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Chapter 1 Introduction

All science is either physics or stamp collecting.

-Ernest Rutherford -The understanding of the quantum structure of the atomic nucleus has attracted the attention of many experimentalists and theorists for more than a century. Being a complex many-body quantum system, it possesses fundamental properties, such as spin and electromagnetic moments, that are considered valuable inputs for the determination and testing of nuclear models. The systematic investigation of these observables along an isotopic (isotonic) chain reveals progressive changes in structure with respect to the number of valence nucleons. The semi-magic tin isotopes are in the center stage of this powerful line of inquiry. They form the longest known isotopic chain in the nuclear landscape accessible to current experimental studies with the highest number of stable isotopes (ten), extending from the doubly-magic nucleus with A = 100 up and beyond the doubly-magic nucleus with A = 132. The main goal of this doctoral dissertation is the determination of model-independent properties of ground and long-lived isomeric states in neutron-rich tin isotopes up to and beyond the N = 82 shell closure as a main tool for the understanding of the nuclear structure far away from the line of stability. Therefore, the charge radius measurement of 133 Sn together with the one of 134 Sn, are essential to enable a conclusion on the evolution of the nuclear charge radii beyond the N = 82 shell closure.

Aim of this work

Laser spectroscopy provides a powerful technique to explore the structure of nuclei along the nuclear landscape [14,15]. From the perturbation and splitting of the electronic energy levels by the nucleus, properties such as nuclear spin, mean-square charge radius, magnetic dipole and spectroscopic electric quadrupole moments can be extracted with high-precision and in a modelindependent way. This thesis aims to investigate the nuclear structure of the neutron-rich tin isotopes by high-resolution laser spectroscopy. A primary goal has been to extend the measured chain beyond N = 82 in order to test the robustness of the shell gap and to assess the doubly-magic-plus-one-neutron 133 Sn. Information on what has been measured in this work is displayed in The manuscript is organized as follows: In Ch. 2, some elements of atomic and nuclear structure, as well as the theory of the nuclear moments and charge radii, are introduced. In Ch. 3, a brief description of the facility and the experimental set-up is presented. Ch. 4 is dedicated to the data analysis and the extraction of the relevant nuclear physics observables together with their interpretation. Ch. 5 is devoted to the conclusions. The contribution of this work to the ISOLDE Newsletter 2018, entitled, "High-resolution laser spectroscopy of the neutron-rich tin isotopes" together with an article in preparation are attached to the thesis. Another work, focused on shell model calculations in magnesium isotopes and an article entitled: "Spin and magnetic moment of Chapter 2

Atomic and nuclear structures

Mathematics began to seem too much like puzzle solving. Physics is puzzle solving, too, but of puzzles created by nature, not by the mind of man.

-Maria Goeppert-Mayer -

Atomic Hamiltonian

The description of an atomic system is given by the wave function Ψ( r, t)

obtained by solving the time-dependent Schrödinger equation [16] i ∂Ψ ∂t = ĤΨ (2.1) where Ĥ is the Hamilton linear operator, is the reduced Planck constant, and i is the imaginary unit. The total energy is conserved when the system is closed, particles plus electromagnetic field, and the Hamilton operator in (2.1) should simultaneously describe both subsystems. In the absence of an external field, it can be separated into three different parts:

Ĥ = Ĥ0 + Ĥrep + ĤS.O. (2.2)
The first term Ĥ0 is called hydrogen-like Hamiltonian such that:

Ĥ0 = - 2 2M ∇ 2 R - 2 2m e Ne i=1 ∇ 2 r i - Ne i=1 Ze 2 | R -r i | (2.3)
where R and r i are the position vectors of the atomic nucleus and ith-electron, respectively. These vectors are in a coordinate system space-fixed at the laboratory frame. M and m e are the mass of the nucleus and the electrons, respectively, Z is the atomic number, and N e is the number of electrons with a charge e. Ĥ0 can be interpreted as the Hamiltonian of N e non-interacting electrons moving in a central force field created by a point-nucleus. The first two terms in (2.3) hold the kinetic-energy operator of the nucleus and the N e electrons, respectively, while the third term describes the attraction potential energy between them.

The second term in (2.2) accounts for the interelectronic repulsions between pairs of electrons,

Ĥrep = Ne i=1 Ne j>i e 2 | r i -r j | (2.4) 
where | r i -r j | is the distance between electron i and j. The restriction j > i avoids counting the same interelectronic repulsion twice and the self-repulsion.

The last term in (2.2) arises from the electromagnetic interaction between the spin and the orbital magnetic dipole moment of the electrons. It is known as the relativistic spin-orbit interaction term [17] and can be expressed as:

ĤS.O. = 1 m 2 e c 2 Ne i=1 1 r i d Vi (r i ) dr i ˆ L i • ˆ S i (2.5) 
where Vi (r i ) is an effective potential felt by the ith-electron. It is originated by the nucleus and a cloud created by the remaining (N e -ith) electrons. ˆ L i and ˆ S i are the orbital and the spin angular momenta operators for the ith-electron and c is the speed of light.

A subtle approximation is made in (2.2). The nucleus has been considered as a point of mass M and charge Ze; therefore, the effect of its size, shape and charge distribution have been neglected. A discussion will be offered later in Atomic and nuclear structures this chapter.

The Hamiltonian (2.2) is time-independent; accordingly, the wave function in (2.1) can be written as a product of a time-dependent τ (t) function and a position-dependent ψ({ r i }, R) function:

Ψ({ r i }, R; t) = ψ({ r i }, R) • τ (t) (2.6)
Substituting (2.6) in (2.1) and applying the Fourier method [18], for solving partial differential equations, the time evolution of the system,

τ (t) = exp -i E • t (2.7)
and the stationary Schrödinger equation,

Ĥψ({ r i }, R) = Eψ({ r i }, R) (2.8) 
are obtained, being E the energy eigenvalues of the system. Several methods have been developed to solve the eigenvalues and eigenvectors problem (2.8) [19]. The cornerstone of those methods is the Hartree-Fock self-consistent field theory [20,21]. It gives an approximate wave function written as a Slater determinant of one-electron spin-orbitals to which the Pauli exclusion principle applies [22],

ψ( r 1 , r 2 , ..., r N e ) ≈ 1 √ N e ! φ 1 ( r 1 )σ(1) φ 2 ( r 1 )σ(1) . . . φ N e ( r 1 )σ(1)

φ 1 ( r 2 )σ(2) φ 2 ( r 2 )σ(2)
. . . φ Ne ( r 2 )σ(2) . . . . . . . . . . . . φ 1 ( r N e )σ(N e ) φ 2 ( r N e )σ(N e ) . . . φ N e ( r N e )σ(N e ) where φ j ( r i ), with i, j ∈ [1, N e ], denotes the one-electron orbitals in the bodyfixed frame, i.e., the coordinate system has its origin at the nucleus, and σ(i)

describes the spin functions. The latter indicate the spin of the ith-electron, which is either α(i) (spin up) or β(i) (spin down). From the eigenvalues and the eigenvectors that satisfy (2.8) the well known "atomic shell model" comes out. This model can explain the properties in the periodic table such that the trends of the ionization energies as a function of the atomic number. It is worth to mention some definitions from this model that are significant : electron shell: the set of orbitals belonging to a given principal quantum number n. They are labeled as K, L, M ,... for n = 1, 2, 3, ..., respectively, electron subshell: set of orbitals belonging to a given n and have an angular quantum number L ∈ [0; n -1],

Unsöld's theorem: the square of the total electron wavefunction, i.e., probability density, for a filled or half-filled subshell is spherically symmetric.

The direct consequence of the Unsöld theorem, as shown in Sec. 2.1.2, lies in the fact that those subshells that are in agreement with the theorem do not contribute to the total angular momentum of the atom.

Angular momenta in many-electron atoms

The total orbital angular momentum ˆ L and the total spin angular momentum ˆ S of N e electrons in an atom is defined as:

ˆ L = Ne i=1 ˆ L i ∧ ˆ S = Ne i=1 ˆ S i (2.9)
Neglecting the spin-orbit coupling, the operators ˆ L and ˆ S commute with the atomic Hamiltonian (2.2) making possible the characterization of an atomic state by the quantum numbers L and S. Therefore, the electronic wave function of an atom satisfies:

ˆ L 2 ψ = L(L + 1) 2 ψ ∧ ˆ S 2 ψ = S(S + 1) 2 ψ (2.10)
where L(L + 1) 2 and S(S + 1) 2 give the square of the magnitude of the total orbital and spin angular momentum, respectively. A code letter is widely used to specify the total orbital angular momentum quantum number: L 0 1 2 3 4 5 6 7 8

letter S P D F G H I K L
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Based on the Pauli principle those subshells that are fully filled do not contribute to the total electronic spin angular momentum. When the spin-orbit interaction is taken into account, the operator ˆ L does not commute with the Hamiltonian. Therefore, the total electronic angular momentum ˆ J of an atom is introduced, such that:

ˆ J = ˆ L + ˆ S (2.11)
This type of coupling is known as Russell-Saunders coupling or LS coupling [23]. The operator ˆ J commutes with the Hamiltonian, in consequence, the atomic state can be described by the quantum number J, having the possible values:

|L -S| ≤ J ≤ |L + S| (2.12)

In addition, ˆ J 2 ψ = J(J + 1) 2 ψ (2.13)

Atomic levels of the tin atom

The previously discussed theory helps at the understanding of the atomic lines of the tin atom studied in this thesis. The eigenvalues and eigenfunctions of the hydrogen-like Hamiltonian, Ĥ0 in (2.2), give all the possibles electron configurations for the fifty electrons of tin, two of which are used in this thesis for studying its nuclear structure, see Fig. Energy (104 cm -1

)

Ioniza�on limit 5p 2P 1/2 0 -5.14

Na

[Kr] 4d 10 5s2 5p2

[Kr] 4d 1. 5p 2 3 P 0 (1), 5p 2 3 P 1 (3), 5p 2 3 P 2 (5)

5p 2 1 D 2 (5) 5p 2 1 S 0 (1)
2. 5p6s 3 P 0 (1), 5p6s 3 P 1 (3), 5p6s 3 P 2 (5)

5p6s 1 P 1 (3).
Each atomic level consists of 2J + 1 states of equal energy. The (2J + 1)-fold degeneracy is highlighted in parenthesis in the previous items. It is related to the 2J + 1 values of M J where M J is the z component of the total electronic angular momentum ˆ J.

The two atomic transitions highlighted in Fig. 2.1 are studied in this thesis to measure the nuclear properties of the tin isotopes.

Nuclear Hamiltonian

In the previous section, the nucleus was treated as a point of mass M and charge Ze. Further to this subtle approximation, the nucleus is a complex many-body system composed of A = N + Z nucleons being Z the number of protons and N the number of neutrons. The nature of the interactions that keep the nucleons together in a limited region of the space can be found in the field of quantum chromodynamics [24,25]. This theory is well-beyond this thesis; nevertheless, some properties of the nucleus will be discussed.

The nuclear Hamiltonian can be written as:

Ĥnuc = - A i=1 2 2m i ∇ 2 r i + A j=1 A j>i Vnuc (| r i -r j |)+ Z j=1 Z j>i e 2 | r i -r j | + A j=1 Ĥj s.o. (2.14) 
where r i is the position vector of the ith-nucleon and m i its mass.

The first term addresses the kinetic energy of the nucleons while the second one accounts for the nuclear interaction between them. The latter can be considered, in a first approximation, as a two-body interaction type: protonproton (ππ), neutron-neutron (νν), and proton-neutron (πν). The third term takes into account the Coulomb repulsion between the protons while the last term represents the relativistic spin-orbit interaction of the nucleons [26].

Two main differences between the atomic and nuclear Hamiltonian are significant:

in the nuclear Hamiltonian, there is not an external potential as in the atomic one, where the nuclear charge creates a robust central potential for each electron;

the spin-orbit interaction term has an electromagnetic origin for the elec-trons, however, there is no similar origin for the same term for nucleons.

Aside from these differences, experimental evidence suggests a nuclear shell structure for nucleons [27,28] similar to the electronic shell structure observed for electrons. The Hamiltonian (2.14) can be rewritten as:

Ĥnuc = N j=1 Ĥν j + Z k=1 Ĥπ k + A j=1 Ĥj s.o.
(2.15)

where the one-particle Hamiltonians Ĥν j for neutrons and Ĥπ k for protons have the following explicit form:

Ĥν j = - 2 2m ν ∇ 2 r j + A j>i Vnuc (| r i -r j |) (2.16) Ĥπ k = - 2 2m π ∇ 2 r k + A j>k Vnuc (| r k -r j |) + Z j>k e 2 | r k -r j | (2.17) 
being m π and m ν are the proton and neutron masses [29], respectively.

The spin-orbit interaction term for nucleons can be expressed as:

Ĥj s.o. = 1 2 Vs.o. (r) ˆ j • ˆ s j (2.18)
where ˆ j and ˆ s j are the orbital and spin angular momenta of the jth-nucleon, respectively. The potential Vs.o. (r) is derived from the electron movement around the nucleus and its form and strength are determined phenomenologically.

