flow of soft glassy materials. An overview
of EPMs as well as a detailed derivation were provided in Chapters 1 and 2 of this
thesis (more details can also be found in the recent review by Nicolas et al. (2018a))
and we will only present here the specific models used in this chapter.

4.1.1 Numerical model

The spatially-resolved models considered in this work are extended from previous ver-
sions used to describe both steady-state flows of YSFs using a shear-imposed protocol
model (Picard et al., 2005; Martens et al., 2012; Nicolas et al., 2014a; Liu et al., 2016),
and transient (creep) flow using a stress-imposed protocol model (Liu et al., 2018).

We model an amorphous medium as a collection of mesoscopic blocks, each block
being represented as a node (i,j) of a square lattice of size L · L (the lattice indices
i,j represent the discretized coordinates along x and y directions respectively). The
mesh size corresponds to the typical cluster size of rearranging particles undergoing
a plastic rearrangement. These local plastic transformations are assumed to have the
same geometry as the globally applied simple shear, i.e., we consider a scalar model.
We decompose the total deformation of each node (i,j) into a local plastic strain γplij ,
which is, in general, heterogeneous, and an elastic strain γelij .

Stress-imposed model

When controlling the global stress in the system as done by Liu et al. (2018), we
also decompose the local stress into two parts, σij = σext + σintij , where σ

ext is the
externally applied uniform stress, and σintij describes the stress fluctuations resulting
from the elastic interactions between regions undergoing plastic deformation (i.e.,
particle rearrangements), as described by:

σintij = µ
∑

i′j′

G∗ij,i′j′γ
pl
i′j′ (4.1)

The interaction kernel, G∗, is of Eshelby’s type and is expressed, in Fourier space, as:
G̃∗(q) = −4

q2xq
2
y

q4
for q 6= 0 and G̃∗(0) = 0 so that σintij describes the local stress fluc-

tuations in a macroscopically stress-free state. Applying a macroscopic driving stress
σext induces a uniform shift of the local stresses without altering internal fluctuations.
The local dynamics is expressed as:

d

dt
γplij = nij

σij
µτ

= nij
σext + σintij

µτ
(4.2)

with µ the elastic modulus, τ a mechanical relaxation time setting the time units
of the model and d

dtγ
pl
ij =

nijσij
µτ the shear rate produced by a plastic rearrangement

occurring at a site (i, j). The state variable nij , indicates whether the site deforms
plastically (nij = 1) or elastically (nij = 0), and has its own stochastic dynamics that
will be described below.

Strain-imposed model

Another widely used model consists in imposing the strain rate to the system, as done
by Picard et al. (2005), Martens et al. (2012), Nicolas et al. (2014a), and Liu et al.
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(2016). In this model, γ̇ is the externally applied shear rate and we compute the local
stress σij , evolving with the overdamped dynamics:

d

dt
σij = µγ̇ + µ

∑

i′j′

Gij,i′j′
d

dt
γpli′j′ (4.3)

with dγplij /dt = nijσij/µτ . The interaction kernel G is also of Eshelby’s type (Es-
helby, 1957), and its Fourier transform G̃(q) is such that G̃(0) 6= 0 is determined
by the integral over the whole system of the elastic response. It is related to G∗ by:
G = G∗ − 1/L2, because unlike G∗, G does not describe the stress fluctuations in a
macroscopically stress-free state, but the full stress field instead.

Stochastic dynamics for the plastic activity

Besides the dynamics described in either Eq. (4.2) or Eq. (4.3) depending upon the
driving protocol, each node alternates between a local plastic state (nij = 1) and
a local elastic state (nij = 0). The stochastic rules, as introduced by Picard et al.
(2005), involve a rate of plastic activation 1/τpl when the local stress exceeds a barrier
|σij | > σy (nij : 0 → 1) and a rate 1/τel for a plastic node turning elastic again
(nij : 1 → 0). We consider in this work that a fluidizing noise induces additional
plastic events (nij : 0 → 1) with a “vibration rate” kvib. The three different types of
transitions between elastic and plastic states are illustrated in Fig. 4.1 and summarised
below:





nij(t) : 0
1/τpl→ 1 if σi > σy

nij(t) : 0
kvib→ 1 ∀σi

nij(t) : 1
1/τel→ 0

(4.4)

We study two different models for the activation of plastic events by an external noise:

1. Model 1: Constant activation rate: kvib = 1/τvib for any value of the local stress
σij

2. Model 2: Arrhenius-like activation: kvib = k0e
λvib(σij−σy) with k0 a prefactor

kept constant in our study and λvib controlling the magnitude of the noise.

These activated events have the same properties as the ones induced by shear, i.e.,
they lead to a redistribution of stress in the system through the Eshelby propagator.

In the following, the values of stress, strain rate and time are respectively given
in units of σy, σy/µτ and τ . We set τpl = 1 and the restructuring time τel can be
set either to 1 when studying only the effect of a fluidizing noise on a monotonic
flow curve, or using τel = 10 in order to induce local softening. Long restructuring
times lead to nonmonotonic flow curves (Coussot et al., 2010) and are associated with
permanent shear bands when imposing the shear rate in the system, as described by
Martens et al. (2012).

We study the influence of an external noise by varying the value of the vibration
rate kvib, either varying τvib = k−1

vib for model 1 (random activation), or λvib for
model 2 (Arrhenius-type activation) using both shear rate and stress controlled driving
protocols, as they give access to different flow features in the case of nonmonotonic
flow curves.
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Figure 4.1: Typical local stress dynamics in an elasto-plastic
model with a fluidizing noise: local stress σij as a function of time
t for a site initially in an elastic state (nij = 0, blue shaded area)
undergoing first a plastic rearrangement due to loading after a time
τpl once σi > σy, leading to plastic state (nij = 1, red shaded area)
with a viscoelastic relaxation e−

t
τ and recovering an elastic behavior

after a typical time τel (nij = 0). Another plastic event is triggered by
the fluidizing noise, with a rate kvib = 1/τvib (leading to nij = 1 and
the same relaxation dynamics as for shear induced plastic events).

.

4.1.2 Simulation methods

As we are interested in bulk quantities, we simulate the above elasto-plastic model
using periodic boundary conditions in all directions. Large scale simulations of the
elasto-plastic model are performed using a GPU-based parallel implementation as
done by Liu et al. (2016).

We perform simulations of the 2d elasto-plastic model using shear- and stress-
controlled protocols. Using a shear-imposed protocol, we measure the average steady-
state stress in the system to compute the flow curve, by averaging over a strain window
γ = 50. To compute the shear rate profiles in the shear banding regime, we average
the profiles along the direction in which the flow is homogeneous and over a strain
window γ = 1000. Using a stress-controlled protocol, we analyse time-series of the
average shear rate in the system (of average duration T = 2 · 106 for L = 128 and
L = 256, T = 6 · 105 for L = 512 and T = 105 for L = 1024, corresponding to strains
ranging from γ = 2000 to 4 · 104).

4.2 Fluidization by a flow-independent mechanical noise

In this section, we study how including an additional timescale in Picard’s model to
account for the random activation of plastic events, τvib, affects the rheology.

We first consider a single site version of the model to study the rheology in the
same spirit as Martens et al. (2012). We simulate the effective single site dynamics
with an additional timescale τvib, and find that (i) this additional timescale induces
a fluidization (vanishing yield stress) and that (ii) upon increasing noise magnitude
(decreasing τvib), the flow curve goes from a nonmonotonic to a monotonic behavior.
We further find that using a simplified version of the single site model (Martens
et al., 2012) enables to predict a linear rheology at low shear rate, as observed in
simulations. We then solve numerically the spatially-resolved Picard model with an
additional timescale τvib and find the same phenomenology. Last, we show that various
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(a) (b)

Figure 4.2: Numerical flow curve in the effective single site
dynamics version of Picard’s model (shear stress Σ as a function
of the shear rate Γ̇) for various values of τvib. (a) In a log-log repre-
sentation for a restructuring time τel = 1 (monotonic flow curve) and
increasing values of kvib = τ−1

vib . The vertical dashed lines correspond
to γ̇ = τ−1

vib for each value of τvib. (b) In a lin-log representation for a
restructuring time τel = 10 (nonmonotonic flow curve).

.

activation rules for the external noise can lead to distinct rheological behaviors at low
stress, and rationalize these findings using a simple theoretical argument.

4.2.1 Fluidization in a single site elasto-plastic model

Following the work of Martens et al. (2012), we first investigate the rheology with an
additional source of noise by considering the effective single site dynamics of the elasto-
plastic model introduced above. The advantage of such single site elasto-plastic model
is to obtain a proxy for the underlying constitutive flow curve in different regimes.
In particular, nonmonotonic flow curves are usually not seen in spatial simulations
(for sufficiently large systems at least, see Chapter 3) due to flow instabilities. This
single site model for the rheology in the absence of fluidizing noise was introduced in
Chapter 2 and we recall the main points below.

Single site elasto-plastic model

In the model for the effective single site dynamics (see Chapter 2), the stress dynamics
is described by:

∂σ(t)

∂t
= Γ̇− gn(t)σ(t) (4.5)

with Γ̇ the effective shear rate and g = |G(0, 0)| the absolute value of the stress
propagator at the origin (g ' 0.57 for large systems) (Martens et al., 2012). The
dynamics of the activity n(t) remains unchanged with respect to the spatial model:
the activation of plastic events (n : 0→ 1) results both from an activation rate 1/τpl
when the stress exceeds a barrier |σ| > σy and from a random activation with a rate
kvib = 1/τvib independently of the stress value. The transition from a plastic to an
elastic state (n : 1→ 0) occurs with a rate 1/τel.

We perform simulations of this stochastic model for the one-site dynamics with
both shear- and noise-induced (with a rate kvib = τ−1

vib) plastic events in order to
obtain the time evolution of stress σ(t) for an imposed effective shear rate Γ̇.
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Rheology in the single site elasto-plastic model

In order to compute the steady-state flow curve in this single site elasto-plastic model,
we compute the time averaged stress 〈σ〉t as a function of Γ̇. Fig. 4.2(a) depicts the
flow curves obtained for a restructuring time τel = τpl = τ = 1, leading to a monotonic
rheology (Martens et al., 2012). The random activation of additional plastic events
leads to a fluidization at low stress (vanishing yield stress), while the rheology remains
unchanged at high shear rates (the flow curves collapse with the flow curve in absence
of fluidizing noise, represented by the black squares). This enables us to define two
regimes: “noise dominated” and “shear dominated”, determined by the competition of
shear and noise associated timescales, γ̇−1 and τvib, as indicated by the vertical dashed
lines in Fig. 4.2(a) (corresponding to γ̇ = τ−1

vib). In the noise dominated regime, the
plasticity is mainly induced by the external noise, leading to a linear fluid-like regime
in the flow curve of Fig. 4.2(a). Using the same approach as Martens et al. (2012),
we can compute analytically the stress in this regime, under the assumption that
all the plasticity is induced by the external noise at a rate kvib. The details of the
computation are shown in Appendix C.1.1. We find a linear rheological behavior
Σ = c(τel, τvib)Γ̇ (c(τel, τvib) given in Eq. C.8), in agreement with simulations of the
complete model.

In Fig. 4.2(b), a large value for the restructuring time (τel = 10) is responsible for
a self-fluidization of the system (decreasing flow curve for γ̇ < γ̇c ' 0.06). Upon an
increase of the external noise (kvib = τ−1

vib), a transition from a flow curve exhibiting a
negative slope (nonmonotonic) to a monotonically increasing flow curve is observed.
This is similar to what was reported in experiments on sheared and vibrated granular
media (Wortel et al., 2016) (see Introduction, Fig. 1.13).

Conclusion

We see through simulations of this simple single site elasto-plastic model that random
activation of plastic events due to an external noise induces a fluidization of yield
stress materials at low stress. Within this model of activation at constant rate kvib,
this results in a linear rheology regime at low shear rate, that can be rationalized
under several simplifying assumptions (neglecting for instance the mechanical noise
due to elastic interactions). Note that in the regime where plasticity is dominated
by the random activation of plastic events, the internal mechanical noise due to elas-
tic interactions has only little effect on the rheology, as demonstrated for instance
by comparing scalar and tensorial elasto-plastic models using different rules for the
orientation of randomly activated events (see section 4.6). We will see further in this
chapter that the low shear rate rheology depends on the particular rules of activation.

As mentioned in introduction, another widely used model to describe the rhe-
ology of yield stress fluids is the model introduced by Hébraud et al. (1998) (HL).
This model was further extended by Matoz-Fernandez et al. (2017a) to account for
fluidization by a flow-independent noise term in the dynamics. The corresponding
rheological curves are shown in Fig. 1.16(c) and resemble that of Fig. 4.2(a), with a
linear “noise dominated” regime. In the work of Matoz-Fernandez et al. (2017a), the
external noise takes the form of an additional constant contribution to the diffusion
coefficient that describes stress diffusion in the HL model and aims at describing the
mechanical noise induced by cell divisions and death events occurring at rates d0 and
a respectively. The comparison between particle-based simulations and the theoretical
model reveal that the additional stress diffusion constant in the HL model appears to
be proportional to the rate of apoptosis events a, leading to a viscosity η ∼ 1/a. This
suggests that the random activation model proposed here could also be interpreted
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(a) (b)

Figure 4.3: Flow curves and viscosity for two models of noise.
(a) Shear stress Σ as a function of the imposed shear rate γ̇ in the
absence of external noise (small dark blue dots) and for the two models
of agitation with kvib = 3.3 ·10−4 (model 1, black square symbols) and
λ−1
vib = 3.3 · 10−2 (model 2, red dots), for a system size L = 256. The

dashed line is a guide-to-the-eye indicating a logarithmic behaviour.
(b) Log-log plot of the viscosity Σ/γ̇ as a function of the shear rate
(for γ̇ < 10−3) showing the linear rheology regime (constant viscosity)

at small shear rates for model 1.

in a Hebraud-Lequeux framework as an additional constant contribution D0 to the
diffusion coefficient for the stress, with D0 ∼ 1/τvib.

Another important outcome of this section concerns the nonmonotonic rheology
obtained in this simple single site elasto-plastic model for large values of the restructur-
ing time τel. This regime, characterized in detail by Martens et al. (2012) in absence of
external noise, is associated with a flow instability in the corresponding spatial model.
We show in this section that the flow curve can be tuned by introducing an external
noise and a monotonic rheological behavior can be obtained for sufficiently large mag-
nitudes of the noise. This is qualitatively similar to the transition reported in sheared
and vibrated granular media by Wortel et al. (2016) and shown to be associated with
critical dynamics.

In the following, we explore a spatial (2d) version of this elasto-plastic model
using two different models of external noise to further investigate the flow behavior
induced by an external noise. Using a spatial model enables us to study how the flow
instability is affected by an external noise and test the possible existence of a generic
critical point.

4.2.2 Fluidization in the spatial (2d) elasto-plastic model

We now consider the spatial elasto-plastic model introduced in Chapter 2 and at
the beginning of this chapter, with two different models of fluidizing noise: a random
activation model (model 1, as studied above in the single site model) and an Arrhenius-
like activation model (model 2). We compare two different models of noise in order to
understand how the specific details of the activation mechanisms due to an external
noise influence the low shear rate rheology, and, whether these details affect the nature
of the transition from a nonmonotonic to a monotonic flow curve.

In the absence of fluidizing noise (kvib = 0) the elasto-plastic model exhibits a
yield-stress fluid behavior (Picard et al., 2005), as shown by the finite stress plateau
at low shear rate in the upper dark blue curve in Fig. 4.3(a). With the value of
restructuring time τel = 10 used in this work, the rheology in the absence of fluidizing
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noise is nonmonotonic, i.e., the underlying constitutive (single site) flow curve has a
minimum which is set by the choice of τel, as discussed by Martens et al. (2012) and in
Chapter 2. The minimum of the constitutive flow curve for τpl = τ = 1 and τel = 10
corresponds to a shear rate of about γ̇c ' 0.06.

For finite dimensions and sufficiently large systems, this (unstable) nonmonotonic
flow curve cannot be observed in simulations, due to the existence of shear bands
(leading to a stress plateau, as shown for intermediate shear rates in the top curve
of Fig. 4.3(a)). This is the main qualitative difference between the rheology obtained
within the single site model and the 2d spatial model. Note that negative slopes can
still be observed in the flow curve of finite systems (around γ̇ = 10−3) due to finite-size
effects.

Flow curves obtained for the two models of noise are shown in Fig. 4.3(a), with
magnitudes kvib = 3.3 · 10−4 for model 1 (random activation) and λ−1

vib = 3.3 · 10−2

for model 2 (Arrhenius) respectively. First, the system exhibits a fluid-like behavior
at low stress (and γ̇ < 10−3), as shown by the absence of stress plateau at low shear
rate. This regime is followed by a stress-plateau (10−3 < γ̇ < 10−1), associated with
a shear banding instability (see Fig. 4.5), analogous to the case when the fluidizing
noise is absent. Shear-banded profiles will be further discussed in section 4.3.1. The
last regime (γ̇ > 10−1) corresponds to a stable homogeneous flow.

Low shear rate rheology

While the global shape of the flow curve is the same, the rheological behavior in the
low stress regime differs between the two models of activation. The random activation
rule (model 1) leads to a Newtonian behavior at low shear rates, with a constant
viscosity η = Σ/γ̇ as shown in Fig. 4.4(b), whereas the Arrhenius-like rule (model
2) leads to a logarithmic-like flow behavior, reminiscent of experiments on vibrated
granular media (see Fig. 1.12(b) or Fig. 1.13(a) from the work of Dijksman et al.
(2011) and Wortel et al. (2016)). This can be understood from the activation rule,
using a simplified argument in the low shear-rate regime, as detailed in Appendix
C.1.2. This calculation is based on two simplifying assumptions: (i) that the internal
mechanical noise is negligible, in this regime, with respect to the external noise, and
(ii) that the plastic relaxation fully relaxes the local stress and that its duration is
negligible with respect to the duration of the elastic phase. Within this simplified
dynamics, we obtain for model 1 the linear behavior Σ = µγ̇/kvib, and for model 2
the logarithmic behavior

Σ =
σc
2

+
1

2λ
ln

(
λµ

k0
γ̇

)
. (4.6)

Note that this simplified argument enables us to get the right rheological behavior
(and the scaling with kvib for model 1) but the dependence of the low shear rate
viscosity with the restructuring time τel cannot be obtained under the assumption of
full stress relaxation.

Flow curves for various noise magnitudes

Flow curves for various noise magnitudes are depicted in Fig. 4.4 for the two models
of activation (by varying either kvib = 1/τvib in model 1 or λvib in model 2). For the
two models, the effect of noise is (i) a fluidization (vanishing yield stress) at any value
of the noise magnitude and (ii) a transition from a nonmonotonic to a monotonic flow
curve at a noise magnitude, kcvib = (1.3± 0.2) · 10−3 or λcvib = 20± 2 (the thick black
lines in Fig. 4.4 correspond to kcvib = 1.25 · 10−3 and λcvib = 20).
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(a) (b)

Figure 4.4: Shear stress Σ as a function of the imposed shear
rate γ̇ for various noise magnitude for (a) the random activation
model (model 1, kvib ranging from 10−5 to 3.3 · 10−3) and (b) the
Arrhenius activation model (model 2, λ−1

vib ranging from 2 · 10−2 to
10−1), for a system size L = 256. The upper curve in (a) and (b) is

obtained in absence of noise.

4.3 Competing self-fluidization and external fluidization

In this part, we investigate how the competition of self-fluidization and external flu-
idization affects the flow properties of soft glassy materials in a spatial elasto-plastic
model. While self-fluidization is known to induce mechanical instabilities in the form
of shear bands or hysteretic flow, we study how external sources of noise affect these
features.

4.3.1 Shear rate profiles

Fig. 4.5 depicts profiles of shear rate in steady state averaged over a strain window of
1000, for the two models of noise. In the low noise regime (nonmonotonic flow curves)
the system separates into two flowing regions (blue curves in Fig. 4.5), where the
minimum and the maximum of the shear rate profile are determined by the boundaries
of the stress plateau in Fig. 4.4. This is similar to the shear bands reported by Martens
et al. (2012) within a mesoscale elasto-plastic model in the absence of fluidizing noise,
leading to the coexistence of a flowing and an arrested region instead. In our model,
the difference in shear rate between the two bands decreases as the magnitude of the
noise is increased, until reaching a stable homogeneous flow regime as shown by the
flat profiles (light purple curves in Fig. 4.5) corresponding to a monotonic flow curve.

The transition from a phase separated flow to a homogeneous flow can thus be
characterized using the difference in shear rate between the two flowing bands. We
define the order parameter of this transition as the logarithm of the ratio of shear
rates in the two flowing bands:

Order parameter = log

(
γ̇fast
γ̇slow

)
= Sfast − Sslow (4.7)

with S = log(γ̇).
Shear banding occurs as a result of a multi-valued relation between the stress and

shear rate in the material as it is the case for nonmonotonic flow curves (Olmsted,
2008). In the case of gradient banding, two different shear rates coexist for a given
stress value. The selected stress value corresponds to the stress plateau value Σp
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(a) (b)Model 1 (random) Model 2 (Arrhenius)

Figure 4.5: Steady-state shear rate profiles (computed over a
strain window of 1000) for various values of the noise (for a system
size L = 512) for (a) the random activation model (kvib ranging from
3.3 · 10−4 to 1.4 · 10−3) and (b) for the Arrhenius activation model

(λ−1
vib ranging from 2.5 · 10−2 to 5 · 10−2).

.

measured using a shear-controlled protocol. When controlling the stress Σ in the
system, shear banding would thus occur only if the applied stress coincides precisely
with the stress-plateau value Σ = Σp. In practice, the flow remains homogeneous in
stress-controlled protocol. The extent of the plateau (and hence the order parameter
defined above) can however be probed as the lower stable shear rate branch will be
reached if the applied stress Σ < Σp and the upper shear rate branch will be reached
if Σ > Σp.

4.3.2 Metastable flow regime (model 1)

In this section, we characterize the phase coexistence regime using a stress-controlled
protocol in the case of model 1. With this protocol, the shear rates within the un-
stable part (negative slope) of the constitutive flow curve becomes inaccessible. By
varying the initial conditions for the flow, the width of this unstable region can thus
be characterized, giving access to the extent of the stress plateau, as done indirectly
by studying the shear rate profiles.

Protocol: We impose a stress σext = Σ, and examine the flow features starting from
either flowing or arrested initial states. Flowing states are prepared by shearing the
system at Σprep = 100σy during 50 time units, and then setting the stress to the value
of interest Σ and letting the shear rate relax to its steady-state value. Arrested states
are prepared by setting the initial values of local stresses σij , activities nij and local
deformations γij to 0. Fig. 4.6(a-b) depict two examples of S = log(γ̇) as a function of
time starting from either flowing or arrested states, in the hysteretic region (panel (a))
and near the transition to a monotonic flow curve (panel (b)), for strain values up to
800. We are interested in the values of S at large strain in the two flowing branches:
Sfast and Sslow. The value of stress Σ selected to measure Sfast and Sslow is chosen such
that it is the lowest value of stress for which the fast flowing branch remains stable
within the time of our simulation (corresponding to strain values γ > 700). The value
of the minimum stress is determined with an accuracy of about 10−5 to 10−4 (relative
error of about 10−4), leading to the errorbars for S displayed in Fig. 4.6(c). This
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Figure 4.6: Stable and hysteretic flow regimes. (a) and (b):
S = log(γ̇) as a function of time starting from either a flowing (red) or
an arrested state (blue) (system size L = 1024): (a) Phase separated
regime with kvib = 1.177 · 10−3 and Σ = 0.47715 and (b) near the
critical point with kvib = 1.324 ·10−3 and Σ = 0.47595. (c) Stable and
hysteretic flow regimes: (pink and green shaded regions respectively)
determined with a stress-controlled protocol (L = 1024) from the lim-
its of stability of the stable slow (blue dots) and fast (red dots) flowing
branches. Black dashed line: linear fit of the inflection point of the

flow curves in the stable flow regime for various system sizes.

method gives a robust measurement of the scaling of the order parameter in the phase
separation regime, although it can seem somehow arbitrary because it does not give
a direct access to the exact binodal or spinodal lines of the system.

Phase diagram: Using this protocol for various noise magnitudes, we report the
values of Sfast and Sslow in the (S − kvib) plane in Fig. 4.6(c), which delimit the
coexistence regime in the phase diagram. The difference between the two flow so-
lutions depicted in Fig. 4.6(c), Sfast − Sslow, then quantifies the ratio of shear rates
log10(γ̇fast/γ̇slow) in the two branches. It decreases as vibration is increased, up to the
point where it vanishes, consistent with the transition to a stable homogeneous flow
in a shear-rate-controlled driving protocol.

This is reminiscent of equilibrium phase transitions, where the distance between
the two flow solutions Sfast−Sslow can be seen as the analogue of the density difference
(order parameter) in the liquid-gas critical point. As a consistency check, we will see
in section 4.5 that the scaling of the order parameter Sfast − Sflow near the transition
is independent of the protocol used.

4.4 Giant shear-rate fluctuations

We now investigate in more details the noise dominated regime corresponding to
kvib > kcvib (model 1) or λ−1

vib > λcvib
−1 (model 2), where the flow curve is monotonously

increasing, so that the homogeneous flow is stable. In this regime, using shear- or
stress-controlled protocols leads to the same average rheological behavior. Interesting
properties are rather to be found in shear-rate fluctuations (using a stress-controlled
protocol), that we first describe qualitatively.

In Fig. 4.7, we measure the macroscopic shear rate in the system as a function
of time in steady state, for two different values of kvib (for model 1), choosing stress
values corresponding to the inflection point of the flow curve. For large values of the
noise magnitude (kvib = 5 ·10−3, lower red curve in Fig. 4.7), the fluctuations of shear
rate γ̇ are relatively small (variations of about 10 % of the mean value for a system size
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Figure 4.7: Macroscopic shear rate γ̇ as a function of time for
model 1 (random activation) for kvib = 1.325 · 10−3 (top, blue curve)
and kvib = 5 · 10−3 (bottom, red curve) for a system size L = 512 (the

y-axes of the two curves are shifted for readability).

N = 5122) and not correlated in time. When decreasing the noise towards its value at
the transition between monotonic and nonmonotonic flow curves (kvib = 1.32 · 10−3,
see Fig. 4.4), the fluctuations of γ̇ increase (50 %) and become correlated in time, as
it can be seen on the upper (blue) curve of Fig. 4.7.

4.4.1 Rescaled shear-rate distributions

To perform a quantitative analysis, we compute the distributions of macroscopic shear
rate in steady state for various system sizes N and noise magnitudes kvib, again for a
stress value corresponding to the inflection point of the flow curves. From the central
limit theorem, one expects relative fluctuations of the shear rate to scale as 1/

√
N for

large system size. Fig. 4.8 depicts the centered distributions of γ̇ rescaled by
√
N for

different system sizes N . In this representation, curves collapse if relative fluctuations
scale like 1/

√
N . For large noise magnitudes (Fig. 4.8(a), kvib = 5 ·10−3), the data for

all system sizes collapse onto the same curve, indicating that the shear rate fluctuations
obey the central limit theorem. Unsurprisingly, the shear rate fluctuations in this
regime follow a Gaussian distribution as shown by the fit in the inset of Fig. 4.8(a).
As the noise magnitude is decreased (Fig. 4.8(b-d)), the rescaled distributions widen
and a systematic dependence with the system size appears. This indicates a deviation
from the central limit theorem at the approach of the transition, associated with
growing spatial correlations of the macroscopic shear rate. Moreover, the maximum
system sizes for which finite size effects are observed in Fig. 4.8 give an estimate of the
correlation length ξ in the system as the noise is varied (in Fig. 4.8(b) 32 < ξ < 64
for kvib = 2 · 10−3, (c) 64 < ξ < 128 for kvib = 1.35 · 10−3 and (d) ξ > 512 for
kvib = 1.32 · 10−3). The increase of the correlation length when decreasing the noise
indicates a possibly diverging length scale in the system at the transition, which is
consistent with the existence of a critical point (Wortel et al., 2016). We show in the
inset of Fig. 4.8(d) that the distribution for kvib = 1.32 · 10−3 can be approximately
collapsed by rescaling the shear rate by Nx with x ' 0.275 (instead of 1/2 far from the
transition). This shows that relative fluctuations of the shear rate decay approximately
as 1/N0.275 with system size, that is, much more slowly than the standard 1/

√
N

scaling corresponding to the central limit theorem. This slower decay of relative
fluctuations with system size can be described as the presence of giant shear-rate
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(c) (d)

(a) (b)

Figure 4.8: Centered distributions of macroscopic shear rate
γ̇ computed for model 1 (random activation) at the inflection point
of the flow curve for various system sizes (from L = 32 to L = 512),
with the x-axis rescaled by multiplying γ̇ by the linear system size L =√
N and the y-axis by dividing P (γ̇) by

√
N , in the stable flow phase

(monotonic flow curve), for decreasing values of the noise magnitude:
(a) kvib = 5 · 10−3, (b) kvib = 2 · 10−3, (c) kvib = 1.35 · 10−3 and (d)
kvib = 1.32 · 10−3. Inset of (a): Lin-log plot of the distribution for
L = 256 with Gaussian fit (red). Inset of (d): Finite size data collapse

of the shear rate distributions using an exponent x = 0.275.
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(a) (b)Model 1 (random) Model 2

(Arrhenius)

Figure 4.9: Variance of S = log(γ̇), ∆S2, as a function of the
distance (in stress) to the inflection point of the flow curve,
Σ − Σi for various noise magnitudes and for a system size L = 128.
(a) Model 1, for values of kvib ranging from 1.29 · 10−3 (upper purple
curve) to 1.75 · 10−3 (lower red curve). (b) Model 2, for values of λ−1

vib
ranging from 5.12 · 10−2 to 6.6 · 10−1.

fluctuations. These giant shear-rate fluctuations are directly visible in an experimental
context (work by Wortel et al. (2016)), and their characterization is thus of interest.

Note that for a linear system size L (=
√
N) much larger than the correlation

length of the system, the standard 1/
√
N scaling is recovered, together with a Gaussian

shape of the distribution. This crossover is visible on Fig. 4.8(b) and (c).

4.4.2 Shear-rate fluctuations varying the applied stress

Instead of looking at the dependence of fluctuations on system size, one may also look
at their dependence on stress. In Fig. 4.9, we depict the variance of S as a function
of the distance (in stress) to the inflection point of the flow curve for various noise
magnitudes (for a single system size, L = 128). It can be clearly seen that the variance
at the inflection point is maximal (for Σ = Σi) and increases monotonously as the noise
magnitude is decreased towards its value at the transition. The same phenomenology
is observed for model 2 (Fig. 4.9(b)). Enhanced fluctuations are thus observed close
to the inflection point, even for a fixed, intermediate system size. A similar behavior
is observed for the correlation time of the fluctuations (extracted from an exponential
fit of the temporal autocorrelation data), as shown in Fig. 4.16(a). Wortel et al.
(2016) report similar results in experiments on vibrated and sheared granular media,
as shown in Fig. 1.12(b,d).

4.4.3 Origin of non-standard fluctuations

The emergence of fluctuations with non-trivial statistics is actually consistent with
the presence of a critical point, around which the system becomes correlated over a
large lengthscale. This flow transition can be characterized using the distance between
the two flowing branches Sfast − Sslow as an order parameter. The parameter control-
ling the noise magnitude (kvib or λvib) is used as a control parameter (analogous to
temperature) while the stress Σ plays the role of an external field (or pressure) in
equilibrium phase transitions.

Both average quantities and fluctuations are expected to exhibit power-law scalings
at the transition, so the critical point is described by a set of critical exponents, which
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are supposed not to depend on details of the system, but rather only on generic
properties shared by a broad class of systems. For instance, one may expect that both
model 1 and model 2 share the same critical properties. This statement, though, does
not rest on any firm theoretical consideration, and should be tested numerically. This
is one of the goals of the next section.

The next section contains both a detailed analysis of the critical point in model 1
(random activation) and a comparison of some of the results to model 2 (Arrhenius like
activation). We show that the scaling of both average quantities and fluctuations does
not depend on the model of noise in the critical regime, and are also consistent with
experimental values (Wortel et al., 2016). We find in particular that while some of
the critical exponents resemble simple mean-field values, the exponents characterizing
the divergence of correlation length and time display non-trivial values.

4.5 Generic critical point at finite shear and vibration
rates

In this section, we first study the evolution of average steady-state quantities as the
noise magnitude is varied in the critical regime by studying the scaling of the flow
curves and of the order parameter. We then investigate the scaling of shear rate
fluctuations.

In the following, the noise magnitude is designated by the relative distance to the
critical point, which reads, for the two models of noise:

ε =
kvib − kcvib

kcvib
(Model 1) (4.8)

ε =
λ−1
vib − λcvib−1

λcvib
−1 (Model 2) (4.9)

The stable flow (noise dominated) regime thus corresponds to ε > 0 and the phase
separated regime to ε < 0. We summarise below the list of scalings expected at the
transition.

In the regime ε < 0, the order parameter Sfast − Sslow vanishes as the noise mag-
nitude is increased towards its critical value as a power law with an exponent β:

Sfast − Sslow ∼ |ε|β for ε < 0 (4.10)

The critical point corresponds to the transition from a monotonic to a nonmonotonic
flow curve, and hence the slope of the flow curve at the inflection point vanishes at
the critical point. It can be interpreted as an inverse susceptibility χ, expected to
scale as a power law of the distance to the critical point ε with an exponent γ:

χ ∼ ε−γ for ε > 0 (4.11)

At the critical point (ε = 0), the flow curve exhibits a zero slope and S is expected to
vary as a power law of the imposed shear stress (after centering the flow curve using
the coordinates of the critical point (Sc,Σc)) with an exponent 1/δ:

|S − Sc| ∼ |Σ− Σc|1/δ for ε = 0 (4.12)
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(a) (b)

Figure 4.10: Landau expansion fit in the stable flow regime.
(a) Example of data for model 1 (random activation): S − Si as a
function of Σ− Σi, with Si and Σi the coordinates of each flow curve
inflection point. Simulation points for L = 256 (averaged over γ >
2 · 104) (dots) and fits to Eq. 4.16 (solid lines). (b) Data collapse for
the two models using the fitting parameters from the fit to Eq. 4.16
(a(ε), b(ε), Si(ε) and Σi(ε)) with u =

√
b/a and v =

√
b3/a. Data

shown for a system size L = 128.

