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Title:
Applications of Integer Programming and Decomposition to Schedul-
ing Problems: the Strategic Mine Planning Problem and the Bin
Packing Problem with Time Lag

Abstract:
In scheduling problems, the goal is to assign time slots to a set of activi-
ties. In these problems, there are typically precedence constraints between
activities that dictate the order in which they can be carried out and resource
constraints that limit the number that can simultaneously be executed. In
this thesis, we develop mixed integer programming methodologies, based on
decomposition methods, for two very different classes of scheduling problems.
These are the Strategic Open Pit Mine Planning Problem (SOPMP) and the
Bin Packing Problem with Time Lags.

Given a discretized representation of an orebody known as a block model, the
SOPMP that we consider consists of defining which blocks to extract, when to
extract them, and how or whether to process them, in such a way as to comply
with operational constraints and maximize net present value. These problems are
known to be very difficult due to the large size of real mine planning problems
(eg, millions of blocks, dozens of years). They are also very important in the
mining industry. Every major mining operation in the world must solve this
problem, at the very least, on a yearly basis.

In this thesis, we tackle the SOPMP in Chapters 2 and 3.
In Chapter 2 we begin by studying a lagrangean algorithm developed by

Dan Bienstock and Mark Zuckerberg (henceforth, the BZ algorithm) in 2009
for solving the LP relaxation of large instances of SOPMP. In this study we
generalize the classes of problems that can be solved with the BZ algorithm, and
show that it can be cast as a special type of column generation algorithm. We
prove, for general classes of mixed integer programming problems, that the BZ
relaxation provides a bound that lies between the LP relaxation and Dantzig-
Wolfe bounds. We further develop computational speed-ups that improve the
performance of the BZ algorithm in practice, and test these on a large collection
of data-sets.

In Chapter 3 we deal with the problem of computing integer-feasible solution
to SOPMP. Using the BZ algorithm developed in Chapter 2, we develop heuristics
for this. In addition, we develop pre-procesing algorithms that reduce problem
size, and embed the BZ algorithm in a branch-and-cut framework that makes use
of two new classes of cutting planes. When comparing the value of the heuristics
to the LP relaxation bound, the average gap computed is close to 10%. However,
when applying the pre-processing techniques and cutting planes, this is reduced
to 1.5% at the root node. Four hours of branching further reduces this to 0.6%.

In Chapter 4, the BPPTL is presented. This is a generalization of the Bin
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Packing Problem in which bins must be assigned to time slots, while satisfying
precedence constraints with lags. Two integer programming formulations are
proposed: a compact formulation that models the problem exactly, and an
extended formulation that models a relaxation. For two special cases of the
problem, the case with unlimited bins per period and the case with one bin
per period and non-negative time lags, we strengthen the extended formulation
with a special family of constraints. We propose a branch-cut-and-price (BCP)
algorithm to solve this formulation, with separation of integer and fractional
solutions, and a strong diving heuristic. Computational experiments confirm
that the BCP algorithm outperforms solving the compact formulation with a
commercial solver. Using this approach we were able to optimally solve 70% of
a class of previously open instances of this problem.

Keywords:
Mix integer linear programming, strategic mine planning, Bienstock-
Zuckerberg algorithm, branch-price-and-cut algorithm, bin packing
problem with time lags

Unité de recherche:

Institut de Mathématiques de Bordeaux.
351, cours de la Libération - F 33 405 Talence, France.
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Titre:
Applications de de la programmation en nombres entiers et la
décomposition aux problèmes d’ordonnancement : le problème de
la planification stratégique des mines et le problème de bin packing
avec délais.

Resumé:
Dans les problèmes de planification, l’objectif est d’attribuer des plages horaires
à un ensemble d’activités. Dans ces problèmes, il existe généralement des
contraintes de précédence entre les activités qui dictent l’ordre dans lequel
elles peuvent être exécutées et des contraintes de ressources qui limitent le
nombre d’activités pouvant être exécutées simultanément. Dans cette thèse,
nous développons des méthodologies de programmation en nombres entiers,
basées sur des méthodes de décomposition, pour deux classes très différentes de
problèmes d’ordonnancement. Il s’agit du problème de planification stratégique
des mines à ciel ouvert (SOPMP) et du problème de bin packing avec délais
(BPPTL).

Etant donné une représentation discrétisée d’un gisement appelé modèle de
bloc, le SOPMP que nous considérons consiste à définir les blocs à extraire,
quand les extraire, comment ou s’il faut les traiter, de manière à respecter les
contraintes opérationnelles et maximiser la valeur actualisée nette. Ces problèmes
sont connus pour être difficiles en raison de l’ampleur des problèmes réels de
planification minière. Ils sont également importants dans l’industrie minière.
Chaque grande opération minière dans le monde doit résoudre ce problème au
moins une fois par an.

Dans le chapitre 2, nous commençons par étudier un algorithme lagrangien
développé par Dan Bienstock et Mark Zuckerberg (qu’on appellera algorithme
BZ) en 2009 pour résoudre la relaxation LP de grandes instances de SOPMP.
Dans cette étude, nous généralisons les classes de problèmes qui peuvent être
résolus avec l’algorithme BZ, et montrons qu’il peut être exprimé comme un
algorithme de génération de colonnes. Nous prouvons, pour les classes générales
de problèmes de programmation en nombres entiers mixtes, que la relaxation BZ
fournit une borne qui se situe entre la relaxation LP et les bornes de Dantzig-
Wolfe. Nous développons en outre des accélérations de calcul qui améliorent les
performances de l’algorithme BZ dans la pratique.

Dans le chapitre 3, nous traitons le problème du calcul d’une solution entière
réalisable pour SOPMP. En utilisant l’algorithme BZ développé au chapitre 2,
nous développons des heuristiques pour ce problème. En outre, nous développons
des algorithmes de prétraitement qui réduisent la taille du problème et intégrons
l’algorithme BZ dans un algorithme de branch-and-cut qui utilise deux nouvelles
classes de plans sécants. En comparant la valeur de l’heuristique à la borne
de relaxation LP, l’écart moyen calculé est proche de 10%. Cependant, lors de
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l’application des techniques de prétraitement et des plans sécants, il se réduit
à 1,5% au nœud racine. Quatre heures de branchement réduisent encore ce
pourcentage à 0,6%.

Le chapitre 4 présente le BPPTL. Il s’agit d’une généralisation du problème
de bin packing, dans lequel les containers doivent être affectés à des créneaux
horaires qui respectent des contraintes de délai entre les articles. Deux formula-
tions de programmation en nombres entiers sont proposées : une formulation
compacte qui modélise exactement le problème, et une formulation étendue qui
modélise une relaxation. Pour deux cas particuliers du problème, le cas avec un
nombre illimité de bin par période et le cas avec un bin par période et des délais
non négatifs, nous renforçons la formulation étendue avec une famille spéciale
de contraintes. Nous proposons un algorithme de branch-and-cut-and-price
(BCP) pour résoudre cette formulation, avec séparation des solutions entières
et fractionnaires, et une heuristique de strong diving. Les expérimentations
confirment que l’algorithme BCP est plus performant que la résolution de la
formulation compacte avec un solveur commercial. En utilisant cette approche,
nous avons pu résoudre de manière optimale 70% d’une classe d’instances
précédemment ouvertes de ce problème.

Mots clés:
Programmation linéaire mixte en nombres entiers, planification
stratégique des mines, algorithme de Bienstock-Zuckerberg, algo-
rithme de branch-price-and-cut, problème de bin packing avec délais
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Título:
Aplicaciones de Programación Entera y Descomposición a Proble-
mas de Scheduling: el Problema de Planificación Minera Estratégica
y el Problema de Bin Packing con Lags de Tiempo

Resumen:
En problemas de agendamiento, el objetivo es asignar tiempos a un con-
junto de actividades. En estos problemas, típicamente hay restricciones de
precedencias entre actividades que dictan el orden en que deben ser ejecutadas
y restricciones de recursos que limitan el número que pueden ser ejecutadas
simultáneamente. En esta tesis desarrollamos metodologías de programación en-
tera mixta, basada en métodos de descomposición, para dos clases de problemas
de agendamiento. Estos son el problema de planificación minera a rajo abierto
(SOPMP) y el problema de bin packing con lags de tiempo (BPPTL).

Dada una representación discretizada de un yacimiento minero, conocida
como modelo de bloques, el SOPMP que consideramos consiste en definir qué
bloques extraer, cuándo extraerlos, y el cómo procesarlos, de forma que se
satisfagan restricciones operacionales y se maximice el valor presente neto. Es
sabido que estos problemas son muy difíciles debido al gran tamaño de problemas
de planificación minera reales (millones de bloques, docenas de años), si bien
son muy importantes para la industria minera. Cada operación minera de gran
tamaño en el mundo debe resolver este problema al menos una vez al año.

En el capítulo 2 empezamos estudiando un algoritmo lagrangeano desarrollado
por Dan Bienstock y Mark Zuckerberg (el algoritmo de BZ) en 2009 para
resolver la relajación LP de instancias grandes de SOPMP. En este estudio
generalizamos la clase de problemas que pueden ser resueltos con el algoritmo
de BZ, y mostramos que puede ser visto como un tipo especial de algoritmo
de generación de columnas. Probamos, para la clase general de problemas
de programación entera mixta, que la relajación de BZ provee una cota que
está entre la de la relajación LP y la cota de Dantzig-Wolfe. Adicionalmente
desarrollamos mejoras computacionales que mejoran el desempeño del algoritmo
de BZ en la práctica, y las testeamos en una colección grande de instancias.

En el capítulo 3 lidiamos con el problema de computar soluciones enteras
factibles de SOPMP. Usando el algoritmo de BZ desarrollado en el capítulo
2, desarrollamos heurísticas. Adicionalmente, desarrollamos algoritmos de pre-
proceso que reducen el tamaño del problema, e insertamos el algoritmo de BZ
dentro de un procedimiento de branch-and-cut que usa dos clases nuevas de
planos cortantes. Al comparar el valor de las heurísticas con la cota de la
relajación LP, el gap promedio computado es cercano a 10%. Sin embargo, al
aplicar las técnicas de pre-proceso y planos cortantes, este gap se reduce a un
1.5% en el nodo raíz. Tras cuatro horas de branche este se reduce a un 0.6%.

En el capítulo 4, el problema de bin packing con lags de tiempo es presentado.
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Este es una generalización del problema de bin packing, en el que los bins deben
ser asignados a períodos de tiempo, satisfaciendo restricciones de precedencia
con lags de tiempo. Proponemos dos formulaciones de programación entera:
una formulación compacta que modela el problema de forma exacta, y una
formulación extendida que modela una relajación. Para dos casos especiales
del problema, el caso con un número ilimitado de bins por período y el caso en
que sólo se permite un bin por período y los lags de tiempo son no-negativos,
agregamos una familia espacial de restricciones a la formulación extendida para
fortalecerla. Proponemos un un algoritmo de branch-cut-and-price (BCP) para
resolver esta formulación, con separación de soluciones enteras y de soluciones
fraccionarias, y una heurística de strong diving. Experimentos computacionales
confirman que el algoritmo BCP supera el desempeño de resolver la formulación
compacta con un software de optimización comercial. Usando este enfoque
podemos resolver óptimamente el 70% de una clase de instancias previamente
abiertas de este problema.

Palabras Clave:
Programación lineal entera mixta, planificación minera estratégica,
algoritmo de Bienstock-Zuckerberg, algoritmo de branch-price-and-
cut, problema de bin packing lags de tiempo
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Chapter 1

Introduction

We present the introduction of this thesis in both english and french languages,
and they constitute a substantial summary of this thesis.

1.1 Introduction in english

In this thesis we develop integer linear programming techniques for solving
two classes of scheduling problems. The problems that we consider consist of
scheduling activities that must be assigned to time periods, in such a way as
to comply with precedence and resource consumption constraints. We consider
two variants of this class of problems. The first, which we call the General
Production Scheduling Problem (GPSP), is motivated by strategic mine planning
problems. The GPSP generalizes the resource constrained project scheduling
problem (RCPSP), and can be used to model many different problems in mine
planning such as open pit phase design, open pit direct block scheduling and
underground scheduling problems. The second, which we call the Bin Packing
Problem with Time Lags (BPPTL) is a generalization of the classical bin packing
problem (BPP), in which items are assigned to bins over times, and in which
assignments must satisfy precedence constraints with time lags. By interpreting
bin capacity constraints as resource consumption constraints, it can be seen that
BPPTL and GPSP are actually very similar problems. The main difference is
that in the BPPTL, in its general form, the number of bins used is not fixed.
Thus, the BPPTL can be interpreted as a variant of the GPSP in which capacity
can be purchased, and in which the objective is to minimize this cost. Chapters
2 and 3 focus on studying the GPSP, and chapter 4 studies BPPTL. We now
describe this problems in more detail, emphasizing the state of the art prior
to our work, the importance of these problems, and the papers published and
expected from this research.

General Project Scheduling Problem

The GPSP can be described as follows. A set of activities can be scheduled
at time periods, each activity has an associated duration that determines how
long it consumes resource after starting. Precedence relationships with time
lags determine how much time must elapse between the start time of pairs of
activities. In multi-modal extensions of this problem, activities can be performed
in different ways (or modes). Changing the mode of an activity affects its
resource utilization, and its objective function value. We will assume, throughout
this work, that changing the mode of an activity does not change the duration.
In batch-processing extensions, activities are grouped together in clusters that
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1. Introduction

must be scheduled to start at the same time period. The general production
scheduling problem that we study is the multi-modal batch-processing resource
constrained project scheduling problem.

Formally, this class of problems can be described as follows. Consider a
set of activities A and a discrete set of time periods T = {1, . . . , T}. Let C
be a partition of the activity set A. We will say that each element (or set) in
C is a cluster, or batch. These sets will represent activities that must begin
simultaneously. We will assume that, unless specifically enforced otherwise,
scheduling each cluster is optional. For each cluster c ∈ C, let P (c) ⊆ C represent
its set of predecessor clusters. That is, if c2 is scheduled, then all clusters
c1 ∈ P (c2) must also be scheduled. For each c2 ∈ C and each c1 ∈ P (c2) let lc1c2

represent the corresponding precedence lag. This number represents the number
of time periods that must elapse between the start time of c1 and c2. That is, if
c2 starts in time t or before, then c1 must start in time t− lc1c2

or before. Note
that if lc1c2

< 0, then, even though c1 is a predecessor of c2, it is admissible
that c1 start after c2, as long as it starts at most |lc1c2

| periods after. Let Ma

represent the set of modes in which activity a ∈ A can be scheduled. Each
scheduled activity must be assigned exactly one mode. The mode of an activity
cannot be changed once it starts. For each activity a ∈ A, let da represent
its duration. We assume that activities cannot be interrupted. Once they are
scheduled they are running for da time periods or until the time horizon T is
reached. Let R represent the set of necessary resources of the project, and for
r ∈ R let qr

a,m be the amount of resource of type r consumed each time period by
activity a when running in mode m. For each t ∈ T and r ∈ R let Qt

r represent
the amount of resources of type r available in time period t. Finally, let va,m,t

represent the profit obtained by scheduling activity a to start in time t, and run
in mode m.

To model this problem we define binary variables xc,t, indicating if cluster
c is scheduled to start in time t or not, and binary variables ya,m,t indicating
if activity a is scheduled to start running in time t with mode m. Using these
variables the problem we consider is as follows:

max
∑

a∈A

∑

m∈Ma

∑

t∈T

va,m,tya,m,t, (1.1a)

s.t. (1.1b)
∑

t∈T

xc,t ≤ 1 ∀c ∈ C, (1.1c)

∑

m∈Ma

ya,m,t = xc,t ∀t ∈ T ,∀c ∈ C,∀a ∈ c, (1.1d)

∑

a∈A

∑

m∈Ma

t∑

s=max{1,t−da+1}

qr,a,mya,m,s ≤ Qr,t ∀r ∈ R,∀t ∈ T , (1.1e)

t∑

s=1

xc2,s ≤

t−lc1,c2∑

s=1

xc1,s ∀c1 ∈ C,∀c2 ∈ P (c1),∀t ∈ T . (1.1f)
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Introduction in english

In this formulation, constraints (1.1c) impose that a cluster is extracted at most
once. Constraints (1.1d) impose that the time period an activity is scheduled
is the same as the one of the cluster it belongs to. They also impose that each
scheduled activity is assigned a mode. Constraints (1.1e) impose the resources
capacity limit. In this constraints, if an activity a is scheduled at time period t, it
consumes resources on time periods {t, . . . , t + da− 1}. Finally constraints (1.1f)
impose the precedence with lags constraints. Here if cluster c2 is scheduled at
time period t, then cluster c2 ∈ P (c1) must be scheduled at time period t− lc1,c2

or before.
Note that the class of problems represented by formulation (1.1) is very

broad, and includes some very difficult problems, including the job-shop and
resource constrained project scheduling problems (RCPSPs). As reported by
[VCB16], there are instances of RCPSP with as few as 90 jobs that to date have
not been solved to optimality.

In this thesis we develop integer programming methodologies for solving
model (1.1), with a focus on strategic open pit mine planning. In the strategic
open pit mine planning problem (SOPMPP) the goal is to determine where,
when and how to mine using open pit methods an ore body in order to maximize
the value of the operation. A mining deposit or ore body is discretized into
regular blocks of a three dimensional grid to define an economic block model.
Time is discretized over time periods that usually represent years. The open
pit methods impose spacial and geological restrictions requiring that to mine a
given block a certain set in the shape of a cone over the block must be previously
mined. Operational restrictions could require that the extraction is made in large
groups of contiguous blocks. A mined block is sent to one of different possible
destinations which could include processing plants, waste dumps, stockpiles, etc.
Restrictions are imposed due to limited capacity for how much material can be
mined or sent to specific destinations. The composition of the material in blocks
determine the profit obtained for sending it to each specific destination.

The SOPMPP is a fundamental problem to solve in the mining industry,
since it is necessary to evaluate the worthiness to exploit a mining deposit, and
it is solved in practice on a yearly basis in order to re-evaluate current strategic
plans with the updated information obtained of the block model. This problem
has been studied since the 1960s. An integer programming formulation which is
a particular case of (1.1) was proposed by T. B. Johnson [Joh68; Joh69], though
the size of the problem made it impossible to solve it in practice, since real
size instances can easily have hundred of thousands to several millions blocks,
and many times that variables and constraints. Mining companies traditionally
have used commercial software systems based on heuristics methods to obtain
solutions for this problem. These software have been available since the 1980’s.
Two notable heuristics used to face the problem are the Lane’s Algorithm’s
and the Nested Pit Methodology, that were combined in a methodology by
the commercial software system Whittle which is in practice used until today
[GEO19]. Integer programming approaches have been proposed since the 2000’s
[Ble+10; Bol+09], based in aggregation techniques to reduce the dimension of
the problem and cutting planes to strength the formulation. However, the size

3



1. Introduction

of the integer programming formulations makes it hard in practice to even solve
the LP relaxation of the formulation.

The study of the SOPMPP in this thesis is based in two important
developments that preceded it. First, a breakthrough in solving the LP relaxation
of the problem was the algorithm proposed by Bienstock and Zuckerberg, the BZ
algorithm [BZ09; BZ10]. This algorithm, based in a decomposition that takes
advantage of the combinatorial structure of the GPSP formulation, iteratively
solves much smaller linear programs and a combinatorial problem that can be
efficiently solved. Second, a rounding heuristic proposed by Chicoisne et al.
[Chi+12] produced solutions with small optimality gaps for a simplified version
of the problem by rounding a solution of the LP relaxation of the problem.

The first part of this thesis, developed in chapter 2, studies deeply the BZ
algorithm. We show that this algorithm can be extended to underground mine
planning and other classes of scheduling problems. We also show that the
algorithm can be cast as a column generation scheme, allowing us to compare it
to the Dantzig-Wolfe decomposition, and to characterize the bounds it produces.
Finally, computational speed-ups are presented, as well as a computational study
that describes the performance of the algorithm in applications in strategic
mine planning resource constraint project scheduling problems. The chapter is a
pre-print of the following article:

A study of the Bienstock-Zuckerberg algorithm, Applications in Mining and
Resource Constrained Project Scheduling. Munoz, G;. Espinoza, D.; Goycoolea,
M.; Moreno, E.; Queyranne, M.; Rivera, O. Computational Optimization and
Applications. Volume 69, Issue 2, pp 501 – 534. March, 2018.

In this paper it is confirmed that the BZ algorithm is an effective algorithm
for solving large classes of mine planning problems. It extends the reformulation
required for the algorithm to fit the more general GPSP formulation. Moreover,
it develops techniques that should be taken into account when implementing
the BZ algorithm that significantly improve the performance. It establishes
the theoretical quality of the bounds afforded by the BZ algorithm, it develops
the path-compression and k-step computational speed-ups, and it conducts a
computational study to show that the BZ algorithm significantly outperforms
solving the LP relaxation by means of Dantzig-Wolfe decomposition or other
linear programming algorithms. My specific personal contribution to this paper
was developing the more general reformulation, characterizing the quality of
the bounds obtained, implementation of most of the algorithms and speed ups
mentioned, and the execution of the computational study presented in the
paper, including the recollection and manipulation of real mine instances, and
the implementation of the platform that allowed to express the problem as an
optimization problem suited for the BZ algorithm.

The second part of this thesis, developed in chapter 3, proposes a methodol-
ogy to address the SOPMPP. It builds on a classical division of the SOPMPP
into two subproblems, the phase design problem and the production scheduling
problem, both of which that can be formulated as particular cases of the GPSP.

4



Introduction in english

It uses the algorithm described in the chapter 2, but it extends this work by
introducing a full methodology dealing with the newly introduced integrality
constraints. The methodology combines customized heuristics, including the
adaptation of the heuristic proposed in [Chi+12] to this framework, and it
includes both well known and other newly proposed pre-processing techniques,
and valid inequalities, as well as a branching scheme is presented. By combining
all of the aforementioned techniques, we show that real-world problem instances
of strategic mine planning problems can be solved to near optimality (< 1%)
in just a few hours. The chapter is a pre-print of the following article recently
published:

Production scheduling for strategic open pit mine planning: A mixed integer
programming approach. Rivera, O; Espinoza, D; Goycoolea, M; Moreno, E.;
Munoz, G. Operations Research. Published Online. Aug 27, 2020.

The importance of this paper is that it first presents a methodology to solve
the SOPMPP by means of exact methods of integer programming. It shows a
way to model the SOPMPP diving the problem into two stages, both of them
being possible to formulate as different GPSPs that can be solved to small
optimality gaps with the methodology presented in the paper. A particularly
important contribution of this paper is the introduction of the hourglass cuts.
The hourglass cuts are novel in using a part of the structure of the formulation
that has not been used before to develop valid inequalities. These cuts produced
an important impact in closing the gap. My specific personal contribution
in this paper was that I developed most of the implementation used for the
computational experiments (with the exception of the branching algorithm). I
also came up with all of the new hourglass cutting planes, the proposed new
heuristics, and adapted and implemented most of the pre-processing schemes,
heuristics and older classes of cutting planes originally proposed for simpler
variants of the problem, to the general class of problems considered in the paper.
I also carried out all of the computational experiments.

The methodology proposed for the strategic open pit mining problem has
been tested in practice by mining companies, leading to satisfactory solutions
and production scheduling plans.

Bin Packing Problem with Time Lags

The bin packing problem with time lags (BPPTL) is a generalization of the
bin packing problem. In the bin packing problem a set of weighted items must
be assigned to the minimum possible number of equally capacitated bins. In the
BPPTL the bins must additionally be scheduled in time, and, in such a way as
to satisfy a given set of precedence constraints with time lags. These time lags
can be either positive or negative.

The BPPTL can be used to model tasks that must be performed repeatedly,
using limited resources that must be paid for. Positive and negative lags allow
fixing the minimum and maximum time that must elapse between consecutive
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executions of each task. An application of this is the phytosanitary treatments
in a vineyard, in which areas of the vineyard require periodic treatment that
should be performed with an ideal, given frequency. There is flexibility on the
frequency of the tasks, though consecutive treatments should not be performed
too close or too far apart in time. Tasks consume resources that must be rented
per day, and the same resources could be used to perform tasks in different areas
of the vineyard if they must be performed the same day.

The BPPTL is a new problem that extends several other generalizations of
the bin packing problem. The bin packing problem with precedences (BPP-P)
[DDI12; Per16] corresponds to the specific case of BPPTL in which all lags are
equal to one. The simple assembly line balancing problem (SALBP) [Per15]
corresponds to the specific case of BPPTL in which all lags are equal to zero. The
bin packing problem with generalized precedence constraints (BPP-GP) [KDI17]
also generalizes the bin packing problem and considers precedence constraints
with time lags. However, BPP-GP considers a different objective function than
BPPTL and assumes lags are non-negative. Despite this the BPP-GP coincides
with the BPPTL when when lags are zero or one.

Formally, in the BPPTL, we are given a directed valued graph G = (V, A, l),
where V is a set of items that must be assigned to bins, A is a set of arcs defining
precedence relationships, and l : A −→ Z represents the time lags of arcs. We
are also given a weight wi ∈ Z+ for each item i ∈ V , and a bin capacity W ∈ Z+.
The problem consists in partitioning the items into bins, and scheduling each
item i ∈ V to a time period p(i) ∈ Z+, in such a way that: (a) items assigned to
a bin are scheduled in the same time period, (b) the cumulative weight of items
assigned to each bin does not exceed the prescribed capacity W , and (c) for
each (i, j) ∈ A, it holds that p(i) + li,j ≤ p(j). Additionally, we can be given a
constraint on the maximum number of bins L that can be assigned to the same
time period. The objective of the problem is to find such an assignment that
uses the minimum possible number of bins.

The BPPTL is presented in Chapter 4, where we study the problem from
an integer programming perspective. We propose a compact formulation based
on a time-index formulation, and propose different variants, comparing their
performance. The time-index formulations proposed is very similar to that
used for formulating the GPSP (1.1), in that the same variables and precedence
constraints are considered. We also propose an extended formulation that defines
a relaxation of the BPPTL. We develop a branch-cut-and-price algorithm based
on this formulation, that allows to solve to optimality two specific cases of the
BPPTL: (a) the case with unlimited bin per periods (BPPTL∞), and (b) the
case in which time lags are non-negative and in which only one bin is allowed
per period (BPPTL1

+). For both BPPTL∞ and BPPTL1
+ we characterize the

feasible solutions of the extended formulation, and develop separation algorithms
for both integer and fractional solutions. Finally, we develop a strong diving
heuristic, and conduct a computational study to compare the performance of
the branch-cut-and-price algorithm and a commercial software over the compact
formulation. We show that for the instances inspired in the phytosanitary
treatments problem the branch-cut-and-price approach outperforms the use of a
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CPLEX on the compact formulation. We also show that for the instances of
BPP-P, SALBP and BPP-GP, we are able to improve both the lower and upper
bounds known in the literature. Combining both known and improved bounds,
the optimality status is reached for 70% of instances with less than 100 items
that were previously open problems in the literatue. This chapter is a pre-print
of a submitted paper:

Bin Packing with Time Lags. Rivera, O; Clautiaux, F; Sadykov, R.
Manuscript submitted for publication.

My specific personal contributions to this paper were the mathematical
characterization of feasible solutions, the separation algorithm for fractional
solutions, the generation of instances inspired in real applications, the model and
implementation of the compact formulation and its variants, the implementation
of the branch-cut-and-price algorithm using the generic branch-and-price
academic software BapCod and the computational study. The implementation
of the algorithm includes the model of the problem, the integer and fractional
separation procedures for both BPPTL1

+ and BPPTL∞, and the separator for
the diving heuristic.

1.2 Introduction en français

Dans cette thèse, nous développons des techniques de programmation linéaire
en nombres entiers pour résoudre deux classes de problèmes d’ordonnancement.
Les problèmes que nous considérons consistent à programmer des activités
qui doivent être affectées à des périodes de temps, de manière à respecter des
contraintes de priorité et de consommation de ressources. Nous considérons
deux variantes de cette classe de problèmes. La première, que nous appelons
le problème général de planification de la production (GPSP), est motivée par
des problèmes de planification stratégique dans le contexte minier. Le GPSP
généralise le problème de planification de projets sous contraintes de ressources
(RCPSP), et peut être utilisé pour modéliser de nombreux problèmes différents
de planification minière tels que la conception de la phase d’exploitation à
ciel ouvert, la planification directe des blocs à ciel ouvert et les problèmes de
planification souterraine. Le second, que nous appelons le problème de bin
packing avec délais (BPPTL) est une généralisation du problème classique de
bin packing (BPP), dans lequel les articles sont affectés aux bins au fil du temps,
et dans lequel les affectations doivent satisfaire à des contraintes de délai entre
les articles. En interprétant les contraintes de capacité des bins comme des
contraintes de consommation de ressources, on peut voir que le BPPTL et le
GPSP sont en fait des problèmes très similaires. La principale différence est que
dans le BPPTL, sous sa forme générale, le nombre de bins utilisés n’est pas fixé.
Ainsi, le problème BPPTL peut être interprété comme une variante du GPSP
dans laquelle la capacité peut être achetée et dont l’objectif est de minimiser ce
coût. Les chapitres 2 et 3 se concentrent sur l’étude du GPSP, et le chapitre 4
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étudie le BPPTL. Nous décrivons maintenant ces problèmes plus en détail, en
rappelant l’état de l’art, l’importance de ces problèmes et les articles publiés et
les retombées de cette recherche.

General Project Scheduling Problem

Le GPSP peut être décrit comme suit. Un ensemble d’activités peut être
programmé par périodes, chaque activité a une durée associée qui détermine la
durée pendant laquelle elle consomme des ressources. Les relations de précédence
avec délais déterminent le temps qui doit s’écouler entre le début de paires
d’activités. Dans les extensions multimodales de ce problème, les activités
peuvent être réalisées de différentes manières (ou modes). Le changement de mode
d’une activité affecte sa consommation de ressources et la valeur de sa fonction
objective. Nous supposerons, tout au long de ce travail, que le fait de changer le
mode d’une activité ne change pas sa durée. Dans les extensions de traitement
par lots, les activités sont regroupées en clusters qui doivent être programmés
pour commencer à la même période. Le problème général d’ordonnancement de
la production que nous étudions est le problème d’ordonnancement de projets
multimodal de traitement par lots à ressources limitées.

Formellement, cette catégorie de problèmes peut être décrite comme suit.
Considérons un ensemble d’activités A et un ensemble discret de périodes de
temps T = {1, . . . , T}. Soit C une partition de l’ensemble d’activités A. Nous
dirons que chaque élément (ou ensemble) de C est un groupe, ou un lot. Ces
ensembles représenteront les activités qui doivent commencer simultanément.
Nous supposerons que, sauf indication contraire, l’ordonnancement de chaque
groupe est facultatif. Pour chaque grappe c ∈ C, soit P (c) ⊆ C son ensemble
de clusters prédécesseur. Autrement dit, si c2 est ordonnancé, alors tous les
clusters c1 ∈ P (c2) doivent également être ordonnancés. Pour chaque c2 ∈ C et
chaque c1 ∈ P (c2), soit lc1c2

le délai (lag) correspondant. Ce nombre représente
le nombre de périodes de temps qui doivent s’écouler entre le début de c1 et
celui de c2. Autrement dit, si c2 commence au temps t ou avant, alors c1 doit
commencer au temps t− lc1c2

ou avant. Notez que si lc1c2
< 0, alors, même si c1

est un prédécesseur de c2, il est admissible que c1 commence après c2, à condition
qu’il commence au maximum |lc1c2

| périodes après. Soit Ma l’ensemble des
modes dans lesquels l’activité a ∈ A peut être programmée. Chaque activité
programmée doit se voir attribuer exactement un mode. Le mode d’une activité
ne peut pas être modifié une fois qu’elle a commencé. Pour chaque activité
a ∈∈ A, soit da sa durée. Nous supposons que les activités ne peuvent pas être
interrompues (pas de préemption). Une fois qu’elles sont programmées, elles
fonctionnent pendant des durées da ou jusqu’à ce que l’horizon temporel T soit
atteint. Soit R l’ensemble des ressources du projet, et pour r ∈ R soit qr

a,m

la quantité de ressource de type r consommée à chaque période par l’activité
a lorsqu’elle est exécutée en mode m. Pour chaque t ∈ T et r ∈ R soit Qt

r la
quantité de ressources de type r disponible dans la période de temps t. Enfin,
soit va,m,t le profit obtenu en programmant l’activité a pour démarrer au temps
t, et s’exécuter dans le mode m.
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Pour modéliser ce problème, nous définissons des variables binaires xc,t,
indiquant si le cluster c commence au temps t ou non, et des variables binaires
ya,m,t indiquant si l’activité a est programmée pour commencer au temps t avec
le mode m. En utilisant ces variables, le problème que nous considérons est le
suivant :

max
∑

a∈A

∑

m∈Ma

∑

t∈T

va,m,tya,m,t, (1.2a)

s.t. (1.2b)
∑

t∈T

xc,t ≤ 1 ∀c ∈ C, (1.2c)

∑

m∈Ma

ya,m,t = xc,t ∀t ∈ T ,∀c ∈ C,∀a ∈ c, (1.2d)

∑

a∈A

∑

m∈Ma

t∑

s=max{1,t−da+1}

qr,a,mya,m,s ≤ Qr,t ∀r ∈ R,∀t ∈ T , (1.2e)

t∑

s=1

xc2,s ≤

t−lc1,c2∑

s=1

xc1,s ∀c1 ∈ C,∀c2 ∈ P (c1),∀t ∈ T . (1.2f)

Dans cette formulation, les contraintes (1.2c) imposent qu’un cluster soit extrait
au maximum une fois. Les contraintes (1.2d) imposent que la période de temps
pendant laquelle une activité est programmée soit la même que celle du cluster
auquel elle appartient. Elles imposent également qu’un mode soit attribué à
chaque activité programmée. Les contraintes (1.2e) imposent la limite de capacité
des ressources. Dans cette contrainte, si une activité a est programmée à la
période t, elle consomme des ressources sur les périodes {t, . . . , t+da−1}. Enfin,
les contraintes (1.2f) imposent les contraintes de décalage. Ici, si le cluster c2 est
programmé à la période t, alors le cluster c2 ∈ P (c1) doit être programmé à la
période t− lc1,c2

ou avant.
Notez que la classe de problèmes représentée par la formulation (1.2) est

très grande et inclut certains problèmes très difficiles, notamment les problèmes
d’atelier et les problèmes de RCPSP. Comme le rapporte [VCB16], il existe des
cas de RCPSP ne comportant pas plus de 90 tâches qui, à ce jour, n’ont pas été
résolus de manière optimale.

Dans cette thèse, nous développons des méthodologies de programmation
en nombres entiers pour résoudre le modèle (1.2), en se concentrant sur la
planification stratégique de mines à ciel ouvert. Dans le problème de la
planification stratégique de mines à ciel ouvert (SOPMPP), l’objectif est de
déterminer où, quand et comment exploiter un gisement de minerai à l’aide de
méthodes d’excavation à ciel ouvert, afin de maximiser le gain de l’opération. Un
gisement minier est discrétisé en blocs réguliers d’une grille tridimensionnelle pour
l’exprimer comme un modèle de bloc économique. Le temps est discrétisé par
périodes qui représentent généralement des années. Les méthodes d’exploitation
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à ciel ouvert imposent des restrictions spatiales et géologiques qui exigent que
pour exploiter un bloc donné, un certain ensemble en forme de cône au-dessus
du bloc doit être exploité au préalable. Les restrictions opérationnelles peuvent
exiger que l’extraction soit effectuée dans de grands groupes de blocs contigus.
Un bloc exploité est envoyé vers l’une des différentes destinations possibles, qui
peuvent comprendre des usines de traitement, des décharges, des stocks, etc.
Des restrictions sont imposées en raison de la capacité limitée de la quantité
de matière pouvant être extraite ou envoyée vers des destinations spécifiques.
La composition des blocs détermine le profit obtenu en l’envoyant à chaque
destination spécifique.

Le SOPMPP est un problème fondamental à résoudre dans l’industrie minière,
puisqu’il est nécessaire d’évaluer l’opportunité d’exploiter un gisement minier, et
il est résolu en pratique chaque année afin de réévaluer les plans stratégiques
actuels avec les informations actualisées obtenues du modèle de bloc. Ce problème
est étudié depuis les années 1960. Une formulation de programmation en nombres
entiers, qui est un cas particulier de (1.2), a été proposée par T. B. Johnson
[Joh68; Joh69], mais la taille du problème rend impossible sa résolution dans
la pratique, puisque les instances de taille réelle peuvent facilement avoir des
centaines de milliers à plusieurs millions de blocs, et bien plus de variables et
de contraintes. Les sociétés minières ont traditionnellement utilisé des systèmes
logiciels commerciaux basés sur des méthodes heuristiques pour obtenir des
solutions à ce problème. Ces logiciels sont disponibles depuis les années 1980.
Deux heuristiques notables utilisées pour faire face au problème sont l’algorithme
de Lane et l’algorithme Nested Pit Methodology, qui ont été combinés dans
une méthodologie par le système logiciel commercial Whittle qui est utilisé en
pratique jusqu’à ce jour [GEO19]. Des approches de programmation en nombres
entiers ont été proposées depuis les années 2000 [Ble+10; Bol+09], basées sur
des techniques d’agrégation pour réduire la dimension du problème et des plans
sécants pour renforcer la formulation. Cependant, la taille des formulations de
programmation en nombres entiers rend difficile en pratique de résoudre même
leur relaxation LP.

L’étude de la SOPMPP dans cette thèse est basée sur deux développements
importants de la littérature. Premièrement, une percée dans la résolution de la
relaxation LP du problème a été l’algorithme proposé par Bienstock et Zuckerberg,
l’algorithme BZ [BZ09; BZ10]. Cet algorithme, basé sur une décomposition qui
tire parti de la structure combinatoire de la formulation du GPSP, résout de
manière itérative des programmes linéaires beaucoup plus petits et un problème
combinatoire qui peut être résolu efficacement. Deuxièmement, une heuristique
d’arrondi proposée par Chicoisne et al. [Chi+12] a produit des solutions avec de
petits écarts d’optimalité pour une version simplifiée du problème en arrondissant
une solution de la relaxation LP du problème.

La première partie de cette thèse, développée dans le chapitre 2, étudie en
profondeur l’algorithme BZ. Nous montrons que cet algorithme peut être étendu
à la planification des mines souterraines et à d’autres classes de problèmes
d’ordonnancement. Nous montrons également que l’algorithme peut être exprimé
comme un schéma de génération de colonnes, ce qui nous permet de le comparer
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à la décomposition de Dantzig-Wolfe et de caractériser ses limites. Enfin, des
techniques d’accélération sont présentées, ainsi qu’une étude expérimentale qui
étudiue les performances de l’algorithme dans des applications de planification
stratégique des mines et des problèmes de planification de projets à contraintes
de ressources. Les résultats de ce chapitre ont été publiés dans l’article suivant :

A study of the Bienstock-Zuckerberg algorithm, Applications in Mining and
Resource Constrained Project Scheduling. Munoz, G;. Espinoza, D.; Goycoolea,
M.; Moreno, E.; Queyranne, M.; Rivera, O. Computational Optimization and
Applications. Volume 69, Issue 2, pp 501 – 534. March, 2018.

