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Abstract

0.1 English

Mobile networks have experienced strong growth with the emergence of a new

generation, namely 5G, where the demand for various services and applications be-

comes significant, and the required quality of service (QoS) becomes more critical.

However, the current “one size fits all” of 4G network architectures cannot support

these next-generation heterogeneous services criteria. Therefore, research around

5G aims to provide more adequate architectures and mechanisms to deal with this

purpose. The 5G architecture is envisioned to accommodate the diverse and con-

flicting demands of services in terms of latency, bandwidth, and reliability, which

cannot be sustained by the same network infrastructure.

Instead, network slicing provided by network virtualization allows the infrastruc-

ture to be divided into different slices. Each slice is tailored to meet specific service

requirements allowing different services (such as automotive, Internet of Things,

etc.) to be provided by different network slice instances. Each of these instances

consists of a set of virtual network functions that run on the same infrastructure

with specially adapted orchestration. Three main service classes of network slic-

ing have been defined by the researchers as follows: Enhanced Mobile Broadband

(eMBB), massive Machine Type Communication (mMTC), and ultra-Reliable and

Low-Latency Communication (uRLLC).

One of the main challenges when it comes to deploying Network Slices is slicing the

Radio Access Network (RAN). Indeed, managing RAN resources and sharing them

among Network Slices is an increasingly difficult task, which needs to be properly

designed. The goal is to improve network performance, and introduce flexibility and

greater utilization of network resources by accurately and dynamically provisioning

the activated network slices with the appropriate amounts of resources to meet their

diverse requirements.

Our first contribution dealt with this latest problematic by proposing resource shar-

ing algorithms running at the Slice Orchestrator (SO) level. The proposed algo-

rithms compute the necessary radio resources to be used by each deployed net-

work slice. These resources are adjusted periodically based on current estimates of

achievable throughput performance derived from channel quality information, and

in particular from the Channel Quality Indicator (CQI) values of the users of each
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network slice retrieved from the RAN. CQI information is reported to base sta-

tions by the User Equipment (UE) following standard procedures, but extracting

and frequently reporting it from base stations to the SO may result in significant

communication overhead. To mitigate this overhead while maintaining at the SO

level an accurate view of UE channel quality, we propose in our second and third

contributions respectively: (i) a machine learning approach to infer the stability

of UE channel conditions, and (ii) predictive schemes to reduce the CQI reporting

intensity based on the inferred channel status.

On the other hand, network slicing enables the emergence of new players in the

market: the Infrastructure, or slice, Provider (InfProv), which is the owner of the

network infrastructure and may offer its resources as a service for a given cost, and

the consumers, or tenants, requesting for a network slice from InfProv to get a tar-

get service with specific needs. However, as each provider has limited resources, it is

challenging to have an optimal policy to decide which slice requests will be accepted

(and/or rejected) by InfProv, and based on which criteria. On one hand, InfProv

aims to maximize the network resources usage by accepting as many network slices

as possible; on the other hand, the network resources are limited, and the network

slices requirements regarding QoS need to be fulfilled. In this context, in the fourth

contribution, we devise three admission control mechanisms based on Reinforce-

ment Learning, namely Q-Learning, Deep Q-Learning, and Regret Matching. They

allow deriving admission control decisions (policy) to be applied by InfProv to ad-

mit or reject network slice requests. We prove each mechanism’s performance in

terms of maximizing the InfProv while fulfilling the slice resources requirements.

0.2 Français

Les réseaux sans fil ont récemment connu une forte croissance, notamment la 5G,

où la demande de différents services et applications augmente et la qualité de service

(QoS) exigée devient plus importante. Toutefois, les architectures de réseaux sans

fil actuelles, de type ” une taille pour tous ”, ne peuvent pas prendre en charge ces

critères de services hétérogènes de nouvelle génération. Par conséquent, la recherche

autour de la 5G vise à fournir des architectures et des mécanismes plus adéquats

pour répondre à ce besoin. Plus précisément, l’architecture 5G est conçue pour

répondre aux exigences variées et contradictoires des services, en termes de latence,

de bande passante et de fiabilité, qui ne peuvent être assurées par la même infras-

tructure du réseau.

En effet, le découpage du réseau fourni par la virtualisation du réseau permet de di-

viser l’infrastructure en différentes tranches, chaque tranche est adaptée aux besoins

spécifiques des services, où elle permet à différents services (comme l’automobile,

l’Internet des objets...) d’être fournis par différentes instances de la tranche du

réseau. Chacune de ces instances est constituée d’un ensemble de fonctions du

réseau virtuel qui fonctionnent sur la même infrastructure avec une orchestration
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spécialement adaptée. Les chercheurs ont défini trois grandes classes de services

de découpage en réseau, qui sont: Enhanced Mobile Broadband (eMBB), mas-

sive Machine Type Communication (mMTC), and ultra-Reliable and Low-Latency

Communication (uRLLC).

L’un des principaux défis du déploiement des tranches de réseau est le découpage du

réseau d’accès radio (RAN). En effet, la gestion des ressources RAN et leur partage

entre les tranches de réseau est une tâche particulièrement difficile, qui doit être

bien conçue. L’objectif est d’améliorer les performances du réseau et d’introduire

de la flexibilité et une plus grande utilisation des ressources du réseau en fournissant

de manière précise et dynamique aux tranches de réseau activées les quantités de

ressources appropriées pour répondre à leurs divers besoins.

Notre première contribution porte sur cette dernière problématique en proposant

des algorithmes de partage de ressources fonctionnant au niveau du Slice Orches-

trator (SO). Ces algorithmes calculent les ressources radio nécessaires à utiliser par

chaque tranche de réseau déployée. Ces ressources sont ajustées périodiquement

sur la base des estimations actuelles des performances de débit possibles obtenues.

Ces performances de débit sont obtenues à partir des informations liées à la qualité

du canal, et en particulier des valeurs de l’indicateur de qualité du canal (CQI) des

utilisateurs de chaque tranche de réseau extraites du RAN. Les informations CQI

sont transmises aux stations de base par l’équipement utilisateur (UE) selon des

procédures standard. Cependant, leur extraction et leur transmission fréquente des

stations de base au SO peuvent entrâıner des frais généraux de communication im-

portants. Pour atténuer ces frais généraux tout en maintenant une vue précise des

qualités du canal de l’UE au niveau du SO, nous avons proposé dans nos deuxième et

troisième contributions respectivement : (i) une approche d’apprentissage machine

pour déduire la stabilité des conditions du canal UE, et (ii) un schéma prédictif

pour réduire l’intensité de notification de CQI basée sur l’état du canal déduit.

De plus, le découpage du réseau permet l’apparition de nouveaux acteurs sur

le marché : le fournisseur d’infrastructure, ou fournisseur de tranche (InfProv).

L’infProv est le propriétaire de l’infrastructure de réseau et peut offrir ses ressources

sous forme de service pour un coût donné. Les consommateurs, ou les locataires, qui

demandent une tranche du réseau à InfProv pour obtenir un service particulier ayant

des besoins spécifiques. Toutefois, comme chaque fournisseur dispose de ressources

limitées, il est difficile d’avoir une politique optimale pour décider quelles demandes

de tranche seront acceptées (et/ou rejetées) par InfProv, et sur la base de quels

critères. D’une part, InfProv vise à maximiser l’utilisation des ressources du réseau

en acceptant autant de tranches de réseau que possible ; d’autre part, les ressources

du réseau sont limitées, et les exigences des tranches de réseau concernant la qualité

de service (QoS) doivent être remplies. Dans ce contexte, dans la quatrième con-

tribution, nous avons conçu trois mécanismes de contrôle d’admission basés sur

l’apprentissage par renforcement, qui sont le Q-Learning, le Deep Q-Learning et le

Regret Matching. Ces techniques permettant de dériver des décisions de contrôle
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d’admission (politique) à appliquer par InfProv pour admettre ou rejeter les de-

mandes de tranche de réseau. Finalement, nous avons prouvé la performance de

chaque mécanisme en termes de maximisation de l’InfProv, tout en répondant aux

besoins de tranches en terme de ressources.
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Chapter 1

General Introduction

1.1 Context

The evolution of wireless networks has been significantly revolutionized over the

past decades, with the emergence of a new generation of wireless devices that are

more powerful than the previous one. This evolution is mainly driven by the need

for a better quality of experience (QoE), the continued increase in user wireless

devices, and data usage [13]. In this context, the fourth generation (4G) Long

Term Evolution (LTE) network has proven its effectiveness and is now part of

everyday life. Indeed, 4G has certain advantages over the previous third-generation

mobile network (3G), including higher bandwidth and data speeds, lower latency,

higher network capacity, easier network integration through the IP network, and

enhanced security. However, the increasing number of users, with the emergence of

the Internet of Things (IoT), and new applications requiring very critical low latency

and very high capacity, have complicated the management of network resources,

mainly to accommodate a high number of demands, while supporting heterogeneous

Quality of Service (QoS). This has caused a significant degree of complexity and

problems in the network.

The new fifth generation of wireless communications (5G) aims to deal with the

technical limits of 4G. It provides a significant improvement in the perceived QoS

to users compared to the current 4G LTE network and, more importantly, opens

new perspectives for the vertical industry [14].

5G focuses on several key perspectives, mainly:

• Very low latency: Latency is a very important metric in the definition of

the 5G network. It is defined as the time it takes for data to transit back

and forth between the 5G device and the access point. 5G aims to minimize

latency up to 1 ms since it promises to support life-critical systems, services

with a very low tolerance for delays, and real-time applications.

• Ubiquitous connectivity: Due to the continued exploding demand of data,

the 5G network aims to meet the demand for capacity. It also seeks to allow
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Figure 1.1: 5G technology requirements [1].

large numbers of device types to connect ubiquitously. Besides, it targets

to provide uninterrupted user experience by achieving a user-centric vision

through ubiquitous connectivity.

• High-speed connection: 5G will greatly improve the high-speed connec-

tion with fast data transmission and reception. It aims to achieve download

speeds of one gigabit per second, and more than 10 times faster than what

4G provided.

Given that each 5G service may have different requirements in terms of latency,

bandwidth, and reliability [15] as shown in Figure 1.1; the concept of one archi-

tecture fits all services of 4G cannot support these 5G heterogeneous demands. To

this end, several research projects around 5G in the academic and industrial areas

have proposed new architectures and technologies adapted to the 5G requirements.

The latest 5G technologies are based on: (i) network softwarization and virtualiza-

tion and (ii) network slicing. The network virtualization relies on the concept of

architecture, design, deployment, and management of network components, mainly

based on the programmability properties of software [16]. It enables adaptability,

flexibility, and total reconfiguration of a network, by reducing the cost and optimiz-

ing the process of the global maintenance of the network life cycle. On the other

hand, network slicing is an end-to-end logical network with a set of isolated virtual

resources. It is intended to ensure isolation, customization of services, and support

of several tenants on a common physical network infrastructure while relying on

a physical and logical separation of network resources. The key idea of network

slicing is to ”slice” the original network architecture into separate logical and in-
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dependent networks configured to efficiently address the different service demands.

Three main slice types are defined in 5G [12] [16] as follows:

• enhanced Mobile Broadband (eMBB), which requires a high data rate, even

in dense areas, for instance: 3D video, immersive Gaming, and AR/VR.

• massive Machine Type Communication (mMTC) to support IoT services cit-

ing smart sensors, smart cities, and massive IoT.

• ultra-Reliable and Low-Latency Communication (uRLLC) to support services

requiring low-latency access like self-driving cars, augmented reality, and in-

dustry 4.0.

It is worth noting that, network slicing includes slicing the 5G radio access net-

work (RAN), 5G core network (CN), and 5G transport network. It relies on the

concept of network virtualization and Softwarization (Software Defined Networking

- SDN and Network Functions Virtualization - NFV) to share a common infrastruc-

ture. These concepts also enable it (i.e., network slicing) to build virtual instances

(slices) of the network tailored to the different 5G services’ needs.

Although it is designed to provide significant improvements and solutions to

support the new 5G network requirements, network slicing introduces critical re-

search challenges and policy directions [17]. The main network slicing challenges

include: sharing and the algorithmic aspects of resource allocation, mobility man-

agement, dynamic creation and management, network slice isolation and security,

and virtualization of wireless resources [17].

For this purpose, this thesis contributes a study that touches upon various crit-

ical issues in network slicing. In particular, we have investigated the challenges

related with resource sharing and resource allocation, with a special focus on the

RAN domain

1.2 Contributions

This Ph.D. thesis is divided into two main parts: (i) the first part investigates the

improvement of network performance by addressing the slice resource sharing issue;

(ii) the second part focuses on determining a trade-off between the bandwidth limit

and the network slicing revenues in the network slicing resource sharing issue. The

contributions of this thesis are summarized in Figure 1.2 and described in detail as

follows:

1. One of the main challenges when it comes to deploying network slices is slic-

ing the RAN. Indeed, managing the limited RAN resources and sharing them

among network slices is an increasingly difficult task, which needs to be prop-

erly designed. The goal is to improve network performance and introduce
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flexibility and greater utilization of network resources. For this reason, it is

necessary to accurately and dynamically provision the activated network slices

with the appropriate amounts of resources to meet their diverse requirements.

Therefore, each slice requires different resources for a determined period of

time, according to several constraints such as the number of users hosted by

the slice, the required slice application’s throughput, and the latency. For

instance, eMBB slices request high bandwidth, while uRLLC slices aim to

minimize latency and maximize reliability.

To this end, in this thesis, we first propose algorithms that allow to dynami-

cally define the amount of resources to be allocated to each admitted network

slice. The proposed algorithms consider each slice’s specific requirements and

the varying conditions of the radio environment while considering the band-

width limit. It is worth noting that this algorithm runs at the slice orches-

trator (SO) level, which is responsible for cross-slice resource sharing. In this

contribution, the considered algorithms to drive the number of resources are

based on the Channel Quality Indicator (CQI) values reported to the SO by

the base station (i.e., evolved NodeB (eNB)). In fact, the CQI is a value pe-

riodically reported by UEs to eNB, then transmitted from the eNB to the

SO, where it conveys the current communication channel quality of each UE.

In our solution, the SO periodically collects the CQI values from the eNB to

update the calculation of the amount of the resource needed by each slice.

Nevertheless, the periodic transmission of CQI information between eNB and

SO incurs signaling overhead that needs to be mitigated.

The second contribution fits this gap and focuses on CQI reports periodically

sent from the eNB to the SO. Thus, we propose mechanisms to optimize the

reporting process with the aim of reducing signaling overhead between the

eNB and the SO. This latest mechanism is based on machine learning (ML)

algorithms that predict UE channel stability to decide if the CQI is necessary

to be reported or not.

In the third contribution, we design predictive schemes to reduce the CQI

reporting intensity based on the inferred channel status and tune the report-

ing frequency appropriately to reduce the CQI monitoring overhead. Our

contribution here consists of reducing the signaling overhead between the SO

and the eNB, by optimizing the reporting of CQI information via limiting the

amount of unnecessary transmitted messages while ensuring that SO has an

accurate view of the channel conditions at the eNB. Ideally, the eNB should

notify the SO only when the UE channel condition has changed. In order to

verify the efficiency of this proposed mechanism, we have integrated it with

the resource allocation algorithms. This study allows us to verify whether

resource allocation algorithms are properly driving the number of resources

required by each slice type, despite reducing CQI reports.
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2. In addition to the significant performance improvements, network slicing opens

the market to new players, mainly: (i) the infrastructure provider (InfProv),

which is the owner of the infrastructure that provides to the tenants network

slices corresponding to a certain fraction of network resources; (ii) the tenants,

which can acquire a network slice from the InfProv to provide a specific service

to their customers. Therefore, achieving a fair usage of network resources is of

vital importance in Slice-ready 5G network. The dilemma of which network

slice has to be accepted or rejected is very challenging for the InfProv. On one

hand, the InfProv aims to maximize the network resource usage, by accept-

ing as many network slice as possible; on the other hand, network resources

are limited, and the requirements of network slices regarding QoS need to be

fulfilled.

In the first contribution, we have shown that our proposed algorithms could

estimate the appropriate amount of resources to allocate to each slice type.

However, this is no more respected after exceeding the network resources

limit. To overcome this drawback, in the fourth contribution, we deal with

the bandwidth, i.e., network resources limit while considering the concept of

revenues in the slice resource allocation. Therefore, we devise three admission

control mechanisms based on Reinforcement Learning, namely Q-Learning,

Deep Q-Learning, and Regret Matching, which allow deriving admission con-

trol decisions (policy) to be applied by InfProv to admit or reject network slice

requests. Our solution enables maximizing InfProv’s revenues and respecting

the slice QoS by providing all the resources necessary by each network slice

request within the network resources limits during the slice lifetime.

1.3 Structure of thesis

The content of the following chapters is summarized in this section for the ease of

the reader.

• Chapter II introduces state of the art on the 5G network in general and on

network slicing in particular, including relevant related works. In this chapter,

we start by giving a general overview of 4G network, where we present the 4G

architecture and the technologies adopted, and the 4G limits. We detail then

some 5G architectures proposed by the research community and the main

challenges involved with it. We also present an appropriate study on the new

technologies used to successfully deploy 5G network and network slicing, such

as SDN and NFV. Afterward, we present a detailed survey of the end-to-end

network slicing, including the CN, RAN, and transport network. Finally, we

give the main 5G network slicing challenges and open issues.
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Figure 1.2: Thesis contributions organization

• Chapter III presents a resource sharing algorithm that aims to compute and

dynamically adjust the necessary radio resources to be used by each deployed

network slice [18]. Therefore, we first propose an algorithm that derives the

radio resources, namely pRBs, needed by each slice, according to its require-

ments in terms of latency and throughput. Then we design a RAN-aware

dynamic slicing algorithm. This algorithm exploits per-user RAN-level infor-

mation to accurately translate the derived service rate to an appropriate pRB

assignment, using the CQI reports periodically obtained from eNBs.

• In chapter IV, we present a model that aims to detect whether the channel is

static or mobile over time. On one hand, if the channel is static (i.e., its con-

ditions are mostly stable or low-mobility), the reported CQI values between

the eNB and SO remain constant or show minimal variation, which does not

impact radio resource allocation. On the other hand, if the channel is mobile

(i.e., it varies significantly), the CQI values exhibit significant fluctuations.

Consequently, it is crucial that the SO is informed about the changed channel

quality information. Indeed, this information allows it (i.e., the SO) to deter-

mine and update the appropriate amount of resources to be allocated for the

different slices. Therefore, we use different ML algorithms, namely Support

Vector Machine (SVM) and Neural Network (NN) in order to classify whether

the CQI values will tend to change or not (i.e., stable vs. unstable channel.)

[19].

• Chapter V details the development of a mechanism to meet network slices’

requirements while reducing the number of CQI signaling messages between
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the eNB and the SO. This contribution aims to limit the amount of unneces-

sary transmitted CQI messages. Based on the channel mobility identification

previously proposed, we have used Long Short Term Memory (LSTM), a ML

algorithm, and another proposed method based on minimizing errors between

predicted CQI and collected CQI to reduce CQI reporting frequencies. Sub-

sequently, we verify that this reduction in CQI reporting does not affect the

slice requirements, such as the throughput for the eMBB slice.

• Chapter VI presents the development of a slice admission control algorithms

to be run at the InfProv level aiming at deriving an optimal policy to decide

if an arrived network slice request has to be accepted or rejected. Indeed, it

is difficult to find the optimal policy that, on one hand, increases the revenue

of the InfProv and allows an optimal usage of the infrastructure; on the other

hand, guarantees the requirement of the admitted network slice in terms of

QoS to avoid violating the Service Level Agreement (SLA). This contribution

aims to satisfy each slice’s needs in terms of the number of resources requested

while maximizing the revenues of the InfProv. To this end, we model this

problematic using the Markov Decision Process (MDP) and solve it using re-

inforcement learning algorithms, aiming to seek the optimal policy to increase

the InfProv revenue while reducing the penalty to pay due to SLA violation.

Three algorithms are introduced: Q-Learning (QL), Deep Q-Learning (DQL),

and Regret Matching (RM). Besides deriving the optimal policy, we shed light

on the proposed algorithms’ ability to run offline or online, which is a crucial

criterion. Indeed, offline solutions require a training phase before being used,

which is sometimes costly, but they generally achieve the best results, while

online solutions are trained on the fly using only observable information of

the controlled system.

• Finally, Chapter VII concludes this thesis and presents different perspectives

and future research directions.
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Chapter 2

State of the Art

In this chapter, we will give an overview of the 4G LTE wireless network and in-

troduce 5G and its related technologies, mainly network softwarization and network

slicing. In particular, we will detail the concept of network slicing. We will conclude

by discussing the challenges of network slicing, already defined in the literature.

2.1 4G Networks definition and architecture

The 4G or LTE, also known as EPS (Evolved Packet System), is the fourth gener-

ation of mobile telecommunications technology. This technology is introduced by

3GPP in order to improve network performance by defining an End-to-End (E2E)

all-IP architecture for the core and radio access networks [2]. Note that the E2E

all IP network means that all traffic flows are transferred based on IP protocol.This

last functionality of providing mobile Internet access, represents the main charac-

teristic of 4G compared to previous technologies.