The variance of S diverges at the critical point when varying the imposed stress:

∆S2 ∼ |Σ− Σc|−κ for ε = 0 (4.13)

The variance and the correlation time of S diverge as the critical point is approached
from the high noise regime:

∆S2 ∼ ε−γ∗ for ε > 0 (4.14)
τcorr ∼ ε−µ for ε > 0 (4.15)

4.5.1 Scaling of the flow curves and susceptibility

Using a stress-controlled protocol, we compute the steady-state flow curve in the stable
flow regime (ε > 0), for the two models of fluidizing noise and investigate the scaling
of the stress Σ as a function of S = log(γ̇). The data for the two models can be well
fitted to a Landau type expansion in the critical regime:

Σ = Σi + a (S − Si)3 + b (S − Si) (4.16)

where a, b, Si and Σi are fitting parameters shown in Fig. 4.11 for various values of ε
and system sizes L. Examples of fits are shown for model 1 for a system size L = 256 in
Fig. 4.10(a). Using the fitting parameters obtained for the two models (see (Fig. 4.11),
all the data can be collapsed onto the same master curve, as shown in Fig. 4.10(b). a(ε)
is roughly constant (Fig. 4.11(a)). The coordinates of the inflection point (Si(ε),Σi(ε))
evolve monotonously as the noise is varied, and describe the analogous of the super-
critical liquid-gas boundary in equilibrium phase transitions (Fig. 4.11(c-d)). The
prefactor b of the linear term in Eq. (4.16), (Fig. 4.11(b)), decreases linearly as ε is
increased and vanishes at the critical point. As it describes the slope of the flow curve
at the inflection point, it is interpreted as the inverse susceptibility b = 1/χ, which
diverges at the critical point with an exponent γ ' 1 [Eq. (4.11)] (see Fig. 4.17). At
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(a)

(b)

(c)

(d)

Figure 4.11: Parameters from the Landau-like expansion fit
for various values of the noise ε and various system sizes L, for model
1 (black empty squares, dashed line) and model 2 (red dot, solid line).
(a) Prefactor a; (b) inverse susceptibility b; (c) and (d) coordinates of
the inflection point shifted by the critical point location, respectively

Si − Sc (c) and Σi − Σc (d).

the critical point, b = 0 and hence the flow curve (“critical isotherm”) is well described
by Eq. (4.12), with δ = 3.

Critical point location

To locate the critical value of noise, we fit the data of Fig. 4.11(b) to extract the value
of kcvib and λcvib for which b = 0 (diverging susceptibility). While significant finite
size effects are observed for model 1 (random) (and discussed in section 4.5.3), the
finite size effects on the value of b remain within the error bars for model 2. We find
kcvib = (1.35± 0.01)10−3 for model 1 (see section 4.5.3) and λcvib

−1 = (5.1± 0.2)10−2

for model 2.

4.5.2 Scaling of the order parameter

Shear-imposed protocol

In Fig. 4.12(a), we investigate the scaling of the order parameter Sfast−Sslow extracted
from the shear rate profiles (Fig. 4.5) at the approach of the transition, in the regime
ε < 0. The order parameter decreases as ε is decreased, and scales as a power law
of the distance to the critical point (fit of the form Sfast − Sslow = A|ε|β). In the fit
of Fig. 4.12(a), ε = (kvib − kcvib)/kcvib for model 1, ε = (λvib − λcvib)/λcvib for model
2 and kcvib, λ

c
vib, β and A are free fitting parameters. We get β1 = 0.58 ± 0.07

(model 1) and β2 = 0.49 ± 0.04 (model 2), with kcvib = (1.21 ± 0.05) · 10−3 and
(λcvib

−1 = 4.95± 0.05) · 10−2. For the two models, the critical exponent β is close to
0.5, which is consistent with the Landau-type scaling in the regime ε > 0.
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(a) (b)

Figure 4.12: Order parameter Sfast−Sslow as a function of the
scaled distance to the critical noise magnitude ε, λcvib and kcvib
being fitting parameters of the fit Sfast − Sslow = A|ε|β (see text). (a)
From shear rate profiles data, Model 1: lower black square symbols
(with dashed line fit). Model 2: Upper solid circles (with solid line
fit). Error bars are estimated from the standard deviation of S in the

bands. (b) From stress-controlled protocol data for model 1.

The critical noise magnitudes (kcvib, λ
c
vib
−1) obtained from the fit for a system

size L = 512, although they are not far from the previous estimate, are slightly
underestimated. In fact, extracting the order parameter from the flow profiles is a
difficult task near the critical point, as the coarsening time of the shear bands increases
(and is expected to diverge for ε = 0). As a consequence, we cannot access steady-
state profiles in the critical regime. The configurations associated with the closest
data points to the critical point in Fig. 4.12 are not coarsened yet, thus leading to
large error bars and possibly explaining the slight underestimate of ∆S and hence an
underestimate of the critical noise magnitudes.

Stress-imposed protocol (model 1)

Using the stress-controlled protocol described in section 4.3.2 (to get the phase dia-
gram), we also examine the scaling of the order parameter Sfast − Sslow with the dis-
tance to the critical point, by performing a power-law fit of the form: Sfast−Sslow(L) =
A((kcvib(L)− kvib)/kcvib(L))β .

In Fig. 4.12(b), we find a good agreement with a power law with the following
parameters for L = 1024: kcvib(L) = (1.324 ± 0.005)10−3, A = 1.43 ± 0.03 and
β = 0.52± 0.02. Note that the value of kcvib(L) is consistent with the value obtained
from the divergence of the susceptibility (1/χ = b(kvib) = 0) in Fig. 4.13(b) (where
we had, for L = 1024, kcvib(L) = (1.33± 0.02)10−3).

4.5.3 Finite size effects

In Fig. 4.8, we evidenced the existence of finite size effects on the distributions of
macroscopic shear rate. In this section, we study in detail these finite size effects in
the case of model 1 (random activation). Let us recall that at the critical point, the
correlation length of the system diverges as:

ζ ∼ ε−ν for ε > 0 (4.17)
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(a) (b)

Figure 4.13: Susceptibility and critical point location. (a)
Inverse susceptibility b as a function of kvib for L = 128, 256, 512, 1024
and linear fits to estimate kcvib(L) for which b(kcvib, L) = 0. (b) kcvib(L)
as a function of L−1 and linear extrapolation (dashed line) to get

kcvib(∞) (red dot)

We first study how the transition point in model 1 (as determined from susceptibility
measurements) is shifted when changing the system size, which provides a first esti-
mate of the critical exponent ν. We then confirm this scaling by performing direct
measurements of correlations in the system. We finally test this exponent by perform-
ing finite size data collapse of the susceptibility data for the two models, and find a
good agreement of the two models with ν ' 1.

Finite size shift of the transition (model 1)

To get the critical random activation rate kcvib, we estimate the value of kvib corre-
sponding to a diverging susceptibility χ, or equivalently, b(kvib) = 1/χ(kvib) = 0. In
Fig. 4.13(a), we show linear fits of b(kvib) for system sizes up to L = 1024, from which
we extract the values kcvib(L) corresponding to b(kvib) = 0 depicted in Fig. 4.13(b).
By performing a linear extrapolation of kcvib(L), we get the critical value in the limit
of an infinite system size (red dot in Fig. 4.13(b)), leading to kcvib = (1.35±0.01)10−3.
The linear scaling of the transition shift in Fig. 4.13(b) suggests that the value of the
exponent ν related to the correlation length ξ should be close to 1, as one would ex-
pect a scaling for the shift of the critical rate of the form |kcvib(L)− kcvib(∞)| ∼ L−1/ν

(see for instance Binder et al. (2010)).

Correlation length measurements (model 1)

In order to determine how spatial correlations evolve in the system as kvib is varied,
we compute the squared modulus of the Fourier transform of the instantaneous local
shear rate configuration, averaged over at least 104 configurations, C̃(q). C̃(q) is
depicted in Fig. 4.14 for various values of kvib. Note that the data look noisier as
approaching kcvib, due to growing time correlations in the system near the critical
point, i.e., due to finite-time limitations of our simulations. In the vicinity of the
critical point, we expect a scaling of the form C̃(q) ∼ qα (see for instance Le Bellac
(1992)). We estimate the value of α from data where kvib ' kcvib (thick solid line in
Fig. 4.14(a)) and find α ' 0.75. We show, in Fig. 4.14(b), C̃(q)qα as a function of
qξ, with ξ =

(
(kvib − kcvib)/kcvib

)−ν . The best collapses are found for ν = 0.95± 0.05,
consistent with the linear scaling of Fig. 4.13(b).
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(a) (b)

Figure 4.14: Spatial correlations: (a) Fourier transform of the
autocorrelation of local shear rate C̃(q) as a function of q for a system
size L = 1024 and various values of kvib ranging from kcvib = 1.35 ·10−3

(solid blue line) to kvib = 1.81 · 10−3 (yellow dashed line) (b) Same
data normalized by a power-law dependence C̃(q)qα as a function of
qξ with ξ =

(
(kvib − kcvib)/kcvib

)ν with ν = 0.95 enabling data collapse
for small values of q.

Finite size data collapse for the two models

Using ν = 1, we show in Fig. 4.17(a) the data for the susceptibility χ = 1/b rescaled
by a factor L−γ/ν as a function of the scaled distance to the critical point εL1/ν . ε
is expressed using the above value kcvib = (1.35± 0.01)10−3 and refining the value of
λcvib

−1 to get the best data collapse (λcvib
−1 = 5.15 · 10−2). The ability to collapse the

data for all system sizes for the two models of noise suggests that they share similar
critical exponents for the susceptibility and the correlation length (γ ' 1 and ν ' 1).

In the next section, we will also see that using this value of ν enables us to perform
finite size data collapse for the fluctuations data for the two models of noise.

4.5.4 Scaling of fluctuations

In equilibrium systems, fluctuations are related to average quantities like the suscep-
tibility, and at a critical point, the divergences of both quantities are related. In this
part we study the evolution of the fluctuations of S when varying the imposed stress
and the noise magnitude in the critical regime.

Varying the imposed stress in the critical regime:

As shown in Fig. 4.9, the variance of the order parameter increases as the stress
approaches its value at the inflection point of the flow curve, where it is maximal. In
Fig. 4.15, we report, in a log-log plot, for the value of the noise closest to the critical
point (ε ' 0), the value of the variance of S as a function of the distance to the
inflection point, for various system sizes. Let us point out that the scattering of data
near the maximum is due to finite size effects, where the smallest values correspond
to the smallest systems. We find that the variance of S varies as a power law of
the distance to the critical stress, with exponents κ1 = 0.82 ± 0.12 (model 1) and
κ2 = 0.73 ± 0.15 (model 2), that do not depend significantly on the noise model.
From the Landau fit of Eq. (4.16), the susceptibility (χ = ∂S/∂Σ for ε = 0) varies as
(|Σ− Σc|2/3), which is within the error bars of our estimate of κ.
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0.6

0.9

Figure 4.15: Variance of S multiplied by the number of sites,
N∆S2 as a function of |Σ − Σi| for values of the noise magnitude
close to the critical value (ε ' 0). Data for model 1 (black empty
data points) and model 2 (red solid points) and various system sizes
(circles: L = 128, squares: L = 256, triangles: L = 512). Dashed

lines: power-law guides to the eye with exponents 0.6 and 0.9.

While the extent of the power law spans two decades in the “shear dominated”
regime (for Σ > Σi, lower data points in Fig. 4.15(c)), the range is reduced in the
“noise dominated” regime (Σ < Σi, upper data points in Fig. 4.15(c)). This asymmetry
is likely to be due to the different origins of mechanical noise in these two regimes,
where it arises mainly due to activated events in the “noise dominated” regime.

Temporal autocorrelation To extract the correlation time τcorr, we fit the auto-
correlation function C(τ) = 〈∆S(t + τ)∆S(t)〉 to an exponential and extract the
characteristic time τcorr from the fit. We report in Fig. 4.16(a) the correlation time
as a function of the distance (in stress) to the inflection point of the flow curve for
various values of λvib (model 2), which exhibits a sharp peak at the critical point. We
report in a log-log plot the correlation time as a function of the absolute distance to
the inflection point |Σ−Σi|, for a noise magnitude close to the critical point (ε ' 0),
for the two models of noise. Although the data is more noisy than for the variance of
the fluctuations (Fig. 4.15), we can see there is a power-law scaling of the correlation
time as well, with an exponent close to that of the variance.

Varying the noise magnitude ε:

We now investigate the scaling of fluctuations at the inflection point of the flow curve
(Σ = Σi) when varying the noise magnitude ε. We compute the variance of the
fluctuations and extract their correlation time from an exponential fit of the auto-
correlation of S. A finite size data collapse is performed using ν = 1. We find, for the
two models of noise, a power law increase of both the variance (Fig. 4.17(b)) and the
correlation time (Fig. 4.17(c)) of the fluctuations when approaching the critical point,
with the exponents γ∗ ' 0.9 and µ ' 1 respectively.

Let us now discuss the scaling of shear rate distributions depicted in Fig. 4.8(d) in
the light of the critical exponents estimated in this section. In Fig. 4.8(d), the shear
rate distributions at the transition could be approximately collapsed by rescaling the
shear rate with a factor Nx (N = L2) and the best collapse was found with an
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(a) (b)
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Figure 4.16: Correlation time of shear rate fluctuations. (a)
Auto-correlation timescale τcorr as a function of Σ − Σi for various
values of noise magnitude λvib (model 2). (b) Log-log plot of the
correlation time τcorr as a function of |Σ − Σc| for ε ' 0 ("critical

isotherm") for the two models of noise.

(a) (b) (c)

-1 -0.9 -1

Figure 4.17: Critical scaling of the susceptibility and fluctua-
tions (a) Susceptibility χ = 1/b rescaled by L−γ/ν as a function of the
scaled distance to the critical point εL1/ν for model 1 (unfilled black
symbols) and model 2 (solid red symbols). (b) Rescaled variance ∆S2

vs. εL1/ν . (c) Rescaled correlation time vs. εL1/ν

exponent x = 0.275. In other words, the width of the distribution of shear rate scales
as: ∆γ̇ ∼ L−2x ∼ L−0.55. For sufficiently small fluctuations of the shear rate, the
fluctuations of S = log(γ̇), ∆S, correspond approximately to relative fluctuations of
γ̇, ∆γ̇/γ̇c, with γ̇c the critical shear rate (approximately independent of system size,
see Appendix C). Hence similar scalings for ∆S and ∆γ̇ with the system size would
be expected. From the data collapse of Fig. 4.8(d), the scaling for the shear rate
variance is L2∆γ̇2 ∼ L0.9. This is consistent with the scaling of Fig. 4.17(b), where
data collapse for the variance of S suggests a scaling form: L2∆S2 ∼ Lγ

∗/ν , with
γ∗/ν = 0.9.

Note that, due to finite time limitations of our simulations in the critical regime,
the data for the correlation time of the fluctuations (Fig. 4.17(c)) is restricted to
intermediate system sizes (L ≤ 512) and exhibit strong scattering (see Fig. 4.16(a)).
An approximate collapse can still be performed with an exponent µ = 1.0 ± 0.2 and
seems to be independent of the model of noise. This value would correspond to a
dynamic scaling exponent z = µ/ν ≈ 1, far from the equilibrium mean-field value
z = 2 obtained for non-conserved scalar order parameters (Hohenberg et al., 1977).
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4.6 Discussion

In this chapter, we studied the effect of a fluidizing noise on the rheology of soft glassy
materials using a mesoscale elasto-plastic modeling approach.

We consider two distinct models of fluidizing noise, both leading to a transition
between a self-fluidized regime and an externally fluidized regime in the flow of soft
glassy materials. Upon an increase of the external noise amplitude, we evidence
the vanishing of shear bands (shear imposed protocol) and the transition from a
metastable to a stable flow regime near the inflection point of the flow curve (stress-
imposed protocol). This is an indication of a transition from an unstable shear-
localized flow to a stable homogeneous flow with the noise magnitude as a control
parameter. We also find that a decrease of the fluidizing noise amplitude in the
homogeneous flow regime yields increasingly large and long lived fluctuations of the
macroscopically measurable shear rate.

These findings can be rationalized in the context of out-of equilibrium phase tran-
sitions, in which the transition between the flow regimes described above is associated
with a critical point. This critical point is characterized by the scaling exponents
summarized in Table 4.1. While the rheology at low stress differs between the two
models (and can be rationalized with simple theoretical arguments), we find a generic
scaling of the flow curves in the critical regime, that is well fitted by a Landau-type
expansion, as found by Wortel et al. (2016). The scaling of the order parameter
(power law scaling with an exponent β ' 0.5), as determined either from the flow
profiles in the phase coexistence regime or from the boundaries of the metastable
regime using a stress-controlled protocol, is consistent with the scaling of the flow
curves in the stable flow regime. We also find power law scalings of the susceptibility
and the shear rate fluctuations, with exponents being independent of the model of
noise. The critical exponent of the susceptibility, obtained from an average quantity
S (γ ' 1) is close to that of the fluctuations ∆S2 (γ∗ ' 0.9) but not identical. This
may be due to the fact that fluctuations were slightly underestimated in our analysis
(because one could not access exactly the inflection point of the flow curve, where
the fluctuations are maximal). Note that the values of some critical exponents (β, γ,
γ∗), indicate that the scaling of average quantities is close to a standard mean-field
scaling for equilibrium phase transitions, as observed by Wortel et al. (2016). How-
ever, the scaling of correlations departs from standard exponent values (Le Bellac,
1992; Hohenberg et al., 1977) (even with long-range interactions, see Appendix C.2)
and are consistent with experimental values (Wortel et al., 2016). To summarize, the
finite shear-rate critical point studied here in two minimal elasto-plastic models sug-
gests that a generic critical behavior arises in systems combining a nonmonotonic flow
curve with a fluidization process, irrespective of the detailed physical mechanisms at
play. The out-of-equilibrium character of the transition leads to non-trivial scalings.

The existence of such critical point at finite shear rate can have important conse-
quences in the study of the flow of soft glassy materials in the presence of an additional
source of noise. In this scenario, a single trajectory of the system can strongly dif-
fer from its average behavior as given by the constitutive flow curve, thus leading to
several difficulties for experimental characterizations of the flow behavior. Since the
correlation time of the fluctuations becomes increasingly large at the transition point,
averaging values in the steady state becomes tedious and care has to be taken in the
data interpretation. This is a situation where conventional continuum descriptions
of the flow tend to break down and call for more sophisticated modeling approaches
that allow for incorporating the spatio-temporal features of the fluctuations in the



134 Chapter 4. Fluidization, giant fluctuations and critical point in the flow of soft
glassy materials

Scaling relation Exponent Model 1 Model 2 Wortel et al. Mean field
Σ− Σc ∼ (S − Sc)δ δ 3 3 3 3

ξ ∼ ε−ν ν 1.0± 0.1 - - 0.5
∆S ∼ εβ β 0.52± 0.02 0.49± 0.04 0.5 0.5
χ ∼ ε−γ γ 1.0± 0.05 1.0± 0.05 1 1

∆S2 ∼ ε−γ∗
γ∗ 0.9± 0.05 0.9± 0.05 1 1

τcorr ∼ ε−µ µ 1.0± 0.2 1.0± 0.2 [0.5; 1] 0.5
∆S2 ∼ |Σ− Σc|−κ κ 0.82± 0.12 0.73± 0.15 - 2/3

τcorr ∼ |Σ− Σc|−κ∗ κ∗ 0.75± 0.2 0.75± 0.2 - 2/3

Table 4.1: Critical exponents measured in our model, com-
pared with the values obtained by Wortel et al. (2016) and with stan-
dard equilibrium Ising mean-field values for the static exponents, and

with model A of critical dynamics for the dynamic exponent µ.

rheologically relevant quantities. Another important message regarding experimen-
tal and numerical studies is that, when using shear-imposed protocols, the flow can
be heterogeneous due to the nonmonotonicity of the constitutive flow curve. In the
vicinity of the transition, the time for the shear bands to coarsen becomes increasingly
large, and the steady state of the system may be out of reach on any experimentally
relevant timescale.

We discussed the consequences of competing self-fluidization and external fluidiza-
tion mechanisms on the rheology of soft glassy materials and in the following we would
like to suggest situations where this phenomenon might be of importance. As shown
experimentally, this transition can easily arise in frictional granular materials (Wortel
et al., 2016). But one could also speculate about other systems where such mech-
anisms could be at play. The minimal ingredients for the emergence of this critical
point in systems sheared at a finite strain rate are: (i) a microscopic mechanism at
the origin of self-fluidization (such as an intrinsic timescale for restructuration in the
material (Coussot et al., 2010)), and (ii) a source of mechanical noise independent of
the flow. An example for a class of materials, that provides naturally various sources
of additional mechanical noise with a fluidization effect, are dense active systems,
such as biological tissues (Matoz-Fernandez et al., 2017a; Mandal et al., 2016; Tjhung
et al., 2017). Depending on the details of microscopic interactions, self-fluidization
could arise from a competition between intrinsic timescales in the system and shear;
hence such systems would be good candidates for the emergence of critical dynamics
accompanied by giant fluctuations as described in this work.

In this chapter, we considered phenomenological models for the (rate-independent)
mechanical noise, simply assuming that some source of noise could activate additional
plastic events contributing to the flow. In active systems, various types of activity
could contribute to this mechanical noise, such as cell division and apoptosis, self-
propulsion, shape or volume fluctuations, etc. The mechanism by which additional
sources of mechanical noise arise is related to the disturbance of stress and strain fields
by these local active events.

In the following chapter, we will explicitly consider local active events such as
volume or shape fluctuations and study how they affect the dynamics and the rhe-
ology of the system, using both microscopic models and elasto-plastic modeling. In
the case of a (local) driving of active origin and not due to an externally imposed
shear, a tensorial description of the amorphous materials is required since there is no
preferred orientation for the plastic rearrangements of particles. Let us first discuss
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Figure 4.18: Fluidization in scalar and tensorial elasto-plastic
models. Flow curves in the absence (black) and presence of an exter-
nal noise (red) with kvib = 10−2 for a scalar version of the elasto-plastic
model (dashed line), a tensorial version (square symbols) and for a ten-
sorial version with a random orientation of the events activated by the

external noise (blue star symbols).

how the fluidization discussed in this chapter is affected by a tensorial description
of the medium and by the orientation of the plastic rearrangements induced by the
external noise.

Scalar versus tensorial description of the fluidization

In this work, we considered a simplified scalar model to study the role of an external
source of noise on the rheology. In the experiment of Wortel et al. (2016) however, the
driving due to shear and to the external vibrations have different geometries (ortho-
radial flow with a velocity gradient along the radial direction and vertical mechanical
vibrations). We now discuss how the direction of the plastic events induced by an
external noise may affect the rheology in the elasto-plastic model.

We consider (i) the scalar model considered in this chapter, (ii) a tensorial model
with the direction of noise-activated events determined by the relative components
of the stress tensor and (iii) a tensorial model with events activated in a random
direction. The tensorial implementation of the model is discussed in Chapter 2.

We show the flow curves obtained for these models in Fig. 4.18. We find that the
rheology is only slightly affected by the tensoriality of the model (as shown by Nicolas
et al. (2014b)) and by the orientation of the randomly activated events. These findings
indicate that the fluidization is mainly explained by the stress relaxation induced by
the additional plastic events, and that correlations between events play only a little role
in this regime. This also supports the hypothesis of neglecting the internal mechanical
noise in the “noise dominated” regime, as we did in order to compute the low shear
rate rheological behavior in this regime.

Although the correlations between events seem to play a negligible role in the
fluidized regime, a further study in the critical regime would be required to conclude
on how the tensoriality and the orientation of plastic events impact the critical features
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of the model. In this regime, important spatial correlations develop in the system and
may be affected by the details of spatial interactions.
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Chapter 5

Building an active elasto-plastic
model

Résumé : Construction d’un modèle élasto-plastique actif

La dynamique de systèmes actifs denses tels que les tissus biologiques résulte de pro-
cessus actifs à l’échelle des particules, comme l’autopropulsion des cellules, la division
cellulaire, la mort ou extrusion des cellules, ou encore la déformation (active) des
cellules. Ces processus, pouvant être responsables de la fluidisation du tissu, ont été
principalement étudiés dans des modèles microscopiques (simulations de particules)
(Mandal et al., 2016; Tjhung et al., 2017; Matoz-Fernandez et al., 2017b) ou dans des
modèles continus (Ranft et al., 2010).

Dans ce chapitre, nous proposons de construire un modèle spatial élasto-plastique
à l’échelle mésoscopique pour modéliser la dynamique d’un système dense de particules
se déformant sous la forme d’oscillations de leur rayon, tel qu’étudié par Tjhung et
al. (2017). Dans cette étude, Tjhung et al. (2017) considèrent un système dense de
particules molles (en 2d) dont le rayon oscille périodiquement avec une amplitude
d’oscillation a au cours du temps et avec un déphasage tel qu’il n’y a pas d’oscillation
macroscopique du volume du système. Ils mettent en évidence une transition entre un
état solide pour de faibles amplitudes d’oscillations (a < ac) et un état fluide pour a >
ac dans lequel le déplacement des particules au cours du temps suit un comportement
diffusif. La dynamique du système change de façon abrupte lorsque a = ac, suggérant
une transition discontinue entre ces deux états. Tjhung et al. (2017) proposent par
ailleurs que cette transition est analogue à la transition de mise en écoulement observée
dans les verres soumis à un cisaillement oscillatoire macroscopique (voir Chapitre 1,
section 1.2). Lorsque la dynamique du rayon ne suit pas des oscillations périodiques
mais un processus stochastique de type Ornstein-Uhlenbeck, la transition devient alors
continue et ressemble à une transition vitreuse pour a→ 0.

Pour construire notre modèle élasto-plastique actif, nous caractérisons tout d’abord
la réponse élastique d’un système dense de particules à la variation de rayon d’une
seule particule à l’aide de simulations microscopiques. La caractérisation de ce propa-
gateur élastique permet de construire un modèle mésoscopique où le forçage résulte de
particules actives, qui, en se déformant, redistribuent de la contrainte au reste du sys-
tème. Notre modèle élasto-plastique est basé sur le scénario suivant : des sites actifs
se déforment de façon périodique en propageant de la contrainte au reste du système.
Lorsque la contrainte locale totale dépasse une valeur seuil locale, alors le site devient
plastique, relaxe localement de la contrainte, et redistribue de la contrainte au reste
du système via un propagateur élastique de type Eshelby.

Des simulations de ce modèle élasto-plastique permettent de mettre en évidence
une transition entre un état stationnaire fluide et un état arrêté (sans activité plas-
tique) pour une valeur finie de l’amplitude de déformation, tel que décrit par Tjhung
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et al. (2017). La dynamique pour atteindre l’état stationnaire au voisinage de la tran-
sition est très lente, et il est difficile de déterminer la nature de la transition d’après
les données de plasticité moyenne ou les trajectoires de particules traceurs. Cette
dynamique lente pour la plasticité est accompagnée d’une déplétion progressive des
petites barrières dans la distribution de barrières d’énergie locales à franchir pour
produire un évènement plastique et dont la valeur moyenne augmente avec le nombre
de cycle aux abords de la transition. Ce phénomène rappelle les effets observés dans
les verres soumis à un cisaillement oscillatoire où de petites amplitudes de déforma-
tion contribuent à augmenter la stabilité du verre (“mechanical annealing” en anglais)
(Leishangthem et al., 2017).

Un autre point commun avec les verres cisaillés suivant un protocole oscillatoire
concerne la contrainte macroscopique, qui présente un dépassement (“overshoot”) pour
une valeur critique de l’amplitude d’oscillation ac, ce qui constitue une signature de
transition discontinue.

Nous montrons par ailleurs que la coopérativité entre évènements plastiques est
maximale une fois le dépassement de contrainte franchi, avec une organisation spatiale
pouvant indiquer une forme de localisation dans un système actif. A la différence des
verres cisaillés où la localisation se fait sous formes de bandes dues à la symétrie im-
posée par le forçage macroscopique, nous observons ici des groupes de sites plastiques
coexistant avec des groupes de sites immobiles.

Pour résumer, ces premiers résultats concernant le modèle élasto-plastique actif
semblent suggérer une transition de fluidisation discontinue lorsque la dynamique de
déformation est sinusoïdale, similaire aux observations faites dans les simulations de
particules. Dans le cas où la dynamique de la déformation active est simplement
décrite par un processus stochastique (bruit corrélé en temps), alors la transition
devient continue et se produit dans la limite a→ 0, sans aucune forme de localisation
de la plasticité, comme observé par Tjhung et al. (2017).

Nous étudions dans une dernière partie la rhéologie du système. Nous montrons
que pour a < ac, le comportement rhéologique est celui d’un fluide à seuil dont la
contrainte seuil (dynamique) dépend de a. Au contraire, pour a > ac, la contrainte
seuil disparait et on observe un comportement fluide. Pour de grandes valeurs de a,
la rhéologie à faible taux de cisaillement devient linéaire. Ces résultats sont en bon
accord qualitatif avec les simulations du modèle de particules.

Le chapitre est organisé de la façon suivante : dans la section 5.1.1, nous rappelons
certains résultats de la littérature concernant (i) l’étude de systèmes de particules se
déformant en se dilatant ou se contractant ainsi que (ii) la théorie de l’élasticité linéaire
décrivant la réponse à une inclusion ponctuelle se contractant ou se dilatant dans un
milieu élastique homogène. Dans la section 5.2, nous décrivons le modèle de particules
introduit par Tjhung et al. (2017) que nous utilisons ensuite pour caractériser la
réponse à une particule se déformant activement dans un milieu constitué de particules
passives. Nous construisons ensuite notre modèle élasto-plastique actif dans la section
5.3. Les résultats numériques obtenus avec le modèle mésoscopique concernant la
transition de fluidisation sont exposés dans la section 5.4, et les aspects de rhéologie
sont étudiés dans la section 5.5.

Introduction

The dynamics of dense active systems such as biological tissues results from distinct
active processes at the microscopic scale, which can lead to rich collective behaviors.
Active cellular-scale processes include for instance self-propulsion of particles, cell
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division, cell death or extrusion, active cell deformation, etc. All these processes
influence the large scale dynamics and the fluidization of the material (Ranft et al.,
2010; Mandal et al., 2016; Bi et al., 2016; Tjhung et al., 2017; Matoz-Fernandez
et al., 2017b; Czajkowski et al., 2019; Tjhung et al., 2020; Krajnc et al., 2018).
The mechanisms by which biological activity fluidizes a dense system are not yet
fully understood, and the link between the microscopic dynamics and the large scale
behaviors remains an open question.

Continuum mechanical models have been built to relate cellular scale events and
the mechanics of biological tissues. Etournay et al. (2015) developed a theoretical
model accounting for the deformation induced by individual events in a tissue (cell
rearrangements, cell division, cell deformation) and for the forces exerted on the tis-
sue, able to capture the total tissue scale deformation during morphogenesis of the
Drosophila pupal wing. Ranft et al. (2010) studied the fluidization induced by cell
division and cell death by describing the source stress due to cell division and apop-
tosis in a tissue described as an elastic medium. As a main result, they find that cell
division and apoptosis lead to a dynamic reorganization of the elastic tissue, leading
to a liquid-like relaxation at long time, with a viscosity depending upon the rate of
division. The role of cell division and apoptosis was further investigated by Matoz-
Fernandez et al. (2017a) using particle-based simulations, and it was shown to lead
to a fluidization (Newtonian regime) at shear rates small compared to the apoptosis
rate, and to a shear-thinning behavior at larger shear rates. These findings were ra-
tionalized using a mean-field elasto-plastic model (Hébraud-Lequeux model with an
external noise). This study provides an example of description of an active system as
a yield stress fluid with an additional source of noise.

In the recent years, there has been an increasing interest in drawing analogies
between the dynamics of dense amorphous systems where the dynamics is enabled by
thermal fluctuations or by external driving forces (e.g., shear) and the dynamics of
dense active systems, where the dynamics results from particle-scale active processes
(Bi et al., 2014; Tjhung et al., 2017; Tjhung et al., 2020; Mandal et al., 2020a; Morse
et al., 2020; Henkes et al., 2020). Although this question can be very difficult to
tackle experimentally, a lot of effort has been made in understanding the effect of
different sources of activity in microscopic simulations (see Chapter 1 for a review of
the literature). It has been shown that biological activity can induce various types of
fluidization transitions (from an arrested or glassy state to a fluid-like state), but the
nature of this transition may strongly differ depending on the type of activity and the
parameter range considered. In particular, active volume fluctuations, cell division
and death events as well as (infinitely persistent) self-propulsion have been proposed
to act as local shear forces in the material (Tjhung et al., 2017; Tjhung et al., 2020;
Morse et al., 2020), opening the route to extend tools from the sheared amorphous
systems community to the study of active systems. Among the different sources of
activity in epithelial tissues, fluctuations of the cell volume have been shown to occur
periodically and to induce large scale velocity fields in the system (Zehnder et al.,
2015b; Zehnder et al., 2015a). This type of activity has been studied numerically
by Tjhung et al. (2017) in a minimal particle-based model accounting for periodic
oscillations of the particle radius. In this work, the authors have proposed an analogy
between the solid-to-fluid transition induced by actively (and periodically) deforming
particles and the yielding transition of amorphous materials subjected to an oscillatory
shear protocol.

Elasto-Plastic Models (EPMs) have enabled a qualitative understanding of many
features of the dynamics of sheared amorphous materials (Nicolas et al., 2018a), in-
cluding, very recently, under quasi-static oscillatory shear (Liu et al., 2020b). In
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this chapter, we propose to build a mesoscale EPM for a system of actively deform-
ing particles to further study the analogy with driven systems proposed by Tjhung
et al. (2017). This could constitute a first step towards the development of active
elasto-plastic models accounting for more complex types of biological activity (e.g.,
self-propulsion, cell division and death).

Our aim is to model local active deformation as stress sources in an elastic medium,
as done by Ranft et al. (2010) in the context of cell division and death. In our ac-
tive elasto-plastic model (AEPM), the local driving is implemented under the form of
the elastic response to point-like isotropically deforming particles (so called “breath-
ing particles” in the following), as predicted by linear elasticity and measured from
molecular simulations. Simulations of our elasto-plastic model suggest the existence
of a discontinuous fluidization transition between an arrested state and a fluid-like
state, as reported by Tjhung et al. (2017). We discuss similarities and differences
with the case of sheared glasses with an oscillatory shear protocol. We then study
how changing the dynamics of active deformation affects the transition and study the
response to an applied shear.

The chapter is organized as follows: in section 5.1.1, we present a quick review
of the state of the art regarding the role of volume fluctuations in dense assemblies
of cells or particles as well as the response to dilating or contracting point-defects in
elastic media. In section 5.2, we introduce the microscopic model first proposed by
Tjhung et al. (2017). We recall their results regarding the solid-to-fluid transition
and study the response to a single actively deforming particle. In section 5.3, we
propose a mesoscale EPM to describe such an active system, based on the response
to a single contracting/dilating event and numerically study this model in section 5.4
(fluidization transition) and 5.5 (rheology).

