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Résumé de la thèse

Contexte et motivations

Les systèmes de communication et de transmission sans l connaissent un essor important depuis de nombreuses années. Cette sollicitation croissante des systèmes antennaires émerge de la multiplication des applications qui leurs sont liées telles que les réseaux mobiles terrestres, internet par satellite ou la multiplication des objets connectés (Internet of Things -IoT) [1,2]. Cette tendance générale conduit à des développements toujours plus nombreux, entraînant d'importants besoins en caractérisation des antennes. La mesure du rayonnement de ces structures est en eet une étape clé dans la conception et la validation des systèmes de communication sans l.

En plus de cet essor, la tendance est à la conception d'antennes de taille (électrique) et de complexité toujours plus grandes, et ce an de répondre aux contraintes exigeantes en termes de performances en rayonnement, de bandes de fréquences, de recongurabilité, ... Au-delà de l'augmentation de la demande en terme de caractérisation, ces structures sont également de plus en plus diciles à mesurer, que ce soit en terme d'équipement ou de compétences. Ainsi, la caractérisation d'une antenne requiert souvent la mesure d'un ou plusieurs diagrammes de rayonnement en 3D (sur la sphère complète), et implique donc une mobilisation étendue dans le temps des équipements de mesure. La mesure 3D du rayonnement d'une antenne de taille maximale 10λ est environ de 10 heures dans les chambres anéchoïques de l'IETR 1 .

Enn, la caractérisation d'une antenne est souvent désirée dans un environnement qui soit le plus réaliste possible. Ainsi, l'antenne est typiquement montée sur l'appareil destiné à l'accueillir ou une maquette de celui-ci. La simulation numérique d'environnements réalistes complexes est une opération fortement coûteuse en terme de ressources de calcul, à laquelle s'ajoutent des dicultés liées à la modélisation et à la prise en compte des nombreux paramètres ayant un impact sur le rayonnement. La mesure est souvent le seul moyen de prévoir le comportement en condition de l'antenne de façon able et réaliste. L'implantation des antennes dans leur environnement pendant la caractérisation implique généralement des temps de mesure encore plus grands en raison de l'augmentation des dimensions. Des dicultés en terme de mécanique et de cinématique au sein des systèmes de mesure sont également fréquemment rencontrées. L'objectif de ces travaux de thèse est de tirer le meilleur parti des installations de mesures, typiquement des chambres anéchoïques, an d'accélérer la mesure tout en garantissant la précision des résultats sur les diagrammes de rayonnement obtenus.

Ces travaux se sont déroulés à l'Université de Rennes 1 au laboratoire IETR, en col- Objectifs et contributions L'objectif de ce travail de thèse est de développer de nouvelles méthodes permettant une caractérisation plus rapide et/ou plus able de structures rayonnantes. Ainsi, plusieurs techniques ont été proposées an d'optimiser l'exploitation des systèmes de mesure actuels.

Ces méthodes contiennent des procédures de mesures liées à des traitement spéciques an d'améliorer la détermination des diagrammes de rayonnement. Tout d'abord, la caractérisation du rayonnement 3D des antennes peut être accélérée de façon signicative par la réduction du nombre d'échantillons de mesure. Deux approches ont été étudiées en ce sens.

La première approche est basée sur la décomposition en ondes sphériques du champ rayonné par l'antenne sous test. Elle nécessite uniquement la connaissance de la dimension électrique maximale de l'antenne. Une procédure de traitement automatique des données, contenant notamment une stratégie d'échantillonnage rapide, combinée à l'exploitation de la parcimonie de la décomposition en ondes sphériques a été proposée. L'accélération de la mesure liée à cette nouvelle technique a été démontrée et quantiée expérimentalement en considérant des structures rayonnantes variées, que ce soit par leur type ou leur bande de fréquences.

La deuxième approche repose sur la construction d'un modèle d'ordre réduit adapté au problème de la caractérisation d'antennes. Les dimensions externes de l'antenne sous test et la connaissance de la surface de mesure permettent de construire une matrice de rayonnement liant les courants équivalents autour de l'antenne au champ rayonné. La méthode proposée est générale et peut être appliquée à n'importe quelle structure rayonnante et géométrie de la surface de mesure (sphérique, planaire, ...) en champ proche et lointain. Ce modèle de caractérisation d'antenne fournit non-seulement le nombre d'échantillons minimal requis mais permet également d'interpoler le champ rayonné par l'antenne sous test avec une précision contrôlée, choisie selon la dynamique de la mesure. Cette approche peut être interprétée comme une généralisation numérique des études analytiques menées sur le nombre de degrés de liberté du champ rayonné par une antenne donnée.

De plus, des procédures de post-traitement des données de mesure ont été développées an d'optimiser le positionnement de l'antenne au sein du système de mesure, permettant ainsi d'améliorer la précision de la reconstruction du diagramme de rayonnement mesuré sans aucun coût supplémentaire. Ainsi, l'orientation et la position de l'antenne sous test sont optimisées an de compresser la décomposition en ondes sphériques du champ rayonné, ce qui facilite sa reconstruction à partir d'un jeu de mesure donné. Ces techniques sont 1 Centre National d'Études Spatiales 2 Laboratoire National de métrologie et d'Essais particulièrement adaptées aux cas de mesures d'antennes en environnement ou d'antennes de diagrammes de rayonnement recongurables.

En résumé, nous pensons que les principales contributions de ce travail de thèse sont :

1. La conception, l'implémentation et la validation de plusieurs méthodes de modélisation électromagnétique (décomposition en ondes sphériques, méthode des moments par intégration surfacique), d'outils mathématiques (translation et rotation des ondes sphériques), de codes basés sur des méthodes aux éléments nis (création de maillage, outils de visualisation) et de procédures d'optimisation (reconstruction parcimonieuse, processus Gaussiens, descente de gradient).

2. La validation expérimentale systématique de toutes les méthodes proposées sur des structures rayonnantes variées, opérant dans des bandes de fréquences diverses et caractérisées dans diérents systèmes de mesure, incluant les chambres anéchoïques de l'IETR et un système de mesure commercial de chez MVG [3].

An d'illustrer les contributions de ce travail en terme de caractérisation rapide d'antenne, la gure suivante montre des estimations du temps d'acquisition du champ électrique dans les chambres anéchoïques de l'IETR en fonction de la dimension maximale de l'antenne. Le temps requis par la technique de mesure standard par ondes sphériques, dénotée Standard est comparé à celui des deux approches proposées : la décomposition parcimonieuse en ondes sphériques Sparse SWE pour Spherical Wave Expansion et la méthode utilisant un modèle d'ordre réduit, ici en entourant l'antenne par un cube, technique appelée ROM pour Reduced-Order Model. 

Contenu du mémoire

Ce mémoire de thèse comprend 4 chapitres dont les contenus sont résumés ici.

Chapitre 1

Le Chapitre 1 présente un tour d'horizon des techniques liées à la caractérisation des champs rayonnés par les antennes. Les quantités d'intérêts concernant la mesure des caractéristiques de rayonnement des antennes sont dénies, du champ rayonné lui-même aux valeurs dites intégrées telles que la directivité, ou la polarisation [4,5]. Les congurations classiques de mesure d'antennes sont décrites. Elles sont habituellement séparées en deux grandes catégories, les techniques dites champ proche et champ lointain, déterminées par la distance électrique entre l'antenne mesurée et la sonde de mesure. Les dispositifs de mesure disponibles à l'IETR, qui ont permis de valider les procédures développées sur des données expérimentales, sont également détaillés [3,6,7].

Les diagrammes de rayonnement, résultats de la caractérisation d'une antenne, sont des fonctions continues (habituellement sur la sphère en champ lointain) qui représentent les caractéristiques de l'antenne en tant qu'élément rayonnant. La comparaison de ces diagrammes est donc un élément crucial dans la conception et la validation des techniques de mesure. Ainsi, des métriques de comparaison, notamment utilisées dans le cadre de campagne de comparaison de bases de mesure européennes [8] ou de techniques de mesure rapide [9,10], sont données et appliquées sur des exemples an d'en montrer les propriétés respectives.

De façon générale, la précision des techniques de mesure est fortement liée au nombre d'échantillons du champ à disposition. Chaque conguration et/ou technique de posttraitement des données donne lieu à son propre nombre d'échantillons. Un compromis est néanmoins inévitable entre la précision de la mesure et le temps d'acquisition du champ.

Ce dernier augmente avec le nombre d'échantillons de mesure, une estimation de ces temps en lien avec les techniques étudiées à l'IETR est alors donnée, ce qui permet de conclure de façon quantitative sur le gain eectif en temps d'acquisition du champ rayonné.

Chapitre 2

Le Chapitre 2 concerne la première méthode de caractérisation rapide d'antennes étudiée au cours de ce travail. Elle est basée sur la décomposition parcimonieuse du champ rayonné en ondes sphériques (Spherical Waves, SW [11]), aussi appelées harmoniques sphériques. La caractérisation du champ rayonné repose de façon générale sur la décomposition du signal mesuré dans une base de fonctions. La mesure du champ rayonné est une discrétisation du diagramme de rayonnement, la caractérisation 3D en est l'interpolation de ce champ sur la sphère. Les ondes sphériques sont en particulier une base des fonctions sur la sphère [12] tout en étant solution des équations de Maxwell. Ces deux propriétés, mathématique et physique, permettent de décomposer le champ rayonné par les antennes [11], tout en garantissant leur pertinence dans ce contexte. Après un rappel de l'origine et de la dénition de ces fonctions, la décomposition du champ est considérée.

La méthode usuelle de caractérisation du champ rayonné par une antenne sur une sphère [11] peut être vue comme sur une généralisation de la notion de fréquence de Nyquist [13] au cas de la décomposition sur la sphère. Cette technique garantit une identication exacte des coecients sous l'hypothèse que le champ rayonné possède une bande passante limitée en termes de variations spatiales (de la même façon que le contenu fréquentiel d'un signal temporel sera exactement identié si l'échantillonnage est susamment n).

Si l'importance et la précision de cette technique ne sont plus à démontrer [14,15], cela se fait au prix d'un grand nombre d'échantillons de mesure, et donc de temps d'acquisition du champ importants voire rédibhitoires dans certains cas.

Néanmoins, la décomposition du champ dans la base des ondes sphériques possède une propriété remarquable ; beaucoup de coecients de pondération de ces ondes sphériques sont d'amplitudes négligeables. Cette particularité permet de reformuler la caractérisation d'antennes en un problème convexes de reconstruction parcimonieuse [16,17] et d'en utiliser les outils [1820].

Ainsi, la détermination automatique du paramètre contrôlant l'attache aux données de mesures, un point crucial et récurrent pour la résolution de problèmes inverses avec régularisation, est discutée. Une approche, inspirée d'études menées pour des applications diérentes [21,22] a été étendue avec succès à notre problèmes de caractérisation d'antennes.

Par ailleurs, le nombre minimal de points de mesure à utiliser pour cette technique de caractérisation rapide d'antennes avec une précision donnée, n'est pas connu à l'avance.

Néanmoins, à l'aide d'hypothèses réalistes sur les spectres générés par la mesure antenne, un facteur de sous-échantillonnage global peut être obtenu grâce à l'utilisation de la théorie de la reconstruction parcimonieuse, et plus particulièrement les diagrammes de transition de phase [23]. Ces diagrammes ont été introduits à des ns théoriques radicalement diérentes.

Ils peuvent être étendus à la mesure d'antennes, comme notamment dans [24,25]. Nos contributions sont validées sur des données expérimentales et une estimation des gains sur le temps des mesures d'antennes réalisée à l'IETR est donné en fonction de la dimension électrique maximale de l'antenne.

Chapitre 3

Le Chapitre 3 traite de l'amélioration de la reconstruction du diagramme de rayonnement par optimisation du positionnement de l'antenne en post-traitement en utilisant la décomposition en ondes sphériques. Nous avons montré dans le chapitre 2 que la précision des résultats est liée au nombre de points de mesure, que l'on utilise la technique standard basée sur un taux d'échantillonnage de Nyquist ou les techniques de mesure rapide. Néanmoins nous pouvons également favoriser l'extraction de l'information contenue dans un jeu de donnée de façon plus pertinente en utilisant les propriétés des ondes sphériques et de la reconstruction parcimonieuse, cette dernière étant très sensible aux variations et au nombre de coecients signicatifs impliqués dans la décomposition du champ.

En eet, le spectre en ondes sphériques d'une antenne, c'est à dire l'ensemble des coecients de pondération, est une représentation du champ relativement à un système de coordonnées déni. Une modication de position ou d'orientation de ce système modie ce spectre [2628] et peut donc être mis à prot pour favoriser l'identication correcte des coecients. Ce système de coordonnées peut-être modié une fois la mesure du champ eectuée par les formules analytiques de translation et de rotation des ondes sphériques.

L'exploitation de ces formules et des eets de ces transformations sur le spectre des coecients permet d'obtenir une représentation encore plus compacte du rayonnement de l'antenne. La compacité de ce spectre est en relation directe avec l'identication précise des coecients à partir d'un nombre restreint de données de mesure [23,25]. Une optimisation du positionnement de l'antenne (origine et orientation du système de coordonnées) a été proposée an d'améliorer la reconstruction du diagramme de rayonnement d'une antenne à partir du champ mesuré. Cette approche ne nécessite pas de mesures supplémentaires. Ses avantages sur la précision de la mesure rapide sont démontrés avec de nombreux exemples numériques et expérimentaux en champ proche sphérique et lointain.

Chapitre 4

Le Chapitre 4 s'intéresse à la construction d'un modèle d'ordre réduit pour la caractérisation d'antennes [29]. Ces travaux ont été réalisés en collaboration avec le Prof. M. Mattes de l'université technique du Danemark (DTU).

Le principe de surface équivalente ou de Huygens permet la représentation d'un ensemble de sources par des courants équivalents sur une surface qui les entoure [30]. Une formulation dite aux éléments nis de frontière peut alors être utilisée an d'approcher ces courants équivalents par une pondération de fonction de bases connue de ces courants.

Cela permet la construction d'une matrice de rayonnement. Cette approche a été proposée pour réaliser du diagnostic d'antennes dans [3134].

La décomposition en valeurs singulières de cette matrice de rayonnement permet la construction d'une base des champs rayonnés par l'antenne. Cette base, construite numériquement, est parfaitement adaptée à notre problème de caractérisation d'antennes puisqu'elle prend en compte la géométrie de l'antenne ainsi que la surface de mesure. Elle est tronquée de façon appropriée an de générer une représentation compacte des champs rayonnés par une antenne contenue dans la surface équivalente. Nous avons montré que le nombre minimal d'échantillons requis pour caractériser une antenne pour une précision donnée est lié à l'aire de cette surface équivalente. Ce résultat, obtenu numériquement et validé expérimentalement, généralise les travaux analytiques menées sur le nombre de degrés de liberté des champs rayonnés [START_REF] Bucci | Representation of electromagnetic elds over arbitrary surfaces by a nite and nonredundant number of samples[END_REF].

Conclusion

Cette thèse a contribué au développement de méthodes de mesure pour améliorer la caractérisation d'antennes et donc l'utilisation des bases de mesure. La réalisation de ces travaux a donné lieu à la conception et à la validation de plusieurs codes et méthodes en plus de l'utilisation de routines existantes. Ces développements contiennent notamment la décomposition en ondes sphériques et la méthode des moments par éléments nis aux frontières. Tous ces outils ont tous été validés par des études sur des données de simulation et de mesures réalisées à l'IETR.

Suite à ce travail, plusieurs pistes sont envisageables. Il serait ainsi intéressant de valider expérimentalement les techniques de mesure rapide d'antennes au champ proche. Par ailleurs, il semble prometteur d'adapter les approches de mesures rapides d'antennes aux mesures sans phase. En outre, l'interpolation, en plus de la dimension spatiale, de l'axe électrique / fréquentiel des mesures de champ électromagnétique est une piste qu'il convient de creuser. Enn, les techniques de positionnement de l'antenne pourraient certainement être adaptées an d'estimer leur centre de phase.

Introduction

Framework and motivations

There is a massive growth in the development of wireless devices that is driven by the constant increase of mobile data communications and the arising of new applications, such as Internet of Things, smart cities and Car2X communications to name just a few [1,2].

The performance of these wireless devices is obviously tightly linked to their transmitting and receiving component: the antenna. There is therefore a growing demand in testing ubiquitous antennas to make sure that the radiating performances of the wireless devices comply to the expected specications. Antenna characterization is indeed an unavoidable step to validate the development and production of any wireless system.

In addition, the current trend is to design radiating structures of larger electrical dimension, with increased complexity in terms of specications or environment. This is in answer to always more demanding needs in terms of performances, frequency band and functionalities (recongurability, multiple beam patterns, various operating modes). Consequently, the characterization of antennas has become more and more cumbersome and costly. The measurement of one or several 3D (full sphere) radiation patterns is often required to properly characterize the antenna under test, often leading to time consuming procedures. As a representative example, the 3D radiation pattern measurement of an antenna of maximum dimension equal to 10 wavelengths takes about 10 hours in the anechoic chamber of IETR 1 at the time of this manuscript.

Besides, the characterization of antennas in a realistic environment, typically embedded in a structure, is nowadays a frequently encountered requirement. It is indeed computationally costly to simulate numerically an accurate model of such embedded antennas so as to predict their radiation pattern as faithfully as possible. The measurement is often the only resort to get realistic and reliable predictions of the radiation characteristics of such systems. The large electrical dimensions of these structures render their characterization time consuming and impose some mechanical constraints on their positioning in the measurement facilities. Both specications deserve to be properly addressed.

In this context, the main goal of this work is to improve the characterization of antennas by using and exploiting more eciently measurement facilities, typically anechoic chambers. More specically, contributions, including measurement procedures and processing, are proposed to speed up and/or improve the accuracy of the measurement of antenna radiation patterns.

This PhD thesis has been carried out at the UR1 In parallel to the present work, a Recherche and Technologie CNES action entitled Nouvelles stratégies d'échantillonnage du champ électromagnétique pour l'accélération du temps de mesure (New electromagnetic eld sampling strategies for antenna measurement acceleration) of 18 months duration has been carried out.

Objectives and contributions

The goal of the PhD thesis is to develop methods that enable a faster and/or more accurate characterization of radiating structures. Thus, several techniques are proposed to improve the use of existing antenna measurement systems. They encompass measurement procedures associated to a specic processing of the produced data in order to increase the eciency of antenna radiation pattern measurements.

The measurement of the radiation pattern of an antenna can be divided into four main phases: logistics, calibrations, the eld acquisition and the post-processing of the measurement data to produce the nal results and evaluate the quantities of interest. First, the measurement system must be chosen according to the antenna size and operating frequency.

