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Thèse présentée et soutenue à Orsay, le 28 Septembre 2018, par

Liss Vázquez Rodrı́guez

Composition du Jury :

Dr. Elias Khan
Professeur, Institut de physique nucléaire d’Orsay, IPN Président
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Chapter 1

Introduction

All science is either physics or stamp collecting.

- Ernest Rutherford -

The understanding of the quantum structure of the atomic nucleus has at-

tracted the attention of many experimentalists and theorists for more than a

century. Being a complex many-body quantum system, it possesses fundamen-

tal properties, such as spin and electromagnetic moments, that are considered

valuable inputs for the determination and testing of nuclear models. The sys-

tematic investigation of these observables along an isotopic (isotonic) chain

reveals progressive changes in structure with respect to the number of valence

nucleons. The semi-magic tin isotopes are in the center stage of this powerful

line of inquiry. They form the longest known isotopic chain in the nuclear land-

scape accessible to current experimental studies with the highest number of

stable isotopes (ten), extending from the doubly-magic nucleus with A = 100

up and beyond the doubly-magic nucleus with A = 132. The main goal of this

doctoral dissertation is the determination of model-independent properties of

ground and long-lived isomeric states in neutron-rich tin isotopes up to and

beyond the N = 82 shell closure as a main tool for the understanding of the

nuclear structure far away from the line of stability.

1



Introduction 2

1.1 Physics motivation

The shell model of nuclei, first proposed by M. Goeppert-Mayer and J. H.

D. Jensen [1], is considered the cornerstone of the nuclear physics. One of

the simple foundations of this model implies that the quadrupole moments

of nuclear states, for a nucleus with n valence particles (holes) in an orbital

with angular momentum j, follow a simple linear relation with respect to

the number of valence protons [1] or neutrons [2]. Due to this characteristic

behavior, the systematics of electric quadrupole moments provide a rigorous

test of the model. Linear trends, associated with unique-parity orbitals, have

been observed and discussed in the cadmium [3], mercury and lead chains [4].

However, they are expected to occur only in the cases in which the proton

(neutron) shells are closed, and the differences in their structure are entirely

determined by differences in the number of neutrons (protons) in the valence

shell, as mentioned above. The tin isotopes offer a unique opportunity for ex-

amining the origin of the “simple structure” in these “complex nuclei” through

the quadrupole moments of their 11/2 states. From the quadrupole moments

available in the literature [5–8], one can not extract the true structure of the

relevant states considering the accuracy and precision of the reported values.

New measurements of this observable, enhancing the resolution and improving

the accuracy, will help at the understanding of the causes that originate this

“simple” behavior and will clarify the nuclear structure of tin itself, expected

to exhibit a similar picture of simplicity.

Detailed investigations of the nuclear structure of the single-neutron nucleus
133Sn through its electromagnetic moments will provide important benchmarks

for the development of shell model calculations in the region. They are consid-

ered valuable inputs due to the anticipated single-particle nature of its ground

state [9, 10]. Furthermore, the charge radii of those isotopes that lie outside

the double shell closure will provide stringent testing of this observable at the

N = 82 shell gap. The systematics in the region show a well-pronounced

“kink” at N = 82 as observed at shell closures [11]. Former charge radii mea-

surements on tin [5, 7, 8] could not be propagated beyond N = 82 and from

a theoretical point of view, the “kink” may or may not appears according

to relativistic Mean Field [12] and Hartree-Fock-Bogoliubov calculations [13].
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Figure 1.1: Ground and isomeric states of tin isotopes measured in this thesis.
Stable isotopes are noted by grey corners while blue corners indicate those isotopes
for which nuclear properties were measured for the first time.

Therefore, the charge radius measurement of 133Sn together with the one of
134Sn, are essential to enable a conclusion on the evolution of the nuclear

charge radii beyond the N = 82 shell closure.

1.2 Aim of this work

Laser spectroscopy provides a powerful technique to explore the structure of

nuclei along the nuclear landscape [14, 15]. From the perturbation and split-

ting of the electronic energy levels by the nucleus, properties such as nuclear

spin, mean-square charge radius, magnetic dipole and spectroscopic electric

quadrupole moments can be extracted with high-precision and in a model-

independent way. This thesis aims to investigate the nuclear structure of the

neutron-rich tin isotopes by high-resolution laser spectroscopy. A primary goal

has been to extend the measured chain beyond N = 82 in order to test the

robustness of the shell gap and to assess the doubly-magic-plus-one-neutron
133Sn. Information on what has been measured in this work is displayed in

Fig. 1.1.
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The manuscript is organized as follows: In Ch. 2, some elements of atomic

and nuclear structure, as well as the theory of the nuclear moments and charge

radii, are introduced. In Ch. 3, a brief description of the facility and the ex-

perimental set-up is presented. Ch. 4 is dedicated to the data analysis and the

extraction of the relevant nuclear physics observables together with their inter-

pretation. Ch. 5 is devoted to the conclusions. The contribution of this work

to the ISOLDE Newsletter 2018, entitled, “High-resolution laser spectroscopy

of the neutron-rich tin isotopes” together with an article in preparation are

attached to the thesis. Another work, focused on shell model calculations in

magnesium isotopes and an article entitled: “Spin and magnetic moment of
23Mg” are annexed to the thesis.



Chapter 2

Atomic and nuclear structures

Mathematics began to seem too much like puzzle solving. Physics is puzzle

solving, too, but of puzzles created by nature, not by the mind of man.

- Maria Goeppert-Mayer -

2.1 Atomic Hamiltonian

The description of an atomic system is given by the wave function Ψ(~r, t)

obtained by solving the time-dependent Schrödinger equation [16]

i~
∂Ψ

∂t
= ĤΨ (2.1)

where Ĥ is the Hamilton linear operator, ~ is the reduced Planck constant,

and i is the imaginary unit. The total energy is conserved when the system

is closed, particles plus electromagnetic field, and the Hamilton operator in

(2.1) should simultaneously describe both subsystems. In the absence of an

external field, it can be separated into three different parts:

Ĥ = Ĥ0 + Ĥrep + ĤS.O. (2.2)

5



Atomic and nuclear structures 6

The first term Ĥ0 is called hydrogen-like Hamiltonian such that:

Ĥ0 = − ~2

2M
~∇2
~R
− ~2

2me

Ne∑
i=1

~∇2
~ri
−

Ne∑
i=1

Ze2

| ~R− ~ri |
(2.3)

where ~R and ~ri are the position vectors of the atomic nucleus and ith-electron,

respectively. These vectors are in a coordinate system space-fixed at the lab-

oratory frame. M and me are the mass of the nucleus and the electrons,

respectively, Z is the atomic number, and Ne is the number of electrons with

a charge e. Ĥ0 can be interpreted as the Hamiltonian of Ne non-interacting

electrons moving in a central force field created by a point-nucleus. The first

two terms in (2.3) hold the kinetic-energy operator of the nucleus and the Ne

electrons, respectively, while the third term describes the attraction potential

energy between them.

The second term in (2.2) accounts for the interelectronic repulsions between

pairs of electrons,

Ĥrep =

Ne∑
i=1

Ne∑
j>i

e2

| ~ri − ~rj |
(2.4)

where | ~ri−~rj | is the distance between electron i and j. The restriction j > i

avoids counting the same interelectronic repulsion twice and the self-repulsion.

The last term in (2.2) arises from the electromagnetic interaction between the

spin and the orbital magnetic dipole moment of the electrons. It is known as

the relativistic spin-orbit interaction term [17] and can be expressed as:

ĤS.O. =
1

m2
ec

2

Ne∑
i=1

1

ri

dV̂i(ri)

dri
~̂Li · ~̂Si (2.5)

where V̂i(ri) is an effective potential felt by the ith-electron. It is originated by

the nucleus and a cloud created by the remaining (Ne − ith) electrons. ~̂Li and

~̂Si are the orbital and the spin angular momenta operators for the ith-electron

and c is the speed of light.

A subtle approximation is made in (2.2). The nucleus has been considered as

a point of mass M and charge Ze; therefore, the effect of its size, shape and

charge distribution have been neglected. A discussion will be offered later in
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this chapter.

The Hamiltonian (2.2) is time-independent; accordingly, the wave function in

(2.1) can be written as a product of a time-dependent τ (t) function and a

position-dependent ψ({~ri}, ~R) function:

Ψ({~ri}, ~R; t) = ψ({~ri}, ~R) · τ (t) (2.6)

Substituting (2.6) in (2.1) and applying the Fourier method [18], for solving

partial differential equations, the time evolution of the system,

τ(t) = exp

(
−iE · t

~

)
(2.7)

and the stationary Schrödinger equation,

Ĥψ({~ri}, ~R) = Eψ({~ri}, ~R) (2.8)

are obtained, being E the energy eigenvalues of the system. Several methods

have been developed to solve the eigenvalues and eigenvectors problem (2.8)

[19]. The cornerstone of those methods is the Hartree-Fock self-consistent

field theory [20,21]. It gives an approximate wave function written as a Slater

determinant of one-electron spin-orbitals to which the Pauli exclusion principle

applies [22],

ψ(~r1, ~r2, ..., ~rNe) ≈
1√
Ne!

∣∣∣∣∣∣∣∣∣∣
φ1(~r1)σ(1) φ2(~r1)σ(1) . . . φNe(~r1)σ(1)

φ1(~r2)σ(2) φ2(~r2)σ(2) . . . φNe(~r2)σ(2)
...

...
. . .

...

φ1(~rNe)σ(Ne) φ2(~rNe)σ(Ne) . . . φNe(~rNe)σ(Ne)

∣∣∣∣∣∣∣∣∣∣
where φj(~ri), with i, j ∈ [1, Ne], denotes the one-electron orbitals in the body-

fixed frame, i.e., the coordinate system has its origin at the nucleus, and σ(i)

describes the spin functions. The latter indicate the spin of the ith-electron,

which is either α(i) (spin up) or β(i) (spin down). From the eigenvalues and

the eigenvectors that satisfy (2.8) the well known “atomic shell model” comes

out. This model can explain the properties in the periodic table such that

the trends of the ionization energies as a function of the atomic number. It is

worth to mention some definitions from this model that are significant :
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� electron shell: the set of orbitals belonging to a given principal quan-

tum number n. They are labeled as K, L, M ,... for n = 1, 2, 3, ...,

respectively,

� electron subshell: set of orbitals belonging to a given n and have an

angular quantum number L ∈ [0;n− 1],

� Unsöld’s theorem: the square of the total electron wavefunction, i.e.,

probability density, for a filled or half-filled subshell is spherically sym-

metric.

The direct consequence of the Unsöld theorem, as shown in Sec. 2.1.2, lies in

the fact that those subshells that are in agreement with the theorem do not

contribute to the total angular momentum of the atom.

2.1.1 Angular momenta in many-electron atoms

The total orbital angular momentum ~̂L and the total spin angular momentum

~̂S of Ne electrons in an atom is defined as:

~̂L =

Ne∑
i=1

~̂Li ∧ ~̂S =

Ne∑
i=1

~̂Si (2.9)

Neglecting the spin-orbit coupling, the operators ~̂L and ~̂S commute with the

atomic Hamiltonian (2.2) making possible the characterization of an atomic

state by the quantum numbers L and S. Therefore, the electronic wave func-

tion of an atom satisfies:

~̂L 2ψ = L(L+ 1)~2ψ ∧ ~̂S 2ψ = S(S + 1)~2ψ (2.10)

where L(L+1)~2 and S(S+1)~2 give the square of the magnitude of the total

orbital and spin angular momentum, respectively. A code letter is widely used

to specify the total orbital angular momentum quantum number:

L 0 1 2 3 4 5 6 7 8

letter S P D F G H I K L
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Based on the Pauli principle those subshells that are fully filled do not con-

tribute to the total electronic spin angular momentum. When the spin-orbit

interaction is taken into account, the operator ~̂L does not commute with the

Hamiltonian. Therefore, the total electronic angular momentum ~̂J of an atom

is introduced, such that:

~̂J = ~̂L+ ~̂S (2.11)

This type of coupling is known as Russell-Saunders coupling or LS coupling

[23]. The operator ~̂J commutes with the Hamiltonian, in consequence, the

atomic state can be described by the quantum number J , having the possible

values:

|L− S| ≤ J ≤ |L+ S| (2.12)

In addition,

~̂J 2ψ = J(J + 1)~2ψ (2.13)

2.1.2 Atomic levels of the tin atom

The previously discussed theory helps at the understanding of the atomic

lines of the tin atom studied in this thesis. The eigenvalues and eigenfunc-

tions of the hydrogen-like Hamiltonian, Ĥ0 in (2.2), give all the possibles

electron configurations for the fifty electrons of tin, two of which are used in

this thesis for studying its nuclear structure, see Fig. 2.1,

1. [Kr] 4d10 5s2 5p2

2. [Kr] 4d10 5s2 5p 6s

When the electron correlations, Ĥrep in (2.2), are included, different atomic

terms appear for each electronic configuration, see Fig. 2.1. Those states can

have the same or different energies depending on whether the interelectronic

repulsions are the same or different. According to the Unsöld’s theorem, only

the two electrons at the 5p subshell, in the first electronic configuration, and

the isolated electrons at the 5p and 6s subshells, in the second electronic con-

figuration, are responsible for the total electronic orbital angular momentum

in each level. In the first case and following the algebra of the total angular

momentum, three values of L are possible, L1 ∈ {0, 1, 2} while for the second
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Figure 2.1: Relevant part of the electron configuration (first column), the atomic
terms (second column) and the atomic levels scheme of Sn I. The resonant charge
exchange level with Na is given as a dashed line, for further discussion in Ch. 4.

case L can take the single value L2 ∈ {1}. We have to note that the subshell

6s has zero contribution to the angular momentum. The total spin angular

momentum can be S1,2 ∈ {0, 1} in both electronic configurations. Only the

electrons in the open subshells contribute to it.

By including the relativistic spin-orbit interaction, ĤS.O. in (2.2), the atomic

levels arise, see Fig. 2.1. The spectroscopic notation n2S+1LJ is being used.

1. 5p2 3P0 (1), 5p2 3P1 (3), 5p2 3P2 (5)

5p2 1D2 (5)

5p2 1S0 (1)

2. 5p6s 3P0 (1), 5p6s 3P1 (3), 5p6s 3P2 (5)

5p6s 1P1 (3).

Each atomic level consists of 2J + 1 states of equal energy. The (2J + 1)-fold

degeneracy is highlighted in parenthesis in the previous items. It is related to

the 2J + 1 values of MJ where MJ~ is the z component of the total electronic

angular momentum ~̂J .
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The two atomic transitions highlighted in Fig. 2.1 are studied in this thesis

to measure the nuclear properties of the tin isotopes.

2.2 Nuclear Hamiltonian

In the previous section, the nucleus was treated as a point of mass M and

charge Ze. Further to this subtle approximation, the nucleus is a complex

many-body system composed of A = N + Z nucleons being Z the number of

protons and N the number of neutrons. The nature of the interactions that

keep the nucleons together in a limited region of the space can be found in

the field of quantum chromodynamics [24,25]. This theory is well-beyond this

thesis; nevertheless, some properties of the nucleus will be discussed.

The nuclear Hamiltonian can be written as:

Ĥnuc = −
A∑
i=1

~2

2mi

~∇2
~ri

+

A∑
j=1

A∑
j>i

V̂nuc(| ~ri − ~rj |)+

Z∑
j=1

Z∑
j>i

e2

| ~ri − ~rj |
+

A∑
j=1

Ĥj
s.o. (2.14)

where ~ri is the position vector of the ith-nucleon and mi its mass.

The first term addresses the kinetic energy of the nucleons while the second

one accounts for the nuclear interaction between them. The latter can be

considered, in a first approximation, as a two-body interaction type: proton-

proton (ππ), neutron-neutron (νν), and proton-neutron (πν). The third term

takes into account the Coulomb repulsion between the protons while the last

term represents the relativistic spin-orbit interaction of the nucleons [26].

Two main differences between the atomic and nuclear Hamiltonian are signif-

icant:

� in the nuclear Hamiltonian, there is not an external potential as in the

atomic one, where the nuclear charge creates a robust central potential

for each electron;

� the spin-orbit interaction term has an electromagnetic origin for the elec-
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trons, however, there is no similar origin for the same term for nucleons.