5.1 Contracting or dilating inclusions in disordered pas-
sive and active systems

In this section, we first present some results from the literature regarding the effect
of deforming particles in disordered materials (granular materials, biological tissues,
numerical models of amorphous materials) and then compute the elastic response to
a point-like contracting (or dilating) particle.

5.1.1 Breathing particles in the literature

Deforming cells in biological tissues

Zehnder et al. (2015a) have evidenced fluctuations of the cell volume in epithelial tis-
sues, as illustrated in Fig. 5.1(a). They find that cell volumes oscillate with a timescale
of 4h and an amplitude of 20%, with the timescale and amplitude of oscillations de-
pending on the cytoskeletal activity. They also find groups of cells fluctuating together
in time, giving rise to regions of low and high cell number density (Fig. 5.1(b)). These
volume fluctuations are thought to play an important role in epithelial dynamics
since they influence cell motion inside the epithelial layer by inducing divergent ve-
locity fields (Zehnder et al., 2015b) (Fig. 5.1(c)). The mechanisms for such volume
fluctuations have not been fully elucidated yet but seem to involve water transport
between cells (Zehnder et al., 2015a).
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(a)

(c)

(b)

Figure 5.1: From Zehnder et al. (2015a) and Zehnder et al.
(2015b): Cell volume fluctuations in an epithelial monolayer.
(a) Example of a single cell fluctuating by ∼ 200% relative to its min-
imum area. (b) Epithelial monolayer exhibiting large variations in
projected cell area (scale bar: 150 mm).(c) Velocity fields of cell mo-
tion superimposed on top of divergence fields show coherent patterns
of spreading (positive) and contracting (negative) regions spanning

hundreds of microns.
.

Inflated particles in granular experiments and soft disks simulations

The response to a dilating particle in a dense disordered assembly of particles was
studied experimentally in granular media by Coulais et al. (2014) and in numerical
simulations of harmonic disks by Ellenbroek et al. (2009). The purpose of these studies
was mainly to study the dynamics of amorphous systems near the jamming transition.

Coulais et al. (2014) induce a shear by inflating an intruder in the center of a
monolayer of bidisperse frictional grains. They find that linear elasticity does not
generally apply, mainly due to dilatancy effects and shear softening. They also find
that elasticity is effectively recovered only for strains larger than a critical strain which
depends on the distance to jamming.

The applicability of linear elasticity near the jamming transition has also been
discussed in details by Ellenbroek et al. (2009) in a study of disordered packing of soft
frictionless particles. They find that by averaging the stress response over a large num-
ber of realizations, linear elastic responses can be fitted. In single packings however,
a lengthscale `∗ is identified as the length up to which the response is dominated by
local disorder. This lengthscale diverges at the jamming transition and the elasticity
breaks down. The authors also show that this lengthscale corresponds to the coarse-
graining scale needed to obtain a smooth stress response tensor in a single globally
deformed packing.

Concluding remarks

The response of a disordered medium to locally contracting or dilating particles has
been considered in the context of the jamming transition as a test of the applicability of
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Figure 5.2: Schematic of two force dipoles to model a dilating
or contracting inclusion
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linear elasticity. Linear elasticity is found to apply in average for soft particles systems
above jamming (Ellenbroek et al., 2009), although dilatancy effects may dominate in
hard frictional particles systems (Coulais et al., 2014). Let us mention that beside
the studies mentioned above, studies of the deformation induced by crystal defects
such as interstitial or vacancies have also evidenced a good agreement with the elastic
response to local point-like contracting or dilating inclusions (Lechner et al., 2009).
Let us now present a possible linear elasticity computation of the response to a point-
like contracting particle.

5.1.2 Point-force model of dilating inclusion

In Chapter 2, we discussed the response of an elastic medium to a local shear trans-
formation, as studied by Eshelby (1957). The case of local contracting or dilating
inclusions was also discussed by Eshelby (1954), to account for instance for dilation
induced by local heating in crystals. We recall here the results of linear elasticity
regarding the response of a homogeneous isotropic medium to a local isotropic defor-
mation. We follow the approach of Lechner et al. (2009), who use a point-defect model
to describe the contraction or dilation of an inclusion in a linear elastic medium.

The dilation (or contraction) of the active particle is modeled by two orthogonal
pairs of forces. Each pair consists of two forces of equal magnitude f0 but opposite
directions acting at two points separated by a distance h, as illustrated in figure 5.2.
Such a pair of force exerts no net force on the material. We assume that one force
pair acts in the x-direction and the other one in the y-direction and that the defect is
centered at the origin. The total force density is given by:

~f(~r) = −f0δ(~r)~ex + f0δ(~r − h~ex)~ex − f0δ(~r)~ey + f0δ(~r − h~ey)~ey (5.1)

where ~ex and ~ex are unit vectors in the x- and y-direction and δ(~r) is the delta Dirac
function in two dimensions. By taking the limit h→ 0 (ensuring that f0 →∞ so f0h
remains finite), we get:

~f(~r) = −f0h~∇δ(~r) (5.2)

The Navier equation describing the static state of a material reads

(λ+ µ)~∇(~∇ · ~u) + µ∆~u = −~f (5.3)
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Taking the divergence on both sides of the above equation and using the expression
for ~f yields

∆(λ+ 2µ)(~∇ · ~u) = Fh∆δ(~r) (5.4)

To find the displacement field obeying the above equation, one can then write the
displacement field as deriving from a scalar potential φ: ~u = ~∇φ (see e.g., Lechner
et al. (2009) for a detailed derivation). This is analogous to the Poisson equation
for a punctual charge in electrostatics. A possible solution of the equation ∆K =
δ(r) is K(r) = log(r)/2π thus leading to : φ(~r) = α log(~r) with α = Fh

(λ+2µ) (for a
vanishing displacement field at infinity). We finally get for an isotropic response for
the displacement field:

~u(~r) = α
~r

r2
(5.5)

We re-write the two components of the displacement field in polar coordinates (r, θ):

ux(r, θ) = α
cos θ

r
, uy(r, θ) = α

sin θ

r
(5.6)

The stress field in response to a dilating inclusion then reads:

σij = 2µεij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.7)

And we get for the two shear components:

σxy(r, θ) = −αµsin 2θ

r2
,

σxx − σyy
2

(r, θ) = −αµcos 2θ

r2
(5.8)

while the pressure response is null: −σxx+σyy
2 (r, θ) = 0. The linear elastic stress

response to a dilating inclusion is depicted in Fig. 5.6(b,d,f). In the next section, we
will compare the displacement and stress fields induced by a single deforming particle
in soft disks simulations to the response computed using linear elasticity theory.

5.2 Microscopic model for breathing-like particles

We consider in this section a slightly modified version of the model introduced by
Tjhung et al. (2017), who considered a dense assembly of athermal particles interacting
via a repulsive potential, among which some (or all) of the particles are active, i.e.,
they change size periodically. We first present the model, then recall the results of
Tjhung et al. (2017) regarding the fluidization transition induced by activity when all
the particles are active (Fig. 5.3) and last we study the response of the medium to a
single actively deforming particle.

5.2.1 Particle-based model

We consider a two-dimensional system of N athermal particles modeled as disks in a
squared box of linear dimension L, with periodic boundary conditions. The dynamics
of the ith disk is described by the position of its center ~xi(t). The dynamics is governed
by the equation:

m~̈xi = −γ~̇x+

N∑

i 6=j

~fij (5.9)
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with m the mass of the particle, γ a friction coefficient and ~fij the (conservative) force
deriving from an interaction potential: ~fij = −∂V (rij)

∂~xj
. Here, we consider a binary

mixture of particles with average diameters σ0 and 0.71σ0 with 40:60 proportion to
avoid crystallization. We use σ0 as unit length.

We have considered two types of repulsive interaction potentials, depicted in
Fig. D.1. We consider a truncated and shifted Lennard-Jones interaction poten-
tial as in Chapter 3 to study the response to single breathing particles: V (rij) =
4ε
[
(σij/rij)

12 − (σij/rij)
6
]

+ ε if rij < rc (with a cutoff rc = 21/6 to have a purely
repulsive potential) and V (rij) = 0 if rij > rc. where rij = |~xi − ~xj | and σij =
(σi + σj) /2 and ε = 1 the energy scale of the potential. We also consider, as Tjhung
et al. (2017), a short-ranged repulsive harmonic potential to study the fluidization
transition: V (rij) = ε/2(1− rij/σij)2Θ(σij − rij).

The particle radius ri(t) also has its own dynamics. Tjhung et al. (2017) have con-
sidered several types of dynamics such as periodic deformation or random fluctuations.
In the case of oscillatory deformation, the radius dynamics is described by:

ri(t) = r0
i (1 + a sin(ωt+ ψi)) (5.10)

where r0
i is the radius of the passive particle, a is the amplitude and φi the phase of

the active deformation. The phase of each particle is shifted by an amount ψi = i2π
N ,

in order to maintain a constant volume fraction throughout the simulation.1

Numerical implementation and simulations

This model is implemented by modifying the LAMMPS source code (Plimpton, 1995)
to account for the dynamics of the particle radii in time. This was done in collabora-
tion with P. Chaudhuri, S. Ghosh and V. Vasisht within the Indo-French CEFIPRA
collaboration project.

We generate configurations of the system by randomly placing the centers of the
N particles in a squared box of area L2 (where the value of L is chosen depending
upon the volume fraction) and setting the initial velocity to zero for all the particles.
We then run a few thousand simulations timesteps at finite temperature without any
activity before minimizing the energy of the system using a FIRE algorithm.

We then turn on the breathing activity (for all or only a fraction of particles). The
above dynamics is solved using Langevin dynamics at zero temperature, using either
a truncated and shifted Lennard-Jones potential or a harmonic potential (the type of
potential will be specified in the following), where the conservative force is computed
using the dynamically evolving particle radius. Unlike Tjhung et al. (2017), we do not
consider a strictly overdamped dynamics but set m/γ = 1 in LAMMPS simulations
to be in the damping regime where viscous effects are comparable to inertial effects.

5.2.2 Discontinuous fluidization transition

Discontinuous fluidization

We show in Fig. 5.3 numerical results obtained by Tjhung et al. (2017) using over-
damped simulations and a harmonic interaction potential between particles that de-
form periodically with a fixed frequency (with a period T = 820τ0, τ0 being the dis-
sipation timescale). In Fig. 5.3(a), snapshots of particle configurations are depicted
during one cycle at t = 0, t = T/2 and t = T . The trajectory of the highlighted

1The compensation of volume changes in order to preserve the volume fraction of the system is
possible in groups made of at least four particles.
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Figure 5.3: From Tjhung et al. (2017): Fluidization transi-
tion in a system of actively deforming particles. (a) Snapshots
of a system during one-cycle of deformation, at t = 0, t = T/2 and
t = T , with T = 1, the period of oscillation. The trajectory of the
particle center is depicted in green and the total displacement during
the cycle is depicted by the blue line. (b) Mean squared one cycle dis-
placement as a function of the radius oscillation amplitude a exhibiting
a sharp transition between an arrested or slow state and a fluid-like

state for different system sizes.

particle during one cycle is depicted in green, and the total displacement undergone
by the center of the particle ~di(t) = ~ri(t+ T )− ~ri(t) is depicted in blue.

The average one-cycle squared displacement is depicted in Fig. 5.3(a) as a function
of the amplitude of the periodic active driving a. The authors evidence a sharp
transition between an arrested solid-like state where the particles remain essentially
localized and a fluid-like state where particle displacements are large. The different
symbols correspond to different system sizes, thus evidencing finite-size effects at
the transition. The discontinuous character of the transition is also confirmed by
hysteresis effects. They further show in their study that particle trajectories in the
fluid-like phase are diffusive.

Diffusive behavior in the fluid phase

We reproduce similar results using our LAMMPS-based simulation code with a har-
monic interaction potential (work done in collaboration with S. Ghosh and P. Chaud-
huri, IMSC Chennai, India). We show for instance in Fig. 5.4 the mean squared dis-
placement of particles as a function of time, which displays a sharp transition between
an arrested state (with oscillations of the MSD) and a long-time diffusive behavior for
a ' 0.50 (for a system size N = 16000), consistent with the results of Tjhung et al.
(2017) (although no detailed analysis to localize the transition was performed).

5.2.3 Response to a single breathing particle

We now study the response of the system to a single actively deforming particle,
using the above defined model with a truncated and shifted Lennard-Jones interaction
potential. We choose a single particle in the system whose radius deforms following
Eq. 5.10. We measure the displacement field and the stress field change in response
to a small change in radius ∆R0.

Protocol

We generate configurations and prepare the system as described above. We turn on
the breathing activity for a single particle in the system and let the system evolve for
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Figure 5.4: Mean squared displacement of actively deform-
ing particles. ∆r2 as a function of ∆t/T , T being the period of
oscillation. The dashed line indicates a diffusive behavior ∆r2 ∝ ∆t
(simulations performed by S. Ghosh and P. Chaudhuri within our CE-

FIPRA collaboration).

5 × 104 LAMMPS time steps, which corresponds to half a period of oscillation and
output configurations every 500 time-steps. We choose the values of volume fraction
(φ comprised between 0.85 and 1.25 in 2d), amplitude (a between 0.05 and 0.3) and
frequency (f = 10−2) in order to ensure that the response of the system remains
essentially elastic. In practice, with this choice of parameters, plastic rearrangements
induced by the deformation of the active particle are rare, and the configurations with
plastic activity (that can be spotted through abrupt changes in the stress or energy
of the system and by looking at the displacement maps (see Fig. 5.5(b))) are removed
from our analysis.

We compute the difference in displacement and stress between two consecutive
configurations (spaced by a time interval ∆t = 500 time-steps) corresponding to
a radius change of the active particle of about ∆R = 7 × 10−4 or a deformation
of εact ' 0.00035. We compute the change in the three components of the stress
tensor (2d system): σxy, σxx and σyy, using the “compute stress/atom” command
in LAMMPS which returns both a contribution from the potential (Virial stress) as
well as a kinetic energy contribution (Subramaniyan et al., 2008). The stress and
displacement fields are then coarse-grained in squared boxes of area d` × d` using
d` = 1.5.

Displacement field

An example of displacement between two configurations of the system spaced by a
time interval ∆t (with a radius increment of the central dilating particle of 7× 10−4)
is shown in Fig. 5.5(a). The displacement of particles is most clearly visible in the
vicinity of the breathing particle and decays away from the active particle. The
resulting displacement field is however highly anisotropic, and we do not observe the
isotropic response expected from linear elasticity when looking at a single realization.
In Fig. 5.5(b), we show an example where a plastic rearrangement has been triggered in
the vicinity of the actively deforming particle due to the active driving. We recognize
the Eshelby-like quadrupolar response (see in Introduction, Fig. 1.18(a) for a response
averaged over 50 plastic events).
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Figure 5.5: Displacement and stress fields in response to a
single actively deforming particle in particle-based simula-
tions (the displacement vectors are up-scaled for visualization pur-
pose). (a) Example of displacement field in response to a single dilat-
ing particle (red dot) located in the center of the system. (b) Example
of configuration where a plastic rearrangement of particles is induced
by the active driving in the vicinity of the actively deforming particle
(red dot), as it can be seen from the Eshelby-like quadrupolar response.
(c) Elastic displacement field in response to a single dilating particle
located in the center of the system averaged over 500 realizations.
(d) Displacement magnitude averaged over the angle as a function
of the distance to the active particle r following a power law decay
|u(r)| ∼ 1/r. (e) Von Mises stress map σv =

√
σ2
xy + (σxx − σyy)2/4.

(f) Von Mises stress averaged over the angle as a function of the dis-
tance to the active particle r following a power law decay σv ∼ 1/r2.
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Figure 5.6: Stress response to a dilating inclusion: micro-
scopic simulations (top row) and linear elasticity (bottom
row). (a) and (b) σxy, (c) and (d) (σxx − σyy)/2, (e) and (f)
p = −(σxx + σyy)/2. Results from microscopic simulations (with
φ = 1.15 and a = 0.15) are obtained by averaging over 1000 real-

izations.
.

We show in Fig. 5.5(c) the displacement field in response to a dilating particle
averaged over 500 independent samples. In this case, the response is isotropic and
the decrease of the displacement magnitude follows a power law ∼ 1/r as expected
from linear elasticity (Fig. 5.5(d)). We note however that we need to average over
a large number of configurations (a few hundreds) to recover linear elasticity theory,
while the response to plastic rearrangements is found to match elasticity theory when
averaging over ∼ 50 configurations only (Puosi et al., 2014). This may be due to
the fact that a single plastic event involves already a few particles, thus leading to
some local averaging on the disorder. On the other hand, the elastic response to an
isotropically deforming particle might be more sensitive to the configuration of the
first neighboring particles, thus inducing a more anisotropic response in the system.

Stress field

We compute the coarse-grained stress field averaged over 500 independent realizations.
We show in Fig. 5.5(e) a map of the Von Mises (VM) stress σv =

√
σ2
xy + (σxx − σyy)2/4

(with the VM yielding criterion being σv > σy with σy a threshold for plasticity). The
averaged VM stress response to a dilating particle follows an isotropic power-law radial
decay in ∼ 1/r2, as expected from linear elasticity.

We show in Fig. 5.6 the two shear components σxy and (σxx − σyy)/2 and the
pressure −(σxx +σyy)/2 for both the microscopic simulations and the linear elasticity
theory. Although we see that the shear components agree well between the microscopic
simulations and the theory, we note that the pressure response, expected to be zero
for an isotropically dilating inclusion in a uniform linear elastic medium, is fluctuating
in the simulations.
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Figure 5.7: Pressure and Von Mises stress as a function of
the distance to the active particle when averaging over a varying
number of configurations. The VM stress curves from N = 245 to
the maximum number of configurations (N = 1580) collapse. The
pressure fluctuations away from the first two layers of particles become

increasingly small when increasing the number of configurations.
.

We measure the mean pressure and VM stress by averaging over a varying number
of configurations in Fig. 5.7. We see that the VM stress reaches an average radial evo-
lution when averaging over 245 independent configurations, and remains unchanged
when increasing the statistics. The pressure fluctuations away from the active particle
become smaller and smaller when increasing the number of averaged configurations,
as shown in Fig. 5.7. We expect that when averaging over a large number of configu-
rations, the pressure field will be disturbed in the first layer of surrounding particles
(due to the increase of radius of the active particle), but pressure fluctuations should
vanish further away, as shown by the thick solid black line in Fig. 5.7.

Next, we perform VM stress measurements by varying the breathing amplitude a.
We see in Fig 5.8(a) that all data can be collapsed by rescaling the displacement field
with the amplitude a, supporting the fact that the stress response is linear with the
deformation of the active particle.

We also see in Fig 5.8(b) that the power law radial decay of the VM stress holds for
a large range of volume fractions in the jammed phase (from φ = 0.94 to φ = 1.20),
but the agreement is not as good for φ = 0.85, probably due to the proximity to
the jamming point. To get a more quantitative understanding, one should perform
these measurements using a harmonic potential where the jamming transition has
been investigated in details (van Hecke, 2009).

Moreover, the prefactor of the power law decay is expected to depend on the
elastic moduli (bulk and shear) that themselves depend upon the volume fraction.
Measurements of elastic moduli in microscopic simulations should thus be performed
in the future to get a quantitative understanding of the response to a single dilating
particle in the dense regime.
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Figure 5.8: Stress response for various deformation ampli-
tudes and volume fractions. (a) Von Mises stress σv rescaled by
the deformation amplitude a as a function of the distance r to the
active particle for various deformation amplitudes a. Inset: σv as a
function of r without rescaling. (b) VM stress as a function of r for
a deformation a = 0.15 and different volume fractions (data averaged

over 200 independent realizations).

Concluding remarks

We evidenced in this section that the average response to a single actively dilating
particle can be reasonably well described by linear elasticity, thus opening the way to
build a coarse-grained elasto-plastic model accounting for this kind of active particle
dynamics, as schematically shown in Fig. 5.9(a).

However, we did not discuss the relevant coarse-graining scale that should be
considered in particle-based simulations in order to build such a mesoscale elasto-
plastic model. As pointed out by Liu et al. (2020a), the choice of a correct coarse-
graining scale is critical when trying to get a quantitative agreement between particle-
based and mesoscale simulations. In our case, we do not aim for a quantitative
comparison yet, but rather at building an active mesoscale model that reproduces the
same phenomenology as the particle-based model. It is however important to clarify
the scale at which coarse-graining is performed, i.e., to understand which aspects of
the microscopic dynamics remain relevant at the mesoscopic scale.

According to Ellenbroek et al. (2009), a possible criterion for coarse-graining would
be to find, on a single realization, from which distance to the active particle the elastic
response looks isotropic (thus fulfilling linear elasticity) in order to base our mesoscale
approach on a linear elasticity assumption, as commonly done in EPMs (see Chapter 2)
(Nicolas et al., 2018a). In practice however, the response is highly anisotropic (see
Fig. 5.5(a)) and such length would be larger than the system size considered in our
study. We will thus consider in the following a mesoscale model describing the average
behavior of a dense active system.

The lengthscale at which the fluctuations of the pressure averaged over a large
number of configurations vanish provides another lengthscale to build a coarse-grained
model. The linear elastic response to a contracting inclusion in an infinite medium
predicts a pure azimuthal invariant shear response, and no change in pressure. It
appears in Fig. 5.7 that the pressure change in response to a dilating particle becomes
very small for r > rc with rc ' 2. Considering a coarse-graining scale larger than
rc thus enables us to neglect the pressure contribution to the stress response in the
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surrounding material. Local pressure changes remain present, and we will discuss
further how they could be included in the modeling.

The elementary length in elasto-plastic models built for sheared passive amorphous
systems corresponds to the typical size of a cluster of rearranging particles. As we
aim at building a mesoscale model describing systems where plastic rearrangements of
particles are induced by a local active driving, our unit length should thus also match
the requirement of being of the order of the typical size of a plastic rearrangement.
The number of particles involved in a plastic rearrangement depends on several pa-
rameters such as the type of interaction potential, the spatial dimension, the volume
fraction, etc. The coarse-graining length for the pressure being of the order of 2 par-
ticle diameters (corresponding to a region of about 12 particles), it is likely to be of
the order or smaller than the typical radius of a rearranging region, at least for some
regimes of volume fraction/ pressure.

To sum up, a single dilating particle induces a displacement field and a stress field
in the material that are well described by linear elasticity (i) when averaging over a
few hundreds of realization and (ii) when looking at the far-field response (beyond
2 particle diameters). In the following, we propose a mesoscale model to describe a
system of actively deforming particles, where we describe the activity as mesoscale
regions redistributing stress to the surrounding material through elastic interactions.
As in standard EPMs, the size of these mesoscale regions correspond to the typical
size of a cluster of rearranging particles, and is larger than the typical size of local
pressure variations induced by the active deformation.

There is one remaining point to clarify before introducing our mesoscale model:
how many active particles does a mesoscale region contain? The mesoscale picture
that we introduce can actually describe two different microscopic scenarios: (i) either
we consider a single actively deforming particle surrounded by a few passive particles,
or (ii) we consider a group of active particles with coordinated deformation dynamics.
The second scenario was evidenced in experiments on epithelial tissues (Zehnder et
al., 2015a; Zehnder et al., 2015b), where patches of cells of about 250 µm were shown
to exhibit collective periodic contraction or dilation dynamics with a period of 3-4h.
In the following, we do not specify a particular microscopic scenario, but study the
properties of a generic mesoscale model with a source of local driving resulting from
actively contracting and dilating regions, as depicted schematically in Fig. 5.9(a).

5.3 Active mesoscale elasto-plastic model

We consider a two-dimensional elasto-plastic tensorial model with a local driving. The
driving is implemented under the form of an imposed local stress that depends upon
the distribution of actively deforming sites (red sites in Fig. 5.9(b)).

The spirit of this model is the same as the model developed for simple shear (e.g.,
using a stress-controlled protocol), except that instead of considering a homogeneous
drive and applying the same value σext to all sites, we define a new stress field, σact,
that results from the local contraction or dilation of particles. This stress field σact

is computed as the convolution of an active deformation field γact with an elastic
propagator F , as depicted in Fig. 5.9(b). We consider here only the case of purely
dilating or contracting inclusions.
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Figure 5.9: Principle of the mesoscale active elasto-plastic
model. (a) Sketch of plastic deformation induced by an internal ac-
tivity. 1 and 2: a particle (in red) undergoing an active deformation
induces a displacement of the surrounding particles and elastic stress
in the surrounding material. 3: This increase in stress induces a plas-
tic rearrangement of particles (magenta particles). 4: This plastic
rearrangement leads to a stress redistribution in the system. (b) Lat-
tice model describing the active elasto-plastic scenario: the
stress state at site i (green) results from the contribution of the ac-
tively deforming sites (red), described with an elastic propagator F
and from the plastically deforming sites (magenta), described with an
Eshelby-like elastic propagator G. (c) Snapshots of stress and dis-
placement fields in the AEPM for a single actively deforming site
in the center of the system without enabling for relaxation by plastic
events (the stress scale and the displacement vectors scale are cho-
sen for visualization purpose). Left: σact

xy component. Middle: σact
xx

component. Right: Von Mises stress σact
v

.
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5.3.1 Elastic propagator

As shown in the previous section, the elastic response derived using a point-defect
model of contracting/dilating inclusion describes well the response to a single deform-
ing particle in microscopic simulations (up to some prefactors). In our mesoscale
model, we further assume that the medium is incompressible, and the stress response
reads, in Fourier space (see Appendix D):

σ̃act
xy (qx, qy) = µ

2qxqy
q2

γ̃act (5.11)

σ̃act
xx (qx, qy) = −σ̃act

yy = µ
q2
x − q2

y

q2
γ̃act (5.12)

for qx 6= 0, qy 6= 0 and- σ̃act
xy (0, 0) = σ̃act

xy (0, 0) = 0, with µ the shear modulus and γ̃act

the Fourier transform of the active deformation field. We show the stress components
σ̃act
xy and σ̃act

xx in response to a single actively deforming (dilating) site located in the
center of the system in Fig. 5.9(c, left and middle panels). When looking at the Von
Mises stress σv redistributed to the system depicted in Fig. 5.9(c, right panel), it
appears that the stress response is similar to what is measured on average in particle-
based simulations (see Fig. 5.5(e), apart from the locally redistributed value (i.e., in
the active site), that we set to 0 in the elasto-plastic model (and is thus close to 0
for finite lattice sizes). This assumption is not very realistic due to the fact that a
mesoscale active block includes in reality several neighboring particles in addition to
the active particle and is thus subjected to stress redistribution. This points again
towards the question of the meaning of the coarse-graining length in the AEPM.
Testing more realistic rules for the local stress response should be addressed in future
work. In this chapter, we will focus on this first simple version of the AEPM and test
whether it gives the same qualitative behavior as particle-based simulations.

5.3.2 Elasto-plastic dynamics

The local stress results from three contributions:

σαβ(~x, t) = σext
αβ (t) + σact

αβ (~x, t) + σint
αβ(~x, t) (5.13)

where σext
αβ is an externally imposed stress (e.g., applied shear), σact

αβ results from the
internal active driving and σint

αβ describes the stress redistribution due to localized
plastic events. Using a shear-rate-controlled protocol, the dynamics of the stress
reads:

∂σαβ(~x, t)

∂t
= µγ̇(t)+µ

∫
dd~x′Gαβ,γδ(~x−~x′)

∂γplγδ(
~x′, t)

∂t
+µ

∫
dd~x′Fαβ(~x−~x′)∂γ

act(~x′, t)

∂t
(5.14)

with G an Eshelby kernel, F an elastic kernel describing the response to a dilating
or contracting inclusion, γ̇(t) an externally imposed shear rate, γpl the plastic de-
formation field and γact the active deformation field. The dynamics of the plastic
deformation γplαβ remains the same as in the standard EPM as presented in Chapter 2:

∂γplαβ(~x, t)

∂t
=
n(~x, t)σαβ(~x, t)

µτ
(5.15)

with n(~x, t) the local plastic state which has its own dynamics, determined by a
yielding rule based on a yield stress distribution and a recovery rule with a fixed
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rate, as described in Chapter 2 (and that we recall in the next section for our specific
implementation).

5.3.3 Implementation

We rewrite the above expression with discretized spatial coordinates (i, j).

d

dt
σαβ(i, j) = µγ̇ + µ

∑

i′j′

Gαβ,γδ
d

dt
γpl
γδ(i

′, j′) + µ
∑

i′j′

Fαβ
d

dt
γact(i′, j′) (5.16)

with γact(i′, j′) the active deformation undergone by the site (i′, j′), related to radius
change of an active particle: γact ∼ ∆r/r0. The plastic deformation γpl

αβ obeys the
same dynamics as previously introduced in Chapter 2:

dγpl
αβ(i, j)

dt
= n(i, j)

σαβ(i, j)

µτ
(5.17)

with τ a relaxation timescale and n(i, j) the plastic activity at site (i, j). We use the
set of rules termed as “model 2” in Chapter 2 for the dynamical evolution of n(i, j), i.e.,
based on a yield stress distribution and a fixed recovery time. A site becomes plastic
when the local yielding criterion is met, using a Von Mises criterion σv(i, j) > σy,
with the local threshold σy drawn from a distribution and renewed after each yielding
event. When a site has yielded, it becomes elastic again after a typical time τel.

We use in the following a 2d tensorial description using an incompressibility as-
sumption, as introduced in Chapter 2, considering two components of the stress ten-
sor: σxx = −σyy = (σxx − σyy)/2 and σxy. In this case, the local yielding criterion is
σv(i, j) =

√
σ2
xx(i, j) + σ2

xy(i, j) > σy. The propagators G and F thus read, in Fourier
space:

G̃ =
1

q4

[ −(q2
x − q2

y)
2 −2qxqy(q

2
x − q2

y)

−2qxqy(q
2
x − q2

y) −4q2
xq

2
y

]
(5.18)

F̃ =
1

q2

[
2qxqy
q2
x − q2

y

]
(5.19)

The details of the numerical implementation have been presented in Chapter 2
and Appendix A. We simply extend the standard 2d tensorial elasto-plastic model to
account for this source of active driving γact by introducing a new propagator F . This
can be done using either a shear-rate controlled protocol (as presented here) or a stress-
controlled protocol. We use a mesh refinement (as done by Nicolas et al. (2013a)) to
compute the convolution in Fourier space both for the Eshelby contribution and for
the active contribution to the stress.

Active driving dynamics

Different types of dynamics for the active deformation γact(i, j) at site (i, j) are con-
sidered in the following, as in the work of Tjhung et al. (2017).

Periodic driving: We first consider sinusoidal oscillations of the active deformation:

γact(i, j) = a cos(ω(i, j)t+ ψ(i, j)) (5.20)
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with a frequency f(i, j) = f = ω/2π that we take identical for all the sites. The
oscillation phases ψ(i, j) are set such that, for a homogeneous frequency f(i, j) = f ,
there is not net active drive in the system, i.e.,

∑
i,j γ

act(i, j) = 0 at all times.

Random driving: We also consider another type of activity dynamics in the AEPM
as in the work of Tjhung et al. (2017), by considering random fluctuations of the local
active deformation:

γact(i, j; t) = f(i, j; t) (5.21)

where f(i, j; t) in an Ornstein-Uhlenbeck process

∂f(i, j; t)

∂t
= −1

τ
f(i, j; t) +

√
2

τ
aη(i, j; t) (5.22)

with τ the relaxation time and a the noise magnitude. η(i, j; t) is delta-correlated
(white noise). f(i, j; t) is thus a colored noise with zero mean and a variance

〈f(i, j; t)f(i′, j′; t′)〉 = δii′δjj′a
2 exp (−|t− t′|/τ) (5.23)

We solve the above equation numerically

f(i, j; t+ ∆t) = f(i, j; t)− ∆t

τ
f(i, j; t) +

√
2∆t

τ
aξ(i, j; t) (5.24)

with ξ(i, j; t) a Gaussian noise of unit variance.
Let us remind that in the case of a random driving, Tjhung et al. (2017) find

that the discontinuous transition between an arrested and a fluid-like state reported
for monochromatic oscillations is transformed into a glass-like continuous transition
between an arrested state and a fluid-like state for vanishing active deformation mag-
nitudes (a = 0).

Simulation details

We perform simulations of the active elasto-plastic model (AEPM) using a GPU-based
parallel implementation as described in Appendix A. We use the following simula-
tion parameters: we choose a yield stress distribution with the following parameters:
Emin

y = 2.5 · 10−4, Emax
y = 1.8225 · 10−2 and λ = 701.67 (Nicolas et al., 2014a), and

an elastic recovery time τel = τ = 1. The elastic modulus is set to µ = 1. We use a
simulation timestep dt = 0.01.

We run simulations fixing the values the amplitude and frequency of oscillations
of the local active driving. The initial stress and activity are set to zero and the
initial yield stress values are drawn from the same distribution. We measure spatially
resolved fields during the simulation such that the components of the local stress,
the local threshold, the accumulated plasticity (induced by activity, by other plastic
events, both), as well as the displacement of fictitious particles induced by the far
field response to activity and local plastic rearrangements (computed using the Oseen
tensor (Martens et al., 2011)). We present in the following the results obtained with
a first set of simulations of the AEPM for a linear system size L = 64 (simulations
running for a maximum number of 24000 cycles of oscillation2 for each independent
simulation in the fluidization transition regime). Numerical simulations as well as the
analysis of these results are still an ongoing work. When performing simulations with

2Simulations performed using a parallel GPU-based implementation and running for about 200h
for each independent simulation point on Tesla K20 GPUs on the university cluster.
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an external shear (in addition to the internal activity), the shear is applied along the
xy direction: γ̇ = γ̇xy and γ̇xx = 0 (and the steady state stress is averaged over a
window of 200% strain for the lowest shear rates).

5.4 Fluidization in the active elasto-plastic model

5.4.1 Plastic deformation and stress in the AEPM with periodic
driving

In this section, we perform simulations of the AEPM with a periodic driving protocol
using a fixed frequency f = 10−3 and varying the oscillation amplitude a. We want
(i) to investigate the existence of a transition from a solid-like to a fluid-like state at
finite activity amplitude a and (ii) to characterize this transition.

We show in Fig. 5.10(a) the cumulated plasticity (number of plastic events divided
by the number of lattice sites) occurring in the system during one cycle of oscillation,
〈n〉cycle (averaged over windows of 100 cycles of oscillation), as a function of the
number of cycles ncycle. 〈n〉cycle quickly decreases to 0 for a . 0.14, while it reaches
a finite steady-state value for a & 0.30. For activity amplitudes comprised between
0.14 and 0.30, 〈n〉cycle decreases with the number of cycles, and the system undergoes
a transition between a solid-like state (no plasticity) and a fluid-like state (finite level
of plasticity) as the amplitude a is varied. This is a first indication that the active
elasto-plastic model undergoes a solid-to-fluid transition for a finite value of the active
driving amplitude a, as observed in the particle-based model of Tjhung et al. (2017).