The obtention of the eigenvalues and the eigenfunctions of the Hamiltonian (2.15) is extremely difficult and often impossible. Only small systems, like the deuteron to cite an example, are feasible. The most common approximation is the "mean field theory" widely used to treat many-body problems. The latter is also known as "self-consistent field theory" analogous to the Hartree-Fock method for the electrons. The fundamental principle of this theory lies in counting all the interactions to any one-body with an average or effective potential [30,31]. As a result, any multi-body system is treated as an effective

Atomic and nuclear structures one-body problem. More specifically, it considers only the Hamiltonians Ĥν j and Ĥπ j , that describe a single nucleon subjected to a potential V j nuc (r j ) for a neutron or V j eff = V j nuc (r j ) + V j coul (r j ) for a proton. These potentials are the mean field created by all the other nucleons that interact with the jthnucleon. The spin-orbit coupling is assumed as a single particle term. In other words, after the mean field approximation, the Hamiltonian for the jth-nucleon adopts the following form:

Ĥj nuc = - 2 2m j ∇ 2 r j + V j eff + 1 2 V s.o. (r) ˆ j • ˆ s j (2.19)
where the jth-nucleon can be a proton or a neutron. Therefore, the mean field potential can be expressed as:

V j eff (r j ) = V j nuc (r j ) for neutrons V j nuc (r j ) + V j coul (r j ) for protons
A new problem is glimpsed that lies in how to estimate the nuclear mean field interaction V j nuc (r j ). One of the most straightforward and successful potential wells is the Woods-Saxon potential [32]. It is an intermediate between the harmonic oscillator and the infinite well potential, having the following analytical form:

V j nuc (r j ) = -V 0 1 + exp r j -R 1/2 a (2.20)
where R 1/2 and a give a realistic description of the nuclear interaction. The first one is the radius for which the nuclear interaction reaches half of its starting value. The second one is related to the skin thickness parameter t through the expression: a ≈ t/(4 ln 3), where t is defined as the distance at which the nuclear interaction drops from 90% of its starting value down to 10%. The experiments suggest that t ≈ 2.3 fm, i.e., a ≈ 0.524 fm for most nuclei. The well-depth V 0 is around 50 MeV, and it is optimized to give the proper separation energy of nuclear states. In Fig. 2.2, V j eff (r j ) for the jthnucleon is sketched.

By using (2.20), the nuclear shell structure is obtained through the eigenvalues of the time-independent nuclear Hamiltonian (2.19). Two shell structures 4a ln 3 completely independent can be considered; one for the neutrons and one for the protons. They have a similar order but slightly shifted in energy due to Coulomb repulsion. This simplified shell model can explain the nuclear "magic numbers." In addition, ground state nuclear properties such that spin, parity and electromagnetic moments can be predicted.

net proton poten�al -V0 net neutron poten�al R 1/2 r r V eff V eff coulomb

repulsion adds to proton poten�al well

Nuclear spin and parity

Similar to the total angular momentum ˆ J for the electrons in the atom, a

given nuclear state has associated a total angular momentum ˆ I. The latter involves the orbital and intrinsic angular momentum of A-nucleons and can be defined as:

ˆ I = A i=1 ˆ i + ˆ s i (2.21)
As a matter of convenience ˆ I can be expressed in terms of the total angular momentum of the ith-nucleon ˆ j i (jj-coupling) or in terms of the total spin ˆ s and orbital momentum ˆ of A-nucleons ( s-coupling)

ˆ I = A i=1 ˆ j i ∨ ˆ I = ˆ + ˆ s (2.22)
Atomic and nuclear structures Therefore, each nuclear state is assigned a unique spin quantum number I. In the extreme single particle picture, depending on the number of protons and neutrons (odd or even) several rules can be followed for its determination:

even-even nuclei: all nucleons are coupled pairwise (ππ and νν) to zero spin I = 0, odd-even nuclei: the total spin is determined by the j-value of the unpaired particle (π ∨ ν) while the remaining (A -1) nucleons are coupled to spin zero, odd-odd nuclei: the total spin is determined by the vector coupling of the ˆ j of the unpaired neutron and proton, ˆ

I = ˆ j π + ˆ j ν , taking values between | j π -j ν | ≤ I ≤ | j π + j ν |.
The parity of the nucleus, defined as the parity of the nuclear wavefunction, is

given by the unpaired nucleon(s) and can be expressed as the product of the single nucleon parity (-1) .

Nuclear magnetic dipole moment

An operational definition of the nuclear magnetic dipole moment ˆ µ associated to a total nuclear angular momentum ˆ I can be expressed as:

ˆ µ = A i=1 g ,π∨ν • ˆ i + g s,π∨ν • ˆ s i (2.23)
where g ,π∨ν and g s,π∨ν are the orbital and spin angular momentum g factors, respectively. For protons, g ,π = 1 while for neutrons g ,ν = 0. The spin g factors have the following values g s,π = 5.585694713 [START_REF] Sobel | Introduction to the Theory of Atomic Spectra[END_REF] for protons and g s,ν = -3.82608545 (90) for neutrons [29]. They can be obtained by solving the relativistic Dirac equation for a point particle with spin 1/2.

In the single particle approximation, the expectation value of the operator (2.23), well known as the Schmidt moments, has the following form:

ˆ µ S.P. π∨ν (j) =      (j -1 2 )g ,π∨ν + 1 2 g s,π∨ν µ N for j = + 1 2 j j+1 (j + 3 2 )g ,π∨ν -1 2 g s,π∨ν µ N for j = -1 2
where µ N is the nuclear magneton (µ N = e /2m π ≈ 3 • 10 -8 eV/T) [29].

Based on this approximation, the ground states properties of odd-mass nuclei are characterized by the last unpaired nucleon; however, the experiments show that those nuclei that have nuclear magnetic moments deviate from the Schmidt values such that:

µ exp ≈ [0.5; 1.5] • ˆ µ S.P. π∨ν (j) (2.24)
The latter suggests that the interaction among all the nucleons should be taken into account. In order to correct this deviation, effective g factors should be used. They are defined as those values g eff s and g eff that minimize the differences between the experimental and the Schmidt values. Typical values are, g eff s ∼ 0.7g s,π∨ν and g eff ∼ g ,π∨ν [START_REF] Castel | Modern Theories of Nuclear Moments[END_REF].

In terms of the nuclear spin ˆ I, the magnetic moment can be written as:

ˆ µ I = g I ˆ Iµ N (2.25)
where g I is the gyromagnetic ratio.

Nuclear electric quadrupole moment

Most of the nuclei found in life have a non-spherical nuclear charge distribution, giving rise to a nuclear electric quadrupole moment. The quadrupole moment operator in a Cartesian coordinate system is defined [START_REF] Heyde | The Nuclear Shell Model[END_REF] as:

Qzz = A i=1 e π∨ν (3z 2 i -r 2 i ) (2.26)
where e π∨ν are the free-nucleon charges with the values, e π = e and e ν = 0 and (z i , r i ) the position coordinates of the ith-nucleon.

In a spherical coordinate system, it can be expressed as:

Qzz = 16π 5 A i=1 e π∨ν r 2 i Y 0 2 (θ i , ϕ i ) (2.27)
where Y 0 2 (θ i , ϕ i ) is the zero-order second spherical harmonic.

The experimentally observed nuclear quadrupole moment, called spectroscopic nuclear quadrupole moment Q S , is the expectation value of Qzz for a nuclear state with m = I. It is obtained by applying the Wigner-Eckart theorem [START_REF] De Shalit | Nuclear Shell Theory[END_REF] in terms of the reduced matrix element,

Q S = I 2 I -I 0 I 16π 5 I A i=1 e π∨ν r 2 i Y 0 2 (θ i , ϕ i ) I
Expanding the 3j-symbols and assigning the intrinsic nuclear quadrupole moment to the latest term, the expression can be rewritten as: seniority scheme: those nuclei that contain n nucleons in a j-orbital with α nucleons unpaired (α is the seniority) and coupled to a spin I, the expectation values of (2.27), under the mean field approximation and using the angular momentum coupling rules, can be expressed [START_REF] De Shalit | Nuclear Shell Theory[END_REF] as

Q S = I(2I -1) (I + 1)(2I + 3) Q 0 (2.
Q n = j n,α | Qzz |j n,α = 2j + 1 -2n 2j + 1 -2α • j α | Qzz |j α (2.31)
The latter expression is called the quadrupole moment of multi-particle configurations. In the simplest case, where the seniority α = 1 or "normal coupling" [1,[START_REF] Mayer | [END_REF], all but one particle are coupled to spin zero.

Then, j| Q|j = Qzz S.P. π∨ν (j) and (2.31) shows a linear trend, between -Qzz S.P. π∨ν (j) and Qzz S.P. π∨ν (j), being zero at the middle of the shell.

Nuclear deformations

Far from the single-particle shell model, the breakdown of the single particle representation, the interaction between the valence nucleons and the core will lead to a non-spherical charge distribution. The experimental observations in those nuclei are better described under the assumption of the liquid drop model. It considers the motion of a charged liquid drop which may produce Atomic and nuclear structures small surface oscillation around the spherical equilibrium shape or it may rotate if the nucleus has a stable ground state deformation. In this scenario, the intrinsic quadrupole moment Q 0 can be linked to the deformation parameter β -charge deformation related to the proton charge distribution-for an axially deformed spheroid nucleus [START_REF] Ring | The Nuclear Many Body Problem[END_REF][START_REF] Poenaru | Handbook of Nuclear Properties[END_REF] 

Q 0 = eZ 5 π r 2 β 1 + β 8 5 π (2.32) Q S = 3K 2 -I(I + 1) (I + 1)(2I + 3) Q 0 (2.33)
where K is the projection of the total spin ˆ I onto the symmetry axis of the deformed nucleus with a mean square charge radius r 2 . Two regions can be distinguished according to the sign of the beta parameter, e.g., β > 0 corresponds to a prolate shape and β < 0 to an oblate shape.

The mean square charge radius

The radial moments of a nuclear charge distribution are defined [START_REF] Bohr | [END_REF] as,

r n = ρ(r)r n d 3 r ρ(r)d 3 r (2.34)
where the denominator is the total nuclear charge, Ze, being ρ(r) the charge density of the protons in the nucleus. The mean square charge radius is ob-

tained for n = 2.
For spherical nuclei, different functional forms are proposed for ρ(r) in order to estimate (2.34).

The liquid-drop model [40]: it assumes a uniform proton distribution over the nuclear volume, such that:

ρ(r) L.D. = A 4 3 πR 3 (2.35)
where the protons are distributed along the radius of the mass distribution, given as R = R 0 A 

r 2 L.D. sph = 3 5 R 2 0 A 2/3 (2.36)
The Fermi charge distribution [START_REF] Gösta | Shapes and Shells in Nuclear Structure[END_REF]: it is commonly used to describe the nuclear charge density in those nuclei having finite surface thickness instead of uniform distribution. It has the same functional shape as a Woods-Saxon potential and gives a more physical representation of the nuclear structure

ρ(r) = ρ 0 1 + exp r -R 1/2 a (2.37)
where ρ 0 , called the central density, is the nuclear density at r = 0. The other parameters were previously introduced in (2.20), but now they are expressed concerning the nuclear density. The computation of the mean square charge radius using the Fermi distribution does not have an analytical solution. Instead of that, an approximation [START_REF] Gustavsson | Four Decades of Hyperfine Anomalies[END_REF] is usually made :

r 2 F.D. sph ≈ 3 5 R 2 1/2 + 7 5 πa 2 (2.38)
The mean square charge radius of a deformed nucleus [START_REF] Neugart | Nuclear Moments[END_REF] can be expressed by the mean square charge radius of a spherical nucleus r 2 sph which has the same volume as the deformed one plus a term that depends on the quadrupole deformation parameter β

r 2 = r 2 sph + 5 4π r 2 sph β 2 (2.39)

Atomic hyperfine structure

As we have already seen, beyond the point-like assumption, a magnetic dipole and an electric quadrupole moment are associated with the nucleus with nonzero nuclear spin. The interaction of these moments with the field created by the electrons causes an additional splitting of the atomic levels, called Atomic and nuclear structures is allowed to range from:

(2I+1) if J>I ^ (2J+1) if I>J F'=I+1 F'=I-1 F'=I F=I 5p2 1S0 5p2 3P0 I=1/2 μ<0 I>1/2 μ<0
|I -J| ≤ F ≤ |I + J| (2.40)
One hyperfine multiplet contains a number of states equal to 2I + 1 for J > I and 2J + 1 for I > J. The hyperfine Hamiltonian that describes the additional energy splitting of the atomic levels depicted in Fig. 2.3 can be written considering two major contributions [START_REF] Krane | Introductory Nuclear Physics[END_REF]: .41) being Ĥ(M 1) and Ĥ(E2) the magnetic dipole and electric quadrupole interaction, respectively. The allowed dipole transitions between different multiplets, labeled as F and F , are ∆F = 0, ±1 with F + F ≥ 1. As additional conditions, transitions between the same multiplet are forbidden as well as transitions between levels of the same parity. The dipole transition strengths I between the F and F components, also known as Racah intensities [START_REF] Magnante | [END_REF], can be expressed by,

Ĥhfs = Ĥ(M 1) + Ĥ(E2) + ... ( 2 
I F →F ∝ (2F + 1) 2F + 1 J F I F J 1 2 (2.42)

Magnetic dipole interaction

The first term in (2.41) originates from the interaction of the magnetic field generated by the electrons, ˆ B J , and the nuclear magnetic dipole moment, ˆ µ I .

