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Models and Resources for Attention-based Unsupervised
Word Segmentation

Abstract:

Computational Language Documentation (CLD) is a research field inter-

ested in proposing methodologies capable of speeding up language documen-

tation, helping linguists to efficiently collect and process data from many

dialects, some of which are expected to vanish before the end of this cen-

tury (Austin and Sallabank, 2013). In order to achieve that, the proposed

methods need to be robust to low-resource data processing, as corpora from

documentation initiatives lack size, and they must operate from speech, as

many of these languages are from oral tradition, meaning that there is a lack

of standard written form.

In this thesis we investigate the task of Unsupervised Word Segmenta-

tion (UWS) from speech. The goal of this approach is to segment utterances

into smaller chunks corresponding to the words in that language, without

access to any written transcription. Here we propose to ground the word seg-

mentation process in aligned bilingual information. This is inspired by the

possible availability of translations, often collected by linguists during docu-

mentation (Adda et al., 2016).

Thus, using bilingual corpora made of speech utterances and sentence-

aligned translations, we propose the use of attention-based Neural Machine

Translation (NMT) models in order to align and segment. Since speech pro-

cessing is known for requiring considerable amounts of data, we split this

approach in two steps. We first perform Speech Discretization (SD), trans-

forming input utterances into sequences of discrete speech units. We then

train NMT models, which output soft-alignment probability matrices between

units and word translations. This attention-based soft-alignment is used for

segmenting the units with respect to the bilingual alignment obtained, and

the final segmentation is carried to the speech signal. Throughout this work,

we investigate the use of different models for these two tasks.

For the SD task, we compare five different approaches: three Bayesian

HMM-based models (Ondel et al., 2016, 2019; Yusuf et al., 2020), and two Vec-

tor Quantization (VQ) neural models (van den Oord et al., 2017; Baevski et al.,

2020a). We find that the Bayesian SD models, in particular the SHMM (On-

del et al., 2019) and H-SHMM (Yusuf et al., 2020), are the most exploitable

for direct application in text-based UWS in our documentation setting. For

the alignment and segmentation task, we compare three attention-based NMT
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models: RNN (Bahdanau et al., 2015), 2D-CNN (Elbayad et al., 2018), and

Transformer (Vaswani et al., 2017). We find that the attention mechanism

is still exploitable in our limited setting (5,130 aligned sentences only), but

that the soft-alignment probability matrices from novel NMT approaches (2D-

CNN, Transformer) are inferior to the ones from the simpler RNN model.

Finally, our attention-based UWS approach is evaluated in topline condi-

tions using the true phones (Boito et al., 2019a), and in realistic conditions

using the output of SD models (Godard et al., 2018c). We use eight languages

and fifty six language pairs for verifying the language-related impact caused

by grounding segmentation in bilingual information (Boito et al., 2020b), and

we present extensions for increasing the quality of the produced soft-alignment

probability matrices (Boito et al., 2021).

Overall we find our method to be generalizable. In realistic settings and

across different languages, attention-based UWS is competitive against the

nonparametric Bayesian model (dpseg) from Goldwater et al. (2009). More-

over, ours has the advantage of retrieving bilingual annotation for the word

segments it produces. Lastly, in this work we also present two corpora for

CLD studies (Godard et al., 2018a; Boito et al., 2018), and a dataset for low-

resource speech processing with diverse language pairs (Boito et al., 2020a).

Keywords: unsupervised word segmentation, neural machine translation,

speech discretization, low-resource approaches, computational language doc-

umentation
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Modèles et Ressources pour la Segmentation Non Supervisée

des Mots basée sur l’Attention

Résumé:
La documentation computationnelle des langues (CLD) est un domaine de

recherche qui vise à proposer des méthodologies capables d’accélérer la docu-

mentation des langues, en aidant les linguistes à collecter et à traiter efficace-

ment les données de nombreux dialectes, dont certains devraient disparâıtre

d’ici 2100 (Austin and Sallabank, 2013). Pour y parvenir, les méthodes pro-

posées doivent être robustes au traitement de données disponibles en faible

quantité, car les corpus issus des initiatives de documentation manquent de

volume, et elles sont basées sur la parole, car beaucoup de ces langues sont de

tradition orale, sans forme écrite standard.

Dans cette thèse, nous étudions la tâche de segmentation non supervisée en

mots (UWS) à partir de la parole. Le but de cette approche est de segmenter la

parole en petits morceaux correspondant aux mots de cette langue, sans avoir

accès à une transcription écrite. Nous proposons ici de baser le processus

de segmentation des mots sur des informations bilingues alignées. Ceci est

inspiré par la potentielle disponibilité de traductions, souvent collectées par

les linguistes lors de la documentation (Adda et al., 2016).

Ainsi, à l’aide de corpus bilingues composés d’énoncés vocaux et de traduc-

tions alignées au niveau des phrases, nous proposons l’utilisation de modèles de

traduction automatique neuronale (NMT) basés sur l’attention afin d’aligner

et de segmenter. Le traitement de la parole nécessitant des quantités consid-

érables de données, nous divisons cette approche en deux étapes. Nous effec-

tuons d’abord une discrétisation de la parole (SD), en transformant les énoncés

d’entrée en séquences d’unités de parole discrètes. Nous entrâınons ensuite des

modèles NMT, qui produisent des matrices de probabilité d’alignement entre

les unités et les traductions de mots. Cette probabilité d’alignement bilingue

est utilisée pour segmenter les unités, et la segmentation finale est appliquée

au signal vocal.

Pour la tâche de SD, nous comparons 5 approches : 3 modèles bayésiens

basés sur les HMM (Ondel et al., 2016, 2019; Yusuf et al., 2020), et 2 mod-

èles neuronaux à quantification vectorielle (van den Oord et al., 2017; Baevski

et al., 2020a). Nous constatons que les modèles bayésiens, en particulier le

SHMM (Ondel et al., 2019) et le H-SHMM (Yusuf et al., 2020), sont les plus

exploitables pour l’UWS basée sur le texte dans notre cadre de documenta-

tion. Pour l’alignement et la segmentation, nous comparons 3 modèles NMT
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basés sur l’attention : RNN (Bahdanau et al., 2015), 2D-CNN (Elbayad et al.,

2018), and Transformer (Vaswani et al., 2017). Nous constatons que le mécan-

isme d’attention est toujours exploitable dans notre cadre limité (5130 phrases

alignées uniquement), mais que les matrices produites par les modèles NMT

récents (2D-CNN, Transformer) sont inférieures à celles du modèle RNN, plus

simple.

Enfin, notre approche UWS basée sur l’attention est évaluée dans des con-

ditions optimales en utilisant les phonèmes (Boito et al., 2019a), et dans des

conditions réalistes en utilisant la sortie des modèles de SD (Godard et al.,

2018c). Nous utilisons 8 langues et 56 paires de langues pour vérifier l’impact

linguistique de la segmentation basée sur l’information bilingue (Boito et al.,

2020b), et nous présentons des extensions pour augmenter la qualité des ma-

trices de probabilité d’alignement produites (Boito et al., 2021).

Dans des contextes réalistes et en utilisant différentes langues, l’UWS basé

sur l’attention est compétitif par rapport au modèle bayésien non-paramétrique

de Goldwater et al. (2009). De plus, le nôtre a l’avantage de récupérer des an-

notations bilingues pour les segments de mots qu’elle produit. Enfin, dans ce

travail, nous présentons également 2 corpus pour les études de CLD (Godard

et al., 2018a; Boito et al., 2018), et un corpus pour le traitement de la parole

à faibles ressources avec des paires de langues diverses (Boito et al., 2020a).

Mots-clés: segmentation non supervisée des mots, traduction automatique

neuronale, discrétisation de la parole, approches à faibles ressources, docu-

mentation computationnelle des langues
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Chapter I

Introduction

In the scope of computational approaches for language documentation, in this

thesis we propose a bilingual unsupervised word segmentation approach from

speech. This proposed model grounds speech segmentation in the sentence-

aligned word translations, solving the task without the use of manual tran-

scriptions, and in low-resource settings.

This chapter is organized as follows. Section 1 presents the language doc-

umentation field, and Section 2 defines the task of unsupervised word seg-

mentation. Section 3 summarizes the contribution of our work, and Section 4

outlines this dissertation’s chapters.

1 Language Documentation

Language documentation, as defined by Austin (2012), is the subfield of lin-

guistics that deals with creating multipurpose records of languages through

audio and video recording of speakers and signers. It includes annotation,

translation, preservation, and distribution of the resulting material (e.g. gram-

mars, dictionaries, text collections).

The goal of this process is to document the languages studied, in other

words, to preserve them through the creation of well-organized, long-lasting

corpora and resources. These can be posteriorly explored for subsequent re-

search in the target language, or they can be used for practical technological

applications such as machine translation and speech recognition. This data

can also be the starting point for language revitalization initiatives (Pine and

Turin, 2017).

One of the main targets of language documentation are the endangered

languages. These are defined as a subset of existing languages whose number

of speakers have been significantly decreasing, leaving them at risk of falling

out of use as their speakers perish or shift to different languages. In The

Cambridge Handbook of Endangered Languages, Austin and Sallabank (2011)

estimated that, from the approximately 7,000 currently spoken languages, at

least 50% of them will go extinct by 2100.

Between the many reasons that are causing this language shift and the

homogenization of the spoken languages across the globe, it is notable the
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impact of neocolonialism and globalization (Austin and Sallabank, 2011). En-

dangered languages are spoken in isolated communities across the globe. As

these communities start getting integrated into economic pipelines, the lan-

guage spoken in larger economic centers is carried into these places. Rural

exodus also causes an impact, as the younger generations migrate to larger

cities in search of better job opportunities, significantly reducing their contact

with their native language.

Some argue that language extinction in its core is a natural phenomenon

(Ladefoged, 1992). Even so, the impact it causes on communities is widely

recognized. Languages embody unique world-views, value systems, philoso-

phies and particular cultural features. Their extinction results in irrecoverable

loss of unique cultural, historical, spiritual and ecological knowledge, useful

not only for the community, but for countless others (Drude et al., 2003; Bird,

2018; UNESCO, 2020). Moreover, the loss of languages also represents a sci-

entific problem, as future linguits will only have access to a fraction of the

world’s linguistic diversity available for study (Austin and Sallabank, 2011;

Grenoble and Whaley, 1996; Nettle et al., 2000).

In this context, it does not help that most of the world’s languages are not

actively written, even the ones with an official writing system (Bird, 2011).

For documenting these oral languages, audio recordings are usually collected,

and then transcribed. However, this transcription is very time consuming:

one minute of audio is estimated to take one hour and a half on average of a

linguist’s work (Austin and Sallabank, 2013).

Moreover, the documentation process is iterative, and the transcriptions

are expected to be revised several times before the final product (Crowley,

2007). Because of that, field linguists spend a large amount of their time

transcribing and revising materials, and this makes documentation very hu-

man expensive and slow. Brinckmann (2009) defines this as the transcription

bottleneck problem of documentation initiatives.

For attenuating this bottleneck, recent work suggested replacing transcrip-

tions by multilingual links, added to the audio recordings. These can come in

the form of sentence or word-level translations (Adda et al., 2016), or in the

form of overlapping labels over the audio’s time frames (Bird, 2021). These

approaches highlight the content present in the audios, instead of creating

extensive transcriptions. By doing so, they treat transcription as an observa-

tion (Cucchiarini, 1993), instead of considering it the ultimate goal of docu-

mentation.

However, in order to process and extract information from this new form

of corpora, technology needs to step in, providing robust computational meth-

ods able to deal with this data that is: low-resource, multilingual, and some-

times multimodal (e.g. images, videos). The recent emergence of the Com-
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putational Language Documentation (CLD) field tries to propose answers to

that. It brings together linguists and technology experts in order to provide

methodologies and models for automatically processing data and for assisting

linguists, attenuating the human resources and the time needed for document-

ing languages.

The following are examples of recent work for CLD. Focusing in the pro-

duction of transcriptions from speech, there are pipelines for obtaining man-

ual (Foley et al., 2018) and automatic (Michaud et al., 2018; Matsuura et al.,

2020) ones, for aligning existing transcriptions to audio (Strunk et al., 2014),

and for automatically increasing transcription quality by using aligned trans-

lations (Anastasopoulos and Chiang, 2018a). Focusing in the information

present in these transcriptions, there are methods for monolingual (Lignos

and Yang, 2010; Goldwater et al., 2009; Godard, 2019) and bilingual (Duong

et al., 2016; Boito et al., 2017) low-resource unsupervised word segmentation,

and for lexical unit discovery without textual resources (Bartels et al., 2016).

Nonetheless, as this recent research field thrives by proposing methods

for processing speech and text in extreme low-resource settings, Bird (2020)

denounces the lack of real application of proposed approaches in the targeted

communities. In Decolonising Speech and Language Technology, he says the

following:

“For a fraction of the world’s languages – perhaps no more than

10% – the dominant ideology is that a language is a communication

tool, a public corpus, readily interchangeable with others, raw data

for commercial exploitation by algorithms, (...). For the remaining

90%, language tends to be oral, emergent, untranslatable, tightly

coupled to a place. Representatives from the former may approach

the latter with a sense of entitlement: to project, to save, to know,

to mine. They may be unwilling to hear local aspirations, unable

to see how differently language functions in each place. It is simply

a given that language loss must be halted, and that technology is

up to the task.”

Indeed the mainstream vision of language considers it as a commodity:

from data gathering procedures, to the classification of languages ranging from

low to high resource. If a language is to embody its community of speakers’

culture and value system, documentation should not exist in isolation from

this community. Instead, it should be performed in collaboration with them,

and respecting their wishes for any developed technology and for their own

language. In other words, the end goal for CLD should be to develop for the

communities, and not only from their data.
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2 Unsupervised Word Segmentation (UWS)

In this thesis, our investigation covers one of the first tasks performed during

documentation: word segmentation. Commonly, this task occurs together

or right after the transcription of the audio data. It consists of joining a

sequence of phones1 into larger units representing words, and thus, providing

a segmentation of the transcription at the word level.

There are some very successful pipelines for high-quality low-resource un-

supervised2 word segmentation (Goldwater, 2007; Johnson and Goldwater,

2009). However, for discovering boundaries between phones, these approaches

require the existence of an extensive transcription of the audio data. As the

transcription process is the bottleneck of documentation initiatives (Brinck-

mann, 2009), this results in word segmentation being a very difficult resource

to obtain.

Meanwhile, Adda et al. (2016) and Bird (2021) highlight translations in

high-resource languages as an inexpensive way of labeling the information

present in the audios collected during the documentation process. These trans-

lations are considered inexpensive because they are usually collected together

with the audio by linguists for organizational purposes, such as labeling or

indexing the content of the audios.

Based on that, in this thesis we defend a more realistic approach for word

segmentation, which takes advantage of the audios and their translations, in-

stead of being rooted in the audio transcription only. The goal of our approach

is to segment directly from the speech signal, while using the translations as a

weak form of supervision. The expected output is then a collection of speech

segments, corresponding to words, aligned to bilingual annotation.

The task we propose is more challenging than segmenting from transcrip-

tions: it combines low-resource audio processing with the weak supervision of

translations. However, as it does not require the manual transcription of the

audio, it has the potential for reaching a larger number of low-resource lan-

guages than the classic approach. Figure 1.1 highlights the difference between

our approach, which we refer to as bilingual, and the classic pipeline for word

segmentation, referred as monolingual.

1Phones are language-agnostic representations of any distinct speech sound or gesture.
2The task is defined as unsupervised because it does not require a dictionary or language

priors as input for guiding the segmentation.



3. Thesis Contribution 17

Figure 1.1: The differences between the general pipeline for classic (mono-

lingual) unsupervised word segmentation compared to the

bilingual approach we propose. The former produces a textual

resource, while the latter produces speech segments.

3 Thesis Contribution

This thesis is one of the many computational language documentation ap-

proaches which aim to produce technology useful for processing data in the

context of language documentation. In particular, we propose an approach

for unsupervised word segmentation from speech. Solving such a task from

the speech signal, instead of segmenting in the textual domain, is motivated

by extensive transcriptions being a known bottleneck of data collection pro-

cesses (Brinckmann, 2009).

Moreover, considering translations as an inexpensive process for data la-

beling (Adda et al., 2016), we chose to include these as weak supervision for

our utterances during segmentation. Thus, we consider our segmentation pro-

cess to be bilingually grounded, and during this thesis we discuss how language

impacts the quality of the segments discovered.

Our model is made of two components: (1) speech discretization, and

(2) text-based alignment and speech segmentation. This separation is nec-

essary in order to attenuate the challenge of speech processing in very low-

resource settings. The goal of the first component is to produce sequences of

discrete speech units (phones), exploitable in low-resource settings, using only

a few hours of speech. Consequently, in this thesis we investigate the qual-

ity and exploitability of speech discretization models in our documentation

setting.

For the second component, we use neural networks for creating alignment

probability matrices between the speech discretization and their sentence-

level translation. This is performed by a special layer inside neural machine

translation models called attention, whose output can be seen as bilingual
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soft-alignment. This soft-alignment is used for producing segmentation over

the discrete speech units, which is then carried to the original speech signal.

Thus, in this work we extensively investigate the quality and exploitability of

the attention mechanism in our setting, and we also introduce a task-agnostic

metric for assessing the alignment confidence of soft-alignment probability

matrices (Boito et al., 2019a).

This unsupervised word segmentation pipeline in two steps that we propose

is compared against a well-established baseline (Goldwater, 2007), and across

different languages (Godard et al., 2018c; Boito et al., 2019a, 2020b). Focusing

on documentation scenarios, we propose an extension which considers the

availability of partial transcriptions, and a model which leverages preexisting

segmentation into the bilingual alignment model (Boito et al., 2021).

Finally, the model we propose requires a bilingual corpus made of speech

utterances and aligned sentence translations. In order to realistically test our

models and allow the research community to do the same, we gathered and

published three datasets, which we present in this work (Godard et al., 2018a;

Boito et al., 2018, 2020a).

Research Questions: The proposed model results in the following research

questions, which we investigate throughout this thesis.

• Q1: Focusing on the first step of our pipeline, can we use low-resource

speech discretization approaches for producing an exploitable discrete

representation for direct application to text-based UWS approaches?

• Q2: Focusing on the second step of our pipeline, is the attention mecha-

nism from neural machine translation approaches directly interpretable

in low-resource settings? Can we use it for segmenting a sequence of

phones with respect to the aligned translation words?

• Q3: What is the performance of the proposed approach compared to a

strong baseline (Goldwater et al., 2009)?

• Q4: Considering that we propose to ground segmentation in bilingual

information, how does this supervision impact the quality of the seg-

mentation?

• Q5: Considering that partial transcription or intermediate segmentation

from documentation initiatives might exist, can we include these into our

UWS pipeline?
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Contributions: For answering these research questions, we produce the fol-

lowing contributions. Research questions and chapters are presented between

parentheses.

• C1: A thorough comparison of recent speech discretization approaches

for low-resource speech processing, focusing on their direct applicability

to text-based UWS. (Q1)

(Chapter VI)

• C2: A study of the direct interpretability of the attention mechanism in

neural machine translation models, and in low-resource settings. (Q2)

(Chapter IV)

• C3: A comparison between unsupervised word segmentation approaches:

our attention-based model and two baselines(the well-established model

from Goldwater et al. (2009), and a proportional bilingual model). (Q3)

(Chapter IV and VI)

• C4: The investigation of language-related impact in our pipeline, fo-

cusing on the quality of the segmentation discovered by using different

languages for grounding the segmentation of a target language. (Q4)

(Chapter IV and VI)

• C5: The proposal of pipeline extensions for incorporating extra informa-

tion (transcriptions, segmentation) into the segmentation model. (Q5)

(Chapter V)

• C6: The gathering and publishing of three datasets useful for low-

resource and computational language documentation approaches.

(Chapter III)

4 Thesis Outline

This thesis is organized as follows.

Chapter II. We present the state of the art for unsupervised word segmenta-

tion in the textual domain. We also discuss neural machine translation models

as a proxy for obtaining bilingual alignment between sentence-level aligned

text. Targeting speech, we present models for Speech Discretization, which

are able to produce discrete speech units from speech without the use of any

transcription. We finish this chapter by linking these different components,

proposing a model which operates in two steps: (1) speech discretization, and

(2) text-based alignment and speech segmentation.
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Chapter III. We present three datasets we published during this thesis, and

that we use for our experiments. Two of them are from oral and potentially

endangered languages: the Mboshi-French Parallel Corpus (Godard et al.,

2018a), and the Griko-Italian Parallel Corpus (Boito et al., 2018). Both rep-

resent a low-resource setting (respectively 5,130 and 330 aligned sentences),

and present speech-to-text alignments. We also detail the collection and pro-

cessing of a third dataset: the MaSS dataset (Boito et al., 2020a). This

dataset is a multilingual speech-to-speech and speech-to-text collection with

56 language pairs. We finish this chapter with a quick overview of how the

community has been using these datasets.

Chapter IV. We detail the second step of our pipeline that, from a given

speech discretization and its sentence-level aligned translation, retrieves bilin-

gual soft-alignment from neural machine translation models. This soft-align-

ment is then used for producing attention-based speech segmentation. For

assessing the feasibility of our proposal, we evaluate models trained using

a perfect discretization, which corresponds to the true phones in the lan-

guage we want to segment. We present results across three different neural

machine translation models, and by using Average Normalized Entropy for

assessing alignment quality (Boito et al., 2019a). Moreover, we also showcase

the language-related impact in our bilingual models by training 56 bilingual

models from 8 different languages (Boito et al., 2020b).

Chapter V. We study three extensions for the best segmentation model from

Chapter IV. We investigate (1) using partial annotations for pretraining the

model, (2) the incorporation of pre-existing segmentation into training by us-

ing them as soft-boundaries, and (3) the biasing of the attention layer for

reducing over-segmentation. We present the comparison between these mod-

els (Boito et al., 2021), and some less-successful experiments for grounding

our segmentation using multilingual annotations.

Chapter VI. We compare five speech discretization approaches in low-resource

settings, focusing on their direct exploitability to our task. From these, we

investigate three Bayesian and two neural approaches. We then present our

complete pipeline for unsupervised word segmentation from speech (Godard

et al., 2018c), in which we compare the different discretization models for

training segmentation models in five different languages.

Chapter VII. We conclude our work by reviewing and summarizing the find-

ings of the investigations presented from Chapter IV to VI. We then discuss
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benefits and limitations of the proposed pipeline, and possible extensions.
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Chapter II

State of the Art

In the last chapter we introduced the goal of this thesis: a bilingual approach

for unsupervised word segmentation from speech, and in low-resource set-

tings. In order to contextualize the reader, in this chapter we review past

work on monolingual unsupervised word segmentation (Session 1), bilingual

approaches for processing text (Session 2), and approaches for extracting in-

formation from speech (Session 3). We end this chapter with a discussion

about how these different fields relate to the approach developed in this the-

sis (Section 4).

1 Monolingual Unsupervised Word Segmentation

Previously we defined Unsupervised Word Segmentation (UWS) as a language

documentation task. However, this task has also been extensively investigated

by the language acquisition field (Saffran et al., 1996; Brent, 1999; Goldwater,

2007; Johnson and Goldwater, 2009; Johnson et al., 2014; Lignos and Yang,

2016; Larsen et al., 2017), which is interested in understanding and mimicking

how infants learn language. Based on the observation that children learn to

speak without the aid of written words or large amounts of supervision, this

field aims towards methods for extracting meaningful information from multi-

modal data using a limited number of examples. They argue that approaches

should emulate human learning, which is in nature multimodal (interaction

between vision, speech, gestures), instead of relying on very large datasets of

labeled data.

Because of that, many parallels can be drawn between approaches for

language acquisition and the ones for language documentation, especially since

both aim to extract information from small amounts of data, which can be

of multimodal nature. Their input also presents similar characteristics: small

sentences, and tailored vocabulary. For documentation, vocabulary is tailored

in order to isolate specific phenomena being studied. For acquisition, it is due

to the target demographic’s age.

In this session we review work in UWS from both fields, without dis-

tinction. Instead, we separate the work in terms of their input representation:
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segmentation for text is presented in Section 1.1, and speech-based approaches

are presented in Section 1.2.

1.1 Text-based Approaches for UWS

Based on the Bayesian properties from early computational models for word

segmentation (Saffran et al., 1996; Brent, 1999), Nonparametric Bayesian (NB)

models for UWS and morphological analysis were introduced by Goldwater

(2007). They are able to achieve very competitive UWS results using small

quantities of data (Goldwater et al., 2009), although parameter optimization is

considerably hard since there is no objective criterion to find hyperparameters

in a fully unsupervised manner (Kawakami et al., 2019).

For these nonparametric models, the number of parameters grows together

with the size of the corpus, which makes them very efficient even when working

with only a few examples. Moreover, their structure makes them very flexible.

They are defined by two components: a lexicon generator and an adaptor. We

now describe these two components as defined in Goldwater et al. (2009).

The lexicon generator, which is task-dependent, models the lexicon items,

and it can be unigram or bigram-based. For the former, words are considered

statistically independent events,1 while the latter considers every word depen-

dent on a single previous word of context. The probability of novel lexical

items is defined as the product of the probability of each of its phonemes,

which ensures very long words will be dispreferred. Novel lexical items have

a high generation probability at first, and this probability decreases as more

word tokens are generated, which makes the model penalize large vocabular-

ies. Moreover, the probability of a lexical item depends on the number of

times it already occurred in the lexicon. This pushes the model towards a

power-law distribution behavior, where only a few words are very frequently

used, such as the behavior of natural languages (Powers, 1998).

The lexicon adaptor assigns frequencies to the lexical items from the lex-

icon generator. Assuming that the hypotheses under consideration by the

model are possible segmentations over the word sequences, consistent word

sequences, in respect to the corpus, receive maximum prior probability. This

makes the posterior probability of a sequence determined by its prior, which

is computed by considering that every word sequence from a segmentation hy-

pothesis is created according to a particular probabilistic generative process.

This definition of the word segmentation task in two parts, one modeling

the construction of words (generator), and the other assigning frequencies to

these words (adaptor), makes the unigram and bigram models instances of

1In their study, Goldwater et al. (2009) states that the unigram model tends to under-

segment.



1. Monolingual Unsupervised Word Segmentation 27

the Dirichlet and Hierarchical Dirichlet Processes. Inference is performed by

the use of Gibbs sampling for sampling from the posterior distribution over

segmentations for both models. Throughout this work, we use this model,

referred as dpseg,2 as a segmentation baseline.

Since its introduction, many works have extended and improved dpseg.

Johnson and Goldwater (2009) introduced adaptor grammars for inference,

which Godard et al. (2018b) applied for taking into account the expertise

of linguists for studying word hypotheses during language documentation.

Mochihashi et al. (2009) proposed a nested hierarchical Pitman-Yor Pro-

cess (PYP) language model for modeling spelling inside the word model, and

Neubig (2014) replaced dpseg’s Dirichlet Process by a PYP, allowing the par-

allelization of the sampling process by blocked sampling, which made the

resulting model faster. The former was used as part of a joint segmentation

and translation pipeline in Nguyen et al. (2010). The latter was exploited by

Adams et al. (2015) for inducing a bilingual lexicon in language documentation

scenarios. Godard et al. (2016) compared dpseg against these two PYP-based

models, finding that, while all models tend to over-segment the input, dpseg

still led to better segmentation results in true low-resource settings (less than

two thousand sentences).

Another branch of successful statistical models for word segmentation are

the generic unsupervised models (Liang and Klein, 2009; Berg-Kirkpatrick

et al., 2010). These can be seen as generic because they are not designed

considering UWS as the end goal. Instead, they separate modeling from opti-

mizing, generating a model which can be applied to different tasks by chang-

ing the optimization objective (e.g. document classification, word alignment,

word segmentation). Liang and Klein (2009) use online stepwise EM opti-

mization for UWS, obtaining promising results. Berg-Kirkpatrick et al. (2010)

then propose models based on locally normalized generative decisions with a

feature-enhanced EM optimization algorithm. Their model surpasses strong

baselines (Liang and Klein, 2009; Johnson and Goldwater, 2009), including

dpseg, in terms of accuracy using the Bernstein-Ratner Corpus (Flokstra,

1987). Moreover, they do so while proposing a model which is considerably

simpler to optimize than NB models.

Working on a phonemic level and also aiming to develop a simple model

for UWS, Lignos (2011, 2012) introduced an online bootstrapping algorithm

for modeling word segmentation in language acquisition settings. Their seg-

mentation model has no access to previous sentences when segmenting, only

keeping the produced lexicon, and segmenting on a left-to-right fashion. They

were able to achieve very good results segmenting adult utterances from the

2Available at: https://homepages.inf.ed.ac.uk/sgwater/resources.html

https://homepages.inf.ed.ac.uk/sgwater/resources.html
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CHILDES database (MacWhinney, 2004), while keeping the model simple

and relatable to the way infants acquire language. Moreover, optionally their

algorithm can include stress patterns, which allows the model to generalize

to different languages. Doyle and Levy (2013) also investigates the use of

stress patterns. Using phonemes as input, they treat stress patterns and word

boundaries as a joint inference task, verifying, as in Lignos (2011), that these

stress cues increase segmentation performance. Elsner et al. (2013) used NB

models to study the benefits of executing the tasks of word segmentation,

lexical acquisition and phonetic variability together. Their UWS model was

able to slightly improve upon their baseline, while better relating to the way

children learn language.

On a different trend, recently Recurrent Neural Networks (RNN) were

discovered to be very good tools for modeling long-range dependencies, a

characteristic that makes them ideal for processing language (Mikolov et al.,

2010). Moreover, the block-like nature of neural networks, which easily allows

for the addition and removal of different processing layers (blocks), makes

them considerably easy to implement and deploy.

Kawakami et al. (2019) is an example of a monolingual neural model for

UWS. They differentiate themselves from the statistical models mentioned

above by unifying the segmentation with language modeling, while also allow-

ing for multimodal information, in the form of pictures, for grounding word

meaning. They achieve new state-of-the-art results in UWS, comparing their

work with Goldwater et al. (2009) and Berg-Kirkpatrick et al. (2010). More-

over, the authors highlight how the previous models might contain English-

specific design considerations, which might be a limitation when applying

these models to different languages.

1.2 Speech UWS and Clustering

All the approaches mentioned so far focus on textual representation, having

sequences of characters or phones as their input. However, there is an increas-

ing interest from the community in creating and adapting models to deal with

speech signals. This is because, directly segmenting words from speech not

only helps when transcriptions are not available, but it is also closer to the

way humans learn languages (Lignos and Yang, 2016).

The Zero Resource Speech (ZRC) Challenge is a campaign that instigates

scientists to develop unsupervised methods for processing and recognizing

structures in speech from scratch (no supervision, limited amounts of data).

The challenges from 2015 (Versteegh et al., 2015, 2016) and 2017 (Dunbar

et al., 2017) presented tracks for Unsupervised Term Discovery (UTD), which

falls very close to UWS. This task’s aim is to segment utterances into word-like
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segments, differing from UWS by not necessarily producing a full segmenta-

tion of the target speech signal. Many of the works mentioned in this session

are entries from these ZRC campaigns.

Lee et al. (2015a) present a probabilistic framework for jointly inferring

word segmentation and discovering lexicon from acoustic signals. Their find-

ings suggest that modeling phonetic variability is critical for inferring lexical

units from speech. Räsänen et al. (2015) proposes a cognitively-motivated

syllable-based pipeline: they start by extracting syllable-like units from the

signal, which are clustered considering the features’ similarity across segments.

The potential patterns are extracted by searching for recurring combinations

of the segments. Their model was very effective in recovering speech segments

corresponding to lexical words.