In Fig. 5.10(b), we plot the spatially averaged (instantaneous) plasticity in the
system 〈n〉 (averaged over a time window ∆t = 20T after Ncycles of oscillation, see
caption) as a function of the active driving amplitude a. There is no clear sign of a
sharp transition between a plastic fluid-like state and an arrested solid-like state (one
could argue about a slight inflection for a ' 0.19), although all simulation data points
have not reached steady state yet. Beside macroscopic observables such as the average
number of plastic events, one can also look at the dynamics of tracer particles following
the displacement field of the AEPM. We show in Appendix D examples of data for
the one-cycle displacement distributions as well as the mean squared displacement of
tracer particles. There is however no sign of a sharp transition in particle trajectories
in our data (in contrast to the particle-based simulations (Tjhung et al., 2017)), and
this discrepancy will be further investigated in the future.

Next, we plot in Fig. 5.10(c) the average Von Mises (VM) stress Σv = 1
L2

∑
i,j σv(i, j)

as a function of the amplitude a. We see a clear stress overshoot with a maximum
for a = ac ' 0.19, similar to what is observed in oscillatory shear driving protocols
of glasses (see Chapter 1, Fig. 1.7). This stress overshoot thus suggests that the flu-
idization transition may be discontinuous, although no clear sign of discontinuity was
found in particles trajectories. Moreover, unlike in the oscillatory shear case where no
plasticity is expected before the stress overshoot, we see in Fig. 5.10(a) that there is
a finite level of plasticity for a < ac. If this plasticity actually persists in steady state,
it can be explained by an important difference between the active driving and the
oscillatory shear case. In the oscillatory shear case, the maximum driving amplitude,
often termed as γmax, is the same everywhere in the system. On the other hand, the
maximum driving amplitude received by a given site in the active oscillatory model
depends upon the phases of oscillations of the neighboring sites, and is thus hetero-
geneous. There is actually a distribution of the driving amplitude in the system, as
depicted in Appendix D (Fig. D.4). This means that locally, isolated sites can un-
dergo yielding due to a strong local driving. We see in Appendix D (Fig. D.2(c))



5.4. Fluidization in the active elasto-plastic model 157

0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Activity amplitude a

0.0750

0.0775

0.0800

0.0825

0.0850

0.0875

0.0900

0.0925

V
on

 M
is

es
 s

tr
es

s
v
=

2 xx
+

2 xy

0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Activity amplitude a

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

A
ve

ra
g

e
 t

h
re

sh
o
ld

y

500 cycles
1000 cycles
2000 cycles
5000 cycles
12000 cycles

0.0 0.1 0.2 0.3
a

0.000

0.005

0.010

n

0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Activity amplitude a

10 4

10 3

10 2

A
ve

ra
g

e
 p

la
st

ic
it

y
n

(c)

(b)

(d)

(a)

5000 10000 15000 20000
ncycle

10 1

100

101

C
u

m
u

la
ti

ve
 p

la
st

ic
it

y 
p

e
r 

cy
cl

e
n

cy
cl
e

a = 0.14
a = 0.15
a = 0.16
a = 0.17
a = 0.18
a = 0.19
a = 0.20

a = 0.21
a = 0.22
a = 0.23
a = 0.24
a = 0.26
a = 0.30

Figure 5.10: Plastic activity, stress and stress threshold in
the active elasto-plastic model. (a) Cumulated plasticity (num-
ber of plastic events divided by the system size N = L2) occurring
in the system during one cycle of oscillation 〈n〉cycle (averaged over
windows of 100 cycles of oscillation) as a function of the number of
cycles ncycle for a system linear size L = 64. (b) Average instantaneous
plasticity (measured after Ncycles of oscillation, Ncycles being the max-
imum number of cycles displayed for each value of a in panel (a) (e.g.,
Ncycles = 8000 for a = 0.15 and Ncycles = 24000 for a = 0.19) and aver-
aged over a time window ∆t = 20T with errobars corresponding to the
standard deviation) as a function of the activity amplitude a. Inset:
plot in a linear scale. (c) Von Mises stress as a function of the active
deformation magnitude a (averaged over ∆t = 20T after Ncycles) ex-
hibiting an overshoot for an activity amplitude ac ' 0.19 (the value of
ac is indicated by the dashed line in the different plots). (d) Spatially
averaged yield stress 〈σy〉 = 1/L2

∑
i,j σy(i, j) as a function of a after

various number of cycles.
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that the plastic events in the regime a < ac are induced mainly due to the active
driving (and not due to stress redistribution following plastic events), hence leading
to a small cooperativity between plastic events in the system. Moreover, as the spatial
distribution of phases remains fixed throughout the simulation (and the distribution
of local thresholds has an upper bound), we expect an isolated site to be continuously
yielding in steady state (in particular if the magnitude of the local driving exceeds
the upper bound of the yield stress distribution).

Interestingly, the slow decrease of the plasticity with the number of cycles observed
in the regime 0.14 < a < 0.30 (Fig. 5.10(a)) is accompanied by an increase of the
average barrier to yield, as shown in Fig. 5.10(d) and Fig. D.2(b).

Moreover, the larger values of the average yield stress are reported for driving
amplitudes close to the amplitude corresponding to the stress overshoot (a ' 0.19), as
depicted in Fig. 5.10(d). This effect is reminiscent of “mechanical annealing” observed
in glasses sheared with an oscillatory shear protocol (Leishangthem et al., 2017; Yeh
et al., 2020).

The following features: (i) increase of the time needed to reach steady state, (ii)
stress overshoot when increasing the amplitude of the active oscillatory driving and
(iii) increased stability (higher thresholds) near the transition, thus suggest that the
phenomenology of the AEPM may be similar to that of oscillatory sheared glasses.

5.4.2 Spatial organization of the plastic deformation in the AEPM

Next, we study the organization of the plastic deformation in the vicinity of the
fluidization transition. We show in Fig. 5.11(a) snapshots of the plastic activity ac-
cumulated during 10 cycles (after 6000 cycles of oscillation) for different values of
the amplitude of active deformation a in the case of a periodic driving (below and
above the stress overshoot of Fig. 5.10(c)). We see that for a < ac (stress overshoot
for ac ' 0.19), the plastic events are localized and a macroscopic fraction of them is
due only to breathing (see Fig. D.2(c)). For a > ac, we see that some sites will be
continuously yielding (with a finite plastic activity set by the value of the plateau in
Fig. 5.11(d)) while clusters of plastically inactive sites appear (see the regions of zero
plasticity for a = 0.23 in Fig. 5.11(a)). In this regime, the fraction of sites undergoing
plastic deformation increases with a (Fig. 5.11(d)) while the number of plastic events
per plastic site remains stable, as illustrated by the plateau in Fig. 5.11(e), reminiscent
of the “lever rule” often associated with shear banding in sheared glasses.

These preliminary findings suggest that cooperative structures of plasticity can
form upon heterogeneous drive, analogous to the formation of shear bands in sheared
systems. A more detailed study of correlations between plastic events for values of
the active driving close to the stress overshoot should be conducted in the future to
further characterize these structures.

5.4.3 Fluidization in the AEPM with a random driving

We then consider the case of a random active driving protocol, by considering random
fluctuations of the active deformation following an Ornstein-Uhlenbeck process, as
described above and studied by Tjhung et al. (2017). We fix the value of τ = T = 103

in order to compare the results to the oscillatory driving (with a period T = 103) and
perform simulations for various values of the magnitude a.

We show in Fig. 5.11(c) the evolution of the plasticity cumulated during ∆t = 10T
as a function of the noise magnitude a for the random active driving model (and also
display the results of the periodic model for comparison), We see, as reported by
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Figure 5.11: Organization of the plastic deformation in an ac-
tive elasto-plastic model. (a) Snapshots of plastic events accumu-
lated during ∆t = 10T (10 cycles) in the periodic driving model for var-
ious values of the activity amplitude a: a = 0.17 (after Ncycles = 15000
(left), a = 0.23 (middle) and a = 0.30 (right). (b) Snapshots of
plastic events accumulated during ∆t = 10T in the random driving
model for various values of the activity amplitude a: a = 0.05 (left),
a = 0.10 (middle) and a = 0.15 (right). (c) Cumulated plasticity dur-
ing ∆t = 10T as a function of a for the periodic driving model (red
square symbols) and for the random driving model (black circles). (d)
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a function of a for the two models. (e) Number of plastic events in
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Tjhung et al. (2017), that switching from a periodic active drive to random fluctua-
tions destroys the transition at finite activity a. In the case of random driving, the
fluidization transition occurs continuously for a→ 0.

We show in Fig. 5.11(b) typical snapshots of the plastic activity (accumulated
during ∆t = 10T ) for various values of the noise magnitude a. Unlike in the oscillatory
case, we do not observe a spatial localization of the plasticity. This is confirmed by
measurements of the number of plastic events occurring in plastic sites, that does not
exhibit a plateau but increases monotonously with a (Fig. 5.11(e)).

These results support the hypothesis of an active yielding transition for periodic
oscillations of the local active drive, that holds as long as there is a characteristic
frequency for the driving. This could be further tested in the AEPM by implementing
the other active driving dynamics considered by Tjhung et al. (2017) (e.g., periodic
drive with a distribution of frequencies, or by prescribing a frequency spectrum to
each oscillating site).

5.4.4 Concluding remarks

The first results of our AEPM suggest the existence of a transition between a solid-like
and a fluid-like state in the case of a periodic active drive, occurring for a finite value of
the oscillation amplitude of the active drive ac ' 0.19, similar to what was observed in
particle-based simulations (Tjhung et al., 2017). Although the nature of the transition
is not clear from particle trajectories (due to the long time needed to reach steady state
and the absence of reversible events in our model), a number of features resembling
the discontinuous yielding transition in oscillatory sheared glasses have been reported.
We can mention in particular: a stress overshoot for a = ac, a minimum value of the
plastic activity in plastically active sites, a spatial organization of the flow near the
transition, as well as an increase of the material’s stability (higher yielding barriers)
close to the transition. The fluidization observed in the case of a random driving
protocol exhibits quite different features, resembling a continuous transition for a→ 0
without any particular spatial organization of the plastic deformation.

These results are a first step in the analysis of our AEPM and there are still several
aspects that we did not discuss, such as e.g., correlations between events, finite-size
effects, hysteresis dynamics, etc., that we leave to future studies. In order to further
test our model in comparison to particle-based simulations, we study in the last section
the response of the AEPM to an externally-imposed shear.

5.5 Rheology of a system of actively deforming particles

We show in this part the first results regarding the response of the active system to
an externally imposed shear, both in mesoscopic and microscopic simulations, using
oscillatory dynamics for the active deformation (ongoing work in collaboration with
S. Ghosh and P. Chaudhuri from IMSC, Chennai, India). We impose a fixed shear
rate along the xy direction γ̇ = γ̇xy and measure the shear stress σxy.

We show the flow curves obtained for various values of the oscillation amplitude
a in Fig. 5.12(a) and (b). While the rheology is not affected by the activity at high
shear rate (all the curves collapse), we see a decrease in shear stress as the activity
amplitude is increased. The same qualitative behavior is observed in mesoscopic and
microscopic simulations. We further observe in Fig. 5.12(c) that, in particle-based
simulations, the dynamic yield stress vanishes for breathing amplitudes a > ac (with
ac ' 0.0493), which is consistent with the results on the fluidization transition of
Tjhung et al. (2017), which predict a fluid-like behavior for a > 0.49. Studying the
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active EPM. (a) Shear stress as a function of shear rate for various
values of the breathing amplitude a in particle-based simulations (nu-
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response to an external shear thus constitutes another manner to probe the mechanical
behavior of an assembly of actively deforming particles, and yields results consistent
with what is obtained from particle trajectories. The evolution of the yield stress close
to the transition should also be studied in the mesoscale model in future work.

The effect of the breathing frequency in the mesoscale model is shown in Fig. 5.12(d).
While the shear rate at which fluidization effects are observed seem to depend directly
on the frequency of oscillation (thus delimiting a shear-dominated and an activity-
dominated regime as discussed in Chapter 4), the low shear rate rheology and the
yield stress value seem to be independent of the frequency of the active drive. The
role of the frequency on the rheology should also be investigated in particle-based
simulations. Another interesting perspective would be to adapt our model to include
an active quasi-static driving protocol, both in particle-based and in mesoscopic sim-
ulations in order to study the limit of small frequencies / small shear rates (Liu et al.,
2020b).

5.6 Discussion

In this chapter, we proposed a generalization of the mesoscale elasto-plastic model
accounting for a heterogeneous drive in order to test the applicability of the meso-
scopic elasto-plastic approach to dense active systems. We considered the case of
an active drive generated by the active isotropic deformation of particles embedded
in an overall elastic medium. This model of activity, inspired by the particle-based
model of Tjhung et al. (2017), has the advantage to be simple since it has only two
control parameters: the amplitude and timescale of the active deformation, and does
not require to introduce phenomenological ingredients (in addition to that of standard
EPMs). Moreover, the results of Tjhung et al. (2017) regarding the type of fluidization
transition observed depending upon the type of dynamics for the active deformation
(oscillatory, random fluctuations, etc.) constitute a benchmark to test our model.

We studied in particular the case of oscillatory active deformations, shown by
Tjhung et al. (2017) to induce an active yielding transition between an arrested state
and a flowing state for a finite amplitude of deformation a.

We evidenced a transition between an arrested solid-like state where only little
plasticity is observed and a fluid-like phase where irreversible rearrangements take
place, consistent with the particle-based model of Tjhung et al. (2017). The data
amount obtained so far does not yet allow for the in depth characterization of the
transition. Close to the transition, the time to reach stationary state is expected to
diverge and prevents so far to obtain reliables observables. Also, observables com-
puted from tracer particle trajectories (e.g., one cycle displacement, mean square
displacement) could not enable us yet to determine the nature of this transition. Let
us also mention that one should be careful when comparing the displacement fields
computed in the mesoscale EPM to the actual displacement field as measured in, e.g.,
particle-based simulations. In the mesoscale EPM, we only account for the non-affine
displacement field induced in the material (in the far field) in response to a local shear
transformation and we do not account for the local particle displacements occurring
in the shear transformation zone itself (Martens et al., 2011). On the other hand,
both the displacement of particles in the rearranging zone and the far field response
are measured in particle-based simulations. Whether these quantities evolve at the
transition between the solid-like to the fluid-like state is not known, and this differ-
ence could also contribute to the discrepancy between particle-based and mesoscale
models.
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As future perspectives, we should first consider running longer simulations in order
to determine the nature of the transition, and then possibly find an alternative way to
reach steady state (e.g., by changing the rules for renewing the local yielding barriers
and/or by including reversible plastic rearrangements). In fact, we expect that even
running longer simulations, the solid-like phase of the AEPM would remain different
from that of particle-based simulations (probably more fluid-like). In particle-based
simulations, plasticity is observed in the solid-like phase but the average one-cycle
displacement remains very small due to the fact that particles go back to their position
after one cycle (due to the reversibility of the drive), hence leading to reversible
plastic rearrangements (Tjhung et al., 2017). Reversible plastic rearrangements are
however not implemented in the AEPM. Although the two stress components σact

xy and
σact
xx evolve periodically, the Von Mises stress determining the local yielding criterion

(σv =
√
σxy + σxx > σy) is not periodic, even in the absence of plastic rearrangements

in the system (see Appendix D, Fig. D.4). Considering another yielding criterion based
on maximum stress (e.g., Tresca criterion) may thus enable to account for reversible
plasticity in the AEPM.

Accounting for reversible plasticity in mesoscale EPMs could thus constitute an
interesting perspective, since Tjhung et al. (2017) have emphasized the role of mi-
croscopic reversibility in the discontinuous character of the transition, enabled by the
periodicity of the drive with a characteristic frequency. Note that even using a yield-
ing criterion based on maximum stress rather than a Von Mises criterion, steady state
reversible rearrangements would only be observed if the local drive due to activity is
larger than the upper bound of the yield stress distribution (because a new yielding
barrier is drawn after each plastic event). We could thus imagine also changing the
stochastic rules for plasticity in such a way that when a plastic event is induced only
due to the active deformation (and not due to other plastic rearrangements), then
the energy barrier for local yielding remains unchanged such that the exact reverse
plastic event can occur after half a period of oscillation. Energy-based elasto-plastic
models may however be more suited to include reversible plasticity, by considering a
hierarchical energy landscape for instance, as suggested in the recent work of Liu et
al. (2020b). Moreover, considering an energy-based mesoscopic model as done by Liu
et al. (2020b) to study quasistatic oscillatory shear driving would enable us to study
the evolution of the system’s energy across the transition, known to exhibit either a
sharp minimum or at least an inflection point (depending upon glass stability) in the
case of oscillatory sheared glasses (Leishangthem et al., 2017; Yeh et al., 2020; Liu
et al., 2020b).

Beside average plasticity and particle trajectories, we measured the average Von
Mises stress in the system as a function of the activity amplitude a and evidenced
a clear stress overshoot, reminiscent of what can be observed in oscillatory sheared
glasses (Leishangthem et al., 2017; Yeh et al., 2020), and supporting the scenario of
a discontinuous transition. However, the stress drop following the overshoot is not
very sharp. This could be explained by the fact that we considered finite deformation
rates and a rather small system size (compared to, e.g., the system sizes considered
in Chapter 4). It would be of interest in the future to adapt our model to account for
a quasi-static active driving protocol and see how this affects the stress overshoot, as
well as running simulations for other system sizes.

The plastic events occurring for activity amplitudes well below the stress overshoot
are mainly due to the active driving (see Fig. D.2(c)) and stress redistribution due
to plastic events in the system becomes more important as a is increased. There also
seems to be indications of a spatial organization of the plasticity in regions undergoing
plastic flow and immobile regions. This feature seems to be absent in the case of the
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active drive with random fluctuations of the active deformation, emphasizing the role
of the periodic drive to induce such spatial organization. In the future, the existence
of a stress overshoot as well as the organization of the flow in correlated plastic region
in the fluid-like phase just above the transition should be studied in particle-based
simulations.

To sum up, we propose four main possible explanations to explain why we do not
observe a sharp discontinuity in particle trajectories in the AEPM: (i) the data points
close to the transition have not reached steady state yet (and are expected to reach
a state with lower plastic deformation in the long time limit), (ii) we do not account
for reversible plastic events (which do not contribute to the one-cycle displacement
in the solid-like phase), (iii) we do not account for the particle displacement in the
shear transformation zone (which does not contribute to the one-cycle displacement in
the reversible solid-like phase but may contribute importantly in the fluid-like phase)
and (iv) the driving rate is too high (far from the quasi-static limit) and prevents the
observation of a clear stress drop that would be associated with a clear discontinuity
in particle trajectories.

Last, we showed preliminary results regarding the rheology of this dense system of
actively deforming particles. Interestingly, the fluidization induced by the breathing
activity resembles that of sheared colloidal gels subjected to ultrasonic vibrations as
studied by Gibaud et al. (2020), where the yield stress is found to decrease with the
vibration magnitude. This fluidization scenario is very different from that of, e.g.,
vibrated frictional granular media (Dijksman et al., 2011) or induced by cell division
and apoptosis (Matoz-Fernandez et al., 2017a), where the yield stress is found to
vanish for any finite rate of vibration or activity (although at low activity a plateau
reminiscent of the yield stress appears in the flow curve). These first results regarding
the rheology are also consistent with the results of Ovarlez et al. (2010) on the three-
dimensional flow behavior of yield stress fluids, showing that soft glassy materials
are always unjammed simultaneously in all directions of space (i.e., when a flow is
imposed in one direction of space, there is no resistance to a secondary flow along
another direction). In the case of the active system studied here, the flow induced by
the activity for a > ac thus yields a vanishing yield stress for an externally imposed
shear flow.

There are still several points that we did not address in this first preliminary study,
such as, e.g., correlations between plastic events, finite-size effects or the importance of
sample-to-sample variations. We show preliminary data for two independent sample
in Fig. D.2(d), suggesting that sample-to-sample variations may be relatively small.
These aspects should be investigated in future work in order to characterize in more
details the fluidization transition induced by activity in the AEPM.

Let us now discuss the assumptions of our active elasto-plastic model, which is
based on several simplifications of the underlying microscopic dynamics. A strong
hypothesis of our model is for instance to neglect the effect of density fluctuations.
Although the total density in the system is fixed (through the phase-shift of radius
oscillations), local density fluctuations can still occur and lead to a local softening of
the system, increasing the propensity of the region to yield. The effect of local density
changes should thus be assessed in particle-based simulations in future work.

Moreover, we considered only the shear response to the active deformation of
particles (as expected from linear elasticity), although we saw in particle-based sim-
ulations that a pressure change is induced in the neighborhood of the active particle.
Although this would not affect the response of a perfectly incompressible material,



5.6. Discussion 165

the soft disks systems considered in particle-based simulations are actually quite com-
pressible and pressure variations may indeed affect the dynamics of the system. The
incompressibility assumption usually made in EPMs is thus a simplification, and one
could in principle derive elastic propagators (both for the Eshelby stress response and
for active isotropic deformations) for compressible linear elastic material (Cao et al.,
2018).

Despite these important simplifications, our minimal elasto-plastic model suggests
that local shear driving due to the active deformation of particles is able to fluidize
a dense packing for a finite activity magnitude. However, although we showed in
this chapter, following the work of Tjhung et al. (2017) that cell volume fluctuations
themselves can fluidize a tissue, the tissue dynamics studied for instance by Zehnder
et al. (2015a) and Zehnder et al. (2015b) probably results from multiple sources of
activity, including the ability of cells to migrate. In their study, Zehnder et al. (2015b)
suggest that density fluctuations induced by the active volume fluctuations play an
important role since they induce divergent velocity fields. The velocity field measured
in tissues may however result from an interplay of the self-propulsion of cells, of the
elastic response to contracting/dilating cells and of the (plastic) cell rearrangements
induced by active forces. The coupling of these different mechanisms remains an open
question.

Finally, let us mention how the AEPM could be extended to account for other
types of biological activity. The elastic responses to local active events in particle-
based simulations shown in the introduction of the thesis (Fig. 1.18) suggest that the
above mesoscale elasto-plastic approach could be extended to other kind of activities,
such as cell division, cell death and self-propulsion.

Modeling cell growth, cell division and apoptosis in a EPM would follow the same
lines as for actively deforming particles. These active events generate strain and
stress fields in the material that can be described using elastic propagators. Cell
division events are usually preceded by a slow process of cell growth, that could be
described (assuming isotropic growth) using the same elastic propagator as the one
describing active radius changes in the first part of this chapter. The division itself
generates an anisotropic displacement field and could be modeled using either an
Eshelby-like propagator or perhaps the superimposition of an isotropic dilation with
an Eshelby shear transformation (without any stress relaxation). Cell death can be
seen as a cell shrinkage event with an amplitude of deformation set by the initial size
of the cell. In summary, one could imagine describing all these active events using
force dipoles (assembled in a geometry that depends upon the type of event) and
describing the elastic response of the medium as we did here in the case of isotropic
particle deformation. The dynamics of these events would then be set by stochastic
rules (that could possibly depend on the local stress field) including e.g., division and
apoptosis rates.

The dynamics of self-propelled particles systems can resemble, in the case of a large
persistence time for the direction of self-propulsion, that of a sheared system with
localized rearrangements of particles, triggering avalanches (Mandal et al., 2020a).
One could then imagine to describe self-propulsion in a simplified manner by activating
rearrangements with a random orientation, as done e.g., in Chapter 4. It is however
not clear how the activation rules for the random plastic events should be chosen,
and how an activation rate could be related to (microscopic) parameters controlling
the self-propulsion magnitude (e.g., the self-propulsion force f0). Recent works have
suggested that self-propelled particles systems in the infinite persistence time limit
could be described as sheared systems with a random force field (Morse et al., 2020;
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Mandal et al., 2020b). These recent advances will be further discussed in the general
discussion of Chapter 7.

Moreover, in biological systems such as epithelial sheets, self-propulsion mecha-
nisms are often thought to be coupled to the forces applied onto the cell. It has been
proposed for instance that coupling the direction of the self-propulsion force to the
direction of the cell velocity (resulting from the forces exerted onto the cell) could lead
to collective cell migration, such as flocks or velocity oscillations. The next chapter
is dedicated to study the emergence of oscillations of the cell velocity in epithelial
monolayers confined to elongated patterns, using a Self-Propelled Voronoi model.
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Chapter 6

Velocity oscillations in confined
epithelial monolayers

Résumé : Oscillations collectives de la vitesse de migration
cellulaire dans un épithelium confiné

L’émergence de mouvements collectifs dans des systèmes actifs denses tels que des
tissus biologiques a suscité un intérêt croissant ces dernières années1. De nombreux
travaux ont abordé le lien entre le ralentissement de la dynamique dans des régimes
très denses (parfois sous le nom de “active jamming”) et les propriétés des mouve-
ments collectifs observés dans ce régime, par analogie avec les systèmes désordonnés
denses non actifs. Plus récemment, plusieurs travaux sur les tissus épithéliaux ont
rapporté l’existence de mouvement collectifs sous la forme d’oscillations de vitesse des
cellules, soit lors de la croissance d’épithéliums, soit lorsque le tissu est soumis à un
confinement.

Des expériences récentes menées au laboratoire ont mis en évidence de telles os-
cillations de la vitesse de déplacement des cellules dans des tissus épithéliaux soumis
à un confinement quasi-unidimensionnel, caractérisé par une longueur LX . Ces ex-
périences révèlent l’existence de deux types d’oscillations suivant la longueur de con-
finement : pour de petits systèmes LX < LcX , les vitesses de migration de la majorité
des cellules sont en phase et le tissu oscille de façon globale (toutes les cellules se dé-
placent vers la gauche, puis vers la droite, en alternance) avec une période temporelle
d’oscillation variant linéairement avec la taille du système LX . Pour un confinement
LX > LcX , les oscillations sont multi-nodales, i.e., des groupes de cellules se déplacent
de façon cohérente et la direction de migration des cellules est modulée spatialement,
faisant apparaître une longueur d’onde caractéristique λ ' LcX . De plus, la vitesse
de propagation de ces ondes semblent indépendante de la longueur de confinement et
intrinsèque au tissu.

Ces expériences ont motivé le travail de modélisation présenté dans ce chapitre.
Notre approche de modélisation est basée sur un modèle de Voronoi, proche des
modèles de vertex couramment utilisés pour modéliser des tissus épithéliaux (voir
Chapitre 1). Nous considérons un modèle de type “Voronoi auto-propulsé” (“Self-
Propelled Voronoi”, SPV en anglais) dont la dynamique résulte d’une énergie calculée
d’après la position des vertex des cellules, et d’un mécanisme d’autopropulsion sur
les centres des cellules de Voronoi. L’autopropulsion se fait suivant la direction de
la polarisation de la cellule, dont la direction diffuse au cours du temps. Ce type
de modèle, étudié auparavant dans la littérature, a un diagramme de phase connu,
et en particulier, présente une transition entre un état “fluide” et un état “solide” en

1et la notion de confinement aussi, surtout ces derniers mois
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fonction de deux paramètres de contrôle : le paramètre de forme de repos des cel-
lules (rapport entre le périmètre et la racine carrée de l’aire de repos des cellules),
et l’amplitude de la force d’autopropulsion exercée sur les centres de Voronoi. Nous
montrons dans ce chapitre que pour reproduire des oscillations dans un système con-
finé à l’aide de ce modèle, il est nécessaire d’introduire un mécanisme d’alignement
de la direction d’autopropulsion de la cellule avec la direction de sa vitesse, avec un
délai τal. Ceci semble cohérent avec les travaux de Giavazzi et al. (2018), également
basés sur un modèle SPV, concernant l’émergence de mouvements collectifs dans le
cas d’épitheliums non confinés. Si le temps typique d’alignement est inférieur au
temps typique de diffusion de la polarisation, alors le mouvement des cellules est co-
ordonné sur des distances pouvant aller jusqu’à une dizaine de diamètre cellulaires,
reproduisant les mouvements collectifs observés expérimentalement.

Avec ce mécanisme d’alignement, nous observons dans le modèle SPV des oscilla-
tions dont les propriétés sont similaires à celles des oscillations mesurées expérimen-
talement au laboratoire. Pour une longueur de confinement inférieure à une longueur
critique (qui dépend du délai pour l’alignement), LcX(τal), les vitesses de l’ensemble
des cellules sont coordonnées, et la période temporelle des oscillations évolue linéaire-
ment avec le confinement LX . Pour LX > LcX(τal), seules des régions de taille finie
coordonnent leur vitesse, qui oscille périodiquement au cours du temps. La période
temporelle des oscillations reste alors inchangée lorsque LX augmente, tel que rap-
porté dans les expériences. La vitesse de propagation de ces ondes dans le système
ne dépend pas du confinement, également en accord avec les résultats expérimentaux.
Elle semble par contre dépendre de plusieurs paramètres du modèle, tels que ceux
décrivant l’élasticité du système, ainsi que du temps de délai τal. Ces résultats prélim-
inaires suggèrent qu’un modèle continu basé sur une description élastique avec une
inertie effective induite par le délai τal pourrait prédire le même type d’oscillations.

Il est important de noter que ce travail résulte de multiples collaborations: avec
l’équipe de biophysique MicroTiss au LIPhy (V. Pettrolli, M. Tadrous, M. Balland, T.
Boudou, G. Cappello) qui a réalisé les expériences sur les tissus épithéliaux en collab-
oration avec une équipe du CEA-LETI (Grenoble) pour la microscopie (C. Allier, O.
Mandula, L. Hervé). Le travail de modélisation et simulation présenté ici a été réalisé
en collaboration avec S. Henkes (Université de Bristol) et R. Sknepnek (Université
de Dundee), qui ont développé le code pour le modèle de Voronoi de tissu épithélial
(Barton et al., 2017). Ce travail est publié dans Physical Review Letters 122, 168101
(Petrolli et al., 2019).

Le chapitre est organisé de la façon suivante : dans la section 6.1, nous présen-
tons quelques approches de modélisation décrivant des oscillations de vitesse dans des
monocouches épithéliales, en particulier dans le cas de systèmes confinés. Les princi-
paux résultats expérimentaux de la thèse de Petrolli (2019) sont ensuite synthétisés
dans la section 6.2. Le modèle et les méthodes utilisés sont ensuite présentés dans
la section 6.3. Enfin, les résultats numériques sont présentés dans la section 6.4:
dans une première partie, nous décrivons les oscillations observées dans le modèle, en
comparaison avec les expérience et dans une deuxième partie, les rôles respectifs du
mécanisme d’alignement et des propriétés élastiques du système sont discutés.

Introduction

A remarkable feature of dense active systems such as epithelial monolayers is the
ability of their constituents (i.e., epithelial cells) to move collectively, exhibiting a
rich dynamics such as swirls, flocks and mechanical waves. By mechanical waves, we
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mean the periodic fluctuations of mechanical parameters, such as the cell displacement
or velocity, the associated strain (or strain rate), traction forces (as measured in
the substrate), and stresses (Petrolli et al., 2020; Pajic-Lijakovic et al., 2020). In
particular, several recent works have reported that wave-like patterns of the local
cell velocity spontaneously appear in colonies of epithelial cells. Propagative velocity
waves have been observed in spreading epithelial sheets (Serra-Picamal et al., 2012;
Rodríguez-Franco et al., 2017; Ladoux et al., 2017; Hakim et al., 2017), regardless
of cell proliferation (Tlili et al., 2018), and are correlated to oscillations of the forces
exerted by the cells on the substrate (Trepat et al., 2009). Such long wavelength
patterns also appear in confined geometries, in the form of standing waves, where
the extent of cell migration is limited to the substrate size (; Deforet et al., 2014;
Notbohm et al., 2016; Duclos et al., 2018b; Peyret et al., 2019).

When confined to two-dimensional substrates, cells proliferate until they fill the
available space, reaching a so-called “confluent state”2. Cell movement in the mono-
layer slows down as density increases. This observation, classically associated with
the so-called “density mediated contact inhibition of locomotion” (Stoker et al., 1967)
has also been attributed to the maturation of adhesive junction between cells and be-
tween the cells and the substrate in time (Garcia et al., 2015). The dynamical arrest
occurring in biological and active systems has attracted an increasing interest, both
experimentally and theoretically. Various works have emphasized the analogy between
cell monolayers and dense systems of soft spheres, where the motion of particles is
restricted to cages leading to an overall solid-like behavior (Szabo et al., 2006; Henkes
et al., 2011; Angelini et al., 2011; Garcia et al., 2015; Bi et al., 2015). This dense
regime where glassy or arrested dynamics is observed was described in more details
in Chapter 1, and was also the focus of the previous chapter (Chapter 5).

We focus in this chapter on confluent monolayers that are not yet arrested, where
cells are able to move over large distances (compared to their size) with cell displace-
ments (and velocities) that can be correlated over long distances (Hakim et al., 2017;
Alert et al., 2019). Confining the cells in micro-patterns whose size is typically the
size of this correlation length (around 150 to 200 microns) or smaller gives an ex-
tra control parameter on the behavior of these cells. Collective oscillations of the
velocity field in confined monolayers of epithelial cells in vitro have been reported
in various experimental setups (Deforet et al., 2014; Notbohm et al., 2016; Peyret
et al., 2019). Periodic oscillations of the velocity have been evidenced in Epithelial
sheets of Madin-Darby Canine Kidney (MDCK) cells confined to circular adhesive
patterns by Deforet et al. (2014), where the oscillations were propagating along the
radial direction. Such oscillations were further investigated by Notbohm et al. (2016),
who modeled the monolayer as an active elastic medium with active coupling terms
between cell displacement, polarization and contractility. A recent study by Peyret
et al. (2019) also evidenced velocity oscillations using anisotropic confinement.

Although mechanical waves seems to be ubiquitous in confined epithelia, their
origin remains debated. As mentioned in Chapter 1, epithelial monolayers have been
shown to exhibit elastic, plastic and viscous flow behavior depending on the forces
applied and the observation timescale. Various studies have evidenced elastic prop-
erties (that can be of active origin) (Serra-Picamal et al., 2012; Harris et al., 2012)
and it is well known that elastic materials have the ability to propagate mechanical
perturbations. In passive mechanical systems, oscillatory perturbations such as sound
waves result from an exchange of elastic potential energy and inertial kinetic energy.

2The division rate and the overall density will be kept approximately constant, achieving an
homeostatic state in the monolayer (process known as “contact inhibition of proliferation” (Martz
et al., 1972))
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In cell monolayers however, inertia is thought to play a negligible role in the dynam-
ics, considered as overdamped. Hence, the emergence of collective oscillations in cell
monolayers must be of active origin, different from the mechanism known in passive
elastic systems.