The Hamiltonian that accounts for this effect [START_REF] Sobel | Introduction to the Theory of Atomic Spectra[END_REF][START_REF] Kopfermann | Nuclear Moments[END_REF] can be written as:

Ĥ(M 1) = -ˆ µ I • ˆ B J = A ˆ I • ˆ J 2 (2.43)
where A is the magnetic hyperfine parameter. The nuclear magnetic moment ˆ µ I was previously defined in (2.25) and by expressing ˆ B J in terms of the average magnetic field created at the position of the nucleus B J (0) [START_REF] Krane | Introductory Nuclear Physics[END_REF], the A-hyperfine parameter can be expressed as

A = µ I B J (0) IJ (2.44)
The previous equation implies that µ I can be extracted from the measured hyperfine constant if B J (0) is known. This value is usually extracted from independent measurements on stable isotopes of the same element or estimated by atomic theories. Assuming that B J (0) is constant along the isotopic chain, neglecting hyperfine anomaly effects, the hyperfine parameters A of any two isotopes in the chain can be related through the expression:

A I µ I = const. (2.45)

Atomic and nuclear structures

The scalar product in (2.43) can be rewritten as:

ˆ I • ˆ J = 1 2 ˆ F 2 - ˆ I 2 - ˆ J 2 (2.46)
therefore, the contribution to the atomic energies, arising from the magnetic dipole interaction is:

E(M 1) = A 2 [F (F + 1) -I(I + 1) -J(J + 1)] ≡ A 2 K (2.47)

Electric quadrupole interaction

The second term in (2.41) arises from the interaction between the nuclear quadrupole moment, due to a non-spherical charge distribution of the nucleus, and the electric field gradient generated by the electron cloud at the position of the nucleus, V zz . The Hamiltonian that accounts for this interaction [START_REF] Sobel | Introduction to the Theory of Atomic Spectra[END_REF][START_REF] Kopfermann | Nuclear Moments[END_REF] can be written as:

Ĥ(E2) = hν Q 4I(2I -1) 2 [3 I 2 z -I 2 + η( I 2 x -I 2 y )] (2.48)
where

ν Q = eQV zz h (2.49)
is known as quadrupole frequency and η = (V xx -V yy )/V zz is called asymmetry parameter of the electric field gradient.

The electric quadrupole hyperfine splitting arising from the electric quadrupole interaction is:

E(E2) = B 3K(K + 1) -4I(I + 1)J(J + 1) 8I(2I -1)J(2J -1) (2.50)
where B is the quadrupole hyperfine parameter and is defined as being V JJ (0) the average electric field gradient at the nucleus induced by the electrons having cylindrical symmetry about the J axis. The hyperfine parameter B of any two isotopes can be related through the expression:

B = e Q V JJ (0) (2.
B Q = const. (2.52)
The hyperfine splitting of the 5p6s 3 P 1 electronic level for isotopes with I = 1/2 is depicted in Fig. 2.4. The size of the hyperfine splitting, due to magnetic splitting because there is no quadrupole splitting in this case, is 10 -6 the size of the fine structure splitting.

Isotope shift

The first direct effect of the shape and size of a nucleus into the fine-electronic structure is the isotope shift (IS). It is defined as the differences in energy of a spectral line i [START_REF] King | Isotope Shifts in Atomic Spectra[END_REF] for two isotopes (A, A ),

δν AA i = ν A i -ν A i (2.53)
where A and A are the mass numbers of the two isotopes. Two complementary transitions are studied in this thesis, i : 5p 2 1 S 0 → 5p6s 1 P 1 and j : 5p 2 3 P 0 →

5p6s 3 P 1 , see Fig. 2.3.
The isotope shift in (2.53) can be split into two components, the mass shift ( δν AA i,M S ) and the field shift ( δν AA i,F S ),

δν AA i = δν AA i,M S + δν AA i,F S (2.54)
From one isotope to the other, the mass of the atomic nucleus is slightly modified while the angular momentum has to remain the same, therefore, the energy of the level changes. This shift in energy is one of the main parts of the isotope shift and correspond to the first term in (2.54). The second term arises because of the dependence of the atomic level upon the size and shape of the electric charge distribution of the nucleus. From one isotope to the other, the number of protons is the same, but its distribution in space is different due to the influence of the number of neutrons.

For light nuclei, the mass shift dominate the field shift while for heavy nuclei the field shift becomes predominant, See Fig. 2.5

Mass shift

The mass shift term can be further presented as a sum of two contributions:

the normal mass shift (NMS) and the specific mass shift (SMS). The first term accounts for the effect of the reduced mass correlation of the electron-nucleus system on the fine transition frequency and can be expressed as:

δν AA i,M S = δν AA i,N M S + δν AA i,SM S

M a s s s h i � F i e l d s h i �

δν AA i,N M S = K i,N M S m A -m A m A m A (2.56)
where K i,N M S is called the normal mass shift constant and its value is ν i m e , being ν i the frequency of the i fine transition and m e the mass of the electron.

The second term in (2.55) takes into account a small effect due to the electronic correlation changes from isotope to isotope into the frequency of the fine transition. It can be expressed as:

δν AA i,SM S = K i,SM S m A -m A m A m A (2.57)
where K i,SM S is known as specific mass shift constant.

Inserting (2.56) and (2.57) into (2.55), one can get the mass shift as a function

Atomic and nuclear structures of the mass shift constants, K i = K i,N M S + K i,SM S , such that:

δν AA i,M S = K i m A -m A m A m A (2.58)

Field shift

The field shift is commonly expressed as:

δν AA i,F S = F i • λ AA (2.59)
where the quantity F i is known as electronic factor. It is proportional to the variation of the electronic charge at the nucleus for a given i fine structure transition. The nuclear parameter λ AA , can be expanded as:

λ AA = ∞ n=1 C n C 1 δ r 2n AA , (2.60) 
where δ r 2n AA = r 2n Ar 2n A is the difference in the even-radial moments between two isotopes, see (2.34). The coefficients C n are tabulated in [START_REF] Seltzer | [END_REF] for 30 ≤ Z ≤ 103. To a good approximation, the first term in (2.60) can be considered,

δν AA i,F S = F i • δ r 2 AA . (2.61)
The isotope shift can be linked to the differences between nuclear mean square charge radii through the following expression:

δν AA i = K i m A -m A m A m A + F i • δ r 2 AA (2.62)
One can see from this expression that by measuring the isotope shift of an optical spectral line, and knowing the electronic factors K i and F i , information on isotopic differences between nuclear mean square charge radii can be extracted. The values of K i and F i can be obtained by theoretical calculations or through a common approach based on the fact that these two quantities are not isotope dependent. For that, (2.62) is rewritten in the following way

δν AA i,mod = K i + F i • δ r 2 AA mod (2.63)
where

δν AA i,mod = δν AA i • m A m A m A -m A ∧ r 2 AA mod = r 2 AA • m A m A m A -m A (2.64)
By plotting (2.63) using the IS of stables isotopes with known mean square charge radii, usually from muonic data, one can get the information about the electronic factors which are then used for the radioactive cases.

King plots

The King plot method has been widely used to extract information on the electronic factors using isotopes with known mean square charge radii. The method can be applied when a single fine electronic transition is studied, and the accuracy of the extracted constants can be improved if the same isotopes are measured in two different transitions (i, j).

The King plot when a single fine-electronic transition is studied.

Knowing in advance changes in mean charge radius from another experimental data, usually from muonic data and for stables isotopes, one can plot δν AA i,mod obtained from the experiment as a function of r 2 AA mod using (2.63). By a linear regression, one can obtain the F i parameter from the slope and the K i factor from the intercept with the y-axis.

The King plot when two fine electronic transitions are studied.

Considering two fine-electronic transition (i, j):

i : δν AA i,mod = K i + F i • δ r 2 AA mod j : δν AA j,mod = K j + F j • δ r 2 AA
mod one can eliminate r 2 AA mod and get a linear regression, such that:

δν AA i,mod = F i F j • δν AA j,mod + K i - F i F j K j (2.65)
where the slope (α) and the y-intercept (β) are:

α = F i F j ∧ β = K i - F i F j K j (2.66)
consequently, α and β can be obtained through a linear fit of (2.65). A plot of data according to (2.65) does not depend on r 2 AA mod ; therefore, all the measured isotopes can be used in the plot and as a result, the accuracy of the extracted electronic factors is improved.

A self-consistent King plot analysis is carried out in this thesis to extract the isotopic differences between nuclear mean square charge radii along the tin chain, see Ch. 4.

Chapter 3

Collinear laser spectroscopy

The farther the experiment is from theory, the closer it is to the Nobel Prize.

-Irene Joliot Curie -

The ISOLDE facility

The Isotope Separation OnLine DEvice, ISOLDE [52], is a radioactive beam facility dedicated to the production of a wide range of radioactive species via the ISOL method [START_REF] Lindroos | Review of the ISOL Method[END_REF]. A layout of the facility located at the European Organization for Nuclear Research, CERN [54], is given in Fig. 3.1.

The neutron-rich tin isotopes are produced at ISOLDE-CERN by 1.4 GeV high energy protons impinging on a target/converter assembly [START_REF] Catherall | [END_REF]. The latter consisted of a tungsten rod coupled to a standard UC x target. The arrangement has the purpose of suppressing the isobaric contamination, from spallation products mainly cesium, normally produced by direct bombardment of the target. The reaction products diffuse out of the target into the Resonance Ionisation Laser Ion Source, RILIS [56], to chemically select tin with typical yields according to [57]. Following electrostatic acceleration up to 40 or 50 keV and mass selection with the High-Resolution Separator (HRS) [58]. The ions are subsequently injected into the radio frequency quadrupole cooler and buncher, ISCOOL [59]. 

Experimental setup

A schematic representation of the COLLAPS beamline is sketched in Fig. 3.3.

The incoming tin ions are overlapped with a linearly polarized laser beam via two electrostatic deflectors. Once the ions are in a collinear configuration with the laser beam, they reach the post-acceleration section for Doppler tuning. Subsequently, they enter a charge exchange cell to be neutralized through multiple collisions with sodium vapor [65]. At a precise laser frequency, the atomic electrons are resonantly excited, and during the de-excitation, the atoms fluoresce in the transition of their hyperfine structure. The fluorescence spectrum is detected with four photomultiplier tubes [66] as a function of the laser fre- quency in the reference frame of the beam:

ν = ν 0 1 -β 1 + β , (3.1) 
with

β = | υ| c = 1 - mc 2 eU total + mc 2 2 (3.2)
Here ν 0 is the laser frequency in the laboratory frame, m is the mass of the atom and U total is the total acceleration voltage. The latter is applied to scan ν across the hyperfine range while keeping the laser fixed to ν 0 . It can be expressed as:

U total = U acc -(U offset + k kepco U scan ) (3.3)
where U acc is the voltage applied after the ISCOOL cooler/buncher, U offset is an isotope-dependent voltage used to tune ν 0 close to the frequency of the transition under study and k is an amplification factor used to amplify the scanning voltage, U scan .

Two independent experiments were carried out using transitions with complementary properties in the neutral atom, 5p 2 1 S 0 → 5p6s 1 P 1 and 5p 2 3 P 0 → 5p6s 3 P 1 at λ = 452 nm and λ = 286 nm, respectively. The lower levels were populated in a quasi resonant charge exchange reaction with sodium, see Fig. by the subsequent decay along the 5p6s 1 P 1 → 5p 2 1 D 2 transition at 326 nm which avoids optical pumping and acts as an efficient background suppression. In the upper states, the singlet offers high sensitivity to the quadrupole moment while the triplet facilitates a large magnetic splitting. It is worth noticing that in both cases the lower state does not have hyperfine splitting (J = 0).

Optical detection of the 5p

Voltages read-out

The stability and precision of the voltages entering in (3.3) have a direct influence on the reliability of the parameters extracted from the analysis; therefore, the electronic devices are monitored during the experiment. The reading of (or = ±1kV) In Fig. 3.6 a simplified scheme of power supplies for the post-acceleration region and read-out electronics at COLLAPS is shown.

k KEPCO (V) +σ -σ 1 
V offset + k kepco U scan V offset = ±10kV ±10V U scan V offset + k kepco U scan k kepco

Laser system

A continuous wave (cw) Nd 3+ :YVO The output beam of the Matisse laser was steadily measured with a HighFinesse WSU2 wavelength meter, calibrated with reference to a temperaturestabilized HeNe laser. The reference isotope was measured in a systematic way allowing us to detect any possible drift or instability of the laser.