Dans cet article, nous confirmons que l’algorithme BZ est un algorithme
efficace pour résoudre de grandes classes de problèmes de planification
d’exploitation minière. Nous généralisons la reformulation nécessaire pour que
l’algorithme s’adapte à celle plus générale du GPSP. En outre, nous développons
des techniques à utiliser lors de la mise en œuvre de l’algorithme BZ et qui
améliorent considérablement les performances. Nous établissons la qualité
théorique des limites de l’algorithme BZ, et développons des techniques de
compression de chemin et des accélérations de calcul. Nous montrons aussi
numériquement que l’algorithme BZ est nettement plus performant pour résoudre
la relaxation LP que la décomposition de Dantzig-Wolfe ou d’autres algorithmes
de programmation linéaire. Ma contribution personnelle spécifique à cet article
a été de développer la reformulation plus générale, de caractériser la qualité
des bornes obtenues, l’implémentation de la plupart des algorithmes et des
accélérations mentionnés, et la réalisation de l’étude expérimentale présentée
dans l’article, y compris le recueil et la manipulation de données réelles de mines,
et l’implémentation de la plate-forme qui a permis d’exprimer le problème comme
un problème d’optimisation adapté à l’algorithme BZ.

La deuxième partie de cette thèse, développée dans le chapitre 3, propose
une méthodologie pour aborder le SOPMPP. Elle s’appuie sur une division
classique du SOPMPP en deux sous-problèmes, le problème de conception des
phases et le problème d’ordonnancement de la production, qui peuvent tous
deux être formulés comme des cas particuliers du GPSP. Elle utilise l’algorithme
décrit dans le chapitre 2, mais elle prolonge ce travail en introduisant une
méthodologie complète traitant des contraintes d’intégralité. La méthodologie
combine des heuristiques ad-hoc, y compris l’adaptation de l’heuristique proposée
dans [Chi+12], et elle inclut des techniques de prétraitement bien connues et
d’autres que nous proposons, ainsi que des inégalités valables et un nouveau
schéma de branchement. En combinant toutes ces techniques, nous montrons
que des cas réels de problèmes de planification stratégique des mines peuvent
être résolus de manière quasi optimale (< 1%) en quelques heures seulement.
Ce chapitrecorresponda à l’article suivant :

Production scheduling for strategic open pit mine planning: A mixed integer
programming approach. Rivera, O; Espinoza, D; Goycoolea, M; Moreno, E.;
Munoz, G. Operations Research. Published Online. Aug 27, 2020.
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L’importance de ce document est qu’il présente d’abord une méthodologie
pour résoudre le SOPMPP au moyen de méthodes exactes de programmation
des nombres entiers. Il montre une manière de modéliser le SOPMPP en
décomposant le problème en deux étapes, les deux pouvant être formulées comme
différents GPSP qui peuvent être résolus avec de faibles écarts d’optimalité avec
la méthodologie présentée dans le document. Une contribution particulièrement
importante de ce document est l’introduction des coupes hourglass (sablier). Les
coupes hourglass sont nouvelles en ce sens qu’elles utilisent une partie de la
structure de la formulation qui n’a pas été utilisée auparavant pour développer
des inégalités valides. Ces coupes ont eu un impact important pour réduier
l’écart d’optimalité. Ma contribution personnelle spécifique dans cet article est
que j’ai développé la plupart des implémentations utilisées pour les expériences
de calcul (à l’exception de l’algorithme de branchement). J’ai également conçu
tous les nouvelles coupes hourglass, ainsi que les nouvelles heuristiques, et adapté
et mis en œuvre la plupart des schémas de prétraitement, des heuristiques et des
anciennes classes d’inégalités valides initialement proposés pour des variantes
plus simples du problème, à la classe générale des problèmes examinés dans le
document. J’ai également réalisé toutes les expérimentations.

La méthodologie proposée pour le problème stratégique de l’exploitation
minière à ciel ouvert a été testée en pratique par les sociétés minières, ce qui a
permis d’aboutir à des solutions satisfaisantes et à des plans de programmation
de la production.

Bin Packing Problem with Time Lags

Le problème de bin packin avec contraintes de délais (Bin-Packing With
Time Lags, BPPTL) est une généralisation du problème de bin packing. Dans ce
problème, un ensemble d’articles doit être affecté au nombre minimum possible
de bins de même capacité. Dans le BPPTL, les bins doivent en outre être
programmés dans le temps, de manière à satisfaire à un ensemble de contraintes
de délais entre les articles. Ces délais peuvent être positifs ou négatifs.

Le problème BPPTL peut être utilisé pour modéliser des tâches qui doivent
être exécutées de manière répétitive, en utilisant des ressources limitées qui
doivent être payées. Les délais positifs et négatifs permettent de fixer le temps
minimum et maximum qui doit s’écouler entre les exécutions consécutives de
chaque tâche. Une application de cette méthode est le traitement phytosanitaire
dans un vignoble, dans lequel des zones du vignoble nécessitent un traitement
périodique qui doit être effectué avec une fréquence idéale donnée. La fréquence
des tâches est souple, bien que les traitements consécutifs ne doivent pas être
effectués trop près ou trop loin dans le temps. Les tâches consomment des
ressources qui doivent être louées par jour, et les mêmes ressources peuvent
être utilisées pour effectuer des tâches dans différentes zones du vignoble si elles
doivent être effectuées le même jour.

Le BPPTL est un nouveau problème qui étend plusieurs autres généralisations
du problème de bin packing. Le problème de bin packing avec priorités (BPP-P)
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[DDI12; Per16] correspond au cas spécifique du BPPTL dans lequel tous les
délais sont égaux à un. Le problème d’équilibrage de charge (SALBP) [Per15]
correspond au cas spécifique de BPPTL dans lequel tous les délais sont égaux
à zéro. Le problème de bin packing avec contraintes de priorité généralisées
(BPP-GP) [KDI17] généralise également le problème de bin packing et prend en
compte les contraintes de priorité avec des décalages dans le temps. Cependant,
le problème BPP-GP considère une fonction objectif différente de BPPTL et ne
considère que des délais positifs. Le problème BPP-GP coïncide avec BPPTL
lorsque les délais sont tous égaux à zéro ou un.

Formellement, dans le problème BPPTL, on dispose d’un graphe dirigé valué
G = (V, A, l), où V est un ensemble d’éléments qui doivent être affectés à des
bins, A est un ensemble d’arcs définissant des délais, et l : A −→ Z représente
les délais associés aux arcs. On considère également un poids wi ∈ Z+ pour
chaque élément i ∈ V , et une capacité de bin W ∈ Z+. Le problème consiste à
partitionner les articles en bins, et à programmer chaque article i ∈ V sur une
période p(i) ∈ Z+, de telle sorte que : (a) les articles affectés à un bin soient
ordonnancés dans la même période, (b) le poids cumulé des articles affectés à
chaque bin ne dépasse pas la capacité prescrite W , et (c) pour chaque (i, j) ∈ A,
on a p(i) + li,j ≤ p(j). En outre, il peut exister une contrainte sur le nombre
maximum de bacs L qui peuvent être affectés à la même période. L’objectif
du problème est de trouver une telle affectation qui utilise le nombre minimum
possible de bacs.

Le BPPTL est présenté au chapitre 4, où nous étudions le problème sous
l’angle de la programmation des nombres entiers. Nous proposons une for-
mulation compacte indicée sur le temps, et proposons différentes variantes,
en comparant leurs performances. Les formulations indicée sur le temps que
nous proposons sont très similaires à celles utilisées pour la formulation du
GPSP (1.2), dans la mesure où les mêmes variables et contraintes de priorité
sont prises en compte. Nous proposons également une formulation étendue qui
définit une relaxation du problème BPPTL. Nous développons un algorithme de
branch-and-cut-and-price basé sur cette formulation, qui permet de résoudre
de manière optimale deux cas spécifiques de la BPPTL : (a) le cas avec un
nombre illimité de bins par période (BPPTL∞), et (b) le cas dans lequel les
décalages temporels sont positifs ou nuls et dans lequel un seul bin est autorisé
par période (BPPTL1

+). Pour BPPTL∞ et BPPTL1
+, nous caractérisons les

solutions réalisables de la formulation étendue et développons des algorithmes
de séparation pour les solutions entières et fractionnaires. Enfin, nous mettons
au point une heuristique de strong diving et menons une étude numérique pour
comparer les performances de l’algorithme de branch-and-cut-and-price et d’un
logiciel commercial appliqué à la formulation compacte. Nous montrons que
pour les cas inspirés par le problème des traitements phytosanitaires, l’approche
branch-cut-and-price est plus performante que l’utilisation de CPLEX sur la
formulation compacte. Nous montrons également que pour les cas de BPP-P,
SALBP et BPP-GP, nous sommes capables d’améliorer les bornes inférieures et
supérieures de la littérature. En combinant les limites connues et améliorées,
le statut d’optimalité est atteint pour 70% des cas avec des articles de moins
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1. Introduction

de 100 qui étaient auparavant des problèmes ouverts dans la littérature. Ce
chapitre reprend les élements décrits dans le document suivant, qui a été soumis
pour publication :

Bin Packing with Time Lags. Rivera, O; Clautiaux, F; Sadykov, R.
Manuscript submitted for publication.

Mes contributions personnelles spécifiques à cet article ont été la caractérisa-
tion mathématique des solutions réalisables, l’algorithme de séparation pour les
solutions fractionnaires, la génération d’instances inspirées d’applications réelles,
l’implémentation de la formulation compacte et de ses variantes, l’implémentation
de l’algorithme de branch-and-cut-and-price en utilisant la bibliothèque BapCod,
ainsique l’étude expérimentale. L’implémentation de l’algorithme comprend le
modèle, les procédures de séparation entière et fractionnaire pour BPPTL1

+ et
BPPTL∞, et la séparation pour l’heuristique de diving.
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We study a Lagrangian decomposition algorithm recently proposed by Dan Bi-

enstock and Mark Zuckerberg for solving the LP relaxation of a class of open

pit mine project scheduling problems. In this study we show that the Bienstock-

Zuckerberg (BZ) algorithm can be used to solve LP relaxations corresponding to

a much broader class of scheduling problems, including the well-known Resource

Constrained Project Scheduling Problem (RCPSP), and multi-modal variants of the

RCPSP that consider batch processing of jobs. We present a new, intuitive proof

of correctness for the BZ algorithm that works by casting the BZ algorithm as a

column generation algorithm. This analysis allows us to draw parallels with the

well-known Dantzig-Wolfe decomposition (DW) algorithm. We discuss practical

computational techniques for speeding up the performance of the BZ and DW al-

gorithms on project scheduling problems. Finally, we present computational ex-

periments independently testing the effectiveness of the BZ and DW algorithms on

different sets of publicly available test instances. Our computational experiments

confirm that the BZ algorithm significantly outperforms the DW algorithm for the

problems considered. Our computational experiments also show that the proposed

speed-up techniques can have a significant impact on the solve time. We provide

some insights on what might be explaining this significant difference in perfor-

mance.

Keywords: Column generation, Dantzig-Wolfe, Optimization, RCPSP
∗The authors of this article would like to acknowledge support by grants Fondecyt 1151098 (MG and ORL), Fonde-

cyt 1130681 (EM), Fondecyt 1150046 (DE), Conicyt PIA Anillo ACT 1407 (DE, MG, EM, and ORL), NSERC
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1. Introduction

Resource constrained project scheduling problems (RCPSPs) seek to optimally schedule activ-

ities over time in such a way as to comply with precedence and resource usage constraints.

These problems can be notoriously difficult. Despite great progress in optimization methodolo-

gies during the last fifty years, there are instances of RCPSP involving as few as sixty activities

that cannot be solved with today’s most effective algorithms [24]. In multi-modal extensions of

RCPSP, jobs can be processed in different ways (or modes). Changing the mode of a job affects

its resource utilization, and its processing costs. In some applications, changing the mode of a

job changes the duration of its processing time. In batch-processing extensions of RCPSP jobs

are grouped together in clusters that must be processed together. For simplicity of notation, we

will henceforth refer to multi-modal batch resource constrained project scheduling problems,

simply as General Production Scheduling Problems, or GPSPs.

To date, the most effective methods for solving GPSPs, especially modal and batch variants,

are based on integer programming methods that use the so-called time index formulations [39,

3, 7, 9]. These formulations define a binary variable for each job-execution time combination.

An important limitation of these formulations is that the linear programming (LP) relaxations

are very difficult to solve. This is because they tend to be large and degenerate, even for small

problem instances.

While classical decomposition techniques and column generation approaches can be used for

addressing some of these issues (specially complications related to the large number of vari-

ables), they often suffer from slow convergence rate. In this context, an important contribution

was made by Bienstock and Zuckerberg [5, 6], where the authors presented an alternative to

tackle these limitations effectively. They developed a new algorithm that can considerably out-

perform classical methods in a broad class of problems, thus providing a novel set of tools with

a high practical impact and a wide range of potential extensions.

In this paper we study the Bienstock-Zuckerberg (BZ) algorithm [5, 6] in depth, and find

that it can be used to overcome the stated limitations on a wide range of scheduling problems.

We provide additional evidence to that in [5, 6], advocating for the efficacy of the algorithm

in practice, and we provide new insights on it that allow further extensions. Specifically, we

study the BZ algorithm as an approach to batch, multi-modal production scheduling problems

where jobs can have arbitrary durations, but where these durations are not affected by changes

of mode. The application of the BZ algorithm to this class of problems requires us to extend

the algorithmic template as it was originally proposed. We are specifically concerned about this

class of problems because, in addition to generalizing the well-known RCPSP, it generalizes

three very important problems that arise in the context of mine planning: Underground Produc-

tion Scheduling Problems (UPSPs), Open Pit Phase Design Problems (OPPDPs), and Open Pit

Production Scheduling Problems (OPPSPs).

We present a new proof of algorithm correctness by casting the BZ algorithm as a column gen-

eration method, discuss algorithmic speed-ups, computationally test it on a variety of problem

instances, and compare the methodology to the more traditional Dantzig-Wolfe decomposition

(DW) method. As part of our analysis we prove that the BZ algorithm is closely related to a de-

composition scheme that produces a bound somewhere in between that of the DW method, and

that of the LP relaxation. This study allows us to conclude that the BZ algorithm is an effective
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way of solving the LP relaxation of large time index formulations, significantly outperforming

the DW method on all considered problem classes, and provides insights on the effectiveness of

the methodology.

This article is organized as follows. In Section 2 we present a literature review of related

scheduling work in mine planning applications and mathematical programming methodologies.

In Section 3 we present an integer programming model that generalizes the classes of problems

we are interested in studying. In Section 4 we present a reformulation of this model that fits

the algorithmic framework we will be analyzing. In Section 5 we present a general column

generation framework that can be used to solve the problem. We use this column generation

approach to motivate the BZ algorithm, and facilitate a comparison to the DW method. We

also introduce important speed ups for the BZ algorithm. Computational results analyzing the

performance of BZ and comparing this performance to that of DW are presented in Section 6.

2. Background

Scheduling applications in Mine Planning

In this article we are mainly interested in addressing scheduling problems that are of relevance

to planning applications in the mining industry.

The class of mining problems we are interested in include open pit and underground mine

planning problems. In these problems, deposits are discretized into three-dimensional arrays

known as block models. The problem to solve consists of deciding which blocks should be ex-

tracted, when they should be extracted, and what to do with the blocks once they are extracted.

In this context, jobs correspond to extraction activities, modes correspond to different process-

ing options and batches correspond to groups of blocks that must be extracted concurrently in

order to comply with equipment extraction requirements. Resource constraints would be used

to impose extracting, milling and refining capacity constraints. In an open-pit mine, precedence

constraints would be used to impose that a mine must be extracted from the surface on down-

wards. In an under-ground mine, specifically in a stopping operation, precedence constraints

would be used to impose that selected blocks branch out from a network of tunnels descending

from the surface.

In all of these mining problems the objective is to maximize net-present-value of the ex-

tracted minerals. This is different from traditional scheduling problems, in which the objective

is typically to minimize completion time metrics such as makespan, maximum tardiness, or total

throughput time. Another difference between mine planning problems and traditional schedul-

ing problem is that in mining it is not a strict requirement to execute all jobs. In all other ways,

the Underground Production Scheduling Problems (UPSPs) is identical to the RCPSP. The Open

Pit Phase Design Problems (OPPDPs) is a multi-modal RCPSP in which all jobs take a single-

time period to complete, regardless of the selected mode. What the mode affects is the objective

function value and the resource consumption of each activity. The Open Pit Production Schedul-

ing Problems (OPPSPs) is just like the OPPDP, with the addition that there are batch constraints

that force groups of blocks to be extracted simultaneously. These batch constraints are used to

enforce equipment operability constraints, with each batch corresponding to contiguous set of
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blocks typically called a bench-phase or increment in the mining industry.

For an introduction to optimization in underground mining see Alford et al. [1]. For related

work in underground mining see Martinez and Newman [27], Newman and Kuchta [32] and

O’Sullivan et al. [35, 36]. The user manuals of Deswik Scheduler [15] and MineMax iGantt

[28] illustrate how UPSP is solved in practical mining applications. For an introduction to Open

Pit Mining see Hustrulid and Kuchta [22], and the user manuals of Dassault Whittle [13], Mine-

Max Scheduler [30], and MineMax Planner [29]. For a discussion on OPPSP see Goycoolea et

al. [18]. For a general survey on OR applications in mine planning see Newman et al. [33].

Mathematical programming methodologies

To our knowledge, the first mathematical programming formulations of GPSPs dates back

to Johnson [23] and Pritsker et al. [38], in the late 1960s. Each of these articles spawned its

own track of academic articles on production scheduling problems. The first track, following

the work of Johnson, mostly focused on strategic open pit mine planning problems. The second

track, following the work of Pritsker et al., took a more general approach. Surprisingly, though

many of the results found in these two tracks coincide, there are few, if any, citations connecting

the two literatures.

The academic literature on exact optimization methods for GPSPs is immensely rich. Well-

known surveys from the scheduling track include those of Graham et al. [19], Brucker et al. [8]

and Hartmann and Briskorn [20]. In a recent book by Artigues et al. [2] a very thorough survey

of GPSP is presented, including a computational study that compares existing methodologies

on benchmark instances. Surveys from the mining track include those of Newman et al. [33],

Espinoza et al. [16] and Osanloo et al. [34].

A brief summary of advances on solving the LP relaxation of time-index formulations is as

follows. Since as early as the 1960s, most methods have been based on some form of decompo-

sition that reduces the problem to a sequence of maximum closure or minimum cut problems.

Johnson [23], in the context of mining (single mode OPPDPs), was the first to attempt such an

approach with a Dantzig-Wolfe decomposition. Shortly after, and independently, Fisher [17],

in the context of scheduling, proposed a Lagrangian Relaxation decomposition approach. Since

then, a number of decomposition algorithms, primarily Lagrangian Relaxation decomposition

algorithms, have been proposed for the problem in both literatures. Important examples include

Dagdelen and Johnson [11] and Lambert and Newman [26] in mining (single mode OPPDPs),

and Christofides et al. [10] and Mohring et al. [31] in scheduling.

Some recent approaches are as follows. Chicoisne et al. [9] consider single-mode OPPDPs

with a single renewable resource, and propose a decomposition algorithm that solves the con-

tinuous relaxation in polynomial time. Boland et al. [7] consider a multi-modal variant of the

same problem with two renewable resources, and propose a decomposition algorithm for the

continuous relaxation that, while not provably polynomial, is very effective in practice. The BZ

algorithm [5], developed shortly after, can be considered a generalization of this last algorithm

that extends to multi-modal OPPMPs with an arbitrary number of renewable or non-renewable

resources. This algorithm proved to be very efficient, even for extremely large instance sizes; it

reduced the solving times drastically and it was able to tackle instances that could not be solved

before. Berthold et al. [3] developed a branch-and-bound algorithm that combines mathematical
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programming and constraint programming methods to close a large number of open benchmark

instances of RCPSP. Zhu et al. [39] developed a mathematical programming based algorithm

for solving multi-modal variants of RCPSP without batch constraints, but where mode changes

affect duration times. In his work he closes a large percentage of open benchmark instances.

3. Integer programming formulation

We now describe an integer programming formulation for a class of production scheduling prob-

lems that generalizes the RCPSP, UPSP, OPPDP and OPPSP. As mentioned before, we simply

refer to this class of problems as the General Production Scheduling Problem (GPSP).

Sets:

• A : activities that must be scheduled in the problem.

• C : clusters of activities that define a partition of A .

• prec(c) : clusters that must be initiated no later than cluster c ∈ C .

• R = {1, . . . ,R} : resources that are consumed when carrying out activities.

• T = {1, . . . ,T} : time periods in which it is possible to initiate activities.

• Ma = {1, . . . ,Ma} : possible modes for activity a ∈A .

Parameters:

• t−a : release date for activity a ∈A .

• t+a : due date for activity a ∈A .

• da,m : duration (number of time periods) of activity a ∈ A when executed in mode m ∈
Ma.

• pa,m,t : profit obtained if activity a ∈A is initiated in period t ∈ T using mode m ∈Ma.

• l(c1,c2) : lag (number of time periods) that must elapse before activities in cluster c2 ∈ C

can be initiated, after activities in cluster c1 ∈ prec(c2) have been initiated.

• Qr,t : amount of resource r ∈R available in time period t ∈T .

• qr,a,m : amount of resource r ∈R consumed by activity a ∈ A in each time period it is

being executed, when executed in mode m ∈Ma.

Variables:

xc,t =

{

1 if the activities in cluster c all start in time period t

0 otherwise

ya,m,t =

{

1 if activity a starts in time period t using mode m

0 otherwise
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Objective function:

maximize ∑
a∈A

∑
m∈Ma

∑
t∈T

pa,m,t ya,m,t (1)

Note that we express the objective function only in terms of the y variables. There is no loss of

generality in this due to constraints (3), below.

Constraints:

Clusters can only be initiated once over the time horizon [ ∀c ∈ C ]:

∑
t∈T

xc,t ≤ 1. (2)

Activities in a cluster must start simultaneously, and must be carried out using a unique mode [

∀c ∈ C , ∀a ∈ c, ∀t ∈T ]:

xc,t = ∑
m∈Ma

ya,m,t . (3)

In order to initiate the activities in a cluster, all activities in preceding clusters must be initiated

early enough so as to satisfy the lag requirement [ ∀c2 ∈ C , ∀c1 ∈ prec(c2), ∀t ∈T ]:

∑
s≤t

xc2,s ≤ ∑
s≤t−l(c1,c2)

xc1,s. (4)

The amount of resources consumed cannot exceed the amount of resources available each period

[ ∀r ∈R, t ∈T ]:

∑
a∈A

∑
m∈Ma

qr,a,m

t

∑
s=max{1,t−da,m+1}

ya,m,s ≤ Qr,t . (5)

Activities can only be scheduled after their release dates [ ∀a ∈A ]:

∑
m∈Ma

t−a −1

∑
t=1

ya,m,t = 0. (6)

Activities must be terminated no later than due dates and exactly one mode must be chosen for

each executed activity [ ∀a ∈A : t+a < ∞ ]:

∑
m∈Ma

t+a −da,m+1

∑
t=1

ya,m,t = 1. (7)

Whenever t+a = ∞, there is no due date for activity a and we do not include constraint (7).

Note, however, that due to (2) and (3) we always have:

∑
m∈Ma

∑
t∈T

ya,m,t ≤ 1.

Thus, even when t+a = ∞, there is an implicit constraint enforcing the choice of one mode and

one time period at most.
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It should be noted that the GPSP described by Formulation (1)-(7) generalizes the scheduling

formulations found in Bienstock and Zuckerberg [6] in that it allows activities to have durations

that span multiple time periods. This allows us to consider instances of RCPSP and UPSP which

fell outside the scope of the Bienstock and Zuckerberg studies [5, 6].

Though this formulation is intuitive, and also the most commonly used formulation in the

academic literature, it must be reformulated so as to fit the algorithmic schemes that will be

presented.

4. Reformulation

In this section we present a reformulation of the GPSP formulation described in Section 3. As

we will see in Section 5, this reformulation is key for the decomposition algorithms that we will

discuss in this article.

For each c ∈ C ,a ∈A ,m ∈Ma and t ∈ T define,

wc,t =
t

∑
s=1

xc,s and za,m,t = ∑
i∈Ma

t−1

∑
s=1

ya,i,s +
m

∑
i=1

ya,i,t .

In this way, wc,t is a binary variable that takes value one if and only if cluster c is initiated “by”

time t (i.e., no later than t). Likewise, za,m,t is a binary variable that takes value one if and only

if activity a is initiated by time t−1, or, if it is initiated in time period t, and its mode i is such

that i≤m.

To see that it is possible to formulate the production scheduling problem given by (1)-(7), using

the (z,w) variables, note that we can map between the two variable spaces by means of the

following linear sets of equations:

ya,m,t = za,m,t − za,m−1,t ∀a ∈A , m = 2, . . . ,Ma, t ∈T (8a)

ya,1,t = za,1,t − za,Ma,t−1 ∀a ∈A , t = 2, . . . ,T (8b)

ya,1,1 = za,1,1 ∀a ∈A (8c)

xc,t = wc,t −wc,t−1 ∀c ∈ C , ∀t = 2, . . . ,T (8d)

xc,1 = wc,1 ∀c ∈ C (8e)

Using this mapping we can substitute out the variables in (1)-(7), to trivially obtain the following

equivalent formulation:

Objective function:

max ∑
a∈A

∑
m∈Ma

∑
t∈T

p̃a,m,t za,m,t (9)

where,

p̃a,m,t =







pa,m,t − pa,m+1,t if m < Ma

pa,m,t − pa,1,t+1 if m = Ma, t < T

pa,m,t if m = Ma, t = T

7
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Constraints:

For a ∈A , m ∈ {1, . . . ,Ma−1}, t ∈T ,:

za,m,t ≤ za,m+1,t . (10)

For a ∈A , m = Ma, t ∈ {1, . . . ,T −1},:

za,m,t ≤ za,1,t+1. (11)

For c ∈ C , a ∈ c, t ∈ T ,

wc,t = za,Ma ,t . (12)

For c2 ∈ C , c1 ∈ prec(c2), t ∈ {1+ l(c1,c2), . . . ,T},

wc2,t ≤ wc1,t−l(c1 ,c2). (13)

For r ∈ R, t ∈T ,

∑
a∈A

∑
m∈Ma

∑
s∈T

q̃r,t
a,m,sza,m,s ≤ Qr,t . (14)

where

q̃r,t
a,m,s =

{

qr,a,m1[t−da,m+1,t](s)−qr,a,m+11[t−da,m+1+1,t](s) if m < Ma

qr,a,Ma
1[t−da,Ma+1,t](s)−qr,a,11[t−da,1,t−1](s) if m = Ma

and,

1[x,y](s) =

{

1 if x≤ s≤ y

0 otherwise.

(The derivation of this last constraint from (5) can be found in Appendix A).

For a ∈A , m ∈Ma, t < t−a :

za,m,t = 0. (15)

For a ∈A , m ∈Ma, t ≥ t+a :

za,m,t = 1. (16)

After the reformulation, if we substitute out the w variables by using linear equalities (12),

we obtain what Bienstock and Zuckerberg [6] call a General Precedence Constrained Problem

(GPCP) :

Z∗ = max c′z (17)

s.t. zi ≤ z j ∀(i, j) ∈ I, (18)

Hz≤ h, (19)

z ∈ {0,1}n (20)

In this problem constraints (18) correspond to constraints (10), (11), and (13), and constraints

(19) correspond to constraints (14), (15) and (16).

It is interesting that despite the fact that the General Production Scheduling Problem (GPSP)

formulated in Section 3 is more general than the scheduling problem formulations presented by

Bienstock and Zuckerberg [5], both problems can be reformulated as an instance of GPCP.

8

26



5. Methodology.

In this section we describe a generalized version of the Bienstock-Zuckerberg (BZ) algorithm,

originally introduced in [5, 6]. More specifically, we describe a decomposition algorithm well

suited for solving the LP relaxation of large mixed integer programming problems having form,

ZIP = max c′z+d′u

s.t. zi ≤ z j, ∀(i, j) ∈ I,
Hz+Gu≤ h,
z ∈ {0,1}n.

(21)

Like Bienstock and Zuckerberg [6] before us, we will call this problem the General Precedence

Constrained Problem (GPCP). It should be noted, however, that in our definition of GPCP we

consider the presence of the extra u variables. These variables can be used for other modeling

purposes. For example, they can be used to model variable capacities, or, in the context of

mining problems, they can be used to model the use of stockpiles or other requirements.

Our presentation of the BZ algorithm is different than the original presentation in two respects:

first, we cast it as a column generation method, and second, as stated before, we consider the

presence of extra variables (the u variables in (21)). These differences require a new proof

of algorithm correctness that we present below. The advantage of presenting the algorithm this

way is that it is easier to compare to existing decomposition algorithms, and thus, in our opinion,

becomes easier to understand and extend it. It also opens up the possibility of developing new

classes of algorithms that might be useful in other contexts.

Before we present the BZ algorithm, we present a generic column generation (GCG) algo-

rithm that can be used as a framework for understanding the BZ algorithm. This column gener-

ation scheme can be used to solve a relaxation of mixed integer problems having form:

ZIP = max c′z+d′u

s.t. Az≤ b,
Hz+Gu≤ h,
z ∈ {0,1}n.

(22)

Much like DW algorithm, this relaxation can yield bounds that are tighter than those obtained

by solving the LP relaxation of the same problem. Throughout this section we will assume,

without loss of generality, that Az≤ b includes 0≤ z≤ 1. Other than this, we make no additional

assumption on problem structure.

5.1. A general column generation algorithm

In this section we introduce a General Column Generation (GCG) algorithm that will later mo-

tivate the BZ algorithm. This column generation algorithm is presented as a decomposition

scheme for computing upper bounds of (22) that are no weaker than those provided by the LP

relaxation.

Given a set S ⊆ Rn, let lin.hull(S) denote the linear space spanned by S. That is, let

lin.hull(S) represent the smallest linear space containing S. Let P = {z ∈ {0,1}n : Az ≤ b}.

Define problem,
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ZLIN = max c′z+d′u

s.t. Az≤ b,
Hz+Gu≤ h,
z ∈ lin.hull(P),

(23)

The GCG algorithm that we present computes a value ZUB such that ZIP ≤ ZUB ≤ ZLIN .

Observe that the optimal value ZLIN of problem (23) is such that ZIP ≤ ZLIN ≤ ZLP, where ZLP

is the value of the linear relaxation of problem (22).

The key to solving this problem is the observation that

lin.hull(P) = {z : z =
d

∑
i=1

λiv
i, for some λ ∈ R

n}, (24)

where {v1, . . . ,vd} is a basis for lin.hull(P). If V is a matrix whose columns {v1, . . . ,vd}
define a basis of lin.hull(P), it follows that problem (23) is equivalent to solving,

Z(V) = max c′V λ +d′u

s.t. AV λ ≤ b (α)
HVλ +Gu≤ h (π).

(25)

In order for the optimal solution of (25) to be optimal for (23), it is not necessary for the

columns of V to to define a basis of lin.hull(P). It suffices for the columns of V to span a

subset of lin.hull(P) containing an optimal solution of (23). This weaker condition is what

the column generation seeks to achieve. That is, starting with a matrix V with columns spanning

at least one feasible solution of (23), the algorithm iteratively computes new columns until it

computes the optimal value ZLIN . As we will see, in some cases it is possible for the algorithm

to terminate before having computed ZLIN . In these cases the algorithm will terminate having

computed a value ZUB such that ZUB ≤ ZLIN .

Henceforth, let α ,π denote the dual variables corresponding to the constraints of problem

(25). To simplify notation, we will henceforth assume that α and π are always row vectors.

Note that α ,π ≥ 0.

To solve problem (23) with column generation we begin each iteration with a set of points

{v1, . . . ,vk} such that lin.hull({v1, . . . ,vk}) ⊆lin.hull(P) contains at least one feasible so-

lution of problem (23). At each iteration we add a linearly independent point vk+1 to this set,

until we can prove that we have generated enough points so as to generate the optimal solution

of (23).

The first step of each iteration consists in solving problem (25), with a matrix V k having

columns {v1, . . . ,vk}. Let ZL
k = Z(V k). Let (λ k,uk) and (αk,πk) be the corresponding optimal

primal and dual solutions. Note that ZL
k = αkb+πkh.

Define zk = V kλ k. It is clear that (zk,uk) is feasible for (23); hence, ZL
k ≤ ZLIN . However,

is (zk,uk) optimal for (23)? To answer this question, observe that (α ,π) is dual-feasible for

problem (25) if and only if πG = d′ and,

c̄(v,α ,π) ≡ c′v−αAv−πHv = 0, ∀v ∈V.
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Let V P represent a matrix whose columns {v1, . . . ,v|P|} coincide with set P. Since V P is clearly

a generator of lin.hull(P), we know that the optimal solution of (25) (for V P) corresponds to

an optimal solution of (23). Thus, if c̄(v,αk,πk) = 0 for all v ∈ V P (or equivalently, v ∈ P),

we conclude that (zk,uk) is optimal for (23), since we already know that πkG = d′. On the

other hand, if (zk,uk) is not optional for (23), we conclude that there must exist v ∈ P such that

c̄(v,αk,πk) *= 0.

This suggests how the column generation scheme for computing an optimal solution of (23)

should work. Solve (25) with V k to obtain primal and dual solutions (zk,uk) and (αk,πk). Keep-

ing with traditional column generation schemes, we refer to problem (25) as the restricted master

problem. If c̄(v,αk,πk) = 0 for all v∈ P, then (zk,uk) is an optimal solution of (23). If this condi-

tion does not hold, let vk+1 ∈ P be such that c̄(vk+1,αk,πk) *= 0. Note that vk+1 must be linearly

independent of the columns in V k. In fact, every column v of V k must satisfy c̄(v,αk,πk) = 0,

hence so must any vector that can be generated with this set. We refer to the problem of com-

puting a vector vk+1 with c̄(vk+1,αk,πk) *= 0 as the pricing problem. Obtain a new matrix V k+1

by adding column vk+1 to V k, and repeat the process. Given that the rank of V k increases strictly

with each iteration, the algorithm must finitely terminate.

The pricing problem can be tackled by solving:

L(π) = max c′v−π(Hv−h)
s.t. Av≤ b,

v ∈ {0,1}n

(26)

For this, at each iteration compute L(πk), and let v̂ be the corresponding optimal solution.

Observe that L(πk) ≥ ZIP for all k ≥ 1. In fact, since the u variables are free in problem (25),

and since (αk,πk) is dual-feasible in problem (25), we have that d′ −πkG = 0. This implies that

problem (26), for πk, is equivalent to

max c′v+d′u−πk(Hv+Gu−h)
s.t. Av≤ b,

v ∈ {0,1}n.
(27)

Given that πk ≥ 0, problem (27) is a relaxation of problem (22), obtained by penalizing con-

straints Hz+Gu≤ h. Hence L(πk)≥ ZIP ∀k ≥ 1.

Define ZU
k = min{L(π i) : i = 1, . . . ,k} and note that ZU

k ≥ ZIP, by the argument above. If

ZU
k ≤ ZL

k , we can define ZUB = ZU
k , and terminate the algorithm, as we will have that ZIP ≤

ZUB ≤ ZLIN . In fact, since ZL
k ≤ ZLIN , we have ZIP ≤ ZUB = ZU

k ≤ ZL
k ≤ ZLIN .

On the other hand, if ZU
k > ZL

k , then the optimal solution v̂ of (26) is such that c̄(v̂,αk,πk) *= 0,

so we obtain an entering column by defining vk+1 = v̂. To see this, note that

ZU
k −ZL

k > 0⇔ c′v̂−πk(Hv̂−h)−αkb−πkh > 0

⇔ c′v̂−πkHv̂−αkb > 0

⇒ c′v̂−πkHv̂−αkAv̂ > 0 (since αkb≥ αkAv̂)

⇒ c̄(v̂,αk,πk)> 0.
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Observe that, to be precise, we do not need to know a starting feasible solution in order to

solve problem (23). In fact, if we do not have a feasible solution, we can add a variable to the

right-hand-side of each constraint Hz+Gu≤ h, and heavily penalize it to proceed as in a Phase-I

simplex algorithm (see [4]). The first iteration only needs a solution v1 such that Av1 ≤ b.

5.2. Comparison to the Dantzig-Wolfe decomposition algorithm.

When solving problems with form (22) a common technique is to use the Dantzig-Wolfe decom-

position [12] to compute relaxation values. The Dantzig-Wolfe decomposition (DW) algorithm

is very similar to the General Column Generation (GCG) algorithm presented in the previous

section. In fact, the DW algorithm computes the optimal value of problem,

ZDW = max c′z+d′u

s.t. Az≤ b,
Hz+Gu≤ h,
z ∈ conv.hull(P).

(28)

Given that conv.hull(P)⊆ {z : Az≤ b}, this problem is typically written as,

ZDW = max c′z+d′u

s.t. z ∈ conv.hull(P),
Hz+Gu≤ h,

(29)

or equivalently, as
ZDW = max c′V λ +d′u

s.t. λ ·1 = 1,
HV λ +Gu≤ h,
λ ≥ 0.

(30)

In this formulation, the columns {v1, . . . ,vk} of V correspond to the extreme points of conv.hull(P).
Given that conv.hull(P)⊆ lin.hull(P), it follows that ZIP ≤ ZDW ≤ ZLIN ≤ ZLP. When

conv.hull(P) = {z : Az≤ b} it is easy to see that ZDW = ZLIN = ZLP. However, the following

example shows that all of these inequalities can also be strict:

ZIP = max −x1 +2x2 + x3

s.t. −x1 + x2 ≤ 0.5,
x1 + x2 ≤ 1.5,
x3 ≤ 0.5,
x ∈ {0,1}3.

(31)

By decomposing such that Hz+Gu≤ h corresponds to −x1 + x2 ≤ 0.5 we get,

{z : Az≤ b}= {z ∈ [0,1]3 : x1 + x2 ≤ 1.5, x3 ≤ 0.5},

and,

P = {z ∈ {0,1}n : Az≤ b}= {(0,0,0),(0,1,0),(1,0,0)},
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and so,

lin.hull(P) = {(x1,x2,x3) : x3 = 0},

conv.hull(P) = {(x1,x2,x3) : 0≤ x1, 0≤ x2, x1 + x2 ≤ 1, x3 = 0}.