Table 2.1: LTE entities [2]

Entity Description

UE UE connect to an eNB using LTE-Uu interface

eNB

It is the hardware that is connected to the UE to provide radio interfaces

and performs Radio Resource Management (RRM) functions, such as

scheduler, eNB measurement configuration, connection mobility control,

radio admission control, inter cell interference coordination and radio

bearer control

The LTE architecture is mainly composed of two parts: (i) Evolved Packet

Core (EPC) part which deals with the technology related to the CN, and (ii) RAN
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Figure 2.1: LTE network reference model [2]

which deals with the technology related to a radio access network (E-UTRAN). In

this context, Figure 2.1 shows an LTE network reference model, composed of RAN

entities (eNB and UE), EPC entities (Packet Gateway (PGW), Service Gateway

(SGW), Mobility Management Entity (MME), Policy and Charging Rules Function

(PCRF), Subscription Profile Repository (SPR), Home Subscriber Server (HSS),

Offline Charging System (OfCS) and Online Charging System (OCS)), and the

interfaces between these entities. Besides, Tables 2.1 and 2.2 describe and detail

the role of each RAN and EPC entity respectively. A Packet Data Network (PDN)

presents an internal or external IP domain of an operator that a UE communicates

with and provides the UE with services, such as IP Multimedia Subsystem or the

Internet [2].

2.1.1 Radio protocol architecture

To better understand the RAN architecture, we illustrate the RAN protocol archi-

tecture, including the control plane and user plane in Figure 2.2. Note that the

MME is a CN entity. The different protocol entities of the RAN shown in Figure

2.2 are described as follows:

A. Packet Data Convergence Protocol:

Packet Data Convergence Protocol (PDCP) compresses IP headers (i.e., informa-

tion at the beginning of an IP packet) to reduce the number of bits to be transmitted

over the radio interface. PDCP is also responsible for the control plane, integrity

protection of the transmitted data, ciphering, in-sequence transmission, and dupli-

cate removal for handover. The PDCP protocol executes the relevant decryption

and decompression operations at the receiver side [3].
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Table 2.2: EPC entities

Entity Description

MME

The main functions provided by the MME are as follows:

• It manages the signalling (control plane) between the terminals

(UE) and the LTE CN.

• It dialogues with the HSS in order to access and store terminal

profiles and security data.

• Selects the PGW and SGW to be used later for data transfers when

a given terminal connects to the network.

• EPS bearer management.

SGW

It collects the data to be sent to the PGW from the UEs via the base

stations. It also participates in the transmission of data in the opposite

direction, from the PGW to the UEs.

PGW

It routes Internet data to the UE and vice versa; since it is a gateway

between the operator’s IP network and the Internet, it also provides some

security functions.

HSS
The HSS is the central data base that stores the user profiles, and it

provides user authentication information and user profiles to the MME.

PCRF
PCRF is a node which determines the policy rules for charging and band-

width in a multimedia network.

SPR

A SPR is a logical entity providing subscription information to the PCRF.

Receiving the information, the PCRF performs subscriber-based policy

and creates a PCC rules.

OCS
OCS is a system allowing a communications service provider to charge

function and control, in real time, based on service usage.

OFCS
OFCS provides Charging Data Record (CDR) based charging informa-

tion.

B. Radio-Link Control:

Radio-Link Control (RLC) is responsible for retransmission handling, concatena-

tion/segmentation, in-sequence delivery to higher layers, and duplicate detection.

The RLC delivers services to the PDCP in the form of radio bearers [3].
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Figure 2.2: RAN architecture in LTE [3]

C. Medium-Access Control:

Medium-Access Control (MAC) manages Hybrid Automatic Retransmission Re-

quest (HARQ) retransmissions, uplink (UL) and downlink (DL) scheduling and

multiplexing of logical channels. The HARQ protocol part is present in both the

receiving and transmitting ends of the MAC protocol. The scheduling functionality

is located in the eNB for both DL and UL. The MAC offers services to the RLC

in the form of logical channels [3]. In this context, the logical and transport chan-

nels related to the MAC, and the scheduling functionality of the MAC layer, are

described as follows:

• Logical and Transport Channels:

The RLC receives services from the MAC in the form of logical channels.

A logical channel is defined by the type of information it transports. It is

considered as a control channel. It allows the transmission of control and

configuration information concerning the operation of an LTE system. It may

also be considered as a traffic channel used for user data.

The MAC layer uses services from the physical layer (PHY) in the form of

transport channels. Data on a transport channel are organized into transport

blocks. In the absence of spatial multiplexing, in each Transmission Time

Interval (TTI), at most, one transport block of dynamic size is transmitted

over the radio interface to/from a terminal. In the presence of spatial multi-

plexing i.e., Multiple-Input Multiple-Output (MIMO), there can be up to two

transport blocks per TTI.

• Scheduling:

Shared-channel transmission is one of the basic principles of LTE RAN. It

consists in dynamically sharing time-frequency resources between users. The

scheduler is part of the MAC layer controlling the resource allocation (in terms

of so-called RBs) pairs of UL and DL. The RBs represent a time-frequency

unit of 1 ms time and 180 kHz frequency. The scheduler allows dynamic
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scheduling between eNB and UEs. The eNB makes a scheduling decision

every 1 ms interval and sends scheduling information to all selected UEs. A

semi-static scheduling pattern maybe signaled in advance, .i.e. semi-persistent

scheduling in order to reduce the control-signaling overhead.

In LTE, the DL and UL are separated. The DL scheduler controls which UEs

to transmit to, and the set for each of these UEs the RBs upon which the UE’s

DL channel should be transmitted. The UL scheduler controls which UEs are

to transmit on their respective UL channel and on which UL time–frequency

resources (including component carrier).

The main aim of a scheduler is to take advantage of channel variations between

UEs and to schedule resource transmissions to the UE having advantageous

channel conditions. In this context, using Orthogonal Frequency-Division

Multiplexing (OFDM), which allows the control of channel variations in the

frequency and time domains through channel-dependent scheduling, presents

an advantage in LTE. DL channel-dependent scheduling is provided by the

channel-state reports transmitted by the UE. The channel-state reports reflect

the instantaneous channel quality in the frequency and time domains. For

the UL channel-dependent scheduling, the channel state information can be

derived from a sounding reference signal transmitted from each UE for which

the eNB desires to rate the UL channel quality. To this end, the UE transmits

buffer-status information to the eNB using a MAC message.

D. Physical Layer:

PHY Layer manages multi-antenna mapping, modulation/demodulation, coding/de-

coding, and other typical functions in the PHY. The PHY provides services to the

MAC layer in the form of transport channels. Data transmission in DL and UL

uses the transport-channel of types DL Shared Channel (DL-SCH) and UL Shared

Channel (UL-SCH) respectively. In the case of spatial multiplexing, there is at

most one or two transport blocks per TTI on a DL-SCH or UL-SCH. There is one

DL-SCH (or UL-SCH) per component carrier, in the case of carrier aggregation [3].

At the transmitting side, each layer outputs a Protocol Data Unit (PDU) to the

layer below and receives a Service Data Unit (SDU) from a higher layer, for which

the layer provides a service.

The transmission resources and control signaling in the PHY layer are described as

follows:

• Physical Transmission Resources

The basic transmission scheme used for UL and DL in LTE is OFDM. The

subcarrier spacing of LTE OFDM for both UL and DL is 15 kHz. In the time

domain, LTE transmissions are organized into radio frames of length 10 ms.

Each frame is divided into ten subframes equally sized of length 1 ms. Each
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Figure 2.3: Time-frequency resources in LTE [4]

sub-frame is composed of two slots of equal size and length Tslot = 0.5ms,

where each slot contains a number of OFDM symbols.

A resource element is the smallest physical resource in LTE, consisting of a

subcarrier during one OFDM symbol. The resource elements are grouped

into RBs. A RB is composed of one 0.5 ms slot in the time domain and 12

consecutive subcarriers in the frequency domain. To illustrate these details,

Figure 2.3 shows a presentation of the time-frequency resources in LTE. The

PHY layer characteristics in LTE enable a carrier to consist of many RBs

in the frequency domain, ranging between six RBs minimum to 110 RBs

maximum. This translates into a transmission bandwidth ranging from 1

MHz to 20 MHz. The above definition of RB applies to both UL and DL

transmission directions.

• PHY layer control signaling:

Control signaling instructions are provided to support the transmission of UL

and DL transport channels. The DL and UL control signaling is information

partly originating from PHY layer, and partly from MAC layer. The DL

control signaling is composed of scheduling information, allowing the UE to

properly receive, demodulate, and decode the DL-SCH on a component car-

rier. It is also used to provide other transmission services, including informing

the UEs about the transport format and resources for UL transmission.

The UL control signaling consists of: (i) channel-state reports related to the
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Figure 2.4: CQI/ MCS mapping table in LTE [5]

conditions of DL channel, used to support DL scheduling; (ii) scheduling

requests, stating that a terminal requires UL resources for UL-SCH trans-

missions; and (iii) HARQ acknowledgments for the DL-SCH transport blocks

received.

It is worth noting that the channel state reports contain Channel-Quality

Indicator (CQI), Rank Indicator (RI), and Precoding Matrix Indicator (PMI).

The CQI is the information that UE sends to the network (eNB) carrying: (i)

how bad or good the communication channel quality is, and (ii) indicates the

transport block size of the UE’s needed data, which in turn can be directly

converted into throughput. CQI information is reflected in a value between 0

and 15 (4 bits) and mapping between CQI and modulation and coding scheme

(MCS), transport block size. In this context, each CQI value has a number

of RB (NpRB) and MCS, to properly allocate the resources for each of UEs.

Table 2.4 contains a range of MCS that can be used for each CQI index.

In addition, it contains the code rate between the MCS and the NpRB, the

Transport Block Size (TBS), Modulation, Bits/Symbol, Resource elements

per physical RB (REs/PRB), and NpRB.

2.1.2 Key technologies adopted in 4G

The following key features can be observed in all suggested 4G technologies:

• IP-based femtocells that represent home nodes connected to fixed Internet

broadband infrastructure. This technology offers increased capacity and cov-

erage in both home and office environments.

• PHY layer transmission techniques [3] are as follows:

15



CHAPTER 2. STATE OF THE ART

– MIMO: to attain ultra-high spectral efficiency using spatial processing

including multi-antenna and multi-user MIMO.

– Frequency-domain-equalization, for example, Single-Carrier Frequency-

Domain-Equalization (SC-FDE) in the UL or multi-carrier modulation

(MC-OFDM) in the DL, to exploit the frequency selective channel prop-

erty without complex equalization.

– Frequency-domain statistical multiplexing, for example, OFDMA in DL

or (single-carrier FDMA) in the UL: variable bit rate through the as-

signment of different sub-channels to different users according to channel

conditions.

– Turbo principle error-correcting codes: to minimize the required SNR at

the reception side

• Link adaptation: adaptive modulation and error-correcting codes, which en-

ables fast responses to changing nature of transmission channel [3].

• Channel-dependent scheduling: As defined in section 2.1.1-C, the schedul-

ing technique aims to use the time-varying channel. It represents a crucial

challenge in the 4G networks and the next generation, such as 5G. In this

context, the RRM block exploits a mix of advanced MAC and Physical func-

tions, like CQI reporting, link adaptation through Adaptive MCS, resource

sharing, and HARQ. Therefore, the conception of effective resource allocation

policies becomes crucial. The efficient use of radio resources is a key factor in

achieving system performance objectives and satisfying user needs according

to specific QoS requirements [3]. The packet scheduler is in charge of assigning

portions of the spectrum shared between users and maximizing the spectral

efficiency. This is achieved through a specific resource allocation policies that

reduce or make negligible the impact of channel quality drops. This packet

scheduler works at the eNB. Knowing that the channel quality is affected by

high variability in time and frequency domains on wireless links due to sev-

eral causes, such as fading effects, Doppler effect, and multipath propagation,

the OFDMA systems are adopted as a channel-aware solution. In fact, these

solutiopns make it possible to exploit channel quality variations by assigning

higher priority to users experiencing better channel conditions.

2.1.3 Why 5G? (from 4G to 5G)

It is worth noting that the 4G technology had enabled the delivery of high-quality

use cases, including video and calling on the go, live TV, which was not possible

using third-generation mobile networks (3G). However, the increase in the number

of users with heterogeneous requirements has led to increased network congestion.

Therefore, 4G is reaching the technical limits of how much data it can transfer
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quickly over the spectrum blocks.

5G mobile networks [13] are designed to provide new and enhanced services that

make life easier in several areas introduced in the Internet of Things (IoT), such

as smart cities, health care, agriculture, transportation, and manufacturing. To

accommodate these services, 5G has to meet critical requirements in terms of low

latency, high reliability, high bandwidth, and the support for massive numbers

of connected devices. In this context, 5G requires deploying many more devices

in a reliable, secure, and uninterrupted manner in the same area, where the 4G

architecture and its technologies have not been able to achieve. Overall, due to the

new technologies, spectrum, and frequencies it uses, 5G has several advantages over

4G, citing: lower latency, higher speeds, capacity for more connected devices, less

interference and higher efficiency, etc.

2.2 5G Networks

The motivation for migrating networking systems from traditional wireless net-

works to the Next Generation Networks 5G was developed based on the benefits

of reduced backbone costs, controllable QoS, the possibility of fast and new service

deployment, compatibility between wireless and fixed networks, centralized net-

work management, etc. In this context, multimedia applications based on existing

network services, such as data, voice, and high-speed video transmission, will be

offered as an important outcome of the new generation deployment. In fact, the

integration topology of fixed and mobile services allows providing a low-cost service

at high data rates. Therefore, 5G aims to achieve the best performance in terms of

data speeds of 1 Gbps, low latency, coverage capability, energy consumption, and

better security and energy efficiency over spectral compared to previous networking

systems [20] [21] [22].

Research on 5G has been initiated by many organizations, projects, and standard-

ization forums and has not been precisely defined and characterized. Such research

on 5G might be driven by the main limitations of the previous technologies, mainly:

• Provide wireless communication with no limitation of coverage edge, density

zone, and access policy.

• Support for high-resolution multimedia (HD) broadcasting service.

• Ensure faster data speeds than the previous generations.

• Support new services based on wearable devices.

• Cover and manage massive inter-device connections (connection of Things).
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2.2.1 5G technologies

The previous network infrastructure lacks the functionality needed in the new gen-

eration, making it unsuitable for covering the 5G network requirements. For in-

stance, the traditional infrastructure’s network management is very complex since

the changes in network configurations are manual. Therefore, in order to address the

limitations of the current networks, SDN and NFV present an emerging technology.

SDN and NFV allow the separation of network control from the underlying data

planes or switching devices and virtualization of entire classes of network functions,

respectively [20]. SDN offers flexibility in changing network policies, easy hardware

implementation, and facilitates network innovation and evolution [23] [24]. Thanks

to its architecture that breaks the virtual integration between the data plane and

the control plane using a centralized SDN controller. The integration of SDN with

NFV provides a global view of the entire network using an open interface such as

OpenFlow [25] and the centralized network controller. SDN can support new pro-

grams and services at any level of user requirement or need. The SDN and NFV

have attracted considerable interest from academies and enterprises in recent years.

They represent an essential step in the evolution and development of future network

infrastructures.

In the following subsections, we will detail the virtualization technologies mentioned

above, citing SDN and NFV.

A. SDN

Knowing that traditional networks’ static architecture is decentralized and complex,

SDN is designed to provide flexibility and easy troubleshooting to these existing

networks. SDN technology is an emerging architecture to network management

that enables efficient network programming and dynamic configuration. It aims to

improve monitoring and network performance and bring traditional network man-

agement closer to cloud computing. SDN separates network packets’ forwarding

process (data plane) from the routing process (control plane) to centralize network

intelligence in one network component. The control plane consists of one or more

controllers. They are considered as the brain of the SDN network where all intel-

ligence is embedded. However, the intelligent centralization has its own drawbacks

when it comes to scalability, security, and elasticity [26] which present the main

issue of SDN.

SDN is commonly associated with the OpenFlow protocol. It aims to describe a

controller that communicates with network devices such as switches and routers

by providing a standardized traffic management method. The devices supporting

OpenFlow consist of two logical components: (i) an exposed OpenFlow application

programming interface (API) that handles the exchanges between switch/router

and controller, and (ii) a flow table that defines how to process and forward packets

within the network. In this context, Figure 2.5 shows the reference SDN architecture
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Figure 2.5: The three layers in SDN architecture [6]

model [27] composed of three layers, as follows:

• The SDN applications can specify their requirements for traffic management

in the underlying networks through Northbound APIs.

• The SDN controller, which is responsible for the control plane, bridges the

application plane and the data plane. It translates the requirements of the

applications into appropriate forwarding rules to be enforced by the underlying

network switches. The southbound API allows the SDN controller to access

functions provided by the SDN-enabled switching devices. These functions

may include managing packet forwarding rules and reporting network status.

• The data plane covers network elements (e.g., routers and switches) used to

collect network status information and process packets based on rules provided

by the SDN controller, such as traffic statistics network topology.

B. NFV

NFV technology was initially created by various major service providers to transi-

tion from a hardware-oriented to a software-oriented infrastructure. Software fea-

tures accelerate the deployment of new network services and drive revenue growth
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while reducing operational costs. Basically, NFV technology is a new type of infras-

tructure to manipulate [28]. It aims to virtualize network functions such as Appli-

cation Distribution Controllers (ADCs), Firewell Web application transcoders, load

balancers, etc. Virtualization aims to provide a flexible software design. Therefore,

NFV enables additional dynamic schemes to create and manage network functions

since the existing networking services are supported by diverse network functions

that are connected in a static way [29].

The key concept of NFV is the virtual network function (or VNF). VNF is used to

manage specific network functions that run on one or more virtual machines (VMs)

on the hardware network infrastructure (routers, switches, etc.). These VNFs can

be connected or combined as components to provide an optimal network commu-

nication service [28]. They are designed to consolidate and provide the network

components necessary to support a completely virtual environment. A set of VNFs

can be composed together in order to reduce management complexity, for example

by merging the SGW and PGW of a 4G CN into a single package, or by splitting

them into smaller function blocks for reuse and faster response time. Moreover, the

effective deployment of VNF instances at the carrier level should be transparent for

E2E services.

NFV introduces the following three major differences compared to current practice

[29]:

• Separation of software from hardware: it enables the software to be separated

from the hardware.

• Flexible network functions deployment: NFV is automatically able to deploy

network function software on a set of hardware resources that may run differ-

ent functions in different data centers at different times.

• Dynamic operation: network operators can scale the NFV performance dy-

namically and with great flexibility due to the decoupling of the functionality

of the network function into the new considered insatiable software compo-

nent.

The NFV architecture contains three main functional blocks which are: NFV Or-

chestration and Management (NFV-MANO), NFVI and Services, as shown Figure2.6.

These components are defined as follows:

• NFV-MANO: NFV Management and Orchestration (MANO) is composed of

the orchestrator, the VNF managers, and the virtualized infrastructure man-

agers. These blocks provide the functionality required for management tasks

applied to VNFs, such as provisioning and configuration. NFV-MANO in-

cludes orchestration and lifecycle management of physical or virtual resources

that support infrastructure virtualization and VNF lifecycle management. It

also includes databases used to store the information and data models that
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define both deployment and lifecycle properties of functions, services, and

resources [7].

• NFVI: the NFV infrastructure covers all the hardware and software resources

that comprise the NFV environment. NFVI includes network connectivity

between locations, such as between data centers and public or private hybrid

clouds. Physical resources generally include computing, storage, and network

hardware, providing processing, storage, and connectivity for NFVs through

the virtualization layer located directly above the hardware and summarizes

the physical resources. The NFV architecture can take advantage of an ex-

isting virtualization layer, such as a hypervisor, with standard functionality

that simply abstracts the hardware resources and allocates them to the VNFs.

When this support is not available, the virtualization layer is often achieved

through an operating system that adds software to a non-virtualized server

or implements a VNF as an application [7].

• Services : a service is a set of VNFs. It can be deployed in one or more virtual

machines. In some situations, VNFs can run in virtual machines installed in

operating systems or on hardware directly. They are managed by either native

hypervisors or virtual machine monitors. A VNF is typically administered by

an EMS (Element Management System) responsible for its creation, configu-

ration, monitoring, performance and security. An EMS provides the essential

information required by the Operational Support System (OSS).The OSS is

the overall management system that, together with the Business Support Sys-

tem (BSS), helps providers deploy and manage multiple E2E communication

services. NFV specifications mainly aim to integrate with existing OSS/BSS

solutions [7].

2.3 Network slicing

Network slicing is a recent technology that presents a key element in the new 5G

network generation. It represents a research focus at both academic and industry

sectors, where several research areas have defined it. In the context of 5G, network

slicing is defined by the Next Generation Mobile Network (NGMN) Alliance in

[30], as a technology that enables the integration of logical and/or physical network

and cloud resources into an open software-oriented multi-tenant programmable net-

work environment. It consists of placing several self-contained logical networks on

a common physical infrastructure platform, hence activating a flexible ecosystem

of stakeholders that promotes technical and business innovation. 3GPP introduces

network slicing as a technology that allows the operator to create customised net-

works, providing optimised solutions for different requirements in different market

scenarios [31]. For ITU-T, network slicing is the sharing and isolation of virtual

21



CHAPTER 2. STATE OF THE ART

Figure 2.6: NFV architectural framework [7]

resources based on a programmable control and data plane [32].

In general, network slicing provides networking, radio, and virtual resources (i.e.,

VNF), leading to real service differentiation and customized network operation.

Therefore, it enables value for application providers, vertical segments, and third

parties without a physical network infrastructure. A network slice consists of con-

sists of a set of VNFs, which can vary significantly depending on the service re-

quirements of that particular slice. The number of resources in each slice depends

on the type of service associated with that slice. For instance, a network slice that

contains the video download services will receive the appropriate resources and ser-

vice processing to meet the requested download speed and rate [10].

Network slicing is based on many conditions and principles. The most important

and required are as follows [10]:

• Automation: the creation of a network slice in an automatic way without the

need of manual intervention or fixed contractual agreements. This is according

to its desired requirements, citing: SLA, latency, flow, its duration etc.