Data collection

The hyperfine spectra are saved as data files that contain the number of fluorescent photons in each photomultiplier versus the scan voltage, U scan in (3.3).

For the analysis, the x -axis is transformed to frequency using the relativistic Doppler effect for a collinear configuration, represented by (3.1). The masses of the tin isotopes used for the conversion are taken from [71].

Lineshapes observation

Symmetric Voigt profiles are commonly used to describe experimental line shapes in collinear laser spectroscopy. Asymmetric resonances with small additional peak(s) or a tail on its low-frequency side have been observed when a neutralization process is involved [65]. These satellite peaks can be associated to charge-exchange processes or/and inelastic collisions with the vapour medium [72,[START_REF] Beyer | Collinear Laser Spectroscopy on Fast Atomic Beams[END_REF]. Throughout the measurements, the experimental conditions were optimized to obtain nearly symmetric lineshapes which favor better ac- adequate way of fitting numerous spectra with a good precision. In Fig. 3.7, a measurement of the reference isotope 124 Sn in the 5p 2 3 P 0 → 5p6s 3 P 1 transition is depicted as an example. In general, the extraction of the hyperfine parameters and isotope shifts is relatively insensitive to the exact description of the line shape as long as the same profile is used for all the components.

The numerical calculation of the true Voigt profile is time-consuming, and therefore inappropriate for a fitting routine. Instead, the extended pseudo-Voigt profile described in [74] is used. It contains two symmetric functions, irrational and hyperbolic, in addition to the original Gaussian and Lorentzian functions for apprximating the Voigt profile. [75].

Chapter 4

Data analysis and results

The only trouble with a sure thing is the uncertainty.

-Taken from a teabag -4.1 Independent analysis

Fitting procedure I

Using the ROOT framework [76] with the MINUIT2 [77] package for the minimization procedure a fitting routine is written in C++ to fit the experimental data. The position of each resonance is constrained by the following expression

ν A peak; i -ν A i = c 1 A (5p6s 1 P 1 ) + c 2 B (5p6s 1 P 1 ) + δν A,A i ν A peak; j -ν A j = c 3 A (5p6s 3 P 1 ) + c 4 B (5p6s 3 P 1 ) + δν A,A j
where i : 5p 2 1 S 0 → 5p6s 1 P 1 and j : 5p is the isotope shift in the transition i or j and ν A i,j is the transition frequency of the reference isotope, 124 Sn. The latter was selected based on the fact that it is a stable isotope with no hyperfine splitting (I = 0) and it is in the center of the range of measurement. 

Simultaneous analysis

A self-consistent analysis of the two data sets is performed in order to obtain the highest possible accuracy for all the parameters involved in the fit. As explained before, the singlet state provided high sensitivity to quadrupole moments while the triplet facilitated a large magnetic splitting. The fit function was set in such a way that the free hyperfine parameters were the A (5p6s 3 P 1 )

and the B (5p6s 1 P 1 ) while the others hyperfine parameters were constrained to the corresponding ratios. The results obtained from this analysis are considered as final results and are used to determine the magnetic and quadrupole moments of the tin nuclei.

Fitting procedure II

For the simultaneous analysis a more sophisticated C++ code is implemented.

The code fits all the spectra of the same isotope in the two transitions simultaneously. A combined χ 2 is built and minimized using the MINUIT2 package of ROOT. The hyperfine parameters of the two atomic states are connected via the ratios defining the position of each resonance as follow

ν A peak; i -ν A i = c 1 R A A (5p6s 3 P 1 ) + c 2 B (5p6s 1 P 1 ) + δν A,A i ν A peak; j -ν A j = c 3 A (5p6s 3 P 1 ) + c 4 R B B (5p6s 1 P 1 ) + δν A,A j
where i : 5p 2 1 S 0 → 5p6s 1 P 1 and j : 5p 2 3 P 0 → 5p6s 3 P 1 and R A and R B are the hyperfine coupling constants ratio. The ratios were fixed in the fit and shared for all the isotopes. The procedure for its determination is explained in the following section. The isotope shift, linewidth, baseline and the relative intensities were kept free and independent for each measurement. The relative parameters, hyperfine constants and isomer shifts were kept free but common for all the scans of the same isotope.

A and B-ratios

The ratio of the hyperfine constants, R A and R B , of the two atomic states, can be considered constant along the isotopic chain. For the extraction of the first one, the three stable isotopes with I = 1/2, i.e., B (5p6s 1,3 P 1 ) = 0, were selected. The simultaneous approach explained before has been used to fit all the spectra of these isotopes in the two transitions, with R A as a free parameter. The extracted value is R A = A (5p6s 1 P 1 ) /A (5p6s 3 P 1 ) = 0.0517(1).

This value may deviate slightly for isotopes with different spins if one takes into account the sensitivity of the atomic states to the nuclear magnetization distribution, the so-called hyperfine anomaly [78,79]. This effect is expected to be considerably smaller than the 2 × 10 -3 relative uncertainty on the above ratio, which therefore is statistically consistent to the corresponding ratio in states with any other spin. Only for the observed spin of 1/2, there are isotopes in the tin chain studied by Nuclear Magnetic Resonance (NMR); therefore, the anomaly cannot be estimated. The overall accuracy of the magnetic moments will be further improved by a dedicated computational study of the anomaly in the relevant atomic state. For the determination of R B , two isotopes were selected, 109 Sn and 133 Sn, based on the non-presence of an isomeric state in the spectrum. R A was fixed in the fitting where all the scans in the two transitions were analyzed simultaneously. The value of R B = B (5p6s 3 P 1 ) /B (5p6s 1 P 1 ) = -0.25(2) was extracted.

Even-even isotopes

The first isomeric state (I = 7) in the even-even isotopes, 128 Sn and 130 Sn, was assessed during the experimental campaigns. The first one was measured for the first time. The hyperfine parameters A were extracted with high precision for both isotopes, allowing the determination of their magnetic moments. A negative sign was unambiguously determined from the fit. Hyperfine B parameters were also extracted; however, they were found to have contrary signs for the two isotopes, a fact that could be a result of the non-resolved hyperfine structure of 128 Sn in the singlet. Example spectra of both isotopes are shown in Fig. 4.5 and 4.6. The two fits in the figure lead to similar hyperfine parameters A (5p6s 3 P 1 ) of negative sign and similar absolute values of the hyperfine parameters B (5p6s 1 P 1 ) . The differences between the results of the fit for (a)

and (b) lie in the sign of B (5p6s 1 P 1 ) , which is positive in (a) and negative in (b), for both isotopes. In Fig. 4.5, the correct fit is evident from the shape of the left maximum in the singlet and the reduced chi-square. The fit in (a) can be selected as the correct one leading to a positive value of the quadrupole moment for this isotope. The value reported in the literature [8] is negative, which is in contradiction with the one reported in this thesis. We have to note that the literature value was extracted from the B factor in the 5p6s 3 P 1 state which offers lower sensitivity to quadrupole splitting. The value reported here has benefited from the simultaneous fitting of the two levels, mainly in the singlet where the quadrupole splitting is about four times larger than in the triplet.

In the case of 128 Sn, depicted in 
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Nuclear moments 4.3.1 Magnetic moments

The nuclear magnetic dipole moments were evaluated from the hyperfine constants A (5p6s 3 P 1 ) with the aid of (2.45) using as reference the known value of the magnetic moment of 117 Sn [80], derived from NMR measurements and corrected for diamagnetism. The resulting values are presented in Tab. 4.2 and plotted in Fig. 4.7.

The sign of the extracted moments, including the magnetic moments of the odd-neutron isotopes reported in this work for the first time, agrees with the ones predicted by the corresponding Schmidt moments, yet the values differ by an average of 35%. As expected, the nucleus with the closest magnetic moment to the Schmidt value is the double-magic plus one neutron nucleus 133 Sn with a deviation of about 26%. This might suggest a closed shell structure of its ground state for which the single-particle model can be considered as a fair approximation.

Table 4.2: Hyperfine parameters and electromagnetic moments of tin isotopes determined from this work. Uncorrelated and correlated uncertainties are enclosed in parentheses and square brackets, respectively. Asterisks refer to isomeric states. Magnetic moments derived from NMR [80] measurements are showed for comparison, where available. a,b Extracted in the 5p6s 1 P 1 multiplet.

N + Z I π A (5p6s 3 P1) (MHz) µ (µ N ) µ (N M R) (µ N ) B (5p6s 1 P1) (MHz) Q (mb
c Magnetic moment used as reference.

The systematic measurement of eight magnetic moments in the 11/2 -states can provide some insights into the shell structure in the region. A comparison for the same states in the neighboring cadmium and tellurium elements is plotted in Fig. 4.8. The magnetic moments of the tin isotopes are closer to the Schmidt value than those of the isotopes with two holes inside and two protons outside the shell closure which might mean that the magnetic moments are sensitive to second-order core polarization. Another observation is the deviation of the trend occurring in the three elements at N = 70. This could be related to a first-order core polarization effect that should be minimal at the middle of the shell. It was suggested in [3] that the neighboring orbitals 3s 1/2 , 2d 3/2 , 2d 5/2 and 1h 11/2 , of relevance to the cadmium, tin, and tellurium isotopes, are nearly degenerate and fairly separated from the 1g 7/2 . Under this assumption, the region between N = 58 and N = 82 could be considered as an isolated subshell with the middle at N = 70. The observed behavior in tin might provide added support to the assumed structure that is beside sustained by a recent theoretical study of the cadmium chain from a simple shell model picture [81]. Finally, we should expect that of a pair of isotopes that differ by two neutrons, the nucleus closest to the shell gap has a magnetic moment closer to the Schmidt value, as occurs for the tellurium isotopes. This is not the case in tin where the magnetic moment of 129 Sn is closer to the single particle value than 131 Sn. Nevertheless, all the isotopes have almost identical magnetic moments, and the deviation is very small in comparison with the same occurrence in the cadmium isotopes. This might be an effect of the first-order core polarization mentioned above that gives a deviation from the Schmidt value more accentuated in cadmium than in tin. in the 5p6s 3 P 1 state [8]. We have to point out that the overall accuracy of the results presented in this thesis has benefited from the study of two complementary transitions.

Comparison with literature values

Quadrupole moments

As explained in Ch.2, the spectroscopic quadrupole moment of a nucleus can be measured from the hyperfine splitting of the atomic spectral line if the electric field gradient generated by the electrons at the position of the nucleus, V JJ in (2.51), is known. For the 5p6s 1 P 1 and 5p6s 3 P 1 -configurations, the corresponding field gradients have been calculated by Eberz et al. We have to note in Fig. 4.9 that experimental errors bars are smaller than the markers except for 111 Sn. The hyperfine structure of this isotope was measured only in the triplet state and therefore the simultaneous analysis could not be used. Its quadrupole moment was determined using B (5p6s 3 P 1 ) and the electric field gradient for this state-configuration.

Statistical errors are due to the experimental uncertainty of B (5p6s function of the neutron number. They are plotted in Fig. 4.10 and compared with those calculated in the framework of the seniority scheme [START_REF] De Shalit | Nuclear Shell Theory[END_REF] for n nucleons filling a j-orbital. Squares represent the quadrupole moment calculated with the aid of (2.31) assuming that one of the valence nucleons is unpaired (α=1 or "normal coupling"). The Qzz A good agreement is found with respect to the values reported in [5,7] within the error bars, however, some of the results presented in [8] are inconsistent with ours.

The high resolution provided by the technique and the presence of two states in the same spectrum allow the measurement of the field shift between isomer and ground state, the so-called isomer shift. The direct measurement of this effect, that in our case is sometimes a few MHz, benefits the overall accuracy of the extracted values being almost insensitive to systematic uncertainties.

The isomer shifts derived from the analysis are presented in Tab. 4.4. The literature values were determined as the difference between the isotope shift in both states (ground and isomeric states) using the following relation:

δν A (g) ,A ( * ) lit = δν A,A ( * ) lit -δν A,A (g) lit = ν A ( * ) lit -ν A (g) lit (4.3)
where A is the reference isotope and (g) and ( * ) denote ground and isomeric state of the isotope A , respectively. 

King plot

To extract the isotopic differences between nuclear mean square charge radii, the optical electronic factors entering in (2.62) must be known. For its determination using the two studied transitions, a self-consistent procedure is performed. Following the procedure described in Sec. the rest of the measured isotopes in both transitions are included. The known values for the charge radii were taken from muonic measurements [86]. All points lie fairly well on a straight line implying a good consistency between our two experiments and the muonic data. Statistical errors were included in a first fit to extract the parameters K and F and the error of the latter.

Systematic error were included in a second fit to determine the uncertainty of the mass factor. The results are listed in Tab. 4.5. The extracted factors are statistically consistent with the values reported in the literature from the analysis of other experimental data and they are around 30% larger than the values predicted from Dirac-Fock calculations.

Charge radii

The δ r 2 A,A values have been extracted from the experimental isotope shift with the aid of (2.62) and the electronic factors resulting from the King plot analysis. Statistical errors were propagated from (2.62), dominated by the statistical uncertainty on the isotope shift. For the correlated errors, the systematic uncertainties on the isotope shift, the masses, and the electronic factors were included. The two sets of arising values are listed in Tab. 4.6 and plotted against each other in Fig. 4.14 for all ground and isomeric states. The results in the two transitions are statistically consistent and in good agreement with the ones obtained from muonic data, when available. Their evolution as a function of the mass number is shown in Fig. 4.15.