Tissue-level oscillations in confined epithelia have been modeled using approaches
either at the particle level (Deforet et al., 2014) or using continuum approaches (Not-
bohm et al., 2016) including active cellular forces. There is however no consensus
on the biophysical nature of these forces and on the mechanism by which mechani-
cal oscillations are generated. Experiments have revealed that mechanical oscillations
depend on cell–cell junctions and cell contractility, suggesting that the ability of the
monolayer to transmit forces is crucial. Various models have been developed based on
a delayed coupling between cell motility and intercellular forces, playing the role of
an effective inertia. Note that other approaches based on the visco-elastic properties
of epithelial monolayers have thought of these mechanical waves in terms of “elastic
turbulence” (Pajic-Lijakovic et al., 2020).

While various models have been shown to exhibit oscillations that qualitatively
match the experimental observations, various questions regarding the oscillations re-
main open, e.g., how does the confinement size affect the oscillations patterns? What
sets the waves propagation velocity? In this work, combining modeling and exper-
imental approaches, we study the wave-like patterns generated in confined epithe-
lial monolayers. The experiments consist in confining Madin-Darby Canine Kidney
(MDCK) cells to quasi-unidimensional patterns where we vary a single parameter (the
pattern length) controlling the confinement. These experiments reveal that tuning the
length of the confining channel induces a transition between a state of global oscilla-
tions (where the motion of all cells is coordinated) and a multi-nodal wave state. In
order to understand what could be the minimal ingredients to observe such collective
oscillations in a simple model of epithelial monolayer, we use a numerical model based
on a self-propelled Voronoi model (SPV) (Bi et al., 2016; Barton et al., 2017; Giavazzi
et al., 2018), adapted to take into account the confining geometry. We find that a
delayed polarity-velocity alignment mechanism with a delay time τal as studied in the
physics of dense active matter systems (Henkes et al., 2011) is required to observe
oscillations. We also find that below a critical confining length Lx < LcX(τal), all cells
coordinate their motion and the tissue exhibits global oscillations while multi-nodal
oscillations are observed for Lx > LcX(τal), consistent with experimental results.

This work was conducted in collaboration with experimentalists in the lab (V.
Petrolli, M. Tadrous, M. Balland, T. Boudou, G. Cappello from the MicroTiss in
LIPhy) and in the CEA-LETI research unit in Grenoble (C. Allier, O. Mandula, L.
Hervé). We conducted the numerical modeling in collaboration with S. Henkes (Bristol
University) and R. Sknepnek (Dundee University), who developed the SAMoS code
for simulations of a Voronoi model for epithelial dynamics (Barton et al., 2017).

The chapter is organized as follows: in section 6.1 we review different theoreti-
cal approaches used to model collective oscillations in confluent monolayers. In sec-
tion 6.2, we present the experimental setup used in the lab and the experimental
results. In section 6.3 we present the Self-Propelled Voronoi (SPV) model used in our
study and the numerical results are shown in section 6.4.

6.1 Models of collective cell oscillations in epithelial layers

In this section, we present a few theoretical and numerical approaches used to describe
collective cell migration, in particular in confined environment.
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Collective cell migration is defined as the coordinated movement of multiple cells
that retain cell–cell junctions while coordinating their dynamics (Hakim et al., 2017).
The mechanical properties of single cells, as determined mainly from their cytoskele-
ton, allow them to interact mechanically with their extracellular environment and
with other cells. Forces are mainly transmitted via focal adhesions (protein com-
plexes bridging the actin network to the extra-cellular matrix) and through cell-cell
junctions that connect the cytoskeleton of adjacent cells. The mechanisms by which
individual cells propel on a substrate are diverse and depend upon the cell type. Key
processes involve cell polarization (i.e., determination of the front and the back of the
cell), actin assembly and treadmilling as well as formation of new adhesion sites at
the front, together with actin contraction and de-adhesion at the cell back. Under-
standing these processes at the bio-molecular level constitutes an extended research
field, and is far beyond the scope of the work presented in this chapter. In epithelial
monolayers, cell motion can, depending upon the cell type, either (i) be driven mainly
by the mechanisms at play in single cell migration (as described above) or (ii) by
adhesion between cells and cortical contractions inducing cell rearrangements (Hakim
et al., 2017).

Particle-based models for collective cell migration, inspired from Vicsek-like models
(Vicsek et al., 1995), have been developed to model the case where cell movements are
mainly due to the propulsion of individual cells (i). On the other hand, the need to
include a description of cell shapes and cell-cell interfaces emerges when cell motion
in the monolayer is mainly controlled by interactions between neighbors rather than
by locomotion on a substrate. This has motivated the development of cellular Potts
and vertex models (that have been generalized to describe motile cells). Voronoi-
based models, lie somehow at the interface between particle-based and vertex-based
models since the degrees of freedoms are the cell centres, but the role of adhesion and
contractility is described through a vertex energy computed from the tessellation of
the cell centres.

6.1.1 Collective oscillations in microscopic models of epithelial dy-
namics

The general features of microscopic models have been presented in Chapter 1, section
1.4. We summarize here the main results regarding collective oscillations obtained
within these models.

Particle-based models: In particle-based models, cell migration is modeled by
introducing a self-propulsion force acting on the cell center of the particle. Various
models inspired by the Vicsek model (Vicsek et al., 1995) exhibit steady state os-
cillations in the dense regime of confined assemblies of self-propelled particles. The
general finding is that an alignment mechanism is required to observe oscillations.

Henkes et al. (2011) have proposed a model of self-propelled soft repulsive disks
with a polar alignment mechanism. In this model, each cell propels along the di-
rection of a polarity vector and its velocity arises both from the self-propulsion and
from repulsive contact forces between particles. The cell’s polarity aligns with the
actual velocity with a lag time τal, leading to a positive feedback mechanism. In the
dense regime and in a confined geometry (circular box of radius R with soft repulsive
boundary conditions), particles are trapped by their neighbors, and their displace-
ment oscillates around a mean position, resulting in an oscillatory behavior of the
mean square displacement of the particles, leading to large scale oscillations in the
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system. Henkes et al. (2011) further find that these oscillations are controlled by the
low-frequency modes of the jammed packing.

Deforet et al. (2014) model radial oscillations using another particle-based model,
where cells are modeled as persistent random walkers interacting with their neigh-
bors, in a “Vicsek” fashion. The model exhibits breathing radial oscillations as in
the experiments. The authors conclude that no specific mechanism is required for
these oscillations to emerge, but are the natural consequence of oscillatory modes in
a confined domain excited by the spontaneous stochastic motion of cells.

Voronoi model: Although oscillations were not yet reported in vertex or Voronoi
models for epithelial tissues (which is the aim of the work presented in this chapter),
such models were used to study collective cell migration. In a recent work, Giavazzi et
al. (2018) evidenced both fluid and solid-like collective behavior in the form of “flocks”
in the bulk of a monolayer (using periodic boundary conditions) using a Self-Propelled
Voronoi (SPV) model with a similar coupling mechanism as the one introduced by
Henkes et al. (2011). The coupling consists of a positive feedback that tends to align
the self-propulsion direction to the velocity direction and is controlled by a parameter
J = 1/τal, with τal the lag time for the feedback. The dynamical phases obtained when
varying the values of the target shape index p0 and the magnitude of the coupling J
are shown in Fig. 6.1. Collective motion (in form of flocks) is reported for large values
of the coupling magnitude J , and can be observed either in solid-like (Fig. 6.1(a)) or
fluid-like systems (b), although flocking tends to promote solidification, as shown by
the shift of the solid-like transition for increasing values of J in Fig. 6.1(e). For small
coupling (low J), the system doesn’t exhibit coordinated motion and can be either a
stationary solid or a stationary fluid (Fig. 6.1(c)-(d)

(e)

Figure 6.1: Adapted from Giavazzi et al. (2018): Phase diagram of
a Self-Propelled Voronoi model endowed with a positive feed-
back mechanism between the self-propulsion direction and
the velocity direction with a lag time 1/J . In panels (a)-(d) the
color code represents the angle of velocity with respect to the horizon-
tal so a uniform color indicates coherent migration in a given direction.
For strong coupling (large J) collective motion is observed: (a) liquid
like flocking state and (b) solid-like flocking state. For weak coupling,
the system is either a (c) stationary solid or (d) liquid. (e) Phase di-
agram summarizing the different dynamical phases. (see the article
for details about how transitions lines were obtained (Giavazzi et al.,

2018).)
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Phase-field models: Apart from particle-based and vertex-based models, phase-
field descriptions, where each cell is modeled as a highly-deformable self-propelled
object have also been used to model the dynamics of confluent tissues (Palmieri et al.,
2015). The main difference with the previously cited models is that it enables to model
larger cell deformations that can be relevant in the dynamics of epithelial layers. This
approach has been used to model confined epithelial monolayers in a parallel study
in the work by Peyret et al. (2019). Using a dynamics for the polarity (direction
of self propulsion) similar to that of Henkes et al. (2011) and Giavazzi et al. (2018),
the authors have evidenced velocity oscillations in anisotropic confinement conditions.
The characteristic of these oscillations are very similar to what we report in this study
and will be further discussed at the end of this chapter.

6.1.2 Continuum models

Notbohm et al. (2016) have developed a continuum model of epithelial tissue based on
an active elastic medium description, where the mechanical variables are coupled to
internal fields related to the biological activity. Unlike in the previous models, multiple
coupling terms are introduced in the model, due to the fact that two internal fields are
considered: a dimensionless vector polarization field (direction of cell propulsion on
the substrate) and a scalar field describing the concentration of a chemical controlling
cell contractility (e.g., concentration of molecular motors). The displacement field is
coupled to the chemical concentration (which obeys a reaction-advection dynamics)
such that a local increase in cell area generates a local increase in the contractile
stress. The polarization field also has its own dynamics: it relaxes to an homogeneous
state with a characteristic time, and tends to align to its nearest neighbors. There
is also an active coupling between the polarization and the gradient of chemicals, so
polarization is favored in regions of higher contractility.

The motivation to introduce two independent internal fields comes from the fact
that the authors aim at capturing a specific experimental observation in their model:
the misalignment between traction force and cell velocity. This model enables to re-
produce the spontaneous oscillations of the velocity field in epithelial tissues confined
to a circular pattern, alternating between inward and outward motion, as reported in
the experiments of Deforet et al. (2014) and Notbohm et al. (2016). This model sug-
gests that a feedback between mechanical strain and cellular contraction is required
to generate collective oscillations. This is consistent with their experiments, where
oscillations are eliminated when contractility is inhibited. Moreover, this work sug-
gests that most of the elasticity in the tissue is of active origin due to the coupling
between strain and contractility, with a decrease in effective modulus and oscillation
frequency when contractility is inhibited.

Pajic-Lijakovic et al. (2020) proposed another modeling approach to describe os-
cillations in epithelia, where a viscoelastic resistive force caused by a residual stress
accumulation during cell migration is capable of inducing apparent inertial effects, by
analogy with elastic turbulence effects observed in the flow of complex fluids at low
Reynolds number.

6.1.3 Related models

Waves in spreading epithelia: The model studied by Notbohm et al. (2016) is
actually an extension of the model of Banerjee et al. (2015) first used to describe
propagating waves in a spreading epithelium, as observed in the experiments of Serra-
Picamal et al. (2012). In these experiments, waves arise at the front of the expanding
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layer and propagate backwards, with the wave velocity direction opposed to the cell
velocity direction. The model of Banerjee et al. (2015) predicts a wave velocity de-
pending upon the effective elasticity of the monolayer, with an effective mass density
(inertia) of the form ζτc with ζ the friction coefficient for viscous friction with the
underlying substrate and τc the timescale for myosin turnover. Note that the vis-
coelastic model of Pajic-Lijakovic et al. (2020) was also used to describe waves in
spreading epithelia. There were also other continuum models developed to describe
oscillations in spreading epithelial tissues, in absence of confinement. The work by
Blanch-Mercader et al. (2017b) for instance, also motivated by the experiments of
Serra-Picamal et al. (2012) is based on an active viscous fluid description. This the-
ory describes a 2d compressible active polar fluid with nematic elasticity. It appears
that for sufficiently high active stresses, the homogeneously polarized state becomes
unstable, and the model predicts the emergence of traveling waves. Interestingly, this
model also exhibits an effective elastic-like behavior of active origin while the model
is based on an active fluid description. The continuum model of Tlili et al. (2018),
based on a delayed coupling between strain and polarity and assuming a Maxwell-like
viscoelastic behavior of the monolayer also predicts waves in a migrating epithelium.
The cell velocity is in phase opposition with the cell density, and similarly, the wave
propagation velocity decreases with an increase in cell density.

Mechanical excitability models: We would like to mention here another class
of models, which, by accounting for “mechanical excitability” of epithelia, can also
lead to oscillatory dynamics. The general idea behind these models is to couple rapid
threshold phenomena to slow refractory phenomena as in action potential propaga-
tion. Serra-Picamal et al. (2012) model oscillations of the stress field in an expanding
epithelium using a model in which cells can migrate only if the density is sufficiently
small coupled to a non-monotonic time evolution of the cytoskeleton stiffness. In their
model, reinforcement and fluidization of the cytoskeleton act over disparate timescales,
and hence lead to a propagating mechanical wave.

Other studies investigate oscillatory dynamics in tissue using threshold-based ac-
tivation dynamics models, such as the study of Idema et al. (2013) reporting mitotic
waves in theDrosophila embryonic development and proposing a bio-mechanical model
for signal propagation. Finally, recent works have studied propagative waves of the
extracellular signal-related kinase (ERK) protein, involved in biological processes such
as cell proliferation, differentiation and cell motility (Aoki et al., 2017; Ogura et al.,
2018), for which models based on switch-like activation dynamics have been proposed
(Ogura et al., 2018).

6.1.4 Concluding remarks

All the microscopic modeling approaches used to model velocity oscillations in confined
tissues rely on a delayed velocity alignment mechanism. This mechanism is most
often encoded in the dynamics for the polarity of the cell (i.e., the direction of self-
propulsion), which tends to align to the direction of the cell velocity (Henkes et al.,
2011; Giavazzi et al., 2018), or to the direction of the force exerted onto the cell
(Peyret et al., 2019), with a lag time τal. In the case of the particle-based model
introduced by Deforet et al. (2014), cells explicitly adapt their velocity to that of
their first neighbors.

The continuum approach of Notbohm et al. (2016) relies on a chemo-mechanical
feedback between mechanical strain, contractility (described by a myosin concentra-
tion field), and polarization. This modeling approach seems to be versatile since a
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similar model accounts for oscillations in a spreading epithelia (Banerjee et al., 2015).
A strain-polarization coupling approach has also been used by Tlili et al., 2018 to
describe oscillations emerging in a migrating monolayer without cell proliferation.
On the other hand, mechanical excitability models offer an alternative way to model
collective oscillations in epithelial tissues (in the non-confined case).

Although delayed feedback mechanisms seem to be generic ingredients in both
microscopic and continuum approaches describing oscillations in models of epithelial
layers, their bio-molecular origin often remains unclear. It is in general difficult to
measure experimentally the values of model parameters such as the lag time involved
in feedback mechanisms.

What determines the waves characteristics in a confined geometry also remains a
largely open question. As proposed by Henkes et al. (2011) and Deforet et al. (2014),
the motion of cells with an intrinsic timescale for alignment playing the role of an
effective inertia might be sufficient to excite the oscillatory modes of the confined
domain. In the (bulk) Voronoi model studied by Giavazzi et al. (2018), such a mech-
anism for alignment has been shown to induce collective migration in the form of
flocks. The typical size of flocks or swirls in epithelial tissues, as determined from
the cell velocity correlation (“Velocity fields in a collectively migrating epithelium”),
has been shown to be around 150 to 200 µm. Coordinated motion of the monolayer
is thus expected when confining the cells in patterns whose size is smaller than this
correlation length, as evidenced in small circular patterns by Deforet et al. (2014).
Further, the confinement size is thought to play an important role in oscillation dy-
namics since the period of radial (breathing) oscillations increases with the radius of
the confining disk. The geometry of the confining setup can actually be simplified in
order to disentangle the effect of various parameters, such as anisotropy and size for
instance3. In particular, using a very strong confinement along one spatial dimension
enables one to get directed migration along the other dimension, thus simplifying the
analysis of the velocity fields in experiments.

In order to characterize the waves appearing due to the effect of confinement, we
use in our study simple rectangular confining patterns, with a fixed width of size 40
µm) smaller than the typical velocity correlation length in unconfined tissues (about
150 µm (“Velocity fields in a collectively migrating epithelium”)). We are thus left
with a single control parameter, the length of the pattern (LX), to tune the oscillations
in our system. We detail in the following the experimental approach used in this work.

6.2 Experiments on confluent epithelial monolayers

The experimental work summarized in this section is part of the PhD thesis work of
Vanni Petrolli (Petrolli, 2019).

6.2.1 Experimental methods

The experimental methods are described briefly here and more details can be found
in Petrolli (2019) and Petrolli et al. (2019). Epithelial Madin-Darby Canine Kidney
(MDCK) cells are confined to a quasi one-dimensional pattern, by preparing adherent
stripes on soft polyacrylamide gels (of stifness E ' 40 kPa), as described by Vignaud
et al. (). Stripes of different length (LX = 100 to 2000 µm), but of the same width
(LY = 40 µm), are patterned on the same substrate. MDCK cells are then seeded

3A study conduced in parallel to ours by Peyret et al. (2019) is also based on rectangular patterns
and yields a similar phenomenology.



176 Chapter 6. Velocity oscillations in confined epithelial monolayers

-600 -300 0 300 600
µm

-10
-8
-6
-4
-2
0
2
4
6
8

10

ho
ur

s

-0.2

0

0.2

0.4

0.6

0.8

1

0 300 600 900 1200 1500
µm

0

5

10

15

20

ho
ur

s

-15

-10

-5

0

5

10

15

v 
 (µ

m
/h

)

-600 -300 0 300 600
µm

-0.2
0

0.2
0.4
0.6
0.8

1

-10 -5 0 5 10
hours

-0.2
0

0.2
0.4
0.6
0.8

1

Q
U

AN
TI

FI
C

AT
O

N
RA

W
 D

AT
A

2D Autocorrelation

Ph
PI

V
Cell movements

PAA

Time

Space

a
Fibronectin

3 4 5 6
hours

0
8

16

325 375 425
µm

0
5

10
15

AVG = 4.7 h

AVG = 370 µm

L X = 1500μm

100μm

0 500 1000 1500
µm

-25
-20
-15
-10
-5
0
5

10
15
20
25

v 
 (µ

m
/h

)

b

c

Figure 6.2: From Petrolli et al. (2019). Velocity oscillations in
MDCK epithelial monolayers. (a) Top: MDCK cells seeded onto
a polyacrylamide (PA) gel patterned with fibronectin stripes (width:
LY = 40 µm, length: LX = 1500 µm). Middle: phase-contrast image
of a confluent monolayer. Bottom: velocity field measured by PIV. Ve-
locities pointing in the positive (negative) x-axis direction are shown
in red (blue), in agreement with the arrows reported under the im-
age.(b) Left : kymograph representing the average horizontal velocity
v‖(x; t) in time. Right : an example of velocity profile along the dashed
line. The low frequency drifts are removed using a Gaussian high-pass
filter. (c) The spatio-temporal autocorrelation of the kymograph is
computed to quantify the periodicity of oscillations (left) and measure
peak spacing along the spatial (top-right) and temporal (bottom-right)
coordinates (insets: distribution of peak periodicity for n=59 indepen-
dent stripes). Images in panels (b - left) and (c - left) were smoothed
for visualization purposes with a low-pass Gaussian filter (σx=15 µm,

σt=30 min).
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on the patterned substrates with initial concentration of 2.5 ± 0.5·104 cells/cm2. The
samples are washed with fresh medium 1h after seeding, then placed in the incubator
(37◦ C and 5% CO2) until the end of the experiments. Cells are imaged in situ using
in-line holographic (defocus) microscope (see Supplementary Information of Petrolli
et al., 2019 and references therein) for ' 48 hours after confluence, gathering one
image every 10 minutes.

Cell velocities are computed with a custom-made Particle Image Velocimetry
(PIV) algorithm with a final resolution of 20 min and 14 µm (see an example of
velocity field in Fig. 6.2(a), bottom). To generate the space-time kymographs, videos
are cropped in time to consider only confluent monolayers, in an interval where the
average speed is higher than 4 µm/h (“Velocity fields in a collectively migrating ep-
ithelium”).

While cells confined to a square surface have a ratio of mean velocities 〈|vx|〉/〈|vy|〉 '
1, the ratio increases up to 4 for rectangular confinement with Lx = 500µm and
Ly = 40µm (Lx/Ly = 12.5). In the following, only the horizontal (x) component of
the velocity will be considered, and averaged along the transverse direction (of width
Ly) of the confining area: v‖ (x; t) = 〈vx (x, y; t)〉y. Low frequency drifts are then
removed using a Gaussian high-pass filter cropping 50% of the signal at 700 µm and
10 h.

6.2.2 Experimental results

Velocity oscillations in confined epithelial monolayers

The kymograph in Fig. 6.2(b)-left represents the spatio-temporal evolution of the
velocity field over 22 hours and over the whole stripe. A typical instantaneous velocity
profile (Fig. 6.2(c)-right) displays periodic oscillations in space. To quantify the period
and the wavelength of these oscillations, the autocorrelation function of the kymograph
is computed g(δx, δt) = 〈v‖ (x, t) v‖ (x+ δx, t+ δt)〉x,t and displayed in Fig. 6.2(c)-
left. An oscillating pattern can be observed in the autocorrelation function, both along
the spatial and the temporal directions (Fig. 6.2(c)-right). This pattern indicates the
establishment of an extended multi-nodal standing wave, with wavelength and period
equal to λ = 370 ± 30 µm and T = 4.7 ± 0.7 h, respectively (errors represent the
standard deviation, with n = 59 samples) (see histograms in Fig. 6.2(c)-right).

Transition between wave-like migration modes

In approximately 95% of the experiments, two types of behaviors are observed: (i) a
global movement of all cells alternating between rightward and leftward motion (as
seen from the autocorrelation function of the kymograph in Fig. 6.3(a)) and (ii) the
establishment of a multi-nodal standing wave with cells moving back and forth and
cells at the nodes being alternately compressed and dilated (Fig. 6.3(b)).

The length of the pattern LX is varied between 100 µm and 2000 µm (examples
between 200 µm and 1000 µm are shown in Fig. 6.3), in order to assess the influence of
the confining length on the oscillatory behavior. The incidence of the two behaviors
strongly depends on LX , with a transition for LX ' λ. Fig. 6.3(c) quantifies the
transition, with on average 39 monolayers per point, obtained from three independent
experiments. In the experiments with LX < 200 µm, the global oscillation statistically
dominates. In this case, the period scales approximately linearly with the monolayer
size (Fig. 6.3(d), blue area), while the wavelength is imposed by the confinement. In
large structures (LX > 500 µm), only multi-nodal waves are observed, with the period
and wavelength independent of LX (Fig. 6.3(d), red area).
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Figure 6.3: From Petrolli et al. (2019). Dependence of oscilla-
tory behavior on the stripe length. (a) The velocity field su-
perimposed on phase contrast images for short stripes of length 200
µm and 300 µm displays global oscillations, generating a characteristic
two-dimensional autocorrelation (right). (b) Longer lines (500 µm and
1000 µm) display multi-nodal oscillations which give rise to a different
pattern in the autocorrelation image (right). Velocities pointing in the
positive x-axis direction are represented in blue, those pointing in the
negative x-axis direction are represented in red, in agreement with the
arrows reported in the schemes under each image. For each length, we
display (c) the frequency of each phenotype and (d) the characteristic
time and space periodicity calculated. Bars represent the standard

error of the mean.

The wave velocity does not depend on monolayer length

Using the typical period and wavelength, an effective velocity uφ = LX/T ' 78 ±
13 µm/h can be defined, which is independent of the pattern size. Even for small
patterns (LX <500 µm), this velocity is preserved as the period scales linearly with
the pattern length. We also note that uφ is approximately ten times larger than the
average speed of individual cells within the epithelial layer (between 4 and 12 µm/h,
depending on cell density (“Velocity fields in a collectively migrating epithelium”;
Puliafito et al., 2012)). This value of wave velocity is in the same range as other
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results from the literature, finding velocities between 10 and 60 µm/h (Pajic-Lijakovic
et al., 2020).

6.2.3 Concluding remarks

The experiments performed by V. Petrolli during his PhD (Petrolli, 2019; Petrolli
et al., 2019) reveal the following features: (i) epithelial monolayers confined to quasi
1d substrates exhibit velocity oscillations. (ii) Upon increasing the confining length
LX there is a transition between two different types of velocity oscillations: global
oscillations for small patterns and multi-nodal oscillations for large patterns. (ii) For
small patterns, the time period of oscillations scales approximately linearly with the
confining length. (iv) The wave propagation velocity is independent of the confining
length.

In the following section, we study a numerical model based on a Voronoi description
of epithelial monolayers, the self-propelled Voronoi model (Bi et al., 2016; Barton et
al., 2017; Giavazzi et al., 2018) to study the dynamics induced by confining boundary
conditions. We will investigate what are the necessary ingredients in the dynamics to
observe velocity oscillations, and test the above listed features.

6.3 Numerical model

We consider a computational framework based on a recently introduced self-propelled
Voronoi model (SPV) (Bi et al., 2016; Barton et al., 2017; Giavazzi et al., 2018).

6.3.1 Description of the model

The model used in this study is similar to that used by Giavazzi et al. (2018) to
describe flocking transitions in confluent monolayers, but rather than using periodic
boundary conditions, we imposed confinement through a repulsive rectangular wall
of size (LX , LY ) to reproduce the experimental geometry. The confluent cell mono-
layer is modeled as a two-dimensional network of Voronoi polygons covering the plane
(Voronoi tessellation of all cell centre positions, see Fig. 6.4). Each configuration of
the monolayer is described by the positions of cell centroids with an energy given by
the commonly used Vertex Model (Farhadifar et al., 2007),

E =

Ncells∑

i=1

K

2
(Ai −A0)2 +

Ncells∑

i=1

Γ

2
(Pi − P0)2 (6.1)

Ncells is the total number of cells, Ai and Pi are the area and perimeter of the i-th
cell, K and Γ are the area and perimeter stiffness respectively, and A0 and P0 are
the target area and perimeter, identical for all cells. In most of the simulations, these
parameters were chosen to describe a monolayer rather in a solid-like regime (with a
shape factor p0 = P0/

√
A0 = 2.5 - 3.4) (Bi et al., 2014; Bi et al., 2016), to avoid shear

flows induced by the boundaries.
As in the works of Bi et al. (2016), Barton et al. (2017), and Giavazzi et al. (2018),

we consider an overdamped dynamics, i.e., a force balance between frictional force
with the substrate, self-propulsion at a constant velocity v0 along the direction of cell
polarity, ~ni, and mechanical forces between the cells determined as a negative gradient
with respect to cell position of the SPV model energy functional ~Fi. ~Fi = −∇~riE is
the force arising from the monolayer energy and from a soft-core repulsion introduced
to stabilize the simulations (described as a quadratic potential of stiffness kcc with an
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Figure 6.4: Example of simulation data for the SPV model
with confining boundary conditions.. (a) SPV configuration for a
system size LX = 25 where cell centroids are colored in red, boundary
particles in blue and confining repulsive particles in grey. (b) SPV
configuration for a system size LX = 113 . Velocity field superim-
posed to the monolayer configuration with positive x-velocities in red
and negative x-velocities in blue. (c) Space-time kymograph of the x-
component of the cell velocity (averaged over the transverse dimension,
y). (b) Instantaneous velocity profile plotted along the x-direction ex-
hibiting spatial oscillations (for parameters v0 = 0.2, p0 = 2.5 and

τal = 0.3 )

interaction radius of half the typical distance between cell centers ac) Barton et al.,
2017.

γ
∂~ri
∂t

= fa~ni + ~Fi + ~νi(t) (6.2)

~νi(t) is an uncorrelated stochastic force and fa~ni models the self-propulsion force.
The value of v0 can be set to match the experimental observations, but does not

affect the general oscillatory behavior (see Appendix E, Fig. E.3). The dynamics
of the cell polarity ~ni, described by the angle θi with the x-axis of the laboratory
reference frame (i.e., ~ni = (cos θi, sin θi)) are

∂θi
∂t

=
1

τal
sin(θi − φi) + νri (t), (6.3)

with φi being the angle between the velocity of cell i and the x-axis, and νri (t) being an
orientational Gaussian noise. The angular dynamics is thus controlled by the interplay
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of rotational diffusion (kept constant in this study) and the polarity-velocity alignment
with rate τ−1

al , with τal being the time required by the cell to reorient its polarization
in the direction of its velocity. This feedback mechanism leads to oscillations in
confinement, where the lag time τal introduces an effective inertia into the system,
and the oscillations are along the lowest-energy elastic modes of the material (Henkes
et al., 2011). This feedback mechanism is also at the origin of flocks in unconfined
monolayers (Giavazzi et al., 2018). Cell division can also be included in this model
(and is used in our simulations to prepare monolayer configurations, see Appendix E.1)
but does not affect the oscillations, as reported in previous works (Deforet et al., 2014;
Tlili et al., 2018).

6.3.2 Methods and data analysis

We use the SAMoS implementation of the SPV model as described in detail by Barton
et al. (2017) for which the source code can be found at
https://github.com/sknepneklab/SAMoS. This implementation enables for open flex-
ible boundaries which is convenient to model systems with a small number of cells as
it is the case in the confined monolayers experiments. Details regarding the numerical
implementation of confining boundary conditions are given in Appendix E.1. All the
simulation parameters are also provided in Appendix E.1. An example of monolayer
configuration obtained with the SPV model with confining boundary conditions is
shown in Fig. 6.4(a).

6.4 Simulation results

We first present the results obtained using the SPV model choosing parameters de-
scribing a monolayer in a rather solid-like state (p0 ≤ 3.1) with a fixed value of the
lag time τal = 0.3, and show that this model exhibits steady state oscillations of the
cell velocity. We further show that when increasing the confining length, the system
undergoes a transition from global to multi-nodal oscillations, as observed in exper-
iments. We then discuss the role of the lag time τal. Preliminary results regarding
how waves are affected by changes in the monolayer properties such as, e.g., its target
shape index p0 or its elastic properties are discussed in the last section.

6.4.1 Oscillations in a Self-Propelled Voronoi model

We first consider the case of long confining channels, where multi-nodal oscillations
were observed experimentally (Fig. 6.2). The simulation results displayed in Fig. 6.4(b-
d) are obtained for a system with the same transverse confining length LY (about 3
cells in y−direction) and aspect ratio as in the experiments of Fig. 6.2 (and a value
τal = 0.3). We observe a pattern in the x-component of the velocity, vx, and using
the same analysis tools as in Fig. 6.2, we extract the wavelength λSPV ≈ 22 model
length units and the period TSPV ≈ 8 model time units. Note that by approximately
matching the timescale of the model to the experiments (through the self-propulsion
velocity v0

4), one would get from these simulation data λ ≈ 300 µm and for the
period T ≈ 2 hours. This indicates that this model is able to reproduce the features
observed in the experiments, although some fine tuning of parameters (τal, v0) is
required for a quantitative match. Note that although the instantaneous velocity
profiles Fig. 6.4(b)) appear to be similar to the experiments, the full spatio-temporal

4Changing the self-propulsion velocity v0 only affects the amplitude but leaves the period of
oscillations unchanged, as shown in Appendix E.
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in the large system regime.

dynamics of the model (Fig. 6.4(a)) does not correspond to standing wave oscillations,
but rather to propagating waves. The precise mechanisms by which standing waves
could appear in experiments thus remain to be understood.

6.4.2 Evolution of oscillations with the confinement

If the system size LX is decreased (keeping the value of τal constant), the number of
nodes also decreases down to a point where the system size can only accommodate a
single spatial period of oscillation, reaching a regime of global oscillation, where the
direction of motion of all cells is coordinated. In the small system regime (when the
oscillation wavelength is bounded by the system size), the oscillation period increases
linearly with the system size, as shown in Fig. 6.5 and previously reported by Deforet
et al. (2014) and Notbohm et al. (2016). When the system size exceeds a critical
length LcX , the time period saturates to a value T ∗, as observed in experiments (see
Fig. 6.3). The increase of the period with the length LX is reminiscent of elastic waves
(vibrating string for instance). The role of elasticity will be further investigated in
the next section.

6.4.3 Role of the delayed feedback mechanism

A delayed feedback mechanism is required to observe oscillations

The transition from global to multi-nodal oscillations upon increasing the system size
is shown in the τal−LX plane in Fig. 6.6. The feedback timescale plays an important
role since no oscillations are observed if τal is too large (i.e., the noise dominates over
the coupling) and the critical length LcX at which one observes multi-nodal oscillations
increases with τal. The phase diagram of Fig. 6.6, was constructed using a timescale
for the decorrelation of the orientation equal to τr = 10, thus explaining the transition
from the “global oscillations” regime to the absence of oscillations when the feedback
timescale becomes larger than τr.
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Figure 6.6: Phase diagram of oscillation patterns in the
SPV model in the (τal − LX) plane. Two types of oscillations
are observed depending upon the system size LX : Top left : For
large systems where LX > LcX(τal) the autocorrelation of the kymo-
graph shows multi-nodal oscillations whereas for small systems (bottom
left) where LX < LcX(τal) the autocorrelation exhibits global oscilla-
tions. Right : Simulation data points indicating whether the system
exhibits global (blue disks), multi-nodal (red diamond), or no oscilla-
tions (grey squares symbols) for large values of the feedback timescale
(τal > τ cal ≈ 17 model time units). The solid line delimiting the global
and multi-nodal oscillation phases is a power law fit of the transition

data points (LcX(τal) = aτ bal + c with a ' 32, b ' 0.62, c ' 13).

The feedback mechanism induces a delay between the velocity and the polarity,
as illustrated in Fig. 6.7. This effect was confirmed in experiments by Peyret et al.
(2019) who measured a time delay between the cell velocity and the traction force
exerted onto the substrate, with a typical realignment time of the order of 30 min.

Evolution of the wave velocity with the feedback timescale

We measure the propagation velocity in simulations of a long monolayer (LX = 100)
for various values of the feedback timescale τal and target shape index p0, with v0 =
0.2, K = Γ = 1. Propagation velocity measurements are performed using the Hough
transform of the autocorrelation of kymographs (see Appendix E.1.3), and the results
are depicted in Fig. 6.8(a). The propagation velocity c decreases as the alignment
timescale τal is increased and scales as a power law: c ∼ τ−αal , with α = 0.51±0.12. The
value of the exponent close to 0.5 supports the hypothesis of the feedback timescale
playing a role of effective inertia at the origin of oscillations.

We also note in Fig. 6.8(a) that the wave velocity decreases monotonously as p0

is increased. This is not surprising since the elastic constants of the material depend
on p0 (Sussman et al., 2018), and this is a first indication that the elastic properties
of the monolayer influence the oscillations.

