
HAL Id: tel-03426949
https://theses.hal.science/tel-03426949

Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the compositionality of monads via weak distributive
laws

Alexandre Goy

To cite this version:
Alexandre Goy. On the compositionality of monads via weak distributive laws. Logic in Computer
Science [cs.LO]. Université Paris-Saclay, 2021. English. �NNT : 2021UPAST080�. �tel-03426949�

https://theses.hal.science/tel-03426949
https://hal.archives-ouvertes.fr

Compositionnalité des monades
par lois de distributivité faibles
On the compositionality of monads

via weak distributive laws

Thèse de doctorat de l'université Paris-Saclay

École doctorale n° 573, Interfaces : matériaux, systèmes, usages
Spécialité de doctorat : Informatique

Unité de recherche : Université Paris-Saclay, CentraleSupélec,
Mathématiques et Informatique pour la Complexité et les Systèmes,

91190, Gif-sur-Yvette, France
Référent : CentraleSupélec

Thèse présentée et soutenue à Gif-sur-Yvette, le 19 octobre 2021, par

 Alexandre GOY

Composition du Jury

Jean GOUBAULT-LARRECQ
Professeur, ENS Paris-Saclay

 Président

Christine TASSON
Professeure, Sorbonne Université

 Rapporteure & Examinatrice

Daniele VARACCA
Professeur, Université Paris-Est Créteil

 Rapporteur & Examinateur

Gordon PLOTKIN
Professeur, University of Edinburgh

 Examinateur

Damien POUS
Directeur de recherche CNRS, ENS Lyon

 Examinateur

Ana SOKOLOVA
Maîtresse de conférences, Universität Salzburg

 Examinatrice

Direction de la thèse

Marc AIGUIER
Professeur, CentraleSupélec

 Directeur de thèse

Daniela PETRIŞAN
Maîtresse de conférences, Université de Paris

 Co-encadrante Th
ès

e
de

 d
oc

to
ra

t
N

N
T

: 2
02

1U
PA

ST
08

0

Remerciements

Une thèse, c’est plus dur qu’on ne le pense, et même en entendant cette phrase à
répétition, on ne s’en rend compte que quand on y est. La chose aurait été impossible
sans la présence précieuse d’une foultitude de personnes dont j’espère oublier ici le
plus petit nombre possible.

Dans un cours d’informatique théorique égaré au milieu d’un cursus d’ingénieur
dont le sens m’échappait, un orateur passionné fascine les étudiants. Son nom est
celui de mon directeur de thèse : Marc Aiguier, auquel vont mes premiers remer-
ciements. Après m’avoir conseillé la perle qu’est le master LMFI, après m’avoir aidé
à trouver un stage palpitant aux Pays-Bas, c’était une suite logique pour moi de
poursuivre une thèse sous ta direction. Je n’ai finalement eu la pleine mesure de
tes qualités humaines qu’au beau milieu de cette thèse, où tu as été incroyablement
compréhensif envers mon projet de réorientation de sujet. Pour cette grande liberté
et cette immense confiance que tu m’as accordée, Marc, merci.

Au pied d’un avion grec, ramenant à Paris les participants de ma toute première
conférence, une jeune chercheuse me reconnâıt et lance la conversation. Son nom est
celui de ma co-encadrante : Daniela Petrişan. Daniela, je ne pourrai te remercier
assez pour tout ce que tu as fait pour moi pendant cette thèse – depuis le moment
où, à Nice, tu as accepté d’encadrer cet étudiant en questionnement, jusqu’au bout
des relectures approfondies de mon manuscrit, en passant par les encouragements en
coulisse dans les salles virtuelles de l’ère du confinement. Ton incroyable clairvoyance
sur les sujets de recherche qui nous passionnent a bien sûr été une précieuse alliée
tout au long de ces années. Sans tes intuitions qui ont fait germer en moi tant d’idées,
ce manuscrit s’arrêterait ici.

Mais - peut-être au grand dam du lecteur - nous sommes loin d’en avoir fini, et je
tiens dès à présent à remercier chaleureusement les membres du jury. Merci à mes rap-
porteurs, eux que j’ai croisés au fil du doctorat, Christine Tasson et Daniele Varacca,
dont les retours détaillés ont grandement contribué à améliorer ce texte. Merci à
eux et à Jean Goubault-Larrecq, Gordon Plotkin, Damien Pous et Ana Sokolova
pour m’honorer de leur participation au jury. Tant de chercheurs chevronnés dont
j’admire le travail réunis pour discuter du mien, c’est vertigineux.

Bien d’autres ont influencé directement le travail qui va suivre. Merci à Isabelle
Bloch, pour m’avoir encadré avant la réorientation du sujet, et m’avoir aidé dès que
cela était possible - en particulier en m’incitant à aller à Nice, où tout s’est éclairci.
Merci à Arthur, à qui je dois toujours une bière, à Andreas, dont le franc-parler a
été crucial, à Arnaud et Fabienne, à Christophe, à Leonor, pour leur point de vue
apaisé et lucide. Merci à Alexis Saurin, non seulement pour avoir été un respons-
able de master dévoué, mais aussi pour cette discussion autour d’un bol de nouilles.
Scientifiquement, je dois beaucoup à Jurriaan Rot, qui m’a fait découvrir le monde
merveilleux des coalgèbres en encadrant mon stage à Nijmegen. Il se posait alors la
question de l’existence d’une double monade des parties – deux ans plus tard, c’est en
tombant par hasard sur l’article de Klin et Salamanca qui répondait par la négative
que je me suis intéressé de nouveau à ces sujets. Merci à Bartek Klin, Paolo Perrone,
Thomas Colcombet, Axel Osmond, Ralph Sarkis ainsi que le Topos Reading Group
pour les inspirantes discussions qui ont fini par laisser une empreinte ici où là. Merci
à Maaike Zwart pour avoir osé consacrer sa thèse à des résultats d’impossibilité, et à
laquelle le titre du présent document est un clin d’œil.

Le travail qui est sous vos yeux clôt un chapitre commencé il y a bien longtemps
: celui des études. Je voudrais rendre hommage aux trois professeurs non encore
cités qui ont façonné le scientifique que je suis. Le premier, Jean-François Ahyerre,
a su éveiller en classe de première mon goût pour la science en me faisant envisager
chaque question sans réponse comme un défi. La seconde, Carine Sort, a déchâıné un
intérêt brûlant pour les mathématiques qui ne s’est pas consumé depuis l’époque du
lycée. Le troisième, Christophe Cuny, m’a initié avec une bienveillance intarissable
aux arcanes de la recherche au sein du Parcours Recherche de ce qui était alors l’Ecole
Centrale Paris. Eux et d’autres que je n’oublierai jamais - je pense en particulier à
Aline Girard, François Mattei, Jean Nougayrède, Clément de Seguins Pazzis, Erick
Herbin, Pauline Lafitte, François Le Mâıtre et bien évidemment François Lussier -
tous à leur façon ont gravé en moi le désir de transmettre.

Cette soif d’enseigner n’a pas été en reste durant ces trois ans. Ce fut un plaisir
de créer, de dispenser et de gérer avec Pascale le Gall et Marc Aiguier ces cours
d’informatique (plus ou moins) théorique qui imprimeront encore longtemps, je l’espère,
leur marque sur le cursus ingénieur de CentraleSupélec. Je tiens d’ailleurs à adresser
des remerciements appuyés à tous les élèves qui ont croisé ma route : votre regard

neuf sur ces sujets que l’on croit pourtant bien connâıtre force l’humilité.

Administrativement, j’ai pu compter sur la compétence sans faille de Sylvie Dervin
puis Fabienne Brosse pour le laboratoire, et de Suzanne Thuron – dite : la formidable
– pour l’Ecole Doctorale. Un grand merci, continuez de simplifier la vie de ceux
qui arriveront ensuite ! Merci également à Quentin Touzé, de la bibliothèque, pour
m’avoir indiqué que la section remerciements n’avait pas de limite de pages.

Une thèse, c’est aussi des camarades sur le même bateau. Merci aux collègues
Adrien Dekkers, Romain Pascual, Antonin Della Noce, et à tous les autres, pour
ces parties de babyfoot et tant de délicieux repas du CROUS. Merci à Salim Ni-
bouche pour vouer avec moi un culte à La Monade. Mention spéciale à Brice Han-
nebicque, qui se situe une année en avance depuis la nuit des temps, et me communique
l’emplacement des chausse-trappes au fur et à mesure qu’il les découvre. Bravo pour
là où tu es maintenant, tu le mérites1. A mon acolyte Erwan Mahé, je suis heureux
que les cöıncidences de la vie m’aient donné l’opportunité de mieux te connâıtre. Nos
anecdotes du midi, nos sessions de natation à la Vague ou à Orsay, nos randonnées le
long de l’Yvette et nos fous rires dans l’open space me manqueront.

Produire une thèse est une activité qui parâıt si solitaire, et pourtant la liste des
amis qui m’ont entouré sans faillir durant cette épreuve est encore longue. Par qui
commencer ? Probablement par Jean, qui il y a déjà douze ans (oui, ça fait mal)
m’informait qu’on pouvait faire des maths par plaisir. De rival à meilleur ami, il n’y
avait qu’un pas et un passage chez le coiffeur. Bien des années d’études plus tard,
les quatre thèses parallèles dans quatre disciplines différentes de ces deux couples
curieusement symétriques, Alice et Jean versus Edwige et Alexandre, sont rythmées
par de bienvenues rencontres où les mâıtres mots sont jeux de société et brownie.
Merci à vous deux pour être là. Merci à tous les membres de la Compagnie du Navet,
fidèles au poste et aux réveillons du Nouvel An : Nicolas V, pour m’avoir informé
à temps du Problème Récurrent, Pierre, pour être à la fois témoin, streamer et fan
numéro 1, Alexandre B, pour partager en plus d’un prénom une passion malsaine
pour le split push, Nicolas D, pour sa tempérance et sa passion pour le rôle d’avocat
du diable, Joseph, pour me dire que c’était bien tenté alors que je viens de donner ma
dame en un coup, Corentin, pour être Corentin, et Edwige, pour les raisons que l’on

1J’espère juste que tu n’es pas tombé dans un trou avec des pics entre le moment où j’écris ces
lignes et celui où tu les lis.

verra plus tard. Dans la famille rythmer une thèse, j’appelle maintenant les rôlistes de
la bande, dont la longue campagne de D&D a vu nâıtre et se clore ce doctorat : merci
à Braise Pascal, Ryze, Uleek et au MJ pour avoir emmené ce pataud de Bœuf dans
tant d’aventures. C’est l’occasion de remercier Hélöıse, une thésarde de plus, pour
son enthousiasme débordant et la qualité de sa peinture. Dans un univers parallèle,
merci à Nyanyel, Gemma, Howerd et feu Irwen pour vos vagabondages avec Larsen
Lutin dans la vallée Picorine. Merci à Camille et Jonathan, des amis comme on n’en
fait plus, toujours prêts à résoudre une énigme ou à lancer une raclette. Merci aux
quatre autres Assa-Cinq des Templiers, mes amis de toujours, pour m’avoir permis
si souvent de me changer les idées autour d’une bière, d’un Mario Kart ou d’un film
estampillé The Asylum : Nicolas T dit Toto, Samuel dit Umut, Romain dit Rufus,
Mathia dit Matmut. Votre présence est inestimable.

Merci à Ludwig van Beethoven, qui a rempli trois semaines d’oreilles pendant
la phase de rédaction, suite à un conseil trouvé dans un recoin de la thèse d’Alexis
Saurin. Merci à la synthwave pour avoir rempli les 153 autres semaines, en me ren-
voyant dans le passé, loin vers des temps nostalgiques que je n’ai pas vécus. Merci
à ma guitare pour m’avoir permis d’exprimer ce qu’il n’était pas possible d’exprimer
autrement.

Ce manuscrit a été rédigé en grande partie dans une certaine maison normande,
où je me suis reclus deux longs mois qui furent les plus productifs que j’aie jamais con-
nus. Les mots sont insuffisants pour exprimer ma gratitude envers mes grands-parents,
Papy Cool et Mamie B, qui m’ont hébergé et se sont assurés que je ne manque de rien
pendant ce sprint final. Sans vous, j’y serais encore. Merci également à Mamie Cotte,
aux Goy de Gravigny et de Marcilly-la-Campagne, aux Lesage d’Aix, pour avoir en-
vers et contre tout cherché à comprendre en quoi consistait ma thèse, et m’avoir
demandé régulièrement des nouvelles alors que mes réponses incompréhensibles en
auraient découragé plus d’un.

Merci à Baptiste et Claire, un frère, une sœur, pour avoir grandi et continuer
de grandir ensemble. Je vous aime. Si vous vous demandez jusqu’à quand j’ai tenu
avant de pleurer en rédigeant ce texte, c’était maintenant. Merci à Papa et Maman,
vous qui m’avez toujours plus que soutenu, cru, encouragé, accompagné, aidé, sauvé
parfois, aimé. Je vous aime aussi.

Au cours de cette thèse, j’ai rejoint, pour de bon, une autre famille. Merci à
Benôıt et Anne pour m’avoir accepté dès le tout début. Avec vous, les légendes sur
les beaux-parents ont du souci à se faire. Merci à Marie-Christine, à Marie, à Clara,
à Renaud, pour leur accueil dans la famille et leur présence à ce féérique mariage en
tout petit comité. D’ailleurs, merci à Manu pour son accompagnement de Père hors
pair. Merci aussi à Nicolas B et Tom, qui peut-être finiront par me rejoindre : j’aurais
aimé me réunir avec vous et les autres cet été - ce n’est que partie remise. Avant de
passer à la personne la plus importante de ces remerciements, il faut en mentionner
un autre qui a rejoint une nouvelle famille. Bienvenue à Edouard, j’espère qu’un jour
tu auras moins peur.

J’ai attendu jusqu’au dernier moment avant de parler d’elle, car je sais qu’elle sera
gênée. Mais tu ne t’en sortiras pas comme ça. Edwige Nortier, je suis si heureux de
t’avoir épousée. Merci pour ton soutien, ton rire, ton incorrigibilité, ta fragilité et
ta force, ton amour. Toi qui as commencé cette thèse ma petite amie et l’a finie ma
femme, j’ai hâte de ce que nous allons construire ensemble.

Abstract

Monads are widely used in computer science to model computational ef-
fects. To represent complex systems, compositionality of monads is there-
fore crucial. One can usually compose two monads using distributive
laws. When no distributive law exists, it is sometimes still possible to re-
cover what looks like a composite effect by using a weak distributive law.
The phenomenon occurs when combining probabilistic choice with non-
deterministic choice, or when combining non-deterministic choice with
itself.

This thesis leverages and enhances the framework of weak distributive
laws towards applications in computer science. Firstly, we focus on the
two most-known examples where distributive laws fail in the category of
sets. The origin of scattered results of the literature is explained through
the lens of weak distributive laws. This includes composition of equa-
tional theories for non-determinism and probability as well as coalgebraic
constructions for probabilistic automata and alternating automata. Sec-
ondly, aiming at applications in the semantics of programming languages,
we study how to obtain laws in other categories. Notably, we generalise
weak self-distribution of non-deterministic choice to arbitrary toposes and
compact Hausdorff spaces.

Contents

Introduction 1

1 Preliminaries 11
1.1 String Diagrams . 11
1.2 Monads . 13

1.2.1 Monads and Examples . 14
1.2.2 Monads Arising from Adjunctions 19

1.3 Distributive Laws . 23
1.4 Algebraic Presentations . 32
1.5 Iterated Distributive Laws . 36

2 The Weak Framework 41
2.1 Weak Distributive Laws . 41
2.2 Finding Weak Distributive Laws . 49
2.3 Coweak Distributive Laws . 56
2.4 Iterated Weak Distributive Laws . 62

3 Combining Probability and Non-Determinism 66
3.1 Powerset over Powerset . 68

3.1.1 The Monotone Law . 68
3.1.2 Variations . 73

3.2 Distribution over Powerset . 74
3.2.1 The Monotone Law . 74
3.2.2 Algebraic Presentation . 81
3.2.3 Variations . 86

3.3 Powerset over Distribution . 89

i

4 Applications to Coalgebra 93
4.1 Coalgebraic Modelling . 94
4.2 Implementing Weak Distributive Laws 97
4.3 Generalised Determinisation . 99

4.3.1 Alternating Automata . 104
4.3.2 Probabilistic Automata . 110

4.4 Bisimulations Up-To . 113

5 Interlude 126
5.1 Regular Categories . 127
5.2 Relations in a Regular Category . 129
5.3 Relational Extensions . 131

6 Toposes 133
6.1 Preliminaries . 134
6.2 The Powerset Monad . 140
6.3 Powerset over Powerset . 142

6.3.1 Proof for the Unit . 145
6.3.2 Proof for the Multiplication 148

7 Compact Hausdorff Spaces 151
7.1 Preliminaries . 151
7.2 Relational Extensions versus Vietoris Extensions 154
7.3 Vietoris over Vietoris . 158

7.3.1 The Monotone Law . 158
7.3.2 Variations . 163

7.4 Radon over Vietoris . 164

Conclusion 172

A Proof of the Coweak Correspondence Theorem 175

B Coq Proofs 186

Bibliography 196

Notation 209

Index 216

ii

Introduction

There is a recent interest in probabilistic programming amongst the theoretical com-
puter science community [144, 74, 73, 133, 48, 40, 49], fitting within a long-established
tradition of studying foundations of computational effects. These works, as well as the
two standard abstractions of computational effects that are Lawvere theories [120, 75]
and monads [109, 119], are all formulated in the language of category theory.

Mathematics is the art of giving the same name to different things, said Henri
Poincaré [121]. Category theory exports this philosophy to a whole new level. De-
signed by Eilenberg and MacLane in the 1940s, category theory provides a unifying
structuralist viewpoint on mathematics and has been importantly used in theoretical
computer science. As an abstract standpoint, it encompasses a wide range of con-
structions, leading to the identification of common structures or links that a more
down-to-earth approach would be unlikely to underline. As a research tool, it is a body
of heuristics allowing to find meaningful mathematical constructions. As a common
language, it makes science more communicable between communities of computer sci-
entists, logicians, mathematicians, physicists – e.g., the topic of this computer science
thesis, weak distributive laws, has been introduced independently by a mathematical
physicist (Gabriella Böhm) and a mathematician (Ross Street).

Context

Monads. Monads are a central concept of category theory. We shall follow the
approach initiated by Moggi [109] by thinking of monads as computational effects.
In a nutshell, a monad consists of three pieces of data that can be interpreted as
the effect itself, a procedure to create an effect, and a procedure to collapse two
of these effects into one. Coming back to probability, the essence of randomness is
first depicted by the renowned Giry monad [56], which gives rise to many variations
including the probabilistic powerdomain of Jones and Plotkin [84]. There is recent
work exhibiting a monad with a probabilistic flavour in the category of so-called

1

quasi-Borel spaces [74, 73], which is well-behaved for programming purposes – but
also there are other approaches somewhat orthogonal to monads, e.g. [48, 40, 49].
Before the non-categorically-aware reader is lost in the technical aspects of this work,
we shall provide a concrete example of a monad and what it intuitively means.

Non-deterministic choice. The powerset monad, importantly used in the sequel,
abstracts away the concept of a non-deterministic choice. Consider a set of all possible
outcomes denoted by X with no further structure. Imagine a black-box system that is
able, given a certain number of outcomes x1, . . . , xn, to choose one outcome between
them. As a user of the system, there is no way to guess in advance what will be
the chosen outcome. A convenient mathematical way to store choice options is to
consider them as a subset U ⊆ X. This defines how the effect of non-deterministic
choice structures sets: it transforms any set X into its powerset {U ⊆ X}. When
the user feeds a subset U to the system, they do not know the outcome, but they
do know that the outcome belongs to U . Now, apply a function f : X → Y to the
outcome. The user still does not know what element y ∈ Y is obtained, but they
do know that it belongs to the direct image f(U) = {f(x) | x ∈ U}. Therefore,
non-deterministic choice acts on functions f : X → Y by transforming them into
their direct image f : {U ⊆ X} → {V ⊆ Y }. These two transformations define the
effect itself. Now, imagine no choice is given i.e. we consider a single element x ∈ X.
A simple procedure to create a choice is to structure x into the singleton subset {x}:
the system is given a choice between all elements of the singleton, consequently it is
forced to choose x. Last, imagine there is a choice between choices: the system must
choose an outcome amongst a certain number of subsets U1, . . . , Un modelling choices,
to then choose an outcome inside the chosen subset. Equivalently, it can perform a
single choice in the subset ⋃1≤i≤n Ui. Therefore, collapsing two non-deterministic
choices into one is embodied by the union operation. Categorically, the operations
described in this paragraph correspond to a functor P on Set mapping a set to its
powerset and a function to its direct image, along with two natural transformations
ηP : 1→ P , µP : PP → P satisfying ηP

X(x) = {x} and µP
X(U) = ⋃U .

Compositionality. The above sketch of the powerset monad P is just one out of
the many monads of interest in computer science. The prominent other example
employed in this work is the distribution monad D modelling probabilistic choice.
There are also monads for more common computational effects such as exceptions,
lists, trees, inputs, or outputs. Complex systems may exhibit a behaviour that is

2

related to two or more monads. In this context, the compositionality of monads is
crucial. There is also an algebraic interest in understanding monad compositionality,
related to the algebraic approach of computational effects [75]. Although category
theory is especially well-suited to provide compositionality results, there is no general
way to compose two monads and get a third monad. Even in some apparently simple
cases, there may be no composite monad. For example, there is no monad on the
double powerset functor [91] i.e. performing two non-deterministic choices in a row
does not yield a proper notion of effect. Consequently, the framework of monads
slightly clashes with what one would expect from a theoretical tool for computer
science, where compositionality is a key feature.

Distributive laws. A standard technique to generate a new monad out of two
monads is to use Beck’s theory of distributive laws [7]. Given two monads S and T,
a distributive law is a natural transformation TS → ST formally allowing to swap
the order in which these monads are applied. Provided four compatibility axioms are
satisfied – one for each creation and collapse procedures for T and S – a composite
monad ST can then be defined. A substantial advantage of distributive laws is their
ubiquity: they are equivalently liftings of S to T-algebras and extensions of T to free
S-algebras. Concretely, this correspondence makes distributive laws the edge of a
three-sided coin. Depending on the question, it may be more relevant to rather look
at heads or tails.

Coalgebras. One of the numerous applications of monads in computer science oc-
curs in the theory of coalgebras. Since the seminal work of Rutten [131], the coal-
gebraic approach has become a well-established body of techniques for modelling
various coinductive behaviours. Indeed, dually to initial algebras producing a no-
tion of induction, final coalgebras come with a notion of coinduction. Consequently,
coalgebras are particularly well-tailored to study state-based systems, bisimulations,
or modal logic. Broadly speaking, a coalgebra can be thought of as the categori-
cal version of an automaton. In this vision, a monad embodies the branching type
of a system. For example, non-deterministic automata are the combination of two
simple concepts: the one of an automaton (comprising e.g. labels in an alphabet,
initial and final states) and non-deterministic choice. Formally, they are coalgebras
for a composite functor involving the powerset monad P. Similarly, Markov chains,
which are the simplest probabilistic state-based systems one can probably imagine,
are just coalgebras for the distribution monad D. Amongst the celebrated successes

3

of coalgebra theory lies the generalised powerset construction, which universalises the
transformation of a non-deterministic automaton into a deterministic automaton –
this will be given a detailed presentation in Chapter 4. For the construction to be
sound, it needs to rely on a distributive law. The generalised powerset construc-
tion has applications in verifying program equivalence: in a system that has been
determinised using a distributive law, bisimilarity can be checked efficiently by using
so-called up-to techniques [21].

State of the Art

No-go theorems. The PhD thesis of Varacca [152] is the first to exhibit a concrete
case where a distributive law cannot exist. Following an idea of Plotkin, Varacca
proves that there is no possible distributive law of type DP → PD, i.e., probability
does not distribute over non-determinism. Using similar methods, Klin and Sala-
manca prove that there is no distributive law of type PP → PP [91], as a follow-up
to the realisation that the literature was erroneously claiming the contrary. Iden-
tifying that the arguments underlying both proofs can be viewed as being algebraic
rather than categorical, Zwart and Marsden [162] carry out a systematic study of what
they called no-go theorems for distributive laws. Their generic results, focusing on
the equational theories of finitary monads on Set, exhibit DP→ PD and PP→ PP
as two of the many examples for which there cannot be any distributive law. The
PhD thesis of Maaike Zwart [161] describes a number of no-go theorems thoroughly
and gives many other examples where the existence of a distributive law fails. No-go
theorems are essential in the sense that they put unbridgeable boundaries to where
there can or cannot be a distributive law.

Composing monads all the same. The annoying but unavoidable consequence
of no-go theorems is that systems combining two uncomposable monads are difficult
to model. This is an issue e.g. in domain theory. There, the non-existence of a
distributive law between the powerset monad and the distribution monad raises chal-
lenges for combining powerdomains [118] and probabilistic powerdomains [84, 86, 134]
addressed by many authors [108, 58, 148, 88]. Coalgebraically speaking, the absence
of laws PP → PP and DP → PD relates to a strewn-with-obstacles history in the
modelling of alternating automata and probabilistic automata, respectively. Lacking
a distributive law TS → ST, one can still try and compose monads using dedicated
methods, not relying on categorical distributive laws. The basic idea consists in

4

defining directly a monad involving both features of T and S. The two main pitfalls
are then finding the right definition for such a monad and arguing for its canonic-
ity. For instance, Bonchi, Silva, and Sokolova [23] understand the determinisation
of probabilistic automata from a coalgebraic perspective by devising a framework of
so-called quasi-lax liftings. This way, they circumvent the non-existence of a proper
distributive law. Similarly, Klin and Rot [90] successfully retrieve the semantics of
alternating automata using the framework of so-called forgetful logics. In both cases,
the link with distributive laws is lost in the process, whereas the whole constructions
are desperately close to what one would get using such a law.

Algebraic approaches. A standard technique consists in using the fact that mon-
ads in Set correspond to equational theories. It is often the case that given equational
theories for S and T, there is an obvious algebraic distributive law to impose between
their operations. Adding this equation to the theory generates a new monad that
may or may not intertwine smoothly the features of S and T. Afterwards, there still
is the option to slightly modify one of the two monads to retrieve a construction that
relies on a categorical distributive law. This general algebraic perspective exempli-
fies in Varacca’s idea of replacing the distribution monad with a monad of so-called
indexed valuations [151], and has also been used in [88, 25, 39]. A downside of all
these algebraic methods, manipulating terms and variables explicitly, is that they are
restricted to monads on the category Set, whereas distributive laws can operate in
any category.

Weak distributive laws. Another path towards the composition of seemingly un-
composable monads emerges from work on so-called weak distributive laws, that is,
distributive laws whose required axioms have been weakened. These have first been
introduced independently by Street [146] and Böhm [16]. A decade later, Richard Gar-
ner publishes the paper The Vietoris monad and weak distributive laws [54], where
he leverages a particular notion of weak distributive law to take a fresh look at the
composition of some Set monads. He peripherally shows that there is a canonical
weak distributive law PP→ PP.

Approach and Contributions

In this thesis, we use weak distributive laws to provide monad compositions that are
meaningful to theoretical computer science. We focus on cases where distributive laws

5

are impeached by no-go theorems, our two leading examples being PP → PP and
DP→ PD. We show how known constructions, such as the convex powerset monad
and generalised powerset constructions for probabilistic or alternating automata, arise
as mere instances of the theory of weak distributive laws. Our approach being categor-
ical rather than algebraic, we are able to generalise some examples to other categories
than Set. A more detailed account of our contributions follows.

Further results on the general theory of weak distributive laws are obtained, in-
cluding a new theorem to produce such laws.

• Any monad morphism yields a weak distributive law (Theorem 2.11) with a
trivial composite monad (Proposition 2.12).

The way Garner weakens distributive laws TS → ST is by suppressing the axiom
stating compatibility with the unit of T. We describe what the theory becomes if one
chooses instead to drop the axiom stating compatibility with the unit of S.

• Coweak distributive laws constitute a dual framework (Section 2.3).

Once we are able to compose some otherwise uncomposable monads using (co)weak
distributive laws, the question of composing more monads remains. In the case of
distributive laws, this has been studied by Cheng under the name iterated distributive
laws.

• Iterated distributive laws partially generalise to the (co)weak framework (Sec-
tion 2.4).

Turning our attention to concrete examples of non-trivial weak distributive laws,
we study the law PP→ PP proposed by Garner in [54] and show that weak distribu-
tive laws are an appropriate framework to model the combination of non-deterministic
choice and probabilistic choice.

• There is a unique monotone weak distributive law DP→ PD (Theorem 3.12).

• The corresponding weak lifting is the convex powerset monad on convex algebras
(equations (3.41) to (3.48)).

• The weak composite monad is the monad of convex subsets of distributions
(Definition 3.15).

6

• The weak distributive law recovers an algebraic presentation for the above (The-
orem 3.16).

Some variations are also introduced. Notably, it is possible to drop the finite support
condition on the distribution monad (Theorem 3.23). The case PD → DP is also
lightly discussed, with the following negative result.

• There is no (co)weak distributive law PD→ DP related to the law PP→ PP
via the support monad morphism (Proposition 3.28).

Continuing with our general agenda of bringing weak distributive laws into com-
puter science, we explain how classical results of coalgebra theory can be adapted to
weak distributive laws.

• Generalised powerset construction is still available for weak distributive laws
(Propositions 4.8, 4.9, 4.10).

• Up-to techniques stemming from generalised powerset construction remain com-
patible (Theorem 4.27).

These abstract results are instantiated on alternating automata and probabilistic au-
tomata, explaining the deep origin of determinisation procedures described in [81, 90,
23].

The semantics of programming languages is most of the time derived in categories
with a richer structure than Set. For instance, in domain theory, these categories of-
ten have a topological flavour, while in probabilistic programming, the recently-built
category of quasi-Borel spaces [74] is a fine choice for interpreting higher-order pro-
grams. Therefore it is beneficial that the categorical approach to weak distributive
laws does not restrict the scope to the category of sets, contrary to most algebraic
methods. With this in mind, we suggest as a motivating objective to generalise the
monotone weak distributive law DP→ PD to a category that can model continuous
probability and continuous non-determinism. The category of compact Hausdorff
spaces is selected for this purpose, as it is somewhat similar to Set and possesses
monads interpreting both desired effects.

Our investigations reveal that regular categories are a convenient setting to ab-
stractly state the key result generating monotone laws. In the particular case of
toposes, and using results of de Moor [43], we are able to generalise the following Set
facts.

7

• There is no distributive law PP→ PP (Proposition 6.19).

• There is a unique monotone weak distributive law PP → PP (Theorem 6.21
and Proposition 6.22).

We provide formal Coq proofs of the new results, standing for constructive proofs
performed in the internal logic of the topos. Finally, we study the non-topos of com-
pact Hausdorff spaces, in which non-deterministic choice and probabilistic choice are
interpreted by the Vietoris monad V and the Radon monad R, respectively. Drawing
inspiration from work on closed relations and continuous relations [9, 10], we provide
a result to generate monotone laws in this setting.

• For any monad T on compact Hausdorff spaces, assuming three conditions on
its functor and one condition on its multiplication, there is a monotone weak
distributive law TV→ VT (Corollary 7.11).

After verifying that there cannot be any distributive law of type VV → VV and
RV→ VR, we prove the following results.

• There is a monotone weak distributive law VV→ VV (Theorem 7.19).

• At least two out of four conditions required for a monotone weak distributive
law RV→ VR hold (Propositions 7.26 and 7.28).

Our quest for composing continuous non-deterministic choice with continuous
probabilistic choice halts with a conjecture that the two last conditions hold, un-
der which we provide an expression of the resulting weak distributive law RV→ RV.

Related Work

Our work is overall closely related to the recent paper of Garner [54]. Following our
LICS paper [62], interest was raised in the computer science community for weak
distributive laws. Bonchi and Santamaria [22] devised a weak distributive law for the
monad of semimodules over a semiring, which can be seen as a generalisation of our
weak distributive law DP→ PD. Links between semialgebras and weak distributive
laws have also been investigated by Petrişan and Sarkis in an upcoming paper [116].

The PhD thesis of Parlant [112] proposes an algebraic take to explain how the
generalised powerset construction of alternating automata and probabilistic automata
arise. This viewpoint provides interesting algebraic insights and is partly based on

8

the quasi-lax liftings approach of [23], which turns out to be weak liftings in disguise.

One of our technical results, stating that the multiplication of the distribution
monad is weakly cartesian (Proposition 3.10) was proved independently by Fritz and
Perrone [52]. Their proof turns out to be simpler, and we reuse it to generalise the
result to the countable distribution monad (Theorem 3.23).

Collaborations

In this short section, we would like to credit:

• Daniela Petrişan, for first identifying that something had to be done with weak
distributive laws concerning the everlasting problem of combining probability
and non-determinism;

• Daniela Petrişan again, for continuously delivering fruitful ideas and technical
support that had an impact on most parts of the thesis;

• Marc Aiguier, for pointing out to us that there was a powerset monad in toposes,
making it possible to discover the work of de Moor [43];

• Richard Garner, for hinting that the Kleisli category of the Vietoris monad
could itself be of interest for weak distributive laws.

In the body of the thesis, all uncredited propositions and theorems are original works.

Outline

In Chapter 1, we recall basic notions of category theory that will be used in the whole
presentation. Chapter 2 presents the framework of weak distributive laws in Garner’s
style. We provide a detailed presentation, with intuitive explanations of what is
happening, sometimes using string diagrams. Trivial weak distributive laws, coweak
distributive laws, and iterated weak distributive laws are introduced. Chapter 3
contains the two pivotal examples of the thesis: the monotone weak distributive laws
PP → PP and DP → PD are derived and studied, along with some variations and
a discussion about the case PD → DP. Chapter 4 gives coalgebraic applications,
extending both the generalised powerset construction and the corresponding up-to
techniques to weak distributive laws. We provide a range of examples for probabilistic
automata and alternating automata, explaining the origin of some results of Bonchi,

9

Silva, Sokolova, Jacobs, Klin, and Rot. Chapters 3 and 4 together contain and extend
some results that have been published in

• [62] Alexandre Goy, Daniela Petrişan. Combining probabilistic and non-determi-
nistic choice via weak distributive laws. LICS 2020.

Chapter 5 is an interlude towards the second part of the thesis, consisting in searching
weak distributive laws outside of Set. It provides standard material about regular
categories. In Chapter 6, we study the case of toposes, in which results about the
distributive law PP → PP are generalised. Finally, Chapter 7 introduces compact
Hausdorff spaces, their closed and continuous relations, and the two monads of interest
V (Vietoris) and R (Radon). We build the monotone weak distributive law VV→ VV
and provide some first steps toward the existence of a monotone weak distributive
law RV → VR. Chapters 5, 6, and 7 together contain and extend some results that
have been published in

• [63] Alexandre Goy, Daniela Petrişan, Marc Aiguier. Powerset-like monads
weakly distribute over themselves in toposes and compact Hausdorff spaces.
ICALP 2021.

10

Chapter 1

Preliminaries

The reader is supposed to be familiar with the following basic notions of category
theory: category, monomorphism and epimorphism, functor, natural transformation,
limit and colimit. In the first chapters we will mainly work in a generic category
denoted by C and give many examples in the category Set of sets and functions. A
table fixing notation is supplied at the end of the thesis.

1.1 String Diagrams

Lots of category theoretic proofs are usually performed by pasting commutative di-
agrams. This practice, known as diagram chasing, has some undeniable strengths.
For instance, it is inherently compositional, it perfectly retains the type information
of morphisms, and it provides a direct visual overview of the global proof. But dia-
gram chasing also suffers from serious drawbacks. Large commutative diagrams can
quickly become unreadable for two main reasons. The first one is that commutative
diagrams involve a loot of bookkeeping, in the sense that functoriality and naturality
are explicitly depicted. The second is that from a certain proof size, the human eye ac-
commodates better a linear, equational-style reasoning, than a global and somewhat
disorganised proof. This section provides a brief overview of the graphical formalism
of string diagrams in category theory, which can be a relevant alternative to commu-
tative diagrams for certain proofs. We only present a tiny fragment of this formalism,
because we exclusively aim at using it for statements of the form α = β, where α and
β are natural transformations defined in terms of other natural transformations. We
refer the reader to [103] for a much more complete introduction.

Orientation conventions vary in the literature. In this document, string diagrams
are read from bottom to top. A natural transformation α : F → G between two
functors F , G : C→ D is represented by a string

11

α

G

F

CD (1.1)

Instead of explicitly indicating the categories, we may use colouring. By con-
vention, the portions of the space corresponding to the base category C are always
uncoloured. The previous diagram rewrites as

G

F

α (1.2)

In the rest of this overview, all functors are endofunctors on C. The identity
natural transformation idF : F → F is simply denoted by an unmarked string.

F

F

(1.3)

The identity functor 1 is not depicted. For example a natural transformation
κ : 1→ K looks like

K

κ (1.4)

Vertical composition of α : F → G and β : G→ H is denoted by β ◦ α : F → H.
Recall that it is defined by (β ◦ α)X = βX ◦ αX . Vertical composition is represented
in string diagrams by vertical glueing

β

H

G

α

G

F

, 7→
α

F

β

H

(1.5)

12

Horizontal composition of α : F → G and γ : K → L is denoted by γα : KF →
LG. Recall that it is defined by γα = γG ◦ Kα = Lα ◦ γF (both expressions are
equal by naturality). Horizontal composition is represented in string diagrams by
horizontal juxtaposition

γ

L

K

α

G

F

, 7→ α

G

F

γ

L

K

(1.6)

Deformations of string diagrams preserve the meaning provided they are topolog-
ically mild. For example, strings can be expanded or shrinked, but not cross each
other. Nodes representing natural transformations can be dragged along strings, but
not slide past each other. Legal deformations encode what we called bookkeeping, e.g.
naturality.

α
κ not legal

6=legal=

F

HK

β

κα

β

HK

F F

HK

κ

β
α

(1.7)

In the sequel, we will use some graphical notation to denote natural transforma-
tions without naming them explicitly on the string diagram. For readability, we may
use different colours to mark different functors, though in a redundant way: in each
case the reader should be able to infer what is represented using only the type infor-
mation and the shape of the string diagram. In particular, (non-identity) functors
will always be displayed on top and bottom of every diagram to help the reader typing
expressions.

1.2 Monads

The concept of a monad is a typical example of a mathematical structure devised
in category theory, brought into the scope of theoretical computer science, and now
enjoying far-reaching ramifications throughout the field. Monads have various in-
terpretations, but we shall follow those of Moggi, Plotkin and Power stating that a
monad is a notion of computation [109] or a computational effect [119]. With respect
to this interpretation, monads are concretely used in purely functional programming

13

languages [157] to implement imperative effects such as exceptions, input, or out-
put. The language Haskell, for instance, has a class Monad that can be instantiated
to recover some monads presented in the sequel, such as the maybe monad, the list
monad, and the reader monad. In this presentation, we shall stick to a purely cate-
gorical vision of monads. Informally, a monad consists of

• a functor T , modelling the structure of the effect

• a unit natural transformation ηT : 1 → T , implementing effect creation by
adding one structured layer

• a multiplication natural transformation µT : TT → T , implementing effect
destruction by collapsing two structured layers into one single structure layer

satisfying some compatibility conditions, namely

• collapsing after creating is the identity transformation (both for outer layer
creation and for inner layer creation)

• collapsing three layers into one layers can be done in any order (outer layers
first or inner layers first)

1.2.1 Monads and Examples

Definition 1.1 (Monad). A monad T on a category C is a triple (T , ηT, µT) such
that T : C → C is a functor, ηT : 1 → T is a natural transformation called the unit
and µT : TT → T is a natural transformation called the multiplication. These data
should satisfy the following equations:

µT ◦ TηT = idT = µT ◦ ηTT (unit axioms)
µT ◦ TµT = µT ◦ µTT (associativity axiom)

Equivalently, using commutative diagrams:

T TT TTT TT

TT T TT T

TηT

ηTT µT

TµT

µTT µT

µT µT

(1.8)

14

Using string diagrams, the monad unit and multiplication are respectively repre-
sented by

T T

TT

(1.9)

and the equations are given by the following transformations

=

TT

=

T

T T T

=

T T

TT TTTT

(1.10)

Example 1.2 (Identity monad). Let us begin with a trivial example. Any category
C has an identity monad Id whose functor is the identity functor, with unit and
multiplication both being the identity natural transformation id.

Example 1.3 (Maybe monad). The maybe monad (− + 1) on Set is defined by the
following data

• (X + 1) is the disjoint union of X and the singleton 1 = {∗}. Let the canonical
injections be

inl : X → (X + 1)
inr : 1→ (X + 1)

• (f + 1) : (X + 1)→ (Y + 1) is given by

(f + 1)(inl(x)) = inl(f(x))
(f + 1)(inr(∗)) = inr(∗)

• η
(+1)
X : X → (X + 1) is left injection η

(+1)
X (x) = inl(x)

• µ
(+1)
X : ((X + 1) + 1)→ (X + 1) merges the two copies of {∗}

µ
(+1)
X (inl(inl(x))) = inl(x)
µ

(+1)
X (inl(inr(∗))) = inr(∗)
µ

(+1)
X (inr(∗)) = inr(∗)

15

Example 1.4 (Powerset monad). The powerset monad P on Set is defined by

• PX is the set of all subsets of X

• Pf : PX → PY is the direct image function Pf(U) = {f(x) | x ∈ U}

• ηP
X : X → PX is the singleton function ηP

X(x) = {x}

• µP
X : PPX → PX is the union function µP

X(U) = ⋃U
Example 1.5 (Powerset monad variations). By restricting the powerset functor but
still using direct images, singleton, and union, we can obtain many variations of the
powerset monad:

• PfX = {U ∈ PX | U finite} yields the finite powerset monad Pf

• P ∗X = {U ∈ PX | U 6= ∅} yields the non-empty powerset monad P∗

• P ∗fX = PfX ∩ P ∗X yields the finite non-empty powerset monad Pf∗

Example 1.6 (Distribution monad). The distribution monad D on Set is defined by

• DX = {ϕ : X → [0, 1] | ∑x∈X ϕ(x) = 1 and supp(ϕ) is finite} where the
notation supp stands for the support defined by supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}.
Elements of DX are called (finitely supported probability) distributions and
can be formally denoted by ϕ = ∑

x∈X ϕx · x, where ϕx = ϕ(x)

• Df : DX → DY computes pushforward distributions Df(ϕ) = ∑
x∈X ϕx · f(x)

i.e. for any y ∈ Y , Df(ϕ)(y) = ∑
x∈f−1({y}) ϕ(x)

• ηD
X : X → DX computes the Dirac distribution ηD

X(x) = 1 · x

• µD
X : DDX → DX takes a weighted average µD

X(Φ) = ∑
x∈X

(∑
ϕ∈DX Φϕϕx

)
· x

Example 1.7 (Countable distribution monad). By extending D to probability distri-
butions with arbitrary support, one gets the countable distribution monad Dω. This
means that DωX = {ϕ : X → [0, 1] | ∑x∈X ϕ(x) = 1} and the other data are de-
fined as for D. The terminology countable comes from the fact that for any such
distribution ϕ, supp(ϕ) is at most countable [140, Proposition 2.1.2].

Example 1.8 (Abelian group monad). The Abelian group monad A on Set is defined
similarly to the distribution monad, as follows:

16

• AX is the free Abelian group on X i.e. the set of all functions π : X → Z with
finite support, written formally as π = ∑

x∈X πx · x

• Af : AX → AY is given by Af(π) = ∑
x∈X πx · f(x)

• ηA
X : X → AX is given by ηA

X(x) = 1 · x

• µA
X : AAX → AX is given by µA

X(Π) = ∑
x∈X (∑π∈AX Ππ × πx) · x

Example 1.9 (List monad). The list monad L on Set is defined by

• LX is the set of lists of elements of X

• Lf : LX → LY is the map operation Lf([x1, . . . , xn]) = [f(x1), . . . , f(xn)]

• ηL
X : X → LX creates a one-element list ηL

X(x) = [x]

• µL
X : LLX → LX concatenates µL

X([L1, . . . , Ln]) = L1 + · · ·+ Ln

Example 1.10 (Multiset monad). The multiset monad M on Set is defined by

• MX is the set of lists of elements of X up to ordering (equivalently, functions
X → N with finite support)

• Mf : MX →MY is the map operation Mf(Jx1, . . . , xnK) = Jf(x1), . . . , f(xn)K

• ηM
X : X →MX creates a one-element multiset ηM

X (x) = JxK

• µM
X : MMX →MX concatenates µM

X(JM1, . . . ,MnK) = M1 + · · ·+Mn

Example 1.11 (Reader monad). Let A be a fixed set. The reader monad R on Set
is defined by

• RX = XA, the set of functions of type A→ X

• Rf : XA → Y A is just composition Rf(h) = f ◦ h

• ηR
X : X → XA outputs the constant function ηR

X(x) = λa.x

• µR
X : (XA)A → XA computes the diagonal function µR

X(H) = λa.H(a)(a)

Example 1.12 (Filter monad [42], ultrafilter monad [98]). For any U ∈ PPX con-
sider the properties

(i) U 6= ∅

17

(ii) for all U, V ∈ PX, (U ∈ U ∧ V ∈ U) ⇐⇒ U ∩ V ∈ U

(iii) for all U ∈ PX, either U ∈ U or U c ∈ U (exclusive)

A filter is a U satisfying (i), (ii). An ultrafilter additionally satisfies (iii). For any
x ∈ X, let Ux = {U ∈ PX | x ∈ U} be the principal ultrafilter generated by x. The
filter monad F is defined by

• FX = {U ∈ PPX | U filter}

• Ff : FX → FY is given by Ff(U) = {V ∈ PY | f−1(V) ∈ U}

• ηF
X : X → FX computes the principal ultrafilter ηF

X(x) = Ux

• µF
X : FFX → FX is given by µF

X(U) = ⋃{⋂ u | u ∈ U}

The ultrafilter monad β is defined by βX = {U ∈ PPX | U ultrafilter}, the rest
being as for F.

Let us end this list of examples with a monad similar to the powerset monad P
but not living in Set.

Example 1.13 (Vietoris monad [155]). Let KHaus be the category of compact Haus-
dorff spaces and continuous functions. For any compact Hausdorff space X with
topology τX , let V X be the set of all closed subsets of X with the topology generated
by all sets of the form {C ∈ V X | C ⊆ U} and {C ∈ V X | C ∩ U 6= ∅}, where U
ranges over τX . This extends to a monad called the Vietoris monad, defined by

• V f : V X → V Y is the direct image function V f(C) = {f(x) | x ∈ C}

• ηV
X : X → V X is the singleton function ηV

X(x) = {x}

• µV
X : V V X → V X is the union function µV

X(C) = ⋃ C
The reader is invited to refer to Chapter 7 for more details about the Vietoris monad.

The similarity between two monads can be grasped by monad morphisms.

Definition 1.14 (Monad morphism). Let T, S be monads on a category C. A monad
morphism from S to T is a natural transformation γ : S → T such that

γ ◦ ηS = ηT (1.11)
γ ◦ µS = µT ◦ γγ (1.12)

18

String diagrammatically, these data are

T T

TT

S S

SS

S

T

(1.13)

such that

TTTT

=

S S

=

S S

(1.14)

Example 1.15. For any monad T on a category C, the identity natural transforma-
tion idT : T → T induces a monad morphism T→ T.

Example 1.16. The support operation induces a monad morphism supp : D →
P. The axioms respectively state that the support of a Dirac distribution is the

corresponding singleton, and that the support of the weighted average of a distribution
Φ ∈ DDX is the union of the supports of every ϕ ∈ supp(Φ). The support also defines
a monad morphism from D into Pf , P∗, and Pf∗. The support as a monad morphism
has been used for example in [81].

1.2.2 Monads Arising from Adjunctions

There are several equivalent definitions of adjunctions [96], but we shall focus on the
one that relates easily to monads.

Definition 1.17 (Adjunction). Let C and D be categories. An adjunction (L,R, η, ε) :
C→ D consists of

• A functor L : C→ D, the left adjoint

• A functor R : D→ C, the right adjoint

• A natural transformation η : 1→ RL, the unit

• A natural transformation ε : LR→ 1, the counit

such that εL ◦ Lη = 1 and Rε ◦ ηR = 1.

19

In string diagrams, the unit and the counit are respectively

R L

L R

(1.15)

such that

=

L

L

L

L

=

R

R R

R

(1.16)

The notation L a R denotes that L is left adjoint to R, with unit and counit left
implicit. We will also use the notation

D C
R

⊥
L

(1.17)

We are mainly interested in the link between adjunctions and monads. A first im-
portant fact is that contrary to monads, adjunctions compose nicely. Indeed, if
both (L1, R1, η1, ε1) : C → D and (L2, R2, η2, ε2) : D → E are adjunctions, then
(L2L1, R1R2, R1η2L1 ◦ η1, ε2 ◦ L2ε1R2) : C→ E is an adjunction. Diagrammatically:

E D C = E C
R2

⊥
L2

R1

⊥
L1

R1R2

⊥
L2L1

(1.18)

Any adjunction (L,R, η, ε) yields a monad (RL, η,RεL), with the unit of the
monad being the unit of the adjunction:

R L

L RR L

R L

is isis

T T

T

T

T T

R L

R L

(1.19)

Conversely, any monad T can be obtained in this way from an adjunction. There
may actually be many adjunctions generating T. The two extremal examples are the
Kleisli adjunction and the Eilenberg-Moore adjunction.

Definition 1.18 (Kleisli category). The Kleisli category of T is the category Kl(T)
with the same objects as C, and where a morphism f : X 9 Y is a morphism
f : X → TY in C. The identity morphism X 9 X is ηT

X . The composition of
f : X 9 Y and g : Y 9 Z is g • f = µT

Z ◦ Tg ◦ f .

20

Note that the notation 9 distinguishes morphisms in Kl(T), and the notation •
distinguishes composition in Kl(T).

By defining

• FT : C→ Kl(T) by FTX = X and FTf = ηT
Y ◦ f for any f : X → Y

• UT : Kl(T)→ C by UTX = TX and UTf = µT
Y ◦ Tf for any f : X 9 Y

• η : 1→ UTFT by ηX = ηT
X

• ε : FTUT 9 1 by εX = idTX

we get an adjunction FT a UT generating T, which is initial amongst these adjunctions
and is called the Kleisli adjunction.

A T-algebra is a pair (X, x) where X is an object of C and x : TX → X is a
morphism such that

x ◦ ηT
X = idX (unit axiom)

x ◦ µT
X = x ◦ Tx (associativity axiom)

In commutative diagrams, this is

X TX TTX TX

X TX X

ηT
X

x

µT
X

Tx x

x

(1.20)

The pair (TX, µT
X) is a T-algebra called the free T-algebra on X. Its unit axiom is

just one of the unit axioms of T and its associativity axiom is just the associativity
axiom of T.