From this it can be verified that zIP = 0.0, zDW = 1.25, zLIN = 1.5, and zLP = 2.0.

The DW algorithm is formally presented in Algorithm 1. The proof of correctness is strictly

analogous to the proof presented in Section 5.1 for the generic column generation algorithm.

Observe that the DW pricing problem (see (35)) is exactly the same as the GCG pricing prob-

lem. However, since optimizing over {v : Av≤ b, v ∈ {0,1}} is exactly the same as optimizing

over conv.hull(P), we will have at every iteration j ≥ 1 that L(π j)≥ ZDW . Thus, the bounds

will never cross as they might in GCG, and there will be no early termination condition.

The main difference between the algorithms is in the master problem, where both solve very

different linear models. One would expect that solving the master problem for the DW decom-

position method would be much faster. In fact, let r1 and r2 represent the number of rows in

the A and H matrices, respectively. The DW master problem has r2 + 1 rows, compared to the

r1 + r2 rows in the GCG master problem. However, this is only the case because of the way

in which problem (22) is presented. If the first system of constraints, Az ≤ b, instead has form

Az = b, the algorithm can be modified to preserve this property. This equality form version of

GCG, which we call GCG-EQ, is presented in Appendix B.

The discussion above suggests that for the GCG algorithm to outperform the DW algorithm,

it would have to do less iterations. It is natural to expect that this would happen. After all, given

a common set of columns, the feasible region of the GCG master problem is considerably larger

than the corresponding feasible region of the DW master problem. That is, the dual solutions

obtained by solving the GCG master problem should be “better” than those produced by the

DW master problem, somehow driving the pricing problem to find the right columns quickly

throughout the iterative process. This improved performance, of course, would only compensate

on problems in which the DW algorithm has a tough time converging, and could come at the

cost of a worse upper bound to the underlying integer programming problem. In fact, this slow

convergence rate is exactly what happens in General Production Scheduling Problems (GPSPs),

and is what motivates the BZ algorithm in the first place.

As column generation algorithms, the size of the master problem will be increasing by one

in each iteration, both for the GCG and DW. At some point the number of columns could grow

so large that solving the master problem could become unmanageable. An interesting feature

of the DW algorithm is that this can be practically managed by removing columns that are not

strictly necessary in some iterations. The key is the following Lemma, which is a direct result

of well-known linear programming theory (Bertsimas and Tsisiklis [4]).

Lemma 1. Let (λ ∗,u∗) represent an optimal basic solution of problem

Z(V ) = max c′V λ +d′u

s.t. 1 ·λ = 1

HV λ +Gu≤ h

λ ≥ 0.

Then, |{i : λ ∗i *= 0}| ≤ r2 +1, where r2 is the number of rows in matrix H.
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Algorithm 1: The DW Algorithm.

Input: A feasible mixed integer programming problem of form

Z∗ = max c′z+d′u

s.t. Az≤ b

Hz+Gu≤ h

z ∈ {0,1}.

(32)

A matrix V whose columns are feasible 0-1 solutions of Az≤ b.

Output: An optimal solution (z∗,u∗) to problem

ZDW = max c′z+d′u

s.t. z ∈ conv.hull(P),
Hz+Gu≤ h.

(33)

1 j← 1 and ZU
0 ← ∞.

2 V 1←V .

3 Solve the restricted DW master problem,

ZL
j = max c′V jλ +d′u

s.t. 1 ·λ = 1

HV jλ +Gu≤ h

λ ≥ 0

(34)

Let (λ j,uj) be an optimal solution to problem (34), and let (z j,uj), be the

corresponding feasible solution of (33), where z j =V jλ j. Let π j be an optimal dual

vector corresponding to constraints HV jλ +Gu≤ h.

4 Solve the DW pricing problem. For this, consider the problem,

L(π) = max c′v−π ′(Hv−h)
s.t. Av≤ b,

v ∈ {0,1}n

(35)

and let v j represent an optimal solution of L(π j). Let ZU
j ←min{L(π j),ZU

j−1}.

5 if ZL
j = ZU

j then

6 z∗ ← z j. Stop.

7 else

8 V j+1← [V j,v j].
9 j← j+1. Go to step 3.

In fact, what this Lemma says is that after m iterations, no matter how large m, we can always

choose to remove all but r2 + 1 columns, thus making the problem smaller. As a means of

ensuring that the resulting column generation algorithm does not cycle, a reasonable technique
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would be to remove columns only after the primal bound in the DW algorithm changes. That is,

only in those iterations k such that ZL
k > ZL

k−1.

It should be noted that a variant of this Lemma is also true for the GCG-EQ algorithm (see

Appendix B). However, there is no similar result for the GCG algorithm. That is, while unused

columns can be discarded in GCG, there is no guarantee that the columns remaining in the

master problem will be few in number.

5.3. The BZ algorithm

The BZ algorithm, originally proposed by Bienstock and Zuckerberg [5, 6] is a variant of the

GCG algorithm that is specialized for General Precedence Constrained Problems (GPCPs). That

is, the BZ algorithm assumes that constraints Az≤ b correspond to precedence constraints having

form zi− z j ≤ 0, for (i, j) ∈ I, and bound constraints, having form 0 ≤ z ≤ 1. This assumption

allows the BZ to exploit certain characteristics of the optimal master solutions in order to speed

up convergence. As we will see, the BZ algorithm is very effective when the number of rows

in H and the number of u variables is small relative to the number of z variables. It should be

noted, however, that the optimal value of the problem solved by the BZ algorithm will have value

ZBZ = ZLP. That is, the bound will be no tighter than that of the LP relaxation. This follows

directly from the fact that {z : zi ≤ z j ∀(i, j) ∈ I} defines a totally unimodular system.

The BZ algorithm is exactly as the GCG algorithm, with the exception of two changes:

First, the BZ algorithm uses a very specific class of generator matrices V k. These matrices

have two main properties. The first is that the linear space spanned by V k+1 will always contain

zk, the optimal solution of the master problem in the previous iteration. The second is that the

columns of V k are orthogonal 0-1 vectors. That is, for every column vq of matrix V k define

Iq =
{

i ∈ {1, . . . ,n} : v
q
i *= 0

}

(note that Iq describes the support of vq, for q = 1, . . . ,k). Then,

0-1 vectors vq and vr are orthogonal if and only if their supports are disjoint, i.e., Iq∩ Ir = /0.

An intuitive explanation for why this would be desirable is that, when V k has orthogonal 0-1

columns, problem (25) is equivalent to

v∗ = max c′z+d′u

s.t. Az≤ b

Hz+Gu≤ h

zi = z j ∀i, j ∈ Iq, ∀q = 1, . . . ,k.

(36)

That is, restricting the original feasible region to the linear space spanned by V k is equivalent

to equating the variables corresponding to the non-zero entries of each column in V k. In a

combinatorial optimization problem, this resembles a contraction operation, which is desirable

because it can lead to a significant reduction of rows and variables, while yet preserving the

original problem structure.

The matrix V k used in the BZ algorithm is obtained by the following recursive procedure. Let

v̂ be the 0-1 vector obtained from solving the pricing problem. Let [V k, v̂] be the matrix obtained

by appending column v̂ to V k. We would like to compute a matrix V k+1 comprised of orthogonal

0-1 columns such that, first, Span(V k+1) ⊇ Span([V k, v̂]); and second, such that V k+1 does not

have too many columns. This can be achieved as follows. For two vectors x,y ∈ {0,1}n, define

x∧ y ∈ {0,1}n such that (x∧ y)i = 1 if and only if xi = yi = 1. Likewise, define x\ y ∈ {0,1}n
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such that (x \ y)i = 1 if and only if xi = 1 and yi = 0. Assume that V k is comprised of columns

{v1, . . . ,vr}. Let V k+1 be the matrix made of the non-zero vectors from the collection:

{v j ∧ v̂ : 1≤ j ≤ r}∪{v j \ v̂ : 1≤ j ≤ r}∪

{

v̂\

(

k

∑
j=1

v j

)}

.

We call this procedure of obtaining the matrix V k+1 from V k and v̂ the refining procedure. Note

that in each iteration k, the refining procedure will produce a matrix V k+1 with at most 2r + 1

columns.

The second difference between BZ and GCG is that it introduces a mechanism for preventing

an unmanageable growth in the number of columns used in the master problem.

Consider any nonzero vector z ∈ Rn. Let λ1, . . . ,λd denote the distinct non-zero values of the

components of z, and for i = 1, . . . ,d let vi ∈ Rn denote the indicator vector of the components

of z equal to λi, that is, vi has components vi
j = 1 if z j = λi, and 0 otherwise. Note that 1≤ d ≤ n

and v1, . . . ,vd are orthogonal 0-1 vectors. Thus we can write z = ∑
d
i=1 λiv

i and we say that

v1, . . . ,vd define the elementary basis of z.

If at some iteration the number of columns in matrix V k is too large, the BZ algorithm will

replace matrix V k with a matrix whose columns make up an elementary basis of the incumbent

master solution zk.

Again, there are two possible problems with this. On the one-hand, it is possible that such a

coarsification procedure leads to cycling. On the other-hand, it might still be the case that after

applying coarsification procedure the number of columns remains prohibitively large.

To alleviate the first concern, the BZ algorithm applies the coarsification procedure in exactly

those iterations in which the generation of a new column leads to a strict improvement of the

objective function. That is, when ZL
k > ZL

k−1. The second concern is alleviated by the fact that

under the BZ algorithm assumptions, the elementary basis associated to a basic feasible solution

of problem (36) will always have at most r2 elements, where r2 is the number of rows in matrix

H (see Bienstock and Zuckerberg [5] for the original proof, or Appendix C for the proof adapted

to our notation and extra variables).

A formal description of the column generation algorithm that results from the previous dis-

cussion is summarized in Algorithm 2.

5.4. BZ algorithm speedups

In this section we describe a number of computational techniques for improving the performance

of the BZ algorithm. The computational techniques that we present for speeding up the master

problem are generic, and can be used more generally in the GCG algorithm. However, the

speedups that we present for the pricing problem are specific for solving generalized production

scheduling problems (GPSPs), and thus, are specific for the BZ algorithm.
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Algorithm 2: The BZ Algorithm.

Input: A feasible linear programming problem of form

Z∗ = max c′z+d′u

s.t. Az≤ b

Hz+Gu≤ h

(37)

where constraints Az≤ b correspond to precedence constraints having form

zi− z j ≤ 0, for (i, j) ∈ I, and bound constraints, having form 0≤ z≤ 1. A matrix

V whose columns are orthogonal 0-1 vectors spanning at least one feasible

solution of (37).

Output: An optimal solution (z∗,u∗) to problem (37).

1 j← 1 and ZU
0 ← ∞.

2 V 1←V .

3 Solve the restricted BZ master problem,

ZL
j = max c′V jλ +d′u

s.t. AV jλ ≤ b

HV jλ +Gu≤ h

(38)

Let (λ j,uj) be an optimal solution to problem (38), and let (z j,uj), be the

corresponding feasible solution of (37), where z j =V jλ j. Let π j be an optimal dual

vector corresponding to constraints HV jλ +Gu≤ h.

4 Solve the BZ pricing problem. For this, consider the problem,

L(π) = max c′v−π ′(Hv−h)
s.t. Av≤ b,

(39)

and let v j represent an optimal solution of L(π j). Let ZU
j ←min{L(π j),ZU

j−1}.

5 if ZL
j = ZU

j then

6 z∗ ← z j. Stop.

7 else

8 Obtain V j+1, a matrix of orthogonal 0-1 columns, by refining V j with v j.

9 j← j+1. Go to step 3.

5.4.1. Speeding up the BZ pricing algorithm

The pricing problem consists of solving a problem of the form

max c̄′z

s.t. zi ≤ z j ∀(i, j) ∈ I

0≤ z≤ 1

(40)
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for some objective function c̄, and a set of arcs I. This class of problems are known as maximum

closure problems. In order to solve (40), we use the Pseudoflow algorithm of [21]. We use the

following two features to speed-up this algorithm in the present context.

Pricing hot-starts [PHS]. The pricing problem is solved once per iteration of the BZ algo-

rithm, each time with a different objective function. An important feature of the Pseudoflow

algorithm is that it can be hot-started. More precisely, the Pseudoflow algorithm uses an internal

data structure called a normalized tree that can be used to re-solve an instance of a maximum clo-

sure problem after changing the objective function vector. Rather than solve each pricing prob-

lem from scratch, we use the normalized tree obtained from the previous iteration to hot-start the

algorithm. Because the changes in the objective function are not componentwise monotonous

from iteration to iteration, we need to re-normalize the tree each time. For more information

on the detailed working of the Pseudoflow algorithm, with indications on how to incorporate

hot-starts, see [21].

Path contractions [PC]. Consider problem (40), and define an associated directed acyclic

graph G = (V ,E ) as follows. For each variable zi define a vertex vi. For each precedence

constraint zi ≤ z j with (i, j) ∈ I, define a directed arc (vi,v j) in E . We say that a directed path

P = (v(1),v(2), . . . ,v(k)) in G is contractible if it is a maximal path in G such that (i) k≥ 3, and

(ii) every internal vertex v(2), . . . ,v(k−1) has both in-degree and out-degree equal to one.

Observe that the variables associated to this path can only take k+ 1 different combinations

of 0-1 values: either (i) zv(i) = 0 for i = 1, . . . ,k and the total contribution of the nodes in P is

zero; or else, (ii) there exists an index j ∈ {1, . . . ,k} such that zv(i) = 0 for all i = 1, . . . , j−1 and

zv(i) = 1 for all i = j, . . . ,k.

Since (40) is a maximization problem, in an optimal integer solution to (40) the contribu-

tion of the path will either be 0 (this will happen when zv(k) = 0), or the contribution will be

max1≤ j≤k ∑
k
i= j c̄v(i) (which will happen when zv(k) = 1).

This suggests the following arc-contracting procedure.

Let j(P, c̄)= argmax1≤ j≤k ∑
k
i= j c̄v(i) and define a new graph Ĝ= (V̂ , Ê ) from G by eliminating

the vertices v(2), . . . ,v(k−1) from V and the arcs incident to them, and then adding an arc that

connects v(1) and v(k). Define ĉ with ĉv = c̄v for all vertices v /∈ {v1, . . . ,vk}, ĉv(k) =∑
k
i= j(P,c̄) c̄v(i)

and ĉv(1) = ∑i< j(P,c̄) c̄v(i).

Solving the pricing problem in this smaller graph Ĝ with the objective ĉ gives an optimal

solution to the original problem on graph G with objective c̄, with the same optimal objective

value.

This procedure can be used to contract all contractible paths in G in order to obtain, in some

cases, a significantly smaller graph. In fact, problem instances with multiple destinations and

batch constraints induce many contractible paths in the pricing problem graph. This is illustrated

with an example in Figure 1.

It should be noted that identifying and contracting paths only needs to be done in the first

iteration. In all subsequent runs of the pricing problem, it is possible to use the same contracted

graph, after updating the indices j(P, c̄) and the objective function ĉ.
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(a) Before path contraction

wc,t

wc,t−1

(b) After path contraction

Figure 1: Example illustrating the possible effect of the path contraction speed-up. This example

assumes a cluster c comprised of activities {a1, . . . ,an}. Each activity is assumed to

have M possible modes. The graph includes an arc between all pairs of variables for

which there is a precedence relationship.

5.4.2. Speeding up the BZ master algorithm

The following ideas can be used to speed up solving the master problem (38) in the BZ algo-

rithm:

Starting columns [STCOL]. As input, the BZ algorithm requires an initial set of columns

inducing a (possibly infeasible) solution of the problem. Such columns can be obtained by

computing an elementary basis associated to a solution obtained with heuristics.

If, when starting the algorithm, we do not have an initial set of columns describing a feasible

the problem, we can proceed as in the Phase-I simplex algorithm. For this, start with some

arbitrary set of columns, and add “artificial variables” for each row.

Master hot-starts [MHS]. Because of the refining procedure, the restricted BZ master prob-

lem (38) in an iteration may be quite different from that in the previous iteration. To reduce its

solve time, we can feed any simplex-based solver the solution from the previous iteration so that

it can be used to attempt and identify a good feasible starting basis.

k-Step column management [k-Step]. In the original BZ algorithm, the coarsification pro-

cedure is applied in every iteration where there is a strict increase in the primal objective function

value. Sometimes, however, it is better to keep the existing columns so as to improve the con-

vergence rate. To avoid having too many columns in each iteration, we use what we refer to as
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a k-step column management rule. This rule, which requires as input an integer parameter k,

works as follows: assume that we are at the m-th iteration of the BZ algorithm, where m > k.

Further assume that in the previous iteration (iteration m− 1) there was a strict increase in the

primal objective function value. The column matrix V m used in the m-th iteration is built from

scratch, by first obtaining an elementary basis associated to solution zm−k, and then successively

refining this basis with the vectors vm−k+1,vm−k+2, . . . ,vm−1 (see Section 5.3).

6. Computational results

Our computational tests consider solving the linear relaxation of three different classes of prob-

lems. Specifically, we consider instances of OPPSP, OPPDP and RCPSP. The OPPSP and OP-

PDP instances are based on both real and hypothetical mine-planning instances obtained from

industry partners, and from the MineLib website [16]. In order to protect the confidentiality of

the data sets obtained from our industry partners, we have renamed all of the instances using the

names of Chilean volcanoes. In Table 1 we present some characteristics of these instances. Note

that for each instance we have a specification regarding the maximum number of time periods

to consider. For each of the OPPSP problems we count with two versions: one with with less,

and one with more clusters. We refer to these as the fine and course versions of each problem.

These clusters correspond to what mining engineers refer to as a bench-phase, or increment (see

[22] for formal definitions). We do not have cluster definition data for all of the problem in-

stances, thus, the set of instances considered for OPPSP is a subset of the instances considered

for OPPDP. The RCPSP instances that we consider are obtained from PSPlib [25] (datasets j30,

j60, j90 and j120) and from [14] (dataset RG300). It should be noted that these problems have a

different objective function than the OPPDP and OPPSP problems. That is, these problems seek

to minimize Makespan, rather than maximize net present value (NPV).

We evaluate the performance of the BZ algorithm, comparing it to the DW algorithm, and to

a version of DW that incorporates the dual-stabilization techniques (DW-S) proposed by Pessoa

et al. [37]. For each of the algorithms we attempt to compute the linear relaxation solution of

the test problems, stopping early if the relative difference between the master problem bound

and the pricing problem bound is less than 10−6 (the default reduced cost tolerance used by the

CPLEX simplex algorithm). We do not report the bounds obtained by each algorithm since they

will all coincide with the value of the LP relaxation for each problem.

We also evaluate the performance of the speed-up techniques described in this paper. Specif-

ically, we analyze the performance of Pricing hot-starts (PHS), Path contractions (PC), Starting

columns (STCOL), Master hot-starts (MHS), and k-step column management (k-Step), with

k = 10. All of these speed-up techniques, with the exception of k-step (which is not applicable)

are also implemented for the DW and DW-S algorithms. In fact, our code uses the exact same

implementations of these speed-up techniques for the BZ, DW and DW-S algorithms.

To assess the value of our proposed speed-up techniques we defined a default set of speed-

up-techniques to activate for each class of problems considered. For the OPPDP and OPPSP

we defined the default speed-up-techniques to be PHS, MHS and PC. We found these to be the
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Table 1: Description of the different instances of the test set used in our computational study.

Instance Blocks (UPIT) Modes Periods Resources Clusters

Course Fine

antuco 3 525 317 2 45 2 — —

calbuco 198 248 3 21 1 324 548

chaiten 287 473 2 20 2 273 475

dospuntas 897 609 2 40 4 — —

guallatari 57 958 3 21 3 272 460

kd 12 154 2 12 1 53 93

lomasblancas 1 492 024 3 45 3 — —

marvin 8 516 2 20 2 56 98

mclaughlin limit 110 768 2 15 1 166 290

palomo 97 183 2 40 2 44 93

ranokau 304 977 2 81 2 186 296

sm2 18 388 2 30 2 — —

zuck large 96 821 2 30 2 — —

zuck medium 27 387 2 15 2 — —

zuck small 9 399 2 20 2 — —

features that improved performance of the algorithm, without requiring a heuristic to generate a

solution. For the RCPSP class of problems we use a different set of default speed-up options.

Since we have to compute a feasible solution to each problem in order to define the number of

time periods, we change the default settings so as to use this as a starting solution (STSOL).

In addition, we observe that these problem instances have signficantly more time periods per

activities when compared to the OPPSP and OPPDP instances. This resulted in a very different

algorithm behavior that prompted us to include k-Step column management as a default option,

as it improved problem performance.

In order to assess the contribution of each individual speed-up technique in the algorithm, we

turned each of these off (or on) to measure the impact from the change relative to that of the

default settings.

All algorithms were implemented using C programming language, using CPLEX R© 12.6 as

optimization solver. The machines were running Linux 2.6.32 under x86 64 architecture, with

four eight-core Intel R© Xeon R© E5-2670 processors and with 128 Gb of RAM. For all results,

we present normalized geometric means comparing the performance versus BZ algorithm under

default configuration.

6.1. Results for OPPDP

Table 2 shows the time required to solve each problem using the different proposed algorithms.

The table also shows the number of iterations required by each algorithm, as well as the final

number of columns generated by BZ. We do not report the bound generated by each relaxation,

since they all generate the same bound for each instance.
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Table 2: Comparison between the different algorithms for OPPDP instances

Instance
Time (sec) Iterations

BZ cols
BZ DW DW+S CPLEX BZ DW DW+S

antuco 208 000 1 542 712 353 313 - 97 2 539 559 31 640

calbuco 1 480 6 715 3 602 - 34 243 132 1 876

chaiten 2 620 35 339 9 625 - 34 884 259 5 800

dospuntas 36 100 451 515 108 105 - 52 1 542 385 112 943

guallatari 143 1 668 494 - 30 444 158 2 421

kd 7 22 16 15 560 23 115 90 365

lomasblancas 86 600 521 279 208 256 - 75 773 360 5 635

marvin 9 28 17 34 601 27 154 99 206

mclaughlin limit 167 1 096 539 - 27 208 102 1 273

palomo 1 290 9 550 3 637 - 45 587 264 2 089

ranokau 192 000 1 526 274 210 506 - 108 7 261 1 025 124 406

sm2 44 256 109 254 52 874 281 3 594

zuck large 634 3 564 1 761 - 46 416 194 3 195

zuck medium 40 112 93 954 405 28 107 82 229

zuck small 11 37 24 56 165 29 150 113 294

Norm. G. Mean 1 5.98 2.42 - 1 11.8 4.9

As can be seen, DW is nearly six times slower than BZ. Using stabilization techniques, the

DW-S is able to signficantly reduced the time required to reach the optimality condition. In fact,

stabilization techniques reduce the time of DW in a 60%, but it is still 2.42 times slower than

BZ. This can be explained by the number of iterations required to converge by each algorithm.

Even though a BZ iteration is, in average, 2.1 times slower than a DW iteration, DW and DW+S

require 11.8 and 4.9 times the number of iterations of BZ to converge. This is possible because

the BZ algorithm can produce a large number of useful columns in few iterations. In fact,

the number of columns generated by BZ is considerably larger than the number of columns

produced by DW and DW-S (the number of columns for these algorithms is equal to the number

of iterations). Finally, note that CPLEX is only able to solve the five smallest instances.

In Table 3 we show what happens when we change the tolerance used to define optimality

in all of the algorithms. It can be seen that BZ algorithm still outperforms the DW and DW-S

algorithms after reducing the target optimality gap to 10−4 and 10−2. However, the performance

difference narrows as the target gap becomes smaller. The resulting times, normalized to the

time of BZ under default setting, are presented in Table 3.

Finally, we study the impact of the different speed-up techniques on BZ. From the default

settings, we disable the speed-ups PHS, MHS and PC, one-by-one, and also, we disable all

three of them together. We also run BZ under our default setting after adding a starting column
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Table 3: Normalized time required for different optimality gaps for OPPDP instances

Instance
10−6 10−4 10−2

BZ DW DW+S BZ DW DW+S BZ DW DW+S

antuco 1 7.42 1.70 0.96 6.28 1.49 0.93 4.63 1.20

calbuco 1 4.54 2.43 0.92 3.49 1.94 0.74 1.55 1.08

chaiten 1 13.49 3.67 0.95 10.53 2.92 0.79 4.30 1.57

dospuntas 1 12.51 2.99 0.83 7.77 2.16 0.67 2.40 1.15

guallatari 1 11.66 3.45 0.86 7.35 2.44 0.70 2.60 1.37

kd 1 3.05 2.25 0.90 2.40 1.78 0.76 1.13 1.18

lomasblancas 1 6.02 2.40 0.95 5.04 2.05 0.87 3.26 1.38

marvin 1 3.19 1.99 0.91 2.26 1.47 0.81 0.94 0.81

mclaughlin limit 1 6.56 3.23 0.86 4.75 2.47 0.68 1.89 1.47

palomo 1 7.40 2.82 0.98 6.10 2.33 0.88 2.69 1.50

ranokau 1 7.95 1.10 0.82 4.79 0.86 0.63 1.87 0.50

sm2 1 5.88 2.50 0.95 3.77 1.89 0.88 2.03 1.35

zuck large 1 5.62 2.78 0.96 4.42 2.28 0.84 2.21 1.45

zuck medium 1 2.80 2.31 0.87 2.15 1.78 0.66 1.23 0.97

zuck small 1 3.22 2.13 0.86 2.20 1.52 0.77 1.24 0.85

Norm. G. Mean 1 5.98 2.42 0.90 4.36 1.89 0.77 2.04 1.14

(STCOL) generated using the Critical Multiplier algorithm (See [9]), and after enabling the

k-Step feature. The resulting times, normalized to the time of BZ under default setting, are

presented in Table 4.

We can see that all speeding features provide, in average, an improvement on the time re-

quired by BZ to converge. However, the individual performance of each feature differs instance

by instance. The most important speed-up technique is path contraction (PC), as disabling this

feature increases the time required to converge by 60%. Since the reduction in number of vari-

ables of this speed-up in OPPDP is proportional to the number of modes of the problem, this

feature is particularly important for the Guallatari instance, which has 3 different modes. Dis-

abling these three features, the total time required to converge more than doubles. On the other

hand, if we start with a preliminary set of starting columns, the time required is decreased by

32%. Finally, we see that k-Step does not improve the convergence time, making the algorithm

run 35% slower. In fact, it makes every problem converge slower, with the exception of the

ranokau instance.

6.2. Results for OPPSP

For these instances we use the same default settings as those used for OPPDP. We note that

these problems are considerably smaller than the OPPSP problems. This is both in the number

of variables and precedence constraints. All algorithms are able to solve these problems in a few
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Table 4: Normalized time required for BZ algorithm with/without features for OPPDP instances

Instance Default No No No No PHS/PC Default Default

PHS PC MHS MHS + STCOL + k-Step

antuco 1 1.57 1.60 0.98 2.50 0.57 2.56

calbuco 1 1.48 1.77 1.10 2.78 0.85 1.09

chaiten 1 1.38 1.49 1.01 1.83 0.62 1.20

dospuntas 1 1.36 1.57 1.03 1.75 0.73 1.52

guallatari 1 1.47 2.18 1.21 2.88 1.00 0.99

kd 1 1.30 1.63 1.00 2.22 0.69 1.51

lomasblancas 1 1.84 1.68 1.01 2.94 0.25 1.98

marvin 1 1.32 1.27 0.97 2.47 0.91 1.49

mclaughlin limit 1 1.27 1.78 0.94 2.06 0.77 1.20

palomo 1 1.60 1.47 0.98 2.21 0.94 1.53

ranokau 1 0.93 1.04 0.97 1.15 0.22 0.57

sm2 1 1.33 1.93 1.16 2.35 1.11 2.06

zuck large 1 1.15 1.60 1.00 2.08 0.62 1.31

zuck medium 1 1.75 1.59 1.20 2.74 0.84 1.13

zuck small 1 1.32 1.72 0.95 2.41 0.92 1.27

Norm. G. Mean. 1 1.39 1.60 1.03 2.24 0.68 1.35

hours, with the exception of the ranokau instance, which CPLEX fails to due to the memory

limit (128Gb). We present the results in Table 5.

We can see that in this class of problems the performance of DW and DW-S is more similar

to that of BZ. This is probably explained by the fact that the number of iterations required by

DW and DW-S is much smaller. Note also that stabilization techniques for DW only marginally

reduce the number of iterations required by DW to converge, resulting in that DW-S is 18%

slower than DW.

Comparing the impact of the different features on BZ (see Table 6), we see that the most

important feature is, again, path contraction (PC). Disabling this feauture makes the algorithm

run almost 10 times slower. Similarly to the OPPDP problems, providing starting columns to

BZ reduces the time by 23%, and introducing k-Step column management makes the problem

run slower (83%).

6.3. Results for RCPSP instances

In order to formulate the RCPSP instances we need a maximum number of time periods to

consider. Since the objective of these problems is to minimize Makespan, the number of time
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Table 5: Comparison between the different algorithms for OPPSP instances

Instance
Time (sec) Iterations

BZ cols
BZ DW DW+S CPLEX BZ DW DW+S

calbuco 88 90 122 56 102 32 96 95 167

chaiten 86 174 184 4 595 34 189 149 392

guallatari 29 39 50 11 757 30 117 102 188

kd 1 1 1 5 18 44 40 70

marvin 2 2 2 17 27 70 73 82

mclaughlin limit 14 19 22 2 310 25 78 73 100

palomo 49 59 95 429 44 138 137 160

ranokau 2 034 5 102 4084 - 186 1 461 781 2 108

Norm. G. Mean 1 1.38 1.63 54.57 1 3.64 3.17

Table 6: Normalized time required for BZ algorithm with/without features for OPPSP instances

Instance Default No No No Default Default

PHS PC MHS + STCOL + k-Step

calbuco 1 0.92 9.96 1.03 0.82 2.10

chaiten 1 0.95 14.63 1.04 0.81 2.06

guallatari 1 1.01 4.91 1.05 0.73 1.77

kd 1 1.04 5.63 1.05 0.65 1.59

marvin 1 0.90 3.51 0.92 0.68 1.26

mclaughlin limit 1 0.99 14.65 0.93 0.98 1.91

palomo 1 0.87 13.33 0.97 0.77 1.83

ranokau 1 1.03 19.48 1.03 0.78 2.37

Norm. G. Mean 1 0.96 9.25 1.00 0.77 1.83
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periods should be an upper bound on the number of periods required to schedule all of the

activities. Such a bound can be computed by running any heuristic to compute any feasible

integer solution. For this purpose, we use a greedy TOPOSORT heuristic [9], which takes

fractions of a second to solve for all of our instances.

Table 7 describes the performance of the different algorithms on our RCPSP test instances.

Note that we only consider instances that are solved by CPLEX in more than 1 second, obtaining

a total of 1575 instances. The running times presented in the table are geometric means over

instances in the same dataset.

Table 7: Comparison between the different algorithms for RCPSP instances

Time (sec) Iterations

Dataset † BZ DW DW+S CPLEX BZ DW DW+S

j30 (51 inst.) 1.23 4.71 1.91 1.61 141.4 650.4 312.9

j60 (152 inst.) 0.98 8.19 2.55 3.77 68.5 477.0 232.1

j90 (293 inst.) 0.54 2.27 1.07 5.33 23.3 115.4 73.4

j120 (599 inst.) 3.95 33.13 11.94 31.78 58.2 440.5 230.5

RG300 (480 inst.) 22.86 43.76 24.87 240.51∗ 91.1 393.9 260.5

Norm. G. Mean 1 4.76 2.00 7.25 1 5.8 3.3
†: We only consider instances which took CPLEX more than a second to solve.

∗: We only consider the 438 instances which were solved within 48 hours.

Table 7 shows that BZ is again faster than the other algorithms when solving RCPSP in-

stances. In fact, it is 2 times faster than DW+S and 4.7 faster than DW. Note that this difference

is particularly large for the j120 instances from PSPLIB repository, where DW and DW+S run

8.4 and 3 times slower, respectively. It would seem that the performance of these algorithms

is greatly dependent on problem structure. This can be seen when considering the RG300 in-

stances, which are generated in a different way. In these instances, DW with stabilization is only

marginally slower than BZ.

Table 8 shows how much the performance of the BZ algorithm is affected by turning off

each of the default speed up features. It is interesting to note that on RCPSP instances the

k-Step column management rule is very important. Turning it off makes the problem run, in

average, 2.51 times slower. This is in stark contrast to what happens with the OPPSP and

OPPDP instances, where activating the k-Step feature actually makes the problem run slower.

We speculate that this is due to the fact that the RCPSP problems have a significantly greater

number of time periods per activity than the OPPSP and OPPDP instances. This results in

a problem with significantly more resource consumption constraints per variable. It is also

interesting to note that disabling the PC and MHS features actually makes BZ run faster in the

RCPSP instances. We speculate that the MHS feature does not improve performance because,

having enabled the k-Step feature as well, succesive master problem formulations significantly

differ from each other. We speculate that the PC feature does not improve performance because

26

44



in RCPSP instances there are not as many paths to contract due to the structure of the precedence

graphs. This is due to the fact that there are no clusters and that there is just a single mode per

activity.

Table 8: Normalized time required for BZ algorithm with/without features for RCPSP instances

Default No No No No No

Dataset † PHS PC MHS k-Step STCOL

j30 (51 inst.) 1 1.30 0.78 0.80 0.74 1.44

j60 (152 inst.) 1 1.53 0.99 1.03 1.44 1.91

j90 (293 inst.) 1 1.15 0.86 0.91 1.51 1.80

j120 (599 inst.) 1 1.40 0.92 0.95 2.39 1.23

RG300 (453 inst.) 1 1.22 0.87 0.89 5.78 1.04

Norm. G. Mean 1 1.30 0.90 0.93 2.51 1.33
†: We only consider instances for which the BZ algorithm finished in 48 hours in all settings.

6.4. Concluding remarks

We summarize with three important conclusions. First, the BZ algorithm significantly outper-

forms DW and DW+S on all GPCP problem classes. Second, the speed-up features proposed

in this article significantly improve the performance of the BZ algorithm. Third, the algorithm

and speed-up performances greatly depend on the problem classes that are being considered.

These conclusions suggest that the BZ algorithm with the proposed speed-ups is a technique

that can be used to effectively be used to compute the LP relaxation solution of different classes

of scheduling problems. Such an algorithm might be useful as a means to provide upper bounds

for scheduling problems, or as a part of the many rounding heuristics that have recently been

proposed, or eventually, as part of a branch-and-bound solver. In addition, they suggest that the

BZ algorithm’s potential use for other classes of problems should also be further studied.
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Appendix

A. Resource constraints in GPSP reformulation

In this section we provide a detailed proof on how to derive (14) from (5). This is needed in order

to reformulate an instance of a General Production Scheduling Problem (GPSP), described in

Section 3, as an instance of a General Precedence Constrained Problem (GPCP), presented in

Section 4. For the benefit of the reader, we recall (14) and (5).

Proposition 2. Consider inequality (5)

∑
a∈A

∑
m∈Ma

qr,a,m

t

∑
s=max{1,t−da,m+1}

ya,m,s ≤ Qr,t ,

as defined in Section 3. If we apply the variable substitution scheme introduced in Section 4:

ya,m,t = za,m,t − za,m−1,t ∀a ∈A , m = 2, . . . ,Ma, t ∈T ,

ya,1,t = za,1,t − za,Ma,t−1 ∀a ∈A , t = 2, . . . ,T,

ya,1,1 = za,1,1 ∀a ∈A ,

we obtain inequality (14):

∑
a∈A

∑
m∈Ma

∑
s∈T

q̃r,t
a,m,sza,m,s ≤ Qr,t ,

where

q̃r,t
a,m,s =

{

qr,a,m1[t−da,m+1,t](s)−qr,a,m+11[t−da,m+1+1,t](s) if m < Ma

qr,a,Ma
1[t−da,Ma+1,t](s)−qr,a,11[t−da,1,t−1](s) if m = Ma
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Proof.

Qr,t ≥ ∑
a∈A

∑
m∈Ma

qr,a,m

t

∑
s=max{1,t−da,1+1}

ya,m,s

= ∑
a∈A

(

Ma

∑
m=2

t

∑
s=max{1,t−da,m+1}

qr,a,mya,m,s +
t

∑
s=max{1,t−da,1+1}

qr,a,1ya,1,s

)

= ∑
a∈A

(

Ma

∑
m=2

t

∑
s=max{1,t−da,m+1}

qr,a,m(za,m,s− za,m−1,s)

+
t

∑
s=max{1,t−da,1+1}

qr,a,1za,1,s−
t

∑
s=max{2,t−da,1+1}

qr,a,1za,Ma,s−1

)

= ∑
a∈A

(

Ma

∑
m=2

t

∑
s=max{1,t−da,m+1}

qr,a,mza,m,s−
Ma−1

∑
m=1

t

∑
s=max{1,t−da,m+1+1}

qr,a,m+1za,m,s

+
t

∑
s=max{1,t−da,1+1}

qr,a,1za,1,s−
t−1

∑
s=max{1,t−da,1}

qr,a,1za,Ma ,s

)

= ∑
a∈A

(

Ma

∑
m=1

t

∑
s=max{1,t−da,m+1}

qr,a,mza,m,s−
Ma−1

∑
m=1

t

∑
s=max{1,t−da,m+1+1}

qr,a,m+1za,m,s

−
t−1

∑
s=max{1,t−da,1}

qr,a,1za,Ma ,s

)

.

B. Equality form version of the GCG algorithm

In this section we present the GCG algorithm when, instad of the form (22), the mixed integer

problem to be solved has form,

ZIP = max c′z+d′u

s.t. Az = b,
Hz+Gu≤ h,
z ∈ {0,1}n.

(41)

That is, when the first set of inequalities have been replaced with equalities. As before, define

P = {z : Az = b, z ∈ {0,1}}.

We present a column generation algorithm for computing the optimal solution of

ZLIN = max c′z+d′u

s.t. Az = b,
Hz+Gu≤ h,
z ∈ lin.hull(P).

(42)
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Let vo be such that Avo = b. For each k ≥ 1 let V k be a matrix comprised of linearly indepen-

dent points {v1, . . . ,vk} such that Avi = 0 for i = 1, . . . ,k. Define,

Z(V ) = max c′vo + c′V λ +d′u

s.t. HVλ +Gu≤ h−Hvo (π)
(43)

Begin each iteration by solving problem (43) with V =V k. Define ZL
k = Z(V k) and let (λ k,uk)

and πk be the corresponding optimal primal and dual solutions respectively. Define zk = vo +
V kλ k and let,

L(π) = max c′v−π(Hv−h)
s.t. Av = b,

v ∈ {0,1}n.
(44)

Observe that since πkG = d′, we have:

L(πk) = max c′v+d′u−πk(Hv+Gu−h)
s.t. Av = b,

v ∈ {0,1}n.
(45)

Thus, L(πk) is a relaxation of (41) obtained by penalizing constraints Hz+ Gu ≤ h with

πk ≥ 0. This implies L(πk)≥ ZIP for all iterations k.