We also measure the period of oscillations for a small system (LX = 15) exhibiting
global oscillations in Fig. 6.8(b). The period T increases with the alignment timescale
τal, as reported by Peyret et al. (2019). The data fit suggests a scaling form: T ∼ τβal
with an average exponent β = 0.55±0.15. Note that Peyret et al. (2019) found a linear
increase, although they fitted the data over a smaller range of values of τal = 10− 50.
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Figure 6.7: Time delay between velocity and polarity. (a)
Space-time kymograph of vx (averaged over the y dimension) and (b)
Time evolution of vx and of the polarity nx (averaged over y) at a
location indicated by the dashed line in (a) exhibiting a time delay
between the polarization and the velocity due to the delayed feedback

mechanism.
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Figure 6.8: Evolution of wave propagation velocity and pe-
riod with τal. (a) Wave propagation velocity c as a function of τal
for a system of length LX = 100 (multi-nodal regime), with v0 = 0.2,
K = Γ = 1 for various values of the target shape index p0. Dashed lines
are power law fits with exponents: −0.49± 0.05 (black), −0.52± 0.05
(blue), −0.45 ± 0.04 (green), −0.57 ± 0.09 (red). (b) Oscillation pe-
riod T as a function of τal for a system of length LX = 15 (global

oscillations regime). Dashed lines are power law fits (see text).
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Figure 6.9: Evolution of wave propagation velocity with τal
in a system of repulsive particles for a system of length LX = 100,
with v0 = 0.2, for various values of the interaction potential stiffness k.
Dashed lines are power law fits with exponents: −0.43±0.04 (magenta)
−0.57± 0.08 (black), −0.63± 0.04 (blue), −0.54± 0.07 (red), −0.56±

0.04 (green).

As shown in Fig. 6.5, the period T increases linearly with the system size for small
system regimes, T ∼ LX , so we expect that the maximum period Tmax ∼ LcX ∼ τβal.
The fit of Fig. 6.6 yields LcX(τal) = aτ bal+c with b ' 0.62, consistent with our estimate
β = 0.55± 0.15.

To test the robustness of this scaling, we also performed simulations without the
vertex energy and by only considering repulsive interactions between the centroids of
the Voronoi tessellation. This change in the model does not affect significantly the
waves. The wave velocity as a function of τal for various values of the stiffness k are
shown in Fig. 6.9. We find a similar scaling, with an average exponent α = 0.54±0.13.

6.5 Discussion and preliminary results

In this chapter, we characterized the oscillations emerging in a Self-Propelled Voronoi
model due to a coupling mechanism between the direction of self-propulsion and the
forces exerted on a cell. Our results suggest that oscillations arise in a generic manner
when a feedback mechanism with a lag time leads to the alignment of cell velocity and
self-propulsion force with no strong dependence on the details of interactions, as the
same phenomenology is observed when considering the full vertex interactions or only
repulsive interactions between cell centroids. We also find that the waves properties
(wave velocity, period) do not depend on v0, the magnitude of the self-propulsion
velocity (see Appendix E, Fig. E.3).

We studied the oscillations by focusing on a rather solid-like regime (choosing
values of p0 comprised between 2.5 and 3.1). In section 6.5.1, we show preliminary
results regarding the oscillations when the target shape index p0 is varied, and propose
the (preliminary) phase diagram of Fig. 6.10, suggesting an analogy between flocks in
the unconfined SPV and oscillations in the confined SPV model.

We evidenced that the wave velocity is affected by the lag time for alignment,
with a scaling c ∼ 1/

√
τal. This points towards the description of elastic waves with

an effective inertia, where we would expect a scaling of the wave velocity of type
c ∼

√
µ/ζτal or c ∼

√
(µ+B)/ζτal with µ and B being respectively the shear and

bulk moduli of the monolayer and ζ the friction coefficient with the substrate. Relating
(macroscopic) elastic moduli to microscopic parameters is however not an easy task
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and has been addressed in the unconfined SPV model in a recent work by Sussman
et al. (2018). It is however not clear yet how the results of Sussman et al. (2018)
could be used in our case since the confinement adds geometrical constraints to the
system, impacting, e.g., the average area. Using the values of bulk and shear moduli
measured by Sussman et al. (2018) and assuming a relation of type c ∼

√
(µ+B)/ζτal

yields the right order of magnitude for the wave velocity in the solid-like regime,
although slightly overestimated. A careful characterization of the elastic properties
of the monolayer in the confined case should thus be performed. In section 6.5.2, we
show preliminary results regarding the evolution of the wave velocity as a function
of Γ, the (microscopic) parameter describing perimeter elasticity, suggesting that the
elastic properties of the monolayer indeed affect the wave velocity.

Testing these scalings in experiments is however not an easy task. Experiments
commonly performed to modify the mechanical properties of an epithelium include for
instance inhibition of myosin contractility, disruption of cell-cell junctions, etc., which
have been shown to affect the oscillations (Deforet et al., 2014; Notbohm et al., 2016;
Peyret et al., 2019). Tuning the cell’s ability to coordinate their motion (without
changing the mechanical properties of the layer) is more challenging. It was recently
proposed that the RAB5 protein promotes large-scale directed migratory patterns in
epithelial layers (Malinverno et al., 2017). Tuning the expression of RAB5 could thus
potentially enable to tune the magnitude of the velocity-polarity coupling (Giavazzi
et al., 2018), which is expected to affect the oscillations. Let us also mention a very
recent work by Boocock et al. (2020), that proposes that mechanical waves in epithe-
lial tissues are related to spatio-temporal waves of cellular density and ERK activity,
due to delayed mutual feedbacks between tissue mechanics and mechanosensitive ERK
activity. Interestingly, the model of Boocock et al. (2020) is able to account (quan-
titatively) for the experimental data presented in this chapter (Petrolli et al., 2019).
These recent results thus provide a possible biochemical explanation for the delayed
feedback mechanisms leading to oscillatory dynamics in epithelial tissues.

In the confined SPV, an arbitrary choice has to be made for the cell number
density. In our work, we chose the cell number density such that the tissue would
remain confluent (and not detaching from the boundary) for a sufficiently large range
of simulation parameters. Indeed, for large values of τal (but in the regime where
collective oscillations are still observed, i.e., τal < τr), the direction of the collective
motion persists for so long that we observe a detachment of the monolayer from the
extremity of the confining box. Choosing a large number density thus prevents this
effect for a sufficiently large range of τal values. The cell number density sets the
value of the average cell area, 〈Ai〉, which can be in practice very different from the
target value 〈A0〉. According to Sussman et al. (2018), such a difference between 〈Ai〉
and 〈A0〉 should just act as an offset in the overall pressure of the system. The way
the cell number density affects the wave features in the SPV model remains an open
issue. It turns out that it is important to address this question, since it was shown
in spreading epithelia experiments that the propagative wave velocity depends on the
cell density (Tlili et al., 2018).

From a broader perspective, let us point out that although it is now well known
that self-propulsion induces a solid-to-fluid transition in dense systems of active par-
ticles, the details of the dynamics (such as the alignment mechanisms studied here)
may impact this transition. Giavazzi et al. (2018) have for instance shown that align-
ment mechanisms leading to flocks promote solidification by limiting the number of
cellular rearrangements. How does the interplay of this mechanism and confining
boundary conditions affect the solid-to-fluid transition of the SPV should also be in-
vestigated carefully. The proposed phase diagram of Fig. 6.10 is indeed schematic and
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Figure 6.10: Phase diagram of the confined SPV model in the 1/τal−
p0 plane (alignment, target shape index plane).

the different transitions mentioned should be investigated in details in the future.
In our study, we considered quasi-unidimensional confining boundary conditions,

and did not discuss the effect of varying the lateral confinement. In their study, Peyret
et al. (2019) propose that the wave period and amplitude are set by the smallest
confinement dimension (i.e., lateral confinement size). We perform some numerical
tests to probe this hypothesis in section 6.5.3, and find that the period of oscillations
increases when the lateral confining dimension is increased, in agreement with Peyret
et al. (2019).

A final important question concerns the nature of the oscillations observed in
anisotropic confining conditions. For short patterns (LX < LcX), there is a good
agreement between the phenomenology observed in experiments and in simulations
(global oscillations). For larger patterns (LX > LcX), although the waves observed in
experiments resemble standing waves, the waves observed in simulations of the SPV
model resemble in general superimposed propagative waves (see the kymographs of
Fig. 6.4(c) and Fig. 6.7(a)). Peyret et al. (2019), using large patterns, report standing
waves along the short confining dimension and a mix of multi-nodal and traveling
waves along the long confining dimension. Under which conditions standing waves
are observed remains an open question. Is a specific confining length required? Is
there an adapatative or self-tuning mechanism in epithelial tissues at play that would
explain the fact that standing waves are easily observed in experiments but not in
simulations?

6.5.1 Phase diagram of the confined SPV model in the p0− τal plane
Let us discuss in more details the preliminary phase diagram for the SPV model
(in the 1/τal − p0 plane) shown in Fig. 6.10. The colormap represents the relative
amplitude of the oscillations vmax/v0 (measured mean amplitude of the x-component
of the velocity normalized by the self-propulsion velocity v0). Red colored regions
indicate the existence of wave-like dynamics while blue colored regions rather indicate
a stationary state.

This phase diagram was obtained for values of the self-propulsion velocity v0 =
0.2 and rotational diffusion rate τ−1

r = 0.1. According to Bi et al. (2016), these
parameters lead to a solid-to-fluid transition for a value of the shape index p0 ' 3.5
in the absence of alignment mechanisms, as depicted by the solid vertical line in
Fig. 6.10. The transition between a solid-like state and solid-like oscillations occurs
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when the timescale for alignment equals the timescale for rotational diffusion, and
is depicted by the solid horizontal line in Fig. 6.10. As shown by the color code of
Fig. 6.10, there exist oscillations for p0 > 3.5, in a regime expected to be fluid-like.
We checked in the simulations that these oscillations indeed corresponded to states
where rearrangements of particles could be seen. We did however not determine the
solid-to-fluid transition line in this oscillatory regime (this can be done by measuring
the effective diffusion coefficient of cells, as done by Giavazzi et al. (2018)), and leave
it for future work. The grey line corresponds to the analytical expression derived by
Giavazzi et al. (2018) to approximate the transition between solid-like and fluid-like
flocking states: Jc(p0) = (v2

0Dr)/(kµ
2(p∗0 − p0)), with p∗0 = 3.813 (Bi et al., 2014)

and k = 0.13 a fitting parameter chosen such that this expression matches the solid
lines (for p0 = 3.5) in the phase diagram. We neither determined the transition line
delimiting the fluid-like oscillations and the fluid-like stationary regime. This could
be done by calculating numerically the cage lifetime (typical time to escape from a
cage, infinite in the solid phase and finite in the fluid phase) as done by Giavazzi et al.
(2018) and setting it equal to the timescale for alignment τal, and could also be done
in future research.

Note that all the transitions lines discussed above were obtained in simulations of
unconfined SPV models, and we do not expect to have a quantitative match with the
results of Bi et al. (2016) and Giavazzi et al. (2018).

To summarize, this preliminary diagram suggests the existence of four distinct
phases by varying the alignment rate 1/τal and the target shape index p0. For small
values of 1/τal (low alignment) and p0, the monolayer behaves essentially as a solid,
with no collective oscillations nor cellular rearrangements. For low alignment but
higher values of p0, no collective oscillations are observed, but increased cell motion
enabled by cellular rearrangements leads to a fluid-like phase. When increasing the
alignment rate 1/τal, collective oscillations are observed, with (fluid-like) or without
(solid-like) cellular rearrangements. In the solid-like regime, the only condition for
the oscillations to be visible is that alignment dominates over rotational diffusion
(horizontal solid line separating the solid and solid oscillations regimes). In the fluid-
like regime, however, a higher alignment rate is required for collective oscillations to
appear because alignment competes with the timescale for cage breaking. This phase
diagram is very similar to that of flocks in a SPV model for unconfined monolayers
(see Fig. 6.1) (Giavazzi et al., 2018). In this work, they also evidence four different
phases depending on the alignment rate and target shape index: a solid, a fluid, a solid
flock and a fluid flock phase. They conduct a detailed study of these different phases
and show that alignment promotes solidification by limiting the number of cellular
rearrangements, thus inducing a shift of the solid-fluid transition in the flocking regime
(when alignment is increased). Our study was mainly qualitative, and this aspect
remains to be tested. Determining the transitions lines as described above would give
further insights into the analogy between flocks in unconfined monolayers and velocity
oscillations in confined monolayers.

6.5.2 Role of elasticity

Although oscillations can be seen in both solid-like and fluid-like regimes, they are
more pronounced in the solid-like elastic regime. In Fig. 6.11(a), we observe in prelim-
inary data a change of wave velocity c when varying the microscopic elastic modulus
relating to perimeter changes in Eq. 6.1 of the form c = aΓb with b ' 0.65± 0.1, not
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Figure 6.11: Role of the perimeter elasticity constant and
lateral confinement on the waves. (a) Wave velocity as a function
of the perimeter elastic constant Γ for LX = 60, p0 = 3.1 and τal = 1.
The errorbars correspond to the error on the estimated velocity (using
the Hough transform method) and the dashed line is a power law fit
of the form axb with a = 0.23 and an exponent b = 0.65. (b) Period of
oscillations of the x-component of the cell velocity (averaged over the

y dimension) as a function of lateral confining size LY
for a system with LX = 12, p0 = 2.3 and τal = 1.

far from a scaling form c ∼
√

Γ/τal. The respective role of perimeter and area elas-
ticity in confined conditions (and for different p0 values) should however be studied
carefully in order to rationalize the wave velocity.

To sum up, although we saw qualitatively that the elastic properties of the system
affect the wave velocity (increasing velocity with increasing stiffness), a full study of
the macroscopic elastic properties of the confined SPV with self-propulsion should be
performed.

6.5.3 Effect of the lateral confinement

In Fig. 6.11(b), we test the effect of changing the lateral confining length LY in the
SPV model on the period of oscillations of the x-component of the velocity for small
systems size (where global oscillations are observed). We find an increase of the period
of oscillations with LY .

As proposed by Peyret et al. (2019), this points towards a mechanism by which the
smallest confinement length sets the period and hence the lengthscale of coordinated
motion of the confined tissue (and beyond a critical confining length, the intrinsic
lengthscale is that provided by the velocity correlation length in non-confined epithelial
layers). We thus expect that the lengthscale of coordinated motion in the multi-nodal
regime will be affected by the lateral confinement LY . This hypothesis remains to be
tested in future work.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion et perspectives de la thèse (en français)

Nous avons étudié dans cette thèse différents aspects de la dynamique et de la rhéolo-
gie des matériaux amorphes et des systèmes actifs denses. Nous avons considéré deux
classes principales de systèmes : des matériaux amorphes athermiques, soumis à un
cisaillement et dont la dynamique était affectée par des sources de bruit mécanique
supplémentaires ainsi que des matériaux amorphes actifs où l’activité (d’origine bi-
ologique par exemple) pouvait aussi générer un bruit mécanique additionnel. La mo-
tivation pour étudier ces deux classes de système dans un cadre (au moins en partie)
commun provient des multiples analogies proposées récemment entre la physique des
systèmes denses thermiques ou forcés et la physique de systèmes actifs denses comme
les tissus biologiques (Janssen, 2019; Berthier et al., 2019). Plusieurs travaux récents
ont par exemple proposé de décrire les tissus biologiques comme des fluides à seuil flu-
idisés sous l’effet d’une activité locale, agissant comme une source de bruit mécanique
(Matoz-Fernandez et al., 2017a; Popović et al., 2018; Mongera et al., 2018). Cer-
tains travaux ont en outre proposé que l’activité biologique elle-même agissait comme
un cisaillement local, suggérant une forte analogie entre les matériaux denses actifs
et les matériaux amorphes athermiques cisaillés (Tjhung et al., 2017; Tjhung et al.,
2020; Morse et al., 2020). Nous nous sommes donc intéressés dans cette thèse à la
manière dont la dynamique de solides amorphes était affectée par diverses sources de
bruit mécanique et à comment une activité biologique pouvait être décrite à l’échelle
mésoscopique, par analogie avec les systèmes cisaillés.

Concernant la première classe de systèmes, nous avons étudié dans le chapitre 3
l’effet d’une dynamique inertielle sur l’écoulement de solides amorphes. D’après
Salerno et al. (2012), l’inertie permet de passer des barrières d’énergies successives
lors d’un réarrangement plastique, facilitant alors l’échantillonnage des états de basse
énergie du système et induisant donc une relaxation de contrainte plus importante que
dans un système sur-amorti. En d’autres termes, les oscillations persistantes induites
par l’inertie vont induire de nouveaux réarrangements plastiques dans le voisinage
d’un évènement plastique, de façon plus efficace que dans le cas sur-amorti (Karimi
et al., 2016). Ce mécanisme d’autofluidisation se traduit par une courbe d’écoulement
non monotone, telle qu’observée dans des simulations de particules et dans un modèle
élasto-plastique continu pour la déformation de solides amorphes (Nicolas et al., 2016;
Karimi et al., 2016). Des bandes de cisaillement avaient été observées dans le modèle
continu avec inertie (Karimi et al., 2016) et les auteurs, remarquant que ces bandes ne
respectaient pas de loi du levier, avaient attribué cet effet aux petites tailles de système
considérées dans leur étude. Dans le chapitre 3, nous avons suivi l’approche proposée
par Nicolas et al. (2016) consistant à décrire le bruit mécanique induit par l’inertie en
introduisant une température cinétique responsable d’un mécanisme de fluidisation.
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Nos résultats montrent d’une part que, dans des simulations de particules inertielles
employant de grandes tailles de systèmes, des bandes de cisaillement permanentes sont
observées, et ne respectent pas de loi du levier. D’autre part, le modèle continu basé
sur une température cinétique permet de prédire la taille de système nécessaire pour
observer des bandes de cisaillement et prédit des profils d’écoulement stationnaires
ne satisfaisant pas non plus une loi du levier (que nous rationalisons à l’aide d’une
analogie mécanique). Ces résultats permettent d’éclaircir la question de l’écoulement
hétérogène associée aux courbes rhéologiques non monotones dans le cas d’une dy-
namique inertielle soulevée par Nicolas et al. (2016) and Karimi et al. (2016) ainsi
que de conforter la description de l’inertie par une température cinétique dépendant
du taux de cisaillement proposée par Nicolas et al. (2016). Certains points restent
cependant à éclaircir. Nous n’avons par exemple pas étudié le régime transitoire de
formation des bandes de cisaillement. Il apparaît dans les simulations de particules
que plusieurs bandes se forment initialement et évoluent jusqu’à ce qu’une unique
bande reste présente dans l’état stationnaire. Étudier la dynamique transitoire pour
de grands systèmes (pour voir initialement plusieurs bandes) dans le modèle continu
requièrerait cependant de faire appel à d’autres méthodes numériques dû aux limites
de stabilité du schéma explicite utilisé.

Les études concernant un système modèle de particules molles, non frictionnelles,
avec une dynamique inertielle, telle que la nôtre ou celles de Salerno et al. (2012),
Nicolas et al. (2016), Karimi et al. (2016), and Karimi et al. (2017) restent à un
niveau très fondamental où il est assez difficile de faire le lien avec des systèmes
expérimentaux. En effet, des matériaux typiques où l’inertie est supposée jouer un
rôle dans la dynamique sont les matériaux granulaires (voir par exemple Chapitre 1,
Fig. 1.1). Cependant, ces matériaux sont constitués de grains durs frictionnels, et des
études récentes ont montré que le frottement seul aussi pouvait induire une instabilité
de l’écoulement (DeGiuli et al., 2017). Une étude complète devrait donc tenir compte
de ces différentes sources d’instabilité (frottement, inertie, etc.). Une autre perspective
à ce travail serait d’étudier l’effet d’une source de bruit externe (comme une vibration)
dans les simulations de particules inertielles, afin de tester le scénario de point critique
étudié dans le chapitre 4 dans ce système.

Le chapitre 4 de cette thèse était en effet dédié à l’étude de la fluidisation d’un
fluide à seuil par une source de bruit externe, indépendante de l’écoulement. Les
systèmes dans lesquels ces mécanismes de fluidisation peuvent être mis en jeu sont
divers, et appartiennent aux deux classes de matériaux évoqués plus haut (systèmes
cisaillés ou actifs). On peut penser aux solides amorphes cisaillés qui sont en plus
soumis à un bruit mécanique externe de type vibration (Dijksman et al., 2011; Gibaud
et al., 2020). On peut évoquer les mousses ou les émulsions où des processus internes
comme de la coalescence ont également un effet fluidisant (Cohen-Addad et al., 2004).
Les systèmes actifs ou biologiques offrent également une multitude d’exemple où des
processus locaux, indépendants (au moins dans une certaine mesure) de l’écoulement,
induisent un bruit mécanique additionnel dans le matériau.

Le travail mené dans le chapitre 4 s’est réduit à l’étude générique d’un processus
de fluidisation, où, sans spécifier l’origine physique du bruit mécanique, on considère
que celui-ci induit des réarrangements plastiques aléatoires (indépendamment de ceux
induits par le cisaillement) dans un modèle élasto-plastique sur réseau. Ce type de
bruit induit, par construction, une disparition de la contrainte seuil (puisque de la
plasticité, même très faible, est introduite dans le modèle quelque soit la valeur de
la contrainte). La rhéologie à petit taux de cisaillement dépend par contre du mod-
èle d’activation considéré. Alors qu’une rhéologie linéaire est observée pour un taux
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d’activation constant τvib, une loi d’activation dépendant de la contrainte locale de
type Arrhenius, conduit à une rhéologie où la contrainte augmente linéairement avec
le logarithme du taux de cisaillement. Lorsque ce type de bruit externe est appliqué à
un système avec une instabilité de l’écoulement sous forme de bandes de cisaillement
(induites dans le modèle élasto-plastique par un long temps de restructuration locale
lorsqu’un évènement plastique se produit (Coussot et al., 2010)), alors, pour de faibles
amplitudes de bruit, la rhéologie est non monotone. A faible taux de cisaillement, on
observe le régime fluidisé discuté précédemment, où la contrainte augmente de façon
monotone avec le taux de cisaillement et où l’écoulement homogène est stable. Pour
des taux de cisaillement intermédiaires, la courbe constitutive est décroissante et on
observe, suivant le protocole employé, des bandes de cisaillement ou un écoulement
instable avec de l’hystérèse. Enfin, pour des taux de cisaillement plus importants, on
retrouve un écoulement homogène et le même comportement rhéologique (croissant)
qu’en l’absence de bruit. En augmentant l’amplitude du bruit, la région instable à
taux de cisaillement intermédiaire devient de plus en plus réduite, jusqu’à laisser la
place à une courbe d’écoulement monotone croissante au delà d’une valeur critique du
bruit. Nous avons caractérisé cette transition en étudiant l’évolution des grandeurs
rhéologiques macroscopiques et de leur fluctuations, et montrons que celle-ci peut être
interprétée comme un point critique. De plus, le comportement critique, caractérisé
par un ensemble d’exposants critiques, semble être similaire dans les deux modèles de
bruit considérés. Nous trouvons en outre que les exposants critiques décrivant la tran-
sition dans le modèle élasto-plastique scalaire considéré sont compatibles avec ceux
déterminés expérimentalement dans une expérience de granulaires cisaillés et vibrés
(Wortel et al., 2016). Ces résultats suggèrent donc un possible scénario générique
pour l’émergence d’un point critique lorsqu’un processus d’auto-fluidisation entre en
compétition avec une source de fluidisation externe, distinct du point critique dans
la limite des petits taux de cisaillement γ̇ → 0. Il n’existe cependant pas d’approche
théorique, même de type champ moyen, prédisant la valeur des exposants critiques.
Notons que, comme remarqué par Wortel et al. (2016), certaines valeurs d’exposants
sont compatibles avec une théorie de champ moyen d’équilibre standard, mais les ex-
posants décrivant l’évolution des corrélations spatiales et temporelles diffèrent d’une
telle théorie. Enfin, il est intéressant de noter que la rhéologie du modèle élasto-
plastique fluidisé par un bruit externe ne dépend ni du choix d’un modèle scalaire ou
tensoriel, ni de l’orientation des évènements plastiques (aléatoire ou dans la direction
du cisaillement) activés par le bruit. Ceci suggère que c’est principalement la relax-
ation de contrainte supplémentaire due aux évènements plastiques induits par le bruit
qui explique la fluidisation observée sur la courbe d’écoulement, et que les corrélations
entre évènements jouent un rôle moindre. Ceci explique aussi pourquoi la rhéologie
à faible taux de cisaillement prédite dans le modèle simplifié à un site décrit bien
les simulations spatiales dans ce régime fluidisé. Nous n’avons cependant pas exploré
la dépendance des exposants critiques avec la tensorialité du modèle, la dimension
spatiale ou encore l’orientation des évènements plastiques dus au bruit. Une telle
étude pourrait permettre de comprendre plus en détail le rôle joué par les corrélations
spatiales dans les propriétés critiques du modèle à taux de cisaillement fini. Enfin, il
serait souhaitable de tester l’existence de ce point critique ainsi que, le cas échéant, la
valeur des exposants dans d’autres systèmes expérimentaux ou modèles numériques de
solides désordonnés, comme par exemple en ajoutant une source de bruit mécanique
externe dans les simulations de particules inertielles décrites dans le chapitre 3.

Dans le chapitre 5, nous avons cherché à étudier la fluidisation d’un fluide à seuil en
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spécifiant cette fois-ci un type de bruit mécanique particulier, induit par des fluctua-
tions actives du volume des particules. Les fluctuations du volume cellulaire, pouvant
suivre une dynamique oscillatoire, constituent un exemple de processus actif mis en
jeu dans les tissus épithéliaux, et affectant la dynamique (e.g., champs de vitesse par
exemple) à grande échelle (Zehnder et al., 2015a; Zehnder et al., 2015b). En se basant
sur le modèle microscopique proposé par Tjhung et al. (2017), nous avons construit un
modèle élasto-plastique tensoriel actif, dans lequel nous décrivons l’effet moyen d’une
particule se dilatant ou se contractant comme étant à l’origine d’une redistribution de
contrainte dans le système via un propagateur élastique. Nous étudions la dynamique
de ce modèle avec comme source de forçage des oscillations périodiques du rayon des
particules telles qu’étudiées par Tjhung et al. (2017), que nous modélisons comme une
déformation active locale oscillante.

Nous montrons tout d’abord que, sous l’effet de la déformation active seule (sans ci-
saillement), ce modèle élasto-plastique actif présente une transition entre un état solide
(sans réarrangement plastique) et un état fluide pour une valeur finie de l’amplitude
d’oscillation de la déformation active. La nature de cette transition est cependant
difficile à déterminer d’après les valeurs de plasticité moyenne ou les trajectoires de
particules traceurs. En effet, au voisinage de la transition, le système évolue très lente-
ment vers l’état stationnaire (qui n’est pas atteint dans nos simulations pour les points
à proximité de la transition) et les barrières pour la plasticité locale (renouvelées à
chaque évènement plastique) deviennent de plus en plus hautes au fur et à mesure
des cycles de déformation active locale. Ces phénomènes évoquent la transition vers
l’écoulement observée dans certains verres soumis à un cisaillement oscillatoire, où de
petites amplitudes de déformation conduisent à augmenter la stabilité du verre (Leis-
hangthem et al., 2017; Yeh et al., 2020). La comparaison à ce stade reste cependant
qualitative puisque le modèle élasto-plastique utilisé n’est pas basé sur une description
énergétique du système amorphe. Une étude plus approfondie de ces aspects requiér-
erait par exemple d’utiliser un modèle élasto-plastique continu basé sur un paysage
énergétique, tel qu’étudié par Jagla (2007).

Une autre similitude avec les verres cisaillés sous protocole oscillatoire concerne la
contrainte moyenne dans le système, qui présente un pic (“overshoot” en anglais) pour
une valeur d’amplitude de déformation active ac, indiquant une transition nette entre
deux états. Alors que dans les verres cisaillés, peu de plasticité est en général observée
avant le dépassement de contrainte, nous constatons ici que la plasticité dans la phase
supposée solide est non négligeable. Ceci peut s’expliquer par le fait que le forçage
dans le cas actif est hétérogène, conduisant à l’existence de sites soumis à un forçage
grand devant les barrières d’énergie maximales du système. Il se trouve en outre que,
au voisinage de la transition, la plasticité n’est pas homogène dans le système mais
semble s’organiser en régions avec une activité plastique finie (et ne dépendant pas du
forçage au voisinage du dépassement de contrainte) et en régions inactives, évoquant
les bandes de cisaillement dans les verres cisaillés avec un protocole oscillatoire. Dans
la suite, il faudrait étudier les corrélations entre évènements plastiques afin de mieux
comprendre l’organisation spatiale de la plasticité au voisinage de la transition.

Notre modèle élasto-plastique est basé sur l’hypothèse que les réarrangements
plastiques dans le matériau sont activés par un forçage actif produit par la déformation
locale active des particules. Nous avons donc négligé les fluctuations locales de densité
induites par l’activité. La densité joue toutefois un rôle important dans la dynamique
des amorphes, puisqu’une région moins dense aura une propension plus grande à subir
un réarrangement de particules. Estimer les variations de densité dans le modèle de
particules et étudier la corrélation entre densité locale et réarrangement plastiques
permettrait donc de mieux comprendre les mécanismes en jeu dans la fluidisation
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du système. Enfin, Tjhung et al. (2017) suggèrent dans leur étude que l’existence
d’évènements plastiques réversibles dans la phase solide est un élément crucial pour
observer une transition de fluidisation discontinue d’après les données de trajectoires
de particules. Il serait donc intéressant de modifier le modèle élasto-plastique actif
de façon à décrire des évènements plastiques réversibles (en modifiant le critère pour
générer un évènement plastique par exemple).

Enfin, le chapitre 6 est un peu à part du reste de la thèse puisqu’il consistait
à étudier l’émergence d’oscillations mécaniques dans un modèle de monocouches ép-
ithéliales confinées sur un substrat d’étendue limitée en lien avec des expériences
menées au sein du laboratoire. Notre étude est basée sur un modèle de type Voronoi
incluant l’autopropulsion des cellules, avec un mécanisme de rétroaction entre la direc-
tion d’autopropulsion et la vitesse des cellules afin d’obtenir des oscillations. Bien que
notre étude ait été principalement guidée par les résultats expérimentaux de Petrolli
(2019), des liens peuvent cependant être établis entre les questions abordées dans le
chapitre 6 et le reste de la thèse. En effet, plusieurs travaux soulèvent le lien en-
tre fluidisation et migration collective dans les monocouches épithéliales. La forme
des cellules, la motilité cellulaire ainsi que la division et la mort cellulaire contrôlent
des transitions solide-fluide dans des modèles de vertex ou Voronoi de monocouches
confluentes (transitions indépendantes de la densité) (Bi et al., 2015; Bi et al., 2016;
Czajkowski et al., 2019). Les mécanismes d’alignement tel que celui considéré dans
le chapitre 6 conduisent en outre à une solidification de la couche épithéliale, dans le
sens où ils favorisent la migration coordonnée des cellules en limitant les réarrange-
ments cellulaires (Giavazzi et al., 2018). Lorsque le temps typique d’alignement est
grand devant le temps typique de diffusion de la direction d’autopropulsion (polar-
ité), alors le bruit généré par l’autopropulsion agit comme une température effective
qui permet de franchir les barrières d’énergie associées aux réarrangements de cellules
(de type T1) (Bi et al., 2016), alors que lorsque le mécanisme d’alignement est plus
rapide que la diffusion, les cellules se déplacent de façon plus coordonnée. Giavazzi
et al. (2018) proposent de décrire cet effet à l’aide d’une température effective propor-
tionnelle au ratio de la constante de diffusion rotationnelle de la polarité et du taux
d’alignement. Étant données les similitudes entre l’émergence de mouvements collec-
tifs dans le modèle SPV avec alignement avec des conditions aux limites périodiques
(sans confinement) et l’émergence d’oscillations de vitesse dans le même modèle mais
avec des conditions de bord répulsives (induisant un confinement), nous attendons
également un effet de solidification induit par l’alignement dans le cas confiné.

On peut se demander si de tels mécanismes d’auto-propulsion avec alignement
pourraient être inclus dans un modèle élasto-plastique actif. La phénoménologie
décrite par Giavazzi et al. (2018) suggère que la migration cellulaire (dans un modèle
avec alignement) peut résulter en un déplacement “solide” de cellules coordonnant
leur mouvement, ou en déplacement plus localisés faisant intervenir des réarrange-
ments de particules. Le cadre actuel des modèles élasto-plastiques semble plutôt
adapté à décrire le deuxième type de migration, où les mécanismes d’alignement sont
négligeables. Dans ce cas, le type de dynamique observée dépend cependant de façon
importante du régime de persistance de la force d’autopropulsion. La dynamique ob-
servée dans le régime de faible temps de persistance de la polarité est analogue à celle
d’un verre avec une température effective Teff ∝ f2

0 (avec f0 la force d’autopropulsion)
(Bi et al., 2016; Mandal et al., 2016). Dans le cas, où, au contraire, le temps de per-
sistance de la polarité est infini, une transition entre un solide athermique et un état
fluide athermique est observée, pour une valeur critique de la force d’autopropulsion
(qui dépend de la fraction volumique) (Liao et al., 2018; Mandal et al., 2020a). Cette
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force critique est analogue à la contrainte seuil dans les solides amorphes athermiques
cisaillés (Liao et al., 2018). Dans le cas de temps de persistance intermédiaires, Man-
dal et al. (2020a) ont mis en évidence une dynamique intermittente résultant de phases
d’arrêt suivies de réarrangements plastiques associés à des déplacements non affines
de particules de type Eshelby.

Une première utilisation naïve de modèle élasto-plastique pour décrire un système
de particules auto-propulsées pourrait consister à introduire des évènements plas-
tiques d’orientation aléatoire, avec des règles d’activation à spécifier, tel que proposé
par exemple à la fin du chapitre 4. Alors que ce type d’approche pourrait en ef-
fet décrire la phase fluide d’un système de particules auto-propulsés, le lien entre la
force d’autopropulsion des particules à l’échelle microscopique et le taux d’activation
d’évènements resterait cependant phénoménologique. Cette approche ne permettrait
en outre pas d’étudier la transition solide-fluide induite par l’auto-propulsion.