Aside from these differences, experimental evidence suggests a nuclear shell

structure for nucleons [27,28] similar to the electronic shell structure observed

for electrons. The Hamiltonian (2.14) can be rewritten as:

Ĥnuc =
N∑
j=1

Ĥν
j +

Z∑
k=1

Ĥπ
k +

A∑
j=1

Ĥj
s.o. (2.15)

where the one-particle Hamiltonians Ĥν
j for neutrons and Ĥπ

k for protons have

the following explicit form:

Ĥν
j = − ~2

2mν

~∇2
~rj

+
A∑
j>i

V̂nuc(| ~ri − ~rj |) (2.16)

Ĥπ
k = − ~2

2mπ

~∇2
~rk

+
A∑
j>k

V̂nuc(| ~rk − ~rj |) +
Z∑
j>k

e2

| ~rk − ~rj |
(2.17)

being mπ and mν are the proton and neutron masses [29], respectively.

The spin-orbit interaction term for nucleons can be expressed as:

Ĥj
s.o. =

1

~2
V̂s.o.(r) ~̀̂j · ~̂sj (2.18)

where ~̀̂j and ~̂sj are the orbital and spin angular momenta of the jth-nucleon,

respectively. The potential V̂s.o.(r) is derived from the electron movement

around the nucleus and its form and strength are determined phenomenolog-

ically.

The obtention of the eigenvalues and the eigenfunctions of the Hamiltonian

(2.15) is extremely difficult and often impossible. Only small systems, like the

deuteron to cite an example, are feasible. The most common approximation

is the “mean field theory” widely used to treat many-body problems. The

latter is also known as “self-consistent field theory” analogous to the Hartree-

Fock method for the electrons. The fundamental principle of this theory lies

in counting all the interactions to any one-body with an average or effective

potential [30,31]. As a result, any multi-body system is treated as an effective
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one-body problem. More specifically, it considers only the Hamiltonians Ĥν
j

and Ĥπ
j , that describe a single nucleon subjected to a potential V̂ j

nuc(rj) for

a neutron or V̂ j
eff = V̂ j

nuc(rj) + V̂ j
coul(rj) for a proton. These potentials are

the mean field created by all the other nucleons that interact with the jth-

nucleon. The spin-orbit coupling is assumed as a single particle term. In other

words, after the mean field approximation, the Hamiltonian for the jth-nucleon

adopts the following form:

Ĥj
nuc = − ~2

2mj

~∇2
~rj

+ V̂ j
eff +

1

~2
Vs.o.(r) ~̀̂j · ~̂sj (2.19)

where the jth-nucleon can be a proton or a neutron. Therefore, the mean field

potential can be expressed as:

V̂ j
eff(rj) =

{
V̂ j

nuc(rj) for neutrons

V̂ j
nuc(rj) + V̂ j

coul(rj) for protons

A new problem is glimpsed that lies in how to estimate the nuclear mean field

interaction V̂ j
nuc(rj). One of the most straightforward and successful potential

wells is the Woods-Saxon potential [32]. It is an intermediate between the har-

monic oscillator and the infinite well potential, having the following analytical

form:

V̂ j
nuc(rj) =

−V0

1 + exp

(
rj −R1/2

a

) (2.20)

where R1/2 and a give a realistic description of the nuclear interaction. The

first one is the radius for which the nuclear interaction reaches half of its

starting value. The second one is related to the skin thickness parameter t

through the expression: a ≈ t/(4 ln 3), where t is defined as the distance at

which the nuclear interaction drops from 90% of its starting value down to

10%. The experiments suggest that t ≈ 2.3 fm, i.e., a ≈ 0.524 fm for most

nuclei. The well-depth V0 is around 50 MeV, and it is optimized to give the

proper separation energy of nuclear states. In Fig. 2.2, V̂ j
eff(rj) for the jth-

nucleon is sketched.

By using (2.20), the nuclear shell structure is obtained through the eigenvalues

of the time-independent nuclear Hamiltonian (2.19). Two shell structures
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Figure 2.2: Woods-Saxon potential for the nuclear effective interaction.

completely independent can be considered; one for the neutrons and one for

the protons. They have a similar order but slightly shifted in energy due to

Coulomb repulsion. This simplified shell model can explain the nuclear “magic

numbers.” In addition, ground state nuclear properties such that spin, parity

and electromagnetic moments can be predicted.

2.2.1 Nuclear spin and parity

Similar to the total angular momentum ~̂J for the electrons in the atom, a

given nuclear state has associated a total angular momentum ~̂I. The latter

involves the orbital and intrinsic angular momentum of A-nucleons and can

be defined as:

~̂I =

A∑
i=1

(
~̀̂
i + ~̂si

)
(2.21)

As a matter of convenience ~̂I can be expressed in terms of the total angular

momentum of the ith-nucleon ~̂ji (jj-coupling) or in terms of the total spin ~̂s

and orbital momentum ~̀̂ of A-nucleons (`s-coupling)

~̂I =
A∑
i=1

~̂ji ∨ ~̂I = ~̀̂+ ~̂s (2.22)
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Therefore, each nuclear state is assigned a unique spin quantum number I. In

the extreme single particle picture, depending on the number of protons and

neutrons (odd or even) several rules can be followed for its determination:

� even-even nuclei: all nucleons are coupled pairwise (ππ and νν) to zero

spin I = 0,

� odd-even nuclei: the total spin is determined by the j-value of the un-

paired particle (π ∨ ν) while the remaining (A− 1) nucleons are coupled

to spin zero,

� odd-odd nuclei: the total spin is determined by the vector coupling of

the ~̂j of the unpaired neutron and proton, ~̂I = ~̂jπ + ~̂jν , taking values

between | jπ − jν | ≤ I ≤ | jπ + jν |.

The parity of the nucleus, defined as the parity of the nuclear wavefunction, is

given by the unpaired nucleon(s) and can be expressed as the product of the

single nucleon parity (−1)`.

2.2.2 Nuclear magnetic dipole moment

An operational definition of the nuclear magnetic dipole moment ~̂µ associated

to a total nuclear angular momentum ~̂I can be expressed as:

~̂µ =

A∑
i=1

(
g`,π∨ν · ~̀̂i + gs,π∨ν · ~̂si

)
(2.23)

where g`,π∨ν and gs,π∨ν are the orbital and spin angular momentum g factors,

respectively. For protons, g`,π = 1 while for neutrons g`,ν = 0. The spin

g factors have the following values gs,π = 5.585694713(46) for protons and

gs,ν = −3.82608545(90) for neutrons [29]. They can be obtained by solving

the relativistic Dirac equation for a point particle with spin 1/2.

In the single particle approximation, the expectation value of the operator
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(2.23), well known as the Schmidt moments, has the following form:

〈~̂µ〉S.P.π∨ν(j) =


[
(j − 1

2)g`,π∨ν + 1
2gs,π∨ν

]
µN for j = `+ 1

2

j
j+1

[
(j + 3

2)g`,π∨ν − 1
2gs,π∨ν

]
µN for j = `− 1

2

where µN is the nuclear magneton (µN = e~/2mπ ≈ 3 · 10−8eV/T) [29].

Based on this approximation, the ground states properties of odd-mass nu-

clei are characterized by the last unpaired nucleon; however, the experiments

show that those nuclei that have nuclear magnetic moments deviate from the

Schmidt values such that:

µexp ≈ [0.5; 1.5] · 〈~̂µ〉S.P.π∨ν(j) (2.24)

The latter suggests that the interaction among all the nucleons should be taken

into account. In order to correct this deviation, effective g factors should

be used. They are defined as those values geff
s and geff

` that minimize the

differences between the experimental and the Schmidt values. Typical values

are, geff
s ∼ 0.7gs,π∨ν and geff

` ∼ g`,π∨ν [33].

In terms of the nuclear spin ~̂I, the magnetic moment can be written as:

~̂µI = gI ~̂IµN (2.25)

where gI is the gyromagnetic ratio.

2.2.3 Nuclear electric quadrupole moment

Most of the nuclei found in life have a non-spherical nuclear charge distribu-

tion, giving rise to a nuclear electric quadrupole moment. The quadrupole

moment operator in a Cartesian coordinate system is defined [34] as:

Q̂zz =
A∑
i=1

eπ∨ν(3z2
i − r2

i ) (2.26)

where eπ∨ν are the free-nucleon charges with the values, eπ = e and eν = 0

and (zi, ri) the position coordinates of the ith-nucleon.
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In a spherical coordinate system, it can be expressed as:

Q̂zz =

√
16π

5

A∑
i=1

eπ∨ν r2
i Y

0
2 (θi, ϕi) (2.27)

where Y 0
2 (θi, ϕi) is the zero-order second spherical harmonic.

The experimentally observed nuclear quadrupole moment, called spectroscopic

nuclear quadrupole moment QS , is the expectation value of Q̂zz for a nuclear

state with m = I. It is obtained by applying the Wigner-Eckart theorem [35]

in terms of the reduced matrix element,

QS =

(
I 2 I

−I 0 I

)√
16π

5
〈I‖

A∑
i=1

eπ∨ν r2
i Y

0
2 (θi, ϕi)‖I〉

Expanding the 3j-symbols and assigning the intrinsic nuclear quadrupole mo-

ment to the latest term, the expression can be rewritten as:

QS =

√
I(2I − 1)

(I + 1)(2I + 3)
Q0 (2.28)

Expression (2.28) shows that for a nuclear spin I ∈ {0, 1/2}, the spectroscopic

quadrupole moment is identically zero, whatever value Q0 is. It means that

those nuclei with spin I = 0 or I = 1/2 may possess an intrinsic quadrupole

deformation due to a non-zero reduced matrix element; nevertheless, its nu-

clear quadrupole moment cannot be measured experimentally. Two different

approaches are conventionally used to estimate the spectroscopic quadrupole

moment of a given nucleus:

� extreme single particle model: those nuclei with properties which can be

defined by the unpaired proton or neutron in the j-orbital, the quadrupole

moment can be calculated as the expectation value of (2.27) such that

〈Q̂zz〉S.P.π∨ν(j) = −eπ∨ν ·
2j − 1

2(j + 1)
· 〈r2

j 〉π∨ν (2.29)

where 〈r2
j 〉π∨ν is the mean square radius of the nucleon in that orbital.

Due to the interaction of the valence nucleons with the core, the elec-
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tric quadrupole moment can strongly deviate from this expression. An

example, discussed in this thesis, is the double magic plus one neutron

nucleus 133Sn, for which according to equation (2.29), the quadrupole

moment should be zero, which is not the case, see Ch. 4.

The valence neutrons and/or valence protons can polarize the core re-

sulting in small oblate or prolate shapes. Similar to the effective g fac-

tors, previously presented in Sec. 2.2.2, an empirical effective charge is

introduced to take into account the core polarization effect,

Qexp ≈
eeff
π∨ν
eπ∨ν

· 〈Q̂zz〉S.P.π∨ν(j) (2.30)

Empirical effective charges have been obtained in several regions of the

nuclear chart, where the expression (2.29) can be applied. They are

found to be of the order of eeff
π ≈ [1.3, 1.6]e and eeff

ν ≈ [0.1, 0.95]e [4].

� seniority scheme: those nuclei that contain n nucleons in a j-orbital

with α nucleons unpaired (α is the seniority) and coupled to a spin I,

the expectation values of (2.27), under the mean field approximation and

using the angular momentum coupling rules, can be expressed [35] as

Qn = 〈jn,α|Q̂zz|jn,α〉 =
2j + 1− 2n

2j + 1− 2α
· 〈jα|Q̂zz|jα〉 (2.31)

The latter expression is called the quadrupole moment of multi-particle

configurations. In the simplest case, where the seniority α = 1 or

“normal coupling” [1, 36], all but one particle are coupled to spin zero.

Then, 〈j|Q̂|j〉 = 〈Q̂zz〉S.P.π∨ν(j) and (2.31) shows a linear trend, between

−〈Q̂zz〉S.P.π∨ν(j) and 〈Q̂zz〉S.P.π∨ν(j), being zero at the middle of the shell.

Nuclear deformations

Far from the single-particle shell model, the breakdown of the single particle

representation, the interaction between the valence nucleons and the core will

lead to a non-spherical charge distribution. The experimental observations

in those nuclei are better described under the assumption of the liquid drop

model. It considers the motion of a charged liquid drop which may produce
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small surface oscillation around the spherical equilibrium shape or it may ro-

tate if the nucleus has a stable ground state deformation. In this scenario, the

intrinsic quadrupole moment Q0 can be linked to the deformation parameter

β -charge deformation related to the proton charge distribution- for an axially

deformed spheroid nucleus [37,38]

Q0 = eZ

√
5

π

〈
r2
〉
〈β〉
(

1 +
〈β〉
8

√
5

π

)
(2.32)

QS =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0 (2.33)

where K is the projection of the total spin ~̂I onto the symmetry axis of the

deformed nucleus with a mean square charge radius
〈
r2
〉
. Two regions can

be distinguished according to the sign of the beta parameter, e.g., β > 0

corresponds to a prolate shape and β < 0 to an oblate shape.

The mean square charge radius

The radial moments of a nuclear charge distribution are defined [39] as,

〈rn〉 =

∫
ρ(r)rnd3r∫
ρ(r)d3r

(2.34)

where the denominator is the total nuclear charge, Ze, being ρ(r) the charge

density of the protons in the nucleus. The mean square charge radius is ob-

tained for n = 2.

For spherical nuclei, different functional forms are proposed for ρ(r) in order

to estimate (2.34).

� The liquid-drop model [40]: it assumes a uniform proton distribution

over the nuclear volume, such that:

ρ(r)L.D. =
A

4
3πR

3
(2.35)

where the protons are distributed along the radius of the mass distri-

bution, given as R = R0 A
1/3. The experimental data indicate that
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R0 ≈ 1.2 fm gives a reasonable approximation for the homogeneous nu-

clear charge distribution. Assuming this simple model, the expression

(2.34), for n = 2 has the following expectation value:

〈
r2
〉L.D.

sph
=

3

5
R2

0 A
2/3 (2.36)

� The Fermi charge distribution [41]: it is commonly used to describe

the nuclear charge density in those nuclei having finite surface thickness

instead of uniform distribution. It has the same functional shape as a

Woods-Saxon potential and gives a more physical representation of the

nuclear structure

ρ(r) =
ρ0

1 + exp

(
r −R1/2

a

) (2.37)

where ρ0, called the central density, is the nuclear density at r = 0. The

other parameters were previously introduced in (2.20), but now they

are expressed concerning the nuclear density. The computation of the

mean square charge radius using the Fermi distribution does not have

an analytical solution. Instead of that, an approximation [42] is usually

made : 〈
r2
〉F.D.

sph
≈ 3

5
R2

1/2 +
7

5
πa2 (2.38)

The mean square charge radius of a deformed nucleus [43] can be expressed

by the mean square charge radius of a spherical nucleus
〈
r2
〉

sph
which has the

same volume as the deformed one plus a term that depends on the quadrupole

deformation parameter β

〈
r2
〉

=
〈
r2
〉

sph
+

5

4π

〈
r2
〉

sph

〈
β2
〉

(2.39)

2.3 Atomic hyperfine structure

As we have already seen, beyond the point-like assumption, a magnetic dipole

and an electric quadrupole moment are associated with the nucleus with non-

zero nuclear spin. The interaction of these moments with the field created

by the electrons causes an additional splitting of the atomic levels, called
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Figure 2.3: Relevant part of the atomic levels (first column) and hyperfine states
(second columns) of Sn I. The resonant charge exchange level with Na is given as
grey dashed line, for further discussion in Ch. 4. The allowed transitions between the
hyperfine states for I = 1/2 and I > 1/2 (µ < 0 in both cases) are included on the
picture. Hyperfine energy levels are not to scale.

hyperfine structure (hfs), see Fig. 2.3, being the best-known example of nuclear

structure effect. It arises from the coupling between the nuclear spin ~̂I and

the total angular momenta of the electrons ~̂J giving place to the total angular

momentum operator ~̂F = ~̂I + ~̂J . From this coupling, the quantum number F

is allowed to range from:

|I − J | ≤ F ≤ |I + J | (2.40)

One hyperfine multiplet contains a number of states equal to 2I + 1 for J > I

and 2J + 1 for I > J . The hyperfine Hamiltonian that describes the addi-

tional energy splitting of the atomic levels depicted in Fig. 2.3 can be written

considering two major contributions [44]:

Ĥhfs = Ĥ(M1) + Ĥ(E2) + ... (2.41)

being Ĥ(M1) and Ĥ(E2) the magnetic dipole and electric quadrupole interac-

tion, respectively. The allowed dipole transitions between different multiplets,
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labeled as F and F ′, are ∆F = 0, ±1 with F + F ′ ≥ 1. As additional

conditions, transitions between the same multiplet are forbidden as well as

transitions between levels of the same parity. The dipole transition strengths

I between the F and F
′

components, also known as Racah intensities [45],

can be expressed by,

IF→F ′ ∝ (2F + 1)
(
2F ′ + 1

){J ′ F ′ I

F J 1

}2

(2.42)

2.3.1 Magnetic dipole interaction

The first term in (2.41) originates from the interaction of the magnetic field

generated by the electrons, ~̂BJ , and the nuclear magnetic dipole moment, ~̂µI .