A morphism of T-algebras f : (X, x)→ (Y, y) is a morphism f : X → Y in C such
that y ◦ Tf = f ◦ x.

TX TY

X Y

x

Tf

y

f

(1.21)

Definition 1.19 (Eilenberg-Moore category). The Eilenberg-Moore category of T,
denoted by EM(T), has T-algebras as objects and morphisms of T-algebras as mor-
phisms. Identities and composition are as in C.

By defining

21

• FT : C→ EM(T) by FTX = (TX, µT
X) and FTf = Tf

• UT : EM(T)→ C by UT(X, x) = X and UTf = f

• η : 1→ UTFT by ηX = ηT
X

• ε : FTUT → 1 by ε(X,x) = x, extracting the algebraic structure from the algebra

we get an adjunction FT a UT generating T, which is terminal amongst these ad-
junctions and is called the Eilenberg-Moore adjunction.

Finally, note that Kl(T) is equivalent to the full subcategory of EM(T) whose
objects are the free algebras (TX, µT

X). We now give examples of Kleisli categories
and Eilenberg-Moore categories for some specific monads.

Example 1.20 (Kl(−+ 1)). The Kleisli category of the maybe monad (−+ 1) is the
category of sets and partial functions. Indeed, a morphism f : X → (Y + 1) can be
seen as a partial function X ⇀ Y undefined on the set f−1({inr(∗)}).

Example 1.21 (EM(− + 1)). The Eilenberg-Moore category of the maybe monad
(−+ 1) is the category of pointed sets and functions preserving the base point. This
category is actually equivalent to the category of sets and partial functions [136]. The
maybe monad therefore satisfies Kl(−+ 1) ≡ EM(−+ 1).

Example 1.22 (Kl(P)). The Kleisli category of the powerset monad P is isomorphic
to the category of sets and relations Rel. Objects of Rel are sets, and morphisms
X 9 Y are relationsR ⊆ X×Y . Identities are diagonal relations {(x, x) | x ∈ X} and
composition of two relations R ⊆ X×Y and S ⊆ Y ×Z is defined by S◦R = {(x, z) ∈
X×Z | ∃y ∈ Y.(x, y) ∈ R∧(y, z) ∈ S}. The isomorphism Kl(P) ∼= Rel acts identically
on objects, sends a function f : X → PY to Rf = {(x, y) | x ∈ X, y ∈ f(x)} and sends
a relation R ⊆ X × Y to fR = λx.{y ∈ Y | (x, y) ∈ R}. Note that the submonads of
the powerset monad described in Example 1.5 yield Kleisli categories that are wide
subcategories of Rel. More precisely, a relation R ⊆ X × Y is a morphism

• in Kl(Pf) when it is image-finite: ∀x ∈ X.{y ∈ Y | (x, y) ∈ R} is finite;

• in Kl(P∗) when it is total: ∀x ∈ X.∃y ∈ Y.(x, y) ∈ R;

• in Kl(Pf∗) when it is image-finite and total.

Example 1.23 (EM(P)). The Eilenberg-Moore category of the powerset monad is
the category cJSL of complete join-semilattices and (arbitrary-)join-preserving homo-
morphisms. Variations obtained by restricting P yield variations obtained by relaxing
the conditions on joins:

22

• EM(Pf) objects have all finite joins and morphisms preserve them

• EM(P∗) objects have all non-empty joins and morphisms preserve them

• EM(Pf∗) objects have all non-empty finite joins and morphisms preserve them

Example 1.24 (Kl(D)). The Kleisli category of the distribution monad is the cat-
egory of sets and stochastic relations, where a stochastic relation is a function R :
X × Y → [0, 1] with {y ∈ Y | R(x, y) 6= 0} finite and ∑y∈Y R(x, y) = 1 for all x ∈ X.
The finite-support condition is dropped for the Kleisli category of the countable dis-
tribution monad.

Example 1.25 (EM(D)). The Eilenberg-Moore category of the distribution monad D
can be interpreted as a category of convex algebras and convex (or affine) maps [23, 88,
142, 147]. The unit axiom of a D-algebra says that the barycenter of a single element
is itself, and the associativity axiom stands for barycenter associativity. For the
countable distribution monad, convexity has to hold even with respect to countable
convex combinations.

Example 1.26 (EM(L)). The Eilenberg-Moore category of the list monad L is the
category Mon of monoids and monoid homomorphisms.

Example 1.27 (EM(M)). Similarly, the Eilenberg-Moore category of the multiset
monad M is the category CMon of commutative monoids and monoid homomorphisms.

Example 1.28 (EM(β)). The Eilenberg-Moore category of the ultrafilter monad β is
the category KHaus of compact Hausdorff spaces and continuous functions [98, 159].
The Eilenberg-Moore category of the filter monad F is the category of continuous
lattices and functions preserving infima and directed suprema, see [42].

Example 1.29 (EM(V)). One step further, the Eilenberg-Moore category of the
Vietoris monad V on KHaus has been identified by Wyler [159] as the same category
of continuous lattices as in the previous example, i.e. EM(V) ∼= EM(F).

1.3 Distributive Laws

Let T = (T , ηT, µT) and S = (S, ηS, µS) be two monads on C. Without additional
information, there is no generic way of defining a monad on the composite functor
ST . In fact, there are some cases when there is no possible monad structure on
the composite functor. Two famous examples are PP [91] and PD [38]. Let us

23

nevertheless try to define a monad on ST using the data of S and T. There is an
obvious candidate for the unit, namely the horizontal composition ηSηT : 1 → ST .
The choice is less clear for what concerns the multiplication. What is needed is a
natural transformation of type STST → ST . Actually, things would be much simpler
if we were looking for a natural transformation of type SSTT → ST , because in this
situation we would just as well use horizontal composition µSµT : SSTT → ST .

In his seminal paper Distributive laws [7], Jon Beck introduced the missing in-
gredient: a natural transformation λ : TS → ST . In the presence of such a natural
transformation, a candidate multiplication for ST can be defined as

STST SSTT STSλT µSµT

(1.22)

Of course, in order for (ST , ηSηT, µSµT ◦ SλT) to satisfy the monad axioms, the
natural transformation λ has to satisfy itself some axioms. When it does, it is called
a distributive law. In this section, we recall the basics of Beck’s theory of distributive
laws, and give some examples.

Definition 1.30 (Distributive law). A distributive law of type TS→ ST is a natural
transformation λ of the given type such that the following equations hold.

λ ◦ TηS = ηST (ηS axiom)
λ ◦ ηTS = SηT (ηT axiom)
λ ◦ TµS = µST ◦ Sλ ◦ λS (µS axiom)
λ ◦ µTS = SµT ◦ λT ◦ Tλ (µT axiom)

In terms of commutative diagrams

T S

TS ST TS ST

TSS STS SST TTS TST STT

TS ST TS ST

TηS ηST

(ηS)
ηTS SηT

(ηT)
λ λ

TµS

λS Sλ

(µS) µST µTS

Tλ λT

(µT) SµT

λ λ

In terms of string diagrams, the data ηT, µT, ηS, µS and λ are respectively

24

T T

TT

S S

SS S T

T S

(1.23)

such that

(ηS)= (ηT)=

S T S T

T T S

S T TS

S

(1.24)

and

S

(µS)= (µT)=

S S S S

S S

S

S

S

TT

TTT

T

T

T

T T

(1.25)

Let us immediately give the prototypical example of a distributive law, introduced
by Beck in his seminal paper.

Example 1.31 ([7]). The following expression defines a distributive law of type
LA→ AL between the list monad and the Abelian group monad.

λX : LAX → ALX

[π(1), . . . , π(n)] 7→
∑

(x1,...,xn)∈Xn

(
n∏
i=1

π(i)
xi

)
[x1, . . . , xn]

Interpreting elements in a list as factors in a product, take n = 2 and

π(1) = 1 · a+ 1 · b
π(2) = 1 · c+ 1 · d

for some (a, b, c, d) ∈ X. We get

λX((a+ b)(c+ d)) = ac+ bc+ ad+ bd (1.26)

so λ embodies the property that multiplication distributes over addition.

25

Remark 1.32. Following the above example, the assertion there is a distributive law
of type TS → ST will sometimes be shortened as T distributes over S. Conventions
around this formulation vary in the literature: some authors define T distributes
over S as witnessing a law of type ST → TS. Following discussions with Bartek
Klin, a strong advocate of the first formulation, we argue that additionally to being
sound with respect to the multiplication / addition example, our convention is easy
to remember. We suggest the reader to use the following mnemonic: in the syntax
TS → ST, the monad T distributes over the monad S because the symbol T jumps
over the symbol S.

From a distributive law λ : TS→ ST, the functor ST inherits a monad structure
with unit 1 ST

ηSηT

and multiplication STST SSTT STSλT µSµT

. String
diagrammatically:

T

T

T

S S

SS

T

(1.27)

This composite monad will be denoted by S ◦λT, or S ◦ T when the context is
clear. Moreover, the natural transformations ηST and SηT define monad morphisms

ηST : T→ S ◦ T

SηT : S→ S ◦ T

We now give some examples of distributive laws. The first two examples will be used
in the sequel to generate examples of iterated weak distributive laws (see Section 2.4).

Example 1.33. The powerset monad distributes over the reader monad via λ : PR→
RP, where λX : P (XA) → (PX)A is defined by λX(U) = λa.{h(a) | h ∈ U}. This

distributive law yields a monad structure on the composite functor RP and we denote
the composite monad by R ◦ P.

Proof. Given a function f : X → Y , both paths of the naturality diagram are

U ∈ P (XA) 7→ λa.{f(h(a)) | h ∈ U} ∈ (PY)A

26

Given a set X, the (ηR), (µR), (ηP) and (µP) diagrams commute because in each case
both paths evaluate the same, respectively, to

U ∈ PX 7→ λa.U ∈ (PX)A

U ∈ P ((XA)A) 7→ λa.{H(a)(a) | H ∈ U} ∈ (PX)A

h ∈ XA 7→ λa.{h(a)} ∈ (PX)A

U ∈ PP (XA) 7→ λa.{h(a) | h ∈ U for some U ∈ U} ∈ (PX)A

Example 1.34. In a similar fashion, the distribution monad distributes over the
reader monad via λ : DR → RD, where λX : D(XA) → (DX)A is defined for all
ϕ = ∑

h∈RX ϕh · h ∈ D(XA) by λX(ϕ) = λa.
∑
h∈RX ϕh · h(a). The corresponding

composite monad with functor RD is denoted by R ◦D.

Proof. Given a function f : X → Y , both paths of the naturality diagram are

ϕ ∈ D(XA) 7→ λa.
∑
h∈RX

ϕh · f(h(a)) ∈ (DY)A

Given a set X, the (ηR), (µR), (ηD) and (µD) diagrams commute because in each case
both paths evaluate the same, respectively, to

ϕ ∈ DX 7→ λa.ϕ ∈ (DX)A

ϕ ∈ D((XA)A)) 7→ λa.
∑

H∈(XA)A
ϕH ·H(a)(a) ∈ (DX)A

h ∈ XA 7→ λa.(1 · h(a)) ∈ (DX)A

Φ ∈ DD(XA) 7→ λa.
∑

ϕ∈D(XA)

∑
h∈XA

Φϕϕh · h(a) ∈ (DX)A

Example 1.35 ([99, 2.4.8]). The list monad distributes over the powerset monad via
λ : LP → PL defined by λX([U1, . . . , Un]) = {[x1, . . . , xn] | xi ∈ Ui}, yielding a new
monad denoted by P ◦ L.

Example 1.36 ([99, 4.3.4]). Similarly, the multiset monad distributes over the power-
set monad via λ : MP→ PM defined by λX(JU1, . . . , UnK) = {Jx1, . . . , xnK | xi ∈ Ui},
yielding a new monad denoted by P ◦M.

Example 1.37 ([80]). As recently explicited by Jacobs, the multiset monad dis-
tributes over the distribution monad via the so-called parallel multinomial law λ :
MD→ DM defined by

λX(Jϕ1, . . . , ϕnK) =
∑

(x1,...,xn)∈Xn

n∏
i=1

ϕi(xi) · Jx1, . . . , xnK (1.28)

yielding a new monad denoted by D ◦M.

27

Example 1.38 ([99, 5.1.6]). The list monad distributes over the reader monad via
λ : LR → RL defined by λX([h1, . . . , hn]) = λa.[h1(a), . . . , hn(a)], yielding a new
monad denoted by R ◦ L.

Example 1.39. For any Set monad T, there is a distributive law λ : (T + 1) →
T(− + 1) defined by λ(inl(t)) = Tη

(+1)
X (t) and λ(inr(∗)) = ηT

(X+1)(∗). This yields a
monad structure on the functor T (−+ 1) denoted by T ◦ (−+ 1).

Having a distributive law of type TS → ST is actually stronger than having a
monad structure on ST . For example, there is no distributive law of type LL→ LL,
but it is possible to define a monad structure with functor LL [161, Remark 5.44].
Distributive laws TS → ST are really about combining all the structure of both
monads in a smooth way. Equivalently, they are extending T to Kl(S) or lifting S to
EM(T) [7, 35].

Definition 1.40 (Extension). An extension of T to Kl(S) is a monad T on Kl(S)
such that TFS = FST i.e. the diagram below commutes, and such that the natural
transformations behave accordingly: ηTFS = FSη

T and µTFS = FSµ
T.

Kl(S) Kl(S)

C C

T

FS

T

FS
(1.29)

Definition 1.41 (Lifting). A lifting of S to EM(T) is a monad S on EM(T) such
that UTS = SUT i.e. the diagram below commutes, and such that the natural
transformations behave accordingly: UTηS = ηSUT and UTµS = µSUT.

EM(T) EM(T)

C C
UT

S

UT

S

(1.30)

Now we state the fundamental correspondence theorem, which says that distribu-
tive laws, extensions and liftings are three equivalent perspectives.

Theorem 1.42 ([7, 35]). There is a bijective correspondence between

• distributive laws of type TS→ ST

• extensions of T to Kl(S)

• liftings of S to EM(T)

28

Proof. The proof that distributive laws and liftings are in correspondence is in Beck’s
paper [7], whereas the proof that they also correspond to extensions is folklore. How-
ever, in the whole thesis, it will be important to be able to switch perspectives, so we
give the constructions for the following bijections:

extensions ⇐⇒ distributive laws ⇐⇒ liftings

We do not give full details of the verifications, which are long but straightforward.

• extensions ⇒ distributive laws

Let T be an extension of T to Kl(S). Let X be an object of C and consider the
identity morphism idSX : SX → SX as a Kleisli morphism idSX : SX 9 X.
Then, viewing T (idSX) : TSX 9 TX as a morphism in C again yields the
type TSX → STX, which is exactly what is needed for the distributive law.
Defining λX = T (idSX), we can check that indeed it verifies the required axioms.

• distributive laws ⇒ extensions

Let λ : TS → ST be a distributive law. In order to get an extension of T to
Kl(S), we are forced to define TX = TX for every object X of C. Let f : X 9 Y

be a morphism in Kl(S). Equivalently, this is a morphism f : X → SY in
C. Then λY ◦ Tf : TX → STY can be viewed as a Kleisli morphism of
type TX 9 TY . Therefore we define T (f) = λY ◦ Tf . Finally, unit and
multiplication are forced to be ηT

X = ηS
TX ◦ ηT

X and µ
T
X = ηS

TX ◦ µT
X . One can

then check that all required properties hold.

• liftings ⇒ distributive laws

Let S be a lifting of S to EM(T). Let X be an object of C. Apply S to the
T-algebra (TX, µT

X) to get a T-algebra (STX, SµT
X) whose type as a morphism

is TSTX → STX. Precomposing with TSηT
X yields the type TSX → STX,

therefore we can define λX = SµT
X ◦TSηT

X and check all axioms. Note that here,
SµT

X is a slight notation abuse that denotes the C-morphism extracted from the
T-algebra S(TX, µT

X). Formally, SµT
X is UTεT

SFTX
, where εT : FTUT → 1 is the

counit of the Eilenberg-Moore adjunction.

• distributive laws ⇒ liftings

29

Let λ : TS → ST be a distributive law. For any T-algebra (X, x), one can
check that the morphism Sx ◦ λX : TSX → SX defines a T-algebra. Hence we
define S(X, x) = (SX, Sx ◦ λX). The other data of the lifting are forced to be
Sf = Sf , ηS

X = ηS
X and µS

X = µS
X . These assignments can be shown to satisfy

all required properties.

Finally, note that these constructions are inverse to each other.

In the proof we can remark that once the functor of a monad is extended / lifted,
there is at most one extension / lifting of its unit and multiplication. The important
parts of the constructions can be summed up as

λX = T (idSX) λX = SµT
X ◦ TSηT

X

T (f) = λY ◦ Tf S(X, x) = (SX, Sx ◦ λX)

Table 1.1 synthetises the interplay between axioms of distributive laws and prop-
erties of their corresponding extensions and liftings.

Table 1.1: Property correspondence in bijections of Theorem 1.42

extension distributive law lifting
T preserves 1 (ηS) axiom ηS components are algebra morphisms
T preserves • (µS) axiom µS components are algebra morphisms
ηT is natural (ηT) axiom any S(X, x) satisfies the T-unit axiom
µT is natural (µT) axiom any S(X, x) satisfies the T-associativity axiom

We now give examples of the extensions and liftings for the distributive laws
presented before.

Example 1.43. Consider the distributive law λ : LP → PL of Example 1.35. Ac-
cording to Theorem 1.42, this is equivalently an extension of L to the Kleisli category
of P, that is Rel, or a lifting of P to the Eilenberg-Moore category of L, that is Mon.
The extension is defined on a relation R ⊆ X × Y by:

L(R) = {([x1, ..., xn], [y1, ..., yn]) | n ∈ N, (xi, yi) ∈ R} (1.31)

The lifting is defined on a monoid (M, ∗, e) by

P (M, ∗, e) = (PX, (U, V) 7→ {x ∗ y | x ∈ U, y ∈ V }, {e}) (1.32)

The monoid P (M, ∗, e) is an example of a complex algebra, see [55].

30

Example 1.44. The distributive law λ : LR→ RL of Example 1.38 gives rise to an
extension of L to Kl(R) defined for every f : X → Y A (seen as a function X×A→ Y)
by

Lf([x1, ..., xn]) = λa.[f(x1, a), ..., f(xn, a)] (1.33)

and to a lifting of R to Mon defined for every monoid (M, ∗, e) by

R(M, ∗, e) = (XA, (g, h) 7→ λa.g(a) ∗ h(a), λa.e) (1.34)

Example 1.45. The distributive law λ : (T + 1)→ T(−+ 1) of Example 1.39 gives
rise to an extension of (−+ 1) to Kl(T) defined for every f : X → TY by

(f + 1)(inl(x)) = Tη
(+1)
X (f(x)) (1.35)

(f + 1)(inr(∗)) = ηT
(X+1)(∗) (1.36)

and to a lifting of T to EM(−+ 1) defined for every pointed set (X, p) by

T (X, p) = (TX, ηT
X(p)) (1.37)

Let λ : TS → ST be a distributive law. The category Alg(λ) of λ-algebras is
defined as follows. Objects are triples (X, τ, σ) where (X, τ) is a T-algebra and (X, σ)
is a S-algebra such that the following diagram commutes. Intuitively, this means that
we have an object X with two algebraic structures related by the distributivity axioms
encoded by λ.

TSX STX

TX SX

X

Tσ

λX

Sτ

τ σ

(1.38)

Morphisms (X, τ, σ) → (Y, τ ′, σ′) are morphisms f : X → Y in C such that f :
(X, τ)→ (Y, τ ′) is a morphism of T-algebras and f : (X, σ)→ (Y, σ′) is a morphism of
S-algebras. The free λ-algebra on X is (STX, SµT

X ◦λTX , µS
TX). The full subcategory

of free λ-algebras is denoted by FAlg(λ).

Proposition 1.46 ([7]). Let λ : TS→ ST be a distributive law. Then the composite
monad S ◦λT coincides with the monads described by the composite adjunctions

EM(S) EM(T) C
US

⊥
F S

UT

⊥
FT

(1.39)

31

Kl(T) Kl(S) C
UT

⊥
FT

US

⊥
FS

(1.40)

Moreover, EM(S ◦ T) ∼= EM(S) ∼= Alg(λ) and Kl(S ◦ T) ∼= Kl(T) ≡ FAlg(λ).

Proof. The assertions concerning Eilenberg-Moore categories are present in [7]. The
fact that the composite Kleisli adjunction yields S ◦λT is an elementary but tedious
computation. Isomorphisms are given by

EM(S) ∼= Alg(λ)
((X, τ), σ)↔ (X, τ, σ)

EM(S ◦ T) ∼= Alg(λ)
(X, x) 7→ (X, x ◦ ηS

TX , x ◦ SηT
X)

(X, σ ◦ Sτ)← [(X, τ, σ)

The isomorphism Kl(S ◦ T) ∼= Kl(T) is the identity: these categories have the same
objects, morphisms, and a short calculation shows that identities and composition
coincide. Finally, the isomorphism EM(S ◦ T) ∼= Alg(λ) restricts to an isomorphism
between the category of free (S ◦ T)-algebras (which is equivalent to Kl(S ◦ T)) and
FAlg(λ).

1.4 Algebraic Presentations

Let V be a countable set whose elements are called variables. A signature Σ is a set
of symbols σ ∈ Σ, each symbol having an arity ar(σ) ∈ N. The set of Σ-terms with
variables in V is denoted by TermΣ(V) and generated by the following grammar

t ::= x | σ(t1, . . . , tn) (1.41)

where x ∈ V , n ∈ N and σ ∈ Σ such that ar(σ) = n.
Let Σ be a signature. A Σ-algebra A consists of

• a set, also denoted by A

• for every symbol σ ∈ Σ with ar(σ) = n, a function [σ]A : An → A

A valuation is a function v : V → A. The v-evaluation of a term t ∈ TermΣ(V) is
defined inductively by

32

• [x]A,v = v(x) for all x ∈ V

• [σ(t1, . . . , tn)]A,v = [σ]A([t1]A,v, . . . , [tn]A,v) for every n ∈ N, σ ∈ Σ such that
ar(σ) = n

Given a signature Σ, a Σ-equation is a pair (t1, t2) ∈ TermΣ(V)2, more conveniently
denoted by t1 ≈ t2. A set of equations E generates a congruence denoted by ≈E on
the set TermΣ(V) with respect to the operation of term substitution. The equivalence
class of a term t is denoted by [t]≈E . A pair (Σ, E) is called an equational theory. A
(Σ, E)-algebra A is a Σ-algebra such that for every t1 ≈ t2 in E and every valuation
v : V → A, [t1]A,v = [t2]A,v. The quotient TermΣ(V)/ ≈E is denoted by FV and called
the free (Σ, E)-algebra on V , with operations defined by

[σ]FV([t1]≈E , . . . , [tn]≈E) = [σ(t1, . . . , tn)]≈E (1.42)

Concretely, in TermΣ(V)/ ≈E, any two terms that are provably equal with respect to
equational logic and equations in E are identified. Given any set X, one can construct
as well a free (Σ, E)-algebra with variables in X, denoted by FX = TermΣ(X)/ ≈E.

A morphism of (Σ, E)-algebras A and B is a function f : A→ B such that for all
σ ∈ Σ with arity n and a1, . . . , an ∈ A, f([σ]A(a1, . . . , an)) = [σ]B(f(a1), . . . , f(an)).
The category of (Σ, E)-algebras and morphisms is denoted by Alg(Σ, E). The free
(Σ, E)-algebra construction on a set X induces a functor F : Set→ Alg(Σ, E), which
has a right adjoint U : Alg(Σ, E) → Set forgetting the algebraic structure. This
adjunction induces a monad T with functor UF on Set, and Alg(Σ, E) ∼= EM(T) [96,
VI.8 Theorem 1].

EM(T) ∼= Alg(Σ, E) Set
U

⊥ T
F

(1.43)

Definition 1.47. Let T be a monad on Set. If EM(T) ∼= Alg(Σ, E) for some signature
Σ and some set of Σ-equations E, the monad T is said to be presented by (Σ, E).

Note that if they exist, presentations are not unique: a monad can be presented
by many different equational theories.

The algebraic way of looking at monads provides intuitive insights about what
monads constructs and monad properties mean. To illustrate, we fix s a symbol of
arity 1, ∗ an (infix) symbol of arity 2, and (Σ, E) = ({s, ∗}, ∅) the equational theory
over these symbols with no equations.

• An element of TX can be seen as a term with variables in X. We use brackets
to denote that the expression is a term, as in e.g. 〈a ∗ s(b)〉.

33

• Given a function f : X → Y between sets of variables, the function Tf substi-
tutes variables inside terms, e.g. if f(a) = f(b) = c, Tf(〈a ∗ s(b)〉) = 〈c ∗ s(c)〉.

• The unit ηT
X : X → TX says that any variable can be considered as a term, e.g.

〈a〉 is a term.

• The multiplication µT
X : TTX → TX says that a term of terms can be flattened,

e.g. 〈〈a ∗ s(b)〉 ∗ 〈c ∗ s(s(c))〉〉 can be flattened to 〈(a ∗ s(b)) ∗ (c ∗ s(s(c)))〉.

• The unit axiom µT ◦ TηT = idT means that given a term, if all variables are
considered themselves as terms, then flattening outputs the original term. For
example, flattening 〈〈a〉 ∗ s(〈b〉)〉 yields 〈a ∗ s(b)〉.

• A T-algebra (X, x) can be seen as evaluating terms to their value via the func-
tion x : TX → X. For example, if X = N and x interprets s as the successor
operation and ∗ as addition, then x(〈0 ∗ s(1)〉) = 0 + (1 + 1) = 2.

• The unit axiom for T-algebras says that for any variable, considering this
variable as a term then evaluating it just outputs the original variable i.e.
x(〈a〉) = a.

• Evaluating a term of terms can be done in two different ways: one can either
flatten it and then evaluate the result, or evaluate the inner terms then evaluate
the result. The associativity axiom for T-algebras says that these processes are
equivalent. For instance, 〈〈1∗2〉∗〈s(3)∗0〉〉 can be flattened to 〈(1∗2)∗(s(3)∗0)〉
then evaluated to (1+2)+((3+1)+0) = 7, or the inner terms can be evaluated
as 〈3 ∗ 4〉, then the resulting term evaluated to 3 + 4 = 7.

• The unit axiom µT◦ηTT = idT and the associativity axiom µT◦µTT = µT◦TµT

together mean that (TX, µT
X) is a T-algebra, that is, flattening is itself a correct

evaluation procedure.

A monad is finitary if its functor commutes with filtered colimits. An important
result is that any finitary monad is presented by some equational theory [29, §4.6].

Example 1.48. The finite powerset monad Pf is presented by the equational theory
of join-semilattices with bottom. The signature of this theory is Σ = {⊥,∨} with
ar(⊥) = 0 and ar(∨) = 2, and equations are

• x ∨ ⊥ = x

34

• x ∨ x = x

• x ∨ y = y ∨ x

• (x ∨ y) ∨ z = x ∨ (y ∨ z)

Example 1.49 ([88]). The distribution monad D is presented by the equational
theory of convex algebras. The signature of this theory is Σ = {⊕r | r ∈ [0, 1]}, and
equations are

• x⊕1 y = x

• x⊕r x = x

• x⊕r y = y ⊕1−r x

• (x⊕p y)⊕r z = x⊕pr
(
y ⊕ r−pr

1−pr
z
)

if r, p 6= 1

Equationally, a morphism of convex algebras is just a function f satisfying f(x⊕ry) =
f(x)⊕r f(y), that is, an affine function.

It may happen that some non-finitary monads also have an equational theory,
provided arities of symbols in the signature are allowed to have infinite cardinalities,
and for each cardinality there is a corresponding set of distinct variables. This is the
case of the powerset monad.

Example 1.50 ([29, 22]). The powerset monad P is presented by the infinitary theory
of complete join-semilattices. The signature of this theory is Σ = {∨i∈I | I is a set}
(which is actually a proper class) and the equations are

• ∨
i∈{∗} xi = x∗

• ∨
j∈J xj = ∨

i∈I xf(i) for every surjective f : I → J

• ∨
i∈I xi = ∨

j∈J
∨
i∈f−1({j}) xi for every f : I → J

In our approach to monads and distributive laws, algebraic presentations are not
central – see [161] and [112] for two recent dissertations about monads and distributive
laws relying strongly on algebraic presentations. Still, there is one application of
distributive laws to algebraic presentations that we would like to mention. Given a
distributive law λ : TS→ ST, Proposition 1.46 provides an isomorphism EM(S◦λT) ∼=
Alg(λ). Therefore, finding an algebraic presentation of the composite monad S ◦λT

amounts to finding an equational theory (Σ, E) such that Alg(λ) ∼= Alg(Σ, E). Recall

35

that λ-algebras are just triples (X, τ, σ) where (X, τ) is a T-algebra, (X, σ) is a S-
algebra, and the following pentagon commutes

TSX STX

TX SX

X

Tσ

λX

Sτ

τ σ

(1.44)

Therefore, if (ΣT , ET) is an algebraic presentation of T and (ΣS, ES) is an algebraic
presentation of S, the above pentagon intuitively encodes the set of missing equations
E such that (ΣT∪ΣS, ET∪ES∪E) is an algebraic presentation of the composite monad
S ◦λT. Using commutativity of the pentagon, one may guess new equations that can
eventually lead to an algebraic presentation of the composite monad. Theorem 3.16
will put this method into practice to yield an algebraic presentation for the monad
of convex sets of distributions out of algebraic presentations for the powerset monad
and the distribution monad.

1.5 Iterated Distributive Laws

As we have seen before, distributive laws are a convenient tool allowing to compose
two monads. This framework being compositional, it is supposed to allow us to
compose even more monads in a smooth way. Let (Ti)i∈N∗ be a sequence of mon-
ads. If we know that T1 . . .Tn is a monad, we only need a distributive law of type
Tn+1(T1 . . .Tn) → (T1 . . .Tn)Tn+1 to define a monad structure on T 1 . . . T nT n+1.
As we stack more and more monads, such distributive laws can become tedious to
define, and their diagrams laborious to check. A possible solution is to use results of
Cheng [34] about iterated distributive laws. The principle of this approach is to gen-
erate a monad structure on T 1 . . . T n by means of O(n2) distributive laws involving
only 2 monads Ti each, and O(n3) new equations to check involving only 3 monads
Ti each. In some sense, this is a trade-off between the number of objects manipulated
and their complexity. We present here the main theorem of [34] and give a proof of
the case n = 3, because the details will be needed in the next chapters.

36

Theorem 1.51 ([34, Theorem 1.6]). Let n ∈ N, n ≥ 3, and let (Ti)1≤i≤n be monads
on a category C. For all 1 ≤ j < i ≤ n, let λij : TiTj → TjTi be a distributive
law, and assume that for all 1 ≤ k < j < i ≤ n the so-called Yang-Baxter diagram
commutes:

T jT iT k T jT kT i

T iT jT k T kT jT i

T iT kT j T kT iT j

T jλik

λjkT i

T iλjk

λijTk

λikT j

Tkλij

(1.45)

Then for all 1 ≤ i < n, (T 1 . . . T i) and (T i+1 . . . T n) have a monad structure and
there is a distributive law of type (Ti+1 . . .Tn)(T1 . . .Ti) → (T1 . . .Ti)(Ti+1 . . .Tn).
Moreover, the induced monad structures on T 1 . . . T n are the same, allowing to write
unambiguously T1 . . .Tn.

Proof. The proof is by induction on n. We will treat only the case n = 3 and use
string diagrams. For a complete proof using commutative diagrams instead, see [34].
Let R, S, T be monads on C. In string diagrams:

T T

TT

S S

SS

R R

RR

(1.46)

Let λ : TS→ ST, σ : SR→ RS and τ : TR→ RT be distributive laws.
S T

T S

S

S

T

TR R

RR

(1.47)

Each of them satisfies equations (1.24) and (1.25). The Yang-Baxter diagram
gives the equation

T T

TT

S S

SSR R

R R

= (1.48)

37

Define the natural transformation δ = STR SRT RSTSτ σT , this is:

S T R

R TS

(1.49)

Let us prove that δ is a distributive law of type (S ◦λT)R → R(S ◦λT). Remind
that the monad S ◦λT has unit and multiplication given by equation (1.27). For the
ηR axiom of δ, we need the ηR axioms of both τ and σ:

= =

RST RR S S

SSS

T T

TTT

(1.50)

For the ηS◦λT axiom of δ, we need the ηT axiom of τ and the ηS axiom of σ:

= =

R R R

R R R

SSS TTT

(1.51)

For the µR axiom of δ, we need the µR axioms of both τ and σ:

= =

R R R

R R R R R R

S S S

S S S

T T T

T T T

(1.52)

38

For the µS◦λT axiom of δ, we need the µT axiom of τ , the µS axiom of σ, and the
Yang-Baxter equation (applied in this order):

=

= =

R R

R R

R R

R R

S S

S S

S S S S

S S S S

T T

T T

T T T T

T T T T

(1.53)

Hence δ is a distributive law. Alternatively, we could have defined a natural
transformation δ′ = TRS RTS RSTτS Rλ and proved that δ′ is a distribu-
tive law of type T(R ◦σS)→ (R ◦σS)T:

T R S

S TR

(1.54)

39

It remains to check that δ and δ′ generate the same multiplication on RST :

S TRS TR R TSS TR

R TS

=

R TS

(1.55)

40

Chapter 2

The Weak Framework

2.1 Weak Distributive Laws

Distributive laws are sometimes too restrictive, in the sense that simultaneously im-
posing the four compatibility axioms may make the existence of a distributive law of
a certain type impossible. See the thesis of Maaike Zwart [161] for many concrete
examples of this situation. In the recent years, authors have tried to mitigate this
issue by relaxing some of the compatibility conditions in a number of different ways.
Street [146] and Böhm [15] studied different such weakenings, first independently, then
together with Lack [16]. A decade later, Richard Garner [54] highlighted a particular
case of their framework and used it to prove that the Vietoris monad on the category
of compact Hausdorff spaces (i.e. Eilenberg-Moore algebras for the ultrafilter monad)
was a sort of lifting of the powerset monad. In this section, we present Garner’s way
of weakening distributive laws.

The different weakenings are slightly intertwined in the literature. We do our best
to give appropriate credit to every author. To sum up:

• The general philosophy of weakening axioms and the leitmotiv of splitting idem-
potents are first due to Street and Böhm, independently.

• The most abstract results, operating in a 2-categorical setting, are due to Böhm,
joined later by Street and Lack.

• The specific weakening of axioms that we use in the sequel is due to Garner
as a particuliar instance of Böhm’s results. The spirit is very close to Street,
though no general implication holds between being a Street weak distributive
law (in the sense of [146]) and being a Garner weak distributive law (in the sense
of [54]). More precisely, if a law is both Garner-weak and Street-weak, then it

41

is a distributive law. An important contribution of Garner is to bring weak
distributive laws into concrete situations involving well-known Set functors.

Definition 2.1 (Weak distributive law). A weak distributive law of type TS → ST
is a natural transformation λ of this type such that the following equations hold.

λ ◦ TηS = ηST (ηS axiom)
λ ◦ TµS = µST ◦ Sλ ◦ λS (µS axiom)
λ ◦ µTS = SµT ◦ λT ◦ Tλ (µT axiom)

From now on, a distributive law in the sense of Definition 1.30 may sometimes be
called a plain distributive law, to insist on the fact that it satisfies all axioms.

How does this weakening of distributive laws impact the correspondence of The-
orem 1.42? Deleting the (ηT) axiom acts on Table 1.1 in two ways:

• One cannot prove that ηT
X is natural anymore. This can be easily patched by

relaxing the statement that extensions comprise a unit, leading directly to the
definition of weak extensions.

• One cannot prove that S(X, x) satisfies the T-unit axiom anymore. This is more
challenging, because this means the traditional S is not even a functor: it maps
algebras to semialgebras, i.e., pairs (Y, y) with y : TY → Y merely satisfying
the T-associativity axiom. Equivalently, Sx ◦ λX ◦ ηT

SX is not the identity, but
merely an idempotent. The clever patch to this situation, originating in both
Street and Böhm papers, consists in splitting this idempotent. More specifically,
in our case Garner puts this idea into action by (1) making a detour into the
category of semialgebras and (2) recovering an algebra by splitting the faulty
idempotent. The splitting generates natural transformations π and ι that act
like algebra-semialgebra translators. This leads to the definition of weak liftings.

Definition 2.2 (Weak extension). A weak extension of T to Kl(S) is a pair (T , µT)
comprising a functor T : Kl(S) → Kl(S) and a natural transformation µT : TT → T

such that TFS = FST and µTFS = FSµ
T.

Definition 2.3 (Weak lifting). A weak lifting of S to EM(T) is a monad S on EM(T)
along with two natural transformations

π : SUT → UTS ι : UTS → SUT

42

such that π ◦ ι = 1 and the four following diagrams commute

UT UT

SUT UTS UTS SUT

SSUT SUTS UTSS UTSS SUTS SSUT

SUT UTS UTS SUT

ηSUT UTηS

(π.ηS)
UTηS ηSUT

(ι.ηS)
π ι

Sπ

µSUT

πS

(π.µS) UTµS

ιS

UTµS

Sι

(ι.µS) µSUT

π ι

A string diagram representation possibly exposes these conditions with greater
clarity. The monad S on EM(T) is

S

S S

S

(2.1)

and the natural transformations π, ι respectively are

UT S

SUTS UT

S UT

(2.2)

The condition π ◦ ι = 1 is pictured as

UT S

SUT

=

UT S

SUT

(2.3)

while compatibility conditions with the monad structure are, for the unit

UT

UT S

UT

(π.ηS)=

UT S

UT

(ι.ηS)=

UT

S UT S UT

(2.4)

43

and for the multiplication

(π.µS)=

UT UTS

S S

S

(ι.µS)=

UT UT

UT UT

SS

S S S SS SUT UT

(2.5)
To state the correspondence theorem, we will need the notion of split idempotent.

An idempotent in C is an endomorphism e : X → X such that e ◦ e = e. One says
that the idempotent e splits (or that e is a split idempotent) when e = i ◦ p for
some p : X → Y , i : Y → X such that p ◦ i = 1. In this situation, p is always an
epimorphism and i is always a monomorphism.

Example 2.4. The category Set is idempotent complete, i.e., every idempotent splits.
Let e : X → X be an idempotent function and Y = {x ∈ X | e(x) = x} be the set
of its fixpoints – or equivalently, the image of X under e. Then p : X � Y and
i : Y ↪→ X defined by

p(x) = e(x) i(x) = x (2.6)

exhibit e as a split idempotent.

The following theorem is due to Garner [54, Propositions 11 and 13].

Theorem 2.5 (Garner [54]). There is a bijective correspondence between

• weak distributive laws of type TS→ ST

• weak extensions of T to Kl(S)

• if idempotents split in C, weak liftings of S to EM(T).

Proof. We give only the constructions. The bijection weak distributive laws ⇐⇒
weak extensions has the very same expression as in Theorem 1.42. We focus on the
bijection weak distributive laws ⇐⇒ weak liftings. For a complete proof, see [54].

• weak liftings ⇒ weak distributive laws

44

Let S be a weak lifting of S to EM(T). Let π : SUT → UTS and ι : UTS → SUT

be the weak lifting natural transformations. Recall that for any T-algebra
(X, x), the C-morphism of the algebra S(X, x) is formally given by UTεT

SFTX
,

where εT : FTUT → 1 is the counit of the Eilenberg-Moore adjunction, defined
by εT

(X,x) = x : (TX, µT
X)→ (X, x). We define the weak distributive law to be

λ = TS TSTX TUTSFT UTSFT ST
TSηT

TπFT UTεTSFT ιFT

(2.7)

• weak distributive laws ⇒ weak liftings

Let λ : TS→ ST be a weak distributive law. For any T-algebra (X, x), the pair
(SX, Sx ◦ λX) is a T-semialgebra, in the sense that it satisfies the associativity
axiom but not necessarily the unit axiom. As idempotents split in C, they also
split in the category of T-semialgebras1. By splitting the idempotent

Sx ◦ λX ◦ ηT
SX : (SX, Sx ◦ λX)→ (SX, Sx ◦ λX) (2.8)

in the category of T-semialgebras, we actually get a T-algebra S(X, x):

(SX, Sx ◦ λX) S(X, x) (SX, Sx ◦ λX)
π(X,x) ι(X,x) (2.9)

and this defines simultaneously S on objects, ι and π. Note that the action of
S(X, x) is given by π(X,x)◦Sx◦λX ◦Tι(X,x). On a morphism f : (X, x)→ (Y, y),
the functor S is defined by

Sf = S(X, x) SX SY S(Y, y)
ι(X,x) Sf π(Y,y) (2.10)

The other data of the weak lifting are forced to be ηS
(X,x) = π(X,x) ◦ ηS

X and
µS

(X,x) = π(X,x) ◦ µS
X ◦ Sι(X,x) ◦ ιS(X,x).

Moreover, any two splittings of the same idempotent are isomorphic. Under their
identification, the constructions described above are inverse to each other.

Example 2.6 ([54]). The following example of weak distributive law was the center-
piece of Garner’s paper. Consider the ultrafilter monad β (Example 1.12) and the
powerset monad P (Example 1.4) on Set. There is a weak distributive law βP→ Pβ,
defined for all v ∈ βPX by

λX(v) =
{
U ∈ βX |

⋃
V ∈ U for all V ∈ v

}
(2.11)

Interestingly, the corresponding weak lifting is the Vietoris monad on the Eilenberg-
Moore category of β, that is, on KHaus.

1Implicitly used by Garner [54, Lemma 12], this fact is proved by an easy diagram chase.

45

In the rest of this section, we assume that idempotents split in C, so that weak
distributive laws, weak extensions and weak liftings are equivalent data. From a weak
distributive law λ : TS→ ST, there is still a possibility to recover a composite monad
on C. Indeed, we can compose the Eilenberg-Moore adjunctions of T and S:

EM(S) EM(T) C
US

⊥
F S

UT

⊥
FT

(2.12)

The functor of this new monad is UTSFT and can be obtained by splitting the
idempotent SµT ◦ λT ◦ ηTST : ST → ST . Let us briefly explain the origin of this
idempotent. Recall that a T-semialgebra is a pair (X, x) such that x : TX → X

satisfies x ◦ Tx = x ◦ µT
X . Although nothing is said about ηT

X , the composition x ◦ ηT
X

in fact always is an idempotent because

x ◦ ηT
X ◦ x ◦ ηT

X = x ◦ Tx ◦ ηT
TX ◦ ηT

X = x ◦ µT
X ◦ ηT

TX ◦ ηT
X = x ◦ ηT

X (2.13)

Axioms of weak distributive laws are sufficient to entail that (STX, SµT
X ◦λTX) is a T-

semialgebra. Therefore, SµT
X ◦λTX ◦ηT

STX is an idempotent so one can split pointwise
the natural transformation SµT ◦ λT ◦ ηTST : ST → ST to obtain a functor close to
ST which is UTSFT. If λ is not a distributive law, this means that the functor of the
composite monad is not exactly the composition of the functors of the monads, but
rather a weak version of it (see Chapter 3 for non-trivial examples). The composition
of S and T via a weak distributive law λ will be denoted by S •◦λT, or just S •◦ T if
the context is clear. Note that if λ is a distributive law, then S •◦λT = S ◦λT.

Explicitly, the full weak composite monad is given by

S •◦ T = (UTSFT, UTηSFT ◦ ηT, UTµSFT ◦ UTSεTSFT) (2.14)

where we recall that εT : FTUT → 1 is the counit of the Eilenberg-Moore adjunction.
In string diagrams, the unit and the multiplication are respectively:

SUT FT SUT FT

UTSFT UTSFT

(2.15)

The following proposition means that any (S •◦ T)-algebra also carries both a T-
algebra and a S-algebra structure.

46

Proposition 2.7. The natural transformations

T ST S •◦ T

S ST S •◦ T

ηST πFT

SηT
πFT

define monad morphisms

πFT ◦ ηST : T→ S •◦ T

πFT ◦ SηT : S→ S •◦ T

Proof. The first one, πFT ◦ ηST , is depicted as

UT S FT

UT FT

UT S FT

UT FT

which is equal by (π.ηS) to
(2.16)

The unit diagram of monad morphisms is trivial and the multiplication diagram
commutes because of µS associativity.

=

UT S FT UT S FT

=

UT S FT UT S FT

UTFTUTFTUTFTUTFT

(2.17)

The second one, πFT ◦ SηT, is depicted as

UT S FT

S

(2.18)

The unit diagram commutes by the (π.ηS) axiom and the multiplication diagram

47

commutes by the adjunction property UTεT ◦ ηTUT = 1 and the (π.µS) axiom.

UT S FT

S

=

UT S FT UTSFT UTSFT

=

S SS

UTSFT UTSFTS

=

UT S FT

SS
(2.19)

Additionally, the category Alg(λ) can be defined exactly like it was for plain dis-
tributive laws. Objects are triples (X, τ, σ) with (X, τ) being a T-algebra and σ being
a S-algebra such that the σ ◦ Sτ ◦ λ = τ ◦ Tσ, as in the pentagon (1.38). Morphisms
are the simultaneous T-algebra and S-algebra morphisms. Proposition 1.46 adapts
to the weak framework as follows:

Proposition 2.8 ([54]). There are isomorphisms EM(S •◦ T) ∼= EM(S) ∼= Alg(λ).

Example 2.9 ([54]). The weak composite monad on Set corresponding to the weak
distributive law λ : βP → Pβ of Example 2.6 is the filter monad: P •◦λβ = F. The
corresponding weak lifting being the Vietoris monad, the identification of V-algebras
as continuous lattices EM(F) ∼= EM(V) witnessed in Example 1.28 therefore is an
instance of Proposition 2.8.

To end this section, we provide a couple of formulas that will be used later to
compute the composite monad S •◦ T in concrete cases.

Lemma 2.10. Let S •◦λT = (S •◦ T , ηS•◦T, µS•◦T) be the composite monad on C with
respect to a weak distributive law λ : TS→ ST. Let f : X → Y be a morphism in C.
The following equations hold:

1. ιFTY ◦ (S •◦ T)f = STf ◦ ιFTX

2. ιFT ◦ ηS•◦T = ηSηT

3. ιFT ◦ µS•◦T = µSµT ◦ SλT ◦ ιFTιFT

Proof. Recall that by the adjunction composition described in equation (2.12) we
have the expressions

S •◦ T = (UTSFT, UTηSFT ◦ ηT, UTµSFT ◦ UTSεTSFT) (2.20)

48

1. Naturality of ι for the algebra morphism FTf directly yields

ιFTY ◦ UTSFTf = SUTFTf ◦ ιFTX

2. The (ι.ηS) diagram precomposed with FT gives

ιFT ◦ UTηSFT = ηSUTFT

We get the wanted expression by composing with ηT on the right.

3. Let us compute

ιFT ◦ UTµSFT ◦ UTSεTSFT

= µSUTFT ◦ SιFT ◦ ιSFT ◦ UTSεTSFT (ι.µS) diagram
= µST ◦ SιFT ◦ SUTεTSFT ◦ ιFTUTSFT ι naturality
= µST ◦ SSµT ◦ SλT ◦ STιFT ◦ ιFTUTSFT (∗)
= µSµT ◦ SλT ◦ ιFTιFT

The transformation performed in (∗) is correct because for every object X,
ιFTX : (UTSFTX,UTεTSFTX) → (STX, SµT

X ◦ λTX) is a semialgebra mor-
phism.

2.2 Finding Weak Distributive Laws

Finding distributive laws is notoriously known as being difficult, with a series of
papers from Manes and Mulry devoted to the question [99, 100, 101] including two
erroneous claims, corrected in [91, 162]. There is an additional difficulty when it
comes to finding weak distributive laws: there are many trivial ones. We will prove
here that any monad morphism yields a weak distributive law.

Theorem 2.11. Let γ : S→ T be a monad morphism. Then

TS TT T ST
Tγ µT ηST (2.21)

is a weak distributive law. It is a distributive law if and only if ηSγ = SηT.

Proof. We will prove this with string diagrams. The natural transformation defined
in equation (2.21) is represented by

T

TS

ST

TS

S

or, equivalently, by (2.22)

49

The ηS equation holds, using equation (1.11) of monad morphisms and the unit
axiom of T:

= =

S S ST

T T

T T

T

(2.23)

The µS equation holds, using equation (1.12) of monad morphisms and the asso-
ciativity axiom of T and the unit axiom of S:

T TTS SS T

= = =

S

S S S S S S S STTTT

(2.24)

The µT equation holds, using the associativity axiom of T, the unit axiom of T
and equation (1.11).

TTT SSS

S

T

= = =

S

SSS TTTTTT T T

(2.25)

So all axioms of weak distributive laws are satisfied. The last axiom needed to
get a distributive law amounts to checking:

TTS SS

S

T

= ?=

SS

(2.26)

50

and the ?= equality holds if and only if ηSγ = SηT. This completes the proof.

In particular, for any monad T, the identity monad morphism idT : T→ T yields
a weak distributive law ηTT ◦ µT : TT → TT. We retrieve Zwart’s result in [161,
Theorem 4.3] stating that ηTT ◦ µT is a distributive law exactly when ηTT = TηT,
that is, when the monad T is idempotent.

It is interesting to ask what is the corresponding weak lifting of such a weak
distributive law λ = ηST ◦ µT ◦ Tγ.

Proposition 2.12. Let S, T be monads on a category C and λ = ηSµT ◦Tγ for some
monad morphism γ : S→ T. There is a weak lifting S corresponding to λ, moreover
S = Id and S •◦ T = T.

Proof. Recall that the possible weak lifting S : EM(T) → EM(T) is obtained on a
T-algebra (X, x) by splitting the idempotent Sx ◦ λX ◦ ηT

SX , which is in this case

Sx ◦ λX ◦ ηT
SX = Sx ◦ ηS

TX ◦ µT
X ◦ TγX ◦ ηT

SX λ definition
= ηS

X ◦ x ◦ µT
X ◦ ηT

TX ◦ γX η naturality
= ηS

X ◦ x ◦ γX T monad

But note that x ◦ γX ◦ ηS
X = x ◦ ηT

X = idX because of monad morphism properties
and T-algebras properties. The idempotent Sx ◦ λX ◦ ηT

SX is therefore split. Notably,
even if not all idempotents split in C, λ has a corresponding weak lifting S with
ι(X,x) = ηS

X and π(X,x) = x ◦ γX . The carrier of S(X, x) is X. Using constructions
weak distributive laws ⇒ weak liftings from Theorem 2.5, we then have

data from generic formula after simplifications
action of S(X, x) (x ◦ γX) ◦ Sx ◦ λX ◦ TηS

X x
Sf where f : (X, x)→ (Y, y) (y ◦ γY) ◦ Sf ◦ ηS

X f

ηS
(X,x) (x ◦ γX) ◦ ηS

X idX
µS

(X,x) (x ◦ γX) ◦ µS
X ◦ SηS

X ◦ ηS
X idX

Consequently S is the identity monad Id on EM(T). It follows that S•◦T = UTSFT ∼=
UTIdFT = T.