The weight and outer dimensions of the whole radiating structure are also constraints to be taken into account. A proper interface between the radiating structure and the positioning system has to be designed, takin into account the cinematic constraints. The probe has to be appropriately chosen, specic protections to minimize interaction between the AUT and the measurement system like absorbers are set and numerous other practical aspects must be considered. Then, a careful calibration of the system has to be performed, which contains non-exhaustively [3]: channel-balance, amplitude and phase drifts corrections, alignment procedures, sanity checks. This calibration step often implies some feedback loop to the logistic step. These two steps are driven by well-dened procedures, following measurement standards. While their impact over the total measurement time is very signicant, these procedures cannot easily be shortened as it would inevitably impact the accuracy of the measurement. The next phase is the acquisition of the near or far eld radiated by the AUT. The probe measures the radiated eld according to a pre-dened sampling. This acquisition phase duration is also signicant, as illustrated in Fig. 2. It can be reduced by decreasing the number of eld samples. Because of its practical relevance, many eorts have been led in this direction. In this thesis, we propose two approaches to speed up the antenna characterization by reducing the number of radiated eld samples.

The rst one is based on the spherical wave expansion of the eld radiated by the antenna under test and only calls for the knowledge of its maximum electrical dimension.

By harnessing the sparse expansion of the radiated eld, an automatic procedure including an ecient eld sampling strategy has been proposed. This approach has been shown experimentally to lead to faster pattern characterizations for a wide range of radiating structures operating in diverse frequency bands. In addition, several post-processing strategies based have been developed to optimize the positioning of the antenna under test within the measurement system. By doing so, it is possible to improve the quality of the radiation pattern measurement without any additional cost. Thus, both the rotation and the translation of the antenna can be optimized so as to further compress the antenna pattern representation and consequently ease its interpolation from a given eld dataset. This approach nds a great relevance in many frequently encountered scenarios including the case where antennas are mounted on structures that also contributes to the radiation pattern.

The second approach, to speed up antenna measurements, relies on the construction of a reduced order model for the antenna characterization problem. It exploits the outer dimensions of the antenna under test and the geometry of the measurement surface so as to build the radiation matrix that maps the equivalent currents representing the antenna to the radiated eld. The proposed methodology is general, it can be applied to any radiating structures and eld measurement scans in either near or far eld. This reduced antenna characterization model provides not only the minimum number of eld samples to properly characterize antennas, but also the way to interpolate the eld radiated by the antenna under test with a controlled accuracy. This approach can be seen as a numerical generalization of the analytical works on the number of degrees of freedom of the elds radiated by antennas [4].

In summary, we believe that the main contributions of this work are:

1. The development, implementation and validation of several electromagnetic modelling methods (spherical wave expansion of the eld, surface integral equation method of moment), mathematical tools (translation and rotation of the spherical waves),nite element tools (meshing, current visualizations) and optimization solvers (sparse recovery methods, Gaussian processes, gradient descent) for a better antenna characterization.

2. The systematic experimental validations of all proposed procedures on various radiating structures operating in dierent frequency bands and characterized in dierent measurement facilities including several laboratory anechoic chambers and a commercial measurement system.

To illustrate our contribution in terms of fast antenna characterization, the following gure plots an estimation of the eld acquisition duration in our anechoic chambers as a function of the antenna maximal dimension. It compares the standard approach (often called Nyquist) using Spherical Wave Expansion (SWE) to our two proposed methods: the sparse SWE and the Reduced Order Model (ROM) using a cube.

Content of the manuscript

This PhD work is organized in four chapters.

The Chapter I gives an overview on antenna measurement techniques and tools related to radiation pattern characterization. The quantities of interest for the present work and the measurement congurations are presented. The antenna measurement facilities of our laboratories, used to validate our work, are described. Various metrics to assess the quality of the antenna pattern measurement are proposed and discussed and the way to estimate the antenna eld acquisition duration, a key point of our work, is also provided.

The Chapter II addresses our rst fast antenna characterization approach based on the sparse spherical wave expansion. The denition of the SW is rst recalled and their exploitation in a context of a coarse antenna pattern sampling is then detailed. The proposed procedure enables to properly characterize antenna patterns from a number of eld samples smaller than standard approaches, as shown in Fig. 2. The corresponding gain in eld acquisition durations are estimated.

The Chapter III deals with the improvement of the antenna pattern reconstruction by optimizing the antenna position and orientation a posteriori from the measurement of its radiation pattern. To this end, the analytical formulas for translation and rotation of the spherical waves are given and the eects over the spherical coecients are shown and discussed. The positioning of the antenna under test can be optimized in order to make the SW spectrum more compact and therefore easier to retrieve. This approach enables the reconstruction of the antenna radiation pattern from a given measurement dataset with a better accuracy, as validated using numerous numerical and experimental dataset.

The Chapter IV proposes our second fast antenna characterization approach that relies on the construction of a reduced order model of the antenna characterization problem.

Using the Huygens' equivalent principle, the radiation matrix that links the electromagnetic sources to the radiated eld is built. The truncated singular value decomposition of this matrix provides a compressed representation of the antenna characterization problem. The minimum number of eld samples to characterize an antenna with a controlled accuracy is derived and checked both numerically and experimentally. This number is linked to the area of the equivalent surface as conrmed for various antenna shapes. This result is in agreement and extends existing analytical works.

Finally, the conclusions of this work are drawn and ideas for future investigations are given.

Chapter I

Antenna radiation pattern characterization

I.1 Introduction

The measurement of antennas is a necessary step to determine their electrical properties and more specically their radiation characteristics. The full wave electromagnetic software combined to the increasing computational power are ecient and accurate tools to predict faithfully the radiation characteristics. However, measurements remain inevitable to provide the ground truth of the manufactured antenna.

The behaviour of antennas are described by various parameters. In this work, we focus on the radiation performances of antennas and the relevant parameters to be characterized to this end are detailed. The radiation parameters of antennas are usually measured in a controlled (interference free) environment so as to be able to characterize only the Antenna Under Test (AUT) or Device Under Test (DUT) itself. In the sequel, we will refer to DUT when the antenna is not alone but mounted on a structure for instance.

Among antenna measurement facilities, we can distinguish outdoor and indoors ranges, There are various measurement techniques to characterize the radiation pattern of antennas. These techniques can be discriminated by the electrical distance between the AUT and the measurement probe (near or far eld) and the geometry of the eld measurement scan (typically planar, cylindrical or spherical). These various measurement ranges and their characteristics are reviewed. The systems available in our laboratory and used to validate our antenna characterization procedures are described.

The variety of antenna measurement techniques and the use of dedicated processing call for the assessment of the characterization results. To this end, several complementary metrics are proposed in order to compare two antenna radiation patterns. These metrics are essential to assess the quality of the proposed antenna characterization strategies.

The accuracy of AUT measurements highly depends on the measurement sampling.

Any antenna pattern measurement, no matter the conguration (near and far eld, geometry of the measurement scan), requires to full a sampling criterion to ensure a proper characterization. The standard eld sampling criterion is recalled. One of the goal of this work is precisely to go beyond this standard sampling. To achieve this so-called undersampling, we leverage a priori information about the eld radiated by antennas or about the AUT geometry.

Indeed, the eld sampling directly impacts the duration of the eld acquisition and therefore the whole antenna pattern measurement. A procedure to estimate the duration of this eld acquisition phase in our anechoic chamber is provided. Such an estimation is important in order to assess the two fast antenna characterization approaches proposed in this thesis.

I.2 Measurement techniques I.2.a Antenna parameters

The antenna parameters commonly refer to the electrical properties of the radiating system.

We provide a non-comprehensive list of these parameters, with a focus on the radiation properties. The quoted denitions comes from the IEEE standard denition document of terms for antennas [1].

Radiation pattern

The radiation pattern is the spatial distribution of a quantity that characterizes the electromagnetic eld generated by an antenna. In spherical coordinates (θ, ϕ), illustrated in 

Field pattern

The electric or magnetic eld pattern is a type of radiation pattern where the quantity of interest is the electric eld E itself (or magnetic one H), seen as a function over the region of interest, e.g. E(r, θ, ϕ) in spherical coordinates. Strictly speaking, an electromagnetic eld is time dependent, i.e. E(t, r, θ, ϕ). However this time dependency can be assumed 

Gain and Directivity

Antennas can emit or receive power. This means that the interaction between such systems is enabled by a power ux [4]. The gain relates this power ux density depending on the direction (θ, ϕ), to the power accepted by the antenna. The gain G is dened as the ratio of the radiation intensity in a given direction to the radiation intensity that would be produced if the power accepted by the antenna were isotropically radiated. For a single main-beam antenna, the gain simply refers to the maximum. There are several variations on this denition depending on the consideration of the various losses.

The directivity D connects the power ux density to the total radiated power. It measures how much the power ux is focused in some directions. It is dened as the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. It is given by the equation [5] D

(θ, ϕ) = 4π E(θ, ϕ 2 2 P rad (I.1)
where P rad is the radiated power. The radiation eciency η is dened as the ratio G/D. If all the accepted power by the antenna is radiated, the eciency is maximal (η = 100 %).

Polarization

The polarization of an electromagnetic wave is dened by the curve described by the electric eld vector through time in a plane perpendicular to the propagation direction.

The polarization of the antenna is thus the polarization of the wave transmitted by the antenna. The polarization of this wave describes how this vector oscillation is behaving with respect to time at a given position. There are 3 main polarization types:

1. Linear polarization: the electric eld oscillates within a given plane, see 

I.2.b Antenna pattern measurement techniques

There are various techniques to perform an antenna radiation pattern characterization. Its choice depends mainly on the antenna type and application. The measurement techniques are split in two main categories; the near and far-eld measurements, depending on the distance between the AUT and the probe. These two regions are dened in [6] as illustrated in Fig. I.6. A typical measurement conguration is made of the AUT or DUT, mounted on a positioning system, and a probe.

In the far-eld region, the electromagnetic wave can be approximated locally by planes and the magnitude of the electric eld decreases isotropically. The variations of the eld are thus determined by the angles only and the measurement distance can be omitted.

The electric far eld is a function of the spherical coordinates angles (θ, ϕ) as in Fig.

I.2.
In the near eld, these considerations do not hold, leading to more complicated coupling 

Near-eld ranges

In most near-eld measurement systems, the measurement data is expanded into a modal basis. The complicated function representing the electrical eld is thus represented by an expansion into a known function basis and the antenna pattern characterization consists in the determination of the expansion coecients, the weights, of the radiation pattern in the basis. This expansion allows in particular to transform the eld and consequently to derive the far eld (often called Near to Far Field Transformation, NFFT). Because of this transformation, such techniques are sometimes called indirect measurements [4]. The main point of near-eld testing is to avoid the possibly very large measurement distances or complex measurement congurations, then performing a transformation to obtain the far eld. There are three main types of near-eld measurements: planar, cylindrical and spherical. For all three, the pattern of the probe has to be compensated in some way.

For the usual planar measurement technique, the NFFT is performed by a Fourier Transform, requiring a constant step sampling. However, the constraint imposed by this post-processing technique over the sampling as led to a lot of research on this domain. For example, spiral scanning over the plane have been developed in [8] to reduce the number of required eld samples. The principle of a standard planar scanning system is shown in A widely measurement type is the spherical near eld, leading to an IEEE standard procedure document [9] and well known for its accuracy [10]. Similarly as in the planar measurements, the usual technique requires a constant angular step sampling in both directions θ, ϕ, leading to possibly prohibitive eld acquisition times when used with the standard method described by Hansen [6]. The cylindrical measurements are close to the spherical ones. This method is particularly adapted for the characterization of antennas for radar applications with azimuthal scanning.

Far-eld ranges

By denition, the measured signal from the probe in far eld is considered to be the electric eld, allowing a direct measurement of this quantity. However, to speed up the 3D characterization process, an interpolation using a function basis can still be performed. The experimental data presented in this manuscript is in the far eld.

Because of possibly long measurement distances, making the true far eld impossible for indoor measurements, outdoors systems have been developed but are heavily impacted by the environment. Fortunately, we can reach the far-eld condition using collimating elements, such systems are know as Compact Antenna Test Range (CATR) [4]. While the usual denition of the far eld involves the distance between the probe and the AUT, it is truly characterized by the fact that the emitted electromagnetic waves can be approximated locally by planes, as detailed in [7]. CATR systems generate a plane wave using lens and/or reectors, allowing to reach the far eld without resorting to large measurement congurations. An example of such measurement system is sketched in While being powerful, such systems are costly as the reectors have to be designed and calibrated very carefully within the measurement environment. The operator also has to ensure that the AUT is within the so-called quiet zone, the region where the reected wave from the primary source is planar. The reector size is proportional to the generated quiet zone, and its shape accuracy denes the upper bound of the frequency range. Moreover, the feeds have to full radiation pattern symmetry and phase centre stability. These constraints are major problem for submillimetric wave applications.

I.2.c IETR measurement facilities

The antenna characterization equipments are regrouped under the M 2 ARS division for the UR1 part (it stands for Manufacturing Measurement Analysis of Radiating Systems) [11], managed by L. Le Coq. These equipments are about to evolve signicantly at the time of this manuscript. They currently contain, among prototyping equipments and measurement systems for other tasks:

1. A planar near-eld system for measurements between 10 GHz and 500 GHz, An oversampling can be achieved by a slight tilt of the arch to move the probes, enabling thin but fast spherical scans with a limited number of probes.

I.3 Antenna radiation pattern measurement

The radiation pattern of the antenna is measured to perform the characterization of its radiation properties. This section introduces the metrics used to compare these measurements, the number of required eld samples and the duration of their acquisition. patterns returns a single number to evaluate the proximity between the two. This number can be used as an objective function for optimization purposes or to compare the accuracy of dierent post-processing methods. In this section, f 1 (θ, ϕ) and f 2 (θ, ϕ) are two radiation patterns over the sphere and y 1 , y 2 their corresponding discretizations over the same sampling.

Point-wise metrics

Each point-wise comparison metrics will emphasize on some aspects of the dierences between the compared patterns. The choice mainly depends on what dierences are looked more specically. The presented metrics are all dened in [14].

∆ lin (θ, ϕ) = |f 1 (θ, ϕ) -f 2 (θ, ϕ)| Linear dierence ∆ W,lin (θ, ϕ) = W lin ∆ lin (θ, ϕ) Weighted lin. di. ∆ log (θ, ϕ) = 20 log 10 |f 1 (θ, ϕ)| -20 log 10 |f 2 (θ, ϕ)| Logarithmic dierence ∆ W,log (θ, ϕ) = W log ∆ log (θ, ϕ) Weighted log. di.
The weighting functions W lin and W log are used to mitigate the dierences between the patterns over regions where the comparison is not relevant. For example, if a measurement conguration is known to produce reliable patterns down to -50 dB, focusing on the dierences occurring at -60 dB is highly questionable. An example of such weighting function, with s the magnitude in dB of the normalized reference pattern f 1 with a minimum condence of -60 dB, is dened in [14] by

W (s) = 1 + 10 -60/20 -10 (-60-s)/20 if -60 ≤ s ≤ 0, Discard otherwise.
Let us consider the far-eld pattern of an E-plane horn at 30 GHz to illustrate some of these metrics. The reference is provided by an ideal, theoretical pattern from [5], the simulation is a result given by CST and the measurement is mimicked by the theoretical expression with an additive Gaussian white noise. The patterns are illustrated in Fig. I.14.

As illustrated, the logarithmic dierence ∆ log does not assume any condence level, and all magnitudes in dB are considered with the same importance. Conversely, the weighted dierence ∆ W,log dierentiates these dierences with respect to the magnitude level. The control of the condence threshold allows to better t the reality of the measurement conguration when interpreting the results. Two condence levels, -40 and -50 dB are used for the weighted logarithmic dierence.

Global metrics

Any mathematical norm over a nite space provides such metric in practice, as the eld is always discretized in some way. However, specic norms have been developed to better contrast the dierences in antenna measurements. It is worth noting that some antenna parameters such as the directivity in (I.1) can also be used as gure of merit to provide comparison metrics.

A standard family of mathematical norms are given by the p functions, p ≥ 1. The p norm of a complex vector y of size M is dened as [15] 

y p = M i=1 |y i | p 1/p (I.2)
This denition can be extended to p = ∞. The ∞ or ∞-norm of y , y ∞ , is the maximum modulus component of y. As a side-note, the 2 norm is also known as the Euclidean norm and corresponds to the intuitive notion of distance in a 2D or 3D space.

Most of the global comparison metrics used in antenna measurements have convenient expressions when expressed using the p norms.

The relative residual eld is the normalized 2 norm of the dierence introduced in [16]. It mostly emphasizes on the errors in the highest magnitudes regions between a reference, discretized in y 1 , and another eld discretization y 2 , eventually an estimation of the reference. It is dened as

ε(y 1 , y 2 ) = y 1 -y 2 2 y 1 2 . (I.3)
If y 2 is expected to be a good estimate of y 1 , the value should be close to 0. The degree of correlation [16,17] rather measures the proximity between two elds, a value of 1 indicating that the two vector are the same. It indicates if the two patterns follows close variations, but is not very sensitive to slight, local, dierences such as additive noise with low magnitude.

It is dened as

δ(y 1 , y 2 ) = y 1 , y 2 2 2 y 1 2 2 y 2 2 2 , (I.4)
where y 1 , y 2 is the Hermitian product. Finally, the Equivalent Noise Level [18], ENL, is a normalized mean error in dB between a reference y 1 and another eld y 2 , as in the relative residual eld 1 . This metric should be considered when the two vector elds are expected to be close to each other in a uniform manner over the measurement region. Because of the mean operation, a localized signicant dierence, even in the main beam, might be out of sight if the elds in the others regions are very similar. However, this metric has the advantage to provide an intuitive result and ENL can be easily compared between various comparison scenarios. It is dened as In planar near-eld measurements using a square grid, the minimal spatial sampling step is derived in [7] and given by dx = dy = λ 2 sin θ max (I.6) where θ max stands for the upper bound in θ for which the characterization is achieved and the steps dx, dy are the distance between two sampling points in the x and y direction of Figure I.17: A planar near-eld system scheme, adapted from [7]. θ max is the half eld of view and dx or dy the steps between two sampling positions over the measurement plane.

For spherical near and far eld, the angular step between the sampling positions given by the spherical wave theory in the famous book by Hansen [6], and is

δθ = π N + 1 , δϕ = 2π 2N + 1 (I.7)
where N = ka + n 1 with k the wavenumber and a the minimal sphere radius, the sphere centered at the origin of the measurement coordinate system and enclosing all the sources, as illustrated in If the sources (the DUT) are enclosed in a large surface Σ (in terms of electrical length), Bucci et al. [20] gives another formula

M B = 2 A(Σ) (λ/2) 2 (I.9)
where A(Σ) stands for the area of the surface Σ enclosing the sources and the factor 2 comes from the polarizations per position, as before. According to the authors, an oversampling is required for successful characterization.