• Programmability: allows the control of network and cloud resources of the al-

located slice via open APIs to facilitate resource elasticity and service-oriented

customization on demand.
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• Isolation: represents a crucial property of the network slicing. It allows isolat-

ing the tenants from each other despite using the same physical infrastructure

to provide their various services with a certain level of security and better

performance. Although the implementation of isolation defines the degree of

separation of resources in the data plane, it should also be included in the

control plane. Isolation can be deployed: (i) in shared resources in the case of

separation through virtualization, (ii) by using a different physical resource,

and (iii) by sharing a resource based on a respective policy that defines access

rights for each tenant.

• Elasticity: is an operation designed to ensure the required SLA under changing

conditions. It is related to the resource allocated to a particular network slice

according to the number of service users, the mobility of users, the radio,

and the network in general. This resource elasticity can be obtained by (i)

adjusting the applied policy, (ii) reprogramming the functionality of certain

elements of the data and control plane, (iii) relocating the VNFs or varying

their number, or (iv) varying the number of resources allocated to each slice,

while taking into account the total capacity and the requirement of the other

slice requests in terms of resources.

• Customization: ensures the efficiency of the resources allocated to a particular

tenant to meet the relative service requirements. The customization of slices

can be performed: (i) at the network level, considering the data separation

and control plane and the abstract topology, (ii) on the control plane by

introducing programmable protocols, operations, and policies, (iii) on the

data plane with service-adapted network functions and a data transmission

mechanism, and (iv) through value-added services like key data and context

awareness.

• Hierarchical abstraction: is a property that has its roots in recursive virtual-

ization. It allows the network slice resources allocated to a particular tenant

to be partially or totally traded to another third actor, according to a hi-

erarchical pattern. In this way, the network slice tenant facilitates another

network slice service on top of the previous one.

• E2E: it is a property that ensures an E2E service from the service providers

to the end-user/customer. It spans different administrative areas, i.e., a slice

that combines resources belonging to separate InfProvs. In addition, it unifies

heterogeneous technologies and different network layers, for instance, CN,

transport, RAN, and cloud. In particular, an E2E network slice consolidates

various resources enabling a superimposed service layer. Hence, it provides

new opportunities for convergence of services and efficient networking.

In the next three subsections, we will detail network slicing in the CN, RAN,
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and transport network. In addition, we will present the architecture of network

slicing.

2.3.1 Slicing the Core Network

5G should address the increased demand for throughput, as well as provide greater

elasticity, scalability, and flexibility. To this end, the CN architecture defined by

previous generations should be more adapted to these new 5G network require-

ments. To this end, 3GPP in [15] introduces a new CN architecture (namely the

Next Generation core or 5G system architecture), where they reshape the EPC

entity into more fine grained network functions. This new 5G core, as defined by

3GPP, utilizes service-based architecture, cloud-aligned, that covers all 5G func-

tions and interactions, including security, authentication, session management, and

aggregation of traffic from end devices. In addition, the 5G new core emphasizes

NFV as an integrated design concept with virtualized software functions that can

be deployed using the MEC infrastructure [10].

The new generation core architecture defines some new network functions that did

not exist in LTE, while it retains other functions as they were presented in LTE.

In particular, session management and access control became separate in the new

generation core instead of being combined in the EPC, to better support fixed ac-

cess and ensure flexibility and scalability [10].

The main network functions defined in the new CN are as follows:

• Core Access and Mobility Management Function (AMF) to manage the access

control and mobility amongst others and integrate network slice functionality

as part of its basic set of functions.

• User Plane Function (UPF) can be implemented according to the type of

service in several locations and configurations.

• Session Management Function (SMF): to manage user sessions according to

network policy.

• Policy Control Function (PCF): It corresponds to the PCRF in LTE, where

it integrates a policy framework for network slicing.

• NF Repository Function (NRF) this function provides discovery functionality

and registration, enabling NFs to discover each other and communicate via

open APIs.

• Unified Data Management (UDM), which is similar to LTE’s HSS, but with

additional subscriber information for mobile and fixed access in the new CN.

The new core architecture is supposed to be deployed within two phases [10]:
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Figure 2.7: new core architecture [8]

• Phase one - 5G reference points architecture: in this phase, the components

are connected using a point to point connection, based on reference interfaces,

not too much different from the LTE architecture. As shown in Figure 2.7, the

5G CN functions are connected together and with RAN and UEs via reference

interfaces. However, this architecture requires a reconfiguration of multiple

E2E interfaces from the operators, which may add complexity to add new

network elements/instances.

• Phase two - 5G service-based architecture: represents an evolution of the first

phase where it differs only at the control plane level, whereas it integrates

the same functional elements and the same user plane processing path be-

tween the external data networks and the UE. In this architecture, a service

model is used to query an NRF to communicate with and discover each other,

instead of using the predefined interfaces between elements. Therefore, an

NF may register for specific events provided by another NF via an API. This

registration is based on the concept of producer/consumer, where 1:N com-

munication becomes possible. The service-based core architecture could be

easily deployed in a virtualized and a software environment (e.g., container

or VM). The libraries of functions can be retrieved from a VNF catalog and

assembled in chains of E2E on-demand services. In addition, the composition

of specific functions would allow the 5G CN to be adapted to a particular
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network slice.

The fine-granular NFs for network slicing enable certain NFs to be shared be-

tween the concerned slices in order to: (i) manage common hardware (if NFs cannot

be deployed in a software environment), (ii) reduce signaling load over the air by

increasing the number of shared CN control plane NFs, and (iii) reduce the com-

plexity of the management of the network slices, by sharing the UDM and the

mobility management procedure. Indeed, it is necessary to identify the common

NFs that need to be shared by multiple E2E network slices. This takes advantage

of the redesign of CN and RAN functions (i.e., fine granularity) due to the new

architecture of core and functional split. The functional split is a mechanism that

will be detailed in the RAN slicing sub-section afterward.

It is worth noting that the slice consumer requests a slice creation from the slice

provider based on the SLA agreement between them, which includes several condi-

tions of service, including degrees of control and the level of exposure that depends

on the slice requirements. The most important control and exposure levels are the

following:

• Basic Level Control: This level of control allows only the slice consumer to

exercise a passive form of control over the network slice.

• Extended Control and Management: This level of control contains configu-

rations that allow the slice consumer to update the slicing functionality by

reducing or increasing them.

• Full Control and Management: In this level of control, the slice consumer has

the highest level of network slice privileges and control available. The slice

consumer can deploy any form of network functions required by the network

slice to provide the desired set of network services. In fact, here, the slice

consumer has the right to operate and manage its virtualization platform and

other related management support systems.

For this purpose, the slice provider, in order to facilitate the management of

their slices requests, create layers of abstraction contained interfaces that map the

different levels of control of the network slices exposed to the slice tenants/owners.

2.3.2 Slicing the transport network

5G requires an overhaul of the transport networks in order to satisfy the increas-

ingly bandwidth-intensive requirements of networks. The evolution of the transport

network is based on the integration of the backhaul and fronthaul segments on the

same transport substrate and the incorporation of deep programming in the trans-

port network.
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A. Fixed Access Network Sharing

Fixed Access Network Sharing (FANS) consists of sharing the physical network into

multiple virtual network slices and allocating them to different operators, with a

high degree of flexibility, based on network virtualization technologies [33].

Two models of a solution have been presented by the introduced fixed access network

sharing, as follows:

• Management System, which introduces the network slicing at the management

level. The management system configures a virtual private network (VPN),

and installs a policy to ensure the appropriate capacity to allocate across the

corresponding network equipment.

• Virtual Access Node (VAN), which is based on the function virtualization prin-

ciples relying on the NFV MANO paradigm. Here, the resources are extracted

in multiple VAN instances with virtual to physical port states maintained by

a mapper in the management system of the operator. Network slice requests

are received via the operator’s management system, which communicates with

MANO to configure network services and connectivity. Then, using a hyper-

visor, the VAN allocates network resources to virtual operators taking into

account existing cloud computing platforms and routers.

B. Fronthaul/Backhaul and network slicing

The emerging 5G backhaul/fronthaul must be suitable to meet the 5G require-

ments on integrating various transmission technologies such as optical Ethernet,

IP, millimeter-wave. Besides, the 5G RAN must support other emerging require-

ments that need high-performance and stable connectivity, for instance, adopting

massive MIMO or dual connectivity and centralized management. This involves the

coordination of the radio and transport layers, tighter synchronization, and unified

transport control. In addition, a flexible split of base stations is essential here while

taking into account the requirements of the use case and network conditions. In

fact, centralization requires higher backhaul/frontier capacity, resulting in increased

costs. The split of base station functions has an impact on the role of backhaul and

fronthaul, creating an integrated transport network architecture that combines the

two, flexibility and reflecting of RAN centralization.

In this context, the authors of [34] [35] introduce an architecture based on the cre-

ation of an overlay network. It is an integrated upstream and downstream transport

architecture based on a unified control plane and a data plane. It relies on network

nodes capable of integrating different upstream and downstream transport tech-

nologies via a common data frame. The authors of [36] proposed an architecture

based on integrating an optical and wireless backhaul/fronthaul. The data plane

here can be programmable according to the SDN paradigm.

Therefore, different service-oriented functional distributions of the RAN on the
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same network infrastructure can be adapted. In fact, the functional distribution

of the RAN and the degree of centralization depends on the network conditions

and the service requirements. Besides, to guarantee the performance and ensure

isolation between different logical networks that use a different functional RAN

distribution, integrating network slicing can be a key enabling that. To achieve

this, network operators use algorithms of slicing and perform a joint optimization

of VNF embedding according to the availability of links and the topology of the

transport network. It is based on knowledge of the user’s context, the network, and

the service, to provide the required service.

2.3.3 Slicing the Radio Access Network

The bandwidth or frequency spectrum resources limitation requires the RAN to

apply suitable properties to best manage the resource gap. As already mentioned,

network slicing should ensure a certain level of service efficiency. The RAN domain

mainly needs to guarantee a good customization, elasticity, and an efficient resource

sharing and dynamic isolation algorithm. We will detail the three most important

criteria that need to be addressed in the RAN regarding network slicing.

A. Slice Resource Management and Isolation

The slice resource management models depend on the required level of isolation,

where each slice uses a frequency spectrum or a set of resources dedicated to it. In

the RAN, the isolated dedicated resources are the MAC scheduler, control plane,

user plane, and the spectrum. Each slice has access to a percentage of dedicated

pRBs and its own instances, which are: MAC, PDCP, RRC, and RLC. The dedi-

cated resource model limits the gain of multiplexing and reduces resource elasticity,

despite the fact that it ensures delay and capacity constraints. The shared resource

model allows slices to share the control plane, spectrum, and MAC scheduler. In

fact, the amount of resources (the NpRBs) allocated to a slice cannot be adjusted

by the slice owner, even if they are not used. In particular, the pRBs in the shared

spectrum are managed by a common scheduler. This common scheduler allows

resources to be allocated to slices, according to a specified policy and other com-

mercial criteria. However, this solution does not totally ensure traffic isolation and

quality of service, although it exploits statistical scheduling of physical resources

granting elasticity.

Several works in the literature have addressed the issue of spectrum sharing

among Mobile Virtual Network Operators (MVNO) in the RAN. The authors of

[37] propose an approach to the virtualization of an LTE eNB based on a hypervisor,

considering the traffic load and radio conditions. The authors of [38] have detailed

the management of wireless resources at the network level for RAN sharing. The

concept of Network Virtualization Substrate, allowing flexible allocation of shared

resources by modifying the MAC scheduler, has been introduced in [39]. Its purpose
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is to reflect the traffic needs of MVNOs by taking into account the corresponding

SLA. The authors of [40] propose a resource reservation scheme for LTE networks,

covering both scheduler and admission control aspects. This scheme can flexibly

allocate the shared resources to operators according to their traffic priorities and

actual traffic loads. The paper [41] introduces an application-oriented framework

for RAN sharing in mobile networks, according to the applications’ QoS require-

ment.

The majority of the systems proposed in the literature are based on applying opti-

mization models with multi-objective functions. These models aim at satisfying a

specific range of heterogeneous slice requirements such as throughput and latency.

However, the most of proposed solutions and optimization models are NP-hard and

complex. To this end, the authors of [16] introduce a two-level scheduler to share

the pRBs between the network slices in order to relax the constraints of the already

proposed NP-hard solutions. The first level allows the allocation of virtual RBs

(vRBs) to the UEs belonging to a slice; this level is called Slice Resource Manager

(SRM). The second level is an inter-slice scheduling process that translates the vRB

allocation into PRB; this level is called Resource Manager, considering the resource

capacity limitation.

B. RAN Programmability

RAN represents both the most complex and the most expensive part of the mobile

network infrastructure. The technologies and strategy adopted to increase sys-

tem capacity and improve spectrum efficiency require a high level of coordination

between base stations. Therefore, integrating SDN in the RAN is seen as a solu-

tion allowing a significant evolution towards the future. It enables a wide range

of use cases and new services. This concept is called Software-Defined RAN (SD-

RAN) or RAN programmability. SD-RAN presents a challenge, given several strict

constraints that must be addressed. Among these challenges, there is the time

constraint associated with some key RAN control operations. In particular, RAN

programmability allows APIs to be easily opened to third parties. In addition, it

enables to abstract the underlying RAN resources through a service orchestrator

entity. This service orchestrator entity allows to dynamically control the resources

dedicated to a network slice.

Softwarization of the RAN has received substantial attention from the research com-

munity in recent years in both industry and academia. For instance, the authors of

[42] present the idea of the abstraction of a big base station. This solution enables

the management of the dense network deployments by separating the data plane

and the control plane, which is centralized. The authors of [43] have developed

FlexRAN, which is a flexible and programmable SD-RAN platform that separates

the RAN control and data planes through a new custom-tailored southbound API.

The authors implement FlexRAN as an extension to a modified version of the Ope-
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nAirInterface LTE platform [44]. Precisely, FlexRAN represents the first SD-RAN

platform, where its design facilitates real-time RAN control due to its flexible ar-

chitecture. It is transparent to the end devices, which facilitates evolution and

deployment. It offers two levels of programmability; the first level is at the con-

troller, which allows updating the implementation of any control function on the

fly. The second is a form of RAN control/management applications that can be

built on the FlexRAN controller. In this context, the authors of [16] present a new

architecture applying FlexRAN in the RAN, based on the two-level MAC architec-

ture already defined by [12]. The authors implemented Open Air Interface (OAI)

in a two-level scheduler and demonstrated via FlexRAN the life cycle management

of the RAN slice. The authors of [45] design an approach allowing to drive resource

disaggregation in centralized software in the RAN. It enables individual allocation

of processing functions to different servers according to the type and volume of their

processing requirements.

In similar context, several industry consortia have introduced an extension to the

RAN called xRAN to design the future programmable wireless dense network in-

frastructure. The goal is to decouple service from hardware by designing a pro-

grammable and generic substrate to create a flexible multi-service network. Re-

cently, Central Office Re-Architected As a Datacenter (CORD) and xRAN have

created an open carrier-class reference implementation of xRAN in the context of

M-CORD, by combining their efforts. Also, PRAN [46] and OpenRadio [47] address

data plane programmability and the deployment of new wireless protocols on the

fly, in addition to the control plane solutions already proposed.

C. Flexible RAN Virtualization and Functional Split

RAN virtualization enables certain RAN functions to run on remote software plat-

forms, based on the concept of BS softwarization. This paradigm has undergone

significant development with the emergence of the Cloud-RAN (C-RAN) concept

[48] [49]. In this context, the RAN functions are split between the remote ra-

dio heads (RRH) that provide the antenna equipment and radio access and the

baseband unit (BBU), hosted in the cloud. C-RAN deployments are based on the

concept of flexible, functional distribution. It considers a range of C-RAN deploy-

ment options based on the time-critical nature of certain RAN functions and the

front-end capacity while considering environmental conditions and user’ load.

In the RAN, the gNB architecture is composed of two main units, namely the:

Central Unit (CU) and Distributed Unit (DU). CU is a logical node that includes the

gNB functions like radio access network sharing and mobility control. CU controls

the operation of DUs over the fronthaul interfaces. On the other hand, DU is a

logical node, where its operation is controlled by CU. DU includes a subset of the

gNB functions, depending on the functional split option. Fs-C and Fs-U provide

control plane and user plane connectivity over Fs interface. Connectivity between
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Figure 2.8: gNB Logical architecture [9]

CU and DU is provided via the Fs interface. Figure 2.8 shows the gNB logical

architecture, and its CU/DU split.

Figure 2.9 presents an overview of the different CU/DU functional splits options,

that are detailed as follows:

• Option 1 (RRC/PDCP split): In this split option, RRC is in the CU while

RLC, PDCP, MAC, PHY layer, and RF are kept in the DU. Hence the entire

user plane is in the DU.

• Option 2: (PDCP/RLC split): This option can use any type of the first-line

network, it runs PDCP functions at the BBU, and it is not time-critical. The

Figure 2.9: Functional split overview [10]
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main advantage of this option is the possibility to have an aggregation of

different RRHs technologies (e.g., 5G, LTE, Wifi).

• Option 3: (High RLC/Low RLC split, Intra RLC split): In this option, several

MAC entities are associated with a common RLC entity since the RLC layer,

and other layers above it are virtualized at the BBU. Due to the fact that real-

time scheduling is done locally in the RRH, this option reduces the latency

constraints of the fronthaul.

• Option 4 (RLC-MAC option): In this split option, RRC, PDCP, and RLC

are in the CU. MAC, PHY layers, and RF are in the DU. The MAC and

the protocols that precede it are virtualized and run real-time scheduling

on a BBU aggregated across multiple RRHs. Although this option allows

coordinated planning and dynamic point selection, it requires a low-latency

fronthaul. In fact, some MAC procedures need to generate a configuration at

the TTI level and are time-critical.

• Option 5 (Intra MAC split): this option assumes the following distribution:

(i) Higher part of the MAC layer (High-MAC), RLC and PDCP are in the CU

and (ii) PHY layer, RF and lower part of the MAC layer (Low-MAC) are in

the DU. The services and functions provided by the MAC layer will be located

in the CU, since the MAC layer is splits into 2 entities (e.g. High-MAC and

Low-MAC).

• Option 6 (MAC-PHY split): This option offers the highest level of centraliza-

tion. It can only be achieved through an ideal fronthaul using a low-latency

optical fiber and a high data rate.

• Option 7 (Intra PHY split): This option requires a compression technique to

reduce transport bandwidth requirements between the CU and DU.

• Option 8 (PHY-RF split): This option separates the PHY layer and the RF

layer enabling the centralization of processes at all levels of the protocol layer.

It results in very tight coordination of the RAN. Thus, it provides efficient

support for functions such as MIMO, mobility, and load balancing.

RAN Spilt architecture, as described above, provides significant advantages, in-

cluding: (i) real-time performance optimization, load management, and enables

NFV/SDN; (ii) adaptation to various use cases; (iii) scalable, cost-effective solu-

tions.

In this context, the IEEE NGFI (Next Generation Fronthaul Interface) introduced

in [50] some functional splits considering the interface latency and bandwidth re-

quirements.

It is worth noting that the flexible functional split can highly improve the net-

work slicing performance. This can be achieved by having an optimal split, which
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Figure 2.10: E2E network slicing architecture: high-level view [11]

depends largely on the desired service features. For an eMBB slice, a higher cen-

tralization can enhance the throughput by aggregating RRHs enabling, while an

uRLLC slice may need most RAN functions to run on DU in order to fulfill latency

requirements.

In the context of network slicing and functional split, the authors of [51] showed that

certain RAN functions can also be shared among different slices. For instance, we

can mention the low RLC (real-time function), MAC scheduling (inter-slice sched-

uler), and PHY layer while dedicating RRC (configured and tailored user plane

protocol stack), PDCP, RLC (non-real-time functions) to each slice separately.

2.3.4 Network slicing architecture: orchestration and man-

agement

At a higher level, an E2E network slice should always be composed of three sub-

slices: core, RAN, and transport. According to the 3GPP specifications of [52], the

authors of [11] present the architecture of the high-level network slicing as shown

in Figure 2.10.
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In this architecture, the Communication Service Management Function (CSMF)

component gets a demand for a communication service by a vertical and translates

it into specific slice requirements. Therefore, it requests the instantiation of an E2E

network slice by interacting with the E2E slicer through the northbound interface

(NBI).

The Network Slice Management Function (NSMF) of the E2E slicer manages the

lifecycle of every 5G service slice. Each network slice type request has specific

requirements (for instance: number of UEs, slice life duration, etc.), which are

provided as a slice template. To this end, an appropriate Network Slice Subnet

Management Function (NSSMF) corresponding to each sub-slice will be selected ac-

cording to the template. Afterward, the NSMF creates a customized slice instance

and assigns it to the appropriate NSSMF, the instantiation and management of each

sub-slice. Note that the slice template has an important functionality for handling

the sub-slice of the CN. Indeed, each slice template contains fields that indicate the

NSSMF’s type that should be used to orchestrate the underlying sub-slice instance.

This functionality allows the NSMF to identify which NFV Orchestrator (NFVO)

and the respective MANO stack to launch or reuse one slice instantiation type. It

will then request creating the appropriate CN sub-slice instance through the NBI

of NFVO, by properly customizing the VNF instances included and the relevant

resources depending on the service-specific characteristics.