Pour aller plus loin, une première étape serait d’introduire un champ de polarité
dans le modèle mésoscopique. Ce champ de polarité devrait sans doute être défini sur
un réseau avec une maille plus fine que celle fixée par la taille typique des réarrange-
ments plastiques. Une étude détaillée des évènements plastiques dans des simulations
de particules comme celles réalisées par Mandal et al. (2020a) serait donc nécessaire
pour éclaircir le lien entre force d’autopropulsion et polarité locales et contrainte locale
nécessaire pour engendrer un évènement plastique. Par exemple, on peut se deman-
der si les évènements plastiques décrits par Mandal et al. (2020a) se produisent quand
plusieurs particules voisines ont des polarités alignées de telle sorte qu’elles peuvent
exercer localement une contrainte de cisaillement suffisante pour induire un réarrange-
ment. En s’inspirant des méthodes de Puosi et al. (2014) and Patinet et al. (2016), on
pourrait imaginer construire des groupes de particules actives au sein d’un système
de particules passives et varier soit le nombre de particules actives, soit leur polarité,
soit leur force d’autopropulsion afin de déterminer les conditions dans lesquelles un
évènement plastique se produit.

Pour conclure, le projet de construire un modèle élasto-plastique décrivant un
système de particules auto-propulsées, même dans le scénario le plus simple sans mé-
canisme d’alignement et avec un temps de persistance infini, requièrerait un travail
d’investigation numérique conséquent dans des simulations de particules, qui n’a pas
pu être effectué au cours de cette thèse. Des travaux très récents de Morse et al. (2020)
and Mandal et al. (2020b) offrent en outre des perspectives intéressantes concernant
l’analogie entre cisaillement et auto-propulsion dans le régime de temps de persis-
tance infini. Dans leur étude, Morse et al. (2020) proposent un nouveau protocole de
simulation consistant à déplacer aléatoirement des particules de façon quasi-statique
(correspondant au cas de l’autopropulsion dans la limite de vitesse nulle et d’un bruit
rotationnel nul), permettant une comparaison directe entre systèmes actifs et systèmes
athermiques cisaillés (suivant un protocole quasi-statique). Les résultats numériques
obtenus sont en accord avec les résultats d’un modèle champ moyen (en dimension
infinie) suggérant qu’appliquer un champ de force aléatoire ou une déformation de
cisaillement perturbe un solide amorphe de la même façon. Les exposants critiques
décrivant les avalanches de plasticité sont similaires dans les deux cas, et les préfac-
teurs dépendent de la longueur de corrélation du champ de déplacement appliqué : de
l’ordre d’un rayon de particule dans le cas de particules auto-propulsées (sans bruit
rotationnel) et de l’ordre de la taille du système dans le cas du cisaillement. Le cisaille-
ment global apparaît alors comme un cas particulier de forçage aléatoire. Leurs résul-
tats montrent par ailleurs qu’un solide amorphe soumis à un champ de déplacement
aléatoire présente aussi une transition vers l’écoulement (“yielding”) dépendant de la
stabilité du verre, tel qu’observé sous cisaillement. Les auteurs soulèvent également la
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question de la localisation de l’écoulement dans les systèmes actifs au voisinage de la
transition, où le forçage n’impose pas de symétrie à l’échelle macroscopique, question
également abordée dans le chapitre 5. Mandal et al. (2020b) proposent une méthode
pour étudier les systèmes actifs denses dans la limite des temps de persistance infinie,
et étudient les réarrangements plastiques de type Eshelby induits par l’activité, mon-
trant que leur orientation est isotrope dans le matériau. Ces deux études suggèrent
donc que modéliser l’autopropulsion (persistante) comme une forme de cisaillement
localisé peut être une piste pertinente pour le développement de modèles à l’échelle
mésoscopique. On peut également se demander si le cadre théorique développé par
Morse et al. (2020) s’applique au cas d’un système de particules se déformant de façon
isotrope, comme étudié dans le Chapitre 5, en prenant une limite quasi-statique du
modèle.

7.2 Conclusion and perspectives

We studied in this thesis different aspects of the dynamics and rheology of amorphous
and dense active materials. We considered two main classes of systems: athermally
sheared amorphous materials with additional sources of mechanical noise as well as
active amorphous materials in which the biological activity can also induce additional
mechanical noise. The motivation to study these two classes of systems in a (at least
partly) common framework comes from the numerous analogies recently proposed
between the physics of thermal or driven amorphous materials and the physics of dense
active systems such as epithelial tissues (Janssen, 2019; Berthier et al., 2019). Recent
works have for instance proposed to describe epithelial tissues as yield stress fluids
fluidized by a local biological activity, acting as an additional source of mechanical
noise (Matoz-Fernandez et al., 2017a; Popović et al., 2018). Some works have also
proposed that the biological activity itself acts as a local shear (Tjhung et al., 2017;
Tjhung et al., 2020; Morse et al., 2020), suggesting a strong analogy between active
and sheared materials.

In this thesis, we have studied how the dynamics of amorphous solids is affected by
diverse sources of mechanical noise, and how a local biological activity can be modeled
at a mesoscopic level by analogy with sheared systems. We have considered distinct
sources of noise, either endogenous noise leading to self-fluidization or rate-weakening
(e.g., due to inertial dynamics or long restructuring times in the plastic deformation
of amorphous solids) as well as external (i.e., rate independent) sources of noise (e.g.,
vibrations, biological activity).

We studied in chapter 3 the effect of inertial dynamics on the organization of the
flow of amorphous solids. According to Salerno et al. (2012), inertia enables succes-
sive energy barrier crossings when a plastic rearrangement occurs, thus facilitating
the exploration of low energy states of the system and inducing an increased stress
relaxation compared to the overdamped case. In other words, persistent oscillations
due to inertia will induce new plastic rearrangements in a more efficient way (Karimi
et al., 2016). This self-fluidization mechanism leads to nonmonotonic flow curves, as
observed in particle-based simulations or in a continuum elasto-plastic model for the
flow of amorphous solids (Nicolas et al., 2016; Karimi et al., 2016), although no shear
bands were reported in particle-based simulations. Shear bands were observed in the
continuum model (Karimi et al., 2016) and were shown not to obey a lever rule, al-
though the authors attributed this finding to the small system size used in their study.
In chapter 3, we further investigated the existence and the nature of shear bands in
amorphous solids with underdamped dynamics. We followed the approach proposed
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by Nicolas et al. (2016) consisting in modeling inertia as a shear rate-dependent ki-
netic temperature in the material inducing a rate-dependent fluidization. The results
obtained by V. Vashist using underdamped particle-based simulations show that shear
bands are observed when considering large systems sizes and that these bands do not
follow a lever rule either, as observed by Karimi et al. (2016). Our continuum model,
based on a kinetic temperature description of inertia, can predict the minimum system
size required to observe shear bands and also predicts steady states shear-banded pro-
files that do not follow a lever rule (finding that we can rationalize using a mechanical
analogy). These results contribute to clarifying the question of the existence and the
nature of shear bands associated with a nonmonotonic flow curve due to an inertial
dynamics raised by Nicolas et al. (2016) and Karimi et al. (2016). Our findings also
support the description of inertia by a kinetic temperature field proposed by Nicolas
et al. (2016).

Studies of inertial soft frictionless particles like ours or that of Salerno et al. (2012),
Nicolas et al. (2016), Karimi et al. (2016), and Karimi et al. (2017) remain however
quite fundamental since they do describe a specific experimental system. Typical
materials where inertia is thought to play an important role are granular materials
(see Chapter 1, Fig. 1.1). However granular materials are most often made of hard
frictional grains, and friction itself is also thought to induce nonmonotonic flow curves
and flow instabilities (DeGiuli et al., 2017). A complete study should thus account
for these different sources of instability (friction, inertia, etc.).

We mainly focused in Chapter 3 on the steady state properties of sheared under-
damped systems exhibiting permanent shear localization. Underdamped disordered
solids also exhibit a rich transient dynamics to reach steady state, and studying this
transient dynamics constitutes a possible perspective for future work. Regarding the
macroscopic properties, it appears in Fig. B.4(a) that, when the homogeneous flow is
unstable (nonmonotonic flow curve), the macroscopic stress first relaxes to its homo-
geneous steady state value, and if the system is large enough, then relaxes during a
second step to a steady state value corresponding to a heterogeneous flow. This feature
is also captured by the continuum model, and many questions remain open. How long
does it take to reach the heterogeneous steady state? How does this depend on the
system size? How does it depend on initial conditions? The evolution of flow profiles
in particle-based simulations also exhibits a rich dynamics: several bands can form
at the early stages of the dynamics and then coarsen until a single banded profile is
reached in steady state. What governs this coarsening dynamics also remains an open
question. Observing multiple bands in the early dynamics of the continuum model
would however require to study a large system, which could not be achieved due to
numerical stability issues with our explicit Euler scheme as discussed in section 3.2.6.
One would need to use more sophisticated methods such as pseudo-spectral methods
to prevent these numerical instabilities and access larger system sizes to study the
coarsening dynamics in the continuum model.

Another interesting perspective (which was actually the initial motivation for this
project) would be to study the effect of an external fluidizing noise on the shear bands
induced by an inertial dynamics. Whether combining a rate weakening mechanism
due to inertial dynamics with external vibrations leads to critical dynamics remains an
open question. A preliminary work regarding the effect of vibration in particle-based
simulations of a dense system of soft spheres was conducted by V. Vasisht, evidencing
a fluidization mechanism akin to that reported for breathing particles in Chapter 4
(with a vanishing yield stress above a critical vibration magnitude), but different from
the random activation of events considered in Chapter 4 (vanishing yield stress for any
vibration magnitude). Further, the shear bands observed in the underdamped system
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are very different from the ones observed in Picard’s elasto-plastic model, since e.g.
no lever rule is reported in the former case (Martens et al., 2012). With so much
differences between the type of phase separation and the effect of the fluidizing noise
between the EPM of Chapter 4 and the model glass studied in Chapter 3, it would
be of great interest to see if the critical point scenario proposed in Chapter 4 holds in
the latter case.

We studied in Chapter 4 the fluidization of yield stress fluids by external (rate-
independent) sources of noise. The systems where such fluidization mechanisms can
be at play are diverse, encompassing amorphous solids such as granular media or gels
subjected to mechanical vibrations (Dijksman et al., 2011; Gibaud et al., 2020), foams
or emulsions undergoing coalescence (Cohen-Addad et al., 2004), or active materials
where local (biological) activity can induce additional mechanical noise (Mandal et al.,
2016; Matoz-Fernandez et al., 2017a; Tjhung et al., 2017).

In Chapter 4, we restricted our work to the study of a generic fluidizing noise model
responsible for the random activation of plastic events in a lattice-based elasto-plastic
model (independently of the shear-induced events). This type of noise induces, by
construction, a vanishing yield stress (because some plastic events are induced even
at infinitesimally low stress). It is thus not suited to model the fluidization induced for
instance by ultrasonic vibrations in colloidal gels, where the yield stress vanishes upon
a critical vibration magnitude. The type of elasto-plastic model used in Chapter 5,
where the magnitude of the local additional stress due to the source of noise is fixed
(rather than an activation rate), predicts instead a vanishing yield stress upon a
critical noise magnitude.

In the models of random activation considered in Chapter 4, we found that the
low shear rate rheology depends on the type of activation rule. A linear rheology
is obtained when a constant activation rate is considered while an activation rate
depending upon the local stress in an Arrhenius fashion leads to a logarithmic-like
rheology.

Next, we applied this random activation noise to simulations of the elasto-plastic
model accounting for a shear banding instability (due to a long restructuring time as
proposed by Coussot et al. (2010)). We found that for small noise magnitudes the
rheology is nonmonotonic, with a fluidized branch at low shear rate, followed by an
unstable regime where shear bands are observed at intermediate shear rates and a
rheology that remains unchanged compared to the case without noise at high shear
rates. When increasing the noise magnitude (i.e., the activation rate), the unsta-
ble (phase-separated) region decreases until it vanishes at a critical noise magnitude
for which a homogeneous flow regime is reached. We studied the evolution of both
macroscopic quantities and fluctuations in the vicinity of the transition, and found
that it can be interpreted as a critical point in the framework of non-equilibrium phase
transitions. The critical behavior, as characterized by a set of critical exponents, is
found to be similar for the two types of activation rules considered in Chapter 4.
The exponents are moreover found to be consistent with the experiments of Wor-
tel et al. (2016) on sheared and vibrated granular materials. These findings suggest
a possible generic scenario for the emergence of criticality at finite shear rate when
self-fluidization competes with external fluidization mechanisms. There is however no
theoretical framework that could help rationalizing the values of the critical exponents
found in our study and in the experimental work of Wortel et al. (2016). We found
that some of the exponents values, in particular those related to average quantities,
are consistent with a mean-field Landau-like description as noted by Wortel et al.
(2016). This is however not the case for the exponents describing the evolution of
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spatial and temporal correlations in the vicinity of the transition, suggesting a slower
decay than equilibrium mean field.

It is also interesting to point out that the rheology of the fluidized elasto-plastic
model depends neither on the tensoriality of the model nor on the orientation of
the randomly activated events (random or in the same direction as shear). This
suggest that the fluidization behavior is mainly explained by local stress relaxation,
and that correlations between plastic events play only a little role in this regime. We
did however not study how the critical behavior depends upon the tensoriality, the
spatial dimension or the orientation of activated events. Studying these effects would
give more insights into the role of spatial correlations in the finite shear rate critical
behavior.

Other perspectives for this work include for instance pushing further the character-
ization of the transition by measuring e.g. response functions to small perturbations
in the critical regime, as well as performing direct measurements of the correlation
length in the Arrhenius-like model of activation. Finally, it would be of interest to
test this critical point scenario in other experimental or numerical models of disor-
dered solids, with distinct sources of endogenous and external noise. In the context
of the systems studied in this thesis, this could be done using for instance inertial
dynamics as source of self-fluidizing noise (Chapter 3) and internal active noise as
flow-independent fluidizing noise (Chapter 5).

In Chapter 5, we proposed a generalization of the elasto-plastic approach to ac-
count for local (active) driving. Our aim was to study the fluidization of yield stress
fluids by specifying this time a particular type of noise, induced by active fluctuations
of the volume of particles. It was found that fluctuations of the cell volume in epithe-
lial tissues can occur periodically and affect the large scale velocity fields (Zehnder
et al., 2015a; Zehnder et al., 2015b). Based on the particle-based model introduced by
Tjhung et al. (2017), we built an active tensorial elasto-plastic model in which we de-
scribe the average response to a dilating or contracting particle as stress redistribution
in the surrounding elastic medium via an elastic propagator.

We studied the dynamics of this active elasto-plastic model (AEPM), with the only
source of driving originating from periodic oscillations of the local active deformation,
mimicking the oscillations of the particle radius studied by Tjhung et al. (2017). Our
preliminary results suggest that upon an increase of the active deformation amplitude,
the system undergoes a transition from a solid-like state (with no plastic activity) to
a fluid-like state with a finite rate of plastic events. This transition occurs for a finite
value of the active deformation amplitude, as reported by Tjhung et al. (2017). It is
however difficult to determine the nature of the transition from the data of average
plasticity or from the tracer particle trajectories, due to the fact that the system
exhibits an increasingly slow dynamics in the vicinity of the transition (and the first
results shown in this chapter were obtained with rather short simulation runs). This
slow dynamics is accompanied by a progressive increase of the average value of the
local yielding thresholds (renewed after each plastic events) with the number of active
deformation cycles. This effect is reminiscent of the “mechanical annealing” effect
observed in some glasses sheared with an oscillatory shear protocol (Leishangthem
et al., 2017; Yeh et al., 2020). The comparison remains however qualitative since our
elasto-plastic model is not based on an energy landscape description of the system.
Understanding how the energy landscape is explored upon active driving would thus
require to use energy-based continuum elasto-plastic models, as introduced by Jagla
(2007).
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Another strong similarity with oscillatory-sheared glasses is observed in the macro-
scopic stress response to active deformation, where a stress overshoot is observed for
an active deformation amplitude ac. Although very little plasticity is observed for
strain amplitudes below the threshold in sheared glasses, we report in our case a finite
plastic activity for values of a < ac. This can be explained by the heterogeneity of
the active driving: depending upon the distribution of phases of oscillations, some
sites may undergo a strong driving, i.e., the stress they receive due to the surrounding
oscillating sites exceeds the maximum of the stress threshold distribution. Since plas-
ticity is observed both before and after the overshoot, we can thus wonder what are
the dynamical features of the plasticity associated with the macroscopic stress over-
shoot. It appears that below the overshoot, a macroscopic fraction of plastic events is
due only to the active driving (and not to other plastic events in the system), while
an increased cooperativity is observed above the threshold. This plastic flow further
seems to be associated with some spatial organization of the plasticity into plastic
and arrested regions, reminiscent of flow localization is sheared glasses. The nature
of the localization is however different from the sheared cases (where shear bands are
observed) due to the absence of macroscopic symmetry of the driving.

We based our elasto-plastic model on the assumption that the dominant mech-
anism for fluidization was due to the displacement and stress fields induced in the
surrounding medium by dilating or contracting particles. We have thus neglected the
density fluctuations induced by the active driving. It is however known that the local
yield stress distribution depends on the density, and the role of density fluctuations
in the fluidization should thus be investigated (Puosi et al., 2015). Further, Tjhung
et al. (2017) argue that reversible plastic rearrangements are an important feature
to explain the existence of a solid-phase (with non-zero plasticity) in simulations of
actively deforming particles. Our current active elasto-plastic model does not account
for such reversible plastic events, and it would be of interest to include this type of
events in the dynamics (by changing the rules for yielding for instance) in order to
see if the discontinuous character of the transition appears more clearly from particle
trajectories.

As future perspectives, we expect that the effect of other types of activity such
as cell division and cell death could be easily studied within the framework of our
active elasto-plastic model (by describing the elastic response to each type of event,
the case of self-propulsion will be further discussed at the end of this chapter). Along
the same lines as what was proposed previously, it would also be of interest to test
the genericity of the critical point scenario of Chapter 4 using the noise induced by
the local active dynamics of Chapter 5 as an external fluidizing noise (and the same
rate-weakening mechanism as in Chapter 4, i.e., a long restructuring time to recover
an elastic behavior locally). Another interesting perspective, as mentioned briefly in
Chapter 1, would be to build a Kinetic Elasto-Plastic (KEP) model based on the
active tensorial model proposed in Chapter 5, with the objective of deriving fluidity
equations for an active system (Bocquet et al., 2009). This would require first to
introduce a tensorial version of KEP model, in the same spirit as it was done for
the Hébraud-Lequeux model by Olivier et al. (2013). Then, writing tensorial KEP
equations for the active elasto-plastic model of Chapter 5 would lead to two distinct
non-local Boltzmann-like operators (one for the non-locality due to the driving and
another one for the non-locality due to stress redistribution following plastic events).
Following the approach of (Bocquet et al., 2009), a series of approximations including
an expansion of the Boltzmann-like operators could lead to an analytical expression
for the stress probability distribution, thus enabling one to compute the average stress
and obtain fluidity-like equations.
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The work presented in Chapter 6 is a bit aside the rest of the thesis since it was
first motivated by experiments conducted by collaborators in the lab (Petrolli, 2019;
Petrolli et al., 2019). It consisted in studying the emergence of mechanical waves
in confined epithelial layers using a Voronoi-based model. We used a Self-Propelled
Voronoi model (SPV) encoding adhesion and cortical tension mechanisms at play in
epithelial tissues as well as self-propulsion of Voronoi centers with a delayed coupling
mechanism between the direction of self-propulsion (polarity) and the cell velocity.
We found oscillations of the cells velocity akin to that reported in the experiments on
MDCK epithelial layers conducted by Petrolli (2019).

Although our study was mainly guided by the experimental results of Petrolli
(2019), some links can be established between the questions raised in Chapter 6 and
the rest of the thesis. Several works highlight indeed the link between fluidization and
collective cell migration in epithelial layers. Cell shape, cell deformation, cell division
and apoptosis as well as cell motility control density-independent solid-to-fluid tran-
sitions in vertex or Voronoi-based models (Bi et al., 2015; Bi et al., 2016; Czajkowski
et al., 2019; Krajnc, 2020). It was morever proposed by Giavazzi et al. (2018) that
alignment mechanisms like the one considered in our work promote the solidification
of the monolayer due to the formation of flocks in which cells migrate collectively,
thus limiting the number of cell rearrangements. The fluid- or solid-like state of the
monolayer thus results from a subtle interplay between the fluidization induced by cell
motility and the solidification induced by the coupling between cell polarity and cell
velocity. Although this system is far from equilibrium, Giavazzi et al. (2018) further
proposed to describe this effect with an effective temperature depending upon the
ratio of the rotational diffusion of polarity and the alignment rate: when alignment
mechanisms are faster than rotational diffusion, the effective temperature is too low
to overcome the energy barriers associated with cell rearrangements and the migra-
tion is coordinated over large lengthscales (flocking behavior). Given the similarities
between the phase diagram of flocks in the bulk SPV (with periodic boundary condi-
tions (Giavazzi et al., 2018)) and the emergence of oscillations in the confined SPV,
we expect these effects of solidification induced by alignment to be also at play in our
case.

We now present possible perspectives to the work presented in Chapter 6. The
Self-Propelled Voronoi model used in Chapter 6 could be refined with more realistic
dynamics, by including for instance the velocity modulus in the coupling term between
the direction of self-propulsion and the direction of velocity. This would probably
prevent the oscillation of the cell velocity in a nearly immobile layer, as observed in our
current simulations for small values of p0 and v0. Further, we considered in Chapter 6
interactions between cells deriving from a vertex energy plus some soft core repulsion
for numerical stability issues (Barton et al., 2017). Preliminary tests using only soft
core repulsion and turning off the vertex-like interactions (thus reducing to a repulsive
particle model) yielded similar oscillations as in the full vertex-based model. Features
such as the linear evolution of the period with the confining length were also observed
using particle-based simulations (Deforet et al., 2014) and a phase-field model (Peyret
et al., 2019) with similar coupling mechanisms. The robustness of the oscillation
features thus seems to indicate that the velocity waves could be modeled including
two minimal ingredients: elasticity and a delayed feedback mechanism playing the
role of an effective inertia. Following the approach of Henkes et al. (2011), one could
build a continuum model based on an elastic description of the monolayer, to get
predictions regarding the wave velocity in the monolayer as a function of the elastic
moduli and the feedback timescale τal. Microscopic simulations could be used to
test such continuum model. Macroscopic elastic properties of the SPV model were
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characterized by Sussman et al. (2018), who established a link between the local elastic
constants (area and perimeter elasticity) and the shear and bulk moduli. To which
extent these relations hold for a confined tissue (where the average area and perimeter
may differ from their target values) remains however to be investigated. Using simpler
microscopic models (e.g., particle or spring-based models) could also be a way to test
such a continuum approach. Further, we can speculate that knowing the wave velocity
from experiments and assuming that the shear and bulk moduli can be measured, one
could then estimate the value of the feedback timescale τal (although measurements
of tissue elastic properties may be difficult to perform in a controlled manner, see
Chapter 1, section 1.16). This could be compared to more direct measurements of the
feedback timescale τal like the ones performed by Peyret et al. (2019) by measuring
the delay between velocity and traction force in experiments.

Finally, we can also ask whether cell motility with alignment mechanisms could
be modeled within a mesoscale active elasto-plastic model. The phenomenology de-
scribed by Giavazzi et al. (2018) suggests that cell migration can either occur in the
form of “solid” flocks where cells coordinate their motion or in a more localized fashion
involving cell plastic rearrangements. The current framework of elasto-plastic models
seems more adapted to describe the second type of migration, observed when align-
ments mechanism play only a little role. In this case, the type of dynamics observed
in particle-based simulations is found to depend upon the persistence time of the self-
propulsive force (i.e. the rotational noise) (Mandal et al., 2020a; Henkes et al., 2020).
For small persistence times, the behavior is analogous to that of a glass-forming system
described by an effective temperature Teff ∝ f2

0 (with f0 the magnitude of the self-
propulsion force) (Bi et al., 2016; Mandal et al., 2016). On the other hand, for infinite
persistence times, a transition between an athermal solid and an athermal fluid occurs
for a critical value of the force magnitude (that depends upon the volume fraction)
(Liao et al., 2018; Mandal et al., 2020a). This critical force is found to be analogous
to the yield stress in sheared athermal systems (Liao et al., 2018). For intermediate
persistence times, Mandal et al. (2020a) report intermittent dynamics resulting in ar-
rested phases followed by bursts of plastic rearrangements with Eshelby-like non-affine
displacement fields.

These findings suggest a strong analogy between self-propelled particles and sheared
systems in the intermediate and infinite persistence time regimes. This analogy was
actually demonstrated very recently (in the case of infinite persistence) at the theoret-
ical level by Morse et al. (2020). A first naive use of elasto-plastic models to account
for self-propulsion would be to activate plastic events with a random orientation (with
an activation rule that remains to be specified) as proposed at the end of Chapter 4.
Although this type of approach could describe the fluid phase in a system of self-
propelled particles, the link between the self-propulsion force and the activation rule
would remain phenomenological and would not enable us to study the solid-to-fluid
transition induced by self-propulsion. To go further, a first step would be to introduce
a polarity field in the EPM. This polarity field should probably be defined on a finer
grid than that defined by the typical size of plastic rearrangements. A detailed study
of the plastic rearrangements induced by self-propulsion in particle-based simulations
should be conducted in order to understand the mechanisms by which self-propulsion
triggers plasticity. We can for instance ask if, in the intermittent regime described by
Mandal et al. (2020a), plastic events are triggered when a specific combination of po-
larity of neighboring particles is met such that the resulting force exceeds a local yield
force. Is there a typical configuration of polarities leading to plastic rearrangements?
Taking inspiration from the methods developed by Puosi et al. (2014) and Patinet
et al. (2016), we could imagine building clusters of self-propelled particles embedded
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in a system of passive particles, and, by varying the self-propulsion magnitude, the
number of active particles and their polarity, determine the conditions under which
plastic rearrangements occurs. To conclude, the project of building a self-propelled
elasto-plastic model, even in the simplest scenario of infinite persistence and without
any alignement mechanisms, would require an extensive work of numerical investiga-
tion, that could not be achieved during this PhD.

The recent work of Morse et al. (2020) further offers interesting perspectives re-
garding the analogy between shear and self-propulsion. Beside the theoretical frame-
work (mean-field model in infinite dimension) predicting a formal analogy between
shear and self-propulsion, they developed a novel driving protocol enabling a direct
comparison between quasi-static shear and quasi-static self-propulsion with infinite
persistence. By modeling self-propulsion as imposing a random displacement field in
a quasi-static manner, they find the same dynamical behavior as for sheared systems
(e.g., avalanches exponent), with differences explained by the correlation length of the
displacement field. While self-propulsion corresponds to a correlation length equal to
the particle size, shear corresponds to a correlation length of the order of the system
size. Shear is thus seen as a particular case of a random displacement field. Their
results also show that an amorphous solid driven with a random displacement field
also undergoes a yielding transition that depends on glass stability. The authors also
raise the question of the nature of flow localization in active systems, where there is
no macroscopic symmetry imposed by shear, as discussed in Chapter 5. Finally, we
may also wonder whether the theoretical framework developed by Morse et al. (2020)
applies to the case of dilating and contracting particles as studied in Chapter 5, by
taking a quasi-static limit of our model.
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Appendices to Chapter 2

A.1 Numerical approach

We explain in this part our numerical approach to solve the dynamics of the elasto-
plastic model introduced in Chapter 2. We explain in details the numerical strategy
in the case of a 2d tensorial version of the model in the case of an imposed strain rate
along the xy direction: γ̇ ≡ γ̇xy. Note that we also use a mesh refining procedure
for the stress and strain fields to compute the convolutions in Fourier space (as done
by Nicolas et al. (2013a)). The other variants used in the thesis (stress-controlled
protocol, scalar model) are simple adaptations of the protocol explained below.

A.1.1 Algorithm

Our system is described by a 2d tensorial stress field with components σxx(x) and
σxy(x) and a state variable field n(x). We discretize these fields onto a 2d lattice of
size Lx × Ly where a node (i, j) corresponds to the discretized spatial coordinates
along the directions x and y respectively. We discretize also the time t by choosing a
small discrete timestep dt = 10−2, kept constant during the simulations. The equation
of motion to simulate is given in the main text of the chapter by Eq. 2.43.

We choose initial conditions satisfying mechanical equilibrium. We typically ini-
tialize the system with: σxx(x) = 0, σxy(x) = 0 and n(x) = 0. We can also initialize
the system using a configuration saved from a former simulation.

Once the system is initialized, we compute the evolution of the fields by numerically
solving Eq. 2.31 (or Eq. 2.43 in discrete coordinates) using a simple Euler scheme. This
reads, for instance, for the σxy component:

σxy(i, j)[t+ dt] = σxy(i, j)[t] + µγ̇dt+ µ
∑

i′,j′

G2d,shear
xy,xx (i, j, i′, j′)

n(i′, j′)σxx(i′, j′)

µτ
dt

+µ
∑

i′,j′

G2d,shear
xy,xy (i, j, i′, j′)

n(i′, j′)σxy(i
′, j′)

µτ
dt

(A.1)
After each integration step, we update the state variable n(i, j) according to the

stochastic rules selected (Picard’s model or yield stress distribution). In the case of
stochastic rules based on a yield stress distribution, a new local threshold σy(i, j)
is drawn from the distribution (as explained in the main text) when yielding occurs
locally.
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Boundary conditions

We have discussed in the main text the elastic response to a localized shear trans-
formation in an infinite continuum space. In the numerical implementation of the
elasto-plastic model, we consider a discretized space (lattice) and it is convenient to
work with a bounded system with periodic boundary conditions when focusing on bulk
properties. Note that other types of boundary conditions have been implemented in
the literature, enabling to study the effect of walls on the rheology (Picard et al., 2004;
Nicolas et al., 2013b). The choice of periodic boundary conditions also simplifies the
numerical method since it allows for the use of pseudo-spectral methods.

Pseudo-spectral method

The second term in Eq. 2.31 is an integral over the entire space since the elastic
propagator G2d,shear(~x − ~x′) is long-ranged. If we take the Fourier transform of this
term with respect to ~x′, we obtain, instead of an integral over space, independent
products for each Fourier modes ~q:

∫
dd~x′G2d,shear

αβ,γδ (~x− ~x′)n(~x′)σγδ(~x′) → ˜G2d,shear(~q)ñ(~q)σ̃γδ(~q) (A.2)

This operation thus transform a non local sum over all the spatial coordinates
into a local operation in Fourier space, well suited to a parallel implementation. The
stress evolution can thus be computed in Fourier space, but the step of update of the
local state variable n(~x′) must be performed in real space. Two Fourier transforms
(one forward and one backward) are thus performed at each timestep. This pseudo-
spectral technique allows for a reduction of the computing time for the convolution
from O(N2) to O(N log(N)) (Liu et al., 2016).

We presented one possible method to handle the long range propagator in a dis-
cretized periodic space. Let us discuss now the different possible approaches and their
limitations.

A.1.2 Different approaches for elastic propagators in discretized pe-
riodic space

The most straightforward approach to construct a continuous period elastic kernel is
perhaps to sum the periodic images of each plastic events in real space. Due to the
long range character of the kernel, this sum is only conditionally convergent and has
to be performed in an order compatible with convergence (Budrikis et al., 2013). The
kernel is then discretized in real space.

We use another method, which consists in computing analytically the Fourier
transform of the kernel for an infinite system and discretize it onto discrete Fourier
modes. We set the value of modes q = 0 (that is, the mean of the kernel in real
space) to a value respecting the symmetries of the system (0 for a stress-controlled
protocol, -1 for a shear rate controlled protocol) (Nicolas et al., 2018a). Transforming
this discretized kernel back to real space ensures periodization. However, as discussed
by Nicolas et al. (2013a) and Tyukodi (2016), this method induces some nonphysical,
high frequency oscillations of the kernel in real space, due to the truncation of the high
frequency terms in the inverse transform. This effect is visible for the σxx component of
the stress in particular (Nicolas et al., 2013a). Using a finer mesh for the computation
of the Fourier transformations, i.e., by dividing each block into four sub-blocks, so
that each plastic event now spans four sub-blocks enables to obtain a smooth stress
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field. We use this mesh refining procedure when dealing with tensorial versions of the
model (in Chapter 5).

The two methods (image sum and Fourier discretization) are nearly equivalent in
the far field, but differ in their near-field response (Budrikis et al., 2013) (the 1/r2

nature of the infinite system kernel at small distances is preserved with the image
sum method while some distortions appear with the Fourier method). The choice of a
particular kernel may thus impact the organization of the flow on short lengthscales.

A.1.3 GPU-based parallel implementation

We use a GPU-based parallel implementation to perform simulations of the elasto-
plastic model. We build our code onto the code developed by Liu et al. (2016) (avail-
able at
https://bitbucket.org/ezeferrero/epm). The main changes include: generalizing it to a
tensorial implementation with a mesh refining procedure, including a stress-controlled
protocol and all the model-specific additions related to Chapter 4 and 5. Simulations
were ran on Kepler architecture (GK208) GPUs, the Tesla K20.

Algorithm to solve the elasto-plastic dynamics

The dynamics for the local stress is solved in several steps:

1. Computation of the local plastic strain rate in real space on a lattice of size L:
γ̇pl
xx(~x) = n(~x)σxx(~x)/µτ (and respectively for γ̇pl

xy).

2. Mesh refining step: the plastic strain field is copied onto a larger mesh of size
2L× 2L: γ̇pl

xx(~x)→ γ̇pl,2L
xx (~x)

3. Discrete Fourier Transform of γ̇pl,2L
xx (~x)→ ˜̇γpl,2L

xx (~q)

4. Pointwise multiplication of the plastic strain rate and the elastic propagator in
Fourier space, yielding the stress rate increment: δσ̃2L

xx/δt(~q) = G̃2d,shear,2L(~q)˜̇γpl,2L
xx (~q)

5. Inverse discrete Fourier transform of the resulting stress rate increment δσ̃2L
xx/δt(~q)→

δσ2L
xx/δt(~x)

6. Mesh averaging step: the stress rate increment field computed over a lattice
2L× 2L is reduced to a lattice L× L: δσ2L

xx/δt(~x)→ δσL
xx/δt(~x)

7. Euler integration step in real space on a lattice L × L: σL
xx(~x) = µγ̇dt +(

δσL
xx/δt(~x)

)
dt

8. Update the state variable n(~x) (and, depending upon the model, the local thresh-
old σy(~x))

The tasks are parallelized using CUDA kernels and Thrust functions. Discrete
Fourier transforms are computed using the cuFFT library (see the Supplemental Ma-
terials of Liu et al. (2016) for more details).

A.2 Rheology in Picard’s model

Fig. A.1 depicts the macroscopic flow curves obtained using a scalar version of Picard’s
model (Picard et al., 2005) for various values of the parameters τpl (panel (a)) and τel

(panel (b)). The stress plateau observed on the flow curves corresponding to τel = 10
and τel = 15 in Fig. A.1(b) is associated with permanent shear bands. The negative
slope observed for shear rates γ̇xy ' 10−3 is due to finite size effects.
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Figure A.1: Macroscopic flow curve (stress versus strain rate)
in a scalar version of Picard’s model for a system size N =
256 × 256. (a) For τel = 1 and different values of τpl. (b) For τpl = 1

and different values of τel.