Kamper et al. (2016) present a novel Bayesian model for segmenting fixed-

dimensional speech embeddings. They segmented and clustered unlabelled

speech utterances into word hypotheses units by using a Bayesian Gaus-

sian Mixture Model (GMM). This resulted in roughly 10% of performance

improvement in terms of Word Error Rate (WER), compared to a tradi-

tional HMM-based baseline. This model is extended in Kamper et al. (2017),

where they replace the clustering component by the Embedded Segmental

K-means algorithm, which makes the model considerably faster and lighter

in terms of hyper-parameters. The resulting approach is a trade-off between

pure Bayesian models, which always converge but are very heavy, and the

cognitively-motivated model from Räsänen et al. (2015), which has no conver-

gence guarantees but is very fast to train. This system was the best submission

on track 2 for the Zero Resource Speech Challenge 2017.3

Lastly, Lyzinski et al. (2015) evaluates graph-clustering methods, finding

that modularity-based clustering results in better UTD performance. They

also test supervised deep-learning bottleneck features trained in English, in

order to improve their model’s performance in a low-resource language. The

addition of the neural features allowed them to perform near on par with a

high-resource UTD system by using considerably less data during training.

2 Towards Bilingual Supervision

Recently, encoder-decoder architectures equipped with attention mechanisms

emerged as a popular solution for addressing sequence-to-sequence (seq2seq)

problems for a variety of tasks.4 These include Automatic Speech Recognition

3Available at: http://www.zerospeech.com/2017/results.html
4Surveys on different attention mechanisms for NLP tasks are presented in (Hu, 2019;

Galassi et al., 2019).

http://www.zerospeech.com/2017/results.html
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Figure 2.1: Soft-alignment probability heatmaps from an English-French

NMT model. Brighter squares correspond to higher source-to-

target probabilities. Target corresponds to rows, and source

to columns. Figure taken from Bahdanau et al. (2015).

(Watanabe et al., 2017; Chorowski et al., 2015), Text-to-Speech Synthesis

(Wang et al., 2017; Shen et al., 2018), and Neural Machine Translation (NMT)

(Bahdanau et al., 2015; Elbayad et al., 2018; Vaswani et al., 2017; Gehring

et al., 2017; Sutskever et al., 2014). For the latter, popular leaderboards, such

as WMT 2014 and IWSLT 2015, have been dominated by these attention-

based approaches for years now.5

In the scope of this work we are interested in methods for integrating

translations into a UWS pipeline in low-resource settings. Considering that

translation models are by nature bilingual, we find inspiration in the work

on attention-based NMT. In the next section we review some of the work

in this field (Section 2.1), comparing attention mechanisms and discussing

methods for exploiting and analysing them. We then present literature on

low-resource NMT models (Section 2.2), discussing the challenge of adapting

neural networks for low-resource settings.

2.1 Attention-based NMT Models

The attention mechanism in seq2seq models provides a dynamic bridge be-

tween source and target representations in the form of the weighting of the

source sequences. For NMT, it was first introduced in Bahdanau et al. (2015),

5Leaderboards available at: https://paperswithcode.com/task/

machine-translation

https://paperswithcode.com/task/machine-translation
https://paperswithcode.com/task/machine-translation
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and it replaced the fixed length vectors which were used prior (Sutskever et al.,

2014), and that limited the performance of the resulting translation model

when dealing with long sentences.

The attention layer weighting can be seen as a query searching problem, in

which the target is the obtained result, and the goal is to search in the source

input for the key, query pair which satisfies the obtained value. In practice,

this layer is implemented as a combination of projections and non-linearities

which consume source and (masked) target sequences, producing weights over

the source sequence. These are then transformed into probabilities by a soft-

max projection.

An interesting feature of attention is the possibility of, posterior to train-

ing, visualizing the learned weights between source and target sentences in the

form of probability matrices. Such is the example in Figure 2.1, taken from

Bahdanau et al. (2015). There, the probabilities generated by their English-

French NMT model for two random sentences from their training dataset are

presented in the form of heatmaps. Because these source-to-target probabili-

ties, in the context of translation, might be a good representation of what the

bilingual alignment between the languages looks like, these visualizations are

referred to as soft-alignment probability matrices.

In the sections that follow (2.1.1, 2.1.2 and 2.1.3) we present the three

different architectures for attention-based NMT we use in our work, focusing

on their attention implementation.6 In Section 2.1.4 we present work focused

on the interpretability of the attention mechanism.

2.1.1 Basic Encoder-Decoder Attention

The general scheme for attention-based encoder-decoder NMT architectures

is illustrated in Figure 2.2. The input for these systems is a parallel dataset of

sentence-level aligned sentences. These are first projected into an embedding

layer, and then fed into their respective stacks (step 1). In the encoder stack,

source sequences are reduced into a sequence of source annotations, which are

sent to the attention layer (step 2). For every target token, this layer weights

the source annotations, outputting a context vector (step 3). This vector cap-

tures the importance of every source token for the generation of each target

token. This is used, together with the context given by the last token gener-

ated by the decoder stack, for generating the next target token (step 4). This

process is repeated until the End-Of-Sentence (EOS) token is produced (step

5).

Finally, from the model’s predictions, the cross-entropy loss is computed,

as in Equation 2.1. There, |S| is the sentence length, and |V | is the target

6An extensive survey on attention-based NMT is available at Yang et al. (2020).
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Figure 2.2: The general scheme for an attention-based encoder-decoder

NMT model.

vocabulary length. In summary, this loss function sums over the negative log

likelihoods that the model gives to the correct translation word (f(i, j) = 1)

at each position of the output sentence.

LNLL = −
|S|∑
i=0

|V |∑
j=0

f(i, j)× log(y′i,j) (2.1)

f(i, j) =

{
1 if i = j, (predicted and correct words match)

0 otherwise
(2.2)

From this class of models, we highlight the attention-based RNN encoder-

decoder model from Bahdanau et al. (2015). It combines a bidirectional LSTM

encoder with an unidirectional LSTM decoder. In this model, a context vector

for a decoder step t is computed using the set of source annotations H and

the last state of the decoder network (translation context). The attention

is the result of the weighted sum of the source annotations H (with H =

{h1, ..., h|s|}) and their probabilities α (Equation 2.3) obtained through a feed-

forward network align (Equation 2.4). Throughout this work, we will refer to

this model as the RNN model.

ct = Att(H, st−1) =

|s|∑
j=1

αt,jhj (2.3)
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αt,j = softmax(align(hj, st−1)) (2.4)

Subsequently, Luong et al. (2015) extend this definition of attention, creat-

ing the concept of local attention, which differs from global attention by using

only a subset of source annotation in the computation. They also propose

a simpler computation path in comparison to Bahdanau et al. (2015), and

experiment with two different implementations of the attention mechanism,

achieving very competitive results against existing NMT literature.

The standard translation model described uses word-level for source and

target representations. However, the existing issue with word-level translation

is that learning from the word form limits the translation capacity of the

network to the vocabulary present in the training set. At inference time, the

network is then incapable of producing translation for unseen tokens. This is

called the Out-of-Vocabulary (OOV) problem.

A radical solution for this problem is to learn translation directly from a

sequence of characters. This way, the network is able to produce a good guess

for unknown words, by deducing its meaning from the characters composition.

However, character-level NMT models are costly to train (Lee et al., 2017;

Kreutzer and Sokolov, 2018; Ataman et al., 2019). Because of that, a popular

compromise is the use of sub-word units for training the networks. These can

be morpheme-based (Belinkov et al., 2020) or statistically-based, such as the

Byte Pair Encoding (BPE) approach (Sennrich et al., 2016).

Kreutzer and Sokolov (2018) investigate which of the mentioned represen-

tations a network would choose if it could change the input representation level

during training time. They add a dynamic embedding layer in the encoder

and decoder stacks, which can decide towards a character-level representation

or a more clustered one (sub-words, words) at training time. Comparing their

model, which can dynamically change the representation level, with static

representation models (character-level, BPE and word-level), they discovered

that they reach comparable results, and that their model had preference for

character-level encoding.

On the same trend, Hahn and Baroni (2019) trained neural language mod-

els, tracking the units’ activation. They discover that character-level LSTMs

are capable of working with unsegmented text, learning to specialize some of

the cells for tracking boundaries, and thus learning boundaries and words’ de-

pendencies. Based on their findings, they question the necessity of an explicit

rigid word lexicon for language learning.

Belinkov et al. (2020) perform an extensive investigation of the linguistic

representational power the described NMT model captures within its layers.

Their experiments are performed by extracting the layers activation, then us-

ing these for training classifiers on the following domains: syntactic, semantic
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and morphological. They find that word morphology is learned at lower layer

levels of encoder-decoder architectures, while non-local linguistic phenomena

in syntax and semantics are better represented at higher layers.

They also highlight character-level models are able to better capture mor-

phology features, resulting in a better translation model for morphologically

rich languages. In contrast, sub-word units models were better for capturing

syntactic and semantic information, which require learning non-local depen-

dencies. Finally, they mention that a character-based representation might

be a poor choice for handling long-range dependencies, making the resulting

NMT models inferior when translating syntactically divergent language pairs.

Bisazza and Tump (2018) also tackles morphology, finding that the amount

of information encoded by the NMT encoder varies and that it depends on

the target language. Moreover, the encoder has a lazy tendency, only learning

grammatical features which are directly transferable to their target equiva-

lents.

2.1.2 Multi-head Encoder-Decoder Attention

Recently, Vaswani et al. (2017) proposed Transformer, a fully attentional

encoder-decoder architecture, which has obtained state-of-the-art results for

several NMT shared tasks. This model keeps the general architecture struc-

ture from previous work, but it replaces the use of sequential cell units (such

as LSTM) by Multi-Head Attention (MHA) operations, which make the ar-

chitecture considerably faster.

Figure 2.3 illustrates a Transformer encoder (top) and decoder (bottom)

layer inside the stacks from Figure 2.2. Both encoder and decoder networks

are stacked layers sets that receive source and target sequences, embedded

and concatenated with positional encoding. An encoder layer is made of two

sub-layers: a Self-Attention MHA and a feed-forward sub-layer. A decoder

layer is made of three sub-layers: a masked Self-Attention MHA; an Encoder-

Decoder MHA; and a feed-forward sub-layer. The mask in the decoder’s first

MHA is necessary to avoid attending to subsequent positions. The Encoder-

Decoder MHA operates over the encoder stack’s final output and the decoder’s

first sub-layer output (translation context). Dropout and residual connections

are applied between all sub-layers. Final output probabilities are generated

by applying a linear projection over the decoder stack’s output, followed by

a softmax operation. We now detail the computation of the attention in

Transformer models.

Multi-Head Attention mechanism: attention is seen as a mapping problem

in which, given a pair of key-value vectors and a query vector, the task is

the computation of the weighted sum of the given values (output). In this
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Figure 2.3: The general scheme for an encoder and decoder Transformer

layer inside the encoder and decoder stacks from Figure 2.2.

setup, weights are learned by compatibility functions between key-query pairs

of dimension dk. For a given set of query (Q), keys (K) and values (V), the

Scaled Dot-Product (SDP) Attention function is computed as in Equation 2.5.

Att(V,K,Q) = softmax(
QKT

√
dk

)V (2.5)

In practice, several attentions are computed for a given QKV set: the

set is first projected into h different spaces (multiple heads of dimensionality

dmodel/h each), where the scaled dot-product attention is computed in par-

allel. Resulting values for all heads are then concatenated and once again

projected, yielding the layer’s output. Equation 2.6 and Equation 2.7 illus-

trate the process, in which H is the set of n heads (H = {h1, ..., hn}) and f

is a linear projection. Self-Attention defines the case where query and values

come from the same source (learning compatibility functions within the same

sequence of elements). Throughout this work, we will refer to this model as

the Transformer model.

MultiHead(V,K,Q) = f(Concat(H)) (2.6)

hi = Att(fi(V ), fi(K), fi(Q)) (2.7)

Since its introduction, the Transformer’s unique attention mechanism be-

came a popular investigation target. The presence of several heads, instead of

a single one, results in several source-to-target soft-alignment probability ma-

trices. This flexibility potentially makes the alignment more dispersed across
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heads, and in general the relationship between source and target sequences

is less directly interpretable. In the original paper, the authors argue that

this happens because different heads can capture different source-to-target

syntactic and semantic relationships.

Aiming to understand how the heads inside the MHA mechanism con-

tribute to the final translation model, Voita et al. (2019) perform an extensive

study, weighting and classifying head importance. Using a standard trans-

former configuration, they removed 38 from the 48 existing heads during

decoding stage, verifying that this resulted in negligible loss in translation

performance. Based on this finding, they argue most of the model’s heads are

replaceable, and that just a few specialized heads are necessary after training.

Michel et al. (2019) performs a similar study, verifying that many MHA layers

inside a Transformer can be reduced to a single head during decoding, with-

out any statistical significant drop in performance. Both studies find that

the layer which benefits the most from the multi-headness is the Encoder-

Decoder MHA, and they both highlight that in other cases the MHA might

not be needed in order to achieve good translation performance during the

decoding stage.

Focusing on the Encoder-Decoder MHA layer, the following works investi-

gate methods for achieving better source-to-target alignments. Alkhouli et al.

(2018) add one supervised extra head to this layer, giving maximal weight to

the lexical items present in its dictionary. By doing so, they push the weights

towards alignment, without explicitly forcing it. They show this approach’s

effectiveness for dictionary-guided translation. Chen et al. (2020) argues that

the transformer model is able to capture good source-to-target alignment, and

the challenge rests on finding the good information in the middle of the many

heads and layers the model presents. With this goal, they present approaches

for finding the best head and decoder step for extracting the soft-alignment

probability matrices. Moreover, similar to Garg et al. (2019), they propose

the inclusion of unsupervised alignments into the NMT training, jointly op-

timizing alignment and translation. By doing so, both (Garg et al., 2019;

Chen et al., 2020) were able to generate more interpretable source-to-target

alignments using Transformer.

2.1.3 Pervasive Attention

Different from the previous models, which are based on encoder-decoder struc-

tures interfaced by attention mechanisms, Elbayad et al. (2018) proposes the

use of a single 2D-CNN for jointly encoding source and target sequences. Us-

ing masked convolutions, an auto-regressive model predicts the next output

symbol based on a joint representation of both input and partial output se-
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Figure 2.4: The general scheme for an 2D-CNN NMT model.

Figure 2.5: The general structure of a DenseNet Block (top), and the com-

putation flow within each block (bottom). Figure extracted

from Elbayad et al. (2018).

quences. Figure 2.2 illustrates the process.

Given a source-target pair (s, t) of lengths |s| and |t| respectively, tokens

are first embedded in ds and dt dimensional spaces via look-up tables. Token

embeddings {x1, . . . , x|s|} and {y1, . . . , y|t|} are then concatenated to form a

3D tensor X ∈ R|t|×|s|×f0 , with f0 = dt + ds, where Xij = [yi xj] (step

1). Each convolutional layer l ∈ {1, . . . , L} of the model is implemented as

a DenseNet (Huang et al., 2017), illustrated in the Figure 2.5 extracted from

Elbayad et al. (2018). It produces a tensor Hl of size |t|×|s|×fl, where fl is the

number of output channels for that layer (step 2). To compute a distribution

over the tokens in the output vocabulary, the second dimension of the tensor

is used. This dimension is of variable length (given by the input sequence)

and it is collapsed by max or average pooling to obtain the tensor HPool
L of size

|t|×fL. Finally, 1×1 convolution followed by a softmax operation are applied,

resulting in the distribution over the target vocabulary for the next output

token (step 3). We now describe the attention mechanism of this approach.

Pervasive Attention mechanism: joint encoding acts as an attention-like
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mechanism, since individual source elements are re-encoded as the output

is generated. The self-attention approach of Lin et al. (2017) is applied. It

computes the attention weight tensor α, of size |t| × |s|, from the last acti-

vation tensor HL, to pool the elements of the same tensor along the source

dimension, as in Equations 2.8 and 2.9. There, W1 ∈ Rfa and W2 ∈ Rfa×fL are

weight tensors that map the fL dimensional features in HL to the attention

weights via an fa dimensional intermediate representation. Throughout this

work, we will refer to this work as the 2D-CNN model.

α = softmax(W1 tanh(HLW2)) (2.8)

HAtt
L = αHL (2.9)

Gehring et al. (2017) is another example of a competitive CNN architecture

for NMT. They differ from the work above by presenting a CNN encoder-

decoder architecture, tied by a Multi-step attention mechanism, which allows

the decoder to access the attention product from a given number of previous

steps.

2.1.4 Attention as an Explanation

Recently, a group effort towards interpretability in neural networks emerged in

the Natural Language Processing (NLP) community. Motivated by the fact

that the neural networks are not directly understandable as statistical ap-

proaches are, recent work on interpretability aims to shed light into the inter-

nal processes of neural networks, investigating how learning is performed. An

example of this is the Black box NLP Workshop (Alishahi et al., 2019), whose

aim is to investigate the black box processes in deep learning approaches.7

Focusing on NMT, a target of interpretability studies has been the at-

tention mechanism. As we started before, the source-to-target probabilities

learned during training can be interpreted as alignment. Supported by this

assessment, many works on NMT use the visualization of these probability

matrices as a form of attesting translation quality. However, these matrices

are just a by-product of translation, and the network is not optimized towards

alignment.

Ghader and Monz (2017) highlight that there are differences between direct

alignment and the attention’s output. They use Luong et al. (2015)’s NMT

architecture, investigating how its output relates to traditional alignment, fo-

cusing on the words Part-Of-Speech (POS). They verify that attention agrees

with traditional alignment to a certain extent, especially for nouns. However,

7Available at: https://blackboxnlp.github.io/cfp.html

https://blackboxnlp.github.io/cfp.html
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for other POS they show the attention might develop different patterns, which

do not necessarily translate as source-to-target alignment.

Motivated by this, Ding et al. (2019) investigate methods for post-processing

attention-based NMT models in order to retrieve better word alignment. They

propose the use of word saliency for interpreting word alignments from NMT

predictions in both online and offline fashion. Their evaluation shows that

their model-agnostic approach is able to produce higher quality alignments

compared to the raw product of the attention model. The authors perform

experiments on Transformer (Vaswani et al., 2017), RNN (Bahdanau et al.,

2015), and CNN (Gehring et al., 2017) models, highlighting that some of these

architectures (CNN and RNN) already present good quality word alignments

without post-processing.

He et al. (2019) introduce invariant gradients to compute the concept of

word importance in NMT. In their experiments with the Transformer and RNN

architectures, they show that their method for assessing the contribution of

source tokens was superior to attention and other black box metrics for eval-

uating NMT quality on sentence-level. Moreover, their analysis showed that

depending on the language pair, different syntactic categories of words receive

more importance. They argue this highlights the importance of introducing

an inductive bias into the model design.

For different NLP tasks, attention has also been a target of investigation.

Focusing on RNN architectures for question answering, binary text classifica-

tion and natural language inference, Jain and Wallace (2019) investigates the

correlation between the attention model’s weights and the final output yielded

by the system. They perturb attention weights for assessing the impact in the

output tokens, finding that only minimal changes occur. Thus, they argue

attention is not explanation in the sense that, even if sometimes the atten-

tion layer’s output correlates with the produced token (output), these weights

are not directly responsible for the prediction, and therefore its visualization

should not be used as a form explaining the systems’ choices.

Extending this study, Serrano and Smith (2019) investigates the correla-

tion between the attention layer’s weighting of the input elements and the

importance ranking obtained in topic classification models. They also find a

lack of correlation able to justify the use of attention as a visualization tool

for network learning, mentioning that attention might still be interpretable in

other ways different from direct visualization.

Wiegreffe and Pinter (2019) challenge these works, arguing that attention

is not not explanation. They explain that the difference lies in the definition

of explanation itself: between plausible and faithful explanation. While atten-

tion might fail to provide faithful explanation for a set of NLP tasks, it still

presents a plausible relationship between input and output tokens. In their
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work, the authors use adversarial training methods for obtaining alternative

attention distributions, showing that these perform quite poorly compared

to the original ones. Supported by that, they say that attention does cap-

ture a meaningful relationship between input and output, and therefore it can

be used for investigating network learning. They then suggest researchers to

be careful when assessing model’s quality through the use of their attention

mechanism’s visualization, and they provide an experimental test suite with

the goal of making this investigation more sound.

Focusing on interpretability for NMT models, Moradi et al. (2019) in-

vestigated if the findings from Jain and Wallace (2019) hold in the case of

sequence-to-sequence models. They separated words between function and

content classes, and investigated the impact of using counterfactual attention

weights during the decoding stage of a RNN model (Luong et al., 2015). In

their experiments they noticed that it is harder to perturb the generation of

function words, compared to content ones. They argue that this happens be-

cause function words depend more on the decoder context, while the content

words depend mostly on the weighting of the encoder annotations performed

by the attention layer. In summary, while preliminary, their results show that

several counterfactual attention matrices can result in the same tokens being

generated by the translation model. Based on that, the authors conclude that

the interpretability of the attention layer is still an open research topic, and

that people should refrain from using it for explaining the output of their

NMT models.

Brunner et al. (2019) investigate the validity of self-attention as expla-

nation in Transformer NMT models. They argue that a problem with in-

terpretability studies of the attention mechanism is the assumption that the

weights are relative to words, instead of their embeddings, which can be a mix-

ture of several words present in the sentence. Investigating the Transformer

architecture, they question methods accumulating attention weights over lay-

ers, since the embeddings are layer-dependent, and therefore the attention is

not being computed over the same information. In their experiments, they

observe that as they go deeper into the Transformer’s layers, the relationship

between words and their embeddings gets blurrier. However, by classifying

words by their POS, they notice that for some core content classes in En-

glish, the contribution of a given word for its corresponding embedding stays

high even in deeper layers. They conclude by saying that researchers need to

be careful when using attention visualizations beyond the first layer to draw

conclusions about word importance and translation quality.

Lastly, Vashishth et al. (2019) provide an extensive assessment of the im-

pact of attention in NLP tasks. They argue that both view-points, Attention

is not explanation (Jain and Wallace, 2019) and Attention is not not explana-
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tion (Wiegreffe and Pinter, 2019), are in fact correct, but the lack of general

vision made the distinct conclusions. They start by highlighting that the

attention layer has different roles in different NLP models, which limit the

generality of the claims from previous work. They classify attention models

into: single sequence tasks (input consist on a single text sequence, i.e. senti-

ment analysis), pair sequence tasks (input consists on a pair of text sequences,

i.e. question answering), and generation sequence tasks (consists in generating

a sequence based on the input sequence, i.e. NMT). Throughout their work,

they study the impact of perturbing attention weights on models from these

different classes of NLP tasks.

They notice that the behavior in attention for single sequence tasks is dif-

ferent from the one observed in pair sequence and generation sequence tasks.

While for the former, perturbing attention results on a marginal impact in

models prediction, for the other tasks, there is a significant decrease in per-

formance. Based on that, they propose a different way of seeing the attention

mechanism. They argue that for single sequence tasks, the models depend less

on their attention layer, which behaves as a gating mechanism and therefore,

the impact in the generated output is limited. For the other cases, authors

state that the dependency between the attention mechanism and the systems

performance is higher and thus, in these cases attention takes the role of the

explainer of the model.

2.2 NMT for Low-resource Languages

The superior abstraction power of neural networks comes with a heavy price in

terms of data needs. These models demand considerable amounts of examples

in order to train the large quantity of parameters inside their many layers.

Because of that, its applicability stays narrowed to the subset of languages

for which big datasets are commonly available (Maxwell and Hughes, 2006).

For instance, the original Transformer NMT model (Vaswani et al., 2017) was

trained on 4.5 million English-German parallel sentences.8

However, these data hungry approaches are not incapable of scaling down

and performing reasonable well in scenarios with less data. Even so, the

minimal amount they usually demand is not compatible with the available

resources for many languages. Sennrich and Zhang (2019) searched for this

minimum data amount for training effective NMT models in low-resource

settings. They discovered that their baseline was only able to reach over 20

BLEU score by having 106 English words, which in their case meant having

40,000 aligned sentences. They then illustrated how targeted optimization

8Shared vocabulary of 37,000 types after BPE encoding.
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can help reduce the need for data, and their final model was able to largely

outperform this baseline. This highlights that existing approaches cannot be

expected to work in an out-of-the-box fashion in low-resource settings. Instead

it is necessary to find ways of adapting them.

On this topic, Kann et al. (2019) discuss realistic approaches for NLP in

low-resource settings, focusing on the validation set. They argue that in these

settings, separating some of the available data for validation represents a con-

siderable toll in the amount of information available for training. They then

propose to train low-resource neural models without validation sets. For doing

so, they first train their neural models in different (high-resource) languages,

averaging the number of epochs necessary for these to finish training. This

average is then used to determine the training duration for the low-resource

neural models. They evaluate neural models for three tasks (historical text

normalization, morphological inflection, transliteration), showing that using

all available data for training can result in as much as 18% of accuracy gain

compared to models trained using validation sets.

Focusing on regularization, Rekabsaz et al. (2019) propose a multilingual

Language Model (LM) trained on several low-resource languages as a form

to counter the lack of data. This LM shares two layers between the different

languages, which allows them to capture language specific features. Then,

a shared third layer captures the common features present in the corpora.

They show how this regularization strategy achieves better results compared

to monolingual setups (one LM per low-resource language).

Gibadullin et al. (2019) presents a survey of methods for leveraging mono-

lingual data into training for reducing the amount of parallel sentences nec-

essary for creating NMT models in low-resource settings. The authors sepa-

rate the works into two categories: architecture dependent and independent.

The former refers to methods exploiting specific architectural features from

NMT models in order to include the monolingual data into the NMT train-

ing pipeline. The latter refers to methods for data augmentation (creating a

pseudo-parallel corpus from monolingual data), or to methods using a sepa-

rate target-side LM for enriching the model. We highlight some methods from

these categories.

Gulcehre et al. (2015) and Stahlberg et al. (2018) present architecture

independent models for fusing a pretrained LM with a low-resource NMT

model. The appeal of using an LM comes from the fact that monolingual

data is easier to acquire than bilingual (sentence-aligned) datasets. They train

their NMT models with up to 200,000 parallel sentences only, and their LMs

with more than 3 million examples. They both verify a slight performance

improvement in translation compared to pure NMT models.

Popular architecture dependent models are the ones which perform trans-
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fer learning (Imankulova et al., 2019; Lin et al., 2019; Zoph et al., 2016).

They work by pretraining models with considerable amounts of data in a

high-resource language. After that, the networks are fine-tuned with small

quantities of data from the target language. In this stage, some of the lay-

ers remain frozen (parameters are not updated), and new layers can also be

added to the network. The resulting models tend to perform better than di-

rectly training on the low-resource language, as the pretraining stage provides

a good guess for the layers’ parameters in the target language.

Lin et al. (2019) raises an important aspect of transfer learning by ques-

tioning the impact of the language chosen for pretraining in this pipeline.

They argue that similar languages should be preferred, as some syntactic

and semantic information could be directly transferred from the high to the

low-resource training stages, resulting in richer models. They then propose

a toolkit for scoring from which language one should transfer from. This

scoring uses the lang2vec resource (Littell et al., 2017) for investigating ge-

ographic proximity, phonological and syntactic similarities, data availability,

and typology.

3 Learning Representations from Speech

In the last section we explained that neural models tend to require a consid-

erable amount of examples in order to train their parameters. This becomes

even more critical when text is replaced by speech utterances, since the di-

mensionality of the input increases drastically.9 Learning from speech requires

larger architectures, and consequently more examples in order to converge.

The consequence of this is that recent models for speech processing depend

on the availability of large amounts of speech data, which frequently need to

be accompanied by extensive transcriptions.

However, learning supervised representations from speech differs from the

unsupervised way infants learn language, hinting that it should be possible

to develop more data-efficient, and unsupervised, speech processing models.

Inspired by that, recent work suggested pretraining on large quantities of

speech without supervision for application in downstream tasks (Chen et al.,

2017; Chorowski et al., 2019; Schneider et al., 2019; Baevski et al., 2020b).

While this reduces the amount of data transcription necessary for applying

speech models, these still require some transcription for the downstream tasks.

More interesting for us are the models which provide Speech Discretiza-

tion (SD) through unsupervised training (no access to transcriptions). Their

9For instance, a popular dataset for speech technologies is Librispeech (Panayotov et al.,

2015), composed of 1,000 hours of recorded speech in English.
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task consists in labeling the speech signal into discrete speech units, which

can correspond or not to the language phonetic inventory. The advantage of

this discretization is that it allows for the posterior application of text-based

approaches, which are less data expensive.

Nowadays, there are two main approaches for SD. The first is the neural

approach, in which models are typically made of an auto-encoder structure

with a discretization layer (van den Oord et al., 2017; Chorowski et al., 2019;

Baevski et al., 2020a). The second is the use of NP Bayesian generative mod-

els, which can be seen as infinite mixtures time series models (Lee and Glass,

2012; Ondel et al., 2016; Chen et al., 2017). Both have been recently inves-

tigated in the context of language acquisition and documentation (Versteegh

et al., 2015; Dunbar et al., 2017, 2019).

The SD task can be formulated as the learning of a set of U discrete

units with embeddings H = {η1, . . . ,ηU} from a sequence of untranscribed

acoustic features X = [x1, . . . ,xN ], as well as the assignment of frame to

unit z = [z1, . . . , zN ]. In simple terms, the network learns to summarize the

speech using a number |U | of units. These are used to label the speech frames.

Depending on the approach, neural or Bayesian, the assumptions and the in-

ference regarding these three quantities (H, X, z) will differ. Section 3.1

describes two neural SD models, and Section 3.2 presents three Bayesian ap-

proaches.

3.1 Neural Networks for Vector Quantization

In this section we present two well-known neural networks for Vector Quan-

tization (VQ) of unlabeled speech utterances. The first one, VQ-VAE (Sec-

tion 3.1.1) is inspired by input dimensionality reduction architectures. The

second model, VQ-WAV2VEC (Section 3.1.2), finds inspiration in self-super-

vised models trained with a context-prediction loss. We highlight that due to

the size of these architectures, in terms of number of parameters and layers,

models for VQ are usually trained in high-resource languages. Notwithstand-

ing, fine-tuning methods could be an option for applying them to low-resource

languages.

3.1.1 VQ-VAE

Variational Auto-Encoder (VAE) models (Kingma and Welling, 2013) are ar-

chitectures for input dimensionality reduction. They are encoder-decoder net-

works, tied by a subspace given by the set of latent random variables z. The

encoder network parameterises a posterior distribution q(z|xn) given the in-

put data X, a prior distribution p(z), and a decoder with a distribution over
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the input data p(xn|z). In practice, the subspace provides a summarization of

the input information captured by the encoder network. This summarization

must be of enough quality in order to allow the decoder network to reconstruct

the initial input.

The VQ Variational Auto-Encoder (VQ-VAE) models (van den Oord et al.,

2017) are an extension of VAE models which output a discrete latent repre-

sentation for the input. In order to reach this discrete representation, they

apply Vector Quantization (VQ) training for circumventing a known problem

of VAE models called “posterior collapse”.

The VQ-VAE neural model comprises an encoder, a decoder and a set of

unit-specific embeddings H. The encoder is a neural network that transforms

the data into a continuous latent representation V = (v1, . . . ,vN). Each

frame is then assigned to the closest embedding in the Euclidean sense, as

in Equation 2.10. The decoder transforms the sequence of quantized vectors

into parameters of the conditional log-likelihood of the data p(xn|z) and the

network is trained to maximize this likelihood.

zn = arg min
u
||vn − ηu||2 (2.10)

Since the quantization step is not differentiable, the encoder is trained with

a straight through estimator (Bengio et al., 2013). In addition, a pair of `2
losses are used to minimize the quantization error, and the overall objective

function that is maximized is presented in Equation 2.11. There, sg[·] is the

stop-gradient operator. The likelihood p(xn|zn) is defined as N (xn;µ(ηzn), I).

Under this assumption, the log-likelihood reduces to the mean-squared error

||xn − µ(ηzn)||22.