The Hamiltonian that accounts for this effect [46,47] can be written as:

Ĥ(M1) = −~̂µI · ~̂BJ = A
~̂I · ~̂J
~2

(2.43)

where A is the magnetic hyperfine parameter. The nuclear magnetic moment

~̂µI was previously defined in (2.25) and by expressing ~̂BJ in terms of the

average magnetic field created at the position of the nucleus BJ(0) [44], the

A-hyperfine parameter can be expressed as

A =
µIBJ(0)

IJ
(2.44)

The previous equation implies that µI can be extracted from the measured

hyperfine constant if BJ(0) is known. This value is usually extracted from

independent measurements on stable isotopes of the same element or estimated

by atomic theories. Assuming that BJ(0) is constant along the isotopic chain,

neglecting hyperfine anomaly effects, the hyperfine parameters A of any two

isotopes in the chain can be related through the expression:

A
I

µI
= const. (2.45)
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The scalar product in (2.43) can be rewritten as:

~̂I · ~̂J =
1

2

[
~̂F 2 − ~̂I2 − ~̂J2

]
(2.46)

therefore, the contribution to the atomic energies, arising from the magnetic

dipole interaction is:

E(M1) =
A

2
[F (F + 1)− I(I + 1)− J(J + 1)]

≡ A

2
K (2.47)

2.3.2 Electric quadrupole interaction

The second term in (2.41) arises from the interaction between the nuclear

quadrupole moment, due to a non-spherical charge distribution of the nucleus,

and the electric field gradient generated by the electron cloud at the position

of the nucleus, Vzz. The Hamiltonian that accounts for this interaction [46,47]

can be written as:

Ĥ(E2) =
hνQ

4I(2I − 1)~2
[3~I2

z − ~I2 + η(~I2
x − ~I2

y )] (2.48)

where

νQ =
eQVzz
h

(2.49)

is known as quadrupole frequency and η = (Vxx−Vyy)/Vzz is called asymmetry

parameter of the electric field gradient.

The electric quadrupole hyperfine splitting arising from the electric quadrupole

interaction is:

E(E2) = B
3K(K + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
(2.50)

where B is the quadrupole hyperfine parameter and is defined as

B = e Q VJJ(0) (2.51)
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Figure 2.4: Size of the hyperfine splitting of the 5p6s 3P1 electronic level for isotopes
with I = 1/2 compared to the fine structure splitting. Adapted from [48].

being VJJ(0) the average electric field gradient at the nucleus induced by

the electrons having cylindrical symmetry about the J axis. The hyperfine

parameter B of any two isotopes can be related through the expression:

B

Q
= const. (2.52)

The hyperfine splitting of the 5p6s 3P1 electronic level for isotopes with I =

1/2 is depicted in Fig. 2.4. The size of the hyperfine splitting, due to magnetic

splitting because there is no quadrupole splitting in this case, is 10−6 the size

of the fine structure splitting.
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2.3.3 Isotope shift

The first direct effect of the shape and size of a nucleus into the fine-electronic

structure is the isotope shift (IS). It is defined as the differences in energy of

a spectral line i [49] for two isotopes (A,A′),

δνAA
′

i = νA
′

i − νAi (2.53)

where A′ and A are the mass numbers of the two isotopes. Two complementary

transitions are studied in this thesis, i : 5p2 1S0 → 5p6s 1P1 and j : 5p2 3P0 →
5p6s 3P1, see Fig. 2.3.

The isotope shift in (2.53) can be split into two components, the mass shift (

δνAA
′

i,MS ) and the field shift ( δνAA
′

i,FS ),

δνAA
′

i = δνAA
′

i,MS + δνAA
′

i,FS (2.54)

From one isotope to the other, the mass of the atomic nucleus is slightly

modified while the angular momentum has to remain the same, therefore, the

energy of the level changes. This shift in energy is one of the main parts of the

isotope shift and correspond to the first term in (2.54). The second term arises

because of the dependence of the atomic level upon the size and shape of the

electric charge distribution of the nucleus. From one isotope to the other, the

number of protons is the same, but its distribution in space is different due to

the influence of the number of neutrons.

For light nuclei, the mass shift dominate the field shift while for heavy nuclei

the field shift becomes predominant, See Fig. 2.5

Mass shift

The mass shift term can be further presented as a sum of two contributions:

the normal mass shift (NMS) and the specific mass shift (SMS).

δνAA
′

i,MS = δνAA
′

i,NMS + δνAA
′

i,SMS (2.55)
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Figure 2.5: Mass and field shift contribution as a function of the atomic number Z.
Adapted from [50].

The first term accounts for the effect of the reduced mass correlation of the

electron-nucleus system on the fine transition frequency and can be expressed

as:

δνAA
′

i,NMS = Ki,NMS
mA′ −mA

mA′mA
(2.56)

where Ki,NMS is called the normal mass shift constant and its value is νime,

being νi the frequency of the i fine transition and me the mass of the electron.

The second term in (2.55) takes into account a small effect due to the elec-

tronic correlation changes from isotope to isotope into the frequency of the

fine transition. It can be expressed as:

δνAA
′

i,SMS = Ki,SMS
mA′ −mA

mA′mA
(2.57)

where Ki,SMS is known as specific mass shift constant.

Inserting (2.56) and (2.57) into (2.55), one can get the mass shift as a function
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of the mass shift constants, Ki = Ki,NMS +Ki,SMS , such that:

δνAA
′

i,MS = Ki
mA′ −mA

mA′mA
(2.58)

Field shift

The field shift is commonly expressed as:

δνAA
′

i,FS = Fi · λAA
′

(2.59)

where the quantity Fi is known as electronic factor. It is proportional to the

variation of the electronic charge at the nucleus for a given i fine structure

transition. The nuclear parameter λAA
′
, can be expanded as:

λAA
′

=
∞∑
n=1

Cn
C1
δ
〈
r2n
〉AA′

, (2.60)

where δ
〈
r2n
〉AA′

=
〈
r2n
〉A′ − 〈r2n

〉A
is the difference in the even-radial mo-

ments between two isotopes, see (2.34). The coefficients Cn are tabulated

in [51] for 30 ≤ Z ≤ 103. To a good approximation, the first term in (2.60)

can be considered,

δνAA
′

i,FS = Fi · δ
〈
r2
〉AA′

. (2.61)

The isotope shift can be linked to the differences between nuclear mean square

charge radii through the following expression:

δνAA
′

i = Ki
mA′ −mA

mA′mA
+ Fi · δ

〈
r2
〉AA′

(2.62)

One can see from this expression that by measuring the isotope shift of an

optical spectral line, and knowing the electronic factors Ki and Fi, informa-

tion on isotopic differences between nuclear mean square charge radii can be

extracted. The values of Ki and Fi can be obtained by theoretical calculations

or through a common approach based on the fact that these two quantities

are not isotope dependent. For that, (2.62) is rewritten in the following way

δνAA
′

i,mod = Ki + Fi · δ
〈
r2
〉AA′

mod
(2.63)
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where

δνAA
′

i,mod = δνAA
′

i · mA′mA

mA′ −mA
∧

〈
r2
〉AA′

mod
=
〈
r2
〉AA′ · mA′mA

mA′ −mA
(2.64)

By plotting (2.63) using the IS of stables isotopes with known mean square

charge radii, usually from muonic data, one can get the information about the

electronic factors which are then used for the radioactive cases.

King plots

The King plot method has been widely used to extract information on the

electronic factors using isotopes with known mean square charge radii. The

method can be applied when a single fine electronic transition is studied, and

the accuracy of the extracted constants can be improved if the same isotopes

are measured in two different transitions (i, j).

� The King plot when a single fine-electronic transition is studied.

Knowing in advance changes in mean charge radius from another exper-

imental data, usually from muonic data and for stables isotopes, one can

plot δνAA
′

i,mod obtained from the experiment as a function of
〈
r2
〉AA′

mod
using

(2.63). By a linear regression, one can obtain the Fi parameter from the

slope and the Ki factor from the intercept with the y-axis.

� The King plot when two fine electronic transitions are studied.

Considering two fine-electronic transition (i, j):

i : δνAA
′

i,mod = Ki + Fi · δ
〈
r2
〉AA′

mod

j : δνAA
′

j,mod = Kj + Fj · δ
〈
r2
〉AA′

mod

one can eliminate
〈
r2
〉AA′

mod
and get a linear regression, such that:

δνAA
′

i,mod =
Fi
Fj
· δνAA′j,mod +Ki −

Fi
Fj
Kj (2.65)



29 Atomic and nuclear structures

where the slope (α) and the y-intercept (β) are:

α =
Fi
Fj

∧ β = Ki −
Fi
Fj
Kj (2.66)

consequently, α and β can be obtained through a linear fit of (2.65). A

plot of data according to (2.65) does not depend on
〈
r2
〉AA′

mod
; therefore,

all the measured isotopes can be used in the plot and as a result, the

accuracy of the extracted electronic factors is improved.

A self-consistent King plot analysis is carried out in this thesis to extract the

isotopic differences between nuclear mean square charge radii along the tin

chain, see Ch. 4.
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Chapter 3

Collinear laser spectroscopy

The farther the experiment is from theory, the closer it is to the Nobel Prize.

- Irene Joliot Curie -

3.1 The ISOLDE facility

The Isotope Separation OnLine DEvice, ISOLDE [52], is a radioactive beam

facility dedicated to the production of a wide range of radioactive species

via the ISOL method [53]. A layout of the facility located at the European

Organization for Nuclear Research, CERN [54], is given in Fig. 3.1.

The neutron-rich tin isotopes are produced at ISOLDE-CERN by 1.4 GeV high

energy protons impinging on a target/converter assembly [55]. The latter con-

sisted of a tungsten rod coupled to a standard UCx target. The arrangement

has the purpose of suppressing the isobaric contamination, from spallation

products mainly cesium, normally produced by direct bombardment of the

target. The reaction products diffuse out of the target into the Resonance

Ionisation Laser Ion Source, RILIS [56], to chemically select tin with typical

yields according to [57]. Following electrostatic acceleration up to 40 or 50

keV and mass selection with the High-Resolution Separator (HRS) [58]. The

ions are subsequently injected into the radio frequency quadrupole cooler and

buncher, ISCOOL [59].

31
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Figure 3.1: Layout of the ISOLDE facility. The beam path up to the laser spec-
troscopy experiment is highlighted. 1. Proton beam; 2. Target; 3. HRS; 4. RILIS; 5.
ISCOOL; 6. COLLAPS. Adapted from [60].
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Figure 3.2: Diagram of the segmented radiofrequency quadrupole trap. The time
structure of the resulting bunches is shown. Adapted from [59].

ISCOOL provides beams with a reduced transverse emittance, either contin-

uously or in bunches with a well-defined temporal structure. Bunched beams

were used, allowing synchronization of the optical detection system with the

time window of the bunch. As a result, the background is reduced by a factor

of Tacc/Tgate ≈ 104 for a trap-accumulation time (Tacc) of 100 ms and a tem-

poral bunch (Tgate) of 10 µs, see Fig. 3.2. The beam is ejected towards the

collinear laser spectroscopy beamline (COLLAPS) shown in Fig. 3.3. Detailed

information on the ISOLDE facility can be found elsewhere [61–63].

3.2 Experimental setup

A schematic representation of the COLLAPS beamline is sketched in Fig. 3.3.

The incoming tin ions are overlapped with a linearly polarized laser beam via

two electrostatic deflectors. Once the ions are in a collinear configuration with

the laser beam, they reach the post-acceleration section for Doppler tuning.

Subsequently, they enter a charge exchange cell to be neutralized through mul-

tiple collisions with sodium vapor [65]. At a precise laser frequency, the atomic

electrons are resonantly excited, and during the de-excitation, the atoms fluo-

resce in the transition of their hyperfine structure. The fluorescence spectrum

is detected with four photomultiplier tubes [66] as a function of the laser fre-
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Figure 3.3: Sketch of the COLLAPS set-up at ISOLDE, CERN. Adapted from [64].

quency in the reference frame of the beam:

ν = ν0

√
1− β
1 + β

, (3.1)

with

β =
|~υ|
c

=

√
1−

(
mc2

eUtotal +mc2

)2

(3.2)

Here ν0 is the laser frequency in the laboratory frame, m is the mass of the

atom and Utotal is the total acceleration voltage. The latter is applied to scan

ν across the hyperfine range while keeping the laser fixed to ν0. It can be

expressed as:

Utotal = Uacc − (Uoffset + kkepcoUscan) (3.3)

where Uacc is the voltage applied after the ISCOOL cooler/buncher, Uoffset is

an isotope-dependent voltage used to tune ν0 close to the frequency of the

transition under study and k is an amplification factor used to amplify the

scanning voltage, Uscan.

Two independent experiments were carried out using transitions with comple-

mentary properties in the neutral atom, 5p2 1S0 → 5p6s 1P1 and 5p2 3P0 →
5p6s 3P1 at λ = 452 nm and λ = 286 nm, respectively. The lower levels were

populated in a quasi resonant charge exchange reaction with sodium, see Fig.

2.3. Optical detection of the 5p2 3P0 → 5p6s 3P1 transition is based on the

fluorescence at 286 nm, while the 5p2 1S0 → 5p6s 1P1 transition is detected
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Figure 3.4: Stability of the voltage Vacc at ISCOOL during the study of the
5p2 1S0 → 5p6s 1P1 transition (a) and 5p2 3P0 → 5p6s 3P1 transition (b). Dashed
lines delimit the different days of the experiment.

by the subsequent decay along the 5p6s 1P1 → 5p2 1D2 transition at 326 nm

which avoids optical pumping and acts as an efficient background suppres-

sion. In the upper states, the singlet offers high sensitivity to the quadrupole

moment while the triplet facilitates a large magnetic splitting. It is worth

noticing that in both cases the lower state does not have hyperfine splitting

(J = 0).

3.2.1 Voltages read-out

The stability and precision of the voltages entering in (3.3) have a direct influ-

ence on the reliability of the parameters extracted from the analysis; therefore,

the electronic devices are monitored during the experiment. The reading of
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Figure 3.5: The amplification factor of the KEPCO linear voltage amplifier de-
termined during the measurements in the 5p2 1S0 → 5p6s 1P1 transition (a) and
5p2 3P0 → 5p6s 3P1 transition (b). Dashed lines delimit different days of the experi-
ment, and the horizontal solid blue line represents the weighted mean of all measure-
ments. Grey bands enclose the 1σ confidence level for this value.

Uacc is done automatically along the scan of each isotope. A digital multime-

ter, Agilent 34461A, is used, coupled to a high-voltage divider (1:104). The

values are recorded in the output file of the data acquisition system (Mea-

surement and Control Program MCP). The Uacc remained stable during the

measurements of the two studied transitions, see Fig. 3.4, with fluctuations

smaller than the reported uncertainty for the divider (relative error of 10−4).

For each isotope, the averaged value of Uacc is determined from the individual

read-out recorded in the data file.