I.3.c Duration of the eld acquisition

The duration of the eld acquisition is impacted by numerous factors. For a given measurement conguration, the sampling strategy and the number of samples are the critical ones. Using a simple rigid modelling of the positioning engines cinematic and time-stamped measurements, we are able to estimate the eld acquisition time for given sampling in IETR anechoic chamber CACENDRA. More details are available in the Appendix A. The steps of the acquisition procedure for samplings having cuts in θ in this system are:

1. Measurement of one polarization component of the eld for a xed θ, varying ϕ.

2. Mechanical change of the measured eld polarization (rotation of the probe).

3. Same as step 1 for this new polarization.

4. Returning to the rst polarization orientation and moving to the next θ.

5. Repeat steps from 1 to 4 until all θ have been run through. According to the spherical measurement theory [6], the number of eld samples is determined by the maximum electrical size of the DUT and the sampling has to follow an equiangular sampling (constant step in both δθ and δϕ, which can be dierent). The results are shown in Fig. I.18. We clearly observe the link between the eld acquisition duration and the number of samples. Note however that this agreement can be less obvious using dierent measurement system congurations and sampling strategies (using a continuous acquisition and a spiral scanning for example).

Chapter II 

II.1.b State of the art

The SW expansion of the radiated eld requires very limited prior knowledge about the DUT: its maximum dimension and the measurement frequency. It also provides an exact computation of the expansion coecients following a generalized Nyquist sampling rate approach (provided that the signal is bandwidth limited). Moreover, this technique to determine the SW expansion coecients is robust again noise as coecients are derived from integral operations. These benecial aspects come at the price of a high number of required eld samples, denoted M H , where the subscript H stands for Hansen [1]. This number of eld samples is M H = 2(N + 1)(2N + 1) ≈ 4(πD + 10) 2 with D the diameter of the antenna in wavelength.

Other analytical eld expansions have been proposed to tackle the antenna characterization problem. Thus, Prof. Bucci et al. [5] have proposed another analytical function basis that is constructed from the radiation operator, with a number of samples also based on a compact bandwidth assumption. Surfaces with a revolution axis that t the DUT geo- Numerical basis can also be constructed in order to reduce the number of eld samples, provided that detailed information are available on the DUT. The presentation of this type of approaches is left for the Chapter IV that precisely proposes such a technique to speed up antenna measurements.

The elds radiated by the DUT exhibit regularities and symmetries. These physical properties render the spherical wave spectrum of antennas to be sparse. It means that a small number of SW are sucient to described the pattern radiated by antennas. This sparsity aspect has been noticed in [7] and rst exploited for antenna characterization in [8] and [9]. The authors have shown that sparse recovery algorithms can be used to characterize antennas with fewer samples than number of unknowns (SW expansion coefcients). Since many SW are negligible, as illustrated in Fig.II.2, the number of required eld samples can be signicantly reduced. According to the authors of [8], the number of eld samples can be reduced by a factor up to 75 % with respect to the Nyquist rate equivalent, also known as the standard method.

This sparse SW expansion technique has been applied successfully in the far eld [10] using scalar SW with a sampling strategy well suited for IETR positioning systems (sequential roll-over-azimuth with step-by-step acquisition) called the igloo sampling. This sampling has also the advantage to be distributed almost uniformly over the sphere while enabling ecient spherical scans.

The under-sampling theory [11] applied to fast antenna measurements has led to considerations on more sophisticated samplings to better harness the mathematical properties of sparse recovery. To this end, a sampling that minimizes the cross correlation between the discretization of the basis functions has been proposed by [12]. Even if the SW form an orthogonal basis of functions over a sphere, their discretization does not necessarily lead Besides,Phase Transition Diagrams (PTD) are a useful representation, also coming from the under-sampling theory [13], to draw conclusions on the number of samples using various sampling strategies to ensure successful characterization using sparse recovery techniques [14]. These transitions are evaluated by randomly drawing large families of expansion coecients which are being retrieved by sparse recovery algorithm from the elds they generate. By doing so, it is possible to give an estimation of the probability of successful coecients identication, and thus of the proper antenna characterization. The value of this probability depends on the number of eld samples, the number of SW and the number of signicant SW expansion coecients. Roughly speaking, the smaller the number of signicant SW coecients, the smaller the number of eld samples. This expected and intuitive rule of thumb is illustrated by the PTD in Fig. II.4. If ζ = 20 % of the coecients are non-zero, only δ ≈ 50 % of sampling data are required with respect to the number of coecients to determine. If the proportion of non-zero coecients increase to ζ = 40 %, then δ ≈ 80 % are required. Interestingly, it appears that only a few samples separate a failing recovery from a successful one. This sharp transition is discussed in [13]. 

II.1.c Contributions

This chapter proposes procedures to automatize and render the fast antenna pattern characterization via sparse SW expansion more reliable. The sparse recovery algorithms, that are necessary for our fast measurement procedure, are not parameter free. More specically, they require the proper tuning of a regularization parameter, which can be understood in our problem as an error tolerance, also known as data tting. A procedure to automatically choose this parameter by going through several solutions using a reduced set of eld samples is proposed.

Besides, the eld sampling strategy is a crucial point to ensure a successful fast antenna measurement procedure. The number of eld samples and the sampling distribution over the sphere are addressed by exploiting and extending the conventional use of phase transition diagrams. Realistic assumptions in the derivation of a minimal number of samples suitable for uniform sampling strategies, e.g. the igloo, are made and lead to reliable antenna sampling numbers.

Experimental examples and estimated gains in terms of eld acquisition duration validate the proposed procedures.

II.2 Spherical wave expansion II.2.a Introduction of the spherical waves

The electromagnetic eld (E, H) in a linear, isotropic and homogeneous medium with an assumed harmonic time dependence in e -jωt are solutions to the following Maxwell's equations [1] ∇ × H = -jωεE + J,

(II.1) ∇ × E = jωµH -M. (II.2)
where ω = 2πf , f being the frequency, and ε, µ are the permittivity and the permeability of the medium and J, M are the electric and magnetic currents, respectively. Furthermore, when the considered propagation region is source-free, this equation simplies as the currents are identically zero, J ≡ 0, M ≡ 0. Then, the electromagnetic eld satises the so-called vector wave equation

∇ × (∇ × E) -k 2 E = 0 (II.3)
where k = 2π/λ is the propagation constant or the wavenumber, λ being the wavelength.

The SW form an orthogonal function basis of the solutions of the vector wave equation (II.3). More specically, they provide an orthogonal basis of the space of square integrable functions over the sphere [15]. It means in particular that any continuous function on the sphere, such as the electric eld radiated by antennas, can be expanded into the SW basis. Thanks to these two properties, the use of such function basis in a spherical antenna measurement context is relevant.

The SW, as solutions to the vector wave equation (II.3), are obtained using the separation of variables technique. A SW is a product of three functions, each of them depends on one spherical coordinate, r, θ and ϕ. A SW is described by one index specically for the radial dependency, the propagation type c (standing, travelling inward or outward waves) and three more indexes being the propagation mode s, Transverse Electric or Magnetic, (TE or TM), the degree n and the order m. The SW F (c) smn are expressed as follow

F (c) smn (r, θ, ϕ) = Radial(r) × Elevation(θ) × Azimuth(ϕ).
(II.4)

II.2.b Denitions

Azimuth dependency:

The azimuth part in ϕ depends on the order m only and simply reads: Azimuth(ϕ) = e imϕ .

Elevation dependency: Legendre polynomials

The Legendre polynomials of degree n, denoted P n are solutions of the following equation over

[-1, 1] d dx (1 -x 2 ) d dx P n (x) + n(n + 1)P n (x) = 0. (II.5)
In particular, they form an orthogonal basis of continuous functions over [-1, 1]. These polynomials are converted into the associated Legendre polynomials P m n , that depends both on the order m and the degree n, dened in θ as [1]

P m n (cos θ) = (sin θ) m d m d(cos θ) m P n (cos θ). (II.6)
They can be normalized so that their integral over θ ∈ [0, π] is equal to unity, as follows

P m n (cos θ) = 2n + 1 2 (n -m)! (n + m)! P m n (cos θ). (II.7)
where ! is the factorial operator (for any integer n, n

! = 1 × 2 × • • • × n).
These normalized associated Legendre polynomials are the elevation part of the spherical vector wave functions (II.4), i.e. Elevation(θ) = P m n (cos θ).

Radial part: Bessel functions

The radial part can be used to represent four propagation types: c = 1 or 2 for standing waves, c = 3 for outward travelling waves and c = 4 for inward travelling waves. The radial dependency depends on the degree n. Following the notations in [1], the radial dependency is denoted Radial(r) := z (c) n (kr) in (II.4) and dened as z (1) n (kr) = j n (kr)

Spherical Bessel z (2) n (kr) = n n (kr) Spherical Neumann z (3) n (kr) = h (1) n (kr) Spherical Hankel (1 st kind) z (4) n (kr) = h (2) n (kr) Spherical Hankel (2 nd kind)
where r is the distance to the origin.

Spherical vector wave functions

The general expressions of the normalized SW are [1]

F (c) 1mn (r, θ, ϕ) =N n,m e jmϕ z (c) n (kr) jmP |m| n (cos θ) sin θ θ - dP |m| n (cos θ) dθ φ (II.8) F (c) 2mn (r, θ, ϕ) =N n,m e jmϕ n(n + 1) kr z (c) n (kr)P |m| n (cos θ)r + R (c) 2n (kr) dP |m| n (cos θ) dθ θ + jmP |m| n (cos θ) sin θ φ (II.9)
where N n,m and R (c) 2n (kr) are dened as

N n,m = 1 √ 2π 1 n(n + 1) - m |m| m (II.10) R (c) 2n (kr) = 1 kr d d(kr) (krz (c) n (kr)) (II.11)
These expressions are used for the computation of the SW. As a side note, quantities such as associated Legendre polynomials and Bessel functions are typically evaluated using recurrence relations. More details about their numerical computation are given in Appendix C.

II.2.c Expansion of the electromagnetic eld

General formula

In a source-free region, the electromagnetic eld (E, H) is a solution to the vector wave equation (II.3). Therefore, the radiated eld can be expanded into spherical wave functions [1] as follows

E(r, θ, ϕ) = k √ υ csmn Q (c) smn F (c) smn (r, θ, ϕ) (II.12) H(r, θ, ϕ) = -jk √ υ csmn Q (c) smn F (c) 3-s,m,n (r, θ, ϕ) (II.13)
where υ is the admittance 1 of the propagation medium and Q (c) smn are the complex SW expansion coecients. When the observation point (r, θ, ϕ) is outside the minimal sphere, which center is at the origin and containing all the sources, the value c = 3 suces to expand the eld and the expansion of the electric eld (II.12) simplies to

E(r, θ, ϕ) = k √ υ 2 s=1 ∞ n=1 n m=-n Q (3) smn F (3)
smn (r, θ, ϕ).

(II.14)

A similar expression can be derived for the magnetic eld based on II.13. Consequently, the characterization of the radiated eld of the antenna boils down to the identication of Q

smn , often called spherical coecients. For convenience, the c dependence is omitted in the sequel and the coecients are denoted as Q smn unless stated otherwise. The same is done for F 

Truncation order

The expansion of the electric eld (II.14) is a series over the degree n. For a numerical implementation, this series can be truncated according to the electrical length of the minimal sphere by the following rule [1] 

N = ka + n 1 (II.15)
where a is the radius of the minimal sphere, as shown in Fig. II.6. The positive integer n 1 is a safety margin introduced to mitigate potential truncation errors. This margin is usually set to n 1 = 10. As a side note, it can be safely reduced when expanding the far eld. The summation of (II.14), s n m is written smn for convenience in the sequel.

1

The reference [1] rather uses η for the admittance. This notation is saved for impedance in this manuscript.

Figure II.5: Triangle representation of spherical coecients Q smn , each spherical coecients set contains two of them, one for each s value (s = 1 for TE or s = 2 for TM).

Figure II.6: AUT minimal sphere S of radius a with respect to the measurement coordinate system, whose origin is not necessarily located at the center of the antenna. SW expansion is valid everywhere outside S.

Radiated power

The normalization of the dierent quantities involved in the denition of the SW allows an easy computation of the radiated power using the following equation

P rad = 1 2 smn |Q smn | 2 .
(II.16)

A standard sanity check is performed to ensure a proper choice of the truncation order, the N -test [1]. The radiated power can be evaluated individually for a given region of the SW spectrum. The n-spectrum represents the power radiated for each degree n and is dened as

P (n) = 1 2 sm |Q smn | 2 .
(II.17)

The N -test is satised when the n-spectrum decreases signicantly as n gets close to N .

Otherwise, truncation error cannot be considered negligible. A common threshold value of -40 dB for a normalized n-spectrum is often taken but can be smaller depending on the aimed measurement result accuracy.

Directivity

The simple expression for the radiated power also allows expressing the directivity dened in (I.1) using the spherical coecients. It is given in [1] to be

D(θ, ϕ) = smn Q smn K smn (θ, ϕ) 2 smn |Q smn | 2 (II.18)
where K smn are the far-eld pattern functions. They are asymptotic expressions of the SW and are dened as

K smn (θ, ϕ) = lim r→∞ √ 4π kr e jkr F (3) smn (r, θ, ϕ). (II.19)

II.3 Spherical coecients identication

The antenna characterization using the SW expansion implies the identication of the spherical coecients Q smn . From these coecients, the eld radiated by the DUT can be reconstructed outside the minimal sphere enclosing all sources, i.e. S in Fig. II.6. For a truncation order N of the SW expansion dened as in (II.15), the number of spherical coecients to determine is

N c = 2N (N + 2).
(II.20)

The method to determine these N c spherical coecients depends both on the number of eld samples and the sampling strategy. A distinction between a spherical near eld and a far eld conguration must also be made.

II.3.a Spherical eld measurement conguration

In the far eld, the measured quantity is the electric eld radiated by the AUT, hence the measured data can be directly plugged into the SW expansion (II.14). In the near eld, the radiation pattern of the probe has to be compensated, leading to the use of the transmission formula instead. More details can be found at p. 62 and following in [1].

Most of the measurements shown in this work have been performed in the far eld.

The only near-eld cases are coming from either simulations or measurements carried out using the MVG Starlab [4]. In the case of electromagnetic full wave simulation, the value of the eld is provided everywhere without having to resort to any probe compensation.

In the case of the measurements done with the Starlab, the probe compensation is already included in the MVG software. Consequently, the spherical wave expansion formula (II.12)

is the only one used in this manuscript.

II.3.b Analytical method: Nyquist sampling rate

The analytical method to identify the SW coecients [1] is performed by projecting the measured or discretized eld into SW by exact derivation of some integrals under the hypothesis of a (spatial) bandwidth limited signal. These computations rely on a Fourier transform approach and a generalization of the Nyquist sampling theorem to the SW. The sampling scheme requires a constant step in both angular coordinates θ, ϕ, such a sampling is often called equiangular and an example is illustrated in The identication of the spherical coecients using this technique is exact, computationally ecient and scales well to high truncation orders [3]. However, this method requires a high amount of eld samples [1], which is, for an equal step in both angles θ, ϕ,

given by M H = 2(2N + 1)(N + 1)

(II.21)
where N is the truncation order of the SW expansion given by (II.15). For a DUT of diameter 10λ, the truncation order is N = 41 and M H = 6972. Note that the factor two in front stands for the two polarizations of the eld.

II.3.c Numerical method: approximated expansion

The angular directions are discretized when performing the measurement, the electric eld is measured in two orthogonal/tangential directions at P positions over a sphere of radius R denoted by (θ p , ϕ p ) for p = 1, ..., P . The SW expansion (II.14) can then be rewritten as a linear system of equation, whose matrix-vector formulation is

y = Ax (II.22)
where the various indexes (s, m, n) of the SW must be ordered.

We dene in this regard

y =           E θ (θ 1 , ϕ 1 ) . . . E θ (θ p , ϕ p ) E ϕ (θ 1 , ϕ 1 ) . . . E ϕ (θ p , ϕ p )           , x = Q 1 Q 2 , Q s =             Q s,-1,1 Q s,0,1 Q s,1,1 Q s,-2,2 Q s,-1,2 . . . Q s,N,N             (II.23) A = k √ υ F θ,1mn F ϕ,1mn F θ,2mn F ϕ,2mn . 
(II. 24) where F θ,1mn , F ϕ,1mn denotes the θ, φ component of F 1mn , respectively.

This matrix formulation allows using standard linear system inversion procedures to identify the spherical coecients x from the known measured eld y. 

M LS ≈ M H /2.
In addition, the matrix formulation allows using any spherical sampling strategy. At IETR, the use of the igloo sampling [10], shown in As a summary, the matrix approach has the following advantages Enables a exible sampling scheme.

Reduces the number of sampling points as compared to the analytical approach.

Conversely, the drawbacks are Approximated solutions.

Numerical stability has to be assessed.

Computationally more demanding.

II.4 Sparse recovery of the spherical coecients

Any under-determined linear system of equations, one having more unknowns than observations/data, has an innite number of solutions. Under the assumption that the true solution is sparse, i.e. it contains a lot of zeroes, we are able to determine a solution vector among the innity of them [11,13,16]. The elds emitted by any DUT present symmetries and smoothness, reducing their inner complexity. A small number of SW coecients suces to describe the radiated eld with respect to their total number N c in (II.20). Consequently, the spherical coecients form a sparse vector and sparse recovery techniques can be used to identify or approximate it, as already shown in [810] II.4.a Norms and sparsity

Let us introduce dierent norms that will be later used to describe the sparse recovery and dierent optimization methods.

The p norm, p ≥ 1, of a complex vector x of size M reads [17] x p = M i=1

|x i | p 1/p (II.25)
This denition can be extended to the case p = ∞. The ∞ or ∞-norm of x is the maximum modulus component. For 0 < p < 1, the p function is no longer a norm but can still be computed from (II.25). We can also dene the 0 "norm", which is the number of non-zero components of x. The 0 norm is the true measure of the sparsity. The unit balls for some The solution x of Ax = y is assumed to be sparse, the sparsity of x is given by its 0 norm, namely x 0 . Since an under-determined system has an innity of solutions, our choice is to search for the sparsest one, which translates into the following optimization problem, called 0 -minimization [11] min x

p
x 0 subject to Ax = y.

(II.26)

Unfortunately, this problem is NP-hard [11,16], meaning that reaching a solution requires an intractable computation time even for small size problems. Various classes of algorithms have been proposed to solve this sparse recovery problem, that is encountered in many applications.

Greedy algorithms

This class of algorithms focuses on the regularization term x 0 . Components of x are added sequentially till the equality constraint Ax = y is satised. The greatest example of this class is the Matching Pursuit [18]. Before adding another component, the algorithm check if the previously chosen ones can be updated to better t the equality, hence the name. However it might get stuck in a loop depending on the updates. The orthogonal version of this algorithm, the Orthogonal Matching Pursuit (OMP) [19], corrects this problem but induces costly computational tasks. The greedy algorithms are mostly variants of the OMP (StOMP, ROMP, ....).