Solve problem (44) with π = πk and let v̂ be the corresponding optimal solution. Define

ZU
k = min{L(π i) : i = 1, . . . ,k}. As before, we will have that ZU

k ≥ ZIP and ZL
k ≤ ZLIN .

If, at any iteration, we have that ZL
k ≥ ZU

k we can halt the algorithm. By defining ZUB = ZU
k

we will have that ZIP ≤ ZUB ≤ ZLIN .

On the other hand whenever ZL
k < ZU

k we will have that column v̂− vo has positive reduced

cost in the master problem. Thus, letting vk+1 = v̂− vo and V k+1 = [V k,vk+1] we can continue

iterating the algorithm.

C. Distinct fractional values Lemma

In this section we show that the BZ master problem will have bounded number of distinct frac-

tional values. This fact is important in Section 5.3, in order to argue why the use of the elemen-

tary basis can reduce the number of columns in the BZ algorithm.

Consider the setting for the BZ algorithm, i.e, a problem of the form

ZBZ = max c′z+d′u

s.t. Az≤ b

Hz+Gu≤ h

(46)

where {z : Az≤ b}= {z : zi ≤ z j ∀ (i, j) ∈ I, 0≤ z≤ 1}. It is well known that A defines a totally

unimodular matrix in such case, thus all extreme points of {z : Az≤ b} are 0-1 vectors.

Recall that z is an n-dimensional vector, and let m be the dimension of u. In this section we

prove the following result:
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Lemma 3. Let (z̄, ū) be an extreme point of (46), and let q be the number of rows of H (and G).

Then the number of distinct fractional values of z̄ is at most q−m.

Note that by assuming an extreme point (z̄, ū) of (46) exists, we are implicitly assuming q≥m.

In fact, if (z̄, ū) is an extreme point of (46), then ū must be an extreme point of {u : Gu≤ h−Hz̄}.

This, however, requires that G have at least m rows, thus implying that q−m≥ 0 holds.

An almost identical result is originally proved in [5]. We present such proof here, adapted to

our notation and including the u variables, which modifies the final result. Note that this theorem

also applies to every restricted BZ master problem (38), since the latter is obtained by simply

equating sets of variables of (37), thus maintaining the same structure.

To prove Lemma 3 we will make use of the elementary basis introduced in Section 5.3, that

is, we write

z̄ =
k

∑
i=1

λiv̄
i

where {λ1, . . . ,λk} are the distinct non-zero values of z̄, and each v̄i is the corresponding

indicator vector for z̄ = λi. Without loss of generality we assume λ1 = 1, so the fractional values

of z̄ are given by {λ2, . . . ,λk}.

Lemma 4. Let (z̄, ū) be an extreme point of (46), and decompose z̄ as above. Additionally,

denote Ā the sub-matrix of A corresponding to binding constraints at (z̄, ū). Then v̄i ∈ null(Ā)
for all 2≤ i≤ k, and they are linearly independent.

Proof. The v̄i vectors are clearly linearly independent since they have disjoint support. As for

the first claim, consider a precedence constraint zi ≤ z j (i, j) ∈ I. If such constraint is binding in

(z̄, ū) then z̄i = z̄ j, which implies

v̄l
i = 1⇐⇒ v̄l

j = 1, l = 1, . . . ,k

thus, v̄l
i = v̄l

j ∀l. On the other hand, if a constraint zi ≤ 1 or zi ≥ 0 is binding at (z̄, ū) then clearly

v̄l
j = 0 for l ≥ 2. This proves Āv̄l = 0 for 2≤ l ≤ k.

Lemma 5. Let (z̄, ū) and q be as in Lemma 3. Additionally, let Ā be the sub-matrix of A corre-

sponding to binding constraints at (z̄, ū). Then dim
(

null(Ā)
)

≤ q−m.

Proof. Let H̄,Ḡ be the set of rows of H and G corresponding to active constraints in (z̄, ū). Since

this is an extreme point, the matrix
[

Ā 0

H̄ Ḡ

]

must contain at least n+m linearly independent rows. Suppose [H̄ Ḡ] has q̄ linearly independent

rows. This implies Ā must have n+m− q̄ linearly independent rows, and in virtue of the rank-

nullity theorem,

dim
(

null(Ā)
)

= n− rank(Ā) = q̄−m≤ q−m
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Lemma 3 is then obtained as a direct corollary of Lemmas 4 and 5, since these two prove

k−1≤ q−m, and k−1 is exactly the number of fractional values of z̄.
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Given a discretized representation of an ore body known as a block model, the

open-pit mining production scheduling problem that we consider consists of defin-

ing which blocks to extract, when to extract them, and how or whether to pro-

cess them, in such a way as to comply with operational constraints, and maximize

net present value. While it has been established that this problem can be modeled

with mixed integer programming, the number of blocks used to represent real-world

mines (millions) has made solving large instances nearly impossible in practice. In

this article, we introduce a new methodology for tackling this problem and conduct

computational tests using real problem sets ranging in size from 20,000 to 5,000,000

blocks and spanning 20 to 50 time periods. We consider both direct block schedul-

ing and bench-phase scheduling problems, with capacity, blending, and minimum

production constraints. Using new preprocessing and cutting planes techniques, we

are able to reduce the LP relaxation value by up to 33%, depending on the instance.

Then, using new heuristics, we are able to compute feasible solutions with an av-

erage gap of 1.52% relative the previously computed bound. Moreover, after four

hours of running a customized branch-and-bound algorithm on the problems with

larger gaps, we are able to further reduce the average from 1.52% to 0.71%.

Keywords: Column generation, Dantzig-Wolfe, Optimization, RCPSP
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1 Introduction

The central concern of strategic open-pit mine planning is the construction of a tentative pro-

duction schedule. This is a life-of-mine plan (20-50 years) specifying which part of a mineral

deposit should be extracted, as well when and how, so as to maximize the value of the mining

project while satisfying operational and economic constraints. In the early stages of a mining

endeavor, a strategic production schedule provides insight into the cash flows of a project (e.g.,

capacity investments and production goals), and, as such, it is critical to investors. Moreover,

early strategic decisions in a mine planning project are binding for and critical to long-term

profits. It is widely acknowledged that amongst all stages in a mining project, strategic mine

planning has the most significant impact on the overall costs ([28]).

Strategic mine planning begins with the construction of a discretized mathematical represen-

tation of the ore body, known as a block model. This is typically a three-dimensional array of

units of equal size, called blocks. The horizontal levels of this array are referred to as benches.

To each block, a number of geological attributes are assigned based on data retrieved from ex-

ploration drill holes, including mineral and contaminant grades, rock types, and rock density.

A strategic mine plan, or production schedule, specifies which blocks are extracted, and also

their time of extraction and their destination once they have been extracted. Destinations repre-

sent not only physical locations, but also block processing and treatment options. Examples of

block destinations include mills, waste-dumps, leech pads and stockpiles.

Amongst others, production schedules must comply with capacity and spatial constraints.

While the former limit the amount of material which can be mined and sent to each destination,

the latter ensure the accessibility of blocks and the safety of mining operations. The most com-

mon spatial constraints consist of imposing minimal wall slope angles (to prevent cave-ins, or

wall slope failures) and ensuring that extraction regions are wide and contiguous so as to ac-

commodate ramps and roads for large equipment. Additional constraints are often imposed to

address blending, stockpiling, and other concerns.

In practice, given the complexity of holistic approaches, the strategic open pit mine planning

problem is sub-divided into two more manageable problems. The first sub-problem, which we

term the Open Pit Phase Design Problem (OPPDP), involves sub-dividing the deposit into large

contiguous spatial units known as phases or pushbacks. Phases define the stages in which the

deposit is to be excavated, and they are designed such that profitable parts of the mine are

quickly reached while maintaining operational feasibility. The second sub-problem, which we

call the Open Pit Production Scheduling Problem (OPPSP), consists of computing a production

schedule detailing when and how the blocks in each phase should be extracted. Phases are

extracted bench-by-bench, beginning with the blocks in Phase 1. The extraction of blocks in

Phase 2 should begin during or after the extraction of the blocks in Phase 1, and so on. For a

more detailed description of this scheme, see [28].

Starting with the doctoral dissertation of [30], a majority of academic papers regarding mathe-

matical programming methods for strategic open pit mine planning have focused on the OPPDP.

In addition, most of them have considered a simplification of the OPPDP known as the C-PIT

Problem, which considers predefined destinations for each block and simple classes of con-

straints. Even these simplified problems, however, have proved very challenging considering

the scale of practical problem instances and the difficulty of solving even their LP relaxations.
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The works of [7] and, shortly afterward, [3, 4] mark a significant departure from previous

results in two regards. First, they introduce a mathematical programming formulation that gen-

eralizes both the OPPDP and OPPSP, with block-destination selectivity, block clustering, and

arbitrary constraints. Second, they present an effective decomposition method for solving the

LP relaxation for problems of realistic size.

In this article, we build on the work of Bienstock and Zuckerberg (BZ) by proposing a frame-

work for solving the problem with integral variables. This framework includes preprocessing,

cutting-plane, heuristic, and specialized branching techniques. A novel aspect of our work is

that we discuss both the phase-design (OPPDP) and production scheduling (OPPSP) steps of

the strategic mine planning problem, and propose problem-specific techniques for each. An-

other novel aspect is that we consider realistic, but more complicated, constraints in our compu-

tations, including blending, flow-balance, and minimum production. Extensive computational

tests show that we can solve both the OPPDP and OPPSP to near-optimality in a very reasonable

amount of time. To our knowledge, this is the first time this is achieved.

2 Formulating the phase design and production scheduling

problems

In this section, we describe the Precedence-Constrained Project Scheduling Problem with Clus-

ters (PCPSP-C), along with an integer programming formulation of it. In addition, we show how

one can formulate both the OPPDP and OPPSP as a PCPSP-C and survey different methodolo-

gies proposed for solving this and similar problems.

2.1 Definitions and Notation

Let B represent the set of blocks of a discretized ore body and D the set of possible destinations

to which a block can be sent. For each b ∈ B and d ∈ D , let pb,d represent the estimated

value obtained by sending b to d, and let pb,∗ = max{pb,d : d ∈ D}, bearing in mind that these

values can be negative. Let T = {1, . . . ,T} represent the time periods in which decisions can

be made. Let pb,d,t represent the value obtained from sending b to d within time period t. We

assume that pb,d,t is obtained from pb,d by applying a discount factor r > 0 over time, that is,

pb,d,t = pb,d/(1+ r)t .

Consider b1,b2 ∈B. Define b1 to be a precedence of b2 – formally, b1 ≺ b2 – if b1 must be

extracted no later than b2. Precedence relationships between blocks are imposed to ensure mini-

mum wall-slope angles and thus avoid wall-slope failures or cave-ins. See [31] for a description

of how one determines these precedence relationships in practice.

Given sets B1,B2 ⊆B, we write B1 ≺ B2 if there exist b1 ∈ B1 and b2 ∈ B2 such that b1 ≺ b2.

Given a set P⊆B, we say that P is a pit in B if b1 ≺ b2 ∧ b2 ∈ P⇒ b1 ∈ P. Also, a sequence

of pits P1,P2, . . . ,Pn ⊆B is nested if P1 ⊆ P2 ⊆ . . .⊆ Pn.

Let C be a partition of the set of blocks B. That is, the sets in C are pairwise disjoint, and

they cover the entire set B. We henceforth refer to the elements of C as clusters. Assume that

≺ induces a partial order over the elements of C . Let A ⊆ C ×C be the arcs representing

the directed acyclic graph induced by ≺ in C . That is, (c2,c1) ∈ A if and only if c1 ≺ c2.
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Note that we chose the arc directions such that a cluster’s out-neighbors are its precedents.

For computational purposes, we assume A to be the transitive reduction of this arc set. In

other words, A is composed only of immediate precedence relationships: if (c1,c2) ∈ A and

(c2,c3) ∈A , then (c1,c3) /∈A .

Given c ∈ C , we define the closure of c, or cl(c), and the reverse closure of c, or rcl(c), as

follows:

cl(c) = {c}∪{c′ ∈ C : c′ ≺ c},

rcl(c) = {c}∪{c′ ∈ C : c≺ c′}.

Although each c∈C is a set, we use lower-case letters to represent these elements (as opposed

to the usual upper-case notation). This is mainly because we define variables using each c ∈ C

as a subscript. For each b ∈B, let c(b) represent the unique cluster c ∈ C such that b ∈ c. We

use clusters to indicate that sets of blocks should be extracted simultaneously in a mine-planning

solution. That is, all the blocks in a single cluster are extracted in exactly the same proportion in

each time period. These clusters only enforce an extraction-related constraint, as the destination

of each block can be different from the destination of other blocks in the same cluster.

For each block b ∈B, let qb be its weight (or amount of material). For each t ∈ T , let Ut

represent the maximum amount of material that can be extracted in time period t, and let Ud
t

represent the maximum amount of material that can be sent to destination d ∈D in time period

t ∈T .

Let variables xc,t indicate the proportion of cluster c∈C extracted in time t ∈T . For each b∈
B, d ∈D , and t ∈T , let the variable yb,d,t indicate the proportion of block b sent to destination

d in time t. In (1), we describe a mixed-integer programming formulation proposed by [3]

which generalizes both the OPPSP and OPPDP. Although these authors originally refer to this

problem as the Parcel Assignment Problem (PAP), we henceforth refer to it as the Precedence

Constrained Production Scheduling Problem with Clusters (PCPSP-C).

max ∑
b∈B

∑
d∈D

∑
t∈T

pb,d,tyb,d,t (1a)

s.t. xc,t = ∑
d∈D

yb,d,t ∀c ∈ C , b ∈ c, t ∈T (1b)

∑
t∈T

xc,t ≤ 1 ∀c ∈ C (1c)

t

∑
t ′=1

xc,t ′ ≤
t

∑
t ′=1

xc′,t ′ ∀(c,c′) ∈A , t ∈T (1d)

Gy≤ g (1e)

yb,d,t ≥ 0 ∀b ∈B,d ∈D , t ∈T (1f)

xc,t satisfies an integrality condition. ∀c ∈ C , t ∈T (1g)

Here, the objective function (1a) maximizes the net present value of the solution. Constraints

(1b) impose consistency between the x and y variables, ensuring that in each period, all blocks

within a cluster are extracted and processed in the same proportion. Constraints (1c) impose that

a cluster can be extracted at most once and (1d) impose the precedence relationships. Constraints
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(1e) represent general operational requirements, (1f) bound the variables, and (1g) impose in-

tegrality conditions on the x variables. The exact nature of constraints (1e) and (1g) depends

on specific considerations of the model, and we show some common choices below. Neverthe-

less, we should point out that, regardless of the application, constraints (1e) typically include

conditions of the form:

∑
b∈B

∑
d∈D

qbyb,d,t ≤Ut ∀t ∈T , (2a)

∑
b∈B

qbyb,d,t ≤Ud
t ∀d ∈D , t ∈T , (2b)

where (2a) and (2b) impose mining and destination capacity limits, respectively.

We denote by LP-PCPSP-C the linear programming (LP) relaxation of the PCPSP-C, that

is, the relaxation obtained from (1) by removing constraints (1g). Note that due to the general

constraints (1e), the PCPSP-C, and even its LP relaxation, may be infeasible. However, if G≥ 0,

then the null solution (x,y) = (0,0) is feasible.

In this work, we consider two different integrality conditions (1g):

• The following conditions define full integrality constraints,

xc,t ∈ {0,1} ∀c ∈ C , t ∈T . (3)

These ensure that each block must be extracted entirely in a single time period.

• The following conditions define partial integrality constraints,

t

∑
t ′=1

xc,t ′ > 0 implies
t

∑
t ′=1

xc′,t ′ = 1 ∀(c,c′) ∈A , ∀t ∈T . (4)

These constraints allow the duration of cluster extraction to span multiple time periods;

however, they specify that a cluster must be entirely extracted before any of its successors

can, in turn, be extracted.

Partial integrality conditions (4) are often imposed in commercial software packages, such as

[23]), which, to our knowledge, were first identified in [24]. Note that by using either (3) or (4),

the PCPSP-C has a bounded feasible set. Thus, there exists an optimal solution whenever the set

is non-empty.

From this point onward, we refer to PCPSP-C whenever a technique is independent of the

exact nature of (1g) (e.g., when the discussion concerns the LP relaxation); otherwise, we use

PCPSP-F or PCPSP-P if the technique applies to the PCPSP-C under full integrality conditions

(3) or partial integrality conditions (4), respectively. Similarly, the OPPDP and OPPSP can be

formulated as special cases of the PCPSP-C.

2.2 The phase design problem (OPPDP)

The objective of solving an Open-Pit Phase Design Problem (OPPDP) is to compute a sequence

of nested pits, which a mining engineer can subsequently use to define phases. The OPPDP
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is the specific case of the PCPSP-F in which all the clusters are singletons (i.e., each cluster

corresponds to a single block), and in which G,g ≥ 0. Instances of the OPPDP with a single

destination per block are sometimes known as Capacitated Pit Problems (C-PITs), as in [10],

whereas those instances with multiple destinations per block are sometimes referred to as Open

Pit Mine Production Scheduling Problems (OPMPSPs), as in [7], or PCPSPs, as in [3]. In

general, instances of the OPPDP are often just referred to as direct block scheduling problems.

Observe that feasible solutions of the PCPSP-C always correspond to a sequence of nested

pits, regardless of how the clusters are defined. In fact, for every t ∈ T and every feasible

solution x of the PCPSP-C, the set B(x; t) = {b∈B :
t

∑
t ′=1

xc(b),t ′ > 0} defines a pit. Furthermore,

the sequence B(x;1), . . . ,B(x;2), . . . ,B(x;T ) is nested. By defining clusters as singletons, it is

possible to generate the best possible sequence of nested pits using the OPPDP, in terms of net

present value.

Traditionally, nested pits for phase design have heuristically been computed in the mining

community using parameterized maximum closure algorithms. See [36], [27] and [28] for de-

tails.

Ideally, pits should be few in number, and the volumetric difference between consecutive

pits should define wide contiguous areas, where one can easily accommodate ramps and where

equipment (shovels, trucks) can work and move around easily; however, neither the pits gener-

ated by solving the OPPDP nor those obtained via parametric analysis necessarily meet these

conditions. Moreover, it is not clear how one can modify these methodologies so that these

conditions are met. In practice, this issue is addressed through the pits computed by the OPPDP,

or by parametric analysis, as “guides” in a manual design process. This process begins with a

sequence of pits P1,P2, . . . ,Pn and, by using specialized computer-aided design (CAD) software

systems such as [16] or [38], it constructs a new sequence P′1,P
′
2, . . . ,P

′
k such that the required

operational conditions hold. These new pits, in turn, are used to compute a sequence of phases

ϕ1,ϕ2, . . . ,ϕn, where ϕ1 = P′1 and ϕ j = P′j \P′j−1 for all j > 1.

Although ultimately, both the OPPDP and parametric analysis are heuristic mechanisms by

which to generate nested pits, the use of the OPPDP makes it easier to control the size and

number of pits. See [39] for a discussion of the limitations of parametric analysis.

2.3 The production scheduling problem (OPPSP)

The Open-Pit Production Scheduling Problem (OPPSP) is a specific case of the PCPSP-P in

which all clusters correspond to bench-phases, defined as the intersection of a bench and a phase.

As mentioned above, each bench corresponds to a horizontal level of the block model, and each

phase is the output of the phase design process described in Section 2.2. The OPPSP is very

closely related to the Cutoff Grade Optimization Problem, originally proposed by [35]. See [3]

for a discussion of how linear programming duality can be used to demonstrate the relationship

between the OPPSP and cutoff grades.

As discussed in Section 2, given two clusters c1,c2, we have that c1 ≺ c2 whenever there

exist b1 ∈ c1 and b2 ∈ c2 such that b1 ≺ b2. In practical applications, it is common to also use

additional precedence relationships. For example, it is often required that clusters in the same

bench be extracted in the order prescribed by the phases [e.g. 48]. This requirement is easy to
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model in the OPPSP, as it is simply a matter of adding arcs to set A .

Figure 1 illustrates how a particular phase design could determine the definition of clusters

used and the precedence relationships between them. In this figure, we let phi be the i-th phase

and bni be the i-th bench. For phase phi and bench bn j, let Cli, j be the corresponding cluster

obtained from the intersection of phi and bn j.

OPPSP formulations tend to be more detailed than OPPDP formulations. In addition to (2),

inequalities (1e) can include other mining constraints, such as those related to flow-balance,

material-blending, and stockpiles.

ph1

ph2

ph3

(a) Phases

bn1

bn2

bn3

bn4

bn5

(b) Benches

Cl1,1

Cl1,2

Cl1,3

Cl3,1

Cl3,2

Cl3,3

Cl3,4

Cl3,5

Cl2,4

Cl2,5

Cl2,3 Cl2,3

Cl2,2 Cl2,2

Cl2,1 Cl2,1

(c) Clusters

Cl2,5 Cl3,5

Cl2,4 Cl3,4

Cl2,3 Cl1,3 Cl2,3 Cl3,3

Cl2,2 Cl1,2 Cl2,2 Cl3,2

Cl2,1 Cl1,1 Cl2,1 Cl3,1

(d) Immediate Precedences

Figure 1: Example illustrating the definition of phases, benches, clusters and the precedences

between clusters. Each arrow represents an immediate precedence relationship. The

head of each arrow corresponds to the predecessor in the corresponding precedence

relationship.

3 Previous methodological work and contributions of this

article

A typical mine planning problem is composed of 1–5 million blocks, 20–50 time periods, and

2–3 destinations, which results in a huge number of decisions, leading to models that are im-

possible to solve with commercial integer-programming solvers; even solving the LP-PCPSP-C

has proved elusive. To date, optimization approaches are varied and, to a large extent, work by
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exploiting problem-specific characteristics, such as the type of problem being solved (C-PIT,

PCPSP or PCPSP-C), and/or the characteristics of the matrix G, e.g., G≥ 0, or G general.

The earliest work attempting to solve PCPSP-C dates back to [30], who proposed using the

decomposition of [15] for the LP relaxation of the PCPSP but without any methods for comput-

ing integer-feasible solutions; he only managed to solve instances with up to 36 blocks. After

Johnson’s work, most optimization research regarding the PCPSP-C has focused on studying

C-PIT, i.e., the variant of the PCPSP-C in which each cluster is a single block with a single

destination per block, full integrality conditions are assumed, and there are only positive (upper-

bound) capacity constraints. Important milestones in this direction include:

• [13] and [14] study problems with up to 5,400 blocks by solving the LP relaxation with

Lagrangian relaxation. The authors argue that in practical mining problems, primal feasi-

bility is not so important, and they propose using the solution of the Lagrangian pricing

problem as the primal output. Even though this solution is integer-feasible, it can violate

capacity constraints.

• [9] prove that a common preprocessing technique based on computing ultimate pit lim-

its is correct for C-PIT. They also claim to solve problems with up to 209,664 blocks

to optimality with a customized branch-and-bound approach. Their methodology is not

described, citing commercial interests.

• [22] addresses problems with up to 25,620 blocks by combining Lagrangian relaxation

and customized rounding heuristics, and by introducing the notion of “early starts” and

“late starts” for preprocessing and LP bound strengthening.

• [12] and [33] handle problems with up to 25,620 blocks by combining tailored Lagrangian

relaxation and a sliding time window heuristic. Their results are the first to consider

instances with lower-bound capacity constraints. Solutions within 4% of optimality are

obtained.

• [19] make a collection of OPPDP instances available by means of the MineLib website.

These instances range in size from 1,060 to 2,140,342 blocks.

• [10] develop a customized decomposition algorithm for solving the LP relaxation of in-

stances with only a single capacity constraint per period. To obtain integer-feasible so-

lutions, they propose a heuristic called TopoSort, and a local search heuristic for further

refinement. Solutions within 2% of optimality are reported for instances with up to 4

million blocks. Using the algorithm for variants of the instances with two capacity con-

straints, solutions with a provable gap of 4% are computed.

• [49] develop a customized branch-and-bound method using Benders’ Decomposition and

customized heuristics. The approach considers lower bound constraints and a novel type

of integrality. Problems with up to 25,620 blocks are solved to 1% of optimality.

• To date, the best-known solutions for the C-PIT are those produced by three recent heuris-

tics. [29] propose a heuristic combining aggregation and disaggregation, [37] propose a

topological sorting heuristic which does not take as input an LP relaxation solution, and
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[46] extend TopoSort by introducing a diving component guided by genetic algorithms.

All of these papers improve the best gaps reported for MineLib instances.

Complementary works related to optimization methodologies for C-PIT are:

• [20], [5] and [18] study clique, cover and other inequalities on precedence-constrained

knapsack problems and derive cuts and separation algorithms.

• A number of articles have proposed aggregating variables to obtain smaller problems

which are directly solvable with commercial integer programming solvers. These meth-

ods vary depending on how clusters are defined. Important examples encompass the

fundamental-trees of [43], the mining-blocks of [47], the mining-cuts of [1, 2], and the

clumps of [21].

• A number of articles have studied stochastic variants of C-PIT. For reference, see the work

of [6], [44], and [45].

The work of [7] represents a significant departure from earlier research, as they abandon the

study of C-PIT and instead tackle the more general PCPSP (i.e., with multiple destinations and

general classes of constraints). In their work, they develop a customized decomposition method

that works by aggregating and disaggregating blocks. In computational experiments, they solve

instances with up to 96,000 blocks to 1% of optimality.

• [3, 4] generalize the formulation and decomposition method of [7] to the more general

PCPSP-C (which they call the PAP). Though their formulation generalizes both the OP-

PDP and OPPSP, their computational experiments focus on instances of the former, dis-

cussing neither model in detail and studying only the LP relaxation of the problem.

• [41] build on the work of [3], extending its applicability to broader classes of scheduling

problems, comparing the extension with other decomposition approaches, and introducing

a number of computational enhancements. Similar to [3], this article only focuses on LP

relaxations.

• [25, 26] discuss how solutions generated by the PCPSP-C formulation compare to those

generated by traditional commercial software, both from modeling and computational

viewpoints.

• [32] extend the PCPSP-C to model open-pit-to-under-ground transition problems, and

[40] extend the PCPSP-C to model stockpiles.

Also, a different approach, based on network flows and aimed at a simultaneous, aggregated

analysis of multiple mine sites is that of [17].

In this article, we extend many of the aforementioned methodologies, originally developed in

the context of the C-PIT, to the context of the PCPSP-C. We emphasize how these methodologies

can be used to solve both the OPPDP and OPPSP, each of which requires some problem-specific

techniques. Overall, our extensions mostly focus on: the decisions which affect clusters of

blocks rather than individual blocks, the multiplicity of destinations which a block can have,
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and the possibility of admitting partial integrality. In addition, we propose a number of new

methodologies. We are especially concerned with techniques that are useful for the OPPSP,

which has received much less attention in academic literature. Our work introduces new classes

of cutting planes and heuristics designed to reduce the large integrality gaps observed in OPPSP

instances. We also implement a specialized branch-and-bound algorithm.

Finally, we show that all of these methodologies work well when integrated. Most, if not

all, academic papers have studied these techniques individually, rather than in concert. This

integration is key to showing, for the first time, that it is possible to solve to near optimality

instances of both the OPPDP and OPPSP on real mine planning data sets, such as those handled

by commercial mine planning software systems.

4 Preprocessing

As discussed above, PCPSP-C can be very large in terms of the number of variables and con-

straints. In this section, we present techniques for transforming this problem into a mathemati-

cally equivalent one which possesses fewer variables. In other words, we reduce the dimension

of the problem without affecting the optimal objective function value.

4.1 Ultimate Pit Limit Preprocessing

In this subsection, we describe a preprocessing scheme that can be used to eliminate variables

from an instance of PCPSP-C by identifying clusters that provably do not appear in an optimal

solution of the problem. The scheme is a generalization of one proposed by [9] in the context

of C-PIT, which we extend to general instances of PCPSP-C, in which G,g ≥ 0.That is, the

generalization works for both partial and full integrality, and also for instances with clusters

which are not necessarily singleton blocks.

In general, given an optimization problem defined over a region S⊆Rn, we say that an optimal

solution x ∈ S is minimal if every other optimal solution x′ ∈ S is such that x′ ≤ x implies x′ = x.

For each c ∈ C , define p̄c = ∑b∈c pb,∗, where pb,∗ = max
d∈D

pb,d (as defined in Section 2). We

define the Ultimate Pit Limit Problem (U-PIT) of a PCPSP-C instance (see formulation (1)) as

max ∑
c∈C

p̄cxc (5a)

s.t. xc ≤ xc′ ∀(c,c′) ∈A , (5b)

xc ∈ [0,1] ∀c ∈ C . (5c)

Note that because this problem does not consider limited resources, there is no need to define

variables over multiple time periods.

U-PIT is a Maximum Closure Problem. As such, (a) its formulation (5) is totally unimodular,

and hence, its optimal basic solutions are binary; (b) it admits a unique minimal optimal solution;

and (c) it can be solved efficiently. For more information about the Maximum Closure Problem,

see [27].

Given a vector x ∈ [0,1]C that is feasible for U-PIT, we say that P = {c ∈ C : xc > 0} is the

pit-limit associated with x. Let (x∗,y∗) represent a minimal optimal solution to PCPSP-C. For
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each c ∈ C , let x1
c = ∑t∈T x∗c,t . Since x∗ satisfies constraints (1d), it follows that x1 is feasible for

U-PIT. Let us define POPT as the pit limit associated with x1. Slightly abusing notation, let POPT

be the pit limit associated with the minimal solution (x∗,y∗).
The following theorem generalizes a result of [9]. The proof is presented in the e-companion

of this article.

Theorem 1. Consider an instance of PCPSP-C, as described in formulation (1), such that G≥ 0

and g≥ 0. Let POPT and PU-PIT be the pit limits of the minimal optimal solutions to PCPSP-C and

U-PIT, respectively. Then, POPT ⊆ PU-PIT.

Theorem 1 allows us to preprocess as follows when G≥ 0 and g≥ 0. For each c∈C , compute

p̄c and solve U-PIT, as described in (5). We can eliminate all variables associated with clusters

c /∈ PU-PIT from the problem, as we know that there exists an optimal solution to PCPSP-C which

does not use them. Note that the proof of Theorem 1 holds for both integrality conditions (3)

and (4). Because of this PU-PIT is typically referred to as the ultimate pit limit of PCPSP-C.

4.2 Dominated Triplet Elimination Preprocessing

In nearly all strategic mine planning problems, most blocks are typically “waste” blocks, i.e.,

blocks whose grade is so low that the profit of selling the recovered metal does not cover the

processing costs. In most, though not all, problems, the option of sending such blocks to the

processor can be removed from the model (by eliminating a destination of these blocks), thus

making the problem smaller. Below we present a new, yet simple, preprocessing algorithm that

can be used to detect and eliminate destinations which are never used in an optimal solution for

cases such as these.

For each triplet (b,d, t) ∈ B×D ×T , let Gb,d,t be the column of matrix G correspond-

ing to variable yb,d,t . We say that triplet (b,d1, t) dominates triplet (b,d2, t) if Gb,d1,t ≤ Gb,d2,t

(component-wise) and pb,d1,t ≥ pb,d2,t . Intuitively, (b,d1, t) dominates (b,d2, t) if the proportion

of block b sent to destination d1 in time t consumes the same or fewer resources and provides

at least the same value than sending b to d2 in t. If this is the case, then there is no need to

actually define variable yb,d2,t , as we may assume that there exists an optimal solution such that

yb,d2,t = 0.

4.3 Aggregation Preprocessing

In many instances of PCPSP-C, blocks in close proximity to each other are identical. In such

cases, it is possible to group these blocks to reduce the number of variables. We describe this

new preprocessing idea below.

Consider an instance of PCPSP-C and two blocks b1, b2 within the same cluster such that for

some λ ≥ 0, the following holds:

pb1,d = λ pb2,d ∀d ∈D , (6)

Gb1,d,t = λGb2,d,t ∀d ∈D , t ∈T . (7)

In such a case, we can aggregate the two blocks into one block b̄ with Gb̄,d,t = Gb1,d,t +Gb2,d,t ,

and pb̄,d,t = pb1,d,t + pb2,d,t . The validity of this preprocessing comes from the fact that given
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any feasible solution (x∗,y∗) to the PCPSP-C satisfying (6) and (7), there exists another solu-

tion (x,y) to the new aggregated problem with the same objective value as (x∗,y∗). We can

take yb̄,d,t =
λ

1+λ
y∗b1,d,t

+ 1
1+λ

y∗b2,d,t
for each d ∈ D , t ∈ T , take yb,d,t = y∗b,d,t for each b ∈B \

{b1,b2},d ∈D , t ∈T , and take x = x∗. We can observe that pb̄,d,tyb̄,d = pb1,d,tyb1,d + pb2,d,tyb2,d

and Gb̄,d,tyb̄,d,t = Gb1,d,tyb1,d,t +Gb2,d,tyb2,d,t for each d ∈D , t ∈T .

Note that this scheme is not affected by precedence relationships given that only blocks within

the same cluster are aggregated and precedences in PCPSP-C are only defined between clusters.

5 Cutting planes

[4] claim that formulation (1) of PCPSP-C empirically presents low integrality gaps. In Section

8, computational experiments show that this is largely true for OPPDP. However, we do not ob-

serve the same behavior in OPPSP. To obtain low integrality gaps, we require problem-specific

cutting planes. In this section, we first extend clique and early-start inequalities from the context

of C-PIT to PCPCP-C. The first family of cuts that we obtain ignores the destination of each

block, and we refer to them as extraction cuts. We also derive two new classes of cuts which ex-

ploit the problem structure resulting from block destination selectivity. We call these production

cuts.

In what follows, we use a new set of variables describing the accumulated value of x variables:

wc,t =
t

∑
t ′=1

xc,t ′ ∀d ∈D , t ∈T . (8)

The value of wc,t in a feasible solution is the fraction of cluster c extracted in time period t or

earlier. Observe that the precedence constraints (1d) and mining capacity constraints (2a) on the

x variables imply that

wc,t ≤ wc,t+1, ∀c ∈ C , ∀t ∈ 1, . . . ,T −1, (9a)

wc,t ≤ wc′,t , ∀(c,c′) ∈A , t ∈T , (9b)

∑
c∈C

qcwc,t ≤
t

∑
t ′=1

Ut ′ , ∀t ∈T . (9c)

where qc = ∑
b∈c

qb is the total weight of the cluster. The full integrality conditions (3) and partial

integrality conditions (4) translate, respectively, as follows to the w variables:

wc,t ∈ {0,1}, ∀c ∈ C , ∀t ∈T , (10a)

wc,t > 0 implies wc′,t = 1, ∀(c,c′) ∈A , ∀t ∈T . (10b)

All cuts are presented using the wc,t variables for simplicity; nonetheless, it is evident that

they can be expressed using only variables xc,t . Thus, slightly abusing notation, we discuss these

valid inequalities for PCPSP-C using variables wc,t .

For the reader’s sake, let us recall relevant definitions and assumptions. We assume C to be

such that ≺ defines a partial order, and, therefore, A defines a directed acyclic graph. For each

cluster c∈C , we define the closure of c as cl(c) = {c}∪{c′ ∈C : c′ ≺ c} and the reverse closure
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of c as rcl(c) = {c}∪{c′ ∈ C : c≺ c′}. For a block b ∈B, we denote by c(b) the unique cluster

containing it. Additionally, for a set of clusters C⊆ C , we denote by b(C) := {b ∈B : b ∈ c,c∈
C} the set of blocks on C. Given S⊆C and a vector q∈RB , we define q(S) = ∑

c∈S
qc = ∑

c∈S
∑

b∈c
qb.

5.1 Extraction cuts

We next describe a class of cuts which exploits extraction capacity limits (2a). Since (9a)-(9b)

are precedence constraints and (9c) is a knapsack constraint (i.e., non-negative coefficients and

a positive right-hand side), (9) is a precedence-constrained knapsack relaxation of PCPSP-C.

For a discussion of cuts derived from the precedence-constrained knapsack problem, in addi-

tion to separation techniques, see [5] and [18]. The precedence-constrained knapsack cuts that

we analyze differ from those treated traditionally in academic literature in two aspects. First, the

time indexing of the variables gives these relaxations a nested structure that can be exploited.

Second, we not only consider the full integrality constraint (10a), but also the partial integrality

constraint (10b).

We now move on to describing three families of extraction cuts: early start cuts, diamond

cuts, and clique and lifted clique cuts.

5.1.1 Early Start Cuts.

As noted by [22], [34] and others, one can use early start cuts to eliminate a number of variables

from PCPSP. We extended this preprocessing technique to the more general PCPSP-C, including

the case of partial integrality condition (4). This can reduce the size of the problem, possibly

speeding up computations, and it can also improve the LP relaxation bound of the problem.

Theorem 2. Let t ∈ T and Qt =
t

∑
t ′=1

Ut ′ , and consider a cluster c ∈ C such that q(cl(c))> Qt.

Then,

• equality wc,t = 0 is valid for the PCPSP-F

• whenever qc > 0, inequality wc,t ≤
(Qt−q(cl(c)\{c}))+

qc
is valid for PCPSP-P.

Proof.

The result for the PCPSP-F is known; thus, we only prove this result for the PCPSP-P. We use

integrality condition (10b) obtained from (4). If wc,t > 0, then wc′,t = 1 for all c′ ∈ cl(c) \ {c}.

From this and inequality (9c), it follows that qcwc,t ≤Qt−q(cl(c)\{c}). If Qt ≤ q(cl(c)\{c}),
we obtain a contradiction with wc,t > 0. Hence, Qt ≤ q(cl(c)\{c}) implies wc,t = 0. From these

conditions, we conclude that wc,t ≤
(Qt−q(cl(c)\{c}))+

qc
is valid for PCPSP-P, where (Qt−q(cl(c)\

{c}))+ = max{0,(Qt−q(cl(c)\{c}))}.

Note that early start cuts can also be used as a preprocessing technique, eliminating variables

in PCPSP-F or PCPSP-P when the cut sets them to 0.
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5.1.2 Diamond Cuts.

The following inequalities are similar to those used by [50] in the context of multimode resource-

constrained project problems. These cuts use the set cl(c2)∩ rcl(c1) for c1,c2 ∈ C such that

c1 ≺ c2, which intuitively can be pictured as the intersection of two cones facing each other.

Theorem 3. Let t1, t2 ∈ T , t1 ≤ t2, and Qt1,t2 =
t2
∑

t ′=t1

Ut ′ , and consider clusters c1,c2 ∈ C such

that c1 ≺ c2. Then,

• whenever q(cl(c2)∩ rcl(c1))> Qt1,t2 , inequality wc2,t2 ≤ wc1,t1 is valid for PCPSP-F.