Proposition 2.12 justifies our terminology of trivial weak distributive laws. Here
are a few examples of them.

Example 2.13. Using the support monad morphism supp : D → P from Ex-
ample 1.16, the natural transformation λ : PD → DP defined by λX(U) = 1 ·⋃
ϕ∈U supp(ϕ) is a weak distributive law.

51

Example 2.14. Using idP : P → P, the natural transformation λ : PP → PP de-
fined by λX(U) = {⋃U} is a weak distributive law. The functor of the corresponding
weak extension of P to Rel maps a relation R to its graph PR = {(U,R[U]) | U ∈
PX}. Note that P is not monotone with respect to relation inclusion.

Example 2.15. Using idD : D → D, the natural transformation λ : DD → DD

defined by λX(Φ) = 1 ·
(∑

x∈X

(∑
ϕ∈DX Φϕϕx

)
· x
)

is a weak distributive law.

Example 2.16. One cannot obtain a weak distributive law of type DP→ PD using
Theorem 2.11, because there is no monad morphism P→ D. Indeed, P0 = 1, D0 = 0
and there is no map 1→ 0 in Set.

As there are no distributive laws of type PP → PP [91], DD → DD and
PD → DP [161], neither of Examples 2.14, 2.15 and 2.13 satisfies the last axiom.
More interestingly, these examples show how weak distributive laws obtained via
Theorem 2.11 act: they basically collapse all algebraic structure related to S by using
the transformation γ in concert with the multiplication, then use the unit to output
data with a trivial S-structure. We would like to find weak distributive laws hav-
ing a less simplistic behaviour and better benefitting from the full structure of the
monads S and T in the sense that their weak lifting is not the identity monad. To
this end, we use a mechanism for obtaining well-behaved laws, consisting in looking
only for those laws of type TS→ ST that preserve the additional structure that the
Kleisli category of S may possess. The most usual case is to take C = Set, S = P
and identify the Kleisli category of P with the category of sets and relations Rel. In
Rel, every hom-set is a poset with respect to relation inclusion. In this setting, laws
may or may not interact nicely with the order structure. For instance, the trivial
PP → PP law U 7→ {⋃U} does not preserve the order structure, because its weak
extension is not monotone with respect to relation inclusion. Restricting the search
scope to monotone laws is a classical idea relying on results from Barr [3], used by
many authors (see [93] for a survey) and reintroduced by Garner [54] in the theory
of weak distributive laws.

A Pos-enriched category is a category C such that every homset is a poset and
composition respects the order: for every f, g, h, h′ with appropriate domains and
codomains

if f ≤ g then h ◦ f ≤ h ◦ g and f ◦ h′ ≤ g ◦ h′ (2.27)

In this context, a functor F : C→ C is locally monotone if f ≤ g ⇒ Ff ≤ Fg.

52

Definition 2.17 (Monotone law). Assume that Kl(S) is a Pos-enriched category. A
(weak) distributive law λ : TS→ ST is monotone if the functor of its corresponding
(weak) extension is locally monotone.

Using the definition of the extension functor corresponding to a weak distributive
law (see the proof of Theorem 1.42), we emphasise that λ is monotone when for any
f, g : X → SY , if f ≤ g then λY ◦ Tf ≤ λY ◦ Tg. If we take C to be Set and S to
be the powerset monad P, Kl(P) is the category Rel of sets and relations. Relation
inclusion makes Rel a Pos-enriched category.

Remark 2.18. In this chapter, we only consider the Pos-enriched category Rel. Other
instances will arise in Chapters 5, 6 and 7.

There is a valuable existence characterisation for monotone laws TP → PT, due
to Barr for distributive laws [3] and adapted by Garner [54] for weak distributive
laws. The key categorical notion to state this result is the one of weak pullbacks,
which arises naturally when considering composition of relations seen as spans. In
Chapter 5, a more general account of relational composition will be given in these
terms.

In a category C, the pullback of two morphisms f : X → Z and g : Y → Z is,
whenever it exists, the limit of the following cospan.

Y

X Z

g

f

(2.28)

More concretely, the pullback of f and g is an object P along with two morphisms
p1 : P → X and p2 : P → Y such that

• f ◦ p1 = g ◦ p2

• for every Q, q1 : Q→ X, q2 : Q→ Y such that f ◦ q1 = g ◦ q2, there is a unique
h : Q→ P such that q1 = p1 ◦ h and q2 = p2 ◦ h

The pullback situation is summed up in the following diagram:

Q

P Y

X Z

q1

q2
∃!h

p2

p1 g

f

(2.29)

53

A weak pullback of f and g is a weak limit of the their cospan: the concrete
definition is the same as for the pullback, but the uniqueness requirement for h is
dropped. Whereas pullbacks are unique up to isomorphism, there may be many
different non-isomorphic weak pullbacks of a same cospan. The following notation
denote that P is the pullback, respectively W is a weak pullback, of f and g.

P Y W Y

X Z X Z

p1

p2

g w1

w2

.
g

f f

(2.30)

Definition 2.19 (Weakly cartesian functor). A functor F : C→ C is weakly cartesian
if it preserves weak pullbacks i.e. for any weak pullback

W Y

X Z

w2

w1
.

g

f

(2.31)

the following square is a weak pullback

FW FY

FX FZ

Fw2

Fw1

.
Fg

Ff

(2.32)

Definition 2.20 (Weakly cartesian natural transformation). A natural transforma-
tion α : F → G is weakly cartesian if its naturality squares are weak pullbacks i.e.
for any f : X → Y the following square is a weak pullback

FX GX

FY GY

Ff

αX

.
Gf

αY

(2.33)

In the rest of this section we take C to be Set. The pullback of two functions
f : X → Z and g : Y → Z always exists and is given by

P = {(x, y) ∈ X × Y | f(x) = g(y)}
p1(x, y) = x

p2(x, y) = y

Using that pullbacks in Set have the above form, one can easily figure out that
a weak pullback of f : X → Z, g : Y → Z is just a set W and two functions
w1 : W → X, w2 : W → Y such that for every (x, y) ∈ X ×Y satisfying f(x) = g(y),
there is a t ∈ W such that w1(t) = x and w2(t) = y.

54

Theorem 2.21 ([3, 93]). Let F , G : Set → Set be functors and α : F → G be a
natural transformation.

• There is a locally monotone functor F : Rel→ Rel such that FPF = FFP if and
only if F is weakly cartesian. In this case, such a locally monotone F is unique.

• Assume F and G satisfy the previous point. There is a natural transformation
α : F → G such that FPα = αFP if and only if α is weakly cartesian. In this
case, such an α is unique.

One can express F as follows. On any set X, FX = FX. Given a relation
R ⊆ X × Y , let π1 : R→ X and π2 : R→ Y be the canonical projections, then

FR = {(u, v) ∈ FX × FY | ∃t ∈ FR . Fπ1(t) = u and Fπ2(t) = v} (2.34)

Note that α is forced to be αX = αX – being weakly cartesian simply makes this a
natural transformation in Rel.

As a consequence we have

Theorem 2.22 ([54]). For every monad T on Set,

• there exists at most one monotone distributive law of type TP→ PT, and there
is one if and only if T , ηT and µT are weakly cartesian;

• there exists at most one monotone weak distributive law of type TP→ PT, and
there is one if and only if T and µT are weakly cartesian.

Algebraically, Theorem 2.22 can be understood in light of a paper from Gau-
tam [55] explaining how equations defined on a set can be lifted pointwise to its
powerset.

Example 2.23. Distributive laws arising from Theorem 2.22 include the laws LP→
PL and MP→ PM from Examples 1.35 and 1.36, respectively.

As clearly presented in [36], frequently, the unit is not weakly cartesian, whereas
the rest of the monad is. This is what happens for the ultrafilter monad.

Example 2.24 ([54]). The weak distributive law βP → Pβ of Example 2.6 is an
instance of Theorem 2.22. Indeed, one can prove that β and µβ are weakly cartesian,
but ηβ is not. Consequently there is no monotone distributive law of type βP→ Pβ,
but there is a unique monotone weak distributive law of this type. Computations
lead to the expression of Example 2.6.

In the next chapter, we will use Theorem 2.22 to describe the unique monotone
weak distributive laws of type PP→ PP and DP→ PD.

55

2.3 Coweak Distributive Laws

Deleting the (ηT) axiom in the definition of weak distributive laws may seem arbitrary.
Although the framework of distributive laws is not strictly symmetric in both monads,
intuitively each monad is equally important. So a logical question that arises after
discovering weak distributive laws is: what happens if we delete the (ηS) axiom
instead? As this resembles a dual of a (Garner) weak distributive law, this notion will
be called a coweak distributive law. This kind of weakening does not seem to be studied
in the literature. To the understanding of the author, it cannot be derived as an
instance of [54, 146, 15, 16]. Indeed, in these papers authors focus on weak distributive
laws with the intention to weakly lift monads to Eilenberg-Moore categories, and we
will see that this cannot be achieved if we decide to drop the (ηS) axiom instead of the
(ηT) one. Instead, we will be able to coweakly extend monads to Kleisli categories.

Remark 2.25. There is a long tradition of looking at monads from a 2-categorical
perspective [145, 94]. In this light, the fact that liftings to the Eilenberg-Moore
category are equivalently extensions to the Kleisli category is a simple instance of
categorical duality. See, for example, [125] for a 2-categorical study of distributive
laws between a monad and a comonad exploiting duality. This standpoint has been
also used to describe weak distributive laws, generalising the interplay between mon-
ads and comonads to the weak framework [15, 16]. From an abstract 2-categorical
viewpoint, the results about coweak distributive laws we are about to describe are just
formally dual to the results about weak distributive laws from the previous section.

We hereby define coweak distributive laws as expected:

Definition 2.26 (Coweak distributive law). Let T, S be two monads on a category
C. A coweak distributive law of type TS→ ST is a natural transformation λ of this
type such that the following equations hold.

λ ◦ ηTS = SηT (ηT axiom)
λ ◦ TµS = µST ◦ Sλ ◦ λS (µS axiom)
λ ◦ µTS = SµT ◦ λT ◦ Tλ (µT axiom)

By an informal analysis similar to the one of Section 2.1, we are led to the notions
of coweak liftings and coweak extensions. Deleting the (ηS) axiom impacts Table 1.1
in two ways:

56

• One cannot prove that ηS components are algebra morphisms. This can be
easily patched by relaxing the statement that liftings comprise a unit. This
leads directly to the definition of coweak liftings.

• One cannot prove that T preserves Kleisli identities – hence, it is not a functor.
This is more of a concern, because this means that the construction of an
extension collapses right from the beginning. Equivalently, λX ◦ TηS

X is not
a Kleisli identity, but merely a Kleisli idempotent. Our strategy consists in
splitting this Kleisli idempotent to recover a functor that will preserve Kleisli
identities. This leads to the definition of coweak extensions.

Unsurprisingly, the definition of coweak extensions and coweak liftings is a dual
version of weak extensions and weak liftings.

Definition 2.27 (Coweak extension). A coweak extension of T to S is a monad T
on Kl(S) along with two natural transformations

π : FST 9 TFS ι : TFS 9 FST

such that π • ι = 1 and the four following diagrams commute

FS FS

FST TFS TFS FST

FSTT TFST TTFS TTFS TFST FSTT

FST TFS TFS FST

�FSη
T

�η
TFS

(π.ηT)

�ηTFS �FSη
T

(ι.ηT)
�
π

�
ι

�

FSµ
T

�πT �
Tπ

(π.µT)

�

µTFS

�

µTFS

�
Tι

�ιT

(ι.µT)

�

FSµ
T

�
π

�
ι

Definition 2.28 (Coweak lifting). A coweak lifting of S to EM(T) is a pair (S, µS)
comprising a functor S : EM(T)→ EM(T) and a natural transformation µS : SS → S

such that UTS = SUT and UTµS = µSUT.

Theorem 2.29. There is a bijective correspondence between

• coweak distributive laws of type TS→ ST

• coweak liftings of S to EM(T)

• if idempotents split in Kl(S), coweak extensions of T to Kl(S).

57

Proof. The bijection coweak distributive laws ⇐⇒ coweak liftings is the same as in
Theorem 1.42, dropping the unit ηS everywhere, and with the same proofs – details
are omitted. The bijection coweak distributive laws ⇐⇒ coweak extensions is more
complicated. We give the explicit constructions herein; verifications are long and
postponed to Appendix A. According to Remark 2.25, one could simply claim that
the following constructions work by abstract duality with weak distributive laws. We
find it nevertheless interesting to prove the result with full details: such proofs are
rarely found in the literature, even since the original paper from Beck [7]. The duality-
aware reader can consider the proof in Appendix A as a full version of Garner’s [54,
Proposition 13].

• coweak extensions ⇒ coweak distributive laws

Let T be a coweak extension of T to Kl(S). Viewing idSX : SX → SX as a
Kleisli morphism idSX : SX 9 X, we can define the composition

FSTSX TFSSX = TSX TX = TFSX FSTX�
πSX �

T (idSX)
�
ιX

(2.35)
Recall that on objects, the free functor FS acts identically. Therefore, the above
morphism, seen in C again, has type TSX → STX and is defined to be the
value of the coweak distributive law λX .

• coweak distributive laws ⇒ coweak extensions

Let λ : TS → ST be a coweak distributive law. From a Kleisli viewpoint, λX
has type TSX 9 TX. For any h : X 9 Y we define h+ = λY ◦Th : TX 9 TY .
In particular, let eX = (ηS

X)+. Then eX : TX 9 TX is a Kleisli idempotent.
Splitting

eX = TX TX TX�
πX �

ιX (2.36)

yields the wanted natural transformations π : FST 9 TFS and ι : TFS 9 FST

and defines T on objects. On a morphism h : X 9 Y , define

Th = TX TX TY TY�
ιX �h

+
�
πY (2.37)

The unit and multiplication are forced to be

η
T
X = πX • FSη

T
X (2.38)

µ
T
X = πX • (FSµ

T
X) • ιTX • T (ιX) (2.39)

58

Under the identification of isomorphic idempotent splittings, the constructions de-
scribed above are inverse to each other.

As for the weak framework, the main purpose of the coweak framework is to get
a composite monad built from S and T. This can be achieved by composing Kleisli
adjunctions of the coweak extension:

Kl(T) Kl(S) C
UT

⊥
FT

US

⊥
F S

(2.40)

The resulting coweak composite monad is denoted by S•◦λT, or just S•◦T, and satisfies
Kl(S •◦ T) ∼= Kl(T).

We now aim at finding examples of coweak distributive laws. A first observation
is that there is an obvious dual of Theorem 2.11, that one can prove explicitly by
using string diagrams.

Theorem 2.30. Let γ : T→ S be a monad morphism. Then

TS SS S ST
γS µS SηT

(2.41)

is a coweak distributive law. It is a distributive law if and only if γηT = ηST .

A similar result is present in the literature: [81, Lemma 8] taken with a trivial
alphabet means that the natural transformation of Theorem 2.30 satisfies axioms (ηT)
and (µT). As we will see later, it is rather rare that idempotents split in a Kleisli
category, but in the case of trivial laws the coweak extension always exists: the dual
of Proposition 2.12 is

Proposition 2.31. Let S, T be monads on a category C and λ = µSηT ◦γS for some
monad morphism γ : T → S. There is a coweak extension T corresponding to λ,
moreover T = Id and S •◦ T = S.

Proof. One can check that the Kleisli idempotent eX = λX◦TηS
X is equal to FSη

T
X•γX ,

where γX is seen as a Kleisli morphism of type TX 9 X, and that γX • FSη
T
X

is a Kleisli identity. Then there is a coweak extension with TX = X, πX = γX ,
ιX = FSη

T
X and one can check using the explicit formulas that Tf = f and ηT, µT

both are identity natural transformation in Kl(S). Then T = Id and consequently
S •◦ T = USIdFS = S.

59

For a coweak distributive law λ = SηT ◦µS ◦ γS, the functor of the corresponding
coweak lifting maps a T-algebra (X, x) to a T-algebra on SX whose action is given
by:

Sx ◦ λX = Sx ◦ SηT
X ◦ µS

X ◦ γSX = µS
X ◦ γSX (2.42)

This time, the coweak lifting is trivial in the sense that it does not even involve the
action x. In the case where γ = idT, note that we have T = FTUT.

Example 2.32. Using supp : D → P as a monad morphism, authors of [81] derive
what turns out to be a coweak distributive law of type DP→ PD with expression

λX(Φ) =
{

1 · x | x ∈
⋃

supp(Φ)
}

(2.43)

The functor of the corresponding coweak lifting maps a D-algebra (X, x) to(
PX,ϕ 7→

⋃
supp(ϕ)

)
(2.44)

Example 2.33. Another instance also present in [81] is the coweak distributive law
of type PP→ PP obtained via the identity monad morphism P→ P, which is given
by

λX(U) =
{
{x} | x ∈

⋃
U
}

(2.45)

The functor of the corresponding coweak lifting maps a P-algebra (X, x) to (PX, µP
X).

Again in the coweak setting, trivial laws destroy too much structure to be inter-
esting. Recall that in the case of weak distributive laws, the common strategy to get
meaningful laws was the combination of two ideas:

• Use S = P, the powerset monad, so that Kl(S) = Rel has enjoyable properties:
it is Pos-enriched and monotone extensions of functors are easy to characterise.

• First look for a weak extension of T, then use the correspondence to derive the
weak distributive law and the weak lifting.

In the setting of coweak distributive laws, these ideas are not relevant anymore:

• Idempotents do not always split in Rel. For example, {(0, 0), (0, 1), (1, 1)} is an
idempotent that is not split. Therefore the existence of natural transformations
ι and π is in general unlikely.

• Coweak extensions are the most intricated notion of the coweak framework,
dually to weak liftings being the most intricated notion of the weak framework.
Consequently it seems rather counterproductive to look for the coweak extension
first.

60

Remark 2.34. The above reasoning does not strictly forbid the strategy to be carried
out. We have seen in the proof of Theorem 2.29 that split idempotents are only needed
for the construction coweak distributive law ⇒ coweak extension. So if one manages
to find a coweak extension in Rel, there are corresponding coweak distributive law
and coweak lifting.

The question of how to find useful coweak distributive laws is still open. Dualising
the common strategy, it is tempting to try and look for the coweak lifting first. The
agenda is then to identify desirable properties of functors in EM(T), then restrict the
search space to coweak liftings that interact nicely with these properties, and then
provide abstract results to efficiently check these properties (for monotone extension
to Rel, this was weak cartesianness). Of course, there may be other relevant strategies.

To fully exploit Theorem 2.29, we need a monad S whose Kleisli category is
idempotent complete. Even if C is idempotent complete, there is no reason for Kl(S)
to be, as shows the Rel example. Still assuming C is idempotent complete, then EM(S)
is too, so a sufficient condition is Kl(S) ≡ EM(S) i.e. every S-algebra is free. The
following handy reformulation was pointed to me by Zhen Lin:

Fact 2.35. For any monad S on an idempotent complete category, the Kleisli category
of S is idempotent complete if and only if every retract of a free S-algebra is free.

All in all, here are some examples of Set monads whose Kleisli category is idem-
potent complete:

• The maybe monad (−+1), because its Kleisli category and its Eilenberg-Moore
category are equivalent.

• The k-vector space monad for any field k, because every vector space has a base
i.e. every algebra is free.

• The Abelian group monad A, because a retract of a free algebra is then called a
regular-projective algebra, and it is known that every regular-projective Abelian
group is free [2, Example 5.2.3].

61

2.4 Iterated Weak Distributive Laws

One can work at adapting Theorem 1.51 to iterated (co)weak distributive laws in
various ways. For the sake of simplicity, we limit ourselves to n = 3 monads, so let
R, S, T be monads on a category C. Trying to define a law

(S •◦ T)R→ R(S •◦ T)

using a weak distributive law TS→ ST is tedious because the weak composite monad
S •◦ T forces the weak lifting natural transformations ι and π to appear everywhere.
As we are heading towards concrete examples in Chapter 4, we therefore impose in
the above case that the law TS→ ST is always a plain distributive law. Under this
restriction, there is a proper composite monad S ◦T and we can easily define laws of
type

(S ◦ T)R→ R(S ◦ T)

using the same formula as in the proof of Theorem 1.51. Now, let us inventory which
axioms are used in every part of the proof.

Table 2.1: Axioms required for an iterated distributive law. To prove the axiom of
the first column, one needs the hypotheses of the four last columns. Y-B denotes the
need for the Yang-Baxter equation.

δ : (S ◦λT)R→ R(S ◦λT) λ : TS→ ST σ : SR→ RS τ : TR→ RT
(ηR) plain (ηR) (ηR)
(µR) plain (µR) (µR)

(ηS◦T) plain (ηS) (ηT)
(µS◦T) plain (µS) (µT) Y-B

δ′ : T(R ◦σS)→ (R ◦σS)T λ : TS→ ST σ : SR→ RS τ : TR→ RT
(ηT) (ηT) plain (ηT)
(µT) (µT) plain (µT)

(ηR◦S) (ηS) plain (ηR)
(µR◦S) (µS) plain (µR) Y-B

From Table 2.1 we can easily deduce when (co)weakening some of the distributive
laws λ, σ and τ produces (co)weak distributive laws δ and δ′. Results are displayed
in Table 2.2. Note that the Yang-Baxter condition is required in any case, because it
is involved in multiplication axioms, which are required in each sort of law.

To build easily some concrete examples of such iterated laws, we provide two
technical lemmas. Note that there possibly are a plethora of similar constructions –
we provide two that are particularly well-suited for the examples we have in mind.

62

Table 2.2: Iterated (co)weak distributive laws. Given data in the first four columns,
one can obtain a law as in the last column

λ : TS→ ST σ : SR→ RS τ : TR→ RT δ : (S ◦λT)R→ R(S ◦λT)
plain plain plain Y-B plain
plain weak weak Y-B weak
plain coweak coweak Y-B coweak

λ : TS→ ST σ : SR→ RS τ : TR→ RT δ′ : T(R ◦σS)→ (R ◦σS)T
plain plain plain Y-B plain
weak plain weak Y-B weak

coweak plain coweak Y-B coweak

Lemma 2.36. Let σ : SR → RS be a distributive law, τ : TR → RT be a weak
distributive law, and γ : S → T be a monad morphism such that Rγ ◦ σ = τ ◦ γR.
Let λ : TS → ST be the weak distributive law defined by λ = ηSµT ◦ Tγ. Then λ,
σ and τ satisfy the Yang-Baxter condition, so that they yield a weak distributive law
T(R ◦σS)→ (R ◦σS)T.

Proof. We use string diagrams. We have monads

T T

TT

S S

SS

R R

RR

(2.46)

and the respectively weak, plain and weak distributive laws λ, σ and τ

S

S

T

TR R

RR

T

TS

S

(2.47)

The assumption Rγ ◦ σ = τ ◦ γR amounts to

T

R

RT

S R

R

S

= (2.48)

63

The Yang-Baxter equation is then derivable using the (µT) axiom of τ , the assumption
Rγ ◦ σ = τ ◦ γR and the (ηS) axiom of σ.

= = =

R R R R

R R R RS

S

S

S

S

S

T

T

T

T

T

T

T

T

S

S

(2.49)

Lemma 2.37. Let σ : SR → RS be a distributive law, τ : TR → RT be a coweak
distributive law and γ : T→ S be a monad morphism such that Rγ ◦ τ = σ ◦ γR. Let
λ : TS → ST be the coweak distributive law defined by λ = µSηT ◦ γS. Then λ, σ
and τ satisfy the Yang-Baxter condition, so that they yield a coweak distributive law
T(R ◦σS)→ (R ◦σS)T.

Proof. This can be proved as for Lemma 2.36. Properties used are the (µS) axiom of
σ, the assumption Rγ ◦ τ = σ ◦ γR and the (ηT) axiom of τ .

We give a few examples involving the following laws in Set between the powerset
monad P, the distribution monad D and the reader monad R:

λ1 : PR→ RP λ1
X(U) = λa.{h(a) | h ∈ U} plain Example 1.33

λ2 : DR→ RD λ2
X(ϕ) = λa.

∑
h∈RX

ϕh · h(a) plain Example 1.34

λ3 : PD→ DP λ3
X(U) = 1 ·

⋃
ϕ∈U

supp(ϕ) weak Example 2.13

λ4 : PP→ PP λ4
X(U) =

{⋃
U
}

weak Example 2.14

λ5 : DP→ PD λ5
X(Φ) =

{
1 · x | x ∈

⋃
supp(Φ)

}
coweak Example 2.32

λ6 : PP→ PP λ6
X(U) =

{
{x} | x ∈

⋃
U
}

coweak Example 2.33

Example 2.38. Applying Lemma 2.36 with σ = τ = λ1, and γ = idP hence λ = λ4

requires the identity R idP ◦ λ1 = λ1 ◦ idRP , which is trivial. Then, there is a weak
distributive law P(R ◦λ1P)→ (R ◦λ1P)P defined by

U ∈ P ((PX)A) 7→ λa.

⋃
h∈U

h(a)
 ∈ (PPX)A (2.50)

64

Example 2.39. Using the same data as in Example 2.38, but this time applying
Lemma 2.37, we obtain a coweak distributive law P(R ◦λ1P)→ (R ◦λ1P)P defined by

U ∈ P ((PX)A) 7→ λa.

{x} | x ∈ ⋃
h∈U

h(a)
 ∈ (PPX)A (2.51)

Example 2.40. Applying Lemma 2.36 with σ = λ2, τ = λ1, and γ = supp hence
λ = λ3 requires the identity (Rsupp) ◦ λ2 = λ1 ◦ (suppR) which can be easily verified.
Then, there is a weak distributive law P(R ◦λ2D)→ (R ◦λ2D)P defined by

U ∈ P ((DX)A) 7→ λa.

1 ·
⋃
h∈U

supp(h(a))
 ∈ (DPX)A (2.52)

Example 2.41. Applying Lemma 2.37 with σ = λ1, τ = λ2 and γ = supp hence
λ = λ5 requires the identity (Rsupp) ◦ λ2 = λ1 ◦ (suppR), as in Example 2.39. Then,
there is a coweak distributive law D(R ◦λ1P)→ (R ◦λ1P)D defined by

Φ ∈ D((PX)A) 7→ λa.

1 · x | x ∈
⋃

h∈suppΦ
h(a)

 ∈ (PDX)A (2.53)

65

Chapter 3

Combining Probability and
Non-Determinism

There are no distributive laws of type PP→ PP and DP→ PD, where we recall that
P denotes the powerset monad and D denotes the distribution monad. These two
non-examples, both occuring in the category of sets and functions, do have a specific
status in the history of the theory of distributive laws.

The non-existence of a distributive law of type DP → PD was first proved by
Varacca and Winskel [152, 153] using an idea of Gordon Plotkin. Given a candidate
distributive law, the proof consists in keeping track of computations in both paths
of some conveniently chosen naturality diagrams. Using three such naturality dia-
grams and only the unit axioms, a contradiction is obtained. This result is the first
concrete no-go theorem concerning distributive laws, and relates to a long history
of difficulties when trying to combine non-determinism (P) and probability (D) in
domain theory [88, 148, 108, 152, 153] or, more recently, in coalgebraic semantics of
Segala systems [23, 25]. The solution proposed by Varacca is to replace D with a
monad of indexed valuations [151].

The non-existence of a distributive law of type PP→ PP is a more recent result.
At first, a few transformations were wrongly identified as distributive laws in the
literature, first by Manes and Mulry [99], then by Klin and Rot [89, 90]. Klin and
Salamanca [91] settled the question by proving that there is no such law, with a
method close to the Plotkin argument of [153]. This second negative result relates
to the fact that working with two layers of non-determinism often resulted in the
use of workarounds – e.g. replacing one powerset monad by a list monad to study
coalgebraic semantics of logic programming [27], or replacing powersets by downsets
and upsets to study coalgebraic semantics of alternating automata [8].

66

As it turns out, these two non-examples were the first of a long list. Zwart and
Marsden [162] recently produced abstract theorems that automatically forbid dis-
tributive laws to exist in Set. Their approach is algebraic: every composite monad
corresponds to a composite algebraic theory, and they show that under certain con-
ditions, there is no composite algebraic theory. The results of Zwart and Marsden
recover the previous ones about PP→ PP and DP→ PD and generate new concrete
non-examples, e.g. there are no distributive laws of type PD→ DP and DD→ DD.
Zwart and Marsden notably imported from physics the terminology ’no-go theorem’
to designate this kind of impossibility result. The PhD thesis of Maaike Zwart [161]
provides a precise and systematic study of no-go theorems, along with many examples
and non-examples using familiar Set monads. Another no-go theorem not falling into
the scope of Zwart and Marsden results is the one of Salamanca [135] showing that
there is no distributive law LaP→ PLa, where La is the free lattice monad.

In this chapter, we show how the concept of weak distributive law helps to mitigate
the absence of distributive laws for the two now-classical instances PP → PP and
DP → PD. Although there are no such distributive laws, there are weak ones, and
even monotone weak ones. In a first section, we begin by recalling the results of
Garner [54] about the unique monotone weak distributive law PP → PP. This law
will be the basis of several subsequent developments – an application to alternating
automata in Chapter 4 and generalisations to toposes and compact Hausdorff spaces
in Chapters 6 and 7. In a second section, we shall provide original results about the
unique monotone weak distributive law DP→ PD. These results, finally explaining
how to properly combine non-determinism and probability in a non ad hoc way, have
been published in [62]. In a third section, we will briefly discuss another interesting
case: PD → DP. Note that one cannot rule out weak distributive laws of this
type using monotonicity criteria, as in Theorem 2.22, because Kl(D) does not have a
relevant Pos-enriched structure. However, we will find on the way another property
that is arguably desirable for such a law. Unfortunately, we will prove that there is
no law satisfying this new property. The question of whether there is a meaningful
weak distributive law of type PD→ DP therefore remains open.

A further point is that in both PP→ PP and DP→ PD cases, the impossibility
result is actually stronger: there is no monad structure on the functors PP [91] and
PD [38]. Obtaining composite monads via weak distributive laws does not clash with
these results, since in the weak framework the functor of the composite monad is not
the composition of the monad functors.

67

3.1 Powerset over Powerset

3.1.1 The Monotone Law

There is a trivial weak distributive law of type PP→ PP obtained in Example 2.14
and defined by

λX(U) =
{⋃
U
}

In this section we will use Theorem 2.22 to prove that there is also a unique monotone
weak distributive law of this type. In particular, note that the PP → PP case
witnesses that there can be multiple weak distributive laws, even when there is no
distributive law.

Frobenius reciprocity law. The following elementary property will be implicitly
used on several occasions. For any function f : X → Y and subsets U ⊆ X, V ⊆ Y ,

f(U ∩ f−1(V)) = f(U) ∩ V (3.1)

We now prove basic properties of the powerset monad, which are all well-known
results, see e.g. [149] for the following proposition.

Proposition 3.1 ([149]). The powerset functor P is weakly cartesian.

Proof. Let W be a weak pullback of f : X → Z and g : Y → Z.

W Y

X Z

w2

w1
.

g

f

(3.2)

Equivalently, this means that w1 ◦ w−1
2 = f−1 ◦ g : PY → PX. Let us show that the

image of this square under P still is a weak pullback.

PW PY

PX PZ

Pw2

Pw1 Pg

Pf

(3.3)

Take U ⊆ X, V ⊆ Y and assume f(U) = g(V). We must find some C ⊆ W such
that w1(C) = U and w2(C) = V . Define

C = w−1
1 (U) ∩ w−1

2 (V)

68

Obviously C is included in W . Moreover, f(U) = g(V) entails U ⊆ (f−1 ◦ g)(V) =
(w1 ◦ w−1

2)(V). Hence

w1(C) = w1(w−1
1 (U) ∩ w−1

2 (V)) = U ∩ w1(w−1
2 (V)) = U (3.4)

Similarly, w2(C) = V , so that W is a weak pullback and P is weakly cartesian.

Proposition 3.2 ([54]). The unit ηP is not weakly cartesian.

Proof. Consider the naturality square of the unique map ! : {0, 1} → {0}.

{0, 1} P{0, 1}

{0} P{0}

ηP
{0,1}

! P !

ηP
{0}

(3.5)

The pullback of ηP
{0} and P ! is {(0, {0}), (0, {1}), (0, {0, 1})}. If the above square were

a weak pullback, there would be an element of {0, 1} mapped to the pullback element
(0, {0, 1}) by 〈!, ηP

{0,1}〉. This is impossible because {0, 1}, as a non-singleton, is not
in the image of ηP

{0,1}.

Proposition 3.3 ([54]). The multiplication µP is weakly cartesian.

Proof. Let f : X → Y be a function and let us show that its naturality square is a
weak pullback.

PPX PX

PPY PY

PPf

µP
X

Pf

µP
Y

(3.6)

Let U ⊆ X, V ⊆ PY such that f(U) = ⋃V . We must find U ⊆ PX such that⋃U = U and Pf(U) = V . Define

U = {U ∩ f−1(V) | V ∈ V}

Then, using standard properties of set-theoretic operations and the hypothesis f(U) =⋃V we obtain:

PPf(U) = {f(U ∩ f−1(V)) | V ∈ V} = {f(U) ∩ V | V ∈ V} = {V | V ∈ V} = V⋃
U = U ∩ f−1

(⋃
V
)

= U ∩ f−1(f(U)) = U

69

By applying Theorem 2.22 we obtain that there is a unique monotone weak dis-
tributive law of type PP→ PP. Let us first get an expression of the weak extension
using equation (2.34), then use the correspondence theorem to compute the weak
distributive law and the weak lifting. On a relation R ⊆ X × Y with projections
π1 : R→ X, π2 : R→ Y , the formula

PR = {(U, V) ∈ PX × PY | ∃C ⊆ R.π1(C) = U and π2(C) = V } (3.7)

can be more conveniently expressed as

PR = {(U, V) ∈ PX × PY |∀x ∈ U.∃y ∈ V.(x, y) ∈ R and
∀y ∈ V.∃x ∈ U.(x, y) ∈ R}

which is known, especially when R is a preorder, under the name Egli-Milner ex-
tension of R. According to the correspondence of Theorem 2.5, the monotone weak
distributive law at X is the function λX whose graph is P (3X), where we recall that
3X is the set {(U, x) | x ∈ U} ⊆ PX ×X. Therefore

Theorem 3.4 ([54]). The unique monotone weak distributive law λ : PP → PP is
given on every U ∈ PPX by the expression

λX(U) =
{
V ∈ PX | V ⊆

⋃
U and ∀U ∈ U .U ∩ V 6= ∅

}
(3.8)

We now compute the corresponding weak lifting accordingly to the procedure
described in Theorem 1.42. Let (X, x) be an Eilenberg-Moore algebra for the monad
P, that is, a complete join semi-lattice. As λ is a weak distributive law, Px ◦ λX is a
P-semialgebra. Hence, precomposing with ηP yields an idempotent

Px ◦ λX ◦ ηP
PX : (PX,Px ◦ λX)→ (PX,Px ◦ λX) (3.9)

mapping a subset U ⊆ X to

(Px ◦ λX ◦ ηP
PX)(U) = {x(V) | V ∈ PU \ {∅}} (3.10)

We may now split the idempotent Px◦λX ◦ηP
PX in the category of P-semialgebras

as follows:
(PX,Px ◦ λX) (S, s) (PX,Px ◦ λX)

π(X,x) ι(X,x) (3.11)

By the standard epi-mono factorisation in Set, the carrier S can be computed as the
image of the idempotent, that is, the set of its fixpoints.

70

Definition 3.5 (Up closure, upclosed subset). Let (X, x) be a complete semi-lattice.
For any U ⊆ X, the set

upx(U) = {x(V) | V ∈ PU \ {∅}}

is called the x-up closure of U . It contains all x-joins of non-empty subsets of U .
We say that U is an x-upclosed subset whenever U = upx(U) i.e. U is closed under
non-empty x-joins.

Therefore, P maps (X, x) to the subalgebra obtained by restriction of Px ◦ λX to
x-upclosed subsets.

P (X, x) = (S, s) (3.12)
S = {U ∈ PX | U = upx(U)} (3.13)
π(X,x)(U) = upx(U) (3.14)
ι(X,x)(U) = U (3.15)

The following lemma provides an expression of the action of the P-algebra (S, s).

Lemma 3.6. For every U ∈ PS,

s(U) = {x(Imc) | c : U → X choice function} (3.16)

By choice function we mean that for every U ∈ U , c(U) ∈ U , and Im denotes the
image i.e. Imc = {c(U) | U ∈ U}.

Proof. By the splitting in the category of P-semialgebras, we know that s is the
restriction of Px ◦ λX to the set of x-upclosed subsets of X:

PPX PS PPX

PPX PPX

PX S PX

Pπ(X,x)

λX

Pι(X,x)

s

λX

Px Px

π(X,x) ι(X,x)

(3.17)

Hence, on every U ∈ PS we have

s(U) =
{
x(V) | V ⊆

⋃
U and ∀U ∈ U .U ∩ V 6= ∅

}
Now, for any choice function c : U → X, Imc is included in ⋃U and intersects every
U ∈ U . For the converse inclusion, let V ⊆ ⋃U such that V intersects every U ∈ U .

71

Then one can define a choice function c : U → X by U 7→ x(U ∩ V). Indeed, for
any U ∈ U , U ∩ V is a non-empty subset of the x-upclosed subset U , therefore
x(U ∩ V) ∈ U . To conclude we remark that x(Imc) = x(V) as follows:

x(Imc) = x({x(U ∩ V) | U ∈ U})
= (x ◦ Px)({U ∩ V | U ∈ U})
= (x ◦ µP

X)({U ∩ V | U ∈ U})

= x

(⋃
U∈U

U ∩ V
)

= x(V) because V ⊆
⋃
U

Let f : (X, x) → (Y, y) be a morphism of complete join semi-lattices. Use the
naturality diagram of ι to immediately get, for all x-upclosed subset U :

Pf(U) = Pf(U) (3.18)

To compute ηP and µP, we shall again take advantage of the fact that ι is a mere
inclusion. Let (X, x) be a complete join semi-lattice. The (ι.ηP) and (ι.µP) diagrams
of weak liftings immediately yield, for every u ∈ X and every U in the carrier of
PP (X, x),

ηP
(X,x)(u) = {u} (3.19)
µP

(X,x)(U) =
⋃
U (3.20)

To sum up, the upclosed powerset monad P maps any complete join-semilattice
(X, x) to the complete join-semilattice of its x-upclosed subsets, and acts as the
usual powerset monad when it comes to morphisms, unit and multiplication. Using
Lemma 2.10, it is easy to obtain an expression of the composite monad P •◦P. In the
following definition, we keep track of the subsets level using an index notation: U1

denotes a subset of X, U2 denotes a subset of the subsets of X, etc.

Definition 3.7. The monad of upclosed sets of subsets P •◦ P is defined as follows.

(P •◦ P)X = {U2 ∈ PPX | U2 is closed under non-empty unions}
(P •◦ P)f(U2) = {f(U1) | U1 ∈ U2}

ηP•◦P
X (x) = {{x}}
µP•◦P
X (U4) =

⋃
U3∈U4

{⋃
V2 | V2 ⊆

⋃
U3 such that ∀U2 ∈ U3.U2 ∩ V2 6= ∅

}

72

3.1.2 Variations

Let us consider a few variations of the monotone weak distributive law λ : PP→ PP
whose expression is recalled below:

λX(U) =
{
V ∈ PX | V ⊆

⋃
U and ∀U ∈ U .U ∩ V 6= ∅

}
First, note that in [54], Garner provides a monotone weak distributive law of type
PfP→ PPf , mapping any finite U ∈ PfPX to{

V ∈ PX finite | V ⊆
⋃
U and ∀U ∈ U .U ∩ V 6= ∅

}
(3.21)

that is

PfP→ PPf
U → λX(U) ∩ PfX

We note that it can be further restricted to

PfPf → PfPf
U 7→ λX(U)

because if U ∈ PfPfX, then λX(U) ⊆ P (⋃U) is finite.
By contrast, there seems to be no obvious way to get a weak distributive law of

type PPf → PfP. For example, with X = N and U = {{0, n} | n ∈ N∗} ∈ PPfN,
λX(U) = {V ⊆ N | 0 ∈ V or N∗ ⊆ V } is infinite, even if we restrict it to finite V s.

The situation is slightly easier with the non-empty powerset monad P∗. As ∅ ∈
λX(U) ⇐⇒ U = ∅, the law λ : PP → PP restricts to a weak distributive law
P∗P → PP∗. Similarly, ⋃U ∈ λX(U) ⇐⇒ ∀U ∈ U .U 6= ∅, so λ restricts to a weak
distributive law PP∗ → P∗P. Applying both restrictions gives a weak distributive
law P∗P∗ → P∗P∗. One can then safely impose non-emptyness of any of the two
monads. The whole situation is summed up in Table 3.1.

Table 3.1: Existence of a monotone weak distributive law of type (row ◦ column) →
(column ◦ row)

P Pf P∗ Pf∗
P X ? X ?
Pf X X X X
P∗ X ? X ?
Pf∗ X X X X

73

Variations of the monotone law PP → PP give rise to variations of the monad
of upclosed sets of subsets with similar algebras. In [54], Garner identifies (P •◦ Pf)-
algebras with the commutative unital quantales whose multiplication is idempotent.
The simplest case is maybe the one of (Pf∗•◦Pf∗)-algebras, which are the join-distributive
bisemilattices [126] (see also [88]). A join-distributive bisemilattice is a triple (X,∨,∧)
such that (X,∨) and (X,∧) are semilattices and the following distributivity equation
holds

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (3.22)

This claim can be proved with the same method as in the upcoming Theorem 3.16.
It consists in using the isomorphism EM(Pf∗ •◦ Pf∗) ∼= Alg(λ) of Proposition 2.8, and
following sets such as {{x}, {y, z}} in the pentagon (1.38) defining λ-algebras.

3.2 Distribution over Powerset

3.2.1 The Monotone Law

We will again use Theorem 2.22 to find the unique monotone weak distributive law
of type DP→ PD. First, we have:

Proposition 3.8 ([110, 45]). The distribution functor D is weakly cartesian.

We do not provide a proof, since this result is known and its details are not
needed in the subsequent developments. The interested reader can refer to [110]
for an elementary proof or to [45] for a proof using the max-flow min-cut theorem.
Second, we verify that there is no hope for a monotone distributive law:

Proposition 3.9. The unit ηD is not weakly cartesian.

Proof. The argument is very similar to Proposition 3.2. Consider the naturality
square of the unique map ! : {0, 1} → {0}.

{0, 1} D{0, 1}

{0} D{0}

ηD
{0,1}

! D!

ηD
{0}

(3.23)

As D{0} is a singleton, the pullback of ηD
{0} and D! is the infinite set {0} ×D{0, 1},

so there is no surjective function from {0, 1} into it. Therefore, ηD is not weakly
cartesian.

74

However, things work fine for the multiplication:

Proposition 3.10. The multiplication µD is weakly cartesian.

Proof. We provide the proof using Farkas’ lemma presented in [62]. In this proof, a
distribution ϕ ∈ DX will be formally defined by the expression

ϕ =
n∑
i=1

pi · xi

where (xi)1≤i≤n is an injective enumeration of supp(ϕ) and pi = ϕ(xi) ∈ (0, 1]. Con-
sider the µD naturality square of a function f : X → Y

DDX DX

DDY DY

DDf

µD
X

Df

µD
Y

(3.24)

and let us prove that this is a weak pullback. Let ϕ ∈ DX and Ψ ∈ DDY be such that
Df(ϕ) = µD

Y (Ψ). We must find Φ ∈ DDX such that µD
X(Φ) = ϕ and DDf(Φ) = Ψ.

Write formally
Ψ =

m∑
j=1

qj · ψj

Assume there are distributions (ϕj)1≤j≤m in DX such that the two following condi-
tions are satisfied

Df(ϕj) = ψj for all j ∈ {1, . . . ,m} (3.25)

µD
X

 m∑
j=1

qj · ϕj

 = ϕ (3.26)

Then we can formally define Φ = ∑m
j=1 qj ·ϕj. This enumeration of supp(Φ) is injective

because of equation (3.25). This Φ completes the proof, because equation (3.26) is
exactly µD

X(Φ) = ϕ and equation (3.26) yields

DDf(Φ) =
m∑
j=1

qj ·Df(ϕj) =
m∑
j=1

qj · ψj = Ψ

In the remainder of the proof, we build the distributions (ϕj)1≤j≤m by providing a
non-negative solution to the following linear system of equations, with variables ϕj(x)
for 1 ≤ j ≤ m and x ∈ supp(ϕ):

∑
x∈f−1({y}) ϕj(x) = ψj(y) for all y ∈ Y, j ∈ {1, . . . ,m}

∑m
j=1 qjϕj(x) = ϕ(x) for all x ∈ supp(ϕ)

(3.27)

75

First note that it suffices to find, locally for each y ∈ Y , a non-negative solution to
the following linear systems with variables ϕyj (x):

∑
x∈f−1({y}) ϕ

y
j (x) = ψj(y) for all j ∈ {1, . . . ,m}

∑m
j=1 qjϕ

y
j (x) = ϕ(x) for all x ∈ f−1({y}) ∩ supp(ϕ)

(3.28)

Indeed, in the presence of local solutions, one can define a global solution by ϕj(x) =
ϕ
f(x)
j (x). Note that ϕj ∈ DX because supp(ϕj) ⊆ supp(ϕ) (by the second equation

in (3.28)), so it is finitely supported, and
∑
x∈X

ϕj(x) =
∑
x∈X

ϕ
f(x)
j (x) =

∑
y∈Y

∑
x∈f−1({y})

ϕyj (x) =
∑
y∈Y

ψj(y) = 1

Therefore we can fix y ∈ Y and solve the system given by equation (3.28). To see
things more clearly, we will express this system using matrices. Writing f−1({y}) ∩
supp(ϕ) = {x1, . . . , xk} the system of m× k variables and m+ k equations is

∑k
i=1 ϕ

y
j (xi) = ψj(y) for all j ∈ {1, . . . ,m}

∑m
j=1 qjϕ

y
j (xi) = ϕ(xi) for all i ∈ {1, . . . , k}

(3.29)

In order to abstract away notation related to distributions, variables, coefficients, we
define the vectors

u = (u1,1, . . . , um,1, . . . , u1,k, . . . , um,k) (3.30)
= (ϕy1(x1), . . . , ϕym(x1), . . . , ϕy1(xk), . . . , ϕym(xk)) (3.31)

v = (v1, . . . , vm+k) (3.32)
= (ψ1(y), . . . , ψm(y), ϕ(x1), . . . , ϕ(xk)) (3.33)

q = (q1, . . . , qm) (3.34)

and the matrix

M =

Im Im . . . Im
q 0 . . . 0
0 q . . . 0
0 0 . . . 0
0 0 . . . q

 ∈Mm+k,mk(R) (3.35)

where Im is the identity matrix of size m. To find a non-negative solution to the
system Mu = v, we can now apply the widely known Farkas lemma.

76

Lemma 3.11 (Farkas, [50]). Let M ∈Mp,q(R) and b ∈ Rp. Then exactly one of the
following statements is true:

• There exists some x ∈ Rq such that Mx = b and x ≥ 0.

• There exists some z ∈ Rp such that MT z ≥ 0 and bT z < 0.

Take p = m + k, q = mk, M = M and b = v. Assume towards a contradiction
that there is some z ∈ Rm+k such that MT z ≥ 0 and vT z < 0, that is:

zi + qizm+j ≥ 0 for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , k} (αi,j)
m+k∑
i=1

vizi < 0 (β)

Our hypothesis µD
Y (Ψ) = Df(ϕ) applied on y also yields

m∑
i=1

qivi =
k∑
j=1

vm+j (γ)

For a fixed j ∈ {1, . . . , k}, summing the equations vi×(αi,j) over i ∈ {1, . . . ,m} gives
m∑
i=1

vizi + zm+j

m∑
i=1

qivi ≥ 0

Using equations (β) and (γ) we obtain

zm+j

k∑
l=1

vm+l ≥ −
m∑
i=1

vizi >
k∑
l=1

vm+lzm+l

Let S =
(∑k

l=1 vm+lzm+l
)
/
(∑k

l=1 vm+l
)

be the weighted average of all zm+l. This
quantity is well-defined because vm+l are positive and k 6= 0. We just proved that
zm+j > S for all j. By taking the weighted average of both sides with respect to
the vm+j again, we obtain S > S, a contradiction. Therefore, the first statement of
Farkas’ lemma is true. This gives a non-negative solution u to the equation Mu = v.
Consequently, µD is weakly cartesian.

By applying Theorem 2.22 we obtain that there is a unique monotone weak dis-
tributive law of type DP → PD. In the same manner as in the previous section,
we will now compute the triptych weak extension / weak distributive law / weak
lifting and the composite monad. We first compute the weak extension on a relation
R ⊆ X × Y with projections π1 : R → X and π2 : R → Y . Here equation (2.34)
amounts to

DR = {(ϕ, ψ) ∈ DX ×DY | ∃θ ∈ DR.Dπ1(θ) = ϕ and Dπ2(θ) = ψ} (3.36)

77

In probabilistic parlance, (ϕ, ψ) ∈ DR whenever ϕ and ψ are the marginals of some
distribution on R. There is a nice expression of the weak distributive law:

Theorem 3.12. The unique monotone weak distributive law DP→ PD is defined on
any Φ ∈ DPX, formally expressed as Φ = ∑n

i=1 pi ·Ui with pi > 0 and distinct Ui, by

λX

(
n∑
i=1

pi · Ui
)

=
{
µD
X

(
n∑
i=1

pi · ϕi
)
| ∀i.ϕi ∈ DX and suppϕi ⊆ Ui

}
(3.37)

Proof. According to the correspondence of Theorem 2.5, the monotone weak dis-
tributive law at X is the function λX whose graph is D(3X), where 3X is the set
{(U, x) | x ∈ U} ⊆ PX ×X. Therefore

λX(Φ) = {ϕ ∈ DX | ∃Θ ∈ D(3X).∀U ∈ PX.Φ(U) =
∑
x∈U

Θ(U, x) and

∀x ∈ X.ϕ(x) =
∑
U3x

Θ(U, x)}

Let ϕ ∈ λX(Φ) and Θ ∈ D(3X) as above. For any x ∈ X, let ϕi(x) = Θ(Ui, x)/pi,
where Θ is extended to D(PX × X) with value 0 outside of 3X . Then ϕi ∈ DX

because ∑
x∈X

ϕi(x) = (1/pi)
∑
x∈Ui

Θ(Ui, x) = Φ(Ui)/pi = 1

Furthermore, it is clear that supp(ϕi) ⊆ Ui, and for any x ∈ X,

ϕ(x) =
∑
U3x

Θ(U, x) =
n∑
i=1

Θ(Ui, x) =
n∑
i=1

piϕi(x) = µD
X

(
n∑
i=1

pi · ϕi
)

(x)

Conversely, let ϕi ∈ DX with supp(ϕi) ⊆ Ui for every i ∈ {1, . . . , n} and let us show
that µD

X (∑n
i=1 pi · ϕi) ∈ λX(Φ). Define Θ(Ui, x) = piϕi(x) for every i and Θ(U, x) = 0

for other U 3 x. Then ∑
x∈U

Θ(U, x) = Φ(U)

because both have value pi on Uis and 0 elsewhere. Moreover

∑
U3x

Θ(U, x) =
n∑
i=1

Θ(Ui, x) =
n∑
i=1

piϕi(x) = µD
X

(
n∑
i=1

pi · ϕi
)

(x)

Let us compute the weak lifting of P to the category EM(D) of convex algebras.
For (X, x) a convex algebra, the idempotent

Px ◦ λX ◦ ηD
PX : (PX,Px ◦ λX)→ (PX,Px ◦ λX) (3.38)

78

maps a subset U ⊆ X to

(Px ◦ λX ◦ ηD
PX)(U) = {x(ϕ) | ϕ ∈ DU} (3.39)

Here, ϕ ∈ DU is a short way of saying that ϕ ∈ DX has support included in U . To
better formulate what follows, it is useful to introduce the notion of convex subset
for a convex algebra.