The voltage of the post-acceleration part, Uoffset, is measured at the COLLAPS

beam line in a similar way to the one explained for Uacc. A Prema 6040 digital
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Figure 3.6: Block diagram of the data acquisition system. See the text for details.

multimeter coupled to a voltage divider (1:103) is employed. They are saved

in the data file, and the averaged value is used for the analysis. Additionally,

the post-acceleration voltage requires the calibration of the linear amplifier

(Kepco). The calibration consists of the scanning of Uscan from -10V to +10V

while measuring the post-acceleration voltage applied to the beam line. This

procedure is repeated for the three power supplies (Fluke). During the study

of the 5p2 1S0 → 5p6s 1P1 transition, the Kepco BOP 500DM high voltage

power supply, which can be used to scan up to 500V, was used while during

the study of the 5p2 3P0 → 5p6s 3P1 transition it was replaced by the BOP

1000DM model, that extends the scan range up to 1 kV. A different high-

voltage amplifier is justified by a seven times larger hyperfine splitting of the

atomic state. A total of five (5p2 1S0 → 5p6s 1P1) and seventeen (5p2 3P0 →
5p6s 3P1) calibration measurements were recorded and afterward fitted with

a linear function with slope kkepco. The final values of k̄kepco = 50.43(1)

and k̄kepco = 100.180(2), were determined as the weighted mean for all the

individual measurements, see Fig. 3.5.
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In Fig. 3.6 a simplified scheme of power supplies for the post-acceleration

region and read-out electronics at COLLAPS is shown.

3.2.2 Laser system

A continuous wave (cw) Nd3+:YVO4 laser [67] is used to pump a Spectra-

Physics Matisse laser, configured for Ti:Sa during the study of the singlet and

dye during the study of the triplet, as the gain medium [68, 69]. The single-

frequency cw beam out of the Matisse laser enters an external cavity (Wave

Train [70]) where a second-harmonic is generated resulting in the desired wave-

length.

The output beam of the Matisse laser was steadily measured with a HighFi-

nesse WSU2 wavelength meter, calibrated with reference to a temperature-

stabilized HeNe laser. The reference isotope was measured in a systematic

way allowing us to detect any possible drift or instability of the laser.

3.3 Data collection

The hyperfine spectra are saved as data files that contain the number of fluo-

rescent photons in each photomultiplier versus the scan voltage, Uscan in (3.3).

For the analysis, the x -axis is transformed to frequency using the relativistic

Doppler effect for a collinear configuration, represented by (3.1). The masses

of the tin isotopes used for the conversion are taken from [71].

3.3.1 Lineshapes observation

Symmetric Voigt profiles are commonly used to describe experimental line

shapes in collinear laser spectroscopy. Asymmetric resonances with small ad-

ditional peak(s) or a tail on its low-frequency side have been observed when

a neutralization process is involved [65]. These satellite peaks can be associ-

ated to charge-exchange processes or/and inelastic collisions with the vapour

medium [72, 73]. Throughout the measurements, the experimental conditions

were optimized to obtain nearly symmetric lineshapes which favor better ac-

curacy of the fitting. A symmetric Voigt profile was considered the most
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Figure 3.7: Measurement of the reference isotope 124Sn recorded in the 5p2 3P0 →
5p6s 3P1 transition. The solid blue line represents a fit with a symmetric Voigt profile.
The reduced chi-square of the fitting is 1.3.

adequate way of fitting numerous spectra with a good precision. In Fig. 3.7,

a measurement of the reference isotope 124Sn in the 5p2 3P0 → 5p6s 3P1 tran-

sition is depicted as an example. In general, the extraction of the hyperfine

parameters and isotope shifts is relatively insensitive to the exact description

of the line shape as long as the same profile is used for all the components.

The numerical calculation of the true Voigt profile is time-consuming, and

therefore inappropriate for a fitting routine. Instead, the extended pseudo-

Voigt profile described in [74] is used. It contains two symmetric functions,

irrational and hyperbolic, in addition to the original Gaussian and Lorentzian

functions for apprximating the Voigt profile. [75].
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Chapter 4

Data analysis and results

The only trouble with a sure thing is the uncertainty.

- Taken from a teabag -

4.1 Independent analysis

4.1.1 Fitting procedure I

Using the ROOT framework [76] with the MINUIT2 [77] package for the min-

imization procedure a fitting routine is written in C++ to fit the experimental

data. The position of each resonance is constrained by the following expression

νA
′

peak; i − νAi = c1 A(5p6s 1P1) + c2 B(5p6s 1P1) + δνA,A
′

i

νA
′

peak; j − νAj = c3 A(5p6s 3P1) + c4 B(5p6s 3P1) + δνA,A
′

j

where i : 5p2 1S0 → 5p6s 1P1 and j : 5p2 3P0 → 5p6s 3P1 are the studied

transitions, c1,2,3,4 are constants that depend on J , I and F , see (2.47) and

(2.50), A(5p6s 1,3P1) and B(5p6s 1,3P1) are the hyperfine structure constants of

the corresponding states, δνA,A
′

i,j is the isotope shift in the transition i or j and

νAi,j is the transition frequency of the reference isotope, 124Sn. The latter was

selected based on the fact that it is a stable isotope with no hyperfine splitting

(I = 0) and it is in the center of the range of measurement.

41
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Table 4.1: Parameters in the fitting routine.

Name Nomenclature Fit

Isotope shift δνA,A
′

free

Isomer shift δνA
′(g),A′(∗) free

A-factor A free

B-factor B free

Nuclear spin I fixed

Total elect. angular momentum J fixed

Gaussian width ΓG free

Lorentzian width ΓL free

Baseline BL free

Relative peak intensities IF→F ′ free/fixed

The total fit function is built as a sum of a pseudo-Voigt profile at each res-

onance position. If an isomeric state is present, the two structures are fitted

simultaneously with the difference between their centroids as a link parameter,

known as isomer shift. The parameters of the fit are summarized in Tab. 4.1.

4.1.2 The 5p2 1S0 → 5p6s 1P1 transition

Data were recorded in the entire range from 109,112Sn up to 134Sn. The fluores-

cence spectra of the long-lived isomers in 113Sn, 123Sn, 128Sn and the ground

states of 133Sn, 134Sn were assessed for the first time. The spectra were ana-

lyzed following the procedure explained in Sec. 4.1.1.

The hfs splittings in this transition are small, in certain cases comparable with

the experimental linewidth. The following two examples have the purpose of

demonstrating the ambiguity that is present in the analysis for most of the

odd-A cases due to the unresolved singlet state. These difficulties are later

resolved by doing a combined analysis including the triplet state, as presented

in the following sections. In Fig. 4.1, under the assumption of spin 7/2,

which will be confirmed in the next chapter, there are two possible variations

of the fitting (upper and lower panel), corresponding to markedly different

electromagnetic moments. The reduced chi-square of the two fits is nearly the

same, being difficult to discriminate between the two based on the quality of
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the fit.

Fig. 4.2 shows a more complicated case, where a long-lived isomeric state is

present. The weaker state, (I = 3/2), is superimposed with the isomeric (I =

11/2) state. All the expected resonances of the latter (three) were resolved

while only one resonance was indicative of the low-spin state. The hyperfine

constants of the well-resolved state are in agreement in the two fits, within the

errors, while differences appear for the non-resolved one.

A second transition is studied in order to constrain the fit and to extract a

final set of hyperfine parameters.
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Figure 4.1: Hyperfine structure of 133Sn in the 5p6s 1P1 level. The solid line
represents a fit of the ground 7/2− state with fixed intensities under two assumptions
for the hyperfine states ordering in 1P1 (upper and lower panel). The hyperfine
components have been labeled by the corresponding F quantum numbers. The x-axis
is relative to the resonance frequency of 124Sn. The χ2

red = 1.06 in (a) and χ2
red = 1.09

in (b), for the same NDF. The reversal of the 5/2 and 7/2 hyperfine states in the two
fits is visible from the shape of the right maximum.
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4.1.3 The 5p2 3P0 → 5p6s 3P1 transition

The magnetic splitting of the excited state in this transition is twenty times

larger than the one of the previously-discussed singlet state; therefore, the

spectra are completely resolved. The spectroscopy was performed along the

entire neutron-rich range 108-134Sn. The experimental data is fitted following

the same procedure explained before. The hyperfine parameters A were ex-

tracted with high precision for all the measured isotopes except for 129,131Sn

and the odd-even cases with I 6= 0, where two resonances belonging to dif-

ferent states collided. Hyperfine parameters B were also extracted, with a

somewhat smaller relative accuracy due to a smaller quadrupole splitting.

By way of illustration, the hyperfine spectra recorded in this transition for the

same two isotopes considered in Sec. 4.1.2 are shown in Fig. 4.3 and Fig. 4.4.

In the first case, the resonances are distant from each other, and the fitting

is constrained to only one set of hyperfine coupling constants. In the second

one, the smaller resonance of the ground (I = 3/2) state coincides with the

strongest resonance of the isomeric (I = 11/2) state, reducing the accuracy

of the hyperfine parameters mainly for the low-spin state. The reduced chi-

square of the two fits is the same for the same NDF.

A more complex analysis, consisting in a simultaneous fitting of the two tran-

sitions has been performed in order to obtain the highest possible accuracy for

all the parameters. The details and the results of this analysis are explored in

the following section.
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4.2 Simultaneous analysis

A self-consistent analysis of the two data sets is performed in order to obtain

the highest possible accuracy for all the parameters involved in the fit. As

explained before, the singlet state provided high sensitivity to quadrupole mo-

ments while the triplet facilitated a large magnetic splitting. The fit function

was set in such a way that the free hyperfine parameters were the A(5p6s 3P1)

and the B(5p6s 1P1) while the others hyperfine parameters were constrained to

the corresponding ratios. The results obtained from this analysis are consid-

ered as final results and are used to determine the magnetic and quadrupole

moments of the tin nuclei.

4.2.1 Fitting procedure II

For the simultaneous analysis a more sophisticated C++ code is implemented.

The code fits all the spectra of the same isotope in the two transitions simul-

taneously. A combined χ2 is built and minimized using the MINUIT2 package

of ROOT. The hyperfine parameters of the two atomic states are connected

via the ratios defining the position of each resonance as follow

νA
′

peak; i − νAi = c1 RA A(5p6s 3P1) + c2 B(5p6s 1P1) + δνA,A
′

i

νA
′

peak; j − νAj = c3 A(5p6s 3P1) + c4 RB B(5p6s 1P1) + δνA,A
′

j

where i : 5p2 1S0 → 5p6s 1P1 and j : 5p2 3P0 → 5p6s 3P1 and RA and RB

are the hyperfine coupling constants ratio. The ratios were fixed in the fit and

shared for all the isotopes. The procedure for its determination is explained

in the following section. The isotope shift, linewidth, baseline and the relative

intensities were kept free and independent for each measurement. The relative

parameters, hyperfine constants and isomer shifts were kept free but common

for all the scans of the same isotope.
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4.2.2 A and B-ratios

The ratio of the hyperfine constants, RA and RB, of the two atomic states,

can be considered constant along the isotopic chain. For the extraction of

the first one, the three stable isotopes with I = 1/2, i.e., B(5p6s 1,3P1) = 0,

were selected. The simultaneous approach explained before has been used to

fit all the spectra of these isotopes in the two transitions, with RA as a free

parameter. The extracted value is RA = A(5p6s 1P1)/A(5p6s 3P1) = 0.0517(1).

This value may deviate slightly for isotopes with different spins if one takes

into account the sensitivity of the atomic states to the nuclear magnetization

distribution, the so-called hyperfine anomaly [78, 79]. This effect is expected

to be considerably smaller than the 2×10−3 relative uncertainty on the above

ratio, which therefore is statistically consistent to the corresponding ratio in

states with any other spin. Only for the observed spin of 1/2, there are

isotopes in the tin chain studied by Nuclear Magnetic Resonance (NMR);

therefore, the anomaly cannot be estimated. The overall accuracy of the

magnetic moments will be further improved by a dedicated computational

study of the anomaly in the relevant atomic state. For the determination of

RB, two isotopes were selected, 109Sn and 133Sn, based on the non-presence

of an isomeric state in the spectrum. RA was fixed in the fitting where all

the scans in the two transitions were analyzed simultaneously. The value of

RB = B(5p6s 3P1)/B(5p6s 1P1) = −0.25(2) was extracted.

4.2.3 Even-even isotopes

The first isomeric state (I = 7) in the even-even isotopes, 128Sn and 130Sn, was

assessed during the experimental campaigns. The first one was measured for

the first time. The hyperfine parameters A were extracted with high precision

for both isotopes, allowing the determination of their magnetic moments. A

negative sign was unambiguously determined from the fit. Hyperfine B pa-

rameters were also extracted; however, they were found to have contrary signs

for the two isotopes, a fact that could be a result of the non-resolved hyperfine

structure of 128Sn in the singlet. Example spectra of both isotopes are shown

in Fig. 4.5 and 4.6. The two fits in the figure lead to similar hyperfine param-

eters A(5p6s 3P1) of negative sign and similar absolute values of the hyperfine
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parameters B(5p6s 1P1). The differences between the results of the fit for (a)

and (b) lie in the sign of B(5p6s 1P1), which is positive in (a) and negative in

(b), for both isotopes. In Fig. 4.5, the correct fit is evident from the shape of

the left maximum in the singlet and the reduced chi-square. The fit in (a) can

be selected as the correct one leading to a positive value of the quadrupole

moment for this isotope. The value reported in the literature [8] is negative,

which is in contradiction with the one reported in this thesis. We have to note

that the literature value was extracted from the B factor in the 5p6s 3P1 state

which offers lower sensitivity to quadrupole splitting. The value reported here

has benefited from the simultaneous fitting of the two levels, mainly in the

singlet where the quadrupole splitting is about four times larger than in the

triplet.

In the case of 128Sn, depicted in Fig. 4.6, within the envelope of the resonances

it is not possible to determine the correct fit. Based on the chi-square the

right fit is the one in (b), which gives a negative value for the quadrupole

moment. The hfs splitting of this isomer in the singlet is comparable with

the experimental linewidth, and the results of the fit are constrained only by

the small peak in the lower frequency side because the quadrupole splitting

in the triplet is nearly zero. Therefore, the negative sign has to be further

investigated. The nuclear properties of this state are unknown and the results

presented here are the most accurate yet. The selected results are summarized

in Tab. 4.2.
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Figure 4.5: Simultaneous fitting of the hyperfine spectra of 130Sn in the 5p6s 3P1 and
5p6s 1P1 levels. Two possibles way of fitting are labelled as (a) and (b) corresponding
to a positive and negative value of B(1P1), respectively. A (3P1) is negative in both
cases. The thick blue line represents a total fit of two states on a common background.
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been labeled by the corresponding F quantum numbers. The x -axis is relative to the
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red = 2.45 in (b), for the

same NDF.



53 Data analysis and results

                      0                            1000                  

8

12

4

x10³

           0                   200     400                

3

4

1

2

1P1 level

3P1 level(b)

(7, 8) (7, 7) (7, 6)

(7, 6) (7, 7) (7, 8)

            0                 200   400             

1P1 level

(7, 7)
(7, 8)

(7, 6)

                                         0                           1000                  

co
un

ts

3P1 level(a)

(7, 8) (7, 7) (7, 6)

A(5p6s 3P1) < 0

B(5p6s 1P1) > 0

A(5p6s 3P1) < 0

B(5p6s 1P1) < 0

δν  (MHz) δν  (MHz) 

δν  (MHz) δν  (MHz) 

Figure 4.6: Simultaneous fitting of the hyperfine spectra of 128Sn in the 5p6s 3P1 and
5p6s 1P1 levels. Two possibles way of fitting are labelled as (a) and (b) corresponding
to a positive and a negative value of B(1P1), respectively. A (3P1) is negative in
both cases. The thick blue line represents a total fit of two states on a common
background. The isomeric state (I = 7) is indicated by a semitransparent fill under
two assumptions for the level ordering in 1P1, (a) and (b). The hyperfine components
of the latter have been labeled by the corresponding F quantum numbers. The x -axis
is relative to the resonance frequency of 124Sn. The χ2

red = 2.37 in (a) and χ2
red = 1.78

in (b), for the same NDF.