• whenever q(cl(c2)∩ rcl(c1) \ {c1,c2}) > Qt1,t2 , inequality wc2,t2 ≤ wc1,t1 is valid for the

PCPSP-P.

Proof.

First, consider full integrality condition (10a) obtained from (3), and as a contradiction, suppose

that wc2,t2 > wc1,t1 . This implies that wc2,t2 = 1 and wc1,t1 = 0. Consequently, all clusters in

cl(c2)∩ rcl(c1) are extracted in time periods t1 through t2. Nevertheless, this is impossible, as

q(cl(c2)∩ rcl(c1))> Qt1,t2 .

Now, assume partial integrality condition (10b) obtained from (4) and that wc2,t2 > wc1,t1 .

Consequently, wc1,t1 < 1 and wc2,t2 > 0. These conditions imply that every cluster in cl(c2)∩
rcl(c1)\{c1,c2} is fully extracted in time periods t1 through t2. Nevertheless, this is impossible,

as q(cl(c2)∩ rcl(c1)\{c1,c2})> Qt1,t2 .

5.1.3 Clique and Lifted Clique Cuts.

Clique and lifted clique inequalities have been studied for precedence-constrained knapsack

problems since [8]. We now introduce a natural generalization for the context of the PCPSP-C

which can be used with partial integrality.

Consider two clusters c1,c2 ∈ C such that neither c1 ≺ c2 nor c2 ≺ c1. We define the incom-

patibility of c1 and c2 as follows:

• We say that c1 and c2 are f-incompatible in time t if q(cl({c1,c2}))> Qt .

• We say that c1 and c2 are p-incompatible in time t if q(cl({c1,c2})\{c1,c2})> Qt .

Intuitively, incompatible clusters are such that neither can be extracted before a certain time

period. Using this information, we obtain the following result:

Theorem 4. Let {c1,c2, . . . ,ck} be a set of clusters, and consider the following inequality:

k

∑
i=1

wci,t ≤ 1. (11)

Then,

• if {c1,c2, . . . ,ck} are pairwise f-incompatible, then inequality (11) is valid for PCPSP-F.
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• if {c1,c2, . . . ,ck} are pairwise p-incompatible, then inequality (11) is valid for PCPSP-P.

In addition, if a cluster c ∈ C is such that c ≺ ci for i = 1, . . . ,k, then constraint
k

∑
i=1

wci,t ≤

wc,t is also valid for PCPSP-F (PCPSP-P) if {c1,c2, . . . ,ck} are pairwise f-incompatible (p-

incompatible).

Proof.

To prove that (11) is valid, suppose
k

∑
i=1

wci,t > 1. This assumption implies that there exist i1, i2 ∈

1, . . . ,k such that wi1,t > 0 and wi2,t > 0.

Assume that {c1,c2, . . . ,ck} are pairwise f-incompatible. Using integrality condition (10a),

we would have that wi1,t = wi2,t = 1. This would imply that all clusters in cl({ci1 ,ci2}) were

extracted at time t or earlier, which would, in turn, contradict q(cl({ci1 ,ci2}))> Qt . This proves

the result for the PCPSP-F.

Now, assume that {c1,c2, . . . ,ck} are pairwise p-incompatible. Using integrality condition

(10b), wi1,t > 0 and wi2,t > 0 would imply that all clusters in cl({ci1 ,ci2}) \ {ci1 ,ci2} were ex-

tracted at time t or earlier, which would, in turn, contradict q(cl({ci1 ,ci2}) \ {ci1 ,ci2}) > Qt .

From here, we conclude the result for PCPSP-P.

5.2 Production cuts

In this subsection, we describe new classes of cuts for the PCPSP-C, which we term production

cuts because they exploit the capacity limits of each destination (2b) that are typically used to

impose limits on production.

5.2.1 Production cuts in a simplified case.

For the reader’s sake, in this subsection, we present the production cuts in a simplified version

of the problem which considers two destinations: blocks are either processed (P) or wasted (W ).

We assume no clusters (or equivalently, single-block clusters) and no time index (i.e., T = 1).

Consider an acyclic directed graph G = (B,A ), a vector of positive coefficients q ∈ RB
+ and

a capacity U > 0. We define the mode-knapsack mixed-integer set (MK) as follows. A vector

(x,yP,yW ) ∈ RB×RB×RB belongs to the set MK if and only if the following conditions are

met:

∑
b∈B

qbyP
b ≤U, (12)

yP
b + yW

b = xb ∀b ∈B, (13)

xb ≤ 1 ∀b ∈B, (14)

xb > 0 =⇒ xb′ = 1 ∀(b,b′) ∈A , (15)

yP
b ,y

W
b ≥ 0 ∀b ∈B. (16)

We can derive the following cuts for MK.

Simplified Variable-Right-Hand Side (VRHS) Cuts.
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This family of cuts combines the precedence relationships in the extraction of blocks and the

production limit (12). In other words, they ensure that if a solution sends a large number of

blocks to be processed, then all predecessors of those blocks must be fully extracted as well.

Theorem 5. Let b ∈B be such that qb ≤U. Then, the following inequality is valid for MK:

∑
b′∈rcl(b)

qb′y
P
b′ ≤Uxb.

Proof. Proof. If xb = 1, the inequality holds because of (12). If xb < 1, then xb′ = 0 for each

b′ ∈ rcl(b)\{b}, and then, the inequality holds because yP
b ≤ xb and qb ≤U .

Note that although we assume that qb ≤U , we can easily relax this assumption by changing

the coefficient of the variable on the right-hand side.

Simplified Hourglass Cuts.

Contrary to the VRHS cuts, the hourglass cuts derive valid inequalities involving W , the

waste destination in our interpretation. In other words, we exploit the fact that for a block to be

extracted, it is necessary to send blocks comprising an aggregate minimum weight to destination

W .

Theorem 6. Let b∈B and S⊆ cl(b)\{b} be such that q(S)≥U. Then, the following inequality

is valid for MK:

(q(S)+qb−U)xb ≤ ∑
b′∈S∪{b}

qb′y
W
b′ .

Proof. Proof. The inequality is clearly valid when xb = 0. Suppose that xb > 0; then, for each

b′ ∈ S, we have xb′ = yP
b′+ yW

b′ = 1. Hence,

∑
b′∈S∪{b}

qb′y
P
b′ ≤U =⇒ U− ∑

b′∈S

qb′y
P
b′ ≥ qbyP

b ,

=⇒ U− ∑
b′∈S

qb′(1− yW
b′ )≥ qbyP

b ,

=⇒ ∑
b′∈S

qb′y
W
b′ ≥ qbyP

b +q(S)−U,

=⇒ ∑
b′∈S∪{b}

qb′y
W
b′ ≥ qb(y

P
b + yW

b )+q(S)−U,

=⇒ ∑
b′∈S∪{b}

qb′y
W
b′ ≥ qbxb +q(S)−U ≥ (qb +q(S)−U)xb.

In the above, the last inequality holds because q(S) ≥ U and xb ≤ 1. Therefore, whenever

xb > 0, we have:

(q(S)+qb−U)xb ≤ ∑
b′∈S∪{b}

qb′y
W
b′ .
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These cuts can be lifted using the extraction variables for the nodes in rcl(b) to obtain the

following valid inequality for MK:

(q(S)+qb−U)xb + ∑
b′∈rcl(b)\{b}

qb′y
P
b′ ≤ ∑

b′∈S∪{b}

qb′y
W
b′ .

The proof of the validity of this inequality for MK is identical to the previous one. Because

this last expression uses variables for blocks in cl(b) and in rcl(b), we call this family hourglass

cuts.

Now, we introduce both families in the general PCPSP-C context. The intuition is the same;

however, additional analysis is necessary to include clusters, arbitrary numbers of destinations

and multiple time periods.

5.2.2 Variable-Right-Hand Side (VRHS) Cuts.

First, we observe that the following conditions are valid for PCPSP-C for both full and partial

integrality conditions:

wc,t < 1⇒ yb,d,t = 0, ∀c ∈ C ,∀b ∈ {b ∈B : c(b) ∈ rcl(c)\{c}}, ∀d ∈D , ∀t ∈T , (17a)

yb,d,t ≤ wc,t , ∀c ∈ C , ∀b ∈ c, ∀d ∈D , ∀t ∈T , (17b)

∑
b∈B

qbyb,d,t ≤Ud
t , ∀d ∈D , ∀t ∈T . (17c)

with wc,t defined in (8). These can be used to derive a new family of valid inequalities, general-

izing the cuts discussed above.

Theorem 7. Consider a destination d ∈ D , a time period t ∈ T and a family of clusters

c1,c2, . . . ,cn ∈ C such that the following conditions hold:

1. c1 ≺ c2 ≺ . . .≺ cn,

2. q(rcl(c1)\ rcl(cn))<Ud
t ,

3. q(rcl(c1))>Ud
t .

Additionally, define ∆k = rcl(ck)\rcl(ck+1) and δk = q(∆k) for k = 1, . . . ,n−1, and ∆n = rcl(cn)
and δn =Ud

t −q(rcl(c1)\ rcl(cn)). Consider the inequality

n−1

∑
k=1

(

∑
c∈∆k

∑
b∈c

qbyb,d,t

)

+ ∑
b∈cn

αbqbyb,d,t + ∑
c∈rcl(cn)\{cn}

∑
b∈c

qbyb,d,t ≤
n

∑
k=1

δkwck,t (18)

for some constants 0≤αb≤ 1, b∈ cn. Then, (18) is valid for PCPSP-F. Additionally, if constants

αb satisfy

∑
b∈cn

αbqb ≤Ud
t −q(rcl(c1)\ rcl(cn)), (19)

then (18) is valid for PCPSP-P.
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Proof. Proof. The proof is divided in two cases: (i) the case in which ∀k ∈ {1, . . . ,n} wck,t = 1,

and (ii) the case in which ∃k ∈ {1, . . . ,n} wck,t < 1.

Case 1: wck,t = 1 for k = 1, . . . ,n. Note that {∆1, . . . ,∆n−1} is a partition of rcl(c1) \ rcl(cn).
Thus, ∑

n−1
k=1 δk = q(rcl(c1)\ rcl(cn)), which implies ∑

n
k=1 δk =Ud

t . Then

n−1

∑
k=1

(

∑
c∈∆k

∑
b∈c

qbyb,d,t

)

+ ∑
b∈cn

αbqbyb,d,t + ∑
c∈rcl(cn)\{cn}

∑
b∈c

qbyb,d,t

≤
n−1

∑
k=1

(

∑
c∈∆k

∑
b∈c

qbyb,d,t

)

+ ∑
b∈rcl(cn)

qbyb,d,t

≤ ∑
b∈B

qbyb,d,t ≤Ud
t =

n

∑
k=1

δk =
n

∑
k=1

δkwck,t ,

where the first inequality comes from the fact that αb ≤ 1, and the second inequality ensues, as

each block is being counted at most once on the left-hand side. Thus, in this case, (18) is valid.

Case 2: Suppose now that ∃k such that wck,t < 1, and let ko = min{k ∈ 1, . . . ,n : wck,t < 1}.

Observe that wck,t = yb,d,t = 0 for k > ko and b ∈ b(∆k). Additionally, since this case implies

wcn,t < 1, for each c ∈ rcl(cn)\{cn}, we have wc,t = 0. This makes inequality (18) equivalent to

n−1

∑
k=1

(

∑
c∈∆k

∑
b∈c

qbyb,d,t

)

+ ∑
b∈cn

αbqbyb,d,t ≤
n

∑
k=1

δkwck,t . (20)

We now analyze two sub-cases regarding ko:

• If ko < n, since cn ∈ ∆n and rcl(cn)\{cn} ⊆ ∆n, the second term on the left-hand side of

inequality (20) is 0. Moreover, this inequality simplifies to

ko

∑
k=1

(

∑
c∈∆k

∑
b∈c

qbyb,d,t

)

≤
ko

∑
k=1

δkwck,t .

This inequality is valid since

∑
c∈∆k

∑
b∈c

qbyb,d,t ≤ ∑
c∈∆k

∑
b∈c

qbwc,t ≤

(

∑
c∈∆k

∑
b∈c

qb

)

wck,t = δkwck,t ∀k ∈ {1, . . . ,n−1}.

(21)

• If ko = n and we use full integrality conditions, then wcn,t = yb,d,t = 0 for all b ∈ cn. Thus,

the validity of (20) for the PCPSP-F follows from (21).

On the other hand, if ko = n and we use the partial integrality condition, from (17a) and

(19), we obtain

∑
b∈cn

αbqbyb,d,t ≤

(

∑
b∈cn

αbqb

)

wcn,t ≤ (Ud
t −q(rcl(c1)\ rcl(cn)))wcn,t = δnwcn,t . (22)

Thus, the validity of (20) for the PCPSP-P derives from (21) and (22).
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5.2.3 The Hourglass Cuts

We now generalize the hourglass cuts for the PCPSP-C. These are a variant of the VRHS in-

equalities described above.

In its simplified form, each hourglass cut considers a cluster c̄, a set of blocks S contained in

b(cl(c̄)), and the set of blocks in b(rcl(c̄)), as the name of the inequality suggests.

Theorem 8. Let 1≤ t1 ≤ t ≤ T , c̄ ∈ C , and S⊆ b(cl(c̄)\{c̄}) be such that

q(S)≥
t

∑
s=t1

Ud
s .

Let R = rcl(c̄)\{c̄}. Then, the inequality
(

q(S∪{c̄})−
t

∑
s=t1

Ud
s

)

wc̄,t + ∑
b∈b(R)

qb

t

∑
s=t1

yb,d,s ≤ ∑
b∈S∪{c̄}

qb

(

wc(b),t −
t

∑
s=t1

yb,d,s

)

(23)

is valid for PCPSP-C.

Proof. Proof. If wc̄,t = 0, then the left-hand side is equal to 0, and the inequality holds true.

Henceforth, assume wc̄,t > 0. Then, for each b ∈ S, wc(b),t = 1. We know that

∑
b∈S

qbyb,d,s +∑
b∈c̄

qbyb,d,s + ∑
b∈b(R)

qbyb,d,s ≤Ud
s ∀s≤ t

Combining these inequalities, we obtain:

∑
b∈S

qb

t

∑
s=t1

yb,d,s +∑
b∈c̄

qb

t

∑
s=t1

yb,d,s + ∑
b∈b(R)

qb

t

∑
s=t1

yb,d,s ≤
t

∑
s=t1

Ud
s

Moving the left-most term to the right-hand side, and adding ∑
b∈S

qbwc(b),t on both sides yields:

∑
b∈S

qb wc(b),t
︸ ︷︷ ︸

1

+∑
b∈c̄

qb

t

∑
s=t1

yb,d,s + ∑
b∈b(R)

qb

t

∑
s=t1

yb,d,s ≤
t

∑
s=t1

Ud
s + ∑

b∈S

qbwc(b),t −∑
b∈S

qb

t

∑
s=t1

yb,d,s,

=⇒ q(S)−
t

∑
s=t1

Ud
s + ∑

b∈c̄

qb

t

∑
s=t1

yb,d,s

︸ ︷︷ ︸

∑
b∈c̄

qb

(

wc̄,t−wc̄,t+
t

∑
s=t1

yb,d,s

)

+ ∑
b∈b(R)

qb

t

∑
s=t1

yb,d,s ≤ ∑
b∈S

qb

(

wc(b),t −
t

∑
s=t1

yb,d,s

)

.

=⇒ q(S)−
t

∑
s=t1

Ud
s +∑

b∈c̄

qbwc̄,t

︸ ︷︷ ︸

q(c̄)wc̄,t

+ ∑
b∈b(R)

qb

t

∑
s=t1

yb,d,s ≤ ∑
b∈S∪{c̄}

qb

(

wc(b),t−
t

∑
s=t1

yb,d,s

)

,

=⇒

(

q(S)−
t

∑
s=t1

Ud
s +q(c̄)

)

wc̄,t + ∑
b∈b(R)

qb

t

∑
s=t1

yb,d,s ≤ ∑
b∈S∪{c̄}

qb

(

wc(b),t −
t

∑
s=t1

yb,d,s

)

.

This proves the validity of (23).

19

75



Given the flexibility in the choice of the set S above, we are also interested in finding the best

possible S. It turns out that there is a simple expression for the set S with maximum violation.

Specifically, given a solution (w∗,y∗) of the relaxation of the PCPSP-C, a cluster c̄ ∈ C and time

periods 1≤ t1 ≤ t ≤ T , the set S∗ which maximizes the violation in (23) is

S∗ =

{

b ∈B : c(b)≺ c̄, w∗c̄,t > w∗c(b),t −
t

∑
s=t1

y∗b,d,s

}

. (24)

If a block b̄ such that c(b̄)≺ c̄ satisfies w∗c̄,t > w∗c(b),t−∑
t
s=t1

y∗b,d,s and it is not in S∗, then adding

it to S∗ would increase the violation of the inequality. If a block b̄ ∈ S∗ is such that w∗c̄,t <
w∗c(b),t−∑

t
s=t1

y∗b,d,s, removing it from S∗ would decrease it. Expression (24) allows us to quickly

compute the most-violated hourglass cut, thus efficiently finding a deep cut in this family.

6 Heuristics

To quickly compute good feasible solutions to instances of PCPSP-C (and, consequently, strong

lower bounds), we rely on a combination of heuristic techniques and a local search method.

The first technique is a generalization of the TopoSort heuristic described by [10] originally for

C-PIT, to PCPSP-C. That is, this generalization considers arbitrary clusters and both full and

partial integrality. The heuristic requires all the coefficients in constraint matrix G to be non-

negative; thus, it is well suited for all instances of the OPPDP and for instances of OPPSP with

G ≥ 0. The second technique that we consider is based on converting an instance of PCPSP-C

to an instance of PCPSP by fixing the destination of each block before the optimization. This

technique potentially allows us to use the many different algorithms that have been proposed for

C-PIT, although it is more general since it does not require G to be non-negative. Furthermore,

if the number of clusters that define the problem is not too large, as is often the case, one can

solve the resulting PCPSP directly with a mixed integer programming solver. This makes the

technique well-suited for the OPPSP but not very effective for the OPPDP. We call this second

technique the 1-DEST Heuristic. Finally, given an integer-feasible solution of PCPSP-C, it is

possible to perform a simple local-search procedure to improve the destination assignment of

the blocks. One can apply this to any integer-feasible solution of PCPSP-C simply by solving

a linear programming problem, which we call the Optimize-Destinations heuristic. We now

describe these in more detail.

6.1 The Generalized TopoSort Heuristic [TopoSort]

The generalized TopoSort heuristic, presented in Algorithm 1, is a modified version of the

expected-time TopoSort heuristic of [10] that expands the functionality of the algorithm from

instances of the C-PIT to instances of the PCPSP-C. It takes as input a solution (x∗,y∗) obtained

by solving the LP-PCPSP-C and outputs a feasible solution (x̄, ȳ) of the PCPSP-P satisfying the

partial integrality constraint, as defined in (4). The heuristic assumes that matrix G, appearing

in constraints (1e), is such that G ≥ 0 (i.e., all its components are non-negative). It is straight-

forward to modify this heuristic such that its output satisfies full integrality (3).
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Given a directed acyclic graph (DAG), a topological ordering is such that if a node u comes

before a node v, then there cannot exist an arc going from u to v. It is well known that every

DAG admits a topological ordering and that computing it can be done in linear time (see [11]).

In terms of the Open Pit Production Scheduling Problem, a topological ordering corresponds to

an extractable ordering of the blocks. That is, the position of every block b in the ordering is

such that all its predecessors appear before it.

The TopoSort heuristic presented in [10] works by first sorting all blocks in topological or-

der. Following this order, each block is scheduled as early as possible, that is, in the first time

period with sufficient resources and no earlier than its predecessors. Once a block is scheduled,

the available resources are updated, and the algorithm continues by scheduling the next block.

Because many topological orderings are available, the heuristic uses the optimal solution of the

LP relaxation to guide the sorting process. See [10] for details.

The generalized TopoSort algorithm that we present in Algorithm 1 exhibits several important

differences from the TopoSort heuristic described by [10]. First, it schedules clusters rather than

blocks. Second, it can handle partial integrality condition (4). Third, it forces clusters to be

extracted no earlier than the first time period in which the corresponding variables in the LP

relaxation have nonzero values. This last modification, implemented in Step 8 of Algorithm 1,

prevents negative-valued extractions from occurring too early in the schedule. Fourth, we break

ties with the coefficients in the objective function.

6.2 The 1-DEST Heuristic.

This heuristic proceeds in three steps. First, it uses the optimal solution (x∗,y∗) of LP-PCPSP-C

to assign a fixed destination to each block for each period. Second, it constructs a small instance

of PCPSP with a single destination (and no clusters). This is done by substituting out all of the y

variables and obtaining a problem only in terms of the x variables. Third, the resulting problem

is solved directly by using a mixed-integer programming solver.

Specifically, for each b ∈B, d ∈D , let us define:

ȳb,d =
∑t∈T y∗b,d,t

∑
d′∈D

∑
t∈T

y∗b,d′,t
.

Given these values, we impose the following condition for each c ∈ C , b ∈ c,d ∈D and t ∈T :

yb,d,t = xc,t · ȳb,d. (25)
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Substitute the equations (25) in constraints (1c)-(1f) of the PCPSP-C formulation to obtain:

max ∑
c∈C

∑
t∈T

p̄c,txc,t

s.t. ∑
t∈T

xc,t ≤ 1 ∀c ∈ C ,

t

∑
t ′=1

xc,t ′ ≤
t

∑
t ′=1

xc′,t ′ ∀(c,c′) ∈A , t ∈T ,

Ḡx≤ g

xc,t ≥ 0 ∀c ∈ C , t ∈T ,

xc,t satisfies an integrality condition ∀c ∈ C , t ∈T ,

where p̄ and Ḡ are naturally defined from the substitution.

Solve this problem to optimality using a mixed-integer programming solver, and use (25) to

determine the value of the associated y variables. Depending on the integrality conditions used

in the last optimization problem, we construct a solution to either PCPSP-F or PCPSP-P.

6.3 The Optimize-Destinations Heuristic

Consider a feasible mixed-integer solution (x,y) of PCPSP-C. A simple method to obtain an

improved solution (x,y′) is to fix the x variables and re-optimize the y variables with a linear

programming solver (e.g., with the BZ algorithm proposed by [3, 4]). This is a natural pro-

cess after running the generalized TopoSort or 1-DEST heuristics, which can only improve the

solution.

7 Branch-and-Bound

We now introduce a simple branch-and-bound algorithm to solve PCPSP-C to optimality. In

our description of the algorithm, we assume that we are interested in computing a solution

which satisfies the partial integrality constraint (4). Imposing integrality constraint (3) instead

is analogous. This algorithm does not make any assumptions about the matrix G appearing in

the constraints (1e). For background about the branch-and-bound algorithm, see [42]. The main

characteristics of our branch-and-bound algorithm are:

• The nodes of the branch-and-bound tree can be explored in a depth-first-search or a best-

bound-first-search. In our computational runs, we used the best-bound-first-search rule.

We use strong branching at every node of the tree to select variables.

• The LP at each node of the tree is solved with the BZ algorithm, using the features de-

scribed by [41].

• When using the partial integrality condition (4), a solution x∗ is considered “fractional” if

there exists an arc (c1,c2) ∈A and a time period t ∈T , such that:

t

∑
t ′=1

x∗c1,t ′ > 0 and
t

∑
t ′=1

x∗c2,t ′ < 1.
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In this case, (c1,c2) ∈A and t ∈ T define a possible branching point. The two branches

to consider for this point are:

t

∑
t ′=1

xc1,t ′ = 0 (the down-branch), and
t

∑
t ′=1

xc2,t ′ = 1 (the up-branch). (26)

If, after branching on (c1,c2) and t, we find that one of the branches is pruned, the parent

node can be strengthened as follows.

– If the down-branch is pruned, all integral solutions at the parent node must satisfy

∑
t
t ′=1 xc1,t ′ > 0. This, in turn, implies that all integral solutions at the parent node

must satisfy the following constraint, which can be added to the node:

t

∑
t ′=1

xc,t ′ = 1 for all c such that (c1,c) ∈A . (27)

– If the up-branch is pruned, integral solutions at the parent node must satisfy ∑
t
t ′=1 xc2,t ′ <

1. This, in turn, implies that all integral solutions at the parent node must satisfy the

following constraint, which can be added to the node:

t

∑
t ′=1

xc,t ′ = 0 for all c such that (c,c2) ∈A . (28)

• The solver only adds cutting planes to the root node.

8 Computational study

The primary goal of our computational study is to determine if the proposed methodology can

be used to solve real problem instances of OPPDP and OPPSP. The secondary goal of our study

is to determine the contribution of each feature to the overall effectiveness of the methodology.

To conduct our study, we implemented the methodology described in this paper, including all

the features covered in Sections 4 - 7, and collected ten mine planning instances which could be

used to solve instances of both OPPDP and OPPSP.

Table 1 summarizes the numerical characteristics of our test instances. These instances all

correspond to real mines, with the exception of marvin. Moreover, four of these instances

(kd, marvin, mclaughlin and mclaughlin limit) are publicly available in the MineLib reposi-

tory (see [19]). The remaining instances were provided by industry partners, whose names we

have changed for confidentiality reasons.

Using each of these datasets, we created one instance of OPPDP and two instances of OPPSP.

We refer to the latter two as the OPPSP base instance and the OPPSP extended instance.

To build each OPPSP base instance, we computed clusters for the corresponding problems

as follows. A mining engineer used the Dassault Whittle [23] strategic mine planning software

to compute four phases for each instance using the ‘Automatic Pushback Generator’ feature

(Milawa NPV algorithm). The clusters used for our models consist of the bench phases obtained

by using these phases. Each instance has between 50 and 300 clusters. To build each OPPSP

extended instance, each OPPSP base instance was modified in one of four ways:
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• For instances calbuco, kd, and palomo, the mining engineer computed clusters using seven

phases, rather than four.

• For instances chaiten, marvin and mclaughlin, we added minimum processing constraints,

∑
b∈B

qbyb,d,t ≥ Ld
t ∀t ∈T ,

where d ∈ D is the mill, or the concentrator destination. These constraints are fairly

common and seek to ensure a constant yearly production and usage of the concentrator.

• For instances guallatari, mclaughlin limit, and ranokau, we imposed what is known as a

flow balance constraint, that is, a constraint of the form:

∑
b∈B

∑
d∈D

qbyb,d,t+1 ≤ (1+α) ∑
b∈B

∑
d∈D

qbyb,d,t ∀t ∈ {1, . . . ,T −1}. (29)

These constraints are fairly common in industry since, in practice, it is not feasible to

radically change the size of the workforce and fleet of trucks from one year to another.

For example, Dassault Whittle offers a heuristic called Milawa Balance which imposes

this condition. In our runs, we used α = 0.0, which produces solutions with characteristics

similar to those produced by the default Milawa Balance algorithm.

• In the case of instance tronador, we imposed a blending constraint. These constraints

are typically used to limit the weighted average of a given contaminant sent to a fixed

destination d ∈D . For each b ∈ B, we let q′b represent the tons of prohibited material in b,

and since we wish to impose that the weighted average grade of this material is less than

βt in each period t ∈T , we add the following constraint:

∑
b∈B

q′byb,d,t

∑
b∈B

qbyb,d,t
≤ βt ∀t ∈T \{1}.

By multiplying the denominator, this constraint becomes linear and can be added to the

model. In the specific case of tronador, the constraint is used to limit the weighted average

amount of arsenic sent to the mill.

The constraints added to the OPPSP extended instances made the OPPSP base instance solu-

tions infeasible. Moreover, with the exception of the “7 phases” cases, the TopoSort and UPIT

methods cannot be used in any of the OPPSP extended instances.

All our algorithms were implemented using the C programming language, with CPLEX R©

12.6 as the optimization solver. The computer servers employed for computations use Linux

2.6.32 on x86 64 architecture, with four eight-core Intel R© Xeon R© E5-2670 processors and 128

GB of RAM. Results analyze the performance with different sets of activated features and are

given as normalized geometric means.
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8.1 Effectiveness of the methodology on instances of the OPPDP.

We began by testing the effectiveness of our three proposed preprocessing techniques: ultimate

pit limit preprocessing (UPIT), dominated triplet elimination (DTE), and early start cuts (ES),

as described in Sections 4.1, 4.2 and 5.1, respectively. We ran the preprocessing algorithm

four times on each instance: one with all our preprocessing techniques (we call this our de-

fault preprocessing methodology), and then we preprocessed each instance by using our default

preprocessing with exactly one of the features disabled. Table 2 describes the results of these

experiments. To facilitate comparisons, we present the resulting number of variables as a per-

centage of the original number of variables (originally given in Table 1). As can be appreciated

from the fifth column, the effect of preprocessing can be significant. This is illustrated by the

calbuco instance, where only 3.19% of the variables remained after preprocessing. However,

in the other instances, the effect is only moderate. By observing columns two through four, it

is noticeable that all three techniques (UPIT, DTE, and ES) are effective. However, disabling

UPIT has the most detrimental effect. After preprocessing these instances, we solved the linear

programming relaxation of the corresponding PCPSP-C instance using the BZ algorithm, as de-

scribed in [41]. Then, we used the TopoSort heuristic, as described in Section 6.1, to compute

integer-feasible solutions for each instance and the Optimize-Destinations heuristic, as described

in Section 6.3, to improve them.

The results are presented in Table 3. To facilitate comparisons, in the second column, we

show the objective function value of the LP relaxation as a percentage of the solution obtained

via the TopoSort heuristic. The total time taken by the algorithm, including the time to solve the

LP relaxation, is presented in column three. It should be further noted that the time required for

the TopoSort and Optimize-Destination heuristics is negligible (less than one second). In Table

3, we observe that with the exception of the ranokau instance, it is possible to compute very

high-quality solutions to these problems in just minutes. For example, consider the guallatari

instance. In just over two minutes (2 m 16 s), it is possible to obtain an integer-feasible solution

within 1.3% of optimality. The LP relaxation of ranokau is difficult to solve owing to the number

of time periods it contains. However, the quality of the solution obtained by the heuristics is

still very good, showing a gap of 2.22%. Overall, the geometric mean of gaps is only 1.25%,

confirming that the bounds provided by LP relaxation of OPPDP instances tend to be very tight

(as observed by [3]).

8.2 Effectiveness of the methodology on instances of OPPSP.

In addition to testing the UPIT, DTE and ES techniques, as we did in Section 8.1, we also tested

the aggregation (AGG) technique, as described in Section 4.3. Note that the ES technique is

considered for both the preprocessing and cutting planes analysis. Our default preprocessing

option consists of applying all four techniques. The results of our experiments are summarized

in Table 4. In the sixth column, we can observe that the effect of preprocessing is also significant

for the OPPSP; however, the most efficient techniques change with respect to OPPDP.

Next, we analyze the tightness of the LP relaxation bounds for these instances and the effec-

tiveness of the cutting planes described in Section 5 for improving these bounds. To do so, we

compare the value of the LP relaxation to the value of the best known integer-feasible solution
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of each instance by taking the ratio of these two values. This ratio is computed in six different

manners for each instance: once with no cutting planes, once with our default options (early

start, lifted clique, hourglass and VRHS cuts), and once with our default options minus one of

the cutting plane classes. Our cutting-plane approach is simple. In each round, we generate all

possible cuts but only add the 1,000 most violated ones. We run no more than ten rounds of

cuts. Cuts are eliminated in subsequent rounds if the corresponding dual variables are null. As

is disclosed later, the objective function value of these integer-feasible solutions is within one

percent of optimality for all instances. Thus, these ratios provide a very good estimate of the

tightness of the bounds and the effectiveness of the cutting planes in improving these bounds.

See Table 5.

Note that the ratios have been multiplied by 100 to facilitate readability. Thus, if the value

of a ratio is 100, the LP relaxation has the same objective function value as the best known

integer-feasible solution (i.e., the bound is tight). The values in the second column of Table

5 provide evidence regarding how weak the LP relaxation bounds computed without cutting

planes can be. On average, this bound is within 10% of optimality, but in some instances, it can

be significantly worse (more than 30% in both ranokau instances and almost 20% in the chaiten

instances), which stands in contrast to what we observe for the OPPDP instances. Nonetheless,

the seventh column shows a significant tightening of the bounds after adding the cutting planes.

In general, all cutting planes help improve the bounds (columns three through six); however, it

seems that the hourglass cuts have the most significant impact. It is also worth pointing out that

the behaviors of the base and extended instances are very similar. As would be expected, the

gaps of the extended instances are marginally worse, but the cuts seem to help in both types of

problems.

Table 6 demonstrates the impact which branching for four hours has upon the upper bounds

provided by the linear programming relaxation as computed with and without cutting planes. We

do not add cuts at nodes of the branch-and-bound tree in any of the instances. When comparing

the third and fourth columns, in addition to the seventh and eighth columns, we can see that in

most instances, branching for four hours is less effective than adding cuts. On the other hand,

by comparing columns four and five, in addition to columns eight and nine, we can see that

branching does improve the bound computed by the cutting planes. In fact, branching reduces

the average ratio to 100.47 for the extended instances and 100.64 for the base ones.

Table 7 depicts the effectiveness of our different techniques for computing integer-feasible so-

lutions to OPPSP (i.e., lower bounds). Specifically, we analyze the performance of the TopoSort

heuristic (Topo), running the 1-DEST Reduction Heuristic, and branching with a time limit of

four hours (BB4). All values are normalized relative to the best upper bound computed for each

instance (which would have a value of 100) using branch-and-bound with cutting planes. Note

that we cannot use the TopoSort heuristic on the extended problem sets (since the matrix G

appearing in the PCPSP-C has negative coefficients).

From the second column, as in the OPPDP instances, we observe that the TopoSort heuristic

is very effective. However, the 1-DEST heuristic seems to compute slightly better solutions and

has the advantage of being able to run for both the base and extended problem instances. Table 7

also shows that using the solutions computed from the LP relaxation with cutting planes results

in better feasible solutions for all methods. Finally, the table shows that the best solutions are

typically computed with the 1-DEST heuristic, although branching sometimes yields slightly
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better solutions. This is significant because it shows that provably near-optimal solutions can be

computed without the need for customized branch-and-bound algorithms, which are difficult to

implement.

A summary of the performance of our default features on instances of OPPSP is presented in

Table 8. Here, the gaps are computed as gap = ub−lb
ub , where lb is the best bound computed by

the branch-and-bound algorithm and ub is the value of the best integer-feasible solution amongst

those computed by the 1-DEST and BB4 algorithms. We refer to this as the proved gap, since it

is the best gap that can be computed using the information obtained from the algorithm execution

and not using the best-known feasible solution to the problem (possibly computed using some

other method). As Table 8 indicates, the algorithms perform very well, obtaining integer-feasible

solutions that, on average, are below one percent. Although we failed to compute solutions

within one percent of optimality for some instances, the results were still within four percent

throughout.

Finally, a summary of the times required to compute these solutions is presented in Table 9. In

practice, 1-DEST often takes significantly less than four hours to compute high-quality feasible

solutions. In fact, in most problems, solutions can be computed in just minutes. Table 9 also

shows that in just under a third of the instances, we were able to terminate the branch-and-bound

run within the four hours. Though this suggests that there is room to improve these results

through further research on the branch-and-bound methodology, by combining these overall

results with those presented in Table 8, it is possible to see that our methodology is effective in

addressing the proposed problem and efficient in terms of the overall time required.

8.3 Tables
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Algorithm 1: The TopoSort Heuristic.

Input: An instance of the PCPSP-P, as defined in (1) with integrality constraints (4),

such that G≥ 0 and g≥ 0. A solution (x∗,y∗) of the LP relaxation.

Output: A solution (x̄, ȳ) of a PCPSP-P instance.

1 Let T ∗ = T ∪{T +1}.

2 For each c ∈ C , define:

δ (c) = |{c′ ∈ C : (c,c′) ∈A }|,

Sc = {c′ ∈ C : (c′,c) ∈A },

x∗c,T+1 = 1− ∑
t∈T

x∗c,t ,

es(c) = min{t ∈T
∗ : x∗c,t > 0},

E(c) = ∑
t∈T ∗

tx∗c,t .

3 (x̄, ȳ)← (0,0).

4 while C 1= /0 do

5 Choose c ∈ C that solves min{E(c) : δ (c) = 0, es(c)≤ T}.

6 for b ∈ c do

7 d(b)← argmax

{

∑
t∈T

y∗b,d,t : d ∈D

}

.

8 t← es(c).

9 w← 0.

10 while w < 1 and t ≤ T do

11 ᾱ ←max
{

α : Gȳ≤ g, w+α ≤ 1, ȳb,d(b),t = α, ∀b ∈ c
}

.

12 ȳb,d(b),t ← ᾱ for all b ∈ c.

13 x̄c,t ← ᾱ .

14 w← (w+ ᾱ).

15 t← (t +1).

16 for a ∈ Sc do

17 δ (a)← δ (a)−1.

18 es(a)←max{es(a), t}.

19 C ← C \{c}.
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Table 1: Description of instances used for computational tests.

Instance |D | |T | mcap
OPPDP OPPSP base OPPSP extended

|B| nvars |C | |B| nvars |C | |B| nvars

calbuco 3 21 n 5,016,971 316,069,173 324 200,241 8,416,926 548 200,241 12,615,183
chaiten 2 25 y 339,199 16,959,950 273 288,073 7,208,650 273 288,073 7,208,650
guallatari 3 21 y 1,672,198 105,348,474 272 57,527 2,421,846 272 57,527 2,421,846
kd 2 12 n 14,153 339,672 53 10,128 122,172 93 10,128 243,072
marvin 2 20 y 53,271 2,130,840 56 8,515 171,420 56 8,515 171,420
mclaughlin 2 20 n 2,140,342 85,613,680 173 180,749 3,618,440 173 180,749 3,618,440
mclaughlin limit 2 15 n 112,687 3,380,610 166 110,768 1,664,010 166 110,768 1,664,010
palomo 2 40 y 772,800 61,824,000 74 190,319 7,615,720 123 190,319 15,225,520
ranokau 2 81 y 1,873,035 303,431,670 186 317,907 25,765,533 186 317,907 25,765,533
tronador 2 20 y 329,859 18,801,963 220 30,099 1,805,940 220 30,099 1,805,940

Note: mcap indicates the presence of mining capacity constraints (2a). All instances have destination capacity constraints (2b), and

nvars indicates the number of variables in the problem before preprocessing.

Table 2: Percentage of variables in OPPDP instances remaining after preprocessing.