Thresholding algorithms

The family of thresholding techniques rather focuses on the equality constraint Ax = y. This residual error y -Ax 2 is minimized iteratively, and the sparsity is ensured by thresholding the coecients of the estimated solution. Among the many algorithms of this class, we can cite the Iterative Hard Thresholding [20]. It simply puts to zero the negligible coecients between each iteration while trying to minimize the residual error. However the returned solution might be non-satisfactory even if the correct non-zero components have been identied. Again, there are several variants based on this approach for mitigating these drawbacks, for example the Hard Thresholding Pursuit [16].

Convex relaxation

The complexity of the 0 -minimization and the various numerical problem it induces are due to the non-convexity of the 0 norm. However, the optimization problem (II.26) can be turned into a convex optimization problem that is much easier to solve by replacing the 0 norm by the 1 one. This operation is called convex relaxation. Instead of the 0 - minimization problem problem, one rather solves the convex, 1 , one, named Basis Pursuit (BP) [11] and dened as min x

x 1 subject to Ax = y.

(II.27)

The name Basis Pursuit comes from the process in nding the solution of this problem, which is about selecting columns of A to form an invertible submatrix that can be used to solve the equality constraint. It has been proven in [21] that the solution to the 1 - minimization problem (II.27) is equal to the 0 one if the sparse vector x to be recovered is sparse enough. Indeed, the 1 norm also provides sparse solutions [11, 16], as illustrated in Fig. II.9.

For a 2D example, the solutions for 1 and 2 minimizations are the intersections of the scaled unit balls and the plain straight line that represents the solution of Ax = y.

The minimal 1 solution line will likely hit a corner of the scaled corresponding norm ball, leading to one coordinate being 0. On the contrary, the 2 norm does not have a preferred direction and hence does not possess such sparsity feature, both coordinates of the minimal 

II.4.c Basis Pursuit DeNoising (BPDN)

The use of 1 -minimization for sparse recovery has been motivated, leading to the formula- tion of a convex optimization problem (II.27). However, real world measurements are noisy and the equality constraint Ax = y is not suitable for such data. This can be accounted by replacing this equality constraint by an inequality with an user-dened upper bound, leading to the following problem [11] min

x x 1 subject to Ax -y 2 ≤ σ (II.28)
where σ ≥ 0 is the error tolerance parameter. This problem is known as Basis Pursuit

DeNoising (BPDN). The name comes from the same reasons as the Basis Pursuit in (II. 27) and the denoising is due to the inequality constraint, which mitigates the eects of noise over the minimization process. The BPDN is solved in this work using the fast and ecient SPGL1 algorithm [22,23], which stands for Spectral Projected Gradient for 1 - minimization. The solution to the BPDN problem (II.28) is approximated by iterative resolutions of LASSO problems (Least Absolute Shrinkage Selection Operator), which are also called 1 -regularization problems and are dened in [16] as

min x Ax -y 2 + λ x 1 (II.29)
where λ is the regularization parameter. These problems are easier to solve, the SPGL1 algorithm iterates over the parameter λ till the returned solution also satises the BPDN for the chosen error tolerance σ.

Application to the characterization of a horn at 30 GHz

The eld reconstruction using sparse recovery technique of a pyramidal horn simulated in HFSS is demonstrated. The antenna has a minimal sphere of radius a = 3 cm, and consequently a truncation order of N = 28 which implies N c = 1680 spherical coecients at 30 GHz. The standard analytical method requires M H = 3306 eld samples in this case.

Two igloo samplings of dierent sizes and linear system resolution methods are considered for the characterization.

The rst one has M T SV D = 2245 data, and the spherical coecients are identied using the Truncated Singular Value Decomposition (TSVD) [24], a classical method for over- 

II.4.d The error tolerance parameter

The error tolerance parameter σ in (II.28) has to be properly set, as it greatly inuences the solution of the sparse recovery problem. Its determination is a well known problem in convex optimization theory, it is discussed in this section in the context of fast antenna measurements.

Criterion for 2 regularization

The 2 regularization, also known as Tikhonov regularization, problem [26] is formulated

min x Ax -y 2 2 + λ x 2 2 (II.30)
where λ > 0 is the regularization parameter, playing a similar role as σ in (II.28). This parameter controls the data tting, i.e. the trust given in the data. This well known problem has been largely investigated for a wide range of applications. Without regularization The corner of the curve is the best compromise between minimizing the residual error, i.e. solving at best the linear system, and minimizing the norm of the solution, understood as a measure of its complexity. If we go past the corner on the horizontal part of the curve, the residual error is increased without impacting the complexity of the solution.

(λ = 0), it
Conversely, if we go up the vertical part, we do little improvements over the residual errors at the cost of signicantly more complex/larger norm solutions, indicating that we are probably trying to t some noisy contributions instead of the desired signal.

Extension to 1 minimization

The error tolerance parameter σ in (II.28) plays the same role as the regularization parameter λ in the 2 regularization (II.30), as demonstrated in [28], or in the LASSO problem (II.29). For this reason, we propose to use the L-curve approach previously described in order to nd the best error tolerance parameter value σ.

The curve dened by σ → ( Axy 2 , x 1 ), similar to the denition of the L-curve for 2 regularization, also presents a L shape, as illustrated in the examples Fig. II.14a and II.15a. However, it is notably smoother. This has been discussed in [22] and the corner criterion has also been tested in 1 minimization context, e.g. for tomography in [29]. The same explanation as previously discussed remains true, the corner is the best trade-o between the sparsity of the solution and the residual error.

The corner of the L-curve can be identied accurately by computing its curvature κ. It 

Search algorithm for the error tolerance parameter

The curvature κ of a plane curve quanties how much the curve changes its direction locally. Hence the corner of the L-curve corresponds to the maximum of the curvature.

Unfortunately, the computation of the L-curve is time consuming. A search algorithm has been developed in [30] for 2 -regularization for the automatic and ecient identication of the curve corner using Menger curvature estimation. This algorithm has been adapted to our problematic. It is provided in the Appendix B, Algorithm 2.

However, the Menger estimation of the curvature has been observed to provide noisy results in our context. Another estimation technique of the curvature, called the parabola method [31] has been implemented to overcome this problem. The input of the algorithm is an interval to search in, which is provided by a rst estimation of the error tolerance parameter σ = √ M y ∞ 10 -T /20 with M the size of y, the number of measurement data, and T the estimated noise-oor over the measurement data in dB. This estimation comes from a simple upper bound of the residual error under the assumption that every sampling point data is true down to -T dB. Then it suces to consider the following interval σ 10 , 10 σ . The output of the search algorithm is noted σ κ in the sequel.

Application to fast antenna measurements

Let us consider the measurement of a reectarray at 12 GHz in order to assess our procedure to choose the error tolerance criterion. The DUT has a minimal sphere of radius 12 cm, leading to a truncation order N = 42 of the SW series, or equivalently N c = 4606 spherical coecients to identify. A fast measurement is achieved by considering a sample of size M = 3112 along an igloo sampling. This small dataset is used to identify the N c coecients to interpolate the eld over a dense measurement sampling to compare with the reference data. The accuracy of the reconstruction using the fast measurement sampling is assessed by computing the residual eld and the ENL, dened in (I. the maximum curvature point. However, we can note that the criterion slightly overshoots the optimal choice here, which is often the case in 2 regularization as reported in [27].

For both cases, the maximum curvature search algorithm σ κ has provided correct results, as shown in 

II.5 On the number of eld samples

The sparse recovery of the spherical coecients allows to signicantly reduce the number of eld samples as compared to standard approaches while ensuring a proper and accurate antenna characterization. We propose a methodology to derive the minimum number of samples to properly retrieve the sparse SW coecients and therefore to enable a fast characterization of its radiation pattern.

II.5.a Phase transition diagrams

The Phase Transition Diagrams (PTD) are a 2D graphic that display under which conditions an under-determined linear problem can be properly solved. These conditions are:

1. the sampling size, under the measurement ratio δ, the number of measurements over the number of unknown coecients. It is the abscissa axis of the graphic.

2. the sparsity level ζ, the number of non-zero coecients in the solution over the number of measurements. It is the ordinate axis.

For a xed numerical solution, given its sparsity and the number of eld samples, the PTD indicates whether the resolution might be successful or not. The typical aspect of a PTD is represented in Fig. II.16. Roughly speaking and as expected, the sparser the solution, the easier its recovery from a small number of samples. While this holds true in general, this global tendency is not enough to provide a minimum number of samples.

In the original paper [13], the PTD are analytically computed for Gaussian sensing matrices A. However it can be generalized numerically to various sensing matrices. We extend the application of PTD to fast antenna measurements where the sensing matrices are built from SW. 

II.5.b Application to antenna measurements

The rst applications of PTD for antenna characterization can be found in [9,10]. A detailed study using PTD is also provided in [14], from which Eibert et al. use a formulation that is closer to the original theory of [13], enabling a comparison with exact bounds, such as the Bounded Orthonormal System one [32]. The impact of the probe compensation for spherical near-eld measurements is also taken into account, which increases the practical relevance of this work. The present manuscript adds on these interesting investigations by considering scenarios that are, we believe, more representative of antenna characterization problems.

The numerical derivation of a PTD can be done as follows. A spherical expansion coecient set is drawn to generate eld samples over given spherical samplings. These eld samples are used as measurement data and the BPDN is solved to retrieve the coecients.

Finally, the retrieved solution is compared to the exact one to assess the success or failure of the procedure. This process must be repeated enough times to provide a relevant and reliable estimation of the probability of successful recovery. This computation has to be done for various couples of measurement ratios and sparsity levels (δ, ζ) so as to be able to display a 2D PTD graphic. A number of 200 SW coecient sets have been generated

for each tested couple in the present work.

The random drawing of the SW expansion coecients can be done in various ways, the same parameters in the Gaussian law were considered for drawing the coecients across the whole spectrum. However, the truncation order has to be set so that the radiated power by the SW having degree n ≈ N is negligible. This verication is performed by the N -test.

It means that a realistic SW coecient magnitude set should be signicantly smaller for the degrees n close to the truncation order N . This can be ensured by a proper decrease of the variance parameter of the Gaussian law, forcing the magnitude of the coecients to decrease as expected.

Moreover, real measurement data are noisy. Therefore a relevant measure of sparsity is rather provided by the proportion of signicant coecients instead of non-zero ones. If a coecient has a negligible magnitude with respect to other ones and to the expected measurement accuracy, its identication is not relevant. Consequently, we introduce the eective sparsity to count how many coecients we can expect to retrieve in practice. The eective sparsity ζ T with threshold T is dened as follows

ζ T = 1 N c # |x i | x ∞ > 10 T /20 , i = 1, . . . , N C (II.31)
where N c is the total number of coecients, # is the cardinal operator and T the threshold separating signicant and negligible coecient magnitudes. If a value of T = -40 dB is chosen in practice, the radiated eld generated by truncating lower magnitude coecients is close up to -50 dB in ENL in (I.5) to the original one.

Furthermore, the goal of the fast measurement procedures is to reconstruct the radiation pattern. It is therefore the true gure of merit that distinguishes a successful from a failed recovery. The success of the fast characterization procedure is thus tested on the radiation patterns rather than the spherical coecients. We have used the ENL metric to this end, comparing the reference eld generated by the randomly drawn coecients and the eld reconstructed from the coecients found by the BPDN and the reduced number of samples. The criterion for successful recovery is that the ENL between the reference and the reconstructed pattern must be lower than -50 dB, corresponding to choice of the eective sparsity T -40 .

Finally, the inuence of the sampling over the sparse recovery performance can be signicant and studies have been led to derive a sampling strategy that minimizes the cross-correlation of the sensing matrix and therefore enlarges the success region in the PTD [12]. During this work, we have chosen to limit ourselves to the igloo sampling and the spiral sampling, both illustrated in Fig. II.17. The igloo sampling is the one used at IETR, for reasons previously discussed, and the spiral one is one of the best approximation of a uniform sampling on the sphere, providing a reference test. This sampling has also been treated in [14].

(a) Igloo sampling [10].

(b) Spiral or Fibonacci's sampling As a conclusion and according to our results, for a given antenna having truncation order N , the total number of coecients to determine is N c = 2N (N +2) and the measurement data set has to be as least at 0.75N c to ensure a successful antenna characterization for our chosen success criterion and sampling strategy.

II.5.c Fast antenna measurements at IETR

The IETR spherical measurement systems have been described and illustrated in Section I.2.c. They consist in roll-over-azimuth positioning systems with sequential engine motions using a step by step eld acquisition. Details about the measurement procedure, i.e. how the system is going through the sampling is also given in Section I.2.c, and the estimation of the duration of the eld acquisition is detailed in Appendix A.

For a given DUT, we can deduce the number N c of SW involved in the expansion of its radiated eld from its electrical size. According to the PTD computed for SW matrices and realistic data in the context of antenna measurements, we conclude that a fast measurement with sparse recovery technique and SW function basis requires only 75% of the number of expansion coecients N c as eld sampling size. The number of samples if thus given by

M BP DN ≈ 3 2 N (N + 2) (II.32)
where N in (II. 15) is given by the electrical length of the DUT. The sparse recovery technique allows using only a eld sampling size of 37 % of the analytical, Nyquist sample rate, approach for which of the number of samples was M H = 2(2N + 1)(N + 1).

Combining this statement with the estimated eld acquisition duration at IETR, the time savings induced by the fast measurement method with respect to the standard method in our measurement facilities can be deduced and are plotted in based on the Nyquist sampling rate [1] and Fast for the sparse recovery method, using an igloo sampling and with a 75 % measurement ratio.

Application to the measurement of a Pillbox antenna at 270 GHz

The DUT is a square of 24 mm made of copper with radiating slots designed by KTH and IETR [33]. This antenna has been measured at 270 GHz at IETR using a fast measurement sampling over a hemisphere. The considered minimal sphere has a radius of 14 mm and consequently a truncation order of N = 120 is considered. Since the measurement is only performed over the hemisphere, only even SW can be used in the expansion, F smn such that m + n is even, by assuming a symmetric radiation pattern with respect to the equator, leading to N c = 29280 coecients. The fast measurement sampling has 21834 eld samples, or a measurement ratio of ≈ 75 %, as advocated by the PTD results. The analytical approach would have required M H = 2(2N + 1)(N + 2) = 58322 eld samples in comparison. The reference for reconstruction assessment is provided by dense measurements over the cutting planes φ = 0°and 45°.

The 3D reconstruction of the eld using the fast measurement procedure, i.e. igloo sampling and 1 minimization by BPDN, is given in Fig. 

II.6 Conclusion

The SW expansion of radiated elds and the fast antenna measurement technique using sparse recovery have been introduced and detailed. The proposed fast antenna pattern characterization approach requires the choice of an error tolerance parameter and the number of samples to be measured. An automatized procedure has been developed to apply the sparse recovery of the SW expansion of radiated elds. More specically, a search algorithm has been proposed to properly set the data tting term whereas existing tools have been adapted to derive the general minimal number of samples. This fast measurement procedure reduces the eld acquisition duration by a factor around 2 as compared to the standard technique based on the Nyquist sampling rate in the IETR measurement facilities.

Besides, it is possible to further enhance the sparsity of the measured antenna spectrum and consequently improve the reconstruction of its radiation pattern from a given number of eld samples. To this end, the optimization of the antenna positioning is addressed in the next chapter as a mean to improve, by post-processing, the accuracy of the antenna pattern measurement. The positioning of the Antenna Under Test (AUT), i.e. its location and orientation in the anechoic chamber, is crucial to ensure the proper measurement of its radiation pattern. Therefore, alignment and centering procedures, that are often time consuming, are systematically used before any measurement. However, the accurate determination of the position of the antenna within the anechoic chamber is not an easy task, especially at high frequencies since this accuracy is tied to the wavelength. In addition, it is not always straightforward to guess in advance where to place at best the antenna in order to improve its radiation pattern characterization because of the possible interactions between the AUT and its surrounding. Besides, when the antenna is mounted on a structure, the Device Under Test (DUT) cannot always be positioned at will in the measurement system because of cinematic or weight constraints. For all these reasons, the development of a procedure to automatically nd the best antenna positioning would greatly contribute in improving its radiation pattern characterization. In this chapter, the positioning of the AUT refers to both the position and the orientation of the antenna with respect to the measurement coordinate system. A translation refers to a change of the position and rotation to the orientation.

III.1.b State of the art

Many works have been led to understand the inuence of the AUT positioning on its radiation pattern measurement. It has been investigated for SW expansion in [1]. As illustrated in Fig. III.1, the power distribution over the spectrum of a dipole is shown to be connected to its distance from the origin. New eld sampling strategies have been proposed in [2] to improve the characterization of an oset-mounted antenna. When a relevant position to expand the eld is known a priori, it is possible to translate the SW origin in post-processing so as to reduce its SW truncation order and to enable a down-sampled eld acquisition, as smartly proposed in [3]. Finally, approaches to reduce the computational burden induced by a change of the SW expansion origin changes are given in [4]. Note that the change of the SW expansion origin requires to adapt the probe compensation technique, which is necessary for spherical near-eld measurements and has been addressed in [5].

Besides, two iterative approaches have been proposed to optimize the antenna positioning in post-processing. The rst one [6] minimizes the number of signicant modes to improve the eld reconstruction quality according to the sparse recovery theory [7], as discussed in Section II.5. Indeed, the reconstruction accuracy from a low density eld sampling is linked to the number of signicant modes in the expansion, as shown in However, the number of non-zero coecients is not the only indicator of a good or bad antenna positioning and the distribution of these coecients over the spectrum also provides meaningful information. A second strategy [12] works over the power distribution over the spectrum, the n-spectrum, to estimate the so-called radiation center of the antenna. It corresponds to the phase center in the case of antennas having a single main beam. A xed perturbation in the 6 directions from the current position (the 3 Cartesian ones in both ways) is applied with a xed step. The origin is then moved in the direction leading to the best power concentration within a predetermined low frequency part of the spectrum.

Finally, the orientation of the AUT also modies its SW spectrum. Consequently, one can legitimately wonder how to choose the coordinate system orientation yielding the sparsest eld expansion. This very point has also been addressed by [6]. To our best knowledge, this is the only work where the AUT orientation is optimized to this end.

Consequently, this work will be referred to as State-Of-the-Art (SOA) when dealing with antenna orientation optimization.

III.1.c Contributions

The Spherical Wave (SW) spectrum encompasses many valuable physical information about the AUT radiated eld that deserve to be fully exploited. More precisely, it provides an identity card of the radiated eld relatively to a given coordinate system. This means that both the position and the orientation of the antenna with respect to the measurement system inuence the SW expansion, as illustrated with a dipole in Fig. III.2, from [6]. Although the antenna positioning is imposed by its placement in the measurement system at rst, it can be changed after the acquisition of the eld by post-processing. The analytical nature of the SW indeed allows for exact transformations on translating or rotating the electromagnetic eld [13].

To optimize the positioning of the AUT, the SW spectrum must be concentrated towards low spatial or angular frequency content, i.e. the slowly varying SW, as they are easier to identify. The best position can thus be dened as the coordinate system origin achieving the highest concentration in the low-degree part of the SW spectrum, for which an appropriate metric is proposed thereafter. The optimization of the antenna orientation is performed by enhancing the sparsity of its SW spectrum, i.e. the number of non-zero coecients involved in the expansion of the radiation pattern. Finally both approaches are combined into a full positioning optimization procedure that is carried out in postprocessing, namely after the radiated eld acquisition. Note that this antenna positioning procedure does not require any additional eld measurement.