L =
1

N

N∑
n=1

(
ln p(xn|zn)− k1|| sg[ηzn ]− vn||22 − k2||ηzn − sg[vn]||22

)
(2.11)

3.1.2 VQ-WAV2VEC

Baevski et al. (2020a) also propose a VQ-based SD model. It extends the

self-supervised speech model wav2vec (Schneider et al., 2019), which solves a

self-supervised context-prediction task with the same loss function from the

classic word2vec (Mikolov et al., 2013). Different from VQ-VAE, the VQ-

WAV2VEC model learns by using a future time-step prediction task, instead

of input reconstruction.

This model is made of three components: encoder (f : X −→ Z), quan-

tizer (q : Z −→ Ẑ) and aggregator (g : Ẑ −→ C) networks. The encoder is a
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CNN which maps the raw speech input X into the dense feature represen-

tation Z. From this representation, the quantizer produces discrete labels Ẑ

from a fixed size codebook e ∈ RV×d with V representations of size d.

Since replacing an encoder feature vector zi by a single entry in the code-

book makes the method prone to model collapse (i.e. only some of the code-

books would actually be used), they independently quantize partitions of each

feature vector. For achieving this, they generate multiple groups G, arranging

the feature vector into a matrix form z′ ∈ RG×(d/G).

Considering each row by an integer index, they can thus represent the

full feature vector by the indexes i ∈ [V ]G, V being the possible number

of variables for a given group, and each element ij corresponding to a fixed

codebook vector from a given group j ∈ G. For each of these G groups, the

quantization is performed by using Gumbel-Softmax (Gumbel, 1948) or online

k-means clustering.

Finally, the aggregator combines multiple quantized feature vector time

steps into a new representation ci for each time step i. Then, given this

aggregated representation ci, the model is trained to distinguish a sample k

steps in the future ẑi+k from distractor samples z̃ drawn from a distribution

pn.

This is done by minimizing the contrastive loss for steps k = {1, . . . , K}
as in Eq. 2.12, where T is the sequence length, σ(x) = 1/(1 + exp(−x)),

σ(ẑᵀi+khk(ci) is the probability of ẑi+k being the true sample, and hk(ci) is

the step-specific affine transformation hk(ci) = Wkci + bk. Finally, this loss is

accumulated over all k steps: L =
∑K

k=1 Lk.

Lk =
T−k∑
i=1

(
log σ(ẑᵀi+khk(ci)) + λEz̃∼pn [log σ(−z̃ᵀhk(ci))]

)
(2.12)

3.2 NP Bayesian Generative Models

For generative models, each acoustic unit embedding ηi represents the pa-

rameters of a probability distribution p(xn|ηzn , zn) with latent variables z.

Discovering the units amounts to estimating the posterior distribution over

the embeddings H and the assignment variables z given by Equation 2.13.

p(z,H|X) ∝ p(X|z,H)p(z|H)
U∏
u=1

p(ηu) (2.13)

From the definition above, in this section we describe three different gener-

ative models for performing SD: HMM (Section 3.2.1), SHMM (Section 3.2.2)

and H-SHMM (Section 3.2.3). These models all share the feature of being
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robust to low-resource settings. In Section 3.2.4 we detail their inference pro-

cess.

3.2.1 HMM

This model, proposed by Ondel et al. (2016), solves the SD task using an infi-

nite phone-loop architecture where each acoustic unit component is a 3-state

left-to-right HMM/GMM10 with parameters ηi. It assigns a prior distribution

over the units modeled by a Dirichlet process, and it incorporates a prior dis-

tribution over the parameters of the HMMs as well. These two features make

this model fully Bayesian. We refer to this model as HMM, and we consider

it as the NP Bayesian generative model baseline, serving as the backbone for

the two subsequent models.

3.2.2 SHMM

The Subspace HMM (SHMM) model, proposed in Ondel et al. (2019), fixes a

naive assumption of the HMM model. For the latter, the prior is defined as a

combination of exponential family distributions forming a prior conjugate to

the likelihood. While mathematically convenient, this prior does not incorpo-

rate any knowledge about phones: it considers all possible sounds as potential

acoustic units. This means, for instance, that the sound of a car engine and

the sound from the elicitation of the letter “a” are both equally considered by

this model.

Looking back at the prior p(η) in Equation 2.13, it corresponds to the

probability that a sound, represented by an HMM with parameters η, is an

acoustic unit. In Ondel et al. (2019), they propose to remedy the mentioned

shortcoming by defining the parameters of each unit u as in Equation 2.14,

where eu is a low-dimensional unit embedding, W and b are the parameters of

the phonetic subspace, and the function f(·) ensures that the resulting vector

ηu dwells in the HMM parameter space.

ηu = f(W · eu + b) (2.14)

The subspace, defined by W and b, is estimated from several labeled source

languages. The prior p(η) is defined over the low-dimensional embeddings p(e)

rather than η directly, therefore constraining the search of units in the relevant

region of the parameter space.

10For simplicity, we refer to the HMM/GMM model simply as HMM from now on.
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3.2.3 H-SHMM

While the SHMM model significantly improves over the HMM, it also suffers

from an unrealistic assumption: it assumes that the phonetic subspace is the

same for all languages. Yusuf et al. (2020) propose a model extension called

Hierarchical SHMM (H-SHMM). In their work, they relax this assumption of

a single phonetic multilingual subspace by proposing to adapt the subspace for

each target language while learning the acoustic units. Formally, for a given

language λ, the subspace and the acoustic units’ parameters are constructed

as in Equation 2.17.

Wλ = M0 +
K∑
k=1

αλkMk (2.15)

bλ = m0 +
K∑
k=1

αλkmk (2.16)

ηλ,u = f(Wλ · eλ,u + bλ) (2.17)

The matrices M0, . . . ,MK in Equation 2.15 and vectors m0, . . . ,mK in

Equation 2.16 represent a template phonetic subspace, linearly combined by

a language embedding αλ = [αλ1 , α
λ
2 , . . . , α

λ
K ]>. The matrices Mi and the vec-

tors mi are estimated from labeled languages (i.e. multilingual transcribed

speech). The acoustic units’ low-dimensional embeddings {ei} and the lan-

guage embedding α are learned on the target (unlabeled) speech data.

3.2.4 Inference of NP Bayesian Generative Models

Regarding inference, the posterior distribution is intractable and cannot be

estimated. Instead, one seeks for an approximate posterior q({ηi}, z) =

q({ηi})q(z) which maximizes the variational lower-bound L[q]. For estimat-

ing q(z), the expectation step is identical for all models and is achieved with

a modified forward-backward algorithm described in Ondel et al. (2016).

The estimation of q(η) (the maximization step) is model-specific and is

described in Ondel et al. (2016) for the HMM, in Ondel et al. (2019) for

SHMM, and in Yusuf et al. (2020) for the H-SHMM. Finally, the output of

each Bayesian system is obtained from a modified Viterbi algorithm which

uses the expectation of the log-likelihoods with respect to q({ηi}), instead of

point estimates.
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4 Discussion

As presented in this thesis introduction, here we propose a pipeline for bilingual

UWS from speech, and in low-resource settings. We find inspiration in the fact

that, in language documentation scenarios, linguists often write translations

as a form of labeling the utterances they collect. We then propose the use of

these translations for grounding the segmentation process.

For including the translation into the segmentation pipeline, we focus on

attention-based NMT architectures. In Section 2 we showed that these mod-

els are by nature bilingual, and that their attention mechanisms produce soft-

alignment between source and target sequences. Another aspect of these mod-

els that makes them very interesting for our task is that they can be extended

for working directly from speech (Bérard et al., 2016; Weiss et al., 2017).

However, the use of neural networks presents its challenges. First of all,

while world-level soft-alignment has been investigated for NMT, it remains

to be seen if the soft-alignments produced remain exploitable when source

and target sequences differ greatly (for instance, speech vectors and word

translations). Moreover, there is the question of data scarcity robustness.

While neural networks present state-of-the-art results for many different NLP

tasks, they often require a considerable number of examples for training.

Another aspect we believe will impact our UWS approach is the nature

of the supervision used for grounding. By using translations as a guide for

segmentation, we might produce very distinct structures by varying the lan-

guage. Haspelmath (2011) says that the very definition of a word might be

difficult to define cross-linguistically.

Finally, there is the integration of speech input into the pipeline. Since

end-to-end speech-to-translation training is unrealistic using datasets with

just a couple of hours of labeled speech, in this thesis we propose a pipeline

approach. It consists of first creating a sequence of discrete speech units from

the speech utterances using the SD models presented in Section 3, and then

training NMT models between this discretization and translation sentences.

Related to our work, Stahlberg et al. (2013) present a statistical pipeline

model for segmentation and cross-lingual alignment between generated seg-

mentations and translation words in low-resource settings. Working from

manual transcriptions, they find that the translations improve segmentation

performance.

Adams et al. (2015) use statistical alignment models for producing bilin-

gual segmentation, and Duong et al. (2016) perform bilingual segmentation

by using the soft-alignment learned by an attention-based NMT model. Both

work from the phonetic transcription of the input.

Different from all the above mentioned, in this thesis we propose a pipeline
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working directly from speech, by including a speech discretization step. We

also provide an extensive investigation of our bilingual attention-based UWS

model across different NMT architectures, input representations, translation

languages, and dataset sizes. We also investigate including extra annotation

into our pipeline, in the form of manual transcribed data and boundaries clues.



Contributions





Chapter III

Resources

In the last chapter we presented textual and speech-based approaches, dis-

cussing about the challenges of adapting models for processing language in

scenarios with limited access to data. This need comes from the fact that

most of the data resources freely available cover only a subset of languages,

the so called high-resource languages (Maxwell and Hughes, 2006).

Furthermore, even when approaches scale to low-resource settings, we find

a lack of realistic corpora for testing the generalization of the proposed mod-

els.1 Thus, many works rely on sampling high-resource languages to emulate

the expected behavior using low-resource languages. This methodology as-

sumes that different languages are equally difficult to learn,2 and more im-

portantly, that they are learned in the same way. The result of this kind

of assumption is the proposition of models which might be unintentionally

language-biased towards a particular high-resource language, and that might

not work well when applied to the real target (Kawakami et al., 2019).

The solution for this issue is then to thoroughly test proposed approaches

on realistic settings and using many languages, which is not usually done due

to a lack of data. Aiming to help fill this gap in available resources from

low-resource languages, during this thesis we participated in three projects

for releasing realistic low-resource speech corpora to the community, which we

describe in this chapter.

We released two datasets from truly endangered languages (Sections 1 and

2); and one novel multilingual speech-to-speech dataset (Section 3) covering

languages with interesting linguistic features. All the described datasets, to-

gether with evaluation references and scripts, are freely available online.

1 Mboshi-French Parallel Corpus

Mboshi (Bantu C25) is an oral language spoken in Congo-Brazzaville. It was

one of the languages documented by the Breaking the Unwritten Language

1This is especially true for speech approaches. See Table 1 in Di Gangi et al. (2019) for

an overview of available speech corpora.
2Cotterell et al. (2018) discuss this for the language modeling task.
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Mboshi wáá ngá iwé léekundá ngá sá oyoá lendúma saa m ótéma

French si je meurs enterrez-moi dans la forêt oyoa avec une guitare sur la poitrine

Figure 3.1: A tokenized and lower-cased sentence pair example in our

Mboshi-French parallel corpus.

Barrier (BULB) project (Adda et al., 2016; Stüker et al., 2016). Although

mainly unwritten, linguists have defined a non-standard graphemic form for

it, considered to be close to the language phonology.

The data was collected through the use of the LIG-Aikuma mobile app3 (Bla-

chon et al., 2016). This application is dedicated to fieldwork language doc-

umentation. Between many features, it allows linguists to capture oral and

written translations, and elicitations from text or images. In the case of the

Mboshi data, the corpus was built from two sources: a small dictionary (Bea-

pami et al., 2000) and the reference sentences for oral language documenta-

tion (Bouquiaux and Thomas, 1976). Three speakers performed the elicitation

of the sentences, resulting in a corpus of 5,130 sentences after post-processing.

The translation language chosen was French.

The post-processing included manual correction of the translations, stan-

dardization of the characters encoding, and forced alignment between the

audio and the transcriptions. The alignments were then used to create the

reference files4 for allowing researchers to evaluate and compare their spoken

term discovery results obtained using the corpus. An example of the final

written content of the corpus is presented in Figure 5.1.

Lastly, the corpus was split between train and development (or validation)

sets. This was performed by first shuffling the data for ensuring compara-

ble distributions in terms of speakers and origins.5 There is no overlap for

the transcriptions between the two sets, and no repeated sentences in the

development set. General metrics for the resulting Mboshi-French parallel

corpus6 (Godard et al., 2018a) are presented in Table 3.1.

Multilingual Translations. Posterior to the release of the dataset, we ex-

tended it by adding translation in multiple languages (Boito et al., 2019b).

This was possible by translating the original French text into four new lan-

guages using the DeepL translator tool.7 The added languages are En-

3Available at: https://lig-aikuma.imag.fr/
4This reference works with the Zero Resource Challenge (Dunbar et al., 2017) 2017 track

2 evaluation track, for ensuring research reproducibility.
5Sentences come either from Bouquiaux and Thomas (1976) or Beapami et al. (2000).
6Available at: https://github.com/besacier/mboshi-french-parallel-corpus
7Available at: https://www.deepl.com/translator

https://lig-aikuma.imag.fr/
https://github.com/besacier/mboshi-french-parallel-corpus
https://www.deepl.com/translator
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language set #sentences #tokens #types audio length(h)

Mboshi train 4,616 27,563 6,196 4.02

dev 514 2,993 1,146 0.26

French train 4,616 38,481 4,921 -

dev 514 4,234 1,174 -

Table 3.1: Number of sentences, tokens and types for the different sets, for

both languages. For Mboshi, audio duration is also detailed.

MB FR EN ES DE PT

#tokens 30,556 42,715 37,379 37,428 37,515 37,095

#types 6,633 5,178 4,392 5,473 5,641 5,465

avg token length 4.18 4.41 4.19 4.36 4.91 4.40

avg #tokens per sentence 5.96 8.33 7.29 7.30 7.31 7.23

Table 3.2: General statistics for the languages present in the dataset. The

metrics were computed on the totality of the corpus (5,130

sentences).

glish (EN), German (DE), Portuguese (PT) and Spanish (ES). Our motivation

was to provide a version of this corpus that could be exploited for multilin-

gual approaches. Since in documentation scenarios it is difficult to collect

data, datasets tend to lack size. Our hope is that by relying on multilingual

supervision, the effects of the lack of data for computational approaches could

be attenuated. General metrics for the translated corpus8 are presented in

Table 3.2.

2 Griko-Italian Parallel Corpus

Griko is an endangered Greek dialect spoken in southern Italy, in the Grec̀ıa

Salentina area southeast of Lecce. It is one of the two Italo-Greek variety di-

alects in the region of Calabria. Less than 20,000 people (mostly over 60

years old) are believed to be native speakers (Horrocks, 2009; Douri and

De Santis, 2015) but unfortunately, this number is quite likely an overesti-

mation (Chatzikyriakidis, 2010).

The original corpus was collected during a field trip in Puglia, Italy, by two

8Available at: https://github.com/mzboito/mmboshi

https://github.com/mzboito/mmboshi
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language #tokens #types avg token length
avg #tokens

per sentence
audio length(h)

Griko 2,374 691 5.68 7.19 0.20

Italian 2,384 456 5.76 7.22 -

Table 3.3: General statistics for the 330 sentence-long Griko-Italian par-

allel corpus.

linguists, with a particular focus on the use of infinitive and verbal morphosyn-

tax. It contains a total of 330 utterances from 9 different speakers (5 male,

4 female) from the 4 villages where native speakers could still be found (Cal-

imera, Sternatia, Martano, Corigliano). The digitally collected audio files

were manually segmented into utterances, transcribed, glossed in Italian, and

annotated with extensive morphosyntactic tags by a trained linguist. The

resulting dataset9 (Lekakou et al., 2013) represents the only speech corpus for

Griko available online.

In order to render the original corpus useful for speech-related computa-

tional research on Griko, new information was added by us to the corpus.

First, the transcriptions were translated in Italian by a bilingual speaker.

Gold-standard word-level alignment information, including silence marks, were

added to the dataset, as well as gold-standard speech-to-translation align-

ments. We also automatically extracted pseudo-phones from the audio by

using the Acoustic Unit Discovery (AUD) method from Ondel et al. (2016).

Lastly, reference files allowing the use of the ZRC evaluation track for spoken

term discovery, as in Session 1, were created.

The final Griko-Italian parallel corpus10 (Boito et al., 2018) has several

levels of information: speech, machine extracted pseudo-phones, transcrip-

tions, translations and sentence alignment. We believe it can be an interest-

ing resource for evaluating documentation techniques on (very) low-resource

settings. Table 3.3 presents the general statistics, and Figure 3.2 illustrates a

parallel sentence in the dataset.

9Available at: http://griko.project.uoi.gr
10Available at: https://github.com/antonisa/griko-italian-parallel-corpus

http://griko.project.uoi.gr
https://github.com/antonisa/griko-italian-parallel-corpus
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Griko jatı̀ ı̀che polemı̀sonta òli tin addomàda

Italian perché aveva lavorato tutta la settimana

Figure 3.2: A tokenized and lower-cased sentence pair example in our

Griko-Italian parallel corpus.

3 MaSS: Multilingual corpus of

Sentence-aligned Spoken Utterances

Recently, a remarkable work introduced the CMU Wilderness Multilingual

Speech Dataset11 (Black, 2019). It provides data to build Automatic Speech

Recognition (ASR) and Text-to-Speech (TTS) models for potentially 700 lan-

guages. Each language accounts for around 20 hours of data extracted from

readings of the New Testament from the Bible. Segmentation was made at the

punctuation level, and alignment between speech and corresponding text can

be obtained with the pipeline provided along with the dataset. This pipeline,

notably, can process a large amount of languages without using any extra re-

sources such as acoustic models or pronunciation dictionaries. Such a resource

allows the community to experiment and to develop speech technologies on

an unprecedented number of languages.

Its source material, the New Testament from The Faith Comes By Hearing

website12 (or simply bible.is), is an online platform that provides audio-books

of the Bible with transcriptions in 1,294 languages. On this website, the

written content for a given language is always the same. However, there

can be more than one audio-book available per language. Different versions

might present different numbers of speakers, types of recording procedure, the

presence of background music, and even the dramatization13 of the text.

In their pipeline, Black (2019) extracted the soundtracks from the defaults

links, and audio excerpts often contain music. It is also unknown if drama or

non-drama versions were selected. Thus, although the quality of the alignment

is good for many languages, it could be inaccurate (or noisy) for an unknown

subset. Moreover, the final segmentation from chapters was obtained through

the use of punctuation marks. While efficient for a speech-to-text monolingual

scenario, this strategy does not allow accurate multilingual alignment, since

different languages and translations may result in different sentence segmen-

11Available at: http://www.festvox.org/cmu_wilderness/index.html
12Available at: https://www.bible.is
13The drama version is an acted version of the text, corresponding to less tailored real-

izations.

http://www.festvox.org/cmu_wilderness/index.html
https://www.bible.is
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Figure 3.3: The pipeline for a given language in the bible.is website.

tation and ordering.

Inspired by the multilingual limitation of their approach, we proposed a

new pipeline for extracting high-quality multilingual content from the bible.is

website. Different from their pipeline, our method allows us to extract low-

granularity multilingual speech segments. This is possible by taking advantage

of the fact that the initial language material from the monolingual dataset (the

Bible) is the same for all languages, thus constituting a multilingual and com-

parable14 spoken corpus. Considering that for all languages, a chapter consists

of the same set of verses,15 the verse numbers give us a multilingual alignment

between all language pairs.16

Our pipeline for a given language is described in Figure 3.3. We manually

select and download the chapters on their non-drama version in the Bible.is

website, and we also perform audio conversion (step 1). Note that the selection

process does not require any language expertise, as we only verify that the

audio-books selected do not present background music or dramatization.

Next we generate monolingual speech-to-text alignment by using the Maus

forced aligner (Kisler et al., 2017) online platform17 (step 2). We then use the

generated alignment, together with the verse information present in the raw

chapters version, to slice the chapter’s audio into smaller chunks, identified

by chapter and verse number (step 3). We highlight that this step works on

any speech-to-text alignment generated (automatic or manual), as long as it

is provided in a TextGrid file.

We applied our method to 8 languages (Basque, English, Finnish, French,

Hungarian, Romanian, Russian and Spanish), resulting in 56 language pairs

for which we obtain speech-to-speech, speech-to-text and text-to-text align-

14Our definition of a comparable corpus is the following: a non-sentence-aligned corpus,

parallel at a broader granularity (e.g. chapter, document).
15A verse is the minimal segmentation unit used in the Bible and corresponds to a sen-

tence, or more rarely to a phrase or a clause.
16This is mostly true, but for a small subset of chapters, due to different Bible versions

and different translation approaches, the number of aligned speech verses will differ slightly.
17Available at: https://clarin.phonetik.uni-muenchen.de/BASWebServices/

interface/WebMAUSBasic

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic
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Alignment from Black (2019)

Files French English

00001 Matthieu Matthew

00002
Jésus descend de la montagne et des foules nombreuses

le suivent.

When he came down from the mountainside, large

crowds followed him.

00003
Un lépreux s’approche, il se met à genoux devant Jésus

et lui dit :

A man with leprosy came and knelt before him and said,

“Lord, if you are willing, you can make me clean.”

00004 Seigneur, si tu le veux, tu peux me guérir !

Jesus reached out his hand and touched the man. “I am

willing,” he said. “Be clean!” Immediately he was cured

of his leprosy.

Our alignment

Verses French English

00 Matthieu 8 Matthew 8

01
Lorsque Jésus fut descendu de la montagne une grande

foule le suivit

When he came down from the mountain great crowds

followed him

02
Et voici un lépreux s’étant approché se prosterna devant

lui et dit : Seigneur si tu le veux tu peux me rendre pur

And behold a leper came to him and knelt before him

saying Lord if you will you can make me clean

03
Jésus étendit la main le toucha et dit : Je le veux sois

pur Aussitôt il fut purifié de sa lèpre

And Jesus stretched out his hand and touched him say-

ing I will be clean And immediately his leprosy was

cleansed

Table 3.4: A comparison between CMU’s multilingual alignment and ours.

Text in italic presents alignment mismatches between English

and French. We used a slightly different (non-drama) version

of the Bible, hence the small differences in the displayed texts.

ments. The output of our pipeline is a set of 8,160 audios segments, aligned at

verse-level, in eight different languages, with an average of 20 hours of speech

for each language. An example of an aligned verse is presented in Figure 3.4.

Corpus statistics are presented in Table 3.5. Table 3.4 illustrates the differ-

ence between the multilingual alignment available on the CMU Wilderness

Multilingual Speech dataset, compared to our approach.

The languages covered in our dataset present interesting linguistic features

due to their different origins. We have five Indo-European languages, being

three of them from the Romance family (French, Romanian, Spanish), one

from the Germanic Family (English) and one from the Slavic Family (Russian).

There are two entries for the Uralic languages: one from the Ugric family

(Hungarian), and the other one from the Finnic (Finish). Finally, we also

have a low-resource and isolated language: Basque.

We believe the obtained corpus can be useful in several applications, such

as speech-to-speech retrieval (Lee et al., 2015b), multilingual speech repre-

sentation learning (Harwath et al., 2018), and direct speech-to-speech trans-

lation (Tjandra et al., 2019; Zhang et al., 2020). Moreover, typological and

dialectal fields could use such a corpus to solve some of the following novel

tasks using parallel speech: word alignment, bilingual lexicon extraction, and

semantic retrieval.



60 Chapter III. Resources

language #tokens #types
tokens

per verse

types

per verse

avg token

length

audio

length(h)

avg verse

length(h)

English (EN) 176,461 6,471 21.52 18.03 3.82 18.50 8.27

Spanish (ES) 168,255 11,903 20.52 17.90 4.17 21.49 9.58

Basque (EU) 128,946 14,514 15.78 14.88 5.55 22.76 9.75

Finnish (FI) 134,827 18,824 16.44 15.04 5.66 23.16 10.21

French (FR) 183,786 10,080 22.36 19.25 4.02 19.41 8.62

Hungarian (HU) 135,254 20,457 16.46 15.01 5.07 21.12 9.29

Romanian (RO) 169,328 9,581 20.61 18.19 4.14 23.11 10.16

Russian (RU) 129,973 16,758 15.82 14.50 4.44 22.90 9.70

Table 3.5: Statistics of the MASS corpus.

English (EN) It is a fearful thing to fall into the hands of the living God

Spanish (ES) Es terrible caer en manos del Dios vivo

Basque (EU) Izugarria da Jainko biziaren eskuetan erortzea

Finnish (FI) Hirmuista on langeta elävän Jumalan käsiin

French (FR) C est une chose terrible que de tomber entre les mains du Dieu vivant

Hungarian (HU) Félelmetes dolog az élő Isten kezébe esni

Romanian (RO) Grozav lucru este să cazi ı̂n mâinile Dumnezeului celui viu

Russian (RU) Страшно впасть в руки Бога живаго

Figure 3.4: A tokenized multilingual parallel verse from our dataset (He-

brews 10, verse 31).

In order to insure the quality of the distributed corpus, a human evaluation

was performed on a corpus subset (8 language pairs, 100 verses) by bilingual

native speakers. This evaluation was performed through an online platform,

and it was focused on the quality of the audios.18 Results attested the quality

of the alignments.

Lastly, we highlight that the presented pipeline can be applied to any

translation of the Bible, and thus the current corpus can be easily extended

to cover new languages. For ensuring reproducibility, we share all scripts and

information needed for this extension together with our corpus19 (Boito et al.,

2020a), named MaSS for Multilingual corpus of Sentence-aligned Spoken ut-

terances.

18Transcriptions were provided as a form of supporting the audio evaluation. Full de-

scription and discussion about the human evaluation can be found in Boito et al. (2020a).
19Available at: https://github.com/getalp/mass-dataset

https://github.com/getalp/mass-dataset
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4 Contributions Overview

The goal of all the projects presented in this chapter was to propose more re-

alistic low-resource datasets for conducting investigations. The three datasets

presented correspond to the publications listed below. The remainder of this

session briefly review some of the work performed using these resources.

• Mboshi-French Parallel Corpus: Godard, P., Adda, G., Adda-Decker, M.,

Benjumea, J., Besacier, L., Cooper-Leavitt, J., Kouarata, G.-N., Lamel, L.,

Maynard, H., Mueller, M., Rialland,A., Stueker, S., Yvon, F., and Boito,

M. Z. (2018). A very low-resource language speech corpus for computational

language documentation experiments. International Conference on Language

Resources and Evaluation (LREC 2018).

38 citations as in 06/04/2021.

• Griko-Itallian Parallel Corpus: Boito, M. Z., Anastasopoulos, Lekakou, M.,

A., Villavicencio, and A., Besacier, L. (2018). A Small Griko-Italian Speech

Translation Corpus. International Workshop on Spoken Language Technolo-

gies for Under-Resourced Languages (SLTU 2018).

8 citations as in 06/04/2021.

• MaSS dataset: Boito, M. Z., Havard, W. N., Garnerin, M., Le Ferrand, É.,

and Besacier, L. (2020). MaSS: A large and clean multilingual corpus of

sentence-aligned spoken utterances extracted from the bible. International

Conference on Language Resources and Evaluation (LREC 2020).

10 citations as in 06/04/2021.

The Griko-Itallian parallel corpus was one of the endangered languages

used in Wada et al. (2020) for the learning of contextualized cross-lingual word

embeddings in zero resource settings. The Mboshi-French parallel corpus has

been adopted as a test set for evaluating low-resource speech approaches by

many: Anastasopoulos and Chiang (2018b) used it for testing their multitask

model for transcription, translation and word discovery.

The Mboshi-French dataset was again used for speech-to-text translation

approaches in Bansal et al. (2019), Sung et al. (2019) and Inaguma et al.

(2019). In Scharenborg et al. (2020), it was used for representation learn-

ing and speech translation. It was also used for AUD in low-resource lan-

guages (Scharenborg et al., 2018; Ondel et al., 2018; Ondel et al., 2019; Yusuf

et al., 2020; Feng et al., 2021), and for ASR (Scharenborg et al., 2018).

Still about the Mboshi-French parallel corpus, and focusing on the tran-

scriptions, Anastasopoulos and Chiang (2018a) and Matsuura et al. (2020)

investigated models for obtaining transcriptions from speech. In the context
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of language documentation, Le Ferrand et al. (2020) proposes a new work-

flow for interactive transcription. Focusing on Unsupervised Word Segmen-

tation (UWS), this dataset was used by us for a significant part of the thesis

investigation (Boito et al., 2017; Godard et al., 2018c; Boito et al., 2019a,b,

2021). It was also used in Godard et al. (2018b, 2019).



Chapter IV

A Bilingual Attention-based

Unsupervised Word Segmentation

Model

We now present the model motivated in Chapter II for bilingual Unsupervised

Word Segmentation (UWS) from speech. This model works in two steps:

(1) Speech Discretization (SD), and (2) bilingual alignment and segmentation.

The pipeline is illustrated in Figure 6.1.

The first step is responsible for producing discrete speech units (pseudo-

phones) from the speech utterances. The second step works on the symbolic

domain, aligning the discovered units with the translation words, and pro-

ducing from this segmentation. Since the speech labels contain timestamp

information, the output segmentation can be carried to the speech domain,

producing segmentation over the speech input itself. This process is bilingual,

as the segmentation is performed supported by the bilingual alignment dis-

covered. In other words, translation words are used to ground the generated

segmentation.

The pipeline nature of our model allows us to segment small datasets, a

task that would be difficult to accomplish if we were to directly train speech-

to-translation models. Moreover, we are supported by the studies that show

that neural networks are able to learn linguistic features working with units

smaller than words, such as sub-word units and characters (Kreutzer and

Sokolov, 2018; Hahn and Baroni, 2019; Ataman et al., 2019), and therefore

suitable for working with phonemes or discrete speech units.

In this chapter we focus our investigation in the second step of our speech

UWS pipeline, which works on the symbolic domain. We start by validating

this model in the ideal scenario of perfect speech discretization, replacing

discrete speech units by the true phones (phonemes) from the language.1 This

1We refer to it as the perfect speech discretization because there is no noise added (man-

ually produced). We highlight that this is not necessarily the representation SD models

need to reach, as there might exist different forms of meaningfully representing the same

utterance. In this setting, it might even be possible for an SD model to produce a better

representation (in terms of exploitability) to the speech signal than the phonetization itself.
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Segmentation Model

Figure 4.1: The general bilingual speech UWS pipeline. It requires as

input a parallel dataset made of speech and sentence-level

aligned translations. The system outputs word-level segmen-

tation over the speech utterances. Units at the end of the first

step correspond to the discrete speech units.

allow us to assess the topline performance that our models working from

speech can accomplish.

Section 1 presents the core idea of our segmentation procedure: the use of

source-to-target soft-alignment probability matrices for producing segmenta-

tion. Section 2 presents our two methods of evaluating performance. First,

we assess the quality of the soft-alignment probability matrices produced by

NMT training by using a task-agnostic metric we introduced in Boito et al.

(2019a). Second, we evaluate the final product of our pipeline directly on the

speech domain using UWS boundary metrics.

Section 3 presents the work from Boito et al. (2019a) and Boito et al.

(2021). We compare soft-alignment probability matrices produced by three

different attention-based NMT models for our UWS pipeline. We investigate

how the different approaches for the attention mechanism impact our segmen-

tation performance, and their robustness to low-resource settings. We also

present an analysis of how the syntactic divergence between source and tar-

get sequences might impact the quality of the segmentation, and we illustrate

how the task-agnostic metric we present in Section 2 can be used for increasing

type discovery scores in low-resource settings.