Data analysis and results 54

0.8 x μsp  

0.6 x μsp  

0.5 x μsp  

 μ
 (μ

N
)

-0.8

-1.0

-1.2

-1.4

109    111    113     115    117    119    121    123    125     127    129    131    133

0.7

0.8

0.6

h11/2

7/2⁺

A

5/2⁺

3/2⁺

1/2+

7/2-

Figure 4.7: Magnetic moments of odd isotopes in the tin chain. The experimental
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Schmidt values for each configuration.

4.3 Nuclear moments

4.3.1 Magnetic moments

The nuclear magnetic dipole moments were evaluated from the hyperfine con-

stants A(5p6s 3P1) with the aid of (2.45) using as reference the known value

of the magnetic moment of 117Sn [80], derived from NMR measurements and

corrected for diamagnetism. The resulting values are presented in Tab. 4.2

and plotted in Fig. 4.7.

The sign of the extracted moments, including the magnetic moments of the

odd-neutron isotopes reported in this work for the first time, agrees with the

ones predicted by the corresponding Schmidt moments, yet the values differ by

an average of 35%. As expected, the nucleus with the closest magnetic moment

to the Schmidt value is the double-magic plus one neutron nucleus 133Sn with

a deviation of about 26%. This might suggest a closed shell structure of its

ground state for which the single-particle model can be considered as a fair

approximation.
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Table 4.2: Hyperfine parameters and electromagnetic moments of tin isotopes de-
termined from this work. Uncorrelated and correlated uncertainties are enclosed
in parentheses and square brackets, respectively. Asterisks refer to isomeric states.
Magnetic moments derived from NMR [80] measurements are showed for comparison,
where available.

N + Z Iπ A(5p6s 3P1) (MHz) µ (µN ) µ(NMR) (µN ) B(5p6s 1P1) (MHz) Q (mb)

109 5/2+ -1035.8 (6) -1.0837 (7) 154 (5) +259 (8) [26]

111 7/2+ +0.6097 (14)a +153 (27) [15]b

113 1/2+ -4176.0 (256) -0.8738 (53)

113∗ 7/2+ 448.9 (6) +0.6575 (9) 144 (1) +243 (2) [24]

115 1/2+ -4393.8 (23) -0.9194 (5) -0.91883 (7)

117 1/2+ -4784.2 (33) -1.00104 (7)c

117∗ 11/2− -606.9 (3) -1.3967 (8) -185 (3) -312 (5) [31]

119 1/2+ -5012.5 (21) -1.0488 (4) -1.04728 (7)

119∗ 11/2− -609.7 (4) -1.4033 (9) -121 (2) -204 (4) [20]

121 3/2+ 1115.0 (19) +0.6999 (12) -37 (3) -62 (5) [6]

121∗ 11/2− -603.1 (3) -1.3880 (7) -64 (2) -107 (3) [11]

123 11/2− -595.7 (3) -1.3711 (7) -9 (1) -15 (2) [2]

123∗ 3/2+ 1152.9 (18) +0.7237 (11) -18 (2) -30 (4) [3]

125 11/2− -586.8 (2) -1.3505 (5) 43 (1) +73 (2) [7]

125∗ 3/2+ 1178.8 (17) +0.7400 (10) 12 (3) +20 (05) [2]

127 11/2− -576.6 (3) -1.3270 (6) 78 (2) +132 (3) [13]

127∗ 3/2+ 1191.1 (27) +0.7477 (17) 41 (7) +69 (12) [7]

128∗ 7− -144.5 (4) -0.4229 (11) -118 (28) -199 (47)[20]

129 3/2+ 1189.9 (25) +0.7469 (16) 61 (4) +103 (6) [10]

129∗ 11/2− -565.2 (2) -1.3008 (5) 119 (2) +200 (3) [20]

130∗ 7− -130.3 (3) -0.3816 (9) 222 (2) +374 (4) [37]

131 3/2+ 1194.0 (13) +0.7495 (8) 60 (2) +101 (3) [10]

131∗ 11/2− -552.3 (2) -1.2711 (5) 144 (2) +242 (3) [24]

133 7/2− -965.2 (5) -1.4138 (8) -102 (3) -172 (5) [17]

a,b Extracted in the 5p6s 1P1 multiplet.

c Magnetic moment used as reference.
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The systematic measurement of eight magnetic moments in the 11/2− states

can provide some insights into the shell structure in the region. A comparison

for the same states in the neighboring cadmium and tellurium elements is

plotted in Fig. 4.8. The magnetic moments of the tin isotopes are closer

to the Schmidt value than those of the isotopes with two holes inside and

two protons outside the shell closure which might mean that the magnetic

moments are sensitive to second-order core polarization. Another observation

is the deviation of the trend occurring in the three elements at N = 70. This

could be related to a first-order core polarization effect that should be minimal

at the middle of the shell. It was suggested in [3] that the neighboring orbitals

3s1/2, 2d3/2, 2d5/2 and 1h11/2, of relevance to the cadmium, tin, and tellurium

isotopes, are nearly degenerate and fairly separated from the 1g7/2. Under this

assumption, the region between N = 58 and N = 82 could be considered as

an isolated subshell with the middle at N = 70. The observed behavior in tin

might provide added support to the assumed structure that is beside sustained

by a recent theoretical study of the cadmium chain from a simple shell model

picture [81]. Finally, we should expect that of a pair of isotopes that differ

by two neutrons, the nucleus closest to the shell gap has a magnetic moment

closer to the Schmidt value, as occurs for the tellurium isotopes. This is not

the case in tin where the magnetic moment of 129Sn is closer to the single

particle value than 131Sn. Nevertheless, all the isotopes have almost identical

magnetic moments, and the deviation is very small in comparison with the

same occurrence in the cadmium isotopes. This might be an effect of the

first-order core polarization mentioned above that gives a deviation from the

Schmidt value more accentuated in cadmium than in tin.

Comparison with literature values

Fig. 4.12 shows a compilation of literature values, magnetic moments are

displayed on the left side and quadrupole moments in the right side, reported

to date. For a more clear comparison with our measurements, the differences

between this work and literature are plotted. The error of our measurements

is enclosed by shading bands. As can be seen on the left side of the figure, the

overall agreement is good within the error bars except for the isotopes 125Sn,
127Sn and 129Sn with I = 3/2, derived from a laser spectroscopy experiment
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Figure 4.8: Magnetic moments of the h11/2 neutron states in cadmium, tin and
tellurium. The dashed black line represents the single particle magnetic moment
calculated with the Schmidt value for the h11/2 orbit. The experimental error bars
are smaller than the markers.

in the 5p6s 3P1 state [8]. We have to point out that the overall accuracy

of the results presented in this thesis has benefited from the study of two

complementary transitions.

4.3.2 Quadrupole moments

As explained in Ch.2, the spectroscopic quadrupole moment of a nucleus can

be measured from the hyperfine splitting of the atomic spectral line if the

electric field gradient generated by the electrons at the position of the nucleus,

VJJ in (2.51), is known. For the 5p6s 1P1 and 5p6s 3P1-configurations, the

corresponding field gradients have been calculated by Eberz et al. [7] following

two theoretical approaches. The resulting values are,

eVJJ (1P1) = 593(59) MHz/b,

eVJJ (3P1) = −138(13) MHz/b

The ratio RVJJ
= VJJ(3P1)/VJJ(1P1) = −0.23(3) is in good agreement with
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Figure 4.9: Quadrupole moments of odd-isotopes in the Sn chain. The experimental
error bars are smaller than the markers except for 111Sn. See text for details.

the experimental ratio, RB = −0.25(2), determined in this work. The quadrupole

moments listed in Tab. 4.2 and plotted in Fig. 4.9 are determined using the

field gradient estimated by Eberz and the B(5p6s 1P1) factors extracted from

the simultaneous fitting. The overall accuracy of the quadrupole moments will

be further improved due to a dedicated computational study of the electric

field gradient, triggered by the results of this work, in the relevant atomic

states.

We have to note in Fig. 4.9 that experimental errors bars are smaller than the

markers except for 111Sn. The hyperfine structure of this isotope was measured

only in the triplet state and therefore the simultaneous analysis could not be

used. Its quadrupole moment was determined using B(5p6s 3P1) and the electric

field gradient for this state-configuration.

Statistical errors are due to the experimental uncertainty of B(5p6s 1P1). The

systematic error of the latter is very small and can be neglected while the

electric field gradient introduces a systematic uncertainty of about 10%, see

Tab. 4.2.

The quadrupole moments of the 11/2− states show a nearly linear trend as a
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function of the neutron number. They are plotted in Fig. 4.10 and compared

with those calculated in the framework of the seniority scheme [35] for n nu-

cleons filling a j-orbital. Squares represent the quadrupole moment calculated

with the aid of (2.31) assuming that one of the valence nucleons is unpaired

(α=1 or “normal coupling”). The 〈Q̂zz〉S.P.ν is calculated using (2.29) where

〈r2
j 〉ν is approximated by 5/3 of the mean square charge radius of 117Sn [82],

considering spherical nuclei with uniform charge distributions. The resulting

value is 〈Q̂zz〉S.P.ν = −273 mb. The difference between the black and grey

squares lies in the assumption of n. For the first case (grey squares), n is de-

termined in the spherical shell model framework, where the filling of the h11/2

orbit involves n = 1 neutron at N = 67 up to n = 11 at N = 77. This simple

estimation does not agree with the experimental behavior; either can repro-

duce the number of eight quadrupole moments following a systematic trend.

Therefore, in the second case, n is defined in terms of the probability p for pair

occupation suggested in [3], np. This interpretation assumes that the relevant

orbitals are degenerate in terms of total energy per pair. Under this assump-

tion, there are np = 11 neutrons in 131Sn down to np = 1 neutron in 117Sn,

being able to explain the n dependence of the quadrupole moments beyond
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the natural capacity of the h11/2 shell. The quadrupole moments obtained in

this way seem to reproduce the experimental trend. According to (2.31), the

observed moments should cross zero at mid-shell, N = 74, which fairly agrees

with the experimental observation. An empirical 〈Q̂zz〉S.P.ν,emp can be estimated

by averaging the quadrupole moment produced by the unpaired neutron and

the single-hole at the beginning and at the end of the shell, respectively, re-

sulting in a value of 〈Q̂zz〉S.P.ν,emp = −277 mb. The comparison of this empirical

value with the one predicted by the shell model leads to an effective charge

of eeff
ν = 1.01e. The observed trend is not as linear as the one observed in

cadmium for which a strong first-order core polarization was suggested. The

small effective charge together with the quantitative agreement between the

calculated and the experimental moments might suggest a spherical core with

no considerable influence in the quadrupole moments as expected for a semi-

magic nucleus. The latter assumption was also indicative of the analysis of

the magnetic moments.

In Fig. 4.11, the h11/2 quadrupole moments in tin, cadmium, and indium are
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compared as a function of the neutron number. For indium, semi-empirical

quadrupole moments were calculated with the aid of the additivity rule for

quadrupole moments [84] using the experimental quadrupole moments of the

odd-odd I = 8 isomeric states and the adjacent odd-even indium isotopes with

I = 9/2. The configuration
[
π(1g9/2)−1ν(1h11/2))

]8−
is assumed for the I = 8

states. In all cases, a transition from negative to positive quadrupole moments,

as the neutron shell is filled, is characteristic of the observed trends. The mea-

sured quadrupole moments in tin are about half of the measured values in

cadmium. It was suggested in [3] and supported in [85] that the deformed

proton core in cadmium contributes to half of each measured quadrupole mo-

ment. The proton-core polarization was reflected in a large effective charge

of about eeff
ν = 2.5e. This could explain the quantitative differences with tin,

for which an effective charge of about eeff
ν = 1.01e was determined. A singular

agreement for the quadrupole moments for cadmium and indium is observed

only at N = 63. The remarkable discrepancies result in an underestimation of

the quadrupole moments of the I = 8 states in indium when considering the

neutron contribution from the cadmium chain.

Comparison with literature values

On the right side of Fig. 4.12, the differences between the values extracted in

this work and literature values for low and high spin states have been plotted

versus the atomic mass number. Small differences, arising from the use of a

different VJJ , are observed for isotopes with A < 125, however, remarkable

differences are observed for A ≥ 125. The latter have been measured using the

hyperfine parameters B in the 3P1 atomic state poorly sensitive to quadrupole

splitting, which is evident in the large error bars of the measured moments.
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4.4 Charge radii

4.4.1 Isotope and isomer shifts

As mentioned in previous sections, the isotope shifts were determined with

respect to 124Sn. Statistical uncertainties arise from the experimental error on

the absolute positions of the peaks while systematic uncertainties arise from

the relative uncertainty of the source voltage ∆Uacc/Uacc ≈ ∆Uoffset/Uoffset ≈
1.5× 10−4. The extracted isotope shifts, as well as literature values from pre-

vious measurements, are presented in Tab. 4.3. The latter were converted to

be relative to 124Sn in order to compare with our results. They were converted

by:

δν124,A′

lit = δν116,A′

lit + δν124,116
lit (4.1)

for [7]a and

δν124,A′

lit = δν120,A′

lit + δν124,120
lit (4.2)

for [5, 8]b,c.

A good agreement is found with respect to the values reported in [5,7] within

the error bars, however, some of the results presented in [8] are inconsistent

with ours.

The high resolution provided by the technique and the presence of two states

in the same spectrum allow the measurement of the field shift between isomer

and ground state, the so-called isomer shift. The direct measurement of this

effect, that in our case is sometimes a few MHz, benefits the overall accuracy

of the extracted values being almost insensitive to systematic uncertainties.

The isomer shifts derived from the analysis are presented in Tab. 4.4. The

literature values were determined as the difference between the isotope shift

in both states (ground and isomeric states) using the following relation:

δνA
′(g),A′(∗)

lit = δνA,A
′(∗)

lit − δνA,A
′(g)

lit = νA
′(∗)

lit − νA′(g)lit (4.3)

where A is the reference isotope and (g) and (∗) denote ground and isomeric

state of the isotope A′, respectively.



Data analysis and results 64

Table 4.3: Isotope shifts of 108-134Sn in the transitions 5p2 1S0 → 5p6s 1P1 and
5p2 3P0 → 5p6s 3P1, from this work and literature values [7]a [5]b [8]c. Statistical
uncertainties are quoted in round brackets while systematic uncertainties in square
brackets.

Isotope shifts (MHz)

5p2 1S0 → 5p6s 1P1 5p2 3P0 → 5p6s 3P1

N + Z I This work
Literature

valuesa
This work Literature valuesb,c

108 0 -2416.8 (118) [98]

109 5/2 -1895.4 (17) [51] -1898.6 (80) -2238.6 (19) [92]

110 0 -2015.2 (103) [84] -2007.7 (70)

111 7/2 -1910.6 (36) [77] -1896.2 (170)

112 0 -1382.7 (17) [40] -1380.3 (40) -1652.1 (80) [71] -1659.4 (2)

113 7/2 -1322.1 (14) [37] -1574.4 (38) [65]

114 0 -1115.4 (16) [32] -1115.7 (20) -1335.6 (86) [58] -1341.8 (2)

115 1/2 -1044.2 (12) [29] -1044.3 (20) -1250.4 (28) [52] -1246.1 (1)

116 0 -841.3 (9) [26] -842.6 (80) -1007.6 (92) [45] -1017.2 (2)

117 1/2 -761.5 (9) [23] -759.1 (10) -906.6 (50) [40] -912.6 (1)

118 0 -584.1 (24) [19] -588.4 (20) -688.0 (76) [33] -711.4 (2)

119 1/2 -514.0 (10) [16] -521.4 (20) -619.7 (28) [28] -620.7 (1)

120 0 -360.8 (8) [12] -360.3 (40) -448.6 (93) [22] -441.2 (2)

121 11/2 -308.7 (23) [9] -370.2 (20) [17] -369.2 (17)

122 0 -166.7 (12) [6] -162.8 (60) -206.3 (84) [10] -205.8 (15)

123 11/2 -114.5 (23) [3] -135.5 (31) [5] -144.0 (20)

125 11/2 48.4 (12) [3] 61.0 (24) [5] 63.2 (75) 61.9 (110)

126 0 146.8 (8) [7] 178.7 (69) [12] 188.9 (100)

127 11/2 190.5 (26) [9] 246.2 (32) [16] 243.9 (10)

128 0 270.4 (24) [12] 339.5 (51) [21] 359.9 (120)

129 11/2 326.5 (33) [15] 411.0 (30) [26] 439.9 (90)

130 0 396.1 (18) [18] 486.6 (44) [31] 564.9 (10)

131 11/2 449.9 (18) [20] 572.5 (21) [36] 784.9 (10)

132 0 498.1 (10) [24] 624.1 (34) [42] 698.9 (6)

133 7/2 705.8 (16) [26] 868.5 (29) [46]

134 0 981.9 (36) [29] 1196.5 (83) [51]
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Table 4.4: Isomer shifts of 113-131Sn in the 5p2 1S0 → 5p6s 1P1 and 5p2 3P0 → 5p6s
3P1 transitions. Statistical errors are quoted in round brackets. The systematic errors
are negligible. Literature values are taken from [5]a and [8]b.