The RAN sub-slice NSSMF contains a RAN resource allocator component respon-

sible for translating the slice needs into a radio resource allocation and performing

a high-level RAN resource allocation. To this end, the RAN state should always be

updated in terms of different varying conditions, including the bitrate requirements

per UE/slice, the connected UEs per eNB, the quality of their radio connection,

and the slice instances to which an eNB is participating. In this case, the NSSMF

uses this information to generate an adequate distribution of RAN resources per

cell to meet the coexisting slice requirements. The NSSMF uses the appropriate

NBI from the RAN controller to ensure changes in radio conditions or deploy new

slices. In this context, (i) the RAN controller is considered as a RAN-specific Vir-

tual Infrastructure Manager (VIM), (ii) an agent located at an eNB is considered

as a hypervisor, where it provides a virtualized view of the RAN resources, and the

necessary primitives to perform resource management tasks on physical resources

dedicated to a slice on the same radio hardware.

The transport-level NSSMF interacts with network elements to handle the isolation

and the provisioning of the links (physical or virtual) connecting network functions

of the RAN and CN and external networks.
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2.4 5G network slicing challenges and open issues

A. Intelligent service function chaining

The network slice is composed of a set of service function chains. Service function

chaining is a mechanism that links different service functions to each other to form

a service through virtual machines running either on a single or multiple nodes.

These nodes have specified bandwidth constraints on communication with other

nodes and limited computing resources [53] [54] [55] [56].

Therefore, the performance of service function chaining significantly depends on

the choice of the node and its corresponding communication links. To this end,

an optimal choice of the node and routing protocols is required here to enhance

the performance of this service chaining citing, computational latency, energy, BW

limitation, etc.

In the literature, there are some works based on optimization algorithms and ML

techniques used to address this issue (i.e., service chaining). On one hand, the

algorithms based on mathematical optimization have shown their effectiveness in

this case. However, most of them are very complex to solve and slow, which requires

heuristics, which makes the results less accurate [54] [57]. On the other hand, the use

of ML algorithms to solve this problem is a recent trend that shows its effectiveness

but still presents some challenges, which must be addressed. For instance, the

authors of [58] present a study that enables intelligent service function chaining

based on a deep learning scheme and design a high-performance routing strategy in

SDN and NFV-enabled networks. The authors of this work only considered latency

constraints without considering the energy which should be considered as a joint

minimization with the latency More recent papers are published in this context,

citing [57], where the authors propose an optimized solution of resource allocation

of service function chain in NFV-SDN using a Reinforcement Learning algorithm.

The authors of [59] propose a geo-distributed VNF chain over time by modeling

the traffic using a recurrent neural network and making chain placement decisions

using deep reinforcement learning. The authors of [60] propose a service function

chaining scheme based on reinforcement learning.

B. Mobility-aware slicing

Mobility aspects such as interference management and seamless handover pose sig-

nificant challenges to network slicing. Mainly, these challenges are due to: (i) the

increasing number of mobile users of a wide variety of smart applications and to (ii)

the handovers to the different access networks, especially for real-time services. For

this purpose, a slicing system addressing mobility management issues is essential

to deal with mobility challenges, especially for critical services such as automated

driving. In this context, the authors of [61] propose a solution to enable mobility-

aware network slicing based on the Lagrangian dual decomposition. The authors of
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[62] propose to track user mobility and improve the network slicing system utility

using the long short-term memory (LSTM) algorithm. The authors of [63] introduce

optimal mobility management enhancements by re-evaluating the optimality of the

mobility anchor during each handover in order to ensure low latency in 5G net-

work slicing. The authors of [64] propose an architecture using the slicing network

paradigm to enable user mobility in different radio access technologies.

C. Dynamic spectrum slicing

Dynamic spectrum slicing represents a crucial and very important challenge in net-

work slicing due to the limited spectrum bandwidth and to the growing demands

of users. It is necessary to efficiently utilize the available spectrum via slicing

while considering the significant variations of users’ demands. Therefore, when the

spectrum allocation is fixed without following the users’ demands, the spectrum

bandwidth maybe under or over-utilized. To this end, it is necessary to define a dy-

namic spectrum allocation algorithm based on the varying resource demand of users

according to their application requirements over time. For instance, the authors of

[65] present a scheme of dynamic spectrum policy considering the network traffic

variations, where they use Markov process to model the user traffic distribution.

The authors of [66] introduce a novel solution to address effective spectrum slicing

to address the dynamic data requirements at every 5G base station. They propose

the application of overlapping coalitional game models to spectrum slicing among

operators. In the same context, the authors of [67] introduce a service-oriented

spectrum-aware RAN slicing trading model in order to ensure a dynamic on-demand

RAN-slicing under the spectrum sharing scenario based on mixed-integer nonlinear

programming.

D. Resource sharing

Sharing resources between slices presents a crucial issue. It can be static or dy-

namic. The algorithm of resource sharing should follow the dynamic requirements

of each slice based on several constraints citing, the applications running in the

slice, the slice required throughput, the slice required latency, the number of users

hosted by the slice, and others. Therefore, a dynamic resource sharing algorithm

is more efficient and recommended than a static one to fulfill the dynamic slice

requirements. In addition, resource sharing introduces other challenges that must

be considered, such as the slice isolation, despite all the benefits it brings to the

InfProv. It is worth noting that the resource sharing among the RAN slices is more

critical and challenging compared to core slices.

The authors of [68] present a general study on the resource sharing existing mech-

anisms in network slicing. In this context, several other works in the literature

proposed algorithms to deal with resource sharing challenges [69] [70] [71].
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E. Isolation among network slices

Slice isolation presents a critical challenge in network slicing. In fact, it allows en-

forcing the core concept of network slicing concerning the simultaneous coexistence

of several slices sharing the same infrastructure. Different services in 5G networks

have unique requirements. Therefore, dedicated virtual network resources are re-

quired to guarantee the service quality at each slice. Efficient slice isolation should

ensure that any security attack or failure on one slice will not affect the operation

of the other slices. In addition, it should ensure the privacy of each slice.

In the literature, some works have addressed this network slicing isolation issue.

For instance, the authors of [72] present the problem of isolation-aware RAN slice

mapping, considering a 3-layer RAN architecture and advanced functional splits,

using a dual-objective heuristic algorithm. The authors of [73] propose to use an

appropriate user admission control mechanism to ensure isolation in dynamic net-

work slicing. In [74], the authors demonstrate that Flex Ethernet technology is able

to guarantee physical isolation for virtual networks and avoid interference between

different slices.

F. Algorithmic aspects of resource allocation

The design of a good slice resource allocation algorithm is a difficult challenge that

needs to be addressed. It is worth noting that this problem is similar to the vir-

tual network embedding problem. These algorithms can be based on mathematical

methods of operations research, such as integer linear programming while consid-

ering the size of the slice. In addition, the performed algorithm should be able to

reconfigure and migrate slice resources due to the dynamic characteristic of the 5G

network. In this context, the authors of [75] present the algorithmic challenges that

arise in efficient network slicing, including the resource allocation aspect. The au-

thors confirm that these algorithms require new techniques from computer science,

operations research, and networking.
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Dynamic slicing of RAN resources

for heterogeneous coexisting 5G

services

Network slicing is one of the key components allowing to support the envisioned

5G services, which are organized in three different classes: eMBB, mMTC, and

uRLLC (refer to Fig 3.1). Although it is straightforward to slice and isolate com-

puting and network resources for CN elements, isolating and slicing RAN resources

is still challenging. In this chapter, we leverage on the two-level MAC scheduling

architecture [12] to provide a resource sharing algorithm that computes and dynam-

ically adjusts the necessary radio resources to be used by each deployed network

slice, covering eMBB and uRLLC slices. We also present the simulation results

of the proposed algorithms for resource sharing between slices, which clearly in-

dicate the proposed solution’s ability to slice the RAN resources and satisfy the

heterogeneous requirements of both types of network slices.

3.1 Motivations and state of the art

Network slicing aims at sharing the same physical infrastructure (Mobile Network

infrastructure, RAN, and CN) by creating virtual instances of the network tailored

to application needs. Network slicing requires sophisticated mechanisms to share

and isolate the RAN resources across slices. In [12] and [16], the concept of a

two-level scheduler is introduced, which aims to share physical radio resources (i.e.,

pRBs) among slices by abstracting pRBs and using two scheduler levels as shown

Figure 3.2. The first level is slice-specific, allowing each slice to use its own inter-

nal scheduler, and schedules each UE with vRBs. On the other hand, the second

level considers the slice-specific (virtual) resource assignment and maps it to actual

pRBs. As the number of pRBs (NpRB) is limited, the second-level scheduler con-
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Figure 3.1: Slices defined

trols the number of NpRB assigned to each slice according to the recommendation

of a SO. The latter indicates the maximum NpRB to dedicate to each slice after

executing an intra-slice physical resource sharing algorithm.

However, in the above works, it is not detailed how these values (NpRB) are de-

rived for each slice, knowing that each slice type has its own characteristics and

requirements. For instance, eMBB requests high bandwidth while uRLLC aims to

minimize latency and maximize reliability. Rather, the ratio of radio resources to

allocate to each slice is considered static and is decided in a manner agnostic to the

actual application requirements of each slice in terms of latency and/or through-

put. In this thesis, our first contribution is presented in this chapter and fills this

gap by completing the work of [12] and [16] with a dynamic RAN resource slicing

mechanism to derive the value of NpRB to dedicate to each running slice, according

to its specific requirements and the varying conditions of the radio environment.

The proposed mechanism runs at the SO level and relies on monitoring information

obtained from the RAN.

In this context, several works in the literature address the allocation of resources

to network slices. In [76], the authors discussed the dynamic allocation of RAN

resources to different tenants (e.g., virtual mobile network operators and service

providers). They proposed a weighted proportionally fair allocation mechanism to

ensure the desirable fairness and protection among the network slices of the different

tenants and their associated users. The authors of [77] designed optimization algo-

rithms for common scheduling between eMBB and uRLLC slice traffic, considering

the dual objectives of maximizing utility for eMBB traffic while satisfying instanta-
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Figure 3.2: 2 leval MAC scheduler system model [12]

neous uRLLC requests. This is achieved by dynamically multiplexing the uRLLC

traffic through puncturing/superposition of the eMBB Traffic. The results showed

that this joint problem has structural properties that enable clean decomposition

and corresponding algorithms with theoretical guarantees. In [78], the authors an-

alyzed dynamic resource sharing in network slicing when tenants (such as mobile

operators and/or services) support inelastic users with minimum rate requirements.

They proposed a network slicing framework combining (i) admission control, (ii)

resource allocation, and (iii) user dropping, which they study using tools from game

theory. The authors of [79] presented algorithms that study the problem of resource

allocation in the context of a slicing-ready 5G network. These algorithms are com-

posed by: i) traffic analysis and prediction per network slice using the Holt-Winters

forecasting procedure to analyze and predict future traffic requests associated with

a particular network slice, ii) admission control decisions for network slice requests

using a heuristic algorithm, and iii) adaptive correction of the forecasting solution

based on the measured deviations, using a proposed network slice scheduler. The

authors of [80] focused on the computational outages that can occur between RAN

functions, aiming to improve the performance of scheduling and MCS selection

functions. The problem, which was shown to be NP-hard, was formulated as a

joint optimization one, and some algorithms to solve it were proposed. Finally, [81]

adopted revenue management models, which have been introduced in other contexts

(airlines, hotels, etc.), in order to propose a resource allocation model. The authors

proposed the concept of slice overbooking to maximize mobile operators’ revenues

by introducing a hierarchical control plane to manage the orchestration of slices.

To summarize, despite the fact that all the methods already proposed have shown

relatively good results in the challenge of dynamic resource allocation, all these
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methods proposed algorithms for dynamic resource sharing individually or in com-

bination, which are based on several constraints on users, operators, etc. requiring

information from them, and which can not always be feasible, optimal and/or ac-

curate. However, the contribution introduced in this chapter proposes a simpler

algorithm based only on the estimation of the quality of the channel, which al-

lows predicting the number of resources to allocate to each slice, which adds more

precision to the system.

3.2 Architecture and assumptions

In this contribution, we envision the same network architecture model adopted

in [12] and [16]. We assume a 5G network which includes a SO and a set of eNBs

deployed covering an area. The role of the SO is to deploy and manage the life cycle

of network slices in the mobile network (RAN and CN). We assume that a SO is

responsible for a region covered by a certain number of eNBs. The SO communicates

with the eNBs using a southbound protocol, such as FlexRAN [43], that allows to

interact and manage remotely the eNBs. The eNB management process consists in

getting status information on the RAN and appropriately configuring eNBs, e.g.,

by setting the NpRB to dedicate to each slice. We assume that a set of UEs are

served by/associated with a network slice, spanning a set of eNBs (i.e., different

physical locations). The SO receives from a tenant (owner) a request to instantiate

a slice in the form of a slice template, which indicates the slice type (e.g., eMBB,

uRLLC, mMTC), its duration, the list of involved UEs, the (application) data rate

(denoted by λ) of the service used in this slice, and application requirements such

as the maximum tolerated latency. According to this information, the SO derives

the appropriate number of pRBs that fits the needs of the slice, which will be

communicated later to the involved eNBs via the southbound protocol.

In this contribution, we consider that a network slice is either eMBB or uRLLC;

hence, we propose two corresponding mechanisms to estimate the NpRB needed

by each slice. Note that although the 5G system considers three types of slices,

where, we considered only two of them; resource allocation for eMBB and mMTC

may follow the same mechanisms and algorithms. The main difference lies between

eMBB and uRLLC, as the first one seeks high data rate, while the second requires

low latency. The proposed algorithm first derives an initial estimation of the NpRB

necessary using the information obtained from the slice template. Then, a dynamic

algorithm is used to tune NpRB periodically according to the feedback obtained

from the eNBs via the southbound protocol. In this section, we will detail the first

step for each network slice type considered (eMBB and uRLLC).
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3.2.1 eMBB slice

An eMBB slice requires a high data rate, representing the main objective when

estimating NpRB. In the first step, we start by estimating the maximum number

of required pRBs for each eNB i (NpRBmax(i)), using the information provided by

the slice owner, i.e., the data rate per user required by the application running on

top of the slice (dApp/user), and the number of users (Nusers(i)) of the network slice

connected to eNB i, which can be retrieved from the eNB via the southbound control

protocol. The main constraint to satisfy is that the number of pRBs NpRBmax(i)

to dedicate periodically for an eMBB slice at each eNB should be (greater than

or) equal to the aggregate data rate needed by the slice application for all users

connected to it; this is captured in (3.1).

NpRBmax(i) ∗ dpRB = Nusers(i) ∗ dApp/user. (3.1)

Indeed, the equation indicates that the NpRBmax(i) allowed to a slice on a given

eNB i should cover the needed slice’s applications (i.e., the number of active users

Nusers(i) multiplied by the data rate required by the application). Here we consider

that dApp/user is the same for all users. We further assume that dpRB is the maxi-

mum data rate provided by one pRB and that it is the same for all users. In this

first step, we consider that this rate is the maximum achievable by the radio system

for ideal channel conditions, i.e., the maximum possible CQI value of 15, and the

corresponding MCS and transport block size as specified in the standard [82].

Once each NpRBmax(i) is computed using (3.1), it is communicated via the south-

bound protocol to the corresponding eNBs.

3.2.2 uRLLC slice

Knowing that a uRLLC slice includes all services requiring ultra-low latency, the

aim when deriving NpRBmax is to keep latency below a maximum threshold (Latmax)

indicated in the slice template provided by the slice owner. To do that, we need

to derive a model that estimates the latency experienced by uRLLC packets at the

eNB queue.

Since each slice has its own DL queue at the eNB [12], all packets belonging to

the slice share the same queue. Therefore, to estimate the latency of the packets,

we propose to model the slice queue at the eNB as an M/M/1/K one. The traffic

arrival rate follows a Poisson distribution with intensity λ, the service rate µ is

exponential, and the queue has a size of K. Here, the value of λ corresponds to the

traffic rate of the application running on top of the slice, while the service rate µ

depends on the scheduling process at the MAC layer. To derive λ and µ, we use

the following formulas:

µ =
NpRB ∗ dpRB

avg packet size
(3.2)
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λ =
Nusers ∗ dApp/user
avg packet size

, (3.3)

with avg packet size denoting the average packet size of the uRLLC application,

and dApp/user having the same value for all slice users. To estimate the latency

of uRLLC packets, we apply Little’s law. The latter assumes that whatever the

distribution of the arrival rate, the average time a user spends in a queue depends

on the number of active users Nusers and the traffic intensity (i.e., λ). As the number

of users corresponds in our case to the number of packets (Npacket) of the uRLLC

service waiting in the queue, Little’s law is used as follows to derive the time a

packet spends in the queue:

Tw =
Npacket

λ
(3.4)

As we assumed that the uRLLC queue is modeled as M/M/1/K, Npacket can be

derived as follows:

Npacket =
1− ρ

1− ρK+1

K∑
k=0

kρk (3.5)

where ρ = λ
µ
. Since µ corresponds to the service rate of the uRLLC queue, and

depends on the number of resources dedicated to the uRLLC slice, it can be derived

using (3.2). By assuming that Latmax is the maximum tolerated latency by a uRLLC

slice, Tw should be less than or equal to this value:

Tw ≤ Latmax. (3.6)

We substitute Tw by its value given by (3.4), obtaining the following expression:

Npacket

λ
=

1−λ
µ

1−(λ
µ

)K+1

∑K
k=0 k(λ

µ
)k

λ
≤ Latmax (3.7)

Therefore, we need to find a value of µ, noted µopt, that ensures at least a latency

equal to Latmax for uRLLC. According to (3.2), we can extract the number of pRBs

(noted NpRBopt) to dedicate to a uRLLC slice as follows:

NpRBopt =
µopt ∗ avg packet size

dpRB
(3.8)

At this step, we go by the assumption that the value of dpRB is the same for all

UEs, as in the case of eMBB, and that avg packet size is constant, and aim to

solve (3.7) for µ. We denote the solution to (3.7) as µopt.

Deriving µopt analytically is not straightforward. Therefore, we numerically estimate

it using the following simple algorithm.1

1Adaptations of standard numerical techniques such as the Newton-Raphson and the bisection

algorithms are also applicable.
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Algorithm 1: Calculation of µopt that allows to respect the latency re-

quirement of a uRLLC slice.

Result: µopt
initialization: Mu = [µ1, µ2, ..µL], Mopt = []

for l ← 1:L do

ρ(l) = λ
Mu(l)

Npacket(l) = 1−ρ(l)
1−ρ(l)K+1

∑K
k=0 kρ(l)k

Tw(l) =
Npacket(l)

λ

if latmax − Tw(l) ≥ ε then

Mopt.append(Mu(l))

else

reject Mu(l)

end if

=0
end

µopt = minMopt

The steps of this procedure are as follows: First, we generate L candidate values

for µ and keep them in a vector Mu. The number of values to generate is limited:

For example, since dpRB is assumed for now fixed, we can generate one µ value

for each possible number of pRBs, which is defined by the available bandwidth

for the given radio technology (e.g., for a bandwidth of 5Mhz, a maximum of 25

pRBs can be used) using (3.2). Then, we calculate Npacket corresponding to each

value of µ and the resulting Tw value, which we compare with Latmax to check if

condition (3.6) is respected.

Note that we use a latency margin ε when we compare Tw with Latmax to accept or

reject a µ value. By appropriately controlling ε, we can ensure that Tw is adequately

lower than the latency threshold Latmax, but also close enough to it in order not to

waste a lot of resources while respecting condition (3.6).

Out of all the µ values that lead to an acceptable latency (in case there are multiple),

we select as the optimal the one which minimizes the difference between Tw and

Latmax, i.e., the smallest value of Mopt. These steps are illustrated in Algorithm 1.

Once µopt is obtained, we use (3.8) to derive the corresponding NpRB to be assigned

to a uRLLC slice. As for the case of eMBB, the proposed method needs to be run

for each eNB where UEs of the slice are connected to.
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3.3 A channel quality-driven algorithm for dy-

namic NpRB estimation

The initial NpRB calculated per slice in the previous step is based on the assump-

tion that dpRB is fixed for all users. However, users experience different channel

conditions, and hence different data rates.

Therefore, we propose to correct the estimation of the dpRB by using per-UE chan-

nel quality reports obtained from eNBs. These reports include the CQI and MCS

values of each UE belonging to a cell. Note that these values are transmitted to

eNBs by the UEs in order to be used in the scheduling process. We organize these

CQI values in a matrix v(j, k), where j is the id of the slice and k is the id of the

UE. Based on the CQI, we can estimate dpRB per UE and per cell (eNB). Indeed,

dpRB can be obtained by using the same tables used by the eNB to translate a CQI

to a data rate [82]. Matrix v is then transformed to a matrix of data rates noted

dpRB(j, k), where j and k have the same meaning as for matrix v.

Algorithm 2 presents the different steps of the dynamic slice resource allocation

procedure. Note that Slice(j) gives the type of the deployed slice, NpRBopt(i, j) is a

matrix that gives for each cell i the necessary number of pRBs for slice j, Nusers(i, j)

a vector indicating the number of users of a slice j in cell i, and dApp user(j) the

data rate required by an application (per user) running on top of a slice j. This

algorithm allows to estimate the NpRB allocated to each slice and for each network

cell more accurately: For an eMBB slice, it sums the necessary resources per UE

considering each user’s individual radio capacity reflected in dpRB(j, k). For uRLLC,

it applies (3.8), using the optimal service rate as computed by Algorithm 1 to attain

latency requirements, and the mean achievable dpRB across all slice users per eNB

considering each user’s channel quality, instead of a fixed optimistic value for all.

Note that this algorithm is run periodically by the SO. It relies on the eNBs’ re-

ports also obtained periodically. The periodicity of running these algorithms is

independent from the scheduling period TTI used at the MAC layer of the eNBs.