Instance
Default Default Default

Default
w/o ES w/o DTE w/o UPIT

calbuco 3.19 3.95 68.46 3.19
chaiten 53.73 84.06 61.04 53.16
guallatari 2.35 3.43 43.46 2.32
kd 85.88 85.88 100.00 85.88
marvin 12.07 15.88 53.67 11.96
mclaughlin 6.24 8.44 52.22 6.24
mclaughlin limit 77.76 98.30 78.62 77.76
palomo 7.46 12.39 46.51 7.31
ranokau 11.89 15.31 46.33 11.01
tronador 29.21 32.24 70.33 28.75
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Table 3: Objective values of OPPDP instances as a percentage of TopoSort objective value.
Instance LP relaxation Total time

calbuco 102.06 13m 5s
chaiten 100.33 26m 55s
guallatari 101.22 2m 16s
kd 100.87 2.8s
marvin 102.49 4.5s
mclaughlin 100.21 4m 55s
mclaughlin limit 100.16 1m 36s
palomo 101.10 12m 12s
ranokau 102.22 9h 39m 13s
tronador 102.47 3m 13s

Geo. Mean 101.31 -

Table 4: Percentage of variables in OPPSP instances remaining after preprocessing.

Instance
Default Default Default Default

Default
w/o ES w/o DTE w/o UPIT w/o AGG

calbuco 30.56 50.25 30.56 70.94 30.56
chaiten 23.21 24.09 15.96 17.96 15.96
guallatari 51.09 80.58 41.61 42.20 41.61
kd 42.97 42.97 42.97 100.00 42.97
marvin 51.29 54.93 43.41 43.41 43.41
mclaughlin 8.45 10.59 8.45 47.94 8.45
mclaughlin limit 12.06 14.96 12.06 58.28 12.06
palomo 1.36 1.44 1.46 6.04 1.26
ranokau 45.10 33.26 21.46 21.47 21.46
tronador 67.04 74.43 50.55 68.84 50.55

Table 5: Effect of cutting planes on upper bound obtained from LP relaxation in OPPSP in-

stances.

Instance
No No No No No Ext. Pro. All
cuts Early-Start Lifted Clique VRHS Hourglass cuts cuts cuts

Base Instances

calbuco 108.28 102.42 102.42 102.86 104.83 108.28 102.42 102.42
chaiten 117.26 102.01 101.34 100.03 100.29 100.88 109.23 100.00
guallatari 102.02 101.09 100.54 100.54 100.71 100.87 101.09 100.54
kd 101.75 100.21 100.21 100.22 101.10 101.75 100.21 100.21
marvinml 105.75 101.10 100.61 100.63 101.46 103.06 101.10 100.61
mclaughlin 102.52 100.34 100.34 100.37 101.37 102.52 100.34 100.34
mclaughlinlimit 102.39 100.25 100.25 100.18 101.43 102.39 100.25 100.25
palomo 114.87 103.62 101.26 101.33 103.55 111.37 103.62 101.26
ranokau 131.48 104.76 101.82 101.87 102.10 104.96 105.20 101.82
tronador 108.84 101.94 100.83 100.80 100.83 100.90 104.00 100.80

Geo. Mean 109.17 101.76 100.96 100.88 101.76 103.65 102.71 100.82

Extended Instances

calbuco 105.31 101.87 101.87 102.20 103.31 105.31 101.87 101.87
chaiten 117.86 101.73 101.68 100.14 100.48 100.90 109.90 100.12
guallatari 102.47 102.01 101.34 101.36 101.43 101.54 102.01 101.34
kd 100.70 100.25 100.25 100.28 100.66 100.70 100.25 100.25
marvinml 110.56 104.62 103.78 103.79 104.70 107.20 104.62 103.78
mclaughlin 103.24 100.85 100.85 100.90 101.95 103.24 100.85 100.85
mclaughlinlimit 103.16 100.75 100.75 100.77 102.09 103.16 100.75 100.75
palomo 111.53 103.68 101.75 101.88 103.04 108.07 103.68 101.75
ranokau 131.10 104.92 101.82 100.33 100.31 104.86 105.17 100.15
tronador 117.07 105.51 104.11 103.39 103.59 103.60 109.25 103.39

Geo. Mean 109.95 102.60 101.81 101.50 102.15 103.83 103.78 101.42
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Table 6: Effect of Branch-and-Bound on the upper bound after 4 hours of branching in OPPSP

instances.

Instance
Base Instances Extended Instances

No Cuts All Cuts No Cuts All Cuts
Root BB4 Root BB4 Root BB4 Root BB4

calbuco 108.28 103.76 102.42 102.12 105.31 103.03 101.87 101.61
chaiten 117.26 103.83 100.00 100.00 117.86 109.77 100.12 100.04
guallatari 102.02 101.18 100.54 100.26 102.47 101.92 101.34 100.67
kd 101.75 100.00 100.21 100.00 100.70 100.00 100.25 100.00
marvinml 105.75 100.01 100.61 100.00 110.56 101.07 103.78 100.01
mclaughlin 102.52 100.27 100.34 100.08 103.24 100.88 100.85 100.45
mclaughlinlimit 102.39 100.00 100.25 100.01 103.16 100.62 100.75 100.29
palomo 114.87 102.75 101.26 100.14 111.53 106.52 101.75 100.76
ranokau 131.48 126.43 101.82 101.82 131.10 123.41 100.15 100.15
tronador 108.84 101.41 100.80 100.32 117.07 110.02 103.39 102.44

Geo. Mean 109.17 103.71 100.82 100.47 109.95 105.51 101.42 100.64

Table 7: Effectiveness of heuristics and branch-and-bound computing feasible integer solutions

in OPPSP instances.

Instance
Base Instances Extended Instances

No Cuts All Cuts No Cuts All Cuts
Topo 1-DEST BB4 Topo 1-DEST BB4 1-DEST BB4 1-DEST BB4

calbuco 97.68 97.68 97.68 94.65 98.07 98.07 97.92 97.92 98.38 98.38
chaiten 95.67 99.53 99.53 99.15 100.00 100.00 98.18 98.18 99.96 99.96
guallatari 99.66 99.66 99.66 99.66 99.66 99.66 99.24 99.24 99.33 99.33
kd 99.86 99.97 100.00 99.95 99.96 100.00 99.98 100.00 99.97 100.00
marvinml 98.00 99.63 100.00 99.37 99.89 100.00 99.03 99.03 99.46 99.99
mclaughlin 98.75 98.75 99.34 99.62 99.62 99.62 98.63 98.63 99.40 99.40
mclaughlinlimit 99.47 99.47 100.00 99.88 99.88 99.99 99.30 99.30 99.56 99.56
palomo 96.55 98.61 98.61 93.77 98.67 98.67 99.24 99.24 99.01 99.01
ranokau 92.63 98.21 98.21 95.30 97.94 97.94 99.78 99.78 99.69 99.69
tronador 98.12 99.69 99.69 99.45 99.79 99.79 94.93 94.93 99.94 99.94

Geo. Mean 97.62 99.12 99.27 98.05 99.35 99.37 98.61 98.62 99.47 99.52

Note: Topo corresponds to the value obtained from using the TopoSort heuristic, 1-DEST to the value of the 1-DEST heuristic, and

BB4 correspond to the values obtainmed by using the Branch-and-Bound algorithm with a time limit of four hours.

Table 8: Effect of Branch-and-Bound on the proved gap in OPPSP instances.

Instance
Base Instances Extended Instances

Before BB4 After BB4 Before BB4 After BB4

calbuco 2.70% 2.37% 1.87% 1.63%
chaiten 0.00% 0.00% 0.13% 0.04%
guallatari 0.63% 0.36% 1.33% 0.67%
kd 0.26% 0.00% 0.31% 0.00%
marvinml 0.71% 0.00% 4.16% 0.01%
mclaughlin 0.66% 0.41% 0.99% 0.60%
mclaughlinlimit 0.37% 0.01% 0.90% 0.44%
palomo 2.43% 1.33% 1.95% 0.99%
ranokau 2.06% 2.06% 0.31% 0.31%
tronador 0.80% 0.32% 3.34% 2.44%

Geo. Mean 1.06% 0.68% 1.52% 0.71%
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Table 9: Relevant times for algorithms in OPPSP instances.

Instance
Base Instances Extended Instances

LP No cuts LP + Cuts 1-DEST BB LP No cuts LP + Cuts 1-DEST BB

calbuco 10s 4m 42.9s 1m 3.9s > 4h 8.5s 4m 4.6s 7m 51.2s > 4h
chaiten 9.9s 1m 26.4s 5m 41.4s 8.1s 17s 2m 23.7s 1m 28.2s > 4h
guallatari 3.5s 23.4s 5m 26.7s > 4h 6.4s 38.6s 7m 13.9s > 4h
kd 0.2s 0.9s 0.7s 38.5s 0.1s 0.7s 1.3s 51.5s
marvinml 0.4s 2s 2.4s 15m 54.1s 0.4s 3.5s 1.6s 3h 50m 50s
mclaughlin 2.1s 12.4s 6.3s > 4h 3.4s 22.2s 7.7s > 4h
mclaughlinlimit 1.1s 5.2s 5.9s 2h 19m 44.3s 1.5s 5.6s 26.6s > 4h
palomo 3.4s 29.6s 21.7s > 4h 3.7s 31.7s 1m 19s > 4h
ranokau 9m 19.8s 6m 12.6s 13m 9.3s > 4h 10m 36.2s 14m 55.5s 41m 12.2s > 4h
tronador 2.9s 9.8s 17.5s > 4h 33.8s 1m 45.4s 6m 58.2s > 4h
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9 Appendix

In this section, we provide a proof of Theorem 1, presented in Section 4. We begin with a simple

lemma and then move on to the proof itself.

9.1 Proof of Theorem 1

Lemma 9. Consider a finite sequence µ1, . . . ,µT of real numbers with nonpositive sum, ∑
T
t=1 µt ≤

0. Then, for every discount factor r > 0, there exists tr ∈ {1, . . . ,T} such that the discounted par-

tial sum ∑
T
t=tr

µt

(1+r)t ≤ 0.

Proof. Proof. By contradiction, assume that for some r > 0, we have ∑
T
t=s µt(1+ r)−t > 0 for

all s ∈ {1, . . . ,T}. We show by reverse induction on s = T down to 1 that

T

∑
t=s

µt ≥
T

∑
t=s

µt(1+ r)s−t > 0. (30)

Note that the second inequality in (30) follows from the contradiction assumption and (1 +
r)s > 0. The base case s = T of (30) trivially holds. Thus, for the inductive step assume that

(1+ r)−(s+1)∑
T
t=s+1 µt ≥ ∑

T
t=s+1 µt(1+ r)−t > 0. Then,

T

∑
t=s

µt = µs +

(

1−
1

1+ r

) T

∑
t=s+1

µt +
1

1+ r

T

∑
t=s+1

µt > µs +
1

1+ r

T

∑
t=s+1

µt

≥ µs +
1

1+ r

T

∑
t=s+1

µt(1+ r)s+1−t =
T

∑
t=s

µt(1+ r)s−t ,

where the first inequality follows from 1 > 1/(1+ r) and the inductive assumption, and the

second inequality from the inductive assumption. This completes the inductive proof of (30).

However, (30) with s = 1 then implies ∑
T
t=1 µt > 0, which contradicts the lemma’s assumption

that ∑
T
t=1 µt ≤ 0.

Before moving on to the theorem, and for the reader’s convenience, let us recall some impor-

tant definitions:

• For b ∈B and d ∈D , pb,d represents the value that would be obtained by sending b to d.

• For b ∈B, pb,∗ = max{pb,d : d ∈D}.

• For c ∈ C , define p̄c = ∑b∈c pb,∗.

• Let pb,d,t = pb,d/(1+ r)t , i.e, the value obtained after sending b to d within time period t,

which is obtained from pb,d by applying a discount factor r > 0.

• Given a vector x ∈ [0,1]C that is feasible for the U-PIT, we say that P = {c ∈ C : xc > 0}
is the pit-limit associated with x.

• Let (x∗,y∗) represent a minimal optimal solution to the PCPSP-C.
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• For each c ∈ C , let x1
c = ∑t∈T x∗c,t . We know x1 is feasible for the U-PIT (discussed in

Section 4.1). We say that POPT is the pit-limit associated with (x∗,y∗) if it is the pit-limit

associated with the U-PIT feasible solution given by x1.

Theorem 10 (Theorem 1.). Consider an instance of the PCPSP-C, as described in formulation

(1), such that G≥ 0 and g≥ 0. Let POPT and PU-PIT be the pit limits of minimal optimal solutions

to the PCPSP-C and U-PIT, respectively. Then, POPT ⊆ PU-PIT.

Proof. Proof. Assume that the result does not hold. That is, assume that POPT \PU-PIT 1= /0. The

minimality of (x∗,y∗) is contradicted by constructing a different solution (x∗∗,y∗∗)≤ (x∗,y∗) that

is also optimal for the PCPSP-C. To achieve this, proceed as follows.

Let x2 represent a minimal optimal solution to the U-PIT with PU-PIT its corresponding pit-

limit. Define x3 such that x3
c = max{x1

c ,x
2
c} for all c ∈ C . Observe that x3 is feasible for the

U-PIT. Because x2 is an optimal solution of the U-PIT, p̄′(x3− x2)≤ 0.

For each t ∈T , define µt = ∑c∈POPT\PU-PIT p̄cx∗c,t . Note that ∑t∈T µt = p̄′(x3− x2)≤ 0.

Observe that for every t ∈T , since pb,d,t ≤ pb,∗/(1+ r)t , we have that:

∑
c∈POPT\PU-PIT

∑
b∈c

∑
d∈D

pb,d,ty
∗
b,d,t ≤

µt

(1+ r)t
.

Given that POPT is minimal and G≥ 0, we know that:

∑
t∈T

∑
c∈POPT\PU-PIT

∑
b∈c

∑
d∈D

pb,d,ty
∗
b,d,t > 0.

According to Lemma 9, there exists a tr ∈T such that ∑
T
t=tr

µt

(1+r)t ≤ 0.

Define x∗∗ such that:

x∗∗c,t =







x∗c,t if c ∈ POPT∩PU-PIT,
x∗c,t if c ∈ POPT \PU-PIT and t < tr,
0 otherwise.

Likewise, define y∗∗ such that

y∗∗b,d,t =







y∗b,d,t if b ∈ c, and c ∈ POPT∩PU-PIT,
y∗b,d,t if b ∈ c, and c ∈ POPT \PU-PIT, and t < tr,
0 otherwise.

Since G ≥ 0, we know that (x∗∗,y∗∗) is feasible for the PCPSP-C. By definition, we have that

(x∗∗,y∗∗) ≤ (x∗,y∗). Finally, as ∑
T
t=tr

|µt | > 0, we know that (x∗∗,y∗∗) 1= (x∗,y∗). It remains to

show that (x∗∗,y∗∗) is also optimal for the PCPSP-C.

Let B1 = {b ∈ c : for some c ∈ POPT∩PU-PIT} and B2 = {b ∈ c : for some c ∈ POPT \PU-PIT}. It

38

94



follows that:

∑
b∈B

∑
d∈D

∑
t∈T

pb,d,ty
∗
b,d,t = ∑

b∈B1

∑
d∈D

∑
t∈T

pb,d,ty
∗
b,d,t + ∑

b∈B2

∑
d∈D

∑
t<tr

pb,d,ty
∗
b,d,t + ∑

b∈B2

∑
d∈D

∑
t≥tr

pb,d,ty
∗
b,d,t

= ∑
b∈B

∑
d∈D

∑
t∈T

pb,d,ty
∗∗
b,d,t + ∑

b∈B2

∑
d∈D

∑
t≥tr

pb,d,ty
∗
b,d,t

= ∑
b∈B

∑
d∈D

∑
t∈T

pb,d,ty
∗∗
b,d,t + ∑

t≥tr

∑
c∈POPT\PU-PIT

∑
b∈c

∑
d∈D

pb,d,ty
∗
b,d,t

≤ ∑
b∈B

∑
d∈D

∑
t∈T

pb,d,ty
∗∗
b,d,t + ∑

t≥tr

µt

(1+ r)t

≤ ∑
b∈B

∑
d∈D

∑
t∈T

pb,d,ty
∗∗
b,d,t .
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Abstract

We introduce and motivate several variants of the bin packing problem where bins are assigned to

time slots, and minimum and maximum lags are required between some pairs of items. We suggest two

integer programming formulations for the general problem: a compact one, and a stronger formulation

with an exponential number of variables and constraints. We propose a branch-cut-and-price approach

which exploits the latter formulation. For this purpose, we devise separation algorithms based on a

mathematical characterization of feasible assignments for two important special cases of the problem:

when the number of possible bins available at each period is infinite, and when this number is limited

to one, and time lags are non-negative. Computational experiments are reported for instances inspired

from a real-case application of chemical treatment planning in vineyards, as well as for literature

instances for special cases of the problem. The experimental results show the efficiency of our branch-

cut-and-price approach, as it outperforms the compact formulation of newly proposed instances, and

is able to obtain improved lower and upper bounds for literature instances.

1 Introduction

The bin packing problem is one of the most widely studied combinatorial optimization problems and has
been known since the 1930s (Kantorovich, 1960). The classical bin packing problem (BPP) consists in
assigning a set of items to a minimum possible number of identical capacitated bins. Formally, we are
given a set of items V = {1, . . . , n}, and an unlimited quantity of identical bins with a positive capacity W .
Each item i ∈ V has a positive weight wi ≤ W . The goal is to find a packing of items into the minimum
number of bins, such that the total weight of items packed in each bin does not exceed its capacity.

In this paper, we introduce the bin packing problem with time lags (BPPTL), which is a generalization
of the BPP. Here the assignment of items to bins is performed over a discretized time horizon, and there
are generalized precedence relations between items. In the BPPTL, in addition to the set of items, we
have a directed valued graph G = (V, A, l) representing precedence constraints between items, as well as
a positive integer value L which defines the upper bound on the number of bins that can be used in each
time period. If the value L is large enough, i.e if in any feasible solution the number of bins is always
sufficient at each time period, for instance L ≥ n, we simply write L = ∞. Each arc (i, j) ∈ A has an
associated time lag li,j ∈ Z, which can be either positive or negative. Positive time lags serve to define
the minimum possible distance (expressed in number of periods) between items, and negative time lags
serve to define the maximum possible distance. The BPPTL consists in assigning each item i ∈ V to
bin b̄i ∈ {1, . . . , L} and a time period p̄i ∈ Z+, such that bin capacity (1a) and time lag (1b) constraints
are satisfied:

∑

i∈V : b̄i=b, p̄i=p

wi ≤W ∀b ∈ {1, . . . , L}, ∀p ∈ Z+, (1a)

p̄i + li,j ≤ p̄j ∀(i, j) ∈ A. (1b)
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The objective is to find a feasible assignment that minimizes the number of bin-period pairs (b, p) which
have at least one item assigned to them, or to determine that such an assignment does not exist.

Our motivation for studying the BPPTL stems from applications in which some tasks should be per-
formed repeatedly using resources that are available on a pay-per-use basis. For example, a given task
should be performed six times in a given time period. A possible way to deal with recurrent tasks is to de-
termine an a priori fixed time between two consecutive occurrences of the same task. This over-constrained
setting limits the sharing of ressources, and may lead to expensive solutions. On the other hand, in many
applications the decision maker does not impose a fixed frequency of task occurrences. Only a desired
frequency is specified, which may be altered to some extent if this leads to a cost reduction. Thus, a
more flexible approach is to impose positive and negative time lags between two consecutive occurrences
of the same task. Positive lags determine the minimum elapsed time between two consecutive occurrences
of a task, whereas negative lags determine the maximum elapsed time between them. This allows the
decision maker to ensure a better usage of the resource. At the same time, solutions in which tasks are
not distributed evenly over the time horizon are forbidden.

A specific case of such a problem can be observed when one performs the planning of phytosanitary
treatments in a vineyard. The vineyard is divided into sectors, i.e. well-defined portions of the property
that correspond to contiguous geographical areas. One is given a set of meta-requests for treatment, i.e.
diseases against which the vineyard must be protected using phytosanitary products. For each appropriate
sector-disease pair, a periodic treatment has to be performed. Each treatment consists of a sequence of
tasks of a certain duration. A phytosanitary treatment protects the vines only for a certain period of time,
so the same task has to be repeated over the time horizon. On the other hand, treatments should not be
repeated too often due to regulations on the spread of phytosanitary products. Practically speaking, the
same chemical product cannot be spread twice in a given period, whose length depends in the toxicity of
the product. Therefore, two consecutive occurrences of the same treatment should be neither too far nor
too close in time. Treatments are performed by identical rented vehicles with a fixed cost per day of usage.
Vehicles are limited in the total duration of work in a day. A vehicle can perform several treatments in a
day as long as their total duration does not exceed the maximum total duration. The time needed for a
vehicle to go from one sector to another is negligible in comparison to the duration of treatments. Given
the strict regulation on chemical product spreading, tasks are never fragmented and cannot be processed
over two time periods.

This application can be modelled as the bin packing problem with time lags. Here, capacitated bins
represent vehicles each having a maximum total duration. Items represent treatment tasks of different
durations. The time lags graph consists of double-linked chains, each chain representing one periodic
treatment. Two consecutive items in the chain represent two consecutive occurrences of a phytosanitary
treatment. There are two arcs between consecutive items: one with a positive time lag representing
the minimum number of days between treatment occurrences, and the other with a negative time lag
representing the maximum number of days between occurrences. Two special source and sink nodes
together with arcs between them serve to fix the planning time horizon. An example of such graph is
depicted in Figure 1. The optimal solution for this example is depicted in Figure 2. It happens that this
solution uses at most one bin per time period. In general, however, more than one bin can be used in the
same period.

The BPPTL has some similarities with batch scheduling problems, in which jobs are first packed in
batches, and then batches are scheduled within a time horizon. There are two main reasons why we
attribute our problem to the class of bin packing problems. First, batches in scheduling are typically of
different durations, whereas in our case the duration of a bin is always one period. Second, our objective
function is typical for bin packing problems (minimizing the number of bins), whereas the total schedule
length (makespan) objective is typical for scheduling problems. The difference here is that time periods
without items or jobs are penalized in scheduling, but not penalized in the BPPTL.
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Figure 1: An example of the time lags graph for an instance of the phytosanitary treatments planning
application

t = 0

is (w = 60)

t = 1

i11 (w = 20)

i14 (w = 25)

i26 (w = 11)

t = 6

i5 (w = 18)

i19 (w = 11)

t = 14

i1 (w = 14)

i6 (w = 8)

i15 (w = 16)

i27 (w = 13)

t = 17

i20 (w = 27)

i23 (w = 26)

t = 25

i12 (w = 14)

i28 (w = 32)

t = 26

i2 (w = 17)

i7 (w = 13)

i16 (w = 27)

t = 34

i8 (w = 17)

i21 (w = 19)

i24 (w = 15)

t = 41

i13 (w = 26)

i17 (w = 27)

t = 42

i3 (w = 24)

i9 (w = 13)

i29 (w = 16)

t = 51

i18 (w = 17)

i22 (w = 20)

i25 (w = 9)

t = 55

i4 (w = 31)

i10 (w = 11)

i30 (w = 9)

t = 61

if (w = 60)

Figure 2: Solution of instance in Figure 1
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1.1 Literature review

We now review the literature on the bin packing problems related to the BPPTL. The literature on the
classical BPP is vast. Here we only present recent exact approaches to this problem. A comprehensive
survey on exact methods for the BPP, including an original comparative computational study, was pub-
lished by (Delorme et al., 2016). After that, other exact specialized algorithms for the BPP were proposed
by (Delorme and Iori, 2020) and by (Wei et al., 2020). A generic BCP solver capable of solving exactly
the BPP among other problems was proposed by (Pessoa et al., 2020).

The BPPTL is closely related to some generalizations of the BPP known in the literature. The bin
packing problem with precedence constraints (BPP-P) is a special case of the BPPTL in which all time
lags are unitary and L = 1. The first exact approach for the BPP-P was developed by (Dell’Amico et al.,
2012). They proposed a large set of lower bounds, a variable neighborhood search, and a branch-and-
bound algorithm. Later, (Pereira, 2016) suggested a dynamic programming-based heuristic and an exact
enumeration procedure which uses several lower bounds and dominance rules to solve the BPP-P.

The simple assembly line balancing problem (SALBP-1) is a special case of the BPPTL in which all time
lags are equal to zero and L = 1. The survey on simple assembly line balancing problems was presented
by (Scholl and Becker, 2006). (Morrison et al., 2014) proposed an exact branch-bound-and-remember
algorithm for the SALBP-1. (Pereira, 2015) analyzed different families of lower bounds for the SALBP-1
and also presented new lower bounds which improved on the best known bounds for open instances of the
problem.

Recently a generalization of both the BPP-P and the SALBP-1 was considered by (Kramer et al.,
2017). They introduced the bin packing problem with generalized precedence constraints (BPP-GP). In
the BPP-GP considered by (Kramer et al., 2017), time lags can only be non-negative, L = 1, and the
objective is to minimize the makespan, i.e. the latest time period that has non-empty bins. As shown in
Section 4, the number of used bins and the makespan objectives are equivalent for the case when L = 1
and every time lag is either one or zero. However, if some time lags are strictly greater than one, then
the BPP-GP is not a special case of the BPPTL. In (Kramer et al., 2017), the authors proposed an
effective iterated local search algorithm for the BPP-GP with the makespan objective. They also applied
preprocessing techniques and lower bounding procedures in order to estimate the quality of the solutions
they obtained. Thus, many instances were solved to optimality.

Another related problem is the bin packing problem with conflicts (BPPC), in which a given undirected
graph represents conflicts between items. Two adjacent items in the conflict graph cannot be put together
in one bin. The objective function is the same as in the standard BPP, i.e. minimization of the number of
bins used. The BPPC was introduced by (Gendreau et al., 2004). (Khanafer et al., 2010, 2012) proposed
improved lower bounds for the BPPC based on dual-feasible functions, as well as tree-decomposition-
based heuristics. Exact branch-and-price algorithms for the BPPC have been proposed in several papers
(Fernandes Muritiba et al., 2010; Elhedhli et al., 2011; Sadykov and Vanderbeck, 2013; Wei et al., 2020).

In branch-and-price algorithms for the BPPC, the pricing problem is the knapsack problem with con-
flicts (KPC). This problem is interesting to us as it is a special case of the pricing problem considered
in Section 3.2.2. The KPC has been solved either by MIP in (Fernandes Muritiba et al., 2010; Elhedhli
et al., 2011), by dynamic programming and branch-and-bound algorithms in (Sadykov and Vanderbeck,
2013), or by a labelling algorithm as a resource-constrained shortest path problem in (Wei et al., 2020).
Recently, improved combinatorial branch-and-bound algorithms for the KPC were proposed by (Bettinelli
et al., 2017) and (Coniglio et al., 2020).

One more related class of problem is p-batch (or parallel batch) scheduling. In these problems, jobs have
processing time and size. A set of jobs can form a batch if their total size does not exceed the batch capacity.
When jobs have identical processing times, the p-batch scheduling problem with the makespan objective is
equivalent to the standard bin packing problem, as shown by (Uzsoy, 1994). (Uzsoy, 1995) considered the
p-batch scheduling problem with incompatible job families, which corresponds to the BPPC. However, only
the polynomially solvable variant with identical item sizes was considered. The p-batch scheduling problem
with different job processing times and sizes and the makespan objective was considered by (Dupont and
Dhaenens-Flipo, 2002), who proposed an exact branch-and-bound algorithm for it. A branch-and-price
algorithm for the same problem with parallel batching machines was suggested by (Rafiee Parsa et al.,
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2010). Among recent papers dealing with batch scheduling problems with precedence constraints we can
mention works by (Bilyk et al., 2014) and by (Emde et al., 2020). We are not aware of works on batch
scheduling with generalized time lags. However, in the case of identical job processing times, release dates
and dealines of jobs can be modelled with positive and negative time lags. We would like to conclude
this part with a reminder that the main difference between our problem and batch scheduling is the
objective function employed. Minimizing the number of bins corresponds to minimizing the number of
batches in scheduling. In the presence of precedence constraints, the latter objective is different from ones
traditionally used in scheduling like the makespan or tardiness-related criteria.

1.2 Contribution and outline

In this paper, as well as introducing and motivating the BPPTL, we present integer programming (IP)
formulations for the problem. The first formulation is a compact one which involves one binary variable
for every triple item-bin-time period. The second IP formulation with an exponential number of variables
gives a relaxation to the BPPTL, similar to the one used in (Pereira, 2016) for the BPP-P. An exponential
set of constraints is then introduced allowing us to turn the second formulation into an exact one for two
important special cases of the BPPTL. The first one is when L = ∞. The second one is when L = 1,
and time lags are non-negative. We present two ways of separating the introduced constraints: a MIP
formulation and an enumeration algorithm. We also show how to take these constraints into account in
the pricing problem, which turns into the knapsack problem with hard and soft conflicts (KPHSC), a
generalization of the KPC. We formulate the KPHSC as a mixed integer program (MIP). Finally, for the
two special cases of the BPPTL mentioned, we propose an exact branch-cut-and-price (BCP) algorithm
which uses our cut separation routines, a branch-and-bound algorithm for solving the pricing problem, a
strong diving primal heuristic, and the Ryan&Foster strong branching. We generate new instances for the
BPPTL with L =∞ inspired by the phytosanitary treatments planning application described above. We
show that our BCP algorithm significantly outperforms a commercial MIP solver applied to the compact
formulation for the problem. We also test our BCP algorithm on literature instances of the BPP-P, the
SALBP-1, and the BPP-GP. We are able improve the best known lower and upper bounds for numerous
instances. Thus, optimality is reached for the majority of open instances.

The article is organized as follows. In Section 2 we present our formulations of BPPTL. A BCP
algorithm for the case L =∞ is presented in Section 3. A modification of this algorithm for the case with
L = 1 and non-negative time lags is given in Section 4. Computational results are presented in Section 5.
We draw conclusions and discuss future work in Section 6.

2 Integer programming formulations

2.1 A compact formulation

Recall that L is the maximum number of bins per time period. Let T ∈ Z+ be an upper bound to
the number of time periods required to assign all the bins in an optimal solution, L = {1, . . . , L}, and
T = {1, . . . , T}. Let binary variable xi,b,p take value one if and only if item i ∈ V is assigned to bin (b, p)
with b ∈ L and p ∈ T . Also let binary variable ub,p take value one if only if bin (b, p) with b ∈ L and
p ∈ T has at least one item assigned to it. The BPPTL can then be formulated as the following IP.
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min
∑

b∈L

∑

p∈T

ub,p (2a)

s.t.
∑

b∈L

∑

p∈T

xi,b,p = 1 ∀i ∈ V, (2b)

∑

i∈V

wixi,b,p ≤Wub,p ∀b ∈ L, p ∈ T , (2c)

li,j +
∑

p∈T

p ·
∑

b∈L

xi,b,p ≤
∑

p∈T

p ·
∑

b∈L

xj,b,p ∀(i, j) ∈ A, (2d)

xi,b,p ∈ {0, 1} ∀i ∈ V, b ∈ L, p ∈ T , (2e)

ub,p ∈ {0, 1} ∀b ∈ J , p ∈ T . (2f)

In this formulation, constraints (2b) require each item to be assigned to exactly one bin. Con-
straints (2c) impose two conditions: i) if an item is assigned to a bin (b, p) then the corresponding variable
ub,p is equal to one; ii) the items assigned to a bin must have a cumulative weight smaller than or equal to
the capacity of the bin. Constraints (2d) guarantee that the time lags are satisfied. This formulation can
be improved by disaggregating constraints (2c), or breaking some symmetries. We discuss these variants
in Appendix 6.

Given a directed path in graph G from node i to node j, its length is the sum of the lags for the arcs
in the path. Let d(i, j) represent the length of the longest path from node i to node j in G. We convene
d(i, j) = −∞ if there is no path from i to j.

For each i ∈ V , let es(i) and ls(i) respectively represent the earliest and latest time periods in which
i can be assigned to a bin. A natural pre-processing consists in fixing to zero all variables xi,b,p such that
i ∈ V , b ∈ L, and p < es(i) or p > ls(i). An approach to compute the values es(i) and ls(i) consists in
adding two extra nodes to the graph G: the source node s fixed to artificial time period 0 and the sink
node f fixed to artificial time period T + 1. Then for each item i ∈ V we add arcs (s, i) and (i, f) with
time lag one. Then es(i) = d(s, i) and ls(i) = T + 1− d(i, f).

2.2 A Dantzig-Wolfe reformulation

A natural Dantzig-Wolfe reformulation of model (2) consists in convexifying constraints (2c). Given p ∈ T ,
let Bp be the collection of sets of items which may be assigned to a bin in time period p: B ∈ Bp if and
only if

∑
i∈B wi ≤ W , and es(i) ≤ p ≤ ls(i), ∀i ∈ B. For each B ∈ Bp, we define a binary variable λB

taking value one if and only if set B of items occupies one bin in period p in the solution. We denote by 1B

the indicator function of B: 1B(i) = 1 if i ∈ B, and 1B(i) = 0 otherwise, for all i ∈ V . The reformulation
is then the following.

min
∑

p∈T

∑

B∈Bp

λB (3a)

s.t.
∑

p∈T

∑

B∈Bp

1B(i)λB = 1 ∀i ∈ V, (3b)

li,j +
∑

p∈T

p ·
∑

B∈Bp

1B(i)λB ≤
∑

p∈T

p ·
∑

B∈Bp

1B(j)λB ∀(i, j) ∈ A, (3c)

∑

B∈Bp

λB ≤ |L| ∀p ∈ T , (3d)

λB ∈ {0, 1} ∀p ∈ T , B ∈ Bp. (3e)

The linear relaxation of model (3) can be solved by the column generation approach in which the pricing
problem is the standard 0 − 1 knapsack problem. It is known however (Pereira, 2016) that precedence
constraints (3c) do not affect the value of the lower bound obtained by such relaxation for the BPP-P and
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the SALBP-1. We also show below in our computational experiments that the branch-and-price algorithm
that solves formulation (3) does not have a good performance because of a bad quality of the lower bound
given by the linear relaxation.

Thus in the following section, we propose an alternative extended formulation for the BPPTL, which
provides a better relaxation. Moreover, it allows us to exploit the symmetry related to time periods. Then,
in the following two sections we will show how to turn this relaxation into an exact formulation for two
important special cases of the problem. This is done by defining an exponential family of constraints that
cut off infeasible solutions of the relaxation.

2.3 An alternative relaxation

In any feasible solution of the BPPTL, a set B of items assigned to the same bin must satisfy the following
conditions:

∑

i∈B

wi ≤W (4a)

d(i, j) ≤ 0 and d(j, i) ≤ 0 ∀i, j ∈ B. (4b)

Constraint (4a) follows from (1a) and constraints (4b) follow from (1b). These two conditions state that
the bin capacity constraint has to be satisfied, and that (transitive) lag constraints forbid some items from
being packed in the same bin.

Let B be the collection of all possible non-empty sets B of items satisfying constraints (4a) and (4b).
For each B ∈ B, we define a binary variable λB taking value one if and only if set B of items occupies one
bin in the solution. A relaxation of the BPPTL then can be formulated as follows.

min
∑

B∈B

λB (5a)

s.t.
∑

B∈B

1B(i)λB = 1 ∀i ∈ V, (5b)

λB ∈ {0, 1} ∀B ∈ B. (5c)

In this formulation the objective function is to minimize the number of bins selected in the solution. This
relaxation has a similar structure to the one used for the simple assembly line balancing problem (Pereira,
2015) and the bin packing problem with precedences (Pereira, 2016), albeit with a different definition of B.
Moreover, integrality constraints (5c) are relaxed to the linear constraints 0 ≤ λB ≤ 1 ∀B ∈ B in (Pereira,
2015, 2016).

A feasible solution λ̄ for model (5) does not necessarily define a feasible solution for the BPPTL, since
it is not always possible to assign bins in set {B ∈ B : λ̄B = 1} to time periods while satisfying the
time lag constraints. This can be seen in the example illustrated in Figure 3. In this example, a feasible
solution to (5) has items {A, B} assigned to one bin and items {C, D} to another. However, it is not
possible to assign those bins to time periods satisfying the time lag constraints. In fact, item A must be
assigned before D, and item C must be assigned before B. One can see that the issue stems from the
fact that when items are assigned to bins, lags between items become lags between bins, and cycles of
positive length may appear. This concept of cycles between bins is formalized in Section 3, and is used to
characterize infeasible solutions.

3 The case with unlimited number of available bins

In this section we assume that L =∞, i.e. there is no restriction on the number of bins that can be assigned
to a time period. We denote this variant of the problem as the BPPTL∞. We propose in this section a
branch-cut-and-price algorithm based on relaxation (5) to solve this variant to optimality. In Section 3.1,
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A (w = 6)

B (w = 4)

D (w = 2)

C (w = 5)

bin 1 bin 2

1

1

Figure 3: Example of instance in which a feasible solution to relaxation (5) does not define a feasible
solution for the BPPTL. Here W = 10.

we give a characterization of feasible solutions of the BPPTL∞ expressed by constraints involving only
variables λB . Later, in Section 3.2, we describe the components of the branch-cut-and-price algorithm, i.e.
separation algorithms for the cuts, an IP formulation and a dedicated branch-and-bound for the pricing
problem, primal heuristic and branching.

3.1 Characterization of valid assignments

Let P be a partition of V . We denote by P(i) the element B ∈ P such that i ∈ B. For each B, B′ ∈ P, we
define d̄(B, B′) = max{d(i, j) : i ∈ B, j ∈ B′} as the maximum distance (in terms of time lags) between
an item in B and an item in B′. We introduce the notion of aggregated graph, which is useful for defining
the necessary and sufficient conditions for a feasible solution to (5) to be feasible for the BPPTL.

Definition 1. Let G = (V, A, l) be a directed valued graph, and P be a partition of V . The aggregated
graph of G induced by P is the valued digraph GP = (P, AP , d̄), where P is the set of nodes in the graph,
AP :=

{
(B, B′) ⊆ P × P : d̄(B, B′) > −∞

}
is the set of arcs in the graph, and d̄(B, B′) is the length of

arc (B, B′) ∈ AP .

We now show that whenever the aggregated graph induced by a partition is acyclic, the elements of
the partition can be assigned to time periods satisfying the time lag constraints.

Proposition 1. Let G = (V, A, l) be a directed valued graph and P be a partition of V . Also let GP =
(P, AP , d̄) be the aggregated graph of G induced by P. There is a mapping τ : P −→ Z+, such that for
each (i, j) ∈ A, τ(P(i)) + li,j ≤ τ(P(j)) if and only if there is no cycle of positive length in GP .