Data analysis and results x 10 2

x 10 2

x 10 Table 4.6: Changes in mean square nuclear charge radii of tin isotopes determined in the 5p 1 S 0 → 5p6s 1 P 1 and 5p 2 3 P 0 → 5p6s 3 P 1 transitions, respectively. Statistical errors are quoted in round brackets while systematic errors are in square brackets. Asterisks refer to isomeric states.

Changes in mean square nuclear charge radii δ r 2 A,A (fm) The radii of the ground states increase smoothly with the neutron number from N = 58 to the shell closure with a parabolic shape and an odd-even staggering on top of a linear trend. This behavior is analogous to the one observed in the neighboring elements [START_REF] Hammen | Spins, Moments and Radii of Cd Isotopes[END_REF]84] and it is well described by the droplet model until the shell closure where a sudden change in the slope is observed. This "kink" is the most striking characteristic of the charge radii, evidencing a shell effect, observed before at N = 50, 82 and 126 as evident in Fig. 4.16, but there was no experimental evidence on tin before this thesis.

N + Z I 5p 2 1 S 0 → 5p6s 1 P 1 5p 2 
The radii of the isomeric states almost coincide with the ones from the ground states around N = 70 and slightly deviate from them near the closed shell. The magnitude of this differences, when the unique-parity h 11/2 orbital is involved, in particular, requires a closer investigation. In order to reveal the finer details, grounded in the generator coordinate method (GCM) with the gaussian overlap approximation (GOA) [87]. The calculation reproduces the experimental curvature and clearly shows the kink at the magic neutron number. Within this theoretical approach, the kink is related to the correlations stemming from the fluctuations of the quadrupole moments. Different calculations applying a new density functional of the Fayans type, that has been used to reproduce the trend in cadmium [88] isotopes, are in progress.

Chapter 5

Conclusions

Nuclear properties of neutron-rich tin isotopes towards and beyond the N = 82 shell closure have been investigated by high-resolution collinear laser spectroscopy. The hyperfine structures and isotope shifts over the range from 108 Sn up to 134 Sn were measured employing the COLLAPS instrumentation at ISOLDE, CERN. Two independent experiments using transitions with complementary properties, respectively at 452-nm and 286-nm, studied the 5p6s 1 P 1 and the 5p6s 3 P 1 levels in the neutral atom. A self-consistent analysis of the two datasets, linked by the common nuclear parameters, allowed the determination of nuclear spins, electromagnetic moments and charge radii with higher precision. The ground state properties of the more exotic isotopes 133 Sn and 134 Sn were assessed for the first time as well as the long-lived isomers in 113,123,128 Sn.

The doubly-magic-plus-one-neutron nucleus 133 Sn was found to have the closest magnetic moment to the corresponding Schmidt value, suggesting a possible closed-shell structure of its ground state for which the single particle model can be considered as a fair approximation. The spin I = 7/2 is confirmed in our measurements. The nuclear properties of this isotope give valuable insight for future development of accurate shell-model interactions in the region.

The magnetic moments in this region seems to be sensitive to second-order core polarization effects. That is illustrated in the sequence of the 11/2 moments which are found to be closer to the Schmidt value than those in the neighbouring isotopes with two holes inside and two protons outside the shell closure. The magnetic moments of this state in particular have almost identical values, though first-order core polarization effects should be taken into account for an accurate description of the observed trend. An interesting behaviour is revealed by their quadrupole moments, which show a nearly linear mass dependence that acts well even beyond the natural capacity of the h 11/2

shell. A small effective charge suggests a spherical core with no considerable influence in the quadrupole moments as expected for a semi-magic nucleus.

For an accurate interpretation of the observed effects, large-scale shell model calculations are necessary. 

ISOLDE Newsle�er 2018

High-resolu�on laser spectroscopy of the neutron-rich �n isotopes

Results of experiment IS573 Liss Vazquez Rodriguez for the COLLAPS-ISCOOL collabora�on

The IS573 experiment aimed to provide charge radii and electromagnetic moments of ground and isomeric states along the isotopic chain of tin. The program included two independent measurements dedicated to different transitions in the neutral atom. Excitations from the ground state at 286-nm resolved the magnetic moment while the 452-nm transition from a metastable state improved the sensitivity to the quadrupole moment. Both measurements constitute a data set which is being analyzed self consistently in order to obtain the highest possible accuracy for all the parameters.

A major goal of IS573 was to propagate the study of tin beyond the N = 82 shell closure in order to observe a possible shell effect in the charge radii which may or may not be present according on various mean-field calculations.

Another primary motivation was the study of the quadrupole moments and isomer shifts associated with the unique-parity h 11/2 orbital known to have a simple mass dependence in the cadmium analogues. In addition, from a shellmodel perspective, the study of the doubly-magic-plus-one-neutron nucleus 133 Sn is considered important due to the anticipated single-particle nature of its ground state. Hyperfine spectra were observed for all species up to 134 Sn (see spectrum in Furthermore, our measurements were implemented in a collinear geometry, therefore with the highest possible resolution limited fundamentally by the natural linewidth. Simultaneous analysis of the two transitions, being linked by the common nuclear parameters, allows their extraction with higher precision. The overall accuracy of the quadrupole moments will be improved further due to a dedicated computational study of the electric field gradient in the relevant atomic states.

In preparation but not across the N = 82 shell closure [12]. Newly developed calculations based on an Energy Density Functional (EDF) approach [13] for Sn lead to the expectation of a more pronounced kink than in the neighboring elements.

Also mass measurements that have already been performed beyond the magic neutron number N = 82 [14][15][16]. revealed a very strong N = 82-shell gap in tin compared with the neighboring elements. However, at the next classical neutron shell closure N = 126 a similar situation exists, and it has been shown that a very strong shell gap, namely at 208 Pb, can be linked to a weakening of the kink in the evolution of the nuclear charge radius [17]. This raises the expectation of a weak kink in the evolution of the charge radii of the tin isotopic 

Experiment

Collinear laser spectroscopy has been performed at neutron-rich tin isotopes using the atomic transitions 5p 2 1 S 0 → 5p6s 1 P 1 (SP, 452.5 nm) and 5p 2 3 P 0 → 5p6s 3 P 1 (PP, 286.3 nm) at the COLLAPS experiment situated at ISOLDE CERN. Details of the setup are described elsewhere [18]. Briefly, protons from the proton synchrotron booster (PSB) with an energy of 1.4 GeV and beam currents of up to 2 µA hit a neutron converter [19] close to a uranium carbide (UC x ) target. Neutron induced fission provides an efficient production of tin isotopes that are subsequently ionized using resonant laser ionization [20]. The tin ions are accelerated to an energy of about 40 keV, mass separated and transported to the radio frequency quadrupole cooler and buncher ISCOOL [21], where they are accumulated, cooled and ejected towards the COLLAPS beam line as an ion bunch of typically 5 µs pulse length. The ion bunch is overlapped with a copropagating single-frequency laser beam. of the observed transitions in atomic tin. The potential of the charge exchange region is varied to scan the laser frequency in the rest frame of the atom. In Linear polarized light is generated by a Ti:Sa ring laser which is frequency doubled and long term stabilized to a wavemeter that is regularly calibrated using a stabilized HeNe laser. A long term stability of better than 10 MHz/h is achieved. Reference scans of 124 Sn are carried out regularly between the spectra.

Spectra were obtained from both transitions from the ground states of the even isotopes 112-134 Sn and in the PP transition also 108,110 Sn could be observed.

Results

All isotope shifts

δν 124,A = ν A 0 -ν 124 0 = m A -m 124 m A • m 124 • M + F • δ r 2 124,A , (5.1) 
with the field shift factor F and the mass shift factor M of the respective transition and the isotope masses m A , are determined with respect to the isotope 124 Sn. Optical spectra were fitted using Voigt profiles with Lorentzian width fixed to the natural linewidth. The full width at half maximum obtained from fitting is below 100 MHz for all isotopes. Fitting with pure Lorentzian and Gaussian profiles resulted in the same centroids. In all cases the residuals are structureless and statistically fluctuating. Typical hints of asymmetric profiles due to the charge exchange processes [22] were not observed.

The largest uncertainties arise from the relative voltage uncertainties ∆ U acc / U acc ≈ ∆U offset /U offset ≈ 1.5 × 10 -4 of the starting potential U acc at ISCOOL and the Doppler tuning voltage U offset . The arising isotope shifts for 108-124 Sn resulting from our data are within the uncertainties in very good agreement with the values provided in [7]. A usual King plot analysis [23] was performed using muonic data as well as V-factors from electron elastic scattering provided in [11], and the isotope shifts measured here for both transitions individually.

An additionally performed King plot analysis comparing the two investigated transitions showed that the extracted isotope shifts agree with each other and lead to the same nuclear charge radii. A detailed description of the procedure for the determination of the change in mean square nuclear charge radii can be found in [12] where an identical analysis was performed. The analysis performed here results in a field shift factor of F SP = 2.44(47) GHz/fm 2 for the SP transition which is in good agreement both with the experimental field shift factor F King = 2.24 (27) GHz/fm 2 obtained in [7], where it is determined via a King plot analysis in different transitions, and with the fac-tor of F DF = 1.98 GHz/fm 2 based on theoretical Dirac-Fock calculations also mentioned in [8]. There is a discrepancy to the factor F = 3.29 (20) GHz/fm 2

given in [11] that can easily be explained by the used reference values for the nuclear charge radii. The charge radii used in their analysis differ from the ones given in [11] which has of course a huge impact of the slope parameter in the King plot analysis.

The analysis of the King plot in the PP transition yielded in F P P = 2.88 [START_REF] Kreim | Collinear Laser Spectroscopy of Potassium: Nuclear Charge Radii beyond N = 28[END_REF] GHz/fm 2 which is in agreement with both the Dirac-Fock value of F DF = 2.408 GHz/fm 2 and the deduced value of F King = 2.39 (27) GHz/fm 2 given in [7]. The extracted field shift factor agrees also with the factor of F = 3.3(3) GHz/fm 2 that is used in [6]. The mass shift factor results in K SP = -575(5) u GHz, and K P P = -506(5) u GHz respectively. From both transition, changes in mean square nuclear charge radii were determined and the arising average values are listed in Table 5.1. The evolution of the nuclear charge radii of the even tin isotopes is also shown in Fig. 5.3. Clearly visible is a linear trend that is superimposed by a parabola. This behavior is considered by the droplet model and describes the data quite well until N = 82. Above this magic number, there is a kink showing a deviation from this behavior. angular and pairing ones). However, atomic nuclei being finite objects, its eigeinstates do preserve the symmetries of the nuclear Hamiltonian such that the static self-consistent solution can only provide an approximate description of bulk ground-state properties such as masses and radii. Additional correlations related to restoration of broken symmetries and fluctuations in collective coordinates have to be accounted for in a post mean-field treatment. The approach used in this study to take into account five-dimensional quadrupole dynamics that restores rotational symmetry and allows for fluctuations around triaxial mean-field minima is the five-dimensional collective Hamiltonian (5DCH) grounded in the generator coordinate method (GCM) with the Gaussian overlap approximation (GOA) [24]. The charge radii of tin isotopes computed at the SR and 5DCH levels with the Gogny D1S parametrization [25] are displayed Fig. 5.3. At the SR level, the tin charge radii increase smoothly with the neutron number. One has to go to the 5DCH level in order to observe a sudden change in the slope of the charge radii versus neutron number around 

IS

and changes in mean square nuclear charge radii δ r 2 124,A for all even isotopes with mass number A in the 5p 2 1 S 0 → 5p6s 1 P 1 (SP) and the 5p 2 3 P 0 → 5p6s 3 P 1 (PP) transition. The first bracket shows the statistical uncertainty, the second bracket the systematical error. For the change in nuclear charge radii, the total uncertainties are given. the magic number N = 82. Within this approach, such a kink is hence related to the correlations stemming from the fluctuations of the quadrupole moments. Those correlations are maximal at mid-shell and drop to zero at a shell closure, explaining the slope change.

A δν

Conclusion

The changes in the mean square nuclear charge radius of the even tin isotopic chain Although the three Hamiltonians seem to adequately describe the magnesium isotopes, somewhat better results are obtained with USD for the neutrondeficient isotopes and USDB for the neutron-rich which is consistent with the fact that the USDB Hamiltonian includes more recent experimental data for the neutron-rich nuclei in the relevant shell. Fig. 5.5 illustrates the experimental moments versus the calculated values that best approach the experimental data.

Shell model analysis using the USD Hamiltonian for the neutron-deficient isotopes:

21 Mg. The major contribution to the wave function of 59% is given by the protons and neutrons coupled to spin 0 and 5/2, respectively. Inside this contribution, about 42% corresponds to the one predicted by the single-particle shell model with a single neutron in the d 5/2 shell and four protons in the same orbit. this isotope should be determined by the unpaired neutron in the s 1/2 shell. Indeed, the most significant contribution of the wave function comes from the single neutron in the s 1/2 orbital, giving a spin 1/2, and the four valence protons coupled to spin 0, those fractions at 37% and 47%, respectively.