Definition 3.13 (Convex closure, convex subset). Let (X, x) be a convex algebra.
For any U ⊆ X, the set

convx(U) = {x(ϕ) | ϕ ∈ DU} (3.40)

is called the convex closure of U . We say that U is an x-convex subset whenever
U = convx(U).

Note that the inclusion U ⊆ convx(U) always holds, because of the unit axiom
of D-algebras. Fixpoints of the function Px ◦ λX ◦ ηD

PX are exactly the x-convex
subsets of X. From this observation, we deduce that the weak lifting is given by the
subalgebra obtained by restriction of Px ◦ λX to x-upclosed subsets.

P (X, x) = (S, s) (3.41)
S = {U ∈ PX | U = convx(U)} (3.42)
π(X,x)(U) = convx(U) (3.43)
ι(X,x)(U) = U (3.44)

As for the previous section, we provide an expression of the D-algebra s : DS → S.

Lemma 3.14. For every Φ = ∑n
i=1 pi · Ui ∈ DS, with distinct Ui and non-zero pi,

s(Φ) =
{
x

(
n∑
i=1

pi · ui
)
| ∀i ∈ {1, . . . , n}.ui ∈ Ui

}
(3.45)

Proof. The proof is very similar to Lemma 3.6, because both weak distributive laws
rely on a notion of convexity (see [22, Section 5]). Yet we provide details for the sake
of completeness. As s is the restriction of Px ◦ λX ,

s(Φ) =
{

(x ◦ µD
X)
(

n∑
i=1

pi · ϕi
)
| ∀i.ϕi ∈ DUi

}

=
{

(x ◦Dx)
(

n∑
i=1

pi · ϕi
)
| ∀i.ϕi ∈ DUi

}

=
{
x

(
n∑
i=1

pi · x(ϕi)
)
| ∀i.ϕi ∈ DUi

}

79

To prove equation (3.45), we reason by double inclusion. From ui ∈ Ui we can define
ϕi = 1 · ui. For the other inclusion, from ϕi ∈ DUi we can define ui = x(ϕi) ∈ Ui
because Ui is x-convex.

By exploiting ι as in Section 3.1, we also get

Pf(U) = Pf(U) (3.46)
ηP

(X,x)(u) = {u} (3.47)
µP

(X,x)(U) =
⋃
U (3.48)

To sum up, the monad P maps a convex algebra (X, x) to the convex algebra
whose carrier is the set of all x-convex subsets of X, with the action x being extended
pointwise (as shown in Lemma (3.14)), and P acts as the powerset for what concerns
morphisms, unit, and multiplication. In [23], Bonchi, Silva and Sokolova build from
scratch a slight variation of this monad comprising only non-empty convex subsets.
With respect to their terminology, we call P the convex powerset monad. It has to be
noted that considerations about the empty set originate in [78], where Jacobs exhibits
a similar construction using the free semimodule monad instead of our D. To give
a homogeneous account of his construction, Jacobs had to drop the empty set – as
stated later in [62, 22], it turns out that this restriction was unnecessary.

Using Lemma 2.10 it is easy to find an expression of the composite monad P •◦D
on Set.

Definition 3.15. The monad of convex sets of distributions P •◦D is defined by

(P •◦D)(X) = {U ∈ PDX | U is convex with respect to µD
X}

(P •◦D)f(U) = {Df(ϕ) | ϕ ∈ U}
ηP•◦D(x) = {1 · x}

µP•◦D(U) =
⋃

Φ∈U

µD
X

 ∑
U∈supp(Φ)

ΦU · ϕU
 | ∀U ∈ supp(Φ).ϕU ∈ U

The terminology monad of convex sets of distributions is borrowed to Mio [105],

but it has to be noted that mild variations of this monad appear at various places in
the literature [78, 148, 23, 25], where it comes often alongside the convex powerset
monad. The ideas underlying both the monad of convex sets of distributions and
the convex powerset monad originate in domain theory, where the combination of
probabilistic choice and non-deterministic choice was studied extensively by many

80

authors – see the introduction of [88] for a comprehensive account. Notably, these
monads are close to the notion of power Kegelspitzen of Keimel and Plotkin in loc.
cit.

3.2.2 Algebraic Presentation

We prove, using the monotone weak distributive law DP → PD, that the monad of
convex sets of distributions can be presented by the (infinitary) equational theory of
complete convex join-semilattices.

Related work. Using different methods, a similar result was derived by Bonchi,
Sokolova and Vignudelli [25, 26] for finitely generated convex sets of distributions.
Intuitively, this amounts to replacing P with its finite version Pf . Technically, things
become slightly more involved. The link between these two algebraic presentations
was later established by Bonchi and Santamaria in [22], building on our LICS pa-
per [62]. Quantitative variations of the algebraic presentation have been studied in
categories of metric spaces [106].

Theorem 3.16. The monad of convex sets of distributions P •◦D is presented by the
equational theory of complete convex join semi-lattices (Σ, E) = (ΣP ∪ΣD, EP ∪ED ∪
Eλ), where

• (ΣP , EP) is the equational theory of complete join semi-lattices described in
Example 1.50 i.e. ΣP = {∨i∈I | I is a set} and EP are equations

– ∨
i∈{∗} xi = x∗

– ∨
j∈J xj = ∨

i∈I xf(i) for every surjective f : I → J

– ∨
i∈I xi = ∨

j∈J
∨
i∈f−1({j}) xi for every f : I → J

• (ΣD, ED) is the equational theory of convex algebras described in Example 1.49
i.e. ΣD = {⊕r | r ∈ [0, 1]} and ED are equations

– x⊕1 y = x

– x⊕r x = x

– x⊕r y = y ⊕1−r x

– (x⊕p y)⊕r z = x⊕pr
(
y ⊕ r−pr

1−pr
z
)

if r, p 6= 1

81

• Eλ consists of the following equations, for every r ∈ [0, 1] and every set I

x⊕r
∨
i∈I
yi =

∨
i∈I

(x⊕r yi) (3.49)

We start with some basic reminders. The isomorphism EM(P) ∼= Alg(ΣP , EP)
sends a P-algebra (X, j) – with j : PX → X seen as an abstract join operator – to
the (ΣP , EP)-algebra on X defined by∨

i∈I
xi = j({xi | i ∈ I}) (3.50)

Conversely, a (ΣP , EP)-algebra is sent to the P-algebra (X, j) defined by reading the
above equation from right to left.

The isomorphism EM(D) ∼= Alg(ΣD, ED) sends a D-algebra (X, b) – with b :
DX → X seen as an abstract barycenter operator – to the (ΣD, ED)-algebra on X

defined by
x⊕r y = b(r · x+ (1− r) · y) (3.51)

Conversely, a (ΣD, ED)-algebra is sent to the D-algebra (X, b) defined by induction
on support cardinality as follows

b(1 · x) = x (3.52)
b(r · x+ (1− r)ϕ) = x⊕r b(ϕ) where r 6= 0 and x /∈ supp(ϕ) (3.53)

In both cases, isomorphisms act on morphisms trivially: a P-algebra morphism f

corresponds to the (ΣP , EP)-algebra morphism f , and similarly for D.
According to Proposition 2.8, EM(P •◦ D) ∼= Alg(λ), where λ : DP → PD is the

monotone weak distributive law. Therefore, to prove that (Σ, E) presents P •◦ D,
it suffices to prove that Alg(λ) ∼= Alg(Σ, E). Recall that Alg(λ) objects are triples
(X, b, j) where (X, b) is a D-algebra and (X, j) is a P-algebra, such that the following
pentagon commutes:

DPX PDX

DX PX

X

Dj

λX

Pb

b j

(3.54)

and that morphisms between λ-algebras are the simultaneous D- and P-algebra mor-
phisms. The isomorphism Alg(λ) ∼= Alg(Σ, E) is simply

(X, b, j)↔
(
X,

∨
i∈I
,⊕r

)
(3.55)

82

where operators are defined with respect to each other as in equations (3.50), (3.51),
(3.52) and (3.53) – and the action on morphisms is the identity. Because (ΣP , EP)
presents P and (ΣD, ED) presents D, the only thing that has to be checked is that
(X, b, j) makes the pentagon (3.54) commute if and only if equations of Eλ displayed
in (3.49) are satisfied.

Pentagon implies Eλ. Let (X, b, j) be a λ-algebra. Recall that λ is given by the
formula of Theorem 3.12:

λX

(
n∑
i=1

pi · Ui
)

=
{
µD
X

(
n∑
i=1

pi · ϕi
)
| ∀i.ϕi ∈ DX and suppϕi ⊆ Ui

}

Taking the convex closure of a subset does not increase its supremum:

Lemma 3.17. For any A ∈ PX, ∨x∈A x = ∨
x∈convb(A) x.

Proof. Follow the distribution 1 · A along both paths of the pentagon. The left leg
gives

(b ◦Dj)(1 · A) = b(1 · j(A)) = j(A) =
∨
x∈A

x

by the unit axiom of the D-algebra b, and ∨ definition. The right leg gives

(j ◦ Pb ◦ λX)(1 · A) = (j ◦ Pb)({ϕ ∈ DX | suppϕ ⊆ A})
= j{b(ϕ) | ϕ ∈ DX.suppϕ ⊆ A}

= j(convb(A))
=

∨
x∈convb(A)

x

by definition of conv and ∨, whence the required equality.

Proposition 3.18. For any x ∈ X and (yi)i∈I ∈ XI , x⊕r
∨
i∈I yi = ∨

i∈I(x⊕r yi).

Proof. Follow the distribution r · {x} + (1− r) · {yi | i ∈ I} along both paths of the
pentagon. The left leg gives

(b ◦Dj)(r · {x}+ (1− r) · {yi | i ∈ I}) = b(r · j({x}) + (1− r) · j{yi | i ∈ I})
= x⊕r

∨
i∈I
yi

83

by definition of ∨, ⊕r and the unit axiom of the P-algebra j. The right leg gives

(j ◦ Pb ◦ λX)(r · {x}+ (1− r) · {yi | i ∈ I})
= j({b(r · x+ (1− r)ϕ) | suppϕ ⊆ {yi | i ∈ I}) λ definition
= j(convb({b(r · x+ (1− r) · yi) | i ∈ I})) conv definition
= j({b(r · x+ (1− r) · yi) | i ∈ I}) Lemma 3.17
=
∨
i∈I

(x⊕r yi)
∨

and ⊕r definition

whence the required equality.

Eλ implies pentagon. Let (X,∨i∈I ,⊕r) be a (Σ, E)-algebra. Equations of Eλ

x⊕r
∨
i∈I
yi =

∨
i∈I

(x⊕r yi) (3.56)

will be simply referred to as distributivity axioms. A first easy result is that these
equations hold as well in the other direction:(∨

i∈I
xi

)
⊕r y = y ⊕1−r

(∨
i∈I
xi

)
=
∨
i∈I

(y ⊕1−r xi)

=
∨
i∈I

(xi ⊕r y)

A consequence is double distributivity:(∨
i∈I
xi

)
⊕r

∨
j∈J

yj

 =
∨

(i,j)∈I×J
(xi ⊕r yj) (3.57)

The join of two elements will be denoted by a ∨ b = ∨
x∈{a,b} x. It is noteworthy

that as (X,∨i∈I) is a complete join-semilattice, we can use any property of complete
join-semilattices. For instance, the relation a ≤ b ⇐⇒ a ∨ b = b defines an order on
X. We begin by proving some lemmas relating this order and the operations ⊕r.

Lemma 3.19. For all a, b, c, d ∈ X and r ∈ [0, 1], if a ≤ b and c ≤ d, then a⊕r c ≤
b⊕r d.

Proof. First note that by distributivity (a⊕r c) ∨ (b⊕r c) = (a ∨ b)⊕r c = b⊕r c, so
a⊕r c ≤ b⊕r c. Similarly, b⊕r c ≤ b⊕r d, so by transitivity a⊕r c ≤ b⊕r d.

The following lemma shows that a convex combination always lies below the join
of its support.

84

Lemma 3.20. For every ϕ ∈ DX, b(ϕ) ≤ ∨x∈supp(ϕ) x.

Proof. By induction on the cardinality of supp(ϕ).

• If ϕ = 1 · x, the property rewrites as b(1 · x) ≤ ∨{x} i.e. x ≤ x

• If ϕ = r · x + (1 − r) · y, with r 6= 0 and x 6= y, the property rewrites as
x⊕r y ≤ x ∨ y. As x ≤ x ∨ y and y ≤ x ∨ y, Lemma 3.19 and ⊕r idempotency
yield x⊕r y ≤ (x ∨ y)⊕r (x ∨ y) = x ∨ y.

• Let n ≥ 2 and assume that the result holds for all ϕ with support of cardinality
at most n. Consider a distribution ψ whose support has cardinality n + 1 and
write it ψ = r · x+ (1− r)ϕ where r 6= 0, x /∈ supp(ϕ) and the support of ϕ has
cardinality n. Then

b(ψ) = x⊕r b(ϕ) ≤ x ∨ b(ϕ) by a base case
≤ x ∨

∨
y∈supp(ϕ)

y by induction hypothesis

=
∨

y∈supp(ψ)
y

which achieves the proof.

Lemma 3.21. For every A ∈ PX, ∨x∈A x = ∨
ϕ∈DX,supp(ϕ)⊆A b(ϕ).

Proof. For x ∈ A, the distribution ϕx = 1 · x has support included in A and x ≤ x =
b(1 · x). Consequently, ∨x∈A x ≤ ∨ϕ∈DX,supp(ϕ)⊆A b(ϕ). For the converse direction, let
ϕ ∈ DX such that supp(ϕ) ⊆ A. According to Lemma 3.20, b(ϕ) ≤ ∨

x∈supp(ϕ) x ≤∨
x∈A x because supp(ϕ) ⊆ A. Hence, ∨ϕ∈DX,supp(ϕ)⊆A b(ϕ) ≤ ∨x∈A x.

We finally prove the main statement.

Proposition 3.22. The triple (X, b, j) makes the pentagon (3.54) commute.

Proof. By induction on the cardinality of supp(Φ), where Φ ∈ DPX.

• If Φ = 1 · A for some A ∈ PX, we must prove that j(A) = j(convb(A)), which
is nothing but Lemma 3.21.

• Let n ≥ 1 and assume the pentagon commutes holds when starting from any
Φ ∈ DPX such that supp(Φ) has cardinality n. Let Ψ ∈ DPX with support of
cardinality n+1. We can write Ψ = r ·A+(1−r)Φ where r 6= 0, Φ ∈ DPX has

85

support of cardinality n and A /∈ supp(Φ). Denote formally Φ = ∑
1≤i≤n pi ·Ai.

The induction hypothesis applied to Φ means that

b

 ∑
1≤i≤n

pi · j(Ai)
 = j

b
 ∑

1≤i≤n
pi · b(ϕi)

 | ϕi ∈ DX, supp(ϕi) ⊆ Ai

(3.58)
Now computing the pentagon for Ψ, the left leg gives

j(A)⊕r b
 ∑

1≤i≤n
pi · j(Ai)

 (3.59)

while the right leg gives

j

b(ϕ)⊕r b
 ∑

1≤i≤n
pi · b(ϕi)

 | ϕ, ϕi ∈ DX, supp(ϕ) ⊆ A, supp(ϕi) ⊆ Ai

=
 ∨
ϕ,supp(ϕ)⊆A

b(ϕ)
⊕r

 ∨
ϕi,supp(ϕi)⊆Ai

b

 ∑
1≤i≤n

pi · b(ϕi)
 by equation 3.57

= j(A)⊕r b
 ∑

1≤i≤n
pi · j(Ai)

where the last step uses jointly Lemma 3.21 and the induction hypothesis.

This achieves the proof that the monad of convex sets of distributions is presented
by the theory of complete convex join-semilattices.

3.2.3 Variations

It turns out that the same year, a simpler proof of Proposition 3.10 was found by Fritz
and Perrone [52]. Their proof can be extended to prove that the multiplication of
the countable distribution monad Dω is weakly cartesian, thus providing a variation
of our weak distributive law DP→ PD to a law DωP→ PDω.

Theorem 3.23. There is a unique monotone weak distributive law λ : DωP→ PDω

given by the expected formula: for every Φ = ∑
U∈PX ΦU · U ∈ DωPX,

λX(Φ) =
µDω

X

 ∑
U∈supp(Φ)

ΦU · ϕU
 | ∀U ∈ supp(Φ).ϕU ∈ DX and supp(ϕU) ⊆ U

Proof. The countable distribution functor Dω is known to be weakly cartesian [140,
Lemma 3.5.6]. Note also that ηDω is not weakly cartesian, using the same argument
as for ηD. To see that µDω is weakly cartesian, we can adapt the proof of Fritz and

86

Perrone [52, Proposition 6.4] to the countable case. Let f : X → Y be a function and
consider the naturality square

DωDωX DωX

DωDωY DωY

µDω
X

DωDωf Dωf

µDω
Y

(3.60)

Let ϕ ∈ DωX be defined formally as ϕ = ∑
x∈X ϕx · x, that means, ϕx ∈ [0, 1] is

the coefficient of ϕ at x, with ∑
x∈X ϕx = 1. Similarly, let Ψ ∈ DωDωY be defined

formally as Ψ = ∑
ψ∈DωY Ψψ ·ψ, where for every ψ ∈ DωY , ψ = ∑

y∈Y ψy · y. Assume
µDω
Y (Ψ) = Dωf(ϕ), that is, for all y ∈ Y ,

∑
ψ∈DωY

Ψψψy = ϕ∗y (3.61)

where ϕ∗y stands for ∑x∈f−1({y}) ϕx. For every ψ ∈ DωY , let

ψ∗ =
∑
x∈X

ϕ∗
f(x)>0

ψf(x)
ϕx
ϕ∗f(x)

· x

The construction ψ∗ can be seen as a pullback distribution of ψ with respect to f in
a sense made precise by the following lemma.

Lemma 3.24. If Ψψ > 0, then ψ∗ ∈ DωX and Dωf(ψ∗) = ψ.

Proof. Assume Ψψ > 0. To check that ψ∗ ∈ DωX it suffices to check that coefficients
sum to 1. And indeed ∑

x∈X
ϕ∗
f(x)>0

ψf(x)
ϕx
ϕ∗f(x)

=
∑
y∈Y
ϕ∗y>0

ψy = 1

The last equality holds because as Ψψ > 0, if ψy > 0 then by equation (3.61) also
ϕ∗y > 0. Now let us check that Dωf(ψ∗) = ψ.

Dωf(ψ∗) =
∑
x∈X

ϕ∗
f(x)>0

ψf(x)
ϕx
ϕ∗f(x)

· f(x) =
∑
y∈Y
ϕ∗y>0

ψy · y = ψ

Again, the last equality holds because of equation (3.61).

Now we can define
Φ =

∑
ψ∈DωY
Ψψ>0

Ψψ · ψ∗ ∈ DωDωX

87

It only remains to compute

DωDωf(Φ) =
∑

ψ∈DωY
Ψψ>0

Ψψ ·Dωf(ψ∗) =
∑

ψ∈DωY
Ψψ>0

Ψψ · ψ = Ψ

and

µDω
X (Φ) =

∑
ψ∈DωY
Ψψ>0

∑
x∈X

ϕ∗
f(x)>0

Ψψψf(x)
ϕx
ϕ∗f(x)

· x

=
∑
x∈X

ϕ∗
f(x)>0

 ∑
ψ∈DωY
Ψψ>0

Ψψψf(x)

 ϕx
ϕ∗f(x)

· x

=
∑
x∈X

ϕ∗
f(x)>0

ϕx · x by equation (3.61)

= ϕ

where the last equality holds because whenever ϕx > 0, then ϕ∗f(x) > 0. This achieves
the proof that µDω is weakly cartesian. Computation of the weak distributive law
formula starting from the weak extension is as for the case DP→ PD (Theorem 3.12).

Another possible variation, hinted in [54], is to replace the distribution monad D
with the S-left-semimodule monad S for some semiring S. Under certain conditions
on S, there is a weak distributive law of type SP → PS. This has been thoroughly
explored by Bonchi and Santamaria [22], drawing inspiration from [36] and our LICS
paper [62]. The monotone weak distributive law PfP → PPf arises as an instance of
their framework with S being the Booleans {0, 1}. Strictly speaking, our two main
examples PP → PP and DP → PD do not fall into the scope of [22] – the first one
because the outer P allows for infinite sets i.e. Boolean distributions with arbitrary
support; the second one because of the condition ∑

x ϕx = 1. However, the gist is
really close to what Bonchi and Santamaria study. In particular, the expressions given
in Lemmas 3.6 and 3.14 are related to an observation made in [22, Section 4], namely
that there are minimal distributions picking exactly one element out of every subset,
and that taking the convex closure of the set of minimal distributions generate all the
distributions of interest.

88

3.3 Powerset over Distribution

In the last section, combination of probability and non-determinism has been studied
in the direction DP→ PD. We would like to make the monads commute in the other
direction PD → DP as well. Indeed, systems resolving probabilistic choice before
non-deterministic choice are related to the notion of random set and arise in domain
theory in the work of Goubault-Larrecq [57, 59, 60]. However, it has been showed by
Keimel and Plotkin [88] that adding the obvious equation

x ∨ (y ⊕r z) = (x ∨ y)⊕r (x ∨ z) (3.62)

to the equational theory makes probabilities totally disappear. In the presence of
equation (3.62), the operator ⊕r acts as a deterministic meet ∧ and the resulting
monad is the monad of bisemilattices (X,∨,∧) with ∨ distributing over ∧ [126].
By letting go of idempotency in the algebraic theory of P, some authors recover a
composite algebraic theory [88, 39] which corresponds to the parallel multinomial
distributive law MD → DM of Example 1.37 [80]. See also [41] for a continuous
version in the category of measurable spaces. In the same manner as our monotone
DP→ PD can be regarded as a distorted restriction of the monotone MP→ PM from
Example 1.36, it could be possible to derive an interesting law PD → DP starting
from Jacobs’s parallel multinomial law. In this section we sketch some arguments
hinting that, quite the contrary, there is little hope to get a meaningful law PD→ DP.

Consider the two monotone weak distributive laws λPf : PfP → PPf and λD :
DP→ PD, respectively described in equations (3.21) and (3.37). These laws turn out

to be related to each other via the monad morphism supp : D→ Pf of Example 1.16.

Proposition 3.25. The following diagram commutes:

DP PD

PfP PPf

suppP

λD

P supp

λ
Pf

(3.63)

Proof. Let Φ ∈ DPX be defined formally as Φ = ∑
1≤i≤n pi · Ui. The bottom left

path evaluates to

(λPf ◦ suppP)X(Φ) = λ
Pf
X ({Ui | 1 ≤ i ≤ n}) (3.64)

=
V ⊆ X finite | V ⊆

⋃
1≤i≤n

Ui and ∀i.V ∩ Ui 6= ∅
 (3.65)

89

while the top right path evaluates to

(P supp ◦ λD)X(Φ) =
supp

 ∑
1≤i≤n

piϕi

 | ϕi ∈ DX, supp(ϕi) ⊆ Ui

 (3.66)

=
 ⋃

1≤i≤n
supp(ϕi) | ϕi ∈ DX, supp(ϕi) ⊆ Ui

 (3.67)

Let us prove that these two sets are equal. Let V ⊆ X be a finite subset satisfying
V ⊆ ⋃

1≤i≤n Ui and V ∩ Ui 6= ∅. Define, for all i ∈ {1, . . . , n}, the distribution
ϕi to be uniform on the finite non-empty set V ∩ Ui. Then supp(ϕi) ⊆ Ui and
V = ⋃

1≤i≤n supp(ϕi). Conversely, let ϕi be distributions such that supp(ϕi) ⊆ Ui.
The set ⋃1≤i≤n supp(ϕi) is finite, contained in ⋃

1≤i≤n Ui and its intersection with a
fixed Ui0 is precisely supp(ϕi0) which is non-empty. This completes the proof.

In the sense of Proposition 3.25, the monad morphism supp : D → Pf induces a
morphism of weak distributive laws supp : λD → λPf . This fact will impact on the
generalised determinisation constructions presented in Chapter 4. It also suggests, as
a mechanism to identify relevant laws, to connect them to laws we already have using
monad morphisms (or just natural transformations) in the style of the square (3.63).
In the upcoming examples, we will use the support monad morphism, either of type
supp : D→ P or supp : D→ Pf , to illustrate this idea. A first negative result is that
the monotone laws λP : PP → PP and λD : DP → PD described in equations (3.8)
and (3.37) are not connected by supp, because

Proposition 3.26. There is no natural transformation α : DP → PD such that

DP PD

PP PP

suppP

α

P supp

λP

(3.68)

Proof. LetX be an infinite set. The Dirac distribution 1·X ∈ DPX is mapped via the
bottom left path first to {X}, then to PX\{∅}. In particularX ∈ (λP◦suppP)X(1·X),
whereas no infinite set can be an element of (P supp ◦ α)X(1 ·X).

Similarly,

Proposition 3.27. There is no natural transformation α : PD → DP such that

PD DP

PP PP

P supp

α

suppP

λP

(3.69)

90

Proof. Follow
{

(1/n)∑1≤i≤n 1 · i | n ∈ N∗
}
∈ PDN∗ along the bottom left path. It

is mapped first to {{1, . . . , n} | n ∈ N∗}, then to the set {U ⊆ N∗ | 1 ∈ U}. Being
infinite, this set cannot be in the image of (suppP ◦ α)N∗ .

In both examples, the possibility of having infinite sets makes the connection via
supp fail. By contrast, Proposition 3.25 works well precisely because the support is
seen as a monad morphism of type D→ Pf . Can we use this mechanism to discover
a law of type PD→ DP using supp : D→ Pf? This would require a square

PD DP

PPf PfP

P supp

α

suppP

?

(3.70)

and it has already been noticed that there is no obvious (weak) distributive law
PPf → PfP. There is a quick patch to this issue: simply consider, instead, the
monotone weak distributive law λ : PfPf → PfPf at the bottom of the square, and
look for a law of type α : PfD → DPf at the top. Unfortunately, it turns out that
this situation is impossible again, but the argument is much more subtle.

Proposition 3.28. There is no natural transformation α : PfD → DPf such that

PfD DPf

PfPf PfPf

Pf supp

α

suppPf

λ

(3.71)

Proof. Assume there is such a natural transformation α. We recall that λ is given for
every U ∈ PfPfX by

λX(U) =
{
V ⊆ X | V ⊆

⋃
U and ∀U ∈ U .U ∩ V 6= ∅

}
Let X be an infinite countable set. One can define, in X, two sequences (xn)n∈N∗ and
(yn)n∈N∗ whose elements are all distinct. Then, define for any n ∈ N∗ the following
sets of distributions:

Φn =
{1

2 · xk + 1
2 · yk | k ∈ {1, . . . , n}

}
Fix n ∈ N∗. Using the hypothesis that the square (3.71) commutes, one can see that
the set suppPfX(αX(Φn)) is precisely

{U ⊆ {xk, yk | k ∈ {1, . . . , n}} | ∀k ∈ {1, . . . , n}.(xk ∈ U or yk ∈ U)} (3.72)

91

In particular, every set U that picks exactly one element out of every pair {xk, yk}
for k ∈ {1, . . . , n} is in the support of αX(Φn). There are 2n such sets. Moreover, all
of them have the same probability coefficient in the distribution αX(Φn). Indeed, for
such a set U one can define a function gU such that for all k ∈ {1, . . . , n}:

• gU(xk) is the unique element of {xk, yk} that belongs to U

• gU(yk) is the unique element of {xk, yk} that does not belong to U

The naturality square of α with respect to gU shows that the coefficient for U is the
same as the one for {xk | k ∈ {1, . . . , n}}, hence all these coefficients are equal. Let
pn ∈ (0, 1/2n) be this coefficient.

From now on, n is not fixed anymore. Let f : X → X be a function such that
f(xn) = x1 and f(yn) = y1 for all n ∈ N∗. We will now study how Φn evolves along
the following naturality diagram

PfDX DPfX

PfDX DPfX

PfDf

αX

DPff

αX

(3.73)

First compute the bottom left path:

(αX ◦ PfDf)(Φn) = αX

({1
2 · x1 + 1

2 · y1

})
(3.74)

= p1 · {x1}+ p1 · {y1}+ (1− 2p1) · {x1, y1} (3.75)

for the above-defined p1 ∈ (0, 1/2). Because of the naturality diagram, this means
that p1 is the sum of all coefficients in αX(Φn) whose associated subset is mapped
to {x1} by Pff . There is a unique such subset with non-zero coefficient, namely
{xk | k ∈ {1, . . . , n}}, and it has coefficient pn in αX(Φn). Henceforth p1 = pn. This
yields that p1 ∈ (0, 1/2n) for every n ∈ N∗, a contradiction.

In summary,

• there is no distributive law PD→ DP nor PfD→ DPf [161],

• there is a trivial weak distributive law of each of these types, arising from the
support monad morphism (Example 2.13),

• if λ is a weak distributive law of one of these types, then supp does not connect it
to the monotone weak distributive laws PP→ PP or PfPf → PfPf , respectively.

92

Chapter 4

Applications to Coalgebra

Theoretical computer science comes with a plethora of abstract models of computa-
tion that share certain common features. In automata theory, many of these models
are state-based, in the sense that they are dealing with certain sets of states, with
computations being modelled as certain sets of transitions between states. This is
the general structure, but depending on the system, one can implement various ad-
ditional features in the model, such as labels, initial states, terminal states, inputs,
outputs, or several kinds of branching behaviours like non-determinism, probabilities,
exceptions... Since the seminal work of Rutten [129, 131], it has been acknowledged
by the community that coalgebra is a good categorical umbrella that covers most
of these state-based systems – providing e.g. generic results about automata deter-
minisation [81] or minimisation [11]. The branching behaviour of such systems is
conveniently represented by monads, while other features of interest can often be
represented by plain functors. To combine effects, coalgebraists use different notions
of distributive laws – not only distributive laws between two monads as we studied
until now in this thesis, but also distributive laws between a monad and a func-
tor [77, 71, 28]. In this chapter, we study what weak distributive laws can bring
to coalgebra theory. We begin by a short exposition of coalgebraic modelling for
state-based systems, then define monad-functor (co)weak distributive laws and dis-
cuss how they fit into the coalgebraic techniques of generalised determinisation and
bisimulation up-to.

Our theoretical contribution consists in extending known results in coalgebra the-
ory in order to accommodate weak distributive laws. There are many practical con-
sequences, so the chapter will be importantly illustrated by examples. Our two main
applications, alternating automata and probabilistic automata, have long been known
as being tedious to model coalgebraically – this is a direct consequence from the fact
that there is no distributive law PP → PP nor DP → PD. The coalgebraic study

93

of alternating automata – modelled by double covariant powerset – had either to use
workarounds in other categories [8] or to make use of an elaborated framework [90] of
so-called forgetful logics. Recently, authors of [23, 24] successfully managed to model
probabilistic automata. They achieved this by redoing all constructions manually,
using the ad hoc notion of quasi-lax lifting to mitigate the absence of distributive
law.

More precisely, we aim at explaining the origin of the following results.

• Alternating automata can be coalgebraically turned into non-deterministic au-
tomata in a way that preserves the semantics [90, Example 6.8] i.e. the language
of a state in the input alternating automaton coincides with the language of the
corresponding state in the output non-deterministic automaton.

• Probabilistic automata can be coalgebraically turned into belief-state trans-
formers in a way that preserves the semantics [23, Theorem 28] i.e. distribution
bisimilarity in the input probabilistic automaton coincides with bisimilarity in
the output belief-state transformer.

• Bisimulation up-to convex hull is a sound up-to technique with respect to the
latter transformation [23, Propositions 30 and 31].

The main application of this chapter is the following:

Using the monotone weak distributive laws PP → PP and PD → DP, we are
able to derive systematically these results for both alternating automata and
probabilistic automata.

In other words, our work unveils the deep origin of some known constructions, by
pinpointing that those constructions are akin to the usual ones, when one replaces a
distributive law with a weak distributive law.

4.1 Coalgebraic Modelling

Let A be a fixed set seen as an alphabet. In this chapter, we will model labels
of different kinds of state-based systems using the reader functor R on Set from
Example 1.11, defined as RX = XA and Rf(h) = λa.f(h(a)). For the sake of
readability, the reader functor will be simply denoted by R = (−)A. Note also that
we will use the word automaton loosely, allowing for infinite state spaces.

94

Let F be an endofunctor on a category C. An F -coalgebra – or just coalgebra
when the context is clear – is a pair (X, c) consisting of an object X of C and a
morphism c : X → FX. A morphism of F -coalgebras f : (X, c) → (Y, d) is a
morphism f : X → Y in C such that the following square commutes

X Y

FX FY

f

c d

Ff

(4.1)

The category of F -coalgebras and their morphisms is denoted by Coalg(F). There is a
functor UF : Coalg(F)→ C that forgets the coalgebra structure as UF (X, c) = X and
UFf = f . Table 4.1 displays a few examples of coalgebras in Set. For some detailed
examples, see [132] and also [141] for a survey of coalgebras with a probabilistic
flavour. A more complete account of coalgebra theory can be found in [79].

Table 4.1: Examples of coalgebras

functor F F -coalgebras
P directed graphs
D Markov chains

2×−A deterministic automata
2× (P−)A non-deterministic automata

2× (PP−)A alternating automata
(PD−)A probabilistic automata

Coalgebras in Set can be interpreted as modelling several kinds of state-based
transition systems. For an F -coalgebra (X, c), X is seen as the set of states of
the system, and c : X → FX is seen as a transition function which specifies how
the system evolves step by step. Notably, the coalgebraic modelling of state-based
systems does not directly deal with initial states – these can be implemented later,
e.g. when considering semantics. Let us give a brief overview of one specific case
using the standard example of non-deterministic automata. Coalgebraically, they are
F -coalgebras for the functor F = 2× (P−)A, defined by

FX = 2× (PX)A (4.2)
Ff = id2×(Pf)A (4.3)

where 2 stands for the set of Booleans 2 = {0, 1}. That means a non-deterministic
automaton (X, c) consists of a state space X and a function c : X → 2 × (PX)A

which can be conveniently decomposed as:

95

• an output function c∗ : X → 2, interpreted as specifying if a state x ∈ X is
terminal (c∗(x) = 1) or not (c∗(x) = 0);

• for each letter a ∈ A, a transition function ca : X → PX, interpreted as
specifying, for any pair of states (x, y) ∈ X2, if x can directly access y (y ∈ ca(x),
also denoted by x a→ y) or not (y /∈ ca(x)).

Example 4.1. The table on the left defines a non-deterministic automaton with
state space X = {x0, x1, x2} and alphabet A = {a, b}. This automaton is displayed
on the right using the standard graphical representation. Note that terminal states
are underlined.

state x c∗(x) ca(x) cb(x)
x0 0 {x1, x2} {x0}
x1 0 ∅ {x1, x2}
x2 1 ∅ ∅

x0

x1 x2

a a

b

b

b

(4.4)

Remark 4.2. If for every letter a and every state x, there is exactly one transition
of the form x

a→?, the automaton is actually deterministic. Formally, deterministic
automata are coalgebras for the functor 2× (−)A.

One can see that the behaviour of a non-deterministic automaton is fully encap-
sulated into the function c : X → 2× (PX)A. A more detailed analysis of the functor
F = 2× (P−)A shows that it is the combination of two functors, namely the machine
functor 2× (−)A and the functor P from the powerset monad P. This is a common
pattern in coalgebraic modelling, where systems are often of the shape

X → GTX (4.5)

or
X → TGX (4.6)

for some functor G modelling the purely machine-like behaviour of the system (e.g.
output, termination, labels) and some monad T modelling the internal branching
type of the system (e.g. non-determinism, probabilities, exception handling). It is
interesting to ask how a functor G and a monad T can interact, calling the need for
a notion of monad-functor distributive law.

96

4.2 Implementing Weak Distributive Laws

Let T, S be monads and F be an endofunctor on C. One can define distributive laws
of type TF → FT to be natural transformations satisfying only the two diagrams
related to T, and similarly for distributive laws of type FS → SF . Of course, by
forgetting additionally the unit diagram, one can define (co)weak versions of these
monad-functor distributive laws. The situation is summed up in Table 4.2.

Table 4.2: Axioms required from ((co)weak) distributive laws

TS→ ST TF → FT FS→ ST
axiom plain weak coweak plain weak plain coweak
(ηS) X X × X ×
(µS) X X X X X
(ηT) X × X X ×
(µT) X X X X X

In the continuation of Theorem 1.42, there is a bijective correspondence between
distributive laws of type TF → FT and liftings of F to EM(T), and between dis-
tributive laws of type FS→ SF and extensions of F to Kl(S). In the same manner,
Theorems 2.5 and 2.29 can be easily adapted to the monad-functor case.

Proposition 4.3. If idempotents split in C, there is a bijective correspondence be-
tween

• weak distributive laws of type TF → FT

• weak liftings of F to EM(T) i.e. functors F : EM(T) → EM(T) along with
natural π : FUT → UTF and ι : UTF → FUT such that π ◦ ι = 1

If idempotents split in Kl(S), there is a bijective correspondence between

• coweak distributive laws of type FS→ SF

• coweak extensions of F to Kl(S) i.e. functors F : Kl(S) → Kl(S) along with
natural π : FSF 9 FFS and ι : FFS 9 FSF such that π • ι = 1.

Proof. One can use the same constructions as in Theorem 2.5 and 2.29, and prove all
needed equations in the same way as in these theorems.

What about iterated monad-functor distributive laws? Let R, S, T be monads
on C and F , G, H be endofunctors on C. Keeping our requirement that whenever
a composite monad appears, this monad has to come from a plain distributive law,

97

there are basically four different families of iterated monad-functor distributive laws.
Namely, there are

• Laws of shape (S ◦ T)F → F (S ◦ T)

• Laws of shape T(FG)→ (FG)T

• Laws of shape H(R ◦ S)→ (R ◦ S)H

• Laws of shape (GH)R→ R(GH)

Furthermore, these iterated laws can be plain, weak or coweak, depending of the
input data. In the continuation of Table 2.2 presenting possible combinations for
monad-monad laws, we provide in Table 4.3 an overview of possible combinations for
monad-functor laws.
Table 4.3: Iterated monad-functor (co)weak distributive laws. Given data in the first
four columns, one can obtain a law as in the last column

TS→ ST SF → FS TF → FT (S ◦ T)F → F (S ◦ T)
plain plain plain Y-B plain
plain weak weak Y-B weak

TG→ GT TF → FT T(FG)→ (FG)T
plain plain plain
weak weak weak

HS→ SH SR→ RS HR→ RH H(R ◦ S)→ (R ◦ S)H
plain plain plain Y-B plain

coweak plain coweak Y-B coweak
GR→ RG HR→ RH (GH)R→ R(GH)

plain plain plain
coweak coweak coweak

We are especially interested in the T(FG)→ (FG)T section of Table 4.3, because
these laws are relevant with respect to generalised determinisation. In particular,
note the following examples.

Example 4.4. Let λ be the unique monotone weak distributive law of type PP→ PP
described in Chapter 3 and τ : PR → RP be the distributive law of Example 1.33.
Forgetting one of the monad structures, these are a weak λ : PP → PP and a plain
τ : P(−A) → (P−)A. Without needing any Yang-Baxter diagram, we can combine
them to form a weak distributive law P(P−)A → (PP−)A.

Example 4.5. Similarly, from the unique monotone weak distributive law λ : DP→
PD of Chapter 3 and the distributive law τ : DR → RD of Example 1.34, we can

directly form a weak distributive law D(P−)A → (PD−)A.

98

4.3 Generalised Determinisation

Determinisation, also called powerset construction, is a well-known procedure that
builds, out of any non-deterministic automaton c : X → 2× (PX)A, a deterministic
automaton c# : PX → 2 × (PX)A with state space PX. The determinised c# is
defined, for every state U ∈ PX, by

• c#
∗(U) = max{c∗(x) | x ∈ U}

• for every letter a ∈ A, c#
a(U) = ⋃

x∈U ca(x)

Example 4.6. Consider the non-deterministic automaton c with state space X =
{x0, x1} over the alphabet A = {a, b} depicted below.

state x c∗(x) ca(x) cb(x)
x0 0 {x0} {x0, x1}
x1 1 ∅ ∅

x0

x1

a,b

b (4.7)

Its determinisation is the following deterministic automaton with state space PX.

state U c#
∗(U) c#

a(U) c#
b(U)

∅ 0 ∅ ∅
{x0} 0 {x0} {x0, x1}
{x1} 1 ∅ ∅
{x0, x1} 1 {x0} {x0, x1}

{x0} {x1}

{x0, x1} ∅

b

a

a,ba

b
a,b

(4.8)

It turns out that this construction can be captured coalgebraically using a distribu-
tive law [138, 139, 81]. Concretely, there is a join-semilattice structure on 2× (PX)A

arising from a distributive law, and the universal morphism from the free semilattice
PX making the following diagram commute is c#.

X 2× (PX)A

PX

ηP
X

c

c#
(4.9)

This situation of turning non-deterministic automata into deterministic automata
is abstracted into a functor

Coalg(FT)→ Coalg(F)

99

where F generalises 2 × (−)A and T generalises P. We give a presentation of this
so-called generalised determinisation, or generalised powerset construction, close to
the general account of [81]. In the context of coalgebras, saying that T lifts to a
functor T : Coalg(FT)→ Coalg(F) means that the following square commutes:

Coalg(FT) Coalg(F)

C C

T

UFT UF

T

The following proposition is actually stronger. It explains how the lifted functor also
factors through EM(T), as hinted in diagram (4.9).

Proposition 4.7 ([81]). Let λ : TF → FT be a distributive law and F be the
corresponding lifting of F to EM(T). Then one can lift the Eilenberg-Moore functors
FT : C → EM(T) and UT : EM(T) → C to categories of coalgebras as follows: there
are functors F̂T, ÛT such that the following diagram commutes

Coalg(FT) Coalg(F) Coalg(F)

C EM(T) C
UFT

F̂T ÛT

UF UF

FT UT

(4.10)

Proof. Recall that T = UTFT. For any FT -coalgebra (X, c), define F̂T(X, c) to be

FTX FTFTX = FTFUTFTX = FTUTFFTX FFTXFTc
εT
FFTX (4.11)

and F̂Tf = FTf for any FT -coalgebra morphism f . This yields a functor F̂T such
that UF F̂T = FTUFT . Now, let ((X, x), d) be an F -coalgebra in EM(T). This means
(X, x) is a T-algebra and d : (X, x) → F (X, x) is a T-algebra morphism. Define
ÛT((X, x), d) to be

X = UT(X, x) UTF (X, x) = FUT(X, x) = FXUTd (4.12)

and ÛTf = UTf for any F -coalgebra morphism f . This yields a functor ÛT such that
UF ÛT = UTUF .

The functor ÛTF̂T as defined in the proof of Proposition 4.7 performs generalised
determinisation by transforming an FT -coalgebra

X FTXc (4.13)

100

into the F -coalgebra

TX TFTX FTTX FTXTc λTX FµT
X (4.14)

Equation (4.14) is the action of the T-algebra from equation (4.11). One could
perform this construction functorially with any natural transformation λ : TF → FT ,
but when λ : TF → FT is a distributive law, Proposition 4.7 ensures that this
procedure is sound, in the sense that it factors through EM(T) (see also [81]).

By instantiating the generalised determinisation procedure with F = 2 × (−)A,
T = P, and the distributive law λ : P(2×−A)→ 2× (P−)A defined by

λX(U) = (max{b | (b, h) ∈ U}, λa.{h(a) | (b, h) ∈ U}) (4.15)

one retrieves the usual determinisation (X, c) 7→ (PX, c#) of non-deterministic au-
tomata. We will keep using the notation (−)# to denote generalised determinisation
for further examples, i.e. (−)# = ÛTF̂T.

As may be guessed by looking at the proof of Proposition 4.7, generalised deter-
minisation can be adapted without much effort to the case when λ : TF → FT is
only a weak distributive law.

Proposition 4.8. Assume idempotents split in C. Let λ : TF → FT be a weak
distributive law and F be the corresponding weak lifting of F to EM(T), with π :
FUT → UTF and ι : UTF → FUT. Then there are functors F̂T, ÛT such that the

following diagram commutes

Coalg(FT) Coalg(F) Coalg(F)

C EM(T) C
UFT

F̂T ÛT

UF UF

FT UT

(4.16)

Proof. Just define F̂T(X, c) to be

FTX FTFTX FTUTFFTX FFTXFTc FTπ
FTX

εT
FFTX (4.17)

and ÛT((X, x), d) to be

X = UT(X, x) UTF (X, x) FUT(X, x) = FXUTd ι(X,x) (4.18)

101

The determinisation functor can be computed with the same expression as for
plain distributive laws:

Proposition 4.9. Under the assumptions of Proposition 4.8, the functor ÛTF̂T maps
an FT -coalgebra

X FTXc (4.19)

to the F -coalgebra

TX TFTX FTTX FTXTc λTX FµT
X (4.20)

Proof. Expressions of F̂T and ÛT show that ÛTF̂T(X, c) is

TX TFTX TUTFFTX UTFFTX FTXTc Tπ
FTX

UTεT
FFTX ι

FT (4.21)

The following commutative diagram suffices to prove that F -coalgebras described
in (4.20) and (4.21) coincide.

TFT TFT TUTFFT

TFTT

TUTFFTT nat

UTFFTT UTFFT

FTT FT

λT

TFηTT

TπFT

UTεTFFTTπFTT

TFUTεTFT

def
UTεTFFTT

TUTFεTFT

ιFTT

UTFεTFT

ιFT

FµT=FUTεTFT

(4.22)

The left pentagon commutes because of the construction of a weak distributive law
with respect to a weak lifting (see equation (2.7)). The nat-marked square commutes
by naturality of εT : FTUT → 1. The top triangle commutes by the monad property
µT ◦ ηTT = 1. Finally, the two unmarked squares commute by naturality of ι and
π.

A further remark is that the first step of this stronger generalised determinisation
can itself factor through another interesting category of coalgebras. Recall that any
weak distributive law of type TS → ST yields a weak composite monad S •◦ T with
functor S•◦T = UTSFT. In the same way, any weak distributive law of type TF → FT
yields a weak composite functor F •◦ T = UTFFT, and

102

Proposition 4.10. Under the assumptions of Proposition 4.9, the functor F̂T factors
through Coalg(F •◦ T) as in

Coalg(FT) Coalg(F •◦ T) Coalg(F)

C C EM(T)

F̂T

id

FT

FT

(4.23)

Proof. The functor Coalg(FT) → Coalg(F •◦ T) simply maps (X, c) to (X, πFTX ◦ c).
The functor Coalg(F •◦ T)→ Coalg(F) maps (X, d) to (FTX, εT

FFTX
◦ FTd).

To sum up, generalised determinisation with respect to a weak distributive law
can be decomposed into three main steps as in

Coalg(FT) Coalg(F •◦ T) Coalg(F) Coalg(F)

(X, c) (X, c†) ((TX, µT
X), c#) (TX, c#)

(4.24)

The well-established terminology generalised determinisation can be confusing in
the case where F features some kind of non-determinism, because then the coalgebra
TX → FTX is not deterministic in the classical sense. Similar problems arise with
the terminology generalised powerset construction when there is no actual powerset.
Notably, this terminology clash is annoying for our two main applications, which
are alternating automata and probabilistic automata. In [81], authors use the name
non-determinisation to denote that they are performing a generalised determinisation
that does not output a deterministic system. We find this terminology still confusing.
In examples, we will use the non-standard terminology algebraic expansion to denote
generalised determinisation. This terminology has two advantages:

• it does not mention determinism nor powerset at all;

• it insists on the fact that whereas the procedure simplifies the branching type
of the system, the counterpart is to ensure an algebraic structure on the new
expanded state space.

103

4.3.1 Alternating Automata

Alternating state-based systems have been introduced in [33]. Their main feature,
called alternation, is to combine two sorts of non-deterministic choice. Some states
are existential, meaning that the system transitions non-deterministically into at least
one accessible state, as in standard non-deterministic automata. Some states are uni-
versal, meaning that the system transitions non-deterministically into all accessible
states. In the coalgebraic practice [90, 8], these two sorts of choice are hidden into
the transitions and structured into two distincts layers. Formally, alternating au-
tomata are coalgebras for the functor 2× (PP−)A. The absence of a distributive law
PP→ PP makes difficult the coalgebraic study of alternating automata, and several
algebraic expansions have been devised. None of them is fully canonical, either be-
cause the intended semantics is not respected [81], because there is a detour outside
of the category of sets [8], or because the procedure does not rely on a distributive
law [90].

Language. Let c = 〈c∗, (ca)a∈A〉 : X → 2× (PPX)A be an alternating automaton
with output denoted by c∗ : X → 2 and transitions denoted by ca : X → PPX. The
standard semantics of c is a map J−K : X → 2A∗ mapping a state x, seen as the initial
state, to the language it generates. This map is defined inductively by

JxK(ε) = c∗(x) (4.25)
JxK(aw) =

∨
V ∈ca(x)

∧
y∈V

JyK(w) where a ∈ A,w ∈ A∗ (4.26)

In words, a state x accepts the empty word iff x is a final state, and x accepts a word
aw iff x has at least one a-accessible subset U such that every state in U accepts w.