Isomer shifts (MHz)

5p2 1S0 → 5p6s 1P1 5p2 3P0 → 5p6s 3P1

N + Z This work This work
Literature

values

113 -53 (6) -87 (27)

117 -11 (1) -9 (2) -12 (2)a

119 -10 (1) -6 (3)

121 -19 (3) -15 (3) -19 (3)a

123 7 (2) 5 (4)

125 -10 (2) -12 (3) -48 (14)b

127 -24 (4) -38 (3) -63 (14)b

128 -39 (8) -110 (4)

129 58 (2) 60 (4) 87 (14)b

130 -83 (1) -88 (3) -100 (13)b

131 97 (1) 105 (2) 85 (16)b

4.4.2 King plot

To extract the isotopic differences between nuclear mean square charge radii,

the optical electronic factors entering in (2.62) must be known. For its deter-

mination using the two studied transitions, a self-consistent procedure is per-

formed. Following the procedure described in Sec. 2.3.3, the measured isotope

shift and the known mean-square charge radii of the stable isotopes were linked

through (2.63) and (2.65) and plotted in Fig. 4.13. With consistent data sets,

the plots should result in two straight lines with the slopes and the y-intercepts

linked by the Fi and Ki factors. A simultaneous fitting of the two King plots is

performed with the electronic factors of the i : 5p2 1S0 → 5p6s 1P1 transition

as a common parameter. The fit was performed using the ROOT framework

with the MINUIT2 including x- and y-errors. In the first plot, Fig. 4.13 (a),

only stable isotopes are used while in the two-lines King plot Fig. 4.13 (b)

the rest of the measured isotopes in both transitions are included. The known

values for the charge radii were taken from muonic measurements [86].
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Table 4.5: Electronic field shift F and mass shift K factors deduced from king
plots. Literature values from different experimental data sets [7]a, [8]c and Dirac-
Fock calculations [7]b are included for comparison.

Electronic factors

5p2 1S0 → 5p6s 1P1 5p2 3P0 → 5p6s 3P1

This work
Literature

values
This work

Literature

values

F (GHz/fm2) 2.79 (23) 2.24 (27)a 1.98b 2.98 (25) 3.30 (27)c 2.41b

K (GHz u) -724 (21) -568 (23) -761 (200)c

All points lie fairly well on a straight line implying a good consistency between

our two experiments and the muonic data. Statistical errors were included in

a first fit to extract the parameters K and F and the error of the latter.

Systematic error were included in a second fit to determine the uncertainty

of the mass factor. The results are listed in Tab. 4.5. The extracted factors

are statistically consistent with the values reported in the literature from the

analysis of other experimental data and they are around 30% larger than the

values predicted from Dirac-Fock calculations.

4.4.3 Charge radii

The δ〈r2〉A,A′ values have been extracted from the experimental isotope shift

with the aid of (2.62) and the electronic factors resulting from the King plot

analysis. Statistical errors were propagated from (2.62), dominated by the

statistical uncertainty on the isotope shift. For the correlated errors, the

systematic uncertainties on the isotope shift, the masses, and the electronic

factors were included. The two sets of arising values are listed in Tab. 4.6 and

plotted against each other in Fig. 4.14 for all ground and isomeric states. The

results in the two transitions are statistically consistent and in good agreement

with the ones obtained from muonic data, when available. Their evolution as

a function of the mass number is shown in Fig. 4.15.



67 Data analysis and results

16

13

15

14

7.0         7.2         7.4         7.6         7.8          8.0         8.2         8.4    
δ<r2>mod

124,A' (u fm2)  

 δ
ν i, 

m
od

12
4,

A'
 (u

 G
Hz

)  

δνj,mod
124,A' (u GHz)  

 δ
ν i,m

od
12

4,
A'

 (u
 G

Hz
)  

18

12

16

14

10

8

8           10            12          14           16           18          20           22  

x 102

x 102

x 102

x 102

(a)

(b)

Figure 4.13: King plot of the measured isotope shifts against the differences in
charge radii of stable isotopes (a) and King plot of the isotope shifts measured in
the i : 5p2 1S0 → 5p6s 1P1 transition versus the isotope shift measured in the j :
5p2 3P0 → 5p6s 3P1 transition (b).
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Table 4.6: Changes in mean square nuclear charge radii of tin isotopes determined in
the 5p2 1S0 → 5p6s 1P1 and 5p2 3P0 → 5p6s 3P1 transitions, respectively. Statistical
errors are quoted in round brackets while systematic errors are in square brackets.
Asterisks refer to isomeric states.

Changes in mean square nuclear charge radii δ〈r2〉A,A′ (fm)

N + Z I 5p2 1S0 → 5p6s 1P1 5p2 3P0 → 5p6s 3P1 Literature values [86]

108 0 -1.0404 (32) [872]

109 5/2 -0.9670 (6) [599] -0.9645 (6) [808]

110 0 -0.8734 (25) [732]

111 7/2 -0.8227 (12) [690]

112 0 -0.7197 (6) [599] -0.7205 (19) [604] -0.7212 (73)

113 1/2 -0.6585 (23) [564] -0.6497 (89) [570]

113∗ 7/2 -0.6774(5) [563] -0.6792 (13) [569]

114 7/2 -0.5833 (6) [485] -0.5842 (21) [490] -0.5877 (73)

115 0 -0.5379 (4) [447] -0.5409 (9) [453]

116 1/2 -0.4458 (3) [371] -0.4450 (27) [373] -0.4417 (73)

117 1/2 -0.3981 (3) [331] -0.3973 (14) [333] -0.3871(79)

117∗ 11/2 -0.4020 (4) [331] -0.4002 (16) [333]

118 0 -0.3158 (7) [263] -0.3120 (23) [262] -0.3176 (73)

119 1/2 -0.2721 (4) [227] -0.2731 (9) [229] -0.2684 (79)

119∗ 11/2 -0.2757 (6) [227] -0.2750 (15) [229]

120 0 -0.1991 (3) [166] -0.2022 (27) [170] -0.1996 (79)

121 3/2 -0.1558 (14) [135] -0.1576 (13) [137]

121∗ 11/2 -0.1625 (8) [135] -0.1627 (7) [136]

122 0 -0.0941 (4) [78] -0.0946 (25) [80] -0.0962 (79)

123 3/2 -0.0580 (8) [48] -0.0581 (10) [49]

123∗ 11/2 -0.0556 (10) [48] -0.0564 (16) [49]

125 3/2 0.0341 (4) [29] 0.0329 (8) [28]

125∗ 11/2 0.0307 (9) [29] 0.0289 (13) [28]

126 0 0.0859 (3) [72] 0.0846 (23) [71]

127 3/2 0.1178 (9) [98] 0.1192 (11) [101]

127∗ 11/2 0.1091 (19) [99] 0.1066 (24) [101]

128 0 0.1624 (9) [136] 0.1621 (16) [137]

128∗ 7 0.1485 (29) [136] 0.1251 (20) [140]

129 3/2 0.1773 (15) [167] 0.1776 (16) [168]

129∗ 11/2 0.1982 (12) [166] 0.1980 (10) [167]

130 0 0.2387 (6) [199] 0.2348 (13) [198]

130∗ 7 0.2088 (8) [201] 0.2053 (16) [199]

131 3/2 0.2385 (8) [230] 0.2394 (10) [234]

131∗ 11/2 0.2732 (6) [228] 0.2749 (7) [232]

132 0 0.3055 (4) [255] 0.3033 (11) [256]

133 7/2 0.3984 (6) [329] 0.3964 (10) [333]

134 0 0.5083 (13) [423] 0.5174 (25) [434]
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The radii of the ground states increase smoothly with the neutron number

from N = 58 to the shell closure with a parabolic shape and an odd-even

staggering on top of a linear trend. This behavior is analogous to the one

observed in the neighboring elements [50, 84] and it is well described by the

droplet model until the shell closure where a sudden change in the slope is

observed. This “kink” is the most striking characteristic of the charge radii,

evidencing a shell effect, observed before at N = 50, 82 and 126 as evident in

Fig. 4.16, but there was no experimental evidence on tin before this thesis.

The radii of the isomeric states almost coincide with the ones from the ground

states aroundN = 70 and slightly deviate from them near the closed shell. The

magnitude of this differences, when the unique-parity h11/2 orbital is involved,

in particular, requires a closer investigation. In order to reveal the finer details,
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the latter are displayed as a function of N in Fig. 4.17. The overall picture

is described by a parabolic trend, centered around N = 70. The charge radii

of the 11/2 states are larger at the shell border and smaller than the 1/2 or

3/2 states at the mid-shell. The 11/2 states become the ground state around

the mid-shell (from N = 73 up to N = 77) and the parabolic trend seems to

survive. Below N = 67 the 11/2 states are short-lived; therefore it is unknown

if the trend continues, where additionally the spin of the ground state change

from 3/2 to 1/2. A similar interesting behavior has been observed before

only along the cadmium chain where the 11/2 states are also present. For

cadmium, the differences in charge radius between 11/2 states and 1/2 or 3/2

states were interpreted, based in (2.39), as a consequence of a linear increase of

the deformation parameter (β) of the 11/2 states, assuming that the low-spin

state is approximately spherical. The same approach for the observed trend

in tin is under further investigation.

In Fig. 4.18, the experimental values of the mean square charge radii are

compared to theoretical calculations computed at the beyond mean-field level,

within the framework of the five-dimensional collective Hamiltonian (5DCH)
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Figure 4.18: Comparison of mean square charge radii changes from this work (open
circles) to the theoretical calculation of the even tin isotopes.

grounded in the generator coordinate method (GCM) with the gaussian over-

lap approximation (GOA) [87]. The calculation reproduces the experimental

curvature and clearly shows the kink at the magic neutron number. Within

this theoretical approach, the kink is related to the correlations stemming from

the fluctuations of the quadrupole moments. Different calculations applying

a new density functional of the Fayans type, that has been used to reproduce

the trend in cadmium [88] isotopes, are in progress.
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Conclusions

Nuclear properties of neutron-rich tin isotopes towards and beyond the N = 82

shell closure have been investigated by high-resolution collinear laser spec-

troscopy. The hyperfine structures and isotope shifts over the range from
108Sn up to 134Sn were measured employing the COLLAPS instrumentation at

ISOLDE, CERN. Two independent experiments using transitions with comple-

mentary properties, respectively at 452-nm and 286-nm, studied the 5p6s 1P1

and the 5p6s 3P1 levels in the neutral atom. A self-consistent analysis of

the two datasets, linked by the common nuclear parameters, allowed the de-

termination of nuclear spins, electromagnetic moments and charge radii with

higher precision. The ground state properties of the more exotic isotopes 133Sn

and 134Sn were assessed for the first time as well as the long-lived isomers in
113,123,128Sn.

The doubly-magic-plus-one-neutron nucleus 133Sn was found to have the clos-

est magnetic moment to the corresponding Schmidt value, suggesting a possi-

ble closed-shell structure of its ground state for which the single particle model

can be considered as a fair approximation. The spin I = 7/2 is confirmed in

our measurements. The nuclear properties of this isotope give valuable insight

for future development of accurate shell-model interactions in the region.

The magnetic moments in this region seems to be sensitive to second-order

core polarization effects. That is illustrated in the sequence of the 11/2 mo-

ments which are found to be closer to the Schmidt value than those in the

73
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neighbouring isotopes with two holes inside and two protons outside the shell

closure. The magnetic moments of this state in particular have almost iden-

tical values, though first-order core polarization effects should be taken into

account for an accurate description of the observed trend. An interesting be-

haviour is revealed by their quadrupole moments, which show a nearly linear

mass dependence that acts well even beyond the natural capacity of the h11/2

shell. A small effective charge suggests a spherical core with no considerable

influence in the quadrupole moments as expected for a semi-magic nucleus.

For an accurate interpretation of the observed effects, large-scale shell model

calculations are necessary.

The differences in mean square charge radii beyond the shell closure N = 82

have been determined for the first time. The most striking behaviour is the

observed “kink” at N = 82 that evidence the robustness of the N = 82 shell

gap. Beyond mean-field calculations, triggered by the results of this work,

provide accurate description of the radii and further relate the overall trend to

correlations stemming from the fluctuations of the quadrupole moments. The

measured differences in mean square charge radii between 11/2 states and the

other state present in the isotope are characterized by a parabolic behaviour.

This trend seems to survive regardless if the 11/2 states are ground or isomeric

states.
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[40] C. F. V. Weizsäcker, Z. Phys. 96(7), 431 (1935).
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The IS573 experiment aimed to provide charge radii and electromagnetic mo-

ments of ground and isomeric states along the isotopic chain of tin. The

program included two independent measurements dedicated to different tran-

sitions in the neutral atom. Excitations from the ground state at 286-nm

resolved the magnetic moment while the 452-nm transition from a metastable

state improved the sensitivity to the quadrupole moment. Both measurements

constitute a data set which is being analyzed self consistently in order to obtain

the highest possible accuracy for all the parameters.

A major goal of IS573 was to propagate the study of tin beyond the N = 82

shell closure in order to observe a possible shell effect in the charge radii

which may or may not be present according on various mean-field calculations.

Another primary motivation was the study of the quadrupole moments and

isomer shifts associated with the unique-parity h11/2 orbital known to have a

simple mass dependence in the cadmium analogues. In addition, from a shell-

model perspective, the study of the doubly-magic-plus-one-neutron nucleus
133Sn is considered important due to the anticipated single-particle nature of

its ground state.

Hyperfine spectra were observed for all species up to 134Sn (see spectrum in

5.1) which enables us to tackle the points mentioned above. Furthermore, the

electromagnetic moments and charge radii of the long-lived isomers in
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Figure 5.1: Fluorescence spectrum of 134Sn in the 286-nm transition in the neutral
atom.

113,123,128Sn have been assessed for the first time. Tin has been the subject

of multiple studies throughout the years. With respect to former laser spec-

troscopy experiments [1-3] we have been able to benefit from a number of

improvements. The radioactive beams of tin at ISOLDE have been selectively

laser ionized, thus aiding the suppression of contaminants, and subsequently

bunched for a 10000-fold background suppression in the fluorescence spectra.

Furthermore, our measurements were implemented in a collinear geometry,

therefore with the highest possible resolution limited fundamentally by the

natural linewidth. Simultaneous analysis of the two transitions, being linked

by the common nuclear parameters, allows their extraction with higher pre-

cision. The overall accuracy of the quadrupole moments will be improved

further due to a dedicated computational study of the electric field gradient

in the relevant atomic states.
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Abstract

The change in mean square nuclear charge radii of the even tin isotopic chain
108−134Sn has been investigated by means of collinear laser spectroscopy at

ISOLDE using the atomic transitions 5p2 1S0 → 5p6s 1P1 and 5p2 3P0 →
5p6s 3P1. With the determination of the charge radius of 134Sn and the im-

provement in the accuracy for most of the neutron-rich isotopes the evolution

of the charge radii across the N = 82 shell closure is established. A kink

in the evolution of the nuclear charge radii at this neutron shell closure is

well established in this mass region. The observed more pronounced kink in

Sn compared to its neighboring elements can be well explained by theoretical

models obtained by an Energy Density Functional (EDF) approach presented

in this paper.