A.3 Single site elasto-plastic model

Martens et al. (2012) showed that the bulk rheology of Picard’s model can be captured
using an analytically solvable mean field approximation, by considering an effective
single site dynamics. The derivation of this model is described below as we will extend
this model in Chapter 4 to compute the low shear rate rheology in the presence of an
external fluidizing noise.

In the scalar elasto-plastic model, the dynamics of the stress on a site (i, j) is
written as:

∂σ(i, j)

∂t
= γ̇eff(i, j) +G(0, 0)n(i, j)σ(i, j) (A.3)

with G(0, 0) < 0 the value of the stress propagator at the origin (describing the
local plastic relaxation) and γ̇eff(i, j) the effective local shear rate due to the external
driving and to the stress redistribution due to plastic events elsewhere in the system,
γ̇eff(i, j) = γ̇ +

∑
i′,j′ G(i − i′, j − j′)n(i′, j′)σ(i′, j′). By assuming that this effective

shear rate is spatially homogeneous and by neglecting any fluctuations around its
mean value Γ̇, the evolution of stress σ(t) on a single site reads:

∂σ(t)

∂t
= Γ̇− gn(t)σ(t) (A.4)

with g = |G(0, 0)| the absolute value of the stress propagator at the origin, which
can depend on the system size in the spatial model, but which remains approximately
constant for large systems (g ' 0.57). The dynamics of the activity n(t) remains
unchanged with respect to the spatial model (see section 2.2.3). In order to compute
the steady state flow curve in this mean field approximation, we need to compute the
time averaged stress 〈σ〉t as a function of Γ̇.

We define σ+ as the stress value when the site becomes plastic and σ− as the stress
value when the site becomes elastic. In the inactive state (n = 0), the stress increases
linearly in time, starting from σ−: σ(t)n=0 = σ− + Γ̇t. In the active state (n = 1), it
comes from integrating Eq. A.4: σ(t)n=1 = Γ̇

g + (σ+ + Γ̇
g )e−gt.

We further assume that the driving is sufficiently slow Γ̇ < g and τel sufficiently
large to decorrelate the typical stress values for the change of activity. Under these
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assumptions, the typical stress value at which a site becomes elastic is given by

σ− =
Γ̇

g
+
σ+ − Γ̇/g

1 + gτel
(A.5)

and the typical stress at which a site becomes plastic is

σ+ = 1 + Γ̇τpl (A.6)

The time averaged stress 〈σ〉t can be computed as

〈σ〉t =
τin〈σin〉t + τact〈σact〉t

τin + τact
(A.7)

with τin and τact the typical times spent in the inactive and active phase respectively,
and 〈σin〉t and 〈σact〉t the associated average stress values.

In the inactive phase, the stress linearly increases in time between σ− and σ+, and
the duration of the phase is given by σ+−σ−

Γ̇
. To compute an ensemble average of the

stress in the inactive phase, one needs to average over the values of σ− and σ+:

〈σin〉t =
1

τin

∫ ∞

0
dσ−P−(σ−)

∫ ∞

0
dσ+P +−(σ+)

(
σ+ + σ−

2

)(
σ+ − σ−

Γ̇

)
(A.8)

The time spent in the inactive phase can also be written as the sum of the time to
reach the yield stress (σy = 1) and the typical time to yield once to yield stress is
overcome, τpl.

τin =
σ+ − σ−

Γ̇
=

1− σ−
Γ̇

+ τpl (A.9)

This leads to

〈σin〉t =
σ2

+ − σ2
−

2(σ+ − σ−)
(A.10)

In order to compute the values of σ2
+ and σ2

−, we consider the probability distri-
butions of the time spent in the active phase pact(tact) and in the inactive phase once
the stress has overcome the yield stress pin(tin):

pact(tact) =
1

τel
e
− tact
τel (A.11)

pin(tin) =
1

τpl
e
− tin
τpl (A.12)

We get

σ2
+ =

∫ ∞

0
dtinpin(tin)

(
1 + Γ̇tin

)2
= 1 + 2Γ̇τplσ+ (A.13)

and

σ2
− =

∫ ∞

0
dtactpact(tact)

(
Γ̇

g
+ (σ+ −

Γ̇

g
)e−gtact

)2

(A.14)

σ2
− =

(
Γ̇

g

)2

+ 2
Γ̇

g

σ+ − Γ̇/g

1 + gτel
+
σ2

+ + 2(Γ̇/g)σ+ + (Γ̇/g)2

1 + 2gτel
(A.15)

To compute the average stress in the active phase, one needs to compute the time
average of the stress during the active phase while taking an ensemble average of the
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duration of the active phase:

〈σact〉t =
1

τel

∫ ∞

0
dtactpact(tact)

∫ tact

0
dt′

(
Γ̇

g
+ (σ+ −

Γ̇

g
)e−gt

′

)
(A.16)

We get

〈σact〉t =
Γ̇

g
+
σ+ − Γ̇/g

1 + gτel
= σ− (A.17)

The typical time spent in the active phase is given by τact = τel.
Using Eq. A.7 and the analytical expressions in the above paragraph, we can

express the steady state stress 〈σ〉t as a function of the shear rate Γ̇.
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Appendices to chapter 3

B.1 Details on particle-based simulations

The details of the particle based model, as well as the methods used for a quantitative
comparison between the simulations and the model are provided in the Appendix of
the paper submitted to Soft Matter and summarized below.

B.1.1 Particle-based model

The model disordered system is characterized by an interaction potential defined by
U(r) = 4ε

[
(aij/rij)

12 − (aij/rij)
6
]

+ ε , for rij ≤ 21/6aij , else U(rij) = 0. Here
aij = (ai + aj)/2 defines the distance between the center of particles i (with diameter
ai) and j (with diameter aj) at contact and the unit energy ε = 1 for all particles.
The diameters of the particles are drawn from a Gaussian distribution with a variance
of 10%. The initial configurations are prepared by quenching an equilibrated liquid
configuration at a volume fraction φ = 0.70, with a chosen set of simulation box
dimensions (Lx, Ly and Lz). The quench rate used here is Γ = 5 · 10−3ε/(kBτ0) and
we find that the steady state flow features do not depend on the preparation protocol.
Before subjecting the sample to shear, we take the system to the zero temperature limit
using conjugate gradient energy minimization technique. Samples are then subjected
to a shear deformation at finite shear rate using Lees-Edwards boundary conditions,
using Dissipative Particle Dynamics (DPD):

m
d2~ri
dt2

= −ζ
∑

j(6=i)

ω(rij)(r̂ij · ~vij)r̂ij −∇~riU (B.1)

where the first term in the right hand side (RHS) is the damping force which depends
on the damping coefficient ζ and m is the mass of the particle. The relative velocity
~vij = ~vj − ~vi is computed over a cut-off distance rij ≤ 2.5aij , with the weight factor
ω(rij) = 1. The second term in the RHS is the force due to interactions between
particles. As a measure of the extent of over damping, we define an inertial quality
factorQ = τdamp/τvib, where τdamp = m/ζ is the viscous timescale and τvib =

√
ma2/ε

defines an elastic timescale. The inertial quality factor measures the number of inertial
oscillation within the damping time. The shear rate in our simulations is defined in
the units τ−1

vib .

B.1.2 Steady-state flow

We make sure that a sample has indeed reached a steady state flow, by monitoring
the macroscopic load curve as well as the microscopic flow profiles (Vx vs. Y ) and
stress profiles. Reaching steady state, the macroscopic load curve fluctuates over a
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Figure B.1: Kinetic temperature in an underdamped ather-
mal system versus applied temperature in an overdamped
thermal systems for similar stress and strain rates values.
The labels indicate the shear rates at which the kinetic temperature

is measured.

mean stress value. Similarly the flow profiles as well as local stress do not evolve with
time (strain).

B.1.3 Kinetic temperature in underdamped systems vs true tem-
perature in overdamped systems

We plot in Fig. B.1 the kinetic temperature measured in simulations of a sheared
underdamped athermal system as a function of the temperature corresponding to the
same stress and shear rate value for sheared thermal overdamped systems. Although
the correspondence is not perfect between the kinetic and the true temperature, we
see a good correlation between these two quantities, related by a slope of about 0.6.

B.1.4 Herschel-Bulkley fitting parameters

Herschel-Bulkley (HB) fitting parameters for overdamped systems (Q = 1) at finite
temperature are obtained by performing particle-based simulations over shear rates
ranging between γ̇ = 10−5τ−1

vib to γ̇ = 10−1τ−1
vib , of a system of 104 particles (keeping

all other parameters the same as the under-damped simulations). Overdamped HB
parameters at finite temperature (σy, A and n) are extracted from simulation data
that have reached system state, for each temperature considered (ranging between
T = 0ε/kB to T = 7.5ε/kB).

B.1.5 Minimum length to accommodate an instability in molecular
simulations

In order to obtain the minimum length scale to accommodate the flow instability, using
the Eq. 3.16, one needs to compute the thermal conductivity λT , the heat capacity cv,
the time associated with the relaxation of kinetic energy τ , along with the derivative of
stress with respect to temperature ∂Tσ and to shear rate ∂γ̇σ (first form of Eq. 3.16),
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(a) (b)

Figure B.2: Stress in overdamped simulations for different
temperatures and kinetic temperature dependence on the
shear rate in underdamped simulations. (a) Steady-state shear
stress as a function of temperature measured in overdamped thermal
simulations for various shear rates. (b) Kinetic temperature as a func-
tion of the applied shear rate measured in athermal underdamped

simulations (Q = 104).

or directly the derivative of kinetic temperature with respect to the imposed shear
rate ∂γ̇T̃ (second form of Eq. 3.16).

λT is computed for a system size of N = 105, using the reverse non-equilibrium
molecular dynamics method introduced by Müller-Plathe (1997) and its value is λT =
30 (LJ units). A slow quenching run is performed to prepare the initial sample.
From this data, the heat capacity is computed as the slope of the total energy versus
temperature, yielding a value cv = 3.0 (LJ units), used in the computation of `c.
To compute the relaxation time associated with the kinetic energy, the dissipation of
kinetic energy is monitored in time at a fixed dissipation constant corresponding to
Q = 104 and, yielding a value τKE ≡ τ ≈ 350τvib.

Using the first form of Eq. 3.16, one needs to compute the partial derivative of
stress with respect to temperature (∂Tσ) and shear rate (∂γ̇σ). The value of ∂γ̇σ
can be obtained from the Herschel-Bulkley equation with fitting parameters obtained
from the flow curve for Q = 1 (overdamped). The value of ∂Tσ can be obtained by
measuring, at a given shear rate, the stress in the finite temperature simulations in
overdamped simulation conditions (Q = 1), as shown in Fig. B.2(a), and by computing
the numerical derivative.

Another way is to use the second form of Eq. 3.16 and measure, in underdamped
simulations (Q = 104), the evolution of kinetic temperature with the applied shear
rate (Fig. B.2(b)). The data shown in Chapter 3 is obtained using this second method.
We are currently working on comparing the two proposed methods in order to check
that they yield similar estimates for `c.

B.1.6 Shear-concentration coupling effects

To be sure that in our case it is really the local heating effect that plays the role
for the instability to occur we also provide additional measurements to disentangle
potential mass migration effects from local kinetic temperature effects. To do so we
measure alongside the local shear-rate profile also the steady state density profiles
in the unstable region, shown in Fig. B.3(a) and (b). The question is whether these
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Figure B.3: Concentration coupling effects in particle-based
simulations. Steady state measurement of (a) Local shear rate, (b)
Local volume fraction and (c) Local stress and yield stress for a un-
derdamped system (Q = 104) with a system size Ly = 360a, sheared

at γ̇ = 10−2τ−1
vib .

variations in the local volume fraction could as well explain the instability. To answer
this question we also measure the yield stress dependence on density. We estimate the
yield stress values for the range of different packing fractions that we observe in the
density profiles of the simulations. And indeed we find that these are all above the
actual homogeneous stress value, as shown in Fig. B.3. This means that the change
of local volume fraction cannot induce an instability in our dynamics. However, the
change of the local yield stress due to a finite kinetic temperature is much more
drastic within the temperature range that we measure in the profiles. Therefore
temperature is indeed inducing an instability to make the system flow in the high
kinetic temperature regions where the temperature dependent yield stress is smaller
than the homogeneous stress value. This is for us a strong enough indication that
the observed migration is not the source of the instability but rather a consequence
of another type of instability induced by the heating effect.

B.2 Dynamics in the continuum model and in particle-
based simulations

The time (or strain) evolution of the macroscopic stress is shown for different system
sizes and a shear rate γ̇ = 10−2 in particle-based simulations (Fig. B.4(a)) and γ̇ =
10−3 in the continuum model (Fig. B.4(b)).

For small systems where no shear banding is observed (Ly < Lc), the macroscopic
stress reaches a plateau whose value is determined, for the continuum model, by the
solution of the model for an homogeneous steady state (see main text). For larger
systems in which shear banding occurs, the steady state stress is lowered compared
to the homogeneous case. Interestingly, even if the steady state of the system is shear
banded, the system can transiently reach the homogeneous stress value, as shown
in Fig. B.4(b). The time to depart from this homogeneous solution increases as the
system size is decreased towards its critical value Lc for the instability to occur.

The steady state in the continuum model is characterized by a constant macro-
scopic stress as well as constant stress profiles (Fig. B.5(b)), while the kinetic temper-
ature and shear rate profiles remain banded (Fig. B.5(a) and Fig. 3.7(b)).
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Figure B.5: Temperature and stress profiles in the continuum
model.(a) Temperature profiles and (b) stress profiles for L = 380 at

various strain values indicated by colored dots in Fig. 3.7(a)
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Appendix C

Appendices to Chapter 4

C.1 Low shear rate rheology

In this part we study the low shear rate rheology in presence of external noise. We
consider the regime where the plasticity is dominated by the external noise, and
neglect the events activated by shear. We first consider the "0d" model (effective
one site dynamics) and show that, in this regime, the rheology is linear and find
an analytical expression for the viscosity in good agreement with simulations of the
2d spatial elasto-plastic model. We then use a further simplifying assumption of
total stress relaxation to compute the flow curve for the two different models of noise
considered in this study (random activation and Arrhenius-like activation).

C.1.1 Low shear rate rheology for a constant activation rate kvib =
τ−1
vib in the single-site model

We consider the case where the activation of plastic events is dominated by the external
noise, through a rate of activation kvib = 1/τvib, and neglect the activation of plastic
events due to shear. In this case, following the computation of Appendix A (A.3), the
average stress in the inactive (elastic) phase (n = 0) is given by:

〈σin〉 = σ− +
µΓ̇τvib

2
(C.1)

with σ− the typical stress when a site becomes plastic (under the same assumptions
as those explained in Chapter 2, i.e., that the shear rate Γ̇ is small enough and the
restructuring time τel is large enough to decorrelate the typical stress values for the
change of activity n). The typical time spent in the inactive state is simply given by

τin = τvib (C.2)

The average stress in the active phase remains unchanged with respect to the case of
shear induced plastic events as derived in Chapter 2:

〈σact〉 = σ− (C.3)

and the duration of the active phase also remains

τact = τel (C.4)

As previously, σ− corresponds to the typical stress to become elastic, and is given by

σ− =
µΓ̇

g
+
σ+ − µΓ̇/g

1 + gτel
(C.5)
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(a) (b)

Figure C.1: Low shear rate viscosity Σ/γ̇ (a) as a function of τvib
for various values of the restructuring time τel and (b) as a function of
τel for various noise magnitudes τvib. The solid circles indicate spatial
(2D) simulation points, the solid lines indicate the mean field model
accounting for the noise-induced activation and the dotted line repre-
sents the model with a further assumption of total stress relaxation.

.

which, using σ+ = σ− + µΓ̇τvib, yields:

σ− =
1

g2τel
(gτel + µτvib) Γ̇ (C.6)

We can thus compute analytically the average stress

〈σ〉 =
τinσin + τactσact

τin + τact
= cΓ̇ (C.7)

with
c =

(
1

τel + τvib

)
gτel + τvib

(
µ

g2
+

1

g
+
µτvib
g2τel

+
µτvib

2

)
(C.8)

We find a linear rheology behavior (consistent with numerical simulations of the model,
see Fig. 4.2(a)) and compute the viscosity η = Σ/Γ̇ for various values of τvib and τel

as shown in Fig. C.1. We compare the viscosity obtained within the mean field model
(solid lines) with numerical simulations of the spatially resolved model in 2 dimensions
(solid dots). In Fig. C.1(a), we show the viscosity as a function of the timescale
associated with noise τvib for various values of restructuring time τel. Unsurprinsingly,
the viscosity increases linearly with τvib. A good agreement between the mean field
model and the spatial model is found for rather large values of τel, consistent with
the hypothesis made in the calculations that the restructuring time is large enough to
decorrelate the typical stress values for the change of activity n. Note that another
source of discrepancy between mean field and spatial models comes from the fact that
the "effective shear rate" (Γ̇) in the one-site effective dynamics is actually different
from the externally imposed shear rate γ̇ (Martens et al., 2012). The approximation
that we made that all the plastic activity is induced by the external noise and not
by shearing is expected to be valid in the limit of large noise magnitudes τ−1

vib . This
is what is observed in Fig. C.1(b), where the agreement between our mean field
approximation (solid line) and the spatial sinulations (solid circles) becomes better as
τ−1
vib is increased (lower curves).
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A further approximation could consist in assuming that the stress relaxation is
total, so that the typical stress is the elastic phase is simply given by 〈σin〉t = µΓ̇τvib

2 .
The viscosity thus obtained is shown by the dotted lines in Fig. C.1(b). This approx-
imation becomes valid in the limit of large values of the restructuring time τel, and
for large activation rates. However, it doesn’t capture the strong increase of viscosity
when τel is decreased, indicating that this increase is due to incomplete local stress
relaxation.

C.1.2 Simplified calculation for the low shear rate rheology for the
two models of noise

We provide here a simplified calculation of the flow curve Σ(γ̇) in the low shear-rate
regime, under several simplifying assumptions. First, we assume that in this regime,
the internal mechanical noise can be neglected with respect to the external noise.
Second, we assume that the local stress fully relaxes during a plastic event, and that
the duration of plastic events can be neglected as compared to the duration of elastic
phases.

Under these strong assumptions, the local elastic stress is expressed as σ = µγ̇∆t,
where ∆t is the time elapsed since the last plastic event, which relaxed the stress to
σ = 0. Introducing the probability density function p(∆t) of the time interval ∆t, we
get

Σ = µγ̇

∫ ∆tmax

0
∆t p(∆t) d∆t . (C.9)

The upper bound ∆tmax may be estimated by the condition µγ̇∆tmax = σc, from
which we deduce ∆tmax = σc/(µγ̇). It follows that ∆tmax → ∞ when γ̇ → 0, and
we can thus take the upper bound of the integral of Eq. (C.9) as infinite in the low
shear-rate regime.

We now need to evaluate p(∆t) for both models. On general grounds, for an
activation rate kvib(σ), one can write using σ = µγ̇∆t,

dp

d∆t
= −kvib(µγ̇∆t) p(∆t) , (C.10)

from which we get

p(∆t) = p0 exp

[
−
∫ ∆t

0
kvib(µγ̇t′) dt′

]
(C.11)

where p0 is a normalization constant.
For Model 1, where kvib is a constant, we get p(∆t) = kvib e

−kvib∆t and thus

Σ =
µ

kvib γ̇
. (C.12)

For Model 2, we have
kvib(σ) = k0 e

λ(σ−σc) , (C.13)

and thus
p(∆t) = p0 exp

[
−a
(
eλµγ̇∆t − 1

)]
, (C.14)

where we have defined

a =
k0 e

−λσc

λµγ̇
. (C.15)

After some straightforward algebra, we find that the normalization constant is given
by p0 = λµγ̇ e−a/I(a), and the average stress by Σ = J(a)/[λ I(a)], where we have
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defined the auxiliary integrals

I(a) =

∫ ∞

1

du

u
e−au , J(a) =

∫ ∞

1

du

u
(lnu) e−au (C.16)

(the integration variable u is obtained from the change of variable u = eλµγ̇∆t). To get
a more explicit expression in terms of γ̇, we try to perform an asymptotic expansion
of the integrals I(a) and J(a). At first sight, one would guess that a is large because
a ∝ 1/γ̇ and γ̇ is small. However, looking explicitly at the typical values of the
parameter a in the shear rate regimes explored numerically, we find that a � 1 as
long as

γ̇ � k0 e
−λσc

λµ
∼ 10−14 (C.17)

with the parameter values used in the simulation (the extremely small value 10−14,
comes from the factor e−λσc ∼ e−30). In the regime a � 1, the exponential factor
e−au acts as a cut-off, thus providing an effective upper bound ∼ 1/a in the integrals
that would otherwise diverge logarithmically without the exponential factor. As a
simple approximation, we may thus write

I(a) ≈
∫ 1/a

1

du

u
= ln

1

a
, J(a) ≈

∫ 1/a

1

du

u
lnu =

1

2

(
ln

1

a

)2

. (C.18)

We thus eventually find

Σ =
J(a)

λI(a)
≈ 1

2λ
ln

1

a
=
σc
2

+
1

2λ
ln

(
λµ

k0
γ̇

)
. (C.19)

This logarithmic regime is valid in a finite shear-rate window: γ̇ has to be larger than
the (very small) lower bound given in Eq. (C.17), but it has to be small enough for
the duration of plastic events and for the internal mechanical noise to be neglected.

C.2 Analogy with equilibrium critical phenomena with
long-range interactions

Given that the exponents found for the correlation length and time are different from
the equilibrium mean-field exponents for systems with short-range interactions, it is
natural to wonder if including long-range interactions in an equilibrium analogue of
our model may lead to the exponents ν = 1 and µ = 1. For the sake of simplicity, we
briefly discuss this issue here in the language of spin models, where a magnetization
field m(r) is introduced. The above values of the exponents are suggestive of an
effective Hamiltonian of the form (in the Gaussian approximation)

H ∝
∫
dq

∫
dq′(ε+ |q|)m̂(q)m̂(−q) (C.20)

where ε is the dimensionless deviation from the critical point, and m̂(q) is the spatial
Fourier transform of the field m(r). Such a Gaussian form leads to a divergence of
the correlation length ξ ∼ ε−1, and thus to ν = 1. However, this form corresponds to
interactions decaying as 1/rd+1 (where d is the space dimension, d = 2 in our model),
and not as 1/rd as the Eshelby propagator.
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Note that in terms of dynamics, a simple Langevin relaxational dynamics with the
effective Hamiltonian (C.20) would lead, at the critical point, to

∂tm̂ = −|q|m̂(q) + ξ(q, t) (C.21)

with ξ(q, t) a white noise. At a heuristic level, the scaling ‘time ∼ length’ suggests a
dynamical exponent z = 1, corresponding to µ = zν = 1.
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Appendix D

Appendices to Chapter 5

D.1 Point-force model of contracting inclusion

We presented in Chapter 5 the computation of the displacement and stress fields
in response to a contracting/dilating inclusion modeled as a set of two orthogonal
pairs of forces. We followed the real-space computation of Lechner et al. (2009) for a
compressible elastic medium. We present here a Fourier space computation similar to
that presented in Chapter 2 to compute the response to a plastic transformation for
an incompressible elastic medium.

We consider the same force density as presented in the main text, i.e.,

fα(xβ) = −f0h
∂δ(xβ)

∂xα
(D.1)

We assume that the elastic medium is incompressible and mechanical equilibrium
reads

− ∂P

∂xα
+ µ

∂2uα
∂x2

β

+ fα = 0 (D.2)

This equation can be solved in Fourier space, with f̃α = if0hqα.

iqαP̃ − µqβqβũα + f̃α = 0 (D.3)

and
− iqαũα = 0 (D.4)

It comes that the pressure field is homogeneous and the Oseen tensor reads

ũα =
f̃α
µq2

=
if0hqα
µq2

(D.5)

Then, using σαβ = 2µεαβ , with εαβ = − (i/2) (qαuβ + qβuα), we get:

σ̃αβ = 2f0h
qαqβ
q2

(D.6)

As in the work of Picard et al. (2004), the force f0 can be related to the active
volumetric strain occurring in the inclusion εact as (Tyukodi, 2016):

f0 = µπhεact (D.7)

For simplicity, we rewrite the above equation as

σ̃αβ = µα
qαqβ
q2

γact (D.8)
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3.1.1 Potentials

• Lennard Jones: V (rij) = 4✏

⇣
rij

�ij

⌘12

�
⇣

rij

�ij

⌘6
�

• Truncated and shifted Lennard Jones : U(rij) = V (rij)� V (rc) if rij < rc and 0 otherwise. The cutoff
rc is set by the radius of the minimum of the potential rc = 21/6 (to have only respulsive interactions).

• Harmonic potential U(rij) = ✏
2 (1� rij

�ij
)2H(�ij�rij) where �ij =

�i+�j

2 and H(x � 0) = 1, the heaviside
function, used in .[11, 3].

Figure 7: Potential energy per atom as a function of the distance between 2 atoms. Left: Truncated LJ
potential. Right: Harmonic potential.

3.1.2 Volume fraction conservation

Here, we just want to check that this rule actually enables to conserve strictly the total volume fraction,
given by the following equation:
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Figure D.1: Potential energy per atom as a function of the
distance between 2 atoms. (Left) Truncated and shifted Lennard-

Jones potential. (Right): Short-ranged harmonic potential.

with α = πh2 a constant related to the inclusion (that we set to 1 in the mesoscale
simulations) and γact = 2εact.

D.2 Particle-based simulations

The two types of repulsive interaction potentials used in our simulations are shown in
Fig. D.1.

D.3 Active Elasto-Plastic Model

D.3.1 Transient dynamics

Fig. D.2 depicts the evolution of several quantities as a function of the number of
cycles (with a period T = 1000) (for a system size L = 64): (a) the fraction of
sites undergoing plastic deformation, (b) the spatially average barrier to yield, (c) the
fraction of plastic events induced by the active driving only (no contribution from
the mechanical noise due to other plastic rearrangements in the system) and (d) the
cumulated plasticity per cycle (same as Fig. 5.10)(a)) for two independent samples
(by choosing different distributions for the phases of oscillation of the active drive).

For all these observables, a long transient regime is observed for amplitudes of
the active drive close to the transition; long simulation runs are thus required in
order to characterize the transition. The comparison of two independent samples
in Fig. D.2(d) suggests that sample-to-sample variations may be relatively small -
for the cumulated plasticity at least-. Averaging over few independent samples will
nonetheless be performed in future work in order to characterize the transition.

D.3.2 Dynamics of tracer particles in the AEPM

In Fig. D.3(a), we plot the probability distribution of one-cycle displacements of tracer
particles δxi = |xi(t+T )−xi(t)| (averaged over x and y directions) for a few values of
a in the vicinity of the transition (computed after running the simulations for about
5000 cycles). Although we see that the one-cycle displacement reaches larger values
for increasing values of a, there is no sign of discontinuity in these first data, that
have not yet reached steady state.

In Fig. D.3(b), we compute the mean squared displacement of the tracer particles,
which exhibits a diffusive behavior in the fluid phase (red curve for a = 30, diffusive
behavior indicated by the black dashed line). Measurements in steady state and over
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Figure D.2: Transient dynamics in the AEPM. (a) Fraction of
sites undergoing plastic events as a function of the number of cycles
of oscillation ncycle. (b) Average local threshold σy as a function of
ncycle. (c) Fraction of plastic events triggered by the active driving
only (no contribution of the mechanical noise due to Eshelby plastic
rearrangements) as a function of ncycle. (d) Cumulated plasticity per
cycle as a function of ncycle for two independent samples (i.e. two
different distributions of phases of oscillation for the active drive).



226 Appendix D. Appendices to Chapter 5

(a) (b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
xi

10 3

10 2

10 1

100

101

102

P
(
x
i)

a = 0.17
a = 0.19
a = 0.21

a = 0.23
a = 0.30

10 2 10 1 100 101 102

t

10 4

10 3

10 2

10 1

100

r2

a = 0.17
a = 0.19
a = 0.21

a = 0.23
a = 0.30

Figure D.3: Dynamics of tracer particles in the AEPM. (a)
Probability distribution of the one-cycle displacement for various val-
ues of the active driving amplitude a. (b) Mean squared displacement
(diffusive behavior indicated by the black dashed line). The black dots

indicate the data averaged over one cycle.

longer durations should be performed to assess the behavior of particles trajectories
in the vicinity of the transition.

D.3.3 Characteristics of the active drive

At each timestep, a site receives stress increments due to actively deforming sites in
the system. The resulting stress is computed from the convolution of the field of active
deformation γact with the elastic propagator F describing the far-field response to an
actively deforming inclusion. The stress received due to the active drive by a given
site varies in time due to the fact that the active deformation in all the surrounding
sites has its own oscillatory dynamics.

We measure the two components (σact
xx and σact

xy ) of the stress received by each
site at timesteps separated by an interval ∆t = 10 during one cycle of oscillations
T = 1000. We show in Fig. D.4(a) an example of stress received in a single site due
to the active drive on all the other sites of the system.

We then measure the maximum of the Von Mises stress received by each site (in the
example of Fig. D.4(a) it is approximately equal to 0.077). We depict in Fig. D.4(b)
the distribution of the maximum Von Mises stress σact,MAX

v received during one cycle
in each site, which exhibits a maximum at σact,MAX

v = a.
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Figure D.4: Characteristics of the active driving. (a) Example
of stress received due to the active drive during one cycle of oscillation
for a system size L = 64 and a driving amplitude a = 0.15. The
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distribution of the maximum active driving stress σact,MAX received in
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Appendix E

Appendices to Chapter 6

E.1 Details on numerical methods and simulation param-
eters

E.1.1 Confinement in the SPV model

In SAMoS, the boundaries are imposed through a special type of particles (called
"boundary" particles, and denoted b in the parameters list) that form a "boundary
line" that delineates between the monolayer and its surrounding (described through a
boundary line tension λb and a bending stiffness κb). The confinement is introduced
through a rectangular assembly of immobile particles ("wall" of dimensions (LX ,
LY ), denoted w in the parameters) that interact through a repulsive potential with
the cells, characterized by a stiffness kcw and a characteristic length aw. Note that the
boundary particles do not represent cells and hence do not interact with the confining
layer of immobile particles (interaction potential kbw = 0 between the boundary and
the wall).

E.1.2 Simulation methods and parameters

We integrate the above model using Brownian dynamics (Barton et al., 2017). We
first prepare the monolayer configurations and oscillations are then studied in steady
state with a fixed number of cells. The layer is initialized with a cell number that
is fixed by the system size Ninit = (LX − 2)(LY − 1), and cells are able to divide
during a time Tgrowth at a rate d = d0(1 − z/ρmax) (with z the number of neighbors
and ρmax a parameter describing the maximum number of neighbors), to achieve
a given cell number density. Division is then turned off and the study focuses on
times t > Tgrowth. The total duration of simulation Trun depends on the time period
of oscillations T but is usually Trun > 10T . The parameters of the vertex model
(A0, P0, K and Γ ) are chosen such that the monolayer is in a solid-like state (p0 =
P0/
√
A0 = 2.5) and cells are mostly hexagonal. Note that keeping very low values

of p0 is important in order to avoid having only square cells due to the rectangular
confinement constraints, and to prevent shear flow induced by the boundaries, that
prevents the onset of oscillations. Note that in our simulations, the confinement
induces additional geometrical constraints on the monolayer: for an imposed value of
p0 = 3.1, the average value of the shape factor p = 〈P/

√
A〉 ' 3.75, mainly due to the

fact that the average area (〈A〉 ' 0.7) is smaller than the target area (A0 = 1). The
value of self-propulsion velocity is set to v0 = 0.2, but note that changing the value of
v0 doesn’t affect the features of the oscillations much (it only dictates the amplitude
of velocity oscillations). The rotational diffusion coefficient Dr is set to a constant
value. The values of all the parameters are listed in the following tables.
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Table E.1: Vertex-energy, boundary and potential parame-
ters. Raw simulation parameters

Parameter Meaning Value
K Area stiffness 1.0
Γ Perimeter stiffness 1.0
A0 Target area 1.0
P0 Target perimeter between 2.5 and 3.8
kcc Repulsive potential strength 5.0
acc Repulsive potential length 1.0
kcw Confinement strength (cells) 5.0
kbw Confinement strength (boundary) 0.0
aw Confinement potential length 1.0
κ Boundary bending 0.1
λ Line tension 0.1

Table E.2: Dynamics parameters

Parameter Meaning Value
v0 Self propulsion velocity 0.1 or 0.2
γ Friction 1.0
γr Orientational friction 1.0
µ Mobility 1.0
µr Rotational mobility 1.0
νr Rotational noise (rate) 0.1

E.1.3 Simulation data analysis (SPV model)

Custom-made codes were developed for data analysis in Python. Similarly as for pro-
cessing experimental data, once in the steady state regime, we average the horizontal
component of the centroids velocity along the transverse direction and generate the
kymographs of x-velocity by displaying this average value as a function of time and
space along the horizontal direction x.

Wavelength and period

The period and wavelength of oscillations are then extracted from the autocorrelation
of the kymograph of the x-component of the velocity, as shown in Fig. E.1.

Propagation velocity

The propagation velocity of oscillations can be measured either from the space-time
kymograph of the x-component of the velocity or from its 2d-autocorrelation. We use
a method to detect the “lines” delimitating the leftward and rightward motions using
the Hough transform (Hough, 1962), either on the space-time kymograph of the cell
velocity (Fig.E.2(a)) or on its autocorrelation (Fig.E.2(b)). We use Hough transform
algorithms from the Scikit-image image processing Python library (https://scikit-
image.org).
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Figure E.1: Illustration of simulation data analysis. (a) Ky-
mograph of the x-component of the velocity averaged along the y-
direction. (b) Auto-correlation of the kymograph. (c) Spatial auto-
correlation used to extract the wavelength of oscillations. (d) Time

autocorrelation used to extract the time period of oscillations.

E.2 Velocity oscillation for different values of v0

We show in Fig. E.3 the evolution in time of the x-component of the velocity averaged
over the the whole system (in the small system regime where global oscillations are
observed) for three different values of the self-propulsion speed v0. All the data can
be approximately collapsed by normalizing the velocity with the value of v0.
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(a) (b)

Figure E.2: Examples of line detection using the Hough
transform to measure the wave velocity in (a) the space-time
kymograph of the x-component of the velocity averaged along the y
dimension and (b) the autocorrelation of the space-time kymograph of

the velocity.

Figure E.3: Velocity oscillation for different values of the self-
propulsion speed v0. Velocity averaged over the system for a small

system (LX = 15) rescaled by v0.
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