Outputs were temporarily included in the presentation to provide semantic in-
sights. With this picture in mind, and for the sake of simplicity, we forget about
outputs to concentrate on the branching structure. From now on, alternating au-
tomata are (PP−)A coalgebras. Let c : X → (PPX)A be an alternating automaton.
The assertion V ∈ ca(x) will be also denoted by x a→ V .

Example 4.11. The table on the left defines an alternating automaton with states
X = {x0, x1, x2, x3} and alphabet A = {a, b}. Equivalently, this automaton is rep-
resented on the right. Each a-labelled arrow points to a symbol • representing a set

104

V ∈ ca(x), whose elements are pointed by dashed arrows.

state x ca(x) cb(x)
x0 {{x1}, {x2, x3}} {{x1}}
x1 {{x2, x3}} ∅
x2 ∅ {{x0}}
x3 ∅ {{x1}}

x0

•

x1

x3

•

x2

• •

•

a

b

a a

b b

(4.27)

It is apparent that PP is a composite branching type using twice the powerset
monad P, the outer being interpreted disjunctively, and the inner conjunctively. Ac-
cording to Proposition 4.9, the algebraic expansion of an alternating automaton with
respect to some (weak or plain) distributive law λ : P(P−)A → (PP−)A can be
directly computed by the formula

c# = PX P ((PPX)A) (PPPX)A (PPX)APc λPX (PµP
X)A

(4.28)

We can list three different algebraic expansion procedures for alternating automata
using three different laws, respectively using:

(0) the weak distributive law λ(0) from Example 2.38, defined by

λ
(0)
X (U) = λa.

⋃
h∈U

h(a)
 (4.29)

The algebraic expansion of c via λ(0) is expressed as

c#
a(U) =

{ ⋃
x∈U

⋃
ca(x)

}
(4.30)

which means that c# has exactly one a-transition for every letter a ∈ A, i.e., it
actually is a deterministic automaton on PX. The unique transition out of a
state U is given by

U
a7→ {states y such that x a→ V for some x ∈ U and some V 3 y}

From every subset, the deterministic automaton c# transitions to the set of
all states directly visible by c from elements of this subset. This algebraic ex-
pansion amounts to the procedure consisting in (i) collapsing the two layers

105

of non-determinism to get a non-deterministic automaton and (ii) perform-
ing a standard determinisation. A lot of information is lost – this is a direct
consequence of the fact that the weak lifting of λ(0) is trivial in the sense of
Proposition 2.12 and Example 2.14.

(1) the plain distributive law λ(1) from Example 2.39, defined by

λ
(1)
X (U) = λa.

{x} | x ∈ ⋃
h∈U

h(a)
 (4.31)

Note that this law is a coweak distributive law between monads P and (R ◦P),
but it becomes a plain distributive law between the monad P and the functor
(P−)A. The algebraic expansion of c via λ(1) can be expressed as

c#
a(U) =

⋃
x∈U

ca(x) (4.32)

or otherwise said, we have

(U a→ V in c#) if and only if (x a→ V in c, for some x ∈ U)

From every subset, the non-deterministic automaton c# collects all transitions
that can be performed in c from an element of this subset. Under the natural
isomorphism P (A×X) ' (PX)A, the distributive law λ(1) can be rewritten as
having type

PP (A×−)→ P (A× P−) (4.33)

A little computation shows that this corresponds exactly to the law of Jacobs,
Silva and Sokolova in [81, Section 5.3] – and indeed, their algebraic expansion
of alternating automata coincides with ours.

(2) the weak distributive law λ(2) from Example 4.4, defined by

λ
(2)
X (U) = λa.

V ⊆ X | V ⊆
⋃
h∈U

h(a) and ∀h ∈ U .V ∩ h(a) 6= ∅
 (4.34)

The determinisation of c via λ(2) is expressed as

c#
a(U) =

{⋃
V | V ⊆

⋃
x∈U

ca(x) and ∀x ∈ U.V ∩ ca(x) 6= ∅
}

(4.35)

More concretely, transitions of c# of the form U
a→ (something) are generated

by the following process. For every x ∈ U , pick any non-zero number of V s

106

such that x a→ V in c, and let Vx be the union of these selected V s. Then U a→⋃
x∈U Vx. This transformation of alternating automata into non-deterministic

automata was already considered by Klin and Rot in [90], where the crucial
natural transformation PP → PP was merely identified as a non-distributive
law. They stated

We do not know how to model precisely the standard transformation of
alternating automata into nondeterministic ones in our framework. [90, p.22]

Now we can argue that Klin and Rot algebraic expansion should actually be the
standard transformation of alternating automata into nondeterministic ones, as
it comes directly from the unique monotone weak distributive law PP → PP.
This gives an intuition about why in [90] the semantics is preserved, and we
will see in Section 4.4 that it also unlocks the use of bisimulations up-to.

Example 4.12. Let us display these three algebraic expansions for the alternat-
ing automaton from Example 4.11. Only the part accessible from the state {x0} is
represented.

x0

•

x1

x3

•

x2

• •

•

a

b

a a

b b

{x0}

{x1} {x2, x3}

λ(1)

a,b

a
a

b

b

{x0}

{x1, x2, x3} {x0, x1} {x1}

{x2, x3} ∅

λ(0)

a b

a

b

a b

a
b

a

b

a,b

{x0}

{x1} {x2, x3} {x1, x2, x3}

{x0, x1}

λ(2)

a,b a
a

a

b a
a

107

The expansion via λ(0) is not really interesting in itself. Graphically, it amounts to
considering all dashed arrows as non-dashed arrows, then computing the determinised
automaton. A more fruitful idea is to compare the expansions using λ(1) and λ(2).
Starting from {x0} , the two resulting non-deterministic automata have, at first sight,
a similar behaviour. But already, the λ(2) one has a transition {x0}

a→ {x1, x2, x3}
obtained from the union of the transitions x0

a→ {x1} and x0
a→ {x2, x3} in the

alternating automaton, whereas the λ(1) one does not. Another interesting difference
arises when looking at what the transitions x2

b→ {x0} and x3
b→ {x1} become. Using

λ(1), they give rise to two different transitions {x2, x3}
b→ {x0} and {x2, x3}

b→ {x1}.
Using λ(2), they are combined into a single transition {x2, x3}

b→ {x0, x1}, which is
arguably a more desirable behaviour. Indeed, a good notion of composite transition
should intuitively mix both the starting states and the ending states.

When using outputs – and appropriate natural transformations making them in-
teract with the rest of the coalgebra – the λ(2) algebraic expansion gives rise to the
intended semantics J−K, as described in [90, Examples 4.5 and 6.8]. This is not the
case for the λ(0) and λ(1) algebraic expansions, for reasons that we detail now.

A logical choice. In light of the two-fold purpose of P in the semantics of alternat-
ing automata, we provide an interpretation of our three laws PP → PP in terms of
propositional logic. When interpreted disjunctively (resp. conjunctively), the power-
set will be denoted dy P∨ (resp. P∧). Let X be a set whose elements are considered
as propositional variables. As visible in equation (4.26), an element U ∈ P∨P∧X can
be thought of as a formula in disjunctive normal form∨

U∈U

∧
x∈U

x (4.36)

while an element U ∈ P∧P∨X can be thought of as a formula in conjunctive normal
form ∧

U∈U

∨
x∈U

x (4.37)

These will be simply denoted by ∨∧U and ∧∨U . What is expected of a law λ :
PP → PP is, in the context of alternating automata, to transform a conjunctive

normal form into a disjunctive normal form:

λX : P∧P∨X → P∨P∧X (4.38)

Let us examine how λ(0), λ(1) and λ(2) carry out this task. Equivalence of propositional
formulas is denoted by ≡.

108

• First note that the natural transformation idPP does not satisfy any of the dis-
tributive law axioms. In logical terms, it swaps conjunctions and disjunctions:

∧∨
U 7→

∨∧
U (4.39)

• The trivial weak distributive law underlying λ(0) maps U to {⋃U}. In logical
terms, and in compliance with Proposition 2.12, the disjunctive interpretation
P∨ disappears:

∧∨
U 7→

∨∧{⋃
U
}
≡
∧(⋃

U
)
≡
∧∧

U (4.40)

• The trivial coweak distributive law underlying λ(1) maps U to {{x} | x ∈ ⋃U}.
In logical terms, and in compliance with Proposition 2.31, the conjunctive in-
terpretation P∧ disappears:

∧∨
U 7→

∨∧{
{x} | x ∈

⋃
U
}
≡
∨(⋃

U
)
≡
∨∨

U (4.41)

• The monotone weak distributive law underlying λ(2) maps U to{
V ⊆

⋃
U | ∀U ∈ U , U ∩ V 6= ∅

}
In logical terms, a short calculation shows that

∧∨
U 7→

∨∧{
V ⊆

⋃
U | ∀U ∈ U , U ∩ V 6= ∅

}
≡
∧∨

U (4.42)

(⇒) If the disjunctive normal form is satisfied, then there is a V ⊆ ⋃U intersecting
every element of U , such that all variables in V are satisfied. For every U ∈ U ,
we can pick in V some satisfied xU ∈ U , so the conjunctive normal form is
satisfied.

(⇐) If the conjunctive normal form is satisfied, we can pick a satisfied xU ∈ U for
every U ∈ U . Then the set V = {xU | U ∈ U} witnesses that the disjunctive
normal form is satisfied.

Therefore, the laws λ(0) and λ(1) alterate the truth value of the input formula, whereas
the law λ(2) transforms the input conjunctive normal form into an equivalent disjunc-
tive normal form. This is concrete evidence that the law λ(2) is the logical choice for
devising an algebraic expansion of alternating automata.

109

4.3.2 Probabilistic Automata

There are many notions of automata involving probabilities, for which we refer to the
survey [141]. Following [23], we define probabilistic automata as (PD−)A coalgebras.
These are also known under the name of simple Segala systems [141, 81]. Semantically,
both their languages [150] and their bisimulations [23, 24] have been studied – we focus
only on the latter, in the next section.

Let c : X → (PDX)A be a probabilistic automaton. For any letter a ∈ A, the
transition map ca : X → PDX assigns to every state x some (finitely supported)
distributions on states. These systems combine non-determinism – in the sense that
a state can transition to any number of distributions – and probability.

Example 4.13. By assigning a probability to every dashed arrow in Example 4.11,
we obtain the following example of a probabilistic automaton.

state x ca(x) cb(x)
x0 {1 · x1,

1
2 · x2 + 1

2 · x3} {1 · x1}
x1 {1

2 · x2 + 1
2 · x3} ∅

x2 ∅ {1 · x0}
x3 ∅ {1 · x1}

x0

•

x1

x3

•

x2

• •

•

1a

b

a a

b

1
2

1
2

b

1

1 1

(4.43)

According to Proposition 4.9, the algebraic expansion of a probabilistic automaton
with respect to some (weak or plain) distributive law λ : D(P−)A → (PD−)A can be
directly computed by the formula

c# = DX D((PDX)A) (PDDX)A (PDX)ADc λDX (PµD
X)A

(4.44)

Let us consider the two following algebraic expansions of probabilistic automata,
with

(1∗) the plain distributive law λ(1∗) from Example 2.41, defined by

λ
(1∗)
X (Φ) = λa.

1 · x | x ∈
⋃

h∈suppΦ
h(a)

 (4.45)

110

This law is coweak between monads D and R ◦ P, but plain between D and
(P−)A. The algebraic expansion of c via λ(1∗) can be expressed as

c#
a(ϕ) =

⋃
x∈supp(ϕ)

ca(x) (4.46)

or in other words

(ϕ a→ ψ in c#) if and only if (x a→ ψ in c, for some x ∈ supp(ϕ))

Once again, under the natural isomorphism P (A×X) ' (PX)A, one can rewrite
λ(1∗) as having type

DP (A×−)→ P (A×D−) (4.47)

and see that the obtained expression, as well as the resulting algebraic expan-
sion, are the same as for [81, Section 5.2]. This algebraic expansion originates
in non-coalgebraic form in [37].

(2∗) the weak distributive law λ(2∗) from Example 4.5, defined by

λ
(2∗)
X (Φ) = λa.

µD
X

 ∑
h∈suppΦ

Φh · ϕh
 | ∀h ∈ suppΦ.supp(ϕh) ⊆ h(a)

 (4.48)

The algebraic expansion of c via λ(2∗) is expressed as

c#
a(ϕ) =

µD
X

 ∑
x∈suppϕ

ϕx · µD
X(Φx)

 | supp(Φx) ⊆ ca(x)
 (4.49)

which means that transitions of shape ϕ a→? in c# are generated by the follow-
ing process. For every x ∈ supp(ϕ), let θx be in the convex closure of the set of
distributions θ such that x a→ θ in c. Then ϕ

a→ ∑
x∈supp(ϕ) ϕxθ

x. The result-
ing non-deterministic automaton c# coincides with the belief-state transformer
obtained by Bonchi, Silva and Sokolova in [23].

Example 4.14. Let us compute both algebraic expansions on the probabilistic au-
tomaton of Example 4.13. The algebraic expansion with respect to λ(1∗) consists of a
mere copy of the λ(1) one for alternating automata.

1 · x0 λ(1∗)

1 · x1
1
2 · x2 + 1

2 · x3

a,b

a
a

b

b

(4.50)

111

The λ(2∗) algebraic expansion makes more sense, because it takes into account the
wide range of convex transitions allowed by non-determinism. Intuitively, in the state
1 · x0 and when reading letter a, the system can non-deterministically choose to view
1 · x0 as the combination (1 − t) · x0 + t · x0, with the first x0 transitioning towards
1 · x1 and the second x0 transitioning towards 1

2 · x2 + 1
2 · x3. The (1 · x0)-accessible

portion of the expanded automaton looks like this:

1 · x1 λ(2∗)

1 · x0

1
2 · x2 + 1

2 · x3

1
2 · x0 + 1

2 · x1

1
2 · x1 + 1

4 · x2 + 1
4 · x3

a

a

b
a

a

a
b

(4.51)

Here, dashed arcs between two transitions ϕ a→ θ1 and ϕ
a→ θ2 denote all transitions

into the convex closure of {θ1, θ2}. For instance, starting from 1 · x0 and reading an
a, the system can transition to any distribution θt = (1 − t) · x1 + t

2 · x2 + t
2 · x3

for t ∈ [0, 1]. Only the two extremal cases θ0 = 1 · x1 and θ1 = 1
2 · x2 + 1

2 · x3 are
displayed. There is no a transition out of θt for t ∈ (0, 1), because in the starting
probabilistic automaton there is no letter labelling simultaneously some transitions
out of x1, x2 and x3. Now, consider the state ϕ = 1

2 · x0 + 1
2 · x1 reading letter a. As

1 ·x0 can transition to any θt and 1 ·x1 can only transition to θ1, the composite ϕ can
transition to any distribution of the form 1

2θt + 1
2θ1. Again, only extremal transitions

are represented.

Remark 4.15. As can be seen in the examples, both following procedures output
the same system:

• forgetting probabilities of a probabilistic automaton and algebraically expanding
the resulting alternating automaton via λ(i)

• algebraically expanding a probabilistic automaton via λ(i∗) and forgetting prob-
abilities in states of the resulting non-deterministic automaton

This phenomenon happens for i ∈ {1, 2} and is a direct consequence of supp acting
like a (weak) distributive law morphism λ(i∗) → λ(i) (see Proposition 3.25).

112

Related Work. In his PhD thesis [112], Louis Parlant manages to derive the λ(2)

and λ(2∗) algebraic expansions using algebraic methods in the context of monoidal
monads. He shows that the need for restricting to specific subsets stems from equation
preservation, which is required to form a monad on Eilenberg-Moore algebras. His
work constitutes a first step in acknowledging that these algebraic expansions are
meaningful on a categorical level [112, Section 6.3.3]. Our results confirm this vision
by putting distributive laws again into the picture. Indeed, these algebraic expansions
are canonical in the sense that they arise from the unique monotone weak distributive
law of a given type.

4.4 Bisimulations Up-To

Generalised determinisation (= algebraic expansion) of a coalgebra X → FTX has
been described as sound because it factors through the category of T-algebras. From a
semantic point of view, a powerful consequence is that it allows using up-to techniques
for bisimulations. This section will introduce a coalgebraic notion of bisimulation, the
framework of bisimulations up-to, and present how distributive laws can play a role in
proving compatibility of up-to techniques. Next, we will remark that weak distributive
laws can play the same role. As for the previous section, concepts will be illustrated
by examples of (non-)deterministic, alternating and probabilistic automata.

There are several coalgebraic notions of bisimulation [143]. To keep things simple,
we will stick to an elementary definition in Set. Intuitively, a bisimulation is a relation
on a given set such that if a pair (u, v) belongs to the relation, then u and v behave the
same. The desired notion of behaviour has to be specified by a parameter coalgebra
describing how u and v can evolve. Technically, for a coalgebra with state space
X, a bisimulation is a postfixed point of a well-chosen monotone operator on the
complete lattice of relations P (X×X). We choose to define bisimulations in Hermida-
Jacobs style, that is, using a monotone operator derived from relation lifting [72, 130].
See [143] for an overview of how this relates, e.g., to kernel bisimulations used in [23]
for probabilistic automata.

Definition 4.16 (Relation lifting). Let F : Set→ Set be a functor. For any relation
R ⊆ X × Y , the relation lifting of R (with respect to F) is defined by

FR = {(u, v) ∈ FX × FY | ∃t ∈ FR.Fπ1(t) = u and Fπ2(t) = v} (4.52)

113

The notation F is not a coincidence, because we already have seen this expression
before. Equation (4.52) is identical to equation (2.34) of Chapter 2. Using Theo-
rem 2.21 we can see that this F defines a Rel endofunctor precisely when F is weakly
cartesian – in which case F is an extension corresponding to the unique monotone dis-
tributive law of type FP→ PF . For the moment, we do not require F to be weakly
cartesian, but this condition will naturally come up in the subsequent developments.

Definition 4.17 (Bisimulation, bisimilarity). Let F be a Set endofunctor and (X, c)
be an F -coalgebra. The expression

b(R) = (c× c)−1(FR) (4.53)

defines a monotone operator b : P (X × X) → P (X × X). A bisimulation is a
relation R ∈ P (X × X) such that R ⊆ b(R). Unravelling definitions, a bisim-
ulation is a relation R such that for all (u, v) ∈ R, there is t ∈ FR such that
(Fπ1(t), Fπ2(t)) = (c(u), c(v)). By application of the Knaster-Tarski theorem, there
is a greatest bisimulation called bisimilarity, which is the union of all bisimulations.
Two states u, v ∈ X are bisimilar, notation u ∼ cv, if there is a bisimulation R such
that (u, v) ∈ R.

This definition makes explicit the coinduction proof principle. To prove that two
states behave the same (in the sense of bisimilarity), it suffices to exhibit a bisim-
ulation that relates them. The coinduction proof principle can be formally stated
as

(u, v) ∈ R ⊆ b(R)⇒ u ∼ cv (4.54)

Example 4.18. A bisimulation for a deterministic automaton c : X → 2 ×XA is a
relation R ⊆ X ×X such that for every (u, v) ∈ R,

• u is terminal if and only if v is terminal

• for all a ∈ A, if u a→ u′ and v
a→ v′ then (u′, v′) ∈ R

Consider the (infinite) deterministic automaton with alphabet A = {a} and state
space X = {xe, xo} ∪ {xn | n ∈ N∗} depicted below

xo xe x1 x2 x3 x4 · · ·
a

a

a a a a (4.55)

Then {(xo, x2n−1) | n ∈ N∗} ∪ {(xe, x2n) | n ∈ N∗} is a bisimulation, so that xo and
x1 are bisimilar.

114

Example 4.19. A bisimulation for a non-deterministic automaton c : X → 2 ×
(PX)A is a relation R ⊆ X ×X such that for every (u, v) ∈ R,

• u is terminal if and only if v is terminal

• for all a ∈ A,

– if u a→ u′ then there is v′ such that v a→ v′ and (u′, v′) ∈ R

– if v a→ v′ then there is u′ such that u a→ u′ and (u′, v′) ∈ R

Consider the (infinite) non-deterministic automaton with alphabet A = {a} and state
space X = {x0, x∞} ∪ {yn | n ∈ N} depicted below

x∞ y1 y2 y3 · · ·

x0 y0

a

a

a

a a

a

a

a (4.56)

Then {(x0, y0)} ∪ {(x∞, yn) | n ∈ N∗} is a bisimulation and e.g. x∞ and y1 are
bisimilar.

Being a bisimulation is a strong condition: every pair in the bisimulation possibly
forces many other pairs to be contained in it as well. As a result, bisimulations often
contain a lot of elements, so it can be resource-consuming to find a bisimulation relat-
ing two states, as well as to algorithmically check that this is indeed a bisimulation.
A possible way to deal with this issue is to use up-to techniques. Such techniques
have been introduced specifically to enhance the coinduction proof principle and have
attracted a lot of attention in the last decade [122, 124, 21, 127, 19]. Bisimulations
detect when two states of an automaton have the same behaviour, whereas bisimula-
tions up-to detect that two states have the same behaviour by proving that they are
related up-to some sound function.

Definition 4.20 (Bisimulation up-to). Let (X, c) be an F -coalgebra. A monotone
map f : P (X ×X)→ P (X ×X) is

• sound if for every R ∈ P (X ×X), R ⊆ (b ◦ f)(R)⇒ R ⊆ ∼ c

• compatible if for every R ∈ P (X ×X), f ◦ b ⊆ b ◦ f

A bisimulation up-to f is a R ∈ P (X ×X) such that R ⊆ (b ◦ f)(R).

115

Recall that the monotone map b depends on c and has been defined in Equa-
tion (4.53).

Every sound f yields a coinduction up-to f proof principle

(u, v) ∈ R ⊆ (b ◦ f)(R)⇒ u ∼ cv (4.57)

but unfortunately, sound maps are not closed under composition. However, com-
patibility entails soundness, and compatible functions enjoy very good compositional
properties.

Proposition 4.21 ([123, 20, 128]). For any F -coalgebra (X, c), the following mono-
tone maps are compatible.

• id : R 7→ R

• refl : R 7→ {(u, u) | u ∈ X}

• sym : R 7→ {(v, u) | (u, v) ∈ R}

• trans : R 7→ {(u,w) | ∃v.(u, v) ∈ R and (v, w) ∈ R} – if F is weakly cartesian

• f ◦ g, for f and g compatible

• f ∪ g, for f and g compatible

• fω i.e. ⋃n∈N fn, for f compatible

Intuitively, refl implements reflexive closure, sym implements symmetric closure,
and trans implements a step towards transitive closure. Note that compatibility of
trans is subject to the requirement that F is weakly cartesian. This makes sense
because transitivity is the same as relational composition, and we know that F be-
haves well with respect to relational composition precisely when it is weakly cartesian
(Theorem 2.21, see also [128, Theorem 3] and [20]).

The last base block we need is contextual closure, standing for closure under the
algebraic operations of some algebraic structure.

Definition 4.22 (Contextual closure). Let (X, x) be a T -algebra, that is, a morphism
x : TX → X. Contextual closure with respect to x is a monotone map contx :
P (X ×X)→ P (X ×X) defined by

contx(R) = {((x ◦ Tπ1)(t), (x ◦ Tπ2)(t)) | t ∈ TR} (4.58)

116

Contextual closure is compatible, provided the coalgebraic structure (X, c) and
the algebraic structure (X, x) interact well.

Proposition 4.23 ([128, Theorem 4]). Let (X, c) be an F -coalgebra, (X, x) be a
T -algebra and λ : TF → FT be a natural transformation. We say (X, x, c) is a
λ-bialgebra if the following diagram commutes.

TFX FTX

TX FX

X

λX

Fx

x

Tc

c

(4.59)

If (X, x, c) is a λ-bialgebra, then contx is compatible.

We can now define the up-to technique we are interested in, congruence closure.

Definition 4.24. Let (X, x) be a T -algebra. Congruence closure is a monotone map
congrx : P (X ×X)→ P (X ×X) defined by

congrx = (refl ∪ sym ∪ trans ∪ contx)ω (4.60)

According to Propositions 4.21 and 4.23, we have

Proposition 4.25 ([128, Theorem 4]). Assume F is weakly cartesian. Then for any
λ-bialgebra (X, x, c), congrx is compatible.

Up-to congruence is a particularly well-suited technique for systems on which one
can perform generalised determinisation, because of the following result.

Proposition 4.26. Let λ : TF → FT be a weak distributive law and (−)# be the
corresponding generalised determinisation procedure. Then, for any FT -coalgebra
(X, c), the triple (TX, µT

X , c
#) is a λ-bialgebra.

Proof. The proof consists of a simple diagram chase:

TFTX FTTX

TFTTX FTTTX

TTX TTFTX TFTX FTTX FTX

TX

λTX

nat
FµT

Xdef

TFµT
X

λTTX

(µT) axiom FµT
TX

FTµT
X

assocTc#

µT
X

TTc

TλTX

µT
FTX λTX

defnat

FµT
X

c#
Tc

(4.61)

117

Proposition 4.26 is folklore in the case where λ is a plain distributive law, and
the proof would look the same. To clarify, our contribution is to combine three
observations:

• generalised determinisation can still be performed with a weak distributive law
(Proposition 4.8)

• the formula for (−)# remains the same (Proposition 4.9)

• the standard proof of Proposition 4.26, where λ is supposed to be a distributive
law, does not use the (ηT) axiom

To sum up, the main result of this section can be formulated as follows – examples
of applications will be given just beyond.

Theorem 4.27. Let F be an endofunctor and T be a monad on Set, along with a
weak distributive law λ : TF → FT. Any FT -coalgebra (X, c) yields an F -coalgebra
(TX, c#) for which contµT

X
is a compatible. If F is weakly cartesian, then congrµT

X
is

compatible as well.

Proof. By Proposition 4.26, (TX, µT
X , c

#) is a λ-bialgebra, so contµT
X

is compatible by
Proposition 4.23. When F is weakly cartesian, Proposition 4.25 gives compatibility
of congrµT

X
.

Before diving into more complex systems like alternating automata and proba-
bilistic automata, we present a basic example of how up-to techniques can accelerate
computation of bisimulations. This example is based on the work of Bonchi and
Pous [21]. By exploiting bisimulations up-to congruence, they devised a Hopcroft-
Karp-like algorithm – implicitly using a distributive law – capable of checking equiv-
alence of non-deterministic automata. In many cases, their algorithm is faster by an
order of magnitude than other cutting-edge algorithms [21, Table 2].

Example 4.28. Let us see what means applying Theorem 4.27 with the weakly carte-
sian functor F = 2 × (−)A, T = P and λX(U) = (max{b | (b, h) ∈ U}, λa.{h(a) |
(b, h) ∈ U}) as in equation (4.15). As we have explained before, the generalised
determinisation of a non-deterministic automaton with respect to λ is the standard
determinisation procedure, also called powerset construction. In the resulting de-
terministic automaton, congrµP

X
(congruence closure with respect to the algebraic

118

operation of union) is a compatible, therefore sound, up-to technique. Thus, any two
states whose pair (U, V) is contained in a bisimulation up-to congruence are bisimilar
in the sense of deterministic automata (see Example 4.18). Consider the following
non-deterministic automaton c:

x2

x0 x1 y

a

a

a

a

a (4.62)

The determinised of c via λ is c#, partially represented below:

{x0} {x1, x2} {x0, x1} {x0, x1, x2} {y}a a a

a a

(4.63)

One can easily see that {x0} ∼ c#{y}. Actually, the smallest bisimulation containing
({x0}, {y}) has cardinal 4.

R = {({x0}, {y}), ({x1, x2}, {y}), ({x0, x1}, {y}), ({x0, x1, x2}, {y})} (4.64)

However, to prove {x0} ∼ c#{y} it suffices to check that the (smaller) relation

R0 = {({x0}, {y}), ({x1, x2}, {y})} (4.65)

is a bisimulation up-to congrµP
X

, as follows:

• for ({x0}, {y}): {x0}
a→ {x1, x2} and {y} a→ {y}, and we have that the pair

({x1, x2}, {y}) ∈ congrµP
X

(R0) because it already is in R0

• for ({x1, x2}, {y}): {x1, x2}
a→ {x0, x1} and {y} a→ {y}, and we have that the

pair ({x0, x1}, {y}) ∈ congrµP
X

(R0) because, denoting congrµP
X

(R0) by the infix
symbol ≡,

{x0, x1} = {x0} ∪ {x1}

≡ {y} ∪ {x1} because ({x0}, {y}) ∈ R0

≡ {x1, x2} ∪ {x1} because ({x1, x2}, {y}) ∈ R0

= {x1, x2}

≡ {y} because ({x1, x2}, {y}) ∈ R0

For any algebraic expansion c 7→ c# using a weak distributive law, three levels of
bisimilarity semantics arise. We designate them by the following terminology:

119

• Strong bisimilarity. Two states x, y in X are strongly bisimilar if x ∼ cy i.e.
strong bisimilarity is the standard notion of bisimilarity for c.

• Combination bisimilarity. Two states x, y in X are combination bisimilar if
x ∼ c†y, where c† is the intermediate coalgebra obtained in Proposition 4.10.

• Algebraic bisimilarity. Two states x, y in X are algebraically bisimilar if they
give rise to bisimilar states in the algebraic expansion i.e. if ηT

X(x) ∼ c#η
T
X(y).

Combination bisimilarity emerges precisely because of the weakness of the distributive
law. Intuitively, this semantics copes with the fact that the transition structure of c
is not stable enough by adding the possibility to combine transitions in c†. The two
main examples are

• for alternating automata and λ(2), one can combine any non-zero number of
transitions x a→ Ui in c into a unified transition x

a→ ⋃
i Ui in c†

• for probabilistic automata and λ(2∗), this is convex bisimilarity [105], obtained
by combining any finite (non-zero) number of transitions x a→ θi in c into any
convex combination x

a→ ∑
i piθi in c†

and a degenerate case is

• for alternating automata and λ(0), one must combine all possible transitions
x

a→ Ui in c into a unique transition x
a→ ⋃

i Ui in c†.

For probabilistic automata, these three notions of bisimilarity have been gathered
in [23] under the respective names strong probabilistic bisimilarity, convex bisimilarity
and distribution bisimilarity. Bonchi et al. remarked that they indeed arise from
some kind of algebraic expansion, and stated about bisimulation up-to convex hull
for distribution (= algebraic) bisimilarity:

Unfortunately, the lack of a suitable distributive law [153] makes it impossible to
reuse the abstract results in [20]. Fortunately, we can redo all the proofs by adapting

the theory in [124] to probabilistic automata.

By exhibiting the underlying weak distributive law λ(2∗) and using Theorem 4.27,
we are actually able to uniformly get compatibility of up-to context/congruence and
check more easily algebraic bisimilarity.

120

Remark 4.29. For the plain distributive laws λ(1) and λ(1∗), obtained respectively
using trivial coweak distributive laws PP → PP and DP → PD, strong bisimilar-
ity coincides with algebraic bisimilarity (for probabilistic automata this was already
stated in a footnote of [23]).

Let us give examples of bisimulations up-to using (non trivial) weak distributive
laws. We consider the λ(2) algebraic expansion of alternating automata and the λ(2∗)

algebraic expansion of probabilistic automata. By Theorem 4.27, context closure is
compatible. Furthermore, the functor (P−)A is weakly cartesian by composition of
weakly cartesian functors, so in both cases congruence closure is compatible as well.

Example 4.30. Let c be the following alternating automaton with alphabet A = {a}
and state space X = {x0, x1, x2, y0}.

x0

• • y0

x1 • x2 •

•

a

aa

a

a

(4.66)

Its λ(2) algebraic expansion c# is

{x0} {x1, x2} {x0, x1} {y0}

{x0, x1, x2}

a a

a

a

a

a

a

a

a (4.67)

Let us prove that {x0} ∼ c#{y0} using coinduction. A first way is to define a bisim-
ulation R ⊆ PX × PX containing ({x0}, {y0}). The smallest such R is

{({x0}, {y0}), ({x1, x2}, {y0}), ({x0, x1}, {y0}), ({x0, x1, x2}, {y0})} (4.68)

Another option is to define a bisimulation up-to congruence containing ({x0}, {y0}).
For alternating automata, as we factor through EM(P), context closure is given for
any R ⊆ PX × PX by

contµP
X

(R) =

 ⋃

(U,V)∈S
U,

⋃
(U,V)∈S

V

 | S ⊆ R

 (4.69)

121

Define the relation
R0 = {({x0}, {y0}), ({x1, x2}, {y0})} (4.70)

Let us denote congrµP
X

(R0) by the infix operator ≡. To check that R0 is a bisimulation
up-to congruence, we must prove that for all (U, V) ∈ R0,

• for every U a→ U ′ in c#, there is V ′ such that V a→ V ′ and U ′ ≡ V ′

• for every V a→ V ′ in c#, there is U ′ such that U a→ U ′ and U ′ ≡ V ′

Verifications for the pair ({x0}, {y0}) are immediate. For the pair ({x1, x2}, {y0}), we
must check three things.

• Check that {x1, x2} ≡ {y0}. This is immediate because ({x1, x2}, {y0}) ∈ R0.

• Check that {x0, x1} ≡ {y0}. We have

{x0, x1} = {x0} ∪ {x1}

≡ {y0} ∪ {x1} because ({x0}, {y0}) ∈ R0

≡ {x1, x2} ∪ {x1} because ({x1, x2}, {y0}) ∈ R0

= {x1, x2}

≡ {y0} because ({x1, x2}, {y0}) ∈ R0

• Check that {x0, x1, x2} ≡ {y0}. This is obtained from the previous results

{x0, x1, x2} = {x0, x1} ∪ {x1, x2}

≡ {y0} ∪ {x1, x2} because {x0, x1} ≡ {y0}

≡ {y0} ∪ {y0} because {x1, x2} ≡ {y0}

= {y0}

Hence R0 is a bisimulation up-to congruence and {x0} ∼ c#{y0}.

Remark 4.31. In [90], Klin and Rot expressed the following concern about the fact
that in the λ(2) algebraic expansion of alternating automata, c#

a(U) has to be closed
under non-empty unions:

The reachable part of the nondeterministic automaton may be larger than the one
obtained by the standard procedure. As a result, although our determinization is

correct, it may be less efficient than the standard one. [90, p.22]

122

By the standard one, Klin and Rot mean the same procedure, without closing c#
a(U)

under non-empty unions. As we have seen in Example 4.30, bisimulations up-to
congruence can be applied to accelerate checks of algebraic bisimilarity. A further
remark is that verifications concerning composite states (e.g. {x0, x1, x2}) are fully
determined by verifications concerning states present in the so-called standard de-
terminisation (here, {x0} and {x1, x2}). Thus, additionally from being categorically
canonical, the λ(2) algebraic expansion is as efficient as the standard one for what
concerns algebraic bisimilarity.

Example 4.32. Let c be the following probabilistic automaton with alphabet A =
{a} and state space X = {x0, x1, x2, y0}.

x0 y0

• • • • •

x1 x2

a a
a

1
2

1
2

2
3

1
3
1
3

2
3

1
2

1
2

1

a a

(4.71)

Its λ(2∗) algebraic expansion c# is a non-deterministic automaton with state space
DX. In c#, the state 1 · y0 has just one a-labelled loop and the state 1 · x0 generates
the following tree, both vertically and horizontally infinite:

· · ·

2
3 · x1 + 1

3 · x2
1
2 · x0 + 1

3 · x1 + 1
6 · x2 · · ·

1 · x0

1
3 · x1 + 2

3 · x2
1
2 · x0 + 1

6 · x1 + 1
3 · x2 · · ·

· · ·

a

a

a

a

a

a

a

a

(4.72)

Let us prove that 1 · x0 ∼ c#1 · y0 using coinduction. A first way is to define a bisim-
ulation R ⊆ DX ×DX containing (1 · x0, 1 · y0). The smallest such R consists of all
pairs (ϕ, 1 · y0) where ϕ ranges over the (1 · x0) accessible part of c#, partially rep-
resented above. Then, any bisimulation is infinite (and even uncountable). Another
option is to define a bisimulation up-to congruence R0 containing (1 · x0, 1 · y0). For

123

probabilistic automata, factorisation through EM(D) yields a context closure given
for all R ⊆ DX ×DX by

contµD
X

(R) =
{(

n∑
i=1

piϕi,
n∑
i=1

piψi

)
| n ∈ N, pi > 0,

n∑
i=1

pi = 1,∀i.(ϕi, ψi) ∈ R
}

(4.73)

Define for all α ∈ [0, 1] the distribution ϕα = 2−α
3 · x1 + 1+α

3 · x2. These are all the
distributions accessible from 1 · x0 in one step. Now define

R0 = {(1 · x0, 1 · y0), (ϕ0, 1 · y0), (ϕ1, 1 · y0)} (4.74)

Let us denote congrµD
X

(R0) by the infix operator ≡ again and check that R0 is a
bisimulation up-to congruence, i.e. prove that for all (ϕ, ψ) ∈ R0

• for every ϕ a→ ϕ′ in c#, there is ψ′ such that ψ a→ ψ′ and ϕ′ ≡ ψ′

• for every ψ a→ ψ′ in c#, there is ϕ′ such that ϕ a→ ϕ′ and ϕ′ ≡ ψ′

Consider, first, the pair (1 · x0, 1 · y0). Here we need to check that for every α ∈ [0, 1],
ϕα ≡ 1 · y0. As (ϕ0, 1 · y0) ∈ R0 and (ϕ1, 1 · y0) ∈ R0, the result is immediate for
α ∈ {0, 1}. Now, for convex combinations ϕα with α ∈ (0, 1), we have

ϕα = (1− α)ϕ0 + αϕ1

≡ (1− α)(1 · y0) + αϕ1 because (ϕ0, 1 · y0) ∈ R0

≡ (1− α)(1 · y0) + α(1 · y0) because (ϕ1, 1 · y0) ∈ R0

= 1 · y0

We could have performed both ≡ steps at once using only context closure. Though
congruence closure is not formally needed here, it allows to split the reasoning in
several simple steps, resulting in more local / compositional proofs.

By symmetry, to end the proof it suffices to consider the pair (ϕ0, 1 · y0) of R0.
We must check that

1
2 · x0 + 1

3 · x1 + 1
6 · x2 ≡ 1 · y0 (4.75)

and indeed
1
2 · x0 + 1

3 · x1 + 1
6 · x2 = 1

2 · x0 + 1
2ϕ0

≡ 1
2 · y0 + 1

2ϕ0 because (1 · x0, 1 · y0) ∈ R0

≡ 1
2 · y0 + 1

2 · y0 because (ϕ0, 1 · y0) ∈ R0

= 1 · y0

so that R0 is a bisimulation up-to congruence and 1 · x0 ∼ c#1 · y0.

124

Remark 4.33. It was shown by Bonchi et al [23] that for a finite probabilistic au-
tomaton c, there always exists a finite bisimulation up-to congruence witnessing alge-
braic bisimilarity, despite the cardinality explosion resulting from algebraic expansion.

125

Chapter 5

Interlude

Although the theory of distributive laws can be used in any category, in the preceding
chapters we focused mainly on examples living in the category Set. For a first exposi-
tion, the category of sets is indeed convenient: it is intuitive to grasp, contains many
interesting monads, and is widely used in computer science, especially in coalgebra
theory. A crucial advantage of Set is also the well-established correspondence between
monads and algebraic theories. However, the semantics of programming languages
commonly relies on categories that are richer than Set. They include categories re-
lated to dcpos in domain theory, or the recently introduced category of quasi-Borel
spaces in probabilistic programming [74]. Combination of effects in these more gen-
eral contexts is a problem that regularly attracts the attention of computer scientists,
notably combination of non-deterministic choice and probabilistic choice [88, 59].

In the last chapters of this thesis, we find it interesting to start applying the
theory of weak distributive laws in categories other than Set. We do not directly aim
at the categories mentioned above, but will rather try, as a first approach, to explore
categories that are similar to Set. The motivating question is

Are there some weak distributive laws beyond Set?

Of course, the answer is positive, because by Theorem 2.11 any monad morphism
yields a trivial weak distributive law. So a better motivating question is

Are there some non-trivial weak distributive laws beyond Set?

Theorem 2.22 is the only general result at our disposal for generating non-trivial
weak distributive laws in Set. Its gist is to extend canonically one of the monads
to a category of relations. To generate weak distributive laws similarly in another
category C, we can guess that this category should possess a good notion of relation.
Such categories are known as regular categories. In a nutshell, any regular category C

126

yields a well-behaved category with the same objects as in C but where morphisms can
be regarded as relations between objects of C. Functors and natural transformations
that are nearly cartesian – a weakening of being weakly cartesian – can be seen to
have relational extensions.

This short chapter introduces regular categories and explains how Theorem 2.22
generalises to this framework. The chapter in itself contains no original results. It is
more of a compilation of well-established facts in the literature, and an introduction
to the last two chapters of the thesis. The principal reference here is the seminal
paper from Carboni, Kelly and Wood [32] – see also [29]. We will then proceed to
our primary goal:

• In Chapter 6, we will examine toposes. They are exactly the regular categories
in which relational extensions are just extensions with respect to the Kleisli
category of some notion of powerset monad. In particular, Set falls into the
scope of Chapter 6.

• In Chapter 7, we work in the regular category KHaus of compact Hausdorff
spaces and continuous functions, which is not a topos. A bit of further work will
be required to establish the link between relational extensions and extensions
in a Kleisli category.

Chapters 5, 6 and 7 together are based on the ICALP paper Powerset-like monads
weakly distribute over themselves in toposes and compact Hausdorff spaces [63].

5.1 Regular Categories

Regular categories have been introduced by Barr [4] and have several equivalent defini-
tions. We shall follow the approach of [32]. To state a definition of regular categories,
we need to recall the notion of subobject. Monomorphisms and epimorphisms will be
respectively denoted by the standard symbols ↪→ and �.

Subobjects. Let X be an object of a category. Two monomorphisms m : U ↪→ X,
n : V ↪→ X are called isomorphic if there is an isomorphism k : U → V such that
m = n ◦ k. An isomorphism class of monomorphisms into X is called a subobject of
X. In the sequel, for simplicity we will not always distinguish between a subobject
and its isomorphism class. For two subobjects m : U ↪→ X, n : V ↪→ X of a same
object X, say m ≤ n when there exists a morphism h : U → V such that m = n ◦ h.
This defines the subobject order on the class of subobjects of X.

127

Definition 5.1 (Regular category). A regular category is a category C satisfying the
following conditions:

• C is finitely complete i.e. has all finite limits

• for each morphism f : X → Y , there is a smallest subobject i : U ↪→ Y such
that f = i ◦ e for some e : X → U

• the pullback of a strong epimorphism is a strong epimorphism

For clarity, we recall that the notion of epimorphism has many variations. A
morphism e : X → Y in C is

• an epimorphism when for all f , g : Y → Z, if f ◦ e = g ◦ e then f = g

• a strong epimorphism when for any monomorphism i : X ′ ↪→ Y ′ and any
morphisms f : X → X ′, g : Y → Y ′ such that g ◦ e = i ◦ f , there is a morphism
h : Y → X ′ such that h ◦ e = f and i ◦ h = g

• a regular epimorphism when there are f , g : Z → X such that e is the co-
equaliser of f and g

• a split epimorphism when there exists i : Y → X satisfying e ◦ i = idY .

In Set, epimorphisms are just surjective functions and all the above notions coin-
cide. But in general – see e.g. [1] – one only has the chain of implications

split epimorphism ⇒ regular epimorphism ⇒ strong epimorphism ⇒ epimorphism

In a regular category, regular epimorphisms and strong epimorphisms coincide – there-
fore we will only use the terminology regular epimorphism.

In the rest of this chapter, C is assumed to be regular. In a factorisation f = i ◦ e,
if i is the smallest subobject as in the second condition of Definition 5.1, then the
morphism e is a regular epimorphism [32, §1.3]. Consequently, any morphism f has
a factorisation f = i ◦ e where i is a monomorphism and e is a regular epimorphism.
The monomorphism obtained as the isomorphism class of i is called the image of f .
Note also that

Lemma 5.2. In a regular category C, every idempotent splits.

Proof. Let f : X → X such that f ◦ f = f . Write f = i ◦ e for some monomorphism
i : U ↪→ X and some regular epimorphism e : X � U . Then i ◦ e ◦ i ◦ e = i ◦ e. As i is
mono and e is epi, this implies e◦ i = idU , which exhibits f as a split idempotent.

128

Being finitely complete, C has all pullbacks. In this context, weak pullbacks are
squares such that the universal morphism into the pullback is a split epimorphism.
Requiring a regular epimorphism instead leads to the (weaker) notion of a near pull-
back [137, Proposition 1.5.2]. Explicitly,

Definition 5.3 (Near pullback). For any two morphisms f : X → Z and g : Y → Z

in C, a square
N Y

X Z

n1

n2

g

f

(5.1)

is a near pullback if the universal morphism into the pullback h : N → P is a regular
epimorphism.

N

P Y

X Z

n1

n2

g

f

p1

p2

h

(5.2)

This induces some notions of nearly cartesian functor and natural transformation.

Definition 5.4 (Nearly cartesian functor). A functor F : C → C is nearly cartesian
if it maps pullbacks to near pullbacks.

Definition 5.5 (Nearly cartesian natural transformation). A natural transformation
α : F → G is nearly cartesian if its naturality squares are near pullbacks.

5.2 Relations in a Regular Category

Following [32, § 1.4], every regular category C induces a category of objects and
relations denoted by Rel(C).

• The objects of Rel(C) are the objects of C.

• A morphism r : X Y in Rel(C) is a subobject of X × Y in C and is called a
relation. Equivalently, a relation is a jointly monic span i.e. a pair of morphisms
r1 : R→ X, r2 : R→ Y in C such that 〈r1, r2〉 : R ↪→ X×Y is a monomorphism.
In this view a relation can be represented by

R

X Y

r1 r2 (5.3)

129

• Composition of relations is performed using pullbacks. More precisely, in the
presence of two relations r : X Y and s : Y Z given by monomorphisms
〈r1, r2〉 : R ↪→ X ×Y and 〈s1, s2〉 : S ↪→ Y ×X, consider the following pullback

Θ

R S

X Y Z

θ1 θ2

r1 r2 s1 s2

(5.4)

The relational composition s · r : X Z is defined as being the image of the
morphism θ = 〈r1 ◦ θ1, s2 ◦ θ2〉 : Θ→ X × Z.

• The identity relation X X is the diagonal monomorphism 〈idX , idX〉 : X ↪→
X ×X.

The notation distinguishes morphisms in Rel(C), and the notation · distin-
guishes composition in Rel(C). There are two important functors exposing the under-
lying structure of Rel(C):

• The graph functor G : C → Rel(C) is the identity on objects and maps a mor-
phism f : X → Y to the relation 〈idX , f〉 : X Y .

• The transpose functor (−)◦ : Rel(C)op → Rel(C) is the identity on objects and
maps a relation 〈r1, r2〉 : X Y to the relation 〈r2, r1〉 : Y X. Note that it
is a contravariant involution: r◦◦ = r.

These functors emphasise properties that are expected of every well-behaved cate-
gory of relations. The graph functor stresses that every morphism can be canonically
identified as a relation between its domain and its codomain. The transpose functor
establishes a symmetry between domains and codomains of relations. Graph and
transpose are intertwined via the fundamental decomposition equation

r = Gr2 · Gr1
◦ (5.5)

which holds for every relation r = 〈r1, r2〉. Most of the time, the symbol G will
be omitted for more readability. For example, the decomposition equation can be
rewritten r = r2 · r1

◦, and the functoriality of G is just g ◦ f = g · f .
A further feature is the order on relations, which is inherited from the subobject

order. Let r : X Y and s : X Y be relations, given by monomorphisms

130

r : R ↪→ X × Y and s : S ↪→ X × Y . We recall that saying r ≤ s when there exists
h : R → S such that r = s ◦ h defines an order on the collection of relations of type
X Y . This order is compatible with composition in the sense of equation (2.27).
If C is well-powered (i.e. the collection of subobjects of X is always a set), this makes
Rel(C) into a Pos-enriched category. Even without well-poweredness, we can still
define a functor F : Rel(C)→ Rel(C) to be locally monotone if r ≤ s⇒ Fr ≤ Fs.

5.3 Relational Extensions

Functors and natural transformations in C can sometimes be extended to relations.
The situation is similar to Theorem 2.21, with the graph functor G : C → Rel(C)
playing the role of the traditional graph functor FP : Set→ Rel. The following theo-
rem is obtained by reformulating and merging some results from [32, § 4.3] and [137,
Corollary 1.5.7]. It will be the basis of subsequent developments in Chapters 6 and 7.

Theorem 5.6 ([32, 137]). Let F , G : C → C be endofunctors on a regular category
C and α : F → G be a natural transformations.

• There is a locally monotone functor Rel(F) : Rel(C) → Rel(C) such that GF =
Rel(F)G if and only if F preserves regular epimorphisms and is nearly cartesian.

In this case, such a locally monotone Rel(F) is unique.

• Assume F and G satisfy the previous point. There is a natural transformation
Rel(α) : Rel(F) → Rel(G) such that Gα = Rel(α)G if and only if α is nearly
cartesian. In this case, such a Rel(α) is unique.

Proof (sketch). We provide a short proof of the uniqueness of Rel(F), which appeared
in [43, §5.3.11]. First observe [32, § 1.2] that for every f : X → Y , f ◦ is the unique
relation Y X such that idX ≤ f ◦ · f and f · f ◦ ≤ idY . For any locally monotone
functor H : Rel(C)→ Rel(C) and any f : X → Y in C

idHX = H(idX) ≤ H(f ◦ · f) = H(f ◦) ·Hf
Hf ·H(f ◦) = H(f · f ◦) ≤ H(idY) = idHY

hence (Hf)◦ = H(f ◦). Now assume Rel(F) is a locally monotone functor extending
F in the sense that GF = Rel(F)G. On objects this forces Rel(F)X = FX. On any
morphism f : X → Y seen as a relation f : X Y we have Rel(F)f = Ff . Now for
an arbitrary relation r = 〈r1, r2〉 : X Y , use the decomposition r = r2 · r1

◦ to get

Rel(F)(r) = Rel(F)r2 · Rel(F)(r1
◦) = Rel(F)r2 · (Rel(F)r1)◦ = Fr2 · (Fr1)◦ (5.6)

131

The fact that the expression (5.6) defines a locally monotone functor exactly when
F preserves regular epimorphisms and is nearly cartesian is explicitly proved in [32,
§4.3]. For the result about natural transformations, there is at most one such Rel(α)
because Gα = Rel(α)G entails Rel(α)X = αX . The fact that this expression defines a
natural transformation between Rel(C) endofunctors if and only if α is nearly cartesian
is proved in [137, Corollary 1.5.7].