Section 4 presents the work from Boito et al. (2020b). There, we in-

vestigate the impact that the bilingual supervision has over the discovered

segmentation. For achieving that, we train several models by varying only

the bilingual supervision, and we observe the difference in segmentation per-

formance. We also use different segmentation targets, for illustrating that

segmentation performance is language-dependent. Section 5 concludes the

chapter by summarizing our findings.
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Figure 4.2: Detailed pipeline for the second step of our bilingual UWS

pipeline from Figure 6.1. The discrete speech units, or phones,

are fed to the decoder network. Soft-alignment probability

matrices are extracted for each sentence after training, and

transformed in speech segmentation.

1 Attention-based UWS Model

Our bilingual model for segmentation has as core component the attention-

based NMT model described in Chapter II, Section 2.1. There are two features

that make this architecture interesting for us. First, it incorporates sentence-

level aligned text naturally, and second, its block-oriented nature allows us to

have different representation levels in each coder. For instance, we can have

text in one, and phones or speech in the other.

Figure 4.2 presents the detailed scheme for our bilingual alignment and seg-

mentation step. We train a NMT model using sentence-level aligned examples

(word-level for translations, unit/phone-level for the target language). Any

attention-based NMT model able to produce soft-alignment between source

and target sequences can be used for this task, and in Section 3 we compare

segmentation performance by using three different NMT architectures.

Posterior to training, we retrieve the word-to-phone soft-alignment proba-

bility matrices, such as the ones presented in Figure 4.3. The soft-alignment is

used to cluster together (segment) the target language phones into word-like

units. We now describe how we perform segmentation from soft-alignment

probability matrices.

Consider a given source and target sentence pair (s, t) of length |s| and

|t| respectively. For every token in the target sequence, the attention layer

outputs a probability P (ti, sj), with i ∈ [0, |t|] and j ∈ [0, |s|], which quantifies

the importance of the source token sj for the generation of the target token

ti. We then have, for every target token ti, a probability distribution over

all tokens in the source sequence (
∑|s|

j=0 P (ti, sj) = 1), which gives us the

soft-alignment for that token.

For generating bilingual segmentation, we first transform this distribution

into hard alignment by aligning each target token ti to the source token with
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Figure 4.3: Soft-alignment probability matrix heatmaps between speech

labels (rows) and french words (columns) for three sentences

from the Mboshi-French Parallel Corpus (Chapter III). The

higher the soft-alignment probability for a given pair, the

darker is the square color.

maximum probability. That is: max
{0≤j≤|s|}

(P (ti, sj)). We then use the generated

alignment to define which target tokens are segmented together. Consecutive

target tokens aligned to the same source token are considered as part of the

same word-unit. When an alignment shift occurs, and the next target token is

aligned to a different source token, a boundary is inserted into the sequence.

For instance, in the example in the left in Figure 4.3, we obtain the fol-

lowing segmentation: phn25-phn10-phn60-phn10 (aligned to monzo), phn24-

phn49-phn30-phn33-phn2-phn24-phn35 (aligned to peigne), phn30-phn13-

phn55 (aligned to cheveux). We observe that the word ses was not aligned

to anything, being ignored. This kind of flexibility is necessary in order to

account for the natural differences in morphology that languages have.

Previous to this thesis we validated this attention-based segmentation

pipeline for the symbolic domain (characters instead of speech discretization).2

During that investigation, we observed that one key aspect for successfully

exploiting the attention mechanism is the translation direction for the NMT

training.

This is because, as described above, the attention layer outputs probabil-

ity distributions for every target token. When training word-to-phone NMT

2That pipeline, extensively described in Boito (2017), used as NMT architecture the

RNN model from Bahdanau et al. (2015), applied to the Mboshi-French parallel corpus.
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models, we retrieve probability distributions for every phone in the sequence,

which allows us to choose between the source words, potentially ignoring some

of them. In contrast, training phone-to-word NMT models means generating

probability distribution over words, which will ignore a portion of the phones

we aim to segment. Because of this, translation direction is important for our

pipeline, and the target language input should always be fed to the decoder

network.3

Finally, since the units we process and segment in this step of the pipeline

come from the direct discretization of the speech, we also need to account

for silence labels. These are automatically inserted into the sequences by SD

models to represent periods of silence during an utterance. In preliminary

experiments we investigated training the NMT models with this information,

finding more benefit in removing it before training. We then reintroduce them

after segmentation, since they provide a natural segmentation of the signal.

2 Model Evaluation

As mentioned in the last section, our segmentation pipeline uses soft-alignment

probability matrices in order to segment. Therefore, we find important to eval-

uate the quality of these matrices as well, and not only the final segmentation

performance. For this, we introduce a task-agnostic metric for assessing align-

ment quality (Section 2.1). In Section 2.2 we briefly go over the metrics used

for evaluating segmentation performance in the speech domain.

2.1 Average Normalized Entropy

The ideal method for evaluating the quality of the soft-alignment probability

matrices is to directly score their similarity to real word alignment. However,

this is not realistic, especially in low-resource scenarios, as word-level align-

ment is not very often available for datasets. Thus, for assessing the overall

quality of the soft-alignment probability matrices without having gold align-

ment information, in Boito et al. (2019a) we introduce Average Normalized

Entropy (ANE).

Given the source and target sentence pair (s, t) of length |s| and |t| respec-

tively, for every phone ti, the Normalized Entropy (NE) is computed consider-

ing all possible words in s as in Equation 4.1, where P (ti, sj) is the alignment

probability between the phone ti and the word sj (a cell in the matrix). The

3Duong et al. (2016) differs from our approach by forcing the attention layer to output

probability distributions on both directions:
∑|s|

j=0 P (ti, sj) = 1 and
∑|t|

i=0 P (ti, sj) = 1.

This ensures that all source and target tokens are used.
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ANE for a sentence is then defined by the arithmetic mean over the resulting

NE for every phone from the sequence t, as in Equation 4.2.

NE(ti, s) = −
|s|∑
j=1

P (ti, sj) · log|s|(P (ti, sj)) (4.1)

ANE(t, s) =

∑|t|
i=1NE(ti, s)

|t|
(4.2)

From this definition, we can derive ANE for different granularities (sub

or supra-sentential) by accumulating its value for the full corpus, for a single

type or for a single token. Corpus ANE will be used to summarize the overall

performance of the matrices produced by a NMT model on a specific corpus.

Token ANE extends ANE to tokens by averaging NE for all phones from

a single (discovered) token. Type ANE results from averaging the ANE for

every token instance of a discovered type.4 Finally, Alignment ANE is the

result of averaging the ANE for every discovered (type, translation word)

alignment pair.

The motivation for using entropy comes from the fact that this metric

summarizes the degree of confusion of our distributions. In other words, it

assesses how concentrated (sharp) is a probability distribution between a given

unit and the word candidates. The intuition that lower ANEs correspond to

better alignments is exemplified in Figure 4.4.

2.2 Segmentation Evaluation on the Speech Domain

For directly evaluating the quality of our segmentation in the speech domain,

we use the Zero Resource Challenge (ZRC) 2017 evaluation script (track 2)

fully described in Dunbar et al. (2017).5 This reference provides a standard

for comparing performance of speech segmentation systems.6

For the task of UWS, it provides three metrics: boundary precision, recall

and F-score. Boundary precision is the probability that the discovered bound-

aries are in the gold set of boundaries, and boundary recall is the probability

that the gold boundaries are discovered. F-score is the arithmetic mean be-

tween boundary precision and recall. From this definition, metrics for Type

4Throughout this document we refer to a token as the collection of phones segmented

into a word-like unit. Types are defined as the set of unique tokens (i.e. the lexicon).
5The ZRC evaluation scripts are available at: https://github.com/bootphon/

zerospeech2017.
6The ZRC references for the datasets used during this thesis are available at: https:

//github.com/mzboito/ZRC_corpora.

https://github.com/bootphon/zerospeech2017
https://github.com/bootphon/zerospeech2017
https://github.com/mzboito/ZRC_corpora
https://github.com/mzboito/ZRC_corpora
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Figure 4.4: Soft-alignment probability matrices from the UWS

task between English true phones (rows) and French

words (columns). ANE values (from left to right) are

0.11, 0.64 and 0.83. The gold segmentation is “BAH1T

MAA1MAH0 PAA1PAH0 IH0Z AW1T”, which corresponds

to the English sentence “But mama, papa is out”.

and Token discovery scores can also be defined. In all cases, UWS segmen-

tation results are computed over the totality of the corpora (training and

validation sets).

3 Empirical Evaluation of NMT Models for UWS

in Low-resource Settings

Recently the attention mechanism became an investigation target in sequence-

to-sequence (seq2seq) models that process language, which resulted in the

emergence of many different attention-based architectures for NMT. Here we

investigate some of these different attention-based NMT approaches for gen-

erating the source-to-target soft-alignment probability matrices we use in our

segmentation pipeline. We compare them with regards to their level of ex-

ploitability for the UWS task in low-resource settings.

We concentrate on the three NMT models presented in Section 2, Chap-

ter II. These are: the Recurrent Neural Network (RNN) from Bahdanau

et al. (2015), the original Transformer presented in Vaswani et al. (2017),

and the 2D Convolutional Neural Network (CNN) from Elbayad et al. (2018).

We apply them to the pipeline presented in Figure 4.2 using true phones as
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input (topline performance), evaluating their UWS performance, as well as

assessing the alignment quality by using the ANE metric. Throughout this

investigation, we show that this ANE metric is correlated to the UWS perfor-

mance of these attention-based NMT models. We also illustrate that it can be

used for filtering the generated vocabulary, increasing type discovery scores.

Section 3.1 explains our experimental setup, detailing corpora and train-

ing regime. Section 3.2 presents the UWS results, and Section 3.3 discusses

data size impact. We then focus on ANE, showing its correlation to boundary

F-score in Section 3.4, discussing the impact of syntactic divergence in Sec-

tion 3.5, and studying its use as a confidence metric for vocabulary filtering

in Section 3.6. Section 3.7 summarizes our results.

3.1 Experimental Setup

For this investigation, we compare three NMT models, RNN, 2D-CNN and

Transformer, in low-resource settings. Section 3.1.1 presents the data we use

for training, and Section 3.1.2 our training regime.

3.1.1 Datasets

We train the NMT models using the 5,130 parallel sentences from the Mboshi-

French (MB-FR) Parallel Corpus (Chapter III). This corpus corresponds to

a realistic setting of language documentation. Moreover, for assessing the

sensitivity to low-resource data processing, we use a second dataset: the

English-French (EN-FR) Parallel Corpus. This corpus is an extension from

the Librispeech dataset7 which includes automatically aligned French text

sentences (Kocabiyikoglu et al., 2018).

We post-process the EN-FR corpus, retrieving only the high-quality align-

ments, and reaching a corpus which is made of 33,192 parallel sentences.8 For

providing a fair comparison, as well as to study the impact of corpus size,

we down-sample it to 5,130 parallel sentences: to the exact same size as the

MB-FR corpus.9

Lastly, we highlight that these datasets are quite distinct in nature. The

EN-FR corpus presents larger vocabulary and longer sentences (literary text

source). The MB-FR presents a more tailored environment, with short sen-

tences and simpler vocabulary. Table 4.1 presents the statistics for the EN-FR

corpus (both 33k and 5k), and for the MB-FR corpus.

7English audio books collected in Panayotov et al. (2015).
8Available at: http://gitlab.com/mzboito/english-french-parallel-corpus.
9Down-sampling was conducted preserving the original average number of tokens per

sentence.

http://gitlab.com/mzboito/english-french-parallel-corpus
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#types #tokens avg token length avg #tokens per sentence

source target source target source target source target

EN-FR (33k) 21,083 33,135 381,044 467,475 4.37 4.57 11.48 14.08

EN-FR (5k) 8,740 12,226 59,090 72,670 4.38 4.57 11.52 14.17

MB-FR (5k) 6,633 5,178 30,556 42,715 4.18 4.41 5.96 8.33

Table 4.1: Statistics for the three source-target datasets.

3.1.2 Training Regime

For each NMT architecture, and for each one of the three corpora above men-

tioned, we train five models (runs) with different initialization seeds, reporting

the standard deviation. The RNN, 2D-CNN and Transformer implementa-

tions come respectively from Bérard et al. (2016), Elbayad et al. (2018), and

Ott et al. (2019). Before performing the segmentation explained in Section 1,

we average all the generated soft-alignment probability matrices from the five

different runs for each model. This can be seen as reaching an agreement be-

tween the alignments discovered by different runs. In preliminary experiments

we saw that this increases our UWS boundary results.

Regarding optimization, our networks are optimized for the monolingual

task, in which a phone sequence is segmented with regards to the corresponding

word sequence (transcription) in the same language, hence monolingual.10 The

best parameters found for this monolingual setup are then used for training the

bilingual models, and evaluation is performed in the bilingual segmentation

condition, which corresponds to the real UWS task.

Regarding hyper-parameters, in Boito (2017) we performed an extensive

study of dropout, batch size, embedding size, and number of layers for the

RNN model in low-resource settings. We use our findings from there as the

starting point for the optimization we perform in this study. Across all archi-

tectures, we use embeddings size of 64 and batch size of 32 (5k datasets), or

embeddings size of 128 and batch size of 64 (33k dataset). Dropout of 0.5 and

550,000 steps for training are applied in all cases.

RNN models have only one layer, a bidirectional encoder, and cell size

equal to the embedding size. 2D-CNN models use the hyper-parameters

from Elbayad et al. (2018) with only 3 layers (5k dataset), or 6 (33k dataset),

and kernel size of 3. Transformer models were optimized starting from the

original parameters of Vaswani et al. (2017). Best results (among 50 setups)

were achieved using 2 heads, 3 layers (encoder and decoder), warm-up of 5k

steps, and using cross-entropy loss without label-smoothing. For selecting

10This task can be seen as an automatic extraction of a pronunciation lexicon from parallel

words and phone sequences.
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Bilingual Monolingual

P R F P R F

EN 33k

RNN 70.0 85.9 77.1 99.7 99.9 99.8

2D-CNN 63.9 80.5 71.3 97.8 99.3 98.6

Transformer 48.1 58.2 52.7 92.0 98.1 94.9

EN 5k

RNN 66.2 75.2 70.4 99.0 99.5 99.3

2D-CNN 44.5 75.2 55.9 98.1 99.6 98.8

Transformer 37.4 88.0 52.5 70.7 94.5 80.9

MB 5k

RNN 72.3 75.9 74.0 92.9 92.1 92.5

2D-CNN 65.9 70.6 68.2 89.6 90.1 89.8

Transformer 56.6 80.2 66.4 79.8 87.7 83.5

Table 4.2: Precision (P), Recall (R), and F-score (F) UWS boundary

results for the NMT models (RNN, 2D-CNN, Transformer)

trained on the three corpora (EN 33k and 5k, MB 5k) in bilin-

gual (real) and monolingual (topline) settings. Best results for

each setting presented in bold.

which head to use for UWS, we experimented using the last layer’s averaged

heads, or by selecting the head with minimum corpus ANE. While the results

were not significantly different, we kept the ANE selection.

Finally, we also present results for the baseline dpseg, presented in Chap-

ter II. We use its unigram model, which yielded better results compared to

the bigram model.11 The hyper-parameters are replicated from the study for

low-resource monolingual UWS performed in Godard et al. (2016).

3.2 UWS Results

The UWS boundary results from phone sequences (in Mboshi or English) are

presented in Table 4.2, with monolingual results shown for information only,

since they are a topline. For 2D-CNN and RNN, average standard deviation

for the bilingual task computed over 5 runs and the 3 corpora is of less than

0.8%. For Transformer, it is almost 4%.

Looking at the monolingual results in the table, we verify that the soft-

11This was equally observed in Godard (2019).
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alignment probability matrices produced by all three models trained in mid

to low-resource settings are exploitable for solving this easier task.12 Then, as

expected, when word transcriptions are replaced by their translations (bilin-

gual setup), the overall performance of the UWS models drops.

Looking at these bilingual results, we see that, surprisingly, RNN mod-

els outperform the more recent approaches (2D-CNN and Transformer). One

possible explanation is the lower number of parameters (for a 5k setup, in av-

erage 700k parameters are trained, while 2D-CNN needs an additional 30.79%

and Transformer 5.31%). However, for 33k setups, 2D-CNNs actually need

30% less parameters than RNNs, but still perform worse.13 Thus, even if

model size impacts performance (having more trainable parameters meaning

needing more data to converge), it is still not the only factor for assessing

the exploitability of the soft-alignment probability matrices in low-resource

settings.

Transformer’s low performance could be due to the use of several heads,

which could be “distributing” alignment information across different matrices.

Nonetheless, we evaluated averaged heads and single-head models, and these

resulted in significant decrease in performance. This suggests that this archi-

tecture may not need to learn explicit alignment to translate, but instead it

could be capturing different kinds of linguistic information. This was discussed

in the original paper, and illustrated in the provided examples (Vaswani et al.,

2017).

Also, on the decoder side, the behavior of the self-attention mechanism

on phones is unclear and under-studied so far. For the encoder, Voita et al.

(2019) performed after-training encoder head removal based on head confi-

dence, showing that after initial training, most heads were not necessary for

maintaining translation performance. Michel et al. (2019) reached a simi-

lar conclusion: removing all heads but one, they found a negligible loss in

performance during decoding stage. Hence, we find the multi-head attention

mechanism interpretation challenging, and maybe not suitable for a direct

UWS application, especially in low-resource settings.

As in Godard (2019), our best UWS method (RNN) for the bilingual task

does not reach the performance level of the strong NP Bayesian baseline dpseg,

with F-scores of 89.80 (EN 33k), 87.93 (EN 5k), and 77.00 (MB 5k). However,

our UWS approach has the benefit of providing bilingual annotation to the

words discovered. These can be used, for instance, for increasing type discov-

ery scores (Section 3.6). Moreover, Chapter VI will discuss how this baseline

12The monolingual task is considered easier because the discovered alignments will be

very diagonal, with no order inversions or words needing to be ignored.
13The number of trainable parameters for each architecture are presented in the Ap-

pendix A, Table 1.1.
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is less robust working from discrete speech units.

3.3 Robustness to Low-resource Settings

Looking at the EN 33k and EN 5k results of Table 4.2, we can observe the

impact of data size on the NMT models. For the bilingual task, RNN perfor-

mance drops by 7% on average, whereas the performance drop is bigger for

2D-CNN (14-15%). Transformer performs poorly in both cases, and increasing

data size from 5k to 33k seems to help only for the monolingual setup.

The EN 5k and MB 5k results illustrate the impact of the language pair

in our bilingual UWS pipeline. We know from Fourtassi et al. (2013) and

Rialland et al. (2015) that English should be easier to segment than Mboshi,

and this was confirmed by both dpseg and monolingual results. However,

this trend is not confirmed in the bilingual scenario, where the quality of

the (sentence-aligned) parallel corpus seems to have a greater impact (higher

boundary F-scores for MB 5k than for EN 5k for all models).

As shown in Table 4.1, MB-FR corpus has shorter sentences and smaller

lexicon diversity, while EN-FR is made of automatically aligned books (noisy

alignments), which may explain our experimental results. In Section 4 we

perform an in-depth investigation of the impact of the bilingual supervision

in the quality of the segmentation.

3.4 Correlation Between ANE and Boundary Scores

We established that our UWS pipeline works in low-resource settings in the

ideal scenario where the speech discretization is perfect (training models using

the true phones), reaching our best UWS results by using the soft-alignment

probability matrices from the RNN model. We now investigate the use of

the ANE metric for assessing the quality of the soft-alignment probability

matrices produced by the NMT models, starting by verifying its correlation

to the Boundary F-scores.

Applying the methodology from Section 2.1, we reach the ANE scores

presented in Table 4.3.14 We then compute the Pearson’s ρ correlation coef-

ficients between them and boundary F-scores for all mono and bilingual runs

of all corpora (N = 30). We find the following values: −0.98 (RNN), −0.97

(2D CNN), and −0, 66 (Transformer), with p-values smaller than 10−5. These

14A note about the Transformer’s overall Corpus ANE performance: we highlight that

due to the head selection based on Corpus ANE, the final Corpus ANE values for the runs

from this model are expected to be lower than for the RNN and 2D-CNN, where no selection

is performed. Moreover, the very low results for the bilingual setup on the EN 33k dataset

seem to highlight an apparent lack of robustness for low-resource training for this model.
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EN 33k EN 5k MB 5k

Transformer
Monolingual 0.06 0.13 0.20

Bilingual 0.18 0.68 0.59

2D-CNN
Monolingual 0.17 0.17 0.17

Bilingual 0.56 0.73 0.58

RNN
Monolingual 0.02 0.03 0.14

Bilingual 0.38 0.41 0.42

Table 4.3: Average Corpus ANE scores over the 5 runs for the different

models we trained. Scores ∈ [0, 1], smaller values being bet-

ter (lower entropy).

Figure 4.5: An illustration of the apparent correlation between Sentence

ANE and soft-alignment quality. The heatmaps displayed cor-

respond to random sentences sampled from the RNN model

trained on the MB-FR language pair. This tendency is ob-

served for all NMT models.

strong negative correlations confirm our hypothesis that lower ANEs corre-

spond to sharper and better alignments. Figure 4.5 illustrates the degradation

in the soft-alignment probability matrices’ apparent quality as the ANE score

increases.15

3.5 ANE and Syntactic Divergence

We commented that the monolingual setup is an easier task because of the

direct equivalence between source and target sequences. Between phones and

their word transcriptions, there is no word inversion (syntactic divergence),

which makes the alignment an easier task. We now illustrate the relationship

between alignment complexity and the quality of the discovered segmentation

for the bilingual setup.

15More examples available at: https://gitlab.com/mzboito/attention_study/-/

tree/master/examples.

https://gitlab.com/mzboito/attention_study/-/tree/master/examples
https://gitlab.com/mzboito/attention_study/-/tree/master/examples
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For this experiment we use the tool FastAlign (Dyer et al., 2013) to obtain

alignment scores for all sentences in the MB-FR corpus, using the reference

segmentation in Mboshi and the French text. The resulting scores can be

seen as the degree of syntactic divergence between source and target sen-

tences: they measure how direct the bilingual word alignment is accordingly

to FastAlign.16

We then create four alignment complexity buckets of equal size in number

of matrices, for separating the corpus in four subsets with different degrees

of complexity for our UWS task. For this analysis, we use the soft-alignment

probability matrices produced by the RNN model. Figure 4.6 presents an

example per bucket for sentences of equal source length: buckets one to four

have increasing alignment complexity scores accordingly to FastAlign.17

For verifying the intuition that alignment quality will deteriorate as align-

ment complexity rises, we extract Alignment ANE scores for the matrices sets

in every bucket. The alignment ANE score for a given (discovered type,

translation word) pair gives us information about how confident the net-

work is about that discovered pairing. The result of this is a collection of

alignments and ANE scores for each bucket.18

Then, for each complexity bucket we evaluate its precision for the type

discovery task. This allows us to verify if our model is more often correct

on its segmentation (better overall precision) when working on sentences with

straightforward alignment. Moreover, within each bucket, we sort the align-

ment pairs by their alignment ANE scores, computing precision for different

Alignment ANE thresholds. This informs us about the quality of the best

examples, in terms of alignment confidence, for each bucket.

Table 4.4 presents the type discovery precision scores for UWS using dif-

ferent Alignment ANE thresholds within each bucket. We notice that buckets

with easier examples in terms of alignment probabilities (from FastAlign)

have higher overall precision (see last row). This confirms that the quality

of the alignments obtained is related to the syntactic divergence of the sen-

tences. However, it is interesting to notice that even for the most challenging

case (bucket 4), there are still a fair amount of alignments being retrieved.19

We believe this highlights the robustness of the RNNs, that even in low-

resource settings, are able to learn non-trivial equivalences between source

and target sentences.

Focusing on the Alignment ANE threshold, we observe that it can be

16Since we use an automatic method, the resulting scores are an approximation.
17Alignment scores thresholds of, respectively, -10.61, -46.87, -60.18, and -78.15.
18For instance, in Figure 4.6 the first alignment pair for the matrix in the left is (phn25-

phn10-phn60-phn10, monzo).
19We see a drop of 14.1 in precision from bucket 1 to 4.
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Figure 4.6: Soft-alignment probability matrices from the alignment com-

plexity buckets 1 to 4 (left to right) for examples with same

source length. Darker squares correspond to higher probabil-

ities. The sentence ANE scores are, from left to right, 0.26,

0.40, 0.47 and 0.53. The language pair is French (words) and

Mboshi (phonemes).

used for filtering the alignments, resulting in higher type discovery precision.

For instance, looking at the bucket 1, we see that by limiting our search

for the alignments which scored less or equal to 0.2 (first row), 68.8% of them

correspond to real words (types) in the language. This illustrates the potential

of ANE for vocabulary filtering, which we will continue to explore in the next

section.

3.6 ANE for Vocabulary Filtering

Supported by the results in Sections 3.4 and 3.5, we now investigate the use

of Alignment ANE as a confidence measure for vocabulary filtering. From

the RNN models, we extract and rank the discovered alignment pairs by their

Alignment ANE, and we examine if this metric can be used to separate true
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ANE (≤) Bucket 1 Bucket 2 Bucket 3 Bucket 4 All Buckets

0.2 68.8 59.2 56.4 47.8 49.0

0.4 44.8 41.4 38.0 31.8 32.6

0.6 38.3 34.5 30.6 25.3 24.7

0.8 36.8 32.4 28.8 22.8 22.2

1 36.7 32.4 28.8 22.6 22.1

Table 4.4: Type discovery precision scores for the alignment complexity

buckets, and for the totality of the corpus (All buckets). Re-

sults in each of the rows are cumulative and use the Alignment

ANE thresholds indicated in the first column.

words in the discovered vocabulary from the rest. For achieving this, we again

evaluate our results for the type discovery task, but this time reporting results

for all three metrics (precision, recall and F-score).

The results for low-resource scenarios (5k setups only) in Table 4.5 suggest

that low ANE scores correspond to the portion of the discovered vocabulary

the network is confident about, and these are, in most of the cases, true

discovered lexical items (first row, P ≥ 70%).20 As we add higher Alignment

ANE values, we increase recall but lose precision. Still, for both languages

and at a given ANE threshold, we are able to reach a higher type discovery

F-score than by using the totality of the discovered vocabulary.

This suggests that, in a documentation setting, ANE could be used as

a confidence measure by a linguist to extract a list of generated types with

higher precision, without having to pass through all the discovered vocabulary.

In Table 4.6 we exemplify this by presenting top low and high ANE results

for our ranking using the EN 5k corpus.

Finally, in this work our focus lies on filtering the discovered types. How-

ever, as mentioned, our approach also retrieves the aligned information for

the generated lexicon (translation candidates), and we observe in Table 4.6

that at least half of the alignment pairs in the top 10 low ANE entries present

correct translations. We thus hypothesize that this aligned information could

be explored for other documentation tasks, such as semantic retrieval.

20Type ANE, instead of Alignment ANE, was also investigated for this task, and results

were positive, but slightly worse than the ones presented.
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EN 5K MB 5K

ANE (≤) P R F P R F

0.1 70.97 0.50 1.00 72.13 0.57 1.12

0.2 55.43 3.85 7.20 49.02 2.89 5.46

0.3 44.99 12.51 19.58 38.18 8.14 13.41

0.4 32.81 21.76 26.17 32.63 16.61 22.01

0.5 23.37 28.17 25.54 27.93 23.44 25.49

0.6 18.54 32.41 23.59 24.73 27.61 26.09

0.7 16.23 34.34 22.04 23.00 30.12 26.08

0.8 15.21 35.16 21.23 22.17 30.95 25.84

0.9 15.01 35.31 21.06 22.06 31.05 25.80

All 15.01 35.34 21.07 22.06 31.05 25.80

Table 4.5: Type discovery recall scores using Alignment ANE for keeping

the most confident (type, translation) pairs. Results in

each row are cumulative and use the Alignment ANE thresh-

olds indicated in the first column.

Top Low ANE Top High ANE

1 SER1 (sir, EOS token) AH0 (a, convenablement)

2 HHAH1SH (hush, chut) IH1 (INV, ah)

3 FIH1SHER0 (fisher, fisher) D (INV, riant)

4 KLER1K (clerc, clerc) N (INV, obéit)

5 KIH1S (kiss, embrasse) YUW1 (you, diable)

6 GRIH1LD (grilled, grilled) IH1 (INV, quen)

7 WUH1D (would, mennuierais) AE1T (at, laquelle)

8 HHEH1LP (help, aidez) Z (INV, bas)

9 DOW1DOW0 (dodo, dodo) YUW1P (INV, EOS token)

10 KRAE1BZ (crabs, crabes) L (INV, parfaitement)

Table 4.6: Top 10 low and high ANE ranking for the discovered types (EN

5k), with gold transcription and aligned information between

parentheses (respectively). “INV” means incorrect type.
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3.7 Discussion

In this section we investigated the use of three different seq2seq attention-

based NMT models for extracting the soft-alignment probability matrices we

use in our bilingual attention-based UWS pipeline. We perform experiments

across two different languages, and two different dataset sizes, using the true

phones in English (EN) and Mboshi (MB) as a topline for the speech dis-

cretization step.

Our UWS results show that the RNN model produces the most exploitable

soft-alignment probability matrices for our task in this low-resource setting,

and across different languages (EN and MB) and dataset sizes (33k and 5k).

Investigating the reasons for its quality, we scored syntactic divergence using

the FastAlign tool, finding that this model is able to produce exploitable

soft-alignment probability matrices even when sentence pairs are considered

to be very distinct.

However, compared to the strong baseline dpseg, the F-score for this RNN

model was inferior by 3 points. We still find these results encouraging, because

our model also retrieves bilingual alignments to root its segmentation, and

these can be used for many tasks.

Regarding the ANE metric, the UWS results were shown to be strongly

negatively correlated to Corpus ANE scores for all NMT models. This in-

forms us that this task-agnostic metric can be used to assess the quality of

the soft-alignment probability matrices we use in our pipeline. Moreover, we

illustrated that Alignment ANE can be used for filtering the generated vocab-

ulary, increasing type discovery scores.

Lastly, using two different target languages (EN and MB), we verified that

the supervision played a role in the quality of the segmentation obtained in

bilingual settings. In the next section we will investigate in depth the effect

of the bilingual supervision in our UWS pipeline.

4 Investigating Language Impact in the Bilingual

UWS model

After verifying that we are able to exploit soft-alignment probability matri-

ces from NMT models trained in low-resource settings, we now look at the

impact caused by having different languages as source (annotation, transla-

tion words) and target (unsegmented phones) in our bilingual attention-based

UWS pipeline. For this experiment, we use the eight languages from the

multilingual speech-to-speech MaSS dataset, presented in Chapter III.

We then create 56 bilingual models, seven per language, simulating the



4. Investigating Language Impact in the Bilingual UWS model 81

documentation of each language supported by different sentence-level aligned

translations. This setup allows us to investigate how having the same content,

but translated in different languages, affects our approach.21

The experiment is organized as follows. In Section 4.1 we detail our ex-

perimental setup, and in Section 4.2 we present segmentation and translation

results for all the language pairs. Based on these results, we investigate the

language impact by studying the language ranking obtained (Section 4.3),

analysing the discovered vocabulary (Section 4.4), and assessing alignment

confidence (Section 4.5). We present a final discussion in Section 4.6.

4.1 Experimental Setup

For this investigation, we train the RNN models as in the last section, but us-

ing the languages from the MaSS dataset (Section 4.1.1). The training regime

is summarizing in Section 4.1.2, and evaluation is detailed in Section 4.1.3.

4.1.1 Dataset

We use the MaSS dataset (Boito et al., 2020a) described in Chapter III.

This dataset provides multilingual speech and text alignment between all the

available languages: English (EN), Spanish (ES), Basque (EU), Finnish (FI),

French (FR), Hungarian (HU), Romanian (RO), Russian (RU).

As sentences in documentation settings tend to be short, we used RO as

the pivot language for removing sentences longer than 100 in number of tokens.

The resulting corpus contains 5,324 sentences, a size which is compatible with

the experiments performed in the last section (5,130 sentences).