3.4 Performance Evaluation

3.4.1 Scenarios and parameters

To evaluate the performance of the proposed solution, we extended the Matlab

implementation of the two-level scheduler used in [12]. We mainly modified the SO

part to include our algorithms. In this simulation, we considered two types of slices,

i.e., eMBB and uRLLC. Each slice is defined by the required application data rate,

the number of users, the maximum latency for uRLLC, etc.

We simulated different scenarios, where we varied the number of users of the uRLLC

slice (NuRLLCusers) while keeping it fixed for the eMBB slice (NeMBBusers) to 5 users,

and for different channel qualities: (i) medium quality where the CQI varies from
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Algorithm 2: Calculation of NpRB for eMBB and uRLLC slices for mul-

tiple cells

Result: NpRBopt(i, j)

for each cell i do

for each slice j do

if Slice (j) == eMBB then

NpRBopt(i, j) =
∑k=Nusers(i,j)

k=1

dApp/user(j,k)

dpRB(j,k)

else

if Slice (j) == uRLLC then

NpRBopt(i, j) = µopt∗avg packet size

1
Nusers(i,j)

k=Nusers(i,j)∑
k=1

dpRB(j,k)

end if

end if

=0
end

end

7 to 9; (ii) good quality where the CQI varies from 13 to 15. The different channel

qualities will directly affect dpRB, which allows to see its impact on the proposed

solutions. Note that we simulated the case of only one eNB and one SO. Table 3.1

presents the simulation parameter set in all scenarios:

Table 3.1: Simulation parameters

Parameter Values

Slices [uRLLC, eMBB]

Average Packet Size [20, 125] bytes

Data rate [160, 1000] kbit/s

TTI [1, 1] ms

We compared our solution with the one adopted in [12], which shares the pRBs

among the different slices using a statically selected percentage; in our tests, we

considered a 50% slice-dedicated bandwidth (SDB) per slice. It is worth not-

ing that the number of available pRBs is bounded by the channel bandwidth.

For our simulation, we used a channel bandwidth of 5Mhz, where 25 pRBs are

available. We selected this number to saturate the channel quickly and show the

efficiency of our solution. For higher bandwidths, the only difference concerns

the threshold from where our solution does not perform well. It may happen

that the combined number of pRBs to be allocated to both eMBB and uRLLC

exceeds the channel capacity; hence, we adopted in this implementation a fair
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Figure 3.3: Latency vs. the number of uRLLC users.

share of the resources, which has been computed as follows. First, we compute

∆ = NpRBmax − (NpRBuRLLC + NpRBeMBB) that represents the difference between

the available number of pRBs and the requested number of pRBs for both slices.

Then, we reduce the same amount of pRB ( |∆|
2

) from each slice in order to fit the

capacity of the channel. Other policies could be used, such as giving high priority

to one slice by first satisfying this slice and giving the remaining pRBs to the other

slice. In this work, we use only the fair share of the channel, leaving other policies

for future work.

Finally, we computed three main metrics: the eMBB slice throughput, the uRLLC

latency and the variation of NpRB for each slice. We varied the number of uRLLC

slice users from 1 to 20 in the case of the medium-quality channel and from 1 to 30

in the case of the good-quality channel while fixing the number of eMBB users to
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Figure 3.4: Throughput vs. the number of uRLLC users.

5. The presented results are averaged after several runs of the simulation.

It is worth noting that our main objective is to evaluate the accuracy of our proposed

methods to well estimate the needed radio resources for each type of slice.

3.4.2 Results

Figure 3.3a and 3.3b illustrate the latency experienced by the uRLLC users for

different numbers of NusersuRLLC , and for two channel qualities, good and medium.

Here we considered different values for Latmax: 1 ms, 10 ms and 50 ms, which reflect

different service-level requirements. We remark that our algorithm allows to keep

the latency around Latmax, whatever the value of the latter and for both channel

qualities. However, we see that there is a threshold (i.e., number of uRLLC users)
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beyond which latency exceeds Latmax; 2, 5 and 14 for the medium channel quality

for Latmax=1 ms, 5 ms, and 50 ms respectively, and 15, 22 and 29 for the good

channel quality for Latmax=1 ms, 5 ms, and 50 ms respectively. The difference

between these values is explained by the fact that good channel quality permits to

have higher NpRB compared with the medium channel quality, thus accommodating

more uRLLC users. In addition, we observe that using a fixed number of pRBs

cannot guarantee the very low latency requirement, as the used value (i.e., 50%) is

not optimal (see Figure 3.3a and 3.3b).
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Figure 3.5: Number of pRBs vs. the number of uRLLC users for a medium

channel quality.

Figure 3.4a and 3.4b show the throughput obtained for the eMBB slice as a

function of the number of the uRLLC slice’s users. We remark the same behaviour as

in the precedent figures. Namely, there is a threshold beyond which the performance
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Figure 3.6: Number of pRBs vs. the number of uRLLC users for a good channel

quality.

of the slice degrades, particularly in the case of good channel quality. Indeed, for the

medium channel quality, our solution cannot guarantee the requested bandwidth (5

users × 1 Mbps). However, for good channel quality our solution guarantees the

needed bandwidth until 10 and 25 users when Latmax=1 ms and 50 ms, respectively.

This is expected, as in the case of Latmax=1 ms the uRLLC users need more pRBs,

which strongly affects the eMBB users (see Figures 3.5b and 3.6b). Regarding

the static assignment of pRBs, it always ensures the same throughput (lower than

5mbps), which is not optimal.

To better understand the obtained results, we have drawn in Figure 3.5 and 3.6

the NpRB estimated and used by the eNBs for each type of slice, and for both

channel qualities. From Figure 3.5a and 3.6a we clearly see that the estimated
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value of NpRB is similar to the one communicated to the eNB, until reaching the

identified thresholds in Figure 3.3a and 3.3b. When exceeding these thresholds, the

communicated NpRB to eNB are lower than the estimated value. This is mainly

because the channel capacity is exceeded, and the proposed solution starts using

the fair share of pRBs among the two slices. Hence, it is possible to accommodate

the uRLLC requirement for both channel qualities.

Regarding the eMBB slice, where the results are displayed in Figure 3.5b and 3.6b

for both channel qualities, the estimated NpRB cannot be satisfied in case of medium

channel quality, and after exceeding the identified threshold in Figure 3.4a and 3.4b

for good channel quality. Furthermore, we remark that the number of needed NpRB

is higher in the case of medium channel quality, which is expected as dpRB in this

case is lower than when the channel quality is better; hence more pRBs are needed

to satisfy the throughput of eMBB users.

Overall, these results confirm that the proposed model to estimate the needed NpRB

for eMBB and uRLLC employed by our proposed solution is accurate and permits

to solve the problem of sharing the RAN resources among slices, as long as resources

are available in the BW.

3.5 Conclusion

In this chapter, we addressed the problem of slicing and isolating RAN resources

in slicing-ready 5G networks using the concept of two-level scheduling introduced

in [12]. We proposed two algorithms that estimate the needed RAN resources for

two types of 5G slices: eMBB and uRLLC. We used simulation to evaluate the

performance of the proposed algorithms under different channel conditions. The

obtained results allowed to verify the accuracy of our algorithms when estimating

the needed pRBs for each type of slice, as long as resources are available in the BW.

The proposed algorithms are used at the SO level and could be easily implemented

in a real platform.

The algorithms proposed here for predicting the number of pRBs to be allocated to

each slice are based on CQI feedbacks between the eNB and the SO. However, the

frequent retrieval of these CQI values can saturate the eNB-SO links and negatively

impact RAN performance. In order to solve this problem, we have proposed an

algorithm to decrease the frequency of CQI recovery, which we will detail in the

next chapter.
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Chapter 4

Channel stability prediction to

optimize signaling overhead in 5G

networks using ML

Channel quality feedback is crucial for the operation of 4G and 5G radio net-

works, as it allows to control UE connectivity, transmission scheduling, and the

modulation and rate of the data transmitted over the wireless link. In the previous

chapter, we have used the CQI feedback between eNB and SO to update the NpRB

values dynamically. However, when such feedback is frequent, and the number of

UEs in a cell is large, the eNB-SO links may be overloaded by signaling messages,

resulting in lower throughput and data loss. Optimizing this signaling process thus

represents a key challenge. In this chapter, we focus on CQI reports that are pe-

riodically sent from the eNB to the SO. In this context, we apply ML mechanisms

to predict channel stability, which can be used to decide if the CQI of a UE is

necessary to be reported, and in turn to control the reporting frequency. We study

two ML models for this purpose, namely SVM and NN. Simulation results show

that both provide a high prediction accuracy, with NN consistently outperforming

SVM in our settings, especially as CQI reporting frequency reduces.

4.1 Context and motivations

Providing reliable communication technology represents a key challenge for 5G sys-

tems in both CN and RAN levels. In order to achieve reliability at the RAN level,

an eNB or gNB (in 4G and 5G terminology, respectively) should allocate a sufficient

amount of radio resources per UE and appropriately select the MCS in order to meet

the requirements of each considered application. The amount and configuration of

these resources, i.e., pRB, are directly related with the channel conditions at the

UE end. For this reason, the eNB should ideally know in real-time the quality of
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the channel of each device, which allows it to properly schedule the necessary NpRB

for transmission [83]. In 4G and 5G networks, this number depends on the CQI

value, which is periodically reported by UEs to the eNB/gNB, and conveys their

current communication channel quality [84]. Nevertheless, the periodic transmis-

sion of CQI information incurs signaling overhead; this may overload eNB-SO links

and negatively impact RAN performance. Therefore, it is important to optimize

this signaling process in order to be able to improve on QoS.

This work is put in the context of the 5G RAN slicing design presented in [12],

including a SO responsible for cross-slice resource sharing [18]. This architecture

requires accurate channel quality information per UE at the gNB and at the SO

level in order to be able to estimate and dynamically adjust the radio resource allo-

cation to satisfy the heterogeneous requirements of coexisting network slices. This

information is reported by UEs via standard procedures and propagates to the SO

via a southbound protocol by base stations. The challenge that we face and the

particular motivation here is to reduce this reporting overhead.

The key elements responsible for fluctuations in CQI values are the radio environ-

ment changes, which may be due to user mobility, multi-path effects, and other phe-

nomena. We introduce the term channel mobility to denote time-varying changes in

the radio environment of a UE: On the one hand, the channel is considered static if

its conditions are mostly stable when typically the UE is static or low-mobility for

a period of time. Thus, the reported CQI values remain constant or show minimal

variation, which does not impact radio resource allocation. On the other hand,

the channel is considered mobile when it varies significantly due to factors such

as UE mobility and other effects. In this case, the CQI values exhibit significant

fluctuations. Consequently, it is crucial that the base station is informed about the

changed channel quality information in order to determine the appropriate amount

of resources to be allocated and update the NpRB values for the different UEs.

Our contribution here is in the direction of reducing the signaling overhead by

optimizing the reporting of CQI information via limiting the amount of unnecessary

transmitted messages, at the same time ensuring that the SO has an accurate view

of the SO-eNB link conditions. Detecting whether the channel is static or mobile

over time, though, is challenging, and this is the main issue we address in this

chapter. To this end, we apply ML techniques in order to be able to detect channel

variations. Our approach involves collecting data from the system in order to study,

analyze, and extract the information needed to make a decision. In fact, having a lot

of different types of data about per-UE channel quality, complemented with other

information such as user mobility patterns, fine-grained geographical locations, etc.

would assist in getting a more accurate view from the output of the ML algorithm

to properly identify the stability of the channel. However, this may not be feasible

for technical and privacy reasons.

In this chapter, we make the following contributions: first, we propose a ML-
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driven methodology to predict channel mobility and accordingly adapt the CQI

reporting frequency, aiming to reduce signaling overhead while maintaining an ac-

curate view of channel conditions per UE to appropriately allocate radio resources.

We study, analyze, and predict the channel’s state using two different ML algorithms

to evaluate their suitability and select the more accurate one for our purposes. Our

first design goal is to avoid collecting many data metrics, thus focusing only on

the CQI parameter; the features we have selected for training and classification can

be calculated solely by the statistical processing of the collected CQI values. Our

second design goal is to avoid collecting large volumes of CQI data; to this end, we

evaluate different frequencies to collect these data and their impact on the accuracy

of identifying channel mobility.

4.2 Optimization of CQI signaling overhead state

of the art

Several research works in the literature have been elaborated in order to control

the transmission of CQI information, allowing the optimization of the signaling

overhead. Two families of such control techniques have been devised.

4.2.1 Techniques based on frequency

Techniques of this kind are based on compression models. Indeed, the idea to re-

duce the signaling overhead consists of sending a compressed CQI value of a series of

pRBs, instead of sending a CQI value for each one. In this context, three categories

were proposed as follows [85]: i) Broadband compression, where a single CQI value

transmitted refers to all pRBs of the bandwidth, ii) sub-band compression, where

the bandwidth is divided into multiple sub-bands with the same size, and the UE

selects only one CQI value to be transmitted to the base station, and iii) full band

compression, where the base station estimates the total bandwidth quality, using

mathematical transformations such as the discrete cosine transform and the Haar

wavelet transform. Sivridis and He [86] presented a non-predictive signaling reduc-

tion scheme, where users with a high signal-to-interference-plus-noise ratio (SINR)

transmit only broadband information, while users with low SINR are allowed to

return on-demand instant CQI information at high rates. Therefore, a technique

was proposed to determine the threshold that separates users required to use full-

band feedback from users required to use compression in the wide-band frequency

domain. The work of Kang and Kim [87] is based on the sub-band compression

method, allowing to analyze and select the best M-feedback for OFDMA systems.

In addition, a combined optimization was applied to minimize overhead feedback

costs based on the number of reported RBs per user and the signal to quantization

noise ratio bits. Abdulhasan et al. [88] presented a compression scheme for CQIs in
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a 3GPP-LTE and LTE-A system, where CQI values are communicated to eNodeBs

based on a defined threshold. A trade-off was presented to select the appropriate

threshold since a high threshold is recommended for high-speed conditions, whereas

a low threshold is recommended to ensure reliable transmission mainly in an over-

loaded network.

4.2.2 Techniques based on timing

Chiumento et al. [89] proposed an estimation method of the channel quality based

on Gaussian Process regression at the base station. This is achieved thanks to an

adaptive and online CQI prediction scheme allowing estimation of the channel qual-

ity variations and the behavior monitoring of each user. In [90], the authors dealt

with the CQI aging problem, which could be defined by the mismatch between the

CQI used for the channel adaptation and the current state of the channel. This

problem is caused due to processing delays or because of infrequent CQI reporting.

To overcome this problem, the authors proposed a comparison study of various

signal-to-noise ratio prediction algorithms, such as Kalman filters, among others.

In [91], an algorithm is presented for dynamic CQI resource allocation using ARQ

information, Doppler mobility monitoring, and the MAC layer service classifier.

The idea consists in the combination of information from the physical and MAC

layers, providing additional information about the channel quality and its effect on

MAC frames in terms of delay, packet error rate, etc. This approach allows tuning

the periodicity of the feedback window in order to address QoS, robustness, and

feedback overhead tradeoffs.

The proposed methods to optimize signaling overhead provided relatively interest-

ing results. However, almost all of them consisted of the prediction of channel

quality based on complex optimization algorithms, as well as required several input

parameters that are often not feasible to acquire nor accurate in some conditions.

Our approach is inspired by these schemes, but it is applied for CQI feedback be-

tween e/gNB and SO, and it is based on a simpler intelligent mechanism, which

only requires as input CQI information for accurate channel mobility/stability pre-

diction.

4.3 Channel stability prediction using machine

learning

This section focuses on the description of the proposed concept to predict channel

stability based on ML. This mechanism can then be used to optimize the transmis-

sion of CQI data messages and thus reduce the associated signaling overhead.
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4.3.1 Overview and objectives

CQI messages are sent periodically from e/gNB to the SO, in order to provide it in-

formation about the channel quality allowing it to appropriately allocate resources.

When channel quality is relatively stable, the CQI values do not vary a lot. There-

fore, an increased CQI reporting frequency does not contribute to the view the base

station has on the actual radio conditions of a UE link and does not affect the qual-

ity of the radio resource allocation. We thus take advantage of channel stability to

avoid transmitting unnecessary CQI reports and alleviate the associated overhead.

Our approach consists of monitoring the channel state for a period T . If channel

mobility is identified by the predictor, a new CQI value is required to adjust re-

source allocation. Otherwise, there is no need to receive new CQI values; the SO

allocates radio resources considering the last received CQI value as accurate and

stable, and the CQI reporting frequency can be reduced. The different steps of this

concept are illustrated in Figure 4.1.
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Figure 4.1: Our concept and methodology to reduce CQI monitoring overhead.

The proposed monitoring phase is based on a ML algorithm, which helps predict

the channel state. In this contribution, we have tested some ML algorithms, then we

have selected SVM and NN as they offer better accuracy.The next section focuses

on describing how these two ML schemes are applied in our network settings in

order to predict channel mobility based on different frequencies of collected data.
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4.3.2 Steps to predict the channel’s state

In this section, we present in detail the steps involved in our ML-based methodology

and the metrics we use to evaluate the performance of the candidate algorithms for

channel mobility prediction. Indeed, there are different ML approaches [92]. The

most commonly used are: i) Supervised learning, which consists of training the

algorithm using a set of data consisting of an input and a desired output. Then,

a function that maps an input to output is inferred based on the training data.

This function allows the mapping of new unseen data instances to output values,

which may correspond to distinct classes; ii) Unsupervised learning, which consists

of learning in a self-organized way allowing to find an unknown sample from a set

of data without being based on an existing label; and iii) Reinforcement learning,

which allows to decision making by interacting with an environment, formulated as

a Markov decision process. It has similarities with supervised learning but without

the need for labeled input/output pairs.

In this work, we apply supervised learning techniques and define two classes (static

and mobile) based on the CQI parameter. We evaluate two supervised learning

algorithms in order to predict the channel state and assign it to the appropriate

class:

• NN [93]: This mechanism is modeled and inspired by the human brain, aim-

ing to create an artificial neural network. The concept consists of learning

the machine by incorporating new data. The machine typically consists of

different layers of interconnected neurons, each one of which interprets the

input data through a kind of machine perception and sends an output to a

connected neuron until the last layer provides the output of the system.

• SVM [94]: This approach consists of learning from a set of multi-dimensional

data vectors labeled by their category (class) and creating a model used to

classify new data by finding the hyperplane that separates the training data

by the optimal (maximum) margin. SVM is a binary linear classifier.

Figure 4.2 presents the different steps involved in the channel state prediction pro-

cess.

A. Feature vector creation and labeling phase

This phase involves the collection of data and their processing in order to extract

specific features and create feature vectors (also called characteristic vectors) that

will be used for training a classifier. Raw data are collected in the form of vectors

for different channels during a period T . A feature vector is then created for each

data vector (i.e., for each channel).

In fact, different types of data representing the channel state may be used, such as

SNIR, CQI, and others [95]. We select the CQI parameter for the proposed predic-

tive system, as this parameter provides sufficient information on the channel state
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Figure 4.2: ML-driven channel stability prediction.

and is used by the MAC scheduler to allocate resources and decide on parameters

such as the MCS. We extract a feature vector from each CQI data vector after a

preprocessing step in order to have the relevant data for the predictive system to

identify the channel state (mobile or static).

Preprocessing is carried out on the data vector CQIT = [cqi1, cqi2....cqin] of n CQI

values collected during a period T in order to extract the characteristic vector C=

[C1 C2 C3]. The extracted features are the following.

• C1: The difference between the maximum and minimum values of collected

CQIs in the data vector CQIT .

C1 = cqimax − cqimin (4.1)

The channel may be static if C1 is small or zero, which might mean that the

UE is static, and the environment is stable (there are no significant effects

that cause a drastic change in the CQI value). This feature can provide an

idea of the channel state, but it is not sufficient to make a decision.

• C2: Variance.

C2 =
1

n

n∑
n=1

(cqii − CQIT ) (4.2)

This feature measures the dispersion of CQI values relatively to the average

CQIT , which characterizes the level at which the CQI can have a value more

or less far from its expectation.
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• C3: The vertical change of the CQI curve slope, representing the CQI change

in different samples in period T .

C3 =| CQI(ti+∆)− CQI(ti) |, (4.3)

where CQI(ti) and CQI(ti+∆) are the CQIs collected at ti and ti+∆ respec-

tively, where these two times are inside the sample (∆=5 in our case). Multiple

C3 values are extracted for each sample. Thus, the size of C depends on the

number of C3.

After the creation of vector C, a known label (static or mobile) is assigned to it, in

order to be used for the training phase.

B. Creation of a ML-based predictive system

To create the predictive system, a ML algorithm operates in two phases as follows.

Training phase 70% of the feature vectors with their labels (representing the

real classes) are used to train the classifier. During this training phase, the ML

algorithm creates a function that maps inputs (feature vectors) to outputs (labels),

used then to classify new vectors. In this stage, the SVM algorithm learns a linear

function, while the NN algorithm also supports nonlinear functions.

Test and validation phase This phase uses the rest of the feature vectors (30%).

It consists of checking the predicted classes of these vectors against their assigned

labels. The validation of the predictive system is based on a confusion matrix [96],

which consists of the number correctly and incorrectly classified samples per class.

Performance is evaluated in terms of the following metrics:

• Accuracy, i.e., the ratio of the number of correctly predicted vectors to the

total number of vectors.

