
HAL Id: tel-03431281
https://theses.hal.science/tel-03431281

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Placement Strategies for Heterogeneous and
Non-Volatile Memories in High Performance Computing

Andrès Rubio Proaño

To cite this version:
Andrès Rubio Proaño. Data Placement Strategies for Heterogeneous and Non-Volatile Memories in
High Performance Computing. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de
Bordeaux, 2021. English. �NNT : 2021BORD0224�. �tel-03431281�

https://theses.hal.science/tel-03431281
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET
D’INFORMATIQUE

INFORMATIQUE

Par Andrès RUBIO PROAÑO

Stratégies de Placement de Données pour Mémoires
Hétérogènes et Non-Volatiles en Calcul Haute Performance

Sous la direction de : Brice GOGLIN

Soutenue le 7 Octobre 2021

Membres du jury:

Mme Rosa Badia . . Directrice de recherche, Barcelona Supercomputing Center Examinatrice
M. Thierry Gautier Chargé de Recherche, Inria Rapporteur
M. Brice Goglin . . Directeur de recherche, Inria / LaBRI Directeur
M. Raymond Namyst Professeur, Université de Bordeaux Président
M. François Trahay Maître de conférence, Institut Polytechnique de Paris . . Rapporteur

Titre Stratégies de placement de données pour les systèmes à mémoires
hétérogènes dans le calcul haute performance.

Résumé Les systèmes mémoire des plates-formes de calcul haute perform-
ance ont subi des changements majeurs ces dernières années. En plus de la
mémoire principale, du stockage et de plusieurs niveaux de caches, les serveurs
sont à accès non-uniforme (NUMA) et peuvent disposer de plusieurs types de
mémoire. Par exemple, les mémoires à haut débit (HBM) embarquées dans le
processeur ainsi que les mémoires non volatiles (NVDIMM) ont été introduites
dans la hiérarchie. Ces changements sont nécessaires pour rapprocher les don-
nées du traitement et donc avoir de meilleures performances. Cependant, ils
obligent les développeurs à adapter leurs applications pour fonctionner cor-
rectement sur ces différents systèmes hétérogènes, ce qui rend le développement
beaucoup plus complexe. En pratique, le simple fait de décider d’allouer un
tampon de données sur le bon type de mémoire dans ces systèmes hétérogènes
est difficile et critique pour les performances de l’application.

Cette thèse a été réalisée à Inria Bordeaux - Sud-Ouest et au LaBRI. Après
avoir présenté l’état de l’art des architectures mémoire, nous avons caractérisés
les différents types de mémoires à l’aide d’attributs simples. Nous avons fourni
une interface que la bibliothèque hwloc expose aux applications pour compren-
dre l’organisation mémoire et allouer des tampons. Nous avons ensuite proposé
une méthodologie pour que les développeurs puissent adapter leurs applica-
tions à l’utilisation appropriée de systèmes à mémoire hétérogènes. Comme
l’accès à différents plates-formes hétérogènes n’est pas toujours possible, nous
avons identifiés de nombreuses stratégies permettant la simulation des per-
formances de mémoire hétérogène, et l’émulation de topologie de la mémoire
différentes. Enfin, nous avons conçu une stratégie visant à faciliter le partage
des plates-formes à mémoire non-volatile et hétérogènes entre des tâches HPC
co-exécutées sur les mêmes serveurs.

Mots-clés Calcul haute performance, systèmes à mémoire hétérogène, mod-
èles de programmation parallèle, programmation par tâches, calcul distribué,
supports d’exécution

Laboratoire d’accueil Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille
Tour, 33400 Talence

Data-Placement Strategies for HMS in HPC iii

Title Data-Placement Strategies for Heterogenous Memory Systems in High
Performance Computing.

Abstract Memory systems in High-Performance Computing (HPC) systems
have undergone major changes in recent years. Beside main memory, storage
and multiple levels of caches, servers come with non-uniform memory access
(NUMA) and may contain different kinds of memory. For instance, high band-
width memory (HBM) embedded on the processor package and non-volatile
memory (NVDIMM) have been introduced into the hierarchy. These changes
are necessary to bring the data closer and closer to processing and therefore
have better performance. However, they require developers to adapt their ap-
plications to work properly on different heterogeneous memory systems, caus-
ing software development to become much more complex. In practice, the
simple fact of deciding to allocate a data buffer on the appropriate memory in
a heterogeneous system becomes difficult and critical to application perform-
ance.

This thesis has been carried out at Inria Bordeaux - Sud-Ouest and LaBRI.
After a presentation of the state of the art of memory architectures, we have
characterised the memories through simple attributes. We have provided an
interface that the hwloc library exposes to applications to understand the
memory topology and allocate buffers. Then, we proposed a strategy to help
developers adapt their applications for the proper use of heterogeneous memory
systems. As accessing different heterogeneous platforms is not always possible,
we identify several ways to simulate the performance of heterogeneous memory
and to emulate different memory topologies. Finally, we built a strategy that
eases the sharing of platforms with heterogeneous and non-volatile memory
between HPC tasks co-scheduled on the same nodes.

Keywords High performance computing, heterogeneous memory systems,
parallel programming models, task-based programming, distributed comput-
ing, run-time systems

Hosting Laboratory Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille
Tour, 33400 Talence

iv Andrès RUBIO PROAÑO

Título Estrategias de emplazamiento de datos para sistemas de memoria
heterogéneos en computación de alto rendimiento.

Resumen Los sistemas de memoria en los sistemas de Computación de Alto
Rendimiento han experimentado cambios importantes en los últimos años.
Además de la memoria principal, el almacenamiento y varios niveles de cachés,
los servidores vienen con acceso a memoria no uniforme (NUMA) y pueden
contener diferentes tipos de memoria. Por ejemplo, la memoria de alto ancho de
banda (HBM) incorporada en el paquete del procesador y la memoria no volátil
(NVDIMM) se han introducido en la jerarquía. Estos cambios son necesarios
para acercar cada vez más los datos al procesamiento y, por lo tanto, tener
un mejor rendimiento. Sin embargo, requieren que los desarrolladores adapten
sus aplicaciones para que funcionen correctamente en diferentes sistemas de
memoria heterogéneos, lo que hace que el desarrollo de software se vuelva
mucho más complejo. En la práctica, el simple hecho de decidir asignar un
búfer de datos en la memoria adecuada en un sistema heterogéneo se vuelve
difícil y crítico para el rendimiento de la aplicación.

Esta tesis se ha realizado en Inria Bordeaux - Sud-Ouest y LaBRI. Des-
pués de una presentación del estado del arte de las arquitecturas de memoria,
hemos caracterizado las memorias a través de atributos simples. Hemos pro-
porcionado una interfaz que la biblioteca hwloc expone a las aplicaciones para
comprender la topología de la memoria y asignar búferes. Luego, propusimos
una estrategia para ayudar a los desarrolladores a adaptar sus aplicaciones para
el uso adecuado de sistemas de memoria heterogéneos. Dado que no siempre
es posible acceder a diferentes plataformas heterogéneas, identificamos varias
formas de simular el rendimiento de la memoria heterogénea y de emular difer-
entes topologías de memoria. Finalmente, creamos una estrategia que facilita el
intercambio de plataformas con memoria heterogénea y no volátil entre tareas
de HPC coprogramadas en los mismos nodos.

Palabras Clave Computación de alto rendimiento, sistemas heterogéneos de
memoria, modelos de programación paralela, programación basada en tareas,
computación distribuida, sistemas de tiempo de ejecución

Laboratorio Antitrión Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille
Tour, 33400 Talence

Data-Placement Strategies for HMS in HPC v

vi Andrès RUBIO PROAÑO

Acknowledgments

I begin by thanking Jesus for his wonderful work on the cross, for allowing me
to have an unforgettable experience during these three years of the thesis, and
for putting the right people in order to finish this process successfully.

I thank the members of the jury who have taken the time to read my thesis.
Thanks to Thierry and François for having read the manuscript in a very
attentive way. To Rosa and Raymond for their valuable input as examiners.

I have no way of thanking Brice Goglin who has not only guided me in
the completion of the thesis but has also been attentive at each stage of my
adaptation in France. Thank you for all your help and for all that I have been
able to learn from you.

I thank my beautiful and beloved wife Eilen Gordillo Proaño for accom-
panying me during these three years of the thesis. You could even be my
co-worker during the lockdown. I love you and I will always love you.

I thank all my colleagues from the TADaaM team, Emmanuel, François,
Alexandre, Francielli, Guillaume A and Guillaume. To my colleagues from
the open space Valentin Honoré, Nicolas Vidal, Valentin Hoyet, Adrien Guil-
baud, Florian Reynier, Philippe Swartvagher, Clément G, Clément B, Luan
and Alexis. To my colleagues at HiePACS Alena and Esragul.

Thanks to the support of my parents, Mercedes Proaño and Xavier Rubio.
I have no way of paying you for everything you have done for me. To my
brother José Rubio Proaño and my sister-in-law María José Alcivar for all
your love. To my in-laws Freddy Gordillo and Nery Proaño for always being
aware of us. To my sister-in-law Valeska Gordillo for always brightening our
days. To my siblings-in-law Ámbar Gordillo, Thiago Gordillo and Esteban
Pérez. And to my beautiful niece, Agustina Pérez Gordillo.

To my beautiful Rubio Villegas family, especially my beloved grandparents
Miguel Rubio Arteaga and Rosa Villegas Chávez who are in the presence of
God and who have always driven me to be better.

To my beautiful Proaño Durán family, especially my beloved grandparents
José Proaño Guevara and Luz Durán Merino for being that instrument to
reach the feet of Christ.

vii

viii Andrès RUBIO PROAÑO

Résumé étendu en français

L’humanité est confrontée au problème de créer une civilisation plus intelli-
gente. Pour y parvenir, il est nécessaire de comprendre et de résoudre différents
problèmes sociaux et scientifiques qui nous permettent d’avoir de nouveaux
niveaux d’efficacité et d’optimisation. Ces problèmes nécessitent généralement
de résoudre des tâches trop complexes. Par exemple, simuler la dynamique
moléculaire pour créer de nouveaux matériaux.

En ce sens, le calcul haute performance est devenu un élément clé pour
résoudre plusieurs de ces problèmes à travers des modèles, des simulations et
des analyses. Mais pour devenir de plus en plus efficaces, ces systèmes doivent
constamment évoluer.

Aujourd’hui, la tendance est de se rapprocher de l’exascale dans les sys-
tèmes et ainsi de résoudre les problèmes beaucoup plus gros et plus rapidement.
Cependant, pour atteindre cet objectif, nous devons tout améliorer, du matériel
aux applications. C’est là que l’hétérogénéité devient l’un des facteurs les plus
récents permettant des systèmes plus rapides. Elle permet de travailler avec
différents types d’applications où il peut être combiné, des processeurs pour les
ordinateurs petits/complexes et des GPU pour les ordinateurs grands/simples.
L’hétérogénéité n’a pas seulement approchée les processeurs, mais ces dernières
années, elle a commencé à apparaître dans les systèmes de mémoire.

Actuellement, nous pouvons déjà trouver des systèmes de mémoire qui
contiennent plusieurs types de mémoire coexistants. Les systèmes de mémoire
dans le calcul haute performance (HPC) ont subi des changements majeurs
ces dernières années. Outre la mémoire principale, le stockage et plusieurs
niveaux de cache, les serveurs sont livrés avec un accès mémoire non uniforme
(NUMA) et peuvent contenir différents types de mémoire. Par exemple, la
mémoire à bande passante élevée (HBM) intégrée au processeur et la mémoire
non volatile (NVDIMM) ont été introduites dans la hiérarchie.

Ces changements sont nécessaires pour rapprocher de plus en plus les don-
nées du traitement et donc avoir de meilleures performances. Cependant, ce
saut nécessite que les développeurs prennent en compte le fait qu’ils doivent
développer ou modifier des applications pour s’adapter au système de mémoire
hétérogène. Cela pose la question principale qui est de savoir où allouer mes
objets mémoire.

Avant de répondre à la question principale, il fallait d’abord être capable

ix

d’identifier quel type de mémoire nous avons dans le matériel. Comme men-
tionné, la gestion de la mémoire dans HPC devient de plus en plus difficile
en raison de l’hétérogénéité réelle du système de mémoire. En ce sens, nous
considérons que pour mieux prendre en charge ces nouveaux systèmes de mé-
moire, il est crucial d’identifier les types de mémoire et d’exposer leurs cara-
ctéristiques, afin que les couches logicielles supérieures puissent avoir une idée
de l’endroit où allouer les tampons critiques pour les performances. Les sys-
tèmes de mémoire hétérogènes ne sont pas de forme unique et varient d’une
plate-forme à l’autre, maintenant toujours une interaction d’au moins deux
acteurs de mémoire différents, c’est-à-dire des systèmes qui combinent par ex-
ample, HBM + DRAM.

En fait, identifier les types de mémoire consiste à comprendre quels nœuds
NUMA sont de quel type. Pour ce faire, nous considérons que le système de
mémoire est un élément clé dans la prise de conscience de la topologie pour
avoir une allocation appropriée des tampons mémoire, et pour cela, chaque
type de mémoire peut être caractérisé par certains attributs de mémoire tels
que la bande passante, la latence, capacité, persistance, énergie, etc. Ces at-
tributs nous permettent non seulement d’identifier le type de mémoire mais
nous permettent également d’avoir un ordre sur le système de mémoire hétéro-
gène. Dans ce travail, nous assignons un ensemble d’attributs à chaque dis-
positif mémoire, compte tenu de l’hétérogénéité du système. Ces attributs
nous aident à les classer en fonction des métriques intuitives déjà mentionnées
pour aider à la sélection du bon périphérique de mémoire en fonction d’un cas
d’utilisation. Avec ces classements des périphériques mémoire disponibles, une
application peut le choisir pour allouer ses données.

Ensuite, pour ouvrir ces idées aux développeurs, nous avons étendu une
interface de programmation de la bibliothèque hwloc qui permet de récupérer la
meilleure cible mémoire en fonction de l’attribut que l’on se demande d’utiliser.
Il comprend des fonctions qui nous permettent d’identifier la meilleure cible
mémoire étant donné un attribut mémoire et un initiateur (ensemble de cœurs
accédant aux données). Il permet également de récupérer des informations
sur les valeurs d’attributs, et il nous donne la possibilité d’ajouter nos propres
attributs de mémoire.

Les valeurs d’attributs proviennent de deux sources principales. Le premier,
correspond à l’utilisation des tables matérielles ACPI HMAT, dans lesquelles
nous pouvons trouver des informations relatives à la localité, la latence et la
bande passante. Cependant, cette table n’est pas encore implémentée dans
tous les systèmes. L’alternative, la plus utilisée pour le moment, consiste
à mesurer expérimentalement les valeurs des attributs. Cela nous permet de
caractériser les performances matérielles mais surtout d’obtenir un ordre (étant
donné un attribut) sur un système de mémoire hétérogène.

Une conséquence malheureuse de l’évolution et de l’hétérogénéité crois-
sante des systèmes mémoire est la nécessité d’adapter les applications HPC

x Andrès RUBIO PROAÑO

afin qu’elles puissent exploiter correctement le système mémoire. Une première
étape a été effectuée lors de l’identification et de la caractérisation du système
de mémoire, cependant, cela ne répond pas aux considérations que le dévelop-
peur devrait avoir lorsqu’il travaille avec une application avec des charges gour-
mandes en mémoire. En fait, comment le développeur peut-il savoir si une
application ou ses buffers internes ont une certaine affinité avec un attribut
mémoire ? En d’autres termes, pour savoir si l’attribut est critique pour la
performance. Les applications HPC sont conçues pour prendre en charge un
type de mémoire, cependant, nous considérons qu’étant donné que les applica-
tions peuvent être sensibles à la latence, la bande passante ou la capacité, il est
important d’allouer au moins leurs principaux tampons au bon endroit. Nous
proposons une stratégie qui met en œuvre des étapes pour fournir aux dévelop-
peurs un environnement à haute productivité pour prendre en charge des sys-
tèmes de mémoire hétérogènes de manière portable. Dans cette stratégie, nous
considérons qu’avant d’effectuer une demande d’allocation, nous avons besoin
d’une étape intermédiaire pour déterminer la sensibilité de l’application et/ou
de leurs buffers pour finalement obtenir un critère d’allocation. Nous con-
sidérons qu’il existe des développeurs très expérimentés qui sont capables de
deviner si les performances d’accès à une zone sont plutôt limitée par la latence
ou la bande passante, tout cela grâce à des années de travail d’optimisation
de cache, de préchargement d’affinité, de tuilage, etc., un niveau de subjectiv-
ité basé sur l’expérience d’un individu. Compte tenu de cela, un cadre plus
productif est nécessaire pour les non-experts en architectures matérielles et en
optimisation de code.

Ensuite, nous considérons que nous devons analyser le comportement des
applications pour déterminer la sensibilité des applications et de leurs buffers
internes. Nous avons identifié trois options principales pour déterminer la sens-
ibilité d’une application en évaluant, en profilant et en effectuant une analyse
de code statique.

Avec le benchmarking, nous considérons que nous pouvons identifier la
sensibilité d’une application en comparant différentes exécutions des applica-
tions en forçant l’ensemble du processus sur différents types de mémoire ou en
forçcant chacun des tampons sur différents types de mémoire. Cette approche
pour déterminer les sensibilités est encore largement utilisée dans la littérature
pour montrer la sensibilité de certains repères à certains attributs. Cepend-
ant, la complexité des applications pourrait imposer de nombreuses exécutions
différentes. Pour cette raison, nous étudions également le profilage.

Le profilage est une stratégie plus complexe qui effectue une analyse de
l’exécution à l’aide de compteurs matériels et/ou d’instrumentation pour
identifier en détail les problèmes liés à la mémoire tels que les goulots
d’étranglement, les points chauds, etc. Il peut également être utilisé pour
déterminer la sensibilité d’une application dans laquelle selon le profileur, nous
pouvons avoir des métriques pertinentes qui nous donnent des indices que les

Data-Placement Strategies for HMS in HPC xi

applications pourraient avoir une certaine sensibilité en termes de latence ou
de bande passante. De plus il est possible d’identifier très facilement les prin-
cipaux tampons de l’application qui rencontrent des problèmes et d’identifier
ces tampons dans le code source.

La troisième option consiste à étudier le code source lors de la compilation,
dans lequel nous pourrions fournir au compilateur des informations supplé-
mentaires lors de l’exécution, par exemple, ce qui se passera dans le futur
avec un tampon. Les compilateurs tentent depuis longtemps de réduire la
latence d’accès à la mémoire en insérant des instructions de pré-chargement
pour des applications spécifiques et/ou des plates-formes spécifiques. Nous
pensons que ce type de travail devrait permettre aux compilateurs de détecter
la sensibilité à la latence ou à la bande passante des noyaux et ainsi fournir des
conseils de sensibilité aux systèmes d’exécution. Par exemple, les accès en con-
tinu/linéaires à des tampons contigus peuvent être détectés et marqués comme
sensibles à la bande passante sans que l’utilisateur n’ait besoin de comparer
ou de profiler manuellement l’application.

Ensuite, les développeurs doivent préparer les applications et les runtimes
pour travailler sur les différents systèmes de mémoire hétérogènes, mais il est
clair qu’ils n’ont pas toujours accès à des machines avec des scénarios de mé-
moire différents. C’est pourquoi les outils nécessaires doivent être fournis afin
que les développeurs puissent préparer leurs applications à affronter différents
systèmes de mémoire hétérogènes. En fait, les développeurs peuvent facilement
travailler avec le système de mémoire hétérogène KNL très connu car la con-
figuration reste toujours la même. Cependant, cela change avec les NVDIMM
dans les plates-formes génériques, où le nombre ou les types de mémoires
peuvent changer de manière significative. Par conséquent, il est nécessaire
de tester le runtime/les applications sur une grande variété de configurations
matérielles pour s’assurer que notre logiciel est portable.

Tout d’abord, nous avons abordé les scénarios dont le développeur a besoin
pour tester les performances de son application déjà développée sur une mé-
moire hétérogène spécifique. Et deuxièmement, nous avons abordé différents
outils, avec lesquels nous pouvons exposer des configurations de mémoire à des
applications qui ne correspondent pas précisément à l’environnement physique,
c’est-à-dire que nous présentons des outils qui peuvent être utiles pour émuler
des systèmes de mémoire hétérogènes. En fait, cela n’expose pas une véritable
performance hétérogène, mais dans ce cas, il s’agit d’exposer le système de
mémoire hétérogène comme le ferait un système réel.

Lorsqu’on parle de simulation de performances, on fait référence au fait de
simuler le comportement que doit avoir une certaine application lorsqu’elle fait
face à un scénario mémoire très éventuellement difficile d’accès pour le dévelop-
peur. Par exemple, le cas d’un futur système à venir avec un système de mém-
oire hétérogène différent. Nous avons identifié des options qui nous permettent
de modifier les performances des applications. Premièrement, l’accès mémoire

xii Andrès RUBIO PROAÑO

non uniforme (NUMA) a été généralisé dans les machines multi-sockets, dans
lesquelles chaque socket a un contrôleur mémoire associé. En raison de la
distance relative entre les processeurs et les dispositifs de mémoire, l’accès
à la mémoire n’est pas uniforme. Depuis la naissance des systèmes NUMA,
diverses études ont été menées pour tenter de minimiser l’impact de cette situ-
ation. Deuxièmement, la technologie Intel Resource Director (Intel RDT) est
un outil qui permet de surveiller l’allocation de cache et de mémoire. Il est
exposé en tant qu’interface utilisateur pour le contrôle des ressources par le
noyau Linux. Intel RDT est capable de partitionner certaines ressources telles
que la hiérarchie du cache et pour notre intérêt particulier la bande passante.
Et troisièmement, le piratage de mémoire est une méthode de simulation de
performances qui permet de contrôler la quantité de mémoire disponible pour
l’application en la co-exécutant avec une application qui lui vole de la bande
passante.

D’un autre côté, l’émulation d’un système de mémoire permet aux dévelop-
peurs de préparer leurs applications pour les systèmes de mémoire de nouvelle
génération. L’émulation de ces systèmes consiste à chercher en quelque sorte
à exposer des dispositifs de mémoire qui ne sont pas physiquement situés dans
les nœuds comme s’ils étaient présents. En émulation, on ne peut pas changer
les performances comme dans la section précédente. Son utilisation est prin-
cipalement dédiée à l’exposition de différents systèmes HMS pour préparer ou
adapter des applications pour accéder à différents types de mémoire. C’est-à-
dire, tester les heuristiques et les algorithmes développés pour sélectionner la
cible appropriée pour chaque tampon. L’émulation peut être effectuée à l’aide
de plusieurs options, et nous les avons classées en émulation matérielle, ému-
lation de système d’exploitation et émulation logicielle. L’émulation du HMS
via le matériel fait référence à l’utilisation d’un périphérique matériel réel pour
imiter la fonction d’un autre HMS. Une autre manière d’émuler des systèmes
de mémoire hétérogènes consiste à utiliser des systèmes d’exploitation. Enfin,
étant donné que la plupart des environnements d’exécution et des applications
HPC peuvent lire la topologie matérielle, l’exposition de différentes topologies
modifiera leur comportement. hwloc est souvent utilisé comme couche inter-
médiaire entre la découverte du matériel et de la topologie dans HPC, nous
pouvons donc utiliser hwloc pour « mentir » aux applications.

Enfin, nous nous sommes également penchés sur le problème de la co-
programmation. Les nœuds de calcul sont de plus en plus complexes, avec des
dizaines de cœurs. La co-ordonnancement permet d’optimiser l’utilisation de
ces nœuds là où les applications sont capables d’utiliser des ressources matéri-
elles distinctes pour éviter la sous-utilisation des nœuds disponibles. La co-
planification de plusieurs tâches sur de tels nœuds est une stratégie utile pour
s’assurer que tous les cœurs sont utilisés dans les centres HPC. Cependant, le
partage de nœuds entre plusieurs tâches entraîne également des problèmes tels
que des conflits dans le sous-système de mémoire ou une pollution du cache.

Data-Placement Strategies for HMS in HPC xiii

Le partitionnement des ressources est un moyen intéressant d’éviter de tels
problèmes grâce aux fonctionnalités du système d’exploitation telles que les
Cgroups dans le noyau Linux. L’émergence des DIMM à mémoire non volatile
apporte de nouvelles stratégies pour la gestion des données dans les applica-
tions HPC. En fait, ils prennent en charge plusieurs configurations matérielles
et logicielles allant d’énormes capacités volatiles au stockage hautes perform-
ances, qui peuvent être utilisées comme tampons pour absorber les pics de
stockage, ou pour la récupération après une panne.

Cette thèse a été réalisée à Inria Bordeaux - Sud-Ouest et au LaBRI. Après
une présentation de l’état de l’art de l’architecture mémoire, nous avons cara-
ctérisé les mémoires par des attributs simples. Nous avons fourni une interface
que la bibliothèque hwloc expose aux applications pour comprendre la topo-
logie de la mémoire et allouer des tampons. Ensuite, nous avons proposé
une stratégie pour aider les développeurs à adapter leurs applications au bon
usage de systèmes de mémoire hétérogènes. Comme l’accès à différentes plates-
formes hétérogènes n’est pas toujours possible, nous identifions plusieurs façons
de simuler les performances de la mémoire hétérogène et d’émuler différentes
topologies de mémoire. Enfin, nous avons construit une stratégie qui facilite le
partage de plateformes à mémoire hétérogène et non volatile entre les tâches
HPC co-planifiées sur les mêmes nœuds.

xiv Andrès RUBIO PROAÑO

Contents

1 Introduction, Context and Motivations 1
1.1 Benefits of High-Performance Computing 1
1.2 Heterogeneous perspective of HPC 2
1.3 Outline of the manuscript . 3

2 Memory Systems in HPC 5
2.1 HPC Architecture . 6
2.2 Memory Hierarchy . 9

2.2.1 Registers . 11
2.2.2 Cache Memory Hierarchy 11
2.2.3 Main Memory . 11
2.2.4 NUMA . 12

2.3 New Memory Technologies . 15
2.3.1 HBM . 15
2.3.2 Non-volatile memory . 17
2.3.3 Intel non-volatile memory solutions 19
2.3.4 Other memories . 21

2.4 Impact of the Memory Subsystem 23
2.4.1 Combining different kinds of memory 23
2.4.2 Locality vs Heterogeneity 24
2.4.3 Summary . 25

2.5 Software State of the art . 26
2.5.1 Managing Heterogeneous Memory 27
2.5.2 hwloc . 28

2.6 Statement of the Problem . 29

3 Navigating Complex Memory Spaces 31
3.1 Exposing Memory Characteristics 33

3.1.1 Identifying Memories . 35
3.1.2 Characterising Memories 35

3.2 Memory Attributes . 36
3.2.1 Bandwidth . 36
3.2.2 Latency . 37

xv

CONTENTS

3.2.3 Capacity . 38
3.2.4 Locality . 39
3.2.5 Other Attributes . 40

3.3 Implementation in hwloc . 42
3.4 Attributes Values . 45

3.4.1 ACPI SLIT . 45
3.4.2 ACPI HMAT . 46
3.4.3 Benchmarking . 48

3.5 Summary . 52

4 Preparing HPC Applications to Complex Heterogeneous
Memory Systems 53
4.1 Heterogeneous Memory Allocator 54
4.2 Allocation Criteria . 56

4.2.1 Benchmarking . 57
4.2.2 Profiling . 58
4.2.3 Static Code Analysis . 60

4.3 Use Case . 61
4.3.1 Benchmarking . 61
4.3.2 Profiling . 63
4.3.3 Summary . 63

5 Software Tools for the development on Heterogeneous
Memory 67
5.1 Performance Simulation . 68

5.1.1 NUMA Distance for injecting latency 69
5.1.2 Bandwidth Throttling 70
5.1.3 Pirate Bandwidth . 71
5.1.4 Summary of Performance Simulation 72

5.2 Environment Emulation . 73
5.2.1 Hardware Emulation Level 74
5.2.2 OS Level . 76
5.2.3 Software Level . 78
5.2.4 Summary of Emulation 79

6 Management of Heterogeneous Memory in Batch Schedulers 83
6.1 Managing the different KNL configuration modes 84

6.1.1 KNL configurations . 84
6.2 Managing NVDIMM configuration modes 86

6.2.1 Memory Mode and 2-Level-Mode 87
6.2.2 App Direct and DAX and 1-Level Memory for storage . . 87
6.2.3 System-RAM mode . 88

6.3 Co-scheduling jobs with memory and storage needs 89

xvi Andrès RUBIO PROAÑO

CONTENTS

6.3.1 Hardware Partitioning in 2LM 89
6.3.2 Flexible Co-Scheduling with 1LM and System-RAM

NUMA nodes . 91
6.4 Fine Grain Partitioning between HPC jobs 92

6.4.1 NVDIMMs Hardware Partitioning 92
6.4.2 Multidax and namespace-based software partitioning . . 93
6.4.3 Dax Locality . 94

6.5 Discussion and Summary . 95

7 Conclusion and Future Work 97
7.1 Conclusion . 97
7.2 Future Work . 99

Appendix 103

A Platform Characteristics 105
A.1 Kona: Xeon Phi Knights Landing (KNL) 105

A.1.1 Kona01 . 105
A.1.2 Kona03 . 106

A.2 Leonide: dual Intel Xeon Gold 6230 with NVDIMMs 107
A.3 Souris: SGI Altix UV 2000 . 109

Bibliography 113

Publications 127

Data-Placement Strategies for HMS in HPC xvii

CONTENTS

xviii Andrès RUBIO PROAÑO

List of Figures

1.1 The HPC system Fugaku. 2

2.1 SMP architecture. 7
2.2 Dual-Core processor. 7
2.3 Hierarchy of Blue Gene processing units [55]. 8
2.4 Hierarchy of Fugaku processing units [28]. 8
2.5 Memory-Storage continuum. 10
2.6 General structure of the cache hierarchy. 12
2.7 DDR evolution in terms of capacity and speed. 12
2.8 NUMA as a set of SMP nodes. 13
2.9 Skylake NUMA configuration. 14
2.10 STREAM-triad bandwidth peak using a thread per core (20 in

total) in NUMA node 0. 14
2.11 Skylake SNC disposition [108]. 14
2.12 Intel Xeon Phi processor overview [40]. 16
2.13 HBM configured in Flat mode. 16
2.14 HBM configured in Cache mode. 16
2.15 HBM configured Hybrid mode. 17
2.16 Dual-socket Xeon platform with 6 channels per processor, with

one NVDIMM and one DDR each. 21
2.17 1-Level-Memory mode (1LM) using App Direct mode, using

DDR as the main memory while NVDIMMs are exposed as a
persistent memory region that is usually used as storage. . . . 21

2.18 1-Level-Memory mode (1LM) using System-RAM mode, allow-
ing to appear the NVDIMM as an additional NUMA node apart
of DDR. 22

2.19 2-Level-Memory mode (2LM), using DDR as a Memory-side
Cache in front of the Memory Mode part of NVDIMMs exposed
as normal volatile memory. 22

2.20 hwloc’s output with NUMA nodes (pink-colored) where the
memory of 6 NVIDIA GPUs are exposed as a NUMA node.
. 22

xix

LIST OF FIGURES

2.21 Locality of a heterogeneous memory system containing DRAM
and NVDIMMs relative to CPU 0. 24

2.22 Output of hwloc’s lstopo tool on a fictitious platform with sev-
eral kinds of memory: each CPU package has local NVDIMM
and DDR NUMA nodes. Each SubNUMA cluster in those pack-
ages also has an HBM. And a network-attached memory is also
connected to the entire machine. 26

2.23 hwloc’s output on an Intel KNL Xeon Phi platform configured in
Flat mode. The CPU exposes DDR memory as a NUMA node
and HBM (MCDRAM) memory is shown as an extra NUMA
node. 28

3.1 Kona01 memory system organisation. 32
3.2 Leonide memory system organisation. 32
3.3 3-memory-kind machine organisation. 33
3.4 hwloc’s output of Leonide machine in System-RAM mode. The

CPU exposes DDR memory as NUMA nodes and NVDIMM
memory is shown as extra NUMA nodes (cache hierarchy hid-
den). 34

3.5 hwloc’s output of a 3 memory kind machine. The CPU exposes
DDR memory as NUMA nodes, NVDIMM memory and HBM
memory are shown as extra NUMA nodes (cache hierarchy hid-
den). 34

3.6 Memory attributes characteristics of Leonide. 39
3.7 Memory attributes characteristics of Kona01. 39
3.8 Memory attributes characteristics of our 3MK HMS node. . . . 40
3.9 LARM Write/Read Bandwidth report on Leonide. 41
3.10 NUMA nodes redefinition. 42
3.11 Summary of main hwloc API functions for manipulating

memory attributes. Initiators are either sets of logical pro-
cessors (CPU-set) or specific objects. Targets are hwloc objects
of type NUMA node. 43

3.12 Example of hwloc API use to allocate on the best target for an
existing attribute. 43

3.13 Defining a custom metric for STREAM-Triad kernel
(2xReadBW+1xWriteBW) and allocating in the best tar-
get for that metric. 44

3.14 Extracts from hwloc’s lstopo reporting memory attributes on
the HMAT at the Xeon platform depicted by Figure 3.16. . . . 47

3.15 HMAT representation. 47

xx Andrès RUBIO PROAÑO

LIST OF FIGURES

3.16 Output of hwloc’s lstopo tool on a dual Xeon 6230 with 384GB
of DRAM (96GB per SubNUMA Cluster of 10 cores) and 1.5TB
of NVDIMMs (768GB per CPU). NVDIMMs are configured
in 1-Level-Memory and exposed to applications as additional
NUMA nodes. 48

3.17 Google Multichase latency evaluation of Leonide with a simple
chase using one thread per core (20 en total). 49

3.18 Google Multichase latency evaluation of Kona01 with a simple
chase using one thread per core (64 en total). 50

3.19 STREAM-Triad bandwidth using 2 different kinds of memories
in Kona01 with different number of local threads. 51

3.20 STREAM-Triad bandwidth using 2 different kinds of memories
in Leonide with different number of local threads. 52

4.1 General strategy framework. 56
4.2 Detecting sensitivities by benchmarking an application on 3MK

systems. 57
4.3 Graph500 capacity-sensitivity buffer check with Intel VTune

Profiler. 59
4.4 Graph500 latency-, bandwidth-sensitivity check with Intel

VTune Profiler. 60
4.5 Extracts of the Memory Access graphic interface in the Intel

VTune Profiler. Execution with memory in DRAM (top) is
compared to NVDIMM (bottom). The read bandwidth is rep-
resented in turquoise, while the write bandwidth is in blue (ag-
gregated on top of read). 64

5.1 Performance heat maps on Souris. 69
5.2 Throttling DRAM memory on Leonide. 71
5.3 Throttling and/or pirating local DRAM memory bandwidth on

Leonide. 72
5.4 Emulation software stack. 73
5.5 Modifying entries into HMAT. 75
5.6 Qemu command line to emulate HMS. 76
5.7 Topology of a single node computer with 16GB physical DRAM. 77
5.8 lstopo graphical output ot a fictitious 3-memory-kind machine

modified from Leonide platform. 79
5.9 lstopo graphical output using the synthetic descrip-

tion Package:2 L3:1 Group:2 [numa(memory=1GB)]
[numa(memory=1TB)] L2:16 L1:1 Core:1 PU:2. 80

5.10 Emulation of the 3MK platform from Leonide. And using it in
Kona01 (in green the modification). 81

6.1 HBM configured in Flat mode. 85

Data-Placement Strategies for HMS in HPC xxi

LIST OF FIGURES

6.2 HBM configured in Cache mode. 85
6.3 HBM configured in Hybrid mode. 85
6.4 Leonide Platform: Dual-socket Xeon platform with 6 channels

per processor, with one Optane DC Persistent Memory Modules
(DCPMM) and one DRAM each. 86

6.5 2-Level-Memory mode (2LM) uses DRAM as a Memory-side
Cache in front of the Memory Mode part of NVDIMMs exposed
as normal volatile memory. 87

6.6 1-Level-Memory mode (1LM) using App Direct mode uses
DRAM as the main memory, while NVDIMMs are exposed as
a persistent memory region that is usually used as storage. . . 88

6.7 1-Level-Memory mode (1LM) using System-RAM mode allows
appear the NVDIMM as an additional NUMA node apart of
DRAM. 89

6.8 2-Level-Memory enables exposing both Memory Mode as
DRAM-cached main memory and App Direct as storage. 90

6.9 Allocating one socket to a job that wants 100% Memory Mode
and the other socket to a job that wants 100% App Direct causes
the latter to have no local memory, and its DRAM cache is
useless. 90

6.10 Partitioning NVDIMMs using regions and interleaving. On the
first processor two interleaved regions use respectively 4 and 2
NVDIMMs. On the second processor, all NVDIMMs are ex-
posed as individual non-interleaved regions. 93

6.11 Using namespaces to partition regions between jobs requiring
FSDAX, Device DAX or NUMA nodes. Each processor is con-
figured with a single interleaved region. Software splits them
between namespaces that may be configured according to jobs
requirements. 94

6.12 hwloc’s lstopo representation of a platform with NVDIMMs
exposed as additional NUMA nodes, using the System-RAM
mode. Each processor has one local DRAM NUMA node per
SubNUMA Cluster (e.g. #0 and #1) and a single NVDIMM
NUMA node (e.g. #4). Hence, each core has two local memor-
ies. 95

A.1 Kona01 system characteristics and configuration. 106
A.2 Topology of the Kona01 node. 106
A.3 Kona03 system characteristics and configuration. 107
A.4 Topology of the Kona03 node. Only cores of the first SubNUMA

Cluster are shown. 107
A.5 Leonide system characteristics and configuration. 108

xxii Andrès RUBIO PROAÑO

LIST OF FIGURES

A.6 Intel Xeon Cascade Lake in SNC-2 mode, in 2-Level-Memory
mode, using NVDIMMs 100% in Memory mode, and using
DRAM as cache in front of NVDIMMs. 108

A.7 Intel Xeon Cascade Lake in SNC-2 mode, in 1-Level-Memory
mode, using NVDIMMs 100% in App Direct mode, NVDIMMs
in Package #0 are setup in Device DAX (devdax device
dax0.0), and NVDIMMs in Package #1 are setup in File Sys-
tem DAX (fsdax device pmem1). 109

A.8 Intel Xeon Cascade Lake in SNC-2 mode, in 1-Level-Memory
mode, using NVDIMMs in System-RAM mode (NUMA nodes
P#4 and P#5). 110

A.9 Intel Xeon Cascade Lake not in SNC mode, in 1-Level-Memory
mode, using NVDIMMs in System-RAM mode (NUMA nodes
P#2 and P#3). 111

A.10 Souris system characteristics and configuration. 111
A.11 Topology of the Souris node. 112

Data-Placement Strategies for HMS in HPC xxiii

LIST OF FIGURES

xxiv Andrès RUBIO PROAÑO

List of Tables

2.1 HDD 1957 vs 2021 comparison. 18
2.2 NVDIMM types. 19
2.3 Bandwidth and latency values of local and remote targets rel-

ative to CPU considering Figure 2.21. 25
2.4 Comparison of 3 different heterogeneous memory systems with

different application needs. 26

3.1 Status of memory attributes. 41
3.2 8 AMD Opteron with the motherboard TyanS4881+M4881. . . 45
3.3 ACPI SLIT of Kona03, nodes 0-3 are DRAM and nodes 4-7 are

MCDRAM. 46
3.4 MLC latency evaluation for local and remote targets relative to

the initiator 0 in Leonide platform. 49
3.5 MLC latency evaluation for local and remote targets relative to

the initiator 0 in Kona01 platform. 49
3.6 MLC latency evaluation for local and remote targets relative to

the initiator 0 in Kona03 platform. 50

4.1 Best resulting targets of using mem_alloc with different platforms. 55
4.2 Allocation impact on STREAM-Triad buffers A, B, C between

NUMA 0 (DRAM) and NUMA 1 (NVDIMMM) using Leonide
HMS. 58

4.3 Graph500 performance in Traversed Edges per Second
(TEPSe+8). 62

4.4 STREAM-Triad throughput in GB/s depending on the optim-
ised criteria. Best Target corresponds to the local NUMA node
that the allocator found most appropriate for this criteria. . . . 62

4.5 Extracts from the VTune Profiler execution summary for
Graph500 and STREAM-Triad using DRAM or NVDIMM. . . . 65

6.1 Advantages and drawbacks of 2LM and 1LM modes for co-
scheduling jobs. 92

—

xxv

LIST OF TABLES

xxvi Andrès RUBIO PROAÑO

Chapter 1

Introduction, Context and
Motivations

1.1 Benefits of High-Performance Computing
Today humanity is faced with the vision of making a smarter planet. Where our
ability to observe, analyse, understand and solve different social and scientific
problems requires to have new levels of efficiency, optimisation and sustain-
ability. Engineers, researchers and scientist seek to solve incredibly complex
tasks. E.g., oil and gas exploration [5], simulate molecular dynamics to create
new materials [90], forecast climate changes [46], discover new drugs for dis-
eases [84], etc. In fact, during the development of this work, the health crisis
caused by COVID 19 impacted the entire world. This disease imposed a great
challenge on health systems around the world; causing them to exceed their
limits.

High-Performance Computing (HPC) is a key factor to solve numerous ad-
vanced scientific problems through models, simulation, and analysis. A single
supercomputer can contain tens of thousands of processors. The most pro-
ductive HPC systems have a very tight combination of hardware and soft-
ware. Hardware for HPC typically includes high-performance CPUs, memory,
storage, and networking components, as well as accelerators for specialised
workloads.

The Supercomputer Fugaku shown in Figure 1.1 permitted to accelerate the
fight against COVID 19. Since May 2020, it has been used to analyse infection
risk using three million node hours for simulating thousands and thousands
of droplets moving through the space, including a medley of obstacles and
airflows [37]. To the date of writing this manuscript. Fugaku, built by Fujitsu,
remained number one in the Top500 list 1 of the fastest supercomputers in the
world, where it is still three times faster than the nearest competitor. Fugaku

1https://www.top500.org/lists/top500/list/2020/11/

1

https://www.top500.org/lists/top500/list/2020/11/

1.2. Heterogeneous perspective of HPC

reports 442 PFlops/s (1 PFlops/s = 1015 floating operations per second) with
7630848 cores [28]. It is considered a pre-exascale system, and the tendency
is to reach exascale systems due to problems that HPC cannot solve quick
enough. I.e., that we need faster supercomputers,and for that purpose exascale
is needed. To reach that we need to improve everything from hardware to
applications.

Heterogeneity is being one of the recent factors that allow having ever
faster systems. It permits addressing different application needs by combining,
for example, CPU for small/complex computations and GPU for big/simple
computations. As seen, it is already in computing, and it has recently been
coming to memory.

Figure 1.1: The HPC system Fugaku.

1.2 Heterogeneous perspective of HPC

Towards more heterogeneity
HPC is increasingly leveraging heterogeneous architectures. This poses new
challenges to better exploit the available resources.

This thesis focuses on the heterogeneity in the memory system. The story
begins through the importance of memory bandwidth. The speed of many
applications is limited by the rate at which data can be delivered from the
memory system into the processor. But this factor is not the only one that
must be taken into account. HPC applications could use buffers that require
memory access with long latencies. In the same fashion, very big buffers
sometimes also need to be allocate in memory, which challenges the capacity
of the memory system.

These and many other factors generated a boom of memory devices that
seek to improve at least one of these criteria, such as, High Bandwidth Memory
(HBM), non-volatile memory, etc. However, these specific types of memory
cannot match all criteria at the same time. A high-bandwidth memory is

2 Andrès RUBIO PROAÑO

1. Introduction, Context and Motivations

limited in capacity because of price and area constraints. That is why the
current trend is for HPC systems to contain heterogeneity in memory systems.

Memory heterogeneity poses many issues
HPC software is originally prepared to support homogeneous memory systems.
The way to expose and manage the memory systems considers that there is
only one type of memory. The rapidity in the jump to heterogeneity means that
HPC software could not adequately support new types of memory or support
the fact of having more than one type of memory. I.e., systems have not
an appropriate manner to expose or manage heterogeneous memory systems
(HMS). The actual support is rudimentary and does not expose the end user
to the different characteristics of each type of memory.

The heterogeneity of the memory system makes more complex the devel-
opment of applications. Applications need to be adapted so that they can
properly exploit the memory system and not under-utilise resources. Not all
applications have the same behaviour when allocating in a determined memory.
I.e., certain buffers of applications have affinities towards some memory kinds.

Another challenge is the fact that applications developers do have not eas-
ily access to many kinds of heterogeneous memory hardware systems. It is
necessary to provide tools to ease this transition. It means, that developers
should be able to predict the behaviour of a certain memory system, and also
they should have a manner to emulate heterogeneous memory systems so that
the applications can be executed successfully in real heterogeneous systems.

1.3 Outline of the manuscript
This thesis aims to provide tools and strategies to developers to better afford
the continuous heterogeneity evolution of memory systems and to have better
productivity and portability on the applications.

– Chapter 2 details HPC architectures, the state of the art of the memory
subsystem, and state the problems of having heterogeneous memory.

– Chapter 3 presents an interface that takes into account memory attrib-
utes to help to expose and manage the memory system complexity.

– Chapter 4 introduces strategies to allow reaching a better criterion about
where should buffers have to be allocated.

– Chapter 5 describes to the developers some strategies to simulate the
behaviour of a heterogeneous memory system as well as tools that allow
the emulation of a heterogeneous memory environment.

Data-Placement Strategies for HMS in HPC 3

1.3. Outline of the manuscript

– Chapter 6 explains strategies for partitioning non-volatile memory
between co-scheduled jobs.

4 Andrès RUBIO PROAÑO

Chapter 2

Memory Systems in HPC

Groundbreaking scientific discoveries are made through data. It leads to innov-
ation and a greater quality of life for thousands of millions of human beings.
High-Performance Computing (HPC) is at the base of scientific and social
advancements such as self-driving model development, tracking a storm, ana-
lysing seismic waves, analysing stock trends, advancing in precision medicine,
etc.

2.1 HPC Architecture 6
2.2 Memory Hierarchy 9

2.2.1 Registers . 11
2.2.2 Cache Memory Hierarchy 11
2.2.3 Main Memory . 11
2.2.4 NUMA . 12

2.3 New Memory Technologies 15
2.3.1 HBM . 15
2.3.2 Non-volatile memory 17
2.3.3 Intel non-volatile memory solutions 19
2.3.4 Other memories . 21

2.4 Impact of the Memory Subsystem 23
2.4.1 Combining different kinds of memory 23
2.4.2 Locality vs Heterogeneity 24
2.4.3 Summary . 25

2.5 Software State of the art 26
2.5.1 Managing Heterogeneous Memory 27
2.5.2 hwloc . 28

2.6 Statement of the Problem 29

5

2.1. HPC Architecture

Hence, HPC gives the ability to process data and perform calculations at
high speed.

Within HPC, the memory system is very important as it helps to store
data in memory or in storage. It is presented in a high range of flavours, which
allows solving different requirements that an application may have.

This chapter seeks to present the state of the art of memory systems in
HPC. First, it presents an overview of the HPC architectures. Then, the
memory hierarchy is described, taking into account each of its levels. Later,
some emerging memory types that seek to bridge the various gaps in the
memory-storage continuum are introduced. Then the state of the art of related
software to the use of heterogeneous memory systems is presented. Finally, the
main problem that this thesis has sought to solve is propounded.

2.1 HPC Architecture
The effect of having put a group of computers to work on the same task stems
from the need to solve complex scientific problems. For this, it was necessary
to think that the different calculations should be done in a parallel way so that
the times to the solution of a problem can be reduced. Today, the amount of
data that must be processed in short periods has increased exponentially, so
there is a constant evolution in the conception of High-Performance Computing
systems.

In the 70s, supercomputers used only a few processors as was the CRAY
era, jumping from 133 MFlops from CRAY-1 [85] (with one processor) in 1976
to Cray-Y-MP [71] with 2.6 GFlops in 1988 supporting multiple processors.
An important change in the architecture was observed since 1986 when two or
more processors were able to work together using shared memory on Symmetric
Multiprocessing (SMP) systems. SMP or Uniform Memory Access (UMA),
allows memory operations to be distributed among processors on a common
bus as shown in Figure 2.1. However, if two or more CPUs try to access
memory concurrently, it could incur bus contention [11]. CRAY-X-MP [23, 94]
had a shared memory system where CPU cores can access the same memory
simultaneously. But there was a big limitation in this approach, due that all
CPU cores having to compete for accessing memory over a shared bus [26].
The conception of these architectures was unique to each vendor, and their
main characteristic was to have internal parallelism.

The cost of fabricating faster and faster processors began to increase. In
the 90s, machines with thousands of processors appeared [31], each with shared
memory, an operating system, and all interconnected by a network. It gave
rise to distributed memory systems that are considered the architecture for
the construction of modern supercomputers, thus providing a better price-
performance benefit. The set of computer nodes is called a HPC cluster and

6 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

CPU

Memory

CPU CPUCPU

Cache Cache Cache Cache

Figure 2.1: SMP architecture.

Processor

Core 0

 Cache (Shared)

Cache

Core 1

Cache

Figure 2.2: Dual-Core processor.

those allow massive parallelism by adding external parallelism. I.e., that in-
stead of multiplying the computational units inside the machine, they could
collaborate as individual entities (nodes) communicating over a dedicated net-
work.

HPC clusters are the predominant HPC technology these days. They con-
sist of hundreds or thousands of compute servers that are networked together,
to create what appears to end-users as a single highly available system. Each
server is called a node, and it works in parallel with the other, improving the
processing speed to deliver high-performance computing. HPC clusters in 2005
used single-core processors, often with two processor sockets per cluster node.
But due to the increase in the processor clock speed for each new generation,
processors faced problems related to the memory speed (due to the increas-
ing gap between processor and memory), instruction-level parallelism (due to
having not enough parallelism in a single instruction stream), and power wall
(due to the increased operating temperature caused by the high processor fre-
quencies). Given these challenges, the multi-core era began by putting more
processors into a single processor substrate as we can see in Figure 2.2. As of
2016, 80% of the systems on the Top500 list have between 6 to 12 cores per
processor socket.

Exascale computing is expected to arrive soon. However, conventional ap-
proaches as mentioned before are not expected to meet this goal. Co-designed
strategies (developing partnership with computer vendors and application sci-

Data-Placement Strategies for HMS in HPC 7

2.1. HPC Architecture

Figure 2.3: Hierarchy of Blue Gene processing units [55].

Figure 2.4: Hierarchy of Fugaku processing units [28].

entists) are being used for hardware and software to meet this performance
goal [98, 17]. But this is not a new concept. There were past levels of co-
design such as in 2001 when IBM and Lawrence Livermore National Laborat-
ory (LLNL) collaborated to build the Blue Gene/L (BG/L) supercomputer [4]
as Figure 2.3 shows. Twenty years later in 2021, a pre-exascale HPC sys-
tem appeared with the Fugaku supercomputer [88, 51]. As Figure 2.4 shows,
the CPU contains A64FX processors with ARM technology that exposes 48
cores. [4]

HPC nodes are high-end computers in terms of power and performance.
Those are based on an architecture designed by the mathematician John von
Neumann [59]. The von Neumann computer is composed of a central pro-
cessing unit (CPU) that is connected to memory by a communication
channel, also called bus [32]. Here instructions and data are stored in memory
and then moved to and from the CPU across the bus. The speed of the node
depends on the time that the CPU takes to execute individual instructions,
and also by the generated overhead that involves moving instructions and data
between the memory and the CPU.

8 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

Despite this, it does not matter how fast the CPU could theoretically be
if instructions and data cannot get in or out of memory fast enough. There-
fore, the access to memory speed creates a performance bottleneck in the von
Neumann architecture. One of the solutions to this consists of using a larger
memory hierarchy to improve performance and minimise cost.

We are not limited to only using von Neumann’s computer reference
components. We may have specific nodes with Graphic Processing Units
(GPUs) [75], accelerators, or offloading engine hardware for specialised
workloads [1], and different memory solutions which are described in Sec-
tion 2.2 [67]. However, the focus of this thesis scopes core-memory subsystems.

2.2 Memory Hierarchy
The memory subsystem of modern computers can be explained as a pyramidal
organisation of memory levels where three statements are accomplished:

1. The shorter the access time, the higher the cost.

2. The higher the capacity, the lower the cost per bit1.

3. The higher the capacity, the lower the speed (higher latency).

Therefore, it is sought to have sufficient memory capacity with a speed
that serves to satisfy the demand for performance and at a cost that is not
excessive. Yet, thanks to the principle of locality, in where applications tend
to access the same range of memory locations repetitively over a short period
of time, it is feasible to use a mix of the different memory types and achieve
performances close to that of faster memory.

Figure 2.5 represents the memory-storage continuum, comprising several
layers of memory technologies that are ordered from the fastest and least dense
to the slowest and densest [72].

The pyramid is divided into two main sections: the memory side and the
storage side. It normally coincides respectively with the memory bus and the
i/o bus. In general, it continues to be the case, but with the appearance of the
persistent memory layer, we can find ourselves in the situation where a layer
is both for memory and storage.

In the following subsections, the pyramid is detailed from its smallest ele-
ment, the registers, to the largest displayed elements within the storage. It
is important to mention that the memory-storage continuum can be repres-
ented with different pyramids depending on the approach [50, 74, 89]. In our
case, it adapts to the main elements used within the thesis without neglecting
important aspects such as the gap between memory and storage.

1Cost per bit is the price of a memory device divided by its capacity

Data-Placement Strategies for HMS in HPC 9

2.2. Memory Hierarchy

Register

Level 1 Cache
Level 2 Cache
Level 3 Cache

CPU

CACHE

PERSISTENT MEMORY

SEQUENTIAL MEDIA

VOLATILE MEMORY

HBM

DRAM

NVDIMM

TAPE

IN PACKAGE MEMORY

SOLID STATE MEDIA

NVMe SSD

SATA SSD

MECHANICAL MEDIA

HDD

M
E
M

O
R
Y

S
T
O

R
A

G
E

~0.1ns

~1-50ns

~80-100ns

~350ns-1µs

~10ms

~100ms

~10-100µs

*Improvement
in Bandwidth

Processor
Package

Memory
Bus

I/O
Bus

Capacity
(Increasing)

Figure 2.5: Memory-Storage continuum.

10 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

2.2.1 Registers
In computer architecture, a register is a high-speed low-capacity memory, in-
tegrated into the microprocessor, which allows temporary storage and access
to often used values. Registers are at the top of the memory hierarchy and they
are the fastest way for the system to store data. Normally they are measured
by the number of bits they store; for example, an "8-bit register" [42, 91] or
a "32-bit register". Load-store architecture processors used in HPC allow [38]:
loading data from the main memory to the registers, performing operations
on the registers, and the storage of results in the main memory. They are
very limited in number, and therefore it is necessary to take care to optimise
their usage to avoid having to go through the main memory or cache again.
This concept evolved into Advanced Vector Extension AVX, which is a specific
instruction-set designed to work with Intel and AMD into their x86 processors.

Optimising register usage is important to avoid accessing the next memory
level. In fact, this proposition is also valid for cache memory hierarchy.

2.2.2 Cache Memory Hierarchy
Cache memory is a very fast memory, which is normally only managed by the
hardware. It may be organised as a hierarchy, where the farther away a level
is from cores, the higher its capacity and lower performance [69]. Cached data
can be hosted at different levels [18] depending on how often it is used. Then,
the information can be transferred between the different levels in an inclusive
or exclusive way: the inclusive way allows the requested data to remain in
the provenance cache, that is, a copy is kept at two or more levels; while in the
exclusive way the requested data is removed from the provenance cache once
transferred to the new level [10]. There is a direct impact on cache performance
due to the way an application’s memory accesses are organised [80].

2.2.3 Main Memory
Main memory corresponds to the hardware where the application’s instructions
and data are kept when processors are using them, i.e., when the application
become active. They are copied from storage into the main memory in where
the processor is capable to interact with them. Ideally, in its design, it should
have large capacity, low latency, high bandwidth, and low cost. Combining
these parameters, hardware designers have given different solutions depending
on what is required; meaning to have different technologies that can be used
as the main memory device. Most of the main memory modules correspond
to volatile memory, which is defined as the computer memory that requires
power to maintain the stored data. I.e., it retains information while powered
but when power is interrupted, the data is quickly lost.

Data-Placement Strategies for HMS in HPC 11

2.2. Memory Hierarchy

Processor

Core

L3 Cache (Shared)

L1 Cache

Registers

L2 Cache

Core

L1 Cache

Registers

L2 Cache

Main Memory

Figure 2.6: General structure of the cache hierarchy.

SDRAM
512MB
133MT/s

DDR1
1GB

400MT/s

DDR2
4GB

800MT/s

DDR3
8GB

2133MT/s

DDR4
16GB

3200MT/s

DDR5
64GB

6400MT/s

Figure 2.7: DDR evolution in terms of capacity and speed.

Volatile main memory is composed of dynamic random-access memory
(DRAM) chips that are typically packaged in dual inline memory modules
(DIMMs) [67]. DRAM works synchronously with the system clock, and it
is commonly named single-data-rate (SDR) synchronous DRAM (SDRAM).
Today, double-data-rate (DDR) SDRAM, an evolution of SDRAM, is used
mainly for computer applications in DIMMs. Figure 2.7 shows that today it
is possible to find DDR at 64GB with a speed of 6400 million transfers per
second (MT/s) compared with SDRAM with 512MB of capacity and 133 MT/s
in speed.

2.2.4 NUMA
Non-Uniform Memory Access (NUMA) is a shared memory architecture used
today in multiprocessing systems. It was designed to expose different memory
nodes. In theory, the access to local memory is without contention, however, it
started to appear when large SMP nodes were connected to the memory bus.

NUMA nodes increase the available bandwidth of DRAM [29]. Initially,
NUMA nodes were composed of SMP nodes that are interconnected by a com-
munication network that enables the distribution of the memory, as Figure 2.8

12 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

CPU 0

Memory

CPU 1

Memory

Figure 2.8: NUMA as a set of SMP nodes.

shows.

Access times to memory are relative to the position of the processor and
the accessed memory, i.e., if a processor accesses its local memory the access
time will be lower than if it accesses remote memory.

In practice, when HPC applications use NUMA, systems can face two dif-
ficulties: the first one happens when an HPC application’s thread located on
a node accesses data located in the memory bank of another node; this non-
local transfer hurts performance. The second big issue is due to contention,
which happens when two threads located on different nodes access memory in
another node (fighting for memory bandwidth).

The use of many cores inside the CPU brings back the contention issue,
hence, there are now multiple memory controllers and NUMA nodes inside big
CPUs.

To expose these differences within a processor, Intel uses Cluster-on-Die
(COD) in Haswell microarchitecture allowing even to subdivide into NUMA
domains 2. Intel Skylake microarchitecture presents NUMA nodes as in Fig-
ure 2.9, where three DIMMs per channel are attached to their respective
CPUs. Here, is also allowed to subdivide NUMAs with the Sub-NUMA Clus-
tering(SNC) feature, and when it is enabled as in Figure 2.11, the mapping
is configured in a way that addresses to half of DDR only maps to the upper
region of the processor, whereas addresses the other half only maps to the
lower region.

In NUMA nodes the maximum available bandwidth is the sum of the peak
bandwidth of each memory, and this can be reached when all cores access their
local memory. In Figure 2.10, we are able to see the evolution of bandwidth
until using all cores bound to NUMA node 0 in an Intel platform. To maximise
the usage of NUMA nodes, developers have to minimise the number of remote
accesses by balancing the load between the nodes [47].

2https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-
processor-scalable-family-technical-overview.html

Data-Placement Strategies for HMS in HPC 13

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html

2.2. Memory Hierarchy

CPU 0

Skylake

Channels

3 DIMMs per Channel

Figure 2.9: Skylake NUMA configuration.

0 4 8 12 16 20
Number of Threads

20

40

60

Ba
nd

wi
dt

h
GB

/s

Stream-Triad Bandwidth vs
Number of Accessed Cores

NUMA 0 (DRAM)

Figure 2.10: STREAM-triad bandwidth peak using a thread per core (20 in
total) in NUMA node 0.

Figure 2.11: Skylake SNC disposition [108].

14 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

2.3 New Memory Technologies
Researchers focus their efforts on developing new kinds of memory to fulfil
some gaps in the memory continuum primarly related to latency, bandwidth,
or capacity issues.

There is still a large gap in the memory continuum between main memory
and storage devices that leads vendors to expand their catalogues with different
types of memories and even add extra layers as seen in Figure 2.5.

2.3.1 HBM
High Bandwidth Memory (HBM) is a memory device where several DRAM
chips and optional IO/controller chips are piled and interconnected by Through
Silicon Vias (TSVs) [49]. This kind of memory is very efficient when is placed
on a silicon interposer next to the computing chips in the same package [7].
The idea of HBM is to achieve higher bandwidth than DRAM by stacking
DRAM dies. Their second generation, or HBM2, specifies up to eight dies per
stack. HBM must be connected to the CPU through a specific very wide bus
(in comparison to DRAM).

2.3.1.1 KNL

Knights Landing (KNL) is the codename for the second generation of Intel®
Xeon Phi processors. As Figure 2.12 shows, this processor contains on-package
3D-stacked memory implemented as a Multi-Channel DRAM (MCDRAM) [78]
and unlike DIMMs it cannot be removed or replaced. MCDRAM compared to
DRAM, differs significantly in some metrics such as capacity and bandwidth.
E.g., in [86] STREAM-triad bandwidth output for DRAM is about 60 GB/s
and MCDRAM is about 290 GB/s. MCDRAM is different from HBM as
defined by the JEDEC standard. However, we consider them identical since
their impact on software is the same.

KNL was created to support a huge amount of full-fledged threads. When
using normal main memory, the memory controllers can be overwhelmed rap-
idly and cause a degradation in performance by the stalling of memory requests
and idling threads [83]. HBM narrows this gap by providing high bandwidth
to applications.

The KNL memory subsystem can be configured in three different modes:
Flat, Cache and Hybrid.

In Flat mode, as Figure 2.13 shows, the user is seeing HBM as a memory
pool exposed by the operating system as an extra NUMA node. For this
system, NUMA node 0 corresponds to DDR memory and NUMA node 1 is the
on-package HBM.

In Cache mode, as Figure 2.14 shows, HBM becomes transparent to the
OS and is managed by the hardware as a large cache in front of DRAM. Here,

Data-Placement Strategies for HMS in HPC 15

2.3. New Memory Technologies

Figure 2.12: Intel Xeon Phi processor overview [40].

CPU

DRAM

HBM

NUMA 0

NUMA 1

Figure 2.13: HBM configured in Flat mode.

HBM is treated as the last level cache (LLC), which is located between DDR
and the L2 cache, into KNL processors. The main advantage of this memory
mode is that it is managed by the platform and it is transparent to software,
i.e., developers do not need to modify their applications.

Finally, Hybrid mode, as Figure 2.15 shows, allows using parts of HBM in
Flat and Cache mode indistinctly and separately.

Developers, due to the fact of having two kinds of memory in these systems,
must use them in different manners, depending on the hardware configuration,
and have to explicitly manage the two kinds of memory for their applications.

CPU
HBM
Cache

DRAM

Figure 2.14: HBM configured in Cache mode.

16 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

CPU
HBM

NUMA 0

NUMA 1

HBM
Cache

DRAM

Figure 2.15: HBM configured Hybrid mode.

2.3.1.2 HBM in ARM

The Fugaku system, ranked first in the most recent Top500 (June 2021), is
based on an ARM architecture architecture adopting Scalable Vector Exten-
sion (SVE) [88]. This system was built with the Fujitsu microprocessor A64FX.
Each processor contains 32GB of HBM2 memory with an aggregated band-
width of 1TB per second.

Into the road to better support artificial intelligence, the ARM architecture
and HBM have been integrated, forming a processor named K-AB21 that
not only contains HBM2 but also have DDR5 memory, having as a result a
heterogeneous memory system.

In the same fashion as K-AB21, Rhea chips (ARM-based) support also
HBM and DDR5.

2.3.2 Non-volatile memory
Some technologies have appeared to pursue the expected evolution of Non-
Volatile Random-Access Memory (NVRAM) such as Phase Change Memory
(PCM), Ferroelectric RAM (FeRAM), Conductive Bridging RAM (CBRAM),
etc [109]. NVRAM refers to the memory that can hold data even when power
has been turned off. Indeed, new NVRAM technologies do not need to refresh
to keep data persistent.

NVRAM can be used either as storage or as memory. However, to un-
derstand its nature, it is important to understand the complex problem of
the memory-storage gap; where it is evident that there are two sides to the
narrative.

2.3.2.1 Storage, slow but persistent

The advantage of NVRAM on disks is obvious: due to their non-volatility
nature and the high performance that NVRAM gives over Solid State Drives.
Also, NVRAM removes the risk of mechanical failures.

In the pyramid, we can see that each layer from bottom to top makes data
more rapidly accessible to the processor. And approximately, it is expected
that each layer is 10 times the capacity of the layer above, but one-tenth the
performance.

Data-Placement Strategies for HMS in HPC 17

2.3. New Memory Technologies

Table 2.1: HDD 1957 vs 2021 comparison.

HDD Property IBM 350
(1957)

Seagate
HAMR
(2021)

Change

Maximum Drive
Capacity

4MB 20TB 5× 106x
Better

Average Seek
Latency

25ms 7ms 2.5x Better

The jump in the storage, as we can see in Table 2.1, shows that there
has been a great advance in memory capacity. In the case of the Hard Disk
Drive (HDD) in 2021 this has been 5× 106 times better than its version of
1957. However, if we consider the evolution in terms of latency, it is barely
evolving at 2.5 times. It causes to have a storage-performance gap between
main memory and storage.

It consequently has put pressure on the default main memory in the nodes,
and as expected it brought different technologies that seek to improve HDD
performance. To do this, later implementations changed the way to access
a physical location of data without the mechanical arm movement. In gen-
eral, these technologies are grouped as Non-Volatile Random Access Memory
(NVRAM) and can be used for both main memory and storage. One of these
technologies is the NAND Flash-based Solid State Disk (SSD) which achieves
much faster random access speed than the traditional HDDs (up to 100x) [43].
This technology has stalled, and it only evolves in terms of capacity, doubling
every 2 years, but maintaining almost constant latency. In addition to this,
CPUs are getting faster and the storage-performance gap remains [70].

2.3.2.2 Memory, fast but volatile

The other side of the story starts with the evolution of the capacity of main
memory devices that doubles every 4 years approximately compared to data
sets doubling every 3 years; meaning that applications cannot allocate as much
data as they would like close to the processor; causing us a memory-capacity
gap.

Non-volatile DIMMs (NVDIMMs), are the NVRAM that we put on a
memory module (DIMM). With the emergence of NVDIMMs, the gap between
usual volatile memory (≈80ns) and persistent storage (≈50µs to 7ms depend-
ing on the technology) is expected to narrow to avoid as much as possible
wasting CPU cycles waiting for data. It is important to consider that this
gap gets bigger considering that CPU continuously increase its performance,
making memory-storage data further away from it; this is most acutely felt in
data centres where data sets get 2 twice as big approximately every 3 years.

NVDIMMs bring the ability to HPC systems to have a high-capacity slower

18 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

memory, i.e., they provide a very high-capacity compared to DRAM, but at
the cost of higher latency.

2.3.2.3 NVDIMM implementations

There are three very different standardised NVDIMM configurations according
to JEDEC (who also standardises DIMMs for the DRAM). In Table 2.2 we
can observe NVDIMM-N, NVDIMM-F and NVDIMM-P.

NVDIMM-N uses DRAM and NAND Flash in the same module. DRAM
is accessed directly and NAND Flash is only used for backup. In the event of
a power failure, DRAM data is copied to flash memory, and copied back when
the power is restored. To do this it has a small power backup in the form of a
battery. It is constrained by DRAM capacity.

NVDIMM-F is essentially an SSD that uses the DDR3 or DDR4 bus instead
of Serial Advanced Technology Attachment (SATA), Serial Attached SCSI
(SAS) or Peripheral Component Interconect Express/Non-volatile Memory Ex-
press (PCIe/NVMe). Although it provides lower latency than normal SSDs,
it essentially works the same as SSD. That is why it is at the level of tens of
microseconds and the capacity can reach terabytes.

NVDIMM-P, fully released in 2021, enables persistent memory technologies
over DDR4 and is prepared to work with DDR5, meaning that it could benefit
from its bandwidth improvements. In essence, NVDIMM-P combines DRAM
and non-volatile memory, supporting Byte or Block access protocols.

For the thesis interest, it is important to mention that the only device
available was the Intel Optane DC persistent memory (in section 2.3.3.2).
Technically, it does not implement the NVDIMM-P standard, but it is similar
conceptually.

Table 2.2: NVDIMM types.

NVDIMM-N NVDIMM-F NVDIMM-P
Access
Method

Byte or Block Block Byte or Block

Capacity
Range

DRAM (tens of
GB)

Flash (TB) NVM (TB)

Latency DRAM (tens of
ns)

Flash (tens of
µs)

NVM (hundreds
of ns)

Other Requires bat-
tery or capacitor

Flash SSD on a
DRAM bus

Multiple media
types

2.3.3 Intel non-volatile memory solutions
Intel has a very important role in the development of NVRAM, allowing a
significant advance in the development of this new memory layer. It permits

Data-Placement Strategies for HMS in HPC 19

2.3. New Memory Technologies

having different devices that can connect either to PCI, SATA or memory
DIMMs. The latest Intel technology developed with Micron in 2012 is the 3D
XPoint under the brand name Optane. It is transistor-less, bit-addressable,
faster and durable compared to NAND technology. It can act as memory
(byte-addressable) but also as traditional storage (block addressable) [19].

This thesis focused on Intel Optane 3D Xpoint, because it is the only widely
available product. For this reason, it is important to take into account that
future mentions of NVDIMMs in the following chapters refer to Intel Optane
3D Xpoint technology.

2.3.3.1 Optane SSD

Intel Optane technology is used in SSDs (Intel Optane DC SSD). It comple-
ments Intel QLC 3D NAND SSDs providing higher input/output operations
per second (IOPS), low latency and can better afford heavy write workloads.
If we compare both technologies the main difference is that Intel Optane DC
SSDs are better to address input/output (I/O) and Intel QLC 3D NAND SSDs
are better for large-capacity storage. They could be used in conjunction and
Intel Optane’s version could be used as a fast-caching storage layer for hot
data in front of the 3D NAND version [19].

2.3.3.2 Optane DCPMM

Intel has put in the market the Optane Data Center Persistent Memory Mod-
ule(DCPMM) as its last NVDIMM solution providing byte-addressability and
a higher capacity than DRAM and compared to the SSD version it provides
lower latency and higher bandwidth. Unlike DRAM, they can retain data
across power cycles. The main idea of these DIMMs is that they are inserted
in the usual slots just like DDR DIMMs as Figure 2.16; even do they co-exist
with conventional DDR4 and DDR5 DRAM DIMMs on the same platform
since the 2nd Generation of Intel Xeon Scalable processors.

They are configured as individual Regions or as Interleaved Regions. The
main advantage of using interleaved regions is that they increase the memory
bandwidth because it uses multiple channels simultaneously. However, if some-
thing fails in one NVDIMM, the entire region data is lost.

Besides regions, the lasts Xeon processors Ice Lake and Cascade Lake
are capable to use these NVDIMMs as normal (volatile) memory. For this,
NVDIMMs have two operating modes:

1. The 1-Level-Memory mode allows using the NVDIMM as both persistent
storage as Figure 2.17 and normal memory as Figure 2.18.

2. The 2-Level-Memory mode only allows using the NVDIMM as normal
memory having DDR as cache in front, as Figure 2.19 shows.

20 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

CPU

Core

Core

Core

Core

Core

Core

Shared L3

NVDIMM

DRAMCPU

Core

Core

Core

Core

Core

Core

Shared L3

NVDIMM

DRAM

Figure 2.16: Dual-socket Xeon platform with 6 channels per processor, with
one NVDIMM and one DDR each.

CPU
DDR

App Direct
Mode

NVDIMM

Figure 2.17: 1-Level-Memory mode (1LM) using App Direct mode, using DDR
as the main memory while NVDIMMs are exposed as a persistent memory
region that is usually used as storage.

The configuration is done within the BIOS, or by a tool named ipmctl to
partition them between the target modes. It is important to mention that
the following chapters focus on using the NVDIMMs in 1-Level-
Memory mode as normal memory. All other modes are explained in
Chapter 6.

2.3.4 Other memories
There are more kinds of memories that are already available on the market.
For instance, NVIDIA’s V100 GPUs expose their internal HBM as additional
NUMA nodes on POWER9 processors such as Figure 2.20 shows. In addition,
some NVMe drives can expose some regions as NVDIMMs.

The actual manner that HBM, DRAM and NVDIMM are connected to
CPUs is fixed in hardware. DRAM and Intel NVDIMMs use external DDR
slots, while HBM is embedded inside the processor package. HBM has a limit
of stacking that basically limite their capacity. It should be added the fact
that, unlike DRAM and NVDIMM, HBM are not field-upgradable. DRAM in

Data-Placement Strategies for HMS in HPC 21

2.3. New Memory Technologies

CPU

DDR

System-ram
Mode

NVDIMM

NUMA 0

NUMA 1

Figure 2.18: 1-Level-Memory mode (1LM) using System-RAM mode, allowing
to appear the NVDIMM as an additional NUMA node apart of DDR.

CPU
DDR
Cache Memory

Mode

NVDIMM

Figure 2.19: 2-Level-Memory mode (2LM), using DDR as a Memory-side
Cache in front of the Memory Mode part of NVDIMMs exposed as normal
volatile memory.

Figure 2.20: hwloc’s output with NUMA nodes (pink-colored) where the
memory of 6 NVIDIA GPUs are exposed as a NUMA node.

22 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

its last forms (DDR4 and DDR5) suffers from a lack of bandwidth and capacity
For this reason, there are multiple proposals to reinvent the way the

memory is connected to the CPU. In the POWER10 architecture, the Open Co-
herent Accelerator Processor Interface (OpenCAPI) enables a new way, dubbed
Open Memory Interface (OMI), to connect DRAM and HBM without incur-
ring high cost and capacity restrictions. Indeed, the OMI serial bus [34] allows
getting memory closer to the CPU than either DDR slots or HBM embedded
schemas.

There are many other proposed technologies dedicated to improving the
interconnections inside servers: the Computer Express Link (CXL), is a bus
protocol that runs across PCIe 5.0 link and it is supported by AMD, ARM,
IBM and Intel architectures3; the Cache Coherent Interconnect for Accelerators
(CCIX)’s approach to peer-to-peer connections on the bus, taking memory
from different devices, to then pool it together and map it into a single NUMA.

Gen-Z allows users of disaggregated data centres to request memory capa-
city on demand by connecting memory to CPUs between nodes. It promises
to maintain good bandwidth and latency through a new dedicated physical
interconnect. Network-attached memory [3] is a slower alternative with rather
regular hardware: memory in another node or a specific node is made available
remotely across a standard network. In both cases, depending on the intercon-
nect performance, this remote memory may be considered local to some CPUs
(close to the network interface), or remote to all CPUs (if the network is far
slower than usual memory interconnects, as in Figure 2.22).

2.4 Impact of the Memory Subsystem
An ideal memory system should provide the highest bandwidth, the lowest
latencies, big capacities and minimum power consumption [68]. However, this
is just an idealisation that can not be translated into a memory module.

2.4.1 Combining different kinds of memory
To describe the effect of combining different types of memory, it is necessary
to first talk about the effect of not doing it. Fugaku presented in Section 2.1
is the last generation supercomputer where its memory system is homogen-
eous. Being more specific, it only works with HBM memory. Homogeneous
memory systems are normally optimised to provide either low latency or high
bandwidth. However, due to the diversity of workloads (in terms of memory
access), homogeneous memory systems are not sufficient. I.e., they do not
support the diversity of computation- and memory-intensive workloads.

3https://blocksandfiles.com/2020/04/03/cxl-gen-z-bus-standards-agreement/

Data-Placement Strategies for HMS in HPC 23

https://blocksandfiles.com/2020/04/03/cxl-gen-z-bus-standards-agreement/

2.4. Impact of the Memory Subsystem

Thus, the effect of combining different types of memory to form a het-
erogeneous memory system implies mixing memory devices with distinct per-
formance and characteristics. These systems give support to the diversity of
workloads. E.g., Intel’s Knigth Landings processors mixing HBM and DRAM
allow to better support bandwidth- and latency-intense applications. Simil-
arly, Intel Xeon Cascade Lake/Ice Lake with DRAM and NVDIMMs better
support latency- and capacity-intense applications. In addition, heterogeneous
memory systems are also being used as a technology for last generation plat-
forms such as presented in 2.3.1.2 with K-AB21 and Rhea that mixes HBM
and DRAM to provide better support in some specific types of application.

The impact to developers when having heterogeneous memory systems falls
on the fact of requiring a more portable, productive and efficient memory
management scheme.

2.4.2 Locality vs Heterogeneity
Through memory slots, NVDIMMs are attached to processors. Their access
performance suffers from the same locality issues as normal DDR memory, i.e.,
accessing an NVDIMM is faster from the CPU where it is attached. NUMA
effects are not negligible [54], meaning that applications must take locality into
account when choosing an NVDIMM target.

In Figure 2.21, we observe that the heterogeneity of the memory system
opens the possibility of having different kinds of memory local to a CPU. And
in the same fashion to the ones that are remotes, the possibility of having
different kinds of memory remote to a CPU. Indeed values of bandwidth and
latency can also be retrieved to correspond to a locality such as in Table 2.3.

NVDIMM DRAM

CPU 0

NVDIMMDRAM

NUMA 0 NUMA 1 NUMA 2 NUMA 3

Local
Local

CPU 1

Remote

Remote

Figure 2.21: Locality of a heterogeneous memory system containing DRAM
and NVDIMMs relative to CPU 0.

Here, we can infer a situation when local DRAM is full. The alternatives are
to use either Local NVDIMM or Remote DRAM. If we consider just locality,

24 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

the obvious answer would be choosing Local NVDIMM. However, we must
consider that the memory system is no longer homogeneous in terms of memory
characteristics. This new heterogeneity, makes us rethink our criteria. E.g., if
we take a good look at Table 2.3 we can see that the Local NVDIMM has in
terms of latency a similar value to the Remote DRAM, so the decision could
fall on still using the Local NVDIMM. However, this does not happen if our
criteria are based on bandwidth, as we can see that it would be a better option
to use the Remote DRAM.

Table 2.3: Bandwidth and latency values of local and remote targets relative
to CPU considering Figure 2.21.

Target

CPU 0
0
Local
DRAM

1
Remote
DRAM

2
Local
NVDIMM

3
Remote
NVDIMM

Latency ns 84.2 145.5 149.7 349.6
Bandwidth GB/s 81.52 37.14 8.50 2.12

2.4.3 Summary
The memory hierarchy that today can be found in HPC clusters has been
growing as processors evolve. Since the data in memory must be processed
in an increasingly efficient way. There are gaps that exist within the memory
hierarchy. Those have made technology builders not stop optimising existing
products. But also, this has generated that the variety of memory types in-
creases, even incurring in new memory types, which are memory technologies
that try to fulfil some gaps in the memory hierarchy.

In this way, it is inevitable to have more complex memory systems within an
HPC cluster, that is, more than one type of memory can be used by the CPUs
on a node. These heterogeneous memory systems, while helping to fill the gaps
and bringing data closer to processing, add complexity to the development of
applications, libraries, and even how an operating system should manage them.
In Figure 2.22 we can observe an example of this by having a system with four
kinds of memory.

In Table 2.4 we can observe 3 different platforms (more details in Chapter 3)
that contain different kinds of memory inside them. Platform 1 contains
DRAM and NVDIMMmemory, platform 2 contains HBM and DRAMmemory
and platform 3 contains HBM, DRAM and NVDIMM memory. The OS al-
lows to see one NUMA node per memory kind. That way applications could
allocate wherever they want as if they were in a non-heterogeneous NUMA
machine. I.e., CPUs have more than one local memory. That poses in the
table the possibility of better supporting different kinds of applications such as
bandwidth-, latency- and capacity-bound applications that could benefit from

Data-Placement Strategies for HMS in HPC 25

2.5. Software State of the art

Machine (2113GB total)

Package

SubNUMA Cluster

Core Core

Core Core

HBM (16GB)

SubNUMA Cluster

Core Core

Core Core

HBM (16GB)

DDR (93GB) NVDIMMs (466GB)

Package

SubNUMA Cluster

Core Core

Core Core

HBM (16GB)

SubNUMA Cluster

Core Core

Core Core

HBM (16GB)

DDR (93GB) NVDIMMs (466GB)

Network-attached Memory (931GB)

Figure 2.22: Output of hwloc’s lstopo tool on a fictitious platform with several
kinds of memory: each CPU package has local NVDIMM and DDR NUMA
nodes. Each SubNUMA cluster in those packages also has an HBM. And a
network-attached memory is also connected to the entire machine.

allocating their buffers to a more suitable memory kind. E.g., bandwidth-
bound applications would prefer to use DRAM memory on platform 1, HBM
memory on platform 2, and HBM memory on platform 3.

Table 2.4: Comparison of 3 different heterogeneous memory systems with dif-
ferent application needs.

Platforme 1 Platforme 2 Platforme 3
Default DRAM DRAM DRAM

Latency-Bound DRAM DRAM DRAM
Bandwidth-Bound DRAM HBM HBM
Capacity-Bound NVDIMM DRAM NVDIMM

2.5 Software State of the art
Traditionally, NUMA memory management is done by two main policies: the
NUMA interleaving policy, where pages are interleaved evenly on DRAM [24],
and first-touch policy, where a page is mapped to the NUMA domain of the
thread which first touches it. In addition, there is another policy, the Auto-
matic NUMA balancing policy that aims to migrate data on demand to the
memory nodes local to CPUs. However, it is not widely implemented in the op-
erating systems. Having different kinds of memory complicates these policies.
It is not clear whether interleaving between different kinds of memory is a
good idea (probably having a different performance for the same buffer alloca-
tion), because it has not been designed for that. However, there is a proposal
called top-tier memory management that aims to give support by migrating
infrequently used pages to slow memory and hot ones to fast memory [58].

26 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

2.5.1 Managing Heterogeneous Memory

There are several APIs that allow managing more than one memory kind.
One of these is memkind library [16] which is an open-source designed to
manage HBM. This allows defining memory kinds and permits allocation either
in DRAM or HBM. Also, it has an automatic allocator autohbw which do
allocations based on a certain size range to HBM at runtime and avoiding
source code modifications by intercepting allocations. However, memkind first
implementation was not generalised to work in every heterogeneous memory
system. Their developers did not try to become generic to heterogeneous
memory systems until just recently. Memkind does not support NUMA, which
means that it does not take into account the locality of, e.g. HBM, DRAM
or NVDIMM. This makes memkind useful in simple problems supporting the
allocation process, but not in more complex problems where it is important to
decide before allocating.

Memory Object Classification and Allocation (MOCA) [68] is a
framework for heterogeneous memory systems that focuses their efforts on
memory objects within applications, where, depending on the memory access
behaviour, allocations are made in different memory types. For this, it requires
doing previous profiling of the application.

Simplified Interface to Complex Memory (SICM) [74] claims to be
a universal interface for discovering and managing heterogeneous memory sys-
tems supporting HBM, NVDIMMs and DDR. It is composed of tiers: the low
level is the one charged to control the use of what kind of memory is being
used and provides tools to discover, allocate and de-allocate memory buffers.
This high-level provides developers with a manner to specify parameters that
could be taken into account in each allocation. SICM requires Linux kernel
changes that do not follow the current trend of Linux kernel developers, which
is to expose performance attributes to applications that help drive allocation
behaviour. Also, the ordering is configured machine-wide in the kernel. All
allocation of all jobs running simultaneously on a node will use the same or-
dering.

Umpire [14, 13] is an application-focused API for memory management
on NUMA and GPU architectures. It provides high-performance strategies for
customising data allocations. It determines the best way to allocate buffers
through the available nodes and resources avoiding that users have to do it
manually. It is intended for high-performance applications and provides many
memory operations, dynamic memory pools, and introspection capabilities.

AML [79] is a heterogeneous memory management library that provides
flexible interfaces to describe how applications deal with data, tiling of data
and data placement across different topologies [22]. Then, it permits identify
affinities between work and data and it supports DRAM, GPU memory and
NVDIMMs.

Data-Placement Strategies for HMS in HPC 27

2.5. Software State of the art

Figure 2.23: hwloc’s output on an Intel KNL Xeon Phi platform configured
in Flat mode. The CPU exposes DDR memory as a NUMA node and HBM
(MCDRAM) memory is shown as an extra NUMA node.

All these approaches have sought to manage heterogeneous memory sys-
tems based on simple approaches such as only taking into account the size
of a buffer, as well as making complex decisions before allocating. The level
of abstraction of many of these solutions often involves a strenuous rework
for the developer. Moreover, many of these solutions are limited to a specific
heterogeneous memory system. For all this, it is important to have memory
management that can take productivity into account, capable of exposing any
heterogeneous memory system to applications, and capable of making decisions
to allocate the right buffers in the right target.

2.5.2 hwloc
hwloc mentioned in Section 2.2.4 is the de facto interface for exposing locality
of hardware [15, 33]. As mentioned before, NUMA nodes were conceived from
the relationship between cores and local DRAMmemory. With the appearance
of new types of memory as seen in Section 2.3, we can find architectures that
allow to have two or more different types of local memory for a group of
cores. In other words, a group of cores can belong to more than one NUMA
node. Before this thesis, hwloc was not able to manage heterogeneous memory
systems.

In Figure 2.22, a fictitious machine is shown, containing four types of
memory available, where a core has 4 local NUMA nodes. At the package
level, DRAM memory is exposed before NVDIMMs due to DRAM normally
being the default allocation node. However, this choice does not match the
need of every application. In the same fashion, HBM is exposed at the smaller
level of this hierarchy and implicitly one expects it to give a higher perform-
ance. But, there is no manner to expose that performance information and
even worse know the dimension, e.g. latency and bandwidth. A real example
could be seen in Figure 2.23 showing the hwloc’s output of a KNL system,
which contains DRAM and HBM memories attached to the CPU allowing to

28 Andrès RUBIO PROAÑO

2. Memory Systems in HPC

have two NUMA nodes, where applications could allocate their buffers. This
situation adds complexity to how the heterogeneous memory should be used.

On the application side, buffers by default are allocated on DRAM memory
regardless of the platform, because the OS and hwloc expose them first. In that
sense, NUMA node elements have changed from containing CPUs and memory
to have CPUs and several local memories. For that reason, it is better to talk
about a relation between an initiator and a target, in where initiators are either
a set of logical processors (CPU-sets) or specific objects, and targets are hwloc
objects of type NUMA node.

hwloc allows to manage heterogeneous memory systems in a generalised
way (i.e., constantly adding support for different HMS). However, before the
development of this thesis, it could not expose memory characteristics to help
end-users choose the correct target.

2.6 Statement of the Problem
Heterogeneous memory systems have an important role to allow more efficient
or faster access to the data in memory from the processors. However, these add
a level of complexity to each of the different actors involved in heterogeneous
memory system management.

The first level of complexity that heterogeneous memory systems bring is
related to how to expose them to applications. First, the need to identify what
is inside of the HMS. This is not as easy as one can expect, because we can have
different kinds and counts of memory nodes involved and that can not be easily
guessed from the OS. Besides this, it is necessary that each identified memory
can be characterised and represented in a way that can be expose to the other
actors such as OS, applications and developers. In Chapter 3 we present an
extended interface for hwloc taking into account memory attributes
that helps to expose and manage the memory system complexity.

On the other hand, applications also have to deal with the growing number
of memory types. Even if the heterogeneous memory system is adequately
exposed to applications, it does not mean that they know how to use them
or that this process will be automatic. Not all applications will keep their
behaviour whether they decide, for example, to allocate their buffers in the
DRAM or in the HBM. Therefore, it is necessary to generalise a method to
be able to identify beforehand the affinities that an application may have.
For this, it is necessary to recognise which are the main buffers or memory
objects of an application, that is, the ones for which the memory location
has the most impact on performance. In Chapter 4 are presented some
strategies that allow to reach in a better criterion about where to
allocate memory buffers.

Heterogeneous memory systems have various tastes and flavours. It is not

Data-Placement Strategies for HMS in HPC 29

2.6. Statement of the Problem

always easy to have access to this diversity. Developers need tools to be able to
simulate how their applications could behave given an HMS. It is also necessary
to be able to emulate these scenarios and be able to present them to future
applications. Chapter 5 collects some strategies and techniques that
allow to give developers an idea of how to approach HMS that are
not at hand by using simulation and emulation approaches.

As known computing nodes are increasing with tens of cores. Co-scheduling
multiple jobs on such nodes have been a useful strategy for ensuring the use
of cores in HPC systems. However, this strategy considers using normally one
kind of memory, e.g., DRAM, HBM or NVDIMMs. For this reason, there
is a necessity to explore the possibilities to partition and use new memory
technologies and handle them with resource partitioning. In Chapter 6 we
provide a strategy that involves the opportunities of partitioning
Intel NVDIMMs between co-scheduled jobs on HPC nodes.

30 Andrès RUBIO PROAÑO

Chapter 3

Navigating Complex Memory
Spaces

Managing memory in HPC applications is getting more and more difficult due
to the actual heterogeneity of the memory system. To better support these new
memory systems, identifying memory kinds and exposing their characteristics
is crucial, so that upper software layers could have an idea of where to allocate
performance-critical buffers.

3.1 Exposing Memory Characteristics 33
3.1.1 Identifying Memories 35
3.1.2 Characterising Memories 35

3.2 Memory Attributes 36
3.2.1 Bandwidth . 36
3.2.2 Latency . 37
3.2.3 Capacity . 38
3.2.4 Locality . 39
3.2.5 Other Attributes . 40

3.3 Implementation in hwloc 42
3.4 Attributes Values 45

3.4.1 ACPI SLIT . 45
3.4.2 ACPI HMAT . 46
3.4.3 Benchmarking . 48

3.5 Summary . 52

31

Heterogeneous memory systems are not uniquely shaped, and vary from
platform to platform, always maintaining an interaction of at least 2 differ-
ent memory actors or as we called 2-memory-kind (2MK) HMS nodes. In
fact, 2MK is the current state of the art in hardware, having combinations of
HBM+DRAM and DRAM+NVDIMM, as explained in the following sections.
This leads to the need of exposing heterogeneous memory systems to applica-
tions in such a way that they can access the different memory types knowing
their characteristics and thus give them the best possible use.

In our study, we have mainly worked with 3 different memory environments.
The first heterogeneous memory systems used is Kona01. On Appendix A.1
there is detailed information of Kona01 and other Kona machines with similar
structure. Figure 3.1 is a simplified representation of Kona01 where we can see
that the CPU has an HBM on-package memory module in Flat mode with a
capacity of 16 GB and also DDR memory of 96GB. Inside, there are 64 cores
of the CPU that has attached 2 different memory kinds, having as a result a
total of 2 NUMA nodes.

The second heterogeneous memory system is into Leonide machine (more
details in Appendix A.2). Figure 3.2 is a simplified representation of Leonide,
where we can see that each CPU has a local DDR and NVDIMM memory.
I.e., the 20 cores of each CPU, are attached two different kinds of memory,
having as a result a total of 4 NUMA nodes.

CPU
Core

Core

Core

DRAM

64x
total

HBM

Figure 3.1: Kona01 memory system organisation.

NVDIMM

DRAM

CPU
Core

Core

Core

Shared L3NVDIMM

DRAM

20x
total

CPU
Core

Core

Core

Shared L3

20x
total

Figure 3.2: Leonide memory system organisation.

32 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

Nowadays, to our knowledge, there is still not HPC nodes containing three
or more memory kinds. However, in near future, we consider we could find
such kinds of HPC nodes. Taking that into account and for explanation pur-
poses, we have imagined a fictitious 3-memory-kind (3MK) HMS node. This
heterogeneous memory system consists of HBM, DDR and NVDIMMs. Fig-
ure 3.3 is a simple representation of our illustrative machine where the cores
of each CPU will have three types of memory as locals, resulting in a total
number of 6 NUMA nodes.

NVDIMM

DRAM

CPU
Core

Core

Core

Shared L3
NVDIMM

DRAM

20x
total

CPU
Core

Core

Core

Shared L3

20x
total

HBM HBM

Figure 3.3: 3-memory-kind machine organisation.

This chapter seeks to present our approach to expose complex memory
spaces. Considering that the actual manner to expose homogeneous memory
systems (1MK systems) is not enough to fully expose heterogeneous memory
systems, first section presents a more generic manner to do it. Then, we
introduce a set of attributes that can be used to characterise each kind of
memory in a heterogeneous memory system. Afterwards, an API that allows
to expose and manipulate memory attributes is presented. Then, is presented
in detail how can the values of memory attributes are retrieved.

3.1 Exposing Memory Characteristics
Into each heterogeneous memory system presented we have the possibility to
observe its topology exposed by the OS and hwloc as shown in Figures 2.23, 3.4
and 3.5.

The memory system is a key component in the topology awareness [33]
for have a proper allocation of memory buffers. Operating systems already
expose some information to user-space applications, especially in terms of loc-
ality. However, Operating systems have not had a complete evolution to sup-
port new memory architecture trends. In the same direction, hwloc has a
mechanism that allows exposing the memory system of nodes to the users-
pace. In the past, the hwloc model would place NUMA nodes inside the CPU
hierarchy. However, for 2MK or future 3MK HMS nodes, as we can see in
Figures 3.4, 2.23, and 3.5 hwloc changed the hierarchical structure to allow

Data-Placement Strategies for HMS in HPC 33

3.1. Exposing Memory Characteristics

Machine (1861GB total)

Package L#0

Core L#0

PU L#0
P#0

Core L#1

PU L#1
P#2

20x total
Core L#19

PU L#19
P#38

NUMANode L#0 P#0 (187GB) NUMANode L#1 P#2 (742GB)

Package L#1

Core L#20

PU L#20
P#1

Core L#21

PU L#21
P#3

20x total
Core L#39

PU L#39
P#39

NUMANode L#2 P#1 (187GB) NUMANode L#3 P#3 (744GB)

Figure 3.4: hwloc’s output of Leonide machine in System-RAM mode. The
CPU exposes DDR memory as NUMA nodes and NVDIMM memory is shown
as extra NUMA nodes (cache hierarchy hidden).

Machine (1893GB total)

Package L#0

Core L#0

PU L#0
P#0

Core L#1

PU L#1
P#2

20x total
Core L#19

PU L#19
P#38

DDR L#0 P#0 (187GB) HBM L#1 P#2 (16GB) NVDIMMs L#2 P#4 (742GB)

Package L#1

Core L#20

PU L#20
P#1

Core L#21

PU L#21
P#3

20x total
Core L#39

PU L#39
P#39

DDR L#3 P#1 (187GB) HBM L#4 P#3 (16GB) NVDIMMs L#5 P#5 (744GB)

Figure 3.5: hwloc’s output of a 3 memory kind machine. The CPU exposes
DDR memory as NUMA nodes, NVDIMM memory and HBM memory are
shown as extra NUMA nodes (cache hierarchy hidden).

34 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

attaching multiple NUMA nodes near the same group of cores. I.e. CPUs can
have more than one local NUMA node, and each corresponding to different
memory kinds. Considering this, applications may encounter more than one
local NUMA node, making necessary to take into account more parameters to
allocate memory buffers in the right place. 1

3.1.1 Identifying Memories
Identifying memory kinds consist of understanding which NUMA
nodes are of which kind. E.g., In the fictitious 3MK platform in Figure 3.5,
how an application can know that the first NUMA node is DRAM or that the
second one is HBM or the third one is NVDIMM? An unaware application
may be confused and think all of them are DRAM instead.

By default, most memory allocations should go to the DRAM because its
capacity is high enough and its performance is reasonable enough. On contrary,
the low HBM capacity should be used only for performance-critical allocations
in Figure 2.23. NVDIMMs should only be used for large non-performance-
critical buffers. Hence, DRAM should likely be exposed to the application first,
before NVDIMM and HBM if they exist in the platform. However, the ranking
of NUMA nodes exposed to applications depends on the operating system
and the hardware ACPI tables. In consequence, applications and runtimes
developed for KNL, for instance, memkind [16] included some KNL-specific
detection code to hardwire the ranking of DRAM and HBM NUMA nodes.
High-productivity on modern platforms requires a portable solution: a way
to find out which nodes are DRAM, HBM or NVDIMM without knowing in
advance how they may be exposed by the hardware and operating system.

3.1.2 Characterising Memories
Current hardware specifications (ACPI tables) and operating systems do not
explicitly expose information about the memory kind behind each NUMA
node. One reason is that vendors do not want developers to assume that
NVDIMM is slower than DRAM because it is not always true (NVDIMM-F
has DRAM performance) 2. Hence, we propose to base identification
on the performance characterisation of memory nodes. For instance,
instead of requesting an allocation on HBM, let the application allocate on the
memory node with the best bandwidth. It is more portable because applica-
tions do not assume that a given platform has HBM or not. It only requests
the best available one. Thus, there is a need to characterise the memory
nodes through metrics that are relevant to application needs, for instance, low
latency, high bandwidth or high capacity.

1By default, hwloc exposes DRAM first because it is usually the default allocation node.
2https://lkml.org/lkml/2019/3/25/1020

Data-Placement Strategies for HMS in HPC 35

https://lkml.org/lkml/2019/3/25/1020

3.2. Memory Attributes

hwloc can perform the identification by looking at which drivers manage
each device, however, the identification is only used for human debugging,
for instance verifying that the allocation went to HBM on a specific platform
where the application requested a high-bandwidth allocation.

3.2 Memory Attributes
In our work, we assign a set of attributes to each memory device, given the
heterogeneity of memory systems. These attributes help us to classify them
in terms of intuitive metrics to help the selection of the right memory device
given a use case. It gave us the ability to create an ordering of memories for a
given attribute. The best, second best, ..., and if the best memory devices are
available, an application may choose it to allocate their memory buffers.

3.2.1 Bandwidth
Computer architectures such as KNL include two types of memory, high-
capacity memory DRAM and high bandwidth memory HBM. Our Kona01
platform is one example of this. There is a large bandwidth differential between
these two (four to five times), which makes bandwidth-intensive applications
extremely sensitive to the choice of memory and hardware mode [95] (e.g.,
Cache and Flat modes). These applications should be able to allocate data
buffers in the most appropriate memory.

HBM play a key role in future systems. Currently, it is a crucial com-
ponent on systems such as Summit and Sierra from the U.S. Department of
Energy [104] (coming back in next generation Intel Xeon "Saphire Rapids")
and Fugaku from Riken [51].

We propose to characterise memory targets with a bandwidth value or even
one for reading or one for writing if necessary. These values allow to have an
ordering when bandwidth is the priority criterion for an allocation.

On the Leonide platform, we have either DRAM and NVDIMMs, and the
resulting ranking based on the bandwidth attribute may return the following
ordering:

DRAMBW > NVDIMMBW (3.1)

The ordering puts DRAM as the memory with the highest bandwidth.
On the Kona01 platform, the resulting ranking based on the bandwidth

attribute may return the following ordering:

HBMBW > DRAMBW (3.2)

36 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

Here, the result evidence that HBM is the memory with the best bandwidth
capabilities.

On a 3MK HMS system having DRAM, HBM and NVDIMMs, the resulting
ranking based on the bandwidth attribute may return the following ordering:

HBMBW > DRAMBW > NVDIMMBW (3.3)

Here, HBM is ranked before DRAM and DRAM before NVDIMMs.
However, as mentioned before, this attribute could give us more than one

order due to the fact that in some cases we could incur in having very different
values between reading access and write access. This is theoretically possible
but unlikely.

3.2.2 Latency
Although seemingly related, bandwidth and latency may not be correlated in
practice. On platforms with fast and slow memory such as our three platforms,
one may expect the fast memory to always provide better latency and band-
width than the slow memory. This may not be the case. For instance, in our
2MK HMS system, Kona01 HBM latency is higher than DRAM’s when the
platform is loaded. This is very important for HPC nowadays [65]. Moreover,
application requirements may depend specifically on bandwidth (like stream-
ing kernels) or latency (like pointer chasing-like applications). Thus, providing
independent attributes for bandwidth and latency allows to better describe ap-
plication needs.

Hence, in the same manner as bandwidth, we have characterised memories
by latency taking into account the probable separation of reading and writing
latencies. This attribute would lead, when the latency is the priority criterion
and as result, we could have the following orderings for our platforms 3.

On the Leonide system, the resulting ranking based on the latency attribute
may return the following ordering:

DRAMLat > NVDIMMLat (3.4)

The resulting ordering puts DRAM as the memory with the lowest latency.
On the Kona01 KNL system, the resulting ranking based on the latency

attribute may return the following ordering:

DRAMLat ' HBMLat (3.5)
3This order compares the priority of memories for latency-sensitive allocations, and not

the latency itself (the weaker latency is the more priority that memory has, the further left
it appear in our equation)

Data-Placement Strategies for HMS in HPC 37

3.2. Memory Attributes

Here, applications on KNL will not know where to allocate on DRAM or
HBM since the priority is similar. In this case, it should be necessary to look
at other criteria, such as the capacity to finalise its choice.

On a 3MK HMS system having DRAM, HBM and NVDIMMs, the resulting
ranking based on the latency attribute return the following ordering:

DRAMLat ' HBMLat > NVDIMMLat (3.6)

Inside our fictitious platform, we have considered that the relation between
DRAM and HBM would be pretty similar to Kona01 behaviour (but it could
not be the case in future systems). That is, that the resulting ranking could
need the support of another attribute as capacity.

3.2.3 Capacity
The capacity of a memory device is one of the best-known attributes that
allows us to have an important criterion when deciding where to allocate the
buffers. This decision is particularly relevant when the heterogeneous memory
system contains memory kinds with limited capacity. An example of this is
shown in Kona01, which has an HBM memory of just 16GB compared to 96GB
of DRAM. On the other hand, we can also find capacity-intensive applications
that obviously will not be able to use the HBM, but that could even have
limitations with the capacity of the DRAMs. An example of this could happen
in our HPC 2MK HMS system Leonide, where the NVDIMMs are very useful.

On Leonide system, the resulting ranking based on the capacity attribute
may return the following ordering:

NVDIMMCap > DRAMCap (3.7)

The resulting ordering puts NVDIMM as the memory with the highest capa-
city.

On Kona01 system, the resulting ranking based on the capacity attribute
may return the following ordering:

DRAMCap > HBMCap (3.8)

On a 3MK HMS system, the resulting ranking based on the capacity at-
tribute returns the following ordering:

NVDIMMCap > DRAMCap > HBMCap (3.9)

38 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

The importance of exposing the heterogeneous memory system using dif-
ferent attributes allows us to build or identify the memory characteristics of
a given system. In Figures 3.6, 3.7 and 3.8 we can observe respectively the
memory characteristics of Leonide, Kona01 and 3MK respectively.

High Bandwidth

Low LatencyHigh Capacity

Bad

Good

Very Good
DRAM
NVDIMM

Figure 3.6: Memory attributes characteristics of Leonide.

High Bandwidth

Low LatencyHigh Capacity

Bad

Good

Very Good
HBM
DRAM

Figure 3.7: Memory attributes characteristics of Kona01.

3.2.4 Locality
We also envision a locality attribute that would describe whether a memory
device is attached specifically to a subset of cores or shared by many of them.
In Figure 2.22, HBM has strong quad-core locality because it is only attached
to one SubNUMA Cluster. DRAM and NVDIMM are local to twice as many
cores (entire CPU package), and the network-attached memory is shared by
the entire machine.

The locality attribute can be useful when it comes to share data between
cores: two tasks sharing data might perform better if data is stored on local

Data-Placement Strategies for HMS in HPC 39

3.2. Memory Attributes

High Bandwidth

Low LatencyHigh Capacity

Bad

Good

Very Good
HBM
DRAM
NVDIMM

Figure 3.8: Memory attributes characteristics of our 3MK HMS node.

memory device for both and if the interconnection of the memory is in dis-
pute. Hence, this could be a filter to avoid non-local memory devices for the
cores involved. A use case of this comes when running an MPI application
on a machine with a topology similar to Figure 2.22 in where it can create
MPI sub-communicators based on the locality attribute. When the distance
is 1, MPI tasks running on the same SubNUMA Cluster are assigned to the
same sub-communicator and to the same HBM local memory. When the dis-
tance is 2, MPI tasks running on the same package are assigned to the same
sub-communicator and to the same DRAM memory. Note that similar group-
ings can be created today using hwloc’s compute devices (e.g., Package). In
contrast, our locality attribute targets the memory devices in the machine.
This difference may be significant for two reasons: (1) Architectures may not
have a 1:1 correspondence between compute packages and memory, and (2)
our approach would provide a memory handle to the local memory based on
the given distance–without having to specify what NUMA domain that may
be, if any.

3.2.5 Other Attributes
We have limited mainly this study to the attributes of capacity, latency and
bandwidth. However, the characterisation of a memory kind is not limited to
these attributes. As shown in Table 3.1 many other attributes can be sup-
ported. As mentioned, separate bandwidth or latency for reads an writes,
allows to have Read Bandwidth, Write Bandwidth, Read Latency and
Write Latency as additional attributes. Those are being considered for addi-
tion when the relevant hardware information is available, for instance power
consumption, the endurance or the persistence of NVDIMMs.

Read Bandwidth, Write Bandwidth, Read Latency and Write Latency at-
tributes are important especially for NVDIMMs, where there are very big dif-

40 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

ferences comparing reads and writes. E.g., On Leonide, Figure 3.9 shows the
output of the Locality Aware Roofline Model (LARM) [20] which reports band-
width differences between Load, Store and non-temporal stores (StoreNT).

Figure 3.9: LARM Write/Read Bandwidth report on Leonide.

The power attribute, nowadays is a very important criterion to be con-
sidered for data-placement algorithms [76]. Endurance attribute gives an idea
of economise the use of NVDIMMs due to long-times and to a certain extent,
work mainly on DRAM and then store the final information on NVDIMM. Per-
sistence attribute that basically makes reference to critical information that
should not be lost during a power cut.

Table 3.1: Status of memory attributes.

Attributes Native Discovery
Capacity, Locality Always supported
Bandwidth, Latency On most platforms

R/W Bandwidth, Latency On some platforms
Persistence, Endurance, Power Under investigation

Custom Metrics N/A

Data-Placement Strategies for HMS in HPC 41

3.3. Implementation in hwloc

3.3 Implementation in hwloc
As was mentioned in Section 2.5.2 buffers by default are allocated on DRAM
memory regardless of the platform, because the OS and hwloc expose them
first. At the beginning as shown in the left part of Figure 3.10, CPUs were
not able to be part of 2 NUMA nodes.

Nowadays, heterogeneous memory systems allow to have more than one
memory kind local to a CPU. It breaks the old concept of NUMA node ele-
ments, having changed from containing CPUs and the memory to having CPUs
and several local memories. For that reason it is more proper to talk about
a relation of an initiator and a target such as the ACPI specifications does.
In where, initiators are either a set of logical processors (CPU-sets) or specific
objects, and targets are hwloc objects of type NUMA node.

CPU 0

NVDIMM
(Target)

DRAM

CPU 1

DRAM

NUMA -> CPU + Memory

CPU 0
(Initiator)

DRAM
(Target)

NUMA -> Target + Initiator

Figure 3.10: NUMA nodes redefinition.

Our API showed in Figure 3.11 implements the aforementioned ideas within
hwloc. It extends the already available support for the memory systems allow-
ing hwloc to expose memory characteristics and orderings.

An application using the interface will normally select the targets that are
local to the core(s) where it runs (NUMA affinity), and after compares their
values for some attributes. One attribute (e.g. bandwidth, latency or capacity)
will correspond to the priority criteria when deciding where to allocate. This
API works also in homogeneous NUMA platforms since bandwidth and latency
indicate whether NUMA nodes are close or far away from cores.

One manner to use the API consists in starting from the core(s), where an
application is bound and finding the best target for allocating memory nearby.
This may be obtained by passing the related core(s) cpuset as an initiator to
get_best_target(...) with the relevantmemory attribute such as shown

in Figure 3.12. E.g if the applications is bandwidth-bound, use the Bandwidth
attribute.

The API also supports cases where an allocations fails, e.g. due to a lack
of capacity, or when more complex decisions are needed, or even if non-local
memory may be needed.

42 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

Get the array of memory targets that are local to a given initiator:
hwloc_get_local_numanode_objs(topology, initiator, &nr, &targets)
Get the best memory target (and its value) for the given initiator and
attribute:
hwloc_memattr_get_best_target(topology, attribute, initiator,
&best_target, &target_value)
Get the value of an attribute for the given memory target and initiator:
hwloc_memattr_get_value(topology, attribute, target, initiator,
&value)
Add a specific memory attribute:
hwloc_memattr_register(topology, attribute, name, &value)

Figure 3.11: Summary of main hwloc API functions for manipulating memory
attributes. Initiators are either sets of logical processors (CPU-set) or specific
objects. Targets are hwloc objects of type NUMA node.

/* Initialise Topology */
hwloc_topology_init(&topology);
hwloc_topology_load(topology);

[...]

/* Allocating function */
void * alloc_on_best_target(topology, initiator, attribute, size)
{

hwloc_memattr_get_best_target(topology, attribute, initiator,
&best_target, NULL);

return hwloc_alloc_membind(topology, size, best_target->nodeset,
BIND, BYNODESET);

}

[...]

/* Allocating 1MB on best bandwidth memory near a given core */
void * buffer = alloc_on_best_target(topology, core->cpuset,

HWLOC_MEMATTR_ID_BANDWIDTH,
1024*1024);

Figure 3.12: Example of hwloc API use to allocate on the best target for an
existing attribute.

Data-Placement Strategies for HMS in HPC 43

3.3. Implementation in hwloc

Figure 3.13 represents a more complex problem where somebody wants
a custom metric for the STREAM-Triad kernel (2 reads for 1 write). We
first obtain a list of local NUMA nodes by passing the initiator (cpuset) to
get_local_numanode_objs(...). Then we create the custom attribute with
register(...) and manually compute its value for different targets by com-

bining Read an Write bandwidths obtained the get_value(...). Finally, the
new attribute may be used to allocate with the previously defined allocation
routine in Figure 3.12.

/* Initialise Topology */
hwloc_topology_init(&topology);
hwloc_topology_load(topology);

/* Register Custom Attribute */
hwloc_memattr_register(topology, attribute, name, &customMetric, flags);

/* Get array of targets given an initiator */
hwloc_memattr_get_local_numanode_objs(topology, initiator,

&nr, &targets);

/* Initialise Custom Metric Values */
foreach(target in targets) {

/* Get Read/Write Bandwidth values */
hwloc_memattr_get_value(topology, ReadBandwidth, target, initiator,

&rbw_value);
hwloc_memattr_get_value(topology, WriteBandwidth, target, initiator,

&wbw_value);

/* Store the metric value for this node by combining R/W bandwidths */
custom_metric_value = rbw_value||rbw_value||wbw_value;
hwloc_memattr_set_value(topology, customMetric, target, initiator,

flags, custom_metric_value);
}

/* Allocating on best node for the custom metric */
buffer = alloc_on_best_target(topology, initiator, customMetric, size);

Figure 3.13: Defining a custom metric for STREAM-Triad kernel
(2xReadBW+1xWriteBW) and allocating in the best target for that metric.

Figure 3.14 shows later in this chapter an example of output of this API.
hwloc was already able to expose some default attributes coming from the
operating system (such as capacity and locality). However, not all platforms
present reliable values about latency and bandwidth and for this reason next
section shows the available options to obtain this values.

44 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

3.4 Attributes Values
Discovering attribute values is another task that consist of characterising the
memory targets. There are two sources that can be used to obtain this inform-
ation. The first is use hardware-provided information, in our case via hwloc by
accessing to Heterogeneous Memory Attributes Table (HMAT) included in the
6.2 revision of the ACPI specification. This table is expected to be generalised
in the next platforms with reliable information. Until that happens, the val-
ues of the attributes could be obtained by benchmarking or measuring each of
them. There are many benchmarks that can be used, e.g., the STREAM-Triad
could give us informations about bandwidth under different access patterns.

3.4.1 ACPI SLIT
The ACPI System Locality Information Table (SLIT) provides information
about relative differences in access latencies between the CPU from one NUMA
node to the memory of another. Unfortunately this table was not heavily
used by software hence hardware vendors often provided very simple or even
invalid latency information. In the end, the use of this table was mostly
to differentiate what is local and what is not. E.g., the topology shown in
Table 3.2a represents a 8 AMD Opteron machine, where latency depends of
the distance [64]. However, in Table 3.2b shows that the ACPI SLIT only says
10 for local and 20 for remote, while it should report several different values
depending on the physical node distances.

Table 3.2: 8 AMD Opteron with the motherboard TyanS4881+M4881.

(a) Topology.

0 1

2 3

4 5

6 7

(b) ACPI SLIT.

node 0 1 2 3 4 5 6 7
0 10 20 20 20 20 20 20 20
1 20 10 20 20 20 20 20 20
2 20 20 10 20 20 20 20 20
3 20 20 20 10 20 20 20 20
4 20 20 20 20 10 20 20 20
5 20 20 20 20 20 10 20 20
6 20 20 20 20 20 20 10 20
7 20 20 20 20 20 20 20 10

In Table 3.3 we can observe that SLIT does not expose the memory hetero-
geneous system properly on Kona03 (see Appendix A.1.2). Indeed Intel used
special values so that the OS does not allocate by default on HBM memory.
The corresponding values are 10 for CPU to local DDR (or none CPU to local
HBM), 21 for CPU to remote DDR, 31 for CPU to local HBM and 41 for

Data-Placement Strategies for HMS in HPC 45

3.4. Attributes Values

CPU to remote HBM (or non CPU to remote HBM). In practice, the latency
of local HBM (31 in SLIT) should be smaller than the latency of remote DDR
(21 in SLIT). Hence applications and runtimes such as memkind were explicitly
modified to detect this strange table to identify the KNL configuration.

Table 3.3: ACPI SLIT of Kona03, nodes 0-3 are DRAM and nodes 4-7 are
MCDRAM.

node 0 1 2 3 4 5 6 7
0 10 21 21 21 31 41 41 41
1 21 10 21 21 41 31 41 41
2 21 21 10 21 41 41 31 41
3 21 21 21 10 41 41 41 31
4 31 41 41 41 10 41 41 41
5 41 31 41 41 41 10 41 41
6 41 41 31 41 41 41 10 41
7 41 41 41 31 41 41 41 10

With nowadays platforms where a single CPU initiator may have different
local memory targets, the SLIT ACPI table cannot represent the system to-
pology correctly because the notion of NUMA nodes composed of CPUs and
memory is obsolete. Moreover, bandwidth is often considered as very import-
ant, not only latency, for placement of data buffers. Hence, vendors worked
on updating the ACPI specification.

3.4.2 ACPI HMAT
The Heterogeneous Memory Attributes Table (HMAT) has been introduced
in the revision 6.2 of ACPI specification to modernise the way the hardware
provides the software with a description of the memory subsystem. This in-
clude support for both latency and bandwidth, as well as initiators and targets
instead of generic NUMA nodes. As Figure 3.15 HMAT is formed with the
folowing structures [107]:

1. Memory Proximity Domain Attributes Structure(s): Allows to
list targets with the corresponding memory address range.

2. System Locality, Latency and Bandwidth Information Struc-
ture(s): Contains the actual performance attribute that we use.

3. Memory Side Cache Information Structure(s): Used for exposing
the case where DDR is a hardware cache in front of NVDIMM (detailed
in Section 6.2.1).

This table should be available on future platforms to describe com-
plex memory hierarchies. Inside HMAT vendors can expose the theoretical

46 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

latency and bandwidth between initiators (CPU-sets) and all the memory tar-
gets(NUMA nodes). We contributed to the exposure of this tables in the sysfs
virtual file system starting in Linux 5.2 4. We then implemented in this thesis
the gathering of these values in hwloc. E.g., Figure 3.14 shows the output of
this options on Leonide in where Intel has fulfilled the HMAT.

$ lstopo --memattrs
Memory attribute #0 name ‘Capacity’
NUMANode L#0 = 99786076160
NUMANode L#1 = 101468516352
NUMANode L#2 = 796716433408
NUMANode L#3 = 99883061248
NUMANode L#4 = 101428244480
NUMANode L#5 = 798863917056
Memory attribute #2 name ‘Bandwidth’
NUMANode L#0 = 131072 from Group0 L#0
NUMANode L#1 = 131072 from Group0 L#1
NUMANode L#2 = 78644 from Package L#0
NUMANode L#3 = 131072 from Group0 L#2
NUMANode L#4 = 131072 from Group0 L#3
NUMANode L#5 = 78644 from Package L#1
Memory attribute #3 name ‘Latency’
NUMANode L#0 = 26 from Group0 L#0
NUMANode L#1 = 26 from Group0 L#1
NUMANode L#2 = 77 from Package L#0
NUMANode L#3 = 26 from Group0 L#2
NUMANode L#4 = 26 from Group0 L#3
NUMANode L#5 = 77 from Package L#1

Figure 3.14: Extracts from hwloc’s lstopo reporting memory attributes on the
HMAT at the Xeon platform depicted by Figure 3.16.

Figure 3.15: HMAT representation.

4Unfortunately this is currently limited to the performance of local accesses

Data-Placement Strategies for HMS in HPC 47

3.4. Attributes Values

Figure 3.16: Output of hwloc’s lstopo tool on a dual Xeon 6230 with 384GB
of DRAM (96GB per SubNUMA Cluster of 10 cores) and 1.5TB of NVDIMMs
(768GB per CPU). NVDIMMs are configured in 1-Level-Memory and exposed
to applications as additional NUMA nodes.

3.4.3 Benchmarking
Even though HMAT seems to be a good idea to describe memory attribute val-
ues, few machines are implementing it yet5 and there is still a risk of vendors
not implementing them correctly6. Until HMAT is effectively properly im-
plemented in all platforms, hwloc may use experimentally measured attribute
values. Moreover, ACPI tables do not provide informations about every at-
tribute. E.g., separate values for reads and writes are optional.

Discovering memory attribute values (whatever it is) through benchmark-
ing gives developers the ability to not have to wait for vendors to provide
HMAT tables. However, doing this usually takes a great deal of time. Despite
this disadvantage, this act should really only be performed once.

3.4.3.1 Latency Benchmarking Experiments

Memory latency checker (MLC) is designed to evaluate latencies on Intel plat-
forms [87], including modern servers with NVDIMMs in System-RAM mode
since version 3.9. [105] Table 3.4 [105] shows latencies measured on Leonide,
which may be used for our latency attribute values. It matches the expected
memory characteristics exposed in Figure 3.6. Google Multichase gives the

5Things are expected to improve in Ice Lake platforms.
6We hope vendors will implement HMAT better than SLIT because the impact of buggy

HMAT on performance may be higher, for instance if the operating system does not know
where to allocate by default.

48 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

Table 3.4: MLC latency evaluation for local and remote targets relative to the
initiator 0 in Leonide platform.

Target

Initiator=0
0
Local
DDR

1
Remote
DDR

2
Local
NVDIMM

3
Remote
NVDIMM

Latency in ns 84.2 145.5 149.7 349.6

Table 3.5: MLC latency evaluation for local and remote targets relative to the
initiator 0 in Kona01 platform.

Target

Initiator=0
0
Local
DDR

1
Local
HBM

Latency in ns 117.3 132.6

same behaviour between NVDIMMs and DDR, such as Figure shows 3.17.
In Kona01, Table 3.5 shows that DDR latency is slightly better than HBM.

Google Multichase could give a different behaviour depending on the pointer-
chase prefetcher mechanism [96] evaluated, in Figure 3.18. In Kona03, we can
observe latency behaviour described in Table 3.6, having remotes nodes with
HBM memory.

103 104 105 106 107 108 109 1010

Problem Size in [Bytes]

0

100

200

300

400

La
te

nc
y

in
 [n

s]

Leonide Latency Behaviour using
Google Multichase Benchmark Chase=simple

DRAM
NVDIMM

Figure 3.17: Google Multichase latency evaluation of Leonide with a simple
chase using one thread per core (20 en total).

Data-Placement Strategies for HMS in HPC 49

3.4. Attributes Values

104 106 108 1010

Problem Size in [Bytes]

0

50

100

150

200

Ac
ce

ss
 ti

m
e

in
 [n

s]
Kona 01 Latency Behaviour using

Google Multichase Benchmark Chase=simple
DRAM
HBM

Figure 3.18: Google Multichase latency evaluation of Kona01 with a simple
chase using one thread per core (64 en total).

Table 3.6: MLC latency evaluation for local and remote targets relative to the
initiator 0 in Kona03 platform.

Target

Initiator=0
0

Local
DDR

1
Remote
DDR

2
Remote
DDR

3
Remote
DDR

4
Remote
HBM

5
Remote
HBM

6
Remote
HBM

7
Remote
HBM

Package 0 1 2 3 0 1 2 3
Latency in ns 114.0 122.1 115.7 123.9 129.1 136.4 133.7 140.9

50 Andrès RUBIO PROAÑO

3. Navigating Complex Memory Spaces

3.4.3.2 Bandwidth Benchmarking Experiences

There are many benchmarks that can be used to measure bandwidth. For
instance, STREAM [61] is a simple benchmark, designed to measure memory
bandwidth with four different simple vector kernels. Triad is the most com-
plex of them and is considered highly relevant to HPC. We have measured
the benchmark of our systems with the STREAM-Triad with the following
conditions: not using hyperthreading, setting the number of OpenMP threads
to the number of cores related to the first CPU. Kona01 in Figure 3.19 shows
that using the 64 threads (one per core) with HBM gives around 96GB/s in
comparison to DRAM with around 60GB/s. Leonide in Figure 3.20 using 20
threads (one per core) gives around 75GB/s when using DDR and as expected
NVDIMMs gives only 9GB/s.

0 8 16 24 32 40 48 56 64
Number of Threads

0

20

40

60

80

100

Ba
nd

wi
dt

h
GB

/s

Stream-Triad Best Rate on Kona01
NUMA node 0 (DRAM)
NUMA node 1 (HBM)

Figure 3.19: STREAM-Triad bandwidth using 2 different kinds of memories
in Kona01 with different number of local threads.

These values allow to have a clearer view about the ordering of memories
that we pretended to have before when considering bandwitdth as an attribute.

Different benchmarks can be used to measure a certain attribute. This
normally generates a variety of results, since in each benchmark measures
attributes in a different manner. However, the rankings remain the same.
Moreover absolute values are likely meaningless for real applications. In fact,
they just need to know which memory is better than another for a given
attribute.

Data-Placement Strategies for HMS in HPC 51

3.5. Summary

0 4 8 12 16 20
Number of Threads

10

20

30

40

50

60

70

Ba
nd

wi
dt

h
GB

/s

Stream-Triad Best Rate on Leonide
NUMA 0 (DRAM)
NUMA 1 (NVDIMM)

Figure 3.20: STREAM-Triad bandwidth using 2 different kinds of memories
in Leonide with different number of local threads.

3.5 Summary
We have presented an interfate to help managing the complexity of the memory
system of emerging and future architecures. Due to the different types of
memory and their different characteristics, it is a great challenge to use them
effectively and efficiently. Ideally, one would like to leverage the low-latency of
DRAM, the high-capacity of NVDIMM, and the high-bandwidth of HBM as a
single memory system that applications can utilise. This chapter takes a step
in that direction by providing building blocks to characterise the heterogeneous
memory present on a single machine.

This approach focuses on specifying a number of memory attributes and
an API to query and classify the memory devices. These attributes represent
high-level characteristics that are relatively easy to reason about bandwidth,
latency and capacity. With this interface we expect to simplify the fact of
building higher level abstractions to enable to developpers productivity and
performance.

52 Andrès RUBIO PROAÑO

Chapter 4

Preparing HPC Applications to
Complex Heterogeneous
Memory Systems

An unfortunate consequence of the evolution and increasing heterogeneity of
memory systems is the need to adapt HPC applications so that they can prop-
erly exploit the memory system. A first step has been achieved on the previous
Chapter 3, where the memory system has been characterised and exposed for
the good use of developers.

4.1 Heterogeneous Memory Allocator 54
4.2 Allocation Criteria 56

4.2.1 Benchmarking . 57
4.2.2 Profiling . 58
4.2.3 Static Code Analysis 60

4.3 Use Case . 61
4.3.1 Benchmarking . 61
4.3.2 Profiling . 63
4.3.3 Summary . 63

53

4.1. Heterogeneous Memory Allocator

However, this does not answer what considerations the developer should
have when working with an application with memory-intensive loads. How
can he or she know if an application or even its internal buffers have a certain
affinity towards some memory attribute (which in turn could refer to a spe-
cific type of memory), in other words, to know if the attribute is critical for
performance.

This chapter seeks to present our approach to determine a strategy that
allows to identify when an application has a certain preference to use a specific
type of memory. First by presenting an heterogeneous memory allocator that
abstracts in a higher-level the API provided in Chapter 3. Then, analysing
some strategies to find a better criteria about where to allocate. Finally,
presenting some use case of the presented strategies.

The idea of preparing HPC applications to work in heterogeneous memory
systems had a first touch with KNL through AutoHBW [16], where it proposed
to allocate buffers in HBM or DRAM depending on the size without having
to modify the application code. However, this solution requires to identify the
capacity of sensitive buffers for a specific run. Memkind [16] proposes an API
specifically designed for KNL that allows to allocate explicitly in fast or slow
memory (HBM or DRAM).

Some other strategies have been proposed, taking into account the access
pattern of applications. Servat [92] and MOCA [68] use a post-mortem analysis
of memory accesses based, e.g., on hardware counters. FlexMalloc [76] pro-
poses to replace dynamic allocations at runtime. And SICM [48] proposes low-
level allocation API and high level data management interface by previously
performing an Architecture Profiling step to guess the memory organisation.

All these approaches require previous knowledge of which NUMA nodes
are fast before adapting the memory allocations. We have prepared this step
in Chapter 3 to expose performance characteristics.

We consider applications as a set of memory buffers that must be allocated
somewhere. Each buffer may lead to different performance when allocated in
different kinds of memory. Therefore, they have an affinity for one or more
kinds of memory. In the same fashion they may have an affinity for some
location because of which CPU accesses them. This requires to analyse the
application behaviour to determine the affinity of memory buffers.

4.1 Heterogeneous Memory Allocator
hwloc through the interface presented in Chapter 3 exposes metric of different
memory targets either from hardware or from benchmarking. They may be
queried by applications either as explicit values or as a ranking of best tar-
gets for some criteria. However, applications using this new low-level hwloc
API require a significant rework for end-users even if it consists in just repla-

54 Andrès RUBIO PROAÑO

4. Preparing HPC Applications to Complex Heterogeneous Memory Systems

cing malloc with an allocation call on the preferred memory target (beside of
manipulating hwloc targets and initiators, one has to first initialise the hwloc
topology, etc.). Therefore, we provide a high-level memory allocator for simple
use-cases in applications.

We expect the hwloc API to be used in more advanced runtime systems,
when using more complex allocations criteria, e.g., handling local and remote
memory, migrating memory or even handling specialised attributes that char-
acterise specific access patterns.

The simplified memory allocator is summarised with a single function
mem_alloc(..., attribute) which basically allows applications to allocate
on the best local memory target given a memory attribute such as bandwidth,
latency or capacity as listed in Table 3.1. According to the ranking for a
specific attribute if the best target is full, the allocator can easily use the
second memory target, third memory target, ... on the list. If the attribute is
not available on the platform, the allocator may also fallback to other similar
attributes, for instance latency instead of read latency.

This first step is an easy and productive modification of applications alloca-
tion calls towards more performance. The literature proposes similar solutions,
for example, memkind [16]. However, the main difference with our approach is
that, for us, the memory attribute specifies what is important for the applic-
ation (e.g. Bandwidth) without hardwiring to a specific kind of memory (e.g.
HBM) as memkind does. Our approach is more portable since it may for in-
stance return the best target found depending of the platform. E.g. a platform
as Leonide (not containing HBM) returns DRAM if we consider bandwidth as
the memory attribute to be evaluated. Table 4.1 shows the behaviour of our
allocator evaluated with different memory attributes and our three different
heterogeneous memory platforms used.

Table 4.1: Best resulting targets of using mem_alloc with different platforms.

Leonide Kona 01 3MK
Default DRAM DRAM DRAM

Latency-Bound DRAM DRAM DRAM
Bandwidth-Bound DRAM HBM HBM
Capacity-Bound NVDIMM DRAM NVDIMM

The heterogeneous allocator modifies each memory allocations by specify-
ing the attribute that responds better to memory buffer requirements. Al-
though, it would seem that code modification is necessary, this step could be
avoided by the use of interception techniques and recognising allocation calls
(in the same manner that auto-hbwmalloc does [92]) and then add sensitivity
hints.

Data-Placement Strategies for HMS in HPC 55

4.2. Allocation Criteria

4.2 Allocation Criteria
Our strategy implements steps to provide to application developers a high
productivity environment for supporting HMS in a portable way. In Figure 4.1
we can observe 2 stages, one above the heterogeneous allocator and another
below it.

Below the allocator we can see that it collects the work done in the pre-
vious chapter. There is shown that through hwloc which feeds on with the
information that the operating system has can provide information about the
hardware (as it did before this thesis) and also on the metrics and information
on the performance of the memories, whether they come from ACPI HMAT or
of performance measurements. I.e., the interface and allocator already presen-
ted offer an easy way for applications to request specific kinds of memory.

Memory
Identifiers

Hardware
Performance
Information

Memory Targets
and Attributes

Allocation Requests

Static Code Analysis

Benchmarking

Profiling

Measured
Performance

Hardware

Allocation Criteria

hwloc

Heterogenous Allocator

Application

Determine
Data Buffers
Sensitivity

User

Custom
Metrics

Figure 4.1: General strategy framework.

There are very experienced developers that are able to have a criterion
to guess if a buffer is latency-bound or bandwidth-bound, all thanks to years
of work optimising cache affinity, prefetching, tiling, etc. That is, there is
a level of subjectivity based on the experience of an individual. Given this,
there is a need for a more productive framework for non-experts in hardware
architectures and code optimisation.

Above the allocator, we look at how to decide what kind of memory an
application should request for each buffer. The idea is to analyse the applica-
tion behaviour to determine the sensitivity of the most important buffers, i.e.,
buffers whose accesses represent a big part of the execution time.

56 Andrès RUBIO PROAÑO

4. Preparing HPC Applications to Complex Heterogeneous Memory Systems

Figure 4.1 presents three main methods for determining the allocation cri-
teria based on the sensitivities of an application. Benchmarking and Profiling
are offline sensitivity detection methods that require a first run for analysis
before determining the allocation criteria that can be used in future runs, tak-
ing into account that those runs would have a similar behaviour (normally
depends on the workloads).

4.2.1 Benchmarking
The simplest strategy for determining sensitivity is to bind the entire process
to each kind of memory to then compare the overall performance of each
run. This approach only works considering that all buffers of an applications
have the same sensibility or if there is a single performance-critical buffer, i.e.,
that the sensibility will be mostly related to the general performance of an
application.

If not, one should rather compare the performance of all possible place-
ments of every buffer in the application, leading to a combinatorial explosion
since N buffers imply to MN possible placement where M is the number of
types of memory. For example, Leonide and Kona01 work with a 2MK system
and the combinatorial variation correspond to 2N . In the case of 3MK HMS
systems (as Figure 4.2) it corresponds to 3N . This approach is not very efficient
taking into account that very complex applications could have an important
number of buffers. For this reason, N might be reduced by identifying buffers
that are obviously not performance critical, however, it would add an extra
step inside our benchmarking strategy.

NVDIMM

DRAM

HBM

3MK HMSApplication

Buffer

Buffer

Buffer

N x
total

3N binding
tests

Figure 4.2: Detecting sensitivities by benchmarking an application on 3MK
systems.

The benchmarking approach to determine sensitivities is still used extens-
ively in the literature for showing the sensitivity of some benchmarks to certain
attributes [77]. Kernels with regular access patterns and streamed accesses as
shown in STREAM-Triad benchmark [61, 60] often show greater sensitivity to

Data-Placement Strategies for HMS in HPC 57

4.2. Allocation Criteria

bandwidth; that is the case shown in Figure 3.19 that tests STREAM-Triad
in Kona01 and Figure 3.20 corresponding to Leonide.

Going deeper in the case of STREAM-Triad on Leonide, we can observe
in Table 4.2 that the impact of moving buffer A from DRAM to NVDIMM is
relevant and more noticeable than buffers B and C. Also, we can notice that
things cannot be just black and white (full binding on DRAM or NVDIMM).
If we decide to fully bind on the NVDIMM we can see a bandwidth of 8.50
GB/s. But the simple fact of changing that the buffer A uses DRAM implies
a bandwidth of 38.32 GB/s, i.e., binding an entire application is not always
the best strategy.

Table 4.2: Allocation impact on STREAM-Triad buffers A, B, C between
NUMA 0 (DRAM) and NUMA 1 (NVDIMMM) using Leonide HMS.

Buffer Best Rate
target node in GB/s
A B C Triad
0 0 0 74.97
0 0 1 51.88
0 1 0 55.59
0 1 1 38.32
1 0 0 9.92
1 0 1 9.05
1 1 0 9.16
1 1 1 8.50

4.2.2 Profiling
Profiling is a more complex strategy which performs an analysis of the ex-
ecution using counters and/or instrumentation to identify in detail memory
related issues such as bottlenecks, hot spots, etc [89]. Its main benefit in com-
parison to benchmarking is that it does not require several runs to identify
application sensitivities.

Many tools have been proposed to determine the memory access pattern
and to display profiled information graphically. Some of them are even capable
to link the execution traces to the corresponding lines of code and memory
allocations.

4.2.2.1 Using Intel Vtune Profiler

The Intel VTune Profiler allows analysing a large spectrum of different buf-
fer/application sensitivities such as bandwidth, latency, capacity, R/W band-
width, persistence and energy [53].

To identify capacity-sensitive buffers inside applications, VTune allows to
do a Memory Consumption Analysis of the profiled application over the time.

58 Andrès RUBIO PROAÑO

4. Preparing HPC Applications to Complex Heterogeneous Memory Systems

This analysis basically tracks all allocations made by the application. In Fig-
ure 4.3 we can observe how in Graph500 application the most consuming buffer
of the application corresponding to xmalloc with an allocation size of 10 GB.
Considering the capacity of DRAM, it could not represent a capacity-sensitive
buffer.

Figure 4.3: Graph500 capacity-sensitivity buffer check with Intel VTune Pro-
filer.

To analyse buffer’s bandwidth- and latency-sensitiveness the Memory Ac-
cess Analysis tool should be used to get information about hot memory objects
in a program [78] in terms of latency and bandwidth. Figure 4.4 presents
DRAM Bound and Persistent Memory Bound metrics that rely on Intel-
specific counters indicating whether many cycles are spent accessing DRAM or
NVDIMMs, hence showing CPU stall and latency issues. In relation to band-
width it presents DRAM Bandwidth and Persistent Memory Bound metrics
that are related to bandwidth issues as a percentage of elapsed time. Further-
more, the analysis is capable to give us information of kind of memory used
and the list of buffers ordered by importance. A detailed example of this is
detailed in Section 4.3.

4.2.2.2 Other alternatives

The Intel VTune Profiler is not the only tool of Intel designed for profile ap-
plications. Intel Advisor XE is a design assistance and analysis tool also for
memory use [62]. It automates the Roofline Performance Model proposed at
Berkeley, helping to identify if a given loop/function is memory or CPU bound.
It permits to do a analysis of data transactions between different memory lay-
ers. However, Intel tools are designed to work mainly with Intel technology.
3DyRM is an extension of the roofline model including memory latency in-
formation to better represent the behaviour on systems with heterogeneous
memory systems [57].

Data-Placement Strategies for HMS in HPC 59

4.2. Allocation Criteria

Figure 4.4: Graph500 latency-, bandwidth-sensitivity check with Intel VTune
Profiler.

There are other relevant non-Intel profiling tool alternatives such as: Likwid
tools through the command line tool likwid-perfctr [100] allows to evaluate
cache and memory bandwidth taking into account the system topology. The
Oracle Sampling Collector and Performance Analyser allows to collect perform-
ance data by tracing among other things memory allocation and deallocation
calls and then display memory metrics of performance of a targeted applica-
tions. HPC toolkit permits to analyse the performance of an application with
performance memory units [63].

4.2.3 Static Code Analysis
Static code analysis (also listed in Figure 4.1) consists in studying the source
code, for example, during compilation. This step can be used for finding bugs
or for providing the compiler additional information at runtime about the
program, for instance what will to happen in the future with a data buffer.

Compilers have been trying for a long time to reduce memory access latency
by inserting software prefetching for specific applications and/or specific plat-
forms [6], [99]. We believe that this type of work should allow compilers to
detect latency- or bandwidth-sensitivity of kernels and thus provide sensitivity
hints to runtime systems. For instance, streamed/linear accesses to contiguous

60 Andrès RUBIO PROAÑO

4. Preparing HPC Applications to Complex Heterogeneous Memory Systems

buffers can be detected and marked as bandwidth sensitive without the need
for the user to manually benchmark or profile the application.

This approach has been proposed for different languages to detect fre-
quently used data and memory access patterns, and decide to allocate in HBM
or DRAM [45]. Variables are annotated with priority values, and the compiler
statically overrides malloc calls to allocate high-priority buffers to HBM. In
our approach, the idea is that the compiler insert annotations in the code to
tell the runtime where to allocate each buffer. This can be done by replacing
allocation calls with our heterogeneous allocator. However, providing inform-
ation to the runtime is generally a more flexible approach, as it allows the
runtime to make more informed decisions about the overall execution.

4.3 Use Case
The method presented in Figure 4.1 can be applied to provide memory alloc-
ations that respect affinities and needs of computational tasks. This section
describes how we have successfully applied it, using the benchmarking and
profiling approximations. This use cases have been done in our already men-
tioned platforms in Chapter 3 corresponding to Leonide and Kona03 both
corresponding to a 2MK HMS system.

4.3.1 Benchmarking
We have applied this method using Graph500 application [66] that uses irreg-
ular memory accesses [78]. We have used Graph500 version 3.0.0 parallelised
with MPI. The performance is measured by an harmonic average of Traversed
Edges per Second (TEPSe+8).

In Table 4.3 we can observe Graph500 performance depending on the
memory placement of the entire process. On Leonide, DRAM provides results
between 1.5 to 3 times higher than NVDIMM. This confirms that this applic-
ation should specify either latency or bandwidth as a priority in our hetero-
geneous allocator since Leonide’s DRAM is faster for both metrics. However,
on Kona03, DRAM results are too much close to HBM. The Latency of both
memories is actually similar while the bandwidth is very different (90GB/s
against 350GBs approximately). It shows that the bandwidth criterion is not
suitable for this allocation (the gain is too weak to justify consuming the low
HBM capacity). These results confirm what was expected: Graph500 applic-
ation is rather limited by latency because it performs memory accesses with
indirections during the graph transversal.

On the other hand, when an application is limited by bandwidth, e.g.,
STREAM-Triad [61] in Table 4.4, the bandwidth is obviously the criterion
that should be passed to our allocator.

Data-Placement Strategies for HMS in HPC 61

4.3. Use Case

Thus, with our allocator and the bandwidth/latency criteria, we are able
to allocate memory for two very different architectures. Combined with the
capacity criterion, this work allowed to dynamically adapt the allocations ac-
cording to the needs of applications and to the actual available memory. This
is not possible with the existing interfaces because the application would only
be able to request HBM explicitly instead of requesting a memory with good
latency. HBM allocations are not possible on Leonide (Xeon), while HBM
allocations on Kona03 (KNL) would consume HBM without actually needing
it for better performance. Our work provides same performance as manual
tuning while remaining portable, hence providing superior productivity.

Table 4.3: Graph500 performance in Traversed Edges per Second (TEPSe+8).

Graph Size DRAM NVDIMM
2.15 GB 3.423 2.056
4.29 GB 3.459 2.067
8.59 GB 3.481 2.084
17.18 GB 3.343 2.107
34.36 GB 2.990 1.044

(a) Leonide (Xeon): 16 MPI processes
on a single processor using its local
DRAM or NVDIMM.

Graph Size HBM DRAM
2.15 GB 0.418 0.415
4.29 GB 0.402 0.396

(b) Kona03 (KNL): 16 MPI processes
on a SubNUMA Cluster using its local
HBM or DRAM.

Table 4.4: STREAM-Triad throughput in GB/s depending on the optimised
criteria. Best Target corresponds to the local NUMA node that the allocator
found most appropriate for this criteria.

Total allocated memory for arrays
Optimised Criteria Best Target 22.4GiB 89.4GiB 223.5GiB

Capacity NVDIMM 31.59 10.49 9.46
Latency DRAM 75.06 75.24 –

(a) Leonide (Xeon) with 20 threads on a single processor using its local DRAM
(192GB) or NVDIMM (768GB) in 1-Level-Memory mode.

Total allocated memory for arrays
Optimised Criteria Best Target 1.1GiB 3.4GiB 17.9GiB

Bandwidth HBM 85.05 89.90 –
Latency DRAM 29.17 29.17 29.16

(b) Kona03 (KNL) with 16 threads on a SubNUMA Cluster using its local HBM
(4GB) and DRAM (24GB).

62 Andrès RUBIO PROAÑO

4. Preparing HPC Applications to Complex Heterogeneous Memory Systems

4.3.2 Profiling
Profiling experiments have been done in Leonide platform to further dig into
the details of data buffer sensitivity to bandwidth and latency. For the test
we have used Graph500 version 2.1.4 and as described before we have used
Intel VTune Profiler. We presume that we do not know the latency-sensitivity
of Graph500 main buffers and we profile the execution when allocating on
DRAM and on NVDIMMs separately. For this test, only cores of a single
processor are used together with their local memory. The old version 2.1.4 of
Graph500 is used here for OpenMP support, because profiling a single process
is easier (however profiling the more recent MPI version is also possible). As
seen earlier in Table 4.3a, allocating the entire process on DRAM brings about
two times better performance than on NVDIMMs.

First, the summary of the memory access analysis gives information about
the overall application sensitivity to latency or bandwidth. Table 4.5 presents
the relevant information for our work. For Graph500, VTune shows an in-
dicator flag on the DRAM Bound parameter meaning that the application is
latency sensitive, especially when running on NVDIMMs because this memory
has a high latency.

Second, to identify the sensitive data buffers, the memory access analysis
may provide details as shown in Figure 4.5a: which kind of memory is being
used, the used bandwidth, and the list of buffers ordered by importance. Addi-
tionally, we can identify the corresponding source code touching these buffers.
It is clear from this figure that the relevant buffer is allocated in xmalloc on
line 32 (callstacks may also be displayed). LLC Miss Count is important here
because it is the last and longest-latency in the memory hierarchy before main
memory, meaning that this latency cannot be avoided.

Thanks to this analysis we can now modify Graph500 to allocate this buffer
with the latency attribute in our heterogeneous allocator, and get the same
optimised performance on different platforms.

We performed the same analysis with STREAM-Triad in Table 4.5 and Fig-
ure 4.5b. VTune shows the indicator flag on the parameter DRAM Bandwidth
Bound or PMem Bandwidth Bound parameter depending on where memory is
allocated. This shows that the overall application is rather sensitive to band-
width, as expected. The in-depth analysis of important buffers may then be
performed as earlier.

4.3.3 Summary
Benchmarking and profiling are two methods that open the black box of
memory attributes which applications can be sensitive to. Benchmarking may
easily provides a general idea of the sensitivity of the application. Profiling
requires more time for an in-depth analysis, but modern tools are able to give

Data-Placement Strategies for HMS in HPC 63

4.3. Use Case

Allocating in Local DDR

35.33 GB/s

 0 GB/s

Memory
Object

Loads Stores LLC Miss
Count

Average
Latency
(cycles)

xmalloc 12,258,444,411 1,205,069,645 580,459,141 61

xoff 39,030,512 0 0 8

xadj 10,311,019 0 0 9

Allocating in Local NVDIMM

Memory
Object

Loads Stores LLC Miss
Count

Average
Latency
(cycles)

xmalloc 31,972,081,700 1,220,455,472 562,889.063 131

xoff 92,622,498 0 0 7

xadj 20,176,351 0 0 9

B
an

dw
id

th
B

an
dw

id
th

8.573 GB/s

 0 GB/s

xmalloc Memory Object in utils.c

27 #include <omp.h>
28 #endif
29 #include "utils.h"
30
31 void* xmalloc(size_t n) {
32 void* p = malloc(n);
33 if (!p) {
34 fprintf(stderr, "Out of memory
trying to allocate %zu byte(s)\n", n);
35 abort();
36 }
37 return p;
38 }
39
40 void* xcalloc(size_t n, size_t k) {
41 void* p = calloc(n, k);
42 if (!p) {
43 fprintf(stderr, "Out of memory trying
to allocate %zu byte(s)\n", n);

(a) Graph500 memory allocations and counters (on the left), and the source code
where the the main buffer is allocated (on the right).

Allocating in Local DDR

106 GB/s

 0 GB/s

Memory
Object

Loads Stores LLC Miss
Count

Average
Latency
(cycles)

7GB 4,216,136,676 1,306,225,996 174,107,748 270

7GB 3,194,158,195 3,411,372,536 183,107,748 249

7GB 1,805,823,924 1,480,873,238 183,752,412 239

Allocating in Local NVDIMM

Memory
Object

Loads Stores LLC Miss
Count

Average
Latency
(cycles)

7GB 21,378,115,739 16,308,722,074 804,270,270 1298

7GB 19,560,073,505 9,099,071,392 1,275,423,620 851

7GB 7,954,213,685 8,215,083,929 970,587,301 1399

B
an

dw
id

th
B

an
dw

id
th

13,09 GB/s

 0 GB/s

(b) STREAM-Triad memory objects and counters.

Figure 4.5: Extracts of theMemory Access graphic interface in the Intel VTune
Profiler. Execution with memory in DRAM (top) is compared to NVDIMM
(bottom). The read bandwidth is represented in turquoise, while the write
bandwidth is in blue (aggregated on top of read).

64 Andrès RUBIO PROAÑO

4. Preparing HPC Applications to Complex Heterogeneous Memory Systems

Table 4.5: Extracts from the VTune Profiler execution summary for Graph500
and STREAM-Triad using DRAM or NVDIMM.

Application Target
DRAM Bound

in % of
Clockticks

PMem Bound
in % of

Clockticks

DRAM Bandwidth
Bound in %

of Elapsed Time

PMem Bandwidth
Bound in %

of Elapsed Time

Graph500 DRAM 29.0% 0.0% 0.0% 0.0%
Graph500 NVDIMM 63.0% 60.9% 0.0% 0.0%

STREAM-Triad DRAM 63.3% 0.0% 80.4% 0.0%
STREAM-Triad NVDIMM 43.7% 17.0% 0.3% 2.1%

very useful information. Although this information still requires human in-
tervention, it allows you to determine which buffers are really important for
performance and also to determine their sensitivity. This is a critical step to-
wards applying the proper allocation criteria, either using our heterogeneous
allocator or in the runtime system.

We believe that our approach brings higher productivity since this sens-
itivity information can be passed to allocators in a portable manner without
having to hardwire information about existing memory kinds into the applic-
ation code.

Data-Placement Strategies for HMS in HPC 65

4.3. Use Case

66 Andrès RUBIO PROAÑO

Chapter 5

Software Tools for the
development on Heterogeneous
Memory

Developers must prepare applications and runtime to work on the various het-
erogeneous memory systems, but it is clear that they not always have access
to machines with different memory scenarios. This is why the necessary tools
must be provided, so that developers can prepare their applications to face
different heterogeneous memory systems. In fact, developers can easily work
with the very well known KNL heterogeneous memory system because the con-
figuration remains always the same. However, this changes with NVDIMMs in
generic platforms, where the number or kinds of memories can change signi-
ficantly. Hence, there is a need to test runtime/applications on a wide variety
of hardware configurations to make sure our software is portable.

5.1 Performance Simulation 68
5.1.1 NUMA Distance for injecting latency 69
5.1.2 Bandwidth Throttling 70
5.1.3 Pirate Bandwidth 71
5.1.4 Summary of Performance Simulation 72

5.2 Environment Emulation 73
5.2.1 Hardware Emulation Level 74
5.2.2 OS Level . 76
5.2.3 Software Level . 78
5.2.4 Summary of Emulation 79

67

5.1. Performance Simulation

In this chapter, we present the problem of how to prepare applications
to support different heterogeneous memory systems without actually having
them. First, we have addressed those scenarios, which the developer needs
to test the performance of either their already developed application or the
runtime in a specific heterogeneous memory scenario. And second, we have
addressed different tools, which we can expose memory configurations to ap-
plications that do not correspond precisely to the physical environment, i.e.,
we present some tools that can be useful to emulate heterogeneous memory
systems. In fact, this does not expose a true heterogeneous performance, but
in this case, the point is to expose the heterogeneous memory system as a real
system would do it.

5.1 Performance Simulation
When speaking of performance simulation, we refer to the fact of simulating
the behaviour that a certain application should have when it faces a memory
scenario that is very possibly difficult for the developer to access. E.g., the
case of a future coming system with a different heterogeneous memory system.

As shown in Chapter 3, the analysis of the memory characteristics of dif-
ferent platforms presents the following ordering in terms of bandwidth and
latency for Leonide:

DRAMBW > NVDIMMBW (5.1)

DRAMLat > NVDIMMLat (5.2)

Basically meaning that the best memory in terms of bandwidth is also the
best in terms of latency.

For Kona01 this situation changes a little, in where the best memory in
terms of bandwidth has no difference with the other in terms of latency (or at
least the difference is minimal):

HBMBW > DRAMBW (5.3)

DRAMLat ' HBMLat (5.4)

However, in the previous study we have not in our real platforms a situation
where the best memory in terms of bandwidth is the worst in terms
of latency.

68 Andrès RUBIO PROAÑO

5. Software Tools for the development on Heterogeneous Memory

Memory(A)BW > Memory(B)BW (5.5)

Memory(A)Lat < Memory(B)Lat (5.6)

Due to this, we have imagined an experimental platform where the ar-
chitecture allows to have a heterogeneous memory system with the previous
characteristics in whereby using some performance simulations techniques pre-
dict the behaviour of applications.

5.1.1 NUMA Distance for injecting latency
Non-uniform memory access (NUMA) has been generalised in multi-socket
machines, which each socket has an associated memory controller. Due to the
relative distance between processors to memory devices, the memory access
is non-uniform. Since the birth of the NUMA systems, there have been vari-
ous investigations that seek to minimise the impact of this situation [2], [97].
However, for the current purpose of simulating an experimental memory envir-
onment, these non-uniform accesses can be considered as a possible tool that
allows to approach a heterogeneous memory system that we currently do not
have at hand.

0 1 2 3 4 5 6 7 8 9 10 11
Memory Target

11
10
9
8
7
6
5
4
3
2
1
0

In
iti

at
or

100

200

300

400

500

600

(a) Latency (in ns).

0 1 2 3 4 5 6 7 8 9 10 11
Memory Target

11
10
9
8
7
6
5
4
3
2
1
0

In
iti

at
or

10

15

20

25

30

35

40

(b) Bandwidth (in GB/s).

Figure 5.1: Performance heat maps on Souris.

This allows to inject latency through the use of memories in more distant
nodes. In Figure 5.1a, we can observe the latency output of mlc on Souris
platform (more details in Appendix A.3). However, if analysing the corres-
ponding bandwidth heat-map in Figure 5.1b, we can observe that there is no

Data-Placement Strategies for HMS in HPC 69

5.1. Performance Simulation

case where the best memory in terms of bandwidth is the worst in terms of
latency, thus, this approach is not enough. However, it is useful in scenarios
where the developer seeks to have a greater latency difference regardless of
what happens to the other attributes.

In fact, with this method allows to simulate a system where it is useful
to have similar bandwidths (between non-local nodes) but different latencies.
Non-local nodes could act as different memory kinds depending on their dis-
tance from the local CPUs.

Memory(A)BW < Memory(B)BW (5.7)

Memory(A)Lat > Memory(B)Lat (5.8)

5.1.2 Bandwidth Throttling
The Intel Resource Director Technology (Intel RDT) is a tool that provides
monitoring on cache and memory allocation. It is exposed as a user inter-
face for resource control by Linux Kernel. Intel RDT is able to partition
some resources such as the cache hierarchy and for our particular interest the
bandwidth [73]. This process is accomplished through the bandwidth throt-
tling mechanism provided by some processors [44]. Since Linux 4.21, resctrl is
supported in AMD platforms as quality of service extension (AMD QoS) [8]
providing similar characteristics as Intel RDT 1. The ARM Memory Parti-
tioning and Monitoring (MPAM) is the analogue support to Intel and AMD
versions, however, its main features are still under development 2.

The functionality of partitioning resources such as the bandwidth memory
gives an option to change the performance of an application. This allows to
add more heterogeneity to a given HMS, and therefore have a tool that allows
to simulate the performance of an application by limiting memory bandwidth.

We have tested this functionality on Leonide with STREAM-Triad applic-
ation. Figure 5.2a shows how resctrl mechanism throttles the bandwidth of
DRAM. Although, the memory bandwidth throttling effect could be observed,
it does not match the requested throttling percentage. This is why, a signific-
ant change is only observed after putting the resctrl at 40%. It is due, because
throttling applies to memory requests in the CPU but DRAM is slower than
the maximum memory access performance of the CPU.

In Figure 5.2b, we can see several overlapped lines, meaning that latency
is not affected (or that the affection is negligible).

1https://www.phoronix.com/scan.php?page=news_item&px=AMD-QoS-Landing-
Linux-4.21

2https://static.linaro.org/connect/lvc20/presentations/LVC20-108-0.pdf

70 Andrès RUBIO PROAÑO

https://www.phoronix.com/scan.php?page=news_item&px=AMD-QoS-Landing-Linux-4.21
https://www.phoronix.com/scan.php?page=news_item&px=AMD-QoS-Landing-Linux-4.21
https://static.linaro.org/connect/lvc20/presentations/LVC20-108-0.pdf

5. Software Tools for the development on Heterogeneous Memory

10% 20% 30% 40% 50% Full
Bandwdith Limited to %

0

10

20

30

40

50

60

Ba
nd

wi
dt

h
in

 [G
B/

s]

Leonide Bandwidth Throttling using Stream-triad

(a) STREAM-Triad Bandwidth output.

103 104 105 106 107 108 109 1010

Problem Size in [Bytes]

0

20

40

60

80

Ac
ce

ss
 ti

m
e

in
 [n

s]

Leonide Latency Behaviour using
Google Multichase when Throttling Bandwidth

Normal
50% BW Limited
40% BW Limited
30% BW Limited
20% BW Limited
10% BW Limited

(b) Latency output-report of Google Mul-
tichase.

Figure 5.2: Throttling DRAM memory on Leonide.

This approach allows to change the heterogeneity of a memory system in
terms of bandwidth without affecting latency. In the case of Leonide we have
affected the memory system creating a DRAM’ with less bandwidth than the
original DRAM; and maintaining the latency values. All these generates the
following memory system:

DRAMBW > DRAM ′
BW > NVDIMMBW (5.9)

DRAMLat = DRAM ′
Lat > NVDIMMLat (5.10)

In fact, this case could be used to simulate a platforms such as our fictitious
3MK system described in Chapter 3 in where DRAM could act as HBM and
DRAM’ as DRAM.

5.1.3 Pirate Bandwidth
Memory pirating is a performance simulation method that allows to control
how much memory is available to the application by co-running it with a
memory-"stealing" application [27]. Indeed, the pirate steals memory band-
width from the application by ensuring that its entire workload always bound
on the memory target. This effectively reduces the memory bandwidth avail-
able to the application. Therefore, it is possible to simulate the performance
of an application, simulating the behaviour of a memory by using the loss
of performance generated by the exchange of hardware resources due to the
simultaneous execution of several applications on the same compute node.

Data-Placement Strategies for HMS in HPC 71

5.1. Performance Simulation

This method in the same manner as the bandwidth throttling aims to affect
the performance in terms of bandwidth. In Figure 5.3a, we can observe that
in full bandwidth, the pirate effect affects the bandwidth even if it is combined
with bandwidth throttling. However, the pirate in contrast to the throttling
affects latency as seen in Figure 5.3b.

10% 20% 30% 40% 50% Full
Bandwdith Limited to %

0

10

20

30

40

50

60

Ba
nd

wi
dt

h
in

 [G
B/

s]

Leonide Bandwidth Pirating using Stream-triad
Throttling
Throtting + Pirate

(a) STREAM-Triad Bandwidth output.

103 104 105 106 107 108 109 1010

Problem Size in [Bytes]

0

20

40

60

80

100

120

140

Ac
ce

ss
 ti

m
e

in
 [n

s]

Leonide Latency Behaviour using
Google Multichase when Pirating Bandwidth

Normal
BW Pirated
50% BW Limited
40% BW Limited
50% BW Limited & Pirated
40% BW Limited & Pirated

(b) Latency output-report of Google Mul-
tichase.

Figure 5.3: Throttling and/or pirating local DRAM memory bandwidth on
Leonide.

The pirate compared to the throttler, does not depend on how it has been
implemented in AMD, Intel or ARM. It simply tries to make bandwidth noise
to affect the performance of an application. This allows to obtain another
strategy to be able to affect the heterogeneity of a memory system. However,
this process affects not only bandwidth, but also affects latency. So it might
not be a useful technique in some situations. E.g. the resulting heterogeneity
changes Leonide in this way:

DRAMBW > DRAM ′
BW > NVDIMMBW (5.11)

DRAM ′
Lat > DRAMLat > NVDIMMLat (5.12)

One drawback of using the pirate is that it is not easy to control. For
example, it is difficult to tell the pirate to use a certain amount of bandwidth.
And on the other hand, its impact on applications depends on how much
bandwidth these applications actually use.

5.1.4 Summary of Performance Simulation
This section has presented three techniques that allow an application to simu-
late different behaviours. The bandwidth throttling by means of resctrl, is the

72 Andrès RUBIO PROAÑO

5. Software Tools for the development on Heterogeneous Memory

only one of these techniques that is natively supported, allowing to limit the
bandwidth of an application without affecting the latency. The pirate, which
also seeks to limit the bandwidth of an application, although it may affect its
latency. And, the NUMA distance latency injection case that is an artifact
that allows users who need to test their applications with higher latencies.

The use of these techniques requires more advanced criteria from the de-
veloper when their objective is to affect only one of the memory metrics. Since
he/she will have to make certain adjustments, and also the need to combine
these techniques. Despite this, these techniques allow creating fictitious plat-
forms with different HMS than what is available in real hardware platforms.

5.2 Environment Emulation
The emulation of a memory system allows developers to prepare their applic-
ations for next-generation memory systems. Emulating these systems consists
of seeking somehow to expose memory devices that are not physically located
in the nodes as if they were present. In emulation we cannot change the per-
formance as in the previous section. It usage is mainly dedicated to expose
different HMS systems to prepare or adapt applications to access different
kinds of memory. I.e., test the heuristics and algorithms developed to select
the appropriate target for each buffer.

Emulation can be done using several options and we have classified them
in hardware emulation, OS emulation, and software emulation. In Figure 5.4
we are able to see an overview of the different techniques to presented in the
following subsections.

Hardware

Linux
Kernel

Virtual
Machine

ACPI
Tables

memmap

Runtime
& Libraries

Application

hwloc

(optional)

Figure 5.4: Emulation software stack.

Data-Placement Strategies for HMS in HPC 73

5.2. Environment Emulation

5.2.1 Hardware Emulation Level
Emulating the HMS through hardware refers to the use of a real hardware
device to mimic the function of another HMS. The emulation can be done
in different manners, but all of them are designed to behave like an entirely
different hardware platform than the one it runs on. It allows to debug and
verify applications, the runtime system, or a new system under design.

5.2.1.1 Replacing ACPI Tables

Advanced Configuration and Power Interface (ACPI) was specified to establish
a common interface for platform-independent configuration. This means that
these systems when they are turned on and before the OS is loads, the BIOS
places ACPI tables in memory [25]. It helps the operating system to efficiently
configure the hardware [102] (in our case the HMS).

Some of this tables were mentioned in Section 3.4. In fact, System Locality
Distance Information Table (SLIT), System Resource Affinity Table (SRAT),
NVDIMM Firmware Interface Table (NFIT) and Heterogeneous Memory At-
tributes Table (HMAT) are the main tables related to the memory system.

Therefore the fact of modifying these tables appropriately means a way for
emulate memory systems, however, only HMAT would really change hetero-
geneity in terms of latency and bandwidth.

The actual way to emulate the HMAT table is:

1. Use the HMAT tables located on an available machine that would serve
as a base for a memory system to be modified. The current machine
tables exposed by Linux in /sys/firmware/acpi/tables

2. Disassemble it with ACPI Source Language compiler/decompiler (iasl).

3. Modify some values or split new proximity domains to create new
memory targets (e.g., bandwidth and/or latency).

4. Reassemble it again with iasl.

5. Then, load it into the kernel at boot from initrd, which is a facility to
provide early software environment during the boot.

6. The emulation will be complete when these tables are loaded. To carry
out this process they can be compiled using iasl 3.

It is also posible to modify NFIT, SLIT and SRAT. It requires to modify
the proximity domains that corresponds to memory targets. This task could
be not easy, however, daxctl split-acpi allows to simplify this operation by
dividing NUMA nodes in two. It is useful when adding fictitious NVDIMMS to

3https://www.kernel.org/doc/Documentation/acpi/initrd_table_override.txt

74 Andrès RUBIO PROAÑO

https://www.kernel.org/doc/Documentation/acpi/initrd_table_override.txt

5. Software Tools for the development on Heterogeneous Memory

a DRAM-only machine, by spliting DRAM proximity domain into half DRAM
and half NVDIMM and then modify values on HMAT.

Figure 5.5 shows the results of using the first HMAT sample provided in
https://github.com/rzwisler/hmat_examples. 00 in Data Type means that
the entire entries contain latency values. Similarly, 03 meaning bandwidth and
01 meaning read latency. In fact, real values come from multiplying the Entry
Base Unit value with the Entry value. E.g., the entry 01F4 (500) multiplied
by the entry base unit C8 (128) gives 64000 pico-seconds.

Signature : "HMAT" [Heterogeneous Memory
Attributes Table]

Table Length : 00000158
Revision : 01

.

.

.
Structure Type : 0001 [System Locality Latency

and Bandwidth Information]
Reserved : 0000

Length : 00000048
Flags (decoded below) : 00

Memory Hierarchy : 0
Data Type : 00
Reserved1 : 0000

Initiator Proximity Domains # : 00000002
Target Proximity Domains # : 00000004

Reserved2 : 00000000
Entry Base Unit : 00000000000000c8

Initiator Proximity Domain List : 00000000
Initiator Proximity Domain List : 00000001

Target Proximity Domain List : 00000000
Target Proximity Domain List : 00000001
Target Proximity Domain List : 00000002
Target Proximity Domain List : 00000003

Entry : 01F4
Entry : 03E8
Entry : 01F4
Entry : 03E8
Entry : 03E8
Entry : 01F4
Entry : 03E8
Entry : 01F4

Figure 5.5: Modifying entries into HMAT.

Emulating a heterogeneous memory system by modifying ACPI tables al-
lows not only to prepare applications. This allows to prepare runtimes to
support the arrival of emerging memory systems.

Data-Placement Strategies for HMS in HPC 75

https://github.com/rzwisler/hmat_examples

5.2. Environment Emulation

5.2.1.2 Qemu

Another effectively way to emulate HMS is do it within a virtual machine. The
virtual machine would not have direct acces to the server hardware. Instead,
this emulation level redirects traffic between physical and virtual hardware.

Quick Emulator (QEMU) is a free opensource emulator based on dynamic
translation of binaries. I.e., it convert the binary code of the source architecture
into understandable code by the host architecture. It is also able to virtualise
inside an OS be it Linux, Windows and others.

For our purpose, QEMU allows to create a very flexible configuration of
NUMA nodes topology 4. The command described in Figure 5.6 show us that
in QEMU we are able to define numa nodes, change distances values and define
NVDIMMs.

sudo qemu-system-x86_64 -hda ubuntukernel.img -smp cpus=4
-numa node,cpus=0-1,nodeid=0 -numa node,cpus=2-3,nodeid=1
-numa dist,src=0,dst=1,val=35 -cpu host -m 8G,slots=4,maxmem=32G
-machine pc,accel=kvm,nvdimm=on
-enable-kvm -object memory-backend-file,id=mem1,share=on,

mem-path=/dev/dax0.0,size=4G,align=2M
-device nvdimm,id=nvdimm1,memdev=mem1,label-size=2M

Figure 5.6: Qemu command line to emulate HMS.

As can be seen in the previous point, one can modify the ACPI tables of a
real machine. This can also be done in virtual machines regardless of the virtu-
aliser engine. In this way allowing to combine these two approaches. However,
the goal of using virtual machines for our purpose is to expose virtual/different
hardware without requiring admin access to modify the initrd.

5.2.2 OS Level
Another manner to emulate heterogeneous memory systems is through oper-
ating systems.

In fact, since Linux Kernel v4.0 it is possible to emulate NVDIMMs. Linux
provides the memmap kernel option 5, allowing to reserve unnasigned memory
for emulate NVDIMMs.

4https://futurewei-cloud.github.io/ARM-Datacenter/qemu/how-to-configure-
qemu-numa-nodes/

5https://www.kernel.org/doc/Documentation/admin-guide/kernel-
parameters.txt

76 Andrès RUBIO PROAÑO

https://futurewei-cloud.github.io/ARM-Datacenter/qemu/how-to-configure-qemu-numa-nodes/
https://futurewei-cloud.github.io/ARM-Datacenter/qemu/how-to-configure-qemu-numa-nodes/
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

5. Software Tools for the development on Heterogeneous Memory

The memmap feature should be passed on the kernel command line (e.g.,
in GRUB) in this manner memmap=nn[KMG]!ss[KMG], where nn is the size of
the region to reserve, and ss is the offset.

The following paragraph, shows the method to emulate on debian-based
operating systems 6:

– New memory mapping of 5GB starting at the 11GB boundary (i.e., from
11GB to 16GB).

$ sudo vi /etc/default/grub

– Add or edit the "GRUB_CMDLINE_LINUX" entry to include the map-
ping.

GRUB_CMDLINE_LINUX="memmap=5G11G"

– Then update grub and reboot.
$ sudo update-grub2

(a) Original lstopo output. (b) memmap=5G!11G lstopo output. 5GB disap-
peared in the NUMA node and they appeared
as 5GB of persistent memory pmem0.

Figure 5.7: Topology of a single node computer with 16GB physical DRAM.

Using this kernel tool gives a great facility to developers access to
NVDIMMs, It allows to use fictitious NVDIMMs in App Direct mode or
in System-RAM mode. When using System-RAM mode memmap puts the

6https://docs.pmem.io/persistent-memory/getting-started-guide/creating-
development-environments/linux-environments/linux-memmap

Data-Placement Strategies for HMS in HPC 77

https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/linux-environments/linux-memmap
https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/linux-environments/linux-memmap

5.2. Environment Emulation

memory in node 0 instead of creating a separate node 1, so it could be use-
less for our purpose. For App Direct mode, memmmap is effectively used for
storage, which allows to have a fictitious HMS by mapping files instead of just
allocating in NUMA nodes. Figure 5.7 represents the topology before and after
adding memmap option on a single Laptop Computer with a debian-based OS
and 16GB of DRAM.

This method allows to emulate NVDIMMS given a DRAM. The oposite,
emulating DRAM given an NVDIMM is an official feature, and is presented in
the next chapter when describing NVDIMM System-RAM mode and 2-Level-
Memory mode.

5.2.3 Software Level
Since most HPC runtimes and applications can read hardware topology, ex-
posing different topology will change their behaviour. As seen before, we could
do it through modifying the ACPI tables or modify options on the kernel, how-
ever, this is rescricted to administrator users and using virtual machines is not
alway convenient. Fortunately, hwloc is often used as an intermediate layer
between hardware and topology discovery in HPC, hence we can use hwloc to
"lie" to applications

When we talk about emulating HMS through software layer, we mainly
refer to the use of hwloc to expose the memory system.

hwloc main functionallity allows to obtain a hierachy of the main comput-
ing elements, such as: NUMA nodes, Caches, Processor Sockets, Cores and
Threads. Through lstopo tool, we can expose the topology provided by hwloc
in different formats. Specifically, lstopo supports properly xml extension. It
permits reuse this file later and do it on another machine if wanted.

This is not just a visual change of the topology. This allows developers to
prepare applications taking into account in advance possible scenarios where
heterogeneity and locality may vary.

hwloc can be used in three cases:

1. Creating a topology through a synthetic description. E.g., Figure 5.9,
shows the topology of using the following command-line lstopo –input
"Package:2 L3:1 Group:2 [numa(memory=1GB)] [numa(memory=1TB)]
L2:16 L1:1 Core:1 PU:2".

2. Modifying the HMS topology throught an xml file. In fact, we have
already presented an example of this with the 3MKmachine in Chapter 3.
Figure 5.10 shows the process about generating our fictitious 3MK ma-
chine. This process permits to emulate more than one memory kind local
to a CPU.

3. Modify memory attributes and values in the xml as shown in Figure 3.11.

78 Andrès RUBIO PROAÑO

5. Software Tools for the development on Heterogeneous Memory

Machine (1893GB total)

Package L#0

Core L#0

PU L#0
P#0

Core L#1

PU L#1
P#2

20x total
Core L#19

PU L#19
P#38

DDR L#0 P#0 (187GB) HBM L#1 P#2 (16GB) NVDIMMs L#2 P#4 (742GB)

Package L#1

Core L#20

PU L#20
P#1

Core L#21

PU L#21
P#3

20x total
Core L#39

PU L#39
P#39

DDR L#3 P#1 (187GB) HBM L#4 P#3 (16GB) NVDIMMs L#5 P#5 (744GB)

Figure 5.8: lstopo graphical output ot a fictitious 3-memory-kind machine
modified from Leonide platform.

5.2.4 Summary of Emulation
The emulation of heterogeneous memory systems as seen could be done in
several ways. When using Hardware emulation techniques such as modifying
HMAT tables, we are able to add heterogeneity just by modifying attribute
values, being able to emulate HBM, DRAM and NVDIMMs. The case of
QEMU allows to configure DRAM and NVDIMMs. To emulate HBM with
QEMU, the way should consist in modify ACPI tables.

Performing the emulation of a HMS through the kernel command-line op-
tion memmap allows to have an heterogeneous memory system with DRAM
and NVDIMMs, in fact, part of DRAM is used to emulate NVDIMM in
App Direct mode with a mmaped file or as an additional NUMA node, details
of this are presented in Chapter 6.

Software level emulation help specially in cases where developers have not
fully administrative permits to manage the real hardware. Through hwloc, de-
velopers are capable to emulate NVDIMMs, DRAM, HBM and other memory
devices. Thankfully, hwloc is being used oftenly as a middleware between
hardware and topology discovery. I.e., hwloc is widely spread among HPC
application developers, so its use is not unknown.

Both the simulation of the performance of a possible HMS application
and the emulation of the topology of a certain HMS, allowing developers to
give their applications development greater flexibility and portability. That is,
developers could make their applications more and more heterogeneity-aware
of the memory system.

Data-Placement Strategies for HMS in HPC 79

5.2. Environment Emulation

Machine (4100GB total)

Package L#0

L3 (16MB)

Group0

L2 (4096KB)

L1 (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#1

L2 (4096KB)

L1 (32KB)

Core L#1

PU L#2
P#2

PU L#3
P#3

16x total
L2 (4096KB)

L1 (32KB)

Core L#15

PU L#30
P#30

PU L#31
P#31

NUMANode L#0 P#0 (1024MB) NUMANode L#1 P#1 (1024GB)

Group0

L2 (4096KB)

L1 (32KB)

Core L#16

PU L#32
P#32

PU L#33
P#33

L2 (4096KB)

L1 (32KB)

Core L#17

PU L#34
P#34

PU L#35
P#35

16x total
L2 (4096KB)

L1 (32KB)

Core L#31

PU L#62
P#62

PU L#63
P#63

NUMANode L#2 P#2 (1024MB) NUMANode L#3 P#3 (1024GB)

Package L#1

L3 (16MB)

Group0

L2 (4096KB)

L1 (32KB)

Core L#32

PU L#64
P#64

PU L#65
P#65

L2 (4096KB)

L1 (32KB)

Core L#33

PU L#66
P#66

PU L#67
P#67

16x total
L2 (4096KB)

L1 (32KB)

Core L#47

PU L#94
P#94

PU L#95
P#95

NUMANode L#4 P#4 (1024MB) NUMANode L#5 P#5 (1024GB)

Group0

L2 (4096KB)

L1 (32KB)

Core L#48

PU L#96
P#96

PU L#97
P#97

L2 (4096KB)

L1 (32KB)

Core L#49

PU L#98
P#98

PU L#99
P#99

16x total
L2 (4096KB)

L1 (32KB)

Core L#63

PU L#126
P#126

PU L#127
P#127

NUMANode L#6 P#6 (1024MB) NUMANode L#7 P#7 (1024GB)

Date: vie 09 jul 2021 20:50:46

Figure 5.9: lstopo graphical output using the synthetic descrip-
tion Package:2 L3:1 Group:2 [numa(memory=1GB)] [numa(memory=1TB)]
L2:16 L1:1 Core:1 PU:2.

80 Andrès RUBIO PROAÑO

5. Software Tools for the development on Heterogeneous Memory

Terminal Leonide

leonide:~$ lstopo leonidetopology.xml

leonide:~$ nano leonidetopoloy.xml

<object type="NUMANode" os_index="0"
cpuset="0x00000055,0x55555555"
complete_cpuset="0x00000055,0x55555555"
nodeset="0x00000001" complete_nodeset="0x00000001"
gp_index="84" subtype="DDR" local_memory="201283739648">
 <page_type size="4096" count="49141538"/>
 <page_type size="2097152" count="0"/>
 <page_type size="1073741824" count="0"/>
</object>

<object type="NUMANode" os_index="2"
cpuset="0x00000055,0x55555555"
complete_cpuset="0x00000055,0x55555555"
nodeset="0x00000004" complete_nodeset="0x00000004"
gp_index="86" subtype="HBM" local_memory="17073741824">
</object>

<object type="NUMANode" os_index="4"
cpuset="0x00000055,0x55555555"
complete_cpuset="0x00000055,0x55555555"
nodeset="0x00000008" complete_nodeset="0x00000008"
gp_index="88" subtype="NVDIMMs"
</object>

Terminal Kona01

kona01:~$ lstopo -i 3MKtopology.xml

leonide:~$ scp leonidetopology.xml
arubio@kona01:3MKtopology.xml

leonide:~$ lstopo

Figure 5.10: Emulation of the 3MK platform from Leonide. And using it in
Kona01 (in green the modification).

Data-Placement Strategies for HMS in HPC 81

5.2. Environment Emulation

82 Andrès RUBIO PROAÑO

Chapter 6

Management of Heterogeneous
Memory in Batch Schedulers

Computing nodes are increasing complex, with tens of cores. Co-scheduling
allows to optimise the utilisation of these nodes in where applications are able
to use distinct hardware resources to avoid the underutilisation of available
nodes [81]. Co-scheduling multiple jobs on such nodes, is a useful strategy for
making sure all powered-on cores are used in HPC centers. However, sharing
nodes between multiple jobs also comes with issues such as: contention in the
memory subsystem or cache pollution. Resource partitioning is an interesting
way to avoid such issues thanks to operating system features such as Linux
Cgroups.

6.1 Managing the different KNL configuration modes 84
6.1.1 KNL configurations 84

6.2 Managing NVDIMM configuration modes 86
6.2.1 Memory Mode and 2-Level-Mode 87
6.2.2 App Direct and DAX and 1-Level Memory for storage 87
6.2.3 System-RAM mode 88

6.3 Co-scheduling jobs with memory and storage needs 89
6.3.1 Hardware Partitioning in 2LM 89
6.3.2 Flexible Co-Scheduling with 1LM and System-RAM

NUMA nodes . 91
6.4 Fine Grain Partitioning between HPC jobs 92

6.4.1 NVDIMMs Hardware Partitioning 92
6.4.2 Multidax and namespace-based software partitioning 93
6.4.3 Dax Locality . 94

6.5 Discussion and Summary 95

83

6.1. Managing the different KNL configuration modes

The emergence of non-volatile memory DIMMs brings new strategies for
the management of data in HPC applications. In fact, they support multiple
hardware and software configurations spanning from huge volatile capacities
to high-performance storage, which can be used as burst buffers or for recovery
after fault.

We focus in this chapter on the co-scheduling of jobs with different needs,
and on the partitioning of these new hardware resources between them. We
compare the possible hardware configurations and advocate for the use of the
1-Level-Memory mode with namespaces and explicit NUMA memory manage-
ment.

The rest of this chapter is organised as follows. First, we present KNL ex-
periments with memory modes and discuss some of its possible configurations,
and how it afforded co-scheduling. Then, we present NVDIMMs hardware and
its possible hardware and software configurations. Afterwards, co-scheduling
jobs with different requirements is discussed before we explain how to parti-
tion resources between them. Finally, a discussion and summary section is
presented.

6.1 Managing the different KNL configuration
modes

Although this chapter will focus on the opportunities that NVDIMMs bring,
it is timely to briefly explain how KNL was used in terms of scheduling of jobs
and the management of the memory system with the different configurations.

6.1.1 KNL configurations
As presented in Section 2.3.1.1, KNL has three main memory modes: Flat,
Cache, and Hybrid that can be configured in the BIOS.

In Flat mode as Figure 6.1 shows, the user sees the HBM exposed by the
operating system as an extra NUMA node. For the system, NUMA node 0
corresponds to DDR memory and NUMA node 1 is the on-package HBM. To
enable this mode, the KNL server needs to be rebooted. The advantage of this
mode is that HBM acts as addressable memory, where developers have more
control. However, this mode is not transparent and needs application rework
from developers.

In Cache mode as Figure 6.2 shows, HBM becomes transparent to the OS
and is managed by the hardware as a large cache in front of DRAM. The main
advantage of this memory mode is that is managed by the platform transpar-
ently to software, i.e., developers do not need to modify their applications.
However, one has to hope its memory access will be properly managed by the
hardware cache.

84 Andrès RUBIO PROAÑO

6. Management of Heterogeneous Memory in Batch Schedulers

Finally, Hybrid mode as Figure 6.3 shows, partitions the HBM between
Flat and Cache mode separately.

CPU

DRAM

HBM

NUMA 0

NUMA 1

Figure 6.1: HBM configured in Flat mode.

CPU
HBM
Cache

DRAM

Figure 6.2: HBM configured in Cache mode.

CPU
HBM

NUMA 0

NUMA 1

HBM
Cache

DRAM

Figure 6.3: HBM configured in Hybrid mode.

There is also another setup in the BIOS that allows to have three different
clustering modes: Quadrant Mode, Sub-NUMA Clustering Mode, and All-to-
All mode. These modes allow splitting the processor into different sets of cores
for managing Cache coherence and/or NUMA affinity.

The All-to-all mode allows having an unbalanced memory distribution
across two DRAM memory devices. It does not implements affinity between
tiles and memory uniformly. I.e., it hashes all memory address across distrib-
uted directories.

The Quadrant mode divides the chip in four quadrants. It permits to
have affinity between distributed directories and the memory. However, this
is transparent to applications which only see one set of 64 cores.

Sub-Numa Clustering mode (SNC) exposes quadrants as individual NUMA
domains to applications that can profit from lower latencies, reducing the use
of remote quadrant memory.

Data-Placement Strategies for HMS in HPC 85

6.2. Managing NVDIMM configuration modes

6.1.1.1 Workload Manager

The 3×3 KNL modes presented above work well depending on the application.
For instance, SNC is good for applications that already implement NUMA
locality efficiently. Quadrant mode works for applications where the entire
dataset is used by all threads. All the presented modes could be requested by
the user using the batch scheduler. Hence, HPC centers need to provide access
to KNL in different modes. However, there is a big disadvantage in changing
from one mode to another, it could imply that some or all nodes reserved may
be rebooted, and this process could add a delay of about 20 minutes before
the job starts execution 1.

KNL had many possible configurations that were very well known in ad-
vance while NVDIMMs are much more flexible, hence, the same issue appear
with NVDIMMs in data centers.

6.2 Managing NVDIMM configuration modes
As mentioned in Chapter 2 Non-volatile memory DIMMs have been available
for several years, as DRAM DIMMs with a battery to save data to a flash
backup on power loss. However, software support was not ready until recently.
These memory DIMMs are inserted in usual memory slots just like normal
DIMMs (DRAM) as in Leonide in Figure 6.4.

CPU

Core

Core

Core

Core

Core

Core

Shared L3

NVDIMM

DRAMCPU

Core

Core

Core

Core

Core

Core

Shared L3

NVDIMM

DRAM

Figure 6.4: Leonide Platform: Dual-socket Xeon platform with 6 channels per
processor, with one Optane DC Persistent Memory Modules (DCPMM) and
one DRAM each.

In previous Chapters, NVDIMMs were used in a volatile memory
mode that permits use them as extra NUMA nodes. However, in this
chapter a step back is done to present other configuration modes.

Intel NVDIMMs can be configured as individual Regions or as Interleaved
Regions. Interleaving implies that all the entire region data is lost whenever

1 https://www.nersc.gov/assets/Uploads/Using-KNL-Processors-Feb2019.pdf

86 Andrès RUBIO PROAÑO

https://www.nersc.gov/assets/Uploads/Using-KNL-Processors-Feb2019.pdf

6. Management of Heterogeneous Memory in Batch Schedulers

a single NVDIMM fails. However, interleaving is still expected to be used by
default because it increases the memory bandwidth by using multiple channels
simultaneously. Non-interleaved regions are expected to be useful for separat-
ing small and independent jobs such as virtual machines.

In addition to regions, Xeon processors are capable to use these NVDIMMs
as normal (volatile) memory [9]. To do this, NVDIMMs have two operating
modes: Memory mode and App Direct mode. This configuration is done in the
BIOS or through a tool called ipmctl and allows to have the entire NVDIMMs
in one mode or partition them between both. A reboot is required for enabling
the new configuration.

6.2.1 Memory Mode and 2-Level-Mode
Intel Xeon processors can be configured in 2-Level-Memory mode (2LM). This
exposes the Memory Mode part of NVDIMMs as volatile memory an uses the
DRAM as a memory-side cache in front of it, as shown in Figure 6.5. This is
similar to the KNL Cache mode. It provide a huge capacity of volatile memory
(terbaytes) with good performance as long as the memory access hit the cache
in DRAM (hundreds of gigabytes).

CPU
DDR
Cache Memory

Mode

NVDIMM

Figure 6.5: 2-Level-Memory mode (2LM) uses DRAM as a Memory-side Cache
in front of the Memory Mode part of NVDIMMs exposed as normal volatile
memory.

6.2.2 App Direct and DAX and 1-Level Memory for
storage

Intel Xeon processors can also be configured in 1-Level-Memory mode (1LM),
where DRAM is put as the main volatile memory as seen in Figure 6.6. Here,
the App Direct part of NVDIMMs is exposed as persistent memory regions
that can be used as a disk (e.g., /dev/pmem0).

This Linux kernel provides Direct Access (DAX) implementations to avoid
the need for intermediate copy and page-cache allocations. This enables the
mapping of the actual backend data directly in the application virtual memory
and permits the use of loads and stores.

Data-Placement Strategies for HMS in HPC 87

6.2. Managing NVDIMM configuration modes

CPU
DDR

App Direct
Mode

NVDIMM

Figure 6.6: 1-Level-Memory mode (1LM) using App Direct mode uses DRAM
as the main memory, while NVDIMMs are exposed as a persistent memory
region that is usually used as storage.

The file-system mode (FSDAX) is the default Linux mode that is used in
most cases because it exposes persistent storage as a normal file system. Ap-
plications may use these files as usual. However, optimal performance requires
the application to be modified for DAX: they should stop using explicit file
access (read/write requires a copy) and rather map files to virtual memory
instead (to directly access data in NVDIMMs).

If a file-system is not desired, Linux also provides the Device DAX mode
that exposes NVDIMMs as a large mmap’able linear space where applications
may manually store their datasets. It was designed to expose large regions
of non-volatile memories to specific applications like virtual machines, but
it is actually much more useful than this. Device DAX requires significant
rework of applications because they have to manually separate independent
data without the help of independent files in a file-system. However, as already
explained above, DAX requires applications to be rewritten to take advantage
of improved performance (map files instead of read/write). Therefore, we
believe additional application changes for supporting Device DAX are not a
significant obstacle.

6.2.3 System-RAM mode
Developers choose between 2LM and 1LM configurations presented in previous
sections depending on whether they want a large capacity volatile memory or
storage. Both cases use NVDIMMs, but the 2LM mode has higher bandwidth
thanks to the DRAM cache [41, 103, 39]. However, 1LM latency is better than
2LM in the case of cache-miss because there is no need to look up the data in
the DRAM cache first [56].

We now present an additional mode enabled in software that provides even
more flexibility. Linux kernel 5.1 brought a new Device DAX option: the
System-RAM mode (kmem DAX kernel driver). It replaces the persistent
memory region exposed as storage with additional NUMA nodes. Applications
can allocate memory in these nodes as on any NUMA platform [35], as seen
in Figure 6.7. Thus, they see one NUMA node per kind of memory, so they

88 Andrès RUBIO PROAÑO

6. Management of Heterogeneous Memory in Batch Schedulers

create a 2MK platform as used in previous chapters. This may be considered
similar to Intel Xeon Phi Flat mode presented in the previous section, where
both fast and slow memories are exposed as separate NUMA nodes.2

CPU

DDR

System-ram
Mode

NVDIMM

NUMA 0

NUMA 1

Figure 6.7: 1-Level-Memory mode (1LM) using System-RAM mode allows
appear the NVDIMM as an additional NUMA node apart of DRAM.

It means, that applications now have to manually allocate in one of the
nodes, depending on the required performance for each dataset. This requires
more work from application developers, but provides more flexibility than 2LM.
This is the same tradeoff than choosing between the easy-to-use KNL Cache
mode and the advanced KNL Flat mode where one has to allocate buffers in
the right target. Hence, we believe higher performance is achievable thanks
to System-RAM mode if the developer carefully places performance-sensitive
data in DRAM (faster than 2LM DRAM-cache [12]) and other large datasets
in NVDIMM (slower than 2LM DRAM-cache [41, 103] but not performance-
sensitive).

6.3 Co-scheduling jobs with memory and stor-
age needs

Modern HPC nodes feature lots of cores and memory. They are therefore good
candidates for co-scheduling several small jobs. Unfortunately, node sharing
raises multiple issues in terms of performance [93]. Hence, we now explain how
to partition nodes equipped with NVDIMMs.

6.3.1 Hardware Partitioning in 2LM
We explained in the previous section that partitioning NVDIMMs between
different modes is possible. However, the hardware configuration has to match
the job requirements. We now look at the case where some jobs want a 2LM
configuration (Memory Mode for large amounts of volatile memory) and some

2NVDIMMs 1LM and 2LM modes are similar to KNL Flat and Cache modes. However,
NVDIMMs do not enable a KNL-like Hybrid mode: KNL could partition the fast memory
(MCDRAM) between cache and normal memory. NVDIMMs rather allow partitioning the
slow memory between cached (by the fast memory, DRAM) and uncached.

Data-Placement Strategies for HMS in HPC 89

6.3. Co-scheduling jobs with memory and storage needs

others want 1LM (App Direct for persistent storage). The only way to have
both Memory Mode and App Direct available at the same time in a machine
is to configure the processors in 2LM.

CPU
DDR
Cache

Memory
Mode

NVDIMM

AppDirect
Mode

Figure 6.8: 2-Level-Memory enables exposing both Memory Mode as DRAM-
cached main memory and App Direct as storage.

However, this configuration has major drawbacks: First, the administrators
would have to choose a good ratio for NVDIMM, partitioning between Memory
and App Direct mode. This ratio depends on the needs of all jobs that will be
scheduled simultaneously on a node, and setting up the ratio requires a reboot
of the node.3

Secondly, locality issues arise as shown in Figure 6.9: If a processor is
allocated to a 1LM job, its local NVDIMMs should be entirely set in App Dir-
ect. However, it means there is no local memory: both local DRAM and
NVDIMM cannot be used as volatile memory (DRAM is entirely used as a
cache; NVDIMMs are entirely used as App Direct). Cores of this socket would
therefore use remote DRAM on the second processor, which incurs bad per-
formance.

CPU 0

DDR
Cache

AppDirect
Mode 100%

NVDIMM

DDR
Cache Memory

Mode 100%

NVDIMM

CPU 1

X
Figure 6.9: Allocating one socket to a job that wants 100% Memory Mode and
the other socket to a job that wants 100% App Direct causes the latter to have
no local memory, and its DRAM cache is useless.

In the end, we believe using 2LM to share a node with such different jobs
is not a good idea, and we do not expect significant improvements in future
hardware platforms. Administrators would rather create one set of 1LM nodes

3Additionally a 32G granularity seems to constrain possible ratios in hardware.

90 Andrès RUBIO PROAÑO

6. Management of Heterogeneous Memory in Batch Schedulers

and a separate set of 2LM nodes, similar to what was shown in Section 6.1.1.1 4

and possibly reconfigure them as in Section 6.2. However, next subsection
shows how 1LM may actually offers a more flexible solution.

6.3.2 Flexible Co-Scheduling with 1LM and System-
RAM NUMA nodes

We explained in the previous section that 2LM requirements incur too many
drawbacks. Therefore, we propose not to use 2LM anymore. As explained
in Section 6.2.3, Device DAX may be exposed as additional NUMA nodes in
System-RAM mode. This provides lots of volatile memory that 2LM applica-
tions require, but requires developers to explicitly manage allocation between
fast and slow memory. We believe that this additional work for developers is a
good trade-off because of the flexibility it provides to users and administrators.

Hence, we propose the following strategy for providing nodes to jobs in the
batch scheduler:

1) NVDIMMs are configured 100% in App Direct and processors are in 1LM
mode.

2) NVDIMM regions are configured as Device DAX by default in the Linux
configuration (may be used for persistent storage as a single file).

3a) An application that cannot work without multiple files may request that
the batch scheduler reconfigures regions as FSDAX.5

3b) An application that needs lots of volatile memory may request that
the batch scheduler reconfigures a region as an additional NUMA node
through System-RAM mode.6

This solution does not bring locality problems because each CPU still has
its local DRAM explicitly available, while its local NVDIMMs may be exposed
in the mode that matches the local job needs. Also, this approach is on par with
current Linux kernel development towards exposing both DRAM and PMEM
as explicit NUMA nodes and having ways to migrate hot pages between fast
and slow memory7.

Table 6.1 summarises the advantage of our proposal compared to 2LM
memory presented in the previous Section.

4This is similar to what happened in many KNL clusters: some nodes were in Cache
mode, others in Flat mode.

5Using the ndctl command-line tool, which does not require a reboot.
6Using the daxctl command-line tool, which does not require a reboot.
7https://lwn.net/Articles/787418/

Data-Placement Strategies for HMS in HPC 91

https://lwn.net/Articles/787418/

6.4. Fine Grain Partitioning between HPC jobs

Table 6.1: Advantages and drawbacks of 2LM and 1LM modes for co-
scheduling jobs.

CPU Config 2-Level-Memory 1-Level-Memory
NVDIMM Config Memory Mode ratio depends on jobs 100% App Direct

Reboot required for updating
Fast/Slow Memory Automatic Manual & Flexible

Management (DRAM Cache) (NUMA)
Storage Management Limited to App Direct ratio OK

Locality May miss local memory OK

6.4 Fine Grain Partitioning between HPC
jobs

We showed in the previous section that 1LM is a good trade-off, enabling
flexibility with respect to application needs and memory management. We
now explain how to actually partition and expose different kinds of memory
between jobs at a fine grain.

HPC resource managers may already use Linux Cgroups for partitioning
CPUs between jobs [30], as well as NUMA nodes (individual nodes or amounts
of memory may be dedicated to each group). This work may already be applied
to partition NVDIMM-based NUMA nodes, either in 2LM or System-RAM
nodes in 1LM.

However, when a single Device DAX is used, there is no way to partition
it between multiple jobs. This is an issue that is addressed in the following
section.

6.4.1 NVDIMMs Hardware Partitioning

As explained in Section 6.2, each NVDIMM (its App Direct part) may be
exposed as an individual region or it may be interleaved with others (see Fig-
ure 6.10). Each region is exposed as a different FSDAX, Device DAX or
NUMA node in Linux, which may be allocated to different jobs by the admin-
istrator. However, with only 6 channels per CPU and 1 single DCPMM per
channel (128, 256 or 512GB each), there are very few possibilities for parti-
tioning. Moreover, modifying regions requires a long reconfiguration process
(minutes) and a reboot. Hence, we do not think this is a good way to partition
NVDIMMs between jobs. Device DAX partitioning between different jobs ac-
tually requires synchronisation between jobs. We explain in Section 6.4.2 how
resource managers may solve this issue using namespaces.

92 Andrès RUBIO PROAÑO

6. Management of Heterogeneous Memory in Batch Schedulers

CPU 0

Region 0

NVDIMM 0 NVDIMM 1 NVDIMM 2 NVDIMM 3 NVDIMM 4 NVDIMM 5

Region 1

CPU 1

NVDIMM 6 NVDIMM 7 NVDIMM 8 NVDIMM 9 NVDIMM 10 NVDIMM 11

Interleaved DIMMs
Non-Interleaved DIMMs

Region 2 Region 3 Region 4 Region 5 Region 6 Region 7

Figure 6.10: Partitioning NVDIMMs using regions and interleaving. On the
first processor two interleaved regions use respectively 4 and 2 NVDIMMs. On
the second processor, all NVDIMMs are exposed as individual non-interleaved
regions.

6.4.2 Multidax and namespace-based software parti-
tioning

The partitioning should rather be applied in software on top of persistent
memory regions. Indeed, each region may be split into different namespaces
that are configured by the administrator without requiring a reboot [101].8
Hence, we believe that the hardware configuration should consist in one in-
terleaved region per locality domain (CPU or SubNUMA Cluster, for good
NUMA locality). The resource manager would then use namespaces for par-
titioning those static regions dynamically on job allocation. We observed a
1-gigabyte minimal granularity for this partitioning on Leonide platform, and
we believe this is sufficient for current HPC jobs on platforms with tens of
hundreds of GB of memory.

Hence, we propose to extend the strategy from Section 6.3.2:

1) NVDIMMs are configured 100% in App Direct and processors are in
1LM mode. NVDIMM regions are interleaved at CPU level (or
SubNUMA Cluster).

2) Jobs request one or several region namespaces from the re-
source manager. Namespaces are configured as Device DAX by de-
fault in the Linux configuration (that may be used for persistent storage
as a single file).

3) Jobs specify how each namespace should be configured, having
multiple namespaces in the existing regions such as shown in
Figure 6.11.

3a) An application that cannot work without multiple files may request the
reconfiguration of a namespace as FSDAX.

8Using the ndctl command-line tool again.

Data-Placement Strategies for HMS in HPC 93

6.4. Fine Grain Partitioning between HPC jobs

3b) An application that needs lots of volatile memory may request the re-
configuration of a namespace as an additional NUMA node through
the System-RAM mode.

If multiple namespaces from the same physical region are exposed as NUMA
node, they are actually exposed as a single NUMA node9. Linux Cgroups may
be used to partition the memory of that shared NUMA node between jobs
although they still lack some features for advanced cases10.

CPU 0 with DRAM NUMA Node 0

Region 0

NVDIMM 0 NVDIMM 1 NVDIMM 2 NVDIMM 3 NVDIMM 4 NVDIMM 5

Interleaved DIMMs

Region 0

NVDIMM 0 NVDIMM 1 NVDIMM 2 NVDIMM 3 NVDIMM 4 NVDIMM 5

Interleaved DIMMs

CPU 1 with DRAM NUMA Node 1

Configured in
Hardware

Namespace 0.0
(fsdax)

Namespace 0.1
(fsdax)

/dev/pmem0 /dev/dax0.1
Configured in

Software

Normal Files (/mnt/mydisk0 mmap()
User Space

Access

Namespace 1.0
(fsdax)

Namespace 1.1
(system-ram NUMA)

/dev/pmem1 NUMA Node 2

Normal Files (/mnt/mydisk1 Normal Memory

Figure 6.11: Using namespaces to partition regions between jobs requiring
FSDAX, Device DAX or NUMA nodes. Each processor is configured with a
single interleaved region. Software splits them between namespaces that may
be configured according to jobs requirements.

Partitioning a single region into multiple DAX does not incurs in a per-
formance penalty. Indeed, processes only map DAX pages in their virtual
address spaces and access them as regular memory. The actual overhead of
using multiple namespaces is their creation during job prologue (a couple of
minutes).

6.4.3 Dax Locality
Finally, we look at how locality information is exposed in the proposed strategy.
Indeed, even if the resource manager tries its best to allocate local namespaces
to jobs, there is no guarantee that it will always be possible, and we ex-
plained in Section 2.4.2 that locality matters to performance of NVDIMMs.
Hence, there is a need for the resource manager and the application to gather
locality information about the different software handles that correspond to
NVDIMMs.

When NVDIMMs are exposed as additional NUMA nodes, we implemented
in hwloc a way to find out the corresponding local CPUs and DRAM by

9Each persistent memory region corresponds to a unique NUMA node in ACPI tables.
10Cgroups can limit a process overall memory use, and the NUMA nodes it may use, but

not the memory use within a single NUMA node

94 Andrès RUBIO PROAÑO

6. Management of Heterogeneous Memory in Batch Schedulers

looking at NUMA distances and memory target-initiator information in Linux.
Figure 6.12 depicts an example of such configuration.

Figure 6.12: hwloc’s lstopo representation of a platform with NVDIMMs ex-
posed as additional NUMA nodes, using the System-RAM mode. Each pro-
cessor has one local DRAM NUMA node per SubNUMA Cluster (e.g. #0 and
#1) and a single NVDIMM NUMA node (e.g. #4). Hence, each core has two
local memories.

For other cases (FSDAX, Device DAX and raw namespace), the inform-
ation exposed by Linux is currently incomplete: only one local DRAM node
is reported even if there are multiple of them. For instance, in Figure 6.12,
they would be reported as close to NUMA node #0 only (SubNUMA Cluster)
instead of both #0 and #1 (entire Package).

6.5 Discussion and Summary
HPC nodes are growing, causing co-scheduling to become necessary as soon as
applications do not scale well to many cores. Indeed, it is better to fill powered-
on nodes rather than powering up yet another partially-used node. However,
previous work has shown than node sharing raises several performance issues,
especially in the memory subsystem [93]. Many resources may be partitioned
in software to avoid processes disturbing each others.

Resource managers such as SLURM are usually in charge of allocating
cores and memory to jobs. They now use techniques such as Linux Cgroups
for partitioning these resources between jobs [30] or containers [110]. Cache
partitioning also appeared in recent processors as a way to also avoid co-
existing cache pollution between applications [52]. However, it is currently not

Data-Placement Strategies for HMS in HPC 95

6.5. Discussion and Summary

supported by DDR caches in 2LM. Fortunately, we explained that we do not
believe that 2LM is a sensible choice for HPC nodes.

When NVDIMMs are used as persistent storage, the resource manager is in
charge of allocating this local storage to jobs. Like any local disk in computing
nodes, these FSDAX may be provisioned by the manager, for instance as
explicit or automatic burst buffers [36, 106]. This local storage may also be
used as a high-performance temporary storage between different jobs [36] for
instance for in-situ analysis.

All these techniques are compatible with our proposal for partitioning non-
volatile memory since we apply the partitioning when launching jobs (in the
job prologue) and not in hardware.

We studied the different ways to use an heterogeneous memory system that
contain NVDIMMS parting from KNL experiments and showing that support
different use cases for different application needs requires careful hardware
configuration. We have explained why 2-Level-Memory is not a convenient
solution for locality-aware partitioning of NVDIMMs between jobs. We have
shown why 1-Level-Memory looks like a better approach with more flexibility
for memory allocation, easier configuration for the administrator and resource
managers, and better locality.

96 Andrès RUBIO PROAÑO

Chapter 7

Conclusion and Future Work

7.1 Conclusion
HPC has been innovating to be able to lead scientific discoveries with the aim
that human beings have a better quality of life. Advances have been made in
both scientific and social foundations such as self-driving model development,
tracking a storm, analysing seismic waves, analysing stock trends, advancing
in precision medicine, etc.

HPC has evolved over the years due to the growing need for more powerful
supercomputers. In particular, the memory hierarchy of these systems has
also undergone substantial changes. These changes have implied that HPC
software is in need of supporting heterogeneous memory systems. That is,
supercomputers may have more than one type of memory. HPC software
does not have a very efficient way to expose or manage these systems, since
homogeneous memory systems are normally used, so the support is still very
limited.

Another unfortunate consequence of having heterogeneity on the memory
system is the need for applications to be adapted so that they can properly
exploit the memory system, and in this way not underutilise resources. Not all
applications have the same behaviour when allocating in a determined memory
of an HMS.

Currently, the technologies that make up heterogeneous memory systems
(DRAM, HBM, NVDIMM, etc.) are in need of exposing their different memory
attributes, since this makes them differentiated. Something that was not ne-
cessary with homogeneous memory systems. However, it is clear that the use
of these memory systems by developers (even the most experienced ones) is
more complex. It is necessary to adapt the existing applications and provide
the necessary tools to make this transition, but it is essential to think that the
development of new applications not only requires these tools. Developers now
face the scenario, where their application must run on any type of heterogen-
eous memory system. The challenges are still many, and more systems with

97

7.1. Conclusion

heterogeneous memory are being announced, so developers cannot be allowed
to become a bottleneck in the face of such rapid progress.

Contributions
In this thesis we have explored axes of research related to management and
data-placement in heterogeneous memory systems. Giving tools and strategies
that can be used by end users. We have worked with at least two systems with
different heterogeneous memory and we have done different tests with some
applications.

In Chapter 3 we have designed an extension to the hwloc interface
that allows managing the complexity of memory systems in emerging
and future architectures. Due to the different kinds of memory and their
different characteristics, it is a great challenge to use them in an efficient
and effective way. This extension allows querying and classifying memory
devices. The attributes represent characteristics that are relatively easy to
understand, such as bandwidth, latency, and capacity. With this interface, we
simplify building high-level abstractions to give developers more productivity
and performance.

In Chapter 4 a general strategy framework is shown to identify
the affinity of application buffers towards a certain memory attrib-
ute. Benchmarking and profiling are two methods that open the black box of
memory attributes that applications can be sensitive to. This approach gives
developers a method to analyse their applications either by binding them to
different types of memory as well as profiling them in order to detect their
affinity to a memory attribute. This approach brings an improvement in the
productivity of developers since this information of sensitivity can be passed
to allocators in a portable way without the need to hardwire the information
of a type of memory existing in the application code.

In Chapter 5 we give to developers some strategies to simulate hetero-
geneous memory systems. We have presented techniques that allow ma-
nipulating the performance of hardware memory from the application point of
view, for instance with bandwidth throttling, a pirate application, or NUMA
distance latency injection. This eases the performance testing of codes on
non-existing or unavailable heterogeneous memory systems. We also described
ways to modify the memory subsystems exposed in the software stack, for in-
stance by modifying ACPI tables or tweaking the hwloc topology. This allows
checking the behaviour of runtime and applications in presence of different
heterogeneous memory configurations.

In Chapter 6, we introduced a Strategy for partitioning non-volatile
memory between co-scheduled jobs with possibly different needs. The
emerging Intel Optane technology with its NVDIMMs that may be configured
and used in may different ways raises many questions their actual use in HPC

98 Andrès RUBIO PROAÑO

7. Conclusion and Future Work

centers. Parting from KNL experiments we have showed that supporting differ-
ent use cases for different application needs requires careful hardware configur-
ation. We have explained why 2-Level-Memory is not a convenient solution for
locality-aware partitioning of NVDIMMs between jobs. We have shown why
1-Level-Memory looks like a better approach with more flexibility for memory
allocation, and we proposed a hardware/software strategy to make its con-
figuration easier for the administrator and resource managers, while meeting
better locality.

7.2 Future Work
Our work has allowed better understanding heterogeneous memory systems,
where we were able to manipulate their configuration and also learn to operate
them. We plan to develop certain areas of work already studied, while also,
anticipate that this research will allow the development of solutions for the
software stack that better exploit emerging hardware.

Validate and extend our work on emerging platforms. Nowadays
vendors do not include reliable information of their products in HMAT, or
simply they do not provide any HMAT table at all. It raises the problem
of obtaining values for our memory attributes (see Chapter 3). Things are
expected to improve with new platforms. More heterogeneous platforms are
announced. Intel will have heterogeneous systems that have DRAM and HBM
soon, ARM is also venturing into hybrids of DRAM and HBM, and POWER
with hybrids of DRAM and NVDIMMs. Once these tables are actually avail-
able in more platforms, we will be able to validate more precisely the usefulness
of our approach and of our attributes, and possibly add new attributes describ-
ing new characteristics of memory. Through refining the work done on this
thesis, we should simplify the developer’s work when looking for which memory
is better for what.

Extend our allocation policies to handle more application require-
ments, keeping the focus on the management of heterogeneous memory sys-
tems. The main reason is that the memory wall is going to continue, and hy-
brid memory technologies are going to become mainstream. In Chapter 3 the
work has consisted of exposing heterogeneous memory systems to applications
providing low-level software support. But this support with the applications
and runtime system may still be extended. For instance, we envision the need
to migrate buffers between kinds of memory, for instance when the application
access pattern varies between steps. Since migration is known to be expens-
ive, we will need to find a trade-off between what the performance gain from
migrating and what we lose because of the migration overhead.

Make sensitivity a quantitative metric. As shown in Chapter 4, we
have used simple understanding memory metrics that give us context about the

Data-Placement Strategies for HMS in HPC 99

7.2. Future Work

sensitivity of an application about Latency, Bandwidth and Capacity. How-
ever, the simplicity of these metrics could be not enough in some cases to detect
an affinity. For instance, bandwidth throttling presented in Chapter 5, could
become a starting point to develop a more complex metric that improves the
selection of appropriate memory targets by quantifying bandwidth sensitivity
on an application instead of just determining if it is sensitive or not.

Define high-level metrics. Low-level metrics such as Latency, Band-
width and Capacity are useful for runtime developers that are aware of the
hardware behavior as presented in Chapter 3. However, this may not be ap-
propriate for applications developers, who are usually not hardware experts.
Hence, some high-level metrics might be needed, for instance to characterize
memory access patterns with strides, dimensions, etc.

Intelligent runtime systems. There is a long path to allow a runtime
to employ various strategies to place data depending on developer input. The
team already work on this topic with OpenMP developers from RWTH Aachen
University in the H2M project. This thesis work serves as a starting point
and will be leveraged into high-level runtimes/applications. First OpenMP
allocators, that may also request high-bandwidth, low latency or high-capacity
target memory, will be mapped on top of the heterogeneous allocator presented
in Chapter 4. Then we will develop runtime heuristics to exploit heterogeneous
memory systems for dynamic abstract data structures. It will be based on a
memory performance model supporting different kinds of memory to enable
runtimes to employ heuristics.

Static code analysis for taking allocation decisions. In Chapter 4,
we showed two strategies to identify the sensitivities of the application buffers
and thus have a criterion from which the allocator can feed. The first one
has consisted of binding the applications to different types of memory and
comparing their performance to then have an allocation criteria. The second
one consisted of profiling the application, where we can identify the main
memory objects and their sensitivity to predefined metrics such as bandwidth,
latency and capacity which not requires too much executions to determine the
allocation criteria. We consider there are two more possible way to be explored.
Using static code analysis, which consists in studying the source code, for
instance during compilation, is another way to discover sensitivity. This step
may provide the compiler and/or runtime with additional information about
an application. For instance, what is going to happen in the future with a
data buffer? In our approach, the plan would rather have the compiler insert
annotations in the code to tell the runtime where to allocate each buffer. This
requires significant work, with collaboration between compilers and runtimes,
but recent compiler advances such as plugins in LLVM make prototyping more
accessible.

In the same fashion as the previous paragraph, we consider Artificial In-
telligence (AI) for taking allocation decisions. It has successfully been

100 Andrès RUBIO PROAÑO

7. Conclusion and Future Work

used for deciding of NUMA memory placement [21] and we believe it may
also be applied to memory placement in HMS. Characterising the interaction
of applications with different kinds of memories and applying learning tech-
niques may allow to identify common behaviours and predict a good allocation
criteria. However, this raises the question of having enough data to feed the
AI model, which means many different heterogeneous platforms and/or many
different applications.

Data-Placement Strategies for HMS in HPC 101

7.2. Future Work

102 Andrès RUBIO PROAÑO

Appendix

103

104 Andrès RUBIO PROAÑO

Appendix A

Platform Characteristics

For the experiments carried out in this thesis, we use computation nodes from
the Experimental Platform Dalton and the Federative Platform for Research
in Computer Science and Mathematics(PlaFRIM) [82].

A.1 Kona: Xeon Phi Knights Landing (KNL)
There are four Kona systems that have the particularity of having high-
bandwidth memory (16GB MCDRAM) on the processor chip and DRAM
memory. The 64 cores of this processor (Intel Knights Landing Xeon Phi
7230), clocked at 1.3GHz, are grouped in tiles of 2 cores sharing an L2 cache.
These tiles are interconnected through a two-dimensional cartesian mesh.

The servers are configurable at start-up to expose as a single NUMA do-
main, or 2 or 4 Sub-NUMA-Clusters (SNC), each composed of MCDRAM
memory and DRAM memory.

Some Kona nodes are configured to delegate the hardware the management
of the MCDRAM as a last level of cache (Cache mode) when defining the
memory mode in the BIOS, but these nodes have not been used in this thesis.
Only nodes exposing the MCDRAM as a separate NUMA node (Flat mode)
were used.

A.1.1 Kona01
The topology of Kona01 machine, configured with a single NUMA domain, is
provided in Figure A.2 and the system configuration is shown in Table A.1.

105

A.1. Kona: Xeon Phi Knights Landing (KNL)

Processor Xeon Phi 7230
Figure A.2
Frequency (GHz) 1.3
Number of Core 64
Core interconnection topology 2D mesh
Number of Socket 1
Number of NUMA domains 1
Cluster mode Quadrant
Memory mode Flat
Hyper-Threading Yes
Turbo Boost Yes

Figure A.1: Kona01 system characteristics and configuration.

Machine (112GB total)

Package L#0

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#64

PU L#2
P#128

PU L#3
P#192

L1d (32KB)

L1i (32KB)

Core L#1

PU L#4
P#1

PU L#5
P#65

PU L#6
P#129

PU L#7
P#193

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#8
P#2

PU L#9
P#66

PU L#10
P#130

PU L#11
P#194

L1d (32KB)

L1i (32KB)

Core L#3

PU L#12
P#3

PU L#13
P#67

PU L#14
P#131

PU L#15
P#195

32x total
L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#62

PU L#248
P#62

PU L#249
P#126

PU L#250
P#190

PU L#251
P#254

L1d (32KB)

L1i (32KB)

Core L#63

PU L#252
P#63

PU L#253
P#127

PU L#254
P#191

PU L#255
P#255

NUMANode L#0 P#0 (96GB) MCDRAM L#1 P#1 (16GB)

Figure A.2: Topology of the Kona01 node.

A.1.2 Kona03
The topology of Kona03 machine divided into 4 NUMA domains is provided
in Figure A.4 and the system configuration is shown in Table A.3. Only the
cores of the first SubNUMA Cluster are shown for simplicity.

106 Andrès RUBIO PROAÑO

A. Platform Characteristics

Processor Xeon Phi 7230
Figure A.4
Frequency (GHz) 1.3
Number of Cores 64
Core interconnection topology 2D mesh
Number of Sockets 1
Number of NUMA domains 4
Sockets interconnection technology N/A
Cluster mode SNC4
Memory mode Flat
Hyper-Threading Yes
Turbo Boost Yes

Figure A.3: Kona03 system characteristics and configuration.

Machine (112GB total)

Package L#0

Cluster

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#64

PU L#2
P#128

PU L#3
P#192

L1d (32KB)

L1i (32KB)

Core L#1

PU L#4
P#1

PU L#5
P#65

PU L#6
P#129

PU L#7
P#193

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#8
P#2

PU L#9
P#66

PU L#10
P#130

PU L#11
P#194

L1d (32KB)

L1i (32KB)

Core L#3

PU L#12
P#3

PU L#13
P#67

PU L#14
P#131

PU L#15
P#195

8x total
L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#14

PU L#56
P#14

PU L#57
P#78

PU L#58
P#142

PU L#59
P#206

L1d (32KB)

L1i (32KB)

Core L#15

PU L#60
P#15

PU L#61
P#79

PU L#62
P#143

PU L#63
P#207

NUMANode L#0 P#0 (24GB) MCDRAM L#1 P#4 (4096MB)

Cluster

NUMANode L#2 P#3 (24GB) MCDRAM L#3 P#7 (4096MB)

Cluster

NUMANode L#4 P#2 (24GB) MCDRAM L#5 P#6 (4096MB)

Cluster

NUMANode L#6 P#1 (24GB) MCDRAM L#7 P#5 (4096MB)

Figure A.4: Topology of the Kona03 node. Only cores of the first SubNUMA
Cluster are shown.

A.2 Leonide: dual Intel Xeon Gold 6230 with
NVDIMMs

The system has the particularity of supporting high-capacity memory
(NVDIMMs) and DRAM memory. It has 2 physical processors (Intel Xeon
Cascade Lake 6230), 20 cores per processor, clocked at 2.1GHz. The machine
as shown in Table A.5 is configurable at start-up to expose one NUMA domain
or 2 Sub-NUMA-Cluster (SNC) per CPU. DRAM is split accordingly, while
NVDIMMs are always shared by the entire CPU. Processors can also be con-
figured to work in 2-Level-Memory mode or 1-Level-Memory mode. NVDIMMs
are Intel Data Center Persistent Memory Modules, 6×128GB per CPU. They

Data-Placement Strategies for HMS in HPC 107

A.2. Leonide: dual Intel Xeon Gold 6230 with NVDIMMs

can be configured to use Memory mode, App Direct mode or System-RAM
mode. Different mode’s combinations are shown in Figures A.6, A.7, A.8
and A.9.

Processor Xeon Gold 6230
Frequency (GHz) 2.1
Number of Cores 40
Number of Sockets 2
Number of NUMA domains 2 or 4 DDR, up to 2 NVDIMM
Sockets interconnection technology N/A
SNC mode SNC2, no SNC
Processor mode 1LM, 2LM
Memory mode Memory, App Direct, System-RAM
Hyper-Threading Yes

Figure A.5: Leonide system characteristics and configuration.

Machine (1487GB total)

Package L#0

L3 (28MB)

Group0

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#40

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#4

PU L#3
P#44

10x total
L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#9

PU L#18
P#36

PU L#19
P#76

MemCache (96GB)

NUMANode L#0 P#0 (370GB)

Group0

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#10

PU L#20
P#2

PU L#21
P#42

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#11

PU L#22
P#6

PU L#23
P#46

10x total
L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#19

PU L#38
P#38

PU L#39
P#78

MemCache (96GB)

NUMANode L#1 P#2 (372GB)

Package L#1

L3 (28MB)

Group0

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#20

PU L#40
P#1

PU L#41
P#41

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#21

PU L#42
P#5

PU L#43
P#45

10x total
L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#29

PU L#58
P#37

PU L#59
P#77

MemCache (96GB)

NUMANode L#2 P#1 (372GB)

Group0

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#30

PU L#60
P#3

PU L#61
P#43

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#31

PU L#62
P#7

PU L#63
P#47

10x total
L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core L#39

PU L#78
P#39

PU L#79
P#79

MemCache (96GB)

NUMANode L#3 P#3 (372GB)

Figure A.6: Intel Xeon Cascade Lake in SNC-2 mode, in 2-Level-Memory
mode, using NVDIMMs 100% in Memory mode, and using DRAM as cache in
front of NVDIMMs.

108 Andrès RUBIO PROAÑO

A. Platform Characteristics

Figure A.7: Intel Xeon Cascade Lake in SNC-2 mode, in 1-Level-Memory
mode, using NVDIMMs 100% in App Direct mode, NVDIMMs in Package #0
are setup in Device DAX (devdax device dax0.0), and NVDIMMs in Package
#1 are setup in File System DAX (fsdax device pmem1).

A.3 Souris: SGI Altix UV 2000
This SGI Altix UV 2000 system has the particularity of have 12 sockets nodes,
8 cores per processor, clocked at 2.6GHz. It has a total of 3TB of memory
(16GB/core) as shown in Table A.10. Processors are grouped by pair on
physical Blades that correspond to Groups in Figure A.11. Hence, there is at
least 3 levels of NUMA locality: local memory, memory in the neighbour CPU
of the same blade, and memory in other blades. However, the interconnect
between blades is not a complete graph, hence some blades are 2-hops away.

Data-Placement Strategies for HMS in HPC 109

A.3. Souris: SGI Altix UV 2000

Machine (1861GB total)

Package L#0

Group0

Core L#0

PU L#0
P#0

PU L#1
P#40

Core L#1

PU L#2
P#4

PU L#3
P#44

10x total
Core L#9

PU L#18
P#36

PU L#19
P#76

NUMANode L#0 P#0 (93GB)

Group0

Core L#10

PU L#20
P#2

PU L#21
P#42

Core L#11

PU L#22
P#6

PU L#23
P#46

10x total
Core L#19

PU L#38
P#38

PU L#39
P#78

NUMANode L#1 P#2 (94GB)

NUMANode L#2 P#4 (742GB)

Package L#1

Group0

Core L#20

PU L#40
P#1

PU L#41
P#41

Core L#21

PU L#42
P#5

PU L#43
P#45

10x total
Core L#29

PU L#58
P#37

PU L#59
P#77

NUMANode L#3 P#1 (93GB)

Group0

Core L#30

PU L#60
P#3

PU L#61
P#43

Core L#31

PU L#62
P#7

PU L#63
P#47

10x total
Core L#39

PU L#78
P#39

PU L#79
P#79

NUMANode L#4 P#3 (94GB)

NUMANode L#5 P#5 (744GB)

Figure A.8: Intel Xeon Cascade Lake in SNC-2 mode, in 1-Level-Memory
mode, using NVDIMMs in System-RAM mode (NUMA nodes P#4 and P#5).

110 Andrès RUBIO PROAÑO

A. Platform Characteristics

Machine (1861GB total)

Package L#0

Core L#0

PU L#0
P#0

Core L#1

PU L#1
P#2

20x total
Core L#19

PU L#19
P#38

NUMANode L#0 P#0 (187GB) NUMANode L#1 P#2 (742GB)

Package L#1

Core L#20

PU L#20
P#1

Core L#21

PU L#21
P#3

20x total
Core L#39

PU L#39
P#39

NUMANode L#2 P#1 (187GB) NUMANode L#3 P#3 (744GB)

Figure A.9: Intel Xeon Cascade Lake not in SNC mode, in 1-Level-Memory
mode, using NVDIMMs in System-RAM mode (NUMA nodes P#2 and P#3).

Processor Ivy-Bridge Xeon E5-4620v2
Figure A.11
Frequency (GHz) 2.6
Number of Cores 96
Number of Sockets 12
Number of NUMA domains 12
Hyper-Threading Yes
Turbo Boost Yes

Figure A.10: Souris system characteristics and configuration.

Data-Placement Strategies for HMS in HPC 111

A.3. Souris: SGI Altix UV 2000

Machine (2974GB total)

Group0

Package L#0

Core L#0

PU L#0
P#0

PU L#1
P#96

Core L#1

PU L#2
P#1

PU L#3
P#97

8x total
Core L#7

PU L#14
P#7

PU L#15
P#103

NUMANode L#0 P#0 (246GB)

Package L#1

Core L#8

PU L#16
P#8

PU L#17
P#104

Core L#9

PU L#18
P#9

PU L#19
P#105

8x total
Core L#15

PU L#30
P#15

PU L#31
P#111

NUMANode L#1 P#1 (248GB)

Group0

Package L#2

Core L#16

PU L#32
P#16

PU L#33
P#112

Core L#17

PU L#34
P#17

PU L#35
P#113

8x total
Core L#23

PU L#46
P#23

PU L#47
P#119

NUMANode L#2 P#2 (248GB)

Package L#3

Core L#24

PU L#48
P#24

PU L#49
P#120

Core L#25

PU L#50
P#25

PU L#51
P#121

8x total
Core L#31

PU L#62
P#31

PU L#63
P#127

NUMANode L#3 P#3 (248GB)

Group0

Package L#4

Core L#32

PU L#64
P#32

PU L#65
P#128

Core L#33

PU L#66
P#33

PU L#67
P#129

8x total
Core L#39

PU L#78
P#39

PU L#79
P#135

NUMANode L#4 P#4 (248GB)

Package L#5

Core L#40

PU L#80
P#40

PU L#81
P#136

Core L#41

PU L#82
P#41

PU L#83
P#137

8x total
Core L#47

PU L#94
P#47

PU L#95
P#143

NUMANode L#5 P#5 (248GB)

Group0

Package L#6

Core L#48

PU L#96
P#48

PU L#97
P#144

Core L#49

PU L#98
P#49

PU L#99
P#145

8x total
Core L#55

PU L#110
P#55

PU L#111
P#151

NUMANode L#6 P#6 (248GB)

Package L#7

Core L#56

PU L#112
P#56

PU L#113
P#152

Core L#57

PU L#114
P#57

PU L#115
P#153

8x total
Core L#63

PU L#126
P#63

PU L#127
P#159

NUMANode L#7 P#7 (248GB)

Group0

Package L#8

Core L#64

PU L#128
P#64

PU L#129
P#160

Core L#65

PU L#130
P#65

PU L#131
P#161

8x total
Core L#71

PU L#142
P#71

PU L#143
P#167

NUMANode L#8 P#8 (248GB)

Package L#9

Core L#72

PU L#144
P#72

PU L#145
P#168

Core L#73

PU L#146
P#73

PU L#147
P#169

8x total
Core L#79

PU L#158
P#79

PU L#159
P#175

NUMANode L#9 P#9 (248GB)

Group0

Package L#10

Core L#80

PU L#160
P#80

PU L#161
P#176

Core L#81

PU L#162
P#81

PU L#163
P#177

8x total
Core L#87

PU L#174
P#87

PU L#175
P#183

NUMANode L#10 P#10 (248GB)

Package L#11

Core L#88

PU L#176
P#88

PU L#177
P#184

Core L#89

PU L#178
P#89

PU L#179
P#185

8x total
Core L#95

PU L#190
P#95

PU L#191
P#191

NUMANode L#11 P#11 (248GB)

Figure A.11: Topology of the Souris node.

112 Andrès RUBIO PROAÑO

Bibliography

[1] Giovanni Agosta, William Fornaciari, Giuseppe Massari, Anna Pupyk-
ina, Federico Reghenzani, and Michele Zanella. Managing heterogeneous
resources in HPC systems. In ACM International Conference Proceeding
Series, pages 7–12, New York, New York, USA, 2018. ACM Press.

[2] Mulya Agung, Muhammad Alfian Amrizal, Ryusuke Egawa, and Hiroy-
uki Takizawa. DeLoc: A Locality and Memory-Congestion-Aware Task
Mapping Method for Modern NUMA Systems. IEEE Access, 8:6937–
6953, 2020.

[3] William Allcock, Bennett Bernardoni, Colleen Bertoni, Neil Getty,
Joseph Insley, Michael E. Papka, Silvio Rizzi, and Brian Toonen. RAM
as a network managed resource. In Proceedings - 2018 IEEE 32nd In-
ternational Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2018, pages 99–106, 2018.

[4] George Almási, Ralph Bellofatto, José Brunheroto, Cǎlin Caşcaval,
José G. Castanos, Luis Ceze, Paul Crumley, C. Christopher Erway,
Joseph Gagliano, Derek Lieber, Xavier Martorell, José E. Moreira, Aida
Sanomiya, and Karin Strauss. An overview of the blue gene/L system
software organization. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2790:543–555, 2004.

[5] Mohammed Almiyad and Anas Alhasan. An automation engine to im-
prove seismic operations in exploration. International Petroleum Tech-
nology Conference 2020, IPTC 2020, jan 2020.

[6] Lluc Alvarez, Eduard Ayguade, Marc Casas, Mateo Valero, Jesus Lab-
arta, and Miquel Moreto. Runtime-guided management of stacked
DRAM memories in task parallel programs. In Proceedings of the In-
ternational Conference on Supercomputing, pages 218–228. Association
for Computing Machinery, jun 2018.

[7] AMD. High Bandwidth Memory, 2016. http://www.amd.com/en-us/
innovations/software-technologies/hbm.

113

https://doi.org/10.1145/3183767.3183769
https://doi.org/10.1145/3183767.3183769
https://doi.org/10.1109/ACCESS.2019.2963726
https://doi.org/10.1109/ACCESS.2019.2963726
https://doi.org/10.1109/IPDPSW.2018.00024
https://doi.org/10.1109/IPDPSW.2018.00024
https://doi.org/10.1007/978-3-540-45209-6_79
https://doi.org/10.1007/978-3-540-45209-6_79
https://doi.org/10.2523/iptc-19960-abstract
https://doi.org/10.2523/iptc-19960-abstract
https://doi.org/10.1145/3205289.3205312
https://doi.org/10.1145/3205289.3205312
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm

[8] Amd. AMD64 Technology Platform Quality of Service Extensions. Tech-
nical report, 2018.

[9] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar,
Lily P. Looi, Sreenivas Mandava, Andy Rudoff, Ian M. Steiner, Bob
Valentine, Geetha Vedaraman, and Sujal Vora. Cascade Lake: Next
Generation Intel Xeon Scalable Processor. IEEE Micro, 39(2):29–36,
2019.

[10] Luna Backes and Daniel A. Jiménez. The impact of cache inclusion
policies on cache management techniques. ACM International Confer-
ence Proceeding Series, pages 428–438, 2019.

[11] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike
Lang, Scott Pakin, and Jose Carlos Sancho. A performance evaluation
of the Nehalem quad-core processor for scientific computing. In Parallel
Processing Letters, volume 18, pages 453–469. World Scientific Publish-
ing Company, dec 2008.

[12] Taylor Barnes, Brandon Cook, Jack Deslippe, Douglas Doerfler, Brian
Friesen, Yun He, Thorsten Kurth, Tuomas Koskela, Mathieu Lobet,
Tareq Malas, Leonid Oliker, Andrey Ovsyannikov, Abhinav Sarje,
Jean Luc Vay, Henri Vincenti, Samuel Williams, Pierre Carrier, Nathan
Wichmann, Marcus Wagner, Paul Kent, Christopher Kerr, and John
Dennis. Evaluating and optimizing the NERSC workload on knights
landing. In Proceedings of PMBS 2016: 7th International Workshop
on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computing Systems - Held in conjunction with SC 2016: The
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 43–53, 2017.

[13] D A Beckingsale and R D Hornung. Umpire : Status Report and Future
Development Plan. 2018.

[14] D. A. Beckingsale, M. J. McFadden, J. P.S. Dahm, R. Pankajakshan,
and R. D. Hornung. Umpire: Application-focused management and co-
ordination of complex hierarchical memory. IBM Journal of Research
and Development, 64(3-4), may 2020.

[15] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie
Furmento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and Ray-
mond Namyst. hwloc: A generic framework for managing hardware af-
finities in HPC applications. Proceedings of the 18th Euromicro Confer-
ence on Parallel, Distributed and Network-Based Processing, PDP 2010,
pages 180–186, 2010.

114 Andrès RUBIO PROAÑO

https://developer.amd.com/wp-content/resources/56375.pdf
https://doi.org/10.1109/MM.2019.2899330
https://doi.org/10.1109/MM.2019.2899330
https://doi.org/10.1145/3357526.3357547
https://doi.org/10.1145/3357526.3357547
https://doi.org/10.1142/S012962640800351X
https://doi.org/10.1142/S012962640800351X
https://doi.org/10.1109/PMBS.2016.010
https://doi.org/10.1109/PMBS.2016.010
https://www.osti.gov/servlets/purl/1460936
https://www.osti.gov/servlets/purl/1460936
https://doi.org/10.1147/JRD.2019.2954403
https://doi.org/10.1147/JRD.2019.2954403
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1109/PDP.2010.67

Bibliography

[16] Christopher Cantalupo, Jeff R Hammond, and Simon Hammond. User
Extensible Heap Manager for Heterogeneous Memory Platforms and
Mixed Memory Policies. (2):1–17, 2015.

[17] Suma George Cardwell, Craig Vineyard, Willam Severa, Frances S.
Chance, Frederick Rothganger, Felix Wang, Srideep Musuvathy, Corinne
Teeter, and James B. Aimone. Truly heterogeneous HPC: Co-design to
achieve what science needs from HPC. In Communications in Computer
and Information Science, volume 1315 CCIS, pages 349–365. Springer,
Cham, aug 2021.

[18] Gopinath Chennupati, Nandakishore Santhi, Stephan Eidenbenz, and
Sunil Thulasidasan. An analytical memory hierarchy model for perform-
ance prediction. In Proceedings - Winter Simulation Conference, pages
908–919. Institute of Electrical and Electronics Engineers Inc., jun 2017.

[19] Intel Corporation. Introduction to Intel ® Optane ™ DC Technology
Frequently Asked Questions (FAQ). Technical report, 2019.

[20] Nicolas Denoyelle, Brice Goglin, Aleksandar Ilic, Emmanuel Jeannot,
and Leonel Sousa. Modeling non-uniform memory access on large com-
pute nodes with the cache-aware roofline model. IEEE Transactions on
Parallel and Distributed Systems, 30(6):1374–1389, 2019.

[21] Nicolas Denoyelle, Brice Goglin, Emmanuel Jeannot, and Thomas Ro-
pars. Data and thread placement in NUMA architectures: A statistical
learning approach. ACM International Conference Proceeding Series,
aug 2019.

[22] Nicolas Denoyelle, John Tramm, Kazutomo Yoshii, Swann Perarnau,
and Pete Beckman. Numa-Aware Data Management for Neutron Cross
Section Data in Continuous Energy Monte Carlo Neutron Transport Sim-
ulation. EPJ Web of Conferences, 247:04020, 2021.

[23] Ulrich Detert and Gerd Hofemann. CRAY X-MP and Y-MP memory
performance. Parallel Computing, 17(4-5):579–590, jul 1991.

[24] Zhuohui Duan, Haikun Liu, Xiaofei Liao, Hai Jin, Wenbin Jiang, and
Yu Zhang. HiNUMA: NUMA-aware data placement and migration in
hybrid memory systems. In Proceedings - 2019 IEEE International Con-
ference on Computer Design, ICCD 2019, pages 367–375. Institute of
Electrical and Electronics Engineers Inc., nov 2019.

[25] Loïc Duflot, Olivier Levillain, and Benjamin Morin. Acpi: Design prin-
ciples and concerns. Technical report, 2009.

Data-Placement Strategies for HMS in HPC 115

http://memkind.github.io/memkind/
http://memkind.github.io/memkind/
http://memkind.github.io/memkind/
https://doi.org/10.1007/978-3-030-63393-6_23
https://doi.org/10.1007/978-3-030-63393-6_23
https://doi.org/10.1109/WSC.2017.8247842
https://doi.org/10.1109/WSC.2017.8247842
https://www.intel.com/content/dam/www/public/us/en/documents/faqs/optane-dc-technology-faq.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/faqs/optane-dc-technology-faq.pdf
https://doi.org/10.1109/TPDS.2018.2883056
https://doi.org/10.1109/TPDS.2018.2883056
https://doi.org/10.1145/3337821.3337893
https://doi.org/10.1145/3337821.3337893
https://doi.org/10.1051/epjconf/202124704020
https://doi.org/10.1051/epjconf/202124704020
https://doi.org/10.1051/epjconf/202124704020
https://doi.org/10.1016/S0167-8191(05)80158-9
https://doi.org/10.1016/S0167-8191(05)80158-9
https://doi.org/10.1109/ICCD46524.2019.00058
https://doi.org/10.1109/ICCD46524.2019.00058
https://doi.org/10.1007/978-3-642-00587-9_2
https://doi.org/10.1007/978-3-642-00587-9_2

[26] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared
memory algorithms. Journal of the ACM, 44(6):779–805, nov 1997.

[27] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten.
Cache pirating: Measuring the curse of the shared cache. In Proceedings
of the International Conference on Parallel Processing, pages 165–175,
2011.

[28] Fujitsu. Toca do Tux: Fujitsu trabalha em seu novo supercomputa-
dor. http://www.tocadotux.com.br/2019/12/fujitsu-trabalha-em-
seu-novo.html.

[29] Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Al-
exandra Fedorova, Vivien Quéma, Renaud Lachaize, and Mark Roth.
Challenges of memory management on modern NUMA systems. Com-
munications of the ACM, 58(12):59–66, dec 2015.

[30] Yiannis Georgiou and Matthieu Hautreux. SLURM Resources isolation
through cgroups (2011). Georgiou, Y., Hautreux, 2011.

[31] Richard J. Glassock. A Personal Perspective on the State of the Art
in Research in Glomerulonephritis. In Peter H Welch, Frederick R M
Barnes, Jan F Broenink, Kevin Chalmers, Jan Bækgaard Pedersen, and
Adam T Sampson, editors, Chronic Renal Disease, pages 5–7. Open
Channel Publishing Ltd., 1985.

[32] M. D. Godfrey and D. F. Hendry. The Computer as von Neumann
Planned It. IEEE Annals of the History of Computing, 15(1):11–21,
1993.

[33] Brice Goglin. Exposing the locality of heterogeneous memory architec-
tures to HPC applications. In ACM International Conference Proceeding
Series, volume 03-06-October-2016, pages 30–39, 2016.

[34] Jimmy Handy and Tom Coughlin. The Future of Low Latency Why
Near Memory Requires a New Interface [White Paper]. SNIA Persistent
Memory + Computational Storage Summit, 2021.

[35] Dave Hansen. Allow persistent memory to be used like normal RAM.
https://lwn.net/Articles/776921/.

[36] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright,
and Nicholas J. Wright. Architecture and Design of Cray DataWarp.
CUG ’16 Proceedings of the Cray User Group, 2016.

116 Andrès RUBIO PROAÑO

https://doi.org/10.1145/268999.269000
https://doi.org/10.1145/268999.269000
https://doi.org/10.1109/ICPP.2011.15
http://www.tocadotux.com.br/2019/12/fujitsu-trabalha-em-seu-novo.html
http://www.tocadotux.com.br/2019/12/fujitsu-trabalha-em-seu-novo.html
http://www.tocadotux.com.br/2019/12/fujitsu-trabalha-em-seu-novo.html
http://www.tocadotux.com.br/2019/12/fujitsu-trabalha-em-seu-novo.html
https://doi.org/10.1145/2814328
https://slurm.schedmd.com/slurm_ug_2011/SLURM_UserGroup2011_cgroups.pdf
https://slurm.schedmd.com/slurm_ug_2011/SLURM_UserGroup2011_cgroups.pdf
https://doi.org/10.1007/978-1-4684-4826-9_1
https://doi.org/10.1007/978-1-4684-4826-9_1
https://doi.org/10.1109/85.194088
https://doi.org/10.1109/85.194088
https://doi.org/10.1145/2989081.2989115
https://doi.org/10.1145/2989081.2989115
www.OBJECTIVE-ANALYSIS.com
www.OBJECTIVE-ANALYSIS.com
https://lwn.net/Articles/776921/
https://lwn.net/Articles/776921/
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf

Bibliography

[37] HPCwire. It’s Fugaku vs. COVID-19: How the World’s
Top Supercomputer Is Shaping Our New Normal. https:
//www.hpcwire.com/2020/11/09/its-fugaku-vs-covid-19-how-
the-worlds-top-supercomputer-is-shaping-our-new-normal/.

[38] W C Hsu. Register allocation and code scheduling for load/store archi-
tectures.

[39] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
vol. 1-3. (253665, 325383, 325384):366–369, 2016.

[40] Intel. Intel® Xeon Phi™ Processor x200 Product Family Datasheet,
2017. https://www.intel.com/content/www/us/en/processors/
xeon/xeon-phi-processor-x200-product-family-datasheet.html.

[41] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu,
Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Sub-
ramanya R. Dulloor, Jishen Zhao, and Steven Swanson. Basic Perform-
ance Measurements of the Intel Optane DC Persistent Memory Module.
arXiv, pages 1–36, 2019.

[42] Jikku Jeemon. Pipelined 8-bit RISC Processor Design using Verilog
HDL on FPGA. 2016 IEEE International Conference on Recent Trends
in Electronics, Information and Communication Technology, RTEICT
2016 - Proceedings, 4(6):2023–2027, 2017.

[43] Yichen Jia and Feng Chen. From Flash to 3D XPoint: Performance
Bottlenecks and Potentials in RocksDB with Storage Evolution. In Pro-
ceedings - 2020 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2020, pages 192–201. Institute of Elec-
trical and Electronics Engineers Inc., aug 2020.

[44] Kernel.org. 20. User Interface for Resource Control feature — The Linux
Kernel documentation. https://www.kernel.org/doc/html/latest/
x86/resctrl.html.

[45] Dounia Khaldi and Barbara Chapman. Towards automatic HBM alloc-
ation using LLVM: A case study with knights landing. In Proceedings
of LLVM-HPC 2016: The 3rd Workshop on the LLVM Compiler Infra-
structure in HPC - Held in conjunction with SC 2016: The International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 12–20. Institute of Electrical and Electronics Engineers
Inc., feb 2017.

[46] David B Kirk and Wen-mei W Hwu. Programming Massively Parallel
Processors. Programming Massively Parallel Processors, 2013.

Data-Placement Strategies for HMS in HPC 117

https://www.hpcwire.com/2020/11/09/its-fugaku-vs-covid-19-how-the-worlds-top-supercomputer-is-shaping-our-new-normal/
https://www.hpcwire.com/2020/11/09/its-fugaku-vs-covid-19-how-the-worlds-top-supercomputer-is-shaping-our-new-normal/
https://www.hpcwire.com/2020/11/09/its-fugaku-vs-covid-19-how-the-worlds-top-supercomputer-is-shaping-our-new-normal/
https://www.hpcwire.com/2020/11/09/its-fugaku-vs-covid-19-how-the-worlds-top-supercomputer-is-shaping-our-new-normal/
https://www.hpcwire.com/2020/11/09/its-fugaku-vs-covid-19-how-the-worlds-top-supercomputer-is-shaping-our-new-normal/
https://www.osti.gov/biblio/7183823
https://www.osti.gov/biblio/7183823
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-x200-product-family-datasheet.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-x200-product-family-datasheet.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-processor-x200-product-family-datasheet.html
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1109/RTEICT.2016.7808194
https://doi.org/10.1109/RTEICT.2016.7808194
https://doi.org/10.1109/ISPASS48437.2020.00034
https://doi.org/10.1109/ISPASS48437.2020.00034
https://www.kernel.org/doc/html/latest/x86/resctrl.html
https://www.kernel.org/doc/html/latest/x86/resctrl.html
https://www.kernel.org/doc/html/latest/x86/resctrl.html
https://www.kernel.org/doc/html/latest/x86/resctrl.html
https://doi.org/10.1109/LLVM-HPC.2016.007
https://doi.org/10.1109/LLVM-HPC.2016.007
https://doi.org/10.1016/c2011-0-04129-7
https://doi.org/10.1016/c2011-0-04129-7

[47] Christoph Lameter. NUMA (Non-Uniform Memory Access): An over-
view: NUMA becomes more common because memory controllers get
close to execution units on microprocessors. Queue, 11(7):40–51, jul
2013.

[48] Michael Kenneth Lang. Simplified Interface to Complex Memory (SICM)
FY19 Project Review. Technical report, Los Alamos National Laborat-
ory (LANL), Los Alamos, NM (United States), oct 2019.

[49] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Khan,
and Onur Mutlu. Simultaneous multi-layer access: Improving 3d-stacked
memory bandwidth at low cost. ACM Transactions on Architecture and
Code Optimization, 12(4):1–29, jan 2016.

[50] Ang Li, Weifeng Liu, Mads R.B. Kristensen, Brian Vinter, Hao Wang,
Kaixi Hou, Andres Marquez, and Shuaiwen Leon Song. Exploring and
analyzing the real impact of modern on-package memory on hpc scientific
kernels. Proceedings of the International Conference for High Perform-
ance Computing, Networking, Storage and Analysis, SC 2017, (iii), 2017.

[51] Fujitsu Limited. Supercomputer “ Fugaku ”. Top500, 1(1):1, 2020.

[52] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems. Proceedings -
International Symposium on High-Performance Computer Architecture,
pages 367–378, 2008.

[53] Haikun Liu, Renshan Liu, Xiaofei Liao, Hai Jin, Bingsheng He, and
Yu Zhang. Object-Level Memory Allocation and Migration in Hybrid
Memory Systems. IEEE Transactions on Computers, 69(9):1401–1413,
sep 2020.

[54] Jihang Liu and Shimin Chen. Initial experience with 3D XPoint main
memory. Distributed and Parallel Databases, 38(4):865–880, 2020.

[55] LLNL. LLNL_BGL_Diagram.png (600×409). https:
//upload.wikimedia.org/wikipedia/commons/b/b4/
LLNL_BGL_Diagram.png.

[56] Lily P. Looi. (5) Intel Optane DC Persistent Memory Performance Over-
view - YouTube. https://www.youtube.com/watch?v=UTVt_AZmWjM.

[57] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, and F. F.
Rivera. 3DyRM: a dynamic roofline model including memory latency
information. Journal of Supercomputing, 70(2):696–708, nov 2014.

118 Andrès RUBIO PROAÑO

https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.2172/1569724
https://doi.org/10.2172/1569724
https://doi.org/10.1145/2832911
https://doi.org/10.1145/2832911
https://doi.org/10.1145/3126908.3126931
https://doi.org/10.1145/3126908.3126931
https://doi.org/10.1145/3126908.3126931
https://www.r-ccs.riken.jp/en/fugaku/project,{%}0Ahttps://www.top500.org/system/179807/
https://doi.org/10.1109/HPCA.2008.4658653
https://doi.org/10.1109/HPCA.2008.4658653
https://doi.org/10.1109/TC.2020.2973134
https://doi.org/10.1109/TC.2020.2973134
https://doi.org/10.1007/s10619-019-07277-8
https://doi.org/10.1007/s10619-019-07277-8
https://upload.wikimedia.org/wikipedia/commons/b/b4/LLNL_BGL_Diagram.png
https://upload.wikimedia.org/wikipedia/commons/b/b4/LLNL_BGL_Diagram.png
https://upload.wikimedia.org/wikipedia/commons/b/b4/LLNL_BGL_Diagram.png
https://upload.wikimedia.org/wikipedia/commons/b/b4/LLNL_BGL_Diagram.png
https://www.youtube.com/watch?v=UTVt_AZmWjM
https://www.youtube.com/watch?v=UTVt_AZmWjM
https://www.youtube.com/watch?v=UTVt_AZmWjM
https://doi.org/10.1007/s11227-014-1163-4
https://doi.org/10.1007/s11227-014-1163-4

Bibliography

[58] Lwn. Top-tier memory management [LWN.net]. https://lwn.net/
Articles/857133/.

[59] Norman Macrae and Herbert F. York. John Von Neumann: The Sci-
entific Genius Who Pioneered the Modern Computer, Game Theory,
Nuclear Deterrance, and Much More . Physics Today, 46(10):119–120,
oct 1993.

[60] John D McCalpin. Memory bandwidth: Stream benchmark performance
results, 2002. http://www.cs.virginia.edu/stream/.

[61] John David Mccalpin and John DMccalpin. Memory bandwidth and ma-
chine balance in high performance computers Technology Trends in High
Performance Computing View project Dynamics of Mesoscale Ocean Cir-
culation View project Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers. Technical report.

[62] Neil A. Mehta, Rahulkumar Gayatri, Yasaman Ghadar, Christopher
Knight, and Jack Deslippe. Evaluating Performance Portability
of OpenMP for SNAP on NVIDIA, Intel, and AMD GPUs Using the
Roofline Methodology. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 12655 LNCS, pages 3–24. Springer, Cham, nov
2021.

[63] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Wolfgang E. Na-
gel. Detecting memory-boundedness with hardware performance coun-
ters. ICPE 2017 - Proceedings of the 2017 ACM/SPEC International
Conference on Performance Engineering, 17:27–38, 2017.

[64] Stéphanie Moreaud and Brice Goglin. Impact of NUMA effects on high-
speed networking with multi-OPTERON machines. In Proceedings of the
IASTED International Conference on Parallel and Distributed Comput-
ing and Systems, pages 24–29. ACTA Press, nov 2007.

[65] Richard Murphy. On the effects of memory latency and bandwidth on su-
percomputer application performance. In Proceedings of the 2007 IEEE
International Symposium on Workload Characterization, IISWC, pages
35–43, 2007.

[66] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A
Ang. Introducing the Graph 500 Introduction : Why Another. Cray
Users Gr., 19:45–74, 2010.

[67] Ravi Nair. Evolution of Memory Architecture. Proceedings of the IEEE,
103(8):1331–1345, aug 2015.

Data-Placement Strategies for HMS in HPC 119

https://lwn.net/Articles/857133/
https://lwn.net/Articles/857133/
https://lwn.net/Articles/857133/
https://doi.org/10.1063/1.2809070
https://doi.org/10.1063/1.2809070
https://doi.org/10.1063/1.2809070
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://perelandra.cms.udel.edu/hpc/stream,
http://perelandra.cms.udel.edu/hpc/stream,
http://perelandra.cms.udel.edu/hpc/stream,
http://perelandra.cms.udel.edu/hpc/stream,
http://perelandra.cms.udel.edu/hpc/stream,
https://doi.org/10.1007/978-3-030-74224-9_1
https://doi.org/10.1007/978-3-030-74224-9_1
https://doi.org/10.1007/978-3-030-74224-9_1
https://doi.org/10.1145/3030207.3030223
https://doi.org/10.1145/3030207.3030223
https://dl.acm.org/doi/10.5555/1647539.1647545
https://dl.acm.org/doi/10.5555/1647539.1647545
https://doi.org/10.1109/IISWC.2007.4362179
https://doi.org/10.1109/IISWC.2007.4362179
http://www.richardmurphy.net/archive/cug-may2010.pdf
https://doi.org/10.1109/JPROC.2015.2435018

[68] Aditya Narayan, Tiansheng Zhang, Shaizeen Aga, Satish Narayanasamy,
and Ayse Coskun. MOCA: Memory object classification and allocation
in heterogeneous memory systems. Proceedings - 2018 IEEE 32nd Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2018,
pages 326–335, 2018.

[69] Anant Vithal Nori, Jayesh Gaur, Siddharth Rai, Sreenivas Subramoney,
and Hong Wang. Criticality aware tiered cache hierarchy: A funda-
mental relook at multi-level cache hierarchies. In Proceedings - Interna-
tional Symposium on Computer Architecture, pages 96–109. Institute of
Electrical and Electronics Engineers Inc., jul 2018.

[70] A. Nowak. Opportunities and choice in a new vector era. Journal of
Physics: Conference Series, 523(1):012002, jun 2014.

[71] Wilfried Oed. Cray Y-MP C90: System features and early benchmark
results. Parallel Computing, 18(8):947–954, aug 1992.

[72] Ismail Oukid and Lucas Lersch. On the Diversity of Memory and Storage
Technologies. Datenbank-Spektrum, 18(2):121–127, 2018.

[73] Jinsu Park, Seongbeom Park, and Woongki Baek. CoPart: Coordinated
partitioning of last-level cache and memory bandwidth for fairness-aware
workload consolidation on commodity servers. In Proceedings of the 14th
EuroSys Conference 2019, volume 19, New York, NY, USA, 2019. ACM.

[74] Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Mi-
chael Lang. Performance characterization of a DRAM-NVM hybrid
memory architecture for HPC applications using intel optane DC persist-
ent memory modules. ACM International Conference Proceeding Series,
pages 288–303, 2019.

[75] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit
Mishra, Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R.
Das. Opportunistic computing in GPU architectures. In Proceedings
- International Symposium on Computer Architecture, pages 210–223,
2019.

[76] Antonio J. Pena and Pavan Balaji. Toward the efficient use of multiple
explicitly managed memory subsystems. In 2014 IEEE International
Conference on Cluster Computing, CLUSTER 2014, pages 123–131. In-
stitute of Electrical and Electronics Engineers Inc., nov 2014.

[77] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin
Laure, and Stefano Markidis. Exploring the performance benefit of hy-
brid memory system on HPC environments. In Proceedings - 2017 IEEE

120 Andrès RUBIO PROAÑO

https://doi.org/10.1109/IPDPS.2018.00042
https://doi.org/10.1109/IPDPS.2018.00042
https://doi.org/10.1109/ISCA.2018.00019
https://doi.org/10.1109/ISCA.2018.00019
https://doi.org/10.1088/1742-6596/523/1/012002
https://doi.org/10.1016/0167-8191(92)90039-A
https://doi.org/10.1016/0167-8191(92)90039-A
https://doi.org/10.1007/s13222-018-0287-8
https://doi.org/10.1007/s13222-018-0287-8
https://doi.org/10.1145/3302424.3303963
https://doi.org/10.1145/3302424.3303963
https://doi.org/10.1145/3302424.3303963
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/3307650.3322212
https://doi.org/10.1109/CLUSTER.2014.6968756
https://doi.org/10.1109/CLUSTER.2014.6968756
https://doi.org/10.1109/IPDPSW.2017.115
https://doi.org/10.1109/IPDPSW.2017.115

Bibliography

31st International Parallel and Distributed Processing Symposium Work-
shops, IPDPSW 2017, pages 683–692. Institute of Electrical and Elec-
tronics Engineers Inc., jun 2017.

[78] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Jeffrey S. Vetter, Pietro
Cicotti, Erwin Laure, and Stefano Markidis. Characterizing the perform-
ance benefit of hybrid memory system for HPC applications. Parallel
Computing, 76:57–69, aug 2018.

[79] Swann Perarnau, Brice Videau, Nicolas Denoyelle, Florence Monna,
Kamil Iskra, and Pete Beckman. Explicit data layout management for
autotuning exploration on complex memory topologies. In Proceedings of
MCHPC 2019: Workshop on Memory Centric High Performance Com-
puting - Held in conjunction with SC 2019: The International Confer-
ence for High Performance Computing, Networking, Storage and Ana-
lysis, pages 58–63. Institute of Electrical and Electronics Engineers Inc.,
nov 2019.

[80] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating
cache performance bottlenecks using data profiling. In EuroSys’10 -
Proceedings of the EuroSys 2010 Conference, pages 335–348, New York,
New York, USA, 2010. ACM Press.

[81] Simon Pickartz, Jens Breitbart, and Stefan Lankes. Co-scheduling on
Upcoming Many-Core Architectures. Cosh 2017, page 2017, 2017.

[82] PlaFRIM. PlaFRIM – Plateforme Fédérative pour la Recherche en In-
formatique et Mathématiques. https://www.plafrim.fr/.

[83] Constantin Pohl and Kai Uwe Sattler. Joins in a heterogeneous memory
hierarchy: Exploiting high-bandwidth memory. In 14th International
Workshop on Data Management on New Hardware, DaMoN 2018, pages
1–10, New York, NY, USA, jun 2018. Association for Computing Ma-
chinery, Inc.

[84] Savíns Puertas-Martín, Antonio J. Banegas-Luna, María Paredes-
Ramos, Juana L. Redondo, Pilar M. Ortigosa, Ol’ha O. Brovarets’, and
Horacio Pérez-Sánchez. Is high performance computing a requirement for
novel drug discovery and how will this impact academic efforts? Expert
Opinion on Drug Discovery, 15(9):981–986, sep 2020.

[85] Richard M. Russell. The CRAY-1 Computer System. Communications
of the ACM, 21(1):63–72, jan 1978.

[86] Solmaz Salehian and Yonghong Yan. Evaluation of knight landing high
bandwidth memory for HPC workloads. In Proceedings of IA3 2017: 7th

Data-Placement Strategies for HMS in HPC 121

https://doi.org/10.1016/j.parco.2018.04.007
https://doi.org/10.1016/j.parco.2018.04.007
https://doi.org/10.1109/MCHPC49590.2019.00015
https://doi.org/10.1109/MCHPC49590.2019.00015
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.14459/2017md1344415
https://doi.org/10.14459/2017md1344415
https://www.plafrim.fr/
https://www.plafrim.fr/
https://www.plafrim.fr/
https://doi.org/10.1145/3211922.3211929
https://doi.org/10.1145/3211922.3211929
https://doi.org/10.1080/17460441.2020.1758664
https://doi.org/10.1080/17460441.2020.1758664
https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/3149704.3149766
https://doi.org/10.1145/3149704.3149766

Workshop on Irregular Applications: Architectures and Algorithms, Held
in conjunction with SC 2017: The International Conference for High
Performance Computing, Networking, Storage and Analysis. Association
for Computing Machinery, Inc, nov 2017.

[87] Rommel Sánchez Verdejo, Kazi Asifuzzaman, Milan Radulovic, Petar
Radojković, Eduard Ayguadé, and Bruce Jacob. Main memory latency
simulation: The missing link. In ACM International Conference Pro-
ceeding Series, page 10, New York, NY, USA, 2018. ACM.

[88] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama,
Tetsuya Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki
Shida, Ikuo Miyoshi, Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki
Morita, and Toshiyuki Shimizu. Co-design for a64fx manycore processor
and ’Fugaku’. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC, volume 2020-November.
IEEE Computer Society, nov 2020.

[89] Steve Scargall. Volatile Use of Persistent Memory. In Programming
Persistent Memory, pages 155–186. Apress, 2020.

[90] Ada Sedova, John D. Eblen, Reuben Budiardja, Arnold Tharrington,
and Jeremy C. Smith. High-performance molecular dynamics simulation
for biological and materials sciences: Challenges of performance portab-
ility. Proceedings of P3HPC 2018: International Workshop on Perform-
ance, Portability and Productivity in HPC, Held in conjunction with SC
2018: The International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–13, feb 2019.

[91] Hwajeong Seo, Kyuhwang An, and Hyeokdong Kwon. Compact LEA
and HIGHT implementations on 8-bit AVR and 16-bit MSP processors.
In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
11402 LNCS, pages 253–265. Springer Verlag, aug 2019.

[92] Harald Servat, Antonio J. Pena, German Llort, Estanislao Mercadal,
Hans Christian Hoppe, and Jesus Labarta. Automating the Application
Data Placement in Hybrid Memory Systems. Proceedings - IEEE Inter-
national Conference on Cluster Computing, ICCC, 2017-September:126–
136, sep 2017.

[93] Nikolay A. Simakov, Robert L. DeLeon, Joseph P. White, Thomas R.
Furlani, Martins Innus, Steven M. Gallo, Matthew D. Jones, Abani
Patra, Benjamin D. Plessinger, Jeanette Sperhac, Thomas Yearke, Ryan
Rathsam, and Jeffrey T. Palmer. A quantitative analysis of node sharing

122 Andrès RUBIO PROAÑO

https://doi.org/10.1145/3240302.3240317
https://doi.org/10.1145/3240302.3240317
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.1007/978-1-4842-4932-1_10
https://doi.org/10.1109/P3HPC.2018.00004
https://doi.org/10.1109/P3HPC.2018.00004
https://doi.org/10.1109/P3HPC.2018.00004
https://doi.org/10.1007/978-3-030-17982-3_20
https://doi.org/10.1007/978-3-030-17982-3_20
https://doi.org/10.1109/CLUSTER.2017.50
https://doi.org/10.1109/CLUSTER.2017.50
https://doi.org/10.1145/2949550.2949553
https://doi.org/10.1145/2949550.2949553

Bibliography

on HPC clusters using XDMoD application kernels. In ACM Interna-
tional Conference Proceeding Series, volume 17-21-July-2016, pages 1–8,
New York, NY, USA, jul 2016. Association for Computing Machinery.

[94] Margaret L. Simmons and Harvey J. Wasserman. Performance compar-
ison of the CRAY-2 and CRAY X-MP/416 supercomputers. The Journal
of Supercomputing, 4(2):153–167, jun 1990.

[95] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho Seop Kim, Krishna
Vinod, Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and
Yen Chen Liu. Knights Landing: Second-Generation Intel Xeon Phi
Product. IEEE Micro, 36(2):34–46, 2016.

[96] Nitish Kumar Srivastava and Akshay Dilip Navalakha. Pointer-Chase
Prefetcher for Linked Data Structures. CoRR, abs/1801.0, jan 2018.

[97] Iulia Stirb. Improving runtime performance and energy consumption
through balanced data locality with NUMA-BTLP and NUMA-BTDM
static algorithms for thread classification and thread type-aware map-
ping. International Journal of Computational Science and Engineering,
22(2-3):200–210, 2020.

[98] Dmitry Suplatov, Maxim Shegay, Yana Sharapova, Ivan Timokhin, Nina
Popova, Vladimir Voevodin, and Vytas Švedas. Co-designing HPC-
systems by computing capabilities and management flexibility to accom-
modate bioinformatic workflows at different complexity levels. Journal
of Supercomputing, pages 1–17, apr 2021.

[99] Sam Ainsworth Timothy and M. Jones. Software prefetching for indirect
memory accesses. In CGO 2017 - Proceedings of the 2017 International
Symposium on Code Generation and Optimization, pages 305–317. In-
stitute of Electrical and Electronics Engineers Inc., feb 2017.

[100] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: Lightweight
Performance Tools. Competence in High Performance Computing 2010,
pages 165–175, 2011.

[101] Usha Upadhyayula and Steve Scargall. Introduction to Persistent
Memory Configuration and Analysis Tools Usha Upadhyayula (Intel
) Steve Scargall (Intel). 2018.

[102] Usenix. ACPI Specified Components. https://www.usenix.org/
legacy/publications/library/proceedings/usenix02/tech/
freenix/full_papers/watanabe/watanabe_html/node4.html.

Data-Placement Strategies for HMS in HPC 123

https://doi.org/10.1145/2949550.2949553
https://doi.org/10.1145/2949550.2949553
https://doi.org/10.1145/2949550.2949553
https://doi.org/10.1007/BF00127878
https://doi.org/10.1007/BF00127878
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1109/MM.2016.25
http://arxiv.org/abs/1801.08088
http://arxiv.org/abs/1801.08088
https://doi.org/10.1504/IJCSE.2020.107342
https://doi.org/10.1504/IJCSE.2020.107342
https://doi.org/10.1504/IJCSE.2020.107342
https://doi.org/10.1504/IJCSE.2020.107342
https://doi.org/10.1007/s11227-021-03691-x
https://doi.org/10.1007/s11227-021-03691-x
https://doi.org/10.1007/s11227-021-03691-x
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1007/978-3-642-24025-6_14
https://doi.org/10.1007/978-3-642-24025-6_14
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Upadhyayula_U_Scargall_S_Introduction_to_Persistent_Memory_Configuration_and_Analysis_Tools.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Upadhyayula_U_Scargall_S_Introduction_to_Persistent_Memory_Configuration_and_Analysis_Tools.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Upadhyayula_U_Scargall_S_Introduction_to_Persistent_Memory_Configuration_and_Analysis_Tools.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/tech/freenix/full_papers/watanabe/watanabe_html/node4.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/tech/freenix/full_papers/watanabe/watanabe_html/node4.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/tech/freenix/full_papers/watanabe/watanabe_html/node4.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/tech/freenix/full_papers/watanabe/watanabe_html/node4.html

[103] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. Persistent memory I/O primitives. Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 2019.

[104] Sudharshan S. Vazhkudai, Bronis R. De Supinski, Arthur S. Bland,
Al Geist, James Sexton, Jim Kahle, Christopher J. Zimmer, Scott Atch-
ley, Sarp Oral, Don E. Maxwell, Veronica G.Vergara Larrea, Adam
Bertsch, Robin Goldstone, Wayne Joubert, Chris Chambreau, David Ap-
pelhans, Robert Blackmore, Ben Casses, George Chochia, Gene Davison,
Matthew A. Ezell, Tom Gooding, Elsa Gonsiorowski, Leopold Grinberg,
Bill Hanson, Bill Hartner, Ian Karlin, Matthew L. Leininger, Dustin
Leverman, Chris Marroquin, Adam Moody, Martin Ohmacht, Ramesh
Pankajakshan, Fernando Pizzano, James H. Rogers, Bryan Rosenburg,
Drew Schmidt, Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob
Walkup, Lance D. Weems, and Junqi Yin. The design, deployment,
and evaluation of the CORAL pre-exascale systems. In Proceedings - In-
ternational Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 2018, pages 661–672, 2019.

[105] Daniel Waddington, Mark Kunitomi, Clem Dickey, Samyukta Rao, Amir
Abboud, and Jantz Tran. Evaluation of intel 3D-Xpoint NVDIMM tech-
nology for memory-intensive genomic workloads. ACM International
Conference Proceeding Series, 11(19):277–287, sep 2019.

[106] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan
Yu. An Ephemeral Burst-Buffer File System for Scientific Applications.
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, 0:807–818, jul 2016.

[107] Lawrence WEBBER and Michael WALLACE. Advanced Configuration
and Power Interface. Technical Report April, 2015.

[108] Wikichip. Skylake (server) - Microarchitectures - Intel - Wiki-
Chip. https://en.wikichip.org/wiki/intel/microarchitectures/
skylake_(server).

[109] Jinfeng Yang, L. I. Bingzhe, and David J. Lilja. Exploring performance
characteristics of the optane 3D xpoint storage technology. In ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems, volume 5, pages 1–28. Association for Computing Machinery,
feb 2020.

[110] Judicael A. Zounmevo, Swann Perarnau, Kamil Iskra, Kazutomo Yoshii,
Roberto Gioiosa, Brian C. Van Essen, Maya B. Gokhale, and Edgar A.

124 Andrès RUBIO PROAÑO

https://doi.org/10.1145/3329785.3329930
https://doi.org/10.1109/SC.2018.00055
https://doi.org/10.1109/SC.2018.00055
https://doi.org/10.1145/3357526.3357528
https://doi.org/10.1145/3357526.3357528
https://doi.org/10.1109/SC.2016.68
https://doi.org/10.5848/amacom.978-0-814414-47-7_7
https://doi.org/10.5848/amacom.978-0-814414-47-7_7
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://doi.org/10.1145/3372783
https://doi.org/10.1145/3372783

Bibliography

Leon. A container-based approach to OS specialization for exascale com-
puting. Proceedings - 2015 IEEE International Conference on Cloud
Engineering, IC2E 2015, pages 359–364, 2015.

Data-Placement Strategies for HMS in HPC 125

https://doi.org/10.1109/IC2E.2015.78
https://doi.org/10.1109/IC2E.2015.78

126 Andrès RUBIO PROAÑO

Publications

[111] Brice Goglin and Andrès Rubio Proaño. Opportunities for partitioning
non-volatile memory DIMMs between co-scheduled Jobs on HPC Nodes.
In Euro-Par 2019: Parallel Processing Workshops, volume 11997 of Lec-
ture Notes in Computer Science, pages 82–94, Göttigen, August 2019.
Springer.

[112] Brice Goglin and Andrès Rubio Proaño. Using Performance Attributes
for Managing Heterogeneous Memory in HPC Applications. Submitted,
2021.

[113] Edgar A. León, Brice Goglin, and Andrès Rubio Proaño. M&MMs: Nav-
igating Complex Memory Spaces with Hwloc. In Proceedings of the Inter-
national Symposium on Memory Systems, MEMSYS ’19, page 149–155,
New York, NY, USA, 2019. Association for Computing Machinery.

[114] Andrès Rubio Proaño. Exposer les caractéristiques des architectures à
mémoires hétérogènes aux applications parallèles. In COMPAS 2020 -
Conférence francophone d’informatique en Parallélisme, Architecture et
Système, Lyon, France, June 2020.

127

https://doi.org/10.1007/978-3-030-48340-1_7
https://doi.org/10.1007/978-3-030-48340-1_7
https://doi.org/10.1145/3357526.3357546
https://doi.org/10.1145/3357526.3357546
https://hal.inria.fr/hal-02639607
https://hal.inria.fr/hal-02639607

	Introduction, Context and Motivations
	Benefits of High-Performance Computing
	Heterogeneous perspective of HPC
	Outline of the manuscript

	Memory Systems in HPC
	HPC Architecture
	Memory Hierarchy
	Registers
	Cache Memory Hierarchy
	Main Memory
	NUMA

	New Memory Technologies
	HBM
	Non-volatile memory
	Intel non-volatile memory solutions
	Other memories

	Impact of the Memory Subsystem
	Combining different kinds of memory
	Locality vs Heterogeneity
	Summary

	Software State of the art
	Managing Heterogeneous Memory
	hwloc

	Statement of the Problem

	Navigating Complex Memory Spaces
	Exposing Memory Characteristics
	Identifying Memories
	Characterising Memories

	Memory Attributes
	Bandwidth
	Latency
	Capacity
	Locality
	Other Attributes

	Implementation in hwloc
	Attributes Values
	ACPI SLIT
	ACPI HMAT
	Benchmarking

	Summary

	Preparing HPC Applications to Complex Heterogeneous Memory Systems
	Heterogeneous Memory Allocator
	Allocation Criteria
	Benchmarking
	Profiling
	Static Code Analysis

	Use Case
	Benchmarking
	Profiling
	Summary

	Software Tools for the development on Heterogeneous Memory
	Performance Simulation
	NUMA Distance for injecting latency
	Bandwidth Throttling
	Pirate Bandwidth
	Summary of Performance Simulation

	Environment Emulation
	Hardware Emulation Level
	OS Level
	Software Level
	Summary of Emulation

	Management of Heterogeneous Memory in Batch Schedulers
	Managing the different KNL configuration modes
	KNL configurations

	Managing NVDIMM configuration modes
	Memory Mode and 2-Level-Mode
	App Direct and DAX and 1-Level Memory for storage
	System-RAM mode

	Co-scheduling jobs with memory and storage needs
	Hardware Partitioning in 2LM
	Flexible Co-Scheduling with 1LM and System-RAM NUMA nodes

	Fine Grain Partitioning between HPC jobs
	NVDIMMs Hardware Partitioning
	Multidax and namespace-based software partitioning
	Dax Locality

	Discussion and Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Platform Characteristics
	Kona: Xeon Phi Knights Landing (KNL)
	Kona01
	Kona03

	Leonide: dual Intel Xeon Gold 6230 with NVDIMMs
	Souris: SGI Altix UV 2000

	Bibliography
	Publications