From the proof of Theorem 5.6 we can retain that if it exists, the relational
extension of a functor F : C→ C is given on a morphism r = 〈r1, r2〉 by

Rel(F)(r) = Fr2 · Fr1
◦ (5.7)

Obviously uniqueness also entails that if functors Rel(F) and Rel(G) exist, then
Rel(GF) exists as well and Rel(GF) = Rel(G)Rel(F) (see also [32, § 4.4])

To conclude this chapter, we show how the notions presented here instantiate with
C = Set.

Example 5.7. The category Set is regular, and

• a subobject of a set X is just a subset U ⊆ X

• the image of a function f : X → Y is just the usual direct image f(X)

• as regular epimorphisms coincide with split epimorphisms, near pullbacks are
just weak pullbacks, therefore

• a nearly cartesian functor is a functor that maps pullbacks to weak pullbacks,
i.e. weakly preserves pullbacks – a property known to be equivalent to being
weakly cartesian in Set [70, Lemma 2.6]

• a nearly cartesian natural transformation is just a weakly cartesian natural
transformation

• the category Rel(Set) is just the usual category Rel of sets and relations

• the graph functor is the free functor FP into Kl(P), computing the graph f 7→
{(x, f(x)) | x ∈ X} and the transpose functor computes the usual converse of
a relation i.e. R 7→ {(y, x) | (x, y) ∈ R}

• Theorem 5.6 is just Theorem 2.21 and equation (5.7) is just equation (2.34)
recalled below for a relation R ⊆ X × Y :

FR = {(u, v) ∈ FX × FY | ∃t ∈ FR.Fπ1(t) = u and Fπ2(t) = v}

132

Chapter 6

Toposes

As seen in the previous chapter, every regular category yields a category of relations
and a way to canonically extend functors and natural transformations, provided a
few conditions are met. This is materialised by Theorem 5.6, which is the direct gen-
eralisation of Theorem 2.21 from the Set case. The general theorem does not involve
Kleisli categories anymore because the free relation functor FP has been replaced with
an abstract graph functor G unrelated to monads. Consequently, the close connection
of this result with the theory of distributive laws is seemingly lost. One may ask

When does G = FS for some monad S on C?

It turns out that the answer is: exactly when C is a topos. By a topos, we mean an
elementary topos in the sense of Lawvere-Tierney. Toposes may be seen as a cate-
gorical generalisation of sets: they comprise notions akin to subsets, characteristic
functions, powerset, preimage, direct image, intersections, unions, singletons, and of
course, relations. In particular, using the constructions which generalise powerset,
direct image, singleton and union, we can recover a formal generalisation of the pow-
erset monad in any topos, denoted by E. The graph functor then coincides with the
free Kleisli functor of this monad, as in Set. Following the literature, we will simply
call Ethe powerset monad of the topos. In this chapter, we introduce toposes and
their powerset monad to state a generalised extension theorem in Kleisli-style again –
our approach being close to the one of Oege de Moor [43, 44, 17]. As a direct conse-
quence, we formulate a criterion to detect monotone (weak) distributive laws of type
T E→ ET. Our main contribution consists in generalising the Set result that there
is a unique monotone weak distributive law of type PP→ PP to the case EE→ EE.
More precisely, this law is proved to be a distributive law if and only if the topos is
degenerate.

133

6.1 Preliminaries

Standard textbooks about toposes include [5, 95, 104, 83]. The introduction presented
here is based on the book of Borceux [30].

Cartesian closed category. An exponential object is an object XY with a mor-
phism ev : XY ×Y → X such that for any object Z and any morphism e : Z×Y → X,
there exists a unique morphism u : Z → XY such that

Z × Y

XY × Y X

eu×idY

ev

(6.1)

In the above picture, the morphisms e and u are called exponential transposes of
each other. A cartesian closed category is a category C with finite products and
exponentials.

Subobject classifier. Let C be a finitely complete category. Denote its terminal
object by 1. For every object X, the unique morphism into the terminal object is
denoted by !X : X → 1. A subobject classifier is a pair comprising an object Ω of C
and a monomorphism true : 1 ↪→ Ω such that for every subobject m : A ↪→ X there
is a unique morphism χm : X → Ω such that the following diagram is a pullback

A 1

X Ω

m

!A

true

χm

(6.2)

The morphism χm is called the characteristic morphism of m.

Definition 6.1 (Topos). A topos is a category C such that

• C is finitely complete, i.e. has all finite limits

• C is cartesian closed

• C has a subobject classifier

Example 6.2 (Sets). The category Set is a topos. The subobject classifier is Ω =
{0, 1}, with true : 1 ↪→ {0, 1} picking 1. The characteristic morphism of a subset
A ⊆ X is its characteristic function χA : X → {0, 1} defined by χA(x) = 1 if and
only if x ∈ A. The category FinSet of finite sets and functions is also a topos.

134

Example 6.3 (Graphs [156]). The category Graph is a topos. In this category, an
object consists of a set of nodes N , a set of arcs A, and two maps A → N precising
respectively the source and the target of every arc. Morphisms are the usual graph
homomorphisms i.e. functions on nodes and edges that preserve sources and targets.
The subobject classifier Ω of Graph is the graph

⊥N >N⊥A

t

(s,t)

s

>A

(6.3)

with true : 1 ↪→ Ω picking the node >N and the arrow >A. As explained in [156],
given a subgraph H ⊆ G, the characteristic morphism χH : G → Ω maps to >N
exactly the nodes of H and to >A exactly the arcs of H. Arcs not in H but for which
source/target/both are in H are mapped respectively to s/t/(s, t).

Example 6.4 (Presheaves). For any small category C, the functor category SetCop is
a topos called the presheaf topos on C. Its subobject classifier Ω is the presheaf that
sends an object X of C to its sieves, that is, the set of subobjects of the presheaf
HomC(−, X). The morphism true : 1 → Ω is the natural transformation that picks
the maximal sieve. The categories Set and Graph are examples of presheaf toposes,
based respectively on the small categories ∗ and N A

s

t
(where identities are

omitted).

Example 6.5 (Nominal sets [117, 115]). Let σN be the group of all bijective functions
π : N→ N such that {n ∈ N | π(n) 6= n} is finite. A nominal set is a set X equipped
with a σN-action · : σN×X → X such that every element x ∈ X is finitely suppported,
that is

∃S ⊆ N finite such that (∀s ∈ S.π(s) = s)⇒ π · x = x (6.4)

An equivariant function between nominal sets is a function f : X → Y such that
f(π · x) = π · f(x) for every x ∈ X and π ∈ σN. The category Nom of nominal sets
and equivariant functions is a topos. The subobject classifier is Ω = {0, 1} with the
discrete action i.e. π · x = x for x ∈ {0, 1}, with true picking 1. Subobjects of X are
the equivariant subsets A ⊆ X, i.e., such that for all π ∈ σN and x ∈ A, π · x ∈ A –
the characteristic morphism χA : X → Ω is the usual characteristic function.

Toposes possess several pleasant categorical properties [30, Chapter 5]. In partic-
ular, for any topos C the following holds.

135

• C is finitely cocomplete, i.e., has all finite colimits. The initial object of a topos
is denoted by 0.

• C is regular, hence there is a category Rel(C) of objets and relations.

• C is balanced, i.e. every monomorphic epimorphism is an isomorphism.

• Epimorphisms and regular epimorphisms coincide.

Example 6.6 (Degenerate topos). The category with one object and one morphism
is a topos called the degenerate topos. Trivially, Ω = 1. More broadly, any topos
such that 0 ∼= 1 is equivalent to the degenerate topos and therefore called degenerate.

The object of subobjects. Let C be a topos with subobject classifier true : 1 ↪→ Ω.
By definition of the subobject classifier, subobjects of an object X are in bijection
with morphisms of type X → Ω. Indeed, a subobject is mapped to its characteristic
morphism, and a morphism X → Ω is mapped to its pullback along true. Morphisms
of type X → Ω are themselves in bijection with morphisms of type 1 → ΩX , by
exponential transposition and the isomorphism 1×X ∼= X. In categorical parlance,
a morphism 1 → Z is called a global element of Z. Global elements of ΩX being
equivalently subobjects of X, it makes sense to think about ΩX as the object of
subobjects of X. Usually, a morphism ϕ : X → Ω is regarded as a formula with one
variable in X, and the subobject it classifies is denoted by {x : X | ϕ(x)}.

Intersection, equality, singleton, membership. We sketch how four selected
notions of set theory generalise to toposes.

• Consider the morphism 〈true, true〉 : 1 ↪→ Ω×Ω. This is a monomorphism whose
characteristic morphism will be called conjunction and denoted by ∧ : Ω×Ω→
Ω. Consider any object X and two subobjects m : A ↪→ X, n : B ↪→ X. The
intersection of m and n, denoted by m ∩ n, is defined as the subobject whose
characteristic morphism is

X Ω× Ω Ω〈χm,χn〉 ∧ (6.5)

• Consider any object X and two subobjects m : A ↪→ X, n : B ↪→ X. The
morphism 〈idX , idX〉 : X ↪→ X × X is a monomorphism whose characteristic

136

morphism will be denoted by =X : X×X → Ω. Notably, for two global elements
a, b : 1→ X, the global element a =X b defined by

1 X ×X Ω〈a,b〉 =X (6.6)

is equal to true if and only if a = b.

• Let X be an object. Taking the exponential transpose of the equality morphism
=X : X ×X → Ω, we obtain a morphism that will be denoted by {−}X : X →
ΩX and generalises the notion of singleton. Notably, for any global element
a : 1→ X, the global element

1 X ΩXa {−}X (6.7)

corresponds to the subobject a : 1 ↪→ X.

• Let X be an object. The exponential transpose of the identity idΩX : ΩX → ΩX

is denoted by ∈X : X × ΩX → Ω and its corresponding subobject of X × ΩX

generalises the membership relation.

Internal logic. Toposes have access to a rich internal logic, stemming from the
above constructions and similar constructions for disjunction, implication, negation
and quantifiers. Every valid statement of intuitionistic set theory holds in any topos.
By intuitionistic set theory, we mean intuitionistic predicate calculus with relations
= and ∈ satisfying the most undisputed axioms of set theory (extensionality, pair,
union, powerset, replacement and comprehension, empty set). As toposes are only
assumed to have finite (co)limits, the logic is finitist i.e. one can build explicitly finite
sets, but not infinite ones – in particular note that there is no axiom of infinity. The
logic being constructive, the law of excluded middle cannot be used in general, as
well as the axiom of choice. By contrast, set extensionality and functional extension-
ality hold [30, Theorem 6.9.2, Proposition 6.10.2]. The internal logic is a powerful
tool whose rigorous presentation cannot be contained in just a few pages. We will
use it both to introduce some known constructions such as the powerset monad of
toposes, and to prove generalisations of Set results about them. We encourage the
non-familiar reader to either consider the internal logic arguments at the intuitive
level of doing intuitionistic set-theoretic logic in an abstract categorical framework,
or to first read [30, Chapter 6] for a gentle, yet fully rigorous, introduction to the
internal logic.

137

Mitchell-Bénabou language. We very briefly sketch the language of the internal
logic and relate some simple formulas to the underlying categorical constructions.
For technical details, e.g. variable layout, the reader is again referred to [30]. Terms
and formulas of the Mitchell-Bénabou language are defined inductively and given
an interpretation. Each term t has a type which is an object X of the topos, with
notation t : X. The terms of type Ω are called formulas. The interpretation of a term
t of type X is a morphism [t] of codomain X, and whose domain stands for variable
context. Note that the interpretation of a formula is, as expected, a morphism into
Ω.

• For each object X, there are variable terms x : X interpreted as [x] = idX :
X → X. When seen in a context comprising more variables, the interpretation
is a projection, e.g. if the term x is considered to have free variables x : X,
y : Y then [x] = π1 : X × Y → X is the canonical projection. In the sequel,
considerations about variable context are left implicit.

• For each global element c : 1 → X, there is a constant term c : X interpreted
as [c] = c : 1→ X.

• For each morphism f : X → Y and each term t : X, there is a term f(t) : Y
interpreted as [f(t)] = f ◦ [t].

• For terms t1 : X, t2 : Y , there is a term 〈t1, t2〉 : X×Y interpreted as [〈t1, t2〉] =
〈[t1], [t2]〉.

• For a formula ϕ : Ω with free variables x, y, there is a term {x : X | ϕ(x, y)} : ΩX

with free variable y interpreted as the exponential transpose [{x : X | ϕ(x, y)}] :
Y → ΩX of [ϕ] : X × Y → Ω.

• For terms t1, t2 : X, the formula t1 = t2 is interpreted as [t1 = t2] = (=X

◦〈[t1], [t2]〉).

• For terms s : X, t : ΩX , the formula s ∈ t is interpreted as [s ∈ t] =∈X ◦〈[s], [t]〉.

• Formulas can be composed using Boolean operators and quantifiers, interpreted
by categorical constructions of the topos, e.g. conjunction is interpreted using
the morphism ∧ : Ω× Ω→ Ω.

138

Example 6.7. Given subobjects m : A ↪→ X and n : B ↪→ X and a variable x : X,
the subobject {x : X | χm(x)∧χn(x)} is classified by the interpretation of the formula
χm(x) ∧ χn(x), i.e.

[χm(x) ∧ χn(x)] = ∧〈[χm(x)], [χn(x)]〉
= ∧〈χm ◦ [x], χn ◦ [x]〉
= ∧〈χm, χn〉

which by definition corresponds to the intersection of subobjects m∩ n. More gener-
ally, for ϕ, ψ formulas, {x : X | ϕ(x) ∧ ψ(x)} = {x : X | ϕ(x)} ∩ {x : X | ψ(x)}.

Using the Mitchell-Bénabou language, many categorical constructions can be ex-
pressed similarly to how they would be in Set. For example, the pullback of two mor-
phisms f : X → Z and g : Y → Z is the subobject {(x, y) : X×Y | f(x) = g(y)} [30,
Proposition 6.10.3].

Valid formula. A formula ϕ of the Mitchell-Bénabou language with one free vari-
able x : X is valid, written x : X ` ϕ(x), if [ϕ] = X 1 Ω!X true .

Example 6.8. For a morphism f : X → Y , let us prove that

x : X ` f(x) = f(x) (6.8)

Using the inductive definition of the interpretation, the formula f(x) = f(x) is in-
terpreted as =Y ◦〈f, f〉. We must therefore prove that =Y ◦〈f, f〉 = true◦!X . The
wanted equation is a consequence of commutation of the following diagram, where
the left square commutes trivially and the right square is the definition of =Y .

X Y 1

X Y × Y Ω

idX

f !Y

〈idY ,idY 〉 true

〈f,f〉 =Y

(6.9)

Example 6.9. For an object X, let us prove that x : X ` {x}X = {x′ : X | x = x′}.
Using the inductive definition of the interpretation,

[{x}X = {x′ : X | x = x′}] (6.10)
= =ΩX ◦〈[{x}X], [{x′ : X | x = x′}]〉 (6.11)
= =ΩX ◦〈{−}X , {−}X〉 (6.12)

139

We detail the last step. The interpretation [{x′ : X | x = x′}] : X → ΩX is
the exponential transpose of the interpretation [x = x′] i.e. =X : X × X → Ω,
which is precisely the definition of {−}X . According to the previous example, the
expression (6.12) is equal to true◦!X . Therefore x : X ` {x}X = {x′ : X | x = x′}
holds.

Example 6.10. For a morphism f : X → Z, the property f is an epimorphism is
equivalent to the following statement in the internal logic [30, Proposition 6.10.2]

` ∀(z : Z).∃(x : X).f(x) = z (6.13)

6.2 The Powerset Monad

In this section we define the powerset monad in a topos.

Theorem 6.11 (Freyd [51, §1.911]). Let C be a regular category. Then the following
are equivalent

• the graph functor G : C→ Rel(C) has a right adjoint

• C is a topos

Oege de Moor [43, §6.1.1] even uses this property as a definition of toposes – we
now follow his approach and notation.

Definition 6.12. The powerset monad of a topos C is the monad obtained from the
adjunction whose left adjoint is G. It is denoted by E.

As every free Kleisli functor is a left adjoint, Theorem 6.11 entails that if the
graph functor of a regular category C is the free Kleisli functor of some monad, then
C is a topos. The converse holds [43, §6.1.10]: in any topos C, Rel(C) is isomorphic
to Kl(E). Under this isomorphism we can identify G = F E.

The powerset monad of toposes is well-known, and its constructions arise at vari-
ous places in the literature. As a monad, it appears in many papers of René Guitart
under the appellation the involutive monad in a topos [66, 67, 68, 69]. According
to Guitart [66, Corollaire 1.1.1.b], this monad was first exhibited by Lawvere and
Tierney when they introduced (elementary) toposes in 1970 [65]. We now give an
explicit description of the monad. For proofs of its expression in the internal logic,
see [111, Propositions 4.9, 4.17, 4.19].

• On objects, EX = ΩX is the object of subobjects of X.

140

• On a morphism f : X → Y , Ef : ΩX → ΩY is known as the existential image,
and is internally described by

(a : ΩX) ` Ef(a) = {y : Y | ∃x : X.x ∈ a ∧ f(x) = y} (6.14)

• The unit η E
X : X → ΩX is the singleton morphism {−}X . Recall that it is

the exponential transpose of the characteristic morphism of 〈idX , idX〉 : X ↪→
X×X, and that we proved in Example 6.9 that an internal description is given
by

(x : X) ` η E
X(x) = {x′ : X | x = x′} (6.15)

• The multiplication µ E
X : ΩΩX → ΩX is most conveniently defined using the

internal logic, as

(t : ΩΩX) ` µ E
X(t) = {x : X | ∃s : ΩX .x ∈ s ∧ s ∈ t} (6.16)

Example 6.13. In Set, the monad Ecoincides with the usual powerset monad P.

Example 6.14. The powerset monad of a presheaf topos is just the powerset monad
of Set computed pointwise. For example, let us consider the topos Graph of graphs
and graph homomorphisms. Let G = (N,A) be a graph, with s : A → N being the
source map and t : A→ N being the target map.

• Nodes of ΩG correspond to subsets U ⊆ N . From node U to node V , there is
one arc per subset B ⊆ A such that s(B) ⊆ U and t(B) ⊆ V .

• Given a graph homomorphism f : G→ H, Ef : ΩG → ΩH maps

– a node U to the node f(U)

– an arc U VA to the arc f(U) f(V)f(A)

• The unit η E
G : G→ ΩG maps

– a node x to the node {x}

– an arc x ya to the arc {x} {y}{a}

• The multiplication µ E
G : ΩΩG → ΩG maps

– a node U to the node ⋃U
– an arc U VA to the arc ⋃U ⋃V⋃

A

141

Example 6.15. In the topos Nom of nominal sets and equivariant functions, EX =
ΩX is the set of all finitely supported subsets of X, with action given by π · U =
{π · x | x ∈ U} for every U ∈ ΩX and π ∈ σN. The rest of the monad is defined as
for the powerset monad. This monad has been used recently in [160].

Relational extensions are exactly monotone extensions (in the sense of Defini-
tion 1.40) in the Kleisli category of the powerset monad. We recall that the qualifier
monotone is with respect to the order on relations inherited from the subobject or-
der. This identification results in recovering a theorem generating monotone (weak)
distributive laws.

Theorem 6.16. For every monad T on a topos C,

• there exists at most one monotone distributive law of type T E→ ET, and there
is one if and only if T preserves epimorphisms and T , ηT and µT are nearly
cartesian;

• there exists at most one monotone weak distributive law of type T E→ ET, and
there is one if and only if T preserves epimorphisms and T and µT are nearly
cartesian.

Proof. Apply Theorem 5.6 using G = F Eand Rel(C) = Kl(F E) to get, under the
conditions above, existence and uniqueness of a locally monotone (weak) extension.
Equivalently, this is a monotone (weak) distributive law.

The restriction of Theorem 6.16 for distributive laws T E→ ET already appears
in [43, Theorem 6.2.4].

6.3 Powerset over Powerset

In this section, we apply Theorem 6.16 to T = E. New results are marked by the
symbol X. They are generalisations of known Set statements that can be extended
to arbitrary toposes because they only rely on internal constructive arguments. To
provide concrete evidence of this intuitionistic flavour, all results marked by the sym-
bol X have been derived using the proof assistant Coq [76]. The idea underlying
this formalisation is that the fragment of Coq comprising first-order logic and the
basic set-theoretical constructions required for defining the powerset monad is coher-
ent with the intuitionistic set theory internal to toposes. In particular, the subobject

142

classifier Ω is represented by the type Prop. No external libraries are required. The
code is provided in Appendix B and on Github [61].

Assumptions about the functor Ehave already been verified in [43, Proposi-
tion 6.5.1] – in fact, de Moor proves the stronger result that Eis weakly cartesian.

Proposition 6.17 (de Moor). The powerset functor Epreserves epimorphisms and
is nearly cartesian.

So we already know there is a monotone distributive law EE→ EEbetween the
functor Eand the monad E. We provide the missing results in order to find a weak
distributive law bewteen monads.

Proposition 6.18 (X = eta nearly cartesian). The unit η Eis nearly cartesian if
and only if C is degenerate.

Proof (sketch). There is an apprehensible proof using mainly the categorical definition
of η E. We provide a sketch – details are postponed to Section 6.3.1. If C is degenerate,
then every natural transformation is trivially nearly cartesian. Conversely, assume
η Eis nearly cartesian. Components of η Eare monomorphisms, inducing that η Eis
cartesian i.e. naturality squares are pullbacks. In particular, we have the following
pullback

Ω 1

ΩΩ Ω

!Ω

η E
Ω η E

1

E!Ω

(6.17)

Note that when C = Set, Ω ∼= {0, 1} and 1 ∼= {0}, so this square is the usual
counterexample of Proposition 3.2. Let full : 1→ ΩΩ be the morphism that picks the
maximal subobject of Ω. The pasting law for pullbacks yields P ∼= Q, where P and
Q are defined by the following pullbacks

P Ω Q 1

1 ΩΩ 1 Ω

!P η E
Ω !Q

!Q

η E
1

full E!Ω◦full

(6.18)

Furthermore, one can prove that P ∼= P × Ω and Q ∼= 1. Combining these results
yields Ω ∼= 1, and this entails that the topos C is degenerate.

It is noteworthy that the Set counterexample does still generate a counterexample
in an arbitrary non-degenerate topos. A consequence is that if C is not degenerate,
there is no monotone distributive law of type EE→ EE. More generally

143

Proposition 6.19 (X = dlaw degenerate). There is a distributive law of type EE→
EEif and only if C is degenerate.

Proof. The PP → PP counterexample of Klin and Salamanca [91] can be defined
internally, because it is based on two finite sets, interpreted as finite coproducts in
toposes. The rest of their proof only relies on constructive arguments. Their proof
has been formalised step by step in our Coq file.

Proposition 6.20 (X = mu nearly cartesian). The multiplication µ Eis nearly
cartesian.

Proof. Our proof consists in mimicking the intuitionistic proof of the Set case. We
provide details in Section 6.3.2.

In conclusion

Theorem 6.21. In any topos C, there is a unique monotone weak distributive law of
type EE→ EE. This is a distributive law if and only if C is degenerate.

Proof. Apply Theorem 6.16 using Propositions 6.17, 6.18 and 6.20.

Proposition 6.22 (X = monotone weak dlaw). In the internal logic, the unique
monotone weak distributive law λ of type EE→ EEcan be expressed as

(t : ΩΩX) ` λX(t) = {s : ΩX | (∀(x : X), x ∈ s→ x ∈ µ E
X(t)) (6.19)

∧ ∀(u : ΩX).u ∈ t→ ∃(x : X).x ∈ u ∧ x ∈ s}

Proof. In [43, Proposition 6.5.7], de Moor shows that the extension Eof Eto Rel(C)
can be computed using the Egli-Milner formula. Internally, this means that for every
subobject r of X × Y , written r = {(x, y) : X × Y | (x, y) ∈ r},

Er = {(u, v) : ΩX × ΩY |∀x : X, x ∈ u→ ∃y : Y, y ∈ v ∧ (x, y) ∈ r (6.20)
∧ ∀y : Y, y ∈ v → ∃x : X, x ∈ u ∧ (x, y) ∈ r} (6.21)

Then, computing the morphism whose graph is E(3X) leads constructively to the
expression of equation (6.19).

Example 6.23. In the topos Graph, this law consists in computing the Set law
λ : PP→ PP on both nodes and arcs, i.e., it maps

• a node U to the node λN(U)

144

• an arc U VA to the arc λN(U) λN(V)λA(A)

Example 6.24. In the topos Nom, according to the finite support principle [117,
§2.5], the internal logic stands for the usual logic of Set provided any quantification
over functions or subsets is restricted to the finitely supported ones. Therefore, the
monotone weak distributive law λ : EE→ EEexpresses as follows for all U finitely
supported subset of the finitely supported subsets of the nominal set X,

λX(U) =
{
V ⊆ X finitely supported | V ⊆

⋃
U and ∀U ∈ U .U ∩ V 6= ∅

}
(6.22)

6.3.1 Proof for the Unit

In this section we provide a complete proof that the unit η Eis nearly cartesian if and
only if the topos is degenerate. A natural transformation is cartesian if its naturality
squares are pullbacks.

Lemma 6.25. The unit η Eis nearly cartesian if and only if it is cartesian.

Proof. Clearly, cartesian entails nearly cartesian. For the other direction, consider
the naturality square of a morphism f : X → Y and the pullback of η E

Y along Ef

X

P ΩX

Y ΩY

h

f

η E
X

p2

p1

Ef

η E
Y

(6.23)

As η Eis nearly cartesian, h is an epimorphism. Components of η Eare monomor-
phisms [97, Chapter IV, Lemma 1], so from η E

X = p1 ◦h we deduce that the morphism
h is a monomorphism as well. A topos is balanced, hence h is an isomorphism and
the naturality square of f is a pullback.

In the rest of the proof we often use the identification Ω ∼= 1×Ω. The monomor-
phism idΩ : Ω ↪→ Ω, representing the maximal subobject of Ω, has a characteristic
morphism χidΩ : Ω → Ω whose exponential transpose is denoted by full : 1 → ΩΩ.
Seen as a global element, full picks the maximal element of the poset of subobjects
ΩΩ i.e.

x : 1 ` full(x) = {ω : Ω | true} (6.24)

145

Consider the following pullbacks

P Ω Q 1

1 ΩΩ 1 Ω

!P

p

η E
Ω !Q

!Q

η E
1

full E!Ω◦full

(6.25)

Lemma 6.26. If η Eis cartesian, then P ∼= Q.

Proof. In the diagram
P Ω 1

1 ΩΩ Ω

!P

p

η E
Ω

!Ω

η E
1

full E!Ω

(6.26)

the left square is the pullback that defines P and the right square is the pullback
naturality diagram for !Ω : Ω → 1. Therefore, by the pasting law for pullbacks, the
whole rectangle is itself a pullback of η E

1 and E!Ω ◦ full, so that P ∼= Q.

Lemma 6.27. Q ∼= 1

Proof. Note that 1 is the pullback of a cospan 1 Z 1 if and only if the
two morphisms of the cospan are equal. The fact Q ∼= 1 is therefore equivalent to
η E

1 = E!Ω ◦ full. This can be proved in the internal logic using the fact that 1 plays
the role of the unit type, see [111, 5.4].

x : 1 ` η E
1 (x) = E!Ω(full(x))

⇐⇒ x : 1, y : 1 ` y ∈ η E
1 (x)↔ y ∈ E!Ω(full(x)) (extensionality)

⇐⇒ x : 1, y : 1 ` y = x↔ ∃ω : Ω.ω ∈ full(x) ∧ y =!Ω(ω) (definition of η Eand E)
⇐⇒ x : 1 ` ∃ω : Ω.ω ∈ full(x) (1 unit type)
⇐⇒ ` ∃ω : Ω.true (definition of full)

and the latest assumption holds in any topos.

Lemma 6.28. P ∼= P × Ω

Proof. First, consider
P × Ω Ω 1

P × Ω Ω Ω

idP×Ω

!P×idΩ !Ω

idΩ true

!P×idΩ χidΩ

(6.27)

146

The right square of the diagram above is a pullback by definition of χidΩ . The left
square can be easily checked to be a pullback along the identity morphism. By pasting
pullbacks, we get that the outer rectangle is a pullback. Second, consider

P Ω 1

P × Ω Ω× Ω Ω

〈idP ,p〉

p !Ω

〈idΩ,idΩ〉 true

p×idΩ χ〈idΩ,idΩ〉

(6.28)

The right square of the diagram above is a pullback by definition of χ〈idΩ,idΩ〉. The
left square is also a pullback, because it trivially commutes and for every X as in
the below left diagram, u : X → P is the unique morphism making the below right
diagram commute.

X

X Ω P Ω

P × Ω Ω× Ω P × Ω Ω× Ω

u

〈u,v〉

w

〈u,v〉

w

〈idΩ,idΩ〉 〈idP ,p〉

p

〈idΩ,idΩ〉

p×idΩ p×idΩ

(6.29)

Hence, by pasting pullbacks, the outer rectangle in (6.28) is a pullback. Let ev :
ΩΩ × Ω → Ω be the evaluation morphism from the cartesian closed structure of C.
By definition of full as the exponential transpose of χidΩ and η E

Ω as the exponential
transpose of χ〈idΩ,idΩ〉, we have

ev ◦ (full× idΩ) = χidΩ (6.30)
ev ◦ (η E

Ω × idΩ) = χ〈idΩ,idΩ〉 (6.31)

Starting from commutation of the pullback square defining P , we have

full◦!P = η E
Ω ◦ p

(full× idΩ) ◦ (!P × idΩ) = (η E
Ω × idΩ) ◦ (p× idΩ)

χidΩ ◦ (!P × idΩ) = χ〈idΩ,idΩ〉 ◦ (p× idΩ) (apply ev on the left)

The last equality shows that the outer squares of Diagrams (6.27) and (6.28) are
isomorphic pullbacks, so that P × Ω ∼= P .

A last lemma is needed

Lemma 6.29. In any topos, if 1 ∼= Ω then 0 ∼= 1.

147

Proof. Assuming 1 ∼= Ω, there is only one morphism of type 1 → Ω. The following
squares, classifying respectively the monomorphisms !1 : 1 ↪→ 1 and !0 : 0 ↪→ 1, are
then pullbacks of the same cospan, so 0 ∼= 1.

1 1 0 1

1 Ω 1 Ω
!1

!1

true !0

!0

true

χ!1 χ!0

(6.32)

We finally prove

Theorem 6.30. The unit η Eis nearly cartesian if and only if the topos is degenerate.

Proof. In a degenerate topos, any natural transformation is trivially nearly cartesian.
Conversely, assume η Eis nearly cartesian. Then by Lemma 6.25, η Eis cartesian. By
Lemmas 6.26, 6.27 and 6.28, we have P ∼= Q, Q ∼= 1 and P ∼= P ×Ω, therefore 1 ∼= Ω.
By Lemma 6.29, 0 ∼= 1 so the topos is degenerate.

6.3.2 Proof for the Multiplication

In this section we provide a complete proof in the internal logic that the multiplication
µ Eis nearly cartesian. In fact, we even prove that it is weakly cartesian. As opposed to
the unit case where a counterexample had to be found, the internal logic is particularly
well-suited for such a positive result. Moreover, not having to manipulate the explicit
categorical definition of the multiplication is highly practical.

Let f : X → Y be a morphism in C. The pullback P of Ef : EX → EY and
µ E
Y : EEY → EY is a subobject of ΩX × ΩΩY described internally by

P = {(s, t) : ΩX × ΩΩY | Ef(s) = µ E
Y (t)} (6.33)

so that
(s, t) : P ` Ef(s) = µ E

Y (t) (6.34)

Proving that the universal morphism h : ΩΩX → P is a split epimorphism is equivalent
to finding a k : P → ΩΩX such that µ E

X ◦k = p1 and EEf ◦k = p2, where p1 : P → ΩX ,
p2 : P → ΩΩY are the projections. In the Set case (Proposition 3.3), we used to define

(U,V) 7→ {U ∩ f−1(V) | V ∈ V}

148

Let us implement this idea in the internal logic by defining

(s, t) : P ` k(s, t) = {u : ΩX | ∃v : ΩY .v ∈ t ∧ u = s ∩ f−1(v)} (6.35)

where the intersection and the preimage are respectively defined by

u : ΩX , u′ : ΩX ` u ∩ u′ = {x : X | x ∈ u ∧ x ∈ u′} (6.36)
v : ΩY ` f−1(v) = {x : X | f(x) ∈ v} (6.37)

It only remains to prove the following judgements

(s, t) : P ` µ E
X(k(s, t)) = s

(s, t) : P ` EEf(k(s, t)) = t

Proposition 6.31. (s, t) : P ` µ E
X(k(s, t)) = s

Proof.

(s, t) : P ` µ E
X(k(s, t)) = s

⇐⇒ (extensionality)
(s, t) : P, x : X ` x ∈ µ E

X(k(s, t))↔ x ∈ s

⇐⇒ (µ Edefinition)
(s, t) : P, x : X ` (∃u : ΩX .x ∈ u ∧ u ∈ k(s, t))↔ x ∈ s

⇐⇒ (k definition)
(s, t) : P, x : X ` (∃u : ΩX .x ∈ u ∧ ∃v : ΩY .v ∈ t ∧ u = f−1(v) ∩ s)↔ x ∈ s

⇐⇒ (simplification of ∃u : ΩX .u = f−1(v) ∩ s)
(s, t) : P, x : X ` (∃v : ΩY .x ∈ f−1(v) ∩ s ∧ v ∈ t)↔ x ∈ s

⇐⇒ (definition of f−1 and ∩)
(s, t) : P, x : X ` (∃v : ΩY .f(x) ∈ v ∧ x ∈ s ∧ v ∈ t)↔ x ∈ s

⇐⇒ (definition of µ E)
(s, t) : P, x : X ` (f(x) ∈ µ E

Y (t) ∧ x ∈ s)↔ x ∈ s

⇐⇒ (P pullback, equation (6.34))
(s, t) : P, x : X ` (f(x) ∈ Ef(s) ∧ x ∈ s)↔ x ∈ s

⇐⇒ (definition of E)
(s, t) : P, x : X ` (∃x′ : X.f(x) = f(x′) ∧ x′ ∈ s ∧ x ∈ s)↔ x ∈ s

⇐⇒ (simplification using x as an existential witness for x′)
(s, t) : P, x : X ` x ∈ s↔ x ∈ s

and the last judgement is a tautology.

149

Proposition 6.32. (s, t) : P ` EEf(k(s, t)) = t

Proof.

(s, t) : P ` EEf(k(s, t)) = t

⇐⇒ (extensionality)
(s, t) : P, v : ΩY ` v ∈ EEf(k(s, t))↔ v ∈ t

⇐⇒ (Edefinition)
(s, t) : P, v : ΩY ` (∃u : ΩX .u ∈ k(s, t) ∧ Ef(u) = v)↔ v ∈ t

⇐⇒ (k definition)
(s, t) : P, v : ΩY ` (∃u : ΩX .∃b : ΩY .b ∈ t ∧ u = f−1(b) ∩ s ∧ Ef(u) = v)↔ v ∈ t

⇐⇒ (simplification of ∃u : ΩX .u = f−1(b) ∩ s)
(s, t) : P, v : ΩY ` (∃b : ΩY .b ∈ t ∧ Ef(f−1(b) ∩ s) = v)↔ v ∈ t

⇐⇒ (Frobenius reciprocity law [97, page 204])
(s, t) : P, v : ΩY ` (∃b : ΩY .b ∈ t ∧ b ∩ Ef(s) = v)↔ v ∈ t

⇐⇒ (extensionality)
(s, t) : P, v : ΩY , y : Y ` (∃b : ΩY .b ∈ t ∧ (y ∈ b ∩ Ef(s))↔ y ∈ v)↔ v ∈ t

⇐⇒ (definition of ∩)
(s, t) : P, v : ΩY , y : Y ` (∃b : ΩY .b ∈ t ∧ (y ∈ b ∧ y ∈ Ef(s))↔ y ∈ v)↔ v ∈ t

⇐⇒ (P pullback, equation (6.34))
(s, t) : P, v : ΩY , y : Y ` (∃b : ΩY .b ∈ t ∧ (y ∈ b ∧ y ∈ µ E

Y (t))↔ y ∈ v)↔ v ∈ t

⇐⇒ (definition of µ E)
(s, t) : P, v : ΩY , y : Y ` (∃b : ΩY .b ∈ t ∧ (y ∈ b ∧ ∃c : ΩY .y ∈ c ∧ c ∈ t)↔ y ∈ v)↔ v ∈ t

⇐⇒ (simplification using b as an existential witness for c)
(s, t) : P, v : ΩY , y : Y ` (∃b : ΩY .b ∈ t ∧ (y ∈ b↔ y ∈ v))↔ v ∈ t

⇐⇒ (extensionality)
(s, t) : P, v : ΩY ` (∃b : ΩY .b ∈ t ∧ b = v)↔ v ∈ t

⇐⇒ (simplification of ∃b : ΩY .b = v)
(s, t) : P, v : ΩY ` v ∈ t↔ v ∈ t

and the last judgement is a tautology.

150

Chapter 7

Compact Hausdorff Spaces

In this chapter, we work within the regular category KHaus of compact Hausdorff
spaces and continuous functions. First, we define in detail the Vietoris monad V and
explain how it can be used to find monotone laws of type TV→ VT. Next, we apply
this framework to T = V and derive a monotone weak distributive law VV → VV.
In the last section, we define the Radon monad R, a probability monad which can be
seen as a continuous version of the distribution monad, and we provide partial results
towards the existence of a monotone weak distributive law of type RV→ VR.

Notation

We fix some notation that will be particularly used in the chapter. For a function
f : X → Y between sets, the direct image of a U ⊆ X is denoted by f(U) and the
preimage of a V ⊆ Y is denoted by f−1(V). These notions are extended to relations
R ⊆ X × Y : the direct image of a U ⊆ X is defined by

R[U] = {y ∈ Y | ∃x ∈ U.(x, y) ∈ R} (7.1)

and the preimage of a V ⊆ Y is defined by

R−1[V] = {x ∈ X | ∃y ∈ V.(x, y) ∈ R} (7.2)

For singletons, we allow the slight notation abuses R[x] = R[{x}] and R−1[x] =
R−1[{x}]. The complement of U ⊆ X with respect to the ambient set X is denoted
by U c.

7.1 Preliminaries

The category of compact Hausdorff spaces and continuous functions, as well as the
Vietoris monad, were succinctly defined in the previous chapters. As they are the

151

focus of the current chapter, we give a more detailed exposition of them.
A topological space consists of a set X and a topology τX on X. For readability,

a topological space (X, τX) will simply be denoted by X. Recall that it is

• compact if every open cover of X has a finite subcover

• Hausdorff if any two distinct points have disjoint neighbourhoods

A function between topological spaces f : X → Y is continuous if for all U ∈ τY ,
f−1(U) ∈ τX . Compact Hausdorff spaces and continuous functions form a category
denoted by KHaus.

Example 7.1. The prototypical example of compact Hausdorff space is the unit
interval [0, 1] with the standard topology from the reals.

Example 7.2. Any finite discrete topological space is compact Hausdorff.

Example 7.3. The Cantor set 2ω, defined as the product of a countable number of
copies of the discrete space {0, 1}, is compact Hausdorff.

We now explore some categorical properties of KHaus.

• An important fact we already mentioned is that KHaus is isomorphic to the
Eilenberg-Moore category of the ultrafilter monad β [98]. This is due to the
fact that an ultrafilter yields a notion of convergence, and that given a set
X, a β-algebra βX → X can be seen as stating existence and unicity of the
limit for every ultrafilter. Existence corresponds to compactness, and unicity
corresponds to Hausdorffness.

• A first consequence is that KHaus is complete and limits can be computed as in
Set and given the initial topology afterwards [29, Theorem 4.3.5].

• A second consequence is that KHaus is regular [29, Theorem 4.3.5], hence there
is a category Rel(KHaus) of compact Hausdorff spaces and relations.

• The category KHaus is not a topos, so the results of Chapter 6 cannot be applied.
However, KHaus is a pretopos [102]. For our purposes, what counts is that this
implies that regular epimorphisms coincide with epimorphisms, and also that
KHaus is balanced i.e. being an isomorphism is equivalent to being both a
monomorphism and an epimorphism.

152

• Furthermore, the epimorphisms are the continuous surjections, the monomor-
phisms are the continuous injections, so by the previous point the isomorphisms
are the continuous bijections.

Topologically speaking, compact Hausdorff spaces are very well-behaved. For
example, the direct image of a closed subset is a closed subset, singletons are always
closed, diagonals {(x, x) | x ∈ X} ⊆ X×X (and more generally graphs of continuous
functions) are closed in the product topology. These overall good properties notably
lead to the Vietoris monad’s well-definedness. The ideas underlying this monad have
been introduced by Vietoris in 1922 [155]. For a detailed categorical treatment,
see [159]; for examples of coalgebraic applications, see [31, 12]. We recall the definition
of V. For a compact Hausdorff space X, let V X be the set of all closed subsets of X:

V X = {C ⊆ X | C is closed with respect to τX} (7.3)

Following Wyler [159, Remark 5.8], V X contains the empty set. For any set U ⊆ X,
let

�U = {C ∈ V X | C ⊆ U} (7.4)
♦U = {C ∈ V X | C ∩ U 6= ∅} (7.5)

The set V X is endowed with the Vietoris topology, generated by the subbase

{�U | U ∈ τX} ∪ {♦U | U ∈ τX} (7.6)

Concretely, the open sets of V X are arbitrary unions of finite intersections of
subsets �U , ♦U with U open. As �U1 ∩�U2 = �(U1 ∩ U2) and �X = V X, a base
of the Vietoris topology is given by sets of the form

�U0 ∩
⋂

1≤i≤n
♦Ui (7.7)

where n ∈ N and U0, . . . , Un ∈ τX . Another remark is that the constructors of the
Vietoris topology preserve closed sets: if C ∈ V X, then �C ∈ V V X and ♦C ∈ V V X.

The Vietoris topology of a compact Hausdorff space is compact Hausdorff again.
Defining V f(C) to be the direct image f(C) for every continuous f : X → Y therefore
yields a functor V : KHaus → KHaus. This functor is then extended to a monad V
by mimicking powerset operations as ηV

X(x) = {x} and µV
X(C) = ⋃ C.

Remark 7.4. The notation �, ♦ is borrowed from modal logic, because of its close
links with Vietoris topologies – see [154] for an overview.

153

As mentioned in Example 1.29, the category EM(V) can be identified to a cat-
egory of so-called continuous lattices and functions preserving infima and directed
suprema [159]. We shall shortly give a description of the Kleisli category Kl(V). To
conclude this introductory section, note that the Vietoris monad coincides with the
powerset monad for finite discrete spaces.

Proposition 7.5. The Vietoris monad restricts to the full subcategory of KHaus
whose objects are finite discrete spaces. More precisely,

• for any finite discrete space X, V X is the set PX with the discrete topology

• moreover ηV
X = ηP

X , µV
X = µP

X and for any (trivially continuous) function f :
X → Y between finite discrete spaces, V f = Pf

Proof. Let X be finite and discrete. Every subset of X is closed, so the underlying set
of V X is PX. To show that the topology of V X is discrete, consider any singleton
{U}, where U ⊆ X, and simply remark that it is open as a finite intersection of open
sets:

{U} = �U ∩
⋂
x∈U
♦{x}

This proves the first point. The second point is immediate from the definition of ηV,
µV and V on morphisms.

7.2 Relational Extensions versus Vietoris Exten-
sions

For a moment, let us forget the general theory of relations in regular categories and try
to define directly what could be a relevant notion of relation in KHaus. A reasonable
demand is that every continuous function f : X → Y between compact Hausdorff
spaces can be regarded as a relevant relation. For such a function, note that the
following three properties hold:

• for every C ∈ V X, f(C) ∈ V Y by compactness

• for every C ∈ V Y , f−1(C) ∈ V X by continuity

• for every U ∈ τY , f−1(U) ∈ τX by continuity

This hints how to define properties of interest for a relation R ⊆ X × Y .

154

Definition 7.6. Let R ⊆ X × Y , where X and Y are compact Hausdorff spaces.
Consider the properties

1. for every C ∈ V X, R[C] ∈ V Y

2. for every C ∈ V Y , R−1[C] ∈ V X

3. for every U ∈ τY , R−1[U] ∈ τX

The relation R is closed if it satisfies properties (1) and (2). The relation R is
continuous if it satisfies additionally property (3).

Note that a relation R ⊆ X × Y is closed if and only if R is closed as a subset
of the product topology of X × Y [10, Lemma 3.2]. Continuous relations are a bit
harder to grasp. For example, any closed subset of X × Y which is the union of the
graphs of an arbitrary family of continuous functions X → Y is itself continuous.
Here are some examples in the compact Hausdorff space [0, 1]. Below are displayed
respectively a continuous function, a continuous relation, and a closed relation.

(7.8)

For any continuous relation R ⊆ X × Y , as Y is both closed and open in itself,
R−1[Y] is both closed and open in X. When X is connected, this implies R is either
empty or total. Consequently, the third relation pictured above is not continuous.

One can check that each of properties (1)-(3) is satisfied by the identity relation
and preserved by the usual composition of relations (as defined in Example 1.22).
Therefore there are categories of compact Hausdorff spaces and closed / continuous
relations. These categories have been studied in [10] where they are respectively
denoted by KHausR and KHausC. The following propositions pinpoint that they both
emerge from generic constructions.

Proposition 7.7. The category of compact Hausdorff spaces and closed relations is
isomorphic to Rel(KHaus).

Proof. The isomorphism is the identity on objects. A closed relation R ⊆ X × Y is
mapped to the subobject given by the inclusion monomorphism of type R ↪→ X ×Y .
Conversely, a subobject given by a monomorphism r : R ↪→ X × Y is mapped to
the closed relation V r(R) ⊆ X × Y , depending only on the equivalence class of r.

155

These transformations clearly are inverse to each other. Functoriality is immediate:
pullbacks in KHaus are computed as in Set, so under the above identification both
compositions coincide.

Proposition 7.8 ([10, Remark 4.18]). The category of compact Hausdorff spaces and
continuous relations is isomorphic to Kl(V).

Proof. From continuous relations to Kl(V), let F be the identity on objects and FR =
λx.R[x]. In the other direction, let G be the identity on objects and Gf = {(x, y) |
y ∈ f(x)} for every morphism f : X → V Y . Provided these expressions are well-
defined, they induce functors that are inverse to each other, as in the case Rel ∼= Kl(P)
– see Example 1.22. We verify next the well-definedness of F and G.

• For any continuous R ⊆ X×Y , FR : X → V Y is a continuous function. Indeed,
it is well-defined because of property (1), and for any U ∈ τY , (FR)−1(�U) =
R−1[U c]c and (FR)−1(♦U) = R−1[U] are open sets by properties (2) and (3),
respectively.

• For any continuous f : X → V Y , Gf is a continuous relation. Indeed

1. for any C ∈ V X, (Gf)[C] = (µV
X ◦ V f)(C) ∈ V Y

2. for any C ∈ V Y , (Gf)−1[C] = f−1(�(Cc))c ∈ V X by continuity of f

3. for any U ∈ τY , (Gf)−1[U] = f−1(♦U) ∈ τX by continuity of f

Properties (1) and (2) of closed relations yield a domain-codomain symmetry
embodied by the transpose involution (−)◦ : Rel(KHaus)op → Rel(KHaus). Adding
the sole property (3) breaks this symmetry for continuous relations. Imposing a
fourth property

4. for every U ∈ τX , R[U] ∈ τX

would bring back a transpose involution, but also restrict the scope to open functions
of KHaus. Relations satisfying (1)-(4) are called interior relations and have been also
studied in [10].

To sum up, KHaus, Kl(V) and Rel(KHaus) have the same objects, but more and
more morphisms, as show the inclusions

KHaus Rel(KHaus)

Kl(V)

G

FV
(7.9)

156

where the functor Kl(V) → Rel(KHaus) simply forgets property (3). Unveiling this
structure immediately induces

Proposition 7.9. Let F , G : Rel(KHaus) → Rel(KHaus) be endofunctors and α :
F → G be a natural transformation.

• The functor F restricts to Kl(V) if and only if it preserves continuous relations.

• Assume F and G satisfy the previous point, then α restricts to Kl(V) if and only
if its components are continuous relations.

Combining this proposition with Theorem 5.6 yields

Theorem 7.10. Let F , G : KHaus → KHaus be endofunctors and α : F → G be a
natural transformation.

• There is a locally monotone functor F : Kl(V)→ Kl(V) such that FVF = FFV,
obtained by restriction of a relational extension of F to Rel(KHaus), if and only
if F preserves continuous surjections, is nearly cartesian, and Rel(F) preserves
continuous relations. In this case, F is unique.

• Assume F and G satisfy the previous point. There is a natural transformation
α : F → G such that FVα = αFV if and only if α is nearly cartesian. In this
case, α is unique.

Proof. The proof is made easy by using preceding results.

• By Theorem 5.6, the relational extension exists if and only if F is nearly carte-
sian and F preserves regular epimorphisms = epimorphisms = continuous sur-
jections. By Proposition 7.9, this restricts to an F in Kl(V) if and only if
Rel(F) preserves continuous relations. The functor F is locally monotone be-
cause Rel(F) is so, and FVF = FFV because GF = Rel(F)G. Finally, such an
F is unique by uniqueness of the relational extension.

• The equation FVα = αFV forces components of α to be αX = αX , so if α exists,
it is unique. By Theorem 5.6, this defines a natural transformation Rel(α) :
Rel(F)→ Rel(G) if and only if α is nearly cartesian. By Proposition 7.9, Rel(α)

restricts to Kl(V) if and only if its components are continuous relations – which
is the case, since components of Rel(α) are graphs of continuous functions.

Finally we can state the main result concerning (weak) distributive laws, that will
be very useful in the next sections.

157

Corollary 7.11. For every monad T on KHaus,

• there exists at most one (monotone) distributive law of type TV → VT such
that the functor of the corresponding extension is the restriction of a relational
extension of T . There is one if and only if T preserves continuous surjections,
is nearly cartesian, Rel(T) preserves continuous relations and ηT, µT are nearly
cartesian.

• there exists at most one (monotone) weak distributive law of type TV → VT
such that the functor of the corresponding extension is the restriction of a re-
lational extension of T . There is one if and only if T preserves continuous
surjections, is nearly cartesian, Rel(T) preserves continuous relations and µT is
nearly cartesian.

According to the correspondence theorems, in each case the graph of λX : TV X →
V TX is T (3X), where 3X= {(C, x) ∈ V X ×X | x ∈ C}.