29 Mg. The leading configuration of the wave function at 60% is given by the protons and neutrons coupled to spin 0 and 3/2, respectively. Inside this contribution, the most abundant neutron and proton configurations contain an unpaired neutron in the d 3/2 orbital and four protons in d 5/2 , those fractions at 47% and 39%, respectively. This isotope together with 27 Mg has been already well discussed in [96].

The predicted magnetic moments for 27-29 Mg are in agreement with previous calculations using the shell-model code ANTOINE [96] with the "universal" sd-interactions. The results obtained in this work were included in a publication "Spin and magnetic moment of 23 Mg" that is attached to the thesis.

Introduction

Collinear laser spectroscopy was deployed for charge-radii measurements over the magnesium isotopic chain [1]. An important objective was to propagate the study towards both ends of the sd shell where expected cluster configurations on one side and cross-shell excitations on the other would influence the nuclear size. The experiment indeed determined a transition to a deformed configuration at 31 Mg, and found a trend of ever increasing radii by the removal of neutrons from the lighter isotopes down to 21 Mg. This work combined for the first time fluorescence spectroscopy and laser-induced nuclear orientation for charge-radii measurements. The resulting magnetic moments have never been published, partly because alternative values had already been reported [2][3][4][5][6][7]. However, 23 Mg currently lacks electromagnetic-moments sign determination since it has been examined by nuclear magnetic resonance alone [3,4,8]. Furthermore, the associated experimental accuracy is not greater than the one offered by the present study. Apart from its importance from the nuclear-structure point of view, 23 Mg is also a key probe for the study of fundamental interactions [9] specifically as a group member of the isospin 1/2 nuclei with mirror β transitions [10]. Below we discuss an independent spin and magnetic-moment measurement of 23 Mg, and offer an interpretation in terms of the spherical shell model.

Experiment

The experiment was carried out with the collinear laser spectroscopy setup [6] at ISOLDE-CERN. Radioactive nuclei were produced by high-energy protons impinging on a silicon carbide target. Magnesium atoms were resonantly laser ionized [11], accelerated to an energy of 50keV and mass separated. The ion of 23 Mg was excited in the transition  s S p P 3 3 2 1 2 2 1 2 at 280.35nm [12] which is free of quadrupole interactions and has a well resolved hyperfine structure. The corresponding ultraviolet light was produced by frequency doubling the output of a stabilized ring dye laser, using Rhodamine 19 as the active medium, pumped at 532nm. The ion beam was overlapped with a laser beam and directed through an electrostatic lens for post-acceleration. Atomic excitations were detected in the ion-beam fluorescence as a function of the Doppler-shifted laser frequency.

Empirical line shapes

Typically, the shape of a spectroscopic line is closely described by the Voigt profile which is a convolution of a Lorentzian function representing the natural absorption profile and a Gaussian component accounting for Doppler broadening due to the thermal motion of the atoms in the ion source. Through the years the Voigt profile has been approximated very accurately by the use of explicit mathematical functions for computational ease [13]. In most applications of collinear laser spectroscopy the Voigt line shape is in agreement with the observations, however, additional effects may also play a role. The spectral lines of 24 Mg in figure 1 illustrate the asymmetric line profile associated with the present study. The two measurements are taken under similar conditions in separate experiments. Both clearly show additional structures at the lower-energy side of the main resonance. It should be noted that the apparent effect in figure 1 is exaggerated by the logarithmic scale which has the purpose of magnifying the details at the base of the spectra. Clearly the intruder structures are periodic and seem to resemble the effect of inelastic collisions reported by Bendali and co-workers [14]. In their work a mono-energetic sodium ion beam passed through a sodium vapor for neutralization. Depending on the vapor densities side peaks resulting from multiple inelastic collisions with an energy defect corresponding to the - s p 3 3 energy difference became prominent. The periodicity in our spectra does indeed correspond to a - s p 3 3 excitation in the magnesium ion. However, our measurements do not involve neutralization, therefore the medium causing collisions is likely to be the residual gas in the vacuum beamlines after the point of ionization. In this respect, differences from one experiment to another, such as those in figures 1(a) and (b), could be attributed partly to different vacuum conditions. The collisional excitations reported by Bendali and co-workers represent a particular case of forward scattering where the collision partners are identical atoms. The arrangement in the present work is considerably more complex since molecules and atoms of different masses and 'softness' to excitation are involved. A change in the residual-gas density upstream from the ion source may also play a role. Modeling of the exact processes is challenging and would require a dedicated study. In this work we have analyzed the data using a realistic line profile consisting of a main resonance and three equidistant side peaks with positions determined by the - s p 3 3 energy difference in the magnesium ion. High-statistics scans, as the one presented in figure 1(b), have been made throughout the experiment in order to determine the height and the Gaussian width of the individual side peaks relative to the main peak. Subsequently these parameters have been used to fit the isotopes with hyperfine structure. The Lorentzian width, common to all peaks, and the Gaussian width of the main resonance have been maintained as free parameters. With such a line profile we have been able to obtain a very good description of the data, in particular reduced-c 2 values close to unity have been obtained after fitting.

Considering the relative intensities of spectral lines, also known as Racah intensities [19], we have identified the hyperfine components in figure 2 and labeled them by the corresponding F quantum numbers. For both isotopes the line doublet starting from the state with the lower angular momentum is also lower in excitation energy. The hyperfine levels of S 1 2 are therefore inverted with the lower angular-momentum state being higher in energy. This arrangement is characteristic of negative A factors and consequently negative magnetic moments, as evident from the equations above. All experimental results are presented in table 1. The reference isotope is the stable 25 Mg whose magnetic resonance has been measured relative to 14 N [5]. However, we adopt the reevaluated value from [18] incorporating diamagnetic corrections and later numbers for the proton moment, recently supported by a double Penning-trap measurement [20], and the 14 N-to-1 H frequency ratio [21]. The A factors of 25 Mg are consistent with previous studies [6,22]. The S 1 2 parameters have been used for determining the final magnetic moment of 23 Mg. Without discussing the independent evidence, such as the relative intensities and the isotope shift, the fact that the magnetic moment of 23 Mg from this work is in agreement with the result from nuclear magnetic resonance [3] fixes the spin of 23 Mg with absolute certainty to = I 3 2. Indeed, there can be only one halfinteger value that is consistent with the observed S 1 2 splitting n D = + ( ) A I 1 2 and the A factor derived from NMR measurements with the aid of equation (2). With regard to the differential hyperfine anomaly in the S 1 2 state one is able to calculate 25 Δ 23 =-0.04(8)% according to the definition in [15] and using the hyperfine parameters in table 1, and the known NMR values [3,18].

Interpretation

A negative magnetic moment can not be generated in the neutron sd shell without a d 5 2 contribution, hence the 3/2 ground-state of 23 Mg must be determined by multi-particle interactions involving that orbital. Such high-seniority configurations are more likely to occur in the middle of the d 5 2 shell, and indeed the neighboring odd isotopes 21 Mg and 25 Mg both have ground-state spins of 5/2 as one would expect from normal coupling. An equivalent spin change also occurs in the respective mirror partners, namely along the N=12 isotonic chain of 21 F, 23 Na and 25 Al. The magnetic moment of 23 Mg has been previously discussed in the framework of isospin 1/2 mirror doublets in the sd shell [3]. To gain a further insight into the configurations involved we have carried out shell-model calculations with the universal sd Hamiltonians USD [23] and USDB [24] using the code NuShellX@MSU [25]. Experiment and theory are plotted against each other in figure 3 for all odd magnesium isotopes in the sd shell, except 31 Mg whose ground state involves particle-hole excitations into the pf shell [7]. In line with our previous findings [2,6], in the beginning of the sd shell the USD interaction generates more accurate results, whereas already by midshell the USDB Hamiltonian is required, particularly for predicting the correct level ordering in 29 Mg. In all calculations free g factors have been used. The agreement between theory and experiment is generally good. In the case of 23 Mg it is the USD interaction that approaches the magnetic moment closer by the value m -0.52 N . As expected, the d 5 2 orbital is dominant with about 75% occupation for both protons and neutrons. The protons do indeed play an important role since they undergo + 2 or + 4 coupling in about 60% of the wave function. The most abundant neutron configurations contain the three valence neutrons in the d 5 2 orbital coupled to either spin 3/2 or 5/2, but those fractions at 16% and 18%, respectively, are not large. In reality the wave function is very fragmented and a dominant configuration can not be highlighted. As to the magnetic moment of 31 Mg, a very close match with the USDB value m -0.83 N of the lowest + 1 2 state in 29 Mg has been previously pointed out [26,27]. This is consistent with the picture of a cross-shell excitation of two paired neutrons which do not contribute directly to the magnetic moment. If the corresponding point was to be added in figure 3, similarly to the other cases it would lie close to the identity line.

Summary

In brief, we have studied 23 Mg by high-resolution collinear laser spectroscopy. An empirical approach to the observed spectroscopic line shapes has been discussed. The ground-state spin 3/2 has been confirmed and a negative magnetic moment has been measured, thus highlighting the importance of high-seniority configurations. The absolute value is found consistent with previous studies by nuclear magnetic resonance. The odd magnesium isotopes in the sd shell have been investigated in the framework of the spherical shell model using the well-known universal sd Hamiltonians. The calculation on 23 Mg, indeed points to a strong d 5 2 contribution from both protons and neutrons and only a minor occupation of the neutron d 3 2 shell.
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 211 figuration, are responsible for the total electronic orbital angular momentum in each level. In the first case and following the algebra of the total angular momentum, three values of L are possible, L 1 ∈ {0, 1, 2} while for the second
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 21 Figure 2.1: Relevant part of the electron configuration (first column), the atomic terms (second column) and the atomic levels scheme of Sn I. The resonant charge exchange level with Na is given as a dashed line, for further discussion in Ch. 4.
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 22 Figure 2.2: Woods-Saxon potential for the nuclear effective interaction.
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 123 Figure 2.3: Relevant part of the atomic levels (first column) and hyperfine states (second columns) of Sn I. The resonant charge exchange level with Na is given as grey dashed line, for further discussion in Ch. 4. The allowed transitions between the hyperfine states for I = 1/2 and I > 1/2 (µ < 0 in both cases) are included on the picture. Hyperfine energy levels are not to scale.
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 24 Photoncounts Electronic level energy
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 25 Figure 2.5: Mass and field shift contribution as a function of the atomic number Z.Adapted from[START_REF] Hammen | Spins, Moments and Radii of Cd Isotopes[END_REF].
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 3132 Figure 3.1: Layout of the ISOLDE facility. The beam path up to the laser spectroscopy experiment is highlighted. 1. Proton beam; 2. Target; 3. HRS; 4. RILIS; 5. ISCOOL; 6. COLLAPS. Adapted from [60].
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 33 Photomul�plier tubes
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 34 Figure 3.4: Stability of the voltage V acc at ISCOOL during the study of the 5p 2 1 S 0 → 5p6s 1 P 1 transition (a) and 5p 2 3 P 0 → 5p6s 3 P 1 transition (b). Dashed lines delimit the different days of the experiment.
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 35 Figure 3.5: The amplification factor of the KEPCO linear voltage amplifier determined during the measurements in the 5p 2 1 S 0 → 5p6s 1 P 1 transition (a) and 5p 2 3 P 0 → 5p6s 3 P 1 transition (b). Dashed lines delimit different days of the experiment, and the horizontal solid blue line represents the weighted mean of all measurements. Grey bands enclose the 1σ confidence level for this value.
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 36 Figure 3.6: Block diagram of the data acquisition system. See the text for details.