Proof. Proof. The proof relies on the fact that graph G has no cycle of positive length if and only if a
mapping τ : V −→ Z+ exists, such that for each (i, h) ∈ A, τ(i)+ li,h ≤ τ(j) (see Lemma 1 in Appendix).
Consider this mapping τ for the graph GP . Then for each (B, B′) ∈ AP , it holds that τ(B) + d̄(B, B′) ≤
τ(B′). But for each i, j ∈ A, we have li,j ≤ d(i, j), and since d̄(B, B′) = max{d(i, j) : i ∈ B, j ∈ B′}, then
d(i, j) ≤ d̄(P(i), P(j)). This implies that for each (i, j) ∈ A, τ(P(i)) + li,j ≤ τ(P(i)) + d̄(P(i), P(j)) ≤
τ(P(j)).

We call a partition P ⊆ B suitable if graph GP does not have a directed cycle of positive length, and
we say that P is unsuitable otherwise. We denote by N the family of unsuitable partitions of V .

The partition of items induced by a feasible solution of an instance of the BPPTL∞ must be suitable,
because the assignment of bins to time periods implies that there are no positive cycles in the aggregated
graph. But Proposition 1 also shows that any suitable partition P ⊆ B induces a feasible solution for the
instance, and the proof also gives a procedure to recover the actual solution (the time of each bin) from the
partition by computing the longest distance from an artificial source node to each node in the aggregated
graph, which can be done in time O

(
|P|

∣∣AP
∣∣).
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A classical way to ensure feasibility is to add the following set of constraints (known as no-good cuts)
to formulation (5): ∑

B∈P

λB ≤ |P|− 1 ∀P ∈ N . (6)

One of our contributions is to avoid using these constraints by finding a better characterization of feasible
solutions.

Formulation (5) together with constraints (6) defines an exact formulation of the BPPTL∞. However,
each constraint in (6) forbids only one unsuitable partition, and the coefficient of a variable λB in these con-
straints depends on set B. This makes dynamic generation of variables λ very difficult. We now introduce
an alternative to constraints (6), which defines a computationally tractable equivalent formulation.

The alternative constraints rely on the fact that cycles in the aggregated graphs are related to lags
between pairs of items. Consider a partition P such that the induced aggregated graph GP has a cycle
of positive length (B1, B2, . . . , BR), and denote BR+1 = B1. For each arc (Br, Br+1) in the cycle there
are elements tr ∈ Br and hr+1 ∈ Br+1 such that d̄(Br, Br+1) = d(tr, hr+1). If we consider the set
{(h1, t1), . . . , (hR, tR)} of pairs of items, any partition where each of these pairs is in the same bin induces
an aggregated graph with a positive length cycle. Here notations t and h stand for the “tail” and “head”
of the corresponding arc.

Figure 4 presents an example of a partition that induces a positive cycle in the aggregated graph.
Any partition in which pairs of nodes (h1, t1), (h2, t2) and (h3, t3) each belong to the same block of the
partition, induces the aggregated graph with a positive length cycle.

h1

t1

t3

h3

h2 t2

2

−10

1

−1

−2

−1
0

1

Figure 4: Example of partition that induces a positive cycle. Here (h1, h2, h3, t1, t2, t3) ∈ C.

We now define the collection of all sets of pairs which induce a positive length cycle in the aggregated
graph, and thus an infeasible solution.

Definition 2. For each R ∈ N, R ≥ 2, we define CR ⊆ V 2R as the collection of all tuples (h1, . . . , hR,
t1, . . . , tR) that satisfy the following properties.

• All elements h1, . . . , hR, t1, . . . tR are different.

• For each r ∈ {1, . . . , R}, d(hr, tr) ≤ 0 and d(tr, hr) ≤ 0.

•
R∑

r=1

d(tr, hr+1) ≥ 1, where hR+1 = h1.

We also denote C =
⋃

R≥2

CR, and for each tuple C = (h1, . . . , hR, t1, . . . , tR) ∈ C we define as FC the

set of pairs of items which constitute C: FC =
{

{h1, t1}, {h2, t2}, . . . , {hR, tR}
}

.

We can now characterize an unsuitable partition as a partition that contains a forbidden set of pairs.
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Proposition 2. A partition P ⊆ B is unsuitable if and only if C ∈ C exists, such that for each pair
{hr, tr} ∈ FC , P contains an element Br containing both hr and tr: {hr, tr} ⊆ Br ∈ P.

Proof. Proof. Let P ⊆ B be a partition of V , and let C ∈ CR, R ≥ 2, be such that each {hr, tr} ∈ FC is
contained in Br ∈ P for each r ∈ {1, . . . , R}. Then, by definition of d̄, for each r ∈ {1, . . . , R} we have

d̄(Br, Br+1) ≥ d(tr, hr+1), where BR+1 = B1. This implies that
R∑

r=1

d̄(Br, Br+1) ≥ 1, and then there is

a circuit in (GP , d̄) of positive length. Since the circuit can be decomposed into multiple cycles, and the
length of the circuit is equal to the sum of the length of those cycles, one of those cycles must be of positive
length, and then P must be unsuitable.

Assume now that P is unsuitable, and consider a cycle of positive length in graph GP with the minimum
possible number of nodes. Let R be the number of nodes of that cycle, and let the nodes of the cycle be
B1, B2, . . . , BR.

For each arc (Br, Br+1) in this cycle, let tr ∈ Br and hr+1 ∈ Br+1 be such that d(tr, hr+1) =
d̄(Br, Br+1), where BR+1 = B1. Thus we have {hr, tr} ⊆ Br, and since the cycle in the aggregated

graph has positive length, we have
R∑

r=1

d(tr, hr+1) =
R∑

r=1

d̄(Br, Br+1) ≥ 1.

We now show that all these elements (h1, . . . , tR) are different. Since all Br are different elements of
a partition of V , for each r, r′ ∈ {1, . . . , R} with r *= r′ it holds hr *= hr′ , tr *= tr′ , and hr *= tr′ . If
hr = tr then d̄(Br−1, Br+1) ≥ d(tr−1, hr) + d(tr, hr+1) = d̄(Br−1, Br) + d̄(Br, Br+1), and then removing
Br from the cycle would still give a cycle of positive length, which contradicts the minimality of the cycle
considered. Then, all the elements h1, . . . , tR are different.

Finally, since Br ∈ B, then d(hr, tr) ≤ 0 and d(tr, hr) ≤ 0.

The following reformulation is valid for the BPPTL∞ due to Proposition 2.

min
∑

B∈B

λB (7a)

s.t.
∑

B∈B

1B(i)λB = 1 ∀i ∈ V, (7b)

R∑

r=1

∑

B∈B,
{hr,tr}⊆B

λB ≤ R− 1 ∀R ≥ 2,∀(h1, . . . , tR) ∈ CR, (7c)

λB ∈ {0, 1} ∀B ∈ B. (7d)

3.2 The branch-cut-and-price algorithm

We develop a branch-cut-and-price approach to solve formulation (7). At each node of the branch-and-
bound tree the linear relaxation is solved by the following column and cut generation procedure.

• Step 0: Start with an initial set of variables λ and constraints (7c).

• Step 1: Solve the restricted master problem (RMP). The RMP is the linear relaxation of (7) with
the current restricted subset of columns and constraints.

• Step 2: Solve the pricing problem which looks for a variable λB with B ∈ B with negative reduced
cost. If such a column is found, add λB to the RMP and go back to Step 1.

• Step 3: Solve the separation problem. The separation problem consists in finding a constraint (7c)
violated by the current solution of the RMP.

Approaches for solving the separation problem are presented in Section 3.2.1. The MIP formulation for
the pricing problem is proposed in Section 3.2.2. Other components of the BCP algorithm are described
in Section 3.2.4.
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3.2.1 Separation.

Given a solution λ̄ =
(
λ̄B

)
B∈B

that satisfies (7b), we are looking for a constraint in (7c) that is violated

by λ̄.

If λ̄ satisfies (7d), i.e. it is an integer solution, it induces a partition P of the items, and finding
a violated constraint in (7c) is equivalent to finding a cycle of positive length in the aggregated graph
GP , according to Proposition 2. We first construct the aggregated graph GP . Then we compute the

longest distance between each pair of nodes in this graph, which can be done in time O
(

|P|3
)

with the

Floyd-Warshall algorithm. Finally, we look for a cycle of a positive length by checking if the distance
from any node to itself is positive. In the event that a cycle of positive length is found, the proof of
Proposition 2 describes the procedure to find the tuple (h1, . . . , tR) ∈ C and to generate the associated
violated constraint.

Separating integer solutions is enough for the algorithm to be valid. However, in order to strengthen
the relaxation, we also propose procedures to separate fractional solutions. To do so, we define an auxiliary
directed multigraph in which finding a cycle with some specific properties is equivalent to finding a violated
constraint in (7c).

Let
(
λ̄B

)
B∈B

be a solution satisfying (7b) but not necessarily (7d). For each i, j ∈ V with i *= j we

define the value ξi,j =
∑

B∈B,
{i,j}⊆B

λ̄B . Then we construct multigraph G = (V, A) with two labels in each arc.

Each arc a ∈ A is represented by a tuple (h(a), t(a), l(a), v(a)) ∈ V × V × Z × R, where h(a) is the head
of the arc, and t(a) is the tail of the arc. The set of arcs is composed of two subsets, A = AG ∪Aλ, where
these subsets are defined as follows:

• For each (i, j) ∈ A, arc a in which h(a) = i, t(a) = j, l(a) = d(i, j) and v(a) = 0 belongs to AG.

• For each pair {i, j} ⊆ V such that i *= j and ξi,j > 0, arc a in which h(a) = i, t(a) = j, l(a) = 0, and
v(a) = 1− ξi,j belongs to Aλ.

There is one arc in AG for each arc in the original graph G, and two arcs in Aλ, one in each direction,
for each pair of nodes that are contained in any B ∈ B such that λ̄B > 0. Note that in this graph there
might be two arcs with the same head and tail, one of them in AG and the other in Aλ.

Proposition 3. Let
(
λ̄B

)
B∈B

be a solution satisfying (7b). Then it satisfies all constraints in (7c) if and

only if multigraph G = (V, A) constructed from λ̄ has no cycle (a1, a2, . . . , aK) such that
∑K

k=1
l(ak) ≥ 1

and
∑K

k=1
v(ak) < 1.

Proof. Proof. (⇒) Assume first that λ̄ violates a constraint in (7c), then there is R ≥ 2 and (h1, . . . , tR) ∈
CR such that

R∑

r=1

∑

B∈B,
{hr,tr}⊆B

λ̄B > R− 1.

This is equivalent to

1 >

R∑

r=1


1−

∑

B∈B,
{hr,tr}⊆B

λ̄B


 =

R∑

r=1

(1− ξhr,tr
) .

With this we define the following cycle with K = 2R arcs in graph G. For each r ∈ {1, . . . , R}, we take arc
a2r−1 ∈ Aλ such that t(a2r−1) = hr and h(a2r−1) = tr, and we take arc a2r ∈ AG such that t(a2r) = tr

and h(a2r) = hr+1. We have v(a2r−1) = 1− ξhr,tr
and v(a2r) = 0. Summing over all arcs in the cycle, we

obtain
∑2R

k=1
v(ak) < 1. We also have l(a2r−1) = 0 and l(a2r) = d(tr, hr+1). Then by definition of CR we

have
∑2R

k=1
l(ak) =

∑R
r=1

d(tr, hr+1) ≥ 1.
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(⇐) Assume now that there are cycles (a1, a2, . . . , aK) in graph G satisfying both
∑K

k=1
l(ak) ≥ 1 and∑K

k=1
v(ak) < 1. Among these cycles we take one with the minimum number K of arcs. We now show

that the arcs in this cycle are alternating between arcs of AG and Aλ. Let a and a′ be two consecutive
arcs in the cycle, with h(a) = i, t(a) = j, h(a′) = j and t(a′) = k. Now consider two cases.

i) If both arcs belong to AG, then we can replace both arcs by arc (i, k) in AG since d(i, k) ≥ d(i, j) +
d(j, k).

ii) If both arcs belong to Aλ, then we have

ξi,j + ξj,k =
∑

B∈B,
{i,j}⊆B

λ̄B +
∑

B∈B,
{j,k}⊆B

λ̄B

=
∑

B∈B,
{i,j}⊆B,k /∈B

λ̄B +
∑

B∈B,
{i,j}⊆B,k∈B

λ̄B +
∑

B∈B,
{j,k}⊆B,i/∈B

λ̄B

︸ ︷︷ ︸
≤

∑
B∈B,
j∈B

λ̄B

+
∑

B∈B,
{j,k}⊆B,i∈B

λ̄B

︸ ︷︷ ︸
≤

∑
B∈B,

{i,k}⊆B

λ̄B

≤ 1 + ξi,k.

The first consequence of this inequality is that ξi,k > 0, and arc (i, k) belongs to Aλ, as otherwise we
would have v(a) + v(a′) ≥ 1. The second consequence is that v(a) + v(a′) = 2− ξi,j − ξj,k ≥ 1− ξi,k, and
value v for arc (i, k) is not larger than v(a) + v(a′). Then we can replace arcs a and a′ by arc (i, k).

In both cases, there is a contradiction with the minimality of the number of arcs in the cycle. Thus we
can conclude that the arcs are alternating between AG and Aλ. Thus K must be even, and we can denote
K = 2R. Without loss of generality we assume a1 ∈ Aλ. We define hr = t(a2r−1) and tr = h(a2r−1) for
each r ∈ {1, . . . , R}. Now we are going to show that (h1, . . . , tR) ∈ CR.

The minimality of the cycle implies that all nodes (h1, . . . , tR) are different. Since arc (hr, tr) belongs
to Aλ, there must be some B ∈ B with λ̄B > 0 such that {hr, tr} ⊆ B. By definition of B, this implies

that d(hr, tr) ≤ 0 and d(tr, hr) ≤ 0. Finally, since a2r−1 ∈ Aλ, l(a2r−1) = 0, then
∑R

r=1
l(a2r) ≥ 1, which

implies that
∑R

r=1
d(tr, hr+1) ≥ 1.

The first approach to find such a cycle in multigraph G = (V, A) is based on an IP. Let ya be a binary
variable which determines whether arc a ∈ A participates in the cycle or not. Consider the following IP
formulation.

min
∑

a∈A

v(a)ya (8a)

s.t.
∑

a∈A

l(a)ya ≥ 1, (8b)

∑

a∈A : h(a)=i

ya =
∑

a∈A : t(a)=i

ya ∀i ∈ V, (8c)

ya ∈ {0, 1} ∀a ∈ A. (8d)

It can be seen that there is a cycle (a1, a2, . . . , aK) in G such that
∑K

k=1
l(ak) ≥ 1 and

∑K
k=1

v(ak) < 1
if and only if the optimal value of (8) is strictly smaller than one. Constraints (8c) force the solution to
be a collection of cycles. Due to constraints (8b), at least one cycle in this collection must have a positive
sum of values l. If the objective function is strictly less than one, then any cycle in the collection has the
sum of values v strictly less than one.

Generating several constraints in each separation round helps to improve convergence of the cut gen-
eration procedure. This can be achieved by solving formulation (8) multiple times. After each solving, a
constraint is added to avoid selecting the same cut again. Suppose that cycle (a1, a2, . . . , aK) is found after

solving the IP. Without loss of generality, let a1 ∈ AG and R = 2K. Then the constraint
∑R

r=1
ya2r
≤ R−1

is added to (8), which is resolved again.
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We now describe the second approach to find a desired cycle in multigraph G = (V, A). Given a set A′

of arcs, we denote v(A′) =
∑

a∈A′ v(a) and l(A′) =
∑

a∈A′ l(a), and given two nodes i, j ∈ V we denote
vi,j the minimum possible sum of v values of a path from i to j. The approach consists in a partial
enumeration of cycles C in G satisfying v(C) < 1 and l(C) ≥ 1.

We perform one iteration for each node i ∈ V . In this iteration, we try to find cycles C containing node
i such that v(C) < 1 and l(C) ≥ 1. Then we mark node i to exclude cycles containing i from the search
in subsequent iterations. In each iteration, we use a recursive procedure which takes the current partial
path from node i to current node j, containing set C of arcs and set VC ∪ {j} of nodes. This procedure
iterates over arcs a ∈ δ+(j). If head h(a) of arc a has been marked, arc a is ignored. Otherwise, if node
h(a) is contained in VC then a subset C ′ of the arcs in C ∪ {a} forms a cycle. In this case, if conditions
v(C ′) < 1 and l(C ′) ≥ 1 held, then we store cycle C ′ inducing a violated inequality. If node h(a) is neither
blocked nor contained in VC we check conditions v(C) + v(a) + v(a′) < 1 and l(C) + l(a) + l(a′) ≥ 1, where
a′ = (h(a), i). If none of these conditions is true, it is unlikely that arcs in C ∪ {a} are contained in a cycle
inducing a valid inequality, and arc a is ignored. If both conditions are true, we augment the partial path
with arc a and recursively call the same procedure. The separation algorithm by partial enumeration is
formally presented in Algorithm 1.

Function DFSRecursion(i, j, VC , C):
for a ∈ δ+(j) do

if h(a) is marked then continue
if h(a) ∈ VC then

Find C ′ ⊆ C ∪ {a} that forms a cycle.
if v(C ′) < 1 and l(C ′) ≥ 1 then store cycle C ′

continue

end
a′ ←− (h(a), i)
if v(C) + v(a) + v(a′) ≥ 1 or l(C) + l(a) + l(a′) ≤ 0 then continue
DFSRecursion(i, h(a), VC ∪ {j}, C ∪ {a})

end

end

Function Main(G, v, l):
for i ∈ V do

DFSRecursion(i, i, ∅, ∅)
Mark node i

end

end
Algorithm 1: Fractional separation by partial enumeration

3.2.2 Pricing problem.

Consider an optimal dual solution (π̄, µ̄) of the restricted master problem, where (πi)i∈V are the dual
variables of constraints (7b) and (µC)C∈C are the dual variables of constraints (7c).

The pricing problem consists in finding a set of items B ∈ B such that the reduced cost of variable
λB is minimized. The coefficient of λB in the constraint (7b) corresponding to i ∈ V is one if i ∈ B,
and zero otherwise. The coefficient of λB in the constraint (7c) corresponding to tuple C ∈ C is equal to
the number of item pairs {i, j} ∈ FC such that both i and j are contained in B. We define θ(B, C) =
|{{i, j} ∈ FC : i ∈ B, j ∈ B}|. Then the reduced cost of variable λB is 1−

∑
i∈B π̄i −

∑
C∈C θ(B, C)µ̄C .

We now describe a MIP to find a set B with minimum reduced cost. Let C̄ be the set of active
constraints (7c): C̄ = {C ∈ C : µ̄C < 0}. Also let F̄ =

⋃
C∈C̄

FC . Let binary variable xi be equal

to one if item i ∈ V belongs to B, and zero otherwise. To simplify the notation, we introduce ψi,j =
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∑
C∈C̄:{i,j}∈FC

µ̄C . Also let binary variable yi,j be equal to one if both items from pair {i, j} ∈ F̄ belong

to B, and zero otherwise. Then the pricing problem can be formulated as the following MIP.

max
∑

i∈V

π̄ixi +
∑

{i,j}∈F̄

ψi,jyi,j (9a)

s.t.
∑

i∈V

wixi ≤W, (9b)

xi + xj ≤ 1 ∀{i, j} ⊆ V, d(i, j) ≥ 1 or d(j, i) ≥ 1, (9c)

xi + xj ≤ 1 + yi,j ∀{i, j} ∈ F̄ , (9d)

xi ∈ {0, 1} ∀i ∈ V, (9e)

yi,j ≥ 0 ∀{i, j} ∈ F̄ . (9f)

Given an optimal solution (x̄, ȳ) to (9), we add to the restricted master problem variable λB̄ , where
B̄ = {i ∈ V : x̄i = 1}. Constraints (9b) and (9c) require that B̄ ∈ B. Since ψi,j < 0 for {i, j} ∈ F̄ and we
are maximizing, each variable ȳi,j takes the minimum possible value. Therefore, ȳi,j is equal to one if and
only if both i ∈ B̄ and j ∈ B̄. Therefore,

∑

{i,j}∈F̄

∑

C∈C̄:

{i,j}∈FC

µC ȳi,j =
∑

C∈C

θ(B, C)µ̄C ,

and the objective value of solution (x̄, ȳ) is equal to the reduced cost of λB̄ with the opposite sign.

The pricing problem can be defined as the knapsack problem with hard and soft conflicts (KPHSC).
Hard conflicts correspond to pairs {i, j} such that either d(i, j) ≥ 1 or d(j, i) ≥ 1. Soft conflicts are pairs
that are penalized for being both in the set, and correspond to pairs {i, j} ∈ F̄ . The KPHSC generalizes
the NP-hard knapsack problem with conflicts. The latter is NP-hard, and it is studied for example in
(Sadykov and Vanderbeck, 2013; Bettinelli et al., 2017; Coniglio et al., 2020). To our knowledge, the
KPHSC has not yet been studied in the literature.

3.2.3 A branch-and-bound algorithm for the pricing problem.

Solving pricing subproblem directly using a general purpose MIP solver happens to be a bottleneck of
the BCP algorithm, especially for large instances. Therefore, we propose a dedicated branch-and-bound
algorithm to solve (9) which is inspired from the one by (Sadykov and Vanderbeck, 2013) for the knapsack
problem with conflicts.

Each node of the tree search has a list of selected items V +, and a list of forbidden items V −. At each
node, the branching scheme consists in choosing an item in V \ (V + ∪ V −) and adding it to V + in the
left branch and to V − in the right branch. A lower (primal) bound is computed at each node by taking
into account the profits of the selected items, and the penalties incurred by pairs of selected items. If the
value of this bound is better than the value of the best known solution so far, the latter is updated. An
upper (dual) bound is obtained as the sum of the lower bound and the overestimation of the maximum
profit which can be obtained from items in V \ (V + ∪ V −). This overestimation is calculated by solving
the fractional binary knapsack problem formulated in the following way.

• The knapsack size is equal to the residual bin capacity after packing all items in V +, i.e. W −∑
i∈V + wi.

• The profit of an item i ∈ V \ (V + ∪ V −) is equal to p̂i(V +) = π̄i +
∑

j∈V + ψi,j . This profit takes

into account the penalties incurred by packing i with items in V +. Penalties between pairs of items
which are both not in V + are disregarded. This is valid since penalties always reduce the value of
the solution.

The solution of such fractional binary knapsack problem can be computed in linear time if items are ordered
according to a non-decreasing profit/weight ratio p̂i(V +)/wi. Thus, the list of items V \ (V + ∪ V −) is
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always kept ordered according to this ratio. Each time set V + is modified, residual bin capacity, values
p̂i(V +), the ordering of items, and set V − (due to hard conflicts) are updated.

3.2.4 Other components of the algorithm.

It is well known that the column generation approach may have convergence issues. To improve con-
vergence, we use the automatic dual price smoothing stabilization technique proposed by (Pessoa et al.,
2018).

Having a good feasible solution is important for the efficiency of the BCP algorithm. Such a solution
provides an upper bound for the optimal objective value, and thus many nodes in the branch-and-bound
tree may be pruned by bound. To obtain feasible solutions, we use the strong diving heuristic proposed by
(Sadykov et al., 2019). We now briefly describe how the standard diving heuristic (Joncour et al., 2010)
can be applied for the BPPTL and present its strong diving variant.

After solving a node in the branch-and-bound tree, we have a solution λ̄ to the linear relaxation of
formulation (7). If λ̄ is integer, the node is pruned, otherwise we apply the diving heuristic. In this
algorithm, we select a column λB such that its value λ̄B in the fractional solution is the closest to 1. We
then add this column to the partial solution and change the right-hand-side values of constraints (7b)
corresponding to items in B to zero. Afterwards, the linear relaxation of (7) is resolved by column
generation (without cut separation). This iterative process continues until the solution to the linear
relaxation becomes integer or until the relaxation becomes infeasible.

In order to increase the efficiency of the diving heuristic, we apply the following problem-specific
enhancement to it. Each time a column λB is fixed to one, we update lag li,j to max{li,j , 0} for every
pair {i, j} ⊆ B. Following this update, we recalculate values d(i, j) and d(j, i), for all pairs {i, j} ⊆ V ,
i.e. the lengths of the longest paths between each pair of nodes in the graph. If a value d(i, j) becomes
positive, the set of hard conflicts in the pricing problem is updated, i.e. constraint xi + xj ≤ 1 is added to
formulation (9), and columns λB such that {i, j} ⊆ B are removed from the master problem.

We use the strong diving variant (Sadykov et al., 2019) of this diving heuristic. In this variant, we
select up to 10 candidate columns λB , and we fix them temporarily to one, one-by-one, and resolve the
master problem. Then we select the candidate column which resulted in the smallest increase in the lower
bound obtained by solving the linear relaxation of formulation (7).

After applying the strong diving heuristic, if the primal-dual gap is positive, we perform branching.
Here we use the Ryan and Foster branching (Ryan and Foster, 1981). To do so, we find a pair of items
{i, j} ⊆ V such that value

∑
B∈B: {i,j}⊆B λ̄B is fractional. Then we create two child nodes: in the first we

impose the requirement that items i and j are put into the same bin, and in the second that items i and j
are assigned to different bins. We respectively add the corresponding constraints to the pricing problem:
xi = xj in the first branch, and xi + xj ≤ 1 in the second. In the branch-and-bound algorithm, this
results in respectively merging items i and j, or adding hard conflict between i and j. We also remove
from the master problem columns which do not satisfy newly imposed constraints.

Choosing a pair of items to branch on is an important decision, which has a large impact on the
efficiency of the BCP algorithm. To find better branching candidates, we use two-phase strong branching.
In the first phase, we take up to 30 branching candidates (i.e. pairs of items), create child nodes for
them, and solve only the restricted master problem for them without column and cut generation. Up to
three best candidates are then chosen according to the product rule (Achterberg, 2007). For child nodes
of these candidates, in the second phase, we perform full column and cut generation. The size of the
branch-and-bound tree is estimated for them according to the approach suggested in (Kullmann, 2009).
Then the branching candidate with the smallest estimated tree size is chosen.
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4 The case with one available bin per time period and non-

negative lags

If we consider the case in which only one bin can be used in each time period (L = 1), then the BCP
algorithm proposed in Section 3 cannot be used. In this case, given a partition of the item set in bins, the
problem of determining if those bins can result in a feasible solution is NP-complete, as shown by (Finta
and Liu, 1996). For this reason, we limit ourselves to the case in which all lags are non-negative numbers.
We denote this problem by BPPTL1

+.

In this context, we can assume that the graph is acyclic. Otherwise it either has a cycle of positive
length and then it is trivially infeasible, or it has a cycle with all the arcs having lag zero. In the latter
case we can contract all the items in the cycle into one item and have an equivalent problem because these
items must be assigned to the same time period, and thus to the same bin.

A problem related to the BPPTL1
+ has been studied by (Kramer et al., 2017), who consider the

makespan objective function, i.e. minimizing the last time period in which any bin is used. If all time
lags are either zero or one, it is equivalent to minimizing the makespan and the number of bins used.
This case generalizes both the bin packing problem with precedence constraints, and the simple assembly
line balancing problem, as shown in (Kramer et al., 2017). However, if some time lags are strictly larger
than one, minimizing the makespan is not equivalent to the BPPTL1

+, since a solution that is optimal for
one objective function may be sub-optimal for the other objective function. An example of this can be
seen in Figure 5. In this example, if we optimize the use of one of the two objective functions we get a
solution that is sub-optimal for the other objective function. Minimizing the makespan gives a solution
with makespan 5 that uses 4 bins, but minimizing for the number of bins used gives a solution that uses
3 bins with makespan 6.

2 1

1

2

2

4 3

Figure 5: Example of instance with different optimal solutions for different objective functions. Here
W = 2.

In this section, we show how to modify the BCP algorithm developed in Section 3 to solve to optimality
the BPPTL1

+.

4.1 Valid assignments

Any feasible solution for an instance of the BPPTL1
+ is feasible for the BPPTL∞, and then the assignment

of items to bins (which are also time periods in the BPPTL1
+) must be composed of sets in B, and must

also satisfy constraints (7c). However, satisfying these constraints is not sufficient to induce a feasible
solution for BPPTL1

+, as can be seen in the example in Figure 6. In this example the time lags force each
node to be assigned to the same time period, but the bin capacity does not allow one to assign all items to
the same bin. Thus, there is a feasible solution to this instance of the BPPTL∞, but there are no feasible
solutions for the corresponding instance of the BPPTL1

+.
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w=3
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0

w=30

w=3

0

0

Figure 6: Example of instance with feasible solutions for BPPTL∞ but not for BPPTL1
+. Capacity

W = 10

In the following proposition, we characterize feasible solutions for the BPPTL1
+ with a simple condition.

Proposition 4. A partition P ⊆ B induces a feasible solution to the BPPTL1
+ if and only if the aggregated

graph GP is acyclic.

Proof. Proof. Recall that any item set in P satisfies the capacity constraint. Therefore, only lag constraints
have to be checked. If there is a feasible solution, then each set B ∈ P can be assigned to a time period p,
and then the aggregated graph must be acyclic because otherwise the arc in the cycle with a tail assigned
to the largest time period would be violated since all lags are non-negative. In the other direction, if GP

is acyclic there is a topological order of the aggregated nodes. A feasible solution can be obtained by
assigning bins to time periods following this topological order.

In the proof, time lag values are not relevant. Then, any partition that induces a feasible solution also
induces a feasible solution for any other graph with the same set of arcs, even with different (non-negative)
lags. This implies that the time lag values are relevant just to define the conflicts for set B. Thus it only
matters if the value of each time lag is zero or a positive number. Therefore, all positive time lags can be
replaced by unitary time lags without changing the set of optimal solutions.

In Section 3.1, we define set CR to characterize partitions that induce an aggregated graph with a cycle
of positive length, and thus an infeasible solution to the BPPTL∞. For the BPPTL1

+, partitions that
induce an aggregated graph with a zero length cycle are also infeasible. Analogously to Definition 2 for
cycles of positive length, we now define the set of tuples which induce cycles of length 0 in the aggregated
graph.

Definition 3. For each R ∈ N, R ≥ 2, let C0
R ⊆ V 2R be the set of all tuples (h1, h2, . . . , hR, t1, . . . , tR)

that satisfy the following properties.

• All the elements h1, . . . , hR, t1, . . . tR are different.

• For each r ∈ {1, . . . , R}, d(hr, tr) ≤ 0 and d(tr, hr) ≤ 0.

•
R∑

r=1

d(tr, hr+1) = 0, where hR+1 = h1.

Recall the definition of value θ(B, C):

θ(B, C) =
∣∣{r ∈ {1, . . . , R} : {hr, tr} ⊆ B

}∣∣ .

With this definition, constraints (7c) can be rewritten as:

∑

B∈B

θ(B, C)λB ≤ R− 1 ∀R ≥ 2,∀C ∈ CR. (10)
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An intuitive extension of these constraints is the following.

∑

B∈B

θ(B, C)λB ≤ R− 1 ∀R ≥ 2,∀C ∈ C0
R, (11)

However, constraints (11) forbid valid solutions. Indeed, if all pairs (hr, tr) in a given C ∈ C0
R belong to

the same element B in a partition P, this partition does not induce a cycle of length 0 in the aggregated
graph.

To overcome this issue, we define for C ∈ V 2R and B ∈ B the value φ(B, C) = min{1, θ(B, C)}. That
is, φ(B, C) is equal to one if any pair in FC is contained in B, and is equal to zero otherwise. This
definition allows us to characterize partitions that induce an aggregated graph with cycles of length 0.

Proposition 5. Given a partition P ⊆ B, the aggregated graph GP does not have a cycle of zero length if
and only if solution λ induced by P satisfies the following set of constraints:

∑

B∈P

φ(B, C)λB ≤ R− 1 ∀R ≥ 2,∀C ∈ C0
R. (12)

Proof. Proof. Assume that there is a cycle of zero length in GP , and take one with the minimum number
of nodes, B1, . . . , BR. We take for each r ∈ {1, . . . , R} nodes hr, tr ∈ Br such that d(tr, hr+1) = 0,
where hR+1 = h1. Then, for C = (h1, . . . , tR) we have C ∈ C0

R due to the minimality of R. For each
r ∈ {1, . . . , R}, we have φ(Br, C) = 1. Then constraint (12) for this tuple C is violated.

In the other direction, let C ∈ C0
R be a tuple such that the respective constraint in (12) is violated. For

each r ∈ {1, . . . , R} there is at most one set B ∈ B such that λB = 1 and {hr, tr} ⊆ B. Then there are
R different sets Br, r = {1, . . . , R}, such that φ(Br, C) = 1 and λBr

= 1. By definition of C0
R, there is a

cycle of length 0 which contains nodes GP .

By Proposition 5, the following IP formulation is valid for the BPPTL1
+.

min
∑

B∈B

λB (13a)

s.t.
∑

B∈B

1B(i)λB = 1 ∀i ∈ V, (13b)

∑

B∈B

θ(B, C)λB ≤ R− 1 ∀R ≥ 2,∀C ∈ CR, (13c)

∑

B∈B

φ(B, C)λB ≤ R− 1 ∀R ≥ 2,∀C ∈ C0
R, (13d)

λB ∈ {0, 1} ∀B ∈ B. (13e)

Here, constraints (13c) forbid cycles of positive length in the aggregated graph, and constraints (13d)
forbid cycles of zero length in the aggregated graph.

4.2 Separation

Given a partition P ⊆ B induced by an integer solution, a violated constraint can be separated by
finding any cycle in the aggregated graph GP . If the length of the cycle is positive, the corresponding
constraint (13c) is violated. If the length of the cycle is zero, the corresponding constraint (13d) is violated.
The depth-first-search algorithm can be used to find a cycle in the graph GP or determine that the graph
has no cycle. This can be done in time O(|P| + |AP |).

To separate constraints (13d), we adapt the partial enumeration approach developed in Section 3.2.1.
The following proposition is useful for this purpose.
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Proposition 6. Let
(
λ̄B

)
B∈B

be a solution satisfying (13b). If multigraph G = (V, A) constructed from

λ̄ has a cycle C = (a1, a2, . . . , aK) such that
∑K

k=1
l(ak) = 0 and

∑K
k=1

v(ak) < 1, and for every B ∈ B
with λ̄B > 0 there is at most one pair {iB , jB} ∈ FC with {iB , jB} ⊆ B, then there is a constraint (13d)
violated by λ̄.

Proof. Proof. Similarly to Proposition 3, we can prove that there is a cycle C ′ ⊆ C such that constraint∑
B∈B θ(B, C ′)λB ≤ R − 1 is violated by λ̄. For every B ∈ B with λ̄B > 0 we have φ(B, C ′) = θ(B, C ′),

since at most one of the pairs in FC′ is contained in B. Therefore, constraint (13d) for C ′ violated by
λ̄.

The algorithm to search for a violated constraint (13c) or (13d) is similar to Algorithm 1, with two
differences. First, when looping over the arcs which leave current node j of current partial path C, we
skip arcs a = (i, j) ∈ Aλ such that there is B ∈ B with λ̄B > 0 and both {i, j} ⊆ B and {i′, j′} ⊆ B for
some a′ = (i′, j′) ∈ C ∩Aλ. Second, in addition to storing cycles with a positive sum of time lags, we also
store cycles with the sum of time lags equal to zero.

4.3 Pricing problem

Consider an optimal dual solution (π̄, µ̄, µ̄0), with (πi)i∈V of the restricted master problem, where (πi)i∈V

are the dual variables of constraints (13b), (µC)C∈C are the dual variables of constraints (13c), and
(µ0

C)C∈C0 are the dual variables of constraints (13d). The binary coefficient of λB in the constraint (13d)
corresponding to tuple C ∈ C0 is equal to φ(B, C). Recall that φ(B, C) is equal to one if and only if there
is an item pair {i, j} ∈ FC such that both i and j are contained in B. Then the reduced cost of variable
λB is 1−

∑
i∈B π̄i −

∑
C∈C θ(B, C)µ̄C −

∑
C∈C0 φ(B, C)µ̄0

C .

We now describe a MIP to find a set B of items with the minimum reduced cost. Let C̄ and C̄0 be
the sets of active constraints (13c) and (13d). Variables x and y are defined in the same ways as for
formulation (9). Additionally, a binary variable zC for each cycle C ∈ C̄0 determines whether any of the
pairs in FC is contained in B. Then the pricing problem can be formulated as the following MIP.

max
∑

i∈V

π̄ixi +
∑

{i,j}∈F̄




∑

C∈C̄:

{i,j}∈FC

µ̄C


 yi,j +

∑

C∈C̄0

µ̄0
CzC − 1 (14a)

s.t.
∑

i∈V

wixi ≤W, (14b)

xi + xj ≤ 1 ∀{i, j} ⊆ V, d(i, j) ≥ 1 or d(j, i) ≥ 1, (14c)

xi + xj ≤ 1 + yi,j ∀{i, j} ∈ F̄ , (14d)

xi + xj ≤ 1 + zC ∀C ∈ C̄0,∀{i, j} ∈ FC , (14e)

xi ∈ {0, 1} ∀i ∈ V, (14f)

yi,j ≥ 0 ∀{i, j} ∈ F̄ , (14g)

zC ≥ 0 ∀C ∈ C̄0. (14h)

Given an optimal solution (x̄, ȳ, z̄) to (14), we add to the restricted master problem variable λB̄ , where
B̄ = {i ∈ V : x̄i = 1}. Since µ0

C < 0 for C ∈ C̄0 and we are maximizing, each variable z̄C takes the
minimum possible value. Therefore, z̄C is equal to one if and only if {i, j} ⊆ B for at least one pair
{i, j} ∈ FC . This implies that zC is equal to φ(B, C), and the objective value of solution (x̄, ȳ, z̄) is equal
to the reduced cost of λB̄ with the opposite sign.

The proposed formulation for the BPPTL1
+ can be strengthened by reducing collection B of possible

sets of items. Given a triple of items (i, k, j) such that d(i, k) = 0 and d(k, j) = 0, it is known (Peeters and
Degraeve, 2006) that sets B such that i, j ∈ B and k *∈ B can be removed from B. Thus, the following
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constraints can be added to the pricing problem (14):

xi + xj ≤ 1 + xk, ∀{i, j, k} ⊆ V, d(i, k) = 0 and d(k, j) = 0. (15)

Our branch-and-bound algorithm for the KPHSC presented in Section 3.2.3 can be adapted to solve
the formulation (14)-(15). For every C ∈ C̄0, the value of the lower (primal) bound is adjusted by µ̄0

C if at
least one of pairs {i, j} ∈ FC is contained in V +. Otherwise, penalty µ̄0

C is disregarded in the calculation
of the upper (dual) bound as it can only reduce the solution value. Constraints (15) are verified when
adding items to set V −: if i, j ∈ V +, d(i, k) = 0, and d(k, j) = 0 then the branch in which item k is added
to V − is not created. Moreover, the best known solution is not updated by the solution formed by items
in V + if i, j ∈ V +, d(i, k) = 0, d(k, j) = 0, and k *∈ V +.

