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École doctorale 564 : Physique en Île-de-France

présentée par
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Abstract

Understanding the evolution of antimicrobial resistance within a host and
its spread in a population of hosts are of paramount importance in order to
fight this major public health issue.

The ability of microbes to adapt to new, even deteriorating environ-
ments, explains the emergence of antimicrobial resistance. In a population
undergoing antimicrobial treatment, the emergence and fixation of a resis-
tant mutation may prevent the population from going extinct. Population
genetics tells us that the forces affecting the outcome of evolutionary dynam-
ics, such as natural selection and migration, depend on environment and on
population geographic structure. In an antimicrobial-free environment, nat-
ural selection favors sensitive microbes because resistant mutants experience
a fitness cost, i.e. a slower reproduction. However, in an environment with
antimicrobials, drugs kill sensitive microbes or stop their division, so natural
selection favors resistant mutants. Thus, resistance evolution within a host
can be strongly affected by variations of antimicrobial concentration. In ad-
dition, during an infection within a host, microbial populations are divided
between different organs. Because the resulting smaller effective population
sizes mean that fluctuations are more important, and because some popula-
tion structures may be either amplifiers or suppressors of natural selection,
population structure is likely to impact the evolution of resistance within a
host. Finally, a microbial infection induces an immune response from the in-
fected host and may lead to the use of antimicrobials, and both may impact
the spread of microbes, including resistant ones.

In this thesis, we are interested in the impacts of environmental variabil-
ity and population structure on the evolution of resistance in a microbial
population, as well as its spread in a host population. More specifically, we
address these issues by developing stochastic theoretical models and using
methods inspired by out-of-equilibrium statistical physics. In the first chap-
ter, we define the key concepts and present the issues raised by antimicrobial
resistance. After explaining why environmental variability and population
structure likely impact the evolution of antimicrobial resistance, we briefly
review the state of the art. The second and third chapters deal with the
emergence of resistance in microbial populations of fixed and variable size,
respectively, undergoing periodic antimicrobial treatments. We then investi-
gate in the fourth chapter the evolutionary rescue by mutants of a microbial
population destined for extinction in a gradually deteriorating environment,
e.g. in the presence of an increasing antimicrobial concentration. In the fifth
chapter, we address the impact of the population structure on evolution by
introducing a new model that generalizes existing models, which will allow
us in the future to study the evolution of antimicrobial resistance in sub-
divided microbial populations. Finally, in the last chapter, we look at the
spread of antimicrobial resistance in a population of hosts, incorporating
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population structure effects specifically induced by immunity.
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Résumé court

Comprendre l’évolution de la résistance aux antimicrobiens dans un hôte et
sa propagation dans une population d’hôtes est d’une importance capitale
pour lutter contre ce problème majeur de santé publique.

La capacité des microbes à s’adapter à de nouveaux environnements,
y compris des environnements qui se dégradent, explique l’émergence de la
résistance aux antimicrobiens. Dans une population soumise à un traitement
antimicrobien, l’émergence et la fixation d’une mutation résistante peuvent
empêcher l’extinction de la population. La génétique des populations nous
apprend que les forces qui affectent l’issue de la dynamique évolutive, comme
la sélection naturelle et la migration, dépendent de l’environnement et de
la structure géographique de la population. Dans un environnement sans
antimicrobiens, la sélection naturelle favorise les microbes sensibles car les
mutants résistants ont un coût de fitness, c’est-à-dire qu’ils se reproduisent
plus lentement. Cependant, dans un environnement avec des antimicro-
biens, les médicaments tuent les microbes sensibles aux antimicrobiens ou
arrêtent leur division, de sorte que la sélection naturelle favorise les mu-
tants résistants. Ainsi, l’évolution de la résistance au sein d’un hôte peut
être fortement influencée par les variations de concentration d’antimicrobien.
De plus, au cours d’une infection au sein d’un hôte, les populations microbi-
ennes sont subdivisées entre différents organes. Comme la plus petite taille
effective de population qui en résulte rend les fluctuations plus importantes,
et comme certaines structures de population sont soit des amplificateurs soit
des suppresseurs de la sélection naturelle, la structure est susceptible d’avoir
un impact sur l’évolution de la résistance chez un hôte. Enfin, une infec-
tion microbienne induit une réponse immunitaire de l’hôte infecté et peut
entrâıner l’utilisation d’antimicrobiens: ces deux éléments peuvent agir sur
la propagation des microbes, y compris des microbes résistants.

Dans cette thèse, nous nous intéressons aux impacts de la variabilité
environnementale et de la structure de la population sur l’évolution de
la résistance dans une population microbienne, ainsi que sur sa propaga-
tion dans une population hôte. Plus spécifiquement, nous abordons ces
questions en développant des modèles théoriques stochastiques et en util-
isant des méthodes inspirées de la physique statistique hors d’équilibre.
Dans le premier chapitre, nous définissons les notions clés et présentons les
problématiques soulevées par la résistance aux antimicrobiens. Après avoir
expliqué pourquoi la variabilité environnementale et la structure de popula-
tion impactent probablement l’évolution de la résistance aux antimicrobiens,
nous faisons un bref état de l’art. Les deuxième et troisème chapitres traitent
de l’émergence de la résistance dans les populations microbiennes de taille
fixe et de taille variable, respectivement, qui subissent des traitements an-
timicrobiens périodiques. Nous étudions ensuite dans le quatrième chapitre
le sauvetage évolutif par des mutants d’une population microbienne des-
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tinée à l’extinction dans un environnement qui se dégrade progressivement,
par exemple en présence d’une concentration d’antimicrobien qui augmente.
Dans le cinquième chapitre, nous abordons l’impact de la structure de la
population sur l’évolution en introduisant un nouveau modèle qui généralise
les modèles existants, lequel nous permettra à l’avenir d’étudier l’évolution
de la résistance aux antimicrobiens dans des populations microbiennes sub-
divisées. Enfin, dans le dernier chapitre, nous examinons la propagation de
la résistance aux antimicrobiens dans une population d’hôtes, en intégrant
les effets de structure induits par l’immunité.



v

Résumé long

Introduction

La compréhension de l’évolution et de la propagation de la résistance est
d’une importance capitale pour lutter contre le problème majeur de santé
publique que pose la résistance aux antimicrobiens. La découverte des an-
tibiotiques et des antiviraux a constitué l’une des plus grandes avancées
médicales du XXe siècle, permettant de traiter de nombreuses maladies in-
fectieuses majeures. Cependant, avec l’utilisation croissante des antimi-
crobiens, les micro-organismes pathogènes ont tendance à développer des
résistances à ces médicaments, lesquels deviennent alors inutiles. La résistance
aux antimicrobiens est devenue un problème majeur et urgent de santé
publique dans le monde entier, menaçant d’être la première cause de mor-
talité au monde d’ici 2050 devant le cancer (voir Fig. 1).

Figure 1: Résistance aux antimicrobiens. Prévisions des décès at-
tribuables à la résistance aux antimicrobiens chaque année d’ici 2050. Le
nombre de décès dans le monde chaque année dus à la résistance aux an-
timicrobiens pourrait atteindre 10 millions. Les continents les plus touchés
seraient l’Asie et l’Afrique. Illustration originale de [1].

Certaines questions intéressantes, mais non exhaustives, sont les suiv-
antes : quelles conditions favorisent ou entravent l’évolution de la résistance ?
Comment optimiser les traitements antimicrobiens ? Cette thèse fournit
modestement quelques éléments de réponse, en utilisant une modélisation
théorique basée sur des processus stochastiques et en utilisant des outils in-
spirés de la physique statistique hors d’équilibre, avec l’espoir de contribuer à
la compréhension de la résistance aux antimicrobiens comme un défi majeur
du XXIe siècle.
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Evolution de la résistance aux antimicrobiens dans une pop-
ulation microbienne de taille fixe

Les mutations qui confèrent une résistance aux antimicrobiens sont souvent
associées à un coût de fitness, c’est-à-dire à une reproduction plus lente [3-
5]. En effet, l’acquisition d’une résistance implique généralement soit une
modification de la cible moléculaire de l’antimicrobien, qui altère souvent sa
fonction biologique, soit la production de protéines spécifiques, ce qui en-
trâıne un coût métabolique [4]. Cependant, les micro-organismes résistants
acquièrent fréquemment des mutations ultérieures qui compensent le coût
initial de la résistance. Ces microorganismes sont appelés “résistants com-
pensés” [6-9]. L’acquisition de la résistance est donc souvent irréversible,
même si l’antimicrobien est retiré de l’environnement [4, 6].

En l’absence d’antimicrobien, le paysage adaptatif du micro-organisme,
qui représente sa fitness (c’est-à-dire son taux de reproduction) en fonc-
tion de son génotype, comporte une vallée, puisque la première mutation
de résistance diminue la fitness, tandis que les mutations compensatoires
l’augmentent. Cependant, cette vallée du paysage adaptatif, qui existe en
l’absence d’antimicrobien, disparâıt au-dessus d’une certaine concentration
d’antimicrobien biostatique, car la division du micro-organisme sensible aux
antimicrobiens est entravée. Ainsi, le paysage adaptatif du microorganisme
dépend fortement de la présence ou de l’absence d’antimicrobien. La prise
en compte de ce type d’interaction entre le génotype et l’environnement
constitue un problème fondamental, même si la plupart des expériences ont
traditionnellement porté sur la comparaison de différents mutants dans un
environnement unique [2]. En particulier, des analyses théoriques récentes
montrent que des paysages adaptatifs variables peuvent avoir un important
impact évolutif [3, 4, 5, 6, 7].

Comment les échelles de temps de l’évolution et de la variation du
paysage adaptatif se comparent-elles et interagissent-elles ? Quel est l’impact
de la variabilité temporelle du paysage adaptatif sur l’évolution de la résistance
aux antimicrobiens ? Afin de répondre à ces questions, nous avons construit
un modèle minimal qui conserve les aspects fondamentaux de l’évolution de
la résistance aux antimicrobiens, comme le coût de fitness et sa compen-
sation. En nous concentrant sur le cas d’une population microbienne ho-
mogène de taille fixe, nous avons réalisé une étude stochastique complète de
l’acquisition de la résistance de novo en présence d’alternances périodiques
de phases d’absence et de présence d’un antimicrobien qui arrête la division
cellulaire. Ces alternances peuvent représenter, par exemple, un traitement
où la concentration chez le patient est inférieure à la concentration minimale
d’inhibition entre les prises de médicaments [8]. En combinant des approches
analytiques et numériques, nous avons montré que ces alternances accélèrent
considérablement l’évolution de la résistance par rapport aux cas d’absence
ou de présence continue d’antimicrobiens, en particulier pour les popula-
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tions plus grandes. Nous avons pleinement quantifié cet effet et avons mis
en lumière les différents régimes en jeu (voir Fig. 2A).
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Figure 2: Evolution de la résistance aux antimicrobiens dans
une population microbienne de taille fixe. Temps total d’évolution
de la résistance aux antimicrobiens dans une population microbienne de
taille fixe soumise à des alternances périodiques d’absence et de présence
d’antimicrobiens. Les données de simulation représentées sur les figures sont
interpolées de manière linéaire. A : Alternances symétriques : Temps total
d’évolution de la résistance aux antimicrobiens en fonction de la période et
de la taille de la population microbienne. Ligne horizontale supérieure : lim-
ite du régime déterministe. Ligne horizontale inférieure : limite du régime
neutre. Courbe quasi verticale : période égale à deux fois le temps moyen de
disparition d’un linéage mutant résistant. Ligne diagonale : période égale à
la taille de population. Notons qu’aucune donnée n’est présentée pour les
demi-périodes inférieures à l’inverse de la taille de population en raison du
caractère discret de notre modèle, qui ne peut traiter que des échelles de
temps supérieures ou égales à la durée d’une génération. B : Alternances
asymétriques : Temps total d’évolution de la résistance aux antimicrobiens
en fonction des durées des phases d’absence et de présence d’antimicrobien.
Ligne verticale : durée de la phase sans antimicrobien égale au temps moyen
de disparition d’un linéage mutant résistant. Ligne horizontale : durée de
la phase avec antimicrobien égale au temps moyen de fixation d’un linéage
mutant résistant. Ligne diagonale : durée de la phase sans antimicrobien
égale à la durée de la phase avec antimiccrobien.

Pour les alternances asymétriques, caractérisées par une durée différente
des phases avec et sans antimicrobien, nous avons démontré l’existence
d’un minimum pour le temps pris par la population microbienne pour faire
évoluer pleinement la résistance aux antimicrobiens, survenant lorsque les
deux phases ont des durées du même ordre (voir Fig. 2B). Cette situation
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réaliste accélère considérablement l’évolution de la résistance aux antimicro-
biens. En effet, l’un des objectifs de la conception du traitement est que la
concentration d’antimicrobien dépasse la conentration minimum d’inhibition
pendant au moins 40 à 50% du temps [9], ce qui implique que les traitements
actuels peuvent comporter les alternances qui favorisent le plus l’évolution
de la résistance aux antimicrobiens selon nos résultats [8, 9].

Evolution de la résistance aux antimicrobiens dans une pop-
ulation microbienne de taille variable

Précédemment, nous avons discuté l’évolution de la résistance aux antimi-
crobiens dans les populations microbiennes de taille fixe. La taille constante
des populations facilite les calculs analytiques et nous a permis de quan-
tifier pleinement l’impact d’une présence périodique d’antimicrobiens sur
l’évolution de la résistance. Cependant, elle ne nous a pas permis d’étudier
les extinctions induites par les antimicrobiens, ni l’impact des antimicrobi-
ens biocides, lesquels tuent les micro-organismes. C’est pourquoi nous avons
développé un modèle stochastique qui intègre les variations de la composi-
tion et de la taille des populations microbiennes, c’est-à-dire la génétique
et la dynamique des populations microbiennes. Bien qu’ayant une origine
commune dans les événements stochastiques de naissance, de décès et de mu-
tation, et donc étant intrinsèquement couplés, ces phénomènes sont rarement
considérés ensemble dans les études théoriques [10]. Cependant, il est parti-
culièrement crucial de les aborder tous les deux lorsqu’on étudie l’évolution
de la résistance aux antimicrobiens, car l’objectif d’un traitement antimicro-
bien est d’éradiquer une population microbienne, ou du moins d’en réduire
sensiblement la taille, alors que l’évolution de la résistance correspond à une
modification de la composition génétique de la population. Notre modèle
général nous a permis d’intégrer pleinement la stochasticité de l’apparition
et de l’établissement des mutations [11, 12, 13, 14, 15], ainsi que celle de
l’extinction des populations, dont l’importance pratique a été récemment
mise en évidence [16, 17, 18].

Dans ce cadre, nous nous sommes demandé si une population microbi-
enne soumise à des alternances de phases de présence et d’absence d’antimicrobien
développe une résistance, ce qui correspond à un échec du traitement et au
sauvetage de la population microbienne par la résistance [19], ou s’éteint, ce
qui correspond à un succès du traitement. En d’autres termes, nous nous
sommes demandé si la population microbienne résiste ou périt.

Nous avons étudié à la fois l’impact des antimicrobiens biocides, qui tuent
les micro-organismes, et des antimicrobiens biostatiques, qui empêchent les
micro-organismes de se diviser. Nous avons montré que les alternances rapi-
des de phases avec et sans antimicrobien ne permettent pas d’éradiquer
la population microbienne avant que les mutants résistants ne se fixent, à
moins que le taux de décès avec l’antimicrobien ne soit suffisamment élevé.
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À l’inverse, les périodes d’alternance intermédiaires sont efficaces pour un
plus large éventail de modes d’action antimicrobiens, mais la probabilité
d’extinction de la population, et donc de succès du traitement, que nous
avons entièrement quantifiée, n’est pas égale à un, car la résistance peut
sauver la population, et cet effet dépend de la taille de la population micro-
bienne. Nous avons constaté que la plage de paramètres où le traitement
antimicrobien est efficace est plus large pour les antimicrobiens biocides que
pour les antimicrobiens biostatiques (voir Figs. 3A et B).

A B

Probability of extinction p Probability of extinction p

Période Période 

Probabilité d'extinction Probabilité d'extinction

Figure 3: Probabilité d’extinction d’une population microbienne.
Probabilité d’extinction en fonction de la période d’alternance et de la vari-
able adimensionnée R, laquelle augmente avec la concentration antimicrobi-
enne et est nulle à la concentration minimale d’inhibition, avec un antimicro-
bien biostatique (A) ou biocide (B). Les données sont issues de simulations,
où chaque point est moyenné sur la base de résultats de simulation, et in-
terpolées linéairement. Ligne blanche en tiret : valeur du ratio R telle que
le temps moyen d’apparition d’un linéage mutant qui se fixe est égal au
temps moyen d’extinction des microbes sensibles avec antimicrobien. Ligne
blanche continue : demi-période égale au temps moyen d’extinction des mi-
crobes sensibles avec antimicrobien. Ligne pointillée dans B : variable R
telle que l’échelle de temps caractéristique associée à la décroissance des mi-
crobes sensibles avec antimicrobien soit égale à celle associée à la croissance
des microbes sensibles sans antimicrobien.

Cependant, nous avons également montré que les antimicrobiens biocides
et les biostatiques imparfaits permettent un mécanisme supplémentaire de
sauvetage par la résistance par rapport aux antimicrobiens biostatiques qui
arrêtent complètement la division. Cela met en lumière les mérites respectifs
des différents modes d’action des antimicrobiens. Enfin, nous avons trouvé
une concentration critique de médicaments qui dépend de la taille de la pop-
ulation en dessous de laquelle les antimicrobiens ne peuvent pas éradiquer
les populations microbiennes (voir Figs. 4A, B et C).
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Figure 4: La transition d’extinction dépend de la taille de la popu-
lation microbienne et du mode d’action de l’antimicrobien. Proba-
bilité d’extinction en fonction de la variable adimensionnée R, laquelle aug-
mente avec la concentration antimicrobienne et est nulle à la concentration
minimale d’inhibition, avec un antimicrobien biostatique ou biocide, pour
différentes tailles de population, soit dans le régime des petites périodes (A
et B) soit dans le régime des grandes périodes (C). Marqueurs : résultats de
simulations. Lignes verticales en pointillés : seuils d’extinction théoriques,
c’est-à-dire des valeurs de R telles que la demi-période est égale au temps
moyen d’extinction des microbes sensibles avec antimicrobien (A et B) ou
telle que le temps moyen d’apparition d’un linéage mutant qui se fixe est égal
au temps moyen d’extinction des microbes sensibles avec antimicrobien (C).
Lignes pleines (C) : Estimations analytiques de la probabilité d’extinction.

Sauvetage évolutif dans un environnement qui se détériore
progressivement

Précédemment, nous avons développé des modèles pour investiguer l’évolution
de la résistance aux antimicrobiens dans des populations microbiennes soumises
à des alternances périodiques de présence et d’absence d’antimicrobien. Dans
ces modèles, la transition d’un environnement avec antimicrobien à un en-
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vironnement sans antimicrobien, et vice-versa, est abrupte. Comprendre
comment une population d’organismes vivants peut survivre dans un en-
vironnement qui se détériore progressivement est une question fondamen-
tale de l’évolution [20, 21, 22], qui est particulièrement pertinente dans le
contexte de l’évolution de la résistance aux antimicrobiens, qui se produit
souvent dans un environnement variable, lorsque l’antimicrobien est ajouté
à un milieu ou administré à un patient [23, 24]. En effet, même lorsque
l’antimicrobien est ajouté instantanément, la baisse de fitness qui en résulte
est progressive [23]. En outre, l’évolution de la résistance tend à être fa-
vorisée par une augmentation progressive de la concentration d’antimicrobien [25,
26, 27, 28, 29]. Dans un environnement qui se détériore, l’aptitude des or-
ganismes de type sauvage diminue avec le temps. Dans le cas simple des
micro-organismes asexués, si l’on considère que la fitness est le taux de di-
vision, l’aptitude des micro-organismes peut alors devenir inférieure à leur
taux de mortalité, ce qui entrâıne une diminution de la taille de la popu-
lation, conduisant finalement à l’extinction [16]. Cependant, la population
microbienne peut être sauvée par une mutation mieux adaptée au nouvel
environnement, et qui rétablit une croissance positive de la population : ce
phénomène est appelé sauvetage évolutif [19, 30, 31, 32].

Un environnement qui se détériore progressivement a un impact sur la
taille de la population et sur la fitness de l’organisme de type sauvage, qui
peuvent tous deux avoir une forte incidence sur le sort d’une mutation [21].
L’étude du sauvetage évolutif d’une population dans un environnement qui
se détériore progressivement nécessite la prise en compte de variations simul-
tanées et continues dans le temps de la fitness, de la taille et de la composi-
tion de la population, ce qui la rend complexe. L’impact d’une sélection vari-
able a récemment fait l’objet d’un intérêt important, principalement dans le
cas de changements instantanés entre différents états d’environnement, met-
tant en évidence leur fort effet sur l’évolution [3, 4, 5, 7, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42]. Malgré sa pertinence pratique, le cas d’une fitness variant
continuellement a été comparativement moins étudié, l’accent ayant été mis
sur la stabilisation de la sélection [43, 44] ou sur le sort d’une seule muta-
tion bénéfique [20, 21, 22]. En outre, la plupart des travaux sur le sauvetage
évolutif considèrent un changement d’environnement abrupt [30, 45, 46, 47].
Nous avons abordé le sauvetage évolutif dans un environnement qui change
progressivement et qui se détériore du point de vue des organismes de type
sauvage.

L’adaptation à un nouvel environnement peut se faire de multiples façons.
Un mutant spécialisé particulièrement bien adapté à ce nouvel environ-
nement peut émerger. Une autre possibilité est l’apparition d’un mutant
généraliste, qui est capable de se développer à la fois dans l’environnement
initial et dans l’environnement final, tout en étant moins adapté que les
spécialistes dans leurs environnements favoris respectifs [37, 48, 49, 50].
Parmi les exemples concrets de généralistes, on peut citer les micro-organismes
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multirésistants et les anticorps largement neutralisants [49, 51].
Dans notre travail, nous avons considéré une population microbienne

soumise à une détérioration progressive de l’environnement, de sorte que
la fitness et la taille de la population de type sauvage se dégradent pro-
gressivement, et que l’extinction serait certaine en l’absence d’adaptation.
Nous avons étudié la probabilité de fixation des mutants généralistes et
spécialisés en fonction du moment où ils apparaissent lors de la détérioration
de l’environnement (voir Fig. 5A). 10-3 10-2 10-1 10000.20.40.60.81 K=100K=200K=500K=1000K=2000G S200 400 600 800 1000 1200 1400 160000.10.20.30.40.50.60.70.8 900 950 1000 105010-2 K=100K=200K=500K=1000K=2000G SA BProbabilité de fixation Temps d'apparition Probabilité de sauvetageProduit de la capacité porteuse et de la probabilité de mutation
Figure 5: Impact de la taille de la population sur le sauvetage.
A : Probabilité de fixation des mutants généralistes (notés G) et spécialisés
(notés S) en fonction de leur temps d’apparition dans un environnement en
cours de détérioration, pour différentes capacités porteuses (notées K). Les
pointillés verticaux marquent le milieu de la transition environnementale.
Panneau principal : échelle linéaire ; encadré : échelle semi-logarithmique.
B : Probabilité de sauvetage de différents types de mutants, généralistes
(notés G) ou spécialisés (notés S), par rapport au produit de la capacité
porteuse et de la probabilité de mutation lors de la division, pour différentes
capacités porteuses (notées K). La ligne verticale en pointillé marque les
paramètres pour lesquels le produit est égal à 1. Les marqueurs correspon-
dent à des moyennes sur des résultats de simulations stochastiques . Les
lignes pointillées et pleines correspondent à nos prévisions analytiques pour
les mutants généralistes et spécialisés, respectivement.

Nous avons obtenu une expression pour la probabilité que la population
soit sauvée par une mutation adaptative, évitant ainsi l’extinction. Cette
probabilité augmente avec une forme sigmöıdale lorsque le produit de la
capacité porteuse et de la probabilité de mutation augmente. En outre,
nous avons constaté que le sauvetage devient plus probable pour les popu-
lations de petite taille et/ou pour les faibles probabilités de mutation si la
dégradation de l’environnement est plus lente, ce qui illustre l’impact clé de
la rapidité de la dégradation de l’environnement sur le sort d’une popula-
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tion. Nous avons également comparé les mutants généralistes et spécialisés,
et nous avons montré que ces derniers sont légèrement plus efficaces pour
sauver la population que les mutants généralistes. Nous avons exprimé le
temps moyen d’apparition des mutants qui sauvent la population et le temps
moyen d’extinction de ceux qui ne le font pas.

Construction d’un modèle universel de populations structurées

Les modèles que nous avons développés précédemment portent sur des pop-
ulations microbiennes homogènes et bien mélangées. Cependant, de tels
modèles donnent une bonne description des microbes dans une suspension
liquide bien agitée dans un bécher, mais de peu de situations naturelles. Par
exemple, lors d’une infection, les populations microbiennes sont subdivisées
entre différents organes et entre différents hôtes. De plus, la plupart des
populations microbiennes présentent une certaine structure géographique.
Même les bactéries qui se développent sur une bôıte de Pétri entrent en
compétition plus fortement avec leurs voisins qu’avec d’autres bactéries.

La structure des populations peut avoir des conséquences majeures sur
la façon dont les populations microbiennes évoluent [52]. Les populations
structurées, avec leur compétition locale, ont des tailles de population ef-
fectives plus petites. Cela peut permettre le maintien d’une plus grande di-
versité génétique, en raison de l’importance accrue des fluctuations stochas-
tiques. Certaines études qui ont examiné l’impact de la subdivision des
populations sur la dynamique de l’évolution ont montré que la structure des
populations accélère l’adaptation [53], tandis que d’autres non [54]. Ainsi,
l’évolution des populations structurées nécessite une étude théorique plus
approfondie.

Les populations structurées peuvent être décrites par des individus situés
aux nœuds d’un graphe, avec des probabilités que la progéniture d’un indi-
vidu remplace un autre individu le long de chaque arête du graphe [55]. Il est
important de noter que ces modèles ont montré que des structures spécifiques
peuvent amplifier ou réduire l’impact de la sélection naturelle. Toutefois,
dans ces modèles, les résultats de l’évolution peuvent dépendre fortement
des détails de la dynamique, par exemple du fait que chaque événement de
naissance précède un événement de mort ou l’inverse [56, 57, 58]. Ce manque
d’universalité soulève des questions quant à l’applicabilité aux populations
microbiennes réelles.

Dans cette partie, qui est toujours en cours au moment de la rédaction de
cette thèse, nous avons construit un modèle plus réaliste où une population
structurée est composée de sous-populations, non limitées à un seul indi-
vidu, entre lesquelles des migrations d’individus sont possibles [59] et sont
indépendantes des événements de naissance et de mort. Nous avons étudié
la probabilité de fixation d’une mutation dans différentes structures en fonc-
tion de la fitness des mutants avec différents paramètres de migration, puis
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nous avons comparé notre modèle avec les modèles existants. Nous avons
montré que la clique et l’anneau ne sont ni des amplificateurs ni des sup-
presseurs de la sélection naturelle, alors que deux populations connectées,
l’étoile et la ligne, sont des suppresseurs de la sélection naturelle pour beau-
coup de valeurs de paramètres. Cela contraste avec les résultats des modèles
précédents [55], où l’étoile est un amplificateur de la sélection naturelle dans
la dynamique naissance-mort. Cependant, nous avons montré que notre
modèle donne des résultats similaires aux modèles existants de Naissance-
mort et de Mort-naissance pour les mêmes ratios du taux de reproduction
total et du taux de migration total dans chaque sous-population (voir Fig.
6).

Ainsi, notre modèle généralise ces modèles existants, et permet de choisir
sans ambigüıté les paramètres impliqués dans ces modèles. Le fait qu’aucun
amplificateur ne semble subsister dans notre modèle est particulièrement
intéressant.
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Figure 6: Comparaison entre le modèle Naissance-mort, le modèle
Mort-naissance et notre modèle. A : Probabilité de fixation d’une
mutation à partir d’un centre entièrement mutant en fonction de la fitness
mutante pour une population structurée en étoile. B : Erreur relative en-
tre les résultats obtenus avec notre modèle et les résultats obtenus avec le
modèle Naissance-mort et le modèle Mort-naissance en fonction de la fitness
mutante. L’erreur relative est la différence en valeur absolue entre la proba-
bilité de fixation obtenue avec notre modèle et celles obtenues avec le modèle
Naissance-Mort et le modèle Mort-Naissance divisée par la probabilité de
fixation obtenue avec notre modèle. C : Erreur absolue entre les résultats
obtenus avec notre modèle et ceux obtenus avec le modèle Naissance-Mort
et le modèle Mort-Naissance en fonction de la fitness mutante. L’erreur
absolue est la différence en valeur absolue entre la probabilité de fixation
obtenue avec notre modèle et celles obtenues avec le modèle Naissance-mort
et le modèle Mort-naissance. Les points de données correspondent à des
moyennes sur des résultats de simulations.

Propagation de la résistance aux antimicrobiens dans une pop-
ulation d’hôtes

La résistance aux antimicrobiens est un problème majeur de santé publique
car la résistance qui se développe chez un hôte, comme nous l’avons étudiée
précédemment, peut se propager à d’autres individus.
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Plus précisément, la prise d’un traitement antibiotique contre une souche
bactérienne pathogène peut favoriser l’émergence d’une résistance médica-
menteuse chez d’autres bactéries, en particulier dans l’intestin, et ces bactéries
résistantes peuvent alors être transmises, par exemple par la voie fécale-
orale. Il s’agit d’une préoccupation importante car l’utilisation des antibio-
tiques est très répandue : par exemple, environ un quart des Français sont
traités par des antibiotiques chaque année [60, 61]. En outre, les antibio-
tiques sont souvent administrés systématiquement aux animaux de ferme, et
la résistance aux médicaments des bactéries qu’ils abritent peut se propager
aux humains [62, 63], bien que l’ampleur de cet effet soit contestée [64]. Nous
avons développé un modèle multi-échelle de l’interaction entre l’utilisation
d’antibiotiques et la propagation de la résistance dans une population hôte,
en nous concentrant sur un aspect important de l’immunité intra-hôte.

Si le système immunitaire dans l’intestin se contentait de tuer massive-
ment les bactéries, il pourrait déstabiliser le microbiote. Il doit donc recourir
à d’autres stratégies. L’immunoglobuline A (IgA), un isotype d’anticorps qui
est le principal effecteur de la réponse immunitaire adaptative sécrétée dans
l’intestin, ne tue pas ses bactéries cibles et ne les empêche pas de se repro-
duire. Il a récemment été démontré chez la souris que l’effet principal de
l’IgA est en fait d’enchâıner les bactéries filles lors de la division [65]. Il est
important de noter que les agrégats de bactéries ainsi formés ne peuvent pas
s’approcher des cellules épithéliales, ce qui empêche une infection systémique
et protège l’hôte. En outre, l’interaction des bactéries pathogènes avec les
cellules épithéliales peut déclencher une inflammation, qui peut activer la
réponse SOS de la bactérie, augmentant ainsi le transfert horizontal de gènes
entre les bactéries. La croissance en agrégats constitue donc un mécanisme
possible de l’immunité acquise pour réduire le transfert horizontal dans
l’intestin [66]. En outre, comme les agrégats de bactéries médiés par les
IgA sont principalement clonaux, le transfert horizontal se produirait très
probablement entre des bactéries voisines très proches, ce qui le rend ineffi-
cace pour fournir de nouveaux gènes. Ces effets contribuent sans équivoque
à réduire l’émergence de la résistance aux antibiotiques chez l’hôte. Nous
avons étudié un autre effet, plus subtil. La présence de bactéries en agrégats
clonaux diminue la diversité génétique effective au sein de l’hôte, et les
bactéries transmises sont également moins diverses. Nous avons démontré
que cela peut entraver la propagation de la résistance aux antibiotiques à
l’échelle de la population hôte.

De nouvelles mutations se produisent lors de la réplication bactérienne au
sein d’un hôte, mais ce qui est crucial pour la santé publique, c’est de savoir si
ces bactéries résistantes aux mutants peuvent se propager au sein de la pop-
ulation hôte. Nous avons donc proposé un modèle multi-échelle qui combine
la dynamique intra-hôte avec un processus de branchement stochastique à
l’échelle inter-hôte. Une telle description est appropriée au début de la prop-
agation épidémique, lorsque très peu d’hôtes sont infectés. Par exemple, un
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hôte peut être infecté par une nouvelle souche bactérienne, qui peut acquérir
une résistance aux antibiotiques par mutation, et qui est suffisamment simi-
laire à d’autres souches circulantes pour qu’une partie de la population hôte
soit immunisée contre elle. Nous avons considéré deux types d’hôtes : Les
hôtes “immunisés” sécrètent des anticorps IgA contre cette nouvelle souche
de bactéries dans leur intestin, les agrégeant ainsi lors de la division, tandis
que les hôtes “näıfs” ne le font pas. Quelle est la probabilité que, à partir
d’un individu infecté, cette nouvelle souche bactérienne envahisse la popu-
lation hôte ? Tout d’abord, en nous concentrant sur le cas où le premier
hôte est infecté par un mélange de bactéries sensibles et résistantes, nous
avons démontré que l’agrégation des bactéries par l’immunité diminue la
probabilité de propagation de la nouvelle souche (voir Fig. 7A).

Nous avons ensuite montré que cet effet peut être inversé si les hôtes
immunisés et näıfs ont un nombre différent de contacts avec d’autres hôtes,
et une probabilité de traitement différente, ce qui peut se produire si les
hôtes immunisés sont des porteurs sains (voir Figs. 7B et C). Nous avons
démontré en outre la robustesse de nos résultats à des modèles plus réalistes
de la dynamique de la population bactérienne à l’intérieur de l’hôte en in-
cluant les mutations, la stochasticité, un coût de fitness de la résistance et
sa compensation. Ensuite, nous avons développé des approximations analy-
tiques pour la diminution de la probabilité de propagation due à l’immunité
dans le cas où seules des bactéries sensibles sont initialement présentes et
où la souche bactérienne doit acquérir une mutation de résistance pour se
propager. Enfin, nous avons discuté des implications de nos résultats, no-
tamment sur l’interaction entre la vaccination et les antibiotiques.
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Figure 7: Impact de l’immunité sur la propagation des bactéries
résistantes aux antibiotiques. A et B : Probabilités d’extinction en fonc-
tion du nombre initial de bactéries résistantes dans le premier hôte infecté,
pour différentes fractions d’individus immunisés dans la population hôte
(notées ω). Les hôtes näıfs et immunisés ne diffèrent que par l’agrégation des
bactéries. Dans A, chaque hôte, immunisé ou näıf, est traité avec la même
probabilité et transmet des bactéries à un même nombre moyen d’hôtes (à
moins qu’il n’ait été infecté par aucune bactérie résistante et traité). Dans
B, chaque hôte, immunisé ou näıf, est traité avec la même probabilité et les
hôtes immunisés transmettent des bactéries à un nombre moyen d’hôtes plus
grand que les hôtes näıfs. Les lignes pleines correspondent à la résolution
numérique de nos prédictions analytiques, tandis que les symboles corre-
spondent aux résultats des simulations. Panneau principal : échelle linéaire
; encadré : échelle semi-logarithmique. C : Le rapport des probabilités
d’extinction dans une population totalement immunisée par rapport à une
population totalement näıve, pour un nombre initial de bactéries résistantes
dans le premier hôte égal à 3, est indiqué pour un nombre moyen de trans-
missions par hôte immunisé supérieur ou égal au nombre moyen de transmis-
sions par hôte näıf et pour une probabilité de traitement des hôtes immunisés
inférieure ou égale à la probabilité de traitement des hôtes näıfs. Les valeurs
correspondant aux hôtes näıfs sont indiquées par un point intitulé “N”. La
courbe solide désigne les valeurs pour lesquelles le ratio est égal à un. Carte
de chaleur interpolée à partir des résolutions numériques de nos prédictions
analytiques ; échelle de couleur logarithmique.



xix

Conclusion et quelques perspectives

Dans cette thèse, nous avons étudié l’impact de la variabilité environnemen-
tale et de la structure de la population sur l’évolution et la propagation de la
résistance aux antimicrobiens. Plus précisément, nous avons développé des
modèles stochastiques minimaux et génériques, qui capturent les ingrédients
biologiques clés de la résistance aux antimicrobiens, en utilisant des méthodes
inspirées de la physique statistique hors d’équilibre. Nos approches sont à
la fois analytiques et numériques, et peuvent être réutilisées pour d’autres
problèmes théoriques de génétique des populations.

Ce travail ouvre de nombreuses possibilités d’extensions théoriques. En
particulier, il serait très intéressant d’inclure d’autres effets qui permettent
aux microbes de survivre aux traitements antimicrobiens sans acquérir de
mutations de résistance. La tolérance aux antibiotiques, qui tend à précéder
la résistance en cas d’exposition intermittente aux antibiotiques [24], per-
met aux populations bactériennes de survivre aux traitements antibiotiques,
même à des concentrations bien supérieures à la concentration minimale
d’inhibition (MIC) [67]. Un autre effet intéressant est la persistance, qui
définit la capacité d’une sous-population d’une population bactérienne clonale
à survivre à des concentrations élevées de traitement antibiotique [68]. Il
serait possible de distinguer la résistance, la tolérance et la persistance dans
des modèles théoriques en utilisant un indicateur quantitatif récemment in-
troduit, en plus de la MIC, c’est-à-dire la durée minimale d’élimination
(MDK) [69]. Une autre extension intéressante consisterait à envisager la
possibilité de concentrations supérieures à la concentration de prévention
des mutants, de sorte que les microbes résistants soient également affectés
par le médicament [24, 70]. Il serait intéressant de modéliser explicitement
le transfert horizontal de gènes des mutations de résistance et aussi de com-
parer l’impact des alternances périodiques à celui des changements aléatoires
de d’environnement [3, 4, 5, 6, 36, 7, 38, 39]. D’autres effets tels que les
propriétés physiologiques cellulaires [23], le retard phénotypique [71] ou la
dépendance en la densité de l’efficacité du médicament [72] peuvent encore
enrichir la réponse des populations microbiennes aux concentrations vari-
ables d’antimicrobiens.



xx

Remerciements

Et voici le moment que vous attendiez tous, celui des remerciements. Ces
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celles et ceux qui ont contribué, de près ou de loin, directement ou indi-
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de ma santé physique et mentale.
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Chapter 1

Introduction

Alan Parrish: In the jungle
you must wait...until the dice
read five or eight.

— Jumanji
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1.1 Once upon a time there were microbes and an-
timicrobials . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Historical overview of antimicrobial resistance . 7

1.3 Rugged fitness landscape . . . . . . . . . . . . . . 9

1.4 Population genetics . . . . . . . . . . . . . . . . . 10

1.5 State of the art . . . . . . . . . . . . . . . . . . . . 14

1.6 Outline of this thesis . . . . . . . . . . . . . . . . 16

In this introduction, we first define what a microbe and an antimicro-
bial are. Then we explain our motivations through a historical overview of
the issues raised by antimicrobial resistance. After briefly reviewing some
relevant biological details of antimicrobial resistance, we explain why envi-
ronmental variability and population structure likely impact the evolution
and spread of antimicrobial resistance. A brief state of the art on the im-
pact of environmental variability and structure on the evolution of microbial
populations leads us to the questions we want to answer, and the goals we
want to achieve. Finally, we present the structure of the thesis manuscript.

5



6 CHAPTER 1. INTRODUCTION

1.1 Once upon a time there were microbes and
antimicrobials

This thesis focuses on the evolution of antimicrobial resistance in a microbial
population, as well as its spread in a host population. Let us first define the
key notions in this topic.

A microorganism, or microbe, is a living organism, invisible to the
naked eye, which can only be observed with the aid of a microscope. It in-
cludes archaea, bacteria, microscopic fungi and yeasts, protozoa, viruses and
microscopic algae [73, 74]. Notes that viruses are not always considered as
microbes, since they cannot metabolize or replicate autonomously outside a
host cell. Microorganisms make up just over 15% of the Earth’s biomass [75].
Typically, there are about 50 million bacterial cells per gram of soil, about
one million per milliliter of freshwater and about 10 trillion in the human
body. The latter figure, which includes microbes in the human microbiota,
shows that human interactions with microbes are important. Note that the
human microbiota includes all microbial communities, residing on or within
human tissues and biofluids. Although some of these microbes are involved
in the healthy functioning of human organisms, others are pathogenic and
cause infectious diseases. This pathogenicity explains the use of antimicro-
bials, which are defined in the following paragraph. Microorganisms are
believed to have been the first life forms to develop on Earth. Although
terrestrial physical characteristics have changed significantly over the past
3.4 - 3.7 billion years, genetic variation has allowed microbes to evolve and
survive in new environments. This capacity to adapt to new environmental
conditions, even deteriorating ones, is precisely what we will try to quantify
in this thesis.

An antimicrobial is an agent that affects the growth or the death of mi-
croorganisms in a negative way. More specifically, agents that kill microbes
are called biocidal, while those that slow their growth are called biostatic. In
addition to grouping them by their impact on microbes, antimicrobials can
be classified according to the type of microbes on which they act against.
For instance, antibiotics are antimicrobial medicines used against bacteria,
while antifungals are used against fungi. Thus, the addition of antimicro-
bials to a microbial culture deteriorates its environment and stresses the
microbes. When the antimicrobial treatment is effective, the microbial pop-
ulation eventually goes extinct. That is why antimicrobials are of great
interest in medicine, since they help to control pathogenic microbes. They
are also of interest in microbiology because they can eliminate undesirable
microbes in experiments. However, as we will see in the next section, some
microbial populations may adapt and survive drug treatment because of
antimicrobial-resistant microbes. Fig. 1.1 shows an example of an antimi-
crobial susceptibility testing where disks that diffuse different antimicrobials
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are placed on a petri dish containing a microbial culture [76]. As can be seen
in this figure, some antimicrobials are successful in killing microbes, result-
ing in empty dark gray halos around some disks, while others are ineffective.
In the latter cases, the microbes are resistant to these antimicrobials.

Figure 1.1: Antimicrobial susceptibility testing. Microbial susceptibil-
ity to antimicrobials is tested by placing disks that diffuse antimicrobials on
a petri dish containing a microbial culture. Some antimicrobials are success-
ful in killing microbes, resulting in empty dark gray halos around some disks,
while others are ineffective. For more details, see [76]. Original illustration
from Wikimedia Commons.

1.2 Historical overview of antimicrobial resistance

While we were defining what a microbe and an antimicrobial are, we men-
tioned antimicrobial resistance, which is precisely the subject of this thesis.
In what follows, we briefly explore the chronology of antimicrobial resistance.
This overview is an opportunity to explain our motivations for studying this
topic.

Until the beginning of the twentieth century, one of the main causes
of human mortality was infection by microorganisms such as bacteria and
fungi. For example, the Black Death killed 25 million Europeans around
1350, about half of the European population at that time. Over the years,
hygiene has helped to reduce the infectious disease related death rate. In
1928, Alexander Fleming observed that the fungus Penicillium notatum in-
hibits the reproduction of bacterial cultures. The discovery of this first
antimicrobial opened a new era for medicine and has constituted one of the
greatest medical advances of the twentieth century, allowing many major
infectious diseases to be treated.



8 CHAPTER 1. INTRODUCTION

However, antibiotic resistance to sulfonamides, the first synthetic antibi-
otics, appeared only a few years after their introduction in 1936. Indeed,
with the increasing use of antimicrobials, pathogenic microorganisms tend
to become resistant to these drugs, which then become useless. Thus, an-
timicrobial resistance compromises the effective prevention and treatment of
infections caused by microbes. Because many new antimicrobials were dis-
covered and synthesized in the years that followed, antimicrobial resistance
did not receive much attention from the scientific community [77]. However,
it causes today the death of 700,000 people a year worldwide. Antimicro-
bial resistance has grown because of widespread use of antimicrobial and
the decrease of new drug discoveries, and this figure could rise to 10 million
by 2050, making antimicrobial resistance the leading cause of death before
cancer [1] (see Fig. 1.2).

Figure 1.2: Antimicrobial resistance. Predictions of deaths attributable
to antimicrobial resistance every year by 2050. The number of deaths world-
wide each year due to antimicrobial resistance could be as high as 10 million.
The continents most affected would be Asia and Africa. Original illustration
from [1].

That is why understanding both the evolution and the spread of re-
sistance is of paramount importance in order to fight the major public
health issue raised by antimicrobial resistance. Some interesting, but not
exhaustive, questions are: what conditions favor or challenge the evolution
of resistance? How to optimize antimicrobial treatments? This thesis mod-
estly provides some elements of answer, using theoretical modeling based on
stochastic processes, with the hope to contribute to the understanding of
antimicrobial resistance as a major challenge of the twentieth century.
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1.3 Resistance mutation, fitness cost and compen-
sation - Rugged fitness landscape

Since the emergence of antimicrobial resistance, many studies have focused
on the causes and consequences of resistance in microbes, i.e at the cellular
level. These observations are important to build relevant quantitative mod-
els that will allow us to study the evolution of antimicrobial resistance in a
microbial community, as well as its spread in a host population. This section
addresses the following questions: how does a microbe acquire resistance?
Does this resistance have a biological impact on the microbe that acquires
it?

A microbe can acquire antimicrobial resistance through a genetic mu-
tation affecting its chromosome, or through foreign genetic material, such
as a plasmid, carrying one or more resistance genes from another microbe.
Note that a mutation could also affect a plasmid, and lead to de novo re-
sistance. In this thesis, we focus on this first type of resistance acquisition,
called de novo chromosomal resistance. As an example, the typical mutation
probability per nucleotide and per generation in Escherichia coli bacteria
is ∼ 10−10 [78]. Resistant microbes can operate through different mecha-
nisms to protect themselves from antimicrobials. For instance, resistance
mutations can modify the molecular target of the drug, seal the microbe’s
membrane against the drug, or produce an enzyme that destroys the drug,
thus making the antimicrobial ineffective.

Mutations that confer antimicrobial resistance are often associated with
a fitness cost, i.e. a slower reproduction in the absence of drug [79, 80, 81].
Indeed, as previously mentioned, the acquisition of resistance often alters the
biological function of the drug target, or involves the production of specific
proteins, which entails a metabolic cost. This results in a selective disadvan-
tage of resistant microbes compared to sensitive ones in an antimicrobial-
free environment. As an example, the fitness cost of streptomycin resistance
in Escherichia coli bacteria is ∼ 10% [82]. However, resistant microorgan-
isms frequently acquire subsequent mutations that compensate for the initial
cost of resistance. These microorganisms are called “resistant-compensated”
[82, 83, 84, 85]. The acquisition of resistance is therefore often irreversible,
even if the antimicrobial is removed from the environment [80, 82]. More-
over, in several actual situations, the effective mutation rate towards com-
pensation tends to be higher than the one towards the return to sensitivity,
since multiple mutations can compensate for the initial cost of resistance.

As a result of all that has been described above, in the absence of an-
timicrobial, the adaptive landscape of the microorganism, which represents
its fitness as a function of its genotype, involves a valley, since the first re-
sistance mutation decreases fitness, while compensatory mutations increase
it (see Fig. 1.3). However, this fitness valley, which exists in the absence
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Figure 1.3: Fitness landscape. Adaptive fitness landscape in the absence
of antimicrobial showing the evolution of streptomycin resistance in Es-
cherichia coli. CAB281, STR1, STR12 and STR12tr denote streptomycin-
sensitive, spontaneous streptomycin-resistant, resistant-compensated and
sensitive-compensated strains, respectively. Sensitive-uncompensated and
resistant compensated strains occupy different adaptive peaks separated by
a valley. Original illustration from [82].

of antimicrobial, disappears above a certain concentration of biostatic an-
timicrobial, as the growth of the antimicrobial-sensitive microbe is impaired.
Thus, the adaptive landscape of the microbe depends drastically on whether
the antimicrobial is present or absent. Note that biocidal antimicrobials do
not impact the fitness of sensitive microbes but increase their death rate,
while that of resistant microbes remains constant. Thus, an environment
with such drugs applies selective pressure on sensitive microbes and also
selects for resistance. Taking into account this type of interaction between
genotype and environment constitutes a fundamental problem, even though
most experiments have traditionally focused on comparing different mutants
in a unique environment [2]. In particular, recent theoretical analyses show
that variable adaptive landscapes can have a dramatic evolutionary impact
[3, 4, 5, 6, 7].

1.4 Population genetics

In the previous section, we explained that antimicrobial-susceptible microbes
can mutate into resistant microbes, and that the latter can mutate into
resistant-compensated microbes. We have also shown that the fitness land-
scape of microbes depends on the environment. But do these mutations,
when they occur, become established in a microbial population? How does
the fixation of mutations depend on the environment or population struc-
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ture? To begin to answer these questions, we will discuss population genetics
here [11, 86, 87]. This subfield of genetics, which is also part of evolutionary
biology, quantitatively studies the genetic composition of populations and
the changes in this composition that result from various evolutionary forces.
These include mutation, selection, genetic drift and migration. Some of
these keywords appeared earlier in the introduction of this thesis, and this
section is an opportunity to define them in more detail, and to illustrate
them in the context of antimicrobial resistance.

Natural selection arises from the fact that some genes in a population
carry a survival or reproduction advantage over others. This is quanti-
tatively described by fitness, which is defined in this thesis as the repro-
duction rate of a microbe in a given environment. Fitter individuals have
more offspring. Then, natural selection converts differences in fitness into
changes in the frequency of genotypes in a population over successive gen-
erations. How does natural selection operate in the context of antimicrobial
resistance? Consider a microbial population composed of two types of indi-
viduals, namely sensitive and resistant microbes. As a reminder, the latter
have a selective disadvantage in the absence of antimicrobial due to their
fitness cost of resistance. Thus, in an antimicrobial-free environment, nat-
ural selection selects sensitive microbes. However, in an environment with
antimicrobial, the fitness of sensitive individuals is reduced by the drugs,
and therefore resistant microbes become more fit. They then benefit from
natural selection (see Fig. 1.4.A). This leads to the crucial point that drugs
actively select for resistance to them. More generally, this example illus-
trates the impact of the environment on natural selection. Therefore, in
this thesis we will focus, among other things, on the impact of environmen-
tal variability on the evolution of antimicrobial resistance.

Mutation is one of the main sources of genetic variation. It is a modifi-
cation of the genetic information in the genome. More specifically, the DNA
sequence (RNA for some viruses) can change in two ways, either by substitu-
tion of one base pair by another as a result of an error during replication, or
by breaks in the sugar-phosphate backbone of the DNA with loss, addition
or inversion of DNA between the two breaks. For example, an initially fully
sensitive population may diversify genetically when sensitive microbes di-
vide and mutate into resistant mutants, and when resistant mutants divide
and mutate into resistant-compensated microbes (see Fig. 1.4.B). Since the
majority of mutations are deleterious [88], natural selection tends to elim-
inate the resulting mutants. However, when the rate at which deleterious
mutants appear is equivalent to the rate at which selection eliminates these
mutants, the result is an equilibrium number of deleterious mutants in the
population. This is known as the mutation-selection balance, and this mech-
anism allows genetic variation to be maintained in populations. Thus, the
mutation rate can change the outcome of the evolutionary process, as well
as the evolutionary path followed to get there. This parameter will therefore
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be important to take into account.
Genetic drift is the change in the frequency of a genotype due to chance

(see Fig. 1.4.C). Because births and deaths of individuals are random events,
they induce demographic noise in finite sized population. Finite size effects
and sampling noise are sources of stochasticity. Unlike natural selection, ge-
netic drift is not impacted by differences in fitness, but rather by population
sizes. Indeed, the smaller the population size, the stronger the stochastic
effects. Thus, it is interesting to note that the evolution of antimicrobial
resistance in a microbial population may depend on its size. In small pop-
ulations, genetic drift may dominate natural selection, while the opposite
may be true in larger populations. Genetic drift particularly impacts the
bottleneck effect [11, 86], i.e. when the size of a population is suddenly
reduced, and the founder effect [89], i.e. when a small group of individuals
separates from a population to form a colony. The latter effect occurs in
the spread of a microbial infection, and more specifically in the transfer of a
number of microbes from one infected host to another, which then becomes
contaminated. Also, the value of the fitness cost may have an impact on
evolutionary forces. More specifically, when the selective advantage of a
genotype is less than 1 divided by the effective population size, genetic drift
dominates natural selection [90].

Gene flow, or gene migration, is the transfer of genetic variation from
one population to another thanks to the migration of individuals (see Fig.
1.4.D). This mechanism is likely to occur both in the evolution of antimi-
crobial resistance within a host and in its spread within a host population.
Indeed, during an infection, microbial populations are subdivided between
different organs, and between different hosts. Moreover, most microbial
populations feature some geographical structure, and even bacteria growing
on a Petri dish compete more strongly with their neighbors than with other
bacteria. In a structured population, competition is local, and once one type
of individuals dominates in a subpopulation, it can spread more easily to
others through migration. The question then arises as to whether or not
antimicrobial resistance evolves more easily in a structured population or in
an unstructured population.

To sum up, natural selection and genetic drift are two mechanisms that
reduce genetic diversity, the first by favoring the most fit genotypes and the
second randomly regardless of fitness. In contrast, mutation and migration
are sources of genetic diversification. Taking these four evolutionary forces
into account is essential to understand the genetic evolution of a population.
The examples we have used to illustrate these evolutionary forces, and those
reported in Fig. 1.4, show that these evolutionary forces depend on the
environment and population structure. Therefore, in this thesis we will
investigate the impact of environmental variability and population structure
on the evolution and spread of antimicrobial resistance. These are important
theoretical challenges because most models traditionally assume constant
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Figure 1.4: Evolutionary forces: Sketches illustrating the four evolution-
ary forces in the Moran model [91]. At each time step, an individual is cho-
sen at random for reproduction and another one is chosen for elimination.
Hence, the total number of individuals in the population stays constant. A:
Natural selection. sensitive microbes are selected in an antimicrobial-free
environment, while resistant mutants are selected in an environment with
antimicrobial. Indeed, sensitive microbes are fitter than resistant microbes
in the absence of antimicrobial, while they cannot divide in the presence of
antimicrobial. B: Mutation. A microbe from a fully sensitive population
mutates when it divides into a resistant microbe. The population becomes
genetically diverse and now has two genotypes. C: Genetic drift. Assuming
that sensitive and resistant microbes have the same fitness, the microbial
population goes from ∼33% mutant individuals to zero mutant individuals.
D: Gene flow. A resistant microbe from a fully resistant population is se-
lected for reproduction, migrates to a fully sensitive population and replaces
a sensitive microbe chosen to die. Then genetic diversity increases.

environments and homogeneous populations.

This is the type of challenge for which physics can be useful, especially
with the tools of out-of-equilibrium statistical physics. Indeed, in particular
after Motoo Kimura’s use of the diffusion equation to calculate the fixation
probability of beneficial, neutral and deleterious alleles [92], it became clear
that stochastic processes can help investigate theoretical population genetics
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issues.

1.5 State of the art

Before we begin to study the evolution and spread of antimicrobial resis-
tance, let us have a brief and non-exhaustive look at what has already been
done on this issue, with a particular focus on the impact of environmental
variability and on the impact of population structure. This will allow us
to know how to improve existing models in order increase our knowledge of
antimicrobial resistance.

Many studies have investigated the evolution of antimicrobial resistance
in a context of specific drug treatments [93]. An important point is that
treatments are designed to eradicate microbial populations and not be toxic
to the patients taking them, but they are not designed to minimize antimi-
crobial resistance [94]. Some work shows how environmental changes can
contribute to the emergence of resistant microbes. For instance, antimi-
crobial resistance emerges more often in a microbial population undergoing
a gradual drug treatment than in a microbial population undergoing an
abrupt drug treatment [95]. Also, imperfect adherence to therapy allows re-
sistant microbes to grow and dominate microbial populations after a while
[96]. Thus, all the studies cited previously show the impact of environmen-
tal changes on the emergence of antimicrobial resistance, and therefore how
crucial it is to study the interactions between time scales of evolution and
environment. However, most studies neglect stochastic effects, which can
have a significant impact on evolutionary dynamics [11, 13, 97]. Besides,
a transition between stochastic evolution and deterministic evolution exists
and depends on population size, mutation rate, and selective coefficient [12].
A simple example illustrates this: in a deterministic system, the frequency in
a population of a mutation that is slightly deleterious will come to an equi-
librium equal to the mutation rate divided by the selection coefficient, while
in a stochastic system the population will finally only contain one variant
or the other [12]. Therefore, stochastic and deterministic approaches may
provide different evolutionary outcomes for the fate of resistance mutations.
Note that the deterministic approach is appropriate when the product of the
population size by the mutation rate is large [12, 13]. Such large sizes can
be reached in some established infections [98], but microbial populations go
through very small bottleneck sizes [99], when an infection is transmitted.
Moreover, established microbial populations are structured, even within a
single patient [100], and competition is local, which decreases the effective
value of the population size. In these latter cases, stochastic effects may be
significant. Although previous studies did take stochasticity into account,
several did not include compensation of the cost of resistance [101, 102].
Taking compensation into account leads to a valley fitness landscape and
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may induce nontrivial evolutionary dynamics [15, 103].

Most studies that have investigated the evolution of antimicrobial resis-
tance considered homogeneous populations [93, 94, 95, 96]. However, such
a model gives a good description of microbes in a well-agitated medium,
but of few natural situations. As we already described earlier, during an
infection, microbial populations are subdivided between different organs,
and between different hosts [100]. Moreover, most microbial populations
feature some geographical structure, which can have major consequences on
the way microbial populations evolve [104, 105]. For instance, a previous
work showed that population subdivision strongly accelerates fitness valley
crossing [106]. Indeed, the different subpopulations forming a subdivided
population perform quasi-independent explorations of the fitness landscape
in parallel, and migration can then spread beneficial mutations throughout
the population. However, recent experiments investigating the evolutionary
dynamics of subdivided populations produced mixed results, some showing
faster adaptation of subdivided populations [53], while others not [54]. Thus
the question of the impact of the structure on the evolution of a population
is not definitively resolved. Interest in the impact of structure on the evolu-
tion of populations has led to the research field of Evolutionary graph theory
[87]. In this framework, structured populations are modeled as graphs where
each node represents an individual, with probabilities that the offspring of
an individual replaces another one along each edge [55]. Many studies have
provided analytical results for probabilities and fixation times in such struc-
tured populations, and have shown that some structures are amplifiers or
suppressors of natural selection [107, 108, 109, 110, 111]. However, in these
models, evolutionary outcomes can drastically depend on the details of the
dynamics, e.g. whether each birth event precedes a death event or the oppo-
site [56, 57, 58]. In a few other models, each node in the graph represents a
subpopulation of fixed size. But in these models, the evolutionary outcome
also depends on the details of the dynamics.