Accuracy =
# correctly predicted

# feature vectors
(4.4)

• F1-score, which is defined by the weighted average of precision and recall,

where precision is the ratio of the number of correctly predicted mobile class

instances to the total number of predicted mobile class ones (i.e., false and

correct), and recall, also called sensitivity, is the ratio of the number of cor-

rectly predicted instances of the mobile class to the number of all true mobile

class ones.

F1.score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(4.5)

59



CHAPTER 4. CHANNEL STABILITY PREDICTION TO OPTIMIZE
SIGNALING OVERHEAD IN 5G NETWORKS USING ML

Application phase

This step consists in classifying a new CQI data set over different frequencies of

collecting data (i.e., sample size variation). To evaluate this phase, we use the True

Positive Rate (TPR) and the True Negative Rate (TNR) metrics, where the positive

class refers to the mobile class and the negative one refers to the static class. TPR

and TNR are defined as follows:

TPR =
# correctly classified as mobile

# mobile
(4.6)

TNR =
# correctly classified as static

# static
(4.7)

4.4 Performance evaluation

This section focuses on the performance evaluation of the channel mobility predic-

tive system provided by the two ML algorithms (NN and SVM). We first created

the dataset by generating CQI values for different channel mobility states using the

ns-3 simulator. Then, we used MATLAB [97] [98] to train and test ML algorithms

based on the provided data set, as well as to evaluate new CQI data sets with

different CQI collection frequencies. For the NN case, we trained a neural network

with a single hidden layer using the Levenberg-Marquardt algorithm. We exper-

imented with different layer sizes and found that using 10 neurons in the hidden

layer provided the best accuracy among the options that we tested. Performance is

evaluated first for the test and validation phase, and then for the application phase

for both ML algorithms.

4.4.1 Test and validation phase evaluation

In order to create a data set with realistic CQI values corresponding to different

degrees of user mobility, we simulated an LTE cell using ns-3, where UEs move

with different constant velocities. We thus generated approximately 15, 500 vectors

of CQI values with different channel mobility states and extracted a feature vector

for each CQI vector as described in Section 4.3.2, which we labelled either as static

or mobile, depending on the level of UE mobility. Note that a feature vector is

calculated on a sequence of CQI values collected during a time period T = 400 ms.

For both ML algorithms considered, we use 70% of our data for training and the re-

maining 30% for test and validation. Table 4.1 presents the results of the validation

phase in terms of accuracy and F1-score for the two candidate ML mechanisms.

As shown in this table, both algorithms are able to learn and predict the chan-

nel state with high performance, as they provide accuracy and F1-score of more

than 90%. We notice, though that the NN scheme outperforms SVM in terms of

accuracy and F1-score by approximately 4%.
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Table 4.1: Accuracy and F1-score of NN and SVM algorithm

NN SVM

Accuracy 96.43% 92.86%

F1-score 96.29% 92.30%

This can be explained by the fact that SVM is based on the margin maximization

of the linear hyperplane separator between the two classes (static and mobile) [94].

That is why it is not able to well classify vectors close to this separation. Contrari-

wise, NN is based on a non-linear function to separate between classes allowing it

to better handle such cases.

4.4.2 Application phase evaluation

After the test and validation of the predictive system, we use ns-3 simulations

in a similar way to create a new CQI dataset for the application phase in order

to evaluate the efficiency of our classifiers and evaluate their behavior for different

CQI collection frequencies. The generated feature vectors are created from raw data

that correspond to two types of UE mobility (mobile and stable) and are labeled as

such. Four groups of test data were generated, each for a different CQI reporting

frequency, namely every 2, 10, 50, and 100 ms. Performance is evaluated in terms

of TPR for the mobile class and TNR for the static class. The obtained results are

as follows:

• The static channel state obtains TNR performance between 99% and 100% for

any CQI collection frequency and for both NN and SVM algorithms. In fact,

for this class, all CQI values are relatively close to each other. This is why

the selected samples with the different frequencies provide a small variation

in the features of the vector F, allowing to identify the channel as static.

Therefore, it is evident that both algorithms succeed in correctly predicting

channel mobility in the static case.

• The prediction of the mobile channel state is harder, as CQI values are highly

varied. Therefore, the predictive system should detect the variation of the

CQI values with different data collection frequencies and appropriately select

samples (with the varied CQI values) on which it is based to select the ap-

propriate class. The obtained results of TPR performance for the different

reporting periods are illustrated in Figure 4.3.

As shown in this figure, for small periods (2ms and 10ms), both algorithms

achieve a high TPR performance (more than 95%). It can also be noticed

that there is a small increase with the NN algorithm. However, for low CQI
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Figure 4.3: TPR of mobile channel for different CQI reporting frequencies. The

x-axis represents the period between two consecutive CQI reports by a UE.

collection frequencies, TPR is significantly reduced for both NN and SVM

algorithms. For 50ms and 100ms, TPR is respectively around 76.67% and

42% with NN, compared to 65.5% and 19% respectively when using SVM.

These results show that the predictive system provided by NN has the ability

to detect channel mobility more effectively and is more robust when CQI is

reported with a lower frequency (large periods). Although when the reporting

period is 100ms, the TPR is relatively low for NN, it still achieves a 2×
increase in performance compared to the TPR of the SVM algorithm. The

NN algorithm outperforms SVM, thanks to the non-linear function used to

separate between classes.

4.4.3 Prediction quality evaluation

This part focuses on evaluating the quality of the prediction of the NN and SVM-

based approaches relatively to different CQI collection frequencies. To quantify it,

we rely on appropriate prediction quality metrics for each ML scheme. In particu-

lar, the metric we use for SVM is the prediction likelihood (also called prediction

probability), which is an expression of the certainty that a feature vector is correctly

classified. It is calculated by taking into account how far the score returned by the

SVM classifier is from the threshold value that classifies a test vector. In a similar

sense, the metric we use for the NN classifier is the Mean Squared Error (MSE),

which conveys the uncertainty about the correctness of the classification.
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Figure 4.4: Prediction score for different CQI reporting frequencies. The x-axis

represents the period between two consecutive CQI reports by a UE.

As illustrated in Figure 4.4, when the CQI collection frequency decreases, the

likelihood to correctly predict the channel state by the SVM algorithm reduces and

the MSE of the NN algorithm increases. These results are due to the fact that

when the CQI reporting frequency is smaller, there are fewer raw CQI samples

during the time window T = 400 ms out of which a feature vector is created. This

lost information has often the effect that the variability of CQI values in a window
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decreases. There are cases when the real value of the CQI between consecutive

samples in a window fluctuates, but this is not captured in the data samples, making

the CQI appear to remain mostly constant during the collection period and, in turn,

causing the algorithm to misclassify the channel as static. For these reasons, the

prediction error rate impacts the TPR as presented in Figure 4.3, where the TPR

drops as the collection data frequency decreases.

4.5 Conclusion

In this chapter, we focused on ways to reduce the signaling overhead caused by

the periodic transmission of channel quality feedback in the form of CQI reports

between the e/gNB and the SO in 4G and 5G mobile networks. Our approach

consists of avoiding to transmit unnecessary CQI messages by taking into account

the stability of channel conditions, i.e., reducing the amount of CQI reports when

the value of the latter does not change significantly over time, as a result of a

stable channel. To this end, we addressed the challenge of predicting the channel’s

stability, proposing ML-based mechanisms that only require CQI information as

input. Our mechanisms thus operate in a standards-compliant way and require no

cross-layer or other external information, such as user locations or mobility patterns.

We compared two ML schemes for this purpose, namely SVM and NN, evaluating

and analyzing their prediction accuracy. We further addressed the tradeoff between

prediction accuracy and data collection frequency and experimentally showed neural

networks to consistently outperform SVMs in all our settings.

In this chapter, we mainly focused on evaluating the prediction accuracy of

the candidate ML schemes. The next chapter will launch a deeper study on the

impact of our proposed methodology and mechanisms, integrating them in the 5G

network slice management architecture that we have proposed in our prior work.

Our immediate goal is to evaluate the signaling cost improvements that can be

achieved, the impact of our proposed mechanisms on the allocated resources, and

the attained performance in terms of latency and throughput for heterogeneous 5G

network slices.
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Chapter 5

Data-Driven RAN Slicing

Mechanisms for 5G and Beyond

In Chapter 3, we have highlighted the issue of sharing resources between de-

ployed slices in the RAN. Hence, we have presented algorithms at the SO level to

drive the NpRB to be used by each deployed network slice. These resources are

adjusted periodically based on current estimates of achievable throughput perfor-

mance derived from channel quality information, particularly from the CQI values

of the users of each network slice retrieved from the RAN. CQI information is re-

ported to base stations by the UE following standard procedures, but extracting

and frequently reporting it from base stations to the SO may significantly increase

communication overhead. To this end, in Chapter 4, we have introduced a ML

approach to infer the stability of UE channel conditions, aiming to avoid sending

CQI reports when their values do not change.

To mitigate this overhead while maintaining at the SO level an accurate view of UE

channel qualities, in this Chapter we: (i) apply the method of channel stability used

in Chapter 4, (ii) propose a predictive scheme to reduce the CQI reporting intensity

based on the inferred channel status. The proposed methods are integrated with

the resource sharing algorithms proposed in Chapter 3 in order to demonstrate the

efficiency of a data-driven RAN slicing framework.

5.1 Context and motivations

Managing, isolating, and slicing network resources for the RAN becomes an in-

creasingly difficult task that must be properly designed in order to improve network

performance, to introduce flexibility, and to achieve greater utilization of network re-

sources by providing only the necessary network resources to meet the requirements

of the activated slices in the network. Each type of slice has its own characteris-

tics and requirements in terms of latency and/or throughput. For example, eMBB
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requires high bandwidth, while URLLC aims to minimize latency and maximize

reliability.

Our contributions in Chapter 3 have addressed this problematic, by proposing re-

source sharing algorithms to compute and dynamically adjust the required radio re-

sources to be used by each deployed network slice, covering the eMBB and URLLC

slices. In this context, we first propose an algorithm that derives the number of

pRBs needed by uRLLC and eMBB slices, according to their requirements in terms

of latency and throughput, respectively. Then we design a RAN-aware dynamic

slicing algorithm that exploits per-user RAN-level information to more accurately

translate the derived service rate to an appropriate pRB assignment, using the CQI

reports periodically obtained from eNBs. However, the high frequency of this CQI

feedback overloads the channel with signaling messages, resulting in lower through-

put and loss of data. Hence, the optimization of this signaling process represents a

major challenge that we address in Chapter 4 by devising a mechanism to optimize

the reporting process of CQI, which is periodically sent from the base station to

the SO. The objective is to reduce the signaling overhead and avoid the associated

channel overloads while maintaining at the SO level an accurate view of UE channel

qualities. Indeed, we apply ML mechanisms to predict channel stability in a con-

sidered period t, which can be used to decide if the CQI is necessary to be reported

in the next considered period t+ 1, and in turn, to control the reporting frequency.

In this chapter, we take advantage of channel stability study in period t to es-

timate the exchange frequency of CQIs over the next period t+ 1. Therefore, if at

period t the channel is stable, there is no need to collect CQI in the next period

t + 1. However, if the channel is mobile we propose two techniques, namely the

minimum difference and LSTM to estimate the CQI feedbacks frequency over the

next period t+ 1.

5.2 RAN Slicing framework

In this chapter, we adopt the same architecture and assumption provided in Chapter

3, to estimate the NpRB to allocate to each network slice, namely eMBB and uRLLC.

In this context, the calculation of the initial NpRB per slice (URLLC and eMBB)

is based on the assumption that dpRB is fixed for all users. However, users have

different channel conditions, hence different data rates. In order to correct the

estimation of the dpRB, we propose to use information from per-UE channel quality

reports obtained from e/gNBs. In 4G and 5G, the CQI reports are transmitted

from UEs to eNBs and e/gNBs, respectively, via a standard procedure in order to

be used in the scheduling process, and they include the CQI and MCS values of

each UE belonging to a cell. This information should be made available to the SO

and be used as input to our algorithms. Based on the CQI, we estimate dpRB per

UE and per cell (e/gNB). Indeed, dpRB can be obtained based on the same tables
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Figure 5.1: CQI reports exchange.

used by e/gNB to translate a CQI to a data rate [82] (translation table, refer to

section 2.1.1).

Note that this algorithm is run by the SO periodically and relies on periodically

transmitted CQI reports from e/gNBs. The periodicity of applying these algorithms

is independent of the scheduling period TTI used at the MAC layer of e/gNBs.

The previously proposed algorithm is based on the periodic CQI reports sent by

e/gNBs to the SO (refer to Figure 5.1), in order to correctly update the dpRB.

However, this CQI reporting may involve significant traffic overhead and can become

an issue with a high number of slices or UEs. Hence, optimizing this signaling

process is crucial and represents a challenge that we are addressing in the next

sections.

5.3 Algorithms for reducing the CQI reporting

frequency

As indicated earlier, the main issue of the precedent algorithm is the potential traffic

overload due to frequent signaling messages (CQI reports between e/gNBs and the

SO). Therefore, a key challenge consists in proposing mechanisms to optimize this

procedure, reducing the frequency of CQI report transmissions. The idea focuses

on limiting the amount of CQI reports and avoiding unnecessarily transmitted ones

while ensuring that the SO maintains an accurate view of the state of the channel.

In this context, Chapter 4 have presented the details of applying ML mechanisms
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to predict channel stability/mobility, as this can be used to decide if a CQI value

is necessary to be reported, and in turn, to control the reporting frequency. For

instance, if the channel is stable, it is not necessary to frequently retrieve the CQI

report since it does not vary during this time period.

Besides proposing the algorithms for channel stability analysis, we introduce in this

section two algorithms: the first one allows to estimate the appropriate frequency

of reports while minimizing the dpRB estimation error as much as possible, i.e.

by reducing the CQI computation frequency; the second is based on a ML-based

prediction method, namely Long Short-Term Memory (LSTM), and has the purpose

of forecasting a sequence of CQI or dpRB values during a time interval based on past

CQI or dpRB values, respectively, without the need to retrieve the actual ones from

the e/gNB. These two methods aim to reduce the number of CQI report exchanges,

noted Nr, and expressed as follows:

Nr =
T

frep
, (5.1)

where T is the duration of the test time period, and frep is the time interval between

two successive CQI reports. This means that reducing Nr is equivalent to increasing

frep.

Our objective here consists of reducing Nr (or increasing frep) of CQI report message

exchanges as much as possible while reducing the error between the real dpRB (using

CQI reports) and the predicted one (when CQI is predicted).

Our system alternates between monitoring and prediction periods. For this purpose,

we consider a (fixed-duration) time interval (τ) when a monitoring phase takes place

by collecting a fixed number of CQI samples to evaluate the stability of the channel.

On the one hand, if the channel is stable, there is no need to recover the CQI report

for the next interval τ + 1, which helps reduce the frequency of the CQI report

exchange. On the other hand, if the channel is classified as mobile, we apply one

of the proposed methods to either (i) predict the optimal number of CQI reports

required for the next interval of equal duration or (ii) forecast a sequence of CQI

values without actually retrieving them. These two methods are called Optimal

Difference and LSTM, respectively, and are described in the following.

It is worth noting that for LSTM, the duration of each prediction period depends

on the system QoS required. For example, the operator may decide to shorten

a prediction period to sacrifice monitoring load gains in order to achieve a more

accurate view of the actual UE channel conditions.

5.3.1 Optimal Difference method

This method is based on estimating the stability of the channel over a period τ

and then selecting the appropriate number of CQI report exchanges Nr for the

next period τ + 1, while minimizing the error (E) between real and estimated dpRB

68



CHAPTER 5. DATA-DRIVEN RAN SLICING MECHANISMS FOR 5G AND
BEYOND

corresponding to actual and predicted CQI values.

The challenge here consists in minimizing Nr and E, which cannot be solved by an

optimization algorithm, as we do not have exact constraints on the error. Hence,

we need to find a relation between E and Nr that allows defining the optimal Nr

and E. Obviously, if Nr decreases (frep increases), the error E either remains the

same or increases. Indeed, when Nr decreases, the frequency update of the dpRB
values decreases and consequently causes errors mainly for high-mobility channel

cases.

For this reason, we first generate the vector Nr which consists of a set of m values

for Nr, each representing a different CQI report exchange rate. The first Nr value

in the vector corresponds to a value noted N
(1)
r = n, which is the maximum number

of CQI samples that may be collected during the prediction period.

To generate the rest of the values, we use the geometric progression method with

ratio q as follows:

N (i+1)
r = qN (i)

r (5.2)

In order to obtain decreasing Nr values, we assume that 0 < q < 1 and select q =

1/2, which allows to observe the impact of decreasing Nr on E. Next, after creating

the vector Nr = (N
(1)
r , N

(2)
r , . . . , N

(m)
r ), We can deduce the corresponding error of

each Nr value and consequently deduce the error vector E = (E1, E2, . . . , En).

We proceed as follows: At the end of monitoring period τ , we collect vector CQIτ ,

which we translate to the corresponding sequence of dpRB values noted as Pτ =

[p1, p2, . . . , pn]. Then, out of this sequence of actual dpRB values, for each N
(i)
r we

generate a sequence P̂
(i)
τ = [p̂

(i)
1 , p̂

(i)
2 , . . . , p̂

(i)
n ] of estimated ones by keeping only every

i−th value from Pτ , and replacing the rest with their preceding real dpRB value. For

example, for i = 2 we have that N
(2)
r = N

(1)
r

2
, thus P̂

(2)
τ will be composed by keeping

every second actual value from Pτ and setting every other value to its precedent,

i.e., P̂
(i)
τ = [p1, p1, p3, p3, p5, p5, . . .]. Finally, the error Ei is given by:

Ei =
1

n

n∑
j=1

|pj − p̂(i)
j |. (5.3)

The idea behind the creation ofNr and E is to normalize them by their maximum

and calculating the difference between their normalized values ∆i =| Ñ (i)
r − Ẽi |.

Then, we select the Nr that corresponds to the minimum difference ∆min between E

and Nr, allowing to estimate the optimal Nr (N opt
r ) and, consequently, the optimal

error. The steps of this method are illustrated in Figure 5.2.

5.3.2 Long Short-Term Memory method

Our second approach to reduce the reporting frequency is based on using the LSTM

method to forecast dpRB values for period τ +1, i.e., without actually collecting any
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Figure 5.2: Steps to estimate the optimal number of CQI reports N opt
r .
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CQI values during τ + 1.

LSTM is a deep learning method (a type of Recurrent Neural Network), which can

learn the long term dependencies between time steps in time series, and sequence

data. Its purpose consists in predicting the values of the future time steps of a

sequence [99]. Therefore, in our case, the data sequence is constituted by the values

of CQI or dpRB, where we use LSTM to predict CQI or dpRB values for period τ + 1

based CQI on dpRB values collected during period τ .

5.3.3 Comparison between methods

After a monitoring period τ , where a sequence of CQI reports is collected, and

the channel status is characterized, one of the two alternative strategies that we

propose to reduce reporting frequency may be applied. The Optimal Difference

method consists of estimating the appropriate number of CQI reports (Nr) to be

collected during the next prediction period τ + 1, which we consider here to have a

fixed duration equal to that of τ , while the LSTM method consists in predicting a

sequence of dpRB values for τ + 1 whose duration may vary according to the oper-

ator preferences, based only on the dpRB values corresponding to the CQI reports

collected during τ . Given the qualitative difference between the two methods, here

we introduce appropriate metrics to compare them. First, we focus on the perfor-

mance of each method in terms of CQI collection-related traffic savings. For this,

we introduce two metrics representing the (normalized) CQI reporting rate gain for

both methods following equations (5.4) and (5.5).

GOptDif =
CQIratedefault − CQIrateOpt

CQIratedefault
(5.4)

GLSTM =
CQIratePred
CQIratedefault

(5.5)

• CQIratedefault refers to the number of CQI reports during period τ + 1 with

duration T without any optimizations (representing the maximum Nr).

• CQIrateOpt refers to the optimized number of CQI reports Nr in the same

period.

• CQIratePred refers to the number of CQI values predicted during the LSTM

forecasting period.

Second, we characterize the dpRB estimation error for each strategy. In partic-

ular, for each case, the estimation error E during period τ + 1 is defined as the

mean (absolute) difference between a dpRB value estimated and the actual one (if

the corresponding CQI value were actually retrieved). We further normalize this

error as follows:
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ENorm =
E

dpRBmax − dpRBmin
, (5.6)

where (dpRBmax − dpRBmin) represents the difference between the maximum and

minimum dpRB, in order to express the maximum error that a method can detect

in its prediction.

The purpose of these metrics is to capture the trade-off between gains in terms

of CQI monitoring traffic reduction and dpRB estimation accuracy, and help to

identify via our quantitative evaluation the conditions under which each method is

more appropriate.

5.4 Performance evaluation

This section focuses on evaluating the performance of the different methods and

techniques proposed in this chapter. First, we evaluate the performance of the

proposed algorithms for reducing the frequency of CQI reporting presented in Sec-

tion 5.3, while keeping the dpRB estimation error low. Then, we assess the effi-

ciency of the data-driven RAN slicing algorithm introduced Chapter 3 (refer to

Section 5.2), followed by a study on the impact of our mechanisms for reducing the

reporting frequency on meeting RAN slice performance requirements.

5.4.1 Model validation channel mobility/stability predic-

tion with real data

In Chapter 4, we evaluated the performance of the channel stability predictive

system using two ML algorithms (NN and SVM). We generated CQI values for

different channel mobility states using the ns-3 simulator, where we simulated an

LTE cell, considering UEs moving with different constant velocities, in order to

create a data set with realistic CQI values corresponding to different degrees of user

mobility. Therefore, we extracted a feature vector for each CQI vector as described

in Chapter 4, which we labeled either as static or mobile, depending on the level

of channel mobility. In this section, we validate our channel stability prediction

mechanisms on real traces from an operating mobile network testbed. To this

end, we used a data set publicly available from CRAWDAD [100], which contains

statistics and monitoring data of 4G/5G MAC, RRC, and PDCP layers.