  4 laser [67] is used to pump a Spectra-Physics Matisse laser, configured for Ti:Sa during the study of the singlet and dye during the study of the triplet, as the gain medium [68, 69]. The singlefrequency cw beam out of the Matisse laser enters an external cavity (Wave Train [70]) where a second-harmonic is generated resulting in the desired wavelength.
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 37 Figure 3.7: Measurement of the reference isotope 124 Sn recorded in the 5p 2 3 P 0 → 5p6s 3 P 1 transition. The solid blue line represents a fit with a symmetric Voigt profile. The reduced chi-square of the fitting is 1.3.
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 124 Fig. 4.2 shows a more complicated case, where a long-lived isomeric state is present. The weaker state, (I = 3/2), is superimposed with the isomeric (I = 11/2) state. All the expected resonances of the latter (three) were resolved while only one resonance was indicative of the low-spin state. The hyperfine constants of the well-resolved state are in agreement in the two fits, within the errors, while differences appear for the non-resolved one.A second transition is studied in order to constrain the fit and to extract a final set of hyperfine parameters.
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 41 Figure 4.1: Hyperfine structure of 133 Sn in the 5p6s 1 P 1 level. The solid line represents a fit of the ground 7/2 -state with fixed intensities under two assumptions for the hyperfine states ordering in 1 P 1 (upper and lower panel). The hyperfine components have been labeled by the corresponding F quantum numbers. The x-axis is relative to the resonance frequency of 124 Sn. The χ 2 red = 1.06 in (a) and χ 2 red = 1.09 in (b), for the same NDF. The reversal of the 5/2 and 7/2 hyperfine states in the two fits is visible from the shape of the right maximum.
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 4243 Figure 4.2: Hyperfine structure of 129 Sn. The thick blue line represents a total fit of two states on a common background. The lower-spin state (I = 3/2) is indicated by a semitransparent fill under two assumptions for the level ordering in 1 P 1 (upper and lower panel). The hyperfine components of the latter have been labeled by the corresponding F quantum numbers. The x-axis is relative to the resonance frequency of 124 Sn. The χ 2 red = 1.22 in (a) and χ 2 red = 1.21 in (b), for the same NDF.
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 44 Figure 4.4: Hyperfine structure of 129 Sn in the 5p6s 3 P 1 level. The thick blue line represents a total fit of two states on a common background. The lower-spin state (I = 3/2) is indicated by a semitransparent fill. The hyperfine components of the latter have been labeled by the corresponding F quantum numbers. The x-axis is relative to the resonance frequency of 124 Sn. The χ 2 red = 1.80 in (a) and χ 2 red = 1.81 in (b), for the same NDF.
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 46 within the envelope of the resonances it is not possible to determine the correct fit. Based on the chi-square the right fit is the one in (b), which gives a negative value for the quadrupole moment. The hfs splitting of this isomer in the singlet is comparable with the experimental linewidth, and the results of the fit are constrained only by the small peak in the lower frequency side because the quadrupole splitting in the triplet is nearly zero. Therefore, the negative sign has to be further investigated. The nuclear properties of this state are unknown and the results presented here are the most accurate yet. The selected results are summarized in Tab.4
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 45 Figure 4.5: Simultaneous fitting of the hyperfine spectra of 130 Sn in the 5p6s 3 P 1 and 5p6s 1 P 1 levels. Two possibles way of fitting are labelled as (a) and (b) corresponding to a positive and negative value of B ( 1 P1) , respectively. A ( 3 P1) is negative in both cases. The thick blue line represents a total fit of two states on a common background. The isomeric state (I = 7) is indicated by a semitransparent fill under two assumptions for the level ordering in 1 P 1 , (a) and (b). The hyperfine components of the latter have been labeled by the corresponding F quantum numbers. The x -axis is relative to the resonance frequency of 124 Sn. The χ 2 red = 1.68 in (a) and χ 2 red = 2.45 in (b), for the same NDF.
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 46 Figure 4.6: Simultaneous fitting of the hyperfine spectra of 128 Sn in the 5p6s 3 P 1 and 5p6s 1 P 1 levels. Two possibles way of fitting are labelled as (a) and (b) corresponding to a positive and a negative value of B ( 1 P1) , respectively. A ( 3 P1) is negative in both cases. The thick blue line represents a total fit of two states on a common background. The isomeric state (I = 7) is indicated by a semitransparent fill under two assumptions for the level ordering in 1 P 1 , (a) and (b). The hyperfine components of the latter have been labeled by the corresponding F quantum numbers. The x -axis is relative to the resonance frequency of 124 Sn. The χ 2 red = 2.37 in (a) and χ 2 red = 1.78 in (b), for the same NDF.
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 47 Figure 4.7: Magnetic moments of odd isotopes in the tin chain. The experimental error bars are smaller than the markers. The dotted lines represent the single-particle Schmidt values for each configuration.
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 457248 Fig. 4.12 shows a compilation of literature values, magnetic moments are displayed on the left side and quadrupole moments in the right side, reported to date. For a more clear comparison with our measurements, the differences between this work and literature are plotted. The error of our measurements is enclosed by shading bands. As can be seen on the left side of the figure, the overall agreement is good within the error bars except for the isotopes 125 Sn, 127 Sn and 129 Sn with I = 3/2, derived from a laser spectroscopy experiment

  [7] following two theoretical approaches. The resulting values are,eV JJ ( 1 P 1 ) = 593(59) MHz/b, eV JJ ( 3 P 1 ) = -138(13) MHz/bThe ratio R V JJ = V JJ ( 3 P 1 )/V JJ ( 1 P 1 ) = -0.23(3) is in good agreement
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 49 Figure 4.9: Quadrupole moments of odd-isotopes in the Sn chain. The experimental error bars are smaller than the markers except for 111 Sn. See text for details.

Figure 4 . 11 : 2 Figure 4 . 12 :

 4112412 Figure 4.11: Systematics of the h 11/2 neutron states in cadmium, indium and tin.The plotted values for indium were determined with the aid of the quadrupole adittivity rule of the I = 8 isomeric states[83] while the quadrupole moments of cadmium where taken from[3]. See text for details.

  2.3.3, the measured isotope shift and the known mean-square charge radii of the stable isotopes were linked through (2.63) and (2.65) and plotted in Fig. 4.13. With consistent data sets, the plots should result in two straight lines with the slopes and the y-intercepts linked by the F i and K i factors. A simultaneous fitting of the two King plots is performed with the electronic factors of the i : 5p 2 1 S 0 → 5p6s 1 P 1 transition as a common parameter. The fit was performed using the ROOT framework with the MINUIT2 including x-and y-errors. In the first plot, Fig. 4.13 (a), only stable isotopes are used while in the two-lines King plot Fig. 4.13 (b)
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 413414415 Figure 4.13: King plot of the measured isotope shifts against the differences in charge radii of stable isotopes (a) and King plot of the isotope shifts measured in the i : 5p 2 1 S 0 → 5p6s 1 P 1 transition versus the isotope shift measured in the j : 5p 2 3 P 0 → 5p6s 3 P 1 transition (b).
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 416 Figure 4.16: Experimental root mean-square charge radius versus neutron number around closed-shells. The values represented by black circles were taken from [82] while blue circles correspond to the values extracted from this work. Only ground states are plotted. The data have been arbitrarily offset from each other for clarity
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 417418 Figure 4.17: Differences in mean square charge radius between 11/2 states and 1/2, 3/2 states. The systematic error is represented by shaded bands. The inset shows a similar mass dependence of the same states in the neighbouring cadmium chain.

  The differences in mean square charge radii beyond the shell closure N = 82 have been determined for the first time. The most striking behaviour is the observed "kink" at N = 82 that evidence the robustness of the N = 82 shell gap. Beyond mean-field calculations, triggered by the results of this work, provide accurate description of the radii and further relate the overall trend to correlations stemming from the fluctuations of the quadrupole moments. The measured differences in mean square charge radii between 11/2 states and the other state present in the isotope are characterized by a parabolic behaviour. This trend seems to survive regardless if the 11/2 states are ground or isomeric states.
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 151 Figure 5.1: Fluorescence spectrum of 134 Sn in the 286-nm transition in the neutral atom.

  chain. Whereas recent results obtained with a Fayans functional predicts a strong kink in the Cd chain, two protons below Z = 50. The charge radii extracted from the laser spectroscopic data exhibit a very pronounced kink and therefore confirm the theoretical predictions. Since the arguments established in the Pb region this would indicate a quenching of the shell closure in disagreement with the measured binding energies. Hence, a different mechanism must be at work at N = 82.
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 8652 Figure 5.2: Optical spectra of some chosen isotopes for the determination of the isotope shift in the 5p 2 1 S 0 → 5p6s 1 P 1 transition. Shown is the number of counts as a function of the relative frequency.

Fig. 5 .

 5 Fig. 5.2 a few of the obtained spectra are shown. For the determination of the isotope shift, the x-axis in this graph is already converted into relative frequencies. Optical detection of the PP transition is based on the fluorescence at 286 nm, while the SP transition is detected by the subsequent decay along the 5p6s 1 P 1 → 5p 2 1 D 2 transition at 326 nm which avoids optical pumping and acts as an efficient background suppression.
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 553 Fig. 5.3 shows also the theoretical calculation for the change in mean square nuclear charge radii which describes the trend of the experimental values qualitatively and also shows the kink at the magic neutron number.
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 54 Figure 5.4: Energy levels for 29 Mg. The ground-state energy value is plotted in the first column. Red points without lines on the y-axis indicate that the J is not known with certainty. The theoretical results, corresponding to different Hamiltonians (USD, USDA and USDB) for the sd-shell, are shown in the last three columns.
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 55 Figure 5.5: Experimental magnetic moments of odd-magnesium isotopes versus calculated values using two different Hamiltonians (USD and USDB) for the sd-shell. Experimental errors are smaller than the dots.

Figure 1 .

 1 Figure 1. Fluorescence spectra of 24 Mg from a UC target (a) and a SiC target (b). The vertical scales are logarithmic.

Figure 3 .

 3 Figure 3. Ground-state magnetic moments of magnesium isotopes in the sd shell in units m N , versus shell model calculations. The respective mass numbers are indicated. The experimental uncertainties are smaller than the dots.

  

  Ground and isomeric states of tin isotopes measured in this thesis. Stable isotopes are noted by grey corners while blue corners indicate those isotopes for which nuclear properties were measured for the first time.
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  2 3 P 0 → 5p6s 3 P 1 are the studied transitions, c 1,2,3,4 are constants that depend on J, I and F , see (2.47) and(2.50), A (5p6s 1,3 P 1 ) and B (5p6s 1,3 P 1 ) are the hyperfine structure constants of

	the corresponding states, δν A,A i,j

Table 4 . 1 :

 41 Parameters in the fitting routine.

	Name	Nomenclature	Fit
	Isotope shift	δν A,A	free
	Isomer shift	δν A (g) ,A ( * )	free
	A-factor	A	free
	B-factor	B	free
	Nuclear spin	I	fixed
	Total elect. angular momentum	J	fixed
	Gaussian width	Γ G	free
	Lorentzian width	Γ L	free
	Baseline	BL	free
	Relative peak intensities	I F →F	free/fixed

The total fit function is built as a sum of a pseudo-Voigt profile at each resonance position. If an isomeric state is present, the two structures are fitted simultaneously with the difference between their centroids as a link parameter, known as isomer shift. The parameters of the fit are summarized in Tab. 4.1.

  1 P 1 ) . The systematic error of the latter is very small and can be neglected while the
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Figure 4

.10: Experimental quadrupole moments of the I π =11/2 -states in tin compared to those calculated using the seniority scheme. See text for details.

Table 4 . 3 :

 43 Isotope shifts of108-134 Sn in the transitions 5p 2 1 S 0 → 5p6s 1 P 1 and 5p 2 3 P → 5p6s 3 P 1 , from this work and literature values [7] a [5] b [8] c . Statistical uncertainties are quoted in round brackets while systematic uncertainties in square brackets.

				Isotope shifts (MHz)	
			5p 2 1 S 0 → 5p6s 1 P 1	5p 2 3 P 0 → 5p6s 3 P 1
	N + Z	I	This work	Literature values a	This work	Literature values b,c
		0			-2416.8 (118) [98]	
		5/2 -1895.4 (17) [51] -1898.6 (80)	-2238.6 (19) [92]	
		0			-2015.2 (103) [84] -2007.7 (70)
		7/2			-1910.6 (36) [77] -1896.2 (170)
		0	-1382.7 (17) [40] -1380.3 (40)	-1652.1 (80) [71]	-1659.4 (2)
		7/2 -1322.1 (14) [37]		-1574.4 (38) [65]	
		0	-1115.4 (16) [32] -1115.7 (20)	-1335.6 (86) [58]	-1341.8 (2)
		1/2 -1044.2 (12) [29] -1044.3 (20)	-1250.4 (28) [52]	-1246.1 (1)
		0	-841.3 (9) [26]	-842.6 (80)	-1007.6 (92) [45]	-1017.2 (2)
		1/2	-761.5 (9) [23]	-759.1 (10)	-906.6 (50) [40]	-912.6 (1)
		0	-584.1 (24) [19]	-588.4 (20)	-688.0 (76) [33]	-711.4 (2)
		1/2	-514.0 (10) [16]	-521.4 (20)	-619.7 (28) [28]	-620.7 (1)
		0	-360.8 (8) [12]	-360.3 (40)	-448.6 (93) [22]	-441.2 (2)
		11/2	-308.7 (23) [9]		-370.2 (20) [17]	-369.2 (17)
		0	-166.7 (12) [6]	-162.8 (60)	-206.3 (84) [10]	-205.8 (15)
		11/2	-114.5 (23) [3]		-135.5 (31) [5]	-144.0 (20)
		11/2	48.4 (12) [3]		61.0 (24) [5]	63.2 (75)	61.9 (110)
		0	146.8 (8) [7]		178.7 (69) [12]		188.9 (100)
		11/2	190.5 (26) [9]		246.2 (32) [16]		243.9 (10)
		0	270.4 (24) [12]		339.5 (51) [21]		359.9 (120)
		11/2	326.5 (33) [15]		411.0 (30) [26]		439.9 (90)
		0	396.1 (18) [18]		486.6 (44) [31]		564.9 (10)
		11/2	449.9 (18) [20]		572.5 (21) [36]		784.9 (10)
		0	498.1 (10) [24]		624.1 (34) [42]		698.9 (6)
		7/2	705.8 (16) [26]		868.5 (29) [46]	
		0	981.9 (36) [29]		1196.5 (83) [51]	

Table 4 . 4 :

 44 Isomer shifts of113-131 Sn in the 5p 2 1 S 0 → 5p6s 1 P 1 and 5p 2 3 P 0 → 5p6s 3 P 1 transitions. Statistical errors are quoted in round brackets. The systematic errors are negligible. Literature values are taken from[5] a and[8] b .