5 Computational experiments

We implemented the proposed BCP algorithms in C++ language using a generic branch-cut-and-price
library BaPCod (Vanderbeck et al., 2020). BapCod uses Cplex 12.8 for solving master and pricing sub-
problems. We also use Cplex 12.8 to solve compact formulation (2) described in Section 2. The experiments
were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680 v3 server running at 2.50 GHz with 128
GB of RAM. Each instance is solved using a single thread.

5.1 Variant with an unlimited number of available bins

In this section we benchmark different approaches proposed in the paper for the variant of the problem with
an unlimited number of available bins. In Section 5.1.1 we describe the test instances which are inspired
from the application for the planning of phytosanitary treatments. In Section 5.1.2 we describe a procedure
to generate random instances which are based on academic instances of the standard bin-packing problem.
All generated instances are freely available at the address math.u-bordeaux.fr/~rsadykov/#instances.
In Section 5.1.3 we test different cut separation algorithms. Computational comparison of the best variant
of the compact formulation and the BCP algorithm is performed in Section 5.1.4. In Section 5.1.5, we
compare our BCP algorithm with the standard branch-and-price algorithm based on formulation (3).

5.1.1 Generation of application instances.

The first set of instances we generated are inspired from the application of phytosanitary treatment plan-
ning in a vineyard, described in Section 1. Consider a set Q = {1, . . . , Q} of periodic meta-requests
for treatment and a planning time horizon T = {1, . . . , T}. For each request q ∈ Q, the ideal elapsed
time between two consecutive treatments is denoted by eq. For additional flexibility, the minimum and
maximum elapsed times between two consecutive treatments of request q ∈ Q are set to e−

q ≤ eq and
to e+

q ≥ eq. Assuming that the planning is embedded in a rolling horizon approach, the last treatment
before the planning time horizon and the first treatment after the planning time horizon are fixed. Let
fq ∈ {−eq + 1, . . . , 0} be the time period of the last treatment of request q ∈ Q before the planning time
horizon. Let nq be the number of treatments of request q ∈ Q during the time horizon: it is equal to
the maximum integer such that fq + nqeq ≤ T . Then the time period of the first treatment of request
q ∈ Q after the planning time horizon is equal to f ′

q = fq + (nq + 1) · eq. The duration of each treatment
iq
j of request q ∈ Q is equal to wiq

j

. Treatments are performed by an unlimited fleet of identical vehicles.

During a time period, each vehicle is capable of performing treatments of a total duration not exceeding
W . The usage cost of a vehicle during one time period is unitary. The objective is to perform all necessary
treatments during the planning time horizon while respecting total durations of vehicles and the minimum
and maximum elapsed times between any two consecutive treatments of the same request, and to minimize
the total vehicle cost.

This problem can be modeled as the BPPTL as follows. Define the bin capacity equal to W and define
L = ∞. Define two artificial items is and if with weights wis = wif = W . For each request q ∈ Q
define nq items iq

1, iq
2, . . . , iq

nq
with weights equal to wiq

1
, wiq

2
, . . . , wiq

nq

respectively. In the time-lag graph,
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we define arc (is, if ) with lag T + 1, and arc (if , is) with lag −(T + 1). For each request q ∈ Q and each
treatment k ∈ {1, . . . , nq − 1} we define arc (iq

k, iq
k+1

) with lag e−
q , and arc (iq

k+1
, iq

k) with lag −e+
q . For

each q ∈ Q we define arc (is, iq
1) with lag max{1, e−

q + fq}, arc (iq
1, is) with lag −(e+

q + fq), arc (iq
nq

, if )

with lag max{1, e−
a − (f ′

q − T − 1)}, and arc (if , iq
nq

) with lag −(e+
a − (f ′

q − T − 1)).

The items created for each request q ∈ Q form a double chain in the graph. Each node is connected to
the next node in the chain by two arcs, one in each direction. The lags impose the minimum and maximum
elapsed time between two consecutive treatments of a request. Items is and if must be scheduled exactly
T + 1 time periods apart. Then all other items are scheduled inside T time periods strictly between items
is and if . Thus all treatments are performed within the planning time horizon.

Instances are randomly generated using four integer parameters: the number Q of requests, the number
T of time periods, the average number N of request treatments and U the average number of treatments
one vehicle can perform in a day. Given tuple (Q, T, N, U), an instance is generated as follows. For each
request q ∈ Q, let eq be a random integer in the interval

[⌊
0.7 · T

N

⌋
,
⌈
1.3 · T

N

⌉]
, and let e−

q = 10.8 · eq2
and e+

q = 31.2 · eq4. For each request q ∈ Q, also let fq be a random integer in interval [−eq + 1, 0].
The bin capacity W is set to 60, and we define the weight wiq

j

for each treatment of request q ∈ A as a

random integer in interval
[⌊

0.4 · 60

U

⌋
,
⌈
1.6 · 60

U

⌉]
. The dataset we generated consists of 252 instances, one

instance for each combination of parameters Q ∈ {3, 5, 7, 9}, T ∈ {20, 40, 60, 80, 100, 120}, N ∈ {4, 7, 10},
and U ∈ {2, 3, 4}.

In Figure 1 shown in Section 1, we present the time-lag graph for an instance generated with parameters
Q = 7, T = 60, N = 4. Parameter U does not have an impact on the time-lag graph. In this instance,
random values generated for the ideal elapsed time of a request are e1 = 13, e2 = 11, e3 = 20, e4 = 13,
e5 = 14, e6 = 20, and e7 = 14. Random values generated for the last treatment of a request before the
planning time horizon are f1 = 0, f2 = −8, f3 = −19, f4 = −12, f5 = −5, f6 = −7, and f7 = −12.

5.1.2 Generation of random instances.

The instances in the second set we generate are derived from classic bin packing instances by (Falkenauer,
1996). This set contains eight classes of instances : four classes of “uniform” instances with 120, 250, 500,
and 1000 items, and four classes of “triplet” instances with 60, 120, 149, and 501 items. We randomly
generated time lags between items according to the following procedure. In order to ensure that all
instances are feasible, we randomly generate tentative time period fi ∈ [1, 100] for every item i ∈ V . We
consider “freedom” parameter F and “density” parameter D. We randomly generate an undirected graph
G′ = (V, E): edge (i, j) such that i, j ∈ V belongs to E with probability D. For every edge (i, j) ∈ E, we
add lags li,j = fj − fi − F and lj,i = fi − fj − F . To ensure that all items are scheduled within the time
horizon of 100 time periods, we add two artificial items: “source” item 0 and “sink” item n + 1. Finally
we add time lags l0,n+1 = 101, ln+1,0 = −101, l0,i = 1 and li,n+1 = 1 for all i ∈ V .

We took five BPP instances for each class, and for each of these instances, we generated randomly
three BPPTL instances which correspond to parameters (F, D) ∈ {(1, 30%), (3, 10%), (10, 3%)}. Thus, we
generated 15 instances for each of the eight classes, or 120 instances in total.

5.1.3 Comparison of separation approaches.

In Section 3.2.1 two approaches to separate fractional solutions in the BCP algorithm are proposed: solving
a MIP and a partial enumeration algorithm. In this section we compare these approaches, as well as the
third alternative, which consists in only separating integer solutions. The results for the first set of
instances are given in Table 1. Here, column “Gap” presents the average optimality gap, “Root Gap” gives
the average gap at the root node of the branch-and-bound tree, “# Opt” the number of instances solved
to optimality, “# Nodes” the average number of explored nodes in the branch-and-bound tree, “% Mast”
is the time spent to solve the restricted master problem, “% Pric” is the time spent to solve the pricing
problem, and “% Cuts” is the time spent to separate and add cuts. The values in the last three columns
are in percentage of the total time. The sum of these three values is less than 100%, as the remaining time
is due to auxiliary components of BaPCod. The results in Table 1 show that the separation of both integer
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and fractional solutions by enumeration is the approach that allows us to solve to optimality the largest
number of instances, and also to get the smallest average optimality gap over all instances. We can also
underline that separating fractional solutions is very important for the efficiency of our BCP algorithm.
The pricing problem solution is fast and does not constitute a bottleneck of the BCP algorithm. The
majority of time is spent for cut separation, but this time clearly pays off. If cut separation is only used
for integer solutions, the number of nodes becomes very large. In this case BaPCod generates a significant
overhead, spending more that 50% of the time to manage the search tree. The time spent in the strong
diving heuristic is around 30% in general. This time overlaps with the time to solve the restricted master
problem and the pricing problem, as well as with the cut separation time, as all these components are used
by the heuristic.

Separation approach Gap Root Gap # Opt # Nodes % Mast % Pric % Cuts

Only integer solutions 4.1% 4.6% 159 13359.6 36.8% 3.5% 0.0%
Fractional solutions by MIP 3.0% 4.4% 180 660.4 27.4% 4.5% 60.9%
Fractional solutions by enum. 2.8% 4.2% 181 420.8 34.5% 7.1% 53.9%

Table 1: Comparison of different separation methods.

5.1.4 Comparison of the BCP algorithm with the Cplex solver.

In this section, we computationally compare two proposed approaches to solve the first set generated
instances with an unlimited number of available bins. The first approach is the best configuration for the
compact formulation, which is solved by Cplex (see Appendix B for the results obtained by the different
variants). The second approach is our BCP algorithm with the enumeration separation algorithm applied
to fractional solutions due to the results we obtained in Section 5.1.3. Both approaches are run with the
time limit of one hour.

Table 2 shows the results of this computational comparison. We give results for different subsets of
instances grouped by the generation parameters used, as well as the overall results. In the table, column “#
Inst.” shows the number of instances in the respective subset. Columns under “Opt” show the percentage
of the instances that were solved to optimality within the time limit. Columns under “Gap” show the
average optimality gap. Column “Root Gap” shows the average optimality gap at the root node. This gap
is computed as UB−LB

UB
, where LB in this case is the lower bound obtained in the root node, and UB is

the value of the best known solution. As “Gap” and “Root Gap” are computed differently, the latter can
be smaller than the former. Columns under “Time” show the average time in seconds. Finally, column “#
Nodes” shows the average number of nodes explored in the branch-and-bound tree of the BCP algorithm.

The results, presented in Table 2 show that our BCP algorithm is substantially more efficient than
the Cplex solver applied to the compact formulation of the problem. When considering the results for
different subsets of instances, we note that the BCP algorithm is not very “sensitive” to the length of
the time horizon, whereas the efficiency of Cplex decreases with the increase of parameter T . This is
not surprising, as the size of the compact formulation depends heavily on T , whereas the theoretical and
practical computational complexity of the components of the BCP algorithm never depend on T . On
the other hand, when parameters Q or N increase, both the Cplex and the BCP algorithm become less
efficient. The impact of parameter U is however very different. Smaller values of U are better for the
BCP algorithm, and larger values are better for Cplex. This behaviour is similar to that observed when
solving the classical BPP. When the average number of items which can fit into one bin increases, the
quality of lower bounds obtained by the linear relaxation of compact formulations converge to the quality
of the column generation lower bound. As the quality of lower bounds become similar, MIP solvers start
to be more efficient than column generation approaches due to the fact the linear relaxation of compact
formulations can be solved much faster.
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# Inst. Opt Gap Root Gap Time # Nodes
BCP Cplex BCP Cplex BCP Cplex BCP Cplex BCP

T = 20 36 80.6% 63.9% 1.0% 2.6% 0.9% 8.9% 867.3 1582.3 136.6
T = 40 36 75.0% 50.0% 2.0% 6.9% 2.4% 11.6% 920.9 2022.7 253.2
T = 60 36 72.2% 44.4% 3.1% 8.5% 3.9% 11.5% 1059.5 2304.0 401.6
T = 80 36 69.4% 30.6% 2.9% 10.0% 4.7% 12.7% 1143.8 2851.9 452.9
T = 100 36 63.9% 33.3% 4.1% 12.9% 5.3% 13.4% 1418.9 2853.9 686.1
T = 120 36 72.2% 16.7% 2.8% 15.8% 6.1% 13.0% 1167.0 3159.3 494.4
T = 140 36 69.4% 16.7% 3.5% 16.8% 6.3% 13.3% 1278.8 3097.5 521.1

Q = 3 63 100.0% 65.1% 0.0% 6.5% 1.6% 17.8% 72.7 1623.2 21.9
Q = 5 63 79.4% 31.7% 2.9% 9.8% 6.1% 11.1% 925.7 2595.7 542.0
Q = 7 63 55.6% 19.0% 3.8% 11.1% 5.3% 11.0% 1718.2 3145.2 583.8
Q = 9 63 52.4% 30.2% 4.4% 14.5% 4.0% 8.4% 1772.6 2848.3 535.6

N = 4 84 100.0% 73.8% 0.0% 2.3% 3.6% 9.2% 71.3 1298.4 62.2
N = 7 84 65.5% 31.0% 3.2% 9.2% 4.2% 11.9% 1383.4 2845.4 595.3
N = 10 84 50.0% 4.8% 5.1% 20.0% 4.9% 15.0% 1912.2 3515.4 605.0

U = 2 84 92.9% 32.1% 0.2% 9.3% 1.4% 9.3% 345.9 2631.8 276.1
U = 3 84 66.7% 39.3% 2.6% 10.4% 3.2% 10.8% 1280.8 2368.7 514.7
U = 4 84 56.0% 38.1% 5.6% 11.9% 8.2% 16.1% 1740.1 2658.7 471.6

All set 1 252 71.8% 36.5% 2.8% 10.5% 4.2% 12.1% 1122.3 2553.1 420.8

Table 2: Results of the computational comparison between the best variant of the compact formulation
solved by Cplex and the best variant of the BCP algorithm

5.1.5 Comparison of the BCP algorithm with the standard branch-and-price algorithm.

In the standard branch-and-price algorithm based on formulation (3), we solve the binary knapsack pricing
problem with the algorithm by Pisinger (1997). The branching strategy by Vanderbeck (2011) is used.
We employ the same stabilization technique and the same diving heuristics as for our BCP algorithm. In
Table 3, we show the results of the computational comparison on the second set of instances. The columns
are the same as in Table 2. Here, “Gap” and “Root Gap” are calculated only for instances for which both
a lower bound and a feasible solution are found. We put “-” if no such instances exist for a certain class.

The second set of instances is more difficult to solve than the first set. One can see in Table 3 that
BCP algorithm is much more efficient than the branch-and-price algorithm. The main reason is the
quality of column generation lower bounds. Another reason is that the restricted master problem based
on formulation (3) is harder to solve due to numerous time lag constraints (3c) in the master. For large
instances, the column generation procedure cannot even terminate in one hour. In the last row of Table 3,
we also compare the BCP and BP algorithms on the first set of application instances. This comparison
also shows a clear superiority of the BCP algorithm. We see the quality of column generation lower bounds
as the main bottleneck of the BCP algorithm. To improve its efficiency, one should search for new families
of strong “non-robust” cutting planes, i.e. cuts which change the structure of the pricing problem.

We do not give detailed results for the Cplex solver applied to the second set of random instances, as
the solver performed significantly worse that the BCP algorithm: only one instance from 120 has been
solved to optimality, and the run of an absolute majority of remaining instances could not terminate due
to insufficient memory.

5.2 Variant with one available bin per time period

In this section we computationally estimate the efficiency of our BCP algorithm for the variant of the
BPPTL with one available bin per time period, i.e. for the BPPTL1

+. We also compare the BCP algorithm
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# Inst. Opt Gap Root Gap Time Nodes
BCP BP BCP BP BCP BP BCP BP BCP BP

t60 15 46.7% 26.7% 6.5% 15.1% 7.8% 14.5% 2010.8 2937.8 1463.3 2669.5
t120 15 33.3% 0.0% 9.0% 20.7% 8.6% 10.9% 2595.6 >3600 1380.2 3.0
t249 15 0.0% 0.0% 6.3% - 6.3% 7.1% >3600 >3600 9.1 1.0
t501 15 0.0% 0.0% 5.6% - 5.6% - >3600 >3600 1.0 1.0
u120 15 20.0% 0.0% 6.7% 17.5% 6.6% 9.9% 2932.6 >3600 1420.1 3.0
u250 15 6.7% 0.0% 5.8% - 5.9% 6.8% 3431.4 >3600 24.6 1.0
u500 15 0.0% 0.0% 6.4% - 6.4% - >3600 >3600 1.0 1.0
u1000 15 0.0% 0.0% - - - - >3600 >3600 1.0 1.0

All set 2 120 13.3% 3.3% 6.7% 16.8% 6.9% 9.8% 3180.7 3517.1 537.5 335.1

All set 1 252 71.8% 39.7% 2.8% 11.3% 4.2% 9.2% 1122.3 2315.7 420.8 5254.6

Table 3: Results of the computational comparison between the best variant of the compact formulation
solved by Cplex and the best variant of the BCP algorithm

to other approaches available in the literature for special cases of the BPPTL1
+.

5.2.1 Instances.

We tested the branch-cut-and-price algorithm on the BPP-GP instances considered by (Kramer et al.,
2017). They created a set of instances for the BPP-GP by extending a benchmark set for the SALBP-1
proposed in (Otto et al., 2013). For each instance of the SALBP-1, they created two instances of the
BPP-GP by defining random time lags on the arcs of the precedence graph, one of them with random
time lag values in {0, 1} and the other with random time lag values in {0, 1, 2, 3}. We will refer to these
two special cases of the BPP-GP as BPP-GP01 and BPP-GP03. The literature instances for the BPP-P
and the SALBP-1 were also considered by (Kramer et al., 2017), as these two problems are special cases
of BPP-GP01.

The authors of (Kramer et al., 2017) kindly provided us with the results of their algorithm for the
instances of the SALBP-1, the BPP-P, the BPP-GP01, and the BPP-GP03. As mentioned in the intro-
duction, the algorithm in (Kramer et al., 2017) is designed for the makespan objective function. Thus, the
problem considered in (Kramer et al., 2017) is a special case of the BPPTL1

+ only if all time lag values are
in {0, 1}. Thus, we tested our BCP algorithm only on the instances of the SALBP-1, the BPP-P, and the
BPP-GP01. Instances containing 20, 50, and 100 items are used. We skip instances with 1000 items as
they are out of reach for our algorithm. For each problem variant and each value n equal to the number
of items, there are 525 instances in the test set. The structure of precedence graphs is described in (Otto
et al., 2013).

(Kramer et al., 2017) propose a heuristic procedure to find feasible solutions and thus upper bounds.
They also use known techniques from the literature to compute lower bounds. The best upper and lower
bounds reported in (Kramer et al., 2017) are usually very good. Most of the instances are solved to
optimality. A summary of known results can be seen in Table 4. This table combines the bounds
reported in (Kramer et al., 2017), as well as the bounds we obtained using the code from (Pereira, 2016)
provided by the author. Column “# Not Opt” shows the number of instances for which the best known
lower bound is strictly smaller than the best known upper bound. Column “# Opt” gives the number of
instances for which the best known bounds are equal, i.e. the number of instances with known optimum
solutions. In column “Gap Unsolved”, the average optimality gap is shown for the open instances.
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# Items type # Not Opt # Opt Gap Unsolved

n = 20 BPP-GP01 0 525 -
BPP-P 0 525 -
SALBP-1 0 525 -

n = 50 BPP-GP01 15 510 3.9%
BPP-P 0 525 -
SALBP-1 0 525 -

n = 100 BPP-GP01 67 458 2.8%
BPP-P 12 513 2.0%
SALBP-1 9 516 2.2%

Table 4: Number of instances solved to optimality in (Kramer et al., 2017) and average optimality gap for
unsolved instances

5.2.2 Experimental results of the BCP algorithm.

In this section, we test our BCP algorithm on the instances described in Section 5.2.1. We use two variants
of the BCP algorithm. First variant BCP-K is initialized with the best known upper bounds obtained
in (Kramer et al., 2017). Second variant BCP-∞ does not use any initial upper bounds. We impose the
time limit of one hour for each instance. Given an instance, we denote by LB(ALG) and UB(ALG) the
best lower and upper bounds obtained by algorithm ALG, which can be either BCP-K, BCP-∞, or KDI,
where the latter is the approach proposed in (Kramer et al., 2017). In the BCP algorithm, the pricing
problem is solved by the custom branch-and-bound algorithm when treating the BPP-GP01 and BPP-P
instances. For the SALBP-1 instances, the MIP solver is used to solve the pricing problem. This choice is
explained by the fact that some SALBP-1 instances have a large bin capacity and very few hard conflicts,
and our branch-and-bound algorithm is not efficient for such instances of the knapsack problem with hard
and soft conflicts.

In Table 5 we compare upper bounds UB(BCP-∞) and UB(KDI). Instances are divided into three
groups: “Better”, “Equal” and “Worse”, depending on whether UB(KDI)> UB(BCP-∞), UB(KDI)=
UB(BCP-∞), and UB(KDI)< UB(BCP-∞). Columns under “Avg. Diff.” give the average absolute
difference between values UB(KDI) and UB(BCP-∞) for the corresponding group of instances. For some
groups of instances, this average difference is marked with “∞”, which means that for at least one instance
in this group no feasible solution was found by algorithm BCP-∞.

Better Equal Worse
# Items type # Avg. Diff. # # Avg. Diff.

n = 20 BPP-GP01 0 - 525 0 -
BPP-P 0 - 525 0 -
SALBP-1 0 - 525 0 -

n = 50 BPP-GP01 1 1.0 520 4 1.0
BPP-P 0 - 501 24 1.0
SALBP-1 0 - 515 32 1.0

n = 100 BPP-GP01 13 1.0 480 32 ∞
BPP-P 2 1.0 372 151 1.5
SALBP-1 0 - 339 186 ∞

Table 5: Comparison of upper bounds UB(BCP-∞) and UB(KDI)

The results in Table 5 show that the heuristic proposed in (Kramer et al., 2017) is usually much
better to obtain good feasible solutions than the algorithm BCP-∞. Nevertheless, our algorithm is able
to improve the best known solutions for 16 instances. Using the variant BCP-K of our algorithm, no
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more best known solutions were improved.

In Table 6, we compare lower bounds LB(BCP-K) and LB(KDI). In the same vein as above, the
instances are divided into the groups “Better”, “Equal” and “Worse”, depending on whether LB(KDI)<
LB(BCP-K), LB(KDI)= LB(BCP-K), and LB(KDI)> LB(BCP-K). The results show that the lower
bounds obtained by our algorithm BCP-K are on average worse than the best known ones for instances
of the BPP-P and the SALBP-1. However, our lower bounds are on average better than the best known
ones for instances of the BPP-GP01. This is not surprising as the BPP-GP has been less studied in the
literature. Overall, our algorithm improved 63 best known lower bounds among 103 open instances, i.e.
for the majority of open instances.

Better Equal Worse
# Items type # Avg. Diff. # # Avg. Diff.

n = 20 BPP-GP01 0 - 525 0 -
BPP-P 0 - 525 0 -
SALBP-1 0 - 525 0 -

n = 50 BPP-GP01 13 1.0 511 1 1.0
BPP-P 0 - 501 24 1.0
SALBP-1 0 - 522 3 1.0

n = 100 BPP-GP01 36 1.4 472 17 1.1
BPP-P 8 1.0 448 69 1.2
SALBP-1 6 1.0 487 32 1.0

Table 6: Comparison of lower bounds LB(BCP-K) and LB(KDI)

In Table 7, we show the optimality status of instances before and after applying our algorithm. Column
“# Opt KDI” shows the number of instances with known optimum solutions in the literature. Column “#
Opt. +BCP” gives the number of instances with known optimality based on the literature results and the
results obtained by our BCP algorithm. Finally, “# Not Opt.” shows the number of instances that still
remain open. This table shows that for 79 instances the optimality status is obtained for the first time
among 103 open instances. 24 instances still remain open.

# Items type # Opt KDI # Opt. +BCP # Not Opt.

n = 20 BPP-GP01 525 0 0
BPP-P 525 0 0
SALBP-1 525 0 0

n = 50 BPP-GP01 510 14 1
BPP-P 525 0 0
SALBP-1 525 0 0

n = 100 BPP-GP01 458 49 18
BPP-P 513 10 2
SALBP-1 516 6 3

Table 7: Optimality status of instances

Finally, in Table 8, we give statistics for our algorithm BCP-K applied to instances described in
Section 5.2.1. Columns under “# Nodes” show the average number of explored nodes in the branch-and-
bound tree for both unsolved instances and instances solved to optimality. Column “Not Solved” gives
the number of instances not solved to optimality by the algorithm BCP-K. Column “Solved” shows the
number of instances solved to optimality. Column “Time” gives the average time in seconds our algorithm
took when it could solve instances to optimality. It can be seen from the results in Table 8 that algorithm
BCP-K is less efficient than the approach by (Kramer et al., 2017) for the BPP-P and the SALBP-1,
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but more efficient for the BPP-GP01. We should mention, however, that our algorithm is initialized by
the best known solutions obtained in (Kramer et al., 2017). Thus, it makes sense to combine our BCP
algorithm with the approach proposed in (Kramer et al., 2017) to solve instances of the BPP-GP01. These
two methods seem to have a complementary strength, according to the results presented in Table 7.

# Nodes # Instances Time
# Items type Not Solved Solved Not Solved Solved Solved

n = 20 BPP-GP01 - 1.5 0 525 0.19
BPP-P - 1.7 0 525 0.18
SALBP-1 - 1.2 0 525 0.84

n = 50 BPP-GP01 8049.0 15.6 2 523 6.59
BPP-P 3479.4 40.3 24 501 36.92
SALBP-1 621.7 4.5 3 522 25.64

n = 100 BPP-GP01 5969.1 26.7 34 491 34.71
BPP-P 2491.7 36.4 71 454 57.70
SALBP-1 52.2 2.2 35 490 182.20

Table 8: Statistics of the BCP-K algorithm

6 Conclusions

In this work, we introduce the bin packing problem with time lags (BPPTL). As a motivation, we describe
an application of the BPPTL in which one needs to decide on the planning of phytosanitary treatments
in a vineyard. We first present an IP formulation for the problem. Then for two important special cases
of the BPPTL with an unlimited number of available bins and with one available bin per time period, we
propose an exact branch-cut-and-price (BCP) algorithm. This algorithm relies on a known IP formulation
with an exponential number of variables which define a relaxation for the problem, and a new family of
constraints which serve to cut infeasible solutions produced by the relaxation. We present two approaches
to separate the new family of constraints. The BCP algorithm also incorporates an automatic dual price
smoothing technique to improve the convergence of column generation, a strong diving heuristic for finding
feasible solutions, and a strong multi-phase Ryan&Foster branching.

The computational experiments show that our BCP algorithm substantially outperforms a commercial
MIP solver on newly generated instances inspired from the phytosanitary treatment planning application.
The experiments on literature instances for special cases of the BPPTL show that the BCP algorithm can
complement known approaches, as it allows us to obtain the optimality status for 70% of previously open
instances.

Nevertheless, we believe that the efficiency of our BCP algorithm can still be improved. The exper-
iments on literature instances show that the primal heuristic should be improved. The BCP algorithm
currently relies on the generic strong diving heuristic, which can be slow and relatively inefficient for larger
instances. Therefore, developing specialized heuristics for the BPPTL is an important research direction.
Known heuristics for the related problem BPP-GP, such as the one proposed in (Kramer et al., 2017), may
serve as a basis for this work.

The BCP algorithm is currently limited to two special cases of the BPPTL. Extending it to the general
case is an interesting research perspective. This seems not to be easy to do, as in general it is an NP-
complete problem (Finta and Liu, 1996) to determine whether a partition of items into bins is feasible or
not with respect to the time lags. Thus, any family of cutting planes to cut off infeasible assignments of
items to bins will be NP-hard to separate even if only integer assignments are considered. An extension
to the general case is relevant in practice, as sometimes we cannot assume that we may use any number
of resources as we want in any time period.

Another important generalization concerns related scheduling problems. Release dates and deadlines
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can be modeled with time lags, and thus addressed easily. However, considering objective functions like
makespan or total tardiness, and therefore time period-dependent penalization of item placement, would
require a substantial modification of the algorithm.

In the phytosanitary treatment planning application, we assume that the time needed for a vehicle to
go from one sector to another is negligible in comparison to the duration of treatments. Thus transition
times of vehicles are ignored. In practice, this is not always true. If transition times are not negligible,
the problem shifts from the class of precedence-constrained bin packing problems to the class of periodic
vehicle routing problems (Campbell and Wilson, 2014).

In the standard periodic vehicle routing problem (PVRP), there are only a few alternatives for visiting
each client. For example, a client may be visited on Monday and Thursday, or on Tuesday and Friday.
If the planning time horizon is sufficiently long, having only a few alternatives dramatically limits the
flexibility of visits. Flexible variants of the PVRP exist, such as one proposed in (Archetti et al., 2017).
However, flexibility in that case concerns the amount of goods delivered to a client during each visit. An
extension of the BPPTL to a flexible periodic vehicle routing problem in which one imposes minimum
and maximum time lags on consecutive visits to the same client has a large number of applications in the
context of provision of services such as periodic maintenance visits. A BCP algorithm similar to the one
proposed in this paper may be efficient for such a flexible periodic vehicle routing problem, provided that
the pricing problem takes into account the vehicle transition times.

Finally, the BPPTL structure is sufficiently rich that there may be other applications which result in
time lag graphs in a class different from the class of double-linked chain graphs. Finding such applications
and suggesting test instances for them is useful for further progress in solution approaches for the BPPTL.
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Appendix A. Proof of Lemma 1

Lemma 1. Let G = (V, A, l) be a directed valued graph. Graph G has no cycle of positive length if and
only if a mapping τ : V −→ Z+ exists, such that for each (i, h) ∈ A, τ(i) + li,h ≤ τ(j).

Proof. Proof. This proof is an adaptation of a similar result taken from (Bartusch et al., 1988). If such
τ exists, consider any cycle with nodes i1, . . . , iK , iK+1 = i1. Then, for each k ∈ {1, . . . , K} we have

τ(ik) + lik,ik+1
≤ τ(ik+1). If we sum all these inequalities we get

∑K
k=1

lik,ik+1
≤ 0, and then any cycle

must have non-positive length.

Assume now that there is no cycle of positive length, and consider an extra source node s /∈ V , and the
graph Ḡ = (V ∪ {s}, Ā, l̄) such that Ā = A∪ {(s, i) : i ∈ V }, and l̄i,j = 1 if i = s, and l̄i,j = li,j otherwise.

For each i ∈ V , define τ(i) as the length of the longest path from s to i in Ḡ. Since (G, A, l) has no
cycle of positive length, then (Ḡ, Ā, l̄) has no cycle of positive length, and then the longest path from s to
i is a well defined finite number, taking a value of at least 1.

Finally, for each (i, j) ∈ A it holds that τ(i) + li,j ≤ τ(j), since the length of the longest path from s
to j cannot be smaller that the length of the longest path from s to i plus li,j .

Appendix B. Results for the variants of the compact model

Some modifications to formulation (2) can be made. Constraints (2c) can be replaced by constraints giving
a stronger linear relaxation:

∑

i∈V

wixi,b,p ≤W ∀b ∈ L, p ∈ T , (16a)

xi,b,p ≤ ub,p ∀i ∈ V, b ∈ L, p ∈ T . (16b)

These constraints should be used if some items have a weight equal to 0, since constraints (2c) would not
count a bin in the objective value if all items assigned to it have weight 0.

Constraints (2d) can also be replaced by constraints which give a stronger linear relaxation:

p−li,j∑

p′=1

∑

b∈L

xi,b,p′ ≥
p∑

p′=1

∑

b∈L

xj,b,p′ ∀(i, j) ∈ A,∀p ∈ T : p− li,j ≤ T. (17)

The number of constraints (17) is O(T |A|), while the number of constraints in (2d) is O(|A|). Thus, the
stronger relaxation comes at the price of a larger formulation. The first use of constraints (17) in the
context of a scheduling problem was made by (Christofides et al., 1987). See (Artigues, 2017) for a more
detailed discussion of these constraints.

Additionally, redundant constraints can be added to break symmetry. The bins used at each time
period are equivalent: bins can be replaced without an impact on the feasibility and cost of the solution.
Thus, without loss of generality we can impose that the bins with lower indices are chosen:

ub−1,p ≥ ub,p ∀p ∈ T ,∀b ∈ L \ {1}. (18)

These cuts are classical in the cutting and packing community, and are subsets of those proposed in
(Kaibel and Pfetsch, 2008).

We now analyze the performance of some variants of the compact formulation presented in Section 2.
Specifically, we seek to determine how different combinations of constraints affect the performance of the
Cplex solver on our set of instances.

We consider four different variants of formulation (2).
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• Capacity constraints. We denote Cap = Coupled if we use constraints (2c), and Cap = Decoupled
if we use constraints (16).

• Time lag constraints. We denote Pre = Strong if we use constraints (17) and Pre = Weak if we use
constraints (2d).

• Breaking symmetries. We denote Sim1 if we add constraints (18) to the formulation, and Sim0
otherwise.

• Early and late starts. We denote Es1 if we apply the early and late start pre-processing, and Es0
otherwise.

To compare these variants, we used Cplex to solve each of the 24 = 16 combinations, running each
instance with a time limit of one hour. The results are presented in Table 9. Columns under “Gap” contain
the average optimality gap over all instances, with the gap computed as UB−LB

UB
. Columns under “# Opt”

contain the number of instances solved to optimality. Table 9 shows that the most efficient variant is
(Sim1, Es0, Cap = Coupled, Pre = Weak). Using this variant of the compact formulation, Cplex solves 98
out of 252 instances.

Gap # Opt
Sim0 Sim1 Sim0 Sim1

Es0 Es1 Es0 Es1 Es0 Es1 Es0 Es1

Cap = Coupled
Pre = Strong 10.4% 10.6% 10.7% 10.5% 72 74 90 92
Pre = Weak 11.7% 10.8% 11.9% 10.5% 59 60 91 86

Cap = Decoupled
Pre = Strong 32.8% 33.0% 32.0% 31.7% 72 71 85 87
Pre = Weak 31.8% 23.7% 34.5% 28.4% 68 69 86 87

Table 9: Comparison of different compact formulations.
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Chapter 5

Conclusions

In this thesis we develop integer programming methods to two classes of problems
related to scheduling: the general production scheduling problem (GPSP) and
the bin packing with time lags (BPPTL). We motivate our study of the GPSP by
considering two important strategic mine planning applications, and the BPPTL
by considering s phytosanitary treatment problem in wine production scheduling.

We begin by studying the Bienstock-Zuckerberg (BZ) algorithm, which is
well suited to solve the linear relaxation of GPSP. We propose several speed-ups
for this algorithm, improving its performance in many different ways. We show
that the BZ algorithm significantly outperforms alternative approaches to solve
the LP relaxation of GPSP, and that this algorithm can effectively be used
to compute the LP relaxation solution of real size instances of different mine
planning problems and classic RCPSP problems.

We continue by incorporating the use of integer-variables in our study of
GPSP. We focus on two specific open pit mine planning problems: the open pit
phase design problem (OPPDP) and the open pit production scheduling problem
(OPPSP). The methodology that we propose uses the BZ algorithm to solve the
LP relaxation, and additionally introduces rounding heuristics, pre-processing
techniques, cutting planes, and a branch-and-bound scheme. Experiments
performed in real open pit mining instances show that the methodology can be
used to get integer feasible solution within an average 1.25% gap of optimality
for OPPDP instances, and within 0.71% gap of optimality for OPPSP instances.

Finally, motivated by the planning of phytosanitary treatments in a vineyard,
we study the BPPTL. We propose both a compact formulation and an extended
formulation. We develop a branch-cut-and-price (BCP) methodology based on
the extended formulation that can be used to solve two specific cases of the
BPPTL. This methodology combines a separation algorithms (for both integer
and fractional solutions) of the relaxation for the two studied problem classes, a
strong diving heuristic to find feasible solutions, automatic dual price smoothing
to improve the column generation convergence, and a Ryan and Foster branching
scheme. Computational experiments show that the BCP algorithm significantly
outperforms commercial MIP solvers using the compact formulation on newly
generated instances. The algorithm also allows us to close the optimality gap
for 70% of previously open instances in a public benchmarking set.

We plan to pursue the following future research directions that follow up on
this research:

• Dan Bienstock and Mark Zuckerberg observed that the BZ algorithm
can be generalized to problems where the pricing problem is unimodular.
However, this is not a strict requirement to prove convergence. There are
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5. Conclusions

a number of scheduling problems, very similar to the GPSP, that currently
cannot be solved with the BZ algorithm, and that are largely unsolvable
due to the challenge of solving the LP relaxation. Extending and tuning
such a generalized BZ algorithm could be very useful in practical problems.

• In our strategic open pit mining problems we are ignoring an important
practical constraint concerning the shape of extracted pits. Such constraints
should impose that blocks be extracted in contiguous groups of a minimum-
width. It is not clear how to formulate this problem. Much less while
preserving the problem structure that we exploit.

• A number of commercial software systems for solving open pit mine
planning problems rely on the so-called receding time window heuristics.
An interesting research direction would consist in studying this class
of heuristics, and integrating them with our proposed approach. The
methodologies we have developed could serve to improve the performance
of each iteration in a receding time window algorithm, or, they could serve
as a means to polish or improve a solution generated by such.

• We believe that the hourglass cuts could be used for the multi-modal
resource constrained project scheduling problem formulations, which are
known to exhibit very poor LP bounds. Moreover, it is possible that
an extension of the BZ algorithm might be suitable for solving the LP
relaxation of this problem. Overall, multi-modal RCPSPs have received
little attention in the academic literature and would be very interesting
to study. A major challenge of the multi-modal problem is that relaxing
capacity constraints leads to a scheduling problem that is still NP-Complete.
Multi-modal scheduling problems are very important in the context of
project scheduling in general (Critical Path Method, crashing), and in
particular, in underground mine planning.

• For the BPPTL it would be very interesting to study the cases with
1 < L < ∞, which so far are ignored by our approach. We believe that
it may be possible to apply for these problems the techniques developed
for GPSP, by directly considering the compact formulation instead of a
column generation approach. Using column generation seems difficult, as
in general it is an NP-complete problem [FL96] to determine whether a
partition of items into bins is feasible or not with respect to the time lags.

• While the algorithm that we propose for BPPTL significantly outperforms
other approaches in the academic literature, we believe that it is possible
to introduce several speed-ups. Two directions seem most promising. First,
the bottleneck of our approach is the pricing algorithm, which is the
knapsack problem with hard and soft conflicts (KPHSC). Approaching the
KPHSC directly by applying a MIP solver is probably not the best way to
solve it, especially when a bin can hold few items on average. It is likely
that a constraint programming approach with effective propagation and
domain-reduction techniques would be more efficient. Second, the primal
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heuristic that we use is a generic strong diving heuristic, which can be slow
and relatively inefficient for larger instances. Extending the work proposed
by [KDI17], may be a promising first direction.

In addition, we expect to continue working with mining companies interested
in these types of methodologies. Mining is a very important problem in Chile, and
small methodological improvements could mean big savings for these companies.
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