The considered data are raw and recorded for one eNB and a single mobile

UE in five different mobility scenarios by following different motion and distance

patterns relative to the eNB. All raw data have been recorded without including Tx

power amplification on the RF front end (0 dBm transmit power), which implies

an approximately 10 m maximum range of coverage.

From these data, we have extracted the CQI measurements for each one of the

following mobility scenarios:
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• Moving Away (MA): the UE moves away from the eNB to a maximum distance

of 10 m.

• Moving Closer-Far-Closer (MC): the UE moves back and forth relative to the

eNB, from a 0 distance up to approximately 10 m.

• Stable Long Distance (SLD): the UE stands still in a long-distance (approxi-

mately 5-10 m) away from the eNB.

• Stable Mid Distance (SMD): the UE stands still in a mid-distance (approxi-

mately 1-5 m) away from the eNB.

• Stable Short Distance (SSD): the UE stands still in a short distance (approx-

imately 0-1 m) away from the eNB.

Then, we used CQI data that correspond to actual UE mobility scenarios to

validate the channel stability results deduced previously using the ns-3 dataset.

Table 5.1 shows the confusion matrix results in a simplified way,1 which indicates

for each mobility scenario (MA, MC, SLD, SMD, and SSD), the results of the

classification, i.e., mobile or static, obtained using NN and SVM.

Table 5.1: Mobility and stability results of the considered mobility scenarios using

NN and SVM.

NN SVM

MA Static Mobile

MC Mobile Mobile

SLD Mobile Mobile

SMD Mobile Mobile

SSD Static Static

The obtained results indicate that both SVM and NN have correctly classified

the channel of the MC scenarios as mobile. We argue this by the fact that the UE,

in this case, is moving closer and away from the eNB, so the CQI values change

with it. Also, for the SSD scenario, the channel was well classified as static since

the UE remained static and close to the eNB.

For the SLD and SMD scenarios, both classification algorithms classified the channel

as mobile, although the UE remained static. We explain this by the fact that for

SLD and SMD scenarios, the distance between UE and eNB is long and medium,

respectively, which strongly affects the channel by the undesirable effects between

1A confusion matrix indicates the number of true and false classifications across the whole

validation dataset. As we have only 5 mobility scenarios, we had directly given the classification

results obtained at the output of the ML algorithms used for each scenario.
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Figure 5.3: dpRB error vs. Nr.

them, leading to significant variations in the channel quality. Regarding the MA

scenario, the SVM correctly classified the channel as mobile, but the NN considered

it as static. In this case, we cannot conclude that the NN does not work well since

it is the only error in the prediction, and we have a very limited number of scenarios

to generalize.

A. Optimal Difference method results

As elaborated in Section 5.3.1, the Optimal Difference method is a technique that

calculates the estimation error of dpRB for different CQI reporting frequencies, i.e.,

different numbers Nr of messages exchanged and, correspondingly, different inter-

report times frep, over time intervals of length T . Then, it selects the NR value

that minimizes the difference between the (normalized) values of Nr and the pRB

estimation error. In the time interval that follows, the optimal CQI reporting

frequency, calculated as described above, is applied. An increase in Nr is equivalent

to a decrease in frep according to Eq. (5.1).

Figure 5.3 shows the errors of the dpRB values obtained for differentNr, in an interval

of T = 200ms. The curves show that when Nr increases, the error decreases. They

also demonstrate that the dpRB estimation error for a UE in the MC scenario is the

highest compared to the other scenarios for most CQI reporting frequencies. This

error is higher than the MA scenario, followed by SLD, SMD, and SSD scenarios.

Once we have obtained the measures on the error according to Nr, we apply the

optimal difference method presented in Section 5.3.1 to choose N opt
r , i.e., the optimal
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Figure 5.4: Optimal number of CQI reports (N opt
r ) over periods of T = 200ms vs.

mobility scenario.

value Nr. Figure 5.4 shows the N opt
r value obtained for each scenario.

We notice that when the UE is mobile (scenarios MC and MA), our algorithm

estimates that a significantly larger number/frequency of CQI reports is needed

compared with the static scenarios (SLD, SMD, and SSD). For the latter, the error

reduces as the distance decreases, and thus the optimal Nr decreases as well.

B. LSTM method results

Here, we present the results of the application of the forecasting method based

on LSTM. After several tests, we selected in this LSTM network the Adam [101]

solver for training, using 200 epochs. We argue for this choice by the fact that this

configuration gave more precision at output. We trained the model on sequences

of dpRB values that correspond to collected CQI samples during 200 ms periods.

Then, following a monitoring period τ of T = 200 ms where an input sequence is

collected, we perform forecasting of the dpRB values for the next period τ + 1. The

considered forecasting period duration are: 5, 10, 20, 50, 100 and 200 ms, where for

each duration we calculate the corresponding dpRB errors, as shown in Figure 5.5.

Similar to the previous results, we notice that the error of the MC and MA and

sometimes the SLD scenarios are the highest, followed by the SMD and SSD. In

addition, we observe that the longer the prediction period, the higher the error. We

attribute this to the fact that the prediction time goes far beyond the actual values

recorded to make the prediction.
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Figure 5.5: dpRB Error vs. mobility state using LSTM.

C. Comparison between the Optimal Difference method and LSTM

We recall that the methodology and metrics used to compare between the two

methods are detailed in Section 5.3.3. For the optimal difference method, a higher

gain means fewer retrieved CQI reports during a prediction period of the same

fixed duration as a monitoring period; the rest of the CQI values are generated

as described in Section 5.3.1. For LSTM, this means a longer prediction period

where we generated a sequence of dpRB values using the learned model and with

the sequence of values of the last monitoring period as input; the duration of this

prediction period is left to the system operator.

In Figure 5.6, we draw the average normalized dpRB error of the five considered

scenarios against the normalized reporting gain. The latter is an expression of

the number of CQI reports that are predicted (i.e., not actually retrieved) and thus

represents the savings in terms of CQI monitoring traffic compared to the case where

the default CQI collection takes place without any optimizations or prediction. As

per the definitions of Section 5.3.3, for the LSTM method, When the number of

predicted values equals the default number of CQI reports that would normally be

collected during the period in question (in other words, when the prediction period

has the maximum duration), the LSTM gain reaches 100%. On the other hand, for

the optimal difference method, the gain depends on the optimal Nr value selected;

the lower this value, the higher the gain.

We can observe that the optimal difference method performs better than LSTM

in terms of error (up to 95% of gain). The error of the optimal difference method
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Figure 5.6: dpRB normalized error vs. gain.

is smaller until reaching 95% of the gain; beyond this percentage, LSTM performs

better. A dpRB value predicted by the optimal difference method is always the same

as the last actual value that corresponds to a real collected CQI sample. As the gain

increases, the number of samples decreases, which drives the estimation error up.

In such high-gain conditions, the values predicted by the LSTM model can better

capture the actual variation of real dpRB ones. Note that contrary to the LSTM

method, which does not need to retrieve any actual CQI values during a forecasting

period and can thus reach a gain of 100%, the optimal difference one, by design,

always needs to retrieve at least one CQI value during its testing period (i.e., the

number of CQI reports Nr cannot be zero) in order to consider it as the predicted

CQI value for the rest of the interval when no CQI report will be collected.

5.4.2 RAN slicing with optimization

To evaluate the efficiency and the impact of the optimized RAN slicing solution on

the slice requirements, we have integrated the CQI reporting frequency reduction

algorithms to our mechanisms of resource sharing proposed in Chapter 3.

In this simulation, we consider the same parameters used in Chapter 3 (refer to

Table 3.1) However, here each user has the real channel quality during the test

period, using the real CQI measurements obtained from the CRAWDAD data set.

The simulated results in this part are based on the calculation of the throughput

of the eMBB slice, before and after the application of the CQI report reduction

algorithms. Note that we have computed only the throughput of the eMBB slice,
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Figure 5.7: Throughput before and after applying the Optimal Difference method

to reduce the CQI reporting frequency, for different user mobility scenarios.

as the throughput assigned to each slice depends directly on the number of pRB

allocated to each slice. Thus we can show the optimization impact easily.

Figure 5.7 illustrates the default throughput assigned to the eMBB slice before

applying any mechanisms to reduce the frequency of CQI reporting, and after ap-

plying the Optimal Difference method. The CQI report reduction algorithm was

applied as follows: For each scenario, we calculated the optimal number of reports

N opt
r over a monitoring period and then we applied it over the period that follows.

Finally, we calculated the throughput corresponding to this N opt
r .

The results show that for the stable scenarios (SLD, SMD and SSD), the throughput

assigned to each slice was not impacted by reducing the CQI reporting frequency

considering N opt
r . A small change is noticed in the two mobile cases MC and MA.

In the MC case, less throughput was assigned after reduction, while in the MA

case, more throughput was assigned. This error of assigning less throughput to MC

and more to MA depends on the CQI values (high, medium or low) retrieved using

N opt
r .

The results of the CQI reporting rate reduction using LSTM are shown in Fig-

ure 5.8. Here, as there is no optimal number or interval reduction that would show

the impact of LSTM, we calculate the average percentage of the throughput error

by report to the real throughput. The latter is calculated for each scenario and

uses all of the previously considered prediction intervals: 200, 100, 50, 20 and 5 ms

(i.e., the average error between these time intervals). The obtained results show
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Figure 5.8: Average throughput error across all considered forecasting period

durations using LSTM, for different user mobility scenarios.

that when user mobility increases, the LSTM cannot correctly predict CQI values.

This has an impact on the slice requirements in terms of throughput since the error

decreases when mobility decreases.

5.5 Conclusion

In this chapter, we proposed two predictive methods to mitigate the overheads as-

sociated with frequent CQI monitoring, i.e., Optimal Difference and LSTM -based

forecasting. We also applied this decreased CQI frequency to adjust the radio re-

sources needed by each running slice in the algorithms that drive the RAN resources

among heterogeneous slices, proposed in our first contribution. The proposed algo-

rithm runs at the SO level with very low complexity. Our objective was to reduce

the frequency of CQI report exchanges between base stations and the SO, while

minimizing the error of our estimates of the achievable throughput when the CQI

reporting frequency is reduced.

Our simulation results demonstrate the positive impact of our CQI reporting opti-

mizations by reducing the overhead while maintaining a precise prediction of RAN

resources for the running network slices.
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Chapter 6

On using reinforcement learning

for network slice admission control

in 5G: offline vs. online

Achieving a fair usage of network resources is of vital importance in Slice-ready

5G network. The dilemma of which network slice to accept or to reject is very

challenging for the InfProv. On one hand, InfProv aims to maximize the network

resources usage by accepting as many network slice as possible; on the other hand,

the network resources are limited, and the network slices requirements regarding

QoS need to be fulfilled.

In this chapter, we devise three admission control mechanisms based on Reinforce-

ment Learning, namely Q-Learning, Deep Q-Learning, and Regret Matching, which

allow deriving admission control decisions (policy) to be applied by InfProv to admit

or reject network slice requests. We evaluate the three algorithms using computer

simulation, showing results on each mechanism’s performance in terms of maximiz-

ing the InfProv revenue and their ability to learn offline or online.

6.1 Motivations and state of the art

So far, in this thesis, we have addressed a critical challenge in RAN slicing, namely

resource sharing between slices, and proposed methods to decrease the CQI signal-

ing overhead between the SO and e/gNB. In this context, we have proposed two

algorithms to drive the resources between slices, based on CQI reports. Our re-

source sharing algorithms were derived by the resources limit, where slices cannot

have all their resource needs if resources are unavailable. Therefore, in this chapter,

we present a policy that: (i) dealS with the resources’ limitation, and (ii) introduce

the concept of slice market.

It is worth noting that the network Slicing enables the emergence of new players in
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the market: the Infrastructure, or slice, Provider (InfProv), which is the owner of

the network infrastructure and may offer its resources as a service for a given cost,

and the consumers, or tenants, requesting for network slice from InfProv to get a

target service with specific needs [52] [102]. However, as each provider has limited

resources [18] [77], it is challenging to have an optimal policy to decide which slice

requests will be accepted (and/or rejected) by InfProv, and based on which crite-

ria. Indeed, it is difficult to find the optimal policy that, on one hand, increases the

revenue of the InfProv and allows an optimal usage of the infrastructure, and, on

the other hand, guarantees the requirement of the admitted network slice in terms

of QoS to avoid violating the SLA. Furthermore, the optimal admission control

policy has to consider the long term income of InfProv by accepting the slices that

maximizes the revenue while considering their traffic dynamics. For instance, it is

difficult to decide between accepting network slices that pay a higher price for a

long duration or accepting more network slices for a short duration but pay less

money.

In this chapter, we propose novel slice admission control (SAC) algorithms to be

run at the InfProv level aiming at deriving an optimal policy to decide if an arrived

network slice request has to be accepted or rejected. The proposed algorithms

are based on Reinforcement Learning and seek the optimal policy to increase the

InfProv revenue while reducing the penalty to pay due to SLA violation. Three

algorithms are introduced: Q-Learning (QL), Deep Q-Learning (DQL), and Regret

Matching (RM). Besides deriving the optimal policy, we shed light on the proposed

algorithms’ ability to run offline or online, which is a crucial criterion. Indeed, offline

solutions require a training phase before being used, which is sometimes costly, but

they generally achieve the best results. Online solutions, on the other hand, are

trained on the fly using only observable information of the controlled system.

In this context, different studies have addressed the problem of network slice

admission control by exploring several techniques. In [18], the authors proposed an

algorithm aims at maximizing the profit of InfProv, by admitting more slice requests

than the overall capacity of the system, similarly to the concept of flight overbook-

ing. They formulated the orchestration issue as a stochastic management problem

that performs jointly resource allocation and admission control in all technological

domains composing a mobile system. They then proposed solving the formulated

problem using two algorithms: an optimal solution using Benders decomposition

and a sub-optimal heuristic that accelerates the decision-making process. The au-

thors of [103] proposed an admission control mechanism for network slicing that

maximizes InfProv revenues while meeting services’ latency requirements. They

design a SAC policy using bid selection before studying the best strategy under dif-

ferent constraints (e.g., available resources, InfProv’s strategy and requested traffic,

etc.).

The authors of [102] proposed to maximize the revenues of InfProv when per-

forming admission control by modeling the problem via Markov Decision Process
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(MDP). They proposed two methods to solve the MDP: value iteration and Q-

learning. This work aimed to maximize InfProv revenues by accepting the most

expensive slices’ requests first, which may lead to a lack of fairness between the

network slices. Moreover, this work ignores the notion of priority between network

slices, which, in contrast, will be considered in our contribution. Finally, it did not

consider the needed physical resources in both UL and DL, which we will introduce

in this work. In [104], the author proposed a new dynamic SAC model, using rein-

forcement learning. In this model, the InfProv generates revenues when accepting

a slice request; and based on the requested slice priority, pays a penalty when re-

jecting it. The designed model aims at reducing the penalty fee by minimizing the

rejection of expensive requests, hence maximizing InfProv revenues. This work also

confirms the efficiency of using RL to maximize InfProv revenues.

However, in our work presented in this chapter, we consider more parameters to

tackle the SAC issue, including the notion of hosting time needed by each slice and

the requested physical resources by slice tenants at both UL and DL directions.

6.2 System model
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Figure 6.1: System model

In this section, we describe the considered system model, which is illustrated in

Figure 6.1. It comprises the following actors:
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Network players: In the proposed system model, we consider two main play-

ers: (i) the InfProv, which is the owner of the network infrastructure, and in charge

of instantiating network slices for tenants by providing the required resources; (ii)

the tenants that request the instantiation of the network slice from the InfProv to

offer services for their clients.

Network slice model: In our model, each network slice is characterized by

five main criteria:

1. The physical resources needed to satisfy the requirement of a network slice,

in UL and DL, noted Nresireq(UL) and Nresireq(DL), respectively. Where i

is the slice type, which can be either eMBB, uRLLC, or mMTC. We define

the needed resources by each slice type as follows:

• NreseMBB
req (DL) >> NreseMBB

req (UL)

• NresuRLLCreq (DL)>>NresuRLLCreq (UL) orNresuRLLCreq (DL) ==NresuRLLCreq (UL)

or NresuRLLCreq (DL) << NresuRLLCreq (UL)

• NresmMTC
req (DL) << NresmMTC

req (UL)

We justify these assumptions as in eMBB DL traffic typically dominates (e.g.

high definition video streaming), while in mMTC UL traffic is dominant (e.g.

IoT traffic). The case of uRLLC is different, as all the types of traffic may

exist and depend on the service.

2. The hosting time of each network slice type Htime: Each slice, if admitted,

will use the InfProv’s resources for a given duration.

3. Priority of the slice: It depends on the application running on the corre-

sponding slice.

4. The price P i
req that a slice tenant pays to InfProv for the used resources. The

tenant has to pay the resources per time unit for the Htime duration. Here,

req refers to a slice tenant, and i refers to the slice type.

InfProv model: The InfProv entity is characterized by its capacity in terms

of available resources at time t (Ct). It represents the total amount of available

resources that may be allocated to a new network slice. It is worth noting that Ct
is updated when a network slice is admitted or leaves. In other words, when a new

network slice is accepted, the needed resources will be allocated and dedicated to it;

when a network slice ends, its associated resources will be automatically released.

Thus, at each time instant t, the available resources at InfProv is performed as

follows: Ct= Ctotal - Callocated + Creleased. It should be noted that two formulas are

used, one for UL and one for DL, as the resources are separated. Ctotal is the total

number of resources available in the InfProv in UL or DL. Callocated and Creleased are

respectively the number of allocated and released resources at time t in UL or DL.
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The proposed SAC model is applied only for the RAN resources, composed by a

UL and DL. We argue this assumption by the fact that RAN is considered as the

bottleneck of the system, while other network slice’s required resources (such as

computing) are always available, and no reservation is needed.

In summary, the InfProv is characterized by its resources capacity Ctotal, while a

network slice is identified by: N i
res, Htime, Priority, and P i

req.

6.3 System Analysis

As stated earlier, we seek an optimal admission control policy that aims at finding

a trade-off between fulfilling the network slice resource request (UL and DL), while

maximizing InfProv revenues. First, we propose to model the SAC using MDP

[105]. Since exactly solving the MDP is very challenging due to the difficulties

in modeling the traffic dynamics, we apply reinforcement learning to derive the

optimal policy and to find the earlier-mentioned trade-off. For that, we will use

different Reinforcement learning models, namely QL, DQL, and RM, to predict the

optimal action to apply when a new demand of a network slice arrives at the system

(i.e., accept or reject an arrival slice request).

6.3.1 Markov Decision Process model

A Markov Decision Process is composed by 4-tuples M = (S;A;T ;R), where S is

the set of states, A is the set of actions, T is the transition probability from state

s at time t to state s′ at time t + 1 when taking an action a, and R is the reward

obtained by performing the action a, which leads to move from the state s to s′.

For our system, we assume that a state s = (n,m, l, b) is composed of the following

information where:

• n is the number of accepted eMBB slices;

• m is the number of accepted uRLLC slices;

• l is the number of accepted mMTC slices;

• b is a value that can be equal to 1,2 or 3 to indicate the slice type, eMBB,

uRLLC, or mMTC, respectively, of the last received request.

At receiving a new network slice request, InfProv, via an agent, observes the state

of the system and takes an action a either to accept or reject the request. The

action set is as follows:

a =

{
1 if new arrival slice request is accepted

0 if new arrival slice request is rejected
(6.1)
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The different transitions of the system occur when a new network slice arrives and

a decision is needed, and when a network slice leaves the system. If the system is

in a state s = (n,m, l, b) and a new slice arrives, a decision needs to be taken (i.e.

accept or reject), leading that the system transits to one of the following states:

• (n+ 1,m, l, 1) if a slice of eMBB is accepted;

• (n,m+ 1, l, 2) if a slice of uRLLC is accepted;

• (n,m, l + 1, 3) if a slice of mMTC is accepted;

• (n,m, l, 1) if a slice of eMBB is rejected;

• (n,m, l, 2) if a slice of uRLLC is rejected;

• (n,m, l, 3) if a slice of mMTC is rejected.

If a network slice leaves, then the system moves to one of the following states,

without taking any action:

• (n− 1,m, l, 1) if a slice of eMBB has left;

• (n,m− 1, l, 2) if a slice of uRLLC has left;

• (n,m, l − 1, 3) if a slice of mMTC has left.

As mentioned above, each network slice is described by<Nresireq(UL), Nresireq(DL),

Htime, priority and P i
req>. We assume that the price P i

req to pay by each slice ten-

ant, by time unit, is proportional to the slice priority. Hence, we propose to model

the estimated reward that InfProv expects to receive from each accepted network

slice as follows:

Rinf = sign(Ct −Nresireq)× P i
req ×Htimeireq (6.2)

With:

sign(Ct −Nresireq) =

{
1 Ct≥Nresireq
−1 Ct < Nresireq

(6.3)

In equation 6.2, we multiply the P i
req by Htime, since each accepted slice tenant

pays a P i
req according to the slice priority by a time unit. Hence, the total price

that a tenant of an accepted slice will pay depends on his priority and the requested

hosting time. Besides, we have added the sign in this equation to ensure that there

are enough resources in InfProv to support the number of required slice resources.