For the phonetic transcription of the speech (target side of the pipeline),

we use the automatic phonetization from Maus forced aligner (Kisler et al.,

2017). The transformation from word graphemes (original) to phonemes re-

sults in an average vocabulary reduction of 835 types, the smallest being for

RO (396), and the most expressive being for FR (1,708).22 The phonetization

for the languages presents an average number of unique phonemes of 42.5. Ta-

ble 4.7 presents statistics for the text expressed as graphemes (original) and

as phonemes (from the phonetization performed).

21We highlight that we use a dataset of high-resource languages due to the lack of multilin-

gual resources in documentation languages that could be used to investigate this hypothesis.
22This difference depends on the distance between phonetic and graphemic forms for each

language.
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TEXT IN GRAPHEMES TEXT IN PHONEMES

#types #tokens
avg token

length

avg #tokens

per sentence
#types #tokens

avg token

length

avg #tokens

per sentence

EN 5,232 90,716 3.98 17.04 4,730 90,657 3.86 17.03

ES 8,766 85,724 4.37 16.10 7,980 85,724 4.30 16.10

EU 11,048 67,012 5.91 12.59 9,880 67,012 6.94 12.59

FI 12,605 70,226 5.94 13.19 12,088 70,226 5.97 13.19

FR 7,226 94,527 4.12 17.75 5,518 93,038 3.21 17.48

HU 13,770 69,755 5.37 13.10 12,993 69,755 5.86 13.10

RO 7,191 88,512 4.06 16.63 6,795 84,613 4.50 15.89

RU 11,448 67,233 4.66 12.63 10,624 67,176 6.19 12.62

Table 4.7: Statistics for the subset of 5,324 sentences of the MaSS corpus.

4.1.2 Training Regime

We replicate the training regime from Section 3.1 for the RNN model, and

for the baseline dpseg. Due to the considerable number of networks we need

to train for this experiment, and supported by the low standard deviation we

found for RNN models in the past, we reduce the number of runs per model,

training only two. This results in the training of 112 NMT models. Regarding

the data, 10% of the multilingual ids were randomly selected for validation,

and the remaining were used for training.23 This ensures all networks are

trained with the same parallel information, and are therefore comparable.

4.1.3 Evaluation Protocol

For this experiment, we evaluate results on the symbolic domain, instead

of using the ZRC evaluation protocol introduced in Section 2. We do so

because at the time of this experiment we encountered difficulties to produce

the reference necessary for speech-level evaluation using the MaSS dataset.

As the utterances for this dataset do not exactly correspond to sentences,

the average length is higher, and the computational memory cost of the ZRC

scripts becomes very elevated. As we wanted to avoid filtering the corpus

further for removing longer utterances, we opted for this form of evaluation.

Also, for these experiments, we evaluate the translation quality of the NMT

models by using the BLEU score (Papineni et al., 2002). This allows us to

investigate the correlation between UWS boundary results and the translation

quality of these models. This investigation extends our previous study (Boito,

2017), in which we noticed that the best soft-alignment probability matrices

were not necessarily produced by the best translation models.

23This is the same protocol applied for Section 3.
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Table 4.8: UWS Boundary F-score (left) and BLEU score (right) results

for all language pairs using the RNN model. The columns

represent the target of the segmentation, while the rows repre-

sented the translation language used. Darker squares represent

higher column scores. Best scores presented in bold. Better vi-

sualized in color.

4.2 UWS Results

UWS boundary F-score and BLEU score results are presented in Table 4.8.

The dpseg UWS F-score results for these languages are considerably higher:

82.4 (EN), 79.2 (ES), 81.0 (EU), 80.0 (FI), 78.1 (FR), 75.5 (HU), 82.0 (RO),

and 78.3 (RU).

We observe that segmentation and translation scores are strongly corre-

lated for all eight languages, with an average ρ-value of 0.94 (significant to

p < 0.05). Only one language (EU) presented correlation results (0.94) not

significant to p < 0.01, and we believe the general lack of segmentation perfor-

mance in this case could explain this result. Therefore, we conclude that higher

BLEU scores will correspond to better, directly exploitable, soft-alignment at-

tention matrices.

Looking at the segmentation results, we verify that, given the same amount

of data and supervision, the segmentation performance for different target

languages vary: EN seems to be the easiest to segment (69.1), while EU

is the most challenging to segment using our bilingual attention-based ap-

proach (38.4). We also notice that, following intuition, some languages are

more difficult to segment than others. In the following sections we investi-

gate the impact of the supervision language (source), and the vocabulary and

alignments obtained.
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4.3 Source Language Impact

For assessing the impact of the language chosen for the supervision (source)

in our bilingual UWS pipeline, we investigate the obtained language ranking

in terms of the best translation languages for a given target segmentation

language. Complementary to this, in the Appendix A we provide a study

comparing the obtained results to a bilingual segmentation baseline.

There, we use a bilingual proportional model for studying the relationship

between the UWS results and the ratio between the number of tokens per

sentence in source and target sequences. We observe a large gap of almost 20

F-score points between applying this simple proportional method and ours.

We conclude that, while statistical features might impact greatly low-resource

alignment and should be taken into account, relying only on them might result

in sub-optimal models.

Looking into the quality of the segmentation results (Table 4.8) and their

relationship with the language ranking, our intuition was that languages from

the same family would perform the best. For instance, we expected ES<>FR,24

ES<>RO, FR<>RO (Romance family) and FI<>HU (Uralic family) to be

strong language pairs. While some results confirm this hypothesis (FR>ES,

FI>HU, FR>RO), the exceptions are: EN>FR, RU<>FI and ES>EU.

For EN>FR, we argue that EN was ranked high for almost all languages,

which could be due to some convenient statistical features. Table 4.7 shows

that EN presents a very reduced vocabulary in comparison to the other lan-

guages. This could result in an easier language modeling scenario, which could

then reflect in a better alignment capacity of the trained model. Moreover,

for this and for RU<>FI models, results seemed to reproduce the trend from

the proportional baseline (Appendix A), in which these pairs were also found

to be the best. This could be the result of a low syntactic divergence between

the languages of these pairs.

Finally, the language isolate EU is not a good choice for segmenting any

language (worst result for all languages). Moreover, results for EU segmen-

tation are both low (F-score and BLEU) and very close to the proportional

baseline (average difference of 4.23), which suggests that these models were

not able to learn meaningful bilingual alignment.

4.4 Analysis of the Discovered Vocabulary

Next we study the characteristics of the vocabulary produced by the bilingual

models, focusing on the impact caused by the aligned translation. Table 4.9

24We denote L1>L2 as using L1 for segmenting L2. L1<>L2 means L1>L2 and L2>L1.
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Table 4.9: Type discovery recall scores for the bilingual-rooted UWS

models. The columns represent the target of the segmenta-

tion, while the rows represented the translation language used.

Darker squares represent higher row scores. Best (column)

scores presented in bold. Better visualized in color.

presents the type discovery recall scores of our bilingual models.25 This metric

gives us information about the percentage of the true vocabulary the bilingual

models were able to retrieve.

Looking at the rows, we see that FR>EN (58.5), FR>ES (50.6), ES>FR

(50.1), RO>FR (49.8) and EN>FR (47.9) are the setups which retrieve most

of the vocabulary, presenting the highest scores. The source for these mod-

els (FR, ES, RO and EN) are all fusional languages.26

We also notice that models for segmenting FI and HU (columns FI and

HU in Table 1.2) present very low type discovery recall scores overall. This

could be due to both languages accepting a flexible word order, thus creating

a difficult alignment scenario for low-resource settings.

Moreover, these languages, together with EU, are agglutinative languages.

This might be an explanation for the lack of performance in general for setups

using these languages as targets. In these conditions, the network must learn

to align many translation words to the same structure in order to achieve

the expected segmentation.27 However, sometimes over-segmentation might

be the result of the network favoring alignment content instead of phoneme

clustering.

Notwithstanding, the models for agglutinative languages are not the only

ones over-segmenting. Looking at the average token length of the segmenta-

25The boundary and F-scores results are presented in the Appendix A, Table 1.2.
26Fusional, or inflected, is the opposite of agglutinative, referring to languages in which

one morpheme form can simultaneously denote multiple grammatical, syntactic, or semantic

features.
27This is highlighted by the high average token length of the phonetic representation of

these languages in Table 4.7.
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Figure 4.7: Average token length of the best bilingual UWS models from

Table 4.8, dpseg, and reference.

tions produced in Figure 4.7, and supported by the overall low precision for

type discovery (Appendix A, Table 1.2), we verify that our bilingual models

tend to over-segment the output independent of the target language. This is

probably due to the challenge of clustering the very long phoneme sequences

into the many available source words (see statistics for words and phonemes

per sentence in Table 4.7).

Furthermore, the very definition of a word might be difficult to define

cross-linguistically, as discussed by Haspelmath (2011), and different lan-

guages might encourage a more fine-grained segmentation. For instance, in

Figure 4.8 we see the EN soft-alignment generated by the FR and ES bilin-

gual models for the same sentence. Focusing at the do not (du:nQt) at the

end of the sentence, we see that the ES model does not segment it, aligning

everything to the ES translation no. Meanwhile the FR model segments the

structure in order to align it to the translation ne pas. In both cases the

discovered alignments are correct however, the ES segmentation is considered

wrong. This highlights that the use of a segmentation task for evaluating the

produced alignment might be sub-optimal, and that a more in-depth evalua-

tion of source-to-target correspondences would be ideal.

4.5 Alignment Confidence

The approach we use for bilingual UWS produces alignments between source

and target languages. In this section we investigate how these alignments

vary in models trained using different translation (source) languages. This
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Figure 4.8: EN soft-alignment probability matrices generated by FR (left)

and ES (right) bilingual models. The squares represent align-

ment probabilities (the darker the square, the higher the prob-

ability). The EN phonemization (rows) correspond to the fol-

lowing sentence: “But because I tell the truth, you do not

believe me”.
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EN ES RU

1 galat (Galates, Galatians) Jo (INV, Cordero) Za∼(Jean, Иохан)

2 fam (Femmes, Wives) Zan (Jeanne, Juana) leHisie (les+huissiers, Служители)

3 Zyd (Jude, Jude) geRi (guéri, recuperará) galat (Galates, Галатам)

4 kaj (Käınan, Cainan) galat (Galates, Gálatas) n2f (neuf, 9)

5 filipje∼(Philippiens, Philippians) ?o∼z (onze, 11) maRk (Marc, Марк)

6 tR (INV, treacherous) ebR2 (Hébreux, Hebreos) matj2 (Matthieu, Матай)

7 lyk (Luc, Luke) man (manne, maná) saSe (sachez, Знайте)

8 kaR (car, main) duz (douze, 12) deklaR (déclare, Проповедуй)

9 sEt (Seth, Seth) afliZ (INV, afligidos) aza (asa, Аса)

10 bu (boue, mud) tREz (treize, 13) ami (amis, друзья)

Table 4.10: Top 10 low Alignment ANE ranking for FR models trained

with EN, ES and RU supervision. Each column brings the

discovered types with gold transcription and aligned informa-

tion between parentheses (respectively). “INV” means incor-

rect type.

extends the results from the previous section, that showed that models trained

on different languages retrieve a different percentage of the vocabulary. We

now aim to show that this difference in segmentation behavior comes from

the different source-to-target correspondences discovered by the models with

access to different languages.

We use the approach based on Alignment ANE from Section 3.6 for ex-

tracting the alignments the bilingual models are the most confident about. Ta-

ble 4.10 presents the top 10 low ANE (high-confidence) pairs for FR models

trained using 3 different translation languages (from Table 4.8, FR column).

The phoneme sequences are accompanied by their grapheme equivalents to

increase readability, but all presented results were computed over phoneme

sequences. The other translation languages were also omitted for readability

purposes.

We observe a different set of discovered types depending on the language

used, but it’s noticeable that all languages learn a fair amount of biblical

names and numbers, very frequent due to the nature of the dataset.28 This

highlights that very frequent types might be captured independently of the

language used, but that other structures might be more dependent on the

chosen language. We also notice the presence of incorrect alignments (the

word car (because) aligned to the word main), concatenations (the words les

huissiers (the ushers) became a single word), and incorrect types (INV in

28The chapter names and numbers are included in the dataset, with a total of 260 exam-

ples of “name, number” (e.g. “Revelation 2”).
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the table). This is to be expected, as these are automatic alignments.

Confirming the intuition that the models are focused on different informa-

tion depending on the language they are trained on, we studied the vocabulary

intersection of the models for the top 200 correct discovered types ranked by

alignment confidence. We observed that the amount of shared lexicon for the

sets is fairly small: the smallest intersection being of 20% (between EU and

RO), and the largest one being 35.5% (between RU and FI). In other words,

this means that the high-confidence alignments learned by distinct bilingual

models differ considerably. Even for models that shared the most, such as FI

and RU (35.5%), and HU and RU (34%), this intersection is still limited.

This shows that the bilingual models will discover different structures,

depending on the supervision available. This is particularly interesting con-

sidering that the content of the aligned information remains the same, and

the only difference between the bilingual models is the language in which the

information is expressed.

Moreover, this highlights how collecting data in multilingual settings (that

is, using more than one translation language) could enrich low-resource ap-

proaches. In the next chapter we present our attempts to integrate multilin-

gual information into our UWS pipeline.

4.6 Discussion

In language documentation scenarios, transcriptions are difficult to obtain. In

order to ensure the interpretability of the recordings, a popular solution is to

replace them by translations in high-resource languages (Adda et al., 2016).

However, while some work suggests that translations in multiple languages

may capture deeper layers of meaning (Evans and Sasse, 2004), most of the

produced corpora from documentation initiatives are bilingual. Also, there is a

lack of discussion about the impact of the language used for these translations

in posterior automatic methods.

In this section we investigated the existence of a language-dependent be-

havior in our bilingual UWS pipeline. We simulated such a scenario by using

the MaSS dataset for training 56 bilingual models, the combination of all the

available languages in that dataset. Our results show that in very low-resource

scenarios (only 5,324 aligned sentences), the impact of language can be great,

with a large margin between best and worst UWS results for every target

language. We also verified that the languages are not all equally difficult to

segment, but that this segmentation performance seems to be correlated to

the translation capacity of the corresponding NMT model.

Moreover, while some of our language ranking, in terms of best transla-

tion languages for segmenting a target language, could be explained by the
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linguistic family of the languages (FR>ES, FI>HU, FR>RO), we found some

surprising results such as ES>EU and EN>FR. We believe these are mostly

due to the impact of existing statistical features (e.g. token length ratio be-

tween source and target sentences, and vocabulary size), related to the corpus,

and not to the language features.

Finally, looking into the vocabulary produced by different bilingual models,

we verified that those trained with the same parallel information, but using

different languages to express that information, learned to focus on different

bilingual structures. We believe this highlights the importance of carefully

considering statistical and linguistic features for bilingual (and multilingual)

language processing pipelines.

5 Conclusions

In this chapter we introduced our bilingual attention-based UWS pipeline for

speech, which consists in two steps. The first step produces discrete speech

units using SD models. The second uses these units, together with sentence-

level word translations, to retrieve soft-alignment probability matrices from

NMT models. The soft-alignment information is then used for segmentation.

The experiments we presented in this chapter focused on the second step:

the task of bilingual alignment and segmentation. We investigated two im-

portant aspects that might impact its performance: (1) the attention-based

NMT model used for generating the soft-alignment probability matrices, and

(2) the language chosen for grounding the segmentation. In both cases, for

reducing noise, we experimented with the true phones (phonemes) of the lan-

guages. This corresponds to the topline performance for models using an

unsupervised discretization of the speech signal (full pipeline).

In our first experimental section, which corresponds to our work published

in Boito et al. (2019a) and Boito et al. (2021), we investigated the use of differ-

ent attention-based NMT models (RNN, 2D-CNN, Transformer) for producing

the source-to-target soft-alignment probability matrices we use for segmenta-

tion. We found the RNN model to be the most exploitable in low-resource

settings, reaching the best segmentation performance compared to the other

two novel attention-based NMT approaches.

We also introduced a task-agnostic metric to assess the degree of ex-

ploitability of the soft-alignment probability matrices produced by NMT mod-

els. This metric, Average Normalized Entropy (ANE), can be accumulated

across different representation levels (i.e. token, sentence, alignment, corpus).

We showed that Corpus ANE is strongly correlated to the segmentation perfor-

mance, and that Alignment ANE allows us to filter the generated vocabulary,
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increasing type discovery scores.

Our second experimental section, which corresponds to our work published

in Boito et al. (2020b), focused on the impact of language in our bilingual

segmentation. We used a multilingual corpus for segmenting a given language

supported by the same information in seven different languages. By varying

the target language, we produced 56 bilingual models, allowing us to clearly

verify the impact of the supervision in the generated segmentations.

Our results highlighted the existence of a relationship between language

features and the segmentation performance for our approach. We verified that

languages close in phonology and linguistic family scored better, while less sim-

ilar languages yielded lower scores. While we find that our results are affected

by linguistic features, we also believe that there is a non-negligible influence

from corpus statistic features which can greatly impact neural approaches in

low-resource settings.

The next chapter of this thesis studies extensions for the second step of

the attention-based UWS pipeline presented here. Chapter VI then presents

the SD step, and results for the complete pipeline, which works from speech.





Chapter V

Model Extensions for

Attention-based UWS

In the previous chapter, we presented our pipeline for bilingual attention-based

UWS from speech, and in low-resource settings. It is made of two different

parts: a Speech Discretization (SD) component, and a bilingual alignment and

segmentation component. Focusing on the latter, we investigated the impact

of using different attention mechanisms for producing bilingual alignment,

and we assessed the impact of the supervision’s language. Before presenting

in detail the SD step in Chapter VI, we focus on possible extensions for this

bilingual alignment and segmentation component, with the goal of increasing

UWS scores.

Inspired by documentation initiatives approaches, in Section 1 we inves-

tigate the leveraging of partial transcriptions from the bilingual corpus (i.e.

monolingual data), and in Section 2 we study the leveraging of boundaries

suggestions into the pipeline. Focusing on the training regime, in Section 3

we experiment with the extension proposed in Godard et al. (2019), in which

some word-length bias is introduced into the produced soft-alignment proba-

bility matrices during training. Finally, Section 4 presents some less successful

experiments regarding multilingual supervision for UWS, and Section 5 con-

cludes this chapter, summarizing our findings.

1 Monolingual Data Leveraging

One of the motivations for our work lies in the impossibility of expecting

extensive transcriptions for speech in low-resource settings, especially for oral-

languages. However, it is not uncommon for a small portion of the produced

documentation corpora to be manually transcribed and segmented. In these

cases, it might then be interesting to use this annotation as a way of informing

the UWS pipeline trained in bilingual settings.

In the past, we proposed to explicitly inject known segmentation into the

bilingual models (Boito et al., 2017). Hypothesizing that a given number of

types was known prior to training,1 we segmented all occurrences of these

1This information could correspond to the lexicon a linguist is able to acquire after a
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#sentences #types #tokens
avg token

length

avg tokens

per sentence

Monolingual Set 1,000 2,159 5,934 4.20 5.93

Bilingual Set 4,130 5,812 24,622 4.18 5.96

All 5,130 6,633 30,556 4.18 5.96

Table 5.1: Statistics for the MB transcriptions for both sets, as well as for

the totality of the corpus (All). The monolingual and bilingual

sets have a type intersection of 1,338.

types, training networks in a mixed representation setting (characters and

words in the decoder side). While we achieved a marginal performance in-

crease in that setting, we find this option to be sub-optimal, as sub-word

information is potentially lost.

Different from that, we now propose pretraining the NMT models from

our pipeline on monolingual data, made of phones and their word-level tran-

scriptions. This is a form of warming up the network. We hypothesize that a

decoder trained in monolingual settings for a subset of the data is potentially

better informed, and that it might perform better on the remainder of the

corpus (bilingual setting).

We highlight that this experiment does not correspond to simply training

a bilingual model using as starting point the monolingual ones presented in

Chapter IV. This is because the monolingual models presented so far have

access to transcriptions for the totality of the corpora, not corresponding to

the real scenario of UWS. Instead, for this experiment we train monolingual

models using only a fraction of the total dataset, in order to leverage a limited

amount of monolingual supervision into the bilingual pipeline.

1.1 Experimental Setup

Dataset. As in the last chapter, we use the Mboshi-French (MB-FR) parallel

corpus, randomly selecting 1,000 sentences for which we consider we have

access to the transcription. We call this the monolingual set, while the other

4,130 sentences correspond to the bilingual set. For training, we maintain

the data protocol from the last chapter, keeping 10% of the sentences for

validation, and the rest for training. Table 5.1 presents some statistics for

both sets.

few days of exchange with the local community.
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Units (target) <mono> phn16 phn35 phn26 phn16 phn27 phn16 phn49 phn31 phn47 phn30 phn35 phn8 phn35 phn6 phn55

Transcription (source) bána bo báatúsá ambángé

Units (target) <bi> phn16 phn35 phn26 phn16 phn27 phn16 phn49 phn31 phn47 phn30 phn35 phn8 phn35 phn6 phn55

Translation (source) les enfants sont en train de cueillir les mangues

Figure 5.1: An example of the same target sequence, with its monolin-

gual (<mono>) and bilingual (<bi>) aligned source informa-

tion. Note that the tags are inserted at the decoder (target).

Training regime. We use our best NMT model (RNN), training each step for

one third of the total number of epochs. We train2 5 runs using the MB-FR

corpus, as in last chapter, and average the soft-alignment probability matrices

obtained.

In preliminary experiments, we tried to apply a regular pretraining regime,

training the bilingual network on top of the one trained with the monolingual

subset. This however did not result in any benefit in the final model. We

hypothesize that this happens because the monolingual subset is considerably

smaller than the bilingual one.

We thus propose to train our models in three steps. First, we train the

model using only the monolingual set (1st step), made of word transcriptions

aligned to the unsegmented phones. Following this, the model is trained with a

mixed input (2nd step), made of 1,000 sentences from the monolingual set, and

the 4,130 remaining sentences with bilingual alignment only (bilingual set).

Finally, in the 3rd step we remove all transcriptions, and the network is trained

fully in bilingual settings. This includes training on the 1,000 sentences from

the monolingual set, but replacing their transcriptions by their translations

Target side tags. We adapt our representation to include language tags in

the target side (units), as in Johnson et al. (2017). This is necessary because

the encoder annotations will vary by encoding transcriptions or translations.

The tags in the target side are thus a way of better informing the decoder

network of the type of source annotation it will attend to.

We use two language tags, <mono> and <bi>, for denoting unsegmented

phones aligned to transcriptions and translations, respectively. These tags

are added to the beginning of every sentence. In preliminary experiments, we

noticed that including them increased our UWS scores. Figure 5.1 presents

an example of the different supervision forms one sentence in the dataset can

have.

2Other model settings, such as the training loss and hyperparameters, remain the same

for all three steps.
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Boundary Type

P R F P R F

Base Model 72.3 75.9 74.0 21.6 28.8 24.7

1st step (monolingual) - - - 29.4 17.7 22.1

2nd step (mixed) 77.0 77.8 77.4 29.8 38.7 33.7

3rd step (bilingual) 74.1 75.4 74.8 23.1 30.2 26.2

Table 5.2: UWS Precision (P), Recall (R), and F-score (F) for the dis-

covered boundaries and types. The Base model corresponds

to the RNN result obtained in Chapter IV. All segmentations

are scored over the totality of the corpus (5,130 sentences),

including type results for the 1st step.

1.2 Results

Table 5.2 presents UWS boundary and type discovery results computed over

the totality of the bilingual corpus using the ZRC reference. Boundary results

for the 1st step (1,000 sentences) are not reported, as they are not compa-

rable.3 Regarding type discovery scores for the 1st step, these correspond to

51.7 (P), 56.2 (R) and 53.8 (F) when scoring over the monolingual set only.

Looking at the results, we notice that the 2nd step achieves the highest

boundary and type discovery scores, compared to other models trained on

the full corpus (base and 3rd step). Then, by removing the monolingual

information from this warmer model, the boundary and type scores go down.

Even so, type scores for the 3rd model are superior compared to the base

model. This hints that some of the pretraining information is still helping the

model at this stage.

Regarding this decrease in boundary scores at the 3rd step, we experi-

mented replacing it by a different model, which combined the totality of the

bilingual corpus (5,130) and the monolingual set (1,000). Results for this net-

work trained with 6,130 parallel sentences were not significantly different from

the ones obtained using only the bilingual information (base).4

We believe this happens because once the network learns the alignments

for the monolingual subset, adding their translations might lead to alignment

3While the vocabulary discovered by a subset can be compared against a larger one,

directly comparing boundary scores generates an anomaly in precision scores.
4Evaluation settings were kept constant, scoring over the 5,130 sentences.
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confusion. In this setting the same target sequence is aligned to different

source information at different training steps. The same could also explain the

performance drop between the 2nd and 3rd steps. We had hypothesized that

the language tags would serve as enough guidance for the decoder network,

but we might still be limited by the number of available examples.

About the training regime adopted, we experimented giving each step the

totality of training steps from the base model, noticing that having too many

epochs for the 1st and 2nd steps resulted in inferior UWS performance.5 We

also experimented removing the 1st step, and directly training the network

with the mixed representation (2nd step), again noticing a significant decrease

in performance.

In summary, our results suggest that it is beneficial to replace translations

by their transcriptions, when these are available, and that it is possible to

train our pipeline with this mixed representation. The vocabulary produced

in this case (2nd step) seems to benefit from the monolingual supervision,

while not being limited by it: it reached higher type recall scores than both

monolingual (1st step) and bilingual models (3rd step).

2 Hybrid Bayesian-Neural Model

In the last chapter we showed that our best model for bilingual attention-based

UWS did not surpass dpseg’s performance working with the true phones.

However, although inferior in segmentation performance, our bilingual model

has the advantage of incorporating annotations to the segmentation it pro-

duces. In this section we present a simple way of combining both approaches

by creating a hybrid model which takes advantage of this Nonparametric (NP)

Bayesian model’s ability to correctly segment from small data while jointly

producing translation alignments.

This investigation is inspired by the fact that several intermediate segmen-

tations might be manually produced by linguists during language documen-

tation. We then question if segmentation hypotheses, in this case represented

by dpseg’s segmentation, could be included into our pipeline. In this sce-

nario, a linguist could use the output of our model for validating their word

hypotheses.

5We find that the NMT models get forgetful about the initial information (monolingual

supervision) as we increase the training time.
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2.1 Experimental Setup

Hybrid model. We inject dpseg’s segmentations into the unsegmented phone

sequences, input of our NMT model. In this augmented input representation,

illustrated in Figure 5.2, a boundary is denoted by a special token (#) which

separates the words identified by dpseg. We call this soft-boundary insertion,

since the dpseg boundaries inserted into the phone sequence can be ignored by

the NMT model, and new boundaries can be inserted as well. For instance,

in Figure 5.2 aintrat becomes a intrat (boundary insertion), and urat

debine becomes uratdebine (soft-boundary removal).

Training regime. The experimental protocol is the same from Section 1: we

train 5 runs using the MB-FR corpus, and we average the produced soft-

alignment probability matrices prior to segmentation. The soft-boundary to-

kens (#) are removed before UWS evaluation.

Syntactic Divergence. For understanding the impact of the soft-bounda-ries

on the discovered soft-alignment probability matrices, we once again assess

the relationship between type precision and the syntactic divergence of the

sentences. We know from the last chapter that our model is more precise

when segmenting sentences with low syntactic divergence. Now we want to

investigate if including the soft-boundaries impacts this behavior. For this in-

vestigation we use the alignment complexity buckets produced in Chapter IV.

An example of sentence pair for each bucket is presented in Figure 5.3.

2.2 Results

Table 5.3 presents UWS results for the RNN model (base) and dpseg from the

last chapter, and for the proposed hybrid model. We notice that the hybrid

model has a performance comparable to dpseg for boundary scores, and that it

produces a better vocabulary (higher type discovery scores). This shows that

the NMT model is learning to leverage the soft-boundaries from dpseg into the

discovered alignment, instead of simply forcing a pre-established segmentation.

This information leveraging can be observed in the example of soft-align-

ment probability matrices produced by the hybrid model in Figure 5.3. There,

some of the soft-boundaries (#) are ignored, with the phones next to them be-

ing aligned to the same translation word. We believe that the flexibility of not

forcing a segmentation, and yet informing the model about possible bound-

aries, might be the reason why this setup successfully increased boundary and

type discovery scores over the base model.
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Figure 5.2: An illustration of the hybrid model using a sentence from

the EN-RO language pair from the MaSS Corpus. The NP

Bayesian model (dpseg) receives the unsegmented phonemes,

producing segmentation. The discovered boundaries are then

replaced by a special token (#), and bilingual alignment and

re-segmentation are jointly performed.

Boundary Type

P R F P R F

Base Model 72.3 75.9 74.0 22.1 31.0 25.8

dpseg (unigram) 71.9 82.8 77.0 21.1 30.0 24.8

Hybrid Model 72.5 81.1 76.5 28.0 33.9 30.7

Table 5.3: UWS boundary and type discovery scores for the RNN (base)

and dpseg models from Chapter IV, and for the hybrid model.



100 Chapter V. Model Extensions for Attention-based UWS

Figure 5.3: Soft-alignment probability matrix heatmaps for hybrid models

trained on sentences from the MB-FR corpus. Darker squares

correspond to higher pair alignment probability. The exam-

ples are ordered, from left to right, by alignment complexity

buckets. The # is the soft-boundary symbol.



2. Hybrid Bayesian-Neural Model 101

#types #tokens
avg token

length

avg #tokens

per sentence

Reference 6,633 30,556 4.2 6.0

dpseg (unigram) 2,343 37,458 2.5 7.3

Base Model 10,951 32,067 3.0 6.3

Hybrid Model 9,412 35,693 2.7 6.9

Table 5.4: General statistics for the produced segmentations.

Table 5.4 presents some statistics for the produced segmentations. We ob-

serve that all models, especially dpseg, over-segments the input, compared to

the reference (higher number of tokens, and smaller average token length).

Regarding vocabulary (number of types), we see that including the soft-

boundaries helped our model reduce its size. There is a difference of 1.539

types between base and hybrid models.

Moreover, the neural approaches (base and hybrid) have a higher Type-

to-Token Ratio (TTR), compared to dpseg. This means that in these models,

types are not as often reused as it occurs in the NP Bayesian model. In fact,

the dpseg’s implementation explicitly constrains the produced vocabulary,

stimulating the reuse of the discovered units. In contrast to that, the neural

models do not have any form of global vision over the produced alignments,

and instead segmentation is produced at the sentence-level. This can result

in excessively large lexicons being produced.

We now present type discovery precision for the syntactic buckets in Ta-

ble 5.5, providing the difference between these and the scores obtained for

the base model in Table 4.4, Chapter IV. We notice an expressive difference

in type precision, compared to the base model. The augmented input repre-

sentation seems to help this model especially for the intermediate buckets (2

and 3). This is interesting because it shows that the model gained capacity

aligning more challenging sentence pairs.

In summary, we observed that we were able to successfully incorporate

soft-boundaries into our attention-based UWS model, and that these resulted

in a better vocabulary (Table 5.3 and 5.4), and capacity dealing with divergent

sentence pairs (Table 5.5). However, this did not result in better boundary

scores.