This brief and non-exhaustive state of art shows that many interesting
studies investigated the antimicrobial resistance. However, many of them
do not include in their models the compensation of fitness costs or stochas-
tic effects or do not incorporate both variable population size and variable
composition. Moreover, the lack of universality existing structured popu-
lation models, that results from the choice of dynamics, raises issues for
applicability to real microbial populations. Here, we aim to contribute to
fill these gaps in our knowledge, by building new models that will improve
our understanding of the evolution and resistance to antimicrobials, with a
particular focus on the impact of environmental variability and population
structure.
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1.6 Outline of this thesis

This thesis aims to develop minimal and generic models to understand both
the evolution and spread of antimicrobial resistance. Chapters 2, 3 and 4
are devoted to the evolution of antimicrobial resistance in a microbial pop-
ulation. Stochastic models are developed that assess the impact of environ-
mental variability on the fixation of resistance mutations. More specifically,
the second and third chapters address the impact of periodic antimicrobial
presence on the evolution of resistance in microbial populations of fixed and
variable size, respectively The fourth chapter focuses more generally on the
impact of a gradually deteriorating environment and on the rescue by muta-
tion of a population destined for extinction by mutation. The fifth chapter
proposes a new model of structured populations and compares it to existing
models. This model aims to solve the problem of the lack of universality
of existing models with respect to the choice of dynamics. Finally, the last
chapter focuses on the spread of antimicrobial resistance in a host popula-
tion related to immunity. In what follows, we outline the content of each
chapter in more detail.

In Chapter 2, we consider a homogeneous microbial population of fixed
size subjected to periodic alternations of phases of absence and presence of
an antimicrobial that stops growth. Combining analytical approaches and
stochastic simulations, we quantify how the time necessary for fit resistant
bacteria to take over the microbial population depends on the alternation
period. We demonstrate that fast alternations strongly accelerate the evolu-
tion of resistance, reaching a plateau for sufficiently small periods. Further-
more, this acceleration is stronger in larger populations. For asymmetric
alternations, featuring a different duration of the phases with and without
antimicrobial, we shed light on the existence of a minimum for the time
taken by the population to fully evolve resistance. The corresponding dra-
matic acceleration of the evolution of antimicrobial resistance likely occurs
in realistic situations, and may have an important impact both in clinical
and experimental situations.

In Chapter 3, we pursue our study of the impact of periodic alternations
of absence and presence of antimicrobial on resistance evolution in a micro-
bial population, using a stochastic model that includes variations of both
population composition and size, and fully incorporates stochastic popula-
tion extinctions. We show that fast alternations of presence and absence
of antimicrobial are inefficient to eradicate the microbial population and
strongly favor the establishment of resistance, unless the antimicrobial in-
creases enough the death rate. We further demonstrate that if the period of
alternations is longer than a threshold value, the microbial population goes
extinct upon the first addition of antimicrobial, if it is not rescued by resis-
tance. We express the probability that the population is eradicated upon
the first addition of antimicrobial, assuming rare mutations. Rescue by re-
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sistance can happen either if resistant mutants preexist, or if they appear
after antimicrobial is added to the environment. Importantly, the latter case
is fully prevented by perfect biostatic antimicrobials that completely stop
division of sensitive microorganisms. By contrast, we show that the pa-
rameter regime where treatment is efficient is larger for biocidal drugs than
for biostatic drugs. This sheds light on the respective merits of different
antimicrobial modes of action.

In Chapter 4, we investigate the evolutionary rescue of a microbial pop-
ulation in a gradually deteriorating environment, in contrast to the models
in Chapters 2 and 3 where environmental change is abrupt. We consider
a population destined for extinction in the absence of mutants, which can
only survive if adaptive mutants arise and fix. We show that mutants that
appear later during the environment deterioration have a higher probabil-
ity to fix. We demonstrate that the rescue probability of the population
increases with a sigmoidal shape when the product of the carrying capacity
and of the mutation probability increases. Furthermore, we find that rescue
becomes more likely for smaller population sizes and/or mutation proba-
bilities if the environment degradation is slower, which illustrates the key
impact of the rapidity of environment degradation on the fate of a popu-
lation. We also show that specialist mutants are slightly more efficient at
rescuing the population than generalist ones. We further express the average
time of appearance of the mutants that do rescue the population and the
average extinction time of those that do not. Our methods can be applied
to other situations with continuously variable fitnesses and population sizes,
and our analytical predictions are valid beyond the weak-mutation regime.

In Chapter 5, we focus on the fate of a mutation in a structured popula-
tion, after having concentrated on well-mixed populations in Chapters 2, 3,
and 4. More specifically, we develop a graph-structured population model
that generalizes the existing models in which each node is considered either
as a single individual or as a population of fixed size. In our model, each
node is a deme of variable size, and migrations are independent of birth and
death events. We calculate analytically the fixation probability of a mutant
lineage for different population structures in the rare migration regime, and
verify our predictions with numerical simulations. We find that many struc-
tures are suppressors of natural selection in our models, including some that
are known as natural selection amplifiers in existing models. Despite this
striking difference, our model is consistent with the existing models when
the ratios of total reproduction rate to total migration rate in each deme
are matched between models.

In Chapter 6, we develop a multi-scale model of the interaction between
antibiotic use and resistance spread in a host population, focusing on an im-
portant aspect of within-host immunity. Antibodies secreted in the gut en-
chain bacteria upon division, yielding clonal clusters of bacteria. We demon-
strate that immunity-driven bacteria clustering can hinder the spread of a
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novel resistant bacterial strain in a host population. We quantify this effect
both in the case where resistance preexists and in the case where acquiring a
new resistance mutation is necessary for the bacteria to spread. We further
show that the reduction of spread by clustering can be countered when im-
mune hosts are silent carriers, and are less likely to get treated, and/or have
more contacts. We demonstrate the robustness of our findings to including
stochastic within-host bacterial growth, a fitness cost of resistance, and its
compensation. Our results highlight the importance of interactions between
immunity and the spread of antibiotic resistance, and argue in the favor of
vaccine-based strategies to combat antibiotic resistance.

Note that each chapter can be read independently of the others, and that
analytical and numerical details are presented at the end of each chapter in
an Appendix section.
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The work presented in this chapter was published in the following arti-
cle: Marrec L, Bitbol AF. Quantifying the impact of a periodic presence of
antimicrobial on resistance evolution in a homogeneous microbial population
of fixed size. J Theor Biol. 2018;457:190-198.

In this chapter, we consider a homogeneous microbial population of fixed
size subjected to periodic alternations of phases of absence and presence of
an antimicrobial that stops growth. We quantify how the time necessary for
fit resistant bacteria to take over the microbial population depends on the al-
ternation period. We demonstrate that fast alternations strongly accelerate
the evolution of resistance, reaching a plateau for sufficiently small periods.
Furthermore, this acceleration is stronger in larger populations. For asym-
metric alternations, featuring a different duration of the phases with and
without antimicrobial, we shed light on the existence of a minimum for the
time taken by the population to fully evolve resistance. The correspond-
ing dramatic acceleration of the evolution of antimicrobial resistance likely
occurs in realistic situations, and may have an important impact both in
clinical and experimental situations.
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2.1 Introduction

We explained in Chapter 1 that mutations conferring antimicrobial resis-
tance are often associated with a fitness cost, i.e. a slower reproduction [79,
80, 81], and that resistant microorganisms, called “resistant-compensated”,
frequently acquire subsequent mutations compensating for the initial cost
of resistance [82, 83, 84, 85]. The acquisition of resistance is therefore
often irreversible, even if the antimicrobial is removed from the environ-
ment [80, 82]. Thus, in the absence of antimicrobial, the adaptive landscape
of the microorganism, which represents its fitness (i.e. its reproduction rate)
as a function of its genotype, involves a valley, since the first resistance mu-
tation decreases fitness, while compensatory mutations increase it. However,
this fitness valley, which exists in the absence of antimicrobial, disappears
above a certain concentration of biostatic antimicrobial, as the growth of
the antimicrobial-sensitive microorganism is impaired. Thus, the adaptive
landscape of the microorganism depends drastically on whether the antimi-
crobial is present or absent. Taking into account this type of interaction be-
tween genotype and environment constitutes a fundamental problem, even
though most experiments have traditionally focused on comparing different
mutants in a unique environment [2]. In particular, recent theoretical analy-
ses show that variable adaptive landscapes can have a dramatic evolutionary
impact [3, 4, 5, 6, 7].

How do the timescales of evolution and variation in the adaptive land-
scape compare and interact? What is the impact of the time variability
of the adaptive landscape on the evolution of antimicrobial resistance? In
order to answer these questions, we construct a minimal model retaining
the fundamental aspects of antimicrobial resistance evolution. Focusing on
the case of a homogeneous microbial population of fixed size, we perform a
complete stochastic study of de novo resistance acquisition in the presence
of periodic alternations of phases of absence and presence of an antimicro-
bial that stops growth. These alternations can represent, for example, a
treatment where the concentration within the patient falls under the Mini-
mum Inhibitory Concentration (MIC) between drug intakes [8]. Combining
analytical and numerical approaches, we show that these alternations sub-
stantially accelerate the evolution of resistance with respect to the cases of
continuous absence or continuous presence of antimicrobial, especially for
larger populations. We fully quantify this effect and shed light on the dif-
ferent regimes at play. For asymmetric alternations, featuring a different
duration of the phases with and without antimicrobial, we demonstrate the
existence of a minimum for the time taken by the population to fully evolve
resistance, occurring when both phases have durations of the same order.
This realistic situation dramatically accelerates the evolution of resistance.
Finally, we discuss the implications of our findings, in particular regarding
antimicrobial dosage.
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2.2 Model

The action of an antimicrobial drug can be quantified by its MIC, the mini-
mum concentration that stops the growth of a microbial population [80]. We
focus on biostatic antimicrobials, which stop microbial growth (vs. biocidal
antimicrobials, which kill microorganisms). We model the action of the an-
timicrobial in a binary way: below the MIC (“absence of antimicrobial”),
growth is not affected, while above it (“presence of antimicrobial”), sensitive
microorganisms cannot grow at all. The usual steepness of pharmacody-
namic curves around the MIC [8] justifies our simple binary approximation,
and we also present an analysis of the robustness of this hypothesis (Supple-
mentary Material, Section 2.5.6). Within this binary approximation, there
are two adaptive landscapes. Assuming that the drug fully stops the growth
of sensitive microorganisms, but does not affect that of resistant ones, and
considering compensatory mutations that fully restore fitness, these two
adaptive landscapes can be described by a single parameter δ, representing
the fitness cost of resistance (Fig. 2.1A). We focus on asexual microorgan-
isms, and fitness simply denotes the division rate of these organisms. The
fitness of sensitive microorganisms in the absence of antimicrobials is taken
as reference. In this framework, we investigate the impact of a periodic pres-
ence of antimicrobial, assuming that the process starts without antimicrobial
(Fig. 2.1B-C).

0

1

2T

0
Time

Antimicrobial presence

T

1 20

1

Figure 2.1: Model. A: Adaptive landscapes in the presence and in the ab-
sence of antimicrobial. Genotypes are indicated by the number of mutations
from the sensitive microorganism, and by initials: S: sensitive; R: resistant;
C: resistant-compensated. B and C: Periodic presence of antimicrobial,
and impact on the fitness of S (sensitive) microorganisms: (B) Symmetric
alternations; (C) Asymmetric alternations.

We denote by µ1 and µ2 the mutation rates (or mutation probabilities
upon each division) for the mutation from S to R and for the one from R
to C, respectively. In several actual situations, the effective mutation rate
towards compensation tends to be higher than the one towards the return to
sensitivity, since multiple mutations can compensate for the initial cost of re-
sistance [83, 84, 98]. Therefore, we do not take into account back-mutations.



22 CHAPTER 2. FIXED SIZE

Still because of the abundance of possible compensatory mutations, gener-
ally µ1 � µ2 [83, 112]. We present general analytical results as a function
of µ1 and µ2, and analyze in more detail the limit µ1 � µ2, especially in
simulations. All notations introduced are summed up in Table 2.1.

We focus on a homogeneous microbial population of fixed size N , which
can thus be described in the framework of the Moran process [11, 91], where
fitnesses are relative (see Appendix, Section 2.5.2 and Fig. 2.6). Assum-
ing a constant size simplifies the analytical treatment and is appropriate
for instance to describe turbidostat experiments, where the dilution rate is
adjusted so that turbidity (and hence population size) is constant [113]. If
a population only features sensitive individuals (with zero fitness) in the
presence of antimicrobial, we consider that no division occurs, and the pop-
ulation remains static. We always express time in number of generations,
which corresponds (unless no cell can divide) to the number of Moran steps
divided by the population size N .

Throughout, we start from a microbial population where all individuals
are S (sensitive), and we focus on the time tfC it takes for the C (resistant-
compensated) type to fix in the population, i.e. to take over the population.
Then, the population has fully evolved resistance de novo.

2.3 Results

2.3.1 A periodic presence of antimicrobial can drive resis-
tance evolution

In this section, we study how alternations of absence and presence of antimi-
crobial can drive the de novo evolution of resistance. We present analytical
predictions for the time needed for the population to evolve resistance, and
then we compare them to numerical simulation results.

We first focus on the rare mutation regime Nµ1 � 1, where at most one
mutant lineage exists in the population at each given time. The frequent mu-
tation regime is briefly discussed, and more detail regarding the appropriate
deterministic treatment in this regime is given in Supplementary Material,
Section 2.5.3. Here, we consider the case of symmetric alternations with
period T (Fig. 2.1B). Asymmetric alternations (Fig. 2.1C) will be discussed
later.

Time needed for resistant microorganisms to start growing

Resistant (R) mutants can only appear during phases without antimicrobial.
Indeed, mutations occur upon division, and sensitive (S) bacteria cannot di-
vide in the presence of antimicrobial (Fig. 2.1). However, R mutants are
less fit than S individuals without antimicrobial. Hence, the lineage of an R
mutant will very likely disappear, unless it survives until the next addition
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of antimicrobial. More precisely, without antimicrobial, the fixation prob-
ability pSR of a single R mutant with fitness 1 − δ, in a population of size
N where all other individuals are of type S and have fitness 1, is ∼ 1/N if
the mutation from S to R is effectively neutral (Nδ � 1), and ∼ δe−Nδ if
δ � 1 and Nδ � 1 [11]. Let us denote by τd

R the average time an R lineage
would drift before going extinct without antimicrobial [11] (see Appendix,
Section 2.5.2). If antimicrobial is added while R mutants exist in the pop-
ulation, i.e. within ∼ τd

R after a mutation event, then the R population
will grow fast and fix, since S individuals cannot divide with antimicrobial.
Hence, each time antimicrobial is added, any R lineage that was destined
for extinction without antimicrobial but that survived until the addition of
drug is rescued. Through this phenomenon, periodic alternations of absence
and presence of antimicrobial can substantially accelerate resistance evolu-
tion: we will quantify this effect. Note that here, we disregard the very few
R lineages destined for fixation without antimicrobial, because we aim to
study the acceleration of resistance evolution due to the alternations. The
spontaneous evolution of resistance without antimicrobial is discussed and
compared to our alternation-driven process in the Appendix, Section 2.5.4.

It is crucial to calculate the average waiting time taR until an R lineage
is rescued by the addition of antimicrobial. Indeed, this constitutes the key
step of alternation-driven resistance takeover. Three timescales impact taR.
The first one is the timescale of the environment, namely the half-period
T/2. The two other ones are intrinsic timescales of the evolution of the
population without antimicrobial: the average time between the appearance
of two independent R mutants, 1/(Nµ1), and the average lifetime τd

R of the
lineage of an R mutant destined for extinction without antimicrobial. Note
that τd

R is generally quite short. Indeed, τd
R ≈ logN for large N if δ = 0, and

τd
R decreases as δ increases, as deleterious R mutants are out-competed by

S microorganisms; for instance, τd
R ≈ 2.6 generations if δ = 0.1 in the limit

where N � 1 and Nδ � 1 [11] (see Appendix, Section 2.5.2). Hence, in the
rare mutation regime, τd

R � 1/(Nµ1). What matters is how the environment
timescale T/2 compares to these two evolution timescales (see Fig. 2.2A-C).
Our arguments based on comparing average timescales are approximate, but
they yield explicit analytical predictions in each regime where timescales are
separated, which we then test through numerical simulations.

(A) If T/2 � τd
R (Fig. 2.2A): The lineage of the first R mutant that

appears is likely to still exist upon the next addition of antimicrobial, and
to be rescued, which yields taR = 2/(Nµ1). Indeed, mutations from S to R
can only occur without antimicrobial, i.e. half of the time.

(B) If τd
R � T/2� 1/(Nµ1) (Fig. 2.2B): At most one mutation yielding

an R individual is expected within each half-period. The lineage of this
mutant is likely to survive until the next addition of antimicrobial only if the
mutant appeared within the last ∼ τd

R preceding it, which has a probability
p = 2τd

R/T . Hence, taR = 2/(Nµ1p) = T/(Nµ1τ
d
R).
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Figure 2.2: Alternation-driven evolution of antimicrobial resistance.
A-C: Sketches illustrating the three different regimes for the half-period T/2
of the alternations of antimicrobial absence (white) and presence (gray).
The fraction of resistant (R) microorganisms in the population is plotted
versus time (blue curves). R mutants can only appear without antimicrobial.
(A) T/2 � τd

R, where τd
R is the average extinction time of the lineage of

an R mutant without antimicrobial. The first R lineage that appears is
expected to live until the next addition of antimicrobial and is then rescued.
B: τd

R � T/2 � 1/(Nµ1), where 1/(Nµ1) is the average time between
the appearance of two independent R mutants without antimicrobial. C:
T/2 � 1/(Nµ1). In (B) and (C), not all R lineages live until the next
addition of antimicrobial, and in (C) multiple R lineages arise within a
half-period. D: Example of a simulation run. The fractions of S, R and
C microorganisms are plotted versus time. Inset: end of the process, with
full resistance evolution. As in (A-C), antimicrobial is present during the
gray-shaded time intervals (shown only in the inset given their duration).
Parameters: µ1 = 10−5, µ2 = 10−3, δ = 0.1, N = 102 and T = 50 (belonging
to regime B).

(C) If T/2� 1/(Nµ1) (Fig. 2.2C): Since the half-period is much larger
than the time 1/(Nµ1) between the appearance of two independent mutants
without antimicrobial, several appearances and extinctions of R lineages are
expected within one half-period. Hence, the probability that a lineage of
R exists upon a given addition of antimicrobial is q = Nµ1τ

d
R, which cor-

responds to the fraction of time during which R mutants are present in
the phases without antimicrobial. Specifically, q is the ratio of the average
lifetime of the lineage of an R mutant destined for extinction without an-
timicrobial to the average time between the appearance of two independent
R mutants without antimicrobial. Since additions of antimicrobial occur
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every T , we have taR = T/q = T/(Nµ1τ
d
R), which is the same as in case (B).

In fact, the demonstration presented for case (C) also holds for case (B).
In conclusion, we obtain

taR =
T

Nµ1 min
(
τd

R, T/2
) . (2.1)

Hence, if T/2 � τd
R, taR is independent from the period T of alternations,

while if T/2� τd
R, taR is proportional to T .

Time needed for the population to fully evolve resistance

We are interested in the average time tfC it takes for the population to fully
evolve resistance, i.e. for the C (resistant-compensated) type to fix. An
example of the process is shown in Fig. 2.2D. It takes on average taR for R
mutants to be rescued by the addition of antimicrobial. Then they rapidly
grow, since S individuals cannot divide. If the phase with antimicrobial is
long enough, R mutants take over during this phase, with a probability 1
and an average fixation timescale τ f

R ≈ logN for N � 1 [11] (see Appendix,
Section 2.5.2). If T/2 � τ f

R, fixation cannot occur within a single half-
period, and the R lineage will drift longer, but its extinction remains very
unlikely. Indeed, while R individuals are the only ones that can divide with
antimicrobial, we assume that they experience only a minor disadvantage
without antimicrobial (1− δ vs. 1, generally with δ � 1 [80], see Fig. 2.1A).
Hence, if T/2� τ f

R, and neglecting changes in frequencies in the absence of
antimicrobial, R mutants will take ∼2τ f

R to fix.
Once the R type has fixed in the population, the appearance and eventual

fixation of C mutants are independent from the presence of antimicrobial,
since only S microorganisms are affected by it (see Fig. 2.1A). The first C
mutant whose lineage will fix takes an average time taC = 1/(Nµ2 pRC) to
appear once R has fixed, where pRC is the fixation probability of a single C
mutant in a population of size N where all other individuals are of type R.
In particular, if Nδ � 1 then pRC = 1/N , and if δ � 1 and Nδ � 1 then
pRC ≈ δ [11] (see Appendix, Section 2.5.2). The final step is the fixation
of this successful C mutant, which will take an average time τ f

C, of order
N in the effectively neutral regime Nδ � 1, and shorter for larger δ given
the selective advantage of C over R [11] (see Appendix, Section 2.5.2). Note
that we have assumed for simplicity that the fixation of R occurs before the
appearance of the first successful C mutant, which is true if taC � τ f

R, i.e.
1/(Nµ2 pRC) � logN . This condition is satisfied if the second mutation is
sufficiently rare. Otherwise, our calculation will slightly overestimate the
actual result.

Combining the previous results yields

tfC ≈ taR + τ f
R + taC + τ f

C , (2.2)
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where taR is given by Eq. 2.1, while taC = 1/(Nµ2 pRC), and τ f
R ≈ logN and

τ f
C . N . In the rare mutation regime, the contribution of the two fixation

times τ f
R and τ f

C will be negligible. If in addition µ1 � µ2, which is realistic
(cf. Methods), then tfC will be dominated by taR. If µ1 ≈ µ2, tfC will be
dominated by taR if T > max

(
2τd

R, τ
d
R/pRC

)
. Indeed, if T < 2τd

R, using
Eq. 2.1 shows that the condition taR > taC is then equivalent to pRC > 1/2,
which cannot be satisfied for δ � 1. Hence, T > 2τd

R is necessary to have
taR > taC. But if T > 2τd

R and µ1 ≈ µ2, the condition taR > taC is equivalent to
T > τd

R/pRC. Beyond the regime T > max
(
2τd

R, τ
d
R/pRC

)
, the contribution

of taC to tfC will be important.

Comparison of analytical predictions and simulation results

Fig. 2.3A shows simulation results for the average total fixation time tfC of
C individuals in the population. This time is plotted as a function of the
period T of alternations for different population sizes N . As predicted above
(see Eq. 2.1), we observe two regimes delimited by T = 2τd

R. If T � 2τd
R,

tfC does not depend on T , while if T � 2τd
R, it depends linearly on T . In

Fig. 2.3A, we also plot our analytical prediction from Eqs. 2.1 and 2.2 in
these two regimes (solid lines). The agreement with our simulated data is
excellent for small and intermediate values of T , without any adjustable
parameter. Interestingly, the transition between these two regimes occurs
for periods of about 5 generations, which would correspond to a few hours
for typical bacteria, thus highlighting the practical importance of these two
regimes. In Fig. 2.3A, the smallest values reported for tfC are of order 100
generations, corresponding to a few days, and are thus relevant to an actual
treatment, while some other values are larger than the timescales involved
in a treatment. Here, we quantitatively analyze the phenomena for a wide
range of parameters. A more detailed comparison to actual situations, em-
ploying realistic values of population sizes and mutation rates, is presented
in the Discussion.

Importantly, Fig. 2.3A shows that tfC reaches a plateau for small N and
large T , which is not predicted by our analysis of the alternation-driven
evolution of resistance. This plateau corresponds to the spontaneous fitness
valley crossing process [15], through which resistance mutations appear and
fix in the absence of drug. Note that such a plateau would also be reached
for larger N , but for periods T longer than those considered in Fig. 2.3A
(see Fig. 2.3B, black lines). What ultimately matters is the shortest pro-
cess among the alternation-driven one and the spontaneous valley-crossing
one. In Fig. 2.3A, horizontal solid lines at large T represent our analytical
predictions for the valley-crossing time (see Appendix, Section 2.5.4).

Fig. 2.3B shows simulation results for tfC as function of N for different T .
Again, solid lines represent our analytical predictions from Eqs. 2.1 and 2.2,
yielding excellent agreement for intermediate values of N , and for small ones



2.3. RESULTS 27
T
o
ta

l 
ti
m

e
  
  
  
o
f 
fu

ll 
re

s
is

ta
n

c
e
 e

v
o
lu

ti
o
n

T
o
ta

l 
ti
m

e
  
  
  
o
f 
fu

ll 
re

s
is

ta
n

c
e
 e

v
o
lu

ti
o
n

Population size NPeriod T

Figure 2.3: Impact of symmetric alternations. Fixation time tfC of C
(resistant-compensated) individuals in a population of N individuals sub-
jected to symmetric alternations of absence and presence of antimicrobial
with period T . Data points correspond to the average of simulation re-
sults, and error bars (often smaller than markers) represent 95% confidence
intervals. 2 to 104 replicate simulations were performed in each case (the
smallest numbers of replicates were used for the largest populations, whose
evolution is quasi-deterministic). In both panels, solid lines correspond to
our analytical predictions in each regime. Parameter values: µ1 = 10−5,
µ2 = 10−3, and δ = 0.1. A: tfC as function of T . Vertical dashed line:
T = 2τd

R. B: tfC as function of N . Left vertical dashed line: limit of the neu-
tral regime, N = 1/δ. Right vertical dashed line: limit of the deterministic
regime, N = 1/µ1. Horizontal purple line: analytical prediction for valley
crossing by neutral tunneling in the presence of alternations (see Appendix,
Section 2.5.4). Black lines: analytical predictions for fitness valley crossing
times in the absence of alternations (see Appendix, Section 2.5.4).

at small T . In other regimes, resistance evolution is achieved by spontaneous
valley crossing. In the limit T →∞ of continuous absence of antimicrobial
(black data points in Fig. 2.3B), only valley crossing can occur, and the
black solid lines correspond to our analytical predictions for this process
(see Appendix, Section 2.5.4).

Until now, we focused on the rare mutation regime. In the large-population,
frequent-mutation regime N � 1/µ1 � 1, the dynamics of the population
can be well-approximated by a deterministic model with replicator-mutator
differential equations [114, 115] (see Appendix, Section 2.5.3). Then, several
lineages of mutants can coexist. If T/2� 1/(Nµ1), it is almost certain that
some R mutants exist in the population upon the first addition of antimicro-
bial, which entails taR = T/2. The horizontal purple solid line plotted at large
T in Fig. 2.3A, and the horizontal solid lines at large N in Fig. 2.3B, both
correspond to this deterministic prediction. In the Appendix, Section 2.5.3,
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we study the deterministic limit of our stochastic model, and demonstrate
that it matches the results obtained in Fig. 2.3A for N = 105 and N = 106

over the whole range of T (see Fig. 2.7).
The comparison to the spontaneous fitness valley crossing process (Fig. 2.3B,

black curve and Appendix, Section 2.5.4) demonstrates that periodic alter-
nations of absence and presence of antimicrobial can dramatically accelerate
resistance evolution compared to continuous absence of antimicrobial. Re-
call that within our model, sensitive microorganisms cannot divide with
antimicrobial, so resistance cannot evolve at all in continuous presence of
antimicrobial. Another possible comparison would be to a continuous pres-
ence of a low dose of antimicrobial (below the MIC), but this goes beyond
our binary model of antimicrobial action (see Appendix, Section 2.5.6 for
a discussion of the domain of validity of this model). Alternations are re-
ally essential: R mutants appear without antimicrobial, and each addition
of antimicrobial rescues the existing R lineages that would be destined to
extinction without antimicrobial.

2.3.2 Asymmetric alternations

We now turn to the more general case of asymmetric alternations of phases
of absence and presence of antimicrobial, with respective durations T1 and
T2, and T = T1 + T2 (see Fig. 2.1C).

The average time taR when R mutants first exist in the presence of an-
timicrobial, and start growing, can be obtained by a straightforward gener-
alization of the symmetric alternation case Eq. 2.1. What matters is how
the duration T1 of the phase without antimicrobial, where S individuals
can divide and mutate, compares to the average time τd

R an R lineage would
drift before extinction without antimicrobial. If T1 � τd

R, the first R mutant
takes an average time T/(Nµ1T1) to appear, and is likely to be rescued by
the next addition of antimicrobial. If T1 � τd

R, the fraction of time during
which R mutants are present in the phases without antimicrobial is Nµ1τ

d
R,

and antimicrobial is added every T , so taR = T/(Nµ1τ
d
R). Hence, we obtain

taR =
T

Nµ1 min(τd
R, T1)

. (2.3)

Once the R mutants have taken over the population, the appearance and
fixation of C mutants is not affected by the alternations. Hence, Eq. 2.2 holds
for asymmetric alternations, with taR given by Eq. 2.3. In the rare mutation
regime, if µ1 � µ2, then tfC will be dominated by taR, and if µ1 ≈ µ2, then tfC
will be dominated by taR if T > min

(
τd

R, T1

)
/pRC, where pRC is the fixation

probability of a single C mutant in a population of R individuals.
Fig. 2.4A shows simulation results for tfC as a function of the duration T1

of the phases without antimicrobial, for different values of the duration T2 of
the phases with antimicrobial. As predicted above, we observe a transition
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at T1 = τd
R, and different behaviors depending whether T2 � τ f

R or T2 � τ f
R.

Our analytical predictions from Eqs. 2.2 and 2.3 are plotted in Fig. 2.4A
in the various regimes (solid lines), and are in excellent agreement with the
simulation data. The plateau of tfC at large T1 corresponds to spontaneous
valley crossing, and the analytical prediction (see Appendix, Section 2.5.4)
is plotted in black in Fig. 2.4A.
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Figure 2.4: Asymmetric alternations. Fixation time tfC of C individ-
uals in a population subjected to asymmetric alternations of absence and
presence of antimicrobial (respective durations: T1 and T2). Data points
correspond to the average of simulation results (over 10 to 103 replicates),
and error bars (sometimes smaller than markers) represent 95% confidence
intervals. In both panels, solid lines correspond to our analytical predic-
tions in each regime. In particular, black lines are analytical predictions for
fitness valley crossing times in the absence of alternations (see Appendix,
Section 2.5.4). Parameter values: µ1 = 10−5, µ2 = 10−3, δ = 0.1 and
N = 103. A: tfC as function of T1 for different T2. Dashed line: T1 = τd

R. B:
tfC as function of T2 for different T1. Dashed line: T2 = τ f

R.

For T2 � τ f
R, Fig. 2.4A shows that tfC features a striking minimum,

which gets higher but wider for longer T2. This can be fully understood
from our analytical predictions. Indeed, when T1 is varied starting from
small values at fixed T2 � τ f

R, different regimes can be distinguished:

• When T1 � τd
R

(
. τ f

R � T2

)
, Eq. 2.3 yields taR = T/(Nµ1T1) ≈ T2/(Nµ1T1) ∝

1/T1.

• When τd
R � T1 � T2, Eq. 2.3 gives taR = T/(Nµ1τ

d
R) ≈ T2/(Nµ1τ

d
R),

which is independent from T1.

• As T1 reaches and exceeds T2, the law taR = T/(Nµ1τ
d
R) still holds. It

yields taR ≈ T1/(Nµ1τ
d
R) ∝ T1 when τd

R � T2 � T1.
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Hence, the minimum of taR is T2/(Nµ1τ
d
R) ∝ T2 and is attained for τd

R �
T1 � T2: it gets higher but wider for larger T2.

In the opposite regime where T2 � τd
R . τ f

R, Fig. 2.4A shows that tfC
also features a minimum as a function of T1:

• When T1 � T2 � τd
R, Eq. 2.3 yields taR = T/(Nµ1T1) ≈ T2/(Nµ1T1) ∝

1/T1.

• When T2 � T1 � τd
R, the same law gives taR = T/(Nµ1T1) ≈ 1/(Nµ1),

which is independent from T1.

• When T2 � τd
R � T1, R lineages eventually tend to go extinct, even

once they have started growing thanks to an addition of antimicrobial
(see Appendix, Section 2.5.5 and Fig. 2.8B). Then, alternations do
not accelerate resistance evolution, and spontaneous valley crossing
dominates (black horizontal line in Fig 2.4A).

Hence, the minimum of taR is 1/(Nµ1) and is attained for T2 � T1 � τd
R:

then, the first R mutant that appears is likely to be rescued by the next
addition of antimicrobial, thus driving the complete evolution of resistance
in the population. For T2 ≤ T1 � τd

R, taR is between once and twice this
minimum value.

A similar analysis can be conducted if T2 is varied at fixed T1 (Fig. 2.4B);
it is presented in the Appendix, Section 2.5.5. In a nutshell, for asymmetric
alternations, a striking minimum for the time of full evolution of resistance
by a population occurs when both phases have durations of the same order.
Interestingly, the minimum generally occurs when the phases of antimicro-
bial presence are shorter than those of absence, i.e. T2 ≤ T1 (except if
T2 � τd

R).
In addition to this minimum, Fig. 2.4 also shows a regime of parameters,

when T1 � T2 and T1 � τd
R, where the evolution of resistance actually takes

longer than fitness valley crossing in the absence of antimicrobial (black
lines in Fig. 2.4). Comparing the timescales involved (see Appendix, Sec-
tion 2.5.4) shows that in this regime, if T2 � T1δ/µ2, the alternation-driven
process is faster than the valley-crossing process in the presence of alterna-
tions, and thus dominates, but it is slower than the valley-crossing process
in the absence of antimicrobial. Hence, in this case, the drug actually slows
down the evolution of resistance. Qualitatively, this is because the antimi-
crobial prevents mutants from arising when it is present.

2.4 Discussion

2.4.1 Main conclusions

Because of the generic initial fitness cost of resistance mutations, alterna-
tions of phases of absence and presence of antimicrobial induce a dramatic
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time variability of the adaptive landscape associated to resistance evolution,
which alternates back and forth from a fitness valley to an ascending land-
scape. Using a general and minimal theoretical model which retains the key
biological ingredients, we have shed light on the quantitative implications of
these time-varying patterns of selection on the time it takes for resistance
to fully evolve de novo in a homogeneous microbial population of fixed size.
Combining analytical approaches and simulations, we showed that resis-
tance evolution can be driven by periodic alternations of phases of absence
and presence of an antimicrobial that stops growth. Indeed, the addition
of antimicrobial is able to rescue resistant lineages that were destined to go
extinct without antimicrobial.

We found that fast alternations strongly accelerate the evolution of re-
sistance. In the limit of short alternation periods, the very first resistant
mutant that appears is likely to ultimately lead to full resistance of the pop-
ulation, as it will generally be rescued by the next addition of antimicrobial
before going extinct, which would be its most likely fate without antimicro-
bial. For larger periods T , the time needed for resistance to evolve increases
linearly with T , until it reaches the spontaneous valley-crossing time with
alternations, which constitutes an upper bound. Our complete stochastic
model allowed us to investigate the impact of population size N , beyond the
limit N � 1/µ1 addressed by deterministic models. We showed that the
acceleration of resistance evolution is stronger for larger populations, even-
tually reaching a plateau in the deterministic limit. Over a large range of
intermediate parameters, the time needed for the population to fully evolve
resistance scales as T/N . These results are summed up in Fig. 2.5A.

For asymmetric alternations, featuring different durations T1 and T2 of
the phases of absence and presence of antimicrobial, we have shed light
on the existence of a minimum for the time taken by the population to
fully evolve resistance. This striking minimum occurs when both phases
have durations of the same order, generally with T1 ≤ T2. Moreover, the
minimum value reached for the time of resistance evolution decreases for
shorter alternation periods. These results are summed up in Fig. 2.5B.

2.4.2 Context

Given the usual steepness of pharmacodynamic curves [8], we have mod-
eled the action of a biostatic antimicrobial in a binary way, with no growth
inhibition under the MIC and full growth inhibition of S microorganisms
above it (see Model). An analysis of the robustness of this approximation is
presented in the Supplementary Material, Section 2.5.6, showing that it is
appropriate if the rise time, i.e. the time needed for the fitness of sensitive
microorganisms to switch from a low value to a high value and vice-versa
when antimicrobial is removed or added, is short enough (see Fig. 2.9).
Qualitatively, if this rise time is shorter than the other environmental and
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Figure 2.5: Heatmaps. Fixation time tfC of C individuals in a population
of size N subjected to periodic alternations of absence and presence of an-
timicrobial. Simulation data plotted in Figs. 2.3A and 2.4A are linearly
interpolated. Parameter values: µ1 = 10−5, µ2 = 10−3, δ = 0.1. A: Sym-
metric alternations: tfC as function of the period T and the population size
N . Top horizontal line: deterministic regime limit N = 1/µ1. Bottom hor-
izontal line: neutral regime limit N = 1/δ. Quasi-vertical curve: T = 2τd

R.
Diagonal line: T = N . Note that no data is shown for T/2 < 1/N because
of the discreteness of our model, which can only deal with timescales larger
or equal to the duration of one Moran step, i.e. 1/N generation. B: Asym-
metric alternations: tfC as function of the durations T1 and T2 of the phases
of absence and presence of antimicrobial. Vertical line: T1 = τd

R. Horizontal
line: T2 = τ f

R. Diagonal line: T1 = T2. Here N = 103, so the first resistant
mutant appears after an average time T/(Nµ1T1) = 102 T/T1.

evolutionary timescales at play, then the fitness versus time function is ef-
fectively binary.

Our model assumes that the size of the microbial population remains
constant. While this is realistic in some controlled experimental setups,
e.g. turbidostats [113], microbial populations involved in infections tend
to grow, starting from a small transmission bottleneck, and the aim of the
antimicrobial treatment is to make them decrease in size and eventually go
extinct. In the case of biostatic antimicrobials, which prevent bacteria from
growing, populations can go extinct due to spontaneous and immune system-
induced death. Our model with constant population size should however be
qualitatively relevant at the beginning and middle stages of a treatment (i.e.
sufficiently after transmission and before extinction).
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2.4.3 Implications for clinical and experimental situations

The situation where the phases of absence and presence of antimicrobial
have similar durations (T1 ≈ T2) yields a dramatic acceleration of resis-
tance evolution, and is unfortunately clinically realistic. Indeed, a goal in
treatment design is that the serum concentration of antimicrobial exceeds
the MIC for at least 40 to 50% of the time [9], which implies that actual
treatments may involve the alternations that most favor resistance evolu-
tion according to our results [8, 9]. Besides, bacteria divide on a timescale
of about an hour (yielding a τd

R of order of a few hours), and antimicrobial
is often taken every 8 to 12 hours in treatments by the oral route, so the
alternation period does not last for many generations: this is close to our
worst-case scenario of short symmetric periods.

In this worst case scenario, full de novo resistance evolution can result
from the appearance of the very first R mutant, which takes T/(Nµ1T1).
Indeed, its lineage is likely to be rescued by the next addition of antimicro-
bial. Under the conservative assumption that only one resistance mutation
is accessible, taking µ1 ∼ 10−10, which is the typical mutation probability
per nucleotide and per generation in Escherichia coli bacteria [78], and tak-
ing δ ∼ 0.1 [82], we find that this duration is less than a day (∼ 10 − 20
generations) for N ∼ 109, and a few days for N ∼ 108, numbers that can be
reached in infections [98, 81]. For such large populations, the fixation of the
C (compensated) mutant will take more time, but once R is fixed (which
takes ∼ 1 day after the appearance of the first R mutant), C is very likely
to fix even if the treatment is stopped. This is due to the large number of
compensatory mutations, which yields a much higher effective mutation rate
toward compensation than toward reversion to sensitivity [83, 84, 98]. In
addition, many mutations to resistance are often accessible, yielding higher
effective µ1, e.g. µ1 ∼ 10−8 for rifampicin resistance in some wild isolates
of E. coli [85], meaning that smaller populations can also quickly become
resistant in the presence of alternations. Recall that we are only consider-
ing de novo resistance evolution, without pre-existent resistant mutants, or
other possible sources of resistance, such as horizontal gene transfer, which
would further accelerate resistance acquisition.

In summary, an antimicrobial concentration that drops below the MIC
between each intake can dramatically favor de novo resistance evolution.
More specifically, we showed that the worst case occurs when T1 ≤ T2,
which would be the case if the antimicrobial concentration drops below the
MIC relatively briefly before each new intake. Our results thus emphasize
how important it is to control for such apparently innocuous cases, and
constitute a striking argument in favor of the development of extended-
release antimicrobial formulations [116].

While the parameter range that strongly accelerates resistance evolution
should preferably be avoided in clinical situations, it could be tested and har-
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nessed in evolution experiments. Again, these parameters are experimentally
accessible. Controlled variations of antimicrobial concentration are already
used experimentally, in particular in morbidostat experiments [25], where
the population size is kept almost constant, which matches our model. In
Ref. [25], a dramatic and reproducible evolution of resistance was observed
in ∼ 20 days when periodically adjusting the drug concentration to con-
stantly challenge E. coli bacteria. Given our results, it would be interesting
to test whether resistance evolution could be made even faster by adding
drug in a turbidostat with a fixed periodicity satisfying T1 ≤ T2 � τd

R.



2.5. APPENDIX 35

2.5 Appendix

2.5.1 Table of notations

Notation Definition

S Sensitive microorganisms

R Resistant microorganisms

C Resistant-compensated microorganisms

T Period of the alternations of absence and presence of antimicro-
bial

T1 Duration of the phase without antimicrobial (for asymmetric al-
ternations)

T2 Duration of the phase with antimicrobial (for asymmetric alter-
nations)

N Population size

δ Fitness cost of antimicrobial resistance

µ1 Mutation rate from S to R

µ2 Mutation rate from R to C

tfC Total time of full resistance evolution (time until the C type fixes,
starting from a population of S individuals)

taR Average time when R individuals first exist in the presence of
antimicrobial, starting from a population of S individuals

taC Average time when the first C mutant whose lineage will fix
appears, starting from a population of R individuals

τd
R Average lifetime of the lineage of a single R mutant, until it

disappears, in a population of S individuals, in the absence of
antimicrobial

τ f
R Average fixation time of the lineage of a single R mutant in a

population of S individuals, in the presence of antimicrobial

τ f
C Average fixation time of the lineage of a single C mutant in a

population of R individuals

pSR Fixation probability of a single R mutant in a population of S
individuals in the absence of antimicrobial

pRC Fixation probability of a single C mutant in a population of R
individuals

Table 2.1: Notations. This table lists the different notations introduced in
the main text and their meaning.
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2.5.2 Fixation probabilities and fixation times in the Moran
process

Here, we discuss in detail the fixation probabilities and mean fixation times
in the Moran process, which are used throughout the main text. These
quantities are already known [11, 115], but we present a derivation for the
sake of pedagogy and completeness. Our derivation is based on the general
formalism of first passage times, and gives the same results as those obtained
in the literature, often using other methods [11, 115]. Next, we use the
general expressions obtained to express the various fixation probabilities
and fixation times used in the main text.

The Moran process

The Moran model [11, 91] is a simple stochastic process used to describe
the evolution of the composition of asexual populations of finite and con-
stant size. It allows one to incorporate variety-increasing processes such as
mutation and variety-reducing processes such as natural selection.

In the Moran model, at each time step, an individual is chosen at random
to reproduce and another one is chosen to die (see Figure 2.6). Hence, the
total number of individuals in the population stays constant. Note that
we will consider that the same individual can be selected to reproduce and
die at the same step. Natural selection can be introduced by choosing the
individual that reproduces with a probability proportional to its fitness. To
implement mutations upon division, one can allow the offspring to switch
type with a certain probability at each step. When a mutant arises within
the Moran model at constant fitness, its lineage can either disappear or fix
in the population, i.e. take over the whole population. The outcome is
not fully determined by fitness differences as in a deterministic case, but
also by stochastic fluctuations, also known as genetic drift. Here, we focus
on the evolution of population composition under genetic drift and selection
alone. In the rare mutation regime, these processes are much faster than the
time between the occurrence of two mutations, so mutation can be neglected
during the process of fixation of one type. The Moran model allows us to
compute explicit expressions for quantities such as fixation probabilities and
fixation times [11, 117] (see below).

Let us consider a population of N individuals of two types A and B,
which have fitnesses fA and fB, respectively. We denote the number of A
individuals by j. Thus N−j represents the number of B individuals. Let us
study the evolution of j at one step of the Moran process (for an example,
see Figure 2.6). The transition probabilities associated to the Moran process
read [11]:
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Figure 2.6: Sketch of the Moran process. One step of the Moran process
is represented in a population with 8 individuals of 2 different types (different
colors).


Πj→j+1 =

N − j
N

fAj

fAj + fB(N − j)
Πj→j−1 =

j

N

fB(N − j)
fAj + fB(N − j)

Πj→j = 1−Πj→j+1 −Πj→j−1 .

(2.4)

The Moran process is a discrete-time Markov process, since the prob-
abilities of states j after one step only depend upon the present value of
j. Let us take the limit of continuous time and write the master equation
Ṗ = RAP giving the probability of being at state j at time t:

d

dt


P0

P1

P2

...
PN

 =



−Π0→1 Π1→0 0 · · · 0

Π0→1 −(Π1→0 + Π1→2) Π2→1 (0)
...

0 Π1→2 −(Π2→1 + Π2→3)
. . . 0

... (0)
. . .

. . . ΠN→N−1

0 · · · 0 ΠN−1→N −ΠN→N−1




P0

P1

P2

...
PN

 .

(2.5)

This Markov chain has two absorbing states, namely j = 0 and j = N , which
correspond to the fixation of B and A individuals, respectively. Once these
states are reached, no more changes can occur, in the absence of mutation.
It follows that all the components of the first and the last columns of RA

equal to 0 (see Eq. 2.5), so RA is not invertible. In the following, we will
denote by R̃A the reduced transition rate matrix in which the rows and the
columns corresponding to the absorbing states (j = 0, j = N) are removed,
and by R̃−1

A its inverse. Let us note that RA is a tridiagonal matrix, which
allows for major simplifications of analytical calculations [11]. Note that in
order to obtain the transition rate matrix associated to B individuals, one
just needs to apply the reversal j ↔ N − j. This corresponds to using the
matrix RB = JRAJ where J is the anti-identity matrix. For instance, in 2

dimensions, J =

(
0 1
1 0

)
.
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General fixation probabilities and fixation times

Definitions. The fixation probability φAj0 represents the probability that
A individuals finally succeed and take over the population, starting from
j = j0 individuals of type A. In particular, φA0 = 0 and φAN = 1. Similarly,
φBj0 is the fixation probability of the B individuals, still starting from j = j0
individuals of type A.

Mean fixation times are the mean times to reach one of the absorbing
states. The unconditional fixation time tj0 is the average time until fixation
in either j = 0 or j = N , when starting from a number j = j0 of A
individuals. The conditional fixation time tAj0 corresponds to the average
time until fixation in j = N , when starting from j0, provided that type
A fixes. Note that in what follows, we will express the fixation times in
numbers of steps of the Moran process. Conversion to generations can then
be performed by dividing the number of Moran steps by N .

In the following, we present a derivation of the fixation probabilities and
of the fixation times in the Moran process [11, 115] that uses the general
formalism of mean first passage times [118].

Fixation probabilities. Assuming that at t = 0, the system is at state
j = j0, let us focus on the fixation probability φAj0 of the A type in the
population. The stochastic process stops at the time τ̂FP when j fixes, i.e.
first reaches one of the absorbing states {j = 0, j = N}. Hence, integrating
over all values of τ̂FP , under the condition that fixation finally occurs in
j = N , yields

φAj0 =

∫ ∞
0

p(τ̂FP ∈ [t, t+dt]|j0 , j∞ = N) = ΠN−1→N

∫ ∞
0

PN−1(t)dt . (2.6)

In the last expression, we have taken advantage of the fact that the only
way to fix in j = N between t and t + dt is to be in state j = N − 1 at
time t and then to transition from N − 1 to N (see Eq. 2.5). We have thus
introduced the probability PN−1(t) of being in state j = N − 1 at time t,
starting in state j = j0 at time 0. More generally, the probability Pi(t) can
be considered.

Integrating the Master equation Eq. 2.5 to determine Pi(t), with the
initial condition Pi(0) = δi j0 , where δi j0 denotes the Kronecker delta, which
is equal to 1 if i = j0 and 0 otherwise, yields

φAj0 = −ΠN−1→N (R̃−1
A )N−1 j0 . (2.7)

A similar reasoning gives the fixation probability φBj0 of the B type, still
starting from j0 individuals of type A and N − j0 individuals of type B:

φBj0 = −Π1→0(R̃−1
A )1 j0 . (2.8)

These two probabilities satisfy φAj0 + φBj0 = 1 since there are 2 absorbing
states in the process.
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Mean fixation times. Let us now focus on the mean fixation times, still
assuming that at t = 0, the system is at state j = j0. The probability that
fixation in one of the absorbing states {j = 0, j = N} occurs between t and
t+ dt reads:

p(τ̂FP ∈ [t, t+ dt] | j0) =
N−1∑
i=1

Pi(t)−
N−1∑
i=1

Pi(t+ dt) = −
N−1∑
i=1

dPi
dt

dt , (2.9)

where, as above, Pi(t) represents the probability of being in state i at time
t starting in j0 at time 0 (note that the initial condition j0 is omitted for
brevity). Thus, the unconditional fixation time can be expressed as:

tj0 = E[τ̂FP | j0] =

∫ ∞
0

t p(τ̂FP ∈ [t, t+ dt] | j0) (2.10)

= −
N−1∑
i=1

∫ ∞
0

t
dPi
dt

dt =
N−1∑
i=1

∫ ∞
0

Pi(t) dt . (2.11)

Here, we used Eq. 2.9, where the sums run over all the states that are not
absorbing (1 ≤ i ≤ N − 1). We also performed an integration by parts, and
used [t Pi(t)]

∞
0 = 0 for 1 ≤ i ≤ N − 1, which holds because the probability

of reaching an absorbing state of the Markov chain tends to 1 as t → ∞.
Integrating the Master equation Eq. 2.5 to determine Pi(t), with the initial
condition Pi(0) = δi j0 , gives

tj0 = −
N−1∑
i=1

(R̃−1
A )i j0 . (2.12)

To express the conditional fixation time tAj0 of type A, starting from j0 A
individuals, we need to take into account the condition that fixation finally
occurs in state j = N :

p(τ̂FP ∈ [t, t+ dt] | j0, j∞ = N) =
N−1∑
i=1

p(i | j0, j∞ = N)(t)

−
N−1∑
i=1

p(i | j0, j∞ = N)(t+ dt) . (2.13)

The Bayes relation gives:

p(j | j0, j∞ = N) =
φAj

φAj0
Pj . (2.14)

By using the same method as for the unconditional fixation time, one ob-
tains:

tAj0 = − 1

φAj0

N−1∑
i=1

φAi (R̃−1
A )i j0 . (2.15)
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Similarly, the conditional fixation time of the B type, starting from j0 A
individuals, reads:

tBj0 = − 1

φBj0

N−1∑
i=1

φBN−i(R̃
−1
B )iN−j0 . (2.16)

It is straightforward to verify that Eqs. 2.12, 2.15 and 2.16 are linked by
the relation:

tj0 = φBj0t
B
j0 + φAj0t

A
j0 . (2.17)

Neutral drift. Let us first consider the case without selection fA = fB. In
this case, the Moran process can be seen as a non-biased random walk, since
individuals of both types are equally likely to be picked for reproduction and
death. Fixation eventually happens due to fluctuations. This process, called
neutral drift [11] corresponds to diffusion in physics. The transition rates of
the system (2.4) simplify as follows:

Πj→j+1 = Πj→j−1 =
j(N − j)
N2

Πj→j = 1− 2
j(N − j)
N2

.
(2.18)

Note that here, j can denote the number of A or B individuals indifferently.
Indeed, the symmetry j ↔ N − j entails RA = RB = R, and the transition
rate matrix is centrosymmetric, i.e. R = JRJ. For consistency, we will
continue to call j the number of A individuals.

The fixation probability φAj0 can be obtained from Eq. 2.7. It involves

elements of the inverse of the transition rate matrix. Solving R̃R̃−1 = I,
where I is the identity matrix, gives

(R̃−1)N−1 i = − iN

N − 1
for 1 ≤ i ≤ N − 1 . (2.19)

Hence,

φAj0 =
j0
N
. (2.20)

Taking advantage of the centrosymmetry of R (see above), a property which
transfers to R̃ and R̃−1, and entails (R̃−1)1 j0 = (R̃−1)N−1N−j0 , we can
apply Eq. 2.8, yielding

φBj0 =
N − j0
N

. (2.21)

Note that φAj0 + φBj0 = 1, as expected.

Let us now express the fixation times, focusing on the fate of a single
mutant of type B, which corresponds to j0 = N − 1. To compute the
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unconditional fixation time tN−1, we again need elements of the inverse of
the transition rate matrix (see Eq. 2.12), which are given by

(R̃−1)iN−1 = − N

N − i
. (2.22)

Using Eqs. 2.12 and 2.22, we obtain:

tN−1 = N
N−1∑
i=1

1

i
. (2.23)

Similarly, using Eqs. 2.15, 2.20 and 2.22, we obtain the conditional fixation
time of type A:

tAN−1 =
N2

N − 1

N∑
i=2

1

i
. (2.24)

Finally, using Eqs. 2.16, 2.20 and 2.22, and making use of the centrosym-
metry of R̃−1 (see above), yields the conditional fixation time of type B:

tBN−1 = N(N − 1) . (2.25)

Selection. Let us now study the more general case involving selection.
For this, let us consider two types A and B having different fitnesses fA
and fB, and let us introduce γ = fA/fB. Note that with selection, the
transition rate matrices RA and RB = JRAJ are different. In order to
compute the fixation probability φAj0 , we need some elements of the inverse

of the transition rate matrix R̃−1
A , which are given by:

(R̃−1
A )N−1 i = − N

N − 1

1− γ−i

1− γ−N
(
N − 1 + γ−1

)
for 1 ≤ i ≤ N − 1 . (2.26)

Then, using the previous result and Eq. 2.7, one obtains:

φAj0 =
1− γ−j0
1− γ−N

, (2.27)

and φAj0 + φBj0 = 1 yields:

φBj0 =
1− γN−j0

1− γN
. (2.28)

Let us now turn to the fixation times. According to Eq. 2.12, we need
to compute other elements of the inverse of the transition rate matrix R̃−1

A .
Those satisfy:

(R̃−1
A )iN−1 =

N

i(N − i)
1− γi

1− γN
(i− iγ −N) for 1 ≤ i ≤ N − 1. (2.29)
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Using Eqs. 2.12 and 2.29, the unconditional fixation time reads:

tN−1 =
N

1− γN
N−1∑
i=1

(N + iγ − i)(1− γi)
i(N − i)

. (2.30)

To compute the conditional fixation time tAN−1, we substitute Eqs. 2.27
and 2.29 in Eq. 2.15, obtaining:

tAN−1 =
N

(1− γN )(1− γ1−N )

N−1∑
i=1

(N + iγ − i)(1− γi)(1− γ−i)
i(N − i)

. (2.31)

A similar reasoning can be used to obtain the conditional fixation time
tBN−1 starting from Eq. 2.16. In order to express the required (R̃−1

B )j 1, we

combine the relation R̃B = JR̃AJ, which implies R̃−1
B = JR̃−1

A J, together
with Eq. 2.29, and obtain

(R̃−1
B )i 1 =

N

i(N − i)
1− γN−i

1− γN
(iγ − i−Nγ) for 1 ≤ i ≤ N − 1. (2.32)

This finally yields

tBN−1 =
N

(1− γN )(1− γ)

N−1∑
i=1

(N + iγ − i)(1− γi)(1− γN−i)
i(N − i)

. (2.33)

Fixation probabilities and fixation times used in the main text

Let us now make an explicit link between the general expressions obtained
above and the fixation probabilities and fixation times used in the main text.

Fixation probabilities. First, in the main text, pSR represents the prob-
ability that a single resistant (R) mutant fixes without antimicrobial in a
population of size N where all other individuals are of type S. Without an-
timicrobial, fS = 1 and fR = 1− δ. Considering S as type A and R as type
B, we have γ = fS/fR = 1/(1− δ), and our initial condition is j0 = N − 1.
Hence, Eq. 2.28 yields

pSR = φR
N−1 =

1− (1− δ)−1

1− (1− δ)−N
. (2.34)

In particular, in the effectively neutral case where δ � 1 and Nδ � 1, it
yields

pSR ≈
−δ

1− e−N log(1−δ) ≈
−δ

1− eNδ
≈ 1

N
, (2.35)
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i.e. we recover the result of the neutral case δ = 0 (see Eq. 2.20). Conversely,
in the regime where δ � 1 and Nδ � 1, Eq. 2.34 yields

pSR ≈
−δ

1− eNδ
≈ δe−Nδ . (2.36)

Second, pRC denotes the fixation probability of a single C individual in a
population of size N where all other individuals are of type R. Independently
of antimicrobial presence, fR = 1− δ and fC = 1. Considering R as type A
and C as type B, we have γ = fR/fC = 1 − δ, and our initial condition is
j0 = N − 1. Hence, Eq. 2.28 yields

pRC = φC
N−1 =

δ

1− (1− δ)N
. (2.37)

In particular, in the effectively neutral case where δ � 1 and Nδ � 1, it
yields

pRC =
δ

1− eN log(1−δ) ≈
δ

1− e−Nδ
≈ 1

N
, (2.38)

i.e. we again recover the result of the neutral case δ = 0 (see Eq. 2.20).
Conversely, in the regime where δ � 1 and Nδ � 1, Eq. 2.37 yields

pRC ≈
δ

1− e−Nδ
≈ δ . (2.39)

Finally, pSC denotes the fixation probability of a single C mutant in a
population of S individuals, without antimicrobial. In this case, fS = fC = 1,
so we are in the neutral case, and Eq. 2.20 yields pSC = 1/N .

Fixation times. First, τd
R denotes the average time it takes for the lineage

of a single R mutant to disappear in the absence of antimicrobial. Hence, it is
equal to the fixation time of the S type in a population that initially contains
N−1 individuals of type S and 1 individual of type R. Considering S as type
A and R as type B, we have γ = fS/fR = 1/(1 − δ) without antimicrobial,
and our initial condition is j0 = N − 1, so τd

R is equal to tSN−1/N (see
Eq. 2.31). Recall that tSN−1 needs to be divided by the population size N

because we expressed it in numbers of steps of the Moran process, while τd
R

has to be expressed in numbers of generations. While the general formula
Eq. 2.31 is rather complex, in the neutral case δ = 0, it reduces to the much
simpler expression in Eq. 2.24, which yields τd

R ≈ logN for N � 1. For
δ > 0, τd

R is shorter than in the neutral case, because the R mutants are out-
competed by S individuals. Note that a good approximation to the exact
formula in Eq. 2.31 can be obtained within the diffusion approach [11] (see
the Fokker-Planck equation below).

Second, τ f
R denotes the average time needed for the R mutants take over

with antimicrobial, starting from one R mutant and N − 1 S individuals.
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Considering S as type A and R as type B, we have γ = fS/fR = 0 with
antimicrobial, and our initial condition is j0 = N − 1. Then τ f

R is equal to
tRN−1/N (see Eq. 2.33), with γ = 0. Using Eq. 2.33, we obtain

τ f
R =

N−1∑
i=1

1

i
, (2.40)

which entails τ f
R ≈ logN for N � 1.

Finally, τ f
C denotes the average time needed for the C mutants to take

over, starting from one C mutant and N−1 R individuals. Considering R as
type A and C as type B, we have γ = fR/fC = 1− δ, independent whether
antimicrobial is present or absent, and our initial condition is j0 = N − 1.
Hence, τ f

C is given by tCN−1/N (see Eq. 2.33). In the neutral case δ = 0, tCN−1

reduces to Eq. 2.25, and thus τ f
C ≈ N for N � 1. For δ > 0, it is shorter,

as selection favors the fixation of C, and again a good approximation to the
exact formula in Eq. 2.33 can be obtained within the diffusion approach [11]
(see the Fokker-Planck equation below).

2.5.3 Large populations: deterministic limit

If stochastic effects are neglected, the dynamics of a microbial population can
be described by coupled differential equations on the numbers of individuals
of each genotype [11]. This deterministic approach is appropriate if the
number N of competing microorganisms satisfies Nµ1 � 1 [12]. Here, we
derive and study the deterministic limit of the complete stochastic model
studied in the main text.

From the stochastic model to the deterministic limit

Here, we present a full derivation of the deterministic limit of the stochas-
tic model based on the Moran process (see above). This derivation closely
follows those of Refs. [114, 115] and is presented here for the sake of peda-
gogy and completeness. Starting from the Master equation of our stochastic
model, we obtain a Fokker-Planck equation, corresponding to the diffusion
approximation [11], and then a deterministic differential equation, in the
limits of increasingly large population sizes.

Let us first recall the Master equation corresponding to the Moran pro-
cess, where j denotes the number of A individuals and N − j the number of
B individuals, as above:

dPj(t)

dt
=Pj−1(t) Πj−1→j + Pj+1(t) Πj+1→j

− Pj(t) (Πj→j−1 + Πj→j+1) . (2.41)

The notations in Eq. 2.41 are the same as in the previous section, and time
is expressed in number of steps of the Moran process. Let us now introduce
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the reduced variables x = j/N , τ = t/N , as well as ρ(x, τ) = NPj(t). Then,
since one step of the Moran process occurs each time unit, Eq. 2.41 can be
rewritten as:

ρ(x, τ + 1/N)− ρ(x, τ) = ρ(x− 1/N, τ) Π+(x− 1/N)

+ ρ(x+ 1/N, τ) Π−(x+ 1/N)

− ρ(x, τ)
(
Π−(x) + Π+(x)

)
, (2.42)

with

Π−(x) = Πj→j−1 =
fBx(1− x)

fA x+ fB (1− x)
and

Π+(x) = Πj→j+1 =
fAx(1− x)

fA x+ fB (1− x)
. (2.43)

Diffusion approximation. For N � 1, considering that jumps are small
at each step of the Moran process, i.e. 1/N � x and 1/N � τ , the probabil-
ity density ρ(x, τ) and the transition probabilities Π±(x) can be expanded in
a Taylor series around x and τ . This expansion, known as a Kramers-Moyal
expansion [119], yields, to first order in 1/N :

∂ρ(x, τ)

∂τ
= − ∂

∂x
[ρ(x, τ)a(x)] +

1

2

∂2

∂x2

[
ρ(x, τ)b2(x)

]
(2.44)

with

a(x) = Π+(x)−Π−(x) and b2(x) =
Π+(x) + Π−(x)

N
. (2.45)

Eq. 2.44 is known as a diffusion equation, or a Fokker-Planck equation, or
a Kolmogorov forward equation [119], and a(x) corresponds to the selection
term (known as the drift term in physics), while b2(x) corresponds to the
genetic drift term (known as the diffusion term in physics).

Deterministic limit. In the limit N → ∞, retaining only the zeroth-
order terms in 1/N , Eq. 2.44 reduces to:

∂ρ(x, τ)

∂τ
= − ∂

∂x
[ρ(x, τ)a(x)] . (2.46)

Let us focus on the average value of x, denoted by 〈x〉. Using Eq. 2.44 yields

d〈x〉
dτ

=

∫ 1

0

∂ρ(x, τ)

∂τ
x dx = −

∫ 1

0

∂

∂x
[ρ(x, τ) a(x)] dx (2.47)

= − [x ρ(x, τ) a(x)]10 +

∫ 1

0
ρ(x, τ) a(x) dx (2.48)

= 〈a(x)〉 (2.49)
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The first term of right hand side of Eq. 2.48 vanishes because a(0) = a(1) =
0. In the limit N → ∞, the distribution of x is very peaked around its
mean, so 〈x〉 ≈ x and 〈a(x)〉 ≈ a(x), yielding:

dx

dτ
= x(1− x)

∆f

f̄
, (2.50)

where ∆f = fA− fB denotes the difference of the fitnesses of the two types,
while f̄ = fA x + fB (1 − x) is the average fitness in the population. Eq.
2.50 is an ordinary differential equation known as the adjusted replicator
equation [114]. Recall that τ corresponds to the number t of steps of the
Moran process divided by the total number N of individuals in the popula-
tion. Hence, τ is the time in numbers of generations used in the main text,
and Eq. 2.50 is the proper deterministic limit for our stochastic process.

Note that in the framework of the Moran process, fitnesses are only
relative. If one wanted to account for absolute fitness effects, so that a
whole population reproduces faster if its average fitness is higher, one would
need to include an additional rescaling of time τ ′ = τ/f̄ . Note that if f̄ is
constant, this rescaling yields a standard replicator equation:

dx

dτ ′
= x(1− x)∆f . (2.51)

Deterministic description of the evolution of antimicrobial resis-
tance

System of ordinary differential equations. Let us now come back to
our model of the evolution of antimicrobial resistance, with three types of mi-
croorganisms (see Fig. 2.1A). In the limit of large populations, the complete
stochastic model described in the main text will converge to a deterministic
system of ordinary differential equations, as demonstrated above. Gener-
alizing Eq. 2.51, by considering three types of individuals and taking into
account mutations, yields a system of replicator-mutator equations [115]:

ṡ = fS(1− µ1)s− fs
ṙ = fR(1− µ2)r + fS µ1 s− f r
s+ r + c = 1 ,

(2.52)

where s, r and c are the population fractions of S (sensitive), R (resistant)
and C (resistant-compensated) microorganisms, respectively, while fS, fR

and fC denote their fitnesses, f = fS s + fR r + fC c denotes the average
fitness in the population, and dots denote time derivatives. To illustrate that
Eq. 2.52 generalizes Eq. 2.51, consider the case where c = 0 and µ1 = 0:
the first equation of Eq. 2.51 then yields ṡ = fSs − [fSs + fR(1 − s)]s =
s(1 − s)(fS − fR). As demonstrated above, the deterministic limit of our
stochastic model yields adjusted replicator equations (see Eq. 2.50). For
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the sake of simplicity, the present analytical discussion focuses on standard
replicator equations (see Eq. 2.51).

The system of equations Eq. 2.52 only concerns population fractions, and
constitutes the large-population limit N → ∞ of our stochastic model at
constant N . It is mathematically convenient to note that the same equations
are obtained in the case of a population in which microorganisms have an
exponential growth. This model, which enables us to recover the system
2.52, is governed by the following system of linear differential equations:

ṄS = fS(1− µ1)NS

ṄR = fR(1− µ2)NR + fS µ1NS

ṄC = fCNC + fR µ2NR ,

(2.53)

where NS, NR and NC are the numbers of sensitive, resistant and resistant-
compensated microorganisms, respectively. It is straightforward to show
that the population fractions obtained from this exponential growth model
satisfy Eq. 2.52: hence, this simple deterministic model allows one to under-
stand the evolution of large microbial populations described by the Moran
model (even though the total population is constant in the Moran model).

Analytical resolution. Being linear, the system in Eq. 2.53 is straight-
forward to solve analytically:NS

NR

NC

 =

0 0 1

0 1 fS µ1
fS(1−µ1)−fR(1−µ2)

1 fR µ2
fR(1−µ2)−fC

fS µ1 fR µ2
(fS(1−µ1)−fR(1−µ2))(fS(1−µ1)−fC)


 β1 e

fC t

β2 e
fR(1−µ2)t

β3 e
fS(1−µ1)t


(2.54)

where β1, β2 and β3 can be expressed from the initial conditions NS(0),
NR(0) and NC(0). The fractions s, r and c can then be obtained from this
solution, e.g. through s = NS/(NS +NR +NC).

Limiting regimes and characteristic timescales. As in the main text,
we are going to focus on the case where the population initially only com-
prises sensitive microorganisms, i.e. s(0) = 1. In the case of periodic al-
ternations of absence and presence of antimicrobial, a small fraction of R
microorganisms will appear within the first half-period without antimicro-
bial. The subsequent evolution of the population composition can be sepa-
rated into three successive regimes. In the first one, it suffices to consider
S and R microorganisms, as the fraction of C is negligible, because the ap-
pearance of C requires an additional mutation. The second regime is more
complex, and involves all three types of microorganisms, as the growth of
C microorganisms makes the fractions of S and R microorganisms decrease.
Then, provided that antimicrobial has been present for a sufficient time,
the fraction of S microorganisms becomes negligible, because they cannot
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divide with antimicrobial. Hence, the third regime only involves R and C
microorganisms, and does not depend on the presence or absence of antimi-
crobial, because the fitnesses of R and C are unaffected. Here, we determine
analytically the main timescales involved in these first and third regimes.

First regime: S vs. R. Let us consider the first regime where there are
almost only S and R microorganisms. We are interested in the population
fractions s(t) and r(t), with s(t) + r(t) ≈ 1. Eq. 2.52 then gives:

ṡ = s (∆f1 − s∆f2) , (2.55)

where we have defined ∆f1 = fS(1−µ1)−fR and ∆f2 = fS−fR. Note that
we expect ∆f1 ≈ ∆f2, since biologically relevant values generally satisfy
µ1 � 1 and µ1 � δ. The solution of Eq. 2.55 reads

s(t) =
s0 e

∆f1t

1− s0
∆f2
∆f1

+ s0
∆f2
∆f1

e∆f1t
, (2.56)

where s0 is the fraction of S microorganisms at the beginning of the first
regime (taken as t = 0 here). In the presence of antimicrobial (fS = 0),
the previous expression can be simplified, using ∆f1 = ∆f2 = −(1 − δ).
This allows us to identify the characteristic time τ1 of the decay of s, as R
microorganisms take over:

τ1 =
−1

∆f1
=

1

1− δ
. (2.57)

The duration t1 of the first regime in the presence of antimicrobial is
governed by τ1. More precisely, Eq. 2.56 yields:

t1 =
1

1− δ
log

(
s0 (1− s1)

s1 (1− s0)

)
, (2.58)

where s1 is the fraction of S microorganisms at the end of the first regime,
at which point the fraction of C microorganisms is no longer negligible.

Third regime: R vs. C. Let us now turn to the third regime, assum-
ing that antimicrobial has been present for a long enough time to allow S
microorganisms to become a small minority. Eq. 2.52 then gives:

ṙ = r (∆f3 − r∆f4) , (2.59)

with ∆f3 = fR(1 − µ2) − fC = −δ(1 − µ2) − µ2 and ∆f4 = fR − fC =
−δ, independently of whether antimicrobial is present or not. Again, we
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generally expect ∆f3 ≈ ∆f4. The solution of Eq. 2.59 reads

r(t) =
r2 (1− µ2 + µ2/δ) e

−(δ(1−µ2)+µ2)t

1− µ2 + µ2/δ − r2 + r2 e−(δ(1−µ2)+µ2)t

≈
µ2�1

µ2�δ

r2 e
−δt

1− r2 + r2 e−δt
, (2.60)

where r2 is the fraction of R microorganisms at the beginning of the third
regime (taken as t = 0 here). Hence, the characteristic time τ3 of the decay
of r reads:

τ3 =
1

µ2 + δ(1− µ2)
≈

µ2�1

µ2�δ

1

δ
. (2.61)

The duration t3 of the third regime in the presence of antimicrobial is gov-
erned by τ3. More precisely, Eq. 2.60 yields:

t3 ≈
µ2�1

µ2�δ

1

δ
log

(
r2 (1− r3)

r3 (1− r2)

)
. (2.62)

where r3 is the fraction of R microorganisms at the end of this regime, when
C has become dominant in the population.

Note that the timescales obtained here are governed by selection (through
the relevant fitness differences δ and 1 − δ). This stands in contrast with
the results from our stochastic model (see main text) where mutation rates
are crucial, especially through the waiting time before resistant mutants
appear. In the deterministic description considered here, small fractions
of resistant mutants appear right away, so this consideration is irrelevant.
However, mutation rates come into play in the durations of the different
regimes within the deterministic model, through the fractions of each type
of microorganisms at the beginning and at the end of each regime, but with
a weak logarithmic dependence (see Eqs. 2.58-2.62).

Comparison of stochastic and deterministic results

As in the main text, we now focus on the impact of a periodic presence of
antimicrobial on the time it takes for a population to fully evolve resistance.
For large microbial populations satisfying N � 1/µ1, we wish to check that
the system of differential equations in Eq. 2.52 recovers the results obtained
with our stochastic model. To this end, we solve the system in Eq. 2.52
numerically in the case of a periodic presence of antimicrobial. Note that
complete fixation of a genotype does not happen in the deterministic model.
Conversely, in the stochastic model, for a population of size N , the fixation
of C corresponds to the discrete Moran step where the fraction c jumps from
1 − 1/N to 1. Hence, for our comparison between the deterministic results
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and the stochastic ones obtained for N microorganisms, we consider that
C effectively fixes in the deterministic model when the fraction c reaches
1 − 1/N . In addition, for exactness, we use a numerical resolution of the
system in Eq. 2.52 where time is rescaled through t → t/f̄ . Indeed, the
proper deterministic limit of our stochastic model corresponds to modified
replicator equations, such as Eq. 2.50 (see above).

Fig. 2.7 shows that the deterministic model yields results very close to
those obtained through the stochastic model, in the case of large population
sizes N ≥ 1/µ1. We recover the regimes described in the main text, with
a plateau for short periods, and a linear dependence on T for larger ones.
Moreover, the relative error made by using the deterministic model instead
of the stochastic one is less than ∼ 20% (resp. ∼ 10%) for all data points
with N = 105 (resp. N = 106) in Fig. 2.7.
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Figure 2.7: Large populations: stochastic model vs. deterministic
model. The total time tfC of full resistance evolution is plotted versus the
period T of alternations of absence and presence of antimicrobial, in the
case of symmetric alternations. Results from simulations of the stochastic
model (see Fig. 2.3A), numerical resolution of the deterministic model, and
an analytical approximation of the deterministic solution (Eqs. 2.63-2.64),
are represented for N = 105 (A) and N = 106 (B). Parameter values:
µ1 = 10−5, µ2 = 10−3, and δ = 0.1.

Let us now present an analytical approximation for tfC, based on the
different timescales computed previously. As the population is initially only
composed of S microorganisms, they will remain dominant during the first
half-period without antimicrobial, since they are fitter than R mutants (and
we assume that T/2 is not large enough to extend to the point where C
starts being important, which would then correspond to the valley crossing
case). Afterwards, R microorganisms start growing fast during the second
half-period. Note that in the deterministic case, there is always a nonzero
fraction of resistant microorganisms at the end of the first half-period with-
out antimicrobial, contrary to the stochastic case studied in the main text.
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Hence, we compute the fraction s0 = s(T/2) of S microorganisms at the end
of the first half period, by using results for the above-described first regime
without antimicrobials. This fraction s0 = s(T/2) is then taken as the ini-
tial condition of the first regime with antimicrobial. Then, for simplicity, we
assume that s decays until it reaches s1 ≈ 0.1 (so r1 ≈ 0.9), while remaining
in the first regime described above, in the presence of antimicrobial. We
then assume the duration of the second regime is negligible, and consider
that the third regime process starts right away, with a fraction r2 ≈ 0.9.
As explained above, we consider that the third regime ends upon effective
fixation of C, i.e. when c reaches 1 − 1/N , which implies r3 = 1/N . Using
Eqs. 2.58 and 2.62, we obtain:

tfC ≈
T

2
+

1

1− δ
log

(
9 s(T/2)

1− s(T/2)

)
+

1

δ
log (9(N − 1)) , (2.63)

where s(T/2) is obtained by using Eq. 2.56 in the absence of antimicrobial:

s(T/2) =
e(µ2+δ(1−µ2)−µ1)T/2

1− µ2+δ(1−µ2)
µ2+δ(1−µ2)−µ1

(
1− e(µ2+δ(1−µ2)−µ1)T/2

) . (2.64)

Eqs. 2.63-2.64 yield good approximations of the analytical results ob-
tained by numerical resolution of Eq. 2.52, as can be seen on Fig. 2.7. More
precisely, the relative error made by using this approximation instead of the
full numerical resolution is less than ∼13% for all parameters in Fig. 2.7.

For T � 2/δ, Eq. 2.64 reduces to s(T/2) ≈ 1 − µ1/[µ2 + δ(1 − µ2)] ≈
1 − µ1/δ, so only the first term in Eq. 2.63 then depends on T . Hence,
this term becomes dominant for large T , yielding tfC ≈ T/2 in this limit.
This asymptotic behavior is again consistent with our predictions from the
stochastic model (see main text). The horizontal purple solid line at large
T in Fig. 2.3A, and the horizontal solid lines at large N in Fig. 2.3B, both
correspond to tfC ≈ T/2, showing excellent agreement with our stochastic
simulations as well.

Conversely, for small periods, the first term of Eq. 2.63 can be neglected,
so the dependence on T of tfC is weaker (Eq. 2.64 reduces to s(T/2) ≈
1 − µ1T/2 for T � 2/δ, so a weak logarithmic dependence on T remains,
due to the second term of Eq. 2.63). It is interesting to note that the third
term of tfC in Eq. 2.63 also increases logarithmically with N . This stands
in contrast with the case of smaller populations, where our stochastic study
showed that tfC essentially decreases linearly with N (see main text). This
change of behavior as N increases can be seen on Fig. 2.3A in the regime
of small T (in particular, for large N , the purple data points corresponding
to N = 106 are then slightly higher than the blue ones corresponding to
N = 105; see also Fig. 2.7, where the y-axis range and scale are the same on
panels A and B).
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2.5.4 Comparison to spontaneous fitness valley crossing

No antimicrobial: Crossing of a symmetric fitness valley

Let us compare the alternation-driven evolution of resistance to what would
happen in the absence of alternations of phases of absence and presence
of antimicrobial. If a population composed only of S (sensitive) microor-
ganisms is subjected to a continuous presence of antimicrobial, it will not
evolve resistance, because divisions are blocked (see Fig. 2.1A). Conversely,
a population of S microorganisms that is never subjected to antimicrobial
can spontaneously evolve resistance. In our model, this will eventually hap-
pen. This process is difficult and slow, because of the initial fitness cost of
resistance: it requires crossing a fitness valley (see Fig. 2.1A). Fitness valley
crossing has been studied in detail [15, 103, 106, 120, 121], but usually in the
case where the final mutant has a higher fitness than the initial organism. In
the evolution of antimicrobial resistance, compensatory mutations generally
yield microorganisms with antimicrobial-free fitnesses that are similar to,
but not higher than those of sensitive microorganisms [79, 80, 82]. Hence,
we here extend the known results for fitness valley crossing by constant-
size homogeneous asexual populations [15] to “symmetric” fitness valleys,
where the final genotype has no selective advantage compared to the initial
one. Briefly, the main difference with Ref. [15] is that the probability of
establishment of the second mutant (C) in a population with a majority of
non-mutants (S) is 1/N instead of being given by the selective advantage
s of the second mutant. This probability plays an important role in the
tunneling case.

There are two different ways of crossing a fitness valley. In sequential
fixation, the first deleterious mutant fixes in the population, and then the
second mutant fixes. In tunneling [120], the first mutant never fixes in the
population, but a lineage of second mutants arises from a minority of first
mutants, and fixes. For a given valley, characterized by δ (see Fig. 2.1A),
population size N determines which mechanism dominates. Sequential fixa-
tion requires the fixation of a deleterious mutant through genetic drift, and
dominates for small N , when stochasticity is important. Tunneling domi-
nates above a certain N [15, 121]. Let us study these two mechanisms in
the regime of rare mutations Nµ1 � 1 where stochasticity is crucial.

In sequential fixation, the average time τSF to cross a valley is the sum
of those of each step involved [15]. Hence τSF = 1/(Nµ1pSR) + 1/(Nµ2pRC),
where pSR (resp. pRC) is the fixation probability of a single R (resp. C)
individual in a population of size N where all other individuals are of type
S (resp. R). Fixation probabilities are known in the Moran process (see
Appendix, Section 2.5.2). In particular, if Nδ � 1 then pSR ≈ pRC ≈ 1/N
for our symmetric valley, so τSF ≈ 1/µ1 + 1/µ2 (≈ 1/µ1 if µ1 � µ2), while
if δ � 1 and Nδ � 1 then pSR ≈ δe−Nδ and pRC ≈ δ � pSR, so τSF ≈
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eNδ/(Nµ1δ).

In tunneling, the key timescale is that of the appearance of a successful
first (R) mutant, i.e. a first mutant whose lineage will give rise to a sec-
ond (C) mutant that will fix in the population [15]. Neglecting subsequent
second mutation appearance and fixation times, the average tunneling time
reads τT ≈ 1/(Nµ1p1), where p1 is the probability that a first mutant is
successful [15]. Upon each division of a first mutant, the probability of giv-
ing rise to a second mutant that will fix is p = µ2pSC, where pSC is the
fixation probability of a single C mutant in a population of S individuals.
For our symmetric valley, pSC = 1/N , so p = µ2/N . In the neutral case
δ = 0, Ref. [15] demonstrated that the first-mutant lineages that survive
for at least ∼1/

√
p generations, and reach a size ∼1/

√
p, are very likely to

be successful, and fully determine the rate at which successful first mutants
are produced. Since the lineage of each new first mutant has a probability
∼√p of surviving for at least ∼1/

√
p generations [15], the probability that

a first mutant is successful is p1 ∼
√
p ∼

√
µ2/N . If δ > 0, a first mutant

remains effectively neutral if its lineage size is smaller than 1/δ [15]. Hence,
if δ <

√
µ2/N , p1 ∼

√
µ2/N still holds. (This requires Nµ2 � 1, otherwise

the first mutant fixes before its lineage reaches a size
√
N/µ2.) Finally, if

δ >
√
µ2/N , the lineage of a first mutant will reach a size at most ∼ 1/δ,

with a probability ∼δ and a lifetime ∼1/δ [15], yielding p1 ∼µ2/(Nδ).

Given the substantial cost of resistance mutations (δ ∼ 0.1 [80, 82]) and
the low compensatory mutation rates (in bacteria µ2 ∼ 10−8 [80]), let us
henceforth focus on the case where δ >

√
µ2/N (which is appropriate for

all N ≥ 1 with the values mentioned). Then τT ≈ 1/(Nµ1p1) ≈ δ/(µ1µ2),
and two extreme cases can be distinguished:

(A)Nδ � 1 (effectively neutral regime): Then, τSF ≈ 1/µ1 (for µ1 � µ2)
and τT ≈ δ/(µ1µ2). Given the orders of magnitude above, generally δ > µ2

in resistance evolution. Hence, sequential fixation is fastest, and the valley
crossing time τV reads:

τV = τSF ≈
1

µ1
. (2.65)

(B) δ � 1 and Nδ � 1: Then,

τV = min (τSF, τT) ≈ min

(
eNδ

Nµ1δ
,

δ

µ1µ2

)
. (2.66)

The transition from sequential fixation to tunneling [15] occurs whenNδe−Nδ =
µ2/δ.

We have focused on the rare mutation regime Nµ1 � 1. If mutations are
more frequent, the first successful lineage of R mutants that appears may
not be the one that eventually fixes, so the valley-crossing time becomes
shorter [15].
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In Fig. 2.3B, the black simulation data points were obtained without
any antimicrobial. The population then evolves resistance by valley cross-
ing. The black curves correspond to our analytical predictions in Eq. 2.65 for
N � 1/δ and in Eq. 2.66 for N � 1/δ. In the latter regime, the transition
from sequential fixation to tunneling occurs at N ≈ 65 for the parame-
ters of Fig. 2.3B. The agreement between simulation results and analytical
predictions is excellent, with no adjustable parameter.

Alternation-driven process vs. valley-crossing process

Now that we have studied the spontaneous crossing of a symmetric fitness
valley without any antimicrobial, let us come back to our periodic alterna-
tions of phases of absence and presence of antimicrobial. Resistance can then
evolve by two distinct mechanisms, namely the alternation-driven process
and the spontaneous valley-crossing process. It is important to compare the
associated timescales, in order to assess which process will happen faster and
dominate. This will shed light on the acceleration of resistance evolution by
the alternations. For generality, we consider asymmetric alternations.

With alternations, spontaneous valley crossing can still happen, but new
R lineages cannot appear with antimicrobial, because S individuals cannot
divide (see Fig. 2.1A). Since the appearance of a successful R mutant is
usually the longest step of valley crossing (see above), the average valley
crossing time τ ′V with alternations will be longer by a factor T/T1 than
that without antimicrobial (τV), if more than one antimicrobial-free phase
is needed to cross the valley, i.e. if T1 � τV. Eqs. 2.65 and 2.66 then yield

τ ′V ≈
T

T1µ1
for Nδ � 1 , (2.67)

τ ′V ≈
T

T1
min

(
eNδ

Nµ1δ
,

δ

µ1µ2

)
for δ � 1 and Nδ � 1 . (2.68)

Conversely, if T1 � τV, valley crossing generally happens within the first
antimicrobial-free phase. Hence, the average valley crossing time τV is given
by Eqs. 2.65 and 2.66. (Recall that the process is assumed to begin with an
antimicrobial-free phase.)

We can now compare the timescales of the valley-crossing process to
those of the alternation-driven process. For simplicity, let us assume that the
dominant timescale in the latter process is the time taR it takes to first observe
an R organism in the presence of antimicrobial, i.e. tfC ≈ taR (see Eq. 2.2).
This is the case in a large and relevant range of parameters, especially if
µ1 � µ2, as discussed above. Note also that the final step of fixation of
the successful C lineage, which can become long in large populations (up
to ∼ N in the neutral case, see Appendix, Section 2.5.2), is the same in
the alternation-driven process and in the valley-crossing process, so it does
not enter the comparison. The expression of taR in Eq. 2.3 should thus be
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compared to the valley crossing time. If T1 � τV, valley crossing happens
before any alternation, and is thus the relevant process, with time τV given
by Eqs. 2.65 and 2.66. Let us now conduct our comparison of taR and τ ′V for
T1 � τV, where Eqs. 2.67 and 2.68 hold.

(A) If T1 � τd
R (recall that τd

R is the average lifetime of an R lineage with-
out antimicrobial, before it goes extinct): The alternation-driven process,
with timescale taR = T/(Nµ1T1) (see Eq. 2.3), dominates. Indeed, if Nδ � 1,
τ ′V is given by Eq. 2.67, so for all N > 1, taR < τ ′V. And if Nδ � 1 and
δ � 1, Eq. 2.68 yields taR/τ

′
V ≈ δe−Nδ � 1 in the sequential fixation regime,

and taR/τ
′
V ≈ µ2/(Nδ)� 1 in the tunneling regime. Hence, if T1 � τd

R, the
alternation-driven process dominates. Thus, alternations of absence and
presence of antimicrobial strongly accelerate resistance evolution. For in-
stance, in Fig. 2.3A, for N = 100 and T/2 � τd

R, the alternation-driven
process takes taR = 2/(Nµ1) = 2 × 103 generations, while valley crossing
takes τV = δ/(µ1µ2) = 107 generations without antimicrobial: alternations
yield a speedup of 4 orders of magnitude. The speedup is even stronger for
larger populations. Conversely, for T1 � T2, while the alternation-driven
process is shorter than the valley-crossing process in the presence of alter-
nations, it can nevertheless be longer than the valley-crossing process in the
absence of antimicrobial. In this case, the drug actually slows down the evo-
lution of resistance. When T1 � T2 and T1 � τd

R, in the tunneling regime,
provided that 1/N � δ � 2

√
µ2/N , valley crossing takes δ/(µ1µ2) in the

absence of antimicrobial (see Eq. 2.66), and T2δ/(T1µ1µ2) in the presence
of alternations satisfying T1 � T2 (see Eq. 2.68). Meanwhile, the switch-
driven process takes T2/(T1Nµ1) (see above). Hence, if T2 � T1Nδ/µ2,
the alternation-driven process dominates, but it is slower than the valley-
crossing process in the absence of antimicrobial: the drug then slows down
resistance evolution. This effect can be seen on Fig. 2.4 for T1 � T2 and
T1 � τd

R.
(B) If T1 � τd

R: Then taR = T/(Nµ1τ
d
R) (see Eq. 2.3). If Nδ � 1, valley

crossing by sequential fixation is the dominant process. Indeed, Eq. 2.67
yields taR/τ

′
V ≈ T1/τ

d
R � 1. If Nδ � 1 and δ � 1, Eq. 2.68 yields taR/τ

′
V ≈

δe−NδT1/τ
d
R in the sequential fixation regime, and taR/τ

′
V ≈ µ2T1/(Nδτ

d
R)

in the tunneling regime. A transition from the alternation-driven process
to valley crossing occurs when these ratios reach 1. Qualitatively, if N is
large enough and/or if T1 is short enough, the alternation-driven process
dominates.

For example, in Fig. 2.4A, parameters are such that the dominant mech-
anism of valley crossing is tunneling, so taR/τ

′
V reaches 1 for T1 = Nδτd

R/µ2 ≈
2.6 × 105 generations. This transition to the valley-crossing plateau is in-
deed observed for the curves with large enough T2. (Recall that if T2 � τ f

R,
extinction events occur when T1 � τd

R, see Fig. 2.8B.) The black horizon-
tal lines in Figs. 2.4A and 2.4B correspond to our analytical prediction in
Eq. 2.68, giving τ ′V ≈ δ/(µ1µ2) if T1 � max(T2, τ

d
R). Similarly, in Fig. 2.3A,



56 CHAPTER 2. FIXED SIZE

horizontal solid lines at large T correspond to the valley crossing times in
Eqs. 2.67 or 2.68, depending on N . In Fig. 2.3B, in the regime of small N
and large T , resistance evolution is achieved by tunneling-type valley cross-
ing, yielding a plateau in the neutral regime N � 1/δ (see Eq. 2.67, plotted
as a horizontal purple line) and an exponential increase for intermediate N
(see Eq. 2.68). For larger N , we observe a T -dependent transition to the
alternation-driven process, which can be fully understood using the ratio
taR/τ

′
V (see above).

2.5.5 Detailed analysis of asymmetric alternations

Particular regimes

Here, we examine whether R mutants will fix during a single phase with
antimicrobial, of duration T2. The fixation time of the lineage of an R
mutant in the presence of antimicrobial is τ f

R ≈ logN for N � 1 [11] (see
above). If T2 � τ f

R, fixation will happen within T2. In the opposite case, the
fixation of R is not likely to occur within a single phase with antimicrobial.
Two situations exist in this case (see Fig. 2.8).

Figure 2.8: Particular regimes. The number of R individuals in the pop-
ulation is plotted versus time under alternations of phases without (white)
and with antimicrobial (gray). Data extracted from simulation runs. A:
T2 � τ f

R and T1 � τd
R: the R lineage drifts for multiple periods. Parame-

ters: N = 103, T1 = 10−1, T2 = 10−2 . B: T2 � τ f
R and T1 � τd

R: the R
lineage goes extinct. Parameters: N = 102, T1 = 102, T2 = 1. In both (A)
and (B), µ1 = 10−5, µ2 = 10−3 and δ = 0.1.

(A) If T2 � τ f
R and T1 � τd

R (Fig. 2.8A): The R lineage will drift for
multiple periods, but its extinction is unlikely, as for symmetric alterna-
tions. This effect can induce a slight increase of the total time of resistance
evolution, which is usually negligible.

(B) If T2 � τ f
R and T1 � τd

R (Fig. 2.8B): The R lineage is likely to go
extinct even after it has started growing in the presence of antimicrobial.
This typically implies T1 � T2, since τ f

R ≈ logN and τd
R . logN for N � 1

(see above). Hence, this case is specific to (very) asymmetric alternations.
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Spontaneous valley crossing then becomes the fastest process of resistance
evolution (see Appendix, Section 2.5.4).

Varying T2 at fixed T1

In the main text, we present a detailed analysis of what happens when T1 is
varied at fixed T2 (see Fig. 2.4A). Here, we present a similar analysis if T2

is varied at fixed T1. Fig. 2.4B shows the corresponding simulation results,
together with our analytical predictions from Eqs. 2.2 and 2.3. In particular,
a minimum is observed in Fig. 2.4B when varying T2 for T1 � τd

R:

• When T2 � τd
R � T1, valley crossing dominates.

• When τd
R � T2 � T1, Eq. 2.3 gives taR = T/(Nµ1τ

d
R) ≈ T1/(Nµ1τ

d
R),

which is independent from T2.

• As T2 is further increased, taR = T/(Nµ1τ
d
R) increases, becoming pro-

portional to T2 when T2 � T1.

Hence, the minimum of taR is T1/(Nµ1τ
d
R) and is attained for τd

R � T2 � T1.
In the opposite case where T1 � τd

R, Eq. 2.3 still gives taR = T/(Nµ1T1).
Thus, taR reaches a plateau taR = 1/(Nµ1) for T2 � T1 � τd

R, which means
that the first R mutant yields the full evolution of resistance (as seen above).
Then, taR becomes proportional to T2 for T2 � T1. Note that valley crossing
is always slower than the alternation-driven process when T1 � τd

R (see
above), so no plateau is expected at large T2 in this case.

2.5.6 Robustness of the binary antimicrobial action model

Throughout our study, we have modeled the action of the antimicrobial in
a binary way: below the MIC (“absence of antimicrobial”), growth is not
affected, while above it (“presence of antimicrobial”), sensitive microorgan-
isms cannot grow at all (see Model section in the main text). The rela-
tionship between antimicrobial concentration and microorganism fitness is
termed the pharmacodynamics of the antimicrobial [8, 9]. Our binary ap-
proximation is motivated by the usual steepness of pharmacodynamic curves
around the MIC [8]. However, this steepness is not infinite, and it is differ-
ent for each antimicrobial. Here, we investigate the robustness of our binary
model.

If one goes beyond the binary model and accounts for the smoothness
of the pharmacodynamic curve, one additional factor enters the determi-
nation of the time dependence of fitness. It is the time dependence of the
antimicrobial concentration, typically in a treated patient, which is known
as pharmacokinetics [8, 9]. In fact, the time dependence of the fitness of
sensitive microorganisms will be determined by a combination of pharma-
codynamics and pharmacokinetics. Experimental pharmacodynamic curves
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are well-fitted by Hill functions, and pharmacokinetic curves are often mod-
eled by exponential decays of drug concentration after intake [8]. The fit-
ness versus time curve upon periodic antimicrobial intake will be a smooth
periodic function resulting from the mathematical function composition of
these two empirical relationships. The main feature of this curve will be
how smooth or steep it is, which can be characterized by its rise time, i.e.
the time it takes to rise from a value of fS close to 0 to one close to 1. Re-
call that the fitness fS of sensitive microorganisms ranges between 0 at very
high antimicrobial concentrations and 1 without antimicrobial. In practice,
we chose to define the rise time as the time taken to rise from fS = 0.1 to
fS = 0.9.

Thus motivated, we consider a smooth and periodic fitness versus time
relationship fS(t) (see Fig. 2.9A), and we study the impact of the rise time
Θ on the evolution of antimicrobial resistance in a microbial population. In
practice, our smooth function, shown in Fig. 2.9A, is built using the error
function erf(x) = (2/

√
π)
∫ x

0 e
−u2 du, such that over each period of duration

T :

fS(t) =1− 1

2

[
1 + erf

(
2

Θ

(
t− nT − T

2

))]
(2.69)

if nT +
T

4
≤ t < nT +

3T

4
,

fS(t) =
1

2

[
1 + erf

(
2

Θ
(t− nT − T )

)]
(2.70)

if nT +
3T

4
≤ t < (n+ 1)T +

T

4
,

where n is a non-negative integer. In addition, we take fS(t) = 1 for 0 ≤
t ≤ T/4, i.e. we start without antimicrobial at t = 0, and the first decrease
of fitness occurs around t = T/2, in order to be as close as possible to our
binary approximation (see Fig. 2.1B). Finally, as an extremely smooth case,
we consider the case of a fitness fS modeled by a sine function of period
T , with the same initial condition and phase as our function with variable
smoothness.

We have performed stochastic simulations using the model described
in the main text, but with the fitness versus time relationship given in
Eqs. 2.69-2.70. Fig. 2.9 shows that for small rise times Θ, the dependence
on the period T of the total time tfC of full resistance evolution is the same as
with our binary approximation, provided that the rise time is much smaller
than the period, Θ� T . Conversely, for small Θ satisfying Θ ≥ T , in which
case our function is very smooth even though the absolute rise time is short,
the behavior of tfC is similar to that obtained for the sine function. For
larger values of Θ, namely Θ � 10, the binary case is no longer matched
when Θ� T , and instead, a behavior intermediate between the binary case
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Figure 2.9: Robustness of the binary antimicrobial action model. A:
Smooth and periodic fitness versus time relationship considered: Θ denotes
the rise time. B: Total time tfC of full resistance evolution versus the period
T for smooth alternations with different values of Θ, and for the binary
model. Data points correspond to the average of simulation results (over
10 to 103 replicates), and error bars (often smaller than markers) represent
95% confidence intervals. Parameter values: µ1 = 10−5, µ2 = 10−3, δ = 0.1,
and N = 100.

and the sine case is observed. This intermediate behavior gets closer to that
observed in the sine case as Θ is increased.

These results can be rationalized as follows. When Θ is smaller than
the relevant evolutionary timescales identified in the main text (τd

R, τ f
R and

1/(Nµ1), the shortest ones being τd
R and τ f

R for Nµ1 � 1), no relevant evo-
lutionary process process can happen during a single smooth rise or decay of
the fitness. If in addition Θ is much smaller than the environmental timescale
T , then the fitness versus time function is steep and effectively binary. How-
ever, if Θ is not much smaller than T , then the function is smooth, and
the binary approximation is inappropriate. Finally, if Θ is longer than the
shortest relevant evolutionary timescales (τd

R, τ f
R), then relevant evolution-

ary processes can happen within a single smooth rise or decay of the fitness,
and the behavior is more complex. In a nutshell, our binary approximation
is appropriate provided that the rise time satisfies Θ� min(T, τd

R, τ
f
R).
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The work presented in this chapter was published in the following ar-
ticle: Marrec L, Bitbol AF. Resist or perish: fate of a microbial popula-
tion subjected to a periodic presence of antimicrobial. PLoS Comput Biol.
2020;16(4):1-19.

In this chapter, we study the impact of periodic alternations of absence
and presence of antimicrobial on resistance evolution in a microbial popu-
lation, using a stochastic model that includes variations of both population
composition and size, and fully incorporates stochastic population extinc-
tions. We show that fast alternations of presence and absence of antimicro-
bial are inefficient to eradicate the microbial population and strongly favor
the establishment of resistance, unless the antimicrobial increases enough
the death rate. We further demonstrate that if the period of alternations is
longer than a threshold value, the microbial population goes extinct upon the
first addition of antimicrobial, if it is not rescued by resistance. We express
the probability that the population is eradicated upon the first addition of
antimicrobial, assuming rare mutations. Rescue by resistance can happen
either if resistant mutants preexist, or if they appear after antimicrobial is
added to the environment. Importantly, the latter case is fully prevented
by perfect biostatic antimicrobials that completely stop division of sensitive
microorganisms. By contrast, we show that the parameter regime where
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treatment is efficient is larger for biocidal drugs than for biostatic drugs.
This sheds light on the respective merits of different antimicrobial modes of
action.
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3.1 Introduction

In Chapter 2, we investigated the evolution of antimicrobial resistance in
fixed-size microbial populations using the Moran model. Constant popula-
tion sizes facilitate analytical calculations, and allowed us to fully quantify
the impact of a periodic presence of antimicrobial on resistance evolution.
However, they did not enable us to study antimicrobial-induced extinctions
or the impact of biocidal antimicrobials. That is why we propose here a
general stochastic model that incorporates variations of both population
composition and size, i.e. population genetics and population dynamics.
Despite having a common origin in stochastic birth, death and mutation
events, and thus being intrinsically coupled, these phenomena are seldom
considered together in theoretical studies [10]. However, it is particularly
crucial to address both of them when studying the evolution of antimicrobial
resistance, because the aim of an antimicrobial treatment is to eradicate a
microbial population, or at least to substantially decrease its size, while the
evolution of resistance corresponds to a change in the genetic makeup of the
population. Our general model allows us to fully incorporate the stochas-
ticity of mutation occurrence and establishment [11, 12, 13, 14, 15], as well
as that of population extinction, whose practical importance was recently
highlighted [16, 17, 18].

In this framework, we ask whether a microbial population subject to
alternations of phases of presence and absence of antimicrobial develops
resistance, which corresponds to treatment failure and to rescue of the mi-
crobial population by resistance [19], or goes extinct, which corresponds to
treatment success. In other words, we ask whether the microbial population
resists or perishes.

We study both the impact of biocidal drugs, that kill microorganisms,
and of biostatic drugs, that prevent microorganisms from growing. We show
that fast alternations of phases with and without antimicrobial do not per-
mit eradication of the microbial population before resistant mutants fix,
unless the death rate with antimicrobial is large enough. Conversely, inter-
mediate alternation speeds are effective for a wider range of antimicrobial
modes of action, but the probability of population extinction and therefore
of treatment success, which we fully quantify, is not one, because resistance
can rescue the population, and this effect depends on the size of the mi-
crobial population. We find that the parameter range where antimicrobial
treatment is efficient is larger for biocidal drugs than for biostatic drugs.
However, we also show that biocidal and imperfect biostatic antimicrobials
permit an additional mechanism of rescue by resistance compared to bio-
static drugs that completely stop growth. This sheds light on the respective
merits of different antimicrobial modes of action. Finally, we find a popula-
tion size-dependent critical drug concentration below which antimicrobials
cannot eradicate microbial populations.
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3.2 Model and methods

We consider a microbial population with carrying capacity K, corresponding
to the maximum population size that the environment can sustain, given the
nutrients available. The division rate of each microorganism is assumed to
be logistic, and reads f(1−N/K), where N represents the total population
size, while the fitness f is the maximal division rate of the microorganism,
reached when N � K. This model therefore incorporates population size
variations, and allows us to include extinctions induced by the antimicrobial
drug.

As in Chapter 2, we consider three types of microorganisms: sensitive (S)
microorganisms, whose division or death rate is affected by antimicrobials,
resistant (R) microorganisms, that are not affected by antimicrobials but
that bear a fitness cost, and resistant-compensated (C) microorganisms that
are not affected by antimicrobials and do not bear a fitness cost. In the
absence of antimicrobial, their fitnesses (maximal division rates) are denoted
by fS , fR and fC , respectively, and their death rates by gS , gR and gC .
Values in the presence of antimicrobial are denoted by a prime, e.g. f ′S .
Note that we include small but nonzero baseline death rates, which can
model losses or the impact of the immune system in vivo, and allows for
population evolution even at steady-state size. Without loss of generality,
we set fS = 1 throughout. In other words, the maximum reproduction rate
of S microorganisms, attained when population size is much smaller than the
carrying capacity, sets our time unit. We further denote by µ1 and µ2 the
mutation probabilities upon each division for the mutation from S to R and
from R to C, respectively. In several actual cases, the effective mutation
rate towards compensation is higher than the one towards the return to
sensitivity, because multiple mutations can compensate for the initial cost
of resistance [83, 84, 98]. Thus, we do not take into account back-mutations.
Still because of the abundance of possible compensatory mutations, often
µ1 � µ2 [83, 112]. We provide general analytical results as a function of µ1

and µ2, and we focus more on the limit µ1 � µ2, especially in simulations.

Our model thus incorporates both population dynamics and popula-
tion genetics [5, 10, 122], and is more realistic than descriptions assum-
ing constant population sizes [40], e.g. in the framework of the Moran
process [11, 91]. Throughout, our time unit corresponds to a generation
of sensitive microorganisms without antimicrobial in the exponential phase
(reached when N � K).

The action of an antimicrobial drug can be quantified by its MIC, which
corresponds the minimum concentration that stops the growth of a microbial
population [80]. More precisely, the MIC corresponds to the concentration
such that death rate and division rate are equal [16]: in a deterministic
framework, above the MIC, the population goes extinct, while below it, it
grows until reaching carrying capacity. We investigate the impact of periodic
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alternations of phases of absence and presence of antimicrobial, at concen-
trations both above and below the MIC. We consider both biostatic an-
timicrobials, which decrease the division rate of microorganisms (f ′S < fS),
and biocidal antimicrobials, which increase the death rate of microorganisms
(g′S > gS) [16].

We start from a microbial population where all individuals are S (sensi-
tive), without antimicrobial. Specifically, we generally start our simulations
with 10 S microorganisms, thus including a phase of initial growth, which
can model the development of an infection starting from the bottleneck at
transmission [123]. Our results are robust to variations of this initial con-
dition, since we mainly consider timescales longer than that of the initial
growth of the population to its equilibrium size. Note however that if we
started with a very small number of S microorganisms (i.e. 1 or 2), we would
need to take into account rapid stochastic extinctions (see Fig. 3.9B).

Antimicrobial both drives the decrease of the population of sensitive
microorganisms and selects for resistance. We ask whether resistance fully
evolves de novo, leading to the C microorganisms taking over, or whether the
microbial population goes extinct before this happens. The first case cor-
responds to treatment failure, and the second to treatment success. Hence,
we are interested in the probability p0 of extinction of the microbial pop-
ulation before C microorganisms fix in the population, i.e. take over. We
also discuss the average time tfix it takes for the population to fully evolve
resistance, up to full fixation of the C microorganisms, and the mean time
to extinction before the fixation of the C type text.

We present both analytical and numerical results. Our analytical re-
sults are obtained using methods from stochastic processes, including the
Moran process at fixed population size [11] and birth-death processes with
time varying rates [101, 124, 125, 126]. Our simulations employ a Gillespie
algorithm [127, 128], and incorporate all individual stochastic division, mu-
tation and death events with their exact rates (see Appendix, Section 3.5.5
for details).

3.3 Results

3.3.1 Conditions for a periodic presence of perfect biostatic
antimicrobial to eradicate the microbial population

Do periodic alternations of phases with and without antimicrobial allow
the eradication of a microbial population, or does resistance develop? We
first address this question in the case of a biostatic antimicrobial sufficiently
above the MIC to completely stop the growth of S microorganisms (see
Fig. 3.1A-B). With such a “perfect” biostatic antimicrobial, the fitness of
S microorganisms is f ′S = 0, while without antimicrobial, fS = 1. Here,
we assume that the death rate of S microorganisms is not affected by the
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antimicrobial, i.e. g′S = gS , but the case of a biocidal antimicrobial will be
considered next. Note that within our logistic growth model, we consider
that S microorganisms that cannot divide still consume resources, e.g. nu-
trients, in order to self-maintain. They may also still grow in size even if
they cannot divide [23].

A crucial point is how the duration of a phase with antimicrobial, which
corresponds here to the half-period T/2 of alternations, compares to the
average time τS needed for a population of S microorganisms to go extinct
in the presence of antimicrobial. Indeed, if T/2� τS , one single phase with
antimicrobial suffices to eradicate a microbial population in the absence of
resistance. An exact first passage time calculation [40, 118] (see Appendix,
Section 3.5.1, Eq. 3.16) yields τS = (1/gS) ×

∑N
i=1(1/i) ≈ log(N)/gS ,

where N � 1 represents the number of microorganisms when antimicrobial
is first added, i.e. at T/2. If the phase before antimicrobial is added is
much longer than the initial growth timescale of the population, i.e. if
T/2� 1/(fS − gS) (see Appendix, Section 3.5.1), N can be taken equal to
the deterministic equilibrium population size N = K(1 − gS/fS), obtained
by setting the birth rate fS(1 − N/K) equal to the death rate gS . Hence,
τS ≈ log [K(1− gS/fS)] /gS . Note that in this regime, the initial population
size has no impact on τS , and that the division and death rates are both given
by gS . Our simulation results in Fig. 3.1C display an abrupt increase in the
probability p0 that the microbial population goes extinct before developing
resistance for T = 2τS , in good agreement with our analytical prediction.

For fast alternations satisfying T/2 � τS , the phases with antimicro-
bial are not long enough to eradicate the microbial population, yielding a
systematic evolution of resistance, and thus a vanishing probability p0 of
extinction before resistance takes over. This prediction is confirmed by our
simulation results in Fig. 3.1C, and an example of resistance evolution in this
regime is shown in Fig. 3.1D. In the limit of very fast alternations, we ex-
pect an effective averaging of the fitness of S microorganisms, with f̃S = 0.5.
Thus, an R mutant whose lineage will take over the population (i.e. fix) ap-
pears after an average time t̃aR = 1/(Ñµ1gS p̃SR) where Ñµ1gS represents
the total mutation rate in the population, with Ñ = K(1 − gS/f̃S), and

where p̃SR = (1 − f̃S/fR)/[1 − (f̃S/fR)Ñ ] is the probability that a single
R mutant fixes in a population of S microorganisms with constant size Ñ ,
calculated within the Moran model [11]. Note that when the effective fitness
of S microorganisms is f̃S , acquiring resistance is beneficial (provided that
the fitness cost of resistance is reasonable, namely smaller than 0.5). Sub-
sequently, C mutants will appear and fix, thus leading to the full evolution
of resistance in the population. The corresponding average total time tfix
of resistance evolution [40] obtained in our simulations agrees well with the
analytical expression of t̃aR for T/2� τS (see Fig. 3.10C).

Conversely, if T/2 � τS , the microbial population is eradicated by the
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Figure 3.1: Periodic presence of a perfect biostatic antimicrobial.
A: Microbial fitness versus genotype with and without antimicrobial. Geno-
types are the following: S: sensitive; R: resistant; C: resistant-compensated.
δ represents the fitness cost of resistance. B: Periodic presence of antimi-
crobial (gray: presence, white: absence), and impact on the fitness of S
microorganisms. C: Probability p0 that the microbial population goes ex-
tinct before resistance gets established versus alternation period T , for var-
ious carrying capacities K. Markers: simulation results, with probabilities
estimated over 102 − 103 realizations. Horizontal solid lines: analytical pre-
dictions from Eq. 3.1. Dashed lines: T/2 = τS . D and E: Numbers of S, R
and C microorganisms versus time in example simulation runs for K = 1000,
with T = 20 and T = 1000 respectively. In D, resistance takes over, while in
E, extinction occurs shortly after antimicrobial is first added. Phases with-
out (resp. with) antimicrobial are shaded in white (resp. gray). Parameter
values: fS = 1 without antimicrobial, f ′S = 0 with antimicrobial, fR = 0.9,
fC = 1, gS = gR = gC = 0.1, µ1 = 10−5 and µ2 = 10−3. All simulations
start with 10 S microorganisms.

first phase with antimicrobial, provided that no resistant mutant preexists
when antimicrobial is added to the environment. Indeed, resistance cannot
appear in the presence of a perfect biostatic antimicrobial since S microor-
ganisms then cannot divide. Thus, in the absence of existing R mutants,
extinction occurs shortly after time T/2 (see Fig. 3.10B), and the situation is
equivalent to adding antimicrobial at T/2 and leaving it thereafter, as exem-
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plified by Fig. 3.1E. Hence, while they are longer than those usually encoun-
tered in periodic treatments, the longest periods considered here are relevant
to describe extended continuous treatments. Note that although unlikely,
fixation of resistance in the absence of antimicrobial will end up happening
by spontaneous fitness valley crossing if the first phase without antimicro-
bial is long enough. Specifically, this will occur if T/2 � τV , where τV ≈
(fS − fR)/(µ1µ2gS) is the average valley crossing time by tunneling, which
is the relevant process unless populations are very small [15, 40, 120, 121].
Accordingly, our simulation results in Fig. 3.11, which includes longer alter-
nation periods than Fig. 3.1, feature three distinct regimes, and vanishing
extinction probabilities are obtained for T/2� τV , as well as for T/2� τS .

Let us now focus on the regime where antimicrobial treatment can induce
extinction of the microbial population, namely τS � T/2� τV , and calcu-
late the extinction probability p0. A necessary condition for the population
to be rescued by resistance [30] and avoid extinction is that at least one R
mutant be present when antimicrobial is added. In the rare mutation regime
Kµ1 � 1, this occurs with probability pR = τdR/t

app
R = Nµ1gSτ

d
R, where

tappR = 1/(Nµ1gS) is the average time of appearance of a resistant mutant,
while τdR is the average lifetime of a resistant lineage (destined for extinc-
tion without antimicrobial), both calculated in a population of S individuals
with fixed size N = K(1 − gS/fS) [11, 40]. Importantly, the presence of R
mutants does not guarantee the rescue of the microbial population, because
small subpopulations of R microorganisms may undergo a rapid stochastic
extinction. The probability peR(i) of such an extinction event depends on the
number of R microorganisms present when antimicrobial is added, which is
i with a probability denoted by pcR(i), provided that at least one R mutant
is present. The probability p0 that the microbial population is not rescued
by resistance and goes extinct can then be expressed as:

p0 = 1− pR
N−1∑
i=1

pcR(i)(1− peR(i)) . (3.1)

The probability pcR(i) can be calculated within the Moran model since
the population size is stable around N = K(1 − gS/fS) before antimi-
crobial is added. Specifically, it can be expressed as the ratio of the av-
erage time τdR,i the lineage spends in the state where i mutants exist to

the total lifetime τdR of the lineage without antimicrobial: pcR(i) = τdR,i/τ
d
R

(see Appendix, Section 3.5.3). Next, in order to calculate the probability
peR(i) that the lineage of R mutants then quickly goes extinct, we approx-
imate the reproduction rate of the R microorganisms by fR(1 − (S(t) +
R(t))/K) ≈ fR(1 − S(t)/K), where S(t) and R(t) are the numbers of
S and R individuals at time t. Indeed, early extinctions of R mutants
tend to happen shortly after the addition of antimicrobials, when S(t) �
R(t). Thus motivated, we further take the deterministic approximation
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S(t) = K(1 − gS/fS)e−gSt, while retaining a stochastic description for the
R mutants [101, 124]. We then employ the probability generating function
φi(z, t) =

∑∞
j=0 z

jP (j, t|i, 0), where i is the initial number of R microorgan-
isms, which satisfies peR(i) = limt→∞ P (0, t|i, 0) = limt→∞ φi(0, t). Solving
the partial differential equation governing the evolution of φi(z, t) (see Ap-
pendix, Section 3.5.3) yields [125, 126]

peR(i) = lim
t→∞

[
gR
∫ t

0 e
ρ(u)du

1 + gR
∫ t

0 e
ρ(u)du

]i
, (3.2)

with

ρ(t) =

∫ t

0

[
gR − fR

(
1− S(u)

K

)]
du . (3.3)

Eq. 3.1 then allows us to predict the probability that the microbial popu-
lation goes extinct thanks to the first addition of antimicrobial. Fig. 3.1C
demonstrates a very good agreement between this analytical prediction and
our simulation results in the rare mutation regime Kµ1 � 1, and Fig. 3.14
further demonstrates good agreement for each separate term of Eq. 3.1 in
this regime. For larger populations, the probability that the microbial popu-
lation is rescued by resistance increases, and the extinction probability tends
to zero for frequent mutations Kµ1 � 1 because R mutants are then always
present in the population, in numbers that essentially ensure their survival
(see Fig. 3.1C). Note that in our simulations presented in Fig. 3.1, we chose
µ1 = 10−5 for tractability. With realistic bacterial mutation probabilities,
namely µ1 ∼ 10−10 [78], the rare mutation regime remains relevant for much
larger populations.

3.3.2 Biocidal antimicrobials and imperfect biostatic ones al-
low an extra mechanism of rescue by resistance

How does the mode of action of the antimicrobial impact our results? So
far, we considered a perfect biostatic antimicrobial that stops the growth
of sensitive microorganisms but does not affect their death rate. Let us
now turn to the general case of an antimicrobial that can affect both the
division rate and the death rate of sensitive microorganisms, and let us
assume that we are above the MIC, i.e. g′S > f ′S . In this section, we present
general calculations, but focus most of our discussion on purely biocidal
antimicrobials, which increase the death rate of sensitive microorganisms
without affecting their growth rate, and compare them to purely biostatic
antimicrobials. Again, a crucial point is how the duration T/2 of a phase
with antimicrobial compares to the average time τS needed for a population
of S microorganisms to go extinct in the presence of antimicrobial (see Eq.
3.15). Indeed, our simulation results in Figs. 3.2A and 3.2D display an
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Figure 3.2: Periodic presence of a biocidal antimicrobial above the
MIC. A: Probability p0 that the microbial population goes extinct before
resistance gets established versus alternation period T , for various carrying
capacities K. Markers: simulation results, with probabilities estimated over
102 − 103 realizations. Horizontal solid lines: analytical predictions from
Eq. 3.4. Dashed lines: T/2 = τS . B and C: Numbers of sensitive (S),
resistant (R) and compensated (C) microorganisms versus time in exam-
ple simulation runs for K = 1000, with T = 8 and T = 1000 respectively.
In B, resistance takes over, while in C, extinction occurs shortly after an-
timicrobial is first added. Phases without (resp. with) antimicrobial are
shaded in white (resp. gray). Parameter values in A, B and C: fS = 1,
fR = 0.9, fC = 1, gS = 0.1 without antimicrobial, g′S = 1.1 with antimicro-
bial, gR = gC = 0.1, µ1 = 10−5 and µ2 = 10−3. All simulations start with
10 S microorganisms. D, E and F: same as A, B and C, but with g′S = 2.
All other parameters are the same.
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abrupt change in the probability that the microbial population goes extinct
before developing resistance for T = 2τS .

For small periods T/2 � τS , one phase with antimicrobial is not long
enough to eradicate the microbial population. However, the alternations
may induce an overall decrease in the population over multiple periods,
then leading to extinction. This is the case when the deterministic growth
timescale 1/(fS − gS) is larger than the decay timescale 1/(g′S − f ′S). Equiv-
alently, in the limit of very fast alternations, there is no nonzero stationary
population size when f̃S = (fS + f ′S)/2 < g̃S = (gS + g′S)/2, yielding the
same condition. For a biostatic drug such that g′S = gS , this situation can-
not happen if gS < fS/2, which is realistic since baseline death rates are
usually small. Conversely, for a biocidal drug such that f ′S = fS , a system-
atic evolution of resistance will occur if g′S < 2fS − gS , while population
decay over several periods and extinction will occur if g′S > 2fS − gS . These
predictions are confirmed by the simulation results in Figs. 3.2A and D,
respectively, and the two different cases are exemplified in Figs. 3.2B and
E. Both of these regimes can arise, depending on the concentration of bio-
cidal antimicrobial. Figs. 3.2A-C corresponds to concentrations just above
the MIC, while Figs. 3.2D-F correspond to larger concentrations of bacte-
ricidal drugs, which can induce death rates equal to several times the birth
rate [129, 130]. Note that in Fig. 3.2A, the extinction probability is not zero
for small periods with K = 102: this is because stochastic extinctions can
occur before resistance takes over for such a small equilibrium population
size.

For slower alternations satisfying T/2 � τS , the microbial population
is eradicated by the first phase with antimicrobial, unless resistance rescues
it. Extinction then occurs shortly after time T/2 (see Fig. 3.11B and ex-
amples in Fig. 3.2C and F). Importantly, with a biocidal antimicrobial or
with an imperfect biostatic one, the microbial population can be rescued by
resistance in two different ways: either if resistant bacteria are present when
antimicrobial is added, or if they appear afterwards. This second case is ex-
emplified in Fig. 3.3. It can happen because even at high concentration, such
antimicrobials do not prevent S microorganisms from dividing, contrarily to
a perfect biostatic one. Because of this, rescue by resistance can become
more likely than with perfect biostatic antimicrobials. Note that, as in the
perfect biostatic case, the spontaneous fixation of resistant mutants without
antimicrobial will occur if T/2� τV ≈ (fS − fR)/(µ1µ2gS) (see Fig. 3.11).

Let us focus on the regime where the treatment can efficiently induce
extinction, namely τS � T/2 � τV . The probability p0 that the micro-
bial population is not rescued by resistance and goes extinct can then be
expressed as:

p0 =

[
1− pR

N−1∑
i=1

pcR(i)(1− peR(i))

] [
1− paR(1− pe′R)

]
. (3.4)



72 CHAPTER 3. VARIABLE SIZE

0 500 1000 1500

Time t

0

2000

4000

6000

8000

10000

N
u
m

b
e
rs

 o
f 
S

, 
R

 a
n
d
 C

S

R

C

490 500 510 520 530 540

Time t

0

50

100

150

200

N
u
m

b
e
rs

 o
f 
S

, 
R

 a
n
d
 C

S

R

C

A B

Figure 3.3: Resistance emergence in the presence of a biocidal an-
timicrobial above the MIC. A: Numbers of sensitive (S), resistant (R)
and compensated (C) microorganisms versus time in an example simulation
run for K = 104, with T = 1000. Here resistance takes over. Phases with-
out (resp. with) antimicrobial are shaded in white (resp. gray). B: Zoom
showing the emergence of resistance in this realization: an R mutant ap-
pears after antimicrobial is added (gray). At this time, the S population is
decreasing due to the antimicrobial-induced high death rate, but the surviv-
ing S microorganisms are still able to divide. Parameter values and initial
conditions are the same as in Fig. 3.2A, B and C.

Apart from the last term, which corresponds to resistance appearing after
antimicrobial is first added, Eq. 3.4 is identical to Eq. 3.1. The quantities
pR and pcR(i) are the same as in that case, since they only depend on what
happens just before antimicrobial is added. While peR(i) is conceptually
similar to the perfect biostatic case, it depends on f ′S and g′S , and its general
calculation is presented in Section 3.5.3 of the Appendix. This leaves us with
the new case where resistance appears in the presence of antimicrobial. In
the rare mutation regime such that Ndivµ1 � 1, it happens with probability
paR = Ndivµ1, where

Ndiv =

∫ τS

0
fS

(
1− S(t)

K

)
S(t) dt (3.5)

is the number of divisions that would occur in a population of S microor-
ganisms between the addition of antimicrobial (taken as the origin of time
here) and extinction. Employing the deterministic approximation for the
number S(t) of S microorganisms (see Eq. 3.30), the probability that the
lineage of an R mutant that appears at time t0 quickly goes extinct can be
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obtained in a similar way as for Eq. 3.2, yielding

pe
′
R(t0) = lim

t→∞

gR
∫ t
t0
eη(u)du

1 + gR
∫ t
t0
eη(u)du

, (3.6)

with

η(t) =

∫ t

t0

[
gR − fR

(
1− S(u)

K

)]
du . (3.7)

We then estimate the probability pe
′
R that the lineage of an R mutant that

appears after the addition of antimicrobial quickly goes extinct by averaging
pe
′
R(t0) over the time t0 of appearance of the mutant, under the assumption

that exactly one R mutant appears:

pe
′
R =

∫ ∞
0

pe
′
R(t0) ℘aR(t0) dt0 , (3.8)

with

℘aR(t0) =
S(t0)

(
1− S(t0)

K

)
∫∞

0 S(t)
(

1− S(t)
K

)
dt
. (3.9)

Eq. 3.4 then yields the probability that the microbial population goes extinct
thanks to the first addition of antimicrobial. Fig. 3.2A demonstrates a very
good agreement between this analytical prediction and our simulation results
in the rare mutation regime Kµ1 � 1, and Figs. 3.14A-B, 3.15 and 3.16
further demonstrate good agreement for each term involved in Eq. 3.4 in
this regime.

The extinction probability p0 depends on the size of the microbial pop-
ulation through its carrying capacity K and on the division and death rates
with antimicrobial. Fig. 3.4 shows the decrease of p0 with K, with p0 reach-
ing 0 for Kµ1 � 1 since resistant mutants are then always present when
antimicrobial is added. Moreover, Fig. 3.4 shows that p0 depends on the
antimicrobial mode of action, with large death rates favoring larger p0 in
the biocidal case, and with the perfect biostatic antimicrobial yielding the
largest p0. Qualitatively, the observed increase of p0 as g′S increases with
a biocidal drug mainly arises from the faster decay of the population of S
microorganisms, which reduces the probability paR that an R mutant appears
in the presence of antimicrobial. Furthermore, one can show that the ex-
tinction probability p0 is larger for a perfect biostatic antimicrobial than for
a perfect biocidal antimicrobial with g′S →∞ (see Appendix, Section 3.5.3).
Indeed, S microorganisms survive longer in the presence of a perfect biostatic
drug, which reduces the division rate of the R mutants due to the logistic
growth term, and thus favors their extinction. Such a competition effect
is realistic if S microorganisms still take up resources (e.g. nutrients) even
while they are not dividing. Besides, a treatment combining biostatic and
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Figure 3.4: Dependence of the extinction probability p0 on popu-
lation size and antimicrobial mode of action. The extinction prob-
ability p0 is plotted versus carrying capacity K for the perfect biostatic
drug (corresponding to Fig. 3.1), two different concentrations of biocidal
drugs yielding two different death rates g′S (corresponding to Fig. 3.2) and
a drug with both biostatic and biocidal effects. Markers correspond to sim-
ulation results, computed over 103 realizations. Solid lines correspond to
our analytical predictions from Eqs. 3.1 and 3.4, respectively, which hold
for K � 1/µ1. Parameter values and initial conditions are the same as in
Figs. 3.1 and 3.2, respectively, and the period of alternations is T = 103,
which is in the large-period regime.

biocidal effects yields a larger p0 than a pure biocidal one inducing the same
death rate, thereby illustrating the interest of the additional biostatic effect
(see Fig. 3.4). Note that conversely, adding a biocidal to a perfect biostatic
slightly decreases p0 due to the competition effect, as S microorganisms go
extinct faster than with the perfect biostatic drug alone.
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3.3.3 Sub-MIC drug concentrations and stochastic extinc-
tions

So far, we considered antimicrobial drugs above the MIC, allowing deter-
ministic extinction in the absence of resistance for long enough drug ex-
posure times. However, sub-MIC drugs can also have a major impact on
the evolution of resistance, by selecting for resistance without killing large
microbial populations, and moreover by facilitating stochastic extinctions
in finite-sized microbial populations [16, 17, 18]. In the sub-MIC regime
where f ′S > g′S , the population has a nonzero deterministic equilibrium size
N ′ = K(1− g′S/f ′S) in the presence of antimicrobial. Nevertheless, stochas-
tic extinctions can remain relatively fast, especially in the weakly-sub-MIC
regime where f ′S is close to g′S , and if K is not very large. The key point is
whether resistance appears before the extinction time τS . The average time
of appearance of an R mutant that fixes in a population of N ′ individuals
in the presence of sub-MIC antimicrobial is taR = 1/(N ′µ1g

′
Sp
′
SR), where

p′SR = [1 − f ′SgR/(fRg′S)]/[1 − (f ′SgR/(fRg
′
S))N

′
] is the fixation probability

of an R mutant in a population of S individuals with fixed size N ′ (see Ap-
pendix, Section 3.5.4, and Ref. [115]). Therefore, we expect resistance to
take over and the extinction probability p0 to be very small if taR � τS below
the MIC, even for large periods such that τS < T/2.

Fig. 3.5 shows heatmaps of the probability p0 that the microbial pop-
ulation goes extinct before resistance takes over, in the cases of biostatic
and biocidal drugs, plotted versus the period of alternations T and the non-
dimensional variable R = (g′S − f ′S)/g′S , which increases with antimicrobial
concentration and is zero at the minimum inhibitory concentration (MIC).
In both cases, two main regions are apparent, one with p0 = 0 and one where
p0 is close to one. The transition between them is well described by the solid
line T/2 = τS such that the time spent with drug is equal to the extinction
time τS of a population of sensitive microbes with drug, except for large
periods, where the relevant transition occurs below the MIC (R < 0) and is
given by taR = τS (dashed line), consistently with our analytical predictions.

The ratio R enables us to make a quantitative comparison between bio-
static and biocidal drugs. Let us focus first on the transition τS = taR. Eq.
3.15 shows that the average time it takes for the sensitive microorganisms
to spontaneously go extinct in the presence of antimicrobial can be written
as τS(f ′S , g

′
S) = Φ(R)/g′S , where Φ is a non-dimensional function. Besides,

the average fixation time of a R mutant in a population of S individuals can
also be expressed as taR(f ′S , g

′
S) = Ψ(R)/g′S , where Ψ is a non-dimensional

function. Thus, the transition τS = taR will be the same for biostatic and
biocidal drugs at a given value of R. Conversely, the transition τS = T/2,
i.e. Φ(R)/g′S = T/2, depends on g′S , and is thus different for biostatic and
biocidal drugs at the same value of R. Specifically, for a given value of
R, smaller periods T will suffice to get extinction after the first addition of



76 CHAPTER 3. VARIABLE SIZE

A B

Probability of extinction p Probability of extinction p

Figure 3.5: Heatmaps of the extinction probability. Extinction proba-
bility p0 versus alternation period T andR = (g′S−f ′S)/g′S with biostatic (A)
or biocidal (B) antimicrobial. Heatmap: simulation data, each point com-
puted over 103 realizations of simulation results, and linearly interpolated.
Dashed white line: value of R such that taR = τS (see main text). Solid white
line: T/2 = τS . Parameter values: K = 103, µ1 = 10−5, µ2 = 10−3, fS = 1,
fR = 0.9, fC = 1, gS = gR = gC = 0.1, and (A) g′S = 0.1 and variable f ′S or
(B) f ′S = 1 and variable g′S . Dotted line in B: R = (fS − gS)/(2fS − gS).
All simulations start with 10 S microorganisms.

antimicrobial for a biocidal drug than for a biostatic drug, because g′S is in-
creased by biocidal drugs, and hence τS is smaller in the biocidal case than
in the biostatic case. This means that the parameter regime where treat-
ment is efficient is larger for biocidal drugs than for biostatic drugs, as can
be seen by comparing Fig. 3.5A and Fig. 3.5B. Significantly above the MIC,
another difference is that biocidal drugs become efficient even for short peri-
ods T/2� τS if their concentration is large enough to have g′S > 2fS − gS,
i.e. R > (fS − gS)/(2fS − gS) (see above, esp. Figs. 3.2D-E). Numerical
simulation results agree well with this prediction (dotted line on Fig. 3.5B).

Importantly, the transition between large and small extinction probability
when R (and thus the antimicrobial concentration) is varied strongly depends
on population size, specifically on carrying capacity (Figs. 3.6 and 3.12), and
also depends on antimicrobial mode of action (Fig. 3.6). For small periods
where the relevant transition occurs for T/2 = τS , concentrations above the
MIC (R > 0) can actually be necessary to get extinction because one period
may not suffice to get extinction, and moreover, the extinction threshold
value R is not the same for biostatic and biocidal antimicrobials (see above
and Figs. 3.6A-B). Conversely, for large periods where the relevant transi-
tion occurs for taR = τS , and extinction occurs upon the first addition of
drug, the extinction threshold is always below the MIC (R < 0) and it is
the same for biostatic and biocidal antimicrobials (see above and Fig. 3.6C).
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In both cases, the larger the population, the larger the concentration re-
quired to get large extinction probabilities. For large periods (Fig. 3.6C),
the transition occurs close to the MIC for large populations, but the smaller
the population, the larger the discrepancy between the MIC and the actual
transition, as predicted by our analytical estimate based on taR = τS (see
Fig. 3.12). This is because in small populations, stochastic extinctions of
the population are quite fast at weakly sub-MIC antimicrobial. This is a
form of inoculum effect, where the effective MIC depends on the size of the
bacterial population [18]. In the large period regime (Fig. 3.6C), the extinc-
tion probability p0 is well-predicted by Eqs. 3.1 and 3.4 for the R values such
at most one R mutant can appear before the extinction of the population
(as assumed in our calculation of paR). In this regime, the extinction time
is close to T/2 (see Fig. 3.13) as extinction is due to the first addition of
antimicrobial, while for smaller R values, extinction occurs after multiple
periods.

In Figs. 3.6A-B, transitions between small and large values of p0 in sim-
ulated data are observed for smaller threshold values of R than predicted
by T/2 = τS (this can also be seen in Fig. 3.5, where the solid white line is
somewhat in the blue zone corresponding to large p0). This is because we
have employed the average extinction time τS , while extinction is a stochas-
tic process. Thus, even if T/2 < τS , upon each addition of antimicrobial,
there is a nonzero probability that extinction actually occurs within the
half-period. Denoting by p the probability that a given extinction time is
smaller than T/2, the population will on average go extinct after 1/p peri-
ods, unless resistance fixes earlier. For instance, a population with carrying
capacity K = 102 submitted to alternations with T = 102.5 is predicted to
develop resistance before extinction if R < 0.055. However, for R = −0.1,
simulations yield a probability p0 = 0.99 of extinction before resistance takes
over (see Fig. 3.6A). In this case, simulations yield p = 0.3, implying that
extinction typically occurs in ∼3 periods, thus explaining the large value of
p0. More generally, the probability distribution function of the extinction
time can depend on various parameters, which can impact the discrepancy
between the predicted and observed transitions. A more precise calcula-
tion would involve this distribution. Note that the distribution of extinction
times is known to be exponential for populations with a quasi-stationary
state [131, 132], but the present situation is more complex because there is
no nonzero deterministic equilibrium population size below the MIC, and
because the population size at the time when antimicrobial is added is far
from the equilibrium value with antimicrobial. Nevertheless, our prediction
based on the average extinction time τS yields the right transition shape
(see Fig. 3.5) and the correct expectations for T/2� τS and T/2� τS .
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Figure 3.6: Dependence of the extinction transition on population
size and antimicrobial mode of action. Extinction probability p0 versus
the ratio R = (g′S − f ′S)/g′S with biostatic or biocidal antimicrobial, for
different carrying capacities K, either in the small-period regime, with T =
102.5 (A and B) or in the large-period regime, with T = 105 (C). Markers:
simulation results, calculated over 103 realizations. Vertical dashed lines:
predicted extinction thresholds, i.e. values of R such that T/2 = τS (A
and B) or taR = τS (C). Solid lines (C): Analytical estimates of p0 from
Eq. 3.1 (biostatic) or Eq. 3.4 (biocidal). For K = 102 and 103, the analytical
predictions in the biostatic and biocidal case are confounded, while for K =
104 we used two shades of green to show the slight difference (light: biostatic,
dark: biocidal). Parameter values: µ1 = 10−5, µ2 = 10−3, fS = 1, fR = 0.9,
fC = 1, gS = gR = gC = 0.1, and g′S = 0.1 (biostatic) or f ′S = 1 (biocidal).
All simulations start with 10 S microorganisms.

3.4 Discussion

3.4.1 Main results

The evolution of antimicrobial resistance often occurs in variable environ-
ments, as antimicrobial is added and removed from a medium or given peri-
odically to a patient, e.g. in a treatment by the oral route [23, 24]. Alterna-
tions of phases of absence and presence of antimicrobial induce a dramatic
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time variability of selection pressure on microorganisms, and can thus have
a strong impact on resistance evolution. Using a general stochastic model
which includes variations of both composition and size of the microbial pop-
ulation, we have shed light on the impact of periodic alternations of presence
and absence of antimicrobial on the probability that resistance evolves de
novo and rescues a microbial population from extinction.

We showed that fast alternations of presence and absence of antimicro-
bial are inefficient to eradicate the microbial population and strongly favor
the establishment of resistance, unless the antimicrobial increases enough
the death rate, which can occur for biocidal antimicrobials at high concen-
tration [129, 130]. The corresponding criterion on the death rate g′S of sen-
sitive microorganisms with biocidal antimicrobial, namely g′S > 2fS − gS ,
is generally more stringent than simply requiring drug concentrations to
be above the MIC during the phases with biocidal antimicrobial, namely
g′S > fS . Indeed, the population can re-grow without antimicrobial: in
this regime, extinction occurs over multiple periods, and involves decaying
oscillations. Conversely, for biostatic antimicrobials, as well as for bioci-
dal ones at smaller concentrations, extinction has to occur within a single
phase with antimicrobial, and thus the half-period T/2 has to be longer
than the average extinction time τS , which we fully expressed analytically.
Importantly, shorter periods suffice for biocidal antimicrobials compared to
biostatic ones in order to drive a population to extinction upon the first
addition of antimicrobial, at the same value of R = (g′S − f ′S)/g′S . Hence,
the parameter regime where treatment is efficient is larger for biocidal drugs
than for biostatic drugs. If T/2 > τS , the microbial population goes extinct
upon the first addition of antimicrobial, unless it is rescued by resistance.
We obtained an analytical expression for the probability p0 that the popu-
lation is eradicated upon the first addition of antimicrobial, assuming rare
mutations. Note that with realistic bacterial mutation probabilities, namely
µ1 ∼ 10−10 [78], the rare mutation regime remains relevant even for quite
large populations. Moreover, real microbial populations are generally struc-
tured, which reduces their effective population size. Rescue by resistance
can happen either if resistant mutants preexist upon the addition of antimi-
crobial, or if they appear after antimicrobial is added to the environment,
during the decay of the population. Importantly, the latter case is fully
prevented by perfect biostatic antimicrobials that completely stop division
of sensitive microorganisms. This sheds light on the respective merits of
different antimicrobial modes of action. Finally, we showed that due to
stochastic extinctions, sub-MIC concentrations of antimicrobials can suffice
to yield extinction of the population, and we fully quantified this effect and
its dependence on population size. Throughout, all of our analytical predic-
tions were tested by numerical simulations, and the latter also allowed us
to explore cases beyond the rare mutation regime, where resistance occurs
more frequently.
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3.4.2 Practical relevance

Our results have consequences for actual experimental and clinical situa-
tions. First, several of our predictions can be tested experimentally in con-
trolled setups such as that presented in Ref. [23]. This would allow for
an experimental test of the transition of extinction probability between the
short-period and the long-period regimes, and of the predicted values of
this extinction probability for large periods in the rare mutation regime.
Second, the situation where the phases of absence and presence of antimi-
crobial have similar durations, which we considered here, is unfortunately
clinically realistic. Indeed, a goal in treatment design is that the serum
concentration of antimicrobial exceeds the MIC for at least 40 to 50% of
the time [9]. Because bacteria divide on a timescale of about an hour in
exponential growth phase, and because antimicrobial is often taken every
8 to 12 hours in treatments by the oral route, the alternation period lasts
for a few generations in treatments: this is the same order of magnitude as
the transition we found between the short-period and long-period regimes,
meaning that this transition is relevant in clinical cases. Note that while
this transition timescale depends on the death and birth rates of sensitive
microbes in the presence of antimicrobial (see Eq. 3.15), and therefore on
antimicrobial concentration, it does not depend on the value of the muta-
tion rate or on the initial population size (as long as the half-period is longer
than the initial population growth timescale, see Appendix, Section 3.5.1),
and it depends only weakly on the carrying capacity, e.g. logarithmically
in the perfect biostatic case (see Eq. 3.16). Given the relevance of this
transition between the short-period and the long-period regimes, it would
be very interesting to conduct precise measurements of both division rates
and death rates [133] in actual infections in order to determine the relevant
regime in each case. This is all the more important that in the short-period
regime, we showed that only large concentrations of biocidal antimicrobials
are efficient, while other antimicrobials systematically lead to the de novo
evolution of resistance before eradication of the microbial population. This
constitutes a striking argument in favor of the development of extended-
release antimicrobial formulations [116]. Conversely, a broader spectrum of
modes of action can be successful for longer periods of alternation of drug
absence and presence.

Despite the fact that only biocidal antimicrobials at high concentration
are efficient for short alternation periods of absence and presence of drug,
and the fact that the parameter regime where treatment is efficient is larger
for biocidal drugs than for biostatic drugs, biostatic antimicrobials that fully
stop division of sensitive microorganisms have a distinct advantage over
drugs with other modes of action. Indeed, they prevent the emergence of
resistant mutants when drug is present, which is all the more important that
such resistant mutants are immediately selected for by the antimicrobial and



3.4. DISCUSSION 81

are thus quite likely to rescue the microbial population and to lead to the
fixation of resistance. This argues in favor of combination therapies involving
a biostatic and a biocidal antimicrobial. Note however that the combined
drugs need to be chosen carefully, because some of them have antagonistic
interactions [134], depending on their mode of action.
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3.5 Appendix

3.5.1 Population with a single type of microorganisms

Master equation

Let us first consider the simple case of a microbial population with a carry-
ing capacity K comprising a single type of microorganisms. These microor-
ganisms have a fitness and a death rate denoted by f and g, respectively.
Let j be the number of individuals in the population at time t, satisfying
0 ≤ j ≤ K. The master equation describing the evolution of this population
reads for all j:

dPj(t)

dt
=f

(
1− j − 1

K

)
(j − 1)Pj−1(t) + g(j + 1)Pj+1(t)

−
(
f

(
1− j

K

)
+ g

)
jPj(t) . (3.10)

Indeed, recall that f(1− j/K) is the division rate in the logistic model. We

can write this system of equations as Ṗ = RP, where R is the transition
rate matrix:

d

dt


P0

P1

P2

.

..
PK

 =



0 g 0 · · · 0

0 −g − f(1− 1
K

) 2g (0)
...

0 f(1− 1
K

) −2g − 2f(1− 2
K

)
. . . 0

... (0)
. . .

. . . Kg

0 · · · 0 f(1− K−1
K

)(K − 1) −Kg




P0

P1

P2

..

.
PK

 .

(3.11)

This Markov chain has a single absorbing state, namely j = 0, which corre-
sponds to the extinction of the microbial population.

Average spontaneous extinction time

Let us study the average time it takes for the population to spontaneously
go extinct, i.e. the mean first-passage time τS(j0) to the absorbing state
j = 0, starting from j0 microorganisms at t = 0. It can be expressed using
the inverse of the reduced transition rate matrix R̃, which is identical to R
except that the row and the column corresponding to the absorbing state
j = 0 are removed [40, 118]:

τS(j0) = E[τ̂FP | j0] = −
K∑
i=1

(R̃−1)i j0 . (3.12)

Note that more generally, all the moments of the first-passage time can be
obtained using the reduced transition rate matrix R̃:

E[τ̂nFP | j0] = n!(−1)n
K∑
i=1

(R̃−n)i j0 . (3.13)
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Here, the elements of the inverse of the reduced transition matrix read for
all 1 ≤ j ≤ K,

(R̃−1)i j =


−

i−1∑
k=0

(
f

g

)i−k−1 Kk+1−i(K − k − 1)!

i g (K − i)!
if i ≤ j ,

−
j−1∑
k=0

(
f

g

)i−k−1 Kk+1−i(K − k − 1)!

i g (K − i)!
if i > j .

(3.14)

Substituting Eq. 3.14 in Eq. 3.12 yields

τS(j0) =
1

g

j0∑
i=1

i−1∑
k=0

(
f

g

)i−k−1 Kk+1−i(K − k − 1)!

i (K − i)!

+
1

g

K∑
i=j0+1

j0−1∑
k=0

(
f

g

)i−k−1 Kk+1−i(K − k − 1)!

i (K − i)!
. (3.15)

If f = 0, e.g. in the presence of a biostatic antimicrobial that perfectly
prevents all microorganisms from growing, Eq. 3.15 simplifies to:

τS(j0) =
1

g

j0∑
i=1

1

i
. (3.16)

Note the formal analogy between Eq. 3.16 and the unconditional fixation
time with biostatic antimicrobial (f = 0) in the Moran process, which cor-
responds to the extinction of the sensitive microbes in a population of fixed
size [40]. Both situations involve the extinction of microorganisms that do
not grow. Formally, the master equation of a Moran process describing a
microbial population of fixed size N with two types of individuals A and B
whose respective fitnesses are fA = 0 and fB = 1, reads:

dPl(t)

dt
=
l + 1

N
Pl+1(t)− l

N
Pl(t) , (3.17)

where l denotes the number of A individuals. The master equation for a
logistic growth of a population with a single type of individuals (see Eq.
3.10) with f = 0 is equivalent under the transformation 1/N ← g.

Fig. 3.7 shows how τS(10) depends on the death rate g and the carrying
capacity K. In particular, it shows that when g < f , average extinction
times become very long for large values of K, while they are short for all K
when g > f . In a deterministic description (valid for very large population
sizes), g = f indeed corresponds to the transition between a population that
decays exponentially and a population that reaches a steady state size. For
finite-sized populations, stochasticity makes this transition smoother.
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Figure 3.7: Average spontaneous extinction time of the microbial
population. A: Mean first-passage time τS(10) to the absorbing state
j = 0, i.e. average extinction time, starting from j0 = 10 microorganisms,
as a function of the fitness f for different carrying capacities K, with g = 0.1.
B: Average extinction time τS(10) as a function of the carrying capacity K
for different fitnesses f , with g = 0.1. C: Average extinction time τS(10) as
a function of the death rate g for different carrying capacities K, with f = 1.
D: Average extinction time τS(10) as a function of the carrying capacity K
for different death rates g, with f = 1.

Initial growth of the population

Deterministic approximation and rise time In the deterministic regime,
for a population with only one type of microorganisms and a carrying ca-
pacity K, the number N of individuals at time t follows the logistic ordinary
differential equation:

dN(t)

dt
= N(t)

[
f

(
1− N(t)

K

)
− g
]
, (3.18)

where f represents fitness and g death rate. For f 6= g, the solution reads:

N(t) =
KN0 e

(f−g)t (1− g/f)

K (1− g/f) +N0 (e(f−g)t − 1)
, (3.19)
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where N0 = N(0) is the initial number of individuals in the population.
Note that we recover the usual law of logistic population growth for f > 0
and g = 0 (or for f > g by setting f ← f − g):

N(t) =
KN0 e

f t

K +N0 (ef t − 1)
. (3.20)

For f > g, the long-time limit of Eq. 3.19 is K(1 − g/f). This equilibrium
population size can also be found as the steady-state solution of Eq. 3.18,
and corresponds to the birth and death rates being equal. The rise time
tr(α), at which a fraction α of this equilibrium population size is reached,
is given by:

tr(α) =
1

f − g
ln

(
αK(1− g/f)− αN0

(1− α)N0

)
. (3.21)

Hence, the initial growth of the population is governed by the timescale
1/(f − g), and features a weaker dependence on carrying capacity K and
initial population size N0, as illustrated by Fig. 3.8.
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Figure 3.8: Deterministic evolution of the population size and rise
time. A: Population size N as function of time t for different carrying
capacities K. B: rise time tr(0.99) as function of the initial number of
individuals N0 for different carrying capacities K. Results are obtained
from Eqs. 3.19 and 3.21. Parameter values: f = 1 and g = 0.1.

Probability of rapid initial extinction A microbial population starting
with few individuals may go extinct quickly due to stochastic fluctuations,
before reaching a substantial fraction of its equilibrium size K(1 − g/f).
Formally integrating the master equation Ṗ = RP with the initial condition
j = j0 allows to express the probability P0(t) that a population starting from
j0 microorganisms at t = 0 is extinct at time t:

P0(t) = (eRt)0j0 . (3.22)
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Figure 3.9: Rapid initial extinction. A: Probability P0(tr) that extinc-
tion occurs before the rise time tr(0.99) (see Eq. 3.21), when starting from
a single microorganism, j0 = 1, as function of the death rate g with f = 1
for different carrying capacities K. Results come from a numerical compu-
tation of Eq. 3.22. Solid black line: g/f . B: Probability of rapid initial
extinction P0(100) as a function of the initial number of microorganisms j0,
for different carrying capacities K. Data points correspond to numerical
computations of Eq. 3.22. Parameter values: fS = 1 and gS = 0.1. Time
t = 100 was chosen to evaluate P0 because it is larger than typical rise times
for the parameter values considered (see Fig. 3.8), but not too long, and
thus captures rapid initial extinctions but not long-term ones (see Fig. 3.7).

Fig. 3.9 shows the probability P0(tr) that the microbial population goes
extinct before the rise time tr versus g for f = 1.

We notice that P0(tr) ∼ g/f for small g and/or large K. This result can
be proved analytically by assuming that the number of individuals is very
small compared to the carrying capacity K and thus grows exponentially,
which is relevant when rapid initial extinctions occur. One can then neglect
the impact of the carrying capacity K in the master equation Eq. 3.10,
yielding:

dPj(t)

dt
= f(j − 1)Pj−1(t) + g(j + 1)Pj+1(t)− (f + g) jPj(t) . (3.23)

The solution of this master equation is given by [135]:

Pj(t) = e(f−g)t
(

1− g/f
e(f−g)t − g/f

)2
(

e(f−g)t − 1

e(f−g)t − g/f

)j−1

. (3.24)

In particular, we thus obtain:

P0(t) =
g

f

(
e(f−g)t − 1

e(f−g)t − g/f

)
→

t→+∞

g

f
if f > g . (3.25)
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3.5.2 Supplementary results on extinction probabilities and
extinction and fixation times

Perfect biostatic antimicrobial
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Figure 3.10: Periodic presence of a biostatic antimicrobial that fully
stops growth, including long periods. A: Probability p0 that the mi-
crobial population goes extinct before resistance gets established versus al-
ternation period T , for various carrying capacities K. Markers: simulation
results, with probabilities estimated over 102 − 103 realizations. Horizontal
solid colored lines: analytical predictions from Eq. 3.1. Horizontal solid black
line: average spontaneous valley crossing time τV = (fS−fR)/(µ1µ2gS) (see
main text). B: Average time text to extinction versus alternation period T
for various carrying capacities K. Data shown if extinction occurred in at
least 10 realizations. C: Average time tfix to fixation of the C microorgan-
isms versus alternation period T for various carrying capacities K. Data
shown if resistance took over in at least 10 realizations. Horizontal solid
lines: analytical predictions for very small T , using the self-averaged fitness
f̃S (see main text). In panels B and C, markers are averages over 102− 103

simulation realizations, error bars (often smaller than markers) represent
95% confidence intervals, and the oblique black line corresponds to T/2. In
all panels, colored dashed lines correspond to T/2 = τS , while black dashed
lines correspond to T/2 = τV . Parameter values: fS = 1 without antimi-
crobial, f ′S = 0 with antimicrobial, fR = 0.9, fC = 1, gS = gR = gC = 0.1,
µ1 = 10−5 and µ2 = 10−3. All simulations start with 10 S microorganisms.
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Biocidal antimicrobial
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Figure 3.11: Periodic presence of a biocidal antimicrobial above the
MIC, including long periods. A: Probability p0 that the microbial pop-
ulation goes extinct before resistance gets established versus alternation pe-
riod T , for various carrying capacities K. Markers: simulation results, with
probabilities estimated over 102 − 103 realizations. Horizontal solid lines:
analytical predictions from Eq. 3.4. B: Average time text to extinction ver-
sus alternation period T for various carrying capacities K. Data shown
if extinction occurred in at least 10 realizations. C: Average time tfix to
fixation of the C microorganisms versus alternation period T for various
carrying capacities K. Data shown if resistance took over in at least 10 real-
izations. Horizontal solid colored lines: analytical predictions for very small
T , using the self-averaged death rate g̃S (see below). Horizontal solid black
line: average spontaneous valley crossing time τV = (fS−fR)/(µ1µ2gS) (see
main text). In panels B and C, markers are averages over 102 − 103 sim-
ulation realizations, error bars (often smaller than markers) represent 95%
confidence intervals, and the oblique black line corresponds to T/2. In all
panels, colored dashed lines correspond to T/2 = τS , while black dashed
lines correspond to T/2 = τV . Parameter values: fS = 1, fR = 0.9, fC = 1,
gS = 0.1 without antimicrobial, g′S = 1.1 with antimicrobial, gR = gC = 0.1,
µ1 = 10−5 and µ2 = 10−3. All simulations start with 10 S microorganisms.
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Here, in the limit of very fast alternations, we expect an effective av-
eraging of death rates, with g̃S = 0.6 for S microorganisms. Then, an
R mutant that will fix in the population appears after an average time
t̃aR = 1/(Ñµ1g̃S p̃SR) where Ñµ1g̃S represents the total mutation rate in the
population, with Ñ = K(1 − g̃S/fS) the equilibrium population size, and

where p̃SR = [1 − fSgR/(fRg̃S)]/[1 − (fSgR/(fRg̃S))Ñ ] is the probability
that a single R mutant fixes in a population of Ñ microorganisms where
all other microorganisms are S. Subsequently, C mutants will appear and
fix, thus leading to the full evolution of resistance by the population. The
corresponding average total time tfix of resistance evolution [40] agrees well
with simulation results for T/2� τS (see Fig. 3.11C).

Population size dependence of the extinction transition
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Figure 3.12: Finite size effect on the extinction transition. Value of
the ratio R = (g′S − f ′S)/g′S such that taR = τS , plotted versus the carrying
capacity K. This value of R marks the transition between large and small
extinction probability p0 when T/2 > τS (see main text and Fig. 3.5). Red
markers: numerical solutions of the equation taR = τS . Black dashed line:
expected transition in the large population limit (R = 0, i.e. f ′S = g′S).
Parameter values: µ1 = 10−5, fS = 1, fR = 0.9, gS = gR = 0.1. Here,
results are shown in the biostatic case, and f ′S was varied, keeping g′S = 0.1,
but the biocidal case yields the exact same results (see main text).
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Dependence of the extinction time on population size and antimi-
crobial mode of action
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Figure 3.13: Dependence of the average extinction time on popula-
tion size and antimicrobial mode of action. Average extinction time
text versus the ratio R = (g′S − f ′S)/g′S with biostatic or biocidal antimicro-
bial, for different carrying capacities K, either in the small-period regime,
with T = 102.5 (A and B) or in the large-period regime, with T = 105

(C). Markers: simulation results, calculated over the realizations ending in
extinction of the population, if their number is at least 10, among 103 re-
alizations total per marker. Error bars: 95% confidence intervals. Vertical
dashed lines: predicted extinction thresholds, i.e. values of R such that
T/2 = τS (A and B) or taR = τS (C). Horizontal dashed lines: text = T/2.
Parameter values (same as in Fig. 3.6): µ1 = 10−5, µ2 = 10−3, fS = 1,
fR = 0.9, fC = 1, gS = gR = gC = 0.1, and g′S = 0.1 (biostatic) or f ′S = 1
(biocidal). All simulations start with 10 S microorganisms.
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3.5.3 Rescue by resistance

Number of resistant mutants when antimicrobial is added: pcR(i)

Let pcR(i) be the probability that exactly i R microorganisms are present
when antimicrobial is added, provided that a lineage of R mutants then ex-
ists. It can be calculated in the framework of the Moran model, provided
that the population size is stable around N = K(1− gS/fS) before antimi-
crobial is added, which is correct for T/2 � tr, where tr is the rise time
(see section 3.5.1). Specifically, pcR(i) can be expressed as a ratio of the
sojourn time in state i to the total lifetime of the lineage in the absence of
antimicrobial:

pcR(i) =
τdR,i

τdR
, (3.26)

where τdR is the average lifetime without antimicrobial of the lineage of a
resistant mutant, assuming that it is destined for extinction, and τdR,i is
the average time this lineage spends with exactly i R individuals before
going extinct. They satisfy τdR =

∑N−1
i=1 τdR,i. Note that we consider lineages

destined for extinction in the absence of antimicrobial, because we focus on
timescales much shorter than the spontaneous valley crossing time. In fact,
in this regime, considering unconditional times yields nearly identical values
for pcR(i).

Employing the master equation Ṗ = RP that describes the time evolu-
tion of the number of R mutants within the Moran model [11, 40], where R
is the transition rate matrix, we obtain

τdR,i =
πi
π1

∫ ∞
0

Pi(t)dt = − πi
π1

(R̃−1)i 1 , (3.27)

where πi is the probability that the R mutants go extinct, starting from i
R mutants [11, 40], while R̃ is the reduced transition rate matrix, which
is identical to the transition rate matrix R, except that the rows and the
columns corresponding to the absorbing states i = 0 and i = N are re-
moved [40]. Here, we take N = K(1 − gS/fS), which corresponds to the
deterministic equilibrium population size. Finally, we obtain

pcR(i) =
πi(R̃

−1)i 1∑N−1
k=1 πk(R̃−1)k 1

. (3.28)

Probability of fast extinction of the resistant mutants: peR(i)

Let us consider the beginning of the first phase with antimicrobial, and take
as our origin of time t = 0 the beginning of the phase with antimicrobial.
Here, we consider the general case of an antimicrobial that may modify both
the division rate and the death rate of sensitive microorganisms. Provided
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that some resistant microorganisms are present at t = 0, how likely is it that
they will undergo a rapid stochastic extinction and not rescue the microbial
population and lead to the establishment of resistance? Denoting by i >
0 the number of resistant microorganisms at t = 0, let us estimate the
probability peR(i) that the lineage of R mutants then quickly goes extinct.
As explained in the main text, we approximate the reproduction rate of the
R microorganisms by

fR(t) = fR

(
1− S(t) +R(t)

K

)
≈ fR

(
1− S(t)

K

)
, (3.29)

where S(t) and R(t) are the numbers of S and R individuals at time t. This
is appropriate because early extinctions of R mutants tend to happen shortly
after the addition of antimicrobials, when S(t)� R(t). Thus motivated, we
further employ the deterministic approximation to describe the decreasing
number S(t) of S microorganisms:

S(t) =
K(1− g′S/f ′S)S0e

(f ′S−g
′
S)t

K(1− g′S/f ′S) + S0(e(f ′S−g
′
S)t − 1)

, (3.30)

where S0 = K(1 − gS/fS) is the number of sensitive microorganisms when
antimicrobial is added. Note that if f ′S = 0 and g′S = gS , i.e. in the perfect
biostatic case, we obtain

S(t) = K

(
1− gS

fS

)
e−gSt , (3.31)

for the decay of the number of S microorganisms with antimicrobial. How-
ever, we retain a stochastic description for the rare R mutants, and employ
the probability generating function

φi(z, t) =
∞∑
j=0

zjP (j, t|i, 0) , (3.32)

where i is the initial number of R microorganisms. Indeed, noticing that

peR(i) = lim
t→∞

P (0, t|i, 0) = lim
t→∞

φi(0, t) (3.33)

will enable us to calculate peR(i) [125, 126].

The probability P (j, t|i, 0) of having j R mutants at time t, starting from
i R mutants at time t = 0, satisfies the master equation

∂P (j, t|i, 0)

∂t
=fR(t) (j − 1)P (j − 1, t|i, 0) + gR (j + 1)P (j + 1, t|i, 0)

− (fR(t) + gR) j P (j, t|i, 0) . (3.34)
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Here, we neglect mutants that appear after the addition of antimicrobial,
and we deal with them in the calculation of paR and pe

′
R. The generating

function defined in Eq. 3.32 satisfies the partial differential equation

∂φi(z, t)

∂t
− (z − 1)(fR(t)z − gR)

∂φi(z, t)

∂z
= 0 . (3.35)

This first-order nonlinear partial differential equation can be solved using
the method of characteristics. For this, we rewrite it as:

~v.~∇φi = 0 , (3.36)

where ~v = (1, −(z − 1)(fB(t)z − gB))t and ~∇φi = (∂φi/∂t, ∂φi/∂z)
t. A

characteristic curve ~r(s) satisfies d~r/ds = ~v(~r(s)), which entails

dφi
ds

=
d~r

ds
.~∇φi = ~v.~∇φi = 0 , (3.37)

implying that φi is constant along a characteristic curve. Since dφi/ds =
(∂φi/∂t)(dt/ds) + (∂φi/∂z)(dz/ds), we obtain the following system of ordi-
nary differential equations along a characteristic curve:

dt

ds
= 1 ,

dz

ds
= −(z − 1)(fR(t)z − gR) .

(3.38)

We choose to integrate it ast = s ,
dz

dt
= −(z − 1)(fR(t)z − gR) .

(3.39)

The second ordinary differential equation can be solved by introducing y =
1/(z − 1), which yields

eρ(t)

z − 1
−
∫ t

0
fR(u)eρ(u)du =

1

z0 − 1
, (3.40)

with

ρ(t) =

∫ t

0
(gR − fR(u)) du , (3.41)

where we have employed Eqs. 3.29 and 3.31. Eq. 3.40 is the equation of the
characteristic line going through the point (0, z0). Because φi is constant
along this line (see Eq. 3.37), we have φi(z, t) = φi(z0, 0) = zi0 along this
line, where we have used Eq. 3.32. Furthermore, for any (z, t) we can find
the appropriate z0 using Eq. 3.40. This yields the following expression for
the generating function:

φi(z, t) =

1 +

(
eρ(t)

z − 1
−
∫ t

0
fR(u)eρ(u)du

)−1
i , (3.42)
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where ρ(t) is given by Eq. 3.41 and fR(t) by Eq. 3.29.
We can now express the probability peR(i) from Eqs. 3.33 and 3.42:

peR(i) = lim
t→∞

[
gR
∫ t

0 e
ρ(u)du

1 + gR
∫ t

0 e
ρ(u)du

]i
. (3.43)

Predicting the extinction probability p0

Here, we test the analytical predictions for each term involved in the ex-
tinction probability p0 of the population above the MIC, both in the perfect
biostatic case (see Eq. 3.1) and in the biocidal case (see Eq. 3.4), by com-
paring them to numerical simulation results. To estimate the probability
pR that at least one R mutant is present when antimicrobial is added, and
to study the number of R mutants that are then present (Fig. 3.14A-B),
simulations are run starting from j0 = 10 S microorganisms (and no R) as
in the rest of our work. We let the population evolve until a specific time,
in practice t = 500, when population size is well-equilibrated around the
deterministic stationary value K(1− gS/fS) without antimicrobial, and we
analyze population composition at this time. To estimate the probability
peR of rapid extinction of the R lineage (Figs. 3.14C and 3.16A), we start
from a population with i R microorganisms and K(1− gS/fS)− i sensitive
microorganisms, and we let it evolve with antimicrobial until extinction of
the S microorganisms. All these simulations are run with 2 types of mi-
croorganisms, S and R (no compensation). In Figs. 3.14C and 3.16A, we
note that peR does not seem to depend on K. In fact, our analytical estimate
for peR is fully independent of K because it only involves the ratio S(t)/K
(see Eqs. 3.43, 3.41 and 3.29), whose deterministic dynamics is independent
of K (see Eq. 3.18 with N(t)← S(t)).

The probability paR that resistance appears in the presence of antimicro-
bial involves the number of divisions Ndiv and the mean time to extinction
τS of a population of S microorganisms in the presence of antimicrobial
(see main text). To estimate these two intermediate quantities, simulations
only involving S microorganisms in the presence of antimicrobial, starting
from K(1− gS/fS) sensitive microorganisms, are performed (Fig. 3.15A-B).
For paR itself (Fig. 3.16B), simulations with S and R microbes (no compen-
sation), also starting from K(1 − gS/fS) sensitive microorganisms in the
presence of antimicrobial, are performed. The time of appearance of R mu-
tants (Fig. 3.15C-D) and the number of different lineages that appear during
the decay of this population (Fig. 3.16C) are also studied.



3.5. APPENDIX 95

1 2 3 4 5 6 7

Number i of R mutants when adding antimicrobial

10-3

10-2

10-1

P
ro

b
a

b
ili

ty
 p

Re

K=10
2

K=10
3

K=10
4

K=10
5

100 101 102

Number i of R mutants when adding antimicrobial

10-4

10-3

10-2

10-1

P
ro

b
a

b
ili

ty
 p

Rc

K=10
2

K=10
3

K=10
4

K=10
5

102 103 104 105

Carrying capacity K

10-2

10-1

100

P
ro

b
a

b
ili

ty
 p

R

Simulation

Theory

A

B C

Figure 3.14: Perfect biostatic antimicrobial: test of analytical pre-
dictions for each term involved in p0 (Eq. 3.1). A: Probability pR
that at least one R mutant is present when antimicrobial is added, plotted
versus carrying capacity K. Markers: simulation results, with probabili-
ties estimated over 104 realizations. Red solid line: analytical prediction,
pR = tappR /τdR = Nµ1gSτ

d
R (see main text). B: Probability pcR that exactly i

R microorganisms are present when antimicrobial is added, provided that at
least one R mutant is present, plotted versus the number i of R mutants, for
various carrying capacities K. Markers: simulation results, estimated over
104 realizations. Solid lines: analytical prediction in Eq. 3.28. Analytical
prediction lines for K = 104 and K = 105 are confounded; note that the
prediction holds in the weak mutation regime Kµ1 � 1, and thus fails for
K = 105 here. C: Probability peR of rapid extinction of the R lineage, plotted
versus the number i of R mutants present when adding antimicrobial, for
various different carrying capacities K. Markers: simulation results, with
probabilities estimated over 104 realizations. Black solid line: analytical
prediction from Eq. 3.2 (see main text). Parameter values: fS = 1 without
antimicrobial, f ′S = 0 with antimicrobial, fR = 0.9, gS = gR = 0.1 and
µ1 = 10−5 (A-B) or µ1 = 0 (C).
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Figure 3.15: Biocidal antimicrobial: test of analytical predictions
for intermediate quantities involved in the calculation of p0 (see
Eq. 3.4). A: Average time τS to extinction of a population of S microor-
ganisms in the presence of antimicrobial, plotted versus the carrying ca-
pacity K. Markers: simulation results, with probabilities estimated over
104 realizations. Red solid line: analytical prediction from Eq. 3.15, with
j0 = K(1−gS/fS). B: Number Ndiv of individual division events that occur
between the addition of antimicrobial and the extinction of the population
of S microorganisms, plotted versus carrying capacity K. Red markers:
simulation results, with probabilities estimated over 104 realizations. Red
solid line: analytical prediction from Eq. 3.5. C and D: Probability den-
sity function ℘aR(t) of the time t of appearance of an R mutant, under the
assumption that exactly one R mutant appears between the addition of an-
timicrobial and the extinction of the population of S microorganisms, for
K = 103 (C) and K = 104 (D). Histograms: simulation results, with 103 re-
alizations. Black solid lines: analytical prediction from Eq. 3.9. Parameter
values: fS = 1, gS = 0.1 without antimicrobial, g′S = 1.1 with antimicrobial,
and in panels C and D, fR = 0.9, gR = 0.1 and µ1 = 10−5.
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Figure 3.16: Biocidal antimicrobial: test of analytical predictions
for each term involved in p0 (see Eq. 3.4). Note that pR and pcR are
the same as in Fig. 3.14A-B. A: Probability peR of rapid extinction of the R
lineage, plotted versus the number i of R mutants present when adding an-
timicrobial, for various different carrying capacities K. Markers: simulation
results, with probabilities estimated over 104 realizations. Black solid line:
analytical prediction from Eq. 3.43. B: Probability paR that resistance ap-
pears in the presence of antimicrobial, plotted versus the carrying capacity
K. Red markers: simulation results, with probabilities estimated over 104

realizations. Red solid line: analytical prediction, paR = Ndivµ1 with Ndiv in
Eq. 3.5. C: Probability that i distinct lineages of R mutants appear in the
presence of antimicrobial, provided that at least one appears, plotted versus
the carrying capacity K. Markers: simulation results, with probabilities es-
timated over 103 realizations. Parameter values: fS = 1, fR = 0.9, gS = 0.1
without antimicrobial, g′S = 1.1 with antimicrobial, gR = 0.1 and µ1 = 0
(panel A) or µ1 = 10−5 (panels B and C).
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A perfect biostatic antimicrobial yields a larger p0 than a perfect
biocidal antimicrobial

For a perfect biostatic antimicrobial, the extinction probability p0 upon the
first addition of drug is given by Eq. 3.1:

p0 = 1− pR
N−1∑
i=1

pcR(i)(1− peR(i)) , (3.44)

while for a biocidal antimicrobial, the extinction probability p̃0 upon the
first addition of drug is given by Eq. 3.4:

p̃0 =

[
1− pR

N−1∑
i=1

pcR(i)(1− p̃eR(i))

] [
1− paR(1− pe′R)

]
< 1− pR

N−1∑
i=1

pcR(i)(1− p̃eR(i)) . (3.45)

In Eq. 3.45 we have employed tilde symbols to denote the quantities that
differ compared to Eq. 3.44. Recall that pR and pcR(i) are the same in both
cases. Indeed, these quantities characterize the state of the population when
the antimicrobial is added, and thus do not depend on the type of treatment
subsequently added.

The perfect biocidal antimicrobial corresponds to g′S →∞. Let us prove
that limg′S→∞ p̃0 < p0. From Eqs. 3.44 and 3.45 it is apparent that it suffices
to prove that limg′S→∞ p̃

e
R(i) < peR(i) for all i. The expression of both peR(i)

and p̃eR(i) is given in Eq. 3.43, but it involves the decaying number S(t) of S
microorganisms once antimicrobial is added, which is different in these two
cases, and is given respectively by Eq. 3.30 with f ′S = fS in the biocidal case
and by Eq. 3.31 in the perfect biostatic case.

Taking the limit g′S → ∞ in Eq. 3.43 yields limg′S→∞ p̃
e
R(i) = (gR/fR)i,

which corresponds to the extinction probability of a population that starts
from i R microorganisms, in the absence of any other microorganisms [16].
But for a perfect biostatic antimicrobial,

ρ(t) =

∫ t

0

[
gR − fR

(
1− S(u)

K

)]
du >

∫ t

0
[gR − fR] du = (gR − fR)t ,

(3.46)
which, using Eq. 3.43, entails that peR(i) > (gR/fR)i, i.e. limg′S→∞ p̃

e
R(i) <

peR(i) for all i. Therefore, we have shown that limg′S→∞ p̃0 < p0: the extinc-
tion probability p0 is larger for a perfect biostatic antimicrobial than for a
perfect biocidal antimicrobial.

Importantly, our proof does not rely on the appearance of resistant mi-
croorganisms while antimicrobial is present, which cannot happen with a
perfect biostatic antimicrobial, and whose probability tends to zero when
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g′S → ∞ with a biocidal antimicrobial. What makes the perfect biostatic
antimicrobial more efficient than the perfect biocidal one is that S microor-
ganisms survive for a longer time, thereby reducing the division rate of R
microorganisms due to the logistic term, and favoring their extinction. Such
a competition effect is realistic if S microorganisms still take up resources
(e.g. nutrients) even while they are not dividing.

3.5.4 Fixation probability of a mutant in a population of
constant size

In the main text, in our discussion of sub-MIC concentrations of antimi-
crobials, we employed the fixation probability pSR of an R mutant in a
population of S individuals with fixed size N :

pSR =
1− fSgR/(fRgS)

1− [fSgR/(fRgS)]N
. (3.47)

Here, we briefly justify this formula.
Consider a birth-death process in which, at each discrete time step, one

individual is chosen with a probability proportional to its fitness to reproduce
and another one is chosen with a probability proportional to its death rate
to die. Note that at each time step, the total number of individuals in the
population stays constant. This model is a variant of the Moran model
with selection both on division and on death. Let i be the number of R
microorganisms and N − i the number of S microorganisms. At a given
time step, the probability T+

i that the number of R individuals increases
from i to i+ 1 satisfies:

T+
i =

fRi

fRi+ fS(N − i)
gS(N − i)

gRi+ gS(N − i)
, (3.48)

and similarly, the probability T−i that i decreases by 1 is given by:

T−i =
fS(N − i)

fRi+ fS(N − i)
gRi

gRi+ gS(N − i)
. (3.49)

The probability pSR that the R genotype fixes in the population, starting
from 1 R microorganism, then satisfies [115]:

pSR =
1

1 +
∑N−1

k=1

∏k
j=1 γj

, (3.50)

where

γi =
T−i
T+
i

=
fSgR
fRgS

. (3.51)

We thus obtain the result announced in Eq. 3.47.
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3.5.5 Detailed simulation methods

In this work, the evolution of microbial populations are simulated using a
Gillespie algorithm [127, 128]. Let us denote by jS , jR and jC the respective
numbers of S, R and C individuals. The elementary events that can happen
are division with or without mutation and death of an individual microbe
of either type:

• S
k+S−−→ 2S: Reproduction without mutation of a sensitive microbe with

rate k+
S = feS(1 − (jS + jR + jC)/K)(1 − µ1), with feS = fS if no

antimicrobial is present in the environment or feS = f ′S if antimicrobial
is present in the environment.

• S kSR−−→ S+R: Reproduction with mutation of a sensitive microbe with
rate kSR = feS(1− (jS + jR + jC)/K)µ1.

• S
k−S−−→ ∅: Death of a sensitive microbe with rate k−S = geS , with geS =

gS if no antimicrobial is present in the environment or geS = g′S if
antimicrobial is present in the environment.

• R
k+R−−→ 2R: Reproduction without mutation of a resistant microbe with

rate k+
R = fR(1− (jS + jR + jC)/K)(1− µ2).

• R kRC−−→ R + C: Reproduction with mutation of a resistant microbe
with rate kRC = fR(1− (jS + jR + jC)/K)µ2.

• R
k−R−−→ ∅: Death of a resistant microbe with rate k−R = gR.

• C
k+C−−→ 2C: Reproduction of a resistant-compensated microbe with

rate k+
C = fC(1− (jS + jR + jC)/K).

• C
k−C−−→ ∅: Death of a resistant-compensated microbe with rate k−C =

gC .

The total rate of events is given by ktot = (k+
S + kSR + k−S )jS + (k+

R + kRC +
k−R)jR + (k+

C + k−C )jC .

Simulation steps are as follows:

1. Initialization: The microbial population starts from jS = 10 sensi-
tive microorganisms, jR = 0 resistant mutant and jC = 0 resistant-
compensated mutant at time t = 0 without antimicrobial. The next
time when the environment changes is stored in the variable tswitch,
which is initialized at tswitch = T/2, the first time when antimicrobial
is added.
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2. The time increment ∆t is sampled randomly from an exponential dis-
tribution with mean 1/ktot, and the next event that may occur is
chosen randomly, proportionally to its probability k/ktot, where k is
its rate. For instance, division of a sensitive microorganism without
mutation is chosen with probability k+

S jS/ktot.

3. If t+ ∆t < tswitch, time is increased to t+ ∆t and the event chosen at
Step 2 is executed.

4. If t+ ∆t ≥ tswitch, the event chosen at Step 2 is not executed, because
an environment change has to occur before. The environment change
is performed: time is incremented to t = tswitch, and the fitness and
death rate of the sensitive microbes are switched from fS to f ′S and
from gS to g′S or vice-versa. In addition, tswitch is incremented to
tswitch + T/2, and thus stores the next time when the environment
changes.

5. We go back to Step 2 and iterate until the total number of microbes
is zero (jS + jR + jC = 0) or there are only resistant-compensated
mutants (jS = 0, jR = 0 and jC 6= 0).

Note that Step 4 introduces an artificial discretization of time, because
environment changes occur at fixed times and not with a fixed rate. How-
ever, because the total event rate is large unless the population size is very
small, the “jump” in time induced by Step 4 is usually extremely small,
and the discarded events constitute a tiny minority of events. The resulting
error is thus expected to be negligible. The very good agreement between
our simulation results and our analytical predictions, in particular for short
periods, corroborates this point.
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The work presented in this chapter was published in the following preprint:
Marrec L, Bitbol AF. Adapt or perish: Evolutionary rescue in a gradually
deteriorating environment. bioRxiv doi: 10.1101/2020.05.05.079616 . 2020.

In this chapter, we theoretically investigate the evolutionary rescue of
a microbial population in a gradually deteriorating environment. We show
that mutants appearing later have higher fixation probabilities. We demon-
strate that the rescue probability of the population increases if the product
of the carrying capacity and of the mutation probability increases, and if the
environment degradation is slower. We find that specialist mutants rescue
the population better than generalists. We express the average appearance
time of the mutants that rescue the population. Our methods can be applied
to other situations with continuously variable fitnesses and population sizes,
and hold beyond the weak-mutation regime.

103



104 CHAPTER 4. DETERIORATING ENVIRONMENT

4.1 Introduction

In Chapters 2 and 3, we have developed models to investigate the evolu-
tion of antimicrobial resistance in microbial populations subject to periodic
alternations of antimicrobial presence and absence. In these models, the
transition from an environment with antimicrobial to a free-antimicrobial
environment, and vice versa, is abrupt. Understanding how a population
of living organisms can survive in a gradually deteriorating environment is
a fundamental question in evolution [20, 21, 22], which is particularly rel-
evant to understand antimicrobial resistance evolution, which often occurs
in a variable environment, as antimicrobial is added to a medium or given
to a patient [23, 24]. Indeed, even when antimicrobial is added instanta-
neously, the resulting fitness decrease is gradual [23]. Moreover, resistance
evolution tends to be favored by gradually increasing antimicrobial concen-
trations [25, 26, 27, 28, 29]. In a deteriorating environment, the fitness
of wild-type organisms decreases with time. In the simple case of asexual
microorganisms, considering that fitness is division rate, the fitness of mi-
croorganisms can then become smaller than their death rate, which yields a
decrease of population size, eventually leading to extinction [16]. However,
the population can be rescued by a mutation which is better adapted to the
new environment, and restores positive population growth: this phenomenon
is called evolutionary rescue [19, 30, 31, 32].

A gradually deteriorating environment impacts the population size and
the fitness of the wild-type organism, which can both strongly impact the
fate of a mutation [21]. Studying the evolutionary rescue of a population
in a gradually deteriorating environment requires accounting for simulta-
neous continuous time variations of fitness, population size and population
composition, which makes it complex. Varying patterns of selection have
recently been the focus of significant interest, mainly in the case of switches
between different environment states, highlighting their strong effect on evo-
lution [3, 4, 5, 7, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Despite its practical
relevance, the case of a continuously varying fitness has been comparatively
less studied, with a focus on stabilizing selection [43, 44] or on the fate of a
single beneficial mutation [20, 21, 22]. Furthermore, most works on evolu-
tionary rescue consider an abrupt environment change [30, 45, 46, 47]. Here
we address evolutionary rescue in a gradually changing environment, which
deteriorates from the point of view of wild-type organisms.

Adaptation to a new environment can occur in multiple ways. A spe-
cialist mutant that is particularly well-adapted to this new environment can
emerge. Another possibility is the appearance of a generalist mutant, which
is able to grow in both the initial and the final environments, while being less
fit than specialists in their respective favorite environments [37, 48, 49, 50].
Concrete examples of generalists include multi-resistant microorganisms and
broadly-neutralizing antibodies [49, 51].
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In the present work, we consider a microbial population subjected to a
gradual environment deterioration, such that the fitness and the size of the
wild-type population are gradually decaying, and that extinction would be
certain in the absence of adaptation. We study the fixation probability of
generalist and specialist adaptive mutants as a function of the time when
they appear during the environment deterioration. We obtain an expression
for the overall probability that the population is rescued by an adaptive
mutation, thereby avoiding extinction. We investigate the dependence of the
rescue probability on the rapidity of the environment deterioration, as well
as on population size and mutation probability. We also compare generalist
and specialist mutants. We further express the average time of appearance
of the mutants that do rescue the population and the average extinction
time of those that do not.

4.2 Model and methods

4.2.1 Population model

We consider a population of asexual microorganisms with carrying capacity
K, corresponding to the maximum population size that the environment
can sustain, given e.g. the nutrients available. We assume that two types
of microorganisms can exist in this population: wild-type (W) and mutant
(M). The division rate of each organism is assumed to be logistic [136], and
reads fi(t)(1−N/K), where N represents the total population size, while the
time-dependent fitness fi(t) with i = W or i = M represents the maximal
possible division rate of the (wild-type or mutant) organism at time t, which
would be reached if N � K. The death rates of W and M organisms are
respectively denoted by gW and gM . While we assume that the variability of
the environment impacts fitnesses and not death rates, our approach can be
easily extended to variable death rates. Note that in the case of antimicrobial
resistance evolution, variable fitnesses are relevant to model the effect of
biostatic antimicrobials, while biocidal ones affect death rates. We further
assume that W microorganisms can mutate into M microorganisms with
the mutation probability µ upon each division. We do not consider back
mutations. Our model thus incorporates both variations of population size
(population dynamics) and of composition (population genetics) [5, 10, 122].
Throughout, our time unit corresponds to a generation of W microorganisms
in the initial environment and in the exponential phase (reached when t = 0
and N � K).

We start from a microbial population composed of NW (0) = N0
W wild-

type microorganisms and no mutant. Specifically, our simulations include
a phase of initial growth, which can model e.g. the development of an
infection starting from the bottleneck at transmission [123]. Our results
are robust to variations of this initial condition, since we consider environ-
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mental timescales longer than that of the initial growth of the population
to its equilibrium size. Note that if we started with a very small number
of W microorganisms (i.e. 1 or 2), we would need to take into account
rapid stochastic extinctions of the population [132]: we will not consider
this regime, and in practice we will start our simulations with N0

W = 10.

4.2.2 Fitnesses in a deteriorating environment

To model the impact of a continuously deteriorating environment on the
fitness of W microorganisms, we choose the Hill function:

fW (t) =
1

1 + (t/θ)n
, (4.1)

where n is the Hill coefficient and θ the inflection point, such that fW (θ) =
0.5. This sigmoidal function represents a transition between two different
environments, by decreasing from the reference fitness value fW (0) = 1
toward 0 as t increases, with a steepness that is tunable via n. Specifically,
the decay is more abrupt manner for larger values of n (see Fig. 4.1A). The
Hill function is quite generic in biological contexts, e.g. it is a good model
for cooperative reactions, and for the pharmacodynamics of antimicrobials
[8]. Moreover, the methods presented here do not depend on the exact form
of the function chosen.

We will consider two types of adaptive mutants. First, generalist mu-
tants, denoted by G, are not impacted by gradual changes of the environment
and have a constant fitness fG. We choose fG = 0.5 so that G mutants and
W organisms have the same time-averaged fitness. Second, specialist mu-
tants, denoted by S, have a fitness described by an increasing Hill function,
so that they are better adapted to the final environment, in contrast to W
organisms:

fS(t) =
(t/θ)m

1 + (t/θ)m
. (4.2)

We take the same point of inflection θ for W and S, as it marks the midst of
the environmental transition. Conversely, we allow different Hill coefficients
n and m, reflecting a different sensitivity of W and S individuals to environ-
mental change (see Fig. 4.1A). Note that S mutants and W organisms have
the same time-averaged fitness, and that G mutants are in fact S mutants
with m = 0.

4.2.3 Methods

We present both analytical and numerical results. Our analytical results are
obtained using methods from stochastic processes, especially from birth-
death processes with time varying rates [21, 101, 124, 125, 126]. Impor-
tantly, our predictions make quite minimal assumptions and extend beyond
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Figure 4.1: Fitnesses and wild-type population in a deteriorating
environment. A: Fitnesses fW , fG and fS of the wild-type organisms (W),
generalist (G) and specialist (S) mutants versus time t (see Eqs. 4.1 and 4.2).
Several values of the Hill coefficient n are shown for W. B: Number NW of
W microbes versus time t for different values of n (same colors as in A).
Data points correspond to averages over 103 replicate stochastic simulations,
and error bars (smaller than markers) represent 95% confidence intervals.
Black solid curves correspond to numerical resolutions of Eq. 4.3. Parameter
values: gW = gS = gG = 0.1, K = 103, N0

W = 10, and θ = 103. Vertical
dotted line in both panels: t = θ.

the weak-mutation regime where Kµ� 1. Our simulations employ a Gille-
spie algorithm [127, 128], and incorporate all individual stochastic division,
mutation and death events with the associated rates. In principle, the time
variability of the division rates imposes a difficulty [137], but the sort du-
ration of time intervals between individual events allows us to neglect rate
variations between events (see Appendix, Section 4.5.8 for details). Our
model allows us to fully account for the stochasticity of mutation occur-
rence and establishment [11, 12, 13, 14, 15], as well as that of population
extinction [16, 17, 18].

In our analytical calculations, we will often make a deterministic ap-
proximation for the evolution of the number NW of W individuals, while
the evolution of the mutant population will be described in a fully stochas-
tic manner. Indeed, mutants are in small numbers when they appear, while
they generally arise in a large population of W organisms. In the determin-
istic limit, NW satisfies the following ordinary differential equation:

dNW

dt
=

[
fW (t)

(
1− NW

K

)
− gW

]
NW . (4.3)

This description is appropriate for very large NW , and Eq. 4.3 can be derived
from the complete stochastic model in this limit (see Appendix, Section 4.5.6
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and Refs. [119, 138]).

Fig. 4.1B compares the predictions from Eqs. 4.1 and 4.3 to the results
of stochastic simulations (see Appendix, Section 4.5.8), and demonstrates
the validity of the deterministic approximation in this regime. Fig. 4.1b also
illustrates that in the absence of mutants, the population of W individuals
always goes extinct, due to the fact that fitness fW tends to 0 while death
rate is nonzero (gW > 0). Moreover, the bigger the Hill coefficient n, the
faster the W population goes extinct.

4.3 Results

4.3.1 Fixation probability of mutants: on the importance of
good timing

In a deteriorating environment, mutants will have different fates depend-
ing on when they appear. Therefore, before investigating overall rescue
probabilities, we address the fixation probability pfix(t0) of a mutant as a
function of the time t0 when it appears during the environment deterio-
ration. Competition with wild-type organisms is felt by mutants through
their division rate fM (t){1− [NW (t)+NM (t)]/K}. At the early stages when
competition matters, i.e. when the logistic term is important, the number of
mutants is small with respect to the number of wild-type microorganisms,
NM (t)� NW (t), and thus the division rate of mutants can be approximated
by fM (t)[1−NW (t)/K]. Furthermore, at these early stages, the number of
wild-type microorganisms NW is large enough to be described in a determin-
istic framework (see Models and Methods, Eq. 4.3 and Fig. 4.1). We retain
a full stochastic description for mutants, which are in small numbers just
after the mutation arises [21, 125, 126], and we introduce the probability
P (i, t|1, t0) of having i mutants at time t knowing that there is 1 mutant
at time t0. The fixation probability of the mutants can then be obtained
from the probability generating function φ(z, t) =

∑∞
i=0 z

iP (i, t|1, t0), which
satisfies pfix(t0) = 1− limt→∞ P (0, t|1, t0) = 1− limt→∞ φ(0, t). Solving the
partial differential equation governing the evolution of φ(z, t) (see Appendix,
Section 4.5.1) yields [21, 125, 126]

pfix(t0) =
1

1 + gM
∫∞
t0
eρ(t)dt

, (4.4)

where

ρ(t) =

∫ t

t0

[
gM − fM (u)

(
1− NW (u)

K

)]
du . (4.5)

Numerical resolutions of Eq. 4.4 are discussed in Section 4.5.7.

Fig. 4.2 shows the fixation probability pfix of a mutant versus the time
t0 at which it appears during the deterioration of the environment. A very
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good agreement is obtained between the results of our stochastic simulations
and the analytical prediction of Eq. 4.4. This holds both when t0 < θ, while
mutants are less fit than W organisms, and when t0 > θ, where the opposite
is true. In Fig. 4.5, we provide additional results for the fixation probability
of generalist mutants with different fitness values fG, which thus become
effectively beneficial sooner or later during the environment deterioration,
illustrating that Eq. 4.4 holds in these various cases.
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Figure 4.2: Fixation probability of mutants. A. Fixation probability
pfix of G and S mutants versus their time of appearance t0 in the deteriorating
environment, for different Hill coefficients n characterizing the steepness of
the environment deterioration (see Eq. 4.1). Here, S mutants satisfy m = n,
i.e. they have the same sensitivity to the environment as W organisms (see
Eq. 4.2). Horizontal dashed line: pfix = 1 − gG/fG. Horizontal solid line:
pfix = 1−gS . B. Fixation probability pfix of different types of mutants versus
their time of appearance t0 in the deteriorating environment, for a fixed Hill
coefficient n = 10 characterizing the decay of fW (see Eq. 4.1). G mutants
and S mutants with different Hill coefficients m (see Eq. 4.2), corresponding
to different sensitivities to the changing environment, are considered. In
both panels, markers correspond to averages over 104 replicate stochastic
simulations (“Sim.”). Dashed and solid lines correspond to numerical res-
olutions of Eq. 4.4 (“Th.”) for G and S mutants, respectively. Parameter
values: gW = gG = gS = 0.1, K = 103, N0

W = 10 and θ = 103. Vertical
dotted lines: t = θ. Main panels: linear scale; insets: semi-logarithmic scale.

Fig. 4.2 shows that pfix strongly increases with t0: mutants appearing
later in the environmental degradation are much more likely to fix. This
reflects the increasing fitness advantage of mutants and the decreasing com-
petition with the W population that decays as the environment deteriorates
for W organisms. Fig. 4.2A shows that the increase of pfix is strong around
the inflection point θ, and is steeper for larger Hill coefficients n characteriz-
ing the fitness decay of the wild-type organisms (see Eq. 4.1). Furthermore,
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for each value of n, sufficiently before θ, generalist (G) mutants are more
likely to fix than specialist (S) mutants with m = n (see Models and Meth-
ods, Eq. 4.2), because then fG > fS . Conversely, S mutants are more likely
to fix than G mutants sufficiently after θ because fG < fS . Note that in
Section 4.5.5 of the Appendix, we provide analytical approximations for the
fixation probability with large Hill coefficients n,m→∞. Finally, Fig. 4.2B
shows that for t0 > θ, pfix increases with the Hill coefficient m characterizing
the steepness of the fitness transition for S mutants, and all S mutants are
more likely to fix than G mutants, consistently with the fact that G mutants
correspond to S mutants with m = 0 (see Eq. 4.2).

For large t0, the fixation probability pfix in Eq. 4.2 converges to 1 −
gG/fG (resp. 1 − gS) for G (resp. S) mutants, which is corroborated by
our simulation results (see Figs. 4.2A and 4.5A). This simple limit can be
interpreted as follows: mutants appearing just before the extinction of the W
population face negligible competition, and thus they survive and fix unless
they undergo rapid stochastic extinction [16, 42, 132]. Importantly, here,
pfix is constructed so that mutant lineages that undergo rapid stochastic
extinctions are counted as not fixing in the population.

4.3.2 Rescue probability

So far, we investigated the fate of a given mutant lineage as a function
of its appearance time during the environment degradation. Let us now
address whether mutants can rescue the population or not. For a mutation
probability µ at division, both the occurrence of a new mutation and its
subsequent fixation probability depend on the number and division rate
of W organisms. We thus consider the probability paf(t) that a mutant
appears and fixes between 0 and t, assuming that fixation times are much
shorter than other timescales. The rescue probability pr corresponds to the
probability that a mutant appears and fixes before the microbial population
goes extinct, and is thus given by pr = lim

t→∞
paf(t). Using Bayes’ rule, the

probability that a mutant appears and fixes between t and t + dt, denoted
by dpaf(t) = paf(t+ dt)− paf(t), can be written as:

dpaf(t) = (1− paf(t))dpnaf(t) , (4.6)

where dpnaf(t) is the probability that a mutant appears and fixes between
t and t + dt provided that no mutant has fixed before. The latter can be
calculated by considering that the population is fully or mostly wild-type
at time t, i.e. NW (t) � NM (t): then, dpnaf(t) = pfix(t)dNM (t), where
dNM (t) = NW (t)fW (t)(1 − NW (t)/K)µdt is the number of mutants that
appear between t and t+ dt in a fully wild-type population. Thus,

dpaf(t)

1− paf(t)
= pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
µdt . (4.7)
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We again take a deterministic description for NW (t) (see Eq. 4.3), and the
fitness fW (t) of W organisms is given by Eq. 4.1. Then, integrating Eq. 4.7
with paf(0) = 0 and taking the limit t→∞ yields the rescue probability

pr = lim
t→∞

paf(t) = 1− exp (−Σ) , (4.8)

where:

Σ = µ

∫ ∞
0

pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
dt . (4.9)

Here, we have assumed that NW (t) � NM (t) when the mutant that fixes
arises. This is expected to be valid in most cases, except in the strong-
mutation regime Nµ � 1 where multiple mutant lineages arise almost si-
multaneously. Importantly, our calculation is not restricted to the weak-
mutation regime Nµ � 1. Note that if Σ � 1, Eq. 4.8 reduces to pr ≈ Σ,
which would be obtained by neglecting possible earlier fixations, i.e. by
making the approximation dpaf(t) ≈ dpnaf(t): here, we explicitly take into
account the fact that several mutant lineages can arise during the decay of
the wild-type population. Note also that, since mutant lineages undergoing
rapid stochastic extinction are counted as not fixing in pfix (see above), they
are correctly counted as not able to rescue the population in pr.

Fig. 4.3 shows the rescue probability pr versus the mutation probability
µ at each division. It demonstrates a very good agreement between our
analytical prediction in Eq. 4.8 and results from our stochastic simulations
(see Appendix, Section 4.5.8). We observe a sigmoidal increase of pr as
µ increases, with a transition between a small-µ regime where the popula-
tion almost certainly goes extinct and a large-µ regime where it is almost
certainly rescued by adaptive mutants. Fig. 4.3A further shows that this
transition is strongly impacted by the rapidity of the environment degrada-
tion, which is modeled via the Hill coefficient n (see Eq. 4.1). Specifically,
the faster the environment degradation, the bleaker the prospect is for the
population, and the larger µ becomes necessary to allow its rescue. This is
related to the rapidity of extinction of the W population in the absence of
mutations: for small n, the population decay is slower, allowing a larger win-
dow of opportunity for mutants to appear and to be selected (see Fig. 4.1).
Interestingly, increasing n does not substantially affect the steepness of pr,
but rather shifts the transition between small and large pr toward larger
µ. Note that our prediction in Eq. 4.8 is valid beyond the weak-mutation
regime Kµ � 1, as expected. In particular, in the limit n → ∞ of an
instantaneous environment degradation, discussed in detail in Section 4.5.5
of the Appendix, the transition from large to small pr occurs for Kµ ≈ 1
(see Fig. 4.3A and Fig. 4.9A). Indeed, preexisting mutations then become
necessary to population rescue, as no division occurs after the abrupt en-
vironment transition. In Section 4.5.5 of the Appendix, we further show
that Eq. 4.8 generalizes the predictions in our previous work [42] regarding
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the probability of extinction of a microbial population subjected to abrupt
additions of antimicrobial, beyond the weak-mutation regime Kµ � 1 (see
Fig. 4.9B).

In Fig. 4.3A, we also compare G mutants and S mutants satisfying
m = n (see Eq. 4.2) for each n, and we find that S mutants are slightly
more successful at rescuing the population than G mutants. This is because
S mutants that occur for t > θ have a larger selective advantage than G
mutants and thus a larger fixation probability (see Fig. 4.2A). Consistently,
Fig. 4.3B further shows that specialists with a larger Hill coefficient m,
such that fitness increases more steeply during the environment transition
(see Eq. 4.2), are slightly more efficient at rescuing the population. The
impact of n on the rescue probability is stronger than that of m, because
n controls the rapidity of the decay of the wild-type population, which is
crucial because mutants appear upon divisions of W organisms.
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Figure 4.3: Rescue probability. A. Rescue probability pr of a W pop-
ulation in a deteriorating environment by G or S mutants, versus muta-
tion probability µ upon division. Different Hill coefficients n characterizing
the steepness of the environment deterioration (see Eq. 4.1) are considered.
Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the en-
vironment as W organisms (see Eq. 4.2). Vertical dash-dotted line: Kµ = 1.
B. Rescue probability pr by different types of mutants versus mutation prob-
ability µ upon division. A fixed Hill coefficient n = 10 characterizing the
decay of fW (see Eq. 4.1) is chosen, but G mutants and S mutants with
different Hill coefficients m (see Eq. 4.2) are considered. In both panels,
markers correspond to averages over 104 replicate stochastic simulations
(“Simulation”). Dashed and solid lines correspond to numerical resolutions
of Eq. 4.8 (“Theory”) for G and S mutants, respectively. Parameter values:
gW = gG = gS = 0.1, K = 103, N0

W = 10 and θ = 103.
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4.3.3 Time of appearance of the mutants that fix

The fixation probability of a mutant strongly depends on the time at which
it appears during the environment degradation (see Fig. 4.2). But when
do the mutants that fix and rescue the population appear? The probability
density function Fτ̂af

of the time τ̂af of appearance of a mutant that fixes can
be obtained from paf (see Eq. 4.7 and below) through Fτ̂af

= (1/pr)dpaf/dt,
where normalization is ensured by 1/pr (we focus on cases where rescue
occurs). Thus,

Fτ̂af
(t) =

µ

pr
pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
exp(−Σ(t)) , (4.10)

where

Σ(t) = µ

∫ t

0
pfix(u)NW (u)fW (u)

(
1− NW (u)

K

)
du . (4.11)

Eq. 4.10 allows to express the average time τaf = 〈τ̂af〉 of appearance of the
mutants that fix:

τaf =

∫ ∞
0

tFτ̃af
(t)dt =

µ

pr

∫ ∞
0

t pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
exp(−Σ(t)) dt .

(4.12)
Fig. 4.6 shows the average time τaf of appearance of the mutants that fix,

and demonstrates a very good agreement between our analytical prediction
in Eq. 4.12 and the results of our stochastic simulations in the weak-to-
moderate mutation regime Kµ . 1. Fig. 4.6A shows that τaf decreases as
the mutation probability µ upon division is increased: this is because more
mutants appear for larger µ. In addition, τaf is larger than the inflection
time θ for Kµ . 1, which confirms that the mutants that fix tend to be
beneficial ones (see Fig. 4.2), and is consistent with the fact that S mutants,
which are more beneficial than G mutants for t > θ, are more efficient at
rescuing the population (see Fig. 4.3). Besides, when τaf > θ, S mutants
that fix appear earlier than G mutants that fix: this is also due to their
larger selective advantage, and consistently, the opposite holds for τaf < θ,
when G mutants are fitter than S mutants (see Eq. 4.1). In addition, Fig.
4.6B shows that τaf decreases as the Hill coefficient n which characterizes the
steepness of the environment degradation (see Eq. 4.1) is increased. Indeed,
for large n, the population gets extinct quickly and rescue needs to occur
fast if it occurs at all.

4.3.4 Impact of population size on rescue

So far, we have discussed population rescue at a given carrying capacity K.
What is the impact of K on rescue?

First, our analytical expression of the fixation probability pfix of mutants
in Eq. 4.4 depends on K only via the function ρ introduced in Eq. 4.5. But
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ρ depends on the number of wild-type microbes NW (t) and on the carrying
capacity K only through the ratio NW (t)/K, whose dynamics is independent
from K (see Eq. 4.3). Therefore, pfix is expected to be independent from
K. Fig. 4.4A confirms that it is the case: the simulation results obtained
for different values of K collapse on the same curves. In addition, they are
in very good agreement with the predictions from Eq. 4.4.

Let us now turn to the rescue probability pr. Eqs. 4.8 and 4.9 demon-
strate that pr depends on population size only via the product NW (t)µ.
Therefore, the relevant parameter is Kµ. Fig. 4.4B confirms that pr only
depends on K via Kµ: the simulation results obtained for different values
of K collapse on the same curves when they are plotted as a function of Kµ,
and feature a good agreement with Eq. 4.8. For larger K, smaller mutation
probabilities per division suffice to ensure larger rescue probabilities, be-
cause more mutants appear in larger populations, but more precisely, what
really matters for rescue is the value of Kµ.

In addition, Eqs. 4.11 and 4.12 show that for the mean time τaf of ap-
pearance of a mutant that fixes, the relevant parameter is also Kµ. Fig. 4.4C
confirms this: the simulation results obtained by varying µ at constant K
or by varying K at constant µ collapse when they are plotted as a function
of Kµ, in good agreement with Eq. 4.12.

Finally, in Section 4.5.4 of the Appendix, we investigate the mean ex-
tinction time of the lineages of mutants that do not fix. Eq. 4.24 shows that
it is independent from population size, which is confirmed by Fig. 4.7B. We
also find that this extinction time is longest for mutants appearing close to
the inflection point θ of the environment transition, which corresponds to
the time when the fitness difference between W organisms and mutants is
smallest. Intuitively, mutants that are strongly deleterious or beneficial have
their fates sealed faster than neutral ones. Furthermore, in the framework
of the Moran process (with constant population size and fitnesses), extinc-
tion times are longest for neutral mutants [11, 17, 139]. While the time to
extinction is not crucial to our study of rescue by a single mutation, it can
become relevant to more complex processes involving several mutations, e.g.
to the crossing of fitness valleys or plateaus [15, 106].

Overall, the main quantities that characterize population rescue, namely
the rescue probability pr and the mean time τaf of appearance of a mutant
that fixes, are governed by Kµ. Hence, the impact of population size and
mutation probability is mainly felt through this parameter.

4.4 Discussion

In this paper, we investigated the evolutionary rescue of a microbial popula-
tion in a gradually deteriorating environment, characterized by a sigmoidal
decay down to zero of the fitness of wild-type organisms, with a tunable
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Figure 4.4: Impact of population size on rescue. A. Fixation prob-
ability pfix of G and S mutants versus their time of appearance t0 in the
deteriorating environment, for different carrying capacities K. Vertical dot-
ted line: t = θ. Main panel: linear scale; inset: semi-logarithmic scale. B.
Rescue probability pr of different types of mutants versus the product Kµ of
the carrying capacity K and the mutation probability µ upon division, for
different carrying capacities K. G mutants and S mutants are considered.
Vertical dash-dotted line: Kµ = 1. C. Mean time τaf of appearance of a G
or S mutant that fixes versus Kµ. Simulation results are shown both for a
fixed mutation probability upon division µ = 10−5 and a variable carrying
capacity K, and for a fixed K = 103 and a variable µ. Horizontal dotted line:
τaf = θ. Vertical dash-dotted line: Kµ = 1. In all panels, the Hill coefficient
characterizing the steepness of the environment deterioration (see Eq. 4.1)
is n = 5. Furthermore, S mutants satisfy m = n, i.e. they have the same
sensitivity to the environment as W organisms (see Eq. 4.2). Markers corre-
spond to averages over 103 − 104 replicate stochastic simulations (“Sim.”).
Dashed and solid lines correspond to our analytical predictions (“Theory”)
for G and S mutants, respectively. Parameter values: gW = gG = gS = 0.1,
N0
W = 10 and θ = 103.
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steepness. The population is thus destined for extinction in the absence of
adaptive mutants. We showed that mutants that appear later during the
environment deterioration have a higher probability to fix, but because the
wild-type population gradually decays, mutants are less likely to appear at
such late stages. We demonstrated that the overall rescue probability of
the population increases with a sigmoidal shape as the product Kµ of the
carrying capacity K and of the mutation probability µ is increased. In the
limit of an instantaneous environment degradation, the increase of rescue
probability occurs for Kµ ≈ 1, as preexisting mutations become necessary
for rescue. Importantly, much smaller values of Kµ suffice for rescue if the
environment degradation, and thus the population decay, are slower, con-
sistently with previous studies on the rate of fitness decay in the regime
of stabilizing selection [43, 44]. We also found that specialist mutants are
slightly more efficient at rescuing the population than generalist ones. Note
however that generalists are better adapted to multiple environment switches
or less strong evolutionary constraints [37, 48, 49, 50]. We further charac-
terized the rescue process by investigating the average time of appearance
of the mutants that do rescue the population, which also depends on the
parameter Kµ, and the average extinction time of those that do not, which
is longest when mutants are almost neutral.

In all cases, we provided both analytical expressions and stochastic sim-
ulation results, and obtained a very good agreement between them. Our
analytical expressions were obtained with assumptions that are more gen-
eral than the weak-mutation assumption Kµ � 1, as we only required the
wild-type population to be much larger than the mutant one upon the ap-
pearance of the successful mutant lineage. Accordingly, our analytical pre-
dictions, notably the one for the rescue probability, remain very good beyond
the weak-mutation regime. Our methods can be applied to other situations
with continuously variable fitnesses and population sizes. Our predictions
could be tested in controlled evolution experiments, e.g. in the context
of antimicrobial resistance evolution, especially by varying population size
and/or by studying strains with different mutation rates.

Overall, our study quantitatively confirms the key impact of the rapidity
of environment degradation on the fate of a population. Very large popula-
tions can almost always escape extinction because they have a wide range
of preexisting mutants, while smaller ones (or rarely mutating ones, since
what matters is Kµ) can be rescued by adaptive mutations only if the en-
vironment changes slowly enough. The case of not-too-large populations is
practically very important because real populations tend to have complex
structures [100], and competition is local, which decreases their effective
size. Accordingly, an exciting extension would be to consider the impact of
spatial structure [106, 140, 141] on evolutionary rescue [142, 143] in a gradu-
ally deteriorating environment. In cases where one aims to avoid rescue, our
results entail that environment changes should be made as fast as possible.
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For instance, in order to avoid antimicrobial resistance evolution, gradually
increasing doses of antimicrobial should be avoided, consistently with the
observation that static antimicrobial gradients can strongly accelerate resis-
tance evolution [26, 27, 28, 29]. One could also study the interplay between
such spatial heterogeneities and time variability of the environment. Fur-
thermore, here, we have considered rescue by a single mutation. However,
more adaptations can be accessible in several mutation steps, and thus, con-
sidering rescue in a gradually deteriorating environment in the presence of
fitness valleys [15] or on more complete fitness landscapes [144] would also
be very interesting.
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4.5 Appendix

4.5.1 Derivation of the fixation probability of mutants

Here, we present the derivation of the fixation probability pfix(i0, t0) of i0
mutants present at time t0 [21, 125, 126]. We assume that the number of
wild-type microorganisms is initially much larger than the number of mu-
tants (NW (t0) � i0). As explained in the main text, the selective pressure
due to the competition with the wild-type is felt by the mutants through
their division rate fM (t)[1 − N(t)/K], and in the initial phase where this
competition is important, the total population size N(t) can be approx-
imated by N(t) ≈ NW (t). Thus, competition is felt through the effective
mutant fitness f eff

M (t) = fM (t)[1−NW (t)/K]. In addition, we treat the num-
ber of mutants stochastically, but the number NW (t) of wild-type organisms
deterministically (see Eq. 4.3 and Fig. 4.1).

The master equation that describes the evolution of the probability
P (i, t|i0, t0) of having i mutants at time t knowing that there are i0 mu-
tants at time t0 is given by:

∂P (i, t|i0, t0)

∂t
=f eff

M (t)(i− 1)P (i− 1, t|i0, t0) + gM (i+ 1)P (i+ 1, t|i0, t0)

− (f eff
M (t) + gM )iP (i, t|i0, t0) . (4.13)

Eq. 4.13 allows to establish the partial differential equation satisfied by the
probability generating function φi0,t0(z, t) =

∑+∞
i=0 z

iP (i, t|i0, t0):

∂φi0,t0
∂t

= (z − 1)(f eff
M (t)z − gM )

∂φi0,t0
∂z

. (4.14)

The method of characteristics then yields [135, 126]:

φi0,t0(z, t) =

1 +

(
eρ(t)

z − 1
−
∫ t

t0

f eff
M (u)eρ(u)du

)−1
i0 , (4.15)

where:

ρ(t) =

∫ t

t0

(gM − f eff
M (u))du . (4.16)

Note that ρ depends on the number of wild-type microbes NW (t) and on
the carrying capacity K only through the ratio NW (t)/K, whose dynamics
is system size-independent, i.e. independent from K (see Eq. 4.3).

The probability generating function φi0,t0 allows to calculate the fixation
probability pfix(i0, t0) of i0 mutants present at time t0, through pfix(i0, t0) =
1− limt→∞ P (0, t|i0, t0) = 1− limt→∞ φi0,t0(0, t). This yields

pfix(i0, t0) = 1−

(
gM
∫∞
t0
eρ(t)dt

1 + gM
∫∞
t0
eρ(t)dt

)i0
, (4.17)
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where we used: ∫ t

t0

(gM − f eff
M (u))eρ(u)du = eρ(t) − 1 . (4.18)

Since ρ does not depend on the carrying capacity K, as noted above, this is
also true for pfix (see Fig. 4.4A).

In the main text, we focus on the fixation probability of a single mutant
that appears at time t0, and denote it as pfix(t0) = pfix(1, t0) (see Eq. 4.4,
which corresponds to Eq. 4.17 with i0 = 1).

4.5.2 Additional results for generalist mutants
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Figure 4.5: Additional results for generalist mutants. A. Fixation
probability pfix as a function of the time of appearance of the mutants t0
for different fitnesses fG of G mutants (in the rest of the paper, fG = 0.5).
Vertical dotted line: t0 = θ. Horizontal dotted lines: pfix = 1 − gG/fG.
B. Rescue probability pr as a function of the mutation probability µ upon
division for different fitnesses fG. C. Mean appearance time τaf of a mutant
that fixes as a function of the fitness fG for the mutation probability upon
division µ = 10−5. Vertical dotted line: τaf = θ. D. Mean time to extinction
τ0 as a function of the time of appearance of the mutants t0 for different
fitnesses fG. Vertical dotted line: t0 = θ. In all panels, markers correspond
to the average over 103 − 104 replicate stochastic simulations, error bars
(in panels C and D, often smaller than markers) are 95% confidence inter-
vals and dashed curves correspond to our analytical predictions. Parameter
values: gW = gG = 0.1, K = 103, N0

W = 10, n = 5 and θ = 103.
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4.5.3 Results for the time of appearance of the mutants that
fix
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Figure 4.6: Time of appearance of the mutants that fix. A. Average
time τaf of appearance of a G or S mutant that fixes versus mutation prob-
ability µ upon division. The Hill coefficient characterizing the steepness of
the environment deterioration (see Eq. 4.1) is n = 5. Vertical dotted line:
Kµ = 1. B. Average time τaf of appearance of a G or S mutant that fixes ver-
sus Hill coefficient n. The mutation probability upon division is µ = 10−5.
In both panels, markers correspond to averages over 103 − 104 replicate
stochastic simulations (“Simulation”). Dashed and solid lines correspond to
numerical resolutions of Eq. 4.12 (“Theory”) for G and S mutants, respec-
tively. Parameter values: gW = gG = gS = 0.1, K = 103, N0

W = 10 and
θ = 103. Horizontal dotted lines: τaf = θ.

4.5.4 Extinction time of mutants that do not fix

In the case where the mutant that appears does not fix, how long does its
lineage take to go extinct? As for the fixation probability pfix, the time to
extinction of a mutant will depend on its time of appearance t0. The average
time to extinction is the average of the first-passage time τ̂

′
0 to the state

i = 0 where i denotes the number of mutants. Then, we can compute the
probability dp(τ̂

′
0 ∈ [t, t+ dt] | i0, t0) that τ̂

′
0 belongs to the interval [t, t+ dt],

provided that the initial number of mutants is i0 at time t0:

dp(τ̂
′
0 ∈ [t, t+ dt] | i0, t0) = P (0, t+ dt|0,∞; i0, t0)− P (0, t|0,∞; i0, t0) ,

(4.19)
where P (0, t|0,∞; i0, t0) is the probability to have 0 mutant at time t, pro-
vided that the initial number of mutants is i0 at time t0 and the final num-
ber is i∞ = 0, corresponding to extinction. Using Bayes’ theorem and the
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Markov property yields

P (0, t|0,∞; i0, t0) =
P (0, t|i0, t0)P (0,∞|0, t; i0, t0)

P (0,∞|i0, t0)

=
P (0, t|i0, t0) (1− pfix(0, t))

1− pfix(i0, t0)

=
P (0, t|i0, t0)

1− pfix(i0, t0)
, (4.20)

where we have employed pfix(0, t) = 0. Thus,

dp(τ̂
′
0 ∈ [t, t+ dt] | i0, t0) =

P (0, t+ dt|i0, t0)− P (0, t|i0, t0)

1− pfix(i0, t0)

=
1

1− pfix(i0, t0)

dP (0, t|i0, t0)

dt
dt . (4.21)

We can now express the mean mutant extinction time τ
′
0 = 〈τ̂ ′0〉 using

Eq. 4.21 as

τ
′
0 =

∫ ∞
t0

tdp(τ̂
′
0 ∈ [t, t+ dt] | i0, t0)

=
1

1− pfix(i0, t0)

∫ ∞
t0

t
dP (0, t|i0, t0)

dt
dt . (4.22)

The previous equation can be rewritten using the probability generating
function φi0,t0(z, t) =

∑+∞
i=0 z

iP (i, t|i0, t0) by noting that P (0, t|i0, t0) =
φi0,t0(0, t):

τ
′
0 =

1

1− pfix(i0, t0)

∫ ∞
t0

t
∂φi0,t0
∂t

(0, t) dt . (4.23)

Using Eqs. 4.15 and 4.18 and introducing Λ(t) = gM
∫ t
t0
eρ(u)du then yields

τ
′
0 =

i0gM
1− pfix(i0, t0)

∫ ∞
t0

teρ(t) Λi0−1(t)

(1 + Λ(t))i0+1
dt . (4.24)

Fig. 4.7 shows the average lifetime τ0 = τ
′
0 − t0 of the lineage of a

single mutant (i0 = 1) that finally goes extinct, versus the time t0 when
this mutant appears during the environment degradation. We obtain a very
good agreement between the results of our stochastic simulations and our
analytical prediction in Eq. 4.24. For t0 < θ, mutants are less fit than wild-
type organisms, and S mutants are less fit than G mutants (see Eq. 4.2).
Conversely, for t0 > θ, mutants are fitter than wild-type organisms, and
S mutants are fitter than G mutants: hence, S mutants are always more
extreme than G mutants. Because of this, intuition based on the fixation
times within the Moran process [11, 17, 139] with constant population size
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make us expect that S mutants will have their fates sealed faster, and thus
will get extinct faster provided that they are destined for extinction. This
is indeed what we obtain (see Fig. 4.7). In particular, the largest extinction
time is obtained close to t0 = θ, where G and S mutants are neutral. In
addition, for t0 � θ, S mutants have a fitness fS ≈ 0 (see Eq. 4.2). Then,
they generally go extinct in one generation, i.e. in τ0 = 10 time units (in our
simulations, the death rate, which sets the division rate when the population
is close to its steady-state size K(1 − gW /fW ), is taken equal to 0.1): this
is what is obtained in Fig. 4.7. Still for t0 � θ, G mutants are such that
fG = 0.5 while fW ≈ 1 (see Eq. 4.1): then, the extinction time of the
mutant lineage can be obtained within the framework of the Moran process
assuming a constant population size K(1− gW /fW ): it yields τ0 ≈ 15 [11],
consistently with Fig. 4.7. Furthermore, Fig. 4.7A shows that for t0 < θ, the
bigger the Hill coefficient n characterizing the steepness of the environment
degradation (see Eq. 4.1), the smaller the mean time to extinction, while the
opposite holds for t0 > θ: this is because fitness differences between mutants
and wild-type organisms are exacerbated with large n. In particular, as long
as t0 < θ, we have fS ≈ 0 and fW ≈ 1, and therefore the results obtained
just before for t0 � θ hold. Finally, Fig. 4.7B shows that τ0 does not depend
on the carrying capacity K. This can be understood from Eq. 4.24, given
that pfix is independent from K, as well as ρ, as explained in Section 4.5.1.
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Figure 4.7: Mean time to extinction. A. Mean time to extinction τ0

of G and S mutants versus their time of appearance t0 in the deteriorating
environment, for K = 103 and for different Hill coefficients n characterizing
the steepness of the environment deterioration (see Eq. 4.1). B. Mean time
to extinction τ0 of G and S mutants versus their time of appearance t0 in
the deteriorating environment, for different carrying capacities K and a fixed
Hill coefficient n = 5 characterizing the decay of fW (see Eq. 4.1). In both
panels, markers correspond to averages over 103 − 104 replicate stochastic
simulations. Solid (resp. dashed) curves correspond to numerical resolutions
of Eq. 4.24 for S (resp. G) mutants. Here, S mutants satisfy m = n, i.e. they
have the same sensitivity to the environment as W organisms (see Eq. 4.2).
Parameter values: gW = gG = gS = 0.1, N0

W = 10 and θ = 103. Vertical
dotted lines: t0 = θ.

4.5.5 Analytical approximations for a sudden environment
degradation

Here, we derive analytical approximations for the fixation probability pfix,
the probability pr of rescue and the mean time τaf of appearance of a mutant
that fixes in the case of a sudden environment degradation. We thus consider
that the Hill coefficient n describing the decay of W fitness fW tends to
infinity (see Eq. 4.1), as well as m, which describes the increase of S mutant
fitness fS (see Eq. 4.2), i.e. n,m→∞. Then, the fitness transition around
t = θ is very abrupt, and we therefore consider that fW = 1 and fS = 0 if
t < θ while fW = 0 and fS = 1 if t > θ.

As soon as fW = 0, i.e. for t > θ, W microbes stop dividing. In a deter-
ministic description, their number decreases exponentially according to the
function NW (t) = N e

W e
−gW (t−θ), where N e

W = K(1− gW ) is the equilibrium
size of the fully wild-type population if fW = 1, i.e. for t < θ. For analytical
convenience, we make the approximation that NW (t) = N e

W if t < θ + τ1/2

and NW (t) = 0 otherwise, where τ1/2 is the time such that NW (τ1/2) = K/2
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(i.e. τ1/2 = ln(2N e
W /K)/gW ). While the exact choice of θ+τ1/2 as a thresh-

old is somewhat arbitrary, it is important to choose a threshold that reflects
the decay timescale of the W population. Indeed, it allows to effectively take
into account the demographic pressure that mutants undergo because of the
presence of W organisms during the decline of the W population. Consid-
ering a threshold θ instead of θ + τ1/2 would lead one to underestimate the
demographic pressure on mutants and thus to overestimate their fixation
probability. Conversely, considering a threshold θ+τ0, where τ0 is the mean
time of W population extinction when W microbes no longer divide, would
lead one to overestimate the demographic pressure on mutants and thus to
underestimate their fixation probability.

Fixation probability

Generalist mutant: Let us first focus on the fixation probability pGfix(t0)
of a single generalist (G) mutant that appears at time t0. Recall that the
fitness of G mutants is constant. In most of our work, we take fG = 0.5, but
here, for the sake of generality, we will retain fG in our expressions. Within
our approximation, the fate of a mutant will strongly depend on whether
t0 < θ̃ = θ + τ1/2 or t0 > θ̃. We start from Eq. 4.4, which reads

pGfix(t0) =
1

1 + gG
∫∞
t0
eρG(t)dt

. (4.25)

Two regimes need to be distinguished:

• If t < θ̃, then NW (t) = K(1− gW );

• If t ≥ θ̃, then NW (t) = 0.

For t0 < θ̃, Eq. 4.5 yields

ρG(t) =

{
− (fGgW − gG) (t− t0) if t0 < t < θ̃ ,

−(fG − gG)(t− t0) + fG(1− gW )(θ̃ − t0) if t0 < θ̃ < t .

(4.26)
Thus, Eq. 4.25 simplifies as:

pGfix(t0) =
(fG − gG)(fGgW − gG)

fGgW (fG − gG)− e−(gG−fGgW )(t0−θ̃)fGgG(1− gW )
. (4.27)

For t0 > θ̃, NW = 0, and Eq. 4.5 yields

ρG(t) = − (fG − gG) (t− t0) . (4.28)

Then, Eq. 4.25 gives
pGfix(t0) = 1− gG/fG , (4.29)
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which corresponds to the probability that the mutant lineage survives rapid
stochastic extinction [132, 16, 42]. This makes sense, because within our
approximation, t0 > θ̃ formally corresponds to introducing a mutant in the
absence of any W individual.

Let us summarize Eqs. 4.27 and 4.29:

pGfix(t0) =

{ (fG−gG)(fGgW−gG)

fGgW (fG−gG)−e−(gG−fGgW )(t0−θ̃)fGgG(1−gW )
if t0 < θ̃ ,

1− gG/fG if t0 > θ̃ .
(4.30)

Specialist mutant: Let us now turn to the fixation probability pSfix(t0) of
a single specialist (S) mutant that appears at time t0. Again, we start from
Eq. 4.4, which reads

pSfix(t0) =
1

1 + gS
∫∞
t0
eρS(t)dt

. (4.31)

Three regimes need to be distinguished:

• If t < θ, then NW (t) = K(1− gW ) and fS(t) = 0;

• If θ < t ≤ θ̃, then NW (t) = K(1− gW ) and fS(t) = 1;

• If t ≥ θ̃, then NW (t) = 0 and fS(t) = 1.

If t0 < θ, Eq. 4.5 yields

ρS(t) =


gS(t− t0) if t0 < t < θ ,

gS(θ − t0) + (gS − gW )(t− θ) if θ < t < θ̃ ,

gS(θ − t0) + (gS − gW )(θ̃ − θ) + (gS − 1)(t− θ̃) if θ̃ < t .

(4.32)
Note that the second term in the second and the third lines of the previous
equation both vanish if gS = gW . In this case, Eq. 4.31 simplifies as:

pSfix(t0) =
e−gS(θ−t0)(1− gS)

1 + gS(1− gS)(θ̃ − θ)
. (4.33)

If θ < t0 < θ̃, Eq. 4.5 yields

ρS(t) =

{
(gS − gW )(t− t0) if t0 < t < θ̃ ,

(gS − gW )(θ̃ − t0) + (gS − 1)(t− θ̃) if θ̃ < t .
(4.34)

If in addition gS = gW , Eq. 4.31 then gives

pSfix(t0) =
1− gS

1 + gS(1− gS)(θ̃ − t0)
. (4.35)
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If t0 > θ̃, Eq. 4.5 yields

ρS(t) = (gS − 1)(t− t0) . (4.36)

Thus, Eq. 4.31 simplifies as:

pSfix(t0) = 1− gS . (4.37)

Again, this is the probability that the mutant lineage escapes rapid stochas-
tic extinctions, in the absence of any competition.

Let us summarize Eqs. 4.33, 4.35 and 4.37:

pSfix(t0) =


e−gS(θ−t0)(1−gS)

1+gS(1−gS)(θ̃−θ) if t0 < θ ,

1−gS
1+gS(1−gS)(θ̃−t0)

if θ < t0 < θ̃ ,

1− gS if θ̃ < t0 .

(4.38)
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Figure 4.8: Fixation probability for a sudden environment degrada-
tion. Fixation probability pfix of S or G mutants versus their time of ap-
pearance t0 in the deteriorating environment, for Hill coefficients n,m→∞
(see Eqs. 4.1 and 4.2) corresponding to an instantaneous, stepwise, environ-
ment change. Markers correspond to averages over 104 replicate stochastic
simulations. Light dashed (resp. solid) curves correspond to our analytical
predictions in Eq. 4.4 for G (resp. S) mutants. Dark dashed (resp. solid)
curves correspond to our approximations in Eq. 4.30 (resp. Eq. 4.38) for G
(resp. S) mutants in the different regimes discussed. Vertical dotted line:
t0 = θ. Vertical dash-dotted line: t0 = θ̃ = θ + τ1/2. Parameter values:
gW = gG = gS = 0.1, K = 103, N0

W = 10, n = m = 1010, θ = 103 and
τ1/2 = 5.9. Main panel: linear scale; inset: semi-logarithmic scale.

Fig. 4.8 shows that Eqs. 4.30 and 4.38 provide good approximations in
the appropriate regimes.
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Rescue probability

Now, let us focus on the rescue probability pr, which satisfies pr = 1− e−Σ

(see Eq. 4.8), where Σ is given by Eq. 4.9. Since here fW (t) = 0 for t > θ
and fW (t) = 1 for t < θ, Eq. 4.9 simplifies into

Σ = µNW

(
1− NW

K

)∫ θ

0
pfix(t)dt = µK(1− gW )gW

∫ θ

0
pfix(t)dt , (4.39)

where we have employed NW = K(1 − gW ). Thus, we obtain a simplified
formula for the rescue probability:

pr = 1− exp

(
−µK(1− gW )gW

∫ θ

0
pfix(t)dt

)
, (4.40)

which holds both for generalist and for specialist mutants.
Specifically, in the case of a generalist mutant, Eq. 4.30 yields∫ θ

0
pGfix(t)dt =

1

fGgW
log

(
gG(1− gW )e(gG−fGgW )θ̃ − gW (fG − gG)

gG(1− gW )e(gG−fGgW )θ̃ − gW (fG − gG)e(gG−fGgW )θ

)
.

(4.41)
And in the case of a specialist mutant, Eq. 4.38 gives∫ θ

0
pSfix(t)dt =

(1− e−gSθ)(1− gS)

gS + g2
S(1− gS)(θ̃ − θ)

. (4.42)

Fig. 4.9A shows that there is a good agreement between our approxi-
mated analytical predictions and our numerical simulation results. More-
over, we observe that the transition between small and large values of pr

occurs for µK of order 1. Indeed for abrupt environment degradations such
that W fitness gets to 0 right at the transition point θ, preexisting mutants
are necessary to ensure rescue.

In a previous work [42], we proposed an expression for the probability
of extinction of a microbial population subjected to a periodic presence of
antimicrobial in the weak-mutation regime Kµ � 1. We then assumed
that the antimicrobial was instantaneously added and removed from the
environment, which thus corresponds to instantaneous environment changes.
For a perfect biostatic antimicrobial that completely stops growth, wild-
type fitness goes to 0 in the presence of antimicrobial, corresponding to
the case studied here. When in addition the alternation period is long
enough for extinction to occur at the first phase with antimicrobial if no
resistant mutants preexist, our prediction in Eq. 1 of Ref. [42] gives a good
approximation of our present results, as shown by Fig. 4.9B. Therefore, the
present work generalizes this prediction beyond the weak-mutation regime
Kµ� 1.
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Figure 4.9: Rescue probability for a sudden environment degrada-
tion. A. Rescue probability pr versus the product Kµ of the carrying capac-
ity K and the mutation probability µ upon division, for different carrying
capacities K. Markers correspond to averages over 104 replicate stochastic
simulations. Light dashed (resp. solid) curves correspond to our analytical
predictions in Eq. 4.8 for G (resp. S) mutants. Dark dashed (resp. solid)
curves correspond to our approximations, corresponding to Eq. 4.40 with
Eq. 4.41 (resp. Eq. 4.42) for G (resp. S) mutants, with τ1/2 = 5.9. B.
Rescue probability pr versus Kµ. The present results for G mutants are
compared to those of our previous work [42] for K = 103. Markers corre-
spond to averages over 103 − 104 replicate stochastic simulations. Dashed
orange curve: analytical prediction in Eq. 4.8 for G mutants. Solid green
curve: analytical prediction pr = 1 − p0 with p0 in Eq. 1 of Ref. [42], valid
for Kµ� 1. Vertical dash-dotted lines in both panels: Kµ = 1. Parameter
values: gW = gG = gS = 0.1, N0

W = 10, n = m = 1010, θ = 103.

Appearance time of a mutant that fixes

Finally, we derive an approximated analytical prediction for the mean time
of appearance τaf of a mutant that fixes in the population before it goes
extinct. Let us recall that the probability density function of τ̃af satisfies
Fτ̃af

(t) = (1/pr)(dpaf/dt) (see Eq. 4.10 and above). Thus, for an abrupt
environment degradation such that fW (t) = 0 for t > θ, the mean time of
appearance τaf is given by:

τaf =

∫ θ

0
tFτ̃af

(t)dt =
1

pr

∫ θ

0
t
dpaf

dt
dt

= θ − 1

pr

∫ θ

0
paf(t)dt = θ − 1

pr

∫ θ

0
(1− e−Σ(t))dt , (4.43)
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where, using Eq. 4.11 with fW = 1 and NW = K(1− gW ) for t < θ, we have

Σ(t) = µKgW (1− gW )

∫ t

0
pfix(u)du . (4.44)

Eq. 4.43 is valid for both generalist and specialist mutants. One just needs
to compute pr by using Eq. 4.40 with Eq. 4.41 (resp. Eq. 4.42) for G (resp.
S) mutants and pfix by using Eq. 4.30 (resp. Eq. 4.38) for G (resp. S)
mutants.

10
-2

10
0

10
2

Parameter K

G

S

920

940

960

980

1000

M
e
a
n
 a

p
p
e
a
ra

n
c
e
 t
im

e
 

a
f

S
im

u
la

ti
o

n

A
p

p
ro

x
im

a
ti
o

n

Figure 4.10: Mean time of appearance for a sudden environment
degradation. Mean time τaf of appearance of a G or S mutant that fixes
versus the product Kµ of the carrying capacity K and the mutation prob-
ability µ. Here, µ was varied at constant carrying capacity K = 103. Hor-
izontal dotted line: τaf = θ. Vertical dash-dotted line: Kµ = 1. Markers
correspond to averages over 103 replicate stochastic simulations (“Simu-
lation”). Dashed and solid lines correspond to our analytical predictions
(“Theory”) for G and S mutants, respectively (see Eq. 4.43). Parameter
values: gW = gG = gS = 0.1, N0

W = 10, m = n = 1010, θ = 103 and
τ1/2 = 5.9 and θ = 103.

Fig. 4.10 shows that there is a very good agreement between our approx-
imated analytical predictions and the results of our numerical simulations in
the weak-to-moderate mutation regime Kµ . 1 where our analytical deriva-
tions were conducted. Recall also that τaf only depends on K and µ via Kµ
(see main text).

4.5.6 From the stochastic model to the deterministic limit

In our analytical calculations, we consider the deterministic description for
the population of W organisms (see Eq. 4.3). Here, we present a full deriva-
tion of the deterministic limit of the stochastic model for large population
sizes. This derivation is similar to those of Refs. [114, 115, 40] that address
the case of the Moran model.
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In a fully wild-type (W) population, the probability P (j, t|j0) of having
j W microorganisms at time t, knowing that j0 W microorganisms were
present at time t = 0, satisfies the master equation

∂P (j, t|j0)

∂t
= fW (t)

(
1− j − 1

K

)
(j − 1)P (j − 1, t|j0) (4.45)

+ gW

(
1− j + 1

K

)
(j + 1)P (j + 1, t|j0)

−
[
fW (t)

(
1− j

K

)
+ gW

]
jP (j, t|j0) . (4.46)

Let us introduce x = j/K and ρ(x, t|x0) = KP (j, t|j0), and perform a
Kramer-Moyal expansion [138, 119], which focuses on the regime 1/K � x.
To first order in 1/K, one obtains the following diffusion equation [11] (also
known as Fokker-Planck equation or Kolmogorov forward equation):

∂ρ(x, t|x0)

∂t
=− ∂

∂x
{[fW (t)x(1− x)− gWx] ρ(x, t|x0)}

+
1

2K

∂2

∂x2
{[fW (t)x(1− x) + gWx] ρ(x, t|x0)} . (4.47)

Note that the first term on the right hand-side of this equation corresponds
to the selection term (known as the drift term in physics), while the second
one corresponds to the genetic drift term (known as the diffusion term in
physics).

In the limit K →∞, to zeroth order in 1/K, one can neglect the diffusion
term, yielding:

∂ρ(x, t|x0)

∂t
= − ∂

∂x
{[fW (t)x(1− x)− gWx] ρ(x, t|x0)} . (4.48)

In this limit, one obtains an equation on the average population size (scaled
by K), 〈x(t)〉 =

∫ 1
0 xρ(x, t|x0)dx:

∂〈x〉
∂t

= [fW (t)− gW ] 〈x〉 − fW (t)〈x2〉 . (4.49)

Further assuming that the distribution of x is very peaked around its mean
(〈x〉 ≈ x) and in particular neglecting the variance (〈x2〉 ≈ 〈x〉2 ≈ x2),
which is acceptable for very large systems with demographic fluctuations,
one obtains:

∂x

∂t
= [fW (t)(1− x)− gW ]x . (4.50)

Multiplying this ordinary differential equation by the carrying capacity K
yields Eq. 4.3, where j is denoted by NW .
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4.5.7 Numerical computation methods

In this work, we derived analytical predictions for the fixation probabil-
ity pfix, the rescue probability pr and the mean time to extinction τ0 (see
Eqs. 4.4, 4.8 and 4.24, respectively). Since these equations involve improper
integrals, it is necessary to appropriately choose the values of the (finite) in-
tegral boundaries in order to obtain a good approximation of these improper
integrals by numerical integration.

First, in order to compute numerically pfix from Eq. 4.4, let us introduce
a parameter τ1 such that:

pfix(t0) = 1−
gM
∫∞
t0
eρ(t)dt

1 + gM
∫∞
t0
eρ(t)dt

≈ 1−
gM
∫ t0+τ1
t0

eρ(t)dt

1 + gM
∫ t0+τ1
t0

eρ(t)dt
, (4.51)

One should choose τ1 such that it is much larger than the mean time to
extinction of the mutants τ0. Otherwise, some mutants destined for ex-
tinction will be considered as mutants that fix. Fig. 4.11A illustrates this
point: for the parameters employed in this figure, the largest value of τ0 is
max(τ0) ∼ 30, and accordingly, we observe that for τ1 � 30, the agreement
between the analytical prediction calculated numerically via Eq. 4.51 and
the simulated data is very good.

Similarly, in order to compute numerically pr from Eq. 4.8, we introduce
a parameter τ2 such that:

pr = 1− exp

[
−µ
∫ ∞

0
pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
dt

]
≈ 1− exp

[
−µ
∫ τ2

0
pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
dt

]
, (4.52)

Choosing τ2 so that it is larger than the mean time of spontaneous extinction
of wild-type microbes should ensure that we capture the whole time range
over which mutants can appear and fix. As can be seen in Fig. 4.1, for
the parameter values chosen in Fig. 4.11B, the mean time of spontaneous
extinction is ∼ 1750. Indeed, Fig. 4.11B shows that a good agreement
between numerical predictions and simulated data is obtained for τ2 > 1750.

Similarly, in order to compute numerically τ0 = τ
′
0 − t0 from Eq. 4.24

with i0 = 1, we introduce a parameter τ3 such that:

τ
′
0 =

gM
1− pfix(t0)

∫ ∞
t0

teρ(t)

(1 + Λ(t))2
dt

≈ gM
1− pfix(t0)

∫ t0+τ3

t0

teρ(t)

(1 + Λ(t))2
dt . (4.53)

The parameter τ3 must be chosen so that it is larger than all times for which
the probability density function of τ̂0 is significant. In practice, we may



4.5. APPENDIX 133

500 1000 1500

Time of appearance t
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ix

a
ti
o

n
 p

ro
b

a
b

ili
ty

 p
fi
x

1
=50

1
=100

1
=200

1
=500

1
=1000

Sim.

10
-8

10
-6

10
-4

10
-2

Mutation probability upon division

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

s
c
u

e
 p

ro
b

a
b

ili
ty

 p
r

2
=1000

2
=2000

2
=5000

Sim.

200 400 600 800 1000 1200 1400 1600

Time of appearance t
0

5

10

15

20

25

30

M
e

a
n

 t
im

e
 t

o
 e

x
ti
n

c
ti
o

n
0

3
=500

3
=1000

3
=2000

Sim.

A B

C

Figure 4.11: Robustness of parameters and numerical resolutions.
A. Fixation probability pfix of G mutants versus their time of appearance
t0 in the deteriorating environment. Solid curves correspond to numerical
computations of Eq. 4.51 with different values of τ1. B. Rescue probability
pr of a W population in a deteriorating environment by G mutants, versus
mutation probability µ upon division. Solid curves correspond to numeri-
cal computations of Eq. 4.52 with different values of τ2. C. Mean time to
extinction τ0 of G mutants versus their time of appearance t0 in the deterio-
rating environment. Solid curves correspond to numerical resolutions of Eq.
4.53 with different values of τ3. In all panels, gray markers correspond to
averages over 103 replicate stochastic simulations, and error bars in panel C
(often smaller than markers) to 95% confidence intervals. Parameter values:
fG = 1 (recall that generally we take fG = 0.5), gW = gG = gS = 0.1,
K = 103, N0

W = 10, n = 5 and θ = 103.

choose τ3 as larger than the variance of the distribution of extinction times.
Assuming that this distribution is exponential (it is close to exponential in
simulations), one should choose τ3 � τ2

0 . Accordingly, Fig. 4.11C demon-
strates a very good agreement with simulated data for τ3 � max(τ0)2 ∼ 900,
where max(τ0) is the largest value of τ0 for the parameters involved in this
figure.

In practice, in each figure of this paper, we chose the values of τ1, τ2
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and τ3 so that they were large enough to satisfy the criteria outlined here in
the worse case of the figure (i.e. the one requiring the largest value of this
parameter).

4.5.8 Numerical simulation methods

In this work, all numerical simulations are performed using a Gillespie al-
gorithm [128]. Because the sampled time intervals ∆t between successive
individual event satisfy ∆t < 1 (see Fig. 4.12), which is smaller than the
timescales of all processes considered here, we neglect fitness variations be-
tween individual events. In practice, the sampled time intervals between
each individual event tend to get larger close to extinction events, since the
total number of microbes then substantially decreases, but even then, they
remain smaller than 1. Note that, in order to take into account the time
variability of fitness at a higher resolution than that of events, one could em-
ploy e.g. the approach described in Ref. [137]. In the following, we provide
details about the simulations used in each part of our work.
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Figure 4.12: Time interval between two events. Probability that the
sampled time interval ∆t between two events in the Gillespie simulation is
smaller than the threshold time interval T plotted versus T for different Hill
coefficients n (see Eqs. 4.1). Markers correspond to the average over 102

replicate stochastic simulations of a purely W population (µ = 0). Param-
eter values: gW = 0.1, K = 103, N0

W = 10 and θ = 103.

Population decay in a deteriorating environment

In our simplest simulations, presented in Fig. 4.1, only W microorganisms
were considered (no mutation, µ = 0). For each replicate simulation, we
saved the number of W individuals present at regular time intervals, i.e. at
time points 0, δt, 2δt... The elementary events that can occur are:
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• W → 2W : Division of a wild-type microbe with rate k+
W = fW (t)(1−

NW /K), where the value of fW (t) is taken at the time t of the last
event that occurred.

• W → ∅: Death of a wild-type microbe with rate k−W = gW .

The total rate of events is R = (k+
W + k−W )NW . Simulation steps are the

following:

1. Initialization: The microbial population starts from NW = N0
W wild-

type microorganisms at time t = 0, and the value of fW is set at
fW (0).

2. The time increment ∆t is sampled randomly from an exponential dis-
tribution with mean 1/R, where R = (k+

W + k−W )NW . The next event
to occur is chosen randomly, with probabilities k/R proportional to
the rate k of each event.

3. The time t is increased to t = t+ ∆t and the event chosen at Step 2 is
executed, i.e. NW is updated. The value of fW is also updated from
fW (t) to fW (t+ ∆t).

4. The number of wild-type microbes NW is saved at the desired time
points falling between t and t+ ∆t.

5. We go back to Step 2 and iterate until the total number of microbes
reaches zero (NW = 0), corresponding to extinction.

Fixation probability and time to extinction of mutants

In our simulations concerning the fixation probability and the time to ex-
tinction of mutants, both wild-type microorganisms (W) and mutants (M)
are considered, but no random mutations are allowed, i.e. µ = 0. Indeed,
the aim is to determine the fate of i0 mutants that are introduced at a con-
trolled time t0 (generally we take i0 = 1 to model the appearance of a single
mutant). The elementary events that can occur are:

• W → 2W : Division of a wild-type microbe with rate k+
W = fW (t)(1−

(NW +NM )/K), where the value of fW (t) is taken at the time t of the
last event that occurred.

• W → ∅: Death of a wild-type microbe with rate k−W = gW .

• M → 2M : Division of a mutant microbe with rate k+
M = fM (t)(1 −

(NW + NM )/K), where the value of fM (t) is taken at the time t of
the last event that occurred. Note that for G mutants, fM is constant,
but for S mutants, it varies in time.
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• M → ∅: Death of a mutant microbe with rate k−M = gM .

The total rate of events is R = (k+
W + k−W )NW + (k+

M + k−M )NM . Simulation
steps are the following:

1. Initialization: The microbial population starts from NW = N0
W wild-

type microorganisms and NM = 0 mutant at time t = 0, and the
values of fW and fM are set at fW (0) and fM (0), respectively.

2. The time increment ∆t is sampled randomly from an exponential dis-
tribution with mean 1/R, where R = (k+

W +k−W )NW + (k+
M +k−M )NM .

The next event to occur is chosen randomly, with probabilities k/R
proportional to the rate k of each event.

3. If t+ ∆t ≥ t0 for the first time, the time is set to t = t0, i0 wild-types
microbes are replaced by i0 mutants (NW = NW −i0 and NM = NM +
i0) and the event determined at Step 2 is not executed. Otherwise,
the time t is increased to t = t+ ∆t and the event determined at Step
2 is executed, i.e. NW or NM is updated. The values of fW and fM
(in the case of an S mutant) are also updated.

4. We go back to Step 2 and iterate until the total number of microbes is
zero (NW + NM = 0), corresponding to extinction of the population,
or there are only mutants (NW = 0 and NM 6= 0), corresponding to
fixation of the mutant.

Rescue of a population by mutants

Finally, our simulations concerning the rescue of a population by mutants,
both wild-type microorganisms (W) and mutants (M) are considered, with
a probability µ of mutation from W to M upon division. The elementary
events that can occur are:

• W → 2W : Division without mutation of a wild-type microbe with
rate k+

W = fW (t)(1− (NW +NM )/K)(1−µ), where the value of fW (t)
is taken at the time t of the last event that occurred.

• W → W + M : Division with mutation of a wild-type microbe with
rate kWM = fW (t)(1− (NW +NM )/K)µ.

• W → ∅: Death of a wild-type microbe with rate k−W = gW .

• M → 2M : Division of a mutant microbe with rate k+
M = fM (t)(1 −

(NW + NM )/K), where the value of fM (t) is taken at the time t of
the last event that occurred. Note that for G mutants, fM is constant,
but for S mutants, it varies in time.

• M → ∅: Death of a mutant microbe with rate k−M = gM .
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The total rate of events is R = (k+
W + k−W + kWM )NW + (k+

M + k−M )NM .
Simulation steps are the following:

1. Initialization: The microbial population starts from NW = N0
W wild-

type microorganisms and NM = 0 mutant at time t = 0, and the
values of fW and fM are set at fW (0) and fM (0), respectively.

2. The time increment ∆t is sampled randomly from an exponential dis-
tribution with mean 1/R, where R = (k+

W + k−W + kWM )NW + (k+
M +

k−M )NM . The next event to occur is chosen randomly, with probabili-
ties k/R proportional to the rate k of each event.

3. The time t is increased to t = t+∆t and the event determined at Step
2 is executed, i.e. NW and NM are updated. The value of fW and fM
(in the case of an S mutant) are also updated.

4. We go back to Step 2 and iterate until the total number of microbes is
zero (NW + NM = 0), corresponding to extinction of the population,
or there are only mutants (NW = 0 and NM 6= 0), corresponding to
fixation of the mutant and rescue of the population.
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This chapter presents a work still in progress at the time of writing this
thesis.

We develop a graph-structured population model that generalizes the ex-
isting models in which each node is considered either as a single individual
or as a population of fixed size. In our model, each node is a deme of variable
size, and migrations are independent of birth and death events. We calculate
analytically the fixation probability of a mutant lineage for different pop-
ulation structures in the rare migration regime, and verify our predictions
with numerical simulations. We find that many structures are suppressors
of natural selection in our models, including some that are known as natu-
ral selection amplifiers in existing models. Despite this striking difference,
our model is consistent with the existing models when the ratios of total
reproduction rate to total migration rate in each deme are matched between
models.

139
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5.1 Introduction

The models we have developed in Chapters 2, 3 and 4 are based on homoge-
neous and well-mixed microbial populations. However, such models give a
good description of microbes in a well-agitated liquid suspension in a beaker,
but of few natural situations. For instance, during an infection, microbial
populations are subdivided between different organs, and between differ-
ent hosts. Moreover, most microbial populations feature some geographical
structure. Even bacteria growing on a Petri dish compete more strongly
with their neighbors than with other bacteria.

Population structure can have major consequences on the way microbial
populations evolve [52]. Structured populations, with their local competi-
tion, have smaller effective population sizes. This can allow the maintenance
of larger genetic diversity, due to the increased importance of stochastic fluc-
tuations. Some studies that investigated the impact of population subdivi-
sion on evolutionary dynamics showed that population structure accelerates
adaption [53], while other not [54]. Thus, the evolution of structured popu-
lations requires further theoretical investigation.

Structured populations can be described by individuals situated at the
nodes of a graph, with probabilities that the offspring of an individual re-
places another individual along each edge of the graph [55]. Importantly,
these models have shown that specific structures can amplify or suppress
natural selection. However, in these models, evolutionary outcomes can
drastically depend on the details of the dynamics, e.g. whether each birth
event precedes a death event or the opposite [56, 57, 58]. This lack of uni-
versality raises issues for applicability to real microbial populations.

In this work, which is still in progress at the time of writing this thesis,
we construct a more realistic coarse-grained model where a structured pop-
ulation is composed of demes not limited to one individual between which
migrations of individuals are possible [59] and independent from birth and
death events. We investigate the fixation probability of a mutation in dif-
ferent structures as a function of the mutant fitness for different migration
parameters. We then compare our model with existing models.

5.2 Model and methods

5.2.1 Structured population model

We consider microbial demes, whose carrying capacity is denoted by K,
where two types of microorganisms can exist: wild-type (W) and mutant
(M). Their reproduction rates are denoted by fW and fM , respectively, and
their death rates by gW and gM , respectively. The number of individuals
can vary over time and extinctions are allowed, but we will focus on the
regime where they are negligible. More specifically, we will consider that the
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microbial population within a deme follows a logistic growth. We will focus
on the fate of mutants without considering the possibility that other mutants
appear before they fix or disappear. Throughout, our time unit corresponds
to a generation of W microbes in the exponential growth phase. We model
a structured population as a graph where each node represents a deme. If
one node is connected to another node, then any individual from the first
node can migrate to the second one. The ability of microbes to migrate
from one deme to another deme is defined by their probability of migration
per individual. This probability can depend on the origin and destination
demes. Although in the main text we focus on migration rates per individual
that do not depend on the type of microbes, in the Appendix we present
analytical derivations that include the possibility of such a dependence.

We start from structured microbial populations whose demes are at their
equilibrium size, i. e. the stationary phase of the logistic growth where the
divisions compensate for deaths and vice versa (see Appendix, Section 5.5.3).
Although we neglect the possible initial exponential growth phase of the
microbial demes, our results are robust to variations in initial conditions
because the time scales involved are much larger than that of initial growth.

5.2.2 Method

Throughout this work, we consider the case where fixation in a deme is
much faster than migration events (rare migration regime) and thus mutants
will first fix in a deme (or disappear) before they can propagate to the
rest. Because fixation in a deme is well known, e.g under the Moran model
[91], we focus on the second stage of the process. Therefore, we investigate
the fixation probability of a mutant lineage assuming that the structured
population starts with a fully mutant deme while all others are fully wild-
type. In the rare migration regime, this can be used as a starting point to
derive analytical predictions for the fixation probability of a single mutant.
More specifically, we will investigate the fate of a mutation in the structures
shown in Fig 5.1.
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Figure 5.1: Different types of structures: A: Clique, or complete graph.
B: Ring. C: Small mutant deme with large wild-type deme. D: Small wild-
type deme with large mutant deme. E: Star with a mutant leaf. F: Star
with a mutant center. G: Line with an end mutant deme. H: Line with
a next-to-end mutant deme. Mutants (M) are in blue, wild-type (W) in
orange. Blue arrows (respectively orange) indicate the possible migrations
of mutant microbes (respectively wild-type). Here we represent a state where
the mutant has fixed in one deme while all others are fully wild-type.
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Our approach combines both analytical and numerical results. We derive
analytically the fixation probability of a mutation in a structured microbial
population using methods inspired by stochastic processes, either by solv-
ing recurrence relations satisfied by fixation probabilities, or by using mas-
ter equations, more precisely transition rate matrices (see Appendix, Sec-
tion 5.5.1). We test our analytical predictions and their domain of validity
by simulating the evolutionary dynamics of the structured populations under
consideration using a Gillespie algorithm (see Appendix, Section 5.5.5).

5.3 Results

5.3.1 Well-mixed populations

Before discussing structured populations, we start by a reminder on well-
mixed populations. Indeed, they will be used as a reference to evaluate the
impact of the structure on the evolution of the populations. The Moran
model allows to calculate analytically the fixation probability ΦM,i of i mu-
tants in a well-mixed population of fixed size N , which reads [91]

ΦM,i =
1− γi

1− γN
, (5.1)

where γ = (fW gM )/(fMgW ). We adapted the Moran results to our model
with birth and death rates (see Appendix, Section 5.5.4 for full derivation).
Although we consider microbial populations of variable size, we focus on
the stationary state where population size fluctuates around a stationary
value, so the Moran model will give a good approximation (see Appendix,
Section 5.5.3).

From Eq. 5.1, we can define an amplifier of natural selection, i.e. a
structure that decreases the fixation probability of deleterious mutations
while increasing the fixation probability of beneficial mutations compared
to a well-mixed population. Conversely, a suppressor of natural selection
increases the fixation probability of deleterious mutations while decreasing
the fixation probability of beneficial mutations compared to a well-mixed
population. This is illustrated in Fig. 5.2.

In the existing models of populations on graphs with one individual
per node [55], some structures are neither amplifiers of natural selection nor
suppressors of natural selection, such as the clique, or complete graph, under
the birth-death and death-birth dyanmics (see Fig. 5.2B) [55]. In the birth-
death dynamics, at each time step, an individual is selected to reproduce
with probability proportional to its fitness and one of its neighbors, chosen
uniformly at random, is replaced by that offspring [55]. In the death-birth
dynamics, at each time step, an individual is chosen uniformly at random
to be replaced by the offspring of one of its neighbors, which is chosen to
reproduce with probability proportional to its fitness [55]. Under birth-death
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Figure 5.2: Well-mixed populations, amplifiers and suppressors in
the model of Ref. [55]: A: Fixation probability ΦM,1 of one mutant in
a well-mixed population of size N versus mutant fitness fM . Black curve
corresponds to Eq. 5.1. For the same parameters as those used to plot the
black curve, structures whose fixation probability is in the blue zone are
suppressors of natural selection, while those whose fixation probability is in
the pink zone are amplifiers of natural selection. Parameter values: N = 4,
fW = 1 and gW = gM = 0.1. B: The complete graph, where each node
is a single individual, is equivalent to the Moran process, i.e its fixation
probability of a mutation is equal to this within the Moran model. This
is true for both dynamics, namely birth-death and death-birth. C: Stars,
where each node is a single individual, are amplifiers of natural selection
under birth-death dynamics. D: Graphs made of an upstream population
and a downstream one are suppressors of natural selection under birth-death
dynamics.

dynamics, stars are amplifiers of natural selection, while graphs made up of
an up-stream population and a down-stream one are suppressors of natural
selection (see Figs. 5.2C and D) [55].

5.3.2 Clique

The clique, or complete graph, is a structure where all demes are connected
to all others with migration rates per individual independent from the deme
(full symmetry, see Fig. 5.1A). The migration rate per wild-type microbe
(respectively mutant) is denoted by mW (respectively mM ). The fixation
probability Φi of i fully mutant demes in a clique of D demes reads

Φi =
1− (m̃γ̃)i

1− (m̃γ̃)D
, (5.2)

where m̃ = mW /mM and γ̃ = (NWφW )/(NMφM ) (see Appendix, Sec-
tion 5.5.1 for full derivation). Note that NW (respectively NM ) is the equi-
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librium size of a wild-type deme (respectively mutant) and φW (respectively
φM ) the fixation probability of a wild-type microbe (respectively mutant)
in a mutant deme (respectively wild-type). In the case where the migration
rates per individual do not depend on the type of microbes (mW = mM and
m̃ = 1), the fixation probability Φi does not depend on migration parame-
ters. If in addition the fitness of both types of microbes are equal (fW = fM ),
as well as their death rates (gW = gM ), then the fixation probability Φi re-
duces to the well-known fixation probability of the Moran process for the
neutral case [91]

Φi =
i

D
. (5.3)

Thus, in the neutral case, the fixation probability of a mutant deme in a
clique of D demes (Φ1 = 1/D) is equal to the fixation probability of N
mutants in a population of D × N microbes (see Eq. 5.1). As reported
by Fig. 5.3A, where we focus on the case where the migration rates per
individual do not depend on the type of microbes (mW = mM and m̃ = 1),
there is a very good agreement between our analytical predictions from Eq.
5.2 and our simulation results. The fixation probability Φ1 of a mutant deme
increases as the mutant fitness fM increases. More specifically, a deleterious
mutant (fM < fW ) is very unlikely to fix, while the more beneficial a mutant
is, the more likely it is to fix. In addition, we provide analytical predictions
for the fixation probability ρ1 = φMΦ1 that a single mutant microbe fixes in
the structured population (see Fig. 5.3B). Most importantly, the complete
graph, with full symmetry, gives a fixation probability very close to that of
a well-mixed population.

Note that we use two different ways to calculate the probability of fixa-
tion of an individual in a deme. The first one consists in calculating it in the
framework of the Moran model (fixed population size) while the second one
consists in using simulation results with the logistic growth (population size
fluctuating around the stationary value). Indeed, the Moran model deals
with fixed-size populations and does not perfectly give the fixation proba-
bility of an individual in a population of variable size, although it is at its
equilibrium size (see Appendix, Section 5.5.4).
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Figure 5.3: Fixation probabilities for the clique: A: Fixation proba-
bility Φ1 of a mutation starting with one fully mutant deme versus mutant
fitness fM . B: Fixation probability ρ1 of a mutation starting with one sin-
gle mutant microbe versus mutant fitness fM . In both panels, data points
correspond to averages over 103 simulation results. Dotted lines represent
analytical predictions where the fixation probability φM of a mutant in a
wild-type deme is computed analytically in the framework of the Moran
model (fixed population size). Solid lines represent analytical predictions
where the fixation probability φM of a mutant in a wild-type deme is com-
puted using simulation results with the logistic model (population size fluc-
tuating around the stationary value). Vertical dash-dotted lines represent
the neutral case where wild-type and mutant fitnesses are equal (fW = fM ),
and dashed lines represent the fixation probability in a well-mixed popula-
tion. Parameter values: fW = 1, gW = gM = 0.1, K = 20, D = 5 and
mW = mM = 10−6. The migration parameters mW and mM are chosen so
that the evolutionary dynamics take place within the rare migration regime
(see Appendix, Section 5.5.2).

5.3.3 Ring

For the ring, demes are arranged on a cycle in such a way that they are
connected to their left-hand and right-hand neighbors (see Fig. 5.1B). In this
case, clockwise migration and anti-clockwise migration may have different
rates. Thus, a W microbe (respectively M) migrates clockwise with the
migration rate per individual mC

W (respectively mC
M ) and anti-clockwise with

the migration rate per individual mA
W (respectively mA

M ). One can show that
the fixation probability Φi of a mutation in a ring of D demes satisfies

Φi =
1− (m̃γ̃)i

1− (m̃γ̃)D
, (5.4)

where m̃ = (mA
W + mC

W )/(mA
M + mC

M ) and γ̃ = (NWφW )/(NMφM ) (see
Appendix, Section 5.5.1 for full derivation). Note that the form of this
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equation is the same as that of the fixation probability of i mutant demes
in a clique (see Eq. 5.2), but m̃ is different. When the migration rates
per individual do not depend on the types of individuals (mA

W = mA
M and

mC
W = mC

M ), we recover a fixation probability Φi that does not depend on the
migration parameters, equal to that of the clique (see Eq. 5.2). Indeed, Fig.
5.4A shows that the fixation probability Φ1 of one mutant deme in a ring of
D demes is the same for different ratios mC/mA, where mA = mA

W = mA
M

and mC = mC
W = mC

M .
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Figure 5.4: Fixation probabilities for the ring: A: Fixation probability
Φ1 of a mutation starting with one fully mutant deme versus mutant
fitness fM . Data points correspond to averages over 103 simulation results.
B: Fixation probability ρ1 of a mutation starting with a one mutant
microbe versus mutant fitness fM . In both panels, dotted lines represent
analytical predictions where the fixation probability φM of a mutant in a
wild-type deme is computed analytically in the framework of the Moran
model (fixed population size). Solid lines represent analytical predictions
where the fixation probability φM of a mutant in a wild-type deme is
computed using simulation results with the logistic model (population
size fluctuating around the stationary value). Vertical dash-dotted lines
represent the neutral case where wild-type and mutant fitnesses are equal
(fW = fM ), and dashed lines represent the fixation probability in a well-
mixed population. Parameter values: fW = 1, gW = gM = 0.1, K = 20,
D = 5 and mA,mC = 5 × 10−6, 10−6 (downward-pointing triangle); 2 ×
10−6, 10−6 (upward-pointing triangle); 10−6, 10−6 (diamond); 10−6, 2 ×
10−6 (square); 10−6, 5 × 10−6 (circle). The migration parameters mA and
mC are chosen so that the evolutionary dynamics take place within the rare
migration regime (see Appendix, Section 5.5.2).

Moreover, we find as expected that the fixation probability Φ1 of a mu-
tant deme is equal to that of the clique when the migrations do not depend
on the type of microbe (mA

W = mA
M = mA and mC

W = mC
M = mC), even

if they are asymmetric (mC 6= mA). The fixation probability ρ1 = φMΦ1
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that a single mutant microbe fixes in the structured population is also equal
to that of the clique (see Fig. 5.4B). Let us note that there is a very good
agreement between our analytical predictions and our simulated data.

5.3.4 Small deme connected to a large deme

Imagine a small deme, whose carrying capacity is denoted by KS , connected
to a large deme, whose carrying capacity is denoted by KL, such that KS <
KL (see Figs. 5.1C and D). Wild-type and mutant microbes can migrate
from the large deme to the small deme with the migration rate per individual
mS and from the small deme to the large deme with the migration rate per
individual mL. In Appendix 5.5.1, we provide more general results for type-
dependent migration rates per individual. The fixation probability ΦS of a
mutation starting from one fully mutant small deme reads

ΦS =
1

1 + m̃γ̃S
, (5.5)

where m̃ = mS/mL and γ̃S = (NL
Wφ

S
W )/(NS

Mφ
L
M ). Note that NL

W and NS
M

are the equilibrium sizes of the wild-type large deme and of the mutant
small deme, respectively, and φSW and φLM are the fixation probabilities of
a wild-type microbe in the mutant small deme and of a mutant microbe
in the wild-type large deme, respectively. The fixation probability ΦL of a
mutation starting from one fully mutant large deme satisfies

ΦL =
1

1 + γ̃L/m̃
, (5.6)

where γ̃D = (NU
Wφ

D
W )/(ND

Mφ
U
M ) (see Appendix, Section 5.5.1 for full deriva-

tions of Eqs. 5.5 and 5.6). Note that the notations are similar to those in
Eq. 5.5.

Because the appearance of a mutant is random, and because it can ap-
pear in one of the two demes, it is interesting to calculate the fixation prob-
ability Φ1 of an arbitrary mutant deme

Φ1 = qΦS + (1− q)ΦL , (5.7)

where q is the probability that the initial mutant deme is the small deme.
This probability is chosen proportionally to the population size, i.e q =
KS/(KS +KL), because the mutant is more likely to appear in a large pop-
ulation than in a small one. This corresponds to uniform initial conditions
[55]. From Eqs. 5.5, 5.6 and 5.7, one can derive the fixation probability of a
single mutant in the weak-migration regime. Indeed, a mutant then fixes in
the structured population if it appears in one of the two demes, fixes in that
deme, and then this mutant deme takes over the structured population. This
results in the fixation probability of a single mutant appearing in the small
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deme, i.e. ρS = φSMΦS , the fixation probability of a single mutant appearing
in the large deme, i.e. ρL = φLMΦL, and the fixation probability of a single
mutant appearing in an arbitrary deme, i.e. ρ1 = qφSMΦS+(1−q)φLMΦL. As
reported by Fig. 5.5, there is a very good agreement between our analytical
predictions and simulation results.

Figs. 5.3A, B, C and D shed light on a threshold ratio mS/mL for which
the fixation probability, whether it is of a single mutant or of a mutant
deme, whether in the large deme or in the small deme, is almost equal to
that in a well-mixed population, for the same number of mutant microbes.
This threshold corresponds to the equality between the migration flow from
the small deme to the large deme and the migration flow from the large
deme to the small deme, i.e mSKL = mLKS . When mS/mL < KS/KL,
the individuals from the small deme migrate more often that those of the
large deme. Thus, mutants that appear in the small deme are more likely
to spread and fix than in a well-mixed population when mS/mL < KS/KL

(see Figs. 5.5A and B). In the extreme case where mS/mL →∞, a mutant
that appears in the small deme will migrate much less frequently than the
wild-type microbes from the large deme, and thus it is very unlikely to fix.
Conversely, if mS/mL → 0, a mutant that appears in the small deme will
migrate much more often than the wild-type microbes from the large deme,
but it needs a fitness large enough to be able to compete with the wild-type
microbes of the large deme and then fix. Hence a fitness threshold below
which no mutant can fix, whatever the ratio mS/mL (see Figs. 5.5A and
B).

Similarly, when mS/mL > KS/KL, the individuals from the large deme
migrate more often than those of the small deme. That is why mutants that
appear in the large deme are more likely to spread and fix than in a well-
mixed population when mS/mL > KS/KL (see Figs. 5.5C and D). In the
extreme case where mS/mL →∞, a mutant that appears in the large deme
will migrate much more frequently than the wild-type microbes from the
small deme, and thus it is very likely to fix. Conversely, if mS/mL → 0, a
mutant that appears in the large deme will migrate much less often than the
wild-type microbes from the small deme. However, if the fitness of mutants
is large enough, wild-type individuals are not likely to fix in the large deme,
while mutants are likely to fix in the small deme. Hence a fitness threshold
beyond which all mutants can fix, whatever the ratio mS/mL (see Figs. 5.5C
and D).

As shown in Figs. 5.5E and F, under uniform initial conditions, the two
connected populations are suppressors of natural selection for mS/mL >
KS/KL. Indeed, because a mutant is more likely to appear in the large
deme, it is more likely to fix when migrations from the large deme to the
small deme are more frequent than migrations from the small deme to the
large deme. The asymptotic case mS/mL → 0 cannot be qualified as an
amplifier of natural selection or a suppressor of natural selection, because
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Figure 5.5: Fixation probabilities for a small deme connected to a
large deme: A: Fixation probability ΦS of a mutation starting with one
fully mutant small deme versus mutant fitness fM . B: Fixation probabil-
ity ρS of a mutation starting with one single mutant microbe in the small
deme versus mutant fitness fM . C: Fixation probability ΦL of a mutation
starting with one fully mutant large deme versus mutant fitness fM . D:
Fixation probability ρD of a mutation starting with one single mutant mi-
crobe in the large deme versus mutant fitness fM . E: Fixation probability
Φ1 of a mutation starting with one fully mutant deme chosen uniformly
versus mutant fitness fM . Data points are obtained by linear combina-
tion of those of panels A and C (see Eq. 5.7). F: Fixation probability ρ1

of a mutation starting with one single mutant microbe in a deme chosen
uniformly versus mutant fitness fM . In A, C and E, data points corre-
spond to averages over 103 simulation results. In all the panels, dotted and
solid lines represent analytical predictions where the fixation probability
φM is computed analytically in the framework of the Moran model (fixed
population size) and using simulation results with the logistic model (pop-
ulation size fluctuating around the stationary value), respectively, vertical
dash-dotted lines represent the neutral case where wild-type and mutant
fitnesses are equal (fW = fM ), and dashed lines represent the fixation prob-
ability in a well-mixed microbial population. Parameter values: fW = 1,
gW = gM = 0.1, KS = 20, KL = 80, D = 2, q = 0.2 and mL,mS =
5 × 10−6, 10−6 (purple); 2 × 10−6, 10−6 (blue); 10−6, 10−6 (green); 10−6, 2 ×
10−6 (yellow); 10−6, 5 × 10−6 (red). The migration parameters mL and mS

are chosen so that the evolutionary dynamics take place within the rare
migration regime (see Appendix, Section 5.5.2).
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the fixation probability is larger than that obtained in the case of a well-
mixed population for some deleterious mutant fitnesses while it is smaller
for some others. The extreme case mS = 0 and mL 6= 0 (not shown in 5.5),
which implies that a large mutant deme does not fix, while a small mutant
deme fixes, gives a fixation probability for an arbitrary deme, with uniform
initial conditions, equal to Φ1 = 0.2 (see Eq. 5.7). Interestingly, these cases
(mS/mL → 0 and mS = 0, mL 6= 0) correspond to a small upstream deme
feeding into a large downstream deme, which is a suppressor of natural
selection in the existing models [55]. Thus, the suppressor property does
not hold with the coarse-graining of our model. Data are missing for ratios
between the asymptotic case mS/mL → 0 and mS/mL = KL/KS to know if
for some migration parameters the two connected populations are amplifiers
of natural selection.

5.3.5 Star

The star is a structure where a central node is connected to all the other
nodes, called leaves, while the latter are connected only to the central node
(see Figs. 5.1E and F). A microbe can migrate from a leaf to the central
node with the migration rate per individual mI and from the central node to
a leaf with the migration rate per individual mO. The fixation probability
of a mutation in star of D demes starting from one fully mutant center reads

Φ10 =
1 + m̃γ̃ − γ̃(m̃+ γ̃)

1 + m̃γ̃ − γ̃(m̃+ γ̃)
(
γ̃(1+m̃γ̃)
m̃+γ̃

)D−1
, (5.8)

where m̃ = mI/mO and γ̃ = (NWφW )/(NMφM ). As a reminder, NW

and NM are the equilibrium sizes of the wild-type and the mutant demes,
respectively, and φW and φM are the fixation probabilities of a wild-type
microbe in a mutant deme and of a mutant microbe in a wild-type deme,
respectively. The fixation probability of a mutation in a star of D demes
starting from one fully mutant leaf satisfies

Φ01 =
(1 + m̃γ̃)

(
1− γ̃(1+m̃γ̃)

m̃+γ̃

)
1 + m̃γ̃ − γ̃(m̃+ γ̃)

(
γ̃(1+m̃γ̃)
m̃+γ̃

)D−1
. (5.9)

Using Eqs. 5.8 and 5.9 (see Appendix, Section 5.5.1 for their full deriva-
tions), one can compute the fixation probability that an arbitrary mutant
deme fixes in a star, which is given by

Φ1 = qΦ10 + (1− q)Φ01 , (5.10)

where q is the probability that the initial mutant deme is the center deme.
Because we consider the case where the center and the leaves have the same
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population size, the mutant is likely to appear uniformly in any deme. Since
there is only one center and D−1 leaves, we set q = 1/D, which corresponds
to uniform initial conditions [55].

As reported by Figs. 5.6A, B, C and D, we observe a threshold ratio
mI/mO for which the fixation probability of a mutant is almost equal to
that in a well-mixed population. This ratio is obtained when the migration
flows from the center to the leaves and from the leaves to the center are
equal, i.e. for mI = mO because all the populations have the same size.

A mutant that has appeared and fixed in the center will migrate to
leaves more frequently than wild-type individuals will migrate from leaves
to the center when mI/mO < 1, and conversely for mI/mO > 1. Thus, a
mutant that has appeared and fixed in the center is more likely to fix in the
structured population if mI < mO than in a well-mixed population (see Fig.
5.6A). In the asymptotic case where mI/mO tends to 0, the mutant center
fixes in the population, whatever the mutant fitness, while when mI/mO

tends to infinity, the mutant center never fixes, whatever the mutant fitness.
In the first case, the mutation spreads from the center to the leaves because
wild-type microbes from the leaves rarely migrate compared to the mutant
microbes from the center, while in the second case, the wild-type microbes
from the leaves invade the center because the mutant microbes from the
center rarely migrate compared to the wild-type microbes from the leaves.

Similarly, a mutant that appeared and fixed in a leaf will migrate to the
center more often than wild-type individuals will migrate from the center to
the leaves when mI/mO > 1, and vice versa for mI/mO < 1. Thus, a mutant
that has appeared and fixed in a leaf is more likely to fix in the structured
population if mI > mO than in a well-mixed population (see Fig. 5.6C). In
the case where mI/mO → 0, the mutation never fixes because the wild-type
microbes from the center migrate much more often. The case mI/mO →∞
is less trivial since it depends on the mutant fitness. Indeed, although that
the mutant microbes from the leaves migrate much more frequently, they
need to have a large enough fitness to fix.

Crucially, we find that the star is a suppressor of natural selection under
uniform initial conditions (see Fig. 5.6E), whereas in existing models it is an
amplifier of natural selection in the Birth-death model [55] and a suppressor
of natural selection in the Death-birth model [145].

5.3.6 Line

The line can be seen as a ring where two neighboring demes are disconnected
(see Fig. 5.1G and H). In this way, all demes are connected to their left-
hand and right-hand neighbors, except for the two demes at the end nodes.
For the line, different conventions are possible to define migration rates per
individual. Here, we will choose to differentiate between the migration rates
per individual of the demes at the extremities and those in the center. We
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Figure 5.6: Fixation probabilities for the star: A: Fixation probability
Φ10 of a mutation starting with one fully mutant center versus mutant fitness
fM . B: Fixation probability ρ10 starting with one single mutant microbe
in the center versus mutant fitness fM . C: Fixation probability Φ01 of a
mutation starting with one fully mutant leaf versus mutant fitness fM . D:
Fixation probability ρ01 starting with one single mutant microbe in a leaf
versus mutant fitness fM . E: Fixation probability Φ1 of a mutation start-
ing with one fully mutant deme chosen uniformly versus fitness mutant fM .
Data points are obtained by linear combination of those of panels A and
C (see Eq. 5.10). F: Fixation probability ρ1 starting with one single mu-
tant microbe in a deme chosen uniformly versus mutant fitness fM . In the
panels A, C and E, data points correspond to averages over 103 simulation
results. In all the panels, dotted and solid lines represent analytical pre-
dictions where the fixation probability φM is computed analytically in the
framework of the Moran model (fixed population size) and using simulation
results with the logistic model (population size fluctuating around the sta-
tionary value), respectively, vertical dash-dotted lines represent the neutral
case where wild-type and mutant fitnesses are equal (fW = fM ), and dashed
lines represent the fixation probability in a well-mixed microbial population.
Parameter values: fW = 1, gW = gM = 0.1, K = 20, D = 5 and mO,mI =
5 × 10−6, 10−6 (purple); 2 × 10−6, 10−6 (blue); 10−6, 10−6 (green); 10−6, 2 ×
10−6 (yellow); 10−6, 5 × 10−6 (red). The migration parameters m0 and mI

are chosen so that the evolutionary dynamics take place within the rare mi-
gration regime (see Appendix, Section 5.5.2). Dotted and solid lines in the
right-hand panels are obtained by multiplying those of the left-hand panels
by the fixation probability φM of a mutant in a wild-type deme computed
analytically and using simulation results, respectively.
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will focus on the case of a line composed of four demes (D = 4), because the
analytical derivation of the fixation probability for an arbitrary number of
demes is difficult. The fixation probability ΦI of an end mutant deme reads
(see Appendix, Section 5.5.1 for full derivation)

ΦI =
m̃

m̃+ γ̃ + γ̃2 + m̃γ̃3
, (5.11)

where m̃ = mC/mP and γ̃ = (NWφW )/(NMφM ), while the fixation prob-
ability of a next-to-end mutant deme satisfies (see Appendix, Section 5.5.1
for full derivation)

ΦII =
m̃2γ̃ + γ̃(2 + γ̃) + m̃(2 + γ̃2)

(1 + γ̃)(m̃+ γ̃ + m̃(γ̃ − 1)γ̃)(2 + γ̃ + m̃γ̃(2 + γ̃ + m̃γ̃))
. (5.12)

Using Eqs. 5.11 and 5.12, and because for D = 4 all demes are end or
next-to-end demes, one can compute the fixation probability of an arbitrary
mutant deme

Φ = qΦI + (1− q)ΦII , (5.13)

where q is the probability that the initial mutant deme is an end deme.
Since a mutant is likely to appear uniformly in any deme, we will focus on
q = 1/2, which corresponds to uniform initial conditions.

As reported by Fig. 5.7, there is a threshold ratio mC/mP such that
the fixation probability of a mutant that appeared and fixed in a end deme
and the fixation probability of a mutant that appeared and fixed in a next
end deme are almost equal to this in a well-mixed population. This ratio
is obtained when the migration flux from the end demes to the next end
demes and from the next end demes to the end demes are equal, i.e when
mC = mP because the population sizes are identical. This observation was
also made in the case of the star. Thus, the same comments made for the
star are valid here.

Crucially, Figs. 5.7E and F show that the line, under uniform initial
conditions, is a suppressor of natural selection.
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Figure 5.7: Fixation probabilities for the line: A: Fixation probability
ΦI of a mutation starting with one fully mutant end deme versus mutant
fitness fM . B: Fixation probability ρI starting with one single mutant mi-
crobe in an end deme versus mutant fitness fM . C: Fixation probability
ΦII of a mutation starting with a fully mutant next-to-end deme versus
mutant fitness fM . D: Fixation probability ρII starting with one single mu-
tant microbe in a next-to-end deme versus mutant fitness fM . E: Fixation
probability Φ1 of a mutation starting with one fully mutant deme chosen
uniformly versus mutant fitness fM . F: Fixation probability ρ1 starting
with one single mutant microbe in a deme chosen uniformly versus mutant
fitness fM . In all the panels, dotted and solid lines represent analytical
predictions where the fixation probability φM is computed analytically in
the framework of the Moran model (fixed population size) and using sim-
ulation results with the logistic model (population size fluctuating around
the stationary value), respectively, vertical dash-dotted lines represent the
neutral case where wild-type and mutant fitnesses are equal (fW = fM ), and
dashed lines represent the fixation probability in a well-mixed population.
Parameter values: fW = 1, gW = gM = 0.1, K = 20, D = 4 and q = 0.5.
The migration parameters mC and mP are chosen so that the evolution-
ary dynamics take place within the rare migration regime (see Appendix,
Section 5.5.2).
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5.3.7 Comparison with Birth-death and Death-birth models

Now that we have developed our structured population model on graphs,
where each node is a subpopulation, let us compare it to two existing mod-
els. These are the Birth-death model (or voter model) and the Death-birth
model (or invasion process model), as described in [59]. Ref. [59] made the
important step of generalizing the model of Ref. [55] to demes with more
than one individual, but with fixed size. Our model additionally removes
the requirement that the size is fixed and makes migration independent from
birth and death events. Thus, it is important to compare our results to those
of Ref. [59]. Note that the model of Ref. [55] was analyzed in detail in Irene
Lamberti’s MSc internship in our group.

In order to rigorously compare these two models with ours, we match
the ratios between the total reproduction rate of all individuals in a single
deme, denoted by Trep, and the total migration rate per individual from
this deme to any other accessible, denoted by Tmig. In our model, the
total reproduction rate is given by Trep = fW (1 − NW /K)NW for each
deme, whatever its type (leaf, center, etc), assuming that all the demes have
the same carrying capacity K. Let us note two things. First, although
in our model the subpopulation sizes may vary over time, they reach an
equilibrium size that we use to calculate the total reproduction rate of a
deme (see section 5.5.3). Then, even if this equilibrium size is different for
a wild-type community and a mutant deme, especially when the fitness of
both types of individuals are very different, we choose as reference the wild-
type deme equilibrium size, namely NW . Second, the total migration rate
per individual from a deme, let us say the ith deme, to any other is given by
Tmig = NW

∑M
j=1mij , where mij is the migration rate per individual from

deme i to deme j. Thus, for the total migration rates per individual from
a deme, it will be necessary to distinguish the subpopulations depending on
their connections. For example, in the case of a population structured as
a star, it will be required to distinguish the center, which is connected to
all the leaves, from the leaves, which are only connected to the center, and
therefore do not have the same total migration rate per individual.

Let us focus on the case of a population of D demes structured as a
star. In this case, with our model, the total migration rate per individual
from a leaf is mI and that from the center is mO(D − 1). In the Birth-
death model, the total reproduction rate is equal to 1, for both the center
and a leaf, while the total migration rates per individual from a leaf and
from the center are denoted x and y, respectively [59]. Thus, to match our
model with the Birth-death model, we have the following two constraints:
y = mO(D − 1)/(fW (1 − NW /K)) and x = mI/(fW (1 − NW /K)). In the
Death-birth model, the total reproduction rates for a leaf and the center
are y/(D − 1) + 1 − x and 1 − y + (D − 1)x, respectively, while the total
migration rates per individual from a leaf and from the center are y/(D−1)
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and (D− 1)x, respectively [59]. Thus, to match our model with the Death-
birth model, we have the following two constraints: xfW (1 − NW /K) =
mO(1−y+(D−1)x) and mI(y/(D−1)+1−x) = yfW (1−NW /K)/(D−1).

As reported by Fig. 5.8, once this matching is done, there is a good
agreement between the three models.
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Figure 5.8: Comparison between Birth-death, Death-birth and our
model: A: Fixation probability Φ10 of a mutation starting from one fully
mutant center as a function of the mutant fitness fM for a population struc-
tured as a star. B: Relative error between results obtained with our model
and results obtained with the Birth-death model and the Death-birth model
as a function of the mutant fitness fM . The relative error is the difference
in absolute value between the fixation probability obtained with our model
and that obtained with the Birth-death model and the Death-birth model
divided by the fixation probability obtained in our model. C: Absolute er-
ror between results obtained with our model and results obtained with the
Birth-death model and the Death-birth model as a function of the mutant
fitness fM . The absolute error is the difference in absolute value between
the fixation probability obtained with our model and that obtained with
the Birth-death model and the Death-birth model. Data points correspond
to averages over 103 − 104 simulation results. Parameter values: fW = 1,
gW = gM = 0.1, K = 20, D = 5, mI = 5 × 10−6, mO = 10−6 and N = 18.
For Birth-death, x = 10−5 and y = 2× 10−4. For Death-birth, x = 5× 10−5

and y = 4× 10−5.
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Indeed, we observe that when the same ratio Trep/Tmig is set in the three
models, they give an almost equal fixation probability of a mutant deme.
More specifically, Figs. B and C show very small relative and absolute
differences, respectively, between the probability of fixation in our model
and those of the birth-death and death-birth models. Note that the relative
error is high when the probability of fixation of a mutant deme is close to
zero, which is the case for deleterious mutations. But then the absolute
error is small, which confirms that the three models are consistent.

Note that the matching and the weak-migration hypothesis mean very
strong self-loops, which in graph-structured populations allow for self-replacements
with a large probability. This is not the case studied classically. Indeed, Ref.
[55] considers no self-loops and Ref. [59] includes them formally but does
not treat the case where they are very large. Moreover, x and y can be
chosen freely in previous models, and the classic choice x = y = 1, which
corresponds to no self-loops, means that newborns always migrate. Most
importantly, Birth-death and Death-birth dynamics give very different re-
sults [55, 59, 57], but this is without self-loops and without the matching
condition.

5.4 Discussion

5.4.1 Main conclusions

In this work, we investigated the fixation of mutants in structured microbial
populations in the weak-migration regime. We developed a coarse-grained
model where a structured microbial population is composed of demes whose
population size is not fixed and can fluctuate, and where migrations from
one deme to another are allowed and are independent from birth and death
events, in contrast with previous work [55, 59]. We derived analytical pre-
dictions for the fixation probability of a mutation in different structures as a
function of the mutant fitness for different migration parameters. We showed
that the clique and the ring are neither amplifiers of natural selection nor
suppressors of natural selection, while the two connected populations, the
star and the line are suppressors of natural selection. This stands in contrast
with the results of previous models [55], where the star is an amplifier of
natural selection under Birth-death dynamics. However, we have shown that
our model gives similar results to the existing Birth-death and Death-birth
models for the same ratios of total reproduction rate by total migration rate
in each deme. Thus, our model generalizes these existing models, and al-
lows to choose the parameters involved in these models without ambiguity.
The fact that no amplifiers appear to survive our coarse-graining process is
particularly interesting.

For each structure studied in this work, we provided both analytical ex-
pressions and stochastic simulation results (except for the line). We obtained
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a very good agreement between them.

5.4.2 Perspectives and work in progress

It would be interesting to study other structures and determine if there are
natural selection amplifiers within our model. We are also working on for-
mulating the equivalent of the isothermal theorem for our model in order to
identify structures whose the fixation probability of mutation is similar to
that of a well-mixed population. We are further currently applying our re-
sults to random graphs, with the aim to compare our results to recent results
showing that most random graphs are amplifiers of selection for Birth-death
dynamics and suppressors of selection for Death-Birth dynamics with one
individual per deme and no self-loop [57]. It would also be interesting to
assess the impact of population structure on the evolution of antimicrobial
resistance studied in the other chapters of this thesis. Finally, this work
could give rise to evolutionary experiments to test our predictions.
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5.5 Appendix

5.5.1 Detailed calculations of the fixation probability

Clique

Let us consider a population structured as a clique that is composed of D
demes, including i mutant demes and D−i wild-type demes. As a reminder,
the wild-type is denoted by W and the mutants by M . We denote by mW

(respectively mM ) the migration rate per individual of a W individual (re-
spectively M) from one deme to any other. The number of mutant demes in-
creases by 1 if a M individual migrates from one of the i mutant demes to one
of the D − i wild-type demes and fixes. The probability that such an event
occurs is T+

i = mMNMφM (D−i)i, where φM = (1−(fW gM )/(fMgW ))/(1−
((fW gM )/(fMgW ))NW ) is the fixation probability of a mutant in a wild-type
deme and NM = K(1 − gM/fM ) (respectively NW = K(1 − gW /fW )) is
the equilibrium size of a mutant (respectively wild-type) deme. Similarly,
the number of mutant demes decreases by 1 if a W individual migrates
from one of the D − i wild-type demes to one of the i mutant demes and
fixes. The probability that this occurs is T−i = mWNWφW (D − i)i, where
φW = (1 − (fMgW )/(fW gM ))/(1 − ((fMgW )/(fW gM ))NM ) is the fixation
probability of a wild-type microbe in a mutant deme. Then, the fixation
probability Φi of a mutation in a clique of D demes starting with i mutant
demes satisfies the recurrence relation

Φ0 = 0

Φi = T+
i Φi+1 + T−i Φi−1 + (1− T+

i − T
−
i )Φi for i = 1, 2, ..., D − 1

ΦM = 1 .
(5.14)

Solving the system 5.14, one obtains [146]

Φi =
1 +

∑i−1
k=1

∏k
j=1 Γj

1 +
∑D−1

k=1

∏k
j=1 Γj

, (5.15)

where Γi = T−i /T
+
i = (mWNWφW )/(mMNMφM ). Since here Γi = Γ ∀i, i.e

Γi does not depend on the initial number i of mutant demes, the fixation
probability Φi reduces to

Φi =
1− m̃γ̃i

1− m̃γ̃D
, (5.16)

where we introduced m̃ = mW /mM and γ̃ = (NWφW )/(NMφM ). In the
case where the migration rates per individual do not depend on the type of
individuals (mW = mM and m̃ = 1), the fixation probability Φi does not
depend on migration parameters. If in addition the fitness of both types of
microbes are equal (fW = fM ), as well as their death rates (gW = gM ), then
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the fixation probability Φi reduces to the well-known fixation probability of
the Moran process for the neutral case [91]:

Φi =
i

D
. (5.17)

Ring

Let us consider a population structured as a ring with D demes, including
a cluster of i mutant demes. Note that this cluster cannot break during the
evolution process assuming that we start from one mutant. The number
i of mutant demes increases by 1 if a M individual from one of the two
extremities of the mutant cluster migrates and fixes in the nearby wild-
type deme. Similarly, the number i of mutant demes decreases by 1 if a
W individual from one of the two wild-type demes surrounding the mutant
cluster migrates and fixes in the nearby mutant deme. Thus, the fixation
probability Φi of mutation starting with i mutant demes satisfies Eq. 5.16
with T+

i = (mL
M + mR

M )NMφM , T−i = (mL
W + mR

W )NWφW , m̃ = (mL
W +

mR
W )/(mL

M +mR
M ) and γ̃ = (NWφW )/(NMφM ). When the migration rates

per individual do not depend on the types of individuals (mL
W = mL

M and
mR
W = mR

M ), we recover a fixation probability Φi that does not depend on
the migration parameters, equal to that of the clique.

Small deme with large deme

Let us first consider the case where the small deme, whose carrying capacity
is denoted by KS , is mutant, while the large deme, whose carrying capacity
is denoted by KL, is wild-type. If a M individual migrates from the small
deme to the large deme and fixes, then mutation takes over the structured
population. The probability of this event reads TLM = mL

MN
S
Mφ

L
M , where

mL
M is the migration rate per individual of a M individual from the small

deme to the large deme, NS
M = KS(1−gM/fM ) (respectively NL

W = KL(1−
gW /fW )) is the equilibrium size of the small mutant (respectively large wild-

type) deme and φLM = (1−(fW gM )/(fMgW ))/(1−((fW gM )/(fMgW ))N
L
W ) is

the fixation probability of a mutant in the large wild-type deme. Similarly,
if a W individual migrates to the small deme and fixes, then wild-type takes
over the structured population. The probability of this event reads TSW =
mS
WN

L
Wφ

S
W , wheremS

W is the migration rate per individual of aW individual
from the large deme to the small deme, φSW = (1− (fMgW )/(fW gM ))/(1−
((fMgW )/(fW gM ))N

S
M ) is the fixation probability of a wild-type individual

in the small mutant deme. Then, the fixation probability ΦS of a mutation
starting from a small mutant deme satisfies Eq 5.16 and yields ΦS = 1/(1 +
ΓS), where ΓS = TSW /T

L
M . Introducing the notations m̃ = mS/mL and

γ̃ = (NWφW )/(NMφM ), one recovers Eq. 5.5.
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Another way to obtain the fixation probability ΦS consists of computing
the probability that a mutant migrates from the small deme to the large
deme and fixes before a wild-type individual migrates from the large deme
to the small deme and fixes. Let t̂LM be the random time at which a mutant
migrates from the small deme to the large deme and fixes and t̂SW the random
time at which a wild-type migrates from the large deme to the small deme
and fixes. Assuming that these random times are exponentially distributed,
it follows:

ΦS =Prob(t̂LM < t̂SW ) =

∫ ∞
0

du

(
TSW e

−uTSW
∫ u

0
dsTLMe

−sTLM
)

=
TLM

TLM + TSW
=

1

1 + ΓS
. (5.18)

Similarly, in the case where the structured population starts from a large
mutant deme, while the small deme is wild-type, we get the fixation proba-
bility ΦL = 1/(1 + ΓL), where γL = TLW /T

S
B , TLW = mL

WN
S
Wφ

L
W and TSM =

mS
MN

L
Mφ

S
M . Introducing the notations m̃ = mS/mL and γ̃ = (NWφW )/(NMφM ),

one recovers Eq. 5.6.

Star

Let us consider a population structured as a star with D demes. A W
individual (respectively M) of a leaf migrates to the center with a migration
rate per individualmI

W (respectivelymI
M ) while aW individual (respectively

M) of the center migrates to a leaf with a migration rate per individual mO
W

(respectively mO
M ). Let us define Φ0,i as the fixation probability of mutation

knowing that the center is not mutant and i leaves are mutant. Similarly,
Φ1,i is the fixation probability of mutation knowing that the center and i
leaves are mutant. The fixation probabilities Φ0,i and Φ1,i yield [107]:

Φ0,0 =0

Φ1,i =T(1,i)→(0,i)Φ0,i + T(1,i)→(1,i+1)Φ1,i+1

+ (1− T(1,i)→(0,i) − T(1,i)→(1,i+1))Φ1,i for 1 ≤ i ≤ D − 2

Φ0,i =T(0,i)→(1,i)Φ1,i + T(0,i)→(0,i−1)Φ0,i−1

+ (1− T(0,i)→(1,i) − T(0,i)→(0,i−1))Φ0,i for 1 ≤ i ≤ D − 2

Φ1,D−1 =1 ,
(5.19)

where T(1,i)→(0,i) = (D− 1− i)mI
WNWφW is the probability that the center

becomes wild-type knowing that the center is initially mutant and that i
leaves are mutant, T(1,i)→(1,i+1) = (D − 1 − i)mO

MNMφM is the probability
that the number of mutant leaves increases by 1 knowing that the center is
mutant, T(0,i)→(1,i) = (D−1−i)mI

MNMφM is the probability that the center
becomes mutant knowing it is initially wild-type and i leaves are mutant and
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T(0,i)→(0,i−1) = (D − 1 − i)mO
WNWφW is the probability that the number

of mutant leaves decreases by 1 knowing that the center is wild-type. The
system 5.19 can be written as:

Φ0,0 = 0

Φ1,i = Φ1,i−1 + Γ1(Φ1,i−1 − Φ0,i−1) for 1 ≤ i ≤ D − 2

Φ0,i =
1

1 + Γ0
Φ1,i +

Γ0

1 + Γ0
Φ0,i−1 for 1 ≤ i ≤ D − 2

Φ1,D−1 = 1 ,

(5.20)

where Γ1 = (mI
WNWφW )/(mO

MNMφM ) and Γ0 = (mO
WNWφW )/(mI

MNMφM ).
After solving the system 5.20, one obtains:

Φ0,0 = 0

Φ1,i =
−1 + Γ1(−1 + (1 + Γ0)(Γ0(1+Γ1)

1+Γ0
)i)

−1 + Γ1(−1 + (1 + Γ0)(Γ0(1+Γ1)
1+Γ0

)D−1)
for 1 ≤ i ≤ D − 2

Φ0,i =
(1 + Γ1)(−1 + (Γ0(1+Γ1)

1+Γ0
)i)

−1 + Γ1(−1 + (1 + Γ0)(Γ0(1+Γ1)
1+Γ0

)D−1)
for 1 ≤ i ≤ D − 2

Φ1,D−1 = 1 .

(5.21)

Let us assume that the migration rates per individual do not depend on the
genotype (mI

W = mI
M = mI and mO

W = mO
M = mO) and let us introduce the

notations m̃ = mI/mO and γ̃ = (NWφW )/(NMφM ). Then one recovers Eqs.
5.8 and 5.9. If in addition the migration rates per individual are symmetric
(mI = mO and m̃ = 1), the fixation probability reduces to:

Φ0,0 = 0

Φ1,i =
1− γ̃i+1

1− γ̃D
for 1 ≤ i ≤ D − 2

Φ0,i =
1− γ̃i

1− γ̃D
for 1 ≤ i ≤ D − 2

Φ1,D−1 = 1 .

(5.22)

The previous formula is similar to that of the fixation probability of the
clique (see Eq. 5.16) for m̃ = 1.

Line

Let us consider a structured microbial population where the demes form
a line. To simplify, we will focus on the particular case of four demes, i.e
D = 4. The method we will use here is based on the master equation that
governs the probability that the structured population is in a given state.
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Specifically, with four demes and two types of individuals, namely wild-type
and mutant, the structured population can be in the states shown in Fig.
5.9.

0

I

II

III

IV

V VI

Figure 5.9: Different states for the line: All the possible states for the
line with four demes (M = 4). Wild-type individuals are in orange, while
mutant individuals are in blue. Orange and blue arrows indicate possible
migrations of wild-type and mutant individuals, respectively. Black arrow
show possible transitions from a state to another.

Each of these states is denoted by a Roman numeral (O, I,..., VI). Note
that the state denoted by O corresponds to the extinction of the mutant,
while the state denoted by VI corresponds to the fixation of the mutation.
These are the absorbing states. Let P (i, t|i0, 0) be the probability that the
structured microbial population is in state i at time t, where i = O, I,...,
knowing that it was initially in state i0. This probability obeys the master
equation

∂P (i, t|i0, 0)

∂t
=

∑
j∈{O,I,...,VI}

(R)i,jP (j, t|i0, 0) , (5.23)

where R is the transition rate matrix. After integrating the previous master
equation knowing that P (i, 0|i0, 0) = δi,i0 , with δ the Kronecker delta, which
is equal to 1 if the state i = i0 and 0 otherwise, one obtains

P (i, t|i0, 0) = (eRt)i,i0 . (5.24)

In the case of the line with four demes and two types of individuals, namely
wild-type and mutant, the transition rate matrix R is given by

R =



0 TPW TPW + TCW 0 0 0 0
0 −(TPW + TCM ) 0 TPW 0 0 0
0 0 −(TPW + TCW + 2TPM ) 0 2TCW 0 0
0 TCM TPM −(TPW + TPM ) 0 TCW 0
0 0 TPM 0 −2(TCW + TPM ) 0 0
0 0 0 TPM 2TPM −(TCW + TPM ) 0
0 0 0 0 0 TPM 0


,

(5.25)

where TPW = mP
WφWNW , TCW = mC

WφWNW , TPM = mP
MφMNM and TCM =

mC
MφMNM . Let us consider R̃ and R̃−1, the reduced transition rate matrix

with the rows and columns corresponding to the absorbing states removed
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and its inverse, respectively. Finally, the fixation probability of a mutation
starting from the state I yields

ΦI = TPM

∫ ∞
0

P (V, t|I, 0)dt = −TPM (R̃−1)V,I , (5.26)

and the fixation probability of a mutation starting from the state II reads

ΦII = TPM

∫ ∞
0

P (V, t|II, 0)dt = −TPM (R̃−1)V,II . (5.27)

In the two last expressions, we have taken advantage of the fact that the
only way to fix in state VI between t and t + dt is to be in state V and
then to transition from V to VI. A numerical resolution of the inverse of the
reduced transition rate matrix allows to recover Eqs. 5.11 and 5.12.

5.5.2 Rare migration regime

Throughout this work, we have considered the rare mutation regime. In this
regime, migrations are rare enough not to disrupt the competition between
two types of individuals that leads to the fixation of one of the two geno-
types. In other words, the time between two migration events is much larger
than the fixation times. Thus, we choose the migration parameters such that
tm � tWfix, t

M
fix, where tm is the time elapsed between two migrations, tWfix the

mean fixation time of a W individual in a mutant deme and tMfix the mean
fixation time of a M individual in a wild-type deme. The last two mean
fixation times are computed using the Moran model. Although this model
describes the evolutionary dynamics of fixed-size populations, it is appro-
priate here because a microbial population that follows a logistic growth
reaches an equilibrium size where deaths compensate for births (see Section
5.5.3 for more details). We denote by NW and NM the equilibrium sizes
of the wild-type and mutant demes, respectively. Then, the mean fixation
time tWfix satisfies:

tWfix =
1

gM (1− γNMW )(1− γW )

NM−1∑
i=1

(NM + iγW − i)(1− γiW )(1− γNM−iW )

i(NM − i)
,

(5.28)
where γW = (fMgW )/(fW gM ). Similarly, the mean fixation time tMfix satis-
fies:

tMfix =
1

gW (1− γNWM )(1− γM )

NW−1∑
i=1

(NW + iγM − i)(1− γiM )(1− γNW−iM )

i(NW − i)
,

(5.29)
where γM = (fW gM )/(fMgW ). The time tm between two migration events
depends on the population structure, but also on its composition. Indeed,
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the greater the number of connections between demes that allow the mi-
gration of individuals and the greater the total number of individuals in
the structured population, the shorter the time between two migrations.
Note that the total number of individuals of the structured population may
change over time during the evolutionary process. This variability will be
all the more pronounced as the wild-type fitness fW and the mutant fit-
ness fM are different, resulting in different equilibrium sizes NW and NM .
To make sure that migration events do not disturb genotype fixations, we
take care to consider the time between two migrations as the shortest. To
do this, we consider that the structured population is composed of only
the fittest individuals in such a way that the structured population is as
populated as possible. Let us illustrate what we have just said with an ex-
ample. Let us consider a population structured as a star with five demes
(D = 5), whose carrying capacities are K = 20. This population can be com-
posed of wild-type microbes with fitness fW = 1 and mutants with fitness
fM = 1.1. We assume that both types of individuals have the same death
rate gW = gM = 0.1. Thus, the equilibrium sizes of wild-type and mutant
communities are NW = 18 and NM = 18.2, respectively. As NM > NW ,
we consider that the structured population is composed only of mutants to
calculate the smallest time tm between two migrations, which therefore sat-
isfies tm = 1/(m2(D−1)NM ). The quantity 2(D−1) represents the number
of possible migration paths and m the migration rate per individual. Note
that for simplicity, we take the same migration rate per individual, regard-
less of the deme to which it belongs (center or leaf). Using Eqs. 5.28 and
5.29, we compute the mean fixation times: tWfix ≈ tMfix ≈ 163. It follows that
tm = tWfix, t

M
fix if and only if m = 4×10−5. Thus, in order to study evolution-

ary dynamics in the rare migration regime, one as to choose the migration
rate per individual such that m� 4× 10−5. As reported by Fig. 5.10, our
analytically predicted transition is good.
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Figure 5.10: Rare migration regime for a star: Fixation probability
Φ01 starting from a fully mutant leaf in a star as a function of the migration
rate per individual mI from a leaf to the center. Data points correspond to
simulation results averaged over 104 realizations. Vertical solid line: mI =
4× 10−5. Horizontal dotted and solid lines represent analytical predictions
where the fixation probability φM is computed analytically in the framework
of the Moran model (fixed population size) and using simulation results with
the logistic model (population size fluctuating around the stationary value),
respectively. Parameter values: fW = 1, fM = 1.1, gW = gM = 0.1, K = 20,
D = 5, mO = 2×mI .

5.5.3 Equilibrium size of a deme following a logistic growth

In our study, we employ the equilibrium population sizes of the wild-type
and mutant demes, denoted by NW and NM respectively:

NW = K(1− gW /fW ) , (5.30)

and

NM = K(1− gM/fM ) . (5.31)

A population with only one type of microbes that follow a logistic growth
reaches an equilibrium population size in which it persists for a long time
before it goes extinct [147, 132]. In the deterministic regime, the number N
of individuals at time t follows the ordinary differential equation:

dN

dt
=

[
f

(
1− N

K

)
− g
]
N , (5.32)

where f represents fitness, g death rate and K carrying capacity. For f > g,
the long-time limit of Eq. 5.32 is K(1− g/f). Hence the formulas Eqs. 5.30
and 5.31.
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5.5.4 Fixation probability of a mutant in a deme of constant
size

In the main text, we employed the fixation probability φM of a mutant (M)
in a population of wild-type individuals (W):

φM =
1−

(
fW gM
fMgW

)
1−

(
fW gM
fMgW

)NW . (5.33)

Here, we briefly justify this formula.
Consider a birth-death process in which, at each discrete time step, one

individual is chosen with a probability proportional to its fitness to reproduce
and another one is chosen with a probability proportional to its death rate
to die. Note that the total number of individuals remains constant over
time. This model is a variant of the Moran model with selection both on
division and on death [91]. Let i be the number of mutants and N − i the
number of wild-type individuals. At a given time step, the probability T+

i

that the number of mutants increases from i to i+ 1 satisfies:

T+
i =

fM i

fW (N − i) + fM i

gW (N − i)
gW (N − i) + gM i

, (5.34)

and similarly, the probability T−i that i decreases by 1 is given by:

T−i =
fW (N − i)

fW (N − i) + fM i

gM i

gW (N − i) + gM i
. (5.35)

The probability φM that the M genotype fixes in the population, starting
from 1 M microorganism, then satisfies:

φM =
1

1 +
∑N−1

k=1

∏k
j=1 γj

, (5.36)

where:

γi =
T−i
T+
i

=
fW gM
fMgW

. (5.37)

We thus obtain the result announced in Eq. 5.33. This reasoning applies
also to the fixation probability φW of a wild-type in a population of mutants:

φW =
1−

(
fMgW
fW gM

)
1−

(
fMgW
fW gM

)NM . (5.38)

Note that Eqs. 5.33 and 5.38 are based on the assumption that the popula-
tion size is fixed. However, the population size varies around its equilibrium
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size. We test the validity of this assumption by simulating evolutionary dy-
namics of a mutant in a population of W individuals and vice-versa. As
reported by Fig. 5.11, there is a small difference between our analytical
predictions and simulation results for the fixation probability φW when the
mutant is strongly deleterious.
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Figure 5.11: Fixation probabilities: Fixation probability φW of a W
individual in a population of NM = K(1 − gM/fM ) mutants and fixation
probability φM of a mutant in a population of NW = K(1−gW /fW ) W indi-
viduals. Data points correspond to averages over 106 realizations. Solid lines
correspond to analytical predictions (see Eqs. 5.33 and 5.38). Parameter
values: fW = 1, gW = gM = 0.1 and K = 20.

Similarly, there is a small difference between our analytical predictions
and simulation results for the fixation probability φM when the mutant is
strongly beneficial.

5.5.5 Detailed simulation methods

In this work, all numerical simulations are performed using a Gillespie algo-
rithm that is exact and does not involve any artificial discretization of time
[127, 128]. We consider a structured population of D communities labeled
i = 1, 2, ..., D. Let us denote by NW,i and NM,i the respective numbers of W
and M individuals in the deme i. The elementary events that can happen
are reproduction, death and migration of an individual of either type:

• Wi

k+W,i→ 2Wi: Reproduction of a wild-type microbe in the deme i with
rate k+

W,i = fW (1− (NW,i +NM,i)/K).

• Wi

k−W,i→ ∅: Death of a wild-type microbe in the deme i with rate
k−W,i = gW .
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• Mi

k+M,i→ 2Mi: Reproduction of a mutant microbe in the deme i with
rate k+

M,i = fM (1− (NW,i +NM,i)/K).

• Mi

k−M,i→ ∅: Death of a wild-type microbe in the deme i with rate
k−M,i = gM .

• Wi → ∅ and Wj → 2Wj : Migration of a wild-type microbe from the
deme i to the deme j with rate kmW,i,j = mW,i,j .

• Mi → ∅ and Mj → 2Mj : Migration of a mutant microbe from the
deme i to the deme j with rate kmM,i,j = mM,i,j .

The total rate of events is given by ktot =
∑D

i=1

(
(k+
W,i + k−W,i)NW,i + (k+

M,i + k−M,i)NM,i

)
+∑D

i,j=1

(
kmW,i,jNW,i + kmM,i,jNM,i

)
. Simulation steps as follows:

1. Initialization: All of the D demes start from either NW = K(1 −
gW /fW ) wild-type microbes orNM = K(1−gM/fM ) mutant microbes,
at time t = 0.

2. Monte Carlo step: The time t is increased by the interval time ∆t
such that t = t+ ∆t, where the time increment ∆t is sampled from an
exponential distribution with mean 1/ktot. The next event to occur is
chosen proportionally to its probability k/ktot, where k is its rate, and
is executed.

3. Go back to Step 2 unless only one type of individuals, either W or M ,
remains.
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The work presented in this chapter was done in collaboration with Claude
Loverdo and Florence Bansept. It was published in the following article:
Bansept F∗, Marrec L∗, Bitbol AF, Loverdo C. Antibody-mediated cross link-
ing of gut bacteria hinders the spread of antibiotic resistance. Evolution.
2019;73(6):1077-1088

In this chapter, we develop here a multiscale model of the interaction
between antibiotic use and resistance spread in a host population, focusing
on an important aspect of within-host immunity. Antibodies secreted in
the gut enchain bacteria upon division, yielding clonal clusters of bacteria.
We demonstrate that immunity-driven bacteria clustering can hinder the
spread of a novel resistant bacterial strain in a host population. We quan-
tify this effect both in the case where resistance pre-exists and in the case
where acquiring a new resistance mutation is necessary for the bacteria to
spread. We further show that the reduction of spread by clustering can be
countered when immune hosts are silent carriers, and are less likely to get
treated, and/or have more contacts. We demonstrate the robustness of our
findings to including stochastic within-host bacterial growth, a fitness cost

∗: Equal contribution.
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of resistance, and its compensation. Our results highlight the importance of
interactions between immunity and the spread of antibiotic resistance, and
argue in the favor of vaccine-based strategies to combat antibiotic resistance.
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6.1 Introduction

In previous chapters, we have looked at the evolution of antimicrobial re-
sistance in a microbial population and have shown how antimicrobial treat-
ment can favor the emergence of resistance. Antimicrobial resistance is a
major public health issue because resistance that develops within a host can
spread to other individuals. More specifically, taking an antibiotic treatment
against one pathogenic bacterial strain can favor the emergence of drug resis-
tance in other bacteria, in particular in the gut, and these resistant bacteria
can then be transmitted, e.g. via the fecal-oral route. This is an important
concern because antibiotic use is widespread: for instance, about a quarter
of French people are treated with antibiotics every given year [60, 61]. Be-
sides, antibiotics are often routinely given to farm animals, and the drug
resistance in bacteria they harbor may spread to humans [62, 63], though
the magnitude of this effect is disputed [64]. Here, we develop a multiscale
model of the interaction between antibiotic use and resistance spread in a
host population, focusing on an important aspect of within-host immunity.

Immunity could interfere with resistance spread in many ways. If the
immune system in the gut just massively killed bacteria, it could destabilize
the microbiota. Thus, it has to resort to other strategies. Immunoglobu-
lin A (IgA), an antibody isotype which is the main effector of the adaptive
immune response secreted in the gut, neither kills its target bacteria nor
prevents them from reproducing. It was recently shown in mice that the
main effect of IgA is actually to enchain daughter bacteria upon division
[65]. Importantly, clusters of bacteria cannot come close to epithelial cells,
which prevents systemic infection and protects the host. Besides, interaction
of pathogenic bacteria with epithelial cells can trigger inflammation, which
can turn on the bacteria SOS response, increasing horizontal gene transfer
between bacteria. Enchained growth thus constitutes a possible mechanism
for acquired immunity to dampen horizontal transfer in the gut [66]. Fur-
thermore, since IgA-mediated clusters of bacteria are mostly clonal, horizon-
tal transfer would most likely occur between very closely related neighboring
bacteria, which makes it inefficient at providing new genes. These effects will
unequivocally work towards reducing the emergence of antibiotic resistance
within the host. In this article, we investigate another, subtler effect. Bac-
teria being in clonal clusters decreases the effective genetic diversity within
the host, and transmitted bacteria are less diverse too. We demonstrate
that this can hinder the spread of antibiotic resistance at the scale of the
host population.

New mutations occur upon bacterial replication within a host, but what
is crucial for public health is whether these mutant resistant bacteria can
spread among the host population. We thus propose a multiscale model,
combining within-host dynamics with a stochastic branching process at the
between-host scale. Such a description is appropriate at the beginning of
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epidemic spread, when very few hosts are infected. For instance, a host
may be infected with a novel bacterial strain, which can acquire antibiotic
resistance by mutation, and which is sufficiently similar to other circulating
strains for a portion of the host population to be immune against it. We will
consider two types of hosts: “immune” hosts secrete IgA antibodies against
this novel strain of bacteria in their gut, thus clustering them upon division,
while “naive” hosts do not. What is the probability that, starting from one
infected individual, this novel bacterial strain invades the host population?
First, focusing on the case where the first host is infected with a mix of
sensitive and resistant bacteria, we demonstrate that immunity-driven bac-
teria clustering then decreases the spread probability of the novel strain. We
then show that this effect can be reversed if immune and naive hosts have
a different number of contacts with other hosts, and a different probability
of treatment, which may happen if immune hosts are silent carriers. We
further demonstrate the robustness of our findings to more realistic mod-
els of the within-host bacterial population dynamics, including mutations,
stochasticity, a fitness cost of resistance, and its compensation. Next, we
develop analytical approximations of the magnitude of the immunity-driven
decrease of spread probability in the case where only sensitive bacteria are
initially present, and where the bacterial strain needs to acquire a resistance
mutation to spread. Finally, we discuss the implications of our results, no-
tably on the interplay between vaccination and antibiotics.

6.2 Model and methods

Here, we describe the multiscale model we developed to demonstrate the im-
pact of antibody-mediated clustering of bacteria on the spread of resistance.
Fig. 6.1 illustrates this effect and the key ingredients of our model.

Within-host dynamics and transmission step

There is often a typical number of bacteria transmitted from one host to
the next for successful infection, called the bottleneck size Nb. For instance,
Nb = 105 is the typical number of Salmonella that starts food poisoning in
humans [148]. Here, we will assume that infections always start with the
same number Nb of infecting bacteria.

Within the host, the number of bacteria is typically very large. For
instance, in a Salmonella infection, its density can reach 1010 bacteria per
gram of gut content [65]. Then, the impact of stochastic fluctuations is
likely to be small. Hence, we first use a deterministic model for within-
host bacterial population dynamics. We subsequently assess the impact of
within-host stochasticity.

We consider two types of bacteria, a sensitive type, and a resistant type.
We first assume that they have the same growth rate, and neglect de novo
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Figure 6.1: Sketch illustrating the impact of bacteria clustering on
the spread of resistance. Consider hosts infected by sensitive (blue) and
resistant (red) bacteria. Within immune hosts, bacteria form IgA-mediated
clonal clusters. This strongly impacts the composition of the set of trans-
mitted bacteria, which is more likely to contain both types of bacteria if
the donor host is naive than if it is immune. Antibiotic treatment (yellow)
is efficient against sensitive bacteria, but selects for preexisting resistance,
which is more likely to exist if the donor host was naive.

mutations. Then, the proportion of resistant bacteria within a non-treated
host remains constant during the infection. Next, we investigate the effects
of mutations, of a fitness cost of resistance (see Appendix, Section 6.5.2),
and of the compensation of this cost, for which we use a generalized model
with three types of bacteria (see Appendix, Section 6.5.4).

When the host is treated with antibiotics, we assume that if it was
initially infected only with sensitive bacteria, the treatment is very efficient
and kills all bacteria, before resistance appears via mutations, and before
any transmission to other hosts. Conversely, if at least one resistant bacteria
was present in the inoculum, then the resistant strain takes over.

In our analytical calculations, we consider that transmitted bacteria are
chosen from the donor host using the proportion of resistant bacteria com-
puted from the deterministic model, without correlation between two trans-
missions from the same host. In particular, we make the approximation
that selections of transmitted bacteria are done with replacement. In simu-
lations, we perform selections without replacement, allowing us to check the
validity of the approximation.
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6.2.1 Impact of clustering on transmission

Within naive hosts, bacteria remain independent from each other, whereas
within immune hosts, they are bound together by the secreted IgA. However,
these clusters can break [149, 150, 151, 152, 153]. Thus, at the end of the
infection, clusters will be of a typical size Nc. For simplicity, we will assume
that cluster size equals bottleneck size, i.e. Nc = Nb = N , meaning that
exactly one cluster is transmitted at each infection event. The case where
multiple clusters are transmitted to a host (Nc < Nb) may also be realistic,
but it would be more complex. We wish to focus on the effect of clustering,
and the present case Nc = Nb = N will provide an upper bound of the effect
of clustering.

We assume that the concentration of the bacteria studied remains small
in the gut, so that the typical encounter time between bacteria or clusters is
large. Then, the existing clusters comprise bacteria from the same lineage,
since bacteria get enchained by IgA upon replication [65]. Then, in the
absence of mutations, or when their impact is negligible (e.g. when the initial
inoculum already contained non-negligible proportions of both sensitive and
resistant bacteria), clusters contain bacteria of the same type, either all
sensitive or all resistant. We start by assuming that all clusters are clonal,
and then we assess the impact of mixed clusters (see Appendix, Section
6.5.3).

We focus on fecal-oral transmissions, and assume that the clusters formed
in the gut of a donor immune host are transmitted as clusters. In practice,
even if they could break afterwards, bacteria are likely to remain colocalized
in the feces.

6.2.2 Between-host dynamics

We assume that the number of transmissions to recipient hosts from one
donor host is Poisson distributed [154, 155, 156, 157, 158] with mean λN for
naive hosts and λI for immune ones.

We consider that each host has a probability ω to be immune to the
bacteria studied (and thus 1 − ω of being naive). The rationale is that we
are interested in the spread of a strain at risk to develop resistance, and,
while this strain is new, it is similar enough to other strains present in the
population for some cross-immunity to exist. We focus on the beginning of
the spread of this strain, and thus we neglect the fact that over time, ω will
increase, as infected hosts become immune to this new strain.

Finally, we assume that hosts receive antibiotic treatment with a proba-
bility denoted by qN (resp. qI) for naive (resp. immune) hosts. We initially
assume that qN = qI , which is appropriate if antibiotics are given for a rea-
son independent from the bacteria we focus on (e.g. to fight other bacteria,
or for growth enhancement in farm animals). We then consider qN 6= qI .
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6.2.3 Analytical methods

Since we focus on the beginning of the spread of a bacterial strain, we
use the framework of branching processes [159, 160, 161]. We denote by
℘i(n0, n1, ..., nN ) the probability for a host initially infected by i resistant
and N−i sensitive bacteria to infect n0 hosts with 0 resistant and N sensitive
bacteria, n1 hosts with 1 resistant and N − 1 sensitive bacteria, and so on.
Let us consider the generating functions gi of the branching process, for all
i between 0 and N :

gi(z0, z1, ..., zN ) =
∑

n0,n1,...,nN

℘i(n0, n1, ..., nN )zn0
0 zn1

1 ...znNN , (6.1)

where each ni is summed from 0 to infinity. As we consider no correlation
between transmissions, and as the number of transmissions is Poisson dis-
tributed, of mean λ̃ (with λ̃ = λN for naive hosts and λI for immune ones),
we obtain:

gi(z0, z1, ..., zN ) =
∞∑
k=0

λ̃ke−λ̃

k!

 N∑
j=0

Ti,jzj

k

= exp

−λ̃ N∑
j=0

Ti,j(1− zj)

 , (6.2)

where Ti,j denotes the probability that when a host, initially infected with i
resistant bacteria and N − i sensitive ones, infects another host, it transmits
to this other host j resistant bacteria and N − j sensitive ones. Note that∑N

j=0 Ti,j = 1.

Either the new bacterial strain will go extinct, or it will spread to an ever
increasing number of hosts, acquiring resistance on the way. The extinction
probability ei, starting from one host initially infected with i resistant and
N−i sensitive bacteria, is the fixed point of the generating function gi [160].
Hence, it satisfies

ei = exp

−λ̃ N∑
j=0

Ti,j (1− ej)

 . (6.3)

The spread probability is 1− ei.
We will start from these equations for the extinction probabilities, and

write them by summing over the cases where hosts are immune or naive,
and treated or not. Simplifications are allowed by our assumption that when
a host is treated, it does not transmit anything if it was initially infected
with no resistant bacteria, and it transmits only resistant bacteria otherwise.
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Hence, the general equations giving the extinction probabilities read, for all
i between 0 and N :

ei =(1− ω)(1− qN )gNi (e0, e1, ..., eN ) }naive non-treated host

+ ω(1− qI)gIi (e0, e1, ..., eN ) }immune non-treated host

+ (1− ω)qN [δi0 + (1− δi0) exp(−λN (1− eN ))] }naive treated host

+ ωqI [δi0 + (1− δi0) exp(−λI(1− eN ))] , }immune treated host
(6.4)

where δi0 is 1 if i = 0, and 0 otherwise. Recall that ω represents the fraction
of immune hosts, while qN (resp. qI) is the fraction of treated hosts among
the naive (resp. immune) ones. The generating functions gIi and gNi , in
the immune non-treated and naive non-treated cases, respectively, will be
expressed in each case studied.

6.2.4 Numerical methods

We solve numerically the system of equations Eq. 6.4 giving the values of
the extinction probabilities ei.

We also perform direct numerical simulations of branching processes,
both as a test of our analytical descriptions, and because it allows for ex-
plicit integration of within-host stochasticity. In our simulations, at each
generation of infected hosts, we randomly choose whether each host is im-
mune or not, and treated or not. Next, we simulate within-host growth,
either in a deterministic or in a stochastic way. Finally, we perform stochas-
tic transmission of bacteria to the next generation of hosts, with or with-
out clusters, depending whether the transmitting host is immune or not.
The process is then iterated. A detailed description of the simulations is
provided in the Appendix, Section 6.5.5. Our code is freely available at
https://doi.org/10.5281/zenodo.2592323.

6.3 Results

6.3.1 Clustering hinders spread in the presence of pre-existing
resistance

What is the impact of IgA-mediated clustering on the probability that a
bacterial strain spreads in the host population? To address this question,
we first consider the simplest case, with a deterministic within-host growth of
the bacterial population, and without mutations or fitness costs of resistance.
Then, the proportion of resistant bacteria within a non-treated host remains
constant during the infection, equal to i/N if this host was initially infected
with i resistant bacteria and N − i sensitive ones. This simplification will
allow us to gain insight in the impact of clustering on spread. Next, we
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will build on this minimal model to address more realistic cases, including
within-host growth stochasticity, mutations and fitness costs of resistance.
The generating function gNi for naive non-treated hosts is then given by
Eq. 6.2 with λ̃ = λN , and where the probability Ti,j that a transmission
from a host initially infected with i resistant bacteria contains j resistant
bacteria follows a binomial law of parameters N and i/N :

Ti,j =

(
N

j

)(
i

N

)j (N − i
N

)N−j
. (6.5)

Besides, the generating function of the process for immune non-treated hosts
reads:

gIi (z0, . . . , zN ) = exp

(
−λIi
N

(1− zN )

)
exp

(
−λI(N − i)

N
(1− z0)

)
. (6.6)

Using these expressions for the generating functions together with Eq. 6.4
for 0 ≤ i ≤ N yields a complete system of equations that allows to solve for
the extinction probabilities.
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Figure 6.2: Bacterial clustering hinders the spread of a resistant
strain in the presence of preexisting resistance. Extinction proba-
bilities ei are shown versus initial number i of resistant bacteria in the first
infected host, for different fractions ω of immune individuals in the host
population. Naive and immune hosts differ only through bacterial cluster-
ing. Each host is treated with probability q = 0.55 and transmits N = 100
bacteria to an average of λ = 2 other hosts (unless it was infected with no
resistant bacteria and treated). Solid lines: numerical resolution of Eq. 6.4;
symbols: simulation results (over 104 realizations). Numerical resolution
and simulation are in excellent agreement with each other. Black dotted
line: approximation from Eq. 6.14 for ω = 1 and 0 < i � N . Main panel:
linear scale; inset: semi-logarithmic scale.
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A broad range of values for the initial proportion i/N of antibiotic resis-
tance are realistic, from zero or less than a percent to more than half [162].
Here, we focus on the case with pre-existing mutations. The case without
pre-existing mutations will be addressed in the last part of Results. Fig. 6.2
shows that whenever the first host is infected by a mixed inoculum contain-
ing both resistant and sensitive bacteria, i.e. 0 < i < N , the extinction
probability ei increases with the proportion ω of immune hosts, assuming
that naive and immune hosts only differ through bacterial clustering. There-
fore, bacterial clustering hinders the spread of the strain and of resistance.
This effect is strongest for small values of i.

Clustering increases extinction probabilities because transmission of re-
sistance is less likely with clustering than without clustering. For a given
proportion i/N of resistant bacteria, the probability that a clonal cluster
contains no resistant bacteria is 1 − i

N , while a random assortment of N
bacteria has a smaller probability (1− i

N )N of containing no resistant bac-
teria.

To understand the effect of clustering quantitatively, consider the equa-
tions giving the extinction probabilities if all hosts are naive (denoted by
eNi ) or all hosts are immune (eIi ). If all hosts are naive, Eqs. 6.4 and 6.1
yield:

eN0 = qN + (1− qN ) exp
[
−λN (1− eN0 )

]
, (6.7)

eNi = qN exp
[
−λN (1− eNN )

]
+ (1− qN ) exp

−λN N∑
j=0

Ti,j(1− eNj )

 ∀i ∈ [1, N − 1],

(6.8)

eNN = exp
[
−λN (1− eNN )

]
, (6.9)

where Ti,j is given in Eq. 6.5. Conversely, if all hosts are immune, eI0 and
eIN are solutions of

eI0 = qI + (1− qI) exp
[
−λI(1− eI0 )

]
, (6.10)

eIN = exp
[
−λI(1− eIN )

]
, (6.11)

and eIi can be obtained from eI0 and eIN via

eIi = qIe
I
N +

[
(1− qI)eIN

] i
N (eI0 − qI)1− i

N . (6.12)

These equations show that if naive and immune hosts differ only through
bacterial clustering, i.e. λN = λI = λ and qN = qI = q, then eNN = eIN = eN
and eN0 = eI0 = e0. Hence, clustering is irrelevant if all bacteria are identical.
In addition, e0 > eN if q > 0 and λ > 1 (see Eqs. 6.7 and 6.9): in the presence
of treatment, resistance decreases the extinction probability.

Consider now a first host infected with both resistant and sensitive bac-
teria (0 < i < N). If this host is treated, its infection becomes fully resistant,
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leading to an extinction probability eNN or eIN , depending whether the host
population is fully naive or fully immune. In a fully naive host population, if
the first host is not treated, its probability of not transmitting resistance to a
given new host is (1− i

N )N . For N � 1 and 0 < i� N , (1− i
N )N ≈ exp(−i),

which is smaller than 5% for i > 2: then, transmission of resistance is almost
certain, and

eNi ≈ eNN . (6.13)

In a fully immune population, if the first host is not treated, and if (1 −
qI)λI < 1, spread is possible only if it transmits a resistant cluster (prob-
ability i/N) to one of the recipient hosts (which are on average λI), and
this leads to spread (probability 1− eIN ), yielding an extinction probability
≈ 1− (1− eIN )λIi/N . This approximation neglects the case where multiple
recipient hosts receive resistant bacteria, which is appropriate if λIi/N � 1.
Hence, if 0 < i < N and λIi/N � 1 and (1− qI)λI < 1,

eIi ≈ qIeIN + (1− qI)
(

1− (1− eIN )λI
i

N

)
, (6.14)

which is consistent with Eq. 6.12 for i/N → 0 and eI0 = 1. In Fig. 6.2, for
ω = 0, we observe an early plateau as i increases, as predicted by Eq. 6.13,
and for ω = 1, our complete results are well approximated by Eq. 6.14 when
0 < i� N .

Importantly, in the present case where naive and immune hosts differ
only through bacterial clustering, i.e. λN = λI = λ and qN = qI = q,
we have eNN = eIN , and thus Eqs. 6.13 and 6.14 yield 1 − eIi ≈ (q + (1 −
q)λi/N)(1 − eNi ). Hence, immunity reduces the spread probability by a
factor up to 1/q.

6.3.2 The reduction of spread can be countered by silent
carrier effects

So far, we assumed that immune and naive hosts differ only through IgA-
mediated bacterial clustering. However, considering pathogenic bacteria,
immune hosts may feel less sick than naive ones, because clustering prevents
direct interaction with epithelial cells, and thus systemic infection. Immune
hosts may still shed bacteria: they are silent carriers. Sick naive hosts may
have fewer contacts than immune ones (e.g. if sick hosts stay at home), i.e.
λN < λI . Note that one might also imagine the opposite effect, e.g. because
the infection is cleared faster in immune hosts, but λN > λI would reinforce
the reduction of resistance spread due to immunity. Hence, we focus on λN <
λI , which might counter this effect. In addition, if antibiotic treatment is
given in response to infection by the bacterial strain considered, silent carrier
immune hosts might be treated less often, i.e. qI ≤ qN . Immune hosts then
become reservoirs of sensitive bacteria, which can either favor the emergence
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of resistance by enabling more spread, or hinder it, because a reduced use of
antibiotics decreases the competitive advantage of resistant bacteria. Here,
we investigate the interplay of clustering with these silent carrier effects.

Fig. 6.3A shows the extinction probability ei as a function of the initial
number i of resistant bacteria in the first infected host, as in Fig. 6.2, but
for λN < λI . Other parameters are the same, and we remain in the regime
where extinction is not certain with only resistant bacteria, but certain with-
out resistance, i.e. 1 < λN < λI , while λN (1− qN ) < 1 and λI(1− qI) < 1.
Fig. 6.3A shows that when 0 < i� N , the extinction probability increases
with the proportion ω of immune hosts, as in Fig. 6.2. But strikingly, this
effect is reversed for larger values of i. Therefore, the reduction of resistance
spread by bacterial clustering can be countered by silent carrier effects.
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Figure 6.3: Silent carrier effects can counter the clustering-driven
reduction of spread. A: Extinction probabilities ei versus initial number
i of resistant bacteria in the first infected host, for different fractions ω of
immune individuals in the host population. Parameters are the same as in
Fig. 6.2, except that each naive (resp. immune) host transmits to an average
of λN = 1.5 (resp. λI = 2) other hosts. Solid lines: numerical resolution
of Eq. 6.4; symbols: simulation results (over 104 realizations). Black dotted
line: approximation from Eq. 6.14 for ω = 1 and 0 < i� N . B: Heatmap:
the ratio eI3/e

N
3 of the extinction probabilities in a fully immune versus a

fully naive population, starting from i = 3, is shown for λI ≥ λN = 1.2 and
qI ≤ qN = 0.55. Values (λN , qN ) for naive hosts are indicated by a dot
labeled “N”. Parameters are the same as in Fig. 6.2, except λI , λN and
qI . Solid curve: eI3/e

N
3 = 1. Dashed curve: λI(1 − qI) = 1. Dotted curve:

qI = (1 − eNN )/(1 − eIN ) (Eq. 6.15). Heatmap interpolated from numerical
resolutions of Eq. 6.4; logarithmic color scale.

Let us analyze this trade-off by comparing a fully immune population
with a fully naive one. If 1 < λN < λI , Eqs. 6.9 and 6.11 yield eIN < eNN < 1.
If in addition qI ≤ qN , then λI(1−qI) > λN (1−qN ), and either eI0 = eN0 = 1
if λI(1−qI) < 1, or eI0 < eN0 if λI(1−qI) > 1 (see Eqs. 6.7 and 6.10). Hence,
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if all bacteria are resistant, immunity actually favors the spread, because of
the associated increased transmission. If all bacteria are sensitive, the same
conclusion holds if λI(1− qI) > 1. Let us now consider intermediate initial
numbers of resistant bacteria. If 0 < λIi/N � 1 and λI(1 − qI) < 1, then
eIi satisfies Eq. 6.14, which simplifies into eIi ≈ 1 − qI(1 − eIN ) to zeroth
order in λIi/N . Besides, eNi satisfies Eq. 6.13 for 2 < i � N . Employing
these approximations, the condition eIi > eNi becomes

qI <
1− eNN
1− eIN

. (6.15)

If 1 < λN < λI , then eIN < eNN < 1, so Eq. 6.15 can hold or not depending on
qI , which means that immunity can hinder the spread of resistance or not.
Fig. 6.3A is in the regime where immunity increases extinction probabilities
for 2 < i� N (Eq. 6.15 holds), but decreases them for i = N .

Fig. 6.3B shows a heatmap of eI3/e
N
3 , for λI and qI satisfying 1 < λN ≤

λI and qI ≤ qN . We observe that increasing λI decreases eI3/e
N
3 , but that

the impact of decreasing qI is subtler, since it can both enable more spread,
and decrease the competitive advantage of resistant bacteria. Moreover,
as predicted, if λI(1 − qI) < 1 and Eq. 6.15 both hold, then eI3/e

N
3 > 1,

and immunity hinders the spread of resistance. Fig. 6.3B also features a
region where λI(1 − qI) > 1 (thus eI0 < eN0 ) but eI3/e

N
3 > 1. Elsewhere,

the reduction of resistance spread by immunity is countered by silent carrier
effects, and eI3/e

N
3 < 1.

6.3.3 Results are robust to including mutations, within-host
growth stochasticity, and a cost of resistance

So far, we considered the simple case where the within-host growth simply
preserves the proportion of resistant bacteria. We now include more realistic
within-host population dynamics.

First, what is the impact of mutations on the spread of resistance in the
presence of immunity? Typical mutation rates for bacteria are ∼ 10−10 −
4 × 10−9 per base pair per replication [163]. There are often several muta-
tions conferring resistance, yielding an effective total mutation probability
µ1 ∼ 10−10 − 10−6 from sensitive to resistant at each replication [81]. The
back-mutation probability µ−1 from resistant to sensitive is generally sub-
stantially smaller, as the exact same mutation has to be reverted [83]. Hence,
while developing a complete model that includes back-mutations, we will of-
ten present cases where they are neglected. The total number of bacterial
generations G within a host can vary. For instance, in experimental infection
of mice by Salmonella starting at different inoculum sizes, G is typically 10
(inoculum of 107 bacteria) to 35 (inoculum of 103 bacteria) after 24h [65].
Assuming deterministic exponential within-host growth, we employ differ-
ential equations to compute the fraction of resistant bacteria at the end of
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the incubation time, and we write the corresponding generating functions
(see Appendix, Section 6.5.2).

Fig. 6.4A compares results obtained with and without mutations. Over-
all, accounting for mutations from sensitive to resistant slightly decreases the
extinction probabilities ei, especially for small values of i, including i = 0,
where extinction is no longer certain. Indeed, mutations tend to increase the
fraction of resistant bacteria, with a stronger effect if this fraction is initially
small. Fig. 6.4A further shows that the impact of mutations is small for a
fully immune population. Then, for the small proportions of resistant bac-
teria such that mutations matter, the probability that a non-treated host
transmits resistant bacteria is small anyway because of clustering. Inter-
estingly, Fig. 6.4A shows that the impact of mutations is stronger for an
intermediate fraction ω of immune hosts than for a fully naive host popu-
lation. This is due to cross-transmission events: for small i, if an immune
host infects a naive host, it very likely transmits only sensitive bacteria.
But if the naive recipient host is not treated, mutations can induce de novo
resistance, which is then likely to be transmitted. Hence, the propagation of
resistance is less likely to be stopped by immune hosts with mutations than
without mutations.
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Figure 6.4: Impact of mutations and of a fitness cost of resistance.
Extinction probabilities ei versus initial number i of resistant bacteria in
the first infected host, for different fractions ω of immune individuals in
the host population. A: Results with mutations are shown in dark shades.
Results without mutation (identical to Fig. 6.2) are shown in light shades for
comparison. B: Results with a fitness cost δ = 0.1 of resistance are shown
in dark shades. Results without fitness cost (same as dark-shaded results in
panel A) are shown in light shades for comparison. In both panels, within-
host evolution is deterministic, µ1 = 7× 10−5 and µ−1 = 0, and incubation
time is G = 10 generations. As in Fig. 6.2, N = 100, λ = 2 and q = 0.55.
Solid lines: numerical resolution of Eq. 6.4; symbols: simulation results (over
104 realizations).
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So far, we considered deterministic within-host growth. To assess the
impact of within-host growth stochasticity on the spread of resistance in the
presence of immunity, we performed simulations with stochastic exponential
within-host growth but without bacterial death or loss (see Appendix, Sec-
tion 6.5.5). In the absence of mutations (Fig. 6.7), the only difference with
our deterministic model is the stochasticity of growth, while with mutations
(Fig. 6.8), an additional difference is that mutations are treated in a stochas-
tic way, which is more realistic since mutations are rare events. We found
that stochasticity matters most for naive hosts and small initial numbers i
of resistant bacteria, but overall, its impact is small, which validates our use
of a deterministic model (Appendix, Section 6.5.3). We further showed that
including small loss rates of bacteria does not affect our conclusions (Ap-
pendix, Section 6.5.3), and that our assumption of neglecting mixed clusters
is valid when the inoculum is mixed (Fig. 6.9).

Mutations conferring resistance often carry a fitness cost. Denoting by
f the growth rate of sensitive bacteria without antibiotics, and by f(1 −
δ) that of resistant bacteria, typical values for δ range from 0.005 to 0.3
[83, 80, 81, 85] (but can be even larger [84]). Here, we assume that this
fitness cost only affects within-host growth, and not transmissibility [164,
158]. Fig. 6.4B shows that extinction probabilities are increased by a fitness
cost, taken equal to 0.1. Indeed, the fraction of resistant bacteria after
deterministic within-host growth, starting from a given inoculum, is smaller
with a cost than without one. In a fully immune population, the cost has
less impact for small values of the initial number i of resistant bacteria,
because transmission of resistance is then very unlikely anyway (Eq. 6.14).
In contrast, in a fully naive population, the fitness cost has a substantial
impact for small i, but very little impact for larger i, because transmission
of resistance is then very likely (Eq. 6.13).

The fitness cost of many resistance mutations can be compensated by
subsequent mutations [83, 82, 165, 84, 85, 98, 40]. Hence, we generalized our
model to include compensation (see Appendix, Section 6.5.4). While com-
pensation would determine long-term survival of resistance if the treatment
was stopped or became less frequent, our results (Figs. 6.10 and 6.11) show
that it does not have a major impact on the initial steps of the propagation
studied here.

Overall, our finding that clustering hinders the spread of resistance is
robust to including mutations, within-host stochasticity, as well as a fitness
cost and its compensation.

6.3.4 Spread probability without pre-existing resistance

We now develop analytical approximations to better characterize the impact
of antibody-mediated clustering on the spread of resistance, starting without
pre-existing resistant mutants (i = 0). Here, we take into account mutations
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and the fitness cost of resistance, but not its compensation. We use the
deterministic description of the within-host growth, and take λN = λI = λ,
as well as qN = qI = q.

Let us focus on the case where the bacterial strain would certainly go
extinct without mutations, i.e. λ(1− q) < 1 (otherwise, immunity has little
impact on its spread). Then, the spread probability, starting from a host
infected with only sensitive bacteria, is proportional to µ1, and thus very
small. Hence, we assume that at most one event leads to spread. In the
absence of mutations, the mean number of infected hosts is 1 + λ(1 − q) +
(λ(1 − q))2 + ... = 1/(1 − λ(1 − q)), both for naive and immune hosts. We
will express the probability that each transmission from an infected host
contains resistant bacteria, and that this leads to spread, comparing fully
immune and fully naive host populations.

So far, we have considered that antibody-mediated bacterial clusters are
either fully sensitive, or fully resistant, which is appropriate when most mu-
tants are descendants of a pre-existing mutant transmitted to the host, as
confirmed by Fig. 6.9. However, in a host initially infected with only sensi-
tive bacteria, mixed clusters may matter. A simplified view of the process of
cluster growth and breaking is that clusters grow in linear chains and break
in two once a certain size is attained, then grow and break again, and so
on. As bacteria are enchained upon division, the subclusters formed upon
breaking comprise closely related bacteria. Assume that the maximal cluster
size is 2g = N : it is attained in g ≤ G generations, where G is the number of
generations within a host. When a mutation occurs, the cluster comprises
mixed bacterial types until g generations after (see Fig. 6.6, Appendix, Sec-
tion 6.5.3). In the limit of a small mutation rate, the final proportion of
fully mutant clusters corresponds to the proportion of mutant bacteria at
generation G− g, seeding the final clusters. Meanwhile, neglecting selection
during cluster growth, which is valid for gδ � 1, the final proportion of
mixed clusters is equal to the probability that a mutation occurs during the
final cluster growth, i.e. 2µ1(2g − 1) = 2µ1(N − 1). Let us now consider in
more detail two extreme regimes, depending on the number of generations
G within a host.

Small G. Assume that δG� 1: selection weakly impacts the proportions
of bacterial types, and thus, the final proportion of fully mutant clusters is
≈ µ1(G − g). Assume also that (G − g) � 2(N − 1): starting with a fully
sensitive infection, most transmissions of mutant bacteria happen through
mixed clusters.

In this regime, if at least one resistant mutant is transmitted, the prob-
ability of extinction is similar for an immune and a naive host population
(see Appendix, Section 6.5.6). Besides, in a fully naive population, the prob-
ability that a host infected with only sensitive bacteria transmits at least
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one resistant bacteria is ≈ µ1GN (the proportion of resistant bacteria mul-
tiplied by the bottleneck size). Conversely, in a fully immune population,
this probability is ≈ 2µ1(N − 1) (the proportion of mixed clusters). Thus,
the ratio of spread probabilities reads

R =
1− eN0
1− eI0

≈ G

2
. (6.16)

Large G. Assume that δG > 1: the proportion of resistant bacteria in
infections started with a mixed inoculum end up close to the mutation-
selection balance. Assume also that the number of mixed clusters, 2µ1(N −
1), is small compared to the number of fully mutant clusters, (1−exp(−(G−
g)δ))µ1/δ (see Appendix, Section 6.5.6): this condition can be expressed as
2Nδ � 1. Assume that G � g: the proportion of resistant bacteria at
G − g is well approximated by its value r0 at G. Finally, assume that
Nµ−1(1 + δ)G � 1, i.e. back-mutations can be neglected: hosts infected
with only resistant bacteria generally transmit only resistant bacteria. Thus,
a host infected with only resistant bacteria leads to an spread probability
1− eN similar for naive and immune hosts.

In this regime, how can spread occur, starting from a host infected with
only sensitive bacteria? In a fully naive host population, spread occurs if the
following three events happen. First, a resistant bacterium is transmitted
(probability ≈ r0N , the final proportion of resistant bacteria multiplied by
the bottleneck size). Second, the recipient host is treated (probability q; else,
the final proportion of resistant bacteria is close to the mutation-selection
balance, leading to negligible spread probability). Third, the resulting fully
resistant infection spreads with probability 1− eN . Hence, the spread prob-
ability per host infected with only sensitive bacteria is ≈ r0Nq(1 − eN ).
Besides, in a fully immune host population, spread occurs if a cluster of re-
sistant bacteria is transmitted (probability ≈ r0), and emerges (probability
1− eN ). Thus, the spread probability per host infected with only sensitive
bacteria is ≈ r0(1− eN ). The ratio of spread probabilities then reads

R =
1− eN0
1− eI0

≈ qN . (6.17)

Fig. 6.5 demonstrates that the simple expressions in Eqs. 6.16 and 6.17
are valid. In conclusion, without pre-existing resistance, and when mu-
tations are necessary for spread, immunity can substantially decrease the
spread probability.

6.4 Discussion

At the scale of a population of hosts, bacterial adaptation via evolution, for
instance the spread of antibiotic resistant mutations, could be affected by
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Figure 6.5: Ratio R of the spread probabilities in a fully naive
population relative to a fully immune population, without pre-
existing resistance. A: R versus the number of within-host generations
G. B: R versus the cluster and bottleneck size N . Markers joined with lines
(both panels): exact values of R obtained by numerical resolution of the full
system of equations yielding extinction probabilities (see Appendix, Section
6.5.2). Results with base parameters are plotted in black, and variants
showing the impact of changing each single parameter are plotted in colors.
Dashed lines: analytical approximation Eq. 6.17 of R for large G. Black
dotted line (panel A): analytical approximation Eq. 6.16 of R for small G.
This figure shows that the simple expressions in Eqs. 6.16 and 6.17 are robust
and capture well the dependence of R on the various parameters.

host immunity. In particular, IgA, an antibody isotype which is the main
effector of the adaptive immune response in the gut, could have important
impacts in the case of fecal-oral transmission, although it neither kills bacte-
ria nor prevents them from reproducing. It was shown recently [65] that its
main effect is to enchain bacteria: bacteria recognized by IgA remain stuck
together after replication. This clustering may reduce inflammation and
horizontal gene transfer [66]. Here, we shed light on another original effect
of clustering: the reduced bacterial diversity resulting from this clustering
could hinder the spread of adaptive mutations in a population of hosts, even
if the total number of bacteria in a host remains the same. In practice,
this direct effect of clustering could work in synergy with the reduction of
horizontal gene transfer [66] to reduce the spread of antibiotic resistance.

To assess how antibody-mediated bacteria clustering impacts the spread
of antibiotic resistance, we developed a multi-scale model, with a deter-
ministic description of within-host evolution, and a stochastic description
of between-host transmission, assuming a probability q for host treatment,
and a fixed bottleneck size N at transmission (taken equal to the bacterial
cluster size; this case gives an upper bound to the effect of clustering). We
showed that if the first host is infected by a mix of sensitive and resistant
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bacteria, immunity decreases the spread probability of the bacterial strain
by a factor up to 1/q, assuming that infection in naive and immune hosts
differs only through bacterial clustering. We demonstrated that this effect
can be countered when an immune host is a silent carrier, and is less likely to
get treated, and/or has more contacts. Our results proved robust to the in-
troduction of mutations and stochasticity in the within-host dynamics. We
also showed that if resistance comes at a cost, extinction probabilities are
increased, while compensation of this cost has little impact, except for long
incubation periods. However, compensation would matter for the long-term
maintenance of resistance, e.g. if treatment was stopped. Finally, we showed
that if only sensitive bacteria are initially present, and if the bacterial strain
needs to acquire a resistance mutation to spread, immunity decreases the
spread probability by a factor approximately G/2 when the number G of
within-host generations is small, and approximately qN when G is large.

Immunity hinders the spread of drug resistance because immune hosts
mostly transmit bacteria of the same type, due to the antibody-mediated
clonal clusters they carry. The disadvantage of a higher variance (here, in
the number of resistant bacteria transmitted) is a classic theme in population
genetics [166, 167], and also appears in analyses of viral adaptation [168].
For a given average number of transmitted resistant bacteria, the proportion
of transmissions comprising at least one resistant bacteria is smaller for
immune donor hosts than for naive ones. In a sense, transmissions from
immune hosts “put all their eggs in one basket”, and prevent bacteria from
hedging their bets.

Microbial populations infecting a host often grow to very large numbers,
so that even with realistic small mutation rates, many mutants may be pro-
duced. Single point mutations can suffice to confer resistance [80], implying
that resistance-carrying mutants might exist in most infected hosts. Nev-
ertheless, the spread of drug resistance in a host population typically takes
years [169]. One reason is that only a small proportion of the large within-
host microbial population is transmitted to the next host. This bottleneck
decreases diversity, and most mutants are not transmitted, because they
are rare. Because of this sampling effect, the immunity-mediated clustering
of clonal bacteria can hinder the spread of antibiotic resistance, and more
generally of any type of adaptive mutations. Note that using a determinis-
tic description of within-host growth, and excluding bacterial death or loss,
transmission from naive hosts involving one cluster is effectively equivalent
to a bottleneck size of one single bacterium. However, for such small bot-
tlenecks, stochasticity would significantly matter. Reducing the bottleneck
size has been shown to generally increase the extinction probability in other
contexts, but sometimes has the opposite effect [158, 170]. The details of
transmission play an important part in this effect. Our multi-scale descrip-
tion integrating realistic aspects of the within-host dynamics, in particular
immunity, thus allowed us to gain important insight into the spread of a
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pathogen in a host population. While our study was motivated by IgA-
induced bacterial clustering, our results would extend to other mechanisms
yielding clonal clusters. There are other host effectors besides IgA that
cluster bacteria together, for instance neutrophil extracellular traps [171].

Our work highlights the importance of interactions between immunity
and the spread of antibiotic resistance. In particular, antibiotic treatment
and vaccines inducing IgA production might have non-trivial interplays. In
practice, vaccines protect the host, but may or may not reduce shedding of
bacteria [172, 173]. Reduction of shedding clearly hinders pathogen propa-
gation. However, our results demonstrate that even a vaccine that does not
reduce shedding can protect the host population. Indeed, it can increase the
efficiency of antibiotic treatment, by hindering the spread of resistance in
the host population. Our results thus constitute an additional argument in
the favor of vaccine-based strategies to combat antibiotic resistance, which
are the focus of renewed interest [1, 174, 175].
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6.5 Appendix

6.5.1 Table of the symbols used

Parameters specific to the infection

G Duration in number of replications of the within-host infection

Nb Typical bottleneck size, i.e. the number of bacteria seeding the infection
in a new host

Nc = 2g Maximum cluster size (when they reach it, they break in half before
the next replication). In general we take Nc = Nb = N = 2g

Within-host dynamics

S(t) Number of sensitive bacteria within a specific host at time t

R(t) Number of resistant bacteria within a specific host at time t

f Division rate of sensitive bacteria

δ Fitness cost of resistance, such that f(1 − δ) is the division rate of
resistant bacteria

µ1 Probability for each of the two daughter bacteria of a sensitive bacterium
to become resistant because of a mutation during replication

µ−1 Probability for each of the two daughter bacteria of a resistant bacterium
to become sensitive because of a mutation during replication

µ2 In the model with three bacterial types, probability for each of the
two daughter bacteria of a resistant bacterium to become resistant-
compensated because of a mutation during replication

ri Proportion at transmission of resistant bacteria within a host that was
initially infected with i resistant and N − i sensitive

Immune vs. Naive hosts

ω Proportion of immune individuals in the host population

qN Proportion of naive individuals in the host population who are antibiotic-
treated

qI Proportion of immune individuals in the host population who are
antibiotic-treated

λN Mean number of contacts a naive host transmits the infection to

λI Mean number of contacts an immune host transmits the infection to

Systems of equations

ei Probability of extinction for an infection that was seeded in patient zero
by i resistant bacteria and N − i sensitive bacteria

Ti,j Probability that when a host, initially infected with i resistant and N−i
sensitive bacteria, infects another host, it transmits j resistant bacteria
and N − j sensitive ones.



192 CHAPTER 6. SPREAD

6.5.2 Within-host growth equations and generating function

Below, we present the deterministic differential equations on the numbers of
sensitive and resistant bacteria within a non-treated infected host including
mutations and a fitness cost of resistance. We assume exponential growth,
and we simplify using µ1, µ−1 � δ � 1. We denote by G the total number
of replications within a host, corresponding to the incubation time. We also
denote by ri the proportion of resistant bacteria in a host at the end of
incubation, for a host that was initially infected with i resistant bacteria
and Nb − i sensitive ones (recall that each host is infected by a total of Nb

bacteria). Here Nb is the bottleneck size, in practice we generally take it
equal to the cluster size Nc and denote both by N .

Discrete vs. continuous time representation

Let us first consider the case without mutations, with S the number of
sensitive bacteria, R the number of resistant bacteria, and δ the fitness cost
of resistance. If there are G generations for the sensitive strain, there are
G(1 − δ) generations for the resistant strain. Denoting by f the growth
rate of sensitive bacteria, the ordinary differential equations governing the
growth of the bacterial population read:

dS

dt
= fS , (6.18)

dR

dt
= f(1− δ)R . (6.19)

The solutions of these equations are S(t) = S0 exp(ft), R(t) = R0 exp(f(1−
δ)t). If we start from one bacteria of each type, after a time τ corresponding
to G generations of the sensitive bacteria, there are 2G = exp(fτ) sensitive
bacteria, and 2G(1−δ) = exp(f(1− δ)τ) resistant bacteria. Thus:

G log(2) = fτ . (6.20)

Next, let us consider the case with mutations. When a sensitive bacteria
divides, each of the daughter bacteria has a probability µ1 to be mutant (and
thus to have become resistant in our model). When a resistant bacterium
divides, each of the daughter bacteria has a probability µ−1 to have mutated
(and thus to have become sensitive in our model). Let us denote µ̃1 and µ̃−1

the mutation rates for the system of differential equations, such that:

dS

dt
= f(1− µ̃1)S + µ̃−1f(1− δ)R , (6.21)

dR

dt
= f(1− δ)(1− µ̃−1)R+ µ̃1fS . (6.22)
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We then look for the relation between µi (discrete model) and µ̃i (con-
tinuous model). The accumulation of mutants in the early dynamics has to
be the same. Let us start from sensitive bacteria only, neglect back muta-
tions, and take the limit of very small δ. Then, when considering a bacteria
after G generations, there have been G opportunities for mutation, i.e. the
proportion of resistant bacteria is Gµ1. In our continuous description, if
there were S0 sensitive bacteria (and no resistant bacteria) at t = 0, and
still neglecting back mutations, S(t) = S0 exp(f(1 − µ̃1)t), and, replacing
S(t) by this expression in 6.22, and solving for R(t) with R(0) = 0:

R(t) = S0µ̃1 exp(f(1− µ̃1)t)
exp(f(µ̃1 + µ̃−1(−1 + δ)− δ)t)− 1

µ̃1 + µ̃−1(−1 + δ)− δ
. (6.23)

In the limit of small t,

R(t) ≈ S0µ̃1ft exp(f(1− µ̃1)t) , (6.24)

and the proportion of resistant bacteria then reads:

r(t) =
R(t)

R(t) + S(t)
≈ R(t)

S(t)
= µ̃1ft . (6.25)

Thus Gµ1 = µ̃1fτ = µ̃1G log(2) (where we used Eq. 6.20), and consequently
we have to take µ̃1 = µ1/ log(2) for consistency.

Resolution of the continuous-time system

When the host is not treated, the within-host dynamics can be complex. The
growth could be limited by some carrying capacity and taken as logistic,
there could be a loss term, etc. As we want to calculate the proportions
of sensitive and resistant bacteria, the following equations will give similar
results as equations with a carrying capacity:

dS

dtg
= (1− µ1/ log(2))S + (1− δ)µ−1R/ log(2), (6.26)

dR

dtg
= (1− δ)(1− µ−1/ log(2))R+ µ1S/ log(2) , (6.27)

with tg the time in numbers of generations. The aim is to obtain the pro-
portion of sensitive and resistant bacteria at the end of the infection within
a host, depending on the composition of the inoculum.

The total number of replications within a host G can vary. The typical
minimal doubling time for bacteria is half an hour [176]. Bacterial carriage
can last several days or even more, but when close to carrying capacity, the
growth rate decreases. As a portion of the bacteria will be lost in feces,
there will be ongoing replication, though at a lower rate. Thus G can take
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a wide range of values. For instance, in experimental infection of mice by
Salmonella starting at different inoculum sizes, the number of replications
is typically 10 (inoculum of 107 bacteria) to 35 (inoculum of 103 bacteria)
after 24h [65].

Solving Eqs. 6.26 and 6.27 with the initial conditions S(0) = N − i and
R(0) = i, we find for all i between 0 and N the following exact expression for
the proportion ri = R

R+S of resistant bacteria after G generations, knowing
that the infection was seeded with i resistant and N − i sensitive bacteria
at time t = 0:

ri =
(2∆G − 1)(2µ1N + i(−µ1 − µ−1 − δ log(2) + µ−1δ)) + i∆ log(2)(2∆G + 1)

N((2∆G − 1)(µ1 + µ−1 + δ log(2)− 2iδ log(2)/N − µ−1δ) + log(2)∆(2∆G + 1))
,

(6.28)
with

∆ =

√
δ2
(

1− µ−1

log(2)

)2
+ 2δ

(
− µ1

log(2) + µ−1

log(2) −
µ1µ−1

log2(2)
− µ2−1

log2(2)

)
+ (µ1+µ−1)2

log2(2)
.

(6.29)
Let us look at particular cases in more detail.

Case with only sensitive bacteria initially: In this case, as 1 �
δ � µ1, µ−1, the final proportion of resistant bacteria can be approximated
to:

r0 ≈ µ1
1− 2−δG

δ log(2)
. (6.30)

Case with mixed inoculum: Let us distinguish two cases:

• If δG � 1, when starting with both strains, their relative proportion
will have little time to change. If there is one resistant bacteria initially,
then let us neglect mutations in both ways, as the mutation rate is
small, and then the final proportion of resistant bacteria is:

r1 ≈
1

1 + (Nb − 1)(1 +G log(2)δ)
(6.31)

• If δG � 1, then if there was at least one resistant and one sensi-
tive bacteria initially, the mutation-selection balance is reached within
the infected host. The final proportion of resistant bacteria rMSB

is obtained by writing the differential equation on R
R+S and looking

for its equilibrium. In the limits we are considering, rMSB tends to
µ1/(δ log(2)).
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Case starting from resistant bacteria only: In this case, the final
proportion of resistant bacteria will be:

rN = 1− 2(2∆G − 1)µ−1(1− δ)
(2∆G − 1)(µ1 + µ−1 − δ log(2)− δµ−1) + (1 + 2∆G)∆ log(2)

,

(6.32)
with ∆ defined in Eq. 6.29. For G not too large, since 1 � δ � µ1, µ−1,
then ∆ ≈ δ. Consequently:

rN ≈ 1− (2δG − 1)µ−1(1− δ)
2δGµ−1(1− δ) + δ log(2)

. (6.33)

Expression of the generating functions using within-host growth
results

In all the expressions below, we consider a host which is not treated.

Naive hosts. In naive hosts initially infected with i mutant bacteria, when
there is transmission, the probability to transmit j resistant bacteria and
N − j sensitive ones reads:

Ti,j =

(
N

j

)
rji (1− ri)

N−j . (6.34)

Then, for all i between 0 and N :

gNi (e0, e1, ..., eN ) = exp

−λN
 N∑
j=0

(
N

j

)
rji (1− ri)

N−j(1− ej)

 .

(6.35)

Immune hosts. In immune hosts, let us address the question of whether
the clusters comprise bacteria of a single type, or are mixed. As mentioned
in the main text and detailed in the Appendix, Section 6.5.3, a simplified
view of the process of cluster growth and breaking is that clusters break in
two once a certain size is attained, then grow and break again, and so on. As
bacteria are enchained upon division, the subclusters formed upon breaking
comprise closely related bacteria. Assume that the maximal cluster size is
2g = N : it is attained in g ≤ G generations, where G is the number of
generations within a host.

Mixed inoculum. As explained in section 6.5.3, the clusters are made
of daughter cells enchained together. Thus, in the absence of mutations,
clusters will comprise bacteria of one type only. As mutation rates are very
small, when the initial inoculum is mixed, the proportion of mixed clusters is
very small compared to the proportion of clusters comprising bacteria of one
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type only. Therefore, we neglect mixed clusters when the initial inoculum
is mixed. Thus for all i between 1 and N − 1,

gIi (e0, e1, ..., eN ) = exp (−λI ((1− ri)(1− e0) + ri(1− eN ))) . (6.36)

Inoculum of only one bacterial type. To be fully mutant at gen-
eration G, the clusters need to be seeded by a bacteria which was mutant
at generation G − g. This happens with probability r′0 when the inoculum
is fully sensitive and 1 − r′N when the inoculum is fully resistant (with r′i
denoting the proportion of resistant bacteria at generation G− g while ri is
the one at generation G).

For mixed clusters (see Section 6.5.3), we assume δg � 1, so that differ-
ences in growth time between the different types of clusters can be neglected.
A cluster at generation G was founded by one bacteria at generation G− g.
A mutation occurs at its first replication with probability 2µ, resulting in
a cluster of size 2g containing 2g−1 mutants. The probability for mutation
will be 22µ at the next replication, and so on. Thus, the probability for
a cluster to include one mutant is 2gµ = Nµ, that to include 2 mutants
is 2g−1µ = Nµ/2, that to include 4 mutants is 2g−2µ = Nµ/22, ... , and
finally, that to include 2g−1 mutants is 2µ. This yields:

gI0 (e0, e1, ..., eN ) = exp
[
−λI(1− 2µ1(N − 1)− r′0)(1− e0)

]
× exp

−λI
g−1∑
j=0

Nµ1
1− e2j

2j
+ r′0(1− eN )

 ,

(6.37)

gIN (e0, e1, ..., eN ) = exp
[
−λI(r′N − 2µ−1(N − 1))(1− eN )

]
× exp

−λI
g−1∑
j=0

Nµ−1
1− eN−2j

2j
+ (1− r′N )(1− e0)

 .

(6.38)

6.5.3 Dynamics of clusters including mixed clusters, and prob-
ability to transmit at least one mutant

A simple view of cluster growth

As mentioned in the main text, a simplified view of the process of cluster
growth and breaking is that clusters break in two once a certain size is
attained, then grow and break again, and so on. As daughter bacteria
are physically close in the clusters formed through IgA-mediated enchained
growth, the subclusters formed after a larger cluster breaks will comprise
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closely related bacteria. Let us assume that a host infection lasts for G
generations total, and that the maximal cluster size is 2g = Nc (see schematic
in Fig. 6.6): this size is attained in g generations (2g = Nc), with g ≤ G. We
here assume that Nc, the cluster size, is equal to Nb, the bottleneck size, and
we denote them both as N . When a mutation occurs, the cluster comprises
mixed bacterial types until g generations after (see Fig. 6.6). In the limit of a
small mutation rate, the final proportion of fully mutant clusters corresponds
to the proportion of mutant bacteria at generation G− g, seeding the final
clusters.

Figure 6.6: Schematic showing the outcome of mutations in clus-
ters. Represented here is the case of simple linear clusters. For more
complex clusters, it will remain true that closely related bacteria are lo-
cated close to one another, since daughter bacteria remain bound together
after replication.

Probability to transmit at least one mutant

Here, we consider a host, initially infected with only one type of bacteria,
with a mutation rate µ, and no fitness cost for the mutation. We look at the
probability to transmit at least one mutant, and ask how our simple model
could differ from a more realistic one. Note that here, we do not consider
hosts infected with a mixed inoculum, because in this case, as loss of bacteria
is rare at the beginning of the infection, and as the population of bacteria
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grows to large numbers in the infected host, the number of both sensitive
and resistant bacteria is then expected to be large, so that mutations and
fluctuations are not expected to play a big role.

In our model, we effectively assume that the proportion of resistant bac-
teria at the end of the infection can be considered equal to its mean ex-
pected value (the average being over several realizations of the within-host
dynamics), which is given by the deterministic ordinary differential equa-
tions. However, fluctuations could be important. For instance, if the in-
fection starts from a small number of bacteria of the same type, a mutant
appearing during the first replication will give rise to an important share of
mutants in the population at the end of the infection. As explained in sec-
tion 6.5.2, we also usually assume that in immune individuals, except if the
infection starts with only sensitive bacteria, clusters comprise only one type
of bacteria, either all sensitive or all resistant. In this section, we explore
how realistic these assumptions are.

Let us consider two extreme cases of population dynamics, starting with
only sensitive bacteria:

• Exponential growth: starting from size N , bacteria divide G times,
leading to a final population size N2G. At each replication, each
daughter bacteria has a probability µ of mutating. This is the case
considered in the main text and above.

• Constant population size: let us assume that very quickly, the pop-
ulation grows to size Npop (we neglect mutations in this phase, and
consider than we start with Npop sensitive bacteria, and then at each
of the G steps, the bacteria all replicate (with a probability of muta-
tion µ for each daughter bacteria), and then half of the bacteria are
removed, so the population size remains constant.

In both cases, on average, taking bacteria at the end of the infection, they
went through G replications from the start of the infection, so they have
a probability µG of being mutant. When transmitting N bacteria (and
assuming that N is very small compared to the final population size, and
that NµG � 1), the probability to transmit one mutant is ≈ NµG from a
naive host. From an immune host, we assume that mutants are transmitted
only in fully mutant clusters, with probability µG. Here we will study the
validity of these assumptions.

Henceforth, we will consider the case of a very small mutation rate µ so
that at most one mutation occurs during the infection of a host.

Exponential growth. Recall that in this regime, starting from size N ,
the bacteria divide G times, leading to a final population size N2G. At each
replication, each daughter bacteria has a probability µ of mutating.
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Naive host. Consider the lineage of one bacteria: it involves G steps
of replication. At step j, this bacteria has 2j descendants, and there is a
probability µ2j that one mutation occurs at this step, in which case 2G−j

bacteria will carry the mutation in the final population. This will correspond
to a proportion ρj = 2G−j/(2GN) = 1/(N2j) in the final population.

Assuming that 2G � 1, we can neglect the difference between taking a
sample with or without replacement, so the probability for a transmission
from a naive host to contain at least one mutant will be 1 − (1 − ρj)N if
the mutation occurs at step j (probability 1 − ρj for one bacteria to be of
the initial type, probability (1 − ρj)

N that all bacteria chosen are of the
initial type). So, multiplying by the initial N bacteria, and summing over
the G replication steps, the probability that a transmission from a naive
host includes at least one mutant is:

mN1 =

G∑
j=1

Nµ2j

(
1−

(
1− 1

N2j

)N)
. (6.39)

In the limit of j large, (1 − 1
N2j

)N ≈ 1 − 1/2j , so Eq. 6.39 yields

mN1,exp ≈ NµG. Hence, the result from our simple model employing or-
dinary differential equations is recovered. We know that this result is an
upper bound of the real value: an early mutation will lead to a higher pro-
portion of mutants in an individual, and thus the probability that several
mutants are transmitted at the same time will be higher. But, because when
we average over all possible transmissions, the mean number of mutants does
not change, a higher probability of transmitting several mutants at a time
leads to a lower probability of transmitting at least one mutant.

In the limit of N large enough for 1 − exp(N log(1 − 1/(N2j))) ≥ 1 −
exp(−1/2j) to hold (note that this does not require N to be extremely large
as N2j � 1 is sufficient), Eq. 6.39 yields:

mN1 ≥
G∑
j=1

Nµ2j
(
1− exp(−1/2j)

)
≥

G∑
j=1

Nµ2j
(
1/2j − 1/(22j+1)

)
=

G∑
j=1

Nµ
(
1− 1/(2j+1)

)

= Nµ

G− 1

22

G∑
j=1

1

2j−1


= Nµ

(
G− 1

2

(
1− 1

2G

))
.

(6.40)
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Thus, we have shown that:

NµG ≥ mN1,exp ≥ Nµ(G− 1/2) . (6.41)

Immune host. In the immune case, we assume that one cluster is
transmitted. Let us estimate the probability that the cluster transmitted is
fully mutant (mIN ) and the probability that the cluster transmitted is mixed
(mImixed). If a mutation occurs at a step j (probability Nµ2j) between the
first step and the (G− g)th step, then there will be 2G−g−j mutant bacteria
at the (G− g)th step, yielding 2G−g−j fully mutant clusters at the final Gth

step. They will then be in proportion 1/(N2j) among the N2G−g clusters.
Thus:

mIN =

G−g∑
j=1

Nµ2j
1

N2j
= µ(G− g) . (6.42)

If a mutation occurs at step j between the (G− g+ 1)-th step and the G-th
step, then it will give one mixed cluster. Thus:

mImixed,exp =

G∑
j=G−g+1

Nµ2j
1

N2G−g
=

g∑
j=1

µ2j = µ2(2g − 1) = 2µ(N − 1) .

(6.43)

Conclusion. Interestingly, when the host is naive, the result is very
close to the mean-field case. Indeed, we showed that the probability to trans-
mit at least one mutant is bounded between 2Nµ(G− 1/2) and 2NµG (the
mean field result) (see Eq. 6.41). The total probability for a transmission
from an immune host to include at least one mutant ismItot = mIN+mImixed =
µ(G− g+ 2(2g − 1)) = µ(G− log2(N) + 2(N − 1)) (see Eqs. 6.42 and 6.43).
If N � G, then it gives mItot,exp ≈ 2Nµ, which is G/2 times smaller than
for the naive case. However in this case most transmissions will be of mixed
clusters rather than fully mutant clusters. If N � G, then mItot,exp ≈ µG,
which is N times smaller than for a naive host, and will be mostly of fully
mutant clusters.

Constant population size. Recall that in this regime, we assume that
very quickly, the population grows to size Npop (we neglect the mutations
at the beginning, so that we consider that we start with Npop bacteria of
the initial type), and then at each of the G steps, the bacteria all replicate
(with a probability of mutation µ for each daughter bacteria), then half of
the bacteria are removed, so the population remains constant.

Naive host. When a mutation appears, its average proportion at the
end will remain at 1/Npop (recall that the mutation is assumed to be neutral).
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In each realization, in the very long time, the mutation will be either lost
of fixed. But the typical time for fixation will be of the order of Npop [11].
So for a large Npop, the mutations will stay a long time at a 0 or a small
frequency. Thus, we will neglect the probability for a naive host to transmit
more than one mutant. The probability to transmit a mutant will then be
NµG, as in the mean field case.

Immune host. In the case of an immune host, as in our model only
one cluster is transmitted, we do not need to consider correlations between
clusters. A cluster at generationG was founded by one bacteria at generation
G−g (this bacteria may have been in a cluster at this point, but what matters
is that at time G, all the bacteria in the cluster considered descend from this
bacteria). Then, this cluster is fully mutant with probability µ(G − g), as
G− g is the number of replications between a bacteria in the inoculum and
this founding bacteria. Besides, there is a probability 2µ that a mutation
occurred when this founding bacteria duplicated, 22µ at next round... and
2gµ at the last round, and thus a probability µ(2+22 + ...+2g) = µ2(2g−1)
that a cluster is mixed. These are actually the same results as for the
exponential case.

Conclusion. To conclude, in the constant population size case, a trans-
mission from a naive host will contain one mutant with probability NµG,
as in the mean field case. A transmission from an immune host will involve
a fully mutant cluster with probability µ(G− g), and a mixed cluster with
probability 2(N − 1)), exactly the same as for exponential growth.

Conclusion. In all cases, for naive donor hosts, we assume that the N
transmitted bacteria are of types taken randomly and independently. In
particular, when the initial bacteria are all of one type, if the average final
proportion of mutants is ρ (proportional to the mutation rate µ, and thus
very small), then the probability of transmitting one mutant bacteria among
N will be

(
N
1

)
ρ(1−ρ)N−1 ≈ Nρ, with very little chance of transmitting more

than one mutant bacteria.

For immune donor hosts, if the infection starts with a mixed inoculum, we
assume that all bacteria in a cluster transmitted to another host are of the
same type. Conversely, if the infection starts with an inoculum of bacteria
that are all of the same type, then other bacterial types are produced only
by mutations. With G the number of generations within the host and N the
bottleneck size and cluster size, if G� N , then most clusters will be of one
bacterial type only, and the probability to transmit a fully mutant cluster
will simply be the proportion of mutant bacteria, and a negligible amount of
mixed clusters will be transmitted. If G � N , there are many more mixed
clusters than clusters made of mutant bacteria only, and the proportion of
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mixed clusters is of the order of 2Nµ.

Stochastic simulations

Given our analytical arguments in section 6.5.3 (and in particular in section
6.5.3 which deals with the exponential growth assumed in our model), we
expect the probability that a naive host initially infected by bacteria of a
single type transmits at least one mutant to be very little modified by the fact
that some mutations happen earlier than others due to the stochasticity of
within-host growth. There could still be correlations between transmissions
from the same host (if a mutation happened early within this host, then it
transmits more mutants to all its contacts).

To address this question, we performed simulations with stochastic ex-
ponential within-host growth with no bacterial death (see Appendix, Sec-
tion 6.5.5). In this model without death, genotypes cannot fix inside a host
(in contrast with models at fixed population size [11, 40]). Nevertheless,
stochastic exponential growth induces variability in the composition of bac-
terial populations growing from a given mixed inoculum, especially if it is
small [177]. Fig. 6.7 compares results obtained with stochastic and deter-
ministic within-host growth, without mutations.
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Figure 6.7: Stochastic within-host growth without mutations or a
fitness cost of resistance. Extinction probabilities ei versus initial num-
ber i of resistant bacteria in the first infected host, for different fractions ω of
immune individuals in the host population. Dark shades: results from sim-
ulations with stochastic mutation-free within-host growth. Light shades:
results with deterministic mutation-free within-host growth (identical to
Fig. 6.2). As in Fig. 6.2, N = 100, λ = 2, q = 0.55, and resistance carries
no cost. Solid lines: numerical resolution of Eq. 6.4; symbols: simulation
results (over 104 realizations).

Overall, the impact of stochasticity is small, which validates our use of
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a deterministic model. Besides, the impact of stochasticity is strongest for
naive hosts and small initial numbers i of resistant bacteria. Again, non-
treated immune hosts then transmit resistance very rarely anyway because
of clustering. Conversely, for non-treated naive hosts with small i, exact
population composition matters because it substantially affects the prob-
ability of transmitting resistance. Stochasticity can increase or decrease
the resistant fraction, but decreasing it has more impact than increasing it,
because beyond some small fraction, transmission of resistance is almost cer-
tain (see Eq. 6.13). Hence, stochasticity yields a slight increase of extinction
probabilities in this case, as seen on Fig. 6.7.

Since mutations are rare events, it is also important to treat them in a
stochastic way. As shown in Fig. 6.8, the previous conclusions hold in this
case, both with and without a fitness cost of resistance. In particular, the
overall impact of stochasticity is small.
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Figure 6.8: Stochastic within-host growth with mutations and a
fitness cost of resistance. The extinction probability ei is shown as
a function of the initial number i of resistant bacteria in the first infected
individual, for different values of the fraction ω of immune individuals in the
host population. A: Case with mutations but no fitness cost. B: Case with
mutations and a fitness cost δ = 0.1. In both panels, results from simulations
with stochastic exponential within-host growth are shown in dark shades,
and results with deterministic exponential within-host growth are shown in
light shades for comparison (similarly to Fig. 6.7). As in Fig. 6.2, we take
a bottleneck size N = 100, and each individual transmits bacteria to an
average of λN = λI = λ = 2 new hosts and is treated with probability
qN = qI = q = 0.55, irrespective of whether it is naive or immune. Here,
we take mutation probabilities µ1 = 5× 10−5 and µ−1 = 0, and incubation
time corresponding to 10 generations of bacteria within the host. Solid lines
correspond to numerical resolution of Eq. 6.4, while symbols show results
from numerical simulations of the branching process, computed over 104

realizations. Main panel: linear scale; inset: semi-logarithmic scale.
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We have also generally assumed that immune hosts transmit clusters
comprising a single type of bacteria, except in our discussion of spread with-
out any pre-existing resistance. As discussed above, immune hosts may also
transmit mixed clusters. Fig. 6.9 shows that the influence of these mixed
clusters is indeed often very small, especially for small cluster sizes (see
Fig. 6.9B).
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Figure 6.9: Impact of mixed clusters. The extinction probability ei
is shown as a function of the initial number i of resistant bacteria in the
first infected individual, for different values of the fraction ω of immune
individuals in the host population. A: Cluster size N = 64. B: Cluster size
N = 8. In both panels, results from simulations with stochastic exponential
within-host growth including an explicit construction of clusters that allows
for mixed clusters are shown in dark shades, and results with stochastic
exponential within-host growth but with only clonal clusters (as in previous
figures) are shown in light shades for comparison. As in Fig. 6.2, each
individual transmits bacteria to an average of λN = λI = λ = 2 new hosts
and is treated with probability qN = qI = q = 0.55, irrespective of whether it
is naive or immune. Here, we take mutation probabilities µ1 = 5×10−5 and
µ−1 = 0, and a total incubation time corresponding to G = 10 generations of
bacteria within the host. Symbols show results from numerical simulations
of the branching process, computed over 104 realizations. Main panel: linear
scale; inset: semi-logarithmic scale.
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Impact of clustering on bacterial loss within a host

Throughout, we have considered no bacterial loss within a host, except in
the section where we consider a population of constant size (section 6.5.3).
Actually, some bacteria may be killed (for instance by bacteriophages, in
which case bacteria in clusters, because they are very close in space, are very
likely to be attacked together), or be lost in the feces (which would happen
by clusters and not independently if bacteria are attached together). Let
us look at the impact of including a small loss rate in the case where the
proportion of resistant bacteria is initially small (i � N resistant bacteria
in the inoculum), and let us reason along the same lines as when deriving
Eq. 6.14 of the main text.

For a naive host, as we consider a small loss rate, it will be unlikely for
the resistant bacteria to be lost before they replicate, and the more they
are, the less likely it is that they will all be lost. Consequently, we expect
very little influence of loss in a fully naive host population.

In a fully immune population, let us start with a host infected with
i resistant bacteria. If this host is treated (probability qI), the infection
becomes fully resistant, and leads to spread with probability 1− eIN . If this
host is not treated, there is some probability that the resistant bacteria are
lost. Because of clustering, this probability is higher than in the naive case;
let us denote this probability pi,loss. Then, if (1 − qI)λI < 1, spread is
possible only if resistant bacteria are not lost (probability 1 − pi,loss), and
when they are transmitted, they may lead to spread. This last term of spread
is 1− exp(−λI(1− eeach)), with eeach the probability of extinction following
each transmission. Here, we do not consider mutations, so there are no mixed
clusters, and if a cluster of sensitive bacteria is transmitted, extinction is
certain, because we assume (1− qI)λI < 1. If a cluster of resistant bacteria
is transmitted, then it still leads to extinction with probability eIN . The
probability that the cluster transmitted is resistant is equal to the proportion
of resistant bacteria, which is on average i/N (unaffected by losses). Because
in a proportion pi,loss of the cases, there is no resistant bacteria, then the
proportion of resistant bacteria in the case that they are not lost will be
i/(N(1− pi,loss)). Then overall:

1−eIi ≈ qI(1−eIN )+(1−qI)(1−pi,loss)(1−exp(−λI(1−eIN )i/(N(1−pi,loss)))) .
(6.44)

We are in the regime i� N , thus, assuming that 1− pi,loss is not too small,
λI(1− eIN )i/(N(1− pi,loss))� 1, and consequently,

1− eIi ≈ qI(1− eIN ) + (1− qI)(1− pi,loss)(λI(1− eIN )i/(N(1− pi,loss))))
≈ qI(1− eIN ) + (1− qI)λI(1− eIN )i/N . (6.45)

We thus recover Eq. 6.14 of the main text. Therefore, provided that pi,loss
is not too large (i.e. 1 − pi,loss � λ(1 − eIN )i/N), including loss does not
change our conclusions.
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6.5.4 Model with three bacterial types, including compensa-
tion

Here, we extend our model to include the possibility of compensation of the
fitness cost of resistance. This description involves three types of bacteria,
sensitive ones (S) with division rate f without antimicrobial, resistant ones
(R) with division rate f(1 − δ), and resistant-compensated ones (C) with
division rate f .

Within-host growth

Let us first write the within-host growth equations. For simplicity, we as-
sume that there are no back-mutations. As in section 6.5.2, we present
here the deterministic description of the within-host growth using ordinary
differential equations, and assuming exponential growth. This yields the
following system of linear differential equations:

Ṡ = f(1− µ̃1)S

Ṙ = f(1− δ)(1− µ̃2)R+ f µ̃1 S

Ċ = f C + f(1− δ) µ̃2R ,

(6.46)

where S, R and C are the numbers of sensitive (S), resistant (R) and
resistant-compensated (C) microorganisms, respectively, and f denotes the
division rate of S bacteria in the absence of antibiotic, while dots denote
time derivatives. Recall that R bacteria experience a fitness cost δ, but
C bacteria do not experience any cost. Also note that the mutation rates
µ̃i = µi/ log(2) for i = 1, 2 are corrected to give agreement with the discrete
model (see Section 6.5.2).

Note that the population fractions s = S/(S+R+C), r = R/(S+R+C)
and c = C/(S +R+ C) satisfy the following equations:

ṡ = f(1− µ̃1)s− fs
ṙ = f(1− δ)(1− µ̃2)r + f µ̃1 s− f r
s+ r + c = 1 ,

(6.47)

where f = f s+ f(1− δ) r+ f c denotes the average fitness. Such equations
are often taken as a starting point to describe large populations, and are
known as replicator-mutator equations [115].

Being linear, the system in Eq. 6.46 is straightforward to solve analyti-
cally:SR

C

 =

0 0 1

0 1 µ̃1
δ−µ̃1+(1−δ)µ̃2

1 − (1−δ) µ̃2
δ+(1−δ)µ̃2 − (1−δ) µ̃2

δ−µ̃1+(1−δ)µ̃2


 α1 e

f t

α2 e
f(1−δ)(1−µ̃2)t

α3 e
f(1−µ̃1)t

 , (6.48)
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where α1, α2 and α3 can be expressed from the initial conditions S(0), R(0)
and C(0). The fractions s, r and c can then be obtained from this solution,
e.g. through s = S/(S +R+ C).

Generating function

Here, we present a full derivation of the generating function of the branching
process in the case including three types of bacteria. For simplicity, we
assume that there are no back-mutations and that all IgA-mediated clusters
of bacteria are clonal.

Let ℘ij({nkl}) be the probability that the first infected host, which is
initially infected with i R bacteria, j C bacteria and N − i − j S bacteria,
transmits:
- 0 R bacteria, 0 C bacteria and N S bacteria to n00 hosts
- ...
- k R bacteria, l C bacteria and N − k − l S bacteria to nkl hosts
- ...
Note that 0 ≤ k, l ≤ N and 0 ≤ k + l ≤ N , where N is the bottleneck
size. Thus, (N + 1)(N + 2)/2 ordered pairs (k, l) are possible, and we will
denote by S the set containing all of them. As in Eq. 6.4, we distinguish
four different cases, immune (I) and naive (N ), treated (t) or non-treated
(nt), so that:

℘ij({nkl}) = ω qI ℘
I,t
ij ({nkl})︸ ︷︷ ︸

Immune and treated

+ (1− ω) qN ℘
N ,t
ij ({nkl})︸ ︷︷ ︸

Naive and treated

+ ω (1− qI)℘I,ntij ({nkl})︸ ︷︷ ︸
Immune and untreated

+ (1− ω) (1− qN )℘N ,ntij ({nkl})︸ ︷︷ ︸
Naive and untreated

,

(6.49)

where ω is the proportion of immune hosts in the population, and qI and qN
are the probabilities of treatment for immune and naive hosts, respectively.

The generating function of the branching process

gij({zkl}) =

+∞∑
{nkl/(k,l)∈S}

℘ij({nkl})
∏

(k,l)∈S

znklkl (6.50)

can thus be expressed as

gij({zkl}) = ω qI g
I,t
ij ({zkl})︸ ︷︷ ︸

Immune and treated

+ (1− ω) qN g
N ,t
ij ({zkl})︸ ︷︷ ︸

Naive and treated

+ ω (1− qI) gI,ntij ({zkl})︸ ︷︷ ︸
Immune and untreated

+ (1− ω) (1− qN ) gN ,ntij ({zkl})︸ ︷︷ ︸
Naive and untreated

.

(6.51)
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Let us now present a derivation of the explicit form of the generating function
in each of the four cases involved in this equation. Taken together, they will
thus yield the complete form of the generating function, needed to compute
the extinction probabilities.

Immune and treated hosts.

Case i = 0, j = 0. In this case, we start with only sensitive bacteria,
which are killed by the treatment. Thus, no bacteria can be transmitted. It

follows that ℘I,t00 ({nkl}) =
∏

(k,l)∈S

δnkl,0 and that gI,t00 ({zkl}) = 1.

Case i = 0, j > 0. Since we assume that there are no back-mutations,
the host will only harbor C bacteria and will transmit a cluster of N C bacte-

ria to each recipient host. Hence, ℘I,t0j ({nkl}) =
λn0N
I
n0N !

e−λI
∏

(k,l)∈S\{(0,N)}

δnkl,0

and gI,t0j ({zkl}) = exp (−λI(1− z0N )).

Case i > 0, j ≥ 0. In this case, we have two types of bacteria (R
and C). Even if initially j = 0, C bacteria may appear by mutation, and
their number may be nonzero after the incubation time τ . Because there
are no back-mutations, S bacteria cannot reappear after being killed by
the antimicrobial. Since we neglect mixed clusters, recipient hosts can be
contaminated only by clonal clusters of N R bacteria or N C bacteria. The
probability that nN0 clusters of R bacteria only are transmitted, given that
n clusters are transmitted, reads

p(nN0|n) =

(
n

nN0

)
(ri+ji,j )nN0(1− ri+ji,j )n−nN0 . (6.52)

where ri+ji,j (resp. ci+ji,j = 1−ri+ji,j ) represents the fraction of R bacteria (resp.
C bacteria) at the end of the incubation period, starting from an initial total
number of bacteria i + j, an initial number of R bacteria i and an initial
number j of C bacteria. Using the law of total probability, we then obtain
the probability that nN0 clusters of R bacteria only are transmitted:

p(nN0) =
+∞∑

n=nN0

p(nN0|n)p(n) =
(λI r

i+j
i,j )nN0

nN0!
exp

(
−λI ri+ji,j

)
, (6.53)

where we have used p(n) = λnIe
−λI/n! since transmission is assumed to

be Poissonian. Similarly, we obtain the probability that n0N clusters of C
bacteria only are transmitted:

p(n0N ) =
(λI(1− ri+ji,j ))n0N

n0N !
exp

(
−λI(1− ri+ji,j )

)
. (6.54)
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We can then write ℘I,tij ({nkl}) = p(nN0)p(n0N )
∏

(k,l)∈S\{(0,N),(N,0)}

δnkl,0, and

thus

gI,tij ({zkl}) = exp
(
−λI ri+ji,j (1− zN0)

)
exp

(
−λI(1− ri+ji,j )(1− z0N )

)
.

(6.55)

Naive and treated hosts.

Case i = 0, j = 0. This case is identical to that of immune and treated
hosts (see above) and gN ,t00 ({zkl}) = 1.

Case i = 0, j > 0. This case is identical to that of immune and treated
hosts (see above), except that the host transmits to an average of λN new
hosts (instead of λI). Hence gN ,t0j ({zkl}) = exp (−λN (1− z0N )).

Case i > 0, j ≥ 0. As explained for immune and treated hosts, in this
case, we have two types of bacteria (R and C). Even if initially j = 0, C
bacteria may appear by mutation, and their number may be nonzero after
the incubation time τ . Because there are no back-mutations, S bacteria
cannot reappear after being killed by the antimicrobial.

Let us denote by n the total number of new hosts that will be infected by
the host considered. In principle, we should draw n samples of N bacteria
without replacement out of the N2 bacteria assumed to be present at the
end of the incubation time. The composition of each sample will potentially
impact the others. However, this effect will be negligible if N � n, in which
case we can consider for simplicity that each of the n samples is drawn with
replacement from the set of N2 bacteria. Within this approximation, the
probability that there are k R bacteria in a packet of N bacteria follows a
binomial law:

Bi,j(k) =

(
N

i

)
(ri+ji,j )k(1− ri+ji,j )N−k . (6.56)

where we have used ci+ji,j = 1 − ri+ji,j . The probability that nkN−k clusters
including k R bacteria and N − k C bacteria are transmitted, given that n
clusters are transmitted reads:

p(nkN−k|n) =

(
n

nkN−k

)
(Bi,j(k))nkN−k(1−Bi,j(k))n−nkN−k . (6.57)

Using the law of total probability (see Eq. 6.53), we then obtain the proba-
bility that nkN−k clusters including k R bacteria and N − k C bacteria are
transmitted:

p(nkN−k) =
(λNBi,j(k))nkN−k

nkN−k!
exp (−λNBi,j(k)) . (6.58)
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Since ℘ij({nkl}) =

N∏
k=0

p(nkN−k), we obtain:

gN ,tij ({(zkl)}) =
∑
nkl

(
N∏
k=0

p(nkN−k)

) ∏
(k,l)∈S\{(k,l)/k+l=N}

δnkl,0

 (6.59)

×

 ∏
(k,l)∈S

znklkl


=

N∏
k=0

 ∑
nkN−k

p(nkN−k)z
nkN−k
kN−k


=

N∏
k=0

 ∑
nkN−k

(λNBi,j(k))nkN−k

nkN−k!
exp (−λNBi,j(k)) z

nkN−k
kN−k


= exp

(
−λN

N∑
k=0

Bi,j(k)(1− zkN−k)

)
. (6.60)

Immune and non-treated hosts. Here, transmission involves clusters
of N identical bacteria of type S, R or C. Let us express the probability that
nN0 clusters of R bacteria, n0N clusters of C bacteria and n00 = n−nN0−n0N

of S bacteria are transmitted, given that n clusters are transmitted:

p(nN0, n0N |n) =
n!

nN0!n0N !(n− nN0 − n0N )!
(rNi,j)

nN0(cNi,j)
n0N

× (1− rNi,j − cNi,j)n−nN0−n0N , (6.61)

which is a trinomial distribution. Then it follows:

p(nN0|n) =

n−nN0∑
n0N=0

p(nN0, n0N |n) =
n!

(n− nN0)!nN0!
(rNi,j)

nN0(1− rNi,j)n−nN0 .

(6.62)

Using the law of total probability (see Eq. 6.53) yields

p(nN0) =

(
λI r

N
i,j

)nN0

nN0!
exp

(
−λI rNi,j

)
. (6.63)

Similarly,

p(n0N ) =
1

n0N !

(
λI c

N
i,j

)n0N
exp

(
−λI cNi,j

)
, (6.64)

p(n00) =
1

n00!

(
λI(1− rNi,j − cNi,j)

)n00
exp

(
−λI(1− rNi,j − cNi,j)

)
. (6.65)
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Since ℘I,ntij ({nkl}) = p(n00)p(nN0)p(n0N )
∏

(k,l)∈S\{(0,0),(N,0),(0,N)}

δnkl,0 , we fi-

nally obtain

gI,ntij ({zkl}) = exp
(
−λI(1− rNi,j − cNi,j)(1− z00)

)
× exp

(
−λI rNi,j(1− zN0)

)
× exp

(
−λI cNi,j(1− z0N )

)
. (6.66)

Naive and non-treated hosts. Here, transmission involves random as-
sortments of N bacteria that may potentially contain all three different types
of bacteria. The probability of having k R bacteria and l C bacteria in an
assortment reads

Ti,j(k, l) =
N !

k! l! (N − k − l)!
(rNi,j)

k(cNi,j)
l(1− rNi,j − cNi,j)N−k−l . (6.67)

Then we can express the probability of transmitting nkl packets with k R
bacteria and l C bacteria, given that n packets are transmitted:

p(nkl|n) =

(
n

nkl

)
(Ti,j(k, l))

nkl(1− Ti,j(k, l))n−nkl . (6.68)

Using the law of total probability (see Eq. 6.53) yields

p(nkl) =
(λNTi,j(k, l))

nkl

nkl!
exp (−λNTi,j(k, l)) . (6.69)

Since ℘N ,ntij ({nkl}) =
∏

(k,l)∈S

p(nkl), we finally obtain

gN ,ntij ({zkl}) = exp

−λN ∑
(k,l)∈S

Ti,j(k, l)(1− zkl)

 . (6.70)

Conclusion. Combining the above results for the generating function in
the various cases studied, we can explicitly rewrite Eq. 6.51. This allows us
to compute the extinction probabilities of epidemics eij , which are the fixed
points of the generating function gij({zkl}), where the first host is initially
infected by i R bacteria, j C bacteria and N − i− j S bacteria.

Results with three bacterial types

Because multiple mutations can compensate for the initial cost of resis-
tance [83, 84, 98], the probability µ2 of compensatory mutations often sat-
isfies µ2 � µ1 [83, 112]. In Fig. 6.10, compensation has a negligible impact.
Indeed, the proportion of compensated bacteria then remains small. How-
ever, for longer incubation times, compensation decreases extinction prob-
abilities, which become intermediate between those with a cost and those
without a cost (see Fig. 6.11). Overall, compensation does not have a major
impact on the initial steps of the propagation studied here.
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Figure 6.10: Impact of compensation. Extinction probabilities ei versus
initial number i of resistant bacteria in the first infected host, for different
fractions ω of immune individuals in the host population. Dark shades:
results with a fitness cost δ = 0.1 and compensation with µ2 = 7 × 10−3.
Light shades: results with δ = 0.1 but no compensation (same as dark-
shaded results in Fig. 6.4B). Within-host evolution is deterministic, µ1 =
7 × 10−5 and µ−1 = 0, and incubation time is G = 10 generations. As in
Fig. 6.2, N = 100, λ = 2 and q = 0.55. Solid lines: numerical resolution of
Eq. 6.4; symbols: simulation results (over 104 realizations).
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Figure 6.11: Impact of a fitness cost of resistance and of compensa-
tion for long incubation times. The extinction probability ei is shown
as a function of the initial number i of resistant bacteria in the first infected
individual, for different values of the fraction ω of immune individuals in
the host population. A: Results with a fitness cost δ = 0.1 of resistance are
shown in dark shades. Results without fitness cost (identical to the dark-
shaded results in Fig. 6.4A) are shown in light shades for comparison. B:
Results with a fitness cost δ = 0.1 of resistance and with a possible com-
pensatory mutation with mutation probabilities µ2 = 7× 10−3 and µ−2 = 0
are shown in dark shades. Results with the same fitness cost but without
compensation (identical to the dark-shaded results in panel A) are shown
in light shades for comparison. In both panels, within-host evolution is de-
terministic, mutation probabilities are µ1 = 7 × 10−5 and µ−1 = 0, and
incubation time corresponds to 50 generations of bacteria within the host
(instead of 10 generations in Figs. 6.4 and 6.10). In addition, as in Fig. 6.2,
we take a bottleneck size N = 100, and each individual transmits bacteria
to an average of λN = λI = λ = 2 new hosts and is treated with proba-
bility qN = qI = q = 0.55, irrespective of whether it is naive or immune.
Solid lines correspond to numerical resolution of Eq. 6.4 (not shown with
compensation), while symbols show results from numerical simulations of
the branching process, computed over 104 realizations. Main panel: linear
scale; inset: semi-logarithmic scale.
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6.5.5 Detailed simulation methods

Our code is freely available at https://doi.org/10.5281/zenodo.2592323.

Our simulations were coded in Matlab. Here, we present in detail our
simulation scheme, which is outlined in the Methods section of the main
text. We perform stochastic simulations of the branching process mod-
eling the propagation of the bacterial strain considered. The within-host
growth can be treated either deterministically or stochastically, and in the
latter case, it can either allow mixed clusters or not (see below). We con-
sider “generations” of hosts, the first one corresponding to the first infected
host, the second one to the hosts directly infected by this first host, etc.
Throughout this section, as in our simulations, we assume that there are no
back-mutations.

Initialization (first host)

We start with a first generation where there is a single host infected by an
inoculum containing i R bacteria, j C bacteria and N − i− j S bacteria.

Loop over successive generations of hosts

For each host in the generation considered, we first randomly choose whether
it is immune or naive, according to the probability ω of being immune.

Naive hosts. For each naive host in the generation considered, we ran-
domly choose whether it is treated or not, according to the probability qN
of being treated.

• If the naive host is treated:

– Treatment: All sensitive (S) bacteria are eliminated from the
inoculum.

– If the inoculum contained at least one resistant (R) or compen-
sated (C) bacterium:

1. Within-host growth: In the absence of compensation, since
all S bacteria were eliminated and since we consider no back-
mutation, only R bacteria will exist within the host. If com-
pensation is accounted for, the fractions of R and C bacteria
at the end of the incubation period are computed using either
a deterministic or a stochastic approach (see below). Then,
we compute the numbers of R and C bacteria by randomly
sampling them in a binomial distribution with parameters
N2 (number of bacteria after the within-host growth) and r
(fraction of R bacteria after the within-host growth).
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2. Transmission to the next generation of hosts: The
number of hosts infected by the present host is computed by
a random draw from a Poisson distribution with average λN .
Each new infected host receives a set of N microorganisms,
randomly drawn without replacement from the N2 bacteria
infecting the transmitting host at the end of the incubation
time.

– If the inoculum only contained S bacteria, no transmission occurs,
since the treatment eliminated all bacteria.

• If the naive host is not treated:

1. Within-host growth: The proportions of S and R bacteria (and
C if compensation is accounted for) at the end of the incubation
period are computed using either a deterministic or a stochas-
tic approach (see below). Then, in the absence of compensation,
we compute the numbers of S and R bacteria by randomly sam-
pling them in a binomial distribution with parameters N2 and
s. If compensation is accounted for, we instead use a trinomial
distribution with parameters N2, s and r.

2. Transmission to the next generation of hosts is performed
as in the naive-treated case presented above.

Immune hosts. For each immune host in the generation considered, we
randomly choose whether it is treated or not, according to the probability
qI of being treated.

• If the immune host is treated:

– Treatment: All sensitive (S) bacteria are eliminated from the
inoculum.

– If the inoculum contained at least one R mutant or one C bac-
terium:

1. Within-host growth: Again, in the absence of compen-
sation, only R bacteria will exist. With compensation, the
fractions of R and C bacteria at the end of the incubation pe-
riod are computed as in the naive-treated case. If only clonal
clusters are considered, N clonal clusters of N bacteria are
constructed by randomly drawing the number of R and C
bacteria seeding clusters in a binomial distribution with pa-
rameters N and r. If mixed clusters are considered, they are
explicitly constructed at the end of the within-host growth
(see below).
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2. Transmission to the next generation of hosts: The
number of hosts infected by the present host is computed by
a random draw from a Poisson distribution with average λI .
Each newly infected host receives one random cluster among
the N clusters formed at the end of the within-host growth.

– If the inoculum only contained S bacteria, no transmission occurs
as the treatment eliminated all bacteria.

• If the immune host is not treated:

1. Within-host growth: The proportions of S and R bacteria (and
C if compensation is accounted for) at the end of the incubation
period are computed as in the naive-non treated case. If only
clonal clusters are considered, in the absence of compensation, we
compute the numbers of S and R bacteria seeding clusters by ran-
domly sampling them in a binomial distribution with parameters
N and s. If only clonal clusters are considered, but compensation
is accounted for, we instead use a trinomial distribution with pa-
rameters N , s and r. If mixed clusters are considered, they are
explicitly constructed at the end of the within-host growth (see
below).

2. Transmission to the next generation of hosts is performed
as in the immune-treated case.

End of the simulation

The simulation is stopped when one of the following conditions is met:

• Extinction, i.e. no more infected hosts at a given generation.

• The number of infected hosts at the current generation of hosts is
larger than a threshold (100 in practice).

• The number of generations of infected hosts is larger than a threshold
(100 in practice).

We approximate the last two cases as meaning that no extinction will occur.
We have checked that increasing the threshold values above 100 does not
significantly affect our results, which confirms that this approximation is
valid.

Within-host growth

Deterministic model. If the within-host growth is treated deterministi-
cally, in the absence of mutations and fitness cost, the proportion of resistant
bacteria just remains the same upon growth.
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With mutations and/or fitness cost, we compute the fractions of sensitive
and resistant bacteria (and compensated ones, if compensation is accounted
for) at a time τ = G log(2) (see Eq. 6.20 with f = 1) equivalent to the
total number of generations G of the incubation period, using the solution
of our ODE model (see Section 6.5.2, especially Eqs. 6.21 and 6.22 for the
case without compensation and section 6.5.4, especially Eq. 6.46 for the
case with compensation). Note that even though the within-host growth
is treated deterministically, the sampling of transmitted bacteria and the
branching process are stochastic.

Stochastic model. If the within-host growth is treated stochastically,
we implement an exact Gillespie simulation scheme [127, 40] for a fixed
number Ndiv = N(2G − 1) of single bacterial divisions, corresponding to
the number of divisions that take place during the G generations of the
incubation period. In our Gillespie algorithm, each bacterium can divide
randomly with a rate equal to its fitness, and each daughter cell can then
mutate randomly with a given probability (µ1 for S→ R and µ2 for R→ C
if compensation is accounted for, assuming no back-mutations). This yields
a complete agent-based model of a stochastic exponential growth.

Finally, in some simulations (see Fig. 6.9), we explicitly took into account
the possibility that mixed clusters form within immune hosts. For this, we
employed our usual stochastic within-host growth scheme for the first G− g
generations of incubation, and we then switched to an explicit model of
cluster formation for the last g generations, where the cluster size (assumed
to be equal to the bottleneck size) satisfies N = 2g. The last g generations of
incubation correspond to the formation of the transmitted clusters. We then
formed clusters from each single bacterium present after G− g generations
of incubation. For these last g generations, we assumed that bacteria have
a fixed division time (and not a fixed division rate). As usual, at each
division, daughter cells can mutate randomly with a given probability. We
implemented this explicit construction of clusters only in the case where
resistance has no cost (δ = 0), which is simpler because divisions within the
fixed division time model are then synchronous.

6.5.6 Analytical approximations for the spread probability
without pre-existing resistance

Proportion of resistant bacteria

When starting with only sensitive bacteria, at the first round of replication,
an average proportion µ1 of resistant bacteria is produced. At the second
round, neglecting back-mutations, and in the limit µ1 � 1, so that the
proportion of mutant bacteria remains negligible, the proportion of mutant
bacteria will be µ1(1−δ) (the resistant bacteria produced at the first round,



218 CHAPTER 6. SPREAD

which reproduce more slowly than the sensitive ones), plus µ1 (the resistant
bacteria newly produced). A similar reasoning can be applied for subsequent
rounds of replication. Thus, after G generations, the average proportion of
resistant bacteria is

µ1

(
(1− δ)G−1 + (1− δ)G−2 + ...+ (1− δ) + 1

)
=
µ1

δ
(1−(1−δ)G) . (6.71)

Note that Eq. 6.71 was obtained within a discrete description. Our con-
tinuous time model similarly yields (1 − exp(−Gδ))µ1/δ. In particular, if
Gδ � 1, this yields a mutant proportion of µ1G, while if Gδ � 1, this yields
the mutation-selection balance proportion µ1/δ.

Approximation for a small number of generations

Regime considered

As mentioned in the main text section titled “Analytical approxima-
tions for the spread probability without pre-existing resistance”, here, we
take into account mutations and the fitness cost of resistance, but not
its compensation. We use the deterministic description of the within-host
growth, and take λN = λI = λ, as well as qN = qI = q. In addition, the
present case of a small number G of generations corresponds to δG� 1 and
(G − g) � 2(N − 1). Below, we explicitly demonstrate that if at least one
resistant mutant is transmitted, the probability of extinction is similar for
an immune and a naive host population. This is necessary to calculate the
impact of clustering on spread probabilities in this regime (Eq. 6.16).

eNN vs. eIN
Let us first compare the extinction probabilities starting from a host

infected with only resistant bacteria in a fully naive host population eNN and
in a fully immune one eIN . In the limit of a small number of generations G,
a host initially infected with only resistant bacteria will have a very small
proportion of sensitive bacteria at the transmission time even in the absence
of treatment. Thus eNN ≈ eIN ≈ eN .

eN1 vs. eI1
Next, let us compare the extinction probabilities starting from a host

initially infected with one resistant bacteria and N − 1 sensitive ones, in
a fully naive and in a fully immune population, i.e. eN1 and eI1 . Because
δG� 1, the proportion of resistant bacteria at transmission is close to 1/N .
Let us assume that N � 1.

eN1
Let us first consider a fully naive population. For a non-treated host, the

probability that no resistant bacteria is present among N bacteria transmit-
ted is (1− 1/N)N = exp(N log(1− 1/N)) ≈ exp(−1). The probability that
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one resistant bacteria among N is transmitted is N(1/N)(1 − 1/N)N−1 =
exp((N − 1) log(1 − 1/N)) ≈ exp(−1) exp(1/N) ≈ exp(−1). The proba-
bility to transmit 2 resistant bacteria among N is N(N − 1)/2(1/N)2(1 −
1/N)N−2 = (1−1/N)/2 exp((N −2) log(1−1/N)) ≈ exp(−1) exp(2/N)(1−
1/N)/2 ≈ exp(−1)/2. Thus the probability that more than 2 resistant bac-
teria are transmitted is smaller than 10%: most cases in which more than
1 resistant bacteria are transmitted are cases in which few, and mainly 2
resistant bacteria are transmitted. Since the outcome is not very differ-
ent whether 1 or 2 resistant bacteria are transmitted, let us assume that
eN1 ≈ eN2 and let us neglect transmission of more resistant bacteria. Under
these assumptions, when a host is initially infected with 1 resistant bacteria
and N−1 sensitive ones, then with probability q, this host is treated, leading
to a fully resistant infection, and with probability 1 − q, it is not treated,
in which case for each of the transmissions (whose number is Poisson dis-
tributed with average λ), it has a probability close to exp(−1) to transmit
only sensitive bacteria, which leads to extinction with a probability close to
1 (more precisely, 1 minus a small spread probability arising from mutations
of the order of µ1, see Section 6.5.6), and a probability close to (1−exp(−1))
to transmit at least one resistant bacteria, which leads to extinction with a
probability close to eN1 . This results in:

eN1 ≈ qeN + (1− q) exp(−λ(1− exp(−1))(1− eN1 )) (6.72)

eI1
Let us now turn to a fully immune population, and assume that clusters

comprise a single type of bacteria since here the inoculum is mixed. When
an immune host is initially infected with 1 resistant bacteria and N − 1
sensitive bacteria, then with probability q, this host is treated, leading to a
fully resistant infection, and with probability 1−q, it is not treated, in which
case for each of the transmissions (whose number is Poisson distributed with
average λ), it has a probability 1− 1/N to transmit only sensitive bacteria,
which leads to an extinction probability close to 1 (more precisely, 1 minus
a small spread probability arising from mutations of the order of µ1, see
Section 6.5.6), and a probability 1/N to transmit resistant bacteria only,
leading to extinction with probability eN . This results in:

eI1 ≈ qeN + (1− q) exp(−λ(1− eN )/N) . (6.73)

Conclusion on eN1 vs. eI1
Since we assumed N � 1, exp(−λ(1− eN )/N) will be of the order of 1,

so Eqs. 6.72 and 6.73 entail eN1 < eI1 . Note that numerically, they remain
of the same order of magnitude. For instance, in the limit of large N , the
ratio of extinction probabilities eI1/e

N
1 is at most 2 for λ = 2. For instance

in Fig. 6.2, this ratio is close to 2.



220 CHAPTER 6. SPREAD

Conclusion on eN0 vs. eI0
As explained in the main text, in a fully naive population, starting from

a host infected with only sensitive bacteria, the probability for this host
to transmit at least one resistant bacteria is ≈ µ1GN (the proportion of
resistant bacteria multiplied by the bottleneck size). Then the associated
spread probability is 1 − eN1 . In contrast, in a fully immune population,
starting from a host infected with only sensitive bacteria, the probability
to transmit at least one resistant bacteria is approximately 2µ1(N − 1), the
proportion of mixed clusters. Half of these mixed clusters bear only one
resistant bacteria. A quarter of them comprise 2 resistant bacteria, and so
on, so we can approximate that the corresponding spread probability by
1− eI1 .

Combining our results yields:

R =
1− eN0
1− eI0

≈ G

2

1− eN1
1− eI1

&
G

2
. (6.74)

This quantifies the impact of clustering on the spread of resistance in the
case of a short incubation time. Note that in this regime, G is not very
large, but it can still be much larger than 2, in which case Eq. 6.74 shows
that the impact of clustering can be large.



Conclusion

Fat Moe: What have you been
doing all this time?
David “Noodles” Aaronson:
Going to bed early.

— Once upon a time in America

In this thesis, we investigated the impact of environmental variability and
population structure on the evolution and spread of antimicrobial resistance.
Specifically, we developed stochastic minimal and generic models, which
capture key biological ingredients of antimicrobial resistance, using methods
inspired by out-of-equilibrium statistical physics. Our approaches are both
analytical and numerical, and can be reused for other theoretical genetic
population problems.

Chapter 1: We defined what a microbe and an antimicrobial are. We ex-
plained our motivations through a historical overview of the issues raised by
antimicrobial resistance. After briefly reviewing some relevant biological de-
tails of antimicrobial resistance, we explained why environmental variability
and population structure likely impact the evolution and spread of antimi-
crobial resistance. A brief state of the art on the impact of environmental
variability and structure on the evolution of microbial populations led us to
the questions we want to answer, and the goals we want to achieve.

Chapter 2: In a microbial population of fixed size, we showed that fast al-
ternations of phases with and without antimicrobial strongly accelerate the
evolution of resistance, especially for large populations, reaching a plateau
for sufficiently small periods. For a different duration of the phases with
and without antimicrobial, we shed light on a minimum for the time taken
by the population to fully evolve resistance. The corresponding dramatic
acceleration of the evolution of antimicrobial resistance likely occurs in re-
alistic situations, and may have an important impact both in clinical and
experimental situations.

221
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Chapter 3: In a microbial population of variable size, we found a thresh-
old period above which the first phase with antimicrobial fully determines
the fate of the population. Faster alternations strongly select for resistance,
and are inefficient to eradicate the microbial population, unless the death
rate induced by the treatment is large enough. For longer alternation peri-
ods, we calculated the probability that the microbial population gets erad-
icated. This happens either if resistant mutants preexist, or if they appear
after antimicrobial is added to the environment. The latter case is fully pre-
vented by perfect biostatic antimicrobials that completely prevent sensitive
microorganisms from dividing. By contrast, we showed that the parame-
ter regime where treatment is efficient is larger for biocidal drugs than for
biostatic drugs. This sheds light on the respective merits of different an-
timicrobial modes of action.

Chapter 4: In a microbial population evolving in a gradually deterio-
rating environment, we showed that mutants appearing later have higher
fixation probabilities. We demonstrated that the rescue probability of the
population increases if the product of the carrying capacity and of the mu-
tation probability increases, and if the environment degradation is slower.
We found that specialist mutants rescue the population better than gen-
eralists. We expressed the average appearance time of the mutants that
rescue the population. Our methods can be applied to other situations with
continuously variable fitnesses and population sizes, and hold beyond the
weak-mutation regime.

Chapter 5: We developed a graph-structured population model, where
each node is a deme, that generalizes the existing models. We calculated
analytically the fixation probability of a mutant lineage for different popu-
lation structures in the rare migration regime, and verified our predictions
with numerical simulations. We found that many structures are suppressors
of natural selection in our model, including some that are known as natu-
ral selection amplifiers in existing models. Despite this striking difference,
our model is consistent with the existing models when the ratios of total
reproduction rate to total migration rate in each deme are matched between
models.

Chapter 6: In a population of hosts, we demonstrated that immunity-
driven bacterial clustering can hinder the spread of resistance. We further
showed that the reduction of spread by clustering can be countered when
immune hosts are silent carriers, and are less likely to get treated, and/or
have more contacts. Our results highlight the importance of interactions
between immunity and the spread of antibiotic resistance, and argue in the
favor of vaccine-based strategies to combat antibiotic resistance.
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Some perspectives

This work opens many possible theoretical extensions. In particular, it will
be very interesting to include other effects that allow microbes to survive
antimicrobial treatments without acquiring resistance mutations. Antibiotic
tolerance, which tends to precede resistance under intermittent antibiotic ex-
posure [24], enables bacterial populations to survive antibiotic treatments,
even at concentrations much larger than the minimum inhibition concen-
tration (MIC) [67]. Another interesting effect is persistence, which denotes
the ability of a subpopulation of a clonal bacterial population to survive
high concentrations of antibiotic treatment [68]. Distinguishing resistance,
tolerance and persistence in theoretical models would be possible by us-
ing a recently introduced quantitative indicator, in addition to the MIC,
that is the minimum duration to kill (MDK) [69]. Another exciting ex-
tension would be to consider the possibility of concentrations above the
mutant prevention concentration, such that resistant microbes are also af-
fected by the drug [24, 70]. It would be interesting to explicitly model
horizontal gene transfer of resistance mutations and also to compare the
impact of periodic alternations to that of random switches of the environ-
ment [3, 4, 5, 6, 36, 7, 38, 39]. Other effects such as single-cell physiological
properties [23], phenotypic delay [71] or density dependence of drug effi-
cacy [72] can further enrich the response of microbial populations to variable
concentrations of antimicrobials.
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