Introduction

The Z = 50 element tin owns more stable isotopes than any other element

and far away from stability the two doubly magic isotopes 100Sn and 132Sn

can be found. It is a key element for both theoretical and experimental un-

derstanding of nuclear physics [1-4]. Reasons for this are the closed proton

shell that is advantageous for nuclear structure calculations and especially the

N = 82 neutron closure at 132Sn in the middle of a region that is extremely im-

portant for the nuclear astrophysics and nucleosynthesis, as well as the many

optically accessible transitions that allow laser spectroscopic measurements

with high precision. Laser spectroscopic and muonic measurements have been

performed from 108Sn to 132Sn, partially with low accuracy, determining the

nuclear charge radii up to the doubly magic nucleus [5-9]. Radii across the

N = 82 shell closure have been measured only for elements with higher pro-

ton numbers. They exhibit a clear kink at the neutron shell closure that is

very pronounced at higher proton numbers but weakening towards the pro-

ton shell closure (see e.g. [10,11]). Recently, a new density functional of the

Fayans type has been established to explain the strong increase of charge radii

in the calcium region. Surprisingly this functional performs very well for Cd

isotopes where experimental data is available almost for the complete shell
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but not across the N = 82 shell closure [12]. Newly developed calculations

based on an Energy Density Functional (EDF) approach [13] for Sn lead to

the expectation of a more pronounced kink than in the neighboring elements.

Also mass measurements that have already been performed beyond the magic

neutron number N = 82 [14-16]. revealed a very strong N = 82-shell gap in

tin compared with the neighboring elements. However, at the next classical

neutron shell closure N = 126 a similar situation exists, and it has been shown

that a very strong shell gap, namely at 208Pb, can be linked to a weakening of

the kink in the evolution of the nuclear charge radius [17]. This raises the ex-

pectation of a weak kink in the evolution of the charge radii of the tin isotopic

chain. Whereas recent results obtained with a Fayans functional predicts a

strong kink in the Cd chain, two protons below Z = 50. The charge radii ex-

tracted from the laser spectroscopic data exhibit a very pronounced kink and

therefore confirm the theoretical predictions. Since the arguments established

in the Pb region this would indicate a quenching of the shell closure in dis-

agreement with the measured binding energies. Hence, a different mechanism

must be at work at N = 82.

Experiment

Collinear laser spectroscopy has been performed at neutron-rich tin isotopes

using the atomic transitions 5p2 1S0 → 5p6s 1P1 (SP, 452.5 nm) and 5p2 3P0 →
5p6s 3P1 (PP, 286.3 nm) at the COLLAPS experiment situated at ISOLDE

CERN. Details of the setup are described elsewhere [18]. Briefly, protons from

the proton synchrotron booster (PSB) with an energy of 1.4 GeV and beam

currents of up to 2 µA hit a neutron converter [19] close to a uranium car-

bide (UCx) target. Neutron induced fission provides an efficient production

of tin isotopes that are subsequently ionized using resonant laser ionization

[20]. The tin ions are accelerated to an energy of about 40 keV, mass sepa-

rated and transported to the radio frequency quadrupole cooler and buncher

ISCOOL [21], where they are accumulated, cooled and ejected towards the

COLLAPS beam line as an ion bunch of typically 5 µs pulse length. The

ion bunch is overlapped with a copropagating single-frequency laser beam.

Charge exchange on sodium vapor was performed to populate the lower level
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Figure 5.2: Optical spectra of some chosen isotopes for the determination of the
isotope shift in the 5p2 1S0 → 5p6s 1P1transition. Shown is the number of counts as
a function of the relative frequency.

of the observed transitions in atomic tin. The potential of the charge exchange

region is varied to scan the laser frequency in the rest frame of the atom. In

Fig. 5.2 a few of the obtained spectra are shown. For the determination of

the isotope shift, the x-axis in this graph is already converted into relative fre-

quencies. Optical detection of the PP transition is based on the fluorescence

at 286 nm, while the SP transition is detected by the subsequent decay along

the 5p6s 1P1 → 5p2 1D2 transition at 326 nm which avoids optical pumping

and acts as an efficient background suppression.

Linear polarized light is generated by a Ti:Sa ring laser which is frequency

doubled and long term stabilized to a wavemeter that is regularly calibrated

using a stabilized HeNe laser. A long term stability of better than 10 MHz/h

is achieved. Reference scans of 124Sn are carried out regularly between the
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spectra.

Spectra were obtained from both transitions from the ground states of the even

isotopes 112−134Sn and in the PP transition also 108,110Sn could be observed.

Results

All isotope shifts

δν124,A = νA0 − ν124
0 =

mA −m124

mA ·m124
·M + F · δ

〈
r2
〉124,A

, (5.1)

with the field shift factor F and the mass shift factor M of the respective tran-

sition and the isotope masses mA, are determined with respect to the isotope
124Sn. Optical spectra were fitted using Voigt profiles with Lorentzian width

fixed to the natural linewidth. The full width at half maximum obtained from

fitting is below 100 MHz for all isotopes. Fitting with pure Lorentzian and

Gaussian profiles resulted in the same centroids. In all cases the residuals are

structureless and statistically fluctuating. Typical hints of asymmetric profiles

due to the charge exchange processes [22] were not observed.

The largest uncertainties arise from the relative voltage uncertainties ∆ Uacc/

Uacc ≈ ∆Uoffset/Uoffset ≈ 1.5× 10−4 of the starting potential Uacc at ISCOOL

and the Doppler tuning voltage Uoffset. The arising isotope shifts for 108−124Sn

resulting from our data are within the uncertainties in very good agreement

with the values provided in [7]. A usual King plot analysis [23] was performed

using muonic data as well as V-factors from electron elastic scattering provided

in [11], and the isotope shifts measured here for both transitions individually.

An additionally performed King plot analysis comparing the two investigated

transitions showed that the extracted isotope shifts agree with each other and

lead to the same nuclear charge radii. A detailed description of the proce-

dure for the determination of the change in mean square nuclear charge radii

can be found in [12] where an identical analysis was performed. The analy-

sis performed here results in a field shift factor of FSP = 2.44(47) GHz/fm2

for the SP transition which is in good agreement both with the experimen-

tal field shift factor FKing = 2.24(27) GHz/fm2 obtained in [7], where it is

determined via a King plot analysis in different transitions, and with the fac-



In preparation 88

tor of FDF = 1.98 GHz/fm2 based on theoretical Dirac-Fock calculations also

mentioned in [8]. There is a discrepancy to the factor F = 3.29(20) GHz/fm2

given in [11] that can easily be explained by the used reference values for the

nuclear charge radii. The charge radii used in their analysis differ from the

ones given in [11] which has of course a huge impact of the slope parameter

in the King plot analysis.

The analysis of the King plot in the PP transition yielded in FPP = 2.88(60)

GHz/fm2 which is in agreement with both the Dirac-Fock value of FDF =

2.408 GHz/fm2 and the deduced value of FKing = 2.39(27) GHz/fm2 given

in [7]. The extracted field shift factor agrees also with the factor of F =

3.3(3) GHz/fm2 that is used in [6]. The mass shift factor results in KSP =

−575(5) u GHz, and KPP = −506(5) u GHz respectively. From both transi-

tion, changes in mean square nuclear charge radii were determined and the

arising average values are listed in Table 5.1. The evolution of the nuclear

charge radii of the even tin isotopes is also shown in Fig. 5.3. Clearly visible is

a linear trend that is superimposed by a parabola. This behavior is considered

by the droplet model and describes the data quite well until N = 82. Above

this magic number, there is a kink showing a deviation from this behavior.

Fig. 5.3 shows also the theoretical calculation for the change in mean square

nuclear charge radii which describes the trend of the experimental values qual-

itatively and also shows the kink at the magic neutron number.

Theory

At a moderate computational cost, the framework of EDFs enables an accurate

description of ground-state properties and collective excitations from relatively

light systems to superheavy nuclei, and from the valley of β stability to the

particle drip lines. The lowest order, i.e., the single-reference (SR) EDF also

referred to as the mean-field approximation, involves Hartree-Fock-Bogoliubov

(HFB) calculation of the binding energy surface with the mass multipole mo-

ments as constrained quantities - here the quadrupole axial and triaxial mo-

ments (Q20, Q22).The corresponding static nuclear mean-field is characterized

by symmetry breaking: translational, rotational, and particle number, allow-

ing to incorporate in a clever way important nondynamical correlations (e.g.,
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Figure 5.3: Evolution of the nuclear charge radii of the tin isotopic chain. Shown
is the change in mean square nuclear charge radius δ

〈
r2
〉

as a function of the mass
number (lower x-axis), respectively the neutron number (upper x-axis). The red line
shows the theoretical prediction.

angular and pairing ones). However, atomic nuclei being finite objects, its eige-

instates do preserve the symmetries of the nuclear Hamiltonian such that the

static self-consistent solution can only provide an approximate description of

bulk ground-state properties such as masses and radii. Additional correlations

related to restoration of broken symmetries and fluctuations in collective coor-

dinates have to be accounted for in a post mean-field treatment. The approach

used in this study to take into account five-dimensional quadrupole dynamics

that restores rotational symmetry and allows for fluctuations around triax-

ial mean-field minima is the five-dimensional collective Hamiltonian (5DCH)

grounded in the generator coordinate method (GCM) with the Gaussian over-

lap approximation (GOA) [24]. The charge radii of tin isotopes computed at

the SR and 5DCH levels with the Gogny D1S parametrization [25] are dis-

played Fig. 5.3. At the SR level, the tin charge radii increase smoothly with

the neutron number. One has to go to the 5DCH level in order to observe a

sudden change in the slope of the charge radii versus neutron number around
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Table 5.1: Isotope shifts δν124,AIS and changes in mean square nuclear charge radii

δ
〈
r2
〉124,A

for all even isotopes with mass number A in the 5p2 1S0 → 5p6s 1P1 (SP)
and the 5p2 3P0 → 5p6s 3P1 (PP) transition. The first bracket shows the statistical
uncertainty, the second bracket the systematical error. For the change in nuclear
charge radii, the total uncertainties are given.

A δν124,A
SP,IS (MHz) δν124,A

PP,IS (MHz) δ
〈
r2
〉124,A

(fm2)

108 −2416.8 (118)(98) −1.0791 (166)

110 −2015.2 (103)(84) −0.9046 (108)

112 −1384.2 (22) (84) −1652.1 (80)(71) −0.7464 (68)

114 −1115.0 (19)(69) −1335.6 (86)(58) −0.6044 (52)

116 −842.9 (14)(55) −1007.6 (92)(45) −0.4604 (47)

118 −586.1 (11)(40) −688.0 (76)(33) −0.3220 (59)

120 −359.6 (13)(27) −448.6 (93)(22) −0.2059 (52)

122 −168.3 (16)(13) −206.3 (84)(10) −0.0967 (38)

126 148.0 (13)(13) 178.7 (69)(12) 0.0867 (47)

128 277.8 (23)(39) 339.5 (51)(21) 0.1651 (97)

130 393.6 (35)(67) 486.6 (44)(31) 0.2392 (151)

132 497.2 (11)(50) 624.1 (34)(42) 0.3071 (212)

134 980.1 (36)(62) 1196.5 (83)(51) 0.5322 (65)

the magic number N = 82. Within this approach, such a kink is hence re-

lated to the correlations stemming from the fluctuations of the quadrupole

moments. Those correlations are maximal at mid-shell and drop to zero at a

shell closure, explaining the slope change.

Conclusion

The changes in the mean square nuclear charge radius of the even tin isotopic

chain 108−134Sn have been determined by means of collinear laser spectroscopy.

With the measurements of the most neutron-rich isotope 134Sn we were able

to determine a charge radius beyond the neutron shell closure for the first

time. Below the neutron shell closure, the evolution of the charge radii can

be described by simple droplet model considerations. The expected kink at

N = 82 has been observed and it turned out that it is as expected by theory

much more pronounced than for the neighboring elements.
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Appendix

“Other work: Shell model

calculations for Mg”

The shell model is used to investigate the magnetic moments of odd magne-

sium isotopes with neutron number up to 17. The calculations were carried

out using the NuShellX @ MSU [89,90] code that provides a powerful tool for

nuclear structure predictions. The latter are based on the sd residual interac-

tions USD [91] and USDA/B [92] involving the 0d3/2, 0d5/2 and 1s1/2 active

orbitals for protons and neutrons. They have been obtained from the fits

of two-body matrix elements (TBME) and single-particle energies to experi-

mental binding and excitation energies. USDA/B are an updated version of th

USD with the main difference in terms of energy associated to the neutron-rich

nuclei. USDB, in particular, provides the best fit to the data.

The theoretical results from this work are listed in Tab. 5.2. The overall

agreement between the calculations and the experimental values is reasonably

good with differences smaller than 10%.

Regarding energy levels, the USDB interaction provides the most accurate

description of the level ordering in 29Mg. The comparison between the exper-

imental ground state and theoretical values are shown in Fig. 5.4. According

to the single-particle shell model, the ground state properties are dominated

by one single neutron in the d3/2 shell which is in agreement with the I = 3/2+

spin-parity, measured experimentally [96]. From the shell model calculations

using the USD/ USDA Hamiltonian the 3/2+ is an excited state located at 40/

93
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Table 5.2: Calculated magnetic moments from this work. The experimental values
listed in the second column are taken from [93–96].

µ(µN )

N+Z Iπ Schmidt Exp USD USDA USDB

21 5/2+ -1.913 -0.98300 (700) -0.96780 -0.83900 -0.84810

23 3/2+ -1.913 -0.53660 (30) -0.51590 -0.42400 -0.40970

25 5/2+ -1.913 -0.85545 (7) -0.90860 -0.84820 -0.84870

27 1/2+ -1.913 -0.41100 (200) -0.42060 -0.35330 -0.41190

29 3/2+ 1.146 0.97800 (60) 0.95340 1.05800 1.07100

90 keV. It becomes the ground state only when the USDB interaction is taken

into account. Conversely, the USD Hamiltonian provide a better description

of the magnetic moment which also occurs in other isotones with one unpaired

neutron in the shell [96].

Although the three Hamiltonians seem to adequately describe the magnesium

isotopes, somewhat better results are obtained with USD for the neutron-

deficient isotopes and USDB for the neutron-rich which is consistent with the

fact that the USDB Hamiltonian includes more recent experimental data for

the neutron-rich nuclei in the relevant shell. Fig. 5.5 illustrates the experimen-

tal moments versus the calculated values that best approach the experimental

data.

Shell model analysis using the USD Hamiltonian for the neutron-deficient

isotopes:

�
21Mg. The major contribution to the wave function of 59% is given by

the protons and neutrons coupled to spin 0 and 5/2, respectively. Inside

this contribution, about 42% corresponds to the one predicted by the

single-particle shell model with a single neutron in the d5/2 shell and

four protons in the same orbit.

�
23Mg. The calculation reproduces the experimental moment with dif-

ferences smaller than 4%, see Tab. 5.2. The recent determination of

a negative sign for the magnetic moment [94] infers the contribution of

the d5/2 orbital in the 3/2 ground state configuration of this isotope.

Indeed, in the calculations, the d5/2 orbital is dominant with about 75%



95 Shell model calculations

0

1

2

3

4

3/2⁺

5/2⁺

7/2⁺

9/2⁺

experiment USD USDB

1/2⁺
3/2⁺

5/2⁺

7/2⁺

9/2⁺

E 
(M

eV
)

29Mg 
(Z=12; N=17)

3/2⁺

9/2⁺

1/2⁺

3/2⁺

5/2⁺

7/2⁺

USDA

1/2⁺

Figure 5.4: Energy levels for 29Mg. The ground-state energy value is plotted in the
first column. Red points without lines on the y-axis indicate that the J is not known
with certainty. The theoretical results, corresponding to different Hamiltonians (USD,
USDA and USDB) for the sd-shell, are shown in the last three columns.

occupation for both protons and neutrons. The most abundant neutron

configurations involve the three valence neutrons in the d5/2 orbital cou-

pled to either spin 3/2 or 5/2 and the four valence protons in the same

orbital coupled to either spin 0 or 2, however, those fractions are not

large (about 16 % and 18% for the neutron configurations and about

20 % and 11% for the proton configurations, respectively). The protons

contribute about 60% of the wave function when they are coupled to spin

2 or 4. The wave function is very fragmented and a leading configuration

can not be highlighted.