III.2 Spherical wave function transformations

The formula to achieve the analytical translation and rotation of the SW functions are given and their eects over the SW spectrum of an antenna are illustrated.

III.2.a Rotation

Let r be the position in the measurement coordinate system and r rot the position in the one rotated according to Euler's angle (ϕ 0 , θ 0 , χ 0 ) in zyz convention, as illustrated in Fig.

Figure III.3:

Euler's angles in zyz convention. Three rotations of angles (ϕ 0 , θ 0 , χ 0 ) with respect to the axis z, y 1 , z 2 = z enables to go from the basis {x, y, z} to {x , y , z }. The radius of the minimum enclosing sphere around the antenna is denoted a. The intermediate basis {x 1 , y 1 , z 1 } and {x 2 , y 2 , z 2 } are also displayed. III.3. We have from [13] p.343 the following expression

F smn (r) = n µ=-n D n µm (χ 0 , θ 0 , ϕ 0 )F sµn (r rot ) (III.1)
where D n µm are the Wigner D-functions, dened from the (small)d-functions [14].

III.2.b Translation

Let r be the position in the measurement system and r the position in the translated one by some vector d, as depicted in Fig. III.4. If the observation distance r is larger than the translation distance d , for a translation over the z-axis, then we have from [13] p.353 the following expression

F sµn (r) = 2 σ=1 ∞ ν=|µ| ν =0 C sn(1) σµν (k d )F (c) σµν (r ) (III.2)
where C

sn (1) σµν (k d ) are the translation coecients depending on the distance and the measured frequency.

An arbitrary translation is achieved by a 3 step process 1. A rst rotation to align the translation vector with the z-axis.

2. A translation over the z-axis. 

E d = Ee -jk r r •d , (III.3)
where • is the scalar product. Note that the amplitude and sampling positions changes are neglected when considering a far eld scenario.

By applying either the SW transformation (III.2) or the phase shift of the eld (III.3), the electric far eld can be derived in any translated coordinate system. The modication of the SW is more accurate as there is no approximation over amplitude or sampling positions changes. This improved accuracy comes at a price of costly operations in terms of computational power.

III.3 Eects of antenna positioning on the spherical wave spectrum

A translation of the coordinate system is known to generate modications on the distribution of signicant spherical coecients over both the degree n and the order m. More specically, rotations have an impact only on the distribution over the order m, as rotation of a SW in (III.1) with given degree n is written using only SW of the same degree n. 

Illustrations with a simulated horn antenna

We illustrate these eects using a full wave electromagnetic solver (Ansys HFSS [17]) of a horn antenna at 30 GHz. The far eld is expanded on the SW basis for several shifts of the antenna position over the z-axis by a step of a wavelength: at initial position, close to its a priori phase center, between the apex point of the anges and the aperture [15], and after translations of the coordinate system origin of 1, 2 and 3 wavelengths λ on the z-axis. 

III.4 Optimization of the antenna position III.4.a Spherical coecient distribution

The transformation of the coordinate system modies the power distribution over the SW spectrum in both the order and the degree directions. We introduce a metric to quantify this distribution along the degree n. This metric is harnessed to better position the antenna and consequently to improve its radiation pattern characterization.

The n-spectrum

The spectrum is truncated at a given truncation order N dened in (II.15) from the minimal sphere. The power remaining in the spectrum for degrees n ≥ N must be negligible to ensure a proper characterization. This verication is called the N -test [13] and is based on the n-spectrum, already dened in (II.17) and recalled here. The power radiated for the spherical coecient set Q smn of an antenna at a given degree n is expressed as follows:

P (n) = 1 2 sm |Q smn | 2 .
(III.4)

As an illustrative example, let us consider the horn antenna simulated at 30 GHz previously investigated. The n-spectra corresponding to the spherical coecients after various translations over the z-axis presented in 

Advantages of Low Degree Modes

The best antenna position is dened in this chapter as the origin of the SW expansion leading to the highest concentration of the SW coecient to low degrees n, or equivalently the fastest decreasing n-spectrum. There are multiple reasons to motivate this denition. A faster decrease of the n-spectrum allows the reduction of the truncation order N . Consequently, it requires less eld samples and reduces computational load. For example in Fig. III.8 and a standard criterion of power below -40 dB, the horn properly positioned (no translation, 0λ) requires a minimum truncation order around N = 20, or 880 coecients whereas the horn translated by a distance of 3λ needs at least N = 27, and consequently 1566 coecients. Moreover, a low-degree spectrum induces a more compact representation of the antenna and is connected to the radiation center, as explained in [12].

The modes having high-spatial frequencies, or equivalently high-degree SW, require more eld samples to be properly identied with respect to low-frequency ones, because of aliasing phenomenons. If the actual power distribution can lead to a reduction of the truncation order (e.g. by a N -test), the true number of unknowns decreases and fewer samples are thus required to achieve a proper reconstruction for a given accuracy level.

We illustrate this statement by randomly generating two families of 100 spherical coecients spectra having the same total number of coecients N c , truncation order of N = 45, and non-zero coecients (30 %). Non-zero coecients are drawn over the degrees n ≤ 25 for the rst family and n ≤ 35 for the second one. The only dierence between the two families is the power distribution is constrained dierently over the degrees. Using a sparse recovery approach, the BPDN in (II.28), each spectrum is recovered using far-eld samples of dierent sizes M , or dierent sampling ratio M/N c . The accuracy of the recovered spectrum is assessed by comparing the reconstructed far eld from the M eld samples to the one directly generated by the randomly drawn spectrum. This comparison is achieved using the Equivalent Error Signal (EES), understood as a synonym to the previously dened ENL. The results are displayed in Fig. III.9.

As an example, a eld sampling ratio M/N c = 60% is enough for all 100 trials of the low-frequency family (n ≤ 25) to achieve a reconstruction accuracy of -45 dB in EES. Conversely, the high-frequency one (n ≤ 35) never reached this accuracy for this sampling ratio and required around 70 % to perform equally well. This trend is expressed over all the sampling ratios as the median values of reconstruction accuracy in EES is always better for the lower frequency spectra using the same sampling ratio.

III.4.b Determination of the antenna position

A simple criterion is presented to characterize the power distribution over the degrees. It is then used as an objective function in order to foster low-degree spectra.

The cumulative n-spectrum

The cumulative n-spectrum is dened for all degrees n lower than the truncation order N . Its value at a given degree n 0 ≤ N contains the power of all modes of degrees n ≤ n 0 , the region illustrated by the dashed area in Fig. III.5. We consider the normalized version, allowing a constant scale, which is not mentioned explicitly in the name for convenience in the sequel, and is given by

H(n 0 ) = 1 P rad n 0 n=1 P (n). (III.5)
As a cumulative normalized function, it increases towards 1 as n 0 approaches the truncation order N . A faster decrease of the power in the n-spectrum leads to a cumulative spectrum reaching 1 more quickly, as illustrated in A cumulative spectrum can be associated to a mean value, which is dened by III.1. We do not consider the last value H(N ) in the computation as it is always equal to 1.

H = 1 N -1 N -1 n=1 H(n).
In order to better emphasize the contrast between the cumulative spectra and to help the choice of the best antenna position, we replace H by a modied version dened as:

H mod (n) = 10 log 10 n N (1 -H(n)) .
(III.7)

Working on 1 -H(n) maps the increase towards 1 of the cumulative spectrum function to a decrease to 0, where values can be better discriminated by the logarithmic scale. The multiplication by n/N accounts for the number of SW of same degree n while keeping the values in the interval [0, 1]. The values of the cumulative spectrum and its modied version are reported in Table III.1 for the horn simulated at 30 GHz, showing the improvements in the discrimination of high-frequency content of this adapted metric. 

III.4.c Optimization problem formulation

The concentration of the power distribution to the low-degree part is achieved by a minimization of the mean value of cumulative n-spectrum on the modied scale H mod . Given a translation d of the AUT relatively to the origin of the measurement coordinate system, as in Fig. III.4, we identify the spectrum Q d with the method of our choice (analytical projection or numerical inversion), enabling the evaluation of the cumulative n-spectrum and therefore its mean value, denoted H mod (Q d ). This optimization problem can be formulated as follows

min d H mod (Q d ).
(III.8)

The solution of this optimization problem is an estimation of the best translation to apply to the AUT, leading to the highest concentration of the radiated power on the low degree part according to our metric. This solution is denoted d * . Note that in the case of a numerical inversion to nd the spectrum Q d , two situations can be distinguished to get the matrix formulation (II.22) after a translation d: We propose an iterative algorithm to solve the optimization problem (III.8) and nd the antenna position that concentrates the signicant spherical modes on the low degrees.

Gradient Descent Algorithm

The optimization of the position, or equivalently the translation d from the origin of the measurement coordinate system, using (III.7) or (III.8) is not a convex problem and cannot be solved easily. We propose a gradient descent technique to nd the translation d * corresponding to the best AUT position. This iterative algorithm follows the negative (approximated) gradient of the objective function, H mod (Q d ). The detailed procedure is given in Algorithm 1. The proposed approach is general and can be applied with no modication to all spherical coecient identication methods (analytical and numerical ones), for both near-eld and far-eld measurements.

Algorithm 1 Concentration of the spherical spectrum power distribution to low degrees Require: δ the perturbation step, µ the gradient multiplier, d 0 the initialization point. for û = x, ŷ, ẑ do 9:

d û ← d + δ û 10:
Compute the spherical coecients at d û, , Q d û 11:

Evaluating H mod (Q d û )

12:

D û ← [ H mod (Q d û ) -H mod (Q d )] /δ 13: D ← [D x, D ŷ, D ẑ ] T 14:
# Position Update 

Implementation Details

The perturbation step δ is the (small) change applied to the translation for approximating the gradient of the metric. This value has to be chosen relatively to the expected accuracy of the measurement system conguration to generate perturbations that are meaningful with respect to the available data. A too small δ would result in a noisy and unstable estimation. Conversely, a too large δ would lead to unfaithful and too coarse gradient evaluation. A value of δ = 0.5 mm has been successfully used in all presented cases. The gradient multiplier µ is a constant chosen in order to avoid large updates of d within one iteration by a proper re-scaling of the gradient. It should be xed so that the position update is not too large in terms of wavelength or with respect to the tested structure to ensure proper convergence of the algorithm. A value µ ≈ 10 -5 for normalized data ( y = 1) leads to updates around several mm for most cases.

The initialization point d 0 in Algorithm 1 can be set using various methods. A starting value d 0 = 0 means that the optimization is started from the origin of the measurement coordinate system. It can also be chosen randomly or one can provide an initial guess based on some prior knowledge, e.g. the estimated known position of the AUT geometrical center with respect to the measurement coordinate system.

Multiple stopping criteria can be chosen. One can use the dierence of the cost function between two or more iterations, the decrease of the cost function below a predened threshold or dene a maximum distance for the translation d, (for example with respect to the wavelength or the dimensions of the antenna), or a predened number of iterations.

With proper parameter tuning, a notable reduction of the objective function has been achieved within only a few iterations for all investigated cases. The translation corresponding to the lowest value of the cost function should be kept.

III.4.e Validations on near-eld simulations

The proposed approach for AUT position optimization is applied on various radiating structures, whose near eld is computed by CST MWS [18].

Antenna linear 11-Patch Array at 9.5 GHz Let us consider a linear array composed of 11 patches operating in X band at 9.5 GHz, an illustration is given in Fig. III.11. Each square patch has side length of 10 mm and the overall size of the array is 165 mm (≈ 5.25λ), the electric near eld is exported from CST at 200 mm from the geometric center. As illustrated, not all patches are fed with the same amplitude. The left patch is not receiving any power and the feeding is increasing as we go to the right patch in order to generate an asymmetric current distribution. The truncation order is N = 27, or 1566 coecients and a eld sample along an igloo sampling of size 900 is taken to generate a very coarse measurement set and is used for both position optimization and reconstruction.

Taking the geometric center of the array as the origin yields the spectra displayed in Fig. III.12.a while the optimized position yields the ones in III.12.b. If the geometric center of the antenna is taken as the origin of the measurement coordinate system, the proposed algorithm nds the optimized coordinate system origin to be at d * = (0.6, 18.7, 2.1) mm, meaning that it is shifted towards the area containing most part of the electric current density. It also preserves the symmetry around the x-axis, the orthogonal direction to origin of the measurement coordinate system, supposed at the center of the satellite's body for practical reasons: cinematic or weight for instance. The minimum sphere is set to enclose the satellite body and some parts of the solar panels, leading to 6726 spherical coecients. The dataset comes from a eld sampling of size 1700 along an igloo. There are enough data with respect to the patch alone according to the fast measurement sampling rule while still having a largely under-determined linear system to cope with for the whole structure.

The geometric center of the antenna is then located at d c = (0, 120, 113) mm from the center of the satellite, which corresponds to a distance of approximately 6λ. 

Discussion

The geometry of the radiating structure does not always help the choice of the origin for the coordinate system of the SW expansion. In the patch array case, various excitation sets induce dierent radiation patterns and consequently several ideal coordinate system origins. The proposed procedure enables to automatically determine the position leading to a high concentration of the spectrum over the low-degree modes without any knowledge of the structure apart from its maximum dimension and measured frequency in order to set the truncation order of the SW series. It is of great interest for recongurable antennas, where several operating modes must be tested. In the case of the antenna embedded in a satellite, the procedure automatically nds the best position (according to our metric), at a distance of around 6 λ from the measurement origin. This optimized location yields a slight improvement of the pattern reconstruction and conrm the stability of the proposed procedure. Indeed, despite having a small number of measurement samples with respect to the spherical coecients to be determined, the necessary large translation of the AUT is properly retrieved.

These representative numerical examples demonstrate the robustness of the approach as well as its practical relevance. The proposed procedure enables to compensate automatically uncertainties on the antenna position with respect to the measurement system.

It also allows to accurately position embedded antennas when the interaction between the radiator and its structure cannot be neglected.

III.4.f Validations on far-eld measurements

Let us now consider radiating structures that have been measured in the far-eld anechoic chambers of the M 2 ARS facilities at IETR. These facilities are equipped with a roll-over- azimuth positioning system and a mechanical probe polarization change. The eld is acquired step by step following an igloo strategy [9].

Two antenna far-eld measurements, carried out over an hemisphere using a low-density sampling, are presented here. The reference is provided by a measurement of a densely sampled cutting plane. Since the sampling positions only cover a hemisphere in far eld, we can restrict ourselves the modes of F smn such that n + m is even. By assuming the symmetry of the radiation pattern with respect to the equator, all the spherical coecients Q smn such that m + n is odd are necessarily zero. This trick further reduces the number of samples required to characterize the radiation pattern over the measurement region.

Leaky Wave Antenna (LWA) in K Band

The AUT is a LWA designed and measured at IETR at 18 GHz, based on [20]. Let us compare the reconstruction of the eld over the cutting plane ϕ = 90°for the measurement coordinate system origin and the optimized position using the proposed approach. The antenna has a radius of a = 15 cm, leading to a truncation order of N = 65 hence 4420 even spherical coecients to retrieve. The measurement data follows an igloo sampling and has size 3458, leading to a sampling ratio of 78 %, slightly above the 75 % required by our previous study for fast measurements in [21]. The usual method in [13] would have required a data set of size around 1.7 × 10 4 . The antenna have been measured using a CATR conguration in CAMILL described in Section I.2.c. To be properly located in the quiet zone, the antenna had to be shifted away from the nominal position in terms of minimal sphere, leading to high-degree contributions ober the degree n.

The spherical coecients before and after optimization for one propagating mode s are displayed in Fig. III.17, leading to the objective function H mod values of -11.2 dB and -39.5 dB with a proportion of signicant coecients being 54 % and 27 % respectively. 
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Circularly polarized horn antenna at 320 GHz

This antenna has been designed and measured at IETR [22] along a coarse sampling over the hemisphere at 320 GHz. We use the same methodology as the previous one with a cutting plane at ϕ = 0°. The minimal sphere leads to a truncation order of N = 50, hence 2650 even coecients. The measurement data set has been acquired along an igloo sampling and of size 2122, corresponding to a sampling ratio ≈ 80%. The usual method in [13] would have required a data set of size around 10 4 .

The spherical coecients for one propagating mode s for measurement and optimized positions are displayed in 

Discussion

The concentration of the spectrum in low-degree modes has been achieved in both cases as shown by the spectra. This leads to signicant improvements in the eld reconstruction from a given initial undersampled far-eld dataset and thereby validates experimentally our approach. The position optimization of the antenna induces smoother phase variations over the main beam. This particular point is described in [12,23] and referred to as the antenna radiation center, the virtual point from which the main beam of the antenna is emitted.

III.5 Optimization of the antenna orientation

The orientation of the AUT is optimized in order to foster the sparsity of its SW spectrum.

A sparser SW spectrum can indeed be correctly retrieved from a smaller number of eld samples as shown in Section II.5. Consequently, the eective sparsity is used as a metric to optimize the rotation of the AUT. 
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III.5.a Optimization problem formulation

The goal is to nd the rotation angles (ϕ 0 , θ 0 , χ 0 ) leading to the sparsest SW representation of the eld radiated by the AUT. The rotation angle ϕ 0 only introduces a phase shift according to (III.1), and thus does not inuence the sparsity of the antenna spectrum.

Therefore, only the couple of rotation angles (θ 0 , χ 0 ) has to be determined. After rotations of angles (θ 0 , χ 0 ), the equation satised by the radiated eld reads

(AR θ 0 ,χ 0 )x(θ 0 , χ 0 ) = y (III.9)
where R θ 0 ,χ 0 is the matrix encoding the rotation of the SW, described in (III.1) for the couple (θ 0 , χ 0 ). We then solve:

min x x 1 subject to AR θ 0 ,χ 0 x -y 2 ≤ σ (III.10)
We evaluate the eective sparsity k -40 dened in (II.31) of the solution x(θ 0 , χ 0 ) using only the two rotation angles (θ 0 , χ 0 ). The computation of R θ 0 ,χ 0 takes about 1.5 s and the resolution of (III.10) using SPGL1 takes about 1.2 s for a matrix A of size 2522 × 4606

with an Intel i7-8700 and 16 GB RAM. The resolution of the BPDN problem is not as time consuming as computing the SW rotation matrix. However, testing a lot of couples (θ 0 , χ 0 ) may become a heavy computational task. To avoid that diculty, the eective sparsity of the SW spectra, noted k -40 (θ 0 , χ 0 ), is estimated from a coarse (θ 0 , χ 0 ) grid using Gaussian processes and a relevant restriction of the research domain.

The SOA method [6] proposes to nd x(0, 0) before optimizing over the three Euler's angles by minimizing R ϕ 0 ,θ 0 ,χ 0 x(0, 0) 1 . Note that this problem is much harder than minimizing Tx 1 for a given matrix T , as it cannot be casted into a convex optimization problem. Iterative minimization methods, such as gradient descent, may be trapped in local minima and will require a lot of rotation matrix computations. The optimization has to be done for several initialization points and one should keep in mind that the nal result may not be the true minimum.

III.5.b Eective sparsity minimization

The rotation of the SW basis can be seen as the rotation of the AUT into the new coordinate system. Physically, it represents a continuous modication of the eld, and thus of its spectrum. The function k T (x(θ 0 , χ 0 )) can consequently be fairly well approximated by a continuous function, as shown in Fig. III.23. Gaussian Processes (GP) are stochastic objects that can be used to interpolate continuous functions. They are well adapted to situations where evaluating the function is computationally heavy. GP have already shown a great relevance in many applications and motivated a lot of research [24]. They enable the computation of condence intervals and parameters tuning for better estimation depending on the fed data. The region with the lowest sparsity is indeed well identied with a few samples. In this case, the SOA method detects a sparsity minimum but the minimization of R ϕ 0 ,θ 0 ,χ 0 x(0, 0) 1 does not lead to the correct Euler's angles. The objective is to interpolate the eective sparsity function k T (x(θ 0 , χ 0 )) from a reduced number of values, at points (θ (p) 0 , χ (p) 0 ). The interpolation k T is therefore an estimation.

Interpolation using Gaussian processes

A GP is characterized by its expectancy, set to 0 in our case, and its covariance, or kernel function, V.

Let us dene V(a 1 , a 2 ) = h( a 1 -a 2 ) = exp(-a 1 -a 2 2 2l 2
), where • is the Euclidean norm and l a positive parameter characterizing the distance at which points inuence themselves. This kernel is named square exponential and is known to produce indenitely dierentiable curves [24]. If a = (θ 0 , χ 0 ) and the known values of k T are located at points a (p) = (θ

(p) 0 , χ (p 
) 0 ), p ∈ {1, . . . , P }, then let K be the vector gathering the k T (a (p) ) and the following estimation [24] can be made

k T (x(a)) = V(a, a (1) ) . . . V(a, a (P ) ) V -1 K (III.11)
where V = (v lm ) is the matrix containing the covariance between the data points a (i) , i.e. v lm = V(a (l) , a (m) ). Once the values k T are known at some points, evaluating k T can be done by small scale matrix multiplications, enabling the use of many fast optimization techniques.

Research domain and testing grid of the cost function

The initial domain of (θ 0 , χ 0 ) is [0, 180] × [0, 360] in degrees. Thanks to the symmetries of the SW, this angular region can be reduced to (θ 0 , χ 0 ) ∈ [0, 180[×[0, 90[. First, the case θ 0 = 0°, or 180°by symmetry, has to be computed once, because it only induces a phase shift of the coecients. Secondly, a rst known rotation in χ 0 can be applied to ensure that the main beam of the eld can be sent to one of the pole or to achieve symmetry with respect to the equatorial plane, ensuring proper minimization of the number of non-zero coecients. The number of tested points has been chosen empirically and these points are regularly spaced on a testing grid with a step of 17°, allowing to capture the global behaviour of the eective sparsity. This procedure implies the resolution of 61 BPDN problems to solve and computation of rotation matrices, 6 dierent χ 0 values for 10 θ 0 values plus one at θ 0 = 0°. Finally, the characteristic length l of the GP is set to 22.5°. This value is between 17°and 17

√
2 ≈ 24°, that are the length of the edge or the diagonal of a cell of the testing grid, respectively

III.5.c Validation on near-eld simulations

A waveguide array at 50 GHz antenna is modelled numerically using HFSS. The array is composed of 13 open ended waveguides with 3 mm≈ λ/2 spacing. The excitations of the waveguides have the same magnitude but dierent phases, with an enclosing sphere of radius a =25 mm, hence a truncation order N = 36 (or N c = 2736 coecients). The near and far elds are exported over an equiangular sampling scheme, δϕ = δθ = 2°( where δϕ and δθ are the angular steps in ϕ and θ respectively) over the full sphere, constituting the reference data set. The reference set has 6152 samples, while the near-eld subsample, used for sparse recovery, has only 1876 samples. The measurement coordinate system (x, y, z) does, on purpose, not correspond to the symmetry of the array. The 

III.5.d Validation on far-eld measurements

Let us now validate the procedure using antenna far-eld measurements. Three antennas are investigated: a Luneburg lens antenna, a Radiating Cavity Antenna (RCA) and a ReectArray (RA). The Table III.2 gathers information about the presented cases in this section. For each antenna, a cartography of the pattern and the position of the optical axis 

Methodology

All measurements have been carried out in the two far-eld anechoic chambers of the M 2 ARS facilities at IETR. Both are equipped with a roll-over-azimuth positioning system where the AUT is placed and a roll axis enables to change the polarization of the probe.

The eld is acquired step by step with a high density sampling rate following an igloo strategy to avoid the oversampling near the poles, providing our reference patterns. As in near-eld validations, we select a coarse igloo sampling to emulate a fast measurement data set. The resulting interpolated eld is derived from the spherical coecients identied by BPDN and compared with the reference pattern. The GP interpolation is done with the same parameters as in near eld. 

Luneburg Lens Antenna at 12 GHz

The at Luneburg lens antenna is fed by several waveguides [25] and measured over the full sphere. We investigate two congurations: one excited waveguide generating one beam and 

Radiating Cavity Antenna at 6 GHz

The AUT is measured over the full sphere and is designed for Car 2 X (C2X) communications. The reference electric far eld is illustrated in Fig. III.26c. This antenna has a small dynamic range, as the measured magnitudes of the electric far eld vary from 0 to -25 dB. The best rotation angles determined by GP, indicated by the cross marker in Fig.

III.26c, are the same as the SOA method. After performing this rotation, the number of signicant coecients is halved, as shown in Table III

.3.

Reectarray at 12 GHz

The eld of the reectarray is illustrated in Fig. III.26d. It has a very directive pattern with a tilted beam and the measurement is carried out over an hemisphere. Because of this, the optimization has led to an orientation axis on the equator so the pattern complexity mostly concerns by the ϕ coordinate.

III.5.e Discussion

Reconstruction accuracy

In all cases, the sparsity of the spherical coecients is greater or equal than the one of the SOA method. This enhanced sparsity leads to an improvement of the eld reconstruction as illustrated by the values of EES in Table III 

Impact of the mode distribution

The rotation of the radiated eld by the single beam lens at 12 GHz in Fig. III.26a by (ϕ 0 , θ 0 , χ 0 ) = (0, 90, 90) in degrees places the main beam orthogonal to the equator. In such conguration, the eld is symmetric with respect to the equator and the spherical spectrum is concentrated in the modes F smn such that m + n is even. Moreover, the sparsity is greatly promoted, explaining the specic spectrum shown in Fig. III.27a. This sparsity increase is achieved at a cost of pushing some modes to higher order ones (further from the line m = 0), which are harder to identify with undersampled sets. This case will lead to a sudden variation of the eective sparsity, which is noticeable using our approach.

For the RCA case, both methods yield a symmetry with respect to the equator. However, due to the small directivity of the pattern, shown in Fig. III.26c, there is no creation of high order modes as in the previous case.

Considering the reectarray case, the SOA method fails to detect the rotation angles leading to the sparsest expansion. This can be explained by the relatively low number of samples with respect to the number of unknowns since this method optimizes the rotation using the spherical coecients found along the default orientation.

Computation time

The computation time is dicult to estimate for the SOA method. Indeed, several initialization points must be tested to ensure a proper optimization, it requires the computation of multiple rotation matrix per iteration, being at least as costly as solving the BPDN with SPGL1. The convergence speeds highly depends on the proper tuning of several parameters, which is no trivial matter. The proposed approach takes less than 3 minutes of computation with an Intel i7-8700 and 16 GB RAM for all investigated examples.

Minimization accuracy

The angular distance between our procedure and a brute force approach (successive renements of a dense testing grid around the expected minima up to 0.2°) of the optimized rotation angles is lower than 2.5°for all the presented measurements. The corresponding eective sparsities k -40 and EES values show dierences of 2 % and 0.14 dB in the worst case. 

III.6 Antenna positioning procedure

The combination of the antenna position and orientation search methods, in this order, leads to a full positioning optimization algorithm. This complete procedure is demonstrated using the measurement of a horn at 10 GHz into the MVG multi-probe system StarLab [26].

The horn has been measured at two dierent positions, illustrated in for the normalized magnitude and III.32 for the phase. As illustrated, the agreement with the reference, the eld reconstructed by the spherical coecients returned by the MVG software, is greatly improved after the positioning optimization. The phase is also smoother after the optimization of the positioning. This means that the optimization of the position if connected to the estimation of the radiation center, as hinted by [27]. 

III.7 Conclusion

A procedure that processes radiation pattern measurements so as to nd the best position of the AUT has been proposed. The underlying idea is to exploit as much as possible the valuable information encompassed in the SW spectrum of the antenna. By properly translating the antenna with respect to the measurement coordinate system, it is possible to concentrate the power of its spectrum to low frequency content. For that purpose, a metric based on the n-spectrum has been developed and integrated to an ecient optimization strategy. The proposed approach induces not only lower truncation orders for the SW series but also better 3D radiation pattern reconstructions. It also diminishes the impact of an eventually bad AUT positioning in terms of power distribution among the spectrum.

An ecient procedure using rotations of the measured antenna patterns for generating a sparser expansion of the eld has also been developed. This post-processing method is valid for spherical near and far-eld antenna characterization with low sampling rates.

It does not require extra measurement nor modication It allows to exploit at best the information contained in a given undersampled eld dataset. In addition, the proposed approach is applicable to any type of spherical sampling strategy.

Both antenna position and rotation methods have been validated using numerical and experimental data in near and far eld. The joint optimization of the antenna position and rotation provides a complete antenna positioning procedure that has been experimentally validated using a commercial antenna measurement system, the MVG StarLab multi-probe system. The elds radiated by antennas of nite sizes can be expanded using truncated series [1,2]. The choice of the basis functions to perform this expansion depends on available a priori information about the antenna (e.g. shape, maximum electrical length), the measurement surface (planar, spherical, cylindrical) and has an impact on the number of eld samples required for its characterization. The expansion into Spherical Waves (SW) is a widely spread choice in the antenna measurement community and its exploitation has been addressed in Chapters II and III. The number of eld samples to properly expand the radiation of antennas into SW functions is tied to the radius of the minimal sphere enclosing the sources. However, most antennas can be better described by other shapes than a sphere, such as boxes/parallelepipeds or cylinders. The use of shapes tailored to the AUT geometry combined with the numerical construction of appropriated basis functions should lead to a reduction of the number of eld samples required to represent the antenna radiation pattern.

Chapter IV

IV.1.b State of the art

The use of non-spherical surfaces to expand the eld radiated by antennas and thereby reduce the number of required eld samples has been proposed and successfully validated by Prof. Bucci et al. [25]. These basis functions better t the true shape of the AUT by enclosing it in convex surfaces with a symmetry of revolution. More importantly and despite the geometrical limitations imposed by the use of analytical basis functions, this fundamental and pioneer work ensures the minimal number of samples to reconstruct the radiated eld. Nevertheless, the truncation error of such a eld expansion is not clearly controlled even if an oversampling factor is added to mitigate this problem.

Instead of using analytical basis functions, recent works combine strong a priori knowledge and even numerical simulations of the AUT in order to expedite its characterization. Full-wave electromagnetic simulations of the structure can be used to build either a compressed [6] or an overcomplete [7] representation of the radiated elds, enabling the reconstruction of the AUT radiation pattern from a small number of eld samples. When the prior knowledge about the AUT is very strong, both strategies are very ecient and lead to fast antenna testing. The illustration of the fast antenna characterization of a reector antenna presented in [6] Finally, the construction and use of reduced-order models to speed up antenna characterization is relatively new. Initially proposed to eciently characterize the radar cross section of targets [8], this approach has been adapted in [9] to bring down the number of samples for the characterization of antennas. The construction of the reduced order model requires to know the AUT outer dimensions and the measurement surface geometry. This reduced-order model can be derived from the radiation matrix, which is usually rather used to back-propagate the eld for antenna diagnostic [1012] or spatial ltering purposes [13].

IV.1.c Contributions

This work extends the preliminary investigations on the use of reduced order models for fast antenna characterization [9], enabling the derivation of a minimum far-eld sampling criterion. It has been carried out in collaboration with Prof. M. Mattes from the DTU.

The rigorous construction of the radiation matrix that maps the equivalent currents on a meshed surface surrounding the AUT to its radiated eld is described. The approximation of this matrix up to the measurement accuracy is achieved by truncating its singular value decomposition accordingly. This methodology enables to build numerically a compressed basis that is customized to our antenna characterization problem. The dimension of this basis and consequently the number of eld samples is shown to be determined by the area of the equivalent current surface over the squared wavelength. This result is in agreement and somehow generalizes the fundamental works on the minimum non-redundant sampling [5].

Various numerical and experimental examples of the characterization of AUT validate the proposed reduced-order model approach.

IV.2 Radiation matrix for antenna characterization

The construction and discretization of the radiation operator that maps the equivalent currents on the surface enclosing the AUT to the radiated eld are addressed in this section.

IV.2.a Huygens' equivalence principle

In electromagnetics, the elds (E, H) radiated by a set of nite sources (J, M) can be described by equivalent surface electric and magnetic current distributions that represent the tangential magnetic and electric elds, respectively [14]. This equivalence principle, also known as Huygens' principle, states that the eld emitted from the AUT enclosed by a surface Σ is also radiated by equivalent surface currents (J eq , M eq ) over Σ, as shown in 
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Surface equivalence principle: the original problem (left) can be replaced by an equivalent one (right). The electromagnetic eld (E, H) outside a volume V enclosed by a surface Σ containing all the sources is radiated by equivalent current distributions J eq = n × H, M eq = E × n over Σ, the vector n being its exterior normal vector.

There are dierent variants of the surface equivalence principle depending on the constraints imposed on the internal elds E and H of the equivalent model, as shown in E ≡ 0 ≡ H , has been shown to provide realistic current distributions [11,15], which is extremely relevant for diagnostic purposes. Besides, note that the use of only one type of equivalent current (J eq or M eq ) suces provided that the volume V is lled with either a perfect magnetic or electric conductor, respectively.

The goal of this chapter is to interpolate at best the electric far eld radiated by the AUT enclosed by Σ. Therefore, we leave the internal elds E and H unconstrained and use both types of equivalent currents, as suggested in [13].

IV.2.b Boundary integral equation

The electric eld radiated by the equivalent surface currents (J eq , M eq ) on Σ into a sourcefree region, characterized by its permeability µ and permittivity ε and employing the Lorenz gauge, is given by E(r) = jωµ Σ g(r, r )J eq (r )dσ -1 jωε Σ grad r g(r, r )div J eq (r )dσ -Σ rot r g(r, r )M eq (r ) dσ

(IV.1)
where ω is the angular frequency and g the scalar free-space Green function, given by g(r, r ) = e -jk|r-r | 4π|r-r | . The vector r is the observation point and r is the one used for the integration over Σ, sometimes called the source vector. The positive time convention e jωt has been used. The notations grad r and rot r mean that these operators are applied with respect to the observation position r only. The equation IV.1 is valid for all observation points r outside the volume V delimited by Σ.

IV.2.c Boundary element method

The goal is to determine the equivalent current distributions (J eq , M eq ) that are tangential to the surface Σ. These currents radiate the same eld as the sources (J, M) contained in the volume V . We assume that these surface currents can be expanded into a set of known basis functions f k , k = 1, . . . , K dened over Σ:

J eq (r ) = K k=1 j k f k (r ), M eq (r ) = η K k=1 m k f k (r ). (IV.2)
where j k and m k are the complex coecients to be determined. Note that the equivalent magnetic current is multiplied by the wave impedance η so that both currents (J eq , M eq ) have the same order of magnitude, as often advocated [11].

The current expansions (IV.2) enable to cast the surface integrals (IV.1) into a weighted sum of integrals of the known basis functions. Thus, the contribution of the basis function f k to the radiated eld, denoted E k , is given by: The integrals of a given function f over these domains are then approximated by a sum of weighted evaluations of f at the points of the quadrature [17], as follows

E k (r) = j k jωµ Σ g(r, r )f k (r )dσ - 1 jωε Σ grad r g(r, r )div f k (r )dσ -ηm k Σ rot r g(r, r )f k (r ) dσ .
S f (x, y)dxdy ≈ 9 l=1 ω l f (x l ) (IV.5)
where S is a cell of the mesh, either a square or a triangle, x l are the points displayed in 

Matrix formulation

The equation (IV.3) is valid for any observation point r in the external region (outside V ). Let us consider a set r m of M observation points. The equation (IV.1) can be approximated and formulated in Cartesian coordinates as follows

  E x E y E z   =   A J,x ηA M,x A J,y ηA M,y A J,z ηA M,z   j m (IV.6)
where E x contains the x-component of E at the observation positions r m , A J,x the xcomponent of the electric current distribution in the equation (IV.3) for each basis functions f k , A M,x is the same for the magnetic current distribution. The other components y and z are dened similarly. Finally, the vectors j and m gather all the coecients of the equivalent currents, j k and m k , to be determined. Systems of equations similar to (IV. 6) can be easily derived when other vector eld representations are used.

In the sequel, the system (IV.6) is denoted by y = Ax, where the vector y contains the measured eld, A is the discretized radiation operator and x the equivalent currents.

IV.2.e Numerical examples

A few examples of reconstructions of equivalent currents are shown to illustrate and validate the code developed during the thesis. These numerical examples use the theoretical expressions available for canonical antennas from [18]. Additional tests have been carried out to further validate the code, they are not shown for conciseness reasons. 

Electric innitesimal dipole at 6 GHz

IV.3 Construction of the reduced-order model

The radiation matrix from equivalent surfaces is built and its validity have been demonstrated using several canonical examples. The construction of the reduced-order model is now addressed.

IV.3.a Truncated singular value decomposition

The radiation matrix A is, in general, not of full rank. Many sets of currents x lead to the same radiated eld y. Therefore, the matrix A can be approximated by A T , for which only the T largest singular values are kept:

A T ≈ US T V H (IV.7)
where V H is the conjugate transpose (also called Hermitian transpose) of V. The columns of V form an orthonormal basis of the equivalent current distributions over the surface Σ while the columns of U are the corresponding orthonormal basis of the elds that can be radiated by the AUT. The diagonal matrix S T contains the rst T singular values σ 1 ≥ σ 2 ≥ • • • ≥ σ T , the lower singular values being set to zero hence the truncation. The eld y radiated by the AUT can thus be approximated from the rst T columns of U as follows

y ≈ U T ν (IV.8)
where ν is the new unknown vector of length T. The quality of the approximation (IV.8) is determined by the truncation index T.

IV.3.b Physical interpretation

The SVD of the radiation matrix in (IV.7) produces 3 mathematical objects, each of them has a physical interpretation. The columns of U can be seen as characteristic radiated modes over the sampling positions for the given equivalent surface. The columns of V are the coupled characteristic current distributions on the surface. The diagonal coecients of S, the singular values, quantify the coupling signicance between the characteristic modes on the surface Σ and the radiated eld modes. The eight rst characteristic current distributions over a box (the eight rst columns of V) and their corresponding modes (the eight rst columns of U) are shown in Fig. IV.9 as an example. Several remarks can be done regarding these distributions. A smaller index corresponds to slower variations of the current distribution, also, due to the orthogonality of the columns and the numerical construction of the basis, consecutive distributions show peculiar symmetries and current ows relations. Similar observations can be done on the characteristic radiated eld modes. 

IV.3.c Choice of the truncation index

The choice of the truncation index T, and consequently of the size of the radiated eld basis U T , is crucial to be able to reconstruct properly the radiated eld y [19]. For the antenna characterization problem, this index is connected to the noise oor level of the measurement system.

Let us consider a reference eld measurement y and its estimation y. For a measurement noise oor of R dB, we consider that y and y are identical when the average dierence between each sample of these two elds is smaller than R dB. This can be translated into yy ≤ δ with δ = √ M y ∞ 10 R/20 , where M is the size of the measurement vector y or y. 1 The radiation matrix A is well approximated by A T provided that the following inequality holds true for all possible sets of equivalent currents x Ax -A T x ≤ δ.

(IV.9)

The left hand side of (IV.9) is bounded by A -A T x = σ T+1 x and B is equal to the largest singular value of the matrix B. Using the same properties, y = Ax leads to y ≤ x σ 1 . By noticing that y ≤ √ M y ∞ , we can write

σ T +1 σ 1 ≤ 10 R/20 .
(IV.10)

Note that the criterion (IV.10) is not strictly equivalent to (IV.9). However, its validity is numerically checked in the next section.

IV.3.d Numerical validation of the truncation index Methodology

Let us consider the reference radiated eld y and its estimation y computed from the truncated radiation matrix A T , both of size M . The Equivalence Noise Level (ENL) introduced in (I.5) provides a convenient metric to compare these two radiation patterns.

The truncation index T is chosen such that ENL(y, y) ≤ R for any eld y radiated by an AUT inside the equivalent current surface Σ.

Validation

The AUT is assumed to be enclosed by a spherical equivalent surface Σ. Any elds radiated by the AUT can then be expanded into SW. As already seen in Chapter II, these SW are denoted F smn where s is the propagating mode, s ∈ {1, 2}, m the order and n the degree, |m| ≤ n, 1 ≤ n, both being integers. The truncation order of this SW expansion in n is given by [1] N = ka + n 1

(IV.11)
where k is the wavenumber, a the radius of the smallest sphere enclosing the sources, • is the integer part function and n 1 a positive integer. A safety margin of n 1 = 10 is typically chosen but this number can be lowered when expanding the electromagnetic far eld.

1 The notation • denotes the Euclidean norm, also often written • 2 or 2 norm and y ∞ the maximum magnitude among the components of y. The step widths correspond to the number of SW for each degree n. A similar pattern can also be found in [13].

The SW of highest degree and order, F s,19,19 , is the hardest to reconstruct since it exhibits the fastest variations with respect to both directions θ and ϕ. 

IV.3.e Truncation index and equivalent surface area

The truncation index T of the singular values is determined by the low-pass behaviour of the singular value distribution. Previous analytical works on antenna characterization relying on the radiated eld expansion on analytical function basis have determined that the number of coecients to retrieve is linked to the area of some canonical surface enclosing the sources. More specically, in the case of spherical near-eld measurements as detailed in [1], the truncation order N given in (IV.11) leads to a number of spherical coecients nearly proportional to 4πa 2 , the area of the minimal sphere enclosing the antenna. The work of Prof. Bucci et al. [5] provides an explicit relation between the number of so-called degrees-of-freedom of the radiated eld for surfaces Σ with some symmetry properties,

N deg = A(Σ) (λ/2) 2 (IV.12)
where A(Σ) is the area of Σ.

We have numerically checked that two equivalent surfaces of same area, no matter their 

IV.3.f Discussions

Several parameters inuence the distribution of the Singular Value (SV) distribution.

Mesh and cells

The SV distribution is inuenced by the equivalent current surface mesh size. However, this distribution converges when the mesh cells are small enough. The basis functions built from triangle or square cells of maximum length λ/3 have been empirically shown to provide stable results in all investigated antenna characterization scenarios.

Field sample distribution

The eld sampling strategy over the measurement surface has a signicant impact on the SV distribution. The strategies inducing an oversampling in some regions of the sphere generate a peculiar SV distribution. This behaviour with a sudden signicant drop of the SV distribution translates the redundancy coming from the localized oversampling. This typically happens when considering an equiangular far-eld sampling. A closed measurement surface, in the topological sense (a compact surface without boundary, like a sphere) also modies the SVD but the proposed truncation criterion still holds.

The case of the spherical equivalent surface

The singular value distribution exhibit some steps as shown in Fig IV .11 and also reported in [13]. When a E θ , E ϕ description of the eld is used, these steps increase the same way as the number of SW having the same degree n grows with respect to n. When the measurement surface is not closed (e.g. planar measurement or over an hemisphere), these steps are smoothed or non-distinguishable, further indicating that they are most likely tied to the spherical geometry. Indeed, it has been observed that using conformal cells or taking smaller cells, i.e. having a better approximation of the sphere, further increase the stair-like behaviour of the SW distribution. Note that this observation has no signicant impact on the proposed method.

IV.4 Number of eld samples

The steps to derive the minimum number of eld samples from the reduced antenna characterization model are described, validated numerically and experimentally.

IV.4.a From the number of spherical waves to the truncation index

The main and remarkable result is that the order T of the reduced antenna characterization model depends only on the area of the surface Σ whatever its shape. Since the number of SW denoted N SW is well known for a given sphere radius, we can derive the following formula: 

T = A(Σ) A ( 

IV.4.b From the truncation index to the number of samples

The truncation index can be estimated from simple geometrical considerations, see (IV.13).

It remains to derive the number of eld samples from this truncation index T to complete our antenna characterization problem.

Methodology

The eld y radiated by the AUT can be expressed as follows:

y = k=1,...,T ν k u k + n (IV.14)
where the vector n stands for the part that is unexplained by the reduced order model, i.e. the measurement noise and the truncation error. The norm of n is lower than R dB when T has been properly set.

Our goal is to determine the unknown vector ν of length T from a minimum number of eld samples. Similarly to our approach with the SW in Section IV. where y k = u k ν + n for each tested k and the superscript (s) denotes the subsample.

To assess the quality of the reconstruction and thereby the choice of the number of samples M S , we compute the mean of ENL(u k , u k ) for all k where u k is the estimated characteristic mode computed solving (IV.15) from M s eld samples. Similarly to Section IV.3.d, the reconstruction is considered successful when the mean ENL is lower than the noise oor R dB.

Results

A sampling is dened by its size and its distribution. We use the measurement ratio M S /T, where M S is the number of eld samples. The proposed reduced order model is applied using four sampling strategies and a spherical equivalent current surface Σ of radius 2λ. The samplings are: Fibonacci [20], one of the most uniform distributions on the sphere, the igloo sampling [21], close to being uniform while providing an easy scan for positioning systems available at IETR, random sampling, where the points are chosen randomly over the sphere (mean over 20 trials) and equiangular, also called constant angular step sampling, commonly used in spherical near-eld measurements [1].

As shown in Fig. IV.16(a), the uniformity of the sampling distribution is crucial to minimize the number of samples as the Fibonacci and igloo sampling are clearly the rst ones to reach the noise oor, at a measurement ratio around 1.17. This oversampling factor corresponds to the intersection point of the curves with the horizontal line located at the noise oor R. From now on, we only consider the igloo sampling in the following as it is the one applied in our anechoic chamber while keeping in mind that Fibonacci behaves similarly.

In addition, this reliable oversampling factor is stable with respect to the measurement noise oor R, as shown by the grey curves in 

Number of eld samples

From the previous studies and results, it follows that the number of samples can be safely set to

M S = χT (IV.16)
where T can be estimated from (IV.13) and χ is an oversampling factor, as introduced by Bucci et al. [5]. According to our results, an oversampling factor of around χ = 1.25

works satisfactorily in all investigated antenna characterization problems (antenna shape and measurement noise oor).

IV.4.c Experimental validation

The methodology to derive the minimum number of eld samples is assessed experimentally with the characterization of two radiating structures of radically dierent shapes and operating frequencies.

Standard gain horn at X band 

IV.4.e Summary

The characterization of far-eld patterns from a minimum number of samples has been experimentally validated using two very dierent antenna types, shapes and operating frequencies. Indeed, two signicantly dierent antennas in these aspects have been characterized in two measurement systems; an all-in-one commercial system [22] and an academic laboratory anechoic chamber [24].

Less eld samples are required when the convex surface enclosing the AUT is tailored to its shape, which conrms the link between number of samples and area of this surface.

Moreover, an oversampling value of χ = 1.25 is shown to be a reasonable choice to nd the minimum number of samples as conrmed by these experimental results.

IV.5 Conclusion

The steps to determine the minimum number of eld samples to characterize antenna far-eld radiation patterns have been detailed. The proposed methodology calls for the construction of the radiation matrix involved in the antenna characterization problem.

By appropriately truncating its singular value decomposition, a reduced dictionary of the possible far-elds radiated by the antenna under test is built for a chosen accuracy level.

Instead of using all-purpose analytical basis functions exhibiting intrinsic symmetries, the proposed strategy enables to generate numerically a compressed basis tailored to the antenna characterization problem. The practical relevance of the so-customized basis has been thoroughly investigated. The inuence of the eld sampling strategy, its robustness with respect to noise and equivalent current surface shape surrounding the antenna under test leads to a minimum number of eld samples that takes into account practical meas-

Summary and outcomes

The main goal of this work has been to develop methods for improving the characterization of antennas and thereby make a more ecient use of measurement facilities. These methods encompass a measurement procedure combined to a dedicated processing in order to accelerate and/or increase the accuracy of the measurement of antenna radiation patterns.

The characterization of antenna radiation patterns can be speeded up by reducing the number of eld samples to be measured. For that purpose, two dierent strategies have been proposed.

The rst one relies on the sparse spherical wave expansion of the eld radiated by antennas. It only requires the maximum electrical dimension of the antenna under test.

An automatic procedure, that combines a coarse eld sampling and a sparse recovery algorithm, has been developed and described. By leveraging the sparsity of the spherical wave expansion of the eld, this approach enables to signicantly reduce by a factor of about 3 the number of eld samples as compared to standard (Nyquist based) approaches.

Although providing an approximation of the antenna reconstructed radiation patterns, this strategy turns out to be very ecient, as demonstrated both numerically and experimentally in a number of representative radiating structures of various types and operating in diverse frequency bands. Moreover, estimations of the eld acquisition duration are provided in order to assess the gain in measurement time. It is shown that the duration of the eld acquisition time can be approximately halved in our anechoic chambers between the fast measurement technique and the Nyquist sampling rate approach.

The second approach, to speed up antenna pattern measurements, is based on the construction of a reduced order model corresponding to the antenna characterization problem.

This strategy calls for stronger prior knowledge about the antenna under test than the rst one, since both the antenna outer dimensions and the measurement surface are required to build the radiation matrix. This matrix links the inputs to the outputs of the system, namely the equivalent currents representing the antenna to the radiated eld. By appropriately truncating the singular value decomposition of this matrix, a reduced-order model of the antenna characterization problem is constructed. In other words, the proposed approach generates a compressed numerical basis tailored to the antenna to be characterized.

The inuence of the eld sampling strategy and its robustness with respect to noise has been investigated to demonstrate the eciency of the approach and provide a realistic minimum number of eld samples. This latter conrms and somehow extends the existing analytical derivations on the non-redundant sampling: the number of samples is roughly given by A(Σ)/λ 2 where A(Σ) is the area of the equivalent current surface enclosing the sources. Various numerical and experimental antenna characterizations carried out in di-verse frequency bands conrm the potentialities and practical relevance of this technique.

In addition and complementarily to these two fast antenna characterization approaches, post-processing procedures have been developed to improve the quality of the antenna pat- Finally, optimization solvers have been exploited and tuned to our needs such as sparse recovery methods, Gaussian processes and gradient descent algorithms. In addition to these mathematical and theoretical developments, experimental validations have been carried out in the measurement facilities of the IETR laboratory in order to validate each step of the proposed antenna characterization procedures.

Perspectives

Following this PhD work, several extensions seem natural and are currently under investigation. Others are considered as promising and could be endeavoured in a near future.

Fast near-eld antenna measurements

The work on fast antenna characterization via the construction of a reduced order model has been validated in this PhD thesis on far-eld measurements. The near-eld validations have been driven on theoretical or simulation dataset. However, in the whole methodology and specically in the construction of the radiation matrix, there is nothing that restricts the use of the proposed reduced order model approach to the far eld. Therefore, this work can be extended to speed up the near-eld characterization of antennas. The main foreseen diculty lies in our opinion in the sampling strategy that depends on the near-eld surface scan.

Phaseless antenna characterization with a reduced number of samples

Phaseless antenna characterization has recently attracted a lot of attention for many reasons, including the lower cost of the required hardware and the general increase of operating frequency which makes the accurate phase measurement dicult. Phaseless characterization techniques generally require the measurement of the eld intensity on at least two surfaces in order to be able to retrieve the phase while mitigating ambiguity issues. This (double) measurement would therefore greatly benet from a reduction of the number of eld samples. We believe that combining the fast antenna measurement strategies proposed in this thesis to phaseless antenna measurement approaches previously developed in our laboratory makes sense.

Frequency interpolation

Antenna patterns are usually not characterized at a single frequency but over a given bandwidth. In order to make such antenna characterization as ecient as possible, the electrical axis (i.e. the frequency axis) should be, in addition to the 3D spatial domain, smartly sampled. Since the duration of both continuous and step-by-step eld acquisition is impacted by the number of sampled frequencies, reducing the frequency axis sampling appears as a logical step to further speed up the antenna characterization.

Phase center estimation

The optimization of the antenna position with respect to the measurement system, has been driven by the concentration of its SW spectrum towards low degree spherical modes.

This procedure leads to smooth out the phase variation of the eld in the main beam of the radiated pattern. This let us think that our antenna positioning procedure could be adapted in order to determine the antenna phase center. The sampling follows the Igloo sampling strategy with 4873 points over the full sphere (hence 4873 × 2 data samples because of polarization change). The procedure described at the beginning has been used, with 12 periodical additional measurements at θ = 0 for 72 points in ϕ to control the thermal drift. The full sphere acquisition took 53,256 s (≈ 14h50), while the hemisphere took 27,025 s (≈ 7h50).

These data allow to estimate the engines parameters and the time required for the eld acquisition and the polarization change. We indeed have 7 

Conclusion

All quantities needed by our modelling have been determined, they enableto estimate reliably the eld acquisition phases for equiangular or Igloo sampling techniques in the IETR anechoic chamber CACENDRA.

B Automatic search algorithm of the BPDN error tolerance parameter

This section gives the algorithm to automatically nd the error tolerance parameter of σ when using the sparse recovery problem BPDN. We recall the BPDN problem min x

x 1 subject to Axy 2 ≤ σ where σ is the data tting parameter to be set. This algorithm has been adapted from [1], we note x σ the solution returned by the BPDN with σ as the data tting parameter.

The curvature computation routine noted C has three parameters P 1 , P 2 , P 3 which are the points of the underlying curve, the returned number of C(P 1 , P 2 , P 3 ) is the curvature estimation at the second point P 2 . The parabola method [2] is used to achieve this estimation.

Algorithm 2 Search algorithm of the L-curve corner Require: [σ 1 , σ 4 ] the search interval, ε the update tolerance, A the SW matrix, y the measurement data vector.

1: Initialization 2: ϕ ← (1 + √ 5)/2 (Golden ratio)

3: x 1 ← log 10 (σ 1 ), x 4 ← log 10 (σ 4 ) 4: σ 2 ← 10 (x 4 +ϕx 1 )/(1+ϕ) , x 2 ← log 10 (σ 2 ) 5: σ 3 ← 10 x 1 +(x 4 -x 2 )

6: for i = 1 to 4 do do 7:

P i = ( Ax σ i -y 2 , x σ i 1 ) Point of the L-curve with σ i . 

Optimization of the SW matrix computation

The implementation of the recurrence relations can be optimized to speed up the computation time but the main point is to go through all the indexes of the SW, s, m, n so to avoid computing the same quantity multiple times. Let us recall that the SW are a product of three independent functions, their computation cost is greatly reduced by appropriately computing each dependency, especially for the equiangular or igloo samplings. Indeed, computing the elevation dependency in θ is costly, but for these types of samplings, there are only a few dierent θ values with respect to the total number of points. It is also worth pointing out that the SW F 1mn in (II.8) and F 2mn in (II.9) have the same but switched θ dependency between the components in θ and φ up to a multiplicative factor depending on the distance.

Computation of the SW transformation coecients

The origin and the orientation of the SW basis can be changed, leading to the transformation formulas for rotation (III.1) and translation (III.2). These transformations can be achieved in practice by a modication of a SW matrix A by coecients, namely D n µm (χ 0 , θ 0 , ϕ 0 ) for the rotation and C sn(c) σµν for the translation. Computing these coef- cients is costly and a naive implementation is not suitable for a practical use of these transformations, leading to numerous coding tricks and tweaks. The interested reader can refer to [4] for computing the translation coecients and the rotation coecients have been computed using the Jacobi evaluation routine from the SciPy library [5] since there was no particular problem with it. The translation coecients have to be handled carefully to avoid overows for similar reasons as in the Legendre polynomials, the equation involves the ratio of two factorial terms mitigating each others. There are also symmetrical relations available in [3] to avoid unnecessary recursive computations for both coecient types.
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 1 Figure 1 : Durée estimée du temps d'acquisition du champ rayonné dans les bases de mesure de l'IETR en utilisant la procédure de mesure standard et les 2 méthodes de mesure rapide proposées lors de cette thèse.

Figure 2 :

 2 Figure 2: Estimated eld acquisition durations at IETR using the standard approach and the proposed fast antenna characterization procedures.

  such as anechoic chambers, which are designed to isolate the tested device as much as possible from unwanted electromagnetic radiations. There are various types and sizes of anechoic chambers, they are topically covered with absorbing elements, as the one shown in Fig. I.1.

Figure I. 1 :

 1 Figure I.1: A Luneburg lens antenna on the positioning system of the CACENDRA, anechoic chamber of IETR-UR1 for centimetric wavelength antennas.

Fig. I. 2 ,

 2 Fig. I.2, it is an angular function of an antenna radiation parameter as it is always considered at a given distance. If not specied otherwise, the radiation pattern usually refers to the electric eld magnitude.

Figure I. 2 :

 2 Figure I.2: The spherical coordinates and the spherical basis.

Figure I. 3 :

 3 Figure I.3: The electric far-eld magnitude of a standard gain horn in X band simulated using Computer Simulation Technology (CST) [2] Wavestudio.

Figure I. 4 :

 4 Figure I.4: The transformation between the spherical basis and the third denition of coand cross-polarization by Ludwig.

Fig. I.5a. 2 . 3 .

 23 Circular polarization: the electric eld oscillates isotropically in all orthogonal directions with respect to the propagation one, see Fig. I.5b. Elliptical polarization: the electric eld oscillates in all orthogonal directions with dierent intensities. The tip of the electric eld E follows an ellipse. If not stated otherwise, the polarization of the antenna commonly refers to the one in the maximum gain direction. Circular and elliptical polarizations are given a rotation direction of the eld, which can be either left or right handed. For the circular case they are abbreviated LHCP (and RHCP) for Left-Handed (and Right-Handed) Circular Polarization. If the large axis is understood as the propagation direction, a RHCP from the source is seen as LHCP from the receiver point-of-view. (a) Linear polarization. (b) Circular polarization, E or H.

Figure I. 5 :

 5 Figure I.5: (a) The linear and (b) circular polarization types. The vertical and horizontal axes denes the polarization directions. The propagation direction axis can also be understood as a time axis if the electric eld is observed at a given position. Credits: Wikipedia.

Figure I. 6 :

 6 Figure I.6: The measurement regions around the antenna. The radius of the minimal sphere is denoted a and the measured wavelength is λ, δ(λ) is a margin to delimit the reactive region, in which no measurements are feasible.

Fig. I. 7 .

 7 Fig. I.7.

Figure I. 7 :

 7 Figure I.7: Coordinate system for planar scanning, adapted from [7].

  photographies of CATR system are shown in Fig. I.11.a for the IETR-UR1 one, with a rolled edge reector, and in Fig. I.9 for the one located at CNES, with a serrated edge reector.

Figure I. 8 :

 8 Figure I.8: An example of a CATR measurement conguration.

Figure I. 9 :

 9 Figure I.9: CATR measurement at CNES with a serrated reector. Credits: D. Belot, CNES.

2 .

 2 illustrated in Fig. I.10. Two spherical measurement systems in far eld, CAMILL (for millimetric and submillimetric operating antennas), using CATR or direct illumination congurations and CACENDRA (for centimetric operating antennas), illustrated in Fig. I.11. These spherical systems are roll-over-azimuth sequential positioners with a step-by-step eld acquisition (complete stop at each sampling position) and a mechanical or electrical change of the polarization. An illustration of such system is shown in Fig. I.12, the relation with the spherical coordinates dened in Fig. I.2 is also displayed. Other equipments are located in the INSA part of the laboratory. The antenna characterization part involves two near-eld spherical scanners provided by two MVG multi-probe systems, Stargate SG32 and MVG Starlab [12], illustrated in Fig. I.13. The former system operates between 0.65 and 18 GHz, the antenna is positioned at the center of an arch containing multiple probes, the AUT rotates over one axis to perform the spherical scan.

Figure I. 10 :

 10 Figure I.10: Near-eld planar measurement system of IETR-UR1 -10 to 500 GHz.

  (a) CAMILL -18 to 330 GHz. (b) CACENDRA -0.8 to 26 GHz.

Figure I. 11 :

 11 Figure I.11: Spherical far-eld measurements systems of IETR-UR1. (a) A horn in CA-MILL with the rolled edge reector for CATR measurements (direct illumination also possible). (b) A Luneburg lens on the positioning system of CACENDRA.

Figure I. 12 :

 12 Figure I.12: Roll-over-azimuth positioning system for spherical measurements of IETR-UR1.

Figure I. 13 :

 13 Figure I.13: StarLab multi-probe system from MVG with its calibration horn located at IETR-INSA [13].

  , Meas., -40 dB W, log , Meas., -50 dB log , Sim. (b) Comparison metrics.

Figure I. 14 :

 14 Figure I.14: Pointwise comparison metric values over patterns of an E-plane horn: (a) eld magnitude patterns, (b) metrics values between the considered pattern and the reference.

Figure I. 16 :

 16 Figure I.16: Illustration of the Nyquist sampling rate: the two signals provide the same time sampling (markers). If the true signal to be characterized is represented by the plain blue line, this measurement sampling rather identies the orange one (aliasing).

  the plane. These quantities are illustrated in Fig. I.17. The steps are also shown in 2D in Fig. I.7. According to sampling theory, it allows an exact reconstruction of a properly bandwidth limited signal in the characterized region determined by θ max .

  Fig. I.6, n 1 is an integer usually set to 10. It leads to the following total number of samples M H = 2(N + 1)(2N + 1). (I.8) Note the factor 2 at the beginning, coming from the two orthogonal polarizations measured for each sampling position.

Figure I. 18 :

 18 Figure I.18: Number of samples M H according to spherical near-eld measurement theory and estimated eld acquisition time in IETR anechoic chamber CACENDRA.

  (SW) are solutions of the Maxwell's equations in spherical coordinates. Because they also form an orthogonal function basis, they are very convenient to expand and interpolate the radiated spherical near and far eld[1]. The use of SW for the characterization of the antenna radiation pattern is already well established and widely spread in the antenna measurement community[14]. Although very accurate, this standard spherical measurement approach may be time consuming as it requires an important number of eld samples. To give some insights, note that the characterization of the 3D radiation pattern of a DUT of diameter 10λ requires at IETR approximately 10 hours for the acquisition of the eld, see Fig.I.18. This duration increases drastically in the case of embedded antennas, for which the maximal electrical size of the DUT includes the whole structure that contributes inevitably to the radiated eld. For all these reasons as well as the ones detailed in the global introduction (p. 14), the need for faster antenna characterization based on SW has recently received a lot of attention.

  metry are then used to minimize the number of eld samples, as shown in Fig.II.1. This method has also been adapted numerically to further account for the antenna geometry[6].

Figure II. 1 :

 1 Figure II.1: The DUT is enclosed in a convex shape Σ, allowing to reduce the number of eld samples [5].

Figure II. 2 :

 2 Figure II.2: An example of SW expansion coecient spectrum (simulated patch array in X band). Many SW coecients have a magnitude that can be neglected, lower than -40 dB as compared to the maximum level.

Figure II. 3 :

 3 Figure II.3: Spherical samplings (red dots) with low correlation between the SW discretization for M = 97, 500 and 800 measurement points [12].

Figure II. 4 :

 4 Figure II.4: An example of phase transition diagram for antenna measurements from [14].The probability of successful recovery of the coecients is a function of the number of eld samples M , the number of unknowns N and the number of non-zero coecients k.
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 3 smn , denoted F smn . The spherical coecients are usually displayed using two triangles, one for each propagating mode s = 1 for TE and s = 2 for TM, using the pattern shown in Fig. II.5.

  Fig. II.7a. It is worth pointing out the oversampling at the pole of this technique. (a) Equiangular sampling. (b) Igloo sampling [10].

Figure II. 7 :

 7 Figure II.7: Two dierent spherical sampling strategies over the hemisphere.

  Fig. II.7b, allows to avoid the oversampling near the poles induced by the equiangular sampling while enabling fast spherical scans with a constant elevation θ step and and constant azimuthal ϕ step at a given elevation.

  norms are illustrated in Fig.II.8. 

Figure II. 8 :

 8 Figure II.8: Unit balls (the set of vectors having unity norm) for p , p = 1/2, 1, 2 and ∞.

Figure II. 9 :

 9 Figure II.9: Geometrical visualization of the sparsity induced by 1 minimization for a linear system Ax = y.

  determined systems closely related to least-square solutions. The second one emulates a fast measurement procedure with only M BP DN = 630 measured eld samples and spherical coecients are found by solving the BPDN problem. The reconstructed elds from both coecient identication strategies are compared to the simulation by displaying their magnitudes in Fig. II.10 following the Ludwig-3 denitions of co-and cross-polarizations [25]. The far-eld radiated by the horn is accurately reconstructed down to very low magnitude levels in both cases despite the lower number of samples, even for the fast testing sampling. Thus, a signicant reduction of the number of eld samples is achieved while preserving the accuracy of the eld reconstruction. We have M T SV D = 0.68M H and M BP DN = 0.2M H . In other words, the number of eld samples used for the sparse recovery approach is ve times smaller than the one advocated by the generalized Nyquist sampling rate technique. (a) Field co-polarization magnitudes. (b) Field cross-polarization magnitudes.

Figure II. 10 :

 10 Figure II.10: Simulated and reconstructed eld magnitudes over some cutting planes on the co-polarization and cross-polarization components.

  Figure II.11: (a) Typical L-curve observed for Tikhonov regularization, (b) reconstruction metric with respect to the true signal. The criterion recommends the penalty term value λ ≈ 1 .

Figure II. 12 :

 12 Figure II.12: Illustration of the reconstructed signals using noisy data sample for several penalty terms λ. The choice λ = 1 × 10 -6 leads to an under-regularization (oscillations), λ = 1 is the penalty term given by the criterion and λ = 100 induces an over-regularization (also known as dampening).

  is mathematically dened at any point of a smooth curve as the inverse radius of the circle approximating at best this curve around the considered point, also known as the osculating circle. The curvature of the curve in Fig. II.13 at the point P is 1/R. Consequently, we recommend to use the value σ that corresponds to the maximum curvature of the curve σ → ( Axy 2 , λ x 1 ).

Figure II. 13 :

 13 Figure II.13: The curvature of the curve at the point P is given by the inverse of the radius R of the best approximating circle of the curve at that point.

  3) and (I.5), respectively. As shown by the results in Fig. II.14, the best reconstruction metrics values corresponds to the corner of the curve, captured by the maximum curvature, which conrms the validity of the proposed strategy. In these gures, the grey area represents the zone where the error parameter σ should be chosen. This zone is precisely the one of the best eld interpolations as shown by the values of the comparison metrics.

Figure II. 14 :

 14 Figure II.14: Fast measurement of the reectarray at 12 GHz: (a) L-curve in BPDN and its normalized curvature, (b) corresponding metrics values. The green line σ κ is the value returned by the automatic research algorithm.

Figure II. 15 :

 15 Figure II.15: Fast measurement of the radiating cavity antenna at 6 GHz: (a) L-curve in BPDN and its normalized curvature, (b) corresponding metrics values. The green line σ κ is the value returned by the automatic research algorithm.

Figure II. 16 :

 16 Figure II.16: Phase transition diagram sketch with its three regions: failure, transition and success of the solution identication as a function of its sparsity ζ (the number of non-zeros in the solution) and the sampling ratio δ (number of eld samples over the total number of coecients).

  Fig. II.4 comes from. Prof.

Figure II. 17 :Figure II. 18 :Figure

 1718 Figure II.17: Two dierent spherical sampling strategies tested using PTD over the hemisphere.

Fig. II. 20 .Figure II. 20 :

 2020 Figure II.20: Estimated eld acquisition duration at IETR as a function of the DUT maximal size in wavelength λ. Std stands for the standard spherical measurement method
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  21 and the comparison to the reference over the cutting planes in Fig.II.22. An excellent agreement between the reconstructed and densely measured eld over the cutting planes is achieved despite the signicant reduction in the number of samples. The proposed fast antenna characterization approach has allowed to bring down the eld acquisition duration from 62 to 26 hours.

Figure II. 21 :

 21 Figure II.21: Normalized magnitude of the 3D reconstructed radiated eld of the pillbox antenna at 270 GHz.

Figure III. 1 :

 1 Figure III.1: The n-spectrum of the SW expansion of a Hertz dipole located at dierent electric distances kr 0 from the origin [1].

  [811]. As illustrated in Fig. III.2, an inappropriate positioning generates many non-zero spherical coecients while describing the same antenna yet.

  (a) Rotated and shifted dipole. (b) Centered dipole

Figure III. 2 :

 2 Figure III.2: Dipole positioning and corresponding SW spectra [6].

3 .

 3 Figure III.4: Translation of the coordinate system by a vector d. The corresponding minimal spheres enclosing the AUT are S, S with radii a, a respectively.

  These considerations are represented in Fig. III.5. The intuitive explanation is that any rotation around the origin does not change the radius of the minimum sphere enclosing the AUT and thus the truncation order N in (II.15) of the SW series. Conversely, any translation does modify this radius and therefore N .

Figure III. 5 :

 5 Figure III.5: Representation of a SW spectrum and the eects of a change in the coordinate system. Rotations will only have an eect over the order m while translations impact both the orders and the degrees n. The dashed region represents the area of the spectrum where n ≤ n 0 , a xed, arbitrary, degree.

Figure III. 6 :Figure

 6 Figure III.6: Normalized spherical coecients for s = 1 of the horn antenna at 30 GHz at several positions. Translations are performed along the z-axis.

  Fig. III.6 are shown in Fig. III.8. The 0λ case means that the origin is centered around the phase center of the horn. The spread of signicant modes to higher degrees n leads to greater values of the n-spectrum P (n) in these regions.

Figure III. 8 :

 8 Figure III.8: Normalized n-spectra of the horn antenna at 30 GHz for dierent translations over the z-axis.

35 Figure III. 9 :

 359 Figure III.9: Reconstruction accuracy in EES for 100 trials (median in plain lines and envelopes in dotted ones) for two spherical spectra families of same size N c and same number of non-zero coecients (30 %) but dierent power distributions over the degrees n (constrained to n ≤ 25 or n ≤ 35) with respect to the sampling ratio M/N c , M being the size of the eld sample used for recovery.

  Fig. III.10, corresponding to the n-spectra of the horn at 30 GHz for several positions shown in Fig. III.8 and the spectra in Fig. III.6.

(III. 6 )

 6 It is clear that a cumulative spectrum converging faster to 1 has a larger mean value. Mean values for the cumulative spectrum curves of the horn in Fig. III.10 are shown in Table

Figure III. 10 :

 10 Figure III.10: Cumulative n-spectra H of a horn antenna at 30 GHz for dierent translations over the z-axis. A better concentration on low degrees n modes makes the curve approaching 1 for lower n-values.

A

  d x = y with near-or far-eld data, with A d the translated version of the SW contained in A. Ax = y d where y d contains electric far-eld data and computed according to (III.3). This antenna position procedure is carried out in post-processing, once the AUT measurements are done. No additional measurements are required. III.4.d Optimization of antenna position using gradient descent.

#

  Computation of the numerical gradient D 8:

Figure III. 11 :Figure III. 12 :Figure III. 13 :

 111213 Figure III.11: Normalized surface current magnitude of the 11-patch array (average value over one phase cycle): measurement coordinate system (x, y) (geometric center) and optimized one (x , y ).

  The optimization process starts from the center of the satellite and converges to an optimized position of d * = (0.3, 125.6, 102.9) mm that turns out to be fairly close to the coordinates of the antenna geometric center. The spectra are represented in Fig. III.15 and the modied cumulative n-spectra H mod are shown in Fig. III.16. The returned optimized position is close but not equal to the geometric center, resulting in a dierent power distribution.Indeed, we observe more power at very low degrees when centered at the antenna but the optimized position allows a faster decrease of the contained power for degrees n ≥ 10, allowing for a slightly more accurate far-eld reconstruction for the considered data. The obtained EES of the reconstructed eld from the same initial data over a dense reference sampling are respectively -43.1 dB and -43.6 dB for the centered on the antenna and the optimized position from the center of the satellite.

Figure III. 14 :Figure III. 15 :Figure III. 16 :

 141516 Figure III.14: Simulated model of the antenna (a patch) on a platform satellite (a simplied version of ANGELS) with the patch antenna at 11 GHz and the measurement coordinate system.

Figure III. 17 :

 17 Figure III.17: Normalized spherical coecients for s = 2 of the LWA at 18 GHz (a) for the measurement coordinate system origin position and (b) with optimized position .

Figure III. 18 :

 18 Figure III.18: Normalized magnitude of the eld co-and cross-polarization components over the cutting plane ϕ = 90°of the LWA at 18 GHz .

  Fig. III.20, leading to objective function H mod values of -22.2 dB and -26.6 dB with proportion of signicant coecients of 15 % and 6 % respectively. The cutting plane in magnitude for comparison to the reference is shown in Fig. III.21.

Figure III. 20 :

 20 Figure III.19: Phases of the reconstructed eld co-and cross-polarization components around the main lobe over the cutting plane ϕ = 90°°of the LWA at 18 GHz .

Figure III. 21 :

 21 Figure III.21: Normalized magnitude of the eld co-and cross-polarization components over the cutting plane ϕ = 0°of the horn at 320 GHz.

Figure III. 22 :

 22 Figure III.22: Phases of the reconstructed eld co-and cross-polarization components around main lobe over the cutting plane ϕ = 0°the horn at 320 GHz.

Figure III. 23 :

 23 Figure III.23: Eective sparsity k -40 for χ 0 = 0°, containing the minimum of k -40 , its GP estimation and the 1 norm found by the SOA method of the spherical coecients for the 12 GHz reectarray measurement. The GP curve is derived from the discrete set of values represented by black markers.

  Fig. III.24.

Figure III. 24 :

 24 Figure III.24: Normalized spherical coecients of the waveguide array simulated at 50 GHz.

zFigure III. 25 :

 25 Figure III.25: (a) Normalized electric far eld radiated by the waveguide array at 50 GHz (z chosen by GP) and (b) the cutplane represented by the green doted line in.

Figure III. 26 :

 26 Figure III.26: Normalized electric far-elds radiated by: (a) the single beam Luneburg lens antenna at 12 GHz, (b) the dual beam version, (c) the radiating cavity antenna at 6 GHz and (d) the reectarray at 12 GHz. Cross markers z are the position of the z-axis after the rotation optimized by Gaussian processes.

  Fig. III.27a.

Figure III. 27 :

 27 Figure III.27: Normalized spherical coecients for s = 1 of the Luneburg Lens antenna with single beam for the angles found by (a) the SOA method, (b) the proposed approach and (c) default position.

. 3 .

 3 The choice of rotation angles is not trivial for most cases and cannot be easily predicted in advance, as shown by the z markers in the far-eld mappings in Fig.III.26. 

Figure III. 29 :

 29 Figure III.28: The horn at 10 GHz in the MVG StarLab.

  Figure III.32: Normalized reconstructed eld phases of the horn at 10 GHz at the shifted position.

  is given in Fig. IV.1. Simulations of a reector antenna have been performed for various positions and orientations of the feed/reector, leading to the construction of a basis enabling a reduced number of samples. (a) Perturbations on the feed and reector positions. (b) Reduced spherical sampling (red dots).

Figure IV. 1 :

 1 Figure IV.1: Fast antenna characterization using simulations of the AUT [6].

Fig

  Fig. IV.2.

Fig. IV. 2 .

 2 Fig. IV.2. The Love's formulation, also known as zero internal elds constraint, for which

(IV. 3 )

 3 By doing so, the original integral equation (IV.1) is approximated by an easier to solve coecient identication problem, where the unknowns are