It is worth noting that in this work, for each accepted network slice, the InfProv

should be able to provide the needed resources for both UL and DL. Otherwise,

the InfProv will pay a penalty, if it accepts a slice request without having enough

resources to cover the slice resource requirements. To this end, Ct should be always
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higher than Nresireq in UL and DL. Therefore, the reward defined in 6.2 for both

UL and DL will be calculated as follows:

Rinf = [sign(CInfDL −NresireqDL) ∧ sign(CInfUL −NresireqUL)]× P i
req ×Htimeireq

(6.4)

We also note that the Rinf is null if the slice request is rejected, as neither penalty

nor reward can be applied. Having defined the MDP model, we need to find the

optimal policy that maximizes the long term total reward for InfProv. The optimal

policy corresponds to the action to take for each state s aiming at maximizing the

long-term total reward. Since the MDP is hard to solve using techniques like Value

iteration or Policy iteration as the traffic model is hard to model, we describe in the

next section how to find this policy using Reinforcement Learning, through three

models QL, DQN, and RM.

6.3.2 Admission control using QL

Q-learning is an offline reinforcement learning algorithm that generates an optimal

policy to maximize the expected total reward for any finite MDP, i.e., the state

and action spaces may be finite, which is our model’s case. This policy is based on

the Q-learning function, which is designed to seek the best action in each state to

maximize the long-term total reward.

The QL method consists first of calculating, for each possible action in each

state, a value named Q-value. Then the QL method stores these Q-values in a

table, namely the Q-table. This step is called the exploration of the unknown

environment. It should be noted that the Q-table is initiated to zero and updated

with the new Q-values obtained after each episode.

The agent performs in a state st, one of the two actions: accept or reject a new

slice request for the epoch t and it observes the state transitions st+1, and rewards

r. Hence, it updates the Q-value using the weighted average of the previous and

the new Q-value, as shown in the following equation:

Qnew (st, at)← (1− α)Q (st, at) + α

(
rt+1 + γ max

a∈A
Q(st+1, a)

)
(6.5)

with:

• Q(st, at) is the old Q value;

• Qnew(st, at) the new value obtained after updating the old one;

• α is the learning rate that controls how fast the new estimation adapts to the

random changes imposed by the environment.

• γ is the discount factor that notifies the importance of future rewards;
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• rt is a reward received from action at;

• maxQ(st+1; a) is the estimation of the optimal future action.

After several episodes, the Q-table converges and becomes the reference table

for the agent (i.e., the entity that takes decisions) to select the best action based

on the Q-value. However, one of the QL method’s weaknesses is the convergence

time, i.e. the time needed by the agent to explore all the states to learn the best

action to take in the future. Indeed, it depends on the state space; if the latter is

big, the time to converge is high, which may be problematic if QL is used without

offline training.

Algorithm 3: Deep Q Learning algorithm

Ensure: s ← s(t+ 1)

Initialize: replay memory D to capacity N

Initialize: Q0(s, a) with random weights,

for episode ← 1: M do

0: Initialize state st
for t ← 1: T do

• With probability ε select:

– a random action at

– at= maxa Q(st, a, θ) (otherwise)

• Execute action at and observe reward rt and state st+1

• Store transition (st,at,rt,st+1) in D

• Set st+1= st

• Sample random minibatch of transitions (st,at,rt,st+1) from D

• Set Qtargetj=

{
rj for terminal st+1

rj + γ * maxa′* Q(st+1,a’,θi−1 for non terminal st+1

• Perform a gradient descent step: MSE(θi)= [Qtarget −Q(st, aj, θi]
2

end

=0
end
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6.3.3 Admission control using DQL

Q learning is based on a Q-table to store the learned results for each state and

action. Consequently, if the state space is big, the table size explodes, leading to

an increase in the training time as the agent has to take more time to explore all

the states.

To this end, DQL uses deep learning to represent the Q-values, where each

state passes through several hidden layers of a neural network to get the Q-values.

Then, DQL calculates: (i) the loss function that represents the MSE as shown in

equation 6.6 of the predicted Q-value (Qpred), and (ii) the target Q-value (Qtarget)

(see equation 6.7) that represents the maximum possible value for the next state.

MSE(θi) = [Qtarget −Q(st, a, θi)]
2 (6.6)

Qtarget = E[r + γmaxQ(st, a
′, θi−1)] (6.7)

With θ is the weight.

Using the same θ weights in equation 6.6, the values Qtarget and Qpred move

at the same time. For this purpose, DQL uses two neural networks, one for Qpred

and the other one for Qtarget. Algorithm 1 presents the different steps of the DQL

algorithm.

Note that we have considered the states and actions as defined in the MDP.

6.3.4 Admission control using Regret Matching

RM is an online learning algorithm similar to Reinforcement Learning. Its agent

(player or user) looks for the right action based on the regrets of the previous ac-

tions. The main principle consists in minimizing the regrets of its decisions at each

step of the system. To do so, the agent relies on past behavior of taken actions to

guide its future decisions by favoring the actions that it regrets not to have chosen

before.

The strategy of this method is to adjust the agent’s policy by distributing probabil-

ities on all actions proportionally to the regrets of not having played other actions.

The regret is defined as follows: if a is the action chosen by the agent at time T ,

thus for any other action a 6= a∗, the regret of choosing the action a but not another

action a∗ up to time T is obtained as shown equation 6.8 [106].

RegT (a, a∗) =
1

T

T∑
t=1

rt(a)− 1

T

T∑
t=1

rit(a
∗) (6.8)

with: rt(a) is the reward obtained at time T, by choosing the action a. At each step,

the agent chooses an action aT between two actions (accept or reject) considered in

this study (see equation 1). The probability PT+1 that the agent will choose action

a in the next step defined by next time T+1, is defined as follows:
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Algorithm 4: Regret matching algorithm

Result: s ← s(t+ 1)

Initialization: action a1,

for t ← 1: T do
• Take action at

• Receive reward rt(a) and rt(a
∗)

• Update the regret of choosing action at and not a∗t is:

RegT (a, a∗) = 1
T

∑T
t=1 rt(a)− 1

T

∑T
t=1 r

i
t(a
∗)

• The probability of choosing action at in the next step is:

PT+1(a) =


[RegT (a,a∗)]+∑

a=0,1[RegT (a,a∗)]+
if a 6=aT

1−
∑

a′ 6=aT PT+1(a′) if a= aT

• Select action corresponding to maximum probability

• Update action at+1

=0
end

PT+1(a) =


[RegT (a,a∗)]+∑

a=0,1[RegT (a,a∗)]+
if a 6=aT

1−
∑

a′ 6=aT PT+1(a′) if a= aT
(6.9)

With: RegT (a, a∗)]+ = max [RegT (a, a∗),0] presents the non negative part of the

regret RegT (a, a∗).

The RM algorithm is illustrated in Algorithm 2.

It should be noted that the RM is a fully online solution; the policy should be

initiated before that the algorithm starts adapting itself. Therefore, we consider

RM with two initial policies: accept and reject. The first one starts by accepting

the network slice requests, while the second one starts by rejecting the requests.

6.4 Performance evaluation

In this section, we present the simulation results of the slice admission control

problem by comparing the three methods’ performances. It is worth noting that

the RM considered here is initialized once by accepting the first received requests

(noted as RM with accept policy), and once by rejecting the first received requests

(noted as RM with reject policy).
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Figure 6.2: InfProv reward and penalty vs. Time for slice arrival request rate=

2, and Htime= 5 & 20 tu

We assume that InfProv receives requests to create slices following a Poisson

process with two different arrival rates as follows: (i) rate=2 per time unit (tu)

corresponding to a low arrival rate (i.e. the slice requests arrive rarely), and (ii)
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Figure 6.3: InfProv reward and penalty vs. Time for slice arrival request rate=

2, and Htime= 50 & 100 tu

rate=10 per tu corresponding to a frequent slice request arrival. Besides, we assume

that each slice request stays hosted in InfProv for a Htime period. To show the

impact of Htime, we use four values as follows: (i) short period where Htime= 5 tu,
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Table 6.1: Number of resources: (i) available in InfProv, (ii) requested by each

slice in UL and DL

[UL, DL] InfProv [100, 100]

[uRLLC, mMTC, mMBB] UL slices [5,9,5]

[uRLLC, mMTC, mMBB] DL slices [5,5,10]

(ii) medium period where Htime = 20 tu, (iii) large period where Htime = 50 tu,

and (vi) very large period where Htime = 100 tu. We consider that the number

of resources requested by each slice in UL and DL, and the number of resources

available in the InfProv are different, and their values are presented in Table 6.1.

Regarding slices’ priority, we assume that uRLLC slices have the highest prior-

ity, while eMBB and mMTC slices have the same priority. The price of running

uRLLC slice type is four times higher than the price to pay for running the mMTC

and eMBB slice types. The latter have the same price. In other words, we use the

price to pay as a way to enforce priority among the slice types.

Figures 6.2 and 6.3 illustrate the cumulative reward as well as the cumulative

penalty obtained using the proposed algorithms (RM initialized with accept policy,

RM initialized with reject policy, QL, and DQL), when the arrival rate is 2 per tu,

and for four values of the holding time (Htime). The same metrics are shown in

Figures 6.4 and 6.5, but for an arrival rate of 10 per tu. We recall that cumulative

reward is obtained by the InfProv when accepting slices, and the penalty is incurred

when a slice is accepted but InfProv has not sufficient resources either in DL or UL,

or in both directions to satisfy its requirements. For the cumulative reward, we

notice that, for both arrival rates and in the four proposed solutions, when the

Htime increases, the cumulative reward decreases. We argue this by the fact that

the resources are not released quickly when Htime is high; hence the InfProv rejects

new requests during this Htime period.

Besides, penalties (accepting a slice without having a resource) occur when the Inf-

Prov resources are saturated, and the SAC keeps accepting arrival slices. We remark

that penalties are higher when both the arrival rate and the holding time are high,

which is evident as the resources are quickly saturated since accepted slices stay

longer in the system. Further, we note that most of the algorithms require some

time to detect that the resources are saturated and keep accepting requests until

the reward starts to be negative. Consequently, they change the policy to reject.

The time to detect that the resources are saturated is a criterion to understand

which algorithm performs well, and hence learned the system’s behavior. In this

case, we remark that RM obtains the best performances with accept policy, followed

by DQL. QL achieves the worst performance. We argue this by the fact that RM,

thanks to its regret formula, detects quickly that the reward starts to be negative,
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and adapts the policy accordingly. Further, DQL with the neural network can learn

and predict better when to change the policy, compared to QL, where the Q-tables

cannot predict when to update.

On the other hand, when the arrival rate and the holding time are low, the prob-

ability of having penalties is very small or even null as there are always available

resources to accept new slices as shown in Figures 6.2 and 6.3.

The results of Figures 6.2, 6.3 and Figures 6.4 and 6.5 also show that in terms of

rewards, the QL algorithm is the worst algorithm of all tested algorithms regardless

of the arrival rate of each type of slices, by achieving the lowest cumulative reward.

This means that it does not learn well when the policy should change from accept-

ing to rejecting, or the contrary. Indeed, QL derived policies that favor rejecting

slice requests.

Figure 6.6 presents the percentage of rejected requests according to Htime, when

using the proposed algorithms: RM with accept policy, QL and DQL, and a request

arrivals rate= 10, corresponding to a frequent slice request arrival.

We notice that increasing Htime leads to an increase in the percentage of re-

jection for all the algorithms. This is obvious as high values of Htime mean that

admitted slices will stay longer in the network, and hence low resources are available

to accept new slices (i.e. increase the reject rate). Moreover, we notice that QL

rejects more requests than RM and DQL for all the Htime, which confirms the low

cumulated penalty and reward of QL shown in the two precedent figures.

In Figures 6.7 and 6.8 we present the percentage of accepted slices according to

their type and for different Htime, when using RM algorithms with accept policy, QL

and DQL. Here our objective is to verify whether the proposed algorithms satisfy

the slice priority condition, i.e. the ability to give priority to uRLLC slices compared

to the other slice types. We can see that all algorithms favor uRLLC slice over the

other slice types. Further, we see that DQL and RM show the highest percentage of

accepted uRLLC slices compared to QL. In other words, these results validate our

reward function and the fact of using the price to pay as a way to enforce priority

among the three types of slices.

One of the biggest challenges when using Reinforcement Learning to solve SAC’s

problem is whether online or offline learning is better? And what is the time of

convergence? So far, we have seen that RM, a fully online algorithm, works well for

SAC’s problem, while DQL and QL need to be trained before being used. Regarding

DQL we wanted to understand if an online version could make sense to address

the SAC problem efficiently. To this aim, we draw in Figure 6.9 a comparison

between the offline DQL (when we first perform the training phase and then the

tests) and the online DQL in terms of average reward. The online training phase

of DQL varies between 0 and 1000 episodes. Each episode represents one training

epoch during which the system receives 100 arrival slice requests. The maximum

number of episodes depends on the convergence of the online learning model. We
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have increased the number of episodes and calculated the corresponding average

reward. We have stopped when the learning model starts to give a constant reward

(between 500 and 1000). Note that the average reward is an average value of the

reward obtained for the four considered Htime. We clearly observe that the online

DQL needs time i.e., more episodes to converge (improve the learning) and start

achieving the same performance as offline DQL (around 400 episodes). This means

that during this period, i.e., before converging, the DQL performances are awful

and can seriously affect the business of InfProv.

All the results confirm that one of SAC’s best policy is to accept whenever the

resources are available to maximize the InfProv profile. In this context, RM with

accept policy achieves the best performance by reducing the penalty and increasing

the reward. DQL and QL could be a good candidate, but there is a need to well

tune the learning steps in order to anticipate when the policy has to change. Indeed,

RM uses a simple and efficient formula to understand the need to change policy,

while DQL and QL need to learn this. However, in a more complex system, where

a high number of actions are available, things may change as RM can hardly, by

using a simple formula, capture the behavior of the system. In contrast, DQL can

be a powerful solution. But, in the case of a SAC with only two available actions,

RM with accept policy is the best alternative for InfProv.

6.5 Conclusion

In this chapter, we have studied the challenge of network slice admission control

for future 5G networks. We have proposed algorithms based on Reinforcement

Learning (QL, DQL), and an online algorithm, which is the Regret Matching, to

solve this problem. We first modeled the problem as a MDP and described how

the proposed algorithms could derive a policy to be used by the agent to maximize

the InfProv revenue while avoiding violating network slice requirements. We have

modeled the reward as a function of the network slice price to pay and the penalty

to pay if the slice requirement is not satisfied. Through extensive simulation, we

showed that all algorithms could derive a good policy, but RM achieves the best

performance, as the SAC problem is not complex, and the actions state is limited.
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Figure 6.4: InfProv reward and penalty vs. Time for slice arrival request

rate=10, and Htime= 5 & 20 tu
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Figure 6.5: InfProv reward and penalty vs. Time for slice arrival request

rate=10, and Htime= 50 & 100 tu
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Chapter 7

Conclusions and Perspectives

This chapter summarizes and lists important conclusions. Besides, different

perspectives left for future work are discussed in the second part of this chapter.

7.1 Conclusions

7.1.1 Dynamic slicing of RAN resources for heterogeneous

coexisting 5G services

The first contribution of this thesis addressed the problem of resource sharing and

isolating between the heterogeneous network slices in 5G.

In this contribution, we have proposed two algorithms that estimate the needed

RAN resources for two types of 5G slices: eMBB and uRLLC. The mMTC slice can

use the same algorithm proposed for the eMBB slice type. The proposed algorithms

are used at the SO level and could be easily implemented in a real platform. The

proposed algorithms used the CQI values provided between the eNB and the SO,

to update the calculation of NpRB dynamically.

The simulation results presented in Chapter 3, allow to verify the accuracy of our

algorithms when estimating the needed pRBs for each type of slice. However, these

results revealed two concerns, which we have addressed in the following contribu-

tions and which are:

• Channel Overload caused by CQI signaling between the eNB and the SO.

• The resource limit in the bandwidth that restricts the assignment of all the

requested resources by the slice.
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7.1.2 Channel stability prediction to optimize signaling over-

head in 5G networks using ML

In the second contribution of this thesis, we focused on developing methods to re-

duce the signaling overhead caused by the periodic transmission of the CQI reports

in 4G and 5G mobile networks. Therefore, we proposed a method based on ML

algorithms. Our main approach consists of predicting the stability/mobility of chan-

nel conditions, in order to avoid transmitting the unnecessary CQI messages when

the CQI values do not change significantly over time. The used ML algorithms are

SVM and NN, and only require CQI information as input.

We compared, evaluated, and analyzed the prediction accuracy of the two ML

schemes used for this purpose. We further addressed the trade-off between predic-

tion accuracy and data collection frequency.

7.1.3 Data-driven RAN slicing mechanisms for 5G and be-

yond

In this contribution, we proposed two predictive methods to mitigate the overheads

associated with frequent CQI monitoring, i.e., Optimal Difference and LSTM -based

forecasting. In addition, to verify that the decreased collection of CQI values does

not impact the NpRB estimation, we applied this decreased CQI frequency to adjust

the NpRB needed by each running slice, in the algorithms that drive the NpRB among

heterogeneous slices.

Our objective is to minimize the error of our estimates of the achievable throughput

when the CQI reporting frequency is reduced while reducing the signaling overhead

between the eNB and the SO.

The simulation results proved that our solution is able to reduce the signaling

overhead while maintaining a precise prediction of RAN resources for the running

network slices.

7.1.4 On using reinforcement learning for network slice ad-

mission control in 5G: offline vs. online

In this contribution, we investigated the challenge of slice admission control. In

this context, we focused on finding a policy at the InfProv to decide whether to

accept or reject a new network slice request creation. The methods we used for

this purpose are based on Reinforcement Learning algorithms (QL, DQL), and an

online algorithm, which is Regret Matching. The problem is modeled as a MDP,

and described how the proposed algorithms could derive a policy to be used by

the agent to maximize the InfProv revenue while avoiding violating network slice

requirements.

The simulation results showed that the proposed algorithms could derive a good
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policy that maximize the InfProv revenues, while respecting the slice requirement

in terms of resources. However, RM achieves the best performance, as the SAC

problem is not complex and the actions state is limited.

7.2 Perspectives

Network slicing is a new technology, which introduces several new research direc-

tions. In this thesis, we have investigated some network slicing aspects in the RAN.

Our contributions have verified their effectiveness in the proposed scenarios. How-

ever, there are still several scenarios that can integrate our solutions, as well as a

future open issue in this context. In this section, we will present some perspectives

of this thesis.

• Two level admission control (UEs/slice and slices/InfProv)

Resource allocation among slices is a very critical issue, which opens wide

perspectives for research. In the first contribution of this thesis, we proposed

algorithms for resource sharing among slices. These algorithms allow estimat-

ing the NpRB requested by each slice. However, the NpRB available in the BW

is limited and the SO cannot satisfy all the requested resources beyond the

limit of the BW. In this context, if a slice receives lesser resources than it

needs, it will not meet all the requirements of its hosted users. As a perspec-

tive, it will be interesting to integrate an admission control algorithm between

the slice and the users who request to be hosted at a given slice. In fact, users

run their applications in the slice in which they are served by their required

resources. Therefore, if a slice does not receive all the resources necessary to

meet all the requirements of the users who request to be hosted in this slice,

it should reject some users by doing an admission control. Admission control

between slice and users can be based on several constraints. This process

improves the QoS requested by the users as well as by the slice.

In Chapter 6, we presented algorithms of slice admission control between

InfProv and slices. This issue deals only with the admission control between

slices. Nevertheless, including a second level of admission control between

users in each slice will strengthen the QoS of the whole network slicing.

• Network slicing in the market

In this thesis, we introduced the concept of the slice market, aimed at maximis-

ing InfProv’s revenues. In this context, the slice market is a critical concept

that has to be considered in all technical solutions related to network slicing

in general and resource allocation in particular. Therefore, we highlighted the
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maximization of InfProv revenues using reinforcement learning. Therefore,

our solution could be applied in various parts of the network, in the concept

of slice market, such us to maximize operator revenues. In fact, reinforcement

learning models the reward in a concrete way, ensuring maximum benefit to

the corresponding network.

• Multi-cell RAN resource allocation

The introduced resource allocation algorithms in this thesis, consider a sin-

gle SO and eNB, a slice of type eMBB and of type uRLLC. The developed

algorithm can be expanded to a multi-cell RAN. It can consider a problem

of resource sharing over several eNBs, which in turn are shared by multiple

slices of heterogeneous types. The requirements of each slice can be different,

even if they are the same type.

• Multi-cell RAN flexibility

Flexibility constraints become more critical in the case of multi-cell RAN. It

can be addressed by ensuring that radio resources are allocated to its cus-

tomers during a period i.e, a time slot. In this context, an in-depth study on

how to correctly allocate a time slot during resource allocation needs to be

carried out. These analyses can be based on ML classification algorithms or

game theory.

• Next Generation RAN

Our proposed solutions could be integrated into the Next Generation of RAN.

In fact, our resource sharing algorithm is tested on a 4G network where the

bandwidth contains only 25 RBs. However, our solution can be used in 5G

networks with 100 RBs. In addition, our proposed algorithms could be inte-

grated and tested easily in the new generation RAN in 5G networks.

• AI driven RAN

Artificial intelligence (AI) has proven its effectiveness in several areas. Re-

searchers in industry and academia have demonstrated the importance of im-

plementing AI in the new generations of telecommunications. Indeed, RAN

operations can be automated by integrating the AI into the RAN. Therefore,

we are interested in providing AI-based solutions to improve RAN perfor-

mance, especially in the new 5G radio. In this context, the problem of re-

source allocation between slices can be driven by a pure AI algorithm. For
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instant: representing each slice by a class in an ML modeling, then classifying

a given amount of resource on each slice for a given period of time according

to each slice requirement.
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