We also still need to investigate if this setup is feasible in the speech

setting, working from discrete speech units from SD models. This is because,
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ANE (<) Bucket 1 Bucket 2 Bucket 3 Bucket 4 All buckets

0.2 82.0 (+13.3) 66.7 (+7.4) 69.0 (+12.5) 73.3 (+25.5) 64.5 (+15.5)

0.4 59.3 (+14.5) 55.4 (+14.1) 51.3 (+13.2) 45.6 (+13.8) 45.9 (+13.2)

0.6 47.9 (+9.6) 44.6 (+10.2) 40.8 (+10.2) 33.7 (+8.4) 32.7 (+8.0)

0.8 43.9 (+7.1) 40.7 (+8.2) 37.1 (+8.3) 29.2 (+6.4) 28.2 (+6.0)

1 43.7 (+7.0) 40.2 (+7.8) 36.9 (+8.1) 28.9 (+6.3) 28.0 (+6.0)

Table 5.5: Precision type discovery scores for the alignment complexity

buckets, and for the totality of the corpus (All buckets), by

using the matrices produced by the hybrid model. Results are

cumulative and use the Alignment ANE thresholds indicated in

the first column. The difference between the obtained scores

and the ones from the base model (Table 4.4, Chapter IV)

is displayed between parentheses. The buckets from 1 to 4

correspond to increasing alignment complexity scenarios (4 is

the hardest).

the unsupervised discretization tends to be considerably longer than a manual

phonetization, and then including soft-boundaries in that scenario might be

too challenging in low-resource settings.

Lastly, we also applied this hybrid approach to the language pairs from the

MaSS corpus, complementing the investigation of language impact presented

in the last chapter. Our results showed that the target language affects the

degree of acceptance of the soft-boundaries, with different languages having

different degrees of overlap between the lexicon discovered by both dpseg and

the hybrid model. Results are presented in Boito et al. (2020b) and in the

Appendix B, Section 1.

3 Word-length biased NMT Training

In the last section we showed that the vocabulary produced by our model

tends to be large. The lack of bias towards token length and reusability

results in overly short or long tokens, fruit of, respectively, a very dispersed or

clustered soft-alignment. Inspired by that, Godard et al. (2019) extended our

attention-based UWS approach, proposing the constraining of the attention

mechanism with a word-length bias during training. In this section we provide

a comparison between their model and ours.
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3.1 Model Definition

There are two differences from the neural model from Godard et al. (2019)

to the one we use in this thesis. The first is the attention mechanism im-

plementation (Equation 2.3, Chapter II), which they modify for including a

bias towards longer words. They define attention over the source words as

in Equation 5.1, where γ is a monotonically increasing function of the source

word’s length given by |wj|. This modification is similar to the idea of pro-

portional segmentation we proposed as a baseline in the last chapter: longer

translation words should be aligned to more phone units than shorter words.

ct = Att(H, st−1) =

|s|∑
j=1

γ(|wj|)αi,jhj (5.1)

The second distinct feature from this model is the introduction of an aux-

iliary loss. Its goal is to control the number of words an alignment produces

on the target side, encouraging it to become closer to the number of words

in the source sentence. This is illustrated in Equation 5.2, where |s| and |t|
are respectively the length of source (word-level) and target (phone-level) sen-

tences. The last term sums over all target phones, resulting in a high value

if there are few alignment shifts. This is because, if two consecutive phones i

and i+ 1 are most strongly aligned to the same source word, then multiplying

their alignment distributions αi,∗ and αi+i,∗ will result in a value close to one.

LAux(Ω|w) = ||t| − |s| −
|t|−1∑
i=1

αTi,∗αi+1,∗| (5.2)

3.2 Experimental Setup

We train the model from Godard et al. (2019), using their implementation

and the MB-FR corpus. We follow the same experimental protocol from the

last sections, training 5 runs per model, and averaging the soft-alignment

probability matrices before scoring.

3.3 Results

Results for the base and for the word-length biased model from Godard et al.

(2019) are presented in Table 5.6. We notice a slight performance gain using

the proposed modification. Similar results were reported in Godard et al.

(2019).

We believe that one possible drawback of the Godard et al. (2019) model is

the over-constraining of the produced alignment: it forces the amount of words
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Boundary Type

P R F P R F

Base Model 72.3 75.9 74.0 22.1 31.0 25.8

Godard et al. (2019) 78.2 72.4 75.2 24.0 29.9 26.6

Table 5.6: UWS Boundary and Type scores for the RNN (Base) and word-

length biased model.

#types #tokens
avg token

length

avg #tokens

per sentence

Reference 6,633 30,556 4.2 6.0

Base Model 10,951 32,067 3.0 6.3

Godard et al. (2019) 11,406 26,001 3.7 5.0

Table 5.7: General statistics for the produced segmentations.

produced to be close to the number of source translation words available, which

potentially reduces the flexibility of the attention mechanism. For instance,

in the third example in Figure 5.3, we see that some source words are almost

completely ignored. As mentioned before, this might need to happen when

source and target languages differ syntactically.

Regarding vocabulary, the statistics for the produced segmentations are

presented in Table 5.7. We notice that the vocabulary for this word-length

biased model is actually larger than than ours, and that the number of gen-

erated tokens is considerably smaller. This shows that, while forcing this

source-to-target equivalence can help with over-segmentation (producing less

tokens), it does not necessarily help reduce vocabulary size. This is because

both models still suffer from a lack of constraining regarding the reuse of the

discovered structures.

4 Multilingual Supervision for UWS

In the last chapter we trained bilingual models for the 8 languages from the

MaSS dataset (56 bilingual pairs). During those experiments, we noticed

that by choosing a different language for the supervision, the bilingual models
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had the tendency to focus on different information. Thus, a natural exten-

sion would be to incorporate multilingual supervision during the training, for

capturing these different structures using a single model. In this section we

explore a multilingual model for our attention-based UWS approach.

There are multiple forms of creating a multilingual structure for NMT

(Dabre et al., 2020). Here we focus on the many-to-one multilingual scenario,

which corresponds to using one anchor language as target, training a single

multilingual encoder structure made of different source languages (Johnson

et al., 2017; Arivazhagan et al., 2019). The challenge of this type of approach

lies in the network size, as the final model needs to have higher capacity than

its bilingual equivalent.

4.1 Experimental Setup

Dataset. We use the MaSS dataset, training 8 multilingual models, which

one with 7 source languages and one target language. This results in 36,638

parallel sentences.

Training Regime. We train the RNN NMT models, as in the previous sec-

tions, but with the multilingual setup from Johnson et al. (2017). That is,

we add language tags in the decoder side, and we share the same encoder for

all source languages.6 For accommodating the larger vocabulary, we use the

hyper-parameters from the 33k setup from the last chapter.7

Evaluation. We extract the soft-alignment probability matrices for every

bilingual pair inside the multilingual model, scoring UWS in the symbolic

domain, as in Section 4.1.3, Chapter IV. Therefore, we still produce bilingual

segmentation, but using a NMT model trained with multilingual supervision.

4.2 Results

Table 5.8 presents our UWS results after bilingual (yellow, left) and multilin-

gual (blue, right) NMT training. The former is included in order to facilitate

comparison: results are the same from Chapter IV.

We notice that all our 8 multilingual models are worse than their bilingual

counterparts. This trend is the same for BLEU scores, with all multilingual

6In preliminary experiments, we trained multi-encoder NMT models as well. We found

worse results that we attribute to the larger number of parameters.
7We experimented with Byte-Pair Encoding (Sennrich et al., 2016) for source vocabulary

reduction, but this resulted in worse UWS results. We hypothesize that increasing the source

sequence length causes over-segmentation.
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Table 5.8: UWS Boundary F-score results for bilingual (left) and multi-

lingual (right) UWS models. The bilingual results are the same

from Table 4.8. Darker squares represent higher column scores.

Best scores presented in bold. Better visualized in color.

models displaying lower translation capacity. This could be an indication that

the number of languages and the size of the dataset used are incompatible with

a multilingual setting, even for this lighter scenario in which all languages

share the same encoder.

Another hypothesis would be that some of the languages are too dissimilar

to share an encoder (e.g. RU and FR). Nonetheless, we also experimented

with multilingual models with fewer source languages (from 3 to 6), and with

models using only languages from the same language family (i.e. ES, FR and

RO). Results in all cases were lower than the ones presented.

Moreover, we also investigated methods for combining multilingual super-

vision after training, merging the information learned by different bilingual

models for the same target language. Our results, presented in Appendix B,

Section 2, did not represent a clear improvement over the bilingual baseline.

Thus, we conclude that the use of multilingual information, especially in

low-resource settings, is a difficult task, requiring a high degree of optimization

and model expertise. Due to the negative results we obtained with the models

presented in this section, we did not invest further in this direction.

5 Discussion

In this chapter we presented some extensions for our bilingual attention-based

UWS pipeline. The first two models (monolingual pretraining and hybrid) fo-

cused on the case of extra supervision which could be leveraged during train-

ing. We also compared the word-length biased NMT model (Godard et al.,

2019) to our base approach. Results for these three models were presented
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Boundary Type

1 Base Model (RNN) 74.0 24.7

2 dpseg (unigram) 77.0 24.8

3 Pre-trained Model (2nd step)* 77.4 29.8

4 Hybrid Model 76.5 30.7

5 Word-length Biased Model 75.2 26.6

∗ The model uses monolingual supervision.

Table 5.9: Boundary and Type UWS F-scores for base model (1), dpseg

segmentation baseline (2), and the proposed model exten-

sions (3-5).

in Boito et al. (2021). Lastly, we also presented some attempts to leverage

multilingual information into our pipeline.

Focusing on the first three models presented, Table 5.9 presents a summary

of their performance using the MB-FR corpus.8 Looking at the assembled

results, we notice that all modifications improved upon the base model, and

some upon dpseg.

However, we highlight that although results for the pretrained model are

the best ones in terms of boundary scores, this model uses monolingual su-

pervision, whereas all other extensions depend on bilingual supervision only.

Because of that, we find the hybrid model to be the most promising from the

proposed extensions.

About this model, our general impression is that the gain in performance

is due to the soft-boundaries helping the model to avoid under-segmentation.

However, in this case, it is still unclear how dependent on the quality of the

soft-boundaries (in terms of precision) the final model is. That is: if the dpseg

performance is not as good as the one presented, can its soft-boundaries still

help the neural model? In the next chapter we will address this research

question.

Lastly, inspired by the notion that multiple translations could be a form

of capturing deeper layers of meaning (Evans and Sasse, 2004), we also in-

vestigated the incorporation of multilingual supervision to our pipeline. Our

8We highlight that throughout this chapter we do not present Corpus ANE scores for

the different models, as these are not comparable due to differences in: vocabulary (tag

insertion for pretrained model and soft-boundaries for the hybrid model) and training pro-

cedure (attention mechanism for word-length biased model).
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results, however, were not very encouraging, and we leave further exploration

of this research branch as future work.



Chapter VI

Attention-based UWS for Speech

In this thesis we propose a bilingual attention-based pipeline for Unsupervised

Word Segmentation (UWS) from speech, presented again in Figure 6.1. This

pipeline has two steps: Speech Discretization (SD), and bilingual alignment

and segmentation. So far, we focused on the second part of our pipeline,

evaluating it using the true phones in the target languages (Chapters IV and

V). This setting corresponds to a topline compared to using the discrete

speech units generated by the unsupervised SD task.

Thus, after validating our approach working from the true phones, and

in low-resource settings, we now focus on incorporating the SD step into the

pipeline. Working from speech, we expect the input sequences for NMT train-

ing, which will come from the SD models, to have some noise. We are then

interested in assessing how much our UWS performance deteriorates, in spe-

cial against the robust dpseg.

This chapter is organized as follows. In Section 1 we study and compare

the discrete speech units (also called pseudo phones) generated by five different

SD models in low-resource settings. In Section 2 we then present results for

our pipeline on its intended setting: bilingual attention-based UWS starting

from a parallel corpus made of speech utterances and their textual transla-

tions. There, we compare our UWS results against the dpseg baseline and by

using five different language pairs, investigating the quality and generalization

capacity of the proposed approach. Finally, in Section 3 we study the use of

the soft-boundaries from the dpseg model for increasing UWS results (hybrid

model), and in Section 4 we discuss our results, concluding the chapter.

Lastly, our pipeline for bilingual attention-based UWS from speech was

first presented in Godard et al. (2018c). There, we presented results using

the RNN model from Chapter IV and the HMM SD model from Ondel et al.

(2016). In this chapter, we revise and update that work, by including other

four SD approaches, and five different languages.1

1The work presented in this chapter was submitted to Interspeech 2021, with the col-

laboration of Bolaji Yusuf and Lucas Ondel, from the Brno University of Technology. We

thank them for all their help and expertise in SD models.
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Figure 6.1: The general bilingual speech UWS pipeline. It requires as

input a parallel dataset made of speech and sentence-level

aligned translations. The system outputs word-level segmen-

tation over the speech utterances. Units at the end of the first

step correspond to the discrete speech units.

1 Comparing SD Approaches in Low-resource Set-

tings

In Chapter II we described five models for SD. From these, three are Bayesian

HMM-based approaches: HMM (Ondel et al., 2016), SHMM (Ondel et al.,

2019) and H-SHMM (Yusuf et al., 2020). The other two are neural architec-

tures inspired by Vector Quantization (VQ): VQ-VAE (van den Oord et al.,

2017) and VQ-WAV2VEC (Baevski et al., 2020a).

In this section we study the discrete representation produced by them

using the Mboshi language. Section 1.1 explains the optimization and train-

ing regime for these different models, and Section 1.2 presents the generated

discretization, discussing what makes them exploitable as a direct input for

text-based UWS models.

1.1 Experimental Protocol

For the models presented in this chapter, the optimization is focused on the

Mboshi-French parallel corpus, which is made of 5,130 utterances, correspond-

ing to 4.28 hours of speech. Sections 1.1.1 and 1.1.2 present the training

settings for Bayesian HMM-based and VQ-based models respectively. Sec-

tion 1.1.3 explains the post-processing using silence labels.

1.1.1 Bayesian HMM-based Models

The Bayesian HMM-based models are trained with 4 Gaussians per HMM

state, and using 100 for the Dirichlet process’ truncation parameter. SHMM

and H-SHMM use an embedding size of 100. For the H-SHMM models, this

embedding is 7-dimensional (one per language).
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(a) HMM: Discrete speech units (top), and reference (bottom).

(b) SHMM: Discrete speech units (top), and reference (bottom).

(c) H-SHMM: Discrete speech units (top), and reference (bottom).

Figure 6.2: Discrete speech unit segmentation for the same Mboshi utter-

ance by each HMM-based SD system. The black lines denote

the true boundaries, and the dashed white lines denote the

discrete speech units’ boundaries discovered by each system.

The subspace estimation for SHMM and H-SHMM uses the following

languages: French, German, Spanish, Polish from the Globalphone corpus

(Schultz et al., 2013), as well as Amharic (Abate et al., 2005), Swahili (Gelas

et al., 2012) and Wolof (Gauthier et al., 2016) from the ALFFA project (Be-

sacier et al., 2015). For each language, a subset of 2-3 hours is used, resulting

in approximately 19 hours.

Further details for these three architectures are presented in the original

papers (Ondel et al., 2016, 2019; Yusuf et al., 2020). The authors provided

us with the trained models.2 Figure 6.2 presents the representation produced

by the HMM-based models for a given utterance, compared to the phonetic

reference (true phones).

2Implementation available at: https://github.com/beer-asr/beer/tree/master/

recipes/hshmm

https://github.com/beer-asr/beer/tree/master/recipes/hshmm
https://github.com/beer-asr/beer/tree/master/recipes/hshmm
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1.1.2 VQ-based Models

For these models, we find that the direct application of their output to text-

based UWS is challenging. This is because these self-supervised models tend

to be quite inconsistent between consecutive predictions for the default 10

milliseconds window, and therefore the speech discretization produced for the

utterances tends to be quite long in number of units.

These long unit sequences are then challenging to process and segment by

both our attention-based approach and dpseg’s. For ours, it is because longer

sequences are harder to cluster during bilingual alignment. For dpseg, it is

due to an implementation hard limit for sequence size, which we were unable

to circumvent. Because of that, our optimization focused in producing smaller

sequences, sometimes in detriment to the size of the units vocabulary.3

VQ-VAE: The optimization of this model4 for the Mboshi dataset was per-

formed in Yusuf et al. (2020). The encoder is composed of 4 bidirectional

LSTM layers, each with output dimension 128 followed by a 16-dimensional

feed-forward decoder with one hidden layer. The number of discovered units

(quantization centroids) is set to 50. This setting is unusually low, correspond-

ing to less than a half of the standard value of 128, but this helps reduce the

length of the generated sequences. Training is performed with Adam with an

initial learning rate of 2 × 10−3, which is halved whenever the loss stagnates

for two training epochs. Finally, for the `2 losses, k1 = 2 and k2 = 4 are used.

VQ-WAV2VEC: This model5 was optimized starting from the settings pro-

vided for the small model in Baevski et al. (2020a), and using the EN 33k

corpus from Chapter IV. The final model is trained on Mboshi, and it keeps

the kernel sizes and strides from the original implementation, but uses only

64 channels, residual scale of 0.2, and warm-up of 10k. For vocabulary, we

experimented having both 4 variables, resulting in 16 total units (V16), and

6, resulting in 36 units (V36). Larger vocabularies resulted in sequences that

we were unable to apply to text-based UWS.

We also experimented reducing the representation by using Byte Pair En-

coding (BPE) (Sennrich et al., 2016), hypothesizing that phones were being

modeled by a combination of different units. In this setting, BPE serves as a

method for identifying and clustering these patterns. Surprisingly, we found

3Reducing the vocabulary is a way of forcing the model to be more consistent during

prediction, as there are less options to choose from.
4Implementation available at: https://github.com/BUTSpeechFIT/vq-aud
5Implementation available at: https://github.com/pytorch/fairseq/tree/master/

examples/wav2vec

https://github.com/BUTSpeechFIT/vq-aud
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
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(a) VQ-VAE: Discrete speech units (top), and reference (bottom).

(b) VQ-WAV2VEC V=16: Discrete speech units (top), and

reference (bottom).

(c) VQ-WAV2VEC V=36: Discrete speech units (top), and

reference (bottom).

Figure 6.3: Discrete speech unit segmentation for the same Mboshi utter-

ance by each VQ-based SD system. The black lines denote

the true boundaries, and the dashed white lines denote the

discrete speech units’ boundaries discovered by each system.

that using BPE resulted in a decrease in UWS performance, which shows that

the VQ-WAV2VEC model is not very consistent across utterances during la-

beling process.

Lastly, Figure 6.3 presents the representation produced by VQ-based mod-

els to a given utterance, compared to the phonetic reference. This figure is

directly comparable with the example for HMM-based models (Figure 6.2).

1.1.3 Silence Post-processing

We experiment with reducing the representation by removing units predicted

in silence windows according to the reference. This kind of annotation is

inexpensive to obtain, and can be extracted from popular speech visualization

tools such as Praat (Boersma, 2001). Moreover, this is an effective method
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for reducing the length of the sequences from unsupervised models, letting us

focus only on the units predicted at relevant segments, which correspond to

true speech. Before UWS evaluation, the silence windows are reintroduced to

ensure that their segmentation boundaries are taken into account.

1.1.4 Evaluation

We compare the discrete representation generated by the five SD models by

focusing on two aspects: (1) their boundary recall over the words, and (2) their

general statistics. Regarding (1), we decided to use the recall metric over the

target words because, during our discretization process, we do not force our

discretization to mimic the phonemes in the reference. For instance, one SD

model can choose to use a sequence of units to represent one single phoneme,

or describe the realization of two consecutive ones by one single unit.

In this setting, the most important thing is to reduce the cases where a

word boundary is collapsed by the proposed discretization. This would result

in noise for the UWS task, since some boundaries would be impossible to

retrieve (loss of information).

Finally, regarding (2), the general statistics over the output representations

will give us information about their degree of expressiveness (number of differ-

ent units used to describe the utterances) and conciseness (average length of

the sequences generated). We highlight that all evaluation is performed after

merging consecutive 10ms windows that share the same unit prediction.

1.2 Resulting Representation

Table 6.1 presents the word boundary recall of the different representations.

Table 6.2 summarizes the statistics for the obtained sequences.

For VQ-based models, we find that their very high boundary recall in

Table 6.1 can be explained by the very long sequences that these models

generate. This is because, by producing less clustered units, the probability

of missing a boundary is smaller. Indeed, their average number of units per

sequence are 3.4 (VQ-VAE) and 4.3 (VQ-WAV2VEC V16) times higher than

the reference (Table 6.2). In this setting, adding the silence seems to reduce

considerably the length of the sequences. Even so, comparing them against

the HMM-based models, we see that the VQ-based sequences are not very

concise, which might represent an issue in posterior UWS.

Regarding the HMM-based models, we observe that they are very con-

cise, reaching a representation close to the reference even before silence post-

processing (Table 6.2). Moreover, looking at Table 6.1 we see that this con-

ciseness does not come at the cost of the word boundary recall, as they reach
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UNITS UNITS + SIL

HMM 75.4 84.9

SHMM 82.5 90.5

H-SHMM 81.8 89.4

VQ-VAE 87.1 95.0

VQ-WAV2VEC V16 82.4 89.0

VQ-WAV2VEC V36 93.9 97.2

Table 6.1: Word Boundary Recall for the sequences generated by the

5 SD models before (left) and after (right) the silence post-

processing. Results use the Mboshi utterances as input. For

VQ-WAV2VEC, VX corresponds to the version of the model

with a Vocabulary of X units.

UNITS UNITS + SIL

#units
avg # units

per Sequence

max

length
#units

avg #units

per sequence

max

length

HMM 77 27.5 83 75 20.9 69

SHMM 76 24.5 69 75 19.9 62

H-SHMM 49 21.7 63 47 19.4 60

VQ-VAE 50 65.2 217 50 43.4 143

VQ-WAV2VEC V16 16 81.7 289 16 52.6 229

VQ-WAV2VEC V36 36 111.0 361 36 76.2 271

REFERENCE 68 18.8 51

Table 6.2: Statistics for the produced discretization (unsegmented) using

Mboshi utterances, and before (left) and after (right) the si-

lence post-processing. For VQ-WAV2VEC, VX corresponds to

the version of the model with a Vocabulary of X units.
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high results (UNITS + SIL column). Finally, we observe a reduction in the

number of units after post-processing (Table 6.2). This means that some units

were modelling silence windows, even though these models already produce

an independent token for silence.

In summary, we notice that all models produce an acceptable represen-

tation in terms of word boundary recall. This means that these models are

not adding much noise into the posterior step of the pipeline. Regarding

the statistics of the produced sequences, we notice that HMM-based models

are more successful producing a representation close to the reference, while

VQ-based models tend to produce longer sequences. In all cases, the silence

post-processing positively affects the sequences by reducing their length.

2 Bilingual Attention-based UWS

from Speech

In the last section we presented the application of five SD models to the

Mboshi-French parallel corpus. That corresponds to the first step of the

pipeline presented in Figure 6.1. We now use that generated representation

for bilingual attention-based UWS (second step), using the settings for our

best NMT model (RNN) from Chapter IV.6

Boundary F-score results for UWS models (ours and dpseg) trained using

different discrete speech units, extracted from the Mboshi data, are presented

in Table 6.3. We include results for both the direct output (RAW) and the

post-processed version (+SIL). The RAW VQ-WAV2VEC V36 is not included

as its average sequence length was excessively large for training our UWS

models (Table 6.2).7

Looking at the results, we observe that in all cases post-processing the

units with the silence information (+SIL) is beneficial for UWS, as it creates

easier representations to learn from (higher scores for +SIL models). We

believe this is due to the considerable reduction in the average length of the

sequences (Table 6.2), as well as to the overall better phone boundary recall

of these filtered representations (Table 6.1).

Focusing on the UWS models trained using the output of VQ-based SD

models (rows 4-6), we see that the best result is achieved using the SD model

with the smallest average sequence length (VQ-VAE). In general, we believe

6As in previous experiments, we train five of each model, averaging the soft-alignment

probability matrices before UWS. Evaluation for all languages is performed on the speech

domain, using the ZRC reference.
7An example of the output of the SD models using the Mboshi corpus is presented in

the Appendix C, Figures 3.1 (HMM-based) and 3.2 (VQ-based).
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dpseg Attention-based

RAW +SIL RAW +SIL

1 HMM 32.4 59.9 35.1 61.2

2 SHMM 43.7 61.4 41.4 64.7

3 H-SHMM 45.3 61.4 44.8 63.9

4 VQ-VAE 39.0 52.7 32.1 60.1

5 VQ-W2V-V16 37.4 52.2 32.0 50.6

6 VQ-W2V-V36 - 48.0 - 49.8

7 True Phones - 77.1 - 74.5

Table 6.3: Boundary F-scores results for the UWS models (dpseg and

attention-based) using the SD models (1-6) and true phones (7,

from Chapter IV), and applied to the Mboshi-French parallel

corpus. Best results presented in bold.

that all VQ-based models under-perform due to the excessively long sequences

produced, and that they are not a good choice for low-resource SD with the

goal of direct application to text-based UWS. Regarding VQ-VAE, Chorowski

et al. (2019) and Kamper and van Niekerk (2020) constrained its discretization

mechanism, in order to produce a more concise representation. In Kamper

and van Niekerk (2020), the constrained model was shown to be a better input

for text-based UWS, compared to the standard VQ-VAE.

Overall, we find that UWS models trained using the discrete speech units

from HMM-based models (rows 1-3) yield better results, in particular the

SHMM and H-SHMM models. A noticeable difference between these two is

the compression level: H-SHMM uses 27 less units than SHMM (Table 6.2).

Investigating the vocabulary discovered by these two approaches (type dis-

covery recall results), we find that they scored 12.1% (SHMM) and 10.7% (H-

SHMM), compared to the 31% reached by the topline model from Chapter IV.

This illustrates that, even by using the best SD models, we still have a clear

gap in comparison to using manual transcriptions. Moreover, we find that

the SHMM models produced more types and less tokens, reaching a higher

TTR (0.63) compared to H-SHMM (0.55).8 This could be due to H-SHMM

models having a smaller unit inventory.

Finally, focusing on the generalization of the presented SD models, we

8Statistics for the vocabulary generated by the SD models is presented in the Ap-

pendix C, Table 3.1.



118 Chapter VI. Attention-based UWS for Speech

#types #tokens
avg token

length

avg #tokens

per sentence

avg audio

duration (s)

MB-FR
MB 6,633 30,556 4.2 6.0 4.28

FR 5,162 42,715 4.4 8.3 -

MaSS

FI 12,088 70,226 6.0 13.2 8.19

HU 12,993 69,755 5.9 13.1 7.57

RO 6,795 84,613 4.5 15.9 8.08

RU 10,624 67,176 6.2 12.6 8.06

FR 7,226 94,527 4.1 17.8 -

Table 6.4: Statistics for the Mboshi-French (MB-FR) and MaSS datasets

computed over the text (FR), or over the audio and phonetic

representation (MB, FI, HU, RO and RU).

trained them using the languages from the MaSS dataset (Chapter III), with

the same down-sampling from Chapter IV (5,324 utterances). We exclude En-

glish, French and Spanish, as these languages are present in the subspace prior

from SHMM and H-SHMM models (Section 1.1). We also exclude Basque as

the produced sequences were unfortunately too long for UWS training. Thus,

the final language set is: Finnish (FI), Hungarian (HU), Romanian (RO) and

Russian (RU). In all cases, the French translations are used as supervision for

the attention-based UWS approach. Table 6.4 presents again the statistics for

these languages, and for the Mboshi-French parallel corpus.

After training the MaSS models, we observed that due to the longer av-

erage duration of the utterances (Table 6.4), the VQ-based models produced

sequences we were unable to directly apply to UWS training. This again high-

lights that these models need some constraining, or post-processing, in order

to be directly exploitable for our task.

Focusing on the HMM-based models, which generated sequences directly

exploitable for UWS, Table 6.5 presents UWS boundary results. We omit

results for RAW, as we observe the same trend from the Mboshi results (Ta-

ble 6.3). For the four languages, we again verify competitive results for SHMM

and H-SHMM models, illustrating that these approaches generalize well to dif-

ferent languages.9

We also observe lower UWS results for the languages from MaSS dataset

9An example of the output of the SD models using the different languages from the

MaSS dataset is presented in the Appendix C, Figures 3.3 (HMM), 3.4 (SHMM) and 3.4 (H-

SHMM).
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dpseg Attention-based

FI HU RO RU FI HU RO RU

HMM 45.6 49.9 53.5 47.1 53.4 51.2 56.6 54.9

SHMM 49.0 52.3 53.5 50.5 56.0 53.9 57.7 57.7

H-SHMM 50.5 52.9 58.0 52.9 56.1 53.3 59.6 56.0

True Phones 87.1 83.3 88.0 85.9 68.4 63.4 75.7 68.4

Table 6.5: UWS Boundary F-scores for the MaSS dataset using HMM-

based models (+SIL only) and true phones (Chapter IV). Best

results for each language and SD model presented in bold.

(best result 59.6), compared to Mboshi (best result 64.7). We highlight that

the data for the former comes from read text, and that the utterances cor-

respond to verses, which can be considerably longer than sentences (see Ta-

ble 6.4). Due to that, we consider it to be a more challenging setting for

segmentation.

Lastly, focusing on the two UWS approaches (dpseg and ours), the UWS

results over five languages show that our model produces better segmentation

working from discrete speech units than dpseg, which in turn performs the

best with the true phones (topline). The bilingual attention-based UWS mod-

els we proposed in this thesis have the advantage of their word-level aligned

translations for grounding the segmentation process. We believe this might be

attenuating the challenge of this task in this noisier scenario (longer sequences

and larger phone vocabulary).

3 Hybrid Bayesian-Neural Model for Speech

In Chapter V we investigated extensions for increasing UWS scores by chang-

ing the NMT training, or by incrementing the input representation it receives.

From the methods investigated, we obtained the best results by merging the

output of the dpseg model into the input representation of our attention-based

UWS approach. We called this the hybrid model.

We now investigate if this approach is also successful when working from

discrete speech units, instead of the true phones. In this scenario, not only the

sequences we have as input are longer, but the quality of the dpseg boundaries

is also lower (see Table 6.3).

For this investigation, we focus on the Mboshi Language. Table 6.6 present
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dpseg neural hybrid

P R F P R F P R F

HMM 52.8 69.1 59.9 62.2 60.3 61.2 43.5 75.9 55.3

SHMM 53.9 71.2 61.3 68.5 61.3 64.7 46.0 77.5 57.7

H-SHMM 55.5 68.8 61.4 67.1 61.1 63.9 47.7 78.9 59.4

Table 6.6: Precision (P), Recall (R), and F-score (F) boundary UWS re-

sults for the Mboshi-French parallel corpus using the HMM-

based models (+SIL only). Best results presented in bold.

UWS results for the HMM-based SD models (+SIL only). We do not include

results for VQ-based approaches, as the average sequence length in these cases

is already elevated before including soft-boundaries (Table 6.2).

Looking at the results, we see that the hybrid approach under-performs

in this noisier (true) UWS setting, reaching inferior performance due to over-

segmentation (high recall, and low precision). We believe this happens due to

two issues with this hybrid approach.

Firstly, for dpseg there is a considerable performance drop of 16.7 (F-score,

Table 6.3) changing the representation from true to automatically generated

phones. Thus, if dpseg was to serve as a proxy for assessing the insertion of

high-quality segmentation information into the NMT training, this baseline is

not a good fit anymore. In the last section, we showed that our attention-based

model is competitive in this setting.

Secondly, throughout this chapter we discussed the challenge of treating

long sequences. We attributed the success of HMM-based models in producing

exploitable representations to the conciseness of their representations. Even

though, the sequences are still longer than reference, and the resulting seg-

mentation performance is inferior to the topline. In this setting, the addition

of more information into the sequences in the form of soft-boundaries might

be challenging to treat in low-resource settings.

4 Discussion

In this chapter, we investigated the first part of our UWS pipeline: SD models

for producing discrete speech units from the speech signal. We compared five

of these approaches: three Bayesian HMM-based models (Ondel et al., 2016,

2019; Yusuf et al., 2020), and two neural VQ-based models (van den Oord

et al., 2017; Baevski et al., 2020a). In this comparison, our main goal was to
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identify which model would produce the most exploitable representation. For

us, an exploitable sequence from SD training needs to be concise, in order to

be directly applied to text-based UWS models.

Comparing the SD models, we noticed that the VQ-based methods are not

a good fit for our pipeline, as they output very long and inconsistent sequences,

which are difficult to treat. This was also recently observed in Kamper and

van Niekerk (2020).