7.3 Vietoris over Vietoris

Using the identity monad morphism V→ V, there is

• a trivial weak distributive law VV → VV defined by C 7→ {⋃ C} – the non-
monotone functor of the corresponding weak extension satisfies

V R = {(C,R[C]) | C ∈ V X} (7.10)

• a trivial coweak distributive law VV→ VV defined by C 7→ {{x} | x ∈ ⋃ C}
This is basically a restatement of Examples 2.14 and 2.33 in KHaus. We are rather
interested in generalising the monotone weak distributive law PP→ PP to KHaus.

7.3.1 The Monotone Law

In this section, we apply Corollary 7.11 with T = V. We proceed to check the required
assumptions. As expected, most of them follow the same line as for sets and toposes;
only preservation of continuous relations requires new arguments.

Proposition 7.12. The Vietoris functor V preserves continuous surjections.

Proof. Let f : X → Y be a continuous surjective function between compact Hausdorff
spaces. Then, the continuous V f : V X → V Y is surjective: for any C ∈ V Y , take
K = f−1(C) ∈ V X. Then V f(K) = f(K) = f(f−1(C)) = C by surjectivity of f .

158

Proposition 7.13. The Vietoris functor V is nearly cartesian.

Proof. Consider a pullback in KHaus

P Y

X Z

p1

p2

g

f

(7.11)

One must check that the universal morphism h : V P → Q depicted below is a
continuous surjection.

V P

Q V Y

V X V Z

V p1

V p2
h

q2

q1

V g

V f

(7.12)

Using that pullbacks in KHaus are computed as in Set, this amounts to proving that
for any CX ∈ V X, CY ∈ V Y such that V f(CX) = V g(CY), there exists a CP ∈ V P
such that V p1(CP) = CX and V p2(CP) = CY . We take

CP = p−1
1 (CX) ∩ p−1

2 (CY) (7.13)

We have CP ∈ V P by continuity of the projections p1, p2. The rest of the proof is
exactly as for Proposition 3.1.

Hence, the Vietoris functor has a relational extension Rel(V) on Rel(KHaus). For
the next proposition, we need a technical lemma expressing how the basic opens of
the Vietoris topology are transported by relational preimages.

Lemma 7.14. Let R ⊆ X × Y be a continuous relation between compact Hausdorff
spaces and (Ui)0≤i≤n be open sets of Y , where n ≥ 0. Then

(Rel(V)(R))−1

�U0 ∩
⋂

1≤i≤n
♦Ui

 = �R−1[U0] ∩
⋂

1≤i≤n
♦R−1[U0 ∩ Ui] (7.14)

Proof. According to equation (5.7), we dispose of the direct expression Rel(V)(R) =
V r2 · V r1

◦, where r1 : R → X, r2 : R → Y are the projections and · is the usual
composition of relations. Explicitly, this gives an Egli-Milner-like formula

Rel(V)(R) = {(C,D) ∈ V X × V Y |∀x ∈ C.∃y ∈ D.(x, y) ∈ R
and ∀y ∈ D.∃x ∈ C.(x, y) ∈ R}

Then, a subset C ∈ V X belongs to the left-hand side of (7.14) if and only if there
exists D ∈ V Y such that

159

• ∀x ∈ C.∃y ∈ D.(x, y) ∈ R

• ∀y ∈ D.∃x ∈ C.(x, y) ∈ R

• D ⊆ U0

• ∀i ∈ {1, . . . , n}.D ∩ Ui 6= ∅

A subset C ∈ V X belongs to the right-hand side if and only if

◦ ∀x ∈ C.∃y ∈ U0.(x, y) ∈ R

◦ ∀i ∈ {1, . . . , n}.∃(xi, yi) ∈ R ∩ (C × (U0 ∩ Ui))

(⊆) Let C ∈ V X belonging to the left-hand side and D ∈ V Y satisfying the four •
properties.

◦ Let x ∈ C. Then we can find y ∈ D ⊆ U0 such that (x, y) ∈ R.

◦ Let i ∈ {1, . . . , n}. As D ∩ Ui 6= ∅, we can find yi ∈ D ∩ Ui ⊆ U0 ∩ Ui. By
another assumption there is xi ∈ C such that (xi, yi) ∈ R. Hence (xi, yi) ∈
R ∩ (C × (U0 ∩ Ui)).

(⊇) For the other inclusion, first note that every compact Hausdorff space is a regular
space in the sense of [158, §14]. According to [158, Theorem 14.3], regular spaces
satisfy the following property:

For every y ∈ U open, there is an open W such that y ∈ W and W ⊆ U . (reg)

Let C ∈ V X such that the two assumptions ◦ hold. For every x ∈ C we fix yx ∈ U0

such that (x, yx) ∈ R. For every i ∈ {1, . . . , n} we fix (xi, yi) ∈ R such that xi ∈ C
and yi ∈ U0 ∩ Ui. By appling the property (reg) in Y , we get for every x ∈ C a
Wx ∈ τY such that yx ∈ Wx and Wx ⊆ U0, and for every i ∈ {1, . . . , n} a Wi ∈ τY
such that yi ∈ Wi and Wi ⊆ U0 ∩ Ui. Note that for every x ∈ C, the pair (x, yx) ∈ R
witnesses that x ∈ R−1[Wx]. Therefore

C ⊆
⋃
x∈C

R−1[Wx] (7.15)

By continuity of R, this is an open cover of the compact C, so we can extract a finite
subcover

C ⊆
⋃

1≤k≤m
R−1[Wxk] (7.16)

160

Now we define
K =

⋃
1≤i≤n

Wi ∪
⋃

1≤k≤m
Wxk (7.17)

As a finite union of closed subsets, K ∈ V Y . Then ((C ×K) ∩R) is a closed subset
of R so that we can finally define

D = V r2((C ×K) ∩R) ∈ V Y (7.18)

It remains to check that D satisfies the four • properties.

• Let x ∈ C. By equation (7.16), there is a k ∈ {1, . . . ,m} and y ∈ Wxk ⊆ K

such that (x, y) ∈ R, hence also y ∈ D.

• Let y ∈ D. By definition of D, there is x ∈ C such that (x, y) ∈ R.

• The Wx and Wi are all included in U0. Then, D ⊆ K ⊆ U0.

• Let i ∈ {1, . . . , n}. The pair (xi, yi) ∈ (C ×K) ∩ R witnesses that yi ∈ D, and
by definition yi ∈ Ui, whence D ∩ Ui 6= ∅.

Proposition 7.15. The relational extension Rel(V) of the Vietoris functor V pre-
serves continuous relations.

Proof. Let R ⊆ X × Y be a continuous relation and let us show that Rel(V)(R) is
continuous, i.e., satisfies property (3):

∀U ∈ τV Y .(Rel(V)(R))−1[U] ∈ τV X (7.19)

According to Lemma 7.14, the above property is true if U of the form

�U0 ∩
⋂

1≤i≤n
♦Ui (7.20)

where n ≥ 0 and (Ui)0≤i≤n are open subsets of Y . Subsets of that form constitute
a basis of τV Y . Because relational preimages commute with arbitrary unions, prop-
erty (3) then holds for any U ∈ τV Y . Note that the proof cannot be simplified further
by looking directly at subbasic opens �U and ♦U , because relational preimages do
not commute with intersections.

Hence Rel(V) restricts to a locally monotone extension V : Kl(V)→ Kl(V). Con-
sidering the monad structure, we can first observe that, as expected, the unit is not
well-behaved.

161

Proposition 7.16. The Vietoris unit ηV is not nearly cartesian.

Proof. Endow the finite sets {0} and {0, 1} with the discrete topology. Then the
naturality square

{0, 1} V {0, 1}

{0} V {0}

!

ηV
{0,1}

V !

ηV
{0}

(7.21)

is a counterexample to nearly cartesianness, with the same argument as in Proposi-
tion 3.2.

Hence no distributive law of type VV → VV is obtainable from Corollary 7.11.
More generally,

Proposition 7.17. There is no distributive law of type VV→ VV.

Proof. As in the last proposition, the trick consists in observing that Klin and Sala-
manca’s proof of non-existence of a distributive law PP→ PP [91, Theorem 2.4] only
makes use of finite sets. According to Proposition 7.5, V coincides with P on finite
discrete spaces, so their proof adapts to KHaus.

Proposition 7.18. The Vietoris multiplication µV is nearly cartesian.

Proof. Let f : X → Y be a continuous function. We must show that in the pullback
of its µV naturality square, the continuous function h is surjective:

V V X

P V X

V V Y V Y

h

V V f

µV
X

p1

p2

V f

µV
Y

(7.22)

Given C ∈ V X and D ∈ V V Y be such that V f(C) = µV
Y (D), let us find a C ∈ V V X

such that µV
X(C) = C and V V f(C) = D. Our usual candidate

U = {C ∩ f−1(D) | D ∈ D} (7.23)

may not be a closed subset of V X. Instead, we suggest as a new candidate

C = {K ∈ V X | V f(K) ∈ D and K ⊆ C} = (V f)−1(D) ∩�C ∈ V V X (7.24)

162

Note that U ⊆ C. Reusing the proof of Proposition 3.3, this yields C = µP
X(U) ⊆

µV
X(C) and D = PPf(U) ⊆ V V f(C). The converse inclusions are immediate by the

definition of C.

Applying Corollary 7.11, we finally obtain

Theorem 7.19. There is a monotone weak distributive law λ : VV→ VV given by

λX(C) =
{
K ∈ V X | K ⊆

⋃
C and ∀C ∈ C.K ∩ C 6= ∅

}
(7.25)

Exploiting the Vietoris modalities� and ♦, there is a more symmetrical expression

λX(C) =
(
�
⋃
C∈C

C

)
∩
(⋂
C∈C
♦C

)
(7.26)

which is reminiscent from modal logic’s nabla modality [6, 110], defined on sets of
formulas Φ by

∇Φ = �
∨

Φ ∧
∧
♦Φ (7.27)

Note also that, as stated e.g. in [154], the Vietoris topology on V X is equivalently
generated by all sets of the form

∇{U1, . . . , Un} =
{
K ∈ V X | K ⊆

n⋃
i=1

Ui and ∀i ∈ {1, . . . , n}.K ∩ Ui 6= ∅
}

(7.28)

where the Ui range over open sets of X. As a lovely conclusion, the monotone weak
distributive law VV → VV that we just described is literally encoding the Vietoris
topology.

7.3.2 Variations

We mention a slight variation of the monotone law λ : VV→ VV. A topological space
is totally disconnected if its only connected components are the singletons. A compact,
Hausdorff, totally disconnected space is called a Stone space. For example, the Cantor
set 2ω and finite discrete spaces are Stone, but [0, 1] is not. The category of Stone
spaces and continuous functions is denoted by Stone – it is a full subcategory of KHaus.
The category Stone is widely used in logic because of the celebrated Stone duality,
which identifies Stone spaces with Boolean algebras [82], and its many extensions.
Notably, the Vietoris monad is known to restrict to a monad on Stone that we still
denote by V. There, the topology of V X is generated by all the �U , ♦U where U
only ranges over the clopen sets of X i.e. sets that are simultaneously closed and

163

open. It is clear that the λ of Theorem 7.19 still defines a weak distributive law of
type VV→ VV in Stone.

A first remark is that the Vietoris functor on Stone is not weakly cartesian [14],
but is known to be nearly cartesian [143], which is coherent with our results.

In Stone, the category Coalg(V) has been identified as the category of descriptive
Kripke frames, dual to the category of Boolean algebras with operators (Jónsson-
Tarski duality [85]). These are called respectively descriptive general frames and
modal algebras in [92]. On the other hand, Coalg(V V) is the category of so-called
descriptive INL-frames, where INL stands for instantial neighbourhood logic, dual to
the category of Boolean algebras with instantial operators [13]. Using our results of
Chapter 4, it is possible to perform a generalised determinisation of descriptive INL-
frames into descriptive Kripke frames. As for alternating automata in Set, there are
at least three ways to do this, using respectively the trivial weak law, the trivial
coweak law, and the monotone weak law VV→ VV. It would be interesting to study
this procedure from the dual viewpoint: what means generalised determinisation with
respect to Boolean algebra with (instantial) operators?

7.4 Radon over Vietoris

Our original motivation for working in the category KHaus was to generalise the
monotone weak distributive law DP → PD to a continuous framework. The regu-
lar category of compact Hausdorff spaces seems adequate in this regard, because it
possesses both

• a powerset-like monad, the Vietoris monad V

• a distribution-like monad, the Radon monad R

This section introduces the Radon monad and takes some first steps towards the
existence of a monotone weak distributive law of type RV→ VR.

First let us give a few reminders on measure theory. This exposition follows the
lines of a preceding paper of ours [64] – we refer the reader to standard textbooks [46,
18] for a more detailed account.

Measurable spaces. A σ-algebra on a set X is a subset of subsets ΣX ∈ PPX that
contains X and is closed under complement and countable unions. A pair (X,ΣX) is
called a measurable space. For any U ∈ PPX, there is a smallest σ-algebra containing
U , called the σ-algebra generated by U , denoted by σ(U). This σ-algebra σ(U) is

164

simply the intersection of all σ-algebras containing U . Every topological space (X, τX)
generates a measurable space (X, σ(τX)). In this case, the σ-algebra generated by
the open sets of X is called the Borel σ-algebra, and its elements are the Borel sets.
In what follows, R is endowed with its usual topology and the corresponding Borel
σ-algebra.

Measurable functions. Given measurable spaces (X,ΣX) and (Y,ΣY), a measur-
able function f : (X,ΣX) → (Y,ΣY) is a function f : X → Y such that for every
B ∈ ΣY , f−1(B) ∈ ΣX . Notably, if ΣX and ΣY are Borel σ-algebras, any continuous
function X → Y is measurable.

Measures. Given a measurable space (X,ΣX), a measure on it is a non-negative
function m : Σ → R ∪ {∞} such that m(∅) = 0 and for every countable sequence
(Bn)n∈N of pairwise disjoint sets in Σ, m (⋃n∈NBn) = ∑

n∈Nm(Bn). This entails that
m is monotone with respect to inclusion. A measure on a Borel σ-algebra is called a
Borel measure. A measure m such that m(X) = 1 is called a probability measure.

Integration. Let (X,ΣX) be a measurable space and m a measure on it. Let us
define, whenever it exists, the integral of a measurable function f : (X,ΣX) → R,
denoted by

∫
X fdm.

Step 1. If f(X) = {α1, . . . , αn} for some non-negative α1, . . . , αn ∈ R, then f

is called a simple function and its integral is
∫
X fdm = ∑n

i=1 αim(f−1({αi})).

Step 2. If f is non-negative, let
∫
X fdm = sup {

∫
X gdm | g ≤ f, g simple} ∈

[0,∞].

Step 3. For arbitrary measurable f , decompose f = f+ − f− where f+ =
sup(f, 0) and f− = sup(−f, 0) are non-negative. If their integral are not both
∞, define

∫
X fdm =

∫
X f

+dm−
∫
X f

−dm and say that f is m-integrable if this
quantity is finite.

Given a measurable function f : (X,ΣX) → (Y,ΣY) and a measure m on (X,ΣX),
the pushforward measure of m by f is m◦f−1, that is, (m◦f−1)(B) = m(f−1(B)) for
every B ∈ ΣY . A standard result is that a measurable u : (Y,ΣY)→ R is (m ◦ f−1)-
integrable if and only if u ◦ f is m-integrable and in this case,

∫
Y ud(m ◦ f−1) =∫

X(u ◦ f)dm. We now focus on the very specific case of Borel measures on compact
Hausdorff spaces.

165

Definition 7.20. A Radon probability measure on a compact Hausdorff space X is
a Borel probability measure m such that for every Borel set B,

m(B) = sup{m(C) | C ∈ V X and C ⊆ B} (7.29)

See [18, Section 7.1] for a general definition of Radon measures, which can be
seen to coincide with the above notion for compact Hausdorff spaces. Radon proba-
bility measures are equivalent to a certain class of linear functionals, see [18, Corol-
lary 7.10.5].

Theorem 7.21 (Riesz-Markov). Let X be a compact Hausdorff space. Let C(X) be
the Banach space of all continuous functions X → R with uniform norm. For every
non-negative continuous linear functional ϕ : C(X)→ R of norm 1, there is a unique
Radon probability measure m on X such that

∀u ∈ C(X).ϕ(u) =
∫
X
udm (7.30)

In the theorem, ϕ non-negative means u ≥ 0 ⇒ ϕ(u) ≥ 0 for all u ∈ C(X).
The reciprocal bijection is given by m 7→ (u 7→

∫
X udm). The canonical identification

obtained from the Riesz-Markov theorem entails a logical choice for topologising the
set of Radon probability measures. The set RX of all Radon probability measures on
a compact Hausdorff space X is endowed with the vague topology, that is, the initial
topology with respect to the evaluation functions

evu :RX → R

ϕ 7→ ϕ(u)

where u describes C(X). The resulting topological space RX is compact Hausdorff
again. The next definition shows that this construction extends to a monad.

Definition 7.22 (Radon monad [147, 87]). The Radon monad R on KHaus is defined
as follows for compact Hausdorff spaces X, Y and continuous functions f : X → Y .

• RX is the space of Radon probability measures on X with the vague topology

• Rf : RX → RY computes the pushforward measure Rf(m) = m ◦ f−1

• ηR
X : X → RX computes the Dirac measure on a point, defined for any Borel

set B of X by ηR
X(x)(B) = 1 if x ∈ B, 0 if x /∈ B

166

• µR
X : RRX → RX computes the mixture measure µR

X(M)(B) =
∫
RX evχBdM ,

where χB : X → R is the characteristic function of B so that evχB : RX → R
is just evχB(m) = m(B) for every Borel set B of X

The Radon monad is one of the many possible generalisations of the Set distri-
bution monad. However, contrary to the Vietoris monad, the Radon monad does
not restrict to the full subcategory of discrete finite spaces. For example, R{0, 1} is
infinite, hence also not discrete (otherwise compactness would fail). The following
proposition makes precise the sense in which R generalises D.

Proposition 7.23. Forgetting topologies, the action of the Radon monad on finite
sets can be identified with that of the distribution monad. More precisely,

• for every finite X with the discrete topology, the function

κX : RX → DX

m 7→
∑
x∈X

m({x}) · x

is a bijection with inverse

κ−1
X : DX → RX

ϕ 7→ λB ∈ PX.
∑
x∈B

ϕ(x)

• moreover ηR
X = κ−1

X ◦ηD
X and for every f : X → Y between finite discrete spaces,

Rf = κ−1
Y ◦Df ◦ κX (where both equations hold in Set)

Proof. The topology of X is PX, so the Borel σ-algebra of X is also PX.

• The proof that κX and κ−1
X are well-defined and inverse to each other is straight-

forward and left to the reader.

• The first equation is immediate. For any trivially continuous f : X → Y

between finite discrete spaces and every m ∈ RX,

(κ−1
Y ◦Df ◦ κX)(m) = (κ−1

Y ◦Df)
(∑
x∈X

m({x}) · x
)

= κ−1
Y

(∑
x∈X

m({x}) · f(x)
)

= λB.
∑
y∈B

∑
x∈f−1({y})

m({x})

= λB.
∑
y∈B

(m ◦ f−1)({y})

= λB.(m ◦ f−1)(B) = Rf

167

There is a well-behaved notion of support for Radon measures.

Definition 7.24. The support of a Radon probability measure m ∈ RX is defined
by

supp(m) =
⋂
{C ∈ V X | m(C) = 1} (7.31)

Notably, from [53, Proposition 5.2], we have m(supp(m)) = 1, which easily entails
that for every Borel subset B, m(B ∩ supp(m)) = m(B).

Remark 7.25. Actually, the monad morphism supp : D → P in Set generalises to
the topological setting. More precisely, in [53], Fritz et al. consider the category Top
of topological spaces and continuous functions and prove that the support defines
a monad morphism from the so-called valuation monad to the so-called hyperspace
monad. Restricting their result to the full subcategory KHaus reveals that supp : R→
V is close to be a monad morphism – actually, all required diagrams commute, but

the functions suppX : RX → V X are not in general continuous [114]. What prevents
continuity is that Fritz et al. use the (coarser) lower Vietoris topology instead of
our Vietoris topology. Consequently, supp is not a monad morphism R → V. In
particular, we cannot obtain a trivial weak distributive law VR → RV nor a trivial
coweak distributive law RV→ VR using supp.

The path towards a monotone law RV → VR now requires to verify the four
assumptions of Corollary 7.11. We are able to prove the first two of them.

Proposition 7.26. The Radon functor R preserves continuous surjections.

Proof. Let f : X → Y be a continuous surjection between compact Hausdorff spaces.
Let n ∈ RY , we must find an m ∈ RX such that Rf(m) = n, that is, m ◦ f−1 = n.
The existence of such an m is immediate by [18, Theorem 9.1.9].

To prove that R is nearly cartesian, we will use the following result of Edwards [47,
Proposition 3.3].

Proposition 7.27 (Edwards). Let X, Y be compact Hausdorff spaces, m ∈ RX,
n ∈ RY and K ⊆ X×Y be a closed non-empty relation with projections k1 : K → X,
k2 : K → Y . Then the following statements are equivalent:

1. there is a θ ∈ R(X×Y) such that supp(θ) ⊆ K and Rk1(θ) = m and Rk2(θ) = n

2. for all open U ⊆ X, V ⊆ Y such that (U ×V c)∩K = ∅, we have m(U) ≤ n(V)

168

Proposition 7.28. The Radon functor R is nearly cartesian.

Proof. Let f : X → Z and g : Y → Z be continuous functions between compact
Hausdorff spaces. Consider their pullback P = {(x, y) ∈ X × Y | f(x) = g(y)}
endowed with the initial topology with respect to the projections p1 : P → X and
p2 : P → Y . Let m ∈ RX and n ∈ RY be such that Rf(m) = Rg(n). To prove
nearly cartesianness, we must show that there is a λ ∈ RP such that Rp1(λ) = m

and Rp2(λ) = n. First, we show that the case P = ∅ is impossible. If P is empty,
then f(X) ∩ g(Y) = ∅, so

g−1(f(X)) = g−1(f(X)) ∩ g−1(g(Y)) = g−1(f(X) ∩ g(Y)) = g−1(∅) = ∅ (7.32)

Henceforth 1 = m(X) = (m ◦ f−1)(f(X)) = (n ◦ g−1)(f(X)) = n(∅) = 0, a contradic-
tion. Remark that P is a closed subset of X × Y . Indeed, the diagonal ∆Z ⊆ Z × Z
is closed because Z is Hausdorff, and P = (f × g)−1(∆Z). We now apply Proposi-
tion 7.27. The second condition of this proposition is actually equivalent to

2bis. for all C ∈ V X, D ∈ V Y such that (Cc ×D) ∩K = ∅, we have n(D) ≤ m(C)

Let C ∈ V X and D ∈ V Y such that (Cc × D) ∩ P = ∅. Let us show that n(D) ≤
m(C). Note that f−1(g(D)) ⊆ C because if f(x) ∈ g(D), there is y ∈ D such that
f(x) = g(y), hence (x, y) ∈ P and using (Cc ×D) ∩ P = ∅ this forces x ∈ C. Then

n(D) ≤ n(g−1(g(D))) = (n ◦ g−1)(g(D)) = (m ◦ f−1)(g(D)) ≤ m(C) (7.33)

(NB: it is important to use closed sets instead of open sets, because the direct image
of an open set is not necessarily measurable, whereas in KHaus the direct image g(D)
of a closed set is closed, hence measurable.) We conclude that 2bis. holds, so there is
a Radon probability measure θ ∈ R(X × Y) with supp(θ) ⊆ P such that Rp1(θ) = m

and Rp2(θ) = n. The rest of the proof is mere paperwork to obtain a measure on
P . Let λ be the restriction of θ to Borel subsets of P . We have λ ∈ RP because
λ(P) = θ(P) ≥ θ(supp(θ)) = 1. Furthermore for every Borel subset B of Z:

λ(p−1
1 (B)) = λ(r−1

1 (B) ∩ P)
= θ(r−1

1 (B) ∩ P)
= θ(r−1

1 (B)) because supp(θ) ⊆ P

= m(B)

and similarly λ ◦ p−1
2 = n.

169

Hence there is a relational extension Rel(R) : Rel(KHaus)→ Rel(KHaus), expressed
as follows – using Proposition 7.27 – for every closed S ⊆ X × Y :

Rel(R)(S) = {(m,n) ∈ RX ×RY |∀(C,D) ∈ V X × V Y.
if (Cc ×D) ∩ S = ∅ then n(D) ≤ m(C).}

Proposition 7.29. The Radon unit ηR is not nearly cartesian.

Proof. Endow the finite sets {0} and {0, 1} with the discrete topology. By Proposi-
tion 7.23, identify R with D in the naturality square of the unique continuous function
{0, 1} → {0}. This yields a counterexample to nearly cartesianness, with the same
argument as in Proposition 3.9.

Again, no distributive law RV → VR can be obtained from Corollary 7.11, and
more generally

Proposition 7.30. There is no distributive law of type RV→ VR.

Proof. The same argument as in Proposition 7.17 will work, with a bit of extra caution
because R does not strictly restrict to finite discrete sets. The standard proof of
nonexistence of a distributive law λ : DP→ PD [153, Appendix] proceeds as follows.
One starts with two finite sets X and Y , one specific element of DPX, and three
functions X → Y . Using solely unit axioms and naturality squares of λ on these sets
and functions, a contradiction is derived. What counts is that the functor D is never
applied more than once. Therefore, this proof can still be carried out by endowing
every finite set with the discrete topology, replacing D with R by Proposition 7.23,
and replacing P with V by Proposition 7.5.

We do not know if the remaining assumptions of Corollary 7.11 hold. In their
absence, we can only conjecture:

Conjecture 7.31. The following properties hold:

• the relational extension Rel(R) preserves continuous relations

• the multiplication µR is nearly cartesian

The result from Edwards might be crucial to prove or disprove the first assumption.
The support not being a monad morphism R→ V possibly hints that the Radon and
Vietoris topologies in KHaus suffer some intrinsic incompatibility, so that we believe
Rel(R) most likely does not preserve continuous relations. Concerning the second

170

assumption, we note that it seems to be related to the notion of disintegration of
measure, and that a similar result has been proved in [113, Theorem 2.6.9]. In any
case, let us be optimistic and compute what would be the resulting weak distributive
law.

Proposition 7.32. If Conjecture 7.31 holds, then the resulting monotone weak dis-
tributive law λ : RV→ VR has the following expressions for m ∈ RVX,

λX(m) = {n ∈ RX | ∀(C, D) ∈ V V X × V X.♦D ⊆ C ⇒ n(D) ≤ m(C)} (7.34)
=
{
n ∈ RX | ∀(C, D) ∈ V V X × V X.

⋃
C ⊆ D ⇒ m(C) ≤ n(D)

}
(7.35)

Proof. The first expression is obtained by computing Rel(R) on the relation 3X=
{(C, x) ∈ V X × X | x ∈ C}. The property (Cc × D)∩ 3X= ∅ is easily seen to be
equivalent to ♦D ⊆ C. For the second expression, remark that in Edward’s result
(Proposition 7.27), the assumptions and statement 1. are symmetrical in X and Y .
Then we can recast statements 2. and 2bis. by reversing the roles of X and Y , so
that for every closed S ⊆ X × Y ,

Rel(R)(S) = {(m,n) | ∀(C,D). if (C ×Dc) ∩ S = ∅ then m(C) ≤ n(D)} (7.36)

Applying this again to 3X , and remarking that (C × Dc)∩ 3X= ∅ is equivalent to⋃ C ⊆ D, we obtain the second expression.

171

Conclusion

In this thesis, we used weak distributive laws to rediscover various constructions of
theoretical computer science. By lack of proper distributive laws, these constructions
were previously performed outside of any general framework, or within a dedicated
ad hoc framework. Rediscovered constructions include

• the convex powerset monad, exhibited as a weak lifting

• the algebraic presentation for the monad of convex subsets of distributions

• generalised determinisation procedures for alternating automata and probabilis-
tic automata

• compatibility of bisimulation up-to convex hull for probabilistic automata

We generalised generic results stemming from Beck’s theory of distributive laws to
obtain generic results for weak distributive laws, from which the above constructions
are just instances. An important part of the theory was already set up by Richard
Garner – we provided a more detailed account, including

• a formal definition of the dual of a weak distributive law, and a detailed proof
of their correspondence theorem

• a way to produce a (co)weak distributive law out of any monad morphism,
generalising a result from Maaike Zwart about idempotent monads

• an account of iterated weak distributive laws, adapting results from Eugenia
Cheng

Non-trivial weak distributive laws can arguably be seen as a refinement of plain
distributive laws in the way they intermingle the features of the two monads. Indeed,
the scope of the weak composite monad is restricted to those items for which it really
makes sense to talk about both algebraic structures at once. For example, combining
powerset and distribution requires a restriction to convex subsets.

172

Our methods are categorical rather than algebraic. Consequently, there is no
restriction to work in the category of sets, contrary to the recent works of Zwart and
Parlant. In the second part of the thesis, we took advantage of this opportunity to
discover weak distributive laws in other categories, following the trail of laws that are
monotone with respect to the Kleisli category of some powerset-like monad. Injecting
the spirit of weak distributive laws into various results of the literature, we were able
to

• identify toposes as the most general categories where these monotone weak
distributive laws coincide with relational extensions

• prove that the powerset monad of toposes weakly self-distributes, extending
results from Oege de Moor, and derive these proofs formally in the constructive
logic of Coq

• find sufficient conditions for the existence of a monotone weak distributive law
in the category of compact Hausdorff spaces

• prove that these conditions are met for the Vietoris monad itself, and provide
partial results for the Radon monad. We end up two assumptions away from
combination of probabilistic choice and non-deterministic choice in compact
Hausdorff spaces.

The last point is an ideal transition to comment on future work and open questions.

• Does Conjecture 7.31 hold, or equivalently, does the monotone weak distribu-
tive law of the distribution monad over the powerset monad generalise to the
continuous framework of compact Hausdorff spaces?

• For a category with a monad T such that global elements of TX correspond
to subobjects of X, can we obtain a weak distributive law TT → TT? Such
a result would unify our laws EE→ EEin toposes and VV → VV in compact
Hausdorff spaces. The idea is due to an anonymous reviewer, whom we thank.

• Can we find more weak distributive laws with a relevant semantic content, as
well as non-trivial coweak distributive laws? Can we find such laws that do
not come from relational extensions? Can other notions of weak distributive
laws from Street, Böhm and Lack lead to (re)discover some deep constructions
of theoretical computer science? The search space for these interrogations ob-
viously includes the category of sets, toposes, and compact Hausdorff spaces,

173

but also categories that have been mentioned throughout this thesis but not
scanned in detail, such as the quasitopos of quasi-Borel spaces [74], or various
categories of metric spaces (see e.g. [107]).

• We are interested in understanding more thoroughly the meaning of weak dis-
tributive laws at the algebraic level, because the algebraic approach leads to
elegant proofs and a deeper understanding of phenomena in Set.

• According to a recent result of Petrişan and Sarkis [116], under mild conditions,
weak distributive laws between a pair of monads can be seen as plain distributive
laws between a pair of related monads. This sets the stage for no-go theorems
for weak distributive laws using the algebraic methods of [161].

• The above points are especially of interest when applied to combination of
monads for which there is no possible distributive law and no known weak
distributive law. A curious case related to this situation is PD→ DP, for which
there is a trivial weak distributive law, but possibly no other weak distributive
law: would algebraic methods be able to detect that there is no meaningful law?

174

Appendix A

Proof of the Coweak
Correspondence Theorem

In this Appendix we prove in detail the non-trivial correspondence of Theorem 2.29:

coweak distributive laws ⇐⇒ coweak extensions

Coweak Distributive Laws ⇒ Coweak Extensions

For this implication we assume that idempotents split in Kl(S). Let λ be a coweak
distributive law. For any h : X 9 Y we define

h+ = λY ◦ Th : TX 9 TY (A.1)

Lemma A.1. For any h : X 9 Y , k : Y 9 Z,

(k • h)+ = k+ • h+ (A.2)

Proof.

k+ • h+ = (λZ ◦ Tk) • (λY ◦ Th) definition of −+

= µS
TZ ◦ SλZ ◦ STk ◦ λY ◦ Th definition of •

= µS
TZ ◦ SλZ ◦ λSZ ◦ TSk ◦ Th naturality of λ

= λZ ◦ TµS
Z ◦ TSk ◦ Th (µS) axiom

= λZ ◦ T (k • h) definition of •
= (k • h)+ definition of −+

175

Define the natural transformation e = λ ◦ TηS : T → ST . Note that eX = (ηS
X)+,

so that for every h : X 9 Y

eY • h+ = (ηS
Y)+ • h+ = (ηS

Y • h)+ = h+ (A.3)
h+ • eX = h+ • (ηS

X)+ = (h • ηS
X)+ = h+ (A.4)

In particular, the morphism eX : TX 9 TX is idempotent in Kl(S). In the context
of distributive laws, we would have eX = ηS

TX , so the operation (−)+ would preserve
identities and be the functor extending T to Kl(S). Moreover, e : T → ST would be
a monad morphism. In our case the ηS diagram does not commute, so more work is
needed to get a coweak extension.

By splitting the Kleisli idempotent eX we obtain an object TX and morphisms
πX : TX 9 TX, ιX : TX 9 TX such that πX • ιX = ηS

TX and ιX • πX = eX . This
induces equations πX • eX = πX and eX • ιX = ιX .

Now, for any h : X 9 Y we define

T (h) = πY • h+ • ιX (A.5)

Using equations (A.3) and (A.4), we have

Th • πX = πY • h+ (A.6)
ιY • Th = h+ • ιX (A.7)

We now list some other identities that will be often used in the proof.

Lemma A.2. Let f : X → Y , h : Y 9 Z and k : W 9 X. Then

h • FSf = h ◦ f (A.8)
FSf • k = Sf ◦ k (A.9)
TFSf = πY • FSTf • ιX (A.10)

Proof. These are simple calculations involving only naturality of ηS and the monad
axioms for S:

h • FSf = µS
Z ◦ Sh ◦ ηS

Y ◦ f = µS
Z ◦ ηS

SZ ◦ h ◦ f = h ◦ f

FSf • k = µS
Y ◦ SηS

Y ◦ Sf ◦ k = Sf ◦ k

For the last identity, remark that by definition of −+, FS and e:

(FSf)+ = λY ◦ TηS
Y ◦ Tf = eY ◦ Tf

176

and then compute

TFSf = πY • (FSf)+ • ιX definition of T
= πY • (eY ◦ Tf) • ιX remark
= πY • eY • FSTf • ιX equation (A.8)
= πY • FSTf • ιX splitting

Lemma A.3. The constructions TX and Th define a functor T : Kl(S)→ Kl(S).

Proof. Identities are preserved:

T (ηS
X) = TFS(idX) definition of FS

= πX • FST (idX) • ιX equation (A.10)
= πX • ιX functors preserve id
= ηS

TX splitting

Composition of h : X 9 Y and k : Y 9 Z is preserved:

Tk • Th = πZ • k+ • ιY • πY • h+ • ιX definition of T
= πZ • k+ • eY • h+ • ιX splitting
= πZ • k+ • h+ • ιX equation (A.3)
= πZ • (k • h)+ • ιX equation (A.2)
= T (k • h) definition of T

Lemma A.4. The morphisms (ιX)X∈C and (πX)X∈C define natural transformations
ι : TFS → FST and π : FST → TFS.

Proof. Let f : X → Y . Using the previous lemmas,

ιY • TFSf = ιY • πY • FSTf • ιX equation (A.10)
= eY • FSTf • ιX splitting
= (eY ◦ Tf) • ιX equation (A.8)
= (STf ◦ eX) • ιX naturality of e
= FSTf • eX • ιX equation (A.9)
= FSTf • ιX splitting

177

TFSf • πX = πY • FSTf • ιX • πX equation (A.10)
= πY • FSTf • eX splitting
= πY • (STf ◦ eX) equation (A.9)
= πY • (eY ◦ Tf) naturality of e
= πY • eY • FSTf equation (A.8)
= πY • FSTf splitting

Now we define the unit and multiplication of T by

η
T
X = πX • FSη

T
X (A.11)

µ
T
X = πX • (FSµ

T
X) • ιTX • T (ιX) (A.12)

and proceed to verify the monad requirements for (T , ηT, µT). First, we need a
few new equations.

Lemma A.5. For all h : X 9 Y ,

h+ • FSη
T
X = FSη

T
Y • h (A.13)

h+ • FSµ
T
X = FSµ

T
Y • h++ (A.14)

eX • FSη
T
X = FSη

T
X (A.15)

eX • FSµ
T
X = FSµ

T
X • e+

X (A.16)

Proof. Compute

h+ • FSη
T
X = h+ ◦ ηT

X equation (A.8)
= λY ◦ Th ◦ ηT

X definition of −+

= λY ◦ ηT
SY ◦ h naturality of ηT

= SηT
Y ◦ h (ηT) axiom

= FSη
T
Y • h equation (A.9)

h+ • FSµ
T
X = h+ ◦ µT

X equation (A.9)
= λY ◦ Th ◦ µT

X definition of −+

= λY ◦ µT
SY ◦ TTh naturality of µT

= SµT
Y ◦ λTY ◦ TλY ◦ TTh (µT) axiom

= SµT
Y ◦ λTY ◦ T (h+) definition of −+

= SµT
Y ◦ h++ definition of −+

= FSµ
T
Y • h++ equation (A.9)

178

By injecting h = ηS
X in equations (A.13) and (A.14) we obtain equations (A.15)

and (A.16).

We now have enough intermediate results to be able to work with commutative
diagrams directly in Kl(S), as the next lemmas show. For the sake of readability, in
the subsequent diagrams we use the notation → instead of 9.

Lemma A.6. Both ηT : 1 9 T and µT : TT 9 T are natural transformations.

Proof. Naturality of ηT is established by the following commutative diagram. Un-
marked regions commute by unfolding the definition of ηT.

X Y

TX TY

TX TY

η
T
X

h

FSη
T
X

(A.13)
η

T
Y

FSη
T
Y

πX

h+

(A.6) πY

Th

Naturality of µT is established by the following commutative diagram. Unmarked
regions commute by unfolding the definition of µT.

TTX TTY

TTX TTY

TTX TTY

TX TY

TX TY

µ
T
X

TTh

TιX
(A.7)

µ
T
Y

TιY

ιTX

T (h+)

(A.7) ιTY

FSµ
T
X

h++

(A.14) FSµ
T
Y

πX

h+

(A.6)
πY

Th

Lemma A.7. The equations of monads are satisfied by ηT and µT.

Proof. The following diagram proves that the axiom µT •TηT = 1 holds, because the
top-right path equals π • ι = 1. The top right triangle commutes by the monad axiom

179

µT ◦ TηT = idT . Other unmarked regions commute by definition of ηT, µT and the
splitting.

TX TX

TTX TTX TX

TTX (A.16)

TTX TTX TX

TTX TX

Tη
T
X

TFSη
T
X

ιX

(A.10) FSTη
T
X

TπX

TeX

ιTX

πTX

eTX

(eX)+

FSµ
T
X

eX

πX
(eX)+(A.7)

(A.4)

ιTX

FSµ
T
X

πX

µ
T
X

TιX

The following diagram proves that the axiom µT • ηTT = 1 holds, because the
top-right path equals π • ι = 1. The top right triangle commutes by the monad axiom
µT ◦ ηTT = idT . Other unmarked regions commute by definition of ηT, µT and the
splitting.

TX TX

TTX TTX TX

TTX

TTX

TTX TX

η
T
TX

FSη
T
TX

ιX

(A.13) FSη
T
TX

πTX

ι+X

ι+X
FSµ

T
X

πX
πTX

eTX(A.3)
ιTX

(A.6)

µ
T
X

TιX

The following diagram shows that µT is associative. Unmarked regions commute
by definition of µT and splitting properties.

180

TTTX TTX

TTTX TTTX TTX

TTTX TTX TTX

TTTX TTTX TTX

TTX TTX TX

TTX TTX TX

TTX TX

Tµ
T
X

µ
T
TX

TιTX

TTιX (A.7)

µ
T
X

TιX
(A.6)

ιTTX

T (ι+X) (A.7)

FSµ
T
TX

ι++
X

(A.3)

πTX

ι+X

TιTX (A.14)
and πTX

eTX
ιTX

TFSµ
T
X

ιTTX

naturality FSµ
T
TX

FSµ
T
TX

associativity
FSµ

T
X

TπX
TeX

ιTX

e+X

FSµ
T
X

(A.7) (A.16)
πX

eX
ιTX FSµ

T
X

πX

µ
T
X

TιX

This achieves the proof that (T , ηT, µT) is a monad.

To achieve the construction of the coweak extension, we need to establish the four
commutative diagrams stating that π and ι are compatible with ηT and µT.

Lemma A.8. The coweak lifting diagrams (π.ηT), (ι.ηT), (π.µT) and (ι.µT) commute.

Proof. The (π.ηT) diagram comes right from the definition of ηT:

η
T
X = πX • FSη

T
X (A.17)

The (ι.ηT) diagram commutes because:

ιX • ηT
X = ιX • πX • FSη

T
X definition of ηT

= eX • FSη
T
X splitting

= FSη
T
X equation (A.15)

181

The (π.µT) diagram commutes:

TTX TTX TTX

(A.4) TTX

TTX TTX

TX

TX TX

πTX

FSµ
T
X

eTX

(eX)+

TπX

TeX

ιTX

µ
T
X

TιX

(eX)+ (A.7)

FSµ
T
X

(A.16)
ιTX

πX

πX

eX

Finally, the (ι.µT) diagram commutes:

TTX TTX TTX

TTX (A.7)

TTX (A.16)

TX

TX TX

TιX

µ
T
X

TιX

ιTX

FSµ
T
X

ιTX

TeX

FSµ
T
X

e+X

πX eX

ιX

Coweak Extensions ⇒ Coweak Distributive Laws

Let T be a coweak extension of T to Kl(S). Define

λX = TSX TSX TX TX�
πSX �

T (idSX)
�
ιX

(A.18)

In the proof, we will often use equations (A.8) and (A.9). As the upcoming
commutative diagrams all live in Kl(S), we again use the notation → instead of 9
for readability.

Lemma A.9. The morphisms (λX)X∈C define a natural λ : TS → ST .

182

Proof. Let f : X → Y , we must prove that STf ◦ λX = λY ◦ TSf . This is equivalent
to FSTf • λX = λY • FSTSf , which is true according to the diagram:

TSX TX

TSX TX

TSY TY

TSY TY

λX

FSTSf

πSX

def

FSTf

T (idSX)

TFSSf

ιX

TFSfnat nat

T (idSY)

def ιY

λY

πSY

The middle square commutes because

idSY •FSSf = idSY ◦Sf = Sf = Sf ◦ idSX = FSf • idSX (A.19)

Lemma A.10. The (ηT) diagram is satisfied by λ.

Proof. This amounts to proving that SηT
X = λX ◦ ηT

SX . Note that

FSη
T
X • idSX = SηT

X ◦ idSX = SηT
X

λX • FSTSf = λX ◦ TSf

so it is actually equivalent to proving that FSη
T
X • idSX = λX • FSTSf . This is done

in the following diagram:

SX X

nat

TSX TX

def

TSX TX

FSη
T
SX

η
T
SX

idSX

η
T
X

FSη
T
X(π.ηT) T (idSX)

ιX

(ι.ηT)

λX

πSX

183

Lemma A.11. The (µS) diagram is satisfied by λ.

Proof. This amounts to showing that µS
TX ◦ SλX ◦ λSX = λX ◦ TµS

X . Note that

λX • λSX = µS
TX ◦ SλX ◦ λSX

λX • FSTµ
S
X = λX ◦ TµS

X

so it is actually equivalent to proving that λX • λSX = λX • FSTµ
S
X . This is done in

the following diagram:

TSSX TSX TX

TSSX TSX TSX TX

TSX TX

TSX TX

λSX

FSTµ
S
X

πSSX def

λX

πSX
split def

nat
T (idSSX)

TFSµ
S
X

ιSX

T (idSX)

ιX

T (idSX)

def ιX

λX

πSX

The middle rectangle commutes because

idSX • idSSX = µS
X ◦ S idSX ◦ idSSX = µS

X = idSX ◦µS
X = idSX •FSµ

S
X

Lemma A.12. The (µT) diagram is satisfied by λ.

Proof. This amounts to showing that SµT
X ◦ λTX ◦ TλX = λX ◦ µT

SX . Note that

FSµ
T
X • λTX • FSTλX = FSµ

T
X • (λTX ◦ TλX) = SµT

X ◦ λTX ◦ TλX
λX • FSµ

T
SX = λX ◦ µT

SX

so it is actually equivalent to proving that FSµ
T
X • λTX • FSTλX = λX • FSµ

T
SX . This

184

is done in the following diagram:

TTSX TSTX TTX

TTSX TSTX TTX

TTSX TTX

TSX TX

TSX TX

FSTλX

FSµ
T
SX

πTSX nat

λTX

πSTX def

FSµ
T
X

TFSλX

TπSX

TλX

T (idSTX)

ιTX

(π.µT) def (ι.µT)

µ
T
SX

TT (idSX)

nat µ
T
X

TιX

T (idSX)

def ιX

λX

πSX

The (unmarked) flat triangle commutes because

idSTX •FSλX = idSTX ◦λX = λX

185

Appendix B

Coq Proofs

This Appendix contains formal Coq proofs for the following results of Chapter 6.
These proofs can also be found on Github [61].

• Theorem eta nearly cartesian is a proof of Proposition 6.18

• Theorem mu nearly cartesian is a proof of Proposition 6.20

• Theorem monotone weak dlaw is a proof of Proposition 6.22

• Theorem dlaw degenerate is a proof of Proposition 6.19

(** * Powerset weakly distributes over itself in toposes
This file is an appendix of the PhD thesis of Alexandre Goy
untitled "On the Compositionality of Monads via Weak Distributive Laws"
(2021).
It contains formal proofs, valid in [Set]
and more generally in any topos, that:

1 - [Theorem eta_nearly_cartesian]
the unit of the powerset monad is nearly cartesian
iff the topos is degenerate

2 - [Theorem mu_nearly_cartesian]
the multiplication of the powerset monad is nearly cartesian

3 - [Theorem monotone_weak_dlaw]
the unique monotone weak distributive law from the powerset
over itself is given by the expected Egli-Milner formula

4 - [Theorem dlaw_degenerate]
if there is a distributive law [PP → PP]
then the topos is degenerate

*)

(** * Preliminaries *)

(** We define the powerset monad in the internal logic of a topos.

186

- [P] is the action of the functor on objects (powerset).
Note that [Prop] plays the role of the subobject classifier.

- [im] is the action of the functor on morphisms (direct image).
- [etaP] is the unit (singleton).
- [muP] is the multiplication (union).

*)
Definition P X := X → Prop.
Definition im [X] [Y] (f : X → Y) (a : P X) (y : Y) :=

exists (x : X), a x ∧ f x = y.
Definition etaP X (x : X) (x’ : X) := x = x’.
Definition muP X (t : P (P X)) (x : X) := exists (s : P X), s x ∧ t s.

(** In any topos, extensionality holds. *)
Axiom ext : forall X, forall A B : P X,

(forall (x : X), A x ↔ B x) → A = B.

(** A few more constructs will be needed.
- [inter] is the intersection of two subobjets.
- [preim] is the preimage of a subobject under a morphism. *)

Definition inter [X] (A B : P X) (x : X) := A x ∧ B x.
Notation "A ∩ B" := (inter A B) (at level 40).
Definition preim [X] [Y] (f : X → Y) (s’ : P Y) (x : X) := s’ (f x).

(** * 1 - Unit *)

Inductive terminal := elt.
Definition Prop_into_terminal (P : Prop) := elt.
(** We define [full] to be the maximal subobject of [Prop]. *)
Definition full (P : Prop) := True.

Lemma image_of_full_is_singleton :
im Prop_into_terminal full = etaP terminal elt.

Proof.
apply ext. unfold im,full,etaP,Prop_into_terminal.
intro. destruct x. split ; intro.

− reflexivity.
− exists True. split ; trivial.

Qed.

(** The unit [etaP] is nearly cartesian
if and only if the topos is degenerate. *)
Theorem eta_nearly_cartesian :

(forall X Y (f : X → Y) (s : P X) (y : Y),
im f s = etaP Y y →
exists (x : X), etaP X x = s ∧ f x = y) ↔ (True = False).

Proof.
split ; intros.

187

− specialize (H Prop terminal Prop_into_terminal).
pose proof H full elt image_of_full_is_singleton.
destruct H0,H0.
assert (etaP Prop x True ↔ True) by (rewrite H0 ; intuition).
assert (etaP Prop x False ↔ True) by (rewrite H0 ; intuition).
unfold etaP in H2,H3.
assert (x = True) by (apply H2 ; trivial).
assert (x = False) by (apply H3 ; trivial). rewrite H4 in H5.
assumption.

− exfalso. rewrite ← H. trivial.
Qed.

(** * 2 - Multiplication *)

Lemma frobenius : forall [X] [Y] f (s : P X) (s’ : P Y),
im f (s ∩ (preim f s’)) = (im f s) ∩ s’.

Proof.
intros. apply ext. unfold preim,inter,im. intro y.
split ; intros ; destruct H,H,H.

− rewrite H0 in H1. split ; try assumption.
exists x. split ; assumption.

− rewrite ← H1 in H0. exists x. auto.
Qed.

Lemma subset_in_union :
forall X (t : P (P X)) (s : P X), t s → muP X t ∩ s = s.

Proof.
intros. apply ext. unfold muP,inter. intro. split ; intro.

− destruct H0. assumption.
− split ; try assumption. exists s. split ; assumption.

Qed.

(** The multiplication [muP] is nearly cartesian. *)
Theorem mu_nearly_cartesian :

forall X Y (f : X → Y) (s : P X) (t’ : P (P Y)),
im f s = muP Y t’ →
exists (t : P (P X)), muP X t = s ∧ im (im f) t = t’.

Proof.
intros. exists (im (fun s’ ⇒ s ∩ (preim f s’)) t’). split ; apply ext.

− intro. unfold muP,im. split ; intro.
+ destruct H0 as (s0,H0),H0,H1 as (s’,H1),H1.

rewrite ← H2 in H0. destruct H0. assumption.
+ assert ((im f s) (f x))

by (unfold im ; exists x ; split ; try assumption ; reflexivity).
rewrite H in H1. destruct H1 as (s’, H1), H1.
exists (s ∩ (preim f s’)). split.
∗ split ; assumption.

188

∗ exists s’. auto.
− intro s’. unfold im. split ; intro.

+ destruct H0 as (s0,H0),H0,H0 as (s’0,H0),H0.
pose proof frobenius f s s’0. rewrite H2,H in H3.
rewrite subset_in_union in H3 ; try assumption.
unfold im in H3. rewrite ← H1, H3. assumption.

+ exists (s ∩ (preim f s’)). split.
∗ exists s’. auto.
∗ pose proof frobenius f s s’. rewrite H in H1.

rewrite subset_in_union in H1 ; assumption.
Qed.