Shell model analysis using the USDB Hamiltonian for the neutron-rich iso-

topes:

�
25Mg. As in 23Mg, no prevailing configuration can be extracted from

the calculations. The prominent neutron configuration involves the five

valence neutrons in the d5/2 orbital coupled to spin 5/2, in about 17%.

The protons contribute in about 60% of the wave function when they

are coupled to spin 2 or 4.

�
27Mg. In the single particle approach, the ground-state configuration of
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this isotope should be determined by the unpaired neutron in the s1/2

shell. Indeed, the most significant contribution of the wave function

comes from the single neutron in the s1/2 orbital, giving a spin 1/2, and

the four valence protons coupled to spin 0, those fractions at 37% and

47%, respectively.

�
29Mg. The leading configuration of the wave function at 60% is given by

the protons and neutrons coupled to spin 0 and 3/2, respectively. Inside

this contribution, the most abundant neutron and proton configurations

contain an unpaired neutron in the d3/2 orbital and four protons in d5/2,

those fractions at 47% and 39%, respectively. This isotope together with
27Mg has been already well discussed in [96].

The predicted magnetic moments for 27-29Mg are in agreement with previous

calculations using the shell-model code ANTOINE [96] with the “universal”

sd-interactions. The results obtained in this work were included in a publi-

cation “Spin and magnetic moment of 23Mg” that is attached to the thesis.
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Abstract
A negative magnetic moment of 23Mg has been determined by collinear laser
spectroscopy at CERN-ISOLDE. The absolute value is in agreement with
previous measurements by nuclear magnetic resonance while the sign points at
high-seniority configurations. The result is consistent with shell-model pre-
dictions for nuclei with valence nucleons in the sd shell.

Keywords: laser spectroscopy, nuclear moments, spin

(Some figures may appear in colour only in the online journal)

1. Introduction

Collinear laser spectroscopy was deployed for charge-radii measurements over the magnesium
isotopic chain [1]. An important objective was to propagate the study towards both ends of the
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sd shell where expected cluster configurations on one side and cross-shell excitations on the other
would influence the nuclear size. The experiment indeed determined a transition to a deformed
configuration at 31Mg, and found a trend of ever increasing radii by the removal of neutrons from
the lighter isotopes down to 21Mg. This work combined for the first time fluorescence
spectroscopy and laser-induced nuclear orientation for charge-radii measurements. The resulting
magnetic moments have never been published, partly because alternative values had already been
reported [2–7]. However, 23Mg currently lacks electromagnetic-moments sign determination since
it has been examined by nuclear magnetic resonance alone [3, 4, 8]. Furthermore, the associated
experimental accuracy is not greater than the one offered by the present study. Apart from its
importance from the nuclear-structure point of view, 23Mg is also a key probe for the study of
fundamental interactions [9] specifically as a group member of the isospin 1/2 nuclei with mirror
β transitions [10]. Below we discuss an independent spin and magnetic-moment measurement of
23Mg, and offer an interpretation in terms of the spherical shell model.

2. Experiment

The experiment was carried out with the collinear laser spectroscopy setup [6] at ISOLDE-
CERN. Radioactive nuclei were produced by high-energy protons impinging on a silicon

Figure 1. Fluorescence spectra of 24Mg from a UC target (a) and a SiC target (b). The
vertical scales are logarithmic.
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carbide target. Magnesium atoms were resonantly laser ionized [11], accelerated to an energy
of 50keV and mass separated. The ion of 23Mg was excited in the transition

s S p P3 32
1 2

2
1 2 at 280.35nm [12] which is free of quadrupole interactions and has a

well resolved hyperfine structure. The corresponding ultraviolet light was produced by fre-
quency doubling the output of a stabilized ring dye laser, using Rhodamine 19 as the active
medium, pumped at 532nm. The ion beam was overlapped with a laser beam and directed
through an electrostatic lens for post-acceleration. Atomic excitations were detected in the
ion-beam fluorescence as a function of the Doppler-shifted laser frequency.

2.1. Empirical line shapes

Typically, the shape of a spectroscopic line is closely described by the Voigt profile which is a
convolution of a Lorentzian function representing the natural absorption profile and a
Gaussian component accounting for Doppler broadening due to the thermal motion of the
atoms in the ion source. Through the years the Voigt profile has been approximated very
accurately by the use of explicit mathematical functions for computational ease [13]. In most
applications of collinear laser spectroscopy the Voigt line shape is in agreement with the
observations, however, additional effects may also play a role. The spectral lines of 24Mg in
figure 1 illustrate the asymmetric line profile associated with the present study. The two
measurements are taken under similar conditions in separate experiments. Both clearly show
additional structures at the lower-energy side of the main resonance. It should be noted that
the apparent effect in figure 1 is exaggerated by the logarithmic scale which has the purpose
of magnifying the details at the base of the spectra. Clearly the intruder structures are periodic
and seem to resemble the effect of inelastic collisions reported by Bendali and co-workers
[14]. In their work a mono-energetic sodium ion beam passed through a sodium vapor for
neutralization. Depending on the vapor densities side peaks resulting from multiple inelastic
collisions with an energy defect corresponding to the ‐s p3 3 energy difference became
prominent. The periodicity in our spectra does indeed correspond to a ‐s p3 3 excitation in
the magnesium ion. However, our measurements do not involve neutralization, therefore
the medium causing collisions is likely to be the residual gas in the vacuum beamlines after
the point of ionization. In this respect, differences from one experiment to another, such as
those in figures 1(a) and (b), could be attributed partly to different vacuum conditions. The
collisional excitations reported by Bendali and co-workers represent a particular case of
forward scattering where the collision partners are identical atoms. The arrangement in the
present work is considerably more complex since molecules and atoms of different masses
and ‘softness’ to excitation are involved. A change in the residual-gas density upstream from
the ion source may also play a role. Modeling of the exact processes is challenging and would
require a dedicated study. In this work we have analyzed the data using a realistic line profile
consisting of a main resonance and three equidistant side peaks with positions determined by
the ‐s p3 3 energy difference in the magnesium ion. High-statistics scans, as the one presented
in figure 1(b), have been made throughout the experiment in order to determine the height and
the Gaussian width of the individual side peaks relative to the main peak. Subsequently these
parameters have been used to fit the isotopes with hyperfine structure. The Lorentzian width,
common to all peaks, and the Gaussian width of the main resonance have been maintained as
free parameters. With such a line profile we have been able to obtain a very good description
of the data, in particular reduced-c2 values close to unity have been obtained after fitting.
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2.2. Magnetic moment

The atomic transition in use is free of quadrupole interactions. The relative positions of
individual lines are, therefore, determined by the equation:

=
+ - + - +( ) ( ) ( ) ( )E A

F F I I J J1 1 1

2
, 1F

applied for both the ground and the excited atomic states, where I is the nuclear spin, J are the
respective electronic angular momenta, F are the total angular momenta, and A are the
magnetic hyperfine parameters. The hyperfine anomaly in singly-ionized magnesium, taking
into consideration the data on atomic sodium [15–17], is expected to be small with respect to
the experimental uncertainties in this work. The A factors and the nuclear magnetic moments
of any two magnesium isotopes are then related through the expression:

m
= ( )A

I
const. 2

The constant essentially represents the average magnetic field per unit angular momentum
induced at the origin by the atomic electrons. Its value is always positive allowing for sign
determinations of nuclear magnetic moments directly from hfs measurements.

Figure 2. Fluorescence spectra of 23Mg (a) and 25Mg (b). The corresponding F
quantum numbers are indicated above the individual transition peaks.
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Considering the relative intensities of spectral lines, also known as Racah intensities [19],
we have identified the hyperfine components in figure 2 and labeled them by the corresp-
onding F quantum numbers. For both isotopes the line doublet starting from the state with the
lower angular momentum is also lower in excitation energy. The hyperfine levels of S1 2 are
therefore inverted with the lower angular-momentum state being higher in energy. This
arrangement is characteristic of negative A factors and consequently negative magnetic
moments, as evident from the equations above. All experimental results are presented in
table 1. The reference isotope is the stable 25Mg whose magnetic resonance has been mea-
sured relative to 14N [5]. However, we adopt the reevaluated value from [18] incorporating
diamagnetic corrections and later numbers for the proton moment, recently supported by a
double Penning-trap measurement [20], and the 14N-to-1H frequency ratio [21]. The A factors
of 25Mg are consistent with previous studies [6, 22]. The S1 2 parameters have been used for
determining the final magnetic moment of 23Mg. Without discussing the independent evi-
dence, such as the relative intensities and the isotope shift, the fact that the magnetic moment
of 23Mg from this work is in agreement with the result from nuclear magnetic resonance [3]
fixes the spin of 23Mg with absolute certainty to =I 3 2. Indeed, there can be only one half-
integer value that is consistent with the observed S1 2 splitting nD = +( )A I 1 2 and the A
factor derived from NMR measurements with the aid of equation (2). With regard to the
differential hyperfine anomaly in the S1 2 state one is able to calculate 25Δ23=−0.04(8)%
according to the definition in [15] and using the hyperfine parameters in table 1, and the
known NMR values [3, 18].

3. Interpretation

A negative magnetic moment can not be generated in the neutron sd shell without a d5 2

contribution, hence the 3/2 ground-state of 23Mg must be determined by multi-particle
interactions involving that orbital. Such high-seniority configurations are more likely to occur
in the middle of the d5 2 shell, and indeed the neighboring odd isotopes 21Mg and 25Mg both
have ground-state spins of 5/2 as one would expect from normal coupling. An equivalent
spin change also occurs in the respective mirror partners, namely along the N=12 isotonic
chain of 21F, 23Na and 25Al. The magnetic moment of 23Mg has been previously discussed in
the framework of isospin 1/2 mirror doublets in the sd shell [3]. To gain a further insight into
the configurations involved we have carried out shell-model calculations with the universal sd
Hamiltonians USD [23] and USDB [24] using the code NuShellX@MSU [25]. Experiment
and theory are plotted against each other in figure 3 for all odd magnesium isotopes in the sd
shell, except 31Mg whose ground state involves particle-hole excitations into the pf shell [7].

Table 1. Hyperfine A parameters from this work and a new value for the magnetic
moment of 23Mg.

I ( )A p P3 2
1 2 ( )A s S3 2

1 2 m mN

23Mg 3/2 - ( )107.4 3 - ( )623.5 3 −0.5366(3)a
25Mg 5/2 - ( )103.1 2 - ( )596.4 2 −0.85545(8)b

(MHz)

a
Extracted in the S1 2 multiplet; uncorrected for hyperfine anomaly; to be compared with

m m=∣ ( )∣ ( )Mg 0.5364 323
N from NMR [3].

b Reference magnetic moment of 25Mg [18].
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In line with our previous findings [2, 6], in the beginning of the sd shell the USD interaction
generates more accurate results, whereas already by midshell the USDB Hamiltonian is
required, particularly for predicting the correct level ordering in 29Mg. In all calculations free g
factors have been used. The agreement between theory and experiment is generally good. In the
case of 23Mg it is the USD interaction that approaches the magnetic moment closer by the value

m-0.52 N. As expected, the d5 2 orbital is dominant with about 75% occupation for both
protons and neutrons. The protons do indeed play an important role since they undergo +2 or +4
coupling in about 60% of the wave function. The most abundant neutron configurations contain
the three valence neutrons in the d5 2 orbital coupled to either spin 3/2 or 5/2, but those
fractions at 16% and 18%, respectively, are not large. In reality the wave function is very
fragmented and a dominant configuration can not be highlighted. As to the magnetic moment of
31Mg, a very close match with the USDB value m-0.83 N of the lowest +1 2 state in 29Mg has
been previously pointed out [26, 27]. This is consistent with the picture of a cross-shell
excitation of two paired neutrons which do not contribute directly to the magnetic moment. If
the corresponding point was to be added in figure 3, similarly to the other cases it would lie
close to the identity line.

4. Summary

In brief, we have studied 23Mg by high-resolution collinear laser spectroscopy. An empirical
approach to the observed spectroscopic line shapes has been discussed. The ground-state spin
3/2 has been confirmed and a negative magnetic moment has been measured, thus high-
lighting the importance of high-seniority configurations. The absolute value is found

Figure 3. Ground-state magnetic moments of magnesium isotopes in the sd shell in
units mN, versus shell model calculations. The respective mass numbers are indicated.
The experimental uncertainties are smaller than the dots.
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consistent with previous studies by nuclear magnetic resonance. The odd magnesium isotopes
in the sd shell have been investigated in the framework of the spherical shell model using the
well-known universal sd Hamiltonians. The calculation on 23Mg, indeed points to a strong
d5 2 contribution from both protons and neutrons and only a minor occupation of the neutron
d3 2 shell.
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Titre : Spectroscopie laser de l’étain au-delà de N = 82

Mots clés : Spectroscopie laser colinéaire - Structure nucléaire - Paramètres hyperfins - Moments
électromagnétiques - Rayon de charge

Résumé : L’objectif de cette thèse est l’étude par
spectroscopie laser colinéaire à haute résolution
de la structure nucléaire des isotopes d’étain
riches en neutrons, vers de la fermeture de
couche N = 82 et au-delà. Les structures
hyperfines et les déplacements isotopiques le
long de 108−134Sn ont été mesurés en utilisant
l’expérience COLLAPS à ISOLDE au CERN.
Deux expériences indépendantes, utilisant des
propriétés de transitions complémentaires l’une
à 452 et l’autre à 286 nanomètres, ont étudiées
les états 5p6s1P1 et 5p6s3P1 dans l’atome neutre.
L’état singulet fournit une sensibilité élevée au
moment quadrupolaire tandis que le triplet faci-
lite une grande séparation magnétique. A par-
tir d’une analyse auto-cohérente des deux en-

sembles de données, les spins nucléaires, les
moments électromagnétiques et les rayons de
charge ont été extraits. Les propriétés des
isomères à vie longue des noyaux 113,123,128Sn
ainsi que l’état fondamental de 133Sn et 134Sn ont
été évalués pour la première fois. Les moments
quadrupolaires des états 11/2−, déterminés
avec une plus grande précision que les études
précédentes, suivent une tendance presque
linéaire. Un coude à N = 82 dans la courbe des
rayons a été observé pour la première fois. Des
calculs de champ moyen fournissent une des-
cription précise des rayons et relient en outre la
tendance globale aux corrélations provenant des
fluctuations des moments quadupolaires

Title : Laser spectroscopy of tin across N = 82

Keywords : Collinear laser spectroscopy - Nuclear structure - Hyperfine parameters - Isotope shift -
Electromagnetic moments - Charge radii

Abstract : The aim of this thesis is the study of
nuclear structure properties of the neutron-rich
Sn isotopes towards theN = 82 shell closure and
beyond by high-resolution collinear laser spectro-
scopy. The hyperfine structures and isotope shifts
along 108−134 Sn were measured using the COL-
LAPS instrumentation at ISOLDE, CERN. Two
independent experiments using transitions with
complementary properties, respectively at 452
and 286 nanometres studied the 5p6s 1P1 and
the 5p6s 3P1 states in the neutral atom. The sin-
glet state provided high sensitivity to quadrupole
moments while the triplet facilitated a large ma-
gnetic splitting. From a self-consistent analysis of

the two data sets, nuclear spins, electromagne-
tic moments and charge radii have been extrac-
ted. The properties of the long-lived isomers in
113,123,128Sn and the ground state of 133Sn and
134Sn have been assessed for the first time. The
quadrupole moments of the 11/2− states, deter-
mined with much higher precision than in pre-
vious studies, have been found to follow a nearly
linear trend. A “kink” in the radii trend at N = 82
was observed for the first time. Beyond mean-
field calculations provide an accurate description
of the radii and further relate the overall trend to
correlations stemming from the fluctuations of the
quadrupole moments.
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