Different from that, the HMM-based models output a good, yet concise,

discrete representation, which we are able to successfully exploit for UWS. We

believe this difference in performance is due to HMM-based models explicitly

performing Acoustic Unit Discovery (AUD). This means the discretization

produced by them aims not only to summarize the speech signal, but to cor-

respond closely to the language’s phonology.

Moreover, the subspace estimation performed by both SHMM and H-

SHMM, might also play a significant role. This is because, these models

are able to learn from an additional 19 hours of data in different languages.

The other models (HMM and VQ-based models) do not have access to any

form of pretraining or prior.

Regarding the UWS results obtained by applying the output of the SD

models to the UWS task, we reached our best boundary results for Mboshi by

using the SHMM and H-SHMM models. This same trend was also observed in

four different languages from the MaSS dataset (FI, HU, RO, RU), verifying

the generalization of the proposed pipeline.

Comparing our attention-based UWS approach against dpseg, we notice

that we are very competitive in this setting, reaching better UWS boundary

scores. This baseline is however better at segmenting true phones (topline

scenario). About our approach, we also have the advantage of producing

bilingual alignment as a form of grounding for the generated segmentation.

In Chapter IV we showed that this grounding can be used for increasing type

discovery.

Finally, in this chapter we also investigated applying the hybrid model

from Chapter V to the true setting of UWS from speech. This model en-

riches the input representation for NMT training by using the dpseg output

as soft-boundaries. We find that this model largely under-performs due to the

degradation of dpseg’s performance in this noisier setting.

However, the motivation for this approach is to use dpseg as a proxy for

assessing existing segmentations produced by a linguist. Therefore, we still

believe that this method could potentially increase our UWS results if dpseg

was to be replaced by annotations from a linguist, or a better UWS approach.

Such an investigation is a suggestion for future work.
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Conclusion

Natural Language Processing is a very popular research domain, but language

technology tends to be developed mostly in and for a very small portion of the

existing languages in the world. These languages, the so-called high-resource,

are used for proposing and testing approaches. In this naive approach, all

languages are considered to be equal (to model and to learn from) as long as

there is enough data to train data intensive machine learning approaches.

However, for many languages there is not, and there will probably never

be, enough data. This is especially the case of minority dialects, which are

not considered economically interesting for justifying the investment necessary

for data gathering. Moreover, the evergrowing globalization indirectly pushes

humanity towards a standardization of spoken languages. The result of this

is the estimation that many (if not most) of existing languages will vanish

within this century (Austin and Sallabank, 2011).

Meanwhile, zero resource approaches became popular in recent years, as

they propose to reach the long tail of existing low-resource languages by

proposing approaches adapted to settings with less data. In this context we

highlight the need for not only developing with less, but the importance of

using diverse data. Only by doing that can we truly test and understand the

applicability of the methods we propose.

Moreover, there is a recent criticism about the meaning of this zero in zero

resource approaches (Bird, 2020). Languages rarely exist in complete isolation,

and rare are the ones with no existing lexicon or any initial or rudimentary

documentation. The absence of interest in leveraging this information when

proposing approaches can result in the products having marginal to no impact

for the community of speakers.

Therefore, although the technological challenge of extracting knowledge

with close to no information is attractive to scientists, if they aim to propose

approaches for computational language documentation, they should collabo-

rate with language experts and with the community. This way, they are sure

to produce for the community, and not simply from their data.

In this thesis we investigated the task of Unsupervised Word Segmentation

in the context of language documentation. Our main goal was to avoid the

need for transcriptions, as these are known to be generally not available (Adda

et al., 2016; Brinckmann, 2009).



126 Chapter VII. Conclusion

Instead, we focused on segmenting audio into word segments using only a

few hours of speech and by grounding this process in aligned annotations (trans-

lations). Our final segmentation is applied to the speech signal, accompanied

with annotations in the form of potential translations. Our hope would be for

this annotation to be useful for reviewing word candidates, and potentially

even for building a bilingual lexicon of speech segments.

We now discuss in detail the contributions of this work (Section 1), as well

as some limitations of the proposed approach (Section 2). Section 3 covers

perspectives and directions for future work.

1 Contributions

This thesis proposed a pipeline approach for UWS in the speech domain. This

approach grounded segmentation in translation words, and solved segmenta-

tion by using the soft-alignment produced by NMT models. Before alignment

and segmentation, SD is performed in order to accommodate the challenge of

low-resource speech processing. We now recapitulate the contributions listed

in the introduction, elaborating on each topic.

C1: A thorough comparison of recent SD approaches for low-resource

speech processing, focusing on their direct applicability to text-

based UWS.

The goal of SD models is to produce a sequence of discrete speech units

from input utterances, without the use of any transcription. In Chapter VI

we compared five of these models. Three of them were from the Bayesian

HMM family: HMM (Ondel et al., 2016), SHMM (Ondel et al., 2019), H-

SHMM (Yusuf et al., 2020), and the other two models were recent neural

approaches based in Vector Quantizing: VQ-VAE (van den Oord et al., 2017)

and VQ-WAV2VEC (Baevski et al., 2020a).

We optimized and trained these models in low-resource settings using five

languages, assessing the quality of the produced discrete speech units. Our

focus was the direct application to the text-based UWS approach.

Our results showed that the HMM-based models produced a concise out-

put, close to the reference. For VQ-based models, we observed a very inconsis-

tent speech labeling process, resulting in sequences which were challenging to

apply to our task. The most exploitable SD models for UWS were the SHMM

and HSHMM models. This work was submitted to Interspeech 2021.
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C2: A study of the direct interpretability of the attention mecha-

nism in NMT models, and in low-resource settings.

In Chapter IV we investigated the use of the soft-alignment probability

matrices obtained through NMT training for aligning translation words to an

unsegmented sequence of phones. This soft-alignment, which is produced by

the attention mechanism, is then used for clustering neighbor phones which

share word alignment. We refer to this as attention-based UWS.

In order to assess the feasibility of this approach in low-resource settings,

we compared three different attention-based NMT models: RNN (Bahdanau

et al., 2015), 2D-CNN (Elbayad et al., 2018), and Transformer (Vaswani et al.,

2017). We found the following ranking for the exploitability of these models,

from best to worst: RNN, 2D-CNN, Transformer. Our results also showed that

the soft-alignment discovered by the attention mechanism is still exploitable

when the NMT is trained with only 5k sentences. We obtained our best seg-

mentation results by using the simple RNN model, and our worst results by

using the Transformer architecture. This work was presented in Boito et al.

(2019a), and extended to a journal format in Boito et al. (2021).

C3: A comparison between UWS approaches: our attention-based

model and two baselines.

In this work we compared our attention-based UWS approach to two base-

lines in realistic settings (Godard et al., 2018c; Boito et al., 2019a, 2020b). We

use only 5k sentences in the Mboshi language, and we include results in eight

more languages: English, Spanish, Basque, Finnish, French, Hungarian, Ro-

manian and Russian.

The first baseline is the proportional bilingual model. It allows us to assess

the challenge of our alignment task. It is a naive approach which produces di-

agonal alignment, clustering units considering the length of translation words.

As expected, our results with all the 56 language pairs from the MaSS dataset

showed that this naive approach under-performs (Chapter IV). This illustrates

that the bilingual segmentation task we target in this work is not trivial.

The second baseline is the model from Goldwater et al. (2009), which we

refer as the dpseg. We find it to be very competitive: when working from the

true phones of the language, this baseline was the one which produced the best

segmentation results (Chapter IV). However, as we move to a more challeng-

ing scenario, where the input is noisier (in terms of consistency, length and

vocabulary size), this baseline performed below or on par with our attention-

based approach (Chapter VI). We believe this highlights how the grounding

in bilingual information can help the discovery process in challenging settings.
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C4: The investigation of language-related impact in our pipeline.

Throughout this work we used diverse languages in order to assess the

generality of the proposed pipeline. For assessing language-related impact

using these different languages, there are two aspects to consider. The first

one is the natural discrepancy that happens in unsupervised methods when

segmenting different languages, as languages are not all equally hard to seg-

ment (Fourtassi et al., 2013). The second aspect is the impact of the bilingual

grounding that exists in our pipeline, which guides segmentation through the

words in the translation.

Focusing on the first aspect, in Chapter IV, we used the MaSS dataset

for generating 56 language pairs from its eight languages, which we used for

training our bilingual UWS models. Our results, published in Boito et al.

(2020b), showed a clear gap in performance between models with different

languages as target of segmentation.

Regarding the second aspect, we ranked the languages used for ground-

ing with regards to the segmentation performance obtained for each of the

eight target languages. We found that, although the final language ranking

obtained seemed to be rooted in linguistic features, the impact of statistical

features was non-negligible. This is because statistics such as vocabulary size

and type-token ratio can impact the ability of the neural model to encode

the input information. Thus, by having more favorable statistics (easier to

learn in low-resource settings), some languages were superior as supervision

for segmenting even unrelated languages.

C5: The proposal of pipeline extensions for incorporating extra

information into the segmentation model.

In Chapter V we proposed two methods for including extra knowledge in

our models. The first one was the pre-training of the NMT models with a small

portion of the transcriptions. This was motivated by the possible existence of

these, produced by linguists during data collection. In this setting, after pre-

training in this small portion of manually transcribed data, the NMT model is

trained on the full bilingual dataset. Our results showed that this pre-training

is helpful, increasing both boundary and type discovery.

We also proposed a hybrid model, which used the segmentation produced

by dpseg to enrich the input sequences we have in our NMT model. These

soft-boundaries seemed to inform our models, increasing segmentation results.

The goal of this model was to assess the incorporation of word-hypotheses by

linguists into the model. In this setting, the linguist could study the output of

our model for validating existing hypotheses. Unfortunately, this model did

not work in noisy settings. Both models were presented in Boito et al. (2021).
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C6: The gathering and publishing of three datasets useful for low-

resource and computational language documentation approaches.

In Chapter III we presented the following datasets: Mboshi-French Paral-

lel Corpus (Godard et al., 2018a), Griko-Italian Parallel Corpus (Boito et al.,

2018), and MaSS Multilingual Dataset (Boito et al., 2020a). The Mboshi-

French parallel corpus has been widely exploited for evaluating approaches in

low-resource speech processing and language documentation (Anastasopoulos

and Chiang, 2018a,b; Bansal et al., 2019; Sung et al., 2019; Inaguma et al.,

2019; Scharenborg et al., 2018, 2020; Ondel et al., 2019; Yusuf et al., 2020; Go-

dard et al., 2018b, 2019). The Griko-Italian parallel corpus is an interesting

example of extreme low-resource scenario, being interesting for zero-shot learn-

ing approaches (Wada et al., 2020). Finally, the MaSS multilingual dataset

has been mentioned by the community as an example of a dataset for study-

ing diverse language pairs, helping attenuate the English-centered nature of

current speech approaches.

In this thesis we used the Mboshi-French parallel corpus as our main target

of study (Chapters IV to VI). We also used a down-sampled version of the

MaSS dataset in order to investigate language impact (Chapters IV and VI).

Results for the Griko-Italian parallel corpus were not presented here, as we

found that this corpus was too small for NMT training.

2 Limitations

In this work we proposed a pipeline for solving UWS from speech in low-

resource settings. The first limitation with such an approach is its pipeline

structure. The lack of interaction between the process of speech discretization

and segmentation means that errors in the former are propagated to the latter.

Moreover, one can imagine that by grounding the discovery of units in their

posterior usefulness for creating word-segments, a more robust model could

be built.

A second limitation of our model is the data dependency in neural ap-

proaches. We were able to successfully train models using only 5,130 sen-

tences however, in preliminary studies we failed to do the same for the small

Griko-Italian dataset, made of only 330 sentences. In such limited settings,

our model was largely inferior to the monolingual baseline dpseg working with

the true phones. From discrete speech units, both models (ours and dpseg)

failed to produce anything exploitable (Boito et al., 2018). This hints to the

existence of a data threshold for the applicability of UWS models.

Moreover, it is notable that our model is constrained on the existence of

aligned word translations. This means we cannot apply our pipeline for seg-
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menting monolingual data from documentation initiatives. The motivation

of our approach was exactly to propose something grounded on bilingual in-

formation, not covering the case of its absence. A recent monolingual neural

model for UWS was proposed in Kawakami et al. (2019), but this model was

deeply rooted in the characters representation, and it would need modifica-

tions for working from the output of SD models.

Finally, another limitation of our approach rests on the alignment pro-

cedure: the use of soft-alignment probability matrices from NMT training.

These matrices are a by-product of translation, which means NMT models

do not explicitly consider alignment in their optimization. Models such as

Alkhouli et al. (2018) and Garg et al. (2019) focus on the joint optimiza-

tion of translation and word-to-word alignment. However, their task is ex-

pected to be easier than our many-to-one units-to-words alignment. Godard

et al. (2019) performed explicit optimization for attention-based UWS, finding

marginal performance gain. This hints that a more sophisticated optimization

for discovering word segments might be needed.

3 Future Work

We now summarize some research directions for the work presented in this

thesis.

Clustering of Alignment Pairs. In Chapter IV we showed that we can use

the Alignment ANE metric for filtering the structures discovered by the NMT

model. This was based on the idea that low ANE scores correspond to align-

ments the network is confident about. By doing this, we were able to increase

type retrieval scores for Mboshi and English.

One topic we wanted to investigate is the clustering of the discovered

alignment pairs. That would mean putting together all the discovered types

aligned to the same translation. From there, we wanted to have an agreement

over the chosen type for that translation. This would make the model output

less types, and it would remedy the local vision that our models have.1

In Table 7.1 we illustrate two examples from the ensemble of translation

clusters we found for the EN-FR 5k model from Chapter IV. We can see that

in both cases the correct segmentation is present, but in the middle of other

type candidates which have extra or missing phones.

1We say that our models are local because the segmentation is based on sentence-level

alignment, and there is no posterior analysis for assessing the generality of the alignment

discovered for the remainder of the corpus.
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Interpretation Sequence Translation ANE Interpretation Sequence Translation ANE

Extra “W” MER1DER0ER0W assassin 0.28 Missing “F” UW1D nourriture 0.37

Correct MER1DER0ER0 assassin 0.31 Correct FUW1D nourriture 0.38

Missing “M”

Extra “F”
ER1DER0ER0F assassin 0.32 Extra “IH0” FUW1DIH0 nourriture 0.47

Table 7.1: Examples of two translation word clusters, and the discovered

types within. Extracted from the EN-FR 5k model from Chap-

ter IV. The cluster on the left is assassin (murderer), the one

on the right is nourriture (food). For ANE scores, lower is

better.

Our idea would be then to propose something which would consider the

ANE scores of the segments, and the phones present in each candidate. For

instance, in the example in the left, we see that 100% of the candidates of that

cluster found ER1DER0ER0, and 66% of them found the initial M. Moreover, as

the latter were also the candidates with the lowest ANE scores (more confident

alignments), we would then like to produce MER1DER0ER0 (the correct type).

Finally, in this direction we would also like to explore clustering these

groups in order to create word sense clusters. These would present discovered

types which are expected to have a similar sense, considering the discovered

alignment. This information could be useful for disambiguating the generated

segmentation, or even for building bilingual lexicons.

Leveraging Knowledge into the Models. In Chapter V we showed some

extensions for including extra information into our model. Moreover, during

a previous work we also investigated the inclusion of segmented types directly

into the NMT model (Boito et al., 2017). An interesting direction would be

the introduction of this knowledge directly into the attention mechanism, such

as in Alkhouli et al. (2018), in which the authors included an extra head into

Transformer models with dictionary information.

End-to-end UWS from Speech. As mentioned in Section 2, a natural ex-

tension of this work would be the development of end-to-end UWS models

from speech. Since speech processing is challenging in low-resource settings,

we imagine that the combination of the HMM-based models for SD (Ondel

et al., 2019; Yusuf et al., 2020) with dpseg could be an option for monolingual

UWS from speech.

A different direction would be to ignore the process of discretization alto-

gether, directly aligning speech with translation words. In this research direc-

tion, attention-based speech translation models (Besacier et al., 2006; Bérard



132 Chapter VII. Conclusion

et al., 2016; Tjandra et al., 2019; Zhang et al., 2020) would be a possible so-

lution, if these were to be successfully trained with such restricted amounts

of data. Even then, it is unknown how exploitable the attention mechanism

would be.

Visually Grounded Models for UWS. Going beyond language documen-

tation, the core idea of our proposal is the grounding of word discovery in

aligned information (translations). If we were to replace these translations by

images or videos, we would then reach visually grounded models for UWS from

speech. These models are an interesting source of investigation, as this visual

grounding is something that naturally happens in children during language

acquisition (Chrupa la et al., 2017).



Part I

Appendix





Appendix A

Experiments from Chapter IV

EN 33k EN 5k MB 5k

Transformer
Monolingual 3,497,728 739,712 607,616

Bilingual 5,030,656 948,096 526,208

2D CNN
Monolingual 1,780,553 917,449 786,568

Bilingual 3,060,553 1,126,089 704,904

RNN
Monolingual 3,370,000 700,000 570,000

Bilingual 4,530,000 910,000 490,000

Table 1.1: Number of trainable parameters inside the models trained on

different datasets (English (EN) 33k and 5k, Mboshi (MB) 5k)

for both monolingual and bilingual settings from Section 3,

Chapter IV. The amount of trainable parameters depend on

the vocabulary size, due to the embedding layer and the soft-

max projection inside the decoder network.

Table 1.2: Type discovery precision, recall and F-score results for the

bilingual models from Section 4, Chapter IV. The columns

represent the target of the segmentation, while the rows repre-

sented the translation language used. Darker squares represent

higher column scores. Best scores presented in bold.
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Table 1.3: UWS Boundary F-score results for the proportional baseline.

The columns represent the target of the segmentation, while

the rows represented the translation language used. Darker

squares represent higher column scores. Best scores presented

in bold. Better visualized in color.

1 Investigating Language Impact: Bilingual Base-

line Comparison

The results in Table 4.8 of Chapter IV confirm that there is an impact related

to using different source languages for generating the segmentations. We iden-

tify interesting language pairs emerging as the most efficient, such as FI>HU

(Uralic Family), FR>RO and FR>ES (Romance family).

In order to consolidate these results, we investigate if the language ranking

obtained (in terms of best translation languages for segmenting a target lan-

guage) is due to a similar profile of the source and target languages in terms

of word length and tokens per sentence. Since translation words are used to

cluster the phone sequences into words, having more or less translation words

could be a determining aspect in the bilingual segmentation performed.

For this investigation, we use a naive bilingual baseline called propor-

tional, introduced by us in Godard et al. (2018c). It performs segmentation

by distributing phones equally between the words of the aligned translation,

ensuring that words that have more letters, receive more phones (hence pro-

portional). Results for the proportional baseline are presented in Table 1.3.

The average difference between the best UWS segmentation (Table 4.8) and

proportional (Table 1.3) results for the languages is 19.4 points. This high-

lights not only the challenge of the task, but that the alignments learned by

the bilingual models are not trivial.

We compute Pearson’s correlation between our bilingual-rooted segmen-

tation and the proportional segmentation scores, observing that no language
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presents a significant correlation for p < 0.01. However, when all languages

pairs are considered together (N = 56), a significant positive correlation (0.71)

is observed.

Our interpretation is that the token ratio between the number of tokens

in source and target sentences have a significant impact on bilingual UWS.

However, this ratio does not, by itself, dictates the best choice of translation

language for a documentation scenario. For instance, the proportional baseline

results indicate that EU is the best choice for segmenting RU. This choice is

not only linguistically incoherent, but bilingual models reached their worst

segmentation and translation results by using this language. This highlights

that while statistical features might impact greatly low-resource alignment and

should be taken into account, relying only on them might result in suboptimal

models.
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Experiments from Chapter V

1 Hybrid Model for the MaSS Corpus

Table 2.1: UWS Boundary F-score results for neural (top), hybrid (mid-

dle) and dpseg (bottom). The columns represent the target of

the segmentation, while the rows represented the translation

language used. For bilingual models, darker squares represent

higher column scores. Best results in bold. Better visualized

in color.

Table 2.1 presents results for the base (neural) and hybrid models. Look-

ing at the hybrid results, we verify that these models always outperform their

neural counterparts. Moreover, the impact of having the soft-boundaries is

larger for the languages whose bilingual segmentation seems to be more chal-

lenging, hinting that the network is learning to leverage the soft-boundaries

for generating a better-quality alignment between challenging language pairs.

Table 2.2 presents the intersection between the correct types discovered

by both dpseg and hybrid models. Results show that while the monolingual
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Table 2.2: Intersection between the correct types discovered by both

dpseg and hybrid models. We notice that the target language

of the segmentation (columns) has an impact in the acceptance

of soft-boundaries by the NMT model.

baseline dpseg informs the bilingual models, it is not completely responsible

for the increase in performance. This hints that giving boundary clues to the

network will not simply force some pre-established segmentation, but instead

it will enrich the network’s internal representation. Moreover, it is interesting

to observe that the degree of overlap between the vocabulary generated will

depend on the language target of segmentation, hinting that some languages

might accept more easily the soft-boundaries proposed by dpseg.

2 Multilingual Selection

Multilingual training is not the only form of including multilingual supervision

for generating segmentation. Since we generate soft-alignment probability ma-

trices for all bilingual models, we also investigated combining the information

present in these different matrices. This considers that, if the information

from different languages aligned to the same speech utterance captures dif-

ferent optimal correspondences between source and target, their combination

could lead to improved UWS. We studied two approaches for accomplishing

this, which we detail below.

Multilingual Voting: This approach generates agreement over the bound-

aries inserted by different bilingual models, by selecting the number of mod-

els (languages), and an agreement threshold T . This threshold balances be-

tween accepting all the generated boundaries (zero agreement) and accepting

only boundaries discovered by all systems (100% agreement). Values between

these two extremes shed light on the different information learned and the

utility of using more than one bilingual model for generating segmentation.1

1We experiment with T ∈ [0, 0.25, 0.5, 0.75, 1].
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Number of

Languages

Threshold

(best)
Voting ANE selection

2 1.0 57.26 64.26

3 0.5 59.65 63.91

4 0.5 57.89 63.90

5 0.5 59.16 63.65

6 0.5 58.35 63.33

7 0.5 56.58 63.33

Table 2.3: Boundary UWS F-scores for the multilingual selection ap-

proaches applied to the RO language, from Table 5.8. The

bilingual baseline scored 62.8.

Multilingual ANE Selection: In the last chapter we introduced ANE as a

metric for assessing the quality of the produced soft-alignment discovered by

bilingual models. Since Sentence ANE gives us a score for the quality of the

bilingual alignment for a given sentence in the dataset, we can use this as a cri-

teria for selecting matrices generated by different bilingual models, generating

thus a multilingual set of alignments, from which we derive segmentation. In

simple terms, using the set of bilingual models available for a target language,

we perform selection by minimizing the Sentence ANE.

Results: For these experiments, we use the bilingual models trained for seg-

menting the RO language. Table 2.3 presents results for multilingual voting

and ANE selection. In both cases, we start from the bilingual model us-

ing the best supervision language from Table 5.8 (RO column), which scored

62.8 (FR>RO). We then add languages accordingly to the obtained perfor-

mance ranking in bilingual settings (respectively EN, RU, ES, FI, HU, EU).

Looking at the results in Table 2.3, we see that ANE Selection improves

upon the best bilingual model (first row). However, adding more languages

seems to be detrimental to the performance. We also experimented normal-

izing the ANE scores for every bilingual model, which resulted in even lower

scores. We believe this happens because this normalization favors low-scoring

models that otherwise would not be chosen very often.

In summary, the results for multilingual ANE selection suggests that some

multilingual supervision is beneficial, but that simply selecting from the mod-

els without an explicit weighting system2 might be detrimental to the perfor-

2We suppose, for instance, that similar languages should be favored when generating
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mance when increasing the number of languages.

Focusing on the multilingual voting approach, we see that the results are

worse than the ones observed for ANE selection. Moreover, the agreement

over the languages for achieving the best results for each multilingual setting

is low, being only 50% in most of the cases. Also, the results seem unstable, as

we yield the best UWS results using three languages, and the second best using

five. This also supports our conclusion that some form of explicit weighting

would be necessary in order to filter the information being injected into these

multilingual segmentation models.

segmentation.
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Experiments from Chapter VI

#types #tokens
avg token

length

max token

length

avg # tokens

per sentence
TTR

VQ-VAE 21,307 37,230 6.0 33 7.3 0.57

VQ-WAV2VEC V16 13,790 71,508 3.8 42 13.9 0.19

VQ-WAV2VEC V36 26,053 82,812 4.7 72 16.1 0.31

HMM 15,162 28,468 3.8 21 5.5 0.53

SHMM 16,017 25,534 4.0 14 5.0 0.63

H-SHMM 14,606 26,418 3.8 15 5.1 0.55

Reference 6,633 30,556 4.2 19 6.0 0.22

Table 3.1: Statistics for the segmentation produced by our UWS mod-

els for the Mboshi corpus, and by using the different SD ap-

proaches. TTR corresponds to Type-Token Ratio.



144 Appendix C. Experiments from Chapter VI

Figure 3.1: The soft-alignment probability matrices produced for the

same sentence pair, but using different HMM-based SD ap-

proaches: HMM (left), SHMM (middle) and H-SHMM (right).

Darker squares correspond to higher soft-alignment probabil-

ities.
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Figure 3.2: The soft-alignment probability matrices produced for the

same sentence pair, but using different VQ-based SD ap-

proaches: VQ-VAE (left), VQ-WAV2VEC-V16 (middle) and

VQ-WAV2VEC-V36 (right). Darker squares correspond to

higher soft-alignment probabilities.
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Figure 3.3: The soft-alignment probability matrices produced for the

same sentence pair, but using different languages to train the

HMM SD model: Finnish (left), Hungarian (left-to-center),

Romanian (center-to-right), and Russian (right). Darker

squares correspond to higher soft-alignment probabilities.
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Figure 3.4: The soft-alignment probability matrices produced for the

same sentence pair, but using different languages to train the

SHMM SD model: Finnish (left), Hungarian (left-to-center),

Romanian (center-to-right), and Russian (right). Darker

squares correspond to higher soft-alignment probabilities.
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Figure 3.5: The soft-alignment probability matrices produced for the

same sentence pair, but using different languages to train

the H-SHMM SD model: Finnish (left), Hungarian (left-

to-center), Romanian (center-to-right), and Russian (right).

Darker squares correspond to higher soft-alignment probabil-

ities.
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Annexe A

Introduction

La documentation des langues, telle que définie par Austin (2012), est le

sous-domaine de la linguistique qui traite de la création d’enregistrements

polyvalents des langues par des enregistrements audio et vidéo de locuteurs.

Elle comprend l’annotation, la traduction, la préservation et la distribution

du matériel résultant (par exemple, des grammaires, des dictionnaires, des

collections de textes).

Le but de ce processus est de documenter les langues étudiées, de les

préserver par la création de corpus et de ressources bien organisés et durables.

Celles-ci peuvent être exploitées a posteriori pour des recherches ultérieures

dans la langue cible, ou être utilisées pour des applications technologiques pra-

tiques telles que la traduction automatique et la reconnaissance vocale. Ces

données peuvent également être le point de départ d’initiatives de revitalisa-

tion de la langue cible (Pine and Turin, 2017).

L’une des principales cibles de la documentation des langues sont les

langues en danger. Elles sont définies comme un sous-ensemble de langues

existantes dont le nombre de locuteurs a considérablement diminué, ce qui

les expose au risque de tomber en désuétude à mesure que leurs locuteurs

périssent ou se tournent vers d’autres langues. Dans le The Cambridge Hand-

book of Endangered Languages, Austin and Sallabank (2011) a estimé que, sur

les quelque 7 000 langues actuellement parlées, au moins 50% d’entre elles

s’éteindront d’ici 2100.

Parmi les nombreuses raisons qui provoquent ce changement linguistique

et l’homogénéisation des langues parlées à travers le monde, il faut noter

l’impact du néocolonialisme et de la mondialisation (Austin and Sallabank,

2011). Ces langues en danger sont parlées dans des communautés isolées à

travers le monde. Lorsque ces communautés commencent à être intégrées dans

les circuits économiques, la langue parlée dans les grands centres économiques

est transportée dans ces endroits. L’exode rural a également un impact, car les

jeunes générations migrent vers les grandes villes à la recherche de meilleures

opportunités d’emploi, ce qui réduit considérablement leur contact avec leur

langue maternelle.

Certains soutiennent que l’extinction d’une langue dans son essence est un

phénomène naturel (Ladefoged, 1992). Malgré cela, l’impact qu’elle provoque

sur les communautés est largement reconnu. Les langues incarnent des visions
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du monde, des systèmes de valeurs, des philosophies et des caractéristiques

culturelles uniques. Leur extinction entrâıne la perte irrémédiable de connais-

sances culturelles, historiques, spirituelles et écologiques uniques, utiles non

seulement à la communauté, mais à d’innombrables autres (Drude et al., 2003;

Bird, 2018; UNESCO, 2020). De plus, la perte de langues représente égale-

ment un problème scientifique, car les futurs linguistes n’auront accès qu’à une

fraction de la diversité linguistique mondiale disponible pour l’étude (Austin

and Sallabank, 2011; Grenoble and Whaley, 1996; Nettle et al., 2000).

Dans ce contexte, le fait que la plupart des langues du monde ne sont pas

activement écrites, même celles qui ont un système d’écriture officiel, pose

un défi (Bird, 2011). Pour documenter ces langues orales, des enregistrements

audio sont généralement collectés, puis transcrits. Cependant, cette transcrip-

tion prend beaucoup de temps : on estime qu’une minute d’audio nécessite en

moyenne une heure et demie de travail d’un linguiste (Austin and Sallabank,

2013).

De plus, le processus de documentation est itératif, et les transcriptions

sont censées être révisées plusieurs fois avant le produit final (Crowley, 2007).

Pour cette raison, les linguistes de terrain passent une grande partie de leur

temps à transcrire et à réviser les documents, ce qui rend la documentation

très coûteuse sur le plan humain et très lente. Brinckmann (2009) définit cela

comme le problème du goulot d’étranglement de la transcription des initiatives

de documentation.

Pour atténuer ce goulot d’étranglement, des travaux récents ont suggéré

de remplacer les transcriptions par des liens multilingues, ajoutés aux enreg-

istrements audio. Ces liens peuvent prendre la forme de traductions au niveau

des phrases ou des mots (Adda et al., 2016), ou d’étiquettes superposées sur

les fenêtres de temps dans l’audio (Bird, 2021). Ces approches mettent en

évidence le contenu présent dans les audios, au lieu de créer des transcriptions

exhaustives. Ce faisant, elles traitent la transcription comme une observa-

tion (Cucchiarini, 1993), au lieu de la considérer comme le but ultime de la

documentation.

Cependant, afin de traiter et d’extraire des informations de cette nouvelle

forme de corpus, la technologie doit intervenir en fournissant des méthodes

informatiques robustes capables de traiter ces données qui sont : à faibles

ressources, multilingues et parfois multimodales (par exemple, des images, des

vidéos). L’émergence récente du domaine de la documentation computation-

nelle des langues (CLD) tente de proposer des réponses à cela. Il rassemble

des linguistes et des experts en technologie afin de fournir des méthodologies

et des modèles pour le traitement automatique des données et pour assister

les linguistes, en atténuant les ressources humaines et le temps nécessaires à

la documentation des langues.
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Cette thèse s’inscrit dans le cadre des nombreuses approches CLD visant à

produire une technologie utile pour le traitement des données dans le contexte

de la documentation des langues. En particulier, nous proposons une approche

pour la segmentation non supervisée de mots à partir de la parole. Résoudre

une telle tâche à partir du signal de la parole, au lieu de segmenter dans

le domaine textuel, est une façon de traiter le goulot d’étranglement de la

transcription.

De plus, considérant les traductions comme un processus peu coûteux pour

l’étiquetage des données (Adda et al., 2016), nous avons choisi de les inclure

comme supervision faible de nos énoncés pendant la segmentation. Ainsi, nous

considérons que notre processus de segmentation est bilingue, et au cours de

cette thèse nous discutons de l’impact de la langue sur la qualité des segments

découverts.

Notre modèle est composé de deux composants : (1) discrétisation de la

parole, et (2) alignement basé sur le texte et segmentation de la parole. Cette

séparation est nécessaire afin d’atténuer le défi que représente le traitement

de la parole dans des environnements à très faibles ressources. Le but de

la première composante est de produire des séquences d’unités discrètes de

parole, exploitables dans des environnements à faibles ressources, en utilisant

seulement quelques heures de parole. Par conséquent, dans cette thèse, nous

étudions la qualité et l’exploitabilité des modèles de discrétisation de la parole

dans notre cadre documentaire.

Pour la deuxième composante, nous utilisons des réseaux de neurones pour

créer des matrices de probabilité d’alignement entre la discrétisation de la pa-

role et sa traduction au niveau de la phrase. Cette opération est effectuée

par une couche spéciale à l’intérieur des modèles neuronaux de traduction

automatique appelée attention, dont la sortie peut être considérée comme un

alignement souple bilingue. Cet alignement souple est utilisé pour produire

une segmentation sur les unités discrètes de la parole, qui est ensuite reportée

sur le signal vocal original. Ainsi, dans ce travail, nous étudions de manière

approfondie la qualité et l’exploitabilité du mécanisme d’attention dans notre

contexte, et nous introduisons également une métrique agnostique pour éval-

uer la confiance dans l’alignement des matrices de probabilité d’alignement

souple (Boito et al., 2019a).

Le pipeline de segmentation de mots non supervisée en deux étapes que

nous proposons est comparé à un modèle de référence bien établie (?), et à

travers différentes langues (Godard et al., 2018c; Boito et al., 2019a, 2020b).

En se concentrant sur les scénarios de documentation, nous proposons une ex-

tension qui prend en compte la disponibilité de transcriptions partielles, et un

modèle qui exploite la segmentation préexistante dans le modèle d’alignement

bilingue (Boito et al., 2021).
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Enfin, le modèle que nous proposons nécessite un corpus bilingue composé

d’audio et de traductions de phrases alignées. Afin de tester de manière réaliste

nos modèles et de permettre à la communauté des chercheurs de faire le même,

nous avons rassemblé et publié trois jeux de données, que nous présentons dans

ce travail (Godard et al., 2018a; Boito et al., 2018, 2020a).



Annexe B

Résumé des Chapitres

1 Chapitre 3 : Les Resources

Actuellement, nous constatons un manque de corpus réalistes pour tester la

généralisation des modèles proposés. Ainsi, de nombreux travaux s’appuient

sur l’échantillonnage de langues à hautes ressources pour émuler le comporte-

ment attendu en utilisant des langues à faibles ressources. Cette méthodologie

suppose que les différentes langues sont toutes aussi difficiles à apprendre et

surtout, qu’elles sont apprises de la même manière. Le résultat de ce type

d’hypothèse est la proposition de modèles qui pourraient être involontaire-

ment biaisés par rapport à une langue particulière à haute ressource, et qui

pourraient ne pas fonctionner correctement lorsqu’ils sont appliqués à la cible

réelle (Kawakami et al., 2019).

La solution à ce problème est donc de tester de manière approfondie les

approches proposées dans des contextes réalistes et en utilisant de nombreuses

langues, ce qui n’est généralement pas fait en raison d’un manque de données.

Dans le but d’aider à combler ce manque de ressources disponibles dans les

langues à faibles ressources, nous avons participé, au cours de cette thèse, à

trois projets visant à mettre à la disposition de la communauté des corpus de

parole réalistes à faibles ressources, que nous décrivons dans ce chapitre.

Nous avons publié deux ensembles de données provenant de langues en

danger de disparition (Les corpus parallèles Mboshi-Français (Godard et al.,

2018a) et Griko-Italien (Boito et al., 2018)) ; et un nouveau jeu de données

multilingue au niveau de la parole (MaSS dataset (Boito et al., 2020a)) cou-

vrant des langues avec des caractéristiques linguistiques intéressantes. Tous

ces jeux de données mentionnés, ainsi que les références et scripts d’évaluation,

sont disponibles gratuitement en ligne.

2 Chapitre 4 : Un modèle bilingue de segmentation

de mots non supervisé basé sur l’attention

Dans ce chapitre, nous présentons notre modèle bilingue de segmentation non

supervisée des mots (UWS) à partir de la parole. Ce modèle fonctionne en
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deux étapes : (1) Discrétisation de la parole (SD), et (2) alignement et seg-

mentation bilingue.

La première étape est responsable de la production d’unités discrètes de

parole (ou pseudo-phones) à partir de l’audio. La deuxième étape travaille

sur le domaine symbolique, en alignant les unités découvertes avec les mots de

traduction, et en produisant à partir de cela une segmentation. Comme nos

unités discrètes de parole contiennent des informations temporelles, la segmen-

tation produite peut être transférée à l’audio, produisant une segmentation sur

l’entrée de parole elle-même. Ce processus est bilingue, car la segmentation est

exécutée en s’appuyant sur l’alignement bilingue découvert. En d’autres ter-

mes, les mots de traduction sont utilisés pour guider la segmentation générée.

La nature type pipeline de notre modèle nous permet de segmenter de

petits ensembles de données, une tâche qui serait difficile à accomplir si nous

devions entrâıner directement des modèles de traduction de la parole. De plus,

nous sommes soutenus par les études qui montrent que les réseaux neuronaux

sont capables d’apprendre des caractéristiques linguistiques en travaillant avec

des unités plus petites que les mots, comme les unités de sous-mots et les car-

actères (Kreutzer and Sokolov, 2018; Hahn and Baroni, 2019; Ataman et al.,

2019), et donc adaptés pour travailler avec des phonèmes ou des unités dis-

crètes de parole.

Dans ce chapitre, nous concentrons nos recherches sur la deuxième étape

de notre pipeline UWS pour la parole, qui travaille sur le domaine symbolique.

Nous commençons par valider ce modèle dans le scénario idéal d’une discréti-

sation parfaite de la parole, en remplaçant les unités discrètes de la parole par

les vrais phones (phonèmes) de la langue. Cela nous permet d’évaluer la per-

formance maximale que nos modèles travaillant à partir de la parole peuvent

accomplir.

L’idée centrale de notre procédure de segmentation est l’utilisation de ma-

trices de probabilité d’alignement souple entre source et cible pour produire

la segmentation. Nous utilisons des modèles de traduction automatique neu-

ronale (NMT) basés sur l’attention afin de récupérer l’alignement souple entre

les unités de parole discrètes et les mots de traduction, en utilisant cette in-

formation pour inférer la segmentation bilingue des mots.

Nous disposons de deux méthodes pour évaluer la performance de nos

modèles. Premièrement, nous évaluons la qualité des matrices de probabilité

d’alignement souple produites par l’entrainement des modèles NMT à l’aide

d’une métrique que nous avons introduite dans Boito et al. (2019a). Cette

métrique est appelée Entropie Normalisée Moyenne (ANE), et elle nous donne

le degré de confiance des alignements souples découverts par un modèle NMT.

Deuxièmement, nous évaluons le produit final de notre pipeline directement

sur le domaine de la parole en utilisant les métriques pour les frontières (bound-
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ary metrics en anglais).

Les expériences que nous présentons dans ce chapitre se concentrent sur la

deuxième étape de notre pipeline : la tâche d’alignement et de segmentation

bilingue. Nous avons étudié deux aspects importants qui pourraient avoir un

impact sur la performance : (1) le modèle NMT basé sur l’attention utilisé

pour générer les matrices de probabilité d’alignement souple, et (2) la langue

choisie pour guider la segmentation.

Dans notre première section expérimentale, qui correspond à nos travaux

publiés dans Boito et al. (2019a) et Boito et al. (2021), nous avons étudié

l’utilisation de différents modèles de NMT basés sur l’attention (RNN, 2D-

CNN, Transformer) pour produire les matrices de probabilité d’alignement

souple source-cible que nous utilisons pour la segmentation. Nous avons con-

staté que le modèle RNN est le plus exploitable dans des environnements à

faibles ressources, atteignant la meilleure performance de segmentation par

rapport aux deux autres approches plus modernes de NMT.

Nous avons également introduit une métrique pour évaluer le degré d’ex-

ploitabilité des matrices de probabilité d’alignement souple produites par

les modèles NMT. Cette métrique, l’Entropie Normalisée Moyenne (ANE),

peut être accumulée à travers différents niveaux de représentation (i.e. to-

ken, phrase, alignement, corpus). Nous avons montré que l’ANE du corpus

est fortement corrélée à la performance de segmentation, et que l’ANE de

l’alignement nous permet de filtrer le vocabulaire généré, augmentant ainsi les

scores de découverte de type.

Notre deuxième section expérimentale, qui correspond à notre travail pub-

lié dans Boito et al. (2020b), s’est concentrée sur l’impact de la langue dans

notre segmentation bilingue. Nous avons utilisé un corpus multilingue pour la

segmentation d’une langue donnée soutenue par les mêmes informations dans

sept langues différentes. En faisant varier la langue cible, nous avons produit

56 modèles bilingues, ce qui nous a permis de vérifier clairement l’impact de

la supervision dans les segmentations générées.

Nos résultats ont mis en évidence l’existence d’une relation entre les car-

actéristiques de la langue et les performances de segmentation pour notre ap-

proche. Nous avons vérifié que les langues proches en termes de phonologie et

de famille linguistique obtiennent de meilleurs résultats, tandis que les langues

moins similaires donnent des résultats plus faibles. Bien que nos résultats

soient affectés par les caractéristiques linguistiques, nous pensons également

qu’il existe une influence non négligeable des caractéristiques statistiques du

corpus, ce qui peut avoir un impact considérable sur les approches neuronales

dans les environnements à faibles ressources.
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3 Chapitre 5 : Extensions du modèle de UWS basé

sur l’attention

Dans le chapitre précédent, nous avons présenté notre pipeline pour l’UWS

bilingue basé sur l’attention à partir de la parole, et dans des environnements

à faibles ressources. Il est composé de deux parties différentes : un composant

de discrétisation de la parole (SD), et un composant d’alignement et de seg-

mentation bilingue. En nous concentrant sur ce dernier, nous avons étudié

l’impact de l’utilisation de différents mécanismes d’attention pour produire

un alignement bilingue, et nous avons évalué l’impact de la langue de la su-

pervision. Avant de présenter en détail l’étape de SD au chapitre 6, nous nous

concentrons sur les extensions possibles de cette composante d’alignement et

de segmentation bilingue, dans le but d’augmenter les scores de UWS.

Inspirés par les approches de documentation, nous étudions un modèle qui

intègre l’exploitation des transcriptions partielles du corpus bilingue (c’est-

à-dire des données monolingues), nous étudions également l’exploitation de

suggestions de frontières dans le pipeline. En nous concentrant sur le régime

d’entrâınement, nous expérimentons dans ce chapitre l’extension proposée

dans Godard et al. (2019), dans laquelle un biais de longueur de mot est

introduit dans les matrices de probabilité d’alignement souple produites pen-

dant l’entrâınement. Enfin, nous présentons également quelques expériences

moins réussies concernant la supervision multilingue pour UWS.

En comparant les résultats obtenus à travers les différentes extensions de

modèle mentionnées dans ce chapitre, nous observons qu’elles ont toutes per-

mis une amélioration dans les scores d’UWS du modèle de base, et certaines

du modèle dpseg. Les meilleurs résultats ont été obtenus par le modèle pré-

entrâıné, qui avait accès à des informations monolingues. Parmi les modèles

entièrement bilingues, l’extension la plus prometteuse est le modèle hybride

qui incorpore les frontières intermédiaires de dpseg dans l’apprentissage NMT.

Pour ce dernier modèle, notre impression générale est que le gain de per-

formance est dû au fait que les frontières souples aident le modèle à éviter

la sous-segmentation. Cependant, dans ce cas, il n’est pas encore clair dans

quelle mesure le modèle final dépend de la qualité des frontières souples (en

termes de précision). C’est-à-dire : si la performance du dpseg n’est pas aussi

bonne que celle présentée, ses frontières douces peuvent-elles encore aider le

modèle neuronal ? Dans le prochain chapitre, nous aborderons cette question

de recherche.

Enfin, inspirés par l’idée que les traductions multiples pourraient être une

forme de capture de couches de sens plus profondes (Evans and Sasse, 2004),

nous avons également étudié l’incorporation d’une supervision multilingue à
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notre pipeline. Nos résultats, cependant, n’étaient pas très encourageants, et

nous laissons l’exploration de cette branche de recherche comme travail futur.

4 Chapitre 6 : UWS basé sur l’attention au niveau

de la parole

Dans ce chapitre, nous étudions la première partie de notre pipeline UWS : Les

modèles SD pour produire des unités de parole discrètes à partir du signal de

parole. Nous comparons cinq de ces approches : trois modèles bayésiens basés

sur les HMM (Ondel et al., 2016, 2019; Yusuf et al., 2020), et deux modèles

neuronaux de quantification vectorielle (van den Oord et al., 2017; Baevski

et al., 2020a). Dans cette comparaison, notre objectif principal est d’identifier

le modèle qui produirait la représentation la plus exploitable. Pour nous, une

séquence exploitable issue de l’entrâınement SD doit être concise, afin d’être

directement appliquée aux modèles UWS basés sur le texte.

En comparant les modèles SD, nous avons remarqué que les méthodes

basées sur VQ ne sont pas adaptées à notre pipeline, car elles produisent des

séquences très longues et inconsistantes, qui sont difficiles à traiter. Ceci a

également été récemment observé dans Kamper and van Niekerk (2020).

En revanche, les modèles basés sur les HMM produisent une bonne représen-

tation discrète et concise, que nous sommes en mesure d’exploiter avec succès

pour l’UWS. Nous pensons que cette différence de performance est due au fait

que les modèles basés sur les HMM effectuent explicitement la découverte des

unités acoustiques (AUD). Cela signifie que la discrétisation qu’ils produisent

vise non seulement à résumer le signal vocal, mais aussi à correspondre étroite-

ment à la phonologie de la langue.

En plus, l’estimation du sous-espace effectuée par les SHMM et les H-

SHMM pourrait également jouer un rôle important. En effet, ces modèles

sont capables d’apprendre à partir de 19 heures supplémentaires de données

dans différentes langues. Les autres modèles (HMM et modèles basés sur VQ)

n’ont accès à aucune forme de pré-entrâınement ou d’antériorité.

En ce qui concerne les résultats UWS obtenus en appliquant la sortie des

modèles SD à la tâche UWS, nous avons atteint nos meilleurs résultats de

frontière pour le Mboshi en utilisant les modèles SHMM et H-SHMM. Cette

même tendance a également été observée dans quatre langues différentes du

jeu de données MaSS (FI, HU, RO, RU), vérifiant la généralisation du pipeline

proposé.

En comparant notre approche UWS basée sur l’attention à dpseg, nous

remarquons que nous sommes très compétitifs dans ce cadre, atteignant de

meilleurs scores de limite UWS. Cette baseline est cependant meilleure pour
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la segmentation des vrais phones (scénario de base du chapitre 4). Dans

notre approche, nous avons également l’avantage de produire un alignement

bilingue comme base de la segmentation générée.Dans le chapitre 4, nous avons

montré que cette information peut être utilisée pour augmenter les scores de

découverte de types.

Enfin, dans ce chapitre, nous avons également étudié l’application du mod-

èle hybride du chapitre 5 à la situation réelle de l’UWS à partir de la parole.

Ce modèle enrichit la représentation d’entrée pour l’entrâınement NMT en

utilisant la sortie dpseg comme des frontières souples. Nous constatons que

ce modèle est largement sous-performant en raison de la dégradation des per-

formances de dpseg dans ce contexte plus bruyant.

Cependant, la motivation de cette approche est d’utiliser dpseg comme

un proxy pour évaluer les segmentations existantes produites par un linguiste.

Par conséquent, nous pensons toujours que cette méthode pourrait potentielle-

ment améliorer nos résultats UWS si dpseg était remplacé par des annotations

d’un linguiste, ou une meilleure approche UWS. Une telle investigation est une

suggestion pour un travail futur.
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Conclusion

Le traitement du langage naturel est un domaine de recherche très populaire,

mais la technologie pour les langues tend à être développée principalement

dans et pour une très petite partie des langues existantes dans le monde. Ces

langues, dites à hautes ressources, sont utilisées pour proposer et tester des

approches. Dans cette approche näıve, toutes les langues sont considérées

comme égales (à modéliser et à apprendre) tant qu’il y a suffisamment de

données pour entrâıner des approches d’apprentissage automatique à forte

intensité de données.

Cependant, pour de nombreuses langues, il n’y a pas, et il n’y aura proba-

blement jamais, de données suffisantes. C’est notamment le cas des dialectes

minoritaires, qui ne sont pas considérés comme économiquement intéressants

pour justifier l’investissement nécessaire à la collecte de données. De plus, la

mondialisation croissante pousse indirectement l’humanité vers une standard-

isation des langues parlées. Il en résulte que l’on estime que de nombreuses

langues existantes (si ce n’est la plupart) disparâıtront au cours de ce siè-

cle (Austin and Sallabank, 2011).

Parallèlement, les approches à zéro ressources sont devenues populaires ces

dernières années, car elles proposent d’atteindre la longue trâıne des langues

à faibles ressources existantes en proposant des approches adaptées à des con-

textes avec moins de données. Dans ce contexte, nous soulignons la nécessité

non seulement de développer avec moins de ressources, mais aussi l’importance

d’utiliser des données diverses. Ce n’est qu’en procédant ainsi que nous pour-

rons véritablement tester et comprendre l’applicabilité des méthodes que nous

proposons.

De plus, il existe une critique récente sur la signification de ce zéro dans

les approches à zéro ressources (Bird, 2020). Les langues existent rarement de

manière totalement isolée, et rares sont celles qui ne disposent d’aucun lexique

existant ou d’une documentation initiale ou rudimentaire. L’absence d’intérêt

pour l’exploitation de ces informations lors de la proposition d’approches peut

faire en sorte que les produits n’aient qu’un impact marginal ou nul pour la

communauté des locuteurs.

Par conséquent, bien que le défi technologique consistant à extraire des

connaissances à partir d’informations quasi inexistantes soit attrayant pour les
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scientifiques, s’ils veulent proposer des approches pour la documentation com-

putationnelle des langues, ils devraient collaborer avec des experts en langues

et avec la communauté. De cette façon, ils sont sûrs de produire pour la

communauté, et pas simplement à partir de leurs données.

Dans cette thèse, nous avons étudié la tâche de segmentation non super-

visée de mots dans le contexte de la documentation des langues. Notre objectif

principal était d’éviter le besoin de transcriptions, car celles-ci sont connues

pour être généralement non disponibles (Adda et al., 2016; Brinckmann, 2009).

Au lieu de cela, nous nous sommes concentrés sur la segmentation de

l’audio en segments de mots en utilisant seulement quelques heures de parole

et en fondant ce processus sur des annotations alignées (traductions). Notre

segmentation finale est appliquée au signal vocal, accompagnée d’annotations

sous forme de traductions potentielles. Nous espérons que ces annotations

seront utiles pour examiner les mots candidats, voire pour construire un lex-

ique bilingue de segments de parole.

Nous discutons maintenant en détail les contributions de ce travail, ainsi

que certaines limitations de l’approche proposée.

1 Contributions

Cette thèse a proposé une approche pipeline pour l’UWS dans le domaine de

la parole. Cette approche base la segmentation dans les mots de traduction,

et résout la segmentation en utilisant l’alignement doux produit par les mod-

èles NMT. Avant l’alignement et la segmentation, le SD est effectué afin de

relever le défi du traitement de la parole à faibles ressources. Nous récapitu-

lons maintenant les contributions, en développant chaque sujet.

C1: Une comparaison approfondie des approches SD récentes pour

le traitement de la parole à faibles ressources, en se concentrant

sur leur applicabilité directe aux modèles UWS à base de texte.

L’objectif des modèles SD est de produire une séquence d’unités vocales

discrètes à partir d’énoncés d’entrée, sans avoir recours à une transcription.

Dans le chapitre 6, nous avons comparé cinq de ces modèles. Trois d’entre eux

appartiennent à la famille des HMM bayésiens : HMM (Ondel et al., 2016),

SHMM (Ondel et al., 2019), H-SHMM (Yusuf et al., 2020), et les deux autres

modèles sont des approches neuronales récentes basées sur la quantification

vectorielle : VQ-VAE (van den Oord et al., 2017) and VQ-WAV2VEC (Baevski

et al., 2020a).

Nous avons optimisé et entrâıné ces modèles dans des environnements à

faibles ressources en utilisant cinq langues, en évaluant la qualité des unités
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vocales discrètes produites. Nous nous sommes concentrés sur l’application

directe de l’approche UWS basée sur le texte.

Nos résultats ont montré que les modèles basés sur les HMM ont produit

une sortie concise, proche de la référence. Pour les modèles basés sur VQ,

nous avons observé un processus d’étiquetage de la parole très inconsistant,

résultant en des séquences difficiles à appliquer à notre tâche. Les modèles

SD les plus exploitables pour UWS étaient les modèles SHMM et HSHMM.

C2: Une étude de l’interprétabilité directe du mécanisme d’attention

dans les modèles NMT, et dans des contextes à faibles ressources.

Dans le chapitre 4, nous avons étudié l’utilisation des matrices de proba-

bilité d’alignement souple obtenues par l’entrâınement NMT pour aligner les

mots de la traduction sur une séquence non segmentée de phones. Cet aligne-

ment souple, qui est produit par le mécanisme d’attention, est ensuite utilisé

pour regrouper les phones voisins qui partagent l’alignement des mots. Nous

appelons cette méthode attention-based UWS (UWS basé sur l’attention).

Afin d’évaluer la faisabilité de cette approche dans des contextes à faibles

ressources, nous avons comparé trois différents modèles de RNN basés sur

l’attention : RNN (Bahdanau et al., 2015), 2D-CNN (Elbayad et al., 2018), et

Transformer (Vaswani et al., 2017). Nous avons trouvé le classement suivant

pour l’exploitabilité de ces modèles, du meilleur au pire : RNN, 2D-CNN,

Transformer. Nos résultats ont également montré que l’alignement souple dé-

couvert par le mécanisme d’attention est toujours exploitable lorsque le RNN

est entrâıné avec seulement 5k phrases. Nous avons obtenu nos meilleurs

résultats de segmentation en utilisant le modèle RNN, le plus simple, et nos

pires résultats en utilisant l’architecture Transformer. Ce travail a été présenté

dans Boito et al. (2019a), et étendu au format journal dans Boito et al. (2021).

C3: Une comparaison entre les approches UWS : notre modèle basé

sur l’attention et deux baselines.

Dans ce travail, nous avons comparé notre approche UWS basée sur l’atten-

tion à deux baselines dans des contextes réalistes (Godard et al., 2018c; Boito

et al., 2019a, 2020b). Nous utilisons seulement 5k phrases dans la langue

Mboshi, et nous incluons des résultats dans huit autres langues : Anglais,

Espagnol, Basque, Finnois, Français, Hongrois, Roumain et Russe.

La première baseline est le modèle bilingue proportionnel. Il nous permet

d’évaluer le défi de notre tâche d’alignement. Il s’agit d’une approche näıve

qui produit un alignement diagonal, regroupant les unités en tenant compte de

la longueur des mots traduits. Comme prévu, nos résultats avec les 56 paires

de langues du jeu de données MaSS ont montré que cette approche näıve est

sous-performante. Ceci illustre que la tâche de segmentation bilingue que nous
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ciblons dans ce travail n’est pas triviale.

La deuxième baseline est le modèle de Goldwater et al. (2009), que nous

appelons le dpseg. Nous constatons qu’il est très compétitif : en travaillant à

partir des vrais phones de la langue, cette baseline était celle qui produisait

les meilleurs résultats de segmentation. Cependant, lorsque nous passons à un

scénario plus difficile, où l’entrée est plus bruyante (en termes de consistance,

de longueur et de taille du vocabulaire), cette baseline a obtenu des résultats

inférieurs ou égaux à ceux de notre approche basée sur l’attention. Nous pen-

sons que cela met en évidence la façon dont la supervision bilingue peut aider

le processus de découverte dans des environnements difficiles.

C4: L’étude de l’impact de la langue dans notre pipeline.

Tout au long de ce travail, nous avons utilisé diverses langues afin d’évaluer

la généralité du pipeline proposé. Pour évaluer l’impact lié à la langue en

utilisant ces différentes langues, il y a deux aspects à prendre en compte. Le

premier est l’écart naturel qui se produit dans les méthodes non supervisées

lors de la segmentation de différentes langues, car les langues ne sont pas

toutes aussi difficiles à segmenter (Fourtassi et al., 2013). Le second aspect

est l’impact de l’information bilingue qui existe dans notre pipeline, qui guide

la segmentation à travers les mots de la traduction.

En ce qui concerne le premier aspect, dans le chapitre 4, nous avons utilisé

le jeu de données MaSS pour générer 56 paires de langues à partir de ses huit

langues, que nous avons utilisées pour entrâıner nos modèles UWS bilingues.

Nos résultats, publiés dans Boito et al. (2020b), ont montré un net écart

de performance entre les modèles ayant différentes langues comme cible de

segmentation.

En ce qui concerne le second aspect, nous avons classé les langues utilisées

pour guider la segmentation en fonction des performances de segmentation

obtenues pour chacune des huit langues cibles. Nous avons constaté que, bien

que le classement final des langues obtenu semblait être ancré dans les car-

actéristiques linguistiques, l’impact des caractéristiques statistiques était non

négligeable. En effet, des statistiques telles que la taille du vocabulaire et le

ratio type-token peuvent avoir un impact sur la capacité du modèle neuronal à

encoder les informations d’entrée. Ainsi, en ayant des statistiques plus favor-

ables (plus faciles à apprendre dans des environnements à faibles ressources),

certaines langues étaient supérieures comme supervision pour la segmentation

de langues même non liées.

C5: La proposition d’extensions de pipeline pour incorporer des

informations supplémentaires dans le modèle de segmentation.

Au chapitre 5, nous avons proposé deux méthodes pour inclure des con-
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naissances supplémentaires dans nos modèles. La première consistait à pré-

entrâıner les modèles NMT avec une petite partie des transcriptions. Ceci

a été motivé par l’existence possible de celles-ci, produites par des linguistes

pendant la collecte des données. Dans ce contexte, après le pré-entrâınement

sur cette petite portion de données transcrites manuellement, le modèle NMT

est entrâıné sur l’ensemble complet de données bilingues. Nos résultats ont

montré que ce pré-entrâınement est utile, augmentant à la fois la découverte

des frontières et des types.

Nous avons également proposé un modèle hybride, qui utilise la segmenta-

tion produite par dpseg pour enrichir les séquences d’entrée que nous avons

dans notre modèle NMT. Ces soft-boundaries semblaient informer nos mod-

èles, augmentant ainsi les résultats de la segmentation. L’objectif de ce modèle

était d’évaluer l’incorporation des mots-hypothèses par les linguistes dans le

modèle. Dans ce contexte, le linguiste pouvait étudier la sortie de notre mod-

èle pour valider les hypothèses existantes. Malheureusement, ce modèle n’a

pas fonctionné dans des environnements bruyants. Les deux modèles ont été

présentés en Boito et al. (2021).

C6: La collecte et la publication de trois ensembles de données

utiles pour les approches de documentation des langues computa-

tionnelles à faibles ressources.

Dans le chapitre 3, nous avons présenté les jeux de données suivants : Cor-

pus parallèle Mboshi-Français (Godard et al., 2018a), Corpus parallèle Griko-

Italien (Boito et al., 2018), et Jeu de données multilingues MaSS (Boito et al.,

2020a). Le Corpus parallèle Mboshi-français a été largement exploité pour

l’évaluation d’approches dans le traitement de la parole à faibles ressources et

la documentation des langues (Anastasopoulos and Chiang, 2018a,b; Bansal

et al., 2019; Sung et al., 2019; Inaguma et al., 2019; Scharenborg et al., 2018,

2020; Ondel et al., 2019; Yusuf et al., 2020; Godard et al., 2018b, 2019). Le

Corpus parallèle griko-italien est un exemple intéressant d’extrême scénario

à faibles ressources, étant intéressant pour les approches d’apprentissage du

type zero shot (Wada et al., 2020). Enfin, le MaSS multilingual dataset a

été mentionné par la communauté comme un exemple de jeu de données per-

mettant d’étudier paires de langues diverses, contribuant ainsi à atténuer la

nature anglais-centré des approches actuelles pour la parole.

Dans cette thèse, nous avons utilisé le corpus parallèle Mboshi-Français

comme cible principale de notre étude (Chapitres 4 à 6). Nous avons également

utilisé une version sous-échantillonnée de l’ensemble de données MaSS afin

d’étudier l’impact de la langue. Les résultats pour le corpus parallèle Griko-

Italien n’ont pas été présentés ici, car nous avons trouvé que ce corpus était

trop petit pour l’entrâınement NMT.
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2 Limitations

Dans ce travail, nous avons proposé un pipeline pour résoudre l’UWS à partir

de la parole dans des environnements à faibles ressources. La première limite

d’une telle approche est sa structure en pipeline. L’absence d’interaction entre

le processus de discrétisation et de segmentation de la parole signifie que les

erreurs dans le premier processus sont propagées dans le second. De plus, on

peut imaginer qu’en fondant la découverte d’unités sur leur utilité postérieure

pour la création de segments de mots, un modèle plus robuste pourrait être

construit.

Une deuxième limitation de notre modèle est la dépendance des données

dans les approches neuronales. Nous avons pu entrâıner avec succès des mod-

èles en utilisant seulement 5 130 phrases ; cependant, dans des études prélimi-

naires, nous n’avons pas réussi à faire de même pour le petit ensemble de don-

nées Griko-Italien, composé de seulement 330 phrases. Dans un cadre aussi

limité, notre modèle s’est révélé largement inférieur à la baseline monolingue

dpseg fonctionnant avec les vrais phones. À partir d’unités de parole discrètes,

les deux modèles (le nôtre et le dpseg) n’ont rien produit d’exploitable (Boito

et al., 2018). Cela suggère l’existence d’un quantité minimale de données pour

l’applicabilité des modèles UWS.

De plus, il est à noter que notre modèle est contraint par l’existence de

traductions de mots alignés. Cela signifie que nous ne pouvons pas appliquer

notre pipeline pour segmenter les données monolingues des initiatives de doc-

umentation. La motivation de notre approche était précisément de proposer

quelque chose de fondé sur l’information bilingue, et non de couvrir le cas de

son absence. Un modèle neuronal monolingue récent pour UWS a été pro-

posé dans Kawakami et al. (2019), mais ce modèle était profondément ancré

dans la représentation des caractères, et il aurait besoin de modifications pour

travailler à partir de la sortie des modèles SD.

Enfin, une autre limitation de notre approche repose sur la procédure

d’alignement : l’utilisation de matrices de probabilité d’alignement souple

issues de la formation NMT. Ces matrices sont un sous-produit de la traduc-

tion, ce qui signifie que les modèles NMT ne prennent pas explicitement en

compte l’alignement dans leur optimisation. Des modèles tels que Alkhouli

et al. (2018) et Garg et al. (2019) se concentrent sur l’optimisation conjointe

de la traduction et de l’alignement mot à mot. Cependant, on s’attend à ce

que leur tâche soit plus facile que notre alignement de plusieurs unités à un

mot. Godard et al. (2019) ont effectué une optimisation explicite pour l’UWS

basée sur l’attention, et ont trouvé un gain de performance marginal. Cela

suggère qu’une optimisation plus sophistiquée pour découvrir les segments de

mots pourrait être nécessaire.
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