		Isomer shifts (MHz)	
		5p 2 1 S 0 → 5p6s 1 P 1	5p 2 3 P 0 → 5p6s 3 P 1
	N + Z	This work	This work	Literature values
	113	-53 (6)	-87 (27)	
	117	-11 (1)	-9 (2)	-12 (2) a
	119	-10 (1)	-6 (3)	
	121	-19 (3)	-15 (3)	-19 (3) a
	123	7 (2)	5 (4)	
	125	-10 (2)	-12 (3)	-48 (14) b
	127	-24 (4)	-38 (3)	-63 (14) b
	128	-39 (8)	-110 (4)	
	129	58 (2)	60 (4)	87 (14) b
	130	-83 (1)	-88 (3)	-100 (13) b
	131	97 (1)	105 (2)	85 (16) b

Table 4 . 5 :

 45 Electronic field shift F and mass shift K factors deduced from king plots. Literature values from different experimental data sets[7] a ,[8] c and Dirac-Fock calculations[7] b are included for comparison.

			Electronic factors
		5p 2 1 S 0 → 5p6s 1 P 1	5p 2 3 P 0 → 5p6s 3 P 1
		This work	Literature values	This work	Literature values
	F (GHz/fm 2 ) 2.79 (23) 2.24 (27) a 1.98 b	2.98 (25)	3.30 (27) c 2.41 b
	K (GHz u)	-724 (21)		-568 (23) -761 (200) c

  3 P 0 → 5p6s 3 P 1

					Literature values [86]
		0		-1.0404 (32) [872]
		5/2	-0.9670 (6) [599]	-0.9645 (6) [808]
		0		-0.8734 (25) [732]
		7/2		-0.8227 (12) [690]
		0	-0.7197 (6) [599]	-0.7205 (19) [604]	-0.7212 (73)
		1/2	-0.6585 (23) [564]	-0.6497 (89) [570]
	113 *	7/2	-0.6774(5) [563]	-0.6792 (13) [569]
		7/2	-0.5833 (6) [485]	-0.5842 (21) [490]	-0.5877 (73)
		0	-0.5379 (4) [447]	-0.5409 (9) [453]
		1/2	-0.4458 (3) [371]	-0.4450 (27) [373]	-0.4417 (73)
		1/2	-0.3981 (3) [331]	-0.3973 (14) [333]	-0.3871(79)
	117 *	11/2	-0.4020 (4) [331]	-0.4002 (16) [333]
		0	-0.3158 (7) [263]	-0.3120 (23) [262]	-0.3176 (73)
		1/2	-0.2721 (4) [227]	-0.2731 (9) [229]	-0.2684 (79)
	119 *	11/2	-0.2757 (6) [227]	-0.2750 (15) [229]
		0	-0.1991 (3) [166]	-0.2022 (27) [170]	-0.1996 (79)
		3/2	-0.1558 (14) [135]	-0.1576 (13) [137]
	121 *	11/2	-0.1625 (8) [135]	-0.1627 (7) [136]
		0	-0.0941 (4) [78]	-0.0946 (25) [80]	-0.0962 (79)
		3/2	-0.0580 (8) [48]	-0.0581 (10) [49]
	123 *	11/2	-0.0556 (10) [48]	-0.0564 (16) [49]
		3/2	0.0341 (4) [29]	0.0329 (8) [28]
	125 *	11/2	0.0307 (9) [29]	0.0289 (13) [28]
		0	0.0859 (3) [72]	0.0846 (23) [71]
		3/2	0.1178 (9) [98]	0.1192 (11) [101]
	127 *	11/2	0.1091 (19) [99]	0.1066 (24) [101]
		0	0.1624 (9) [136]	0.1621 (16) [137]
	128 *	7	0.1485 (29) [136]	0.1251 (20) [140]
		3/2	0.1773 (15) [167]	0.1776 (16) [168]
	129 *	11/2	0.1982 (12) [166]	0.1980 (10) [167]
		0	0.2387 (6) [199]	0.2348 (13) [198]
	130 *	7	0.2088 (8) [201]	0.2053 (16) [199]
		3/2	0.2385 (8) [230]	0.2394 (10) [234]
	131 *	11/2	0.2732 (6) [228]	0.2749 (7) [232]
		0	0.3055 (4) [255]	0.3033 (11) [256]
		7/2	0.3984 (6) [329]	0.3964 (10) [333]
		0	0.5083 (13) [423]	0.5174 (25) [434]

Table 5 . 1 :

 51 Isotope shifts δν 124,A

  108-134 Sn have been determined by means of collinear laser spectroscopy.With the measurements of the most neutron-rich isotope 134 Sn we were able to determine a charge radius beyond the neutron shell closure for the first time. Below the neutron shell closure, the evolution of the charge radii can be described by simple droplet model considerations. The expected kink at N = 82 has been observed and it turned out that it is as expected by theory much more pronounced than for the neighboring elements.
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Table 5 . 2 :

 52 Calculated magnetic moments from this work. The experimental values listed in the second column are taken from[93][94][95][96].

	µ(µ N )

Table 1 .

 1 Hyperfine A parameters from this work and a new value for the magnetic moment of23 Mg.

			I		( A p P 3 2 1 2	)	( A s S 3 2 1 2	)	m m N
	23 Mg 3/2	-	( ) 107.4 3	-	( ) 623.5 3	-0.5366(3) a
	25 Mg 5/2	-	( ) 103.1 2	-	( ) 596.4 2	-0.85545(8) b
							(MHz)
	a Extracted in the S 1 2 multiplet; uncorrected for hyperfine anomaly; to be compared with
	m | (	)| Mg	=	( ) 0.5364 3	m

N from NMR[3]. b Reference magnetic moment of25 Mg[18].
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4.1.3 The 5p 2 3 P 0 → 5p6s 3 P 1 transition

The magnetic splitting of the excited state in this transition is twenty times larger than the one of the previously-discussed singlet state; therefore, the spectra are completely resolved. The spectroscopy was performed along the entire neutron-rich range 108-134 Sn. The experimental data is fitted following the same procedure explained before. The hyperfine parameters A were extracted with high precision for all the measured isotopes except for 129,131 Sn and the odd-even cases with I = 0, where two resonances belonging to different states collided. Hyperfine parameters B were also extracted, with a somewhat smaller relative accuracy due to a smaller quadrupole splitting.

By way of illustration, the hyperfine spectra recorded in this transition for the same two isotopes considered in Sec. 4 In the first case, the resonances are distant from each other, and the fitting is constrained to only one set of hyperfine coupling constants. In the second one, the smaller resonance of the ground (I = 3/2) state coincides with the strongest resonance of the isomeric (I = 11/2) state, reducing the accuracy of the hyperfine parameters mainly for the low-spin state. The reduced chisquare of the two fits is the same for the same NDF.

A more complex analysis, consisting in a simultaneous fitting of the two transitions has been performed in order to obtain the highest possible accuracy for all the parameters. The details and the results of this analysis are explored in the following section.

Data analysis and results

compared as a function of the neutron number. For indium, semi-empirical quadrupole moments were calculated with the aid of the additivity rule for quadrupole moments [84] using the experimental quadrupole moments of the odd-odd I = 8 isomeric states and the adjacent odd-even indium isotopes with

is assumed for the I = 8 states. In all cases, a transition from negative to positive quadrupole moments, as the neutron shell is filled, is characteristic of the observed trends. The measured quadrupole moments in tin are about half of the measured values in cadmium. It was suggested in [3] and supported in [85] that the deformed proton core in cadmium contributes to half of each measured quadrupole moment. The proton-core polarization was reflected in a large effective charge of about e eff ν = 2.5e. This could explain the quantitative differences with tin, for which an effective charge of about e eff ν = 1.01e was determined. A singular agreement for the quadrupole moments for cadmium and indium is observed only at N = 63. The remarkable discrepancies result in an underestimation of the quadrupole moments of the I = 8 states in indium when considering the neutron contribution from the cadmium chain.

Comparison with literature values

On the right side of Fig. 4.12, the differences between the values extracted in this work and literature values for low and high spin states have been plotted versus the atomic mass number. Small differences, arising from the use of a different V JJ , are observed for isotopes with A < 125, however, remarkable differences are observed for A ≥ 125. The latter have been measured using the hyperfine parameters B in the 3 P 1 atomic state poorly sensitive to quadrupole splitting, which is evident in the large error bars of the measured moments.

Abstract

The change in mean square nuclear charge radii of the even tin isotopic chain 108-134 Sn has been investigated by means of collinear laser spectroscopy at ISOLDE using the atomic transitions 5p 2 1 S 0 → 5p6s 1 P 1 and 5p 2 3 P 0 → 5p6s 3 P 1 . With the determination of the charge radius of 134 Sn and the improvement in the accuracy for most of the neutron-rich isotopes the evolution of the charge radii across the N = 82 shell closure is established. A kink in the evolution of the nuclear charge radii at this neutron shell closure is well established in this mass region. The observed more pronounced kink in Sn compared to its neighboring elements can be well explained by theoretical models obtained by an Energy Density Functional (EDF) approach presented in this paper.

Introduction

The Z = 50 element tin owns more stable isotopes than any other element and far away from stability the two doubly magic isotopes 100 Sn and 132 Sn can be found. It is a key element for both theoretical and experimental understanding of nuclear physics [1][2][3][4]. Reasons for this are the closed proton shell that is advantageous for nuclear structure calculations and especially the N = 82 neutron closure at 132 Sn in the middle of a region that is extremely important for the nuclear astrophysics and nucleosynthesis, as well as the many optically accessible transitions that allow laser spectroscopic measurements with high precision. Laser spectroscopic and muonic measurements have been performed from 108 Sn to 132 Sn, partially with low accuracy, determining the nuclear charge radii up to the doubly magic nucleus [5][6][7][8][9]. Radii across the N = 82 shell closure have been measured only for elements with higher proton numbers. They exhibit a clear kink at the neutron shell closure that is very pronounced at higher proton numbers but weakening towards the proton shell closure (see e.g. [10,11]). Recently, a new density functional of the 

Appendix "Other work: Shell model calculations for Mg"

The shell model is used to investigate the magnetic moments of odd magnesium isotopes with neutron number up to 17. The calculations were carried out using the NuShellX @ MSU [89,90] code that provides a powerful tool for nuclear structure predictions. The latter are based on the sd residual interactions USD [91] and USDA/B [92] involving the 0d 3/2 , 0d 5/2 and 1s 1/2 active orbitals for protons and neutrons. They have been obtained from the fits of two-body matrix elements (TBME) and single-particle energies to experimental binding and excitation energies. USDA/B are an updated version of th USD with the main difference in terms of energy associated to the neutron-rich nuclei. USDB, in particular, provides the best fit to the data.

The theoretical results from this work are listed in Tab. 5.2. The overall agreement between the calculations and the experimental values is reasonably good with differences smaller than 10%.

Regarding energy levels, the USDB interaction provides the most accurate description of the level ordering in 29 Mg. The comparison between the experimental ground state and theoretical values are shown in Fig. 5.4. According to the single-particle shell model, the ground state properties are dominated by one single neutron in the d 3/2 shell which is in agreement with the I = 3/2 + spin-parity, measured experimentally [96]. From the shell model calculations using the USD/ USDA Hamiltonian the 3/2 + is an excited state located at 40/ Spin and magnetic moment of 23 Mg D T Yordanov 1,2,3 , M L Bissell 4,5 , K Blaum 2 , M De Rydt 5 , Ch Geppert 6,7 , J Krämer 6,7 , K Kreim 2 , M Kowalska 2,3 , A Krieger 7 , P Lievens 8 , R Neugart 2,7 , G Neyens 5 , W Nörtershäuser 6,7,9 , L V Rodríguez 1 , R Sánchez 7,9 and P Vingerhoets 5

Magnetic moment

The atomic transition in use is free of quadrupole interactions. The relative positions of individual lines are, therefore, determined by the equation:

F applied for both the ground and the excited atomic states, where I is the nuclear spin, J are the respective electronic angular momenta, F are the total angular momenta, and A are the magnetic hyperfine parameters. The hyperfine anomaly in singly-ionized magnesium, taking into consideration the data on atomic sodium [15][16][17], is expected to be small with respect to the experimental uncertainties in this work. The A factors and the nuclear magnetic moments of any two magnesium isotopes are then related through the expression:

The constant essentially represents the average magnetic field per unit angular momentum induced at the origin by the atomic electrons. Its value is always positive allowing for sign determinations of nuclear magnetic moments directly from hfs measurements.