(** * 3 - Monotone weak distributive law *)

Definition relation [X] [Y] (R : P(X ∗ Y)) := { t : X ∗ Y | R t}.
Definition proj1 [X] [Y] (R : P(X ∗ Y)) (t : relation R) :=

fst (proj1_sig t).
Definition proj2 [X] [Y] (R : P(X ∗ Y)) (t : relation R) :=

snd (proj1_sig t).
Definition Pext [X] [Y] (R : P(X ∗ Y)) (u : P X ∗ P Y) :=

exists (t : P (relation R)),
im (proj1 R) t = fst u ∧ im (proj2 R) t = snd u.

Lemma pair_in_relation [X] [Y] (R : P(X ∗ Y)) :
forall r : relation R, R (proj1 R r, proj2 R r).

Proof.
intro. destruct r as (t,r0). destruct t.
unfold proj1,proj2. simpl. assumption.
Qed.

(** The relational extension is given by the Egli-Milner formula. *)
Proposition Egli_Milner [X] [Y] (R : P(X ∗ Y)) : forall (u : P X ∗ P Y),

Pext R u ↔
((forall x : X, (fst u) x → exists y : Y, (snd u) y ∧ R (x,y))
∧ (forall y : Y, (snd u) y → exists x : X, (fst u) x ∧ R (x,y))).

Proof.
intro. destruct u as (s,s’). unfold Pext. simpl. split ; intro.

− destruct H as (t,H),H. rewrite ← H, ← H0. unfold im. split.
+ intros. destruct H1 as (r,H1). destruct H1.

exists (proj2 R r). split.
∗ exists r. auto.
∗ rewrite ← H2. apply pair_in_relation.

+ intros. destruct H1 as (r,H1). destruct H1.
exists (proj1 R r). split.
∗ exists r. auto.
∗ rewrite ← H2. apply pair_in_relation.

− destruct H. pose (fun (t0 : relation R) ⇒

189

s (fst (proj1_sig t0)) ∧ s’ (snd (proj1_sig t0))) as t.
exists t. split.
+ apply ext. intro x. split ; intro.

∗ unfold im in H1. destruct H1 as (r,H1),H1. destruct r as (r0,H3).
unfold t in H1. unfold proj1 in H2. simpl in ∗.
destruct H1. rewrite H2 in H1. assumption.

∗ specialize (H x H1). destruct H as (y,H),H. unfold im.
exists (exist R (x,y) H2). unfold t. simpl.
split ; try split ; assumption.

+ apply ext. intro y. split ; intro.
∗ unfold im in H1. destruct H1 as (r,H1),H1.

destruct r as (r0,H3). unfold t in H1.
unfold proj2 in H2. simpl in ∗. destruct H1.
rewrite H2 in H4. assumption.

∗ specialize (H0 y H1). destruct H0 as (x,H0),H0.
unfold im. exists (exist R (x,y) H2).
unfold t. simpl. split ; try split ; assumption.

Qed.

Definition ni X (t : P X ∗ X) := (fst t) (snd t).
Definition lambda_m X (t : P (P X)) (s : P X) := Pext (ni X) (t,s).

(** The monotone weak distributive law [lambda] expresses as follows. *)
Theorem monotone_weak_dlaw X : forall (t : P (P X)) (s : P X),

lambda_m X t s ↔
(forall x : X, s x → muP X t x)
∧ (forall u : (P X), t u → exists (x : X), u x ∧ s x).

Proof.
intros. unfold lambda_m. unfold muP. split ; intro.
− apply Egli_Milner in H. unfold fst,snd in H. destruct H. split.

+ intros. specialize (H0 x H1). destruct H0 as (s0,H0),H0.
exists s0. split ; assumption.

+ intros. specialize (H u H1). destruct H as (x,H),H.
exists x. split ; assumption.

− apply Egli_Milner. unfold fst,snd. destruct H. split.
+ intro u. intro. specialize (H0 u H1).

destruct H0 as (x,H0). exists x. destruct H0. split ; assumption.
+ intro x. intro. specialize (H x H1).

destruct H as (u,H). exists u. destruct H. split ; assumption.
Qed.

(** * 4 - Distributive law *)

(** We prove that if there is a natural transformation
[lambda : PP → PP] satisyfing both unit axioms, then [True = False].
This is the formalisation of a proof by Klin and Salamanca in

- (1) "Iterated covariant powerset is not a monad", Theorem 2.4

190

itself inspired from a proof of Varacca following an idea of Plotkin
- (2) "Distributing probability over nondeterminism", Theorem 3.2. *)

Definition subset [X] (s t : P X) := forall x : X, s x → t x.
Notation "s ⊆ t" := (subset s t) (at level 60).
Lemma subset_inter [X] (s t t’ : P X) : s ⊆ t → s ⊆ t’ → s ⊆ t ∩ t’.
Proof. unfold subset,inter. intuition. Qed.
Lemma subset_refl [X] (s t : P X) : s = t → s ⊆ t.
Proof. unfold subset. intros. rewrite H in H0. assumption. Qed.
Lemma im_nonempty [X] [Y] (f : X → Y) (s : P X) :

(exists (y : Y), (im f) s y) → (exists (x : X), s x).
Proof. intro. destruct H as (y,H),H,H. exists x. assumption. Qed.

(** The functor [P] preserves preimages. *)
Proposition pres_preim [X] [Y] (f : X → Y) :

forall (s’ : P Y) (s : P X), ((im f) s) ⊆ s’ → s ⊆ (preim f s’).
Proof.
intros. unfold subset,im,preim. intros. apply H. exists x. auto.
Qed.

(** Preliminaries: we define the operation
[two] that builds a set out of two elements.
In the terminology of (1) this is a "non-trivial idempotent term". *)

Definition two [X] (x : X) (y : X) (z : X) := z = x ∨ z = y.

Lemma symmetry [X] : forall (x y : X), two x y = two y x.
Proof. unfold two. intros. apply ext. intuition. Qed.

Lemma idempotence [X] : forall (x : X), two x x = etaP X x.
Proof. intro. apply ext. unfold two,etaP. intuition. Qed.

Lemma im_two [X] [Y] (f : X → Y) : forall (x y : X),
(im f) (two x y) = two (f x) (f y).

Proof.
intros x x’. apply ext. intro y. unfold im,two. split ; intro.

− destruct H,H,H ; rewrite ← H0, H ; intuition.
− destruct H. + exists x. auto. + exists x’. auto.

Qed.

(** From here, the reader is encouraged to read Theorem 2.4 of
Klin & Salamanca paper in parallel. Their words are "quoted". *)

(** "Assume, towards a contradiction,
that there is such a distributive law."

Using the following axioms,
we will be able to derive that True = False *)
Axiom lambda : forall X, P (P X) → P (P X).

191

Axiom naturality : forall X Y (f : X → Y) (t : P (P X)),
(im (im f)) (lambda X t) = lambda Y ((im (im f)) t).

Axiom unit_1 : forall X (s : P X),
(lambda X) (etaP (P X) s) = im (etaP X) s.

Axiom unit_2 : forall X (s : P X),
(lambda X) (im (etaP X) s) = etaP (P X) s.

(** "Consider sets:" (in a topos these are finite coproducts) *)
Inductive A := a | b | c | d.
Inductive U := u | v.

Lemma inter_two (x y z : A) :
(y = z) → (two x y) ∩ (two x z) = etaP A x.

Proof.
intros. unfold inter,etaP,two. apply ext. intuition. exfalso. apply H.
rewrite ← H0. assumption.
Qed.

(** "And three functions defined by:" *)
Definition f x := match x with a ⇒ u | b ⇒ u | c ⇒ v | d ⇒ v end.
Definition g x := match x with a ⇒ u | b ⇒ v | c ⇒ u | d ⇒ v end.
Definition h x := match x with a ⇒ u | b ⇒ v | c ⇒ v | d ⇒ u end.

(** "Consider the element" *)
Definition t := two (two a b) (two c d).

(** "Analyse how the three naturality squares for [f], [g] and [h]
act on [t]. Recall that [im] acts on functions by taking direct images,
so in particular:" *)
Lemma Pf_ab : (im f) (two a b) = etaP U u.
Proof. rewrite im_two. simpl. apply idempotence. Qed.

Lemma Pf_cd : (im f) (two c d) = etaP U v.
Proof. rewrite im_two. simpl. apply idempotence. Qed.

Lemma Pg_ab : (im g) (two a b) = two u v.
Proof. rewrite im_two. reflexivity. Qed.

Lemma Ph_ab : (im h) (two a b) = two u v.
Proof. rewrite im_two. reflexivity. Qed.

Lemma Pg_cd : (im g) (two c d) = two u v.
Proof. rewrite im_two. reflexivity. Qed.

Lemma Ph_cd : (im h) (two c d) = two u v.
Proof. rewrite im_two. simpl. apply symmetry. Qed.

192

(** Additional lemmas needed in the sequel. *)
Lemma preim_g_u : preim g (etaP U u) = two a c.
Proof.
apply ext. unfold preim,two,etaP. intro.
split ; intros ; destruct x ; simpl in ∗ ; intuition ; discriminate.
Qed.

Lemma preim_g_v : preim g (etaP U v) = two b d.
Proof.
apply ext. unfold preim,two,etaP. intro.
split ; intros ; destruct x ; simpl in ∗ ; intuition ; discriminate.
Qed.

Lemma preim_h_u : preim h (etaP U u) = two a d.
Proof.
apply ext. unfold preim,two,etaP. intro.
split ; intros ; destruct x ; simpl in ∗ ; intuition ; discriminate.
Qed.

Lemma preim_h_v : preim h (etaP U v) = two b c.
Proof.
apply ext. unfold preim,two,etaP. intro.
split ; intros ; destruct x ; simpl in ∗ ; intuition ; discriminate.
Qed.

(** "By naturality and idempotence of [two] we get:" *)
Lemma PPg_t : (im (im g)) t = etaP (P U) (two u v).
Proof.
unfold t. rewrite im_two. rewrite Pg_ab,Pg_cd. apply idempotence.
Qed.

Lemma PPh_t : (im (im h)) t = etaP (P U) (two u v).
Proof.
unfold t. rewrite im_two. rewrite Ph_ab,Ph_cd. apply idempotence.
Qed.

(** "Hence, by a unit law for [lambda]
and naturality squares for [g] and [h] we obtain:"*)
Lemma PPg_lambdaA_t :

(im (im g)) (lambda A t) = two (etaP U u) (etaP U v).
Proof.
rewrite naturality. rewrite PPg_t. rewrite unit_1. apply im_two.
Qed.

Lemma PPh_lambdaA_t :
(im (im h)) (lambda A t) = two (etaP U u) (etaP U v).

Proof.

193

rewrite naturality. rewrite PPh_t. rewrite unit_1. apply im_two.
Qed.

(** "Which implies that [lambda A t] is non-empty:" *)
Lemma lambdaA_t_nonempty : exists (s : P A), lambda A t s.
Proof.
apply (im_nonempty (im g) (lambda A t)). rewrite PPg_lambdaA_t.
exists (etaP U u). unfold two. intuition.
Qed.

(** "and:" *)
Lemma Pg_s :

forall (s : P A), lambda A t s → (two (etaP U u) (etaP U v)) (im g s).
Proof.
intros. rewrite ← PPg_lambdaA_t. unfold im. exists s. intuition.
Qed.

Lemma Ph_s :
forall (s : P A), lambda A t s → (two (etaP U u) (etaP U v)) (im h s).

Proof.
intros. rewrite ← PPh_lambdaA_t. unfold im. exists s. intuition.
Qed.

(** "Now (...) applying the same reasoning to four cases we obtain:" *)

Lemma lambdaA_t : forall (s : P A), lambda A t s →
((s ⊆ two a c) ∨ (s ⊆ two b d)) ∧ ((s ⊆ two a d) ∨ (s ⊆ two b c)).

Proof.
intros. split.

− pose proof Pg_s s H.
destruct H0 ; apply subset_refl in H0 ; apply pres_preim in H0.
+ rewrite preim_g_u in H0. auto.
+ rewrite preim_g_v in H0. auto.

− pose proof Ph_s s H.
destruct H0 ; apply subset_refl in H0 ; apply pres_preim in H0.
+ rewrite preim_h_u in H0. auto.
+ rewrite preim_h_v in H0. auto.

Qed.

(** "Distributing intersections over unions and using
the intersection preservation property, we get: "*)
Lemma lambdaA_t_bis : forall (s : P A),

lambda A t s → (exists (x : A), s ⊆ etaP A x).
Proof.
intros. apply lambdaA_t in H. destruct H,H,H0.

− exists a. rewrite ← inter_two with (y := c) (z := d) ;
try discriminate. apply subset_inter ; assumption.

194

− rewrite symmetry in H,H0. exists c.
rewrite ← inter_two with (y := a) (z := b) ;
try discriminate. apply subset_inter ; assumption.

− rewrite symmetry in H,H0. exists d.
rewrite ← inter_two with (y := a) (z := b) ;
try discriminate. apply subset_inter ; assumption.

− exists b.
rewrite ← inter_two with (y := c) (z := d) ; try discriminate.
apply subset_inter ; assumption.

Qed.

(** "Now let us come back to the function [f].
By naturality of [two] we get:" *)
Lemma PPf_t : (im (im f)) t = two (etaP U u) (etaP U v).
Proof. unfold t. rewrite im_two. rewrite Pf_ab,Pf_cd. reflexivity. Qed.

(** "Hence, by the naturality square for [f]
and by a unit law for [lambda]:" *)
Lemma PPf_lambdaA_t : im (im f) (lambda A t) = etaP (P U) (two u v).
Proof.
rewrite naturality. rewrite PPf_t. rewrite ← unit_2.
rewrite im_two. reflexivity.
Qed.

(** "This means that:" *)
Lemma Pf_expression : forall (s : P A),

(lambda A t s) → (im f) s = two u v.
Proof.
intros. pose proof PPf_lambdaA_t.
assert (im (im f) (lambda A t) (im f s)
↔ etaP (P U) (two u v) (im f s)) by (rewrite H0 ; intuition).
unfold etaP in H1. symmetry. apply H1. exists s. auto.
Qed.

(** "But this contradicts the assumption that [two] is nontrivial." *)
Theorem dlaw_degenerate : True = False.
Proof.
pose proof lambdaA_t_nonempty. destruct H as (s,H).
pose proof Pf_expression s H.
assert (exists x : A, s ⊆ etaP A x) by (apply lambdaA_t_bis; assumption).
destruct H1 as (x,H1).
assert (im f s u) by (rewrite H0 ; unfold two ; intuition).
assert (im f s v) by (rewrite H0 ; unfold two ; intuition).
destruct H2,H3,H2,H3. pose proof H1 x0 H2.
pose proof H1 x1 H3. rewrite H6 in H7. destruct x0,x1 ; discriminate.
Qed.

195

Bibliography

[1] J. Adámek, H. Herrlich, and G. Strecker. Abstract and concrete categories : the
joy of cats. Wiley, 1990.

[2] J. Adámek, J. Rosickỳ, and E. Vitale. Algebraic theories: a categorical intro-
duction to general algebra, volume 184 of Cambridge Tracts in Mathematics.
Cambridge University Press, 2010.

[3] M. Barr. Relational algebras. In Reports of the Midwest Category Seminar IV,
pages 39–55. Springer Berlin Heidelberg, 1970.

[4] M. Barr. Exact categories. In Exact categories and categories of sheaves, pages
1–120. Springer Berlin Heidelberg, 1971.

[5] M. Barr. Toposes, triples and theories, volume 278 of Grundlehren der mathe-
matischen Wissenschaften. Springer-Verlag, 1985.

[6] J. Barwise and L. Moss. Vicious circles: on the mathematics of non-wellfounded
phenomena, volume 60 of CSLI Lecture Notes. CSLI, 1996.

[7] J. Beck. Distributive laws. In Seminar on Triples and Categorical Homology
Theory, pages 119–140. Springer Berlin Heidelberg, 1969.

[8] M. Bertrand and J. Rot. Coalgebraic determinization of alternating automata.
arXiv:1804.02546 [cs.LO], 2018.

[9] G. Bezhanishvili, N. Bezhanishvili, and J. Harding. Modal compact Hausdorff
spaces. Journal of Logic and Computation, 25(1):1–35, 2015.

[10] G. Bezhanishvili, D. Gabelaia, J. Harding, and M. Jibladze. Compact Haus-
dorff spaces with relations and Gleason spaces. Applied Categorical Structures,
27:663–686, 2019.

196

[11] N. Bezhanishvili, M. Bonsangue, H. H. Hansen, D. Kozen, C. Kupke, P. Panan-
gaden, and A. Silva. Minimisation in logical form. arXiv:2005.11551 [cs.FL],
2020.

[12] N. Bezhanishvili, J. de Groot, and Y. Venema. Coalgebraic geometric logic.
In Proc. CALCO, volume 139 of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[13] N. Bezhanishvili, S. Enqvist, and J. de Groot. Duality for instantial neighbour-
hood logic via coalgebra. In Proc. CMCS, pages 32–54. Springer International
Publishing, 2020.

[14] N. Bezhanishvili, G. Fontaine, and Y. Venema. Vietoris bisimulations. Journal
of Logic and Computation, 20(5):1017–1040, 2008.

[15] G. Böhm. The weak theory of monads. Advances in Mathematics, 225(1):1–32,
2010.

[16] G. Böhm, S. Lack, and R. Street. On the 2-categories of weak distributive laws.
Communications in Algebra, 39(12):4567–4583, 2011.

[17] R. Bird and O. de Moor. Algebra of programming. Prentice Hall International
series in computer science, 1997.

[18] V. Bogachev. Measure theory, volume I, II. Springer-Verlag Berlin Heidelberg,
2007.

[19] F. Bonchi, D. Petrişan, D. Pous, and J. Rot. A general account of coinduction
up-to. Acta Informatica, 54(2):127–190, 2017.

[20] F. Bonchi, D. Petrişan, D. Pous, and J. Rot. Coinduction up to in a fibrational
setting. In Proc. CSL-LICS, pages 20:1–20:9. ACM, 2014.

[21] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to
congruence. In Proc. POPL, page 457–468. ACM, 2013.

[22] F. Bonchi and A. Santamaria. Combining semilattices and semimodules. In
Proc. FoSSaCS, pages 102–123. Springer, 2021.

[23] F. Bonchi, A. Silva, and A. Sokolova. The power of convex algebras. In Proc.
CONCUR, volume 85 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017.

197

[24] F. Bonchi, A. Silva, and A. Sokolova. Distribution bisimilarity via the power of
convex algebras. arXiv:1707.02344v5 [cs.LO], 2021.

[25] F. Bonchi, A. Sokolova, and V. Vignudelli. The theory of traces for systems
with nondeterminism and probability. In Proc. LICS, pages 1–14, 2019.

[26] F. Bonchi, A. Sokolova, and V. Vignudelli. Presenting convex sets of probability
distributions by convex semilattices and unique bases. arXiv:2005.01670 [cs.LO],
2020.

[27] F. Bonchi and F. Zanasi. Bialgebraic semantics for logic programming. Logical
Methods in Computer Science, 11(1), 2016.

[28] M. Bonsangue, H. H. Hansen, A. Kurz, and J. Rot. Presenting distributive
laws. In Proc. CALCO, pages 95–109. Springer Berlin Heidelberg, 2013.

[29] F. Borceux. Handbook of categorical algebra, volume 2. Cambridge University
Press, 1994.

[30] F. Borceux. Handbook of categorical algebra, volume 3. Cambridge University
Press, 1994.

[31] T. Brengos, M. Miculan, and M. Peressotti. Behavioural equivalences for coal-
gebras with unobservable moves. Journal of Logical and Algebraic Methods in
Programming, 84(6):826–852, 2015. Special Issue on Open Problems in Con-
currency Theory.

[32] A. Carboni, M. Kelly, and R. Wood. A 2-categorical approach to change of
base and geometric morphisms I. Cahiers de topologie et géométrie différentielle
catégoriques, 32(1):47–95, 1991.

[33] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

[34] E. Cheng. Iterated distributive laws. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 150(3):459–487, 2011.

[35] E. Cheng. Distributive laws for Lawvere theories. Compositionality, 2(1), 2020.

[36] M. Clementino, D. Hofmann, and G. Janelidze. The monads of classical algebra
are seldom weakly cartesian. Journal of Homotopy and Related Structures,
9:175–197, 2014.

198

[37] S. Crafa and F. Ranzato. A spectrum of behavioral relations over LTSs on
probability distributions. In Proc. CONCUR, pages 124–139. Springer Berlin
Heidelberg, 2011.

[38] F. Dahlqvist and R. Neves. Compositional semantics for new paradigms: prob-
abilistic, hybrid and beyond. arXiv:1804.04145 [cs.LO], 2018.

[39] F. Dahlqvist, L. Parlant, and A. Silva. Layer by layer – combining monads. In
Proc. ICTAC, pages 153–172. Springer International Publishing, 2018.

[40] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Computation, 209(6):966–
991, 2011.

[41] S. Dash and S. Staton. A monad for probabilistic point processes. In Proc.
ACT, volume 333 of Electronic Proceedings in Theoretical Computer Science,
pages 19–32. Open Publishing Association, 2020.

[42] A. Day. Filter monads, continuous lattices and closure systems. Canadian
Journal of Mathematics, 27(1):50–59, 1975.

[43] O. de Moor. Categories, relations and dynamic programming. PhD thesis,
University of Oxford, 1992.

[44] O. de Moor. Categories, relations and dynamic programming. Mathematical
Structures in Computer Science, 4(1):33–69, 1994.

[45] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: a
coalgebraic approach. Theoretical Computer Science, 221(1):271–293, 1999.

[46] J. Doob. Measure theory, volume 143 of Graduate Texts in Mathematics.
Springer-Verlag, 1994.

[47] D. Edwards. On the existence of probability measures with given marginals.
Annales de l’Institut Fourier, 28(4):53–78, 1978.

[48] T. Ehrhard, M. Pagani, and C. Tasson. The computational meaning of proba-
bilistic coherence spaces. In Proc. LICS, pages 87–96. IEEE, 2011.

[49] T. Ehrhard, M. Pagani, and C. Tasson. Measurable cones and stable, measur-
able functions: a model for probabilistic higher-order programming. Proceedings
of the ACM on Programming Languages, 2(POPL), 2018.

199

[50] J. Farkas. Theorie der einfachen Ungleichungen. Journal für die reine und
angewandte Mathematik, 124:1–27, 1902.

[51] P. Freyd and A. Scedrov. Categories, allegories. North Holland, 1990.

[52] T. Fritz and P. Perrone. Monads, partial evaluations, and rewriting. In Proc.
MFPS, volume 352 of Electronic Notes in Theoretical Computer Science, pages
129–148, 2020.

[53] T. Fritz, P. Perrone, and S. Rezagholi. Probability, valuations, hyperspace:
three monads on Top and the support as a morphism. arXiv:1910.03752v2
[math.GN], 2021.

[54] R. Garner. The Vietoris monad and weak distributive laws. Applied Categorical
Structures, 28(2):339–354, 2020.

[55] N. D. Gautam. The validity of equations of complex algebras. Archiv für
mathematische Logik und Grundlagenforschung, 3(3):117–124, 1957.

[56] M. Giry. A categorical approach to probability theory. In Categorical Aspects
of Topology and Analysis, pages 68–85. Springer Berlin Heidelberg, 1982.

[57] J. Goubault-Larrecq. Continuous capacities on continuous state spaces. In
Proc. ICALP, volume 4596 of Lecture Notes in Computer Science, pages 764–
776. Springer, 2007.

[58] J. Goubault-Larrecq. Continuous previsions. In Proc. CSL, pages 542–557.
Springer Berlin Heidelberg, 2007.

[59] J. Goubault-Larrecq. De Groot duality and models of choice: angels, demons
and nature. Mathematical Structures in Computer Science, 20(2):169–237, 2010.

[60] J. Goubault-Larrecq and K. Keimel. Choquet-Kendall-Matheron theorems
for non-Hausdorff spaces. Mathematical Structures in Computer Science,
21(3):511–561, 2011.

[61] A. Goy. Powerset weakly distributes over itself in toposes. https://github.
com/Kilgrobil/weak_distributive_laws. Accessed: 2021-07-12.

[62] A. Goy and D. Petrişan. Combining probabilistic and non-deterministic choice
via weak distributive laws. In Proc. LICS, page 454–464. ACM, 2020.

200

https://github.com/Kilgrobil/weak_distributive_laws
https://github.com/Kilgrobil/weak_distributive_laws

[63] A. Goy, D. Petrişan, and M. Aiguier. Powerset-like monads weakly distribute
over themselves in toposes and compact Hausdorff spaces. In Proc. ICALP,
volume 198 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[64] A. Goy and J. Rot. (In)finite trace equivalence of probabilistic transition sys-
tems. In Proc. CMCS, pages 100–121. Springer International Publishing, 2018.

[65] J. Gray. The meeting of the Midwest Category Seminar in Zurich, August
24–30, 1970. In Reports of the Midwest Category Seminar V, pages 248–255.
Springer Berlin Heidelberg, 1971.

[66] R. Guitart. Monades involutives complémentées. Cahiers de topologie et
géométrie différentielle catégoriques, 16(1):17–101, 1975.

[67] R. Guitart. Calcul des relations inverses. Cahiers de topologie et géométrie
différentielle catégoriques, 18(1):67–100, 1977.

[68] R. Guitart. Algebraic universes, 1979. Lecture at the Summer School on Uni-
versal Algebra and Ordered Sets.

[69] R. Guitart. Qu’est-ce que la logique dans une catégorie? Cahiers de topologie
et géométrie différentielle catégoriques, 23(2):115–148, 1982.

[70] P. Gumm. Functors for coalgebras. Algebra universalis, 45(2):135–147, 2001.

[71] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3(4), 2007.

[72] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Information and Computation, 145(2):107–152, 1998.

[73] C. Heunen, O. Kammar, S. Staton, S. Moss, M. Vákár, A. Ścibior, and H. Yang.
The semantic structure of quasi-Borel spaces. PPS Workshop on Probabilistic
Programming Semantics, 2018.

[74] C. Heunen, O. Kammar, S. Staton, and H. Yang. A convenient category for
higher-order probability theory. In Proc. LICS. IEEE, 2017.

[75] M. Hyland and J. Power. The category theoretic understanding of universal
algebra: Lawvere theories and monads. In Computation, Meaning, and Logic:
articles dedicated to Gordon Plotkin, volume 172 of Electronic Notes in Theo-
retical Computer Science, pages 437–458. Elsevier, 2007.

201

[76] INRIA. The coq proof assistant. https://coq.inria.fr/. Accessed: 2021-07-
12.

[77] B. Jacobs. A bialgebraic review of deterministic automata, regular expres-
sions and languages. In Algebra, Meaning, and Computation: Essays dedicated
to Joseph A. Goguen on the Occasion of His 65th Birthday, pages 375–404.
Springer Berlin Heidelberg, 2006.

[78] B. Jacobs. Coalgebraic trace semantics for combined possibilitistic and proba-
bilistic systems. In Proc. CMCS, volume 203 of Electronic Notes in Theoretical
Computer Science, pages 131–152, 2008.

[79] B. Jacobs. Introduction to coalgebra: towards mathematics of states and obser-
vation. Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 2016.

[80] B. Jacobs. From multisets over distributions to distributions over multisets. In
Proc. LICS, 2021.

[81] B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. Jour-
nal of Computer and System Sciences, 81(5):859–879, 2015. Selected Papers of
CMCS’12.

[82] P. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, 1982.

[83] P. Johnstone. Sketches of an elephant: a topos theory compendium. Oxford
University Press, 2002.

[84] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proc.
LICS, pages 186–195. IEEE, 1989.

[85] B. Jónsson and A. Tarski. Boolean algebras with operators, part I. American
Journal of Mathematics, 73(4):891–939, 1951.

[86] A. Jung and R. Tix. The troublesome probabilistic powerdomain. In Proc.
Comprox III, volume 13 of Electronic Notes in Theoretical Computer Science,
pages 70–91. Elsevier, 1998.

[87] K. Keimel. The monad of probability measures over compact ordered spaces
and its Eilenberg–moore algebras. Topology and its Applications, 156(2):227–
239, 2008.

202

https://coq.inria.fr/

[88] K. Keimel and G. Plotkin. Mixed powerdomains for probability and nondeter-
minism. Logical Methods in Computer Science, 13(1), 2017.

[89] B. Klin and J. Rot. Coalgebraic trace semantics via forgetful logics. In Proc.
FoSSaCS, pages 151–166. Springer Berlin Heidelberg, 2015.

[90] B. Klin and J. Rot. Coalgebraic trace semantics via forgetful logics. Logical
Methods in Computer Science, 12(4), 2016.

[91] B. Klin and J. Salamanca. Iterated covariant powerset is not a monad. In Proc.
MFPS, volume 341 of Electronic Notes in Theoretical Computer Science, pages
261–276, 2018.

[92] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoretical Computer
Science, 327(1):109–134, 2004. Selected Papers of CMCS’03.

[93] A. Kurz and J. Velebil. Relation lifting, a survey. Journal of Logical and
Algebraic Methods in Programming, 85(4):475–499, 2016.

[94] S. Lack and R. Street. The formal theory of monads II. Journal of Pure and
Applied Algebra, 175(1):243–265, 2002. Special Volume celebrating the 70th
birthday of Professor Max Kelly.

[95] J. Lambek and P. Scott. Introduction to higher order categorical logic. Cam-
bridge University Press, 1986.

[96] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, 1971.

[97] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: a first introduction
to topos theory. Universitext. Springer New York, 1992.

[98] E. Manes. A triple theoretic construction of compact algebras. In Seminar
on Triples and Categorical Homology Theory, pages 91–118. Springer Berlin
Heidelberg, 1969.

[99] E. Manes and P. Mulry. Monad compositions I: general constructions and
recursive distributive laws. Theory and Applications of Categories, 18(7):172–
208, 2007.

[100] E. Manes and P. Mulry. Monad compositions II: Kleisli strength. Mathematical
Structures in Computer Science, 18(3):613–643, 2008.

203

[101] E. Manes and P. Mulry. Near distributive laws. In Proc. MFPS, volume 341
of Electronic Notes in Theoretical Computer Science, pages 277–295. Elsevier,
2018.

[102] V. Marra and L. Reggio. A characterisation of the category of compact Haus-
dorff spaces. Theory and Applications of Categories, 35(51):1871–1906, 2020.

[103] D. Marsden. Category theory using string diagrams. arXiv:1401.7220v2
[math.CT], 2014.

[104] C. McLarty. Elementary categories, elementary toposes, volume 21 of Oxford
Logic Guides. Clarendon Press, 1992.

[105] M. Mio. Upper-expectation bisimilarity and lukasiewicz µ-calculus. In Proc.
FoSSaCS, pages 335–350. Springer Berlin Heidelberg, 2014.

[106] M. Mio, R. Sarkis, and V. Vignudelli. Combining nondeterminism, probability,
and termination: equational and metric reasoning. In Proc. LICS, 2021.

[107] M. Mio and V. Vignudelli. Monads and quantitative equational theories for
nondeterminism and probability. In Proc. CONCUR, volume 171 of LIPIcs,
pages 28:1–28:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[108] M. Mislove. Nondeterminism and probabilistic choice: obeying the laws. In
Proc. CONCUR, pages 350–365. Springer Berlin Heidelberg, 2000.

[109] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991. Selected papers of LICS’89.

[110] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96(1):277–317,
1999.

[111] G. Osius. Logical and set theoretical tools in elementary topoi. In Model Theory
and Topoi, pages 297–346. Springer Berlin Heidelberg, 1975.

[112] L. Parlant. Monad composition via preservation of algebras. PhD thesis, Uni-
versity College London, 2020.

[113] P. Perrone. Categorical probability and stochastic dominance in metric spaces.
PhD thesis, University of Leipzig, 2018.

[114] P. Perrone. Personal communication, 2021.

204

[115] D. Petrişan. Investigations into algebra and topology over nominal sets. PhD
thesis, University of Leicester, 2012.

[116] D. Petrişan and R. Sarkis. Semialgebras and weak distributive laws.
arXiv:2106.13489 [cs.LO], 2021.

[117] A. Pitts. Nominal sets: names and symmetry in computer science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2013.

[118] G. Plotkin. A powerdomain construction. SIAM Journal on Computing,
5(3):452–487, 1976.

[119] G. Plotkin and J. Power. Notions of computation determine monads. In Proc.
FoSSaCS, pages 342–356. Springer Berlin Heidelberg, 2002.

[120] G. Plotkin and J. Power. Computational effects and operations: an overview.
In Proc. Workshop Domains 2002, volume 73 of Electronic Notes Theoretical
Computer Science, page 149–163, 2004.

[121] H. Poincaré. Science et méthode. Bibliothèque de philosophie scientifique. Flam-
marion, 1908.

[122] D. Pous. Complete lattices and up-to techniques. In Proc. APLAS, pages
351–366. Springer Berlin Heidelberg, 2007.

[123] D. Pous. Techniques modulo pour les bisimulations. (Up to techniques for bisim-
ulations). PhD thesis, École Normale Supérieure de Lyon, France, 2008.

[124] D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof method.
In Advanced Topics in Bisimulation and Coinduction, volume 52 of Cambridge
Tracts in Theoretical Computer Science, page 233–289. Cambridge University
Press, 2011.

[125] J. Power and H. Watanabe. Combining a monad and a comonad. Theoretical
Computer Science, 280(1):137–162, 2002.

[126] A. Romanowska. On bisemilattices with one distributive law. Algebra univer-
salis, 10(1):36–47, 1980.

[127] J. Rot. Enhanced coinduction. PhD thesis, Leiden University, 2015.

205

[128] J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten, and A. Silva. En-
hanced coalgebraic bisimulation. Mathematical Structures in Computer Science,
27(7):1236–1264, 2017.

[129] J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc.
CONCUR, pages 194–218. Springer Berlin Heidelberg, 1998.

[130] J. Rutten. Relators and metric bisimulations. In Proc. CMCS, volume 11
of Electronic Notes in Theoretical Computer Science, pages 252–258. Elsevier,
1998.

[131] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000.

[132] J. Rutten. The method of coalgebra: exercises in coinduction. CWI Amsterdam,
2019.

[133] M. Sabok, S. Staton, D. Stein, and M. Wolman. Probabilistic programming
semantics for name generation. Proc. of the ACM on Programming Languages,
5(POPL):1–29, 2021.

[134] N. Saheb-Djahromi. Cpo’s of measures for nondeterminism. Theoretical Com-
puter Science, 12(1):19–37, 1980.

[135] J. Salamanca Téllez. Lattices do not distribute over powerset. Algebra Univer-
salis, 81:49, 2020.

[136] L. Schröder. Categories: a free tour. In Categorical Perspectives, pages 1–27.
Birkhäuser Boston, 2001.

[137] C. Schubert. Lax algebras: a scenic approach. PhD thesis, Universität Bremen,
2006.

[138] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the powerset
construction, coalgebraically. In Proc. FSTTCS, volume 8 of LIPIcs, pages
272–283. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010.

[139] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing determinization
from automata to coalgebras. Logical Methods in Computer Science, 9(1), 2013.

[140] A. Sokolova. Coalgebraic analysis of probabilistic systems. PhD thesis, Technis-
che Universiteit Eindhoven, 2005.

206

[141] A. Sokolova. Probabilistic systems coalgebraically: a survey. Theoretical Com-
puter Science, 412(38):5095–5110, 2011. CMCS Tenth Anniversary Meeting.

[142] A. Sokolova and H. Woracek. Congruences of convex algebras. Journal of Pure
and Applied Algebra, 219(8):3110–3148, 2015.

[143] S. Staton. Relating coalgebraic notions of bisimulation. Logical Methods in
Computer Science, 7(1), 2011.

[144] S. Staton, H. Yang, F. Wood, C. Heunen, and O. Kammar. Semantics for
probabilistic programming: higher-order functions, continuous distributions,
and soft constraints. In Proc. LICS, page 525–534. ACM, 2016.

[145] R. Street. The formal theory of monads. Journal of Pure and Applied Algebra,
2(2):149–168, 1972.

[146] R. Street. Weak distributive laws. Theory and Applications of Categories,
22(12):313–320, 2009.

[147] T. Świrszcz. Monadic functors and convexity. Bulletin de l’Académie Polonaise
des Sciences. Série des sciences math., astr. et phys, 22(1):39–42, 1974.

[148] R. Tix, K. Keimel, and G. Plotkin. Semantic domains for combining probability
and non-determinism. Electronic Notes in Theoretical Computer Science, 222:3–
99, 2009.

[149] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis,
Vrije Universiteit, Amsterdam, 1996.

[150] G. van Heerdt, J. Hsu, J. Ouaknine, and A. Silva. Convex language semantics
for nondeterministic probabilistic automata. In Proc. ICTAC, pages 472–492.
Springer International Publishing, 2018.

[151] D. Varacca. The powerdomain of indexed valuations. In Proc. LICS, pages
299–308. IEEE, 2002.

[152] D. Varacca. Probability, nondeterminism and concurrency: two denotational
models for probabilistic computation. PhD thesis, University of Aarhus, 2003.

[153] D. Varacca and G. Winskel. Distributing probability over non-determinism.
Mathematical Structures in Computer Science, 16(1):87–113, 2006.

207

[154] Y. Venema and J. Vosmaer. Modal logic and the Vietoris functor. In Leo
Esakia on Duality in Modal and Intuitionistic Logics, volume 4 of Outstanding
Contributions to Logic, pages 119–153. Springer Netherlands, 2014.

[155] L. Vietoris. Bereiche zweiter Ordnung. Monatshefte für Mathematik und Physik,
32:258–280, 1922.

[156] S. Vigna. A guided tour in the topos of graphs. arXiv:math/0306394 [math.CT],
2003.

[157] P. Wadler. Monads for functional programming. In Advanced Functional Pro-
gramming, Proc. B̊astad Spring School, volume 925 of Lecture Notes in Com-
puter Science, pages 24–52. Springer, 1995.

[158] S. Willard. General topology. Addison-Wesley, 1970.

[159] O. Wyler. Algebraic theories of continuous lattices. In Continuous Lattices,
pages 390–413. Springer Berlin Heidelberg, 1981.

[160] S. Zetzsche, G. van Heerdt, A. Silva, and M. Sammartino. Canonical automata
via distributive law homomorphisms. arXiv:2104.13421 [cs.FL], 2021.

[161] M. Zwart. On the non-compositionality of monads via distributive laws. PhD
thesis, University of Oxford, 2020.

[162] M. Zwart and D. Marsden. No-go theorems for distributive laws. In Proc. LICS,
pages 1–13. IEEE, 2019.

208

Notation

General Notation

2 Booleans {0, 1}
N Natural numbers {0, 1, 2, . . . , }
N∗ Positive natural numbers {1, 2, . . .}
R Real numbers
[0, 1], (0, 1) Unit interval (closed, open)
Mp,q(R) Real matrices of size p× q
Im Identity matrix of size m
−T Matrix transposition
ϕ = ∑

x∈X ϕx · x Distribution
supp(ϕ) Support of a distribution
[x1, . . . , xn] List
Jx1, . . . , xnK Multiset
λx.f(x), x 7→ f(x) Function f
U c Complement
Im(f) Direct image of the domain
f(U) Direct image
f−1(U) Preimage
R[U] Relational image
R−1[U] Relational preimage
upx Upclosure
convx Convex closure

Category Theory

C, D Category
Set Sets and functions
Rel Sets and relations
cJSL Complete join-semilattices
Mon Monoids
CMon Commutative monoids
Pos Posets
X, Y Object
f , g Morphism

209

◦ Composition
id, 1 Identity
→ Morphism typing
↪→ Monomorphism, subobject
� Epimorphism
F , G Functor
α, β Natural transformation
β ◦ α Vertical composition
βα Horizontal composition
∼= Isomorphism
≡ Equivalence
0 Initial object
1 Terminal object
X × Y Product
〈f, g〉 Pairing
f × g Product morphism
X + Y Coproduct
inl Left injection
inr Right injection

Pullback
. Weak pullback

S, T Monad
Id Identity monad
γ Monad morphism
L a R Adjunction
η Unit
ε Counit
µ Multiplication
Kl(T) Kleisli category
9 Kleisli morphism typing
• Kleisli composition
FT Free Kleisli functor
UT Forgetful Kleisli functor
EM(T) Eilenberg-Moore category
(X, x) Algebra
FT Free Eilenberg-Moore functor
UT Forgetful Eilenberg-Moore functor

Distributive Laws

λ : TS→ ST Distributive law (plain, weak, coweak)
S Lifting (plain, weak, coweak)
T Extension (plain, weak, coweak)
π, ι Naturals of weak lifting or coweak extension
S ◦ T Composite monad

210

S •◦ T Weak composite monad
S •◦ T Coweak composite monad
Alg(λ) Category of λ-algebras
FAlg(λ) Category of free λ-algebras

Presentations

(Σ, E) Equational theory
Alg(Σ, E) Category of (Σ, E)-algebras
∨ Binary join∨ Join
⊕r Convex sum

Set Monads

(−+ 1) Maybe monad
P Powerset monad
Pf Finite powerset monad
P∗ Non-empty powerset monad
Pf∗ Finite non-empty powerset monad
D Distribution monad
Dω Countable distribution monad
A Abelian group monad
L List monad
M Multiset monad
R Reader monad
F Filter monad
β Ultrafilter monad
P •◦ P Monad of upclosed sets of subsets
P •◦D Monad of convex sets of distributions

Coalgebras

A Alphabet
Coalg(F) Category of coalgebras
UF Forgetful functor on coalgebras
(X, c) Coalgebra
c∗ Output function
ca Transition function w.r.t letter a
c# Algebraic expansion (= determinisation)
c† Intermediate expansion
F •◦ T Weak composite functor
J−K Alternating automaton semantics
b(R) Relation progression
∼ Bisimilarity

211

contx Contextual closure
congrx, ≡ Congruence closure

Regular Categories

Rel(C) Category of objects and relations
Rel(F) Relational extension of a functor
Rel(α) Relational extension of a natural
r = 〈r1, r2〉 Relation
 Relation typing
· Relational composition
G Graph functor
(−)◦ Transpose functor

Toposes

ev Exponential evaluation
XY Exponential object
!X Terminal morphism
true : 1 ↪→ Ω Subobject classifier
χm Characteristic morphism
FinSet Finite sets and functions
Graph Graphs and graph homomorphisms
SetCop Presheaf topos
Nom Nominal sets and equivariant functions
∧ Conjunction morphism
=X Equality morphism
{−}X Singleton morphism
∈X Membership morphism
[t], [ϕ] Mitchell-Bénabou interpretation (term, formula)
x : X ` ϕ(x) Valid formula

E Powerset monad in a topos
X Result proved in Coq

Topology, Measures

KHaus Category of compact Hausdorff spaces
Stone Category of Stone spaces
τX Topology
U,W Open subset
C,D Closed subset
2ω Cantor set
�, ♦ Vietoris modalities
V Vietoris monad
W Topological closure

212

ΣX Sigma-algebra
σ(τX) Borel σ-algebra
B Borel subset
m Measure
m ◦ f−1 Pushforward measure∫
X fdm Integral w.r.t. m
C(X) Continuous functions X → R
evu Integral evaluation
R Radon monad
supp(m) Support of a Radon measure

213

Index

Abelian group monad, 16
adjunction, 19
alternating automaton, 104

Barr extension, 55
bialgebra, 117
bisimulation, 114
bisimulation up-to, 115

category of relations, 129
characteristic morphism, 134
closed relation, 155
coalgebra, 95
compact Hausdorff space, 18
compact space, 152
compatible up-to technique, 115
composite monad, 26
congruence closure, 117
contextual closure, 116
continuous relation, 155
convex closure, 79
convex powerset monad, 80
convex subset, 79
Coq, 142
countable distribution monad, 16
coweak composite monad, 59
coweak distributive law, 56
coweak extension, 57
coweak lifting, 57

distribution monad, 16

distributive law, 24

Eilenberg-Moore category, 21
epimorphism, 128
extension, 28

filter monad, 18
finite non-empty powerset monad, 16
finite powerset monad, 16

generalised determinisation / algebraic ex-
pansion, 101

global element, 136
graph functor, 130

Hausdorff space, 152

idempotent complete, 44
identity monad, 15
image, 128

Kleisli category, 20

lifting, 28
list monad, 17
locally monotone, 52

maybe monad, 15
monad, 14
monad morphism, 18
monad of convex sets of distributions, 80
monad of upclosed sets of subsets, 72
monotone law, 53
multiset monad, 17

214

near pullback, 129
nearly cartesian, 129
non-empty powerset monad, 16

powerset monad, 16
powerset monad of a topos, 140

Radon monad, 166
Radon probability measure, 166
reader monad, 17
regular category, 128
relation lifting, 113
relational extension, 132

semialgebra, 42
sound up-to technique, 115
split idempotent, 44
Stone space, 163
subobject, 127
subobject classifier, 134
support, 16

totally disconnected space, 163
transpose functor, 130

ultrafilter monad, 18
unit interval, 152
up closure, 71
upclosed subset, 71

vague topology, 166
Vietoris monad, 18

weak composite monad, 46
weak distributive law, 42
weak extension, 42
weak lifting, 42
weak pullback, 54
weakly cartesian, 54

215

Synthèse en français

Un programme informatique peut être structuré par divers effets calculatoires tels
que la levée d’exceptions, le non-déterminisme ou encore une forme de choix aléatoire
entre différents résultats. Pour raisonner abstraitement sur ces effets, il est standard
d’utiliser la notion de monade au sein de la théorie des catégories. Un problème
bien connu des monades est leur non-compositionnalité : étant donné deux monades,
il n’existe pas nécessairement de structure de monade sur leur foncteur composé.
En revanche, si l’on se donne une loi de distributivité, c’est-à-dire une construction
catégorielle permettant de renverser l’ordre d’application des deux monades, alors on
dispose d’une structure générique de monade sur le foncteur composé. Ainsi, les lois
de distributivité sont idéales pour modéliser des systèmes comportant plusieurs effets
calculatoires imbriqués. Cependant, dans de nombreux exemples, il est impossible
de définir une loi de distributivité entre une paire de monades spécifiques. C’est en
particulier le cas pour toutes les combinaisons de la monade des sous-ensembles et
de la monade des distributions. Dans certains cas, au niveau des constructions tout
se passe comme s’il existait une loi de distributivité, alors qu’un théorème empêche
l’existence d’une telle loi. Il est alors pertinent d’utiliser une forme plus faible de loi
de distributivité.

Cette thèse se base sur le cadre théorique des lois de distributivité faibles telles
qu’introduites par Garner. On introduit une notion duale, les lois de distributivité
cofaibles, pour laquelle on prouve en détail le théorème de correspondance entre lois,
extensions et relèvements. On fournit quelques résultats concernant l’itération de lois
faibles, en montrant comment composer (co)faiblement trois monades. On présente
comment obtenir une loi faible et une loi cofaible automatiquement à partir d’un
morphisme de monades – ces lois donnent lieu à une composition triviale, qui prend en
argument les deux monades et renvoie l’une des deux. Une manière plus intéressante
d’obtenir des lois faibles est d’utiliser des résultats d’extension relationnelles. De telles
lois, qualifiées de monotones, ont déjà été étudiées dans la catégorie des ensembles
: par exemple, la monade des sous-ensembles se distribue faiblement sur elle-même

216

de façon monotone. On dérive l’unique loi faible monotone permettant de distribuer
la monade des distributions sur la monade des sous-ensembles. Cette loi donne une
nouvelle solution catégorielle au problème ancien de la composition entre choix non-
déterministe et choix probabiliste. On retrouve ainsi génériquement les constructions
connues sous le nom de monade des sous-ensembles convexes et de monade des sous-
ensembles convexes de distributions.

La thèse fournit des applications à la théorie des coalgèbres en montrant comment
les lois faibles peuvent être utilisées pour calculer une déterminisation généralisée
pour laquelle restent valides les techniques up-to pour les bisimulations correspon-
dantes. Nos deux exemples principaux de lois faibles permettent ainsi de transformer
les automates alternants (respectivement, les automates probabilistes) en automates
non-déterministes équivalents. Ces constructions avaient déjà été remarquées dans la
littérature, sans pouvoir être expliquées par un cadre général lié aux lois de distribu-
tivité.

Dans la deuxième moitié de la thèse, on cherche à généraliser les résultats précédents
dans d’autres catégories que celle des ensembles. La structure minimale requise pour
parler de lois monotones est celle de catégorie régulière. On montre comment obtenir
des lois monotones dans les topos et dans la catégorie des espaces compacts Hausdorff.
Dans les topos, tout se passe exactement comme dans la catégorie des ensembles. En
particulier, on prouve que la monade des sous-ensembles s’y distribue faiblement sur
elle-même. Certaines preuves faites dans la logique interne du topos sont formalisées
à l’aide de l’assistant de preuve Coq. La catégorie des espaces compacts Hausdorff
n’est pas un topos, mais dispose d’une monade similaire à celle des sous-ensembles
appelée monade de Vietoris, amenant à différentes notions intéressantes de relations
entre espaces compacts Hausdorff. On prouve que la monade de Vietoris se distribue
faiblement sur elle-même, et que la formule est la même que dans la catégorie des
ensembles. Une autre monade intéressante pour les compacts Hausdorff est la monade
de Radon, qui est la généralisation continue de la monade des distributions dans les
ensembles. La thèse se conclut avec des résultats partiels à propos de la conjecture
que la monade de Radon se distribue faiblement sur la monade de Vietoris.

217

	Introduction
	Preliminaries
	String Diagrams
	Monads
	Monads and Examples
	Monads Arising from Adjunctions

	Distributive Laws
	Algebraic Presentations
	Iterated Distributive Laws

	The Weak Framework
	Weak Distributive Laws
	Finding Weak Distributive Laws
	Coweak Distributive Laws
	Iterated Weak Distributive Laws

	Combining Probability and Non-Determinism
	Powerset over Powerset
	The Monotone Law
	Variations

	Distribution over Powerset
	The Monotone Law
	Algebraic Presentation
	Variations

	Powerset over Distribution

	Applications to Coalgebra
	Coalgebraic Modelling
	Implementing Weak Distributive Laws
	Generalised Determinisation
	Alternating Automata
	Probabilistic Automata

	Bisimulations Up-To

	Interlude
	Regular Categories
	Relations in a Regular Category
	Relational Extensions

	Toposes
	Preliminaries
	The Powerset Monad
	Powerset over Powerset
	Proof for the Unit
	Proof for the Multiplication

	Compact Hausdorff Spaces
	Preliminaries
	Relational Extensions versus Vietoris Extensions
	Vietoris over Vietoris
	The Monotone Law
	Variations

	Radon over Vietoris

	Conclusion
	Proof of the Coweak Correspondence Theorem
	Coq Proofs
	Bibliography
	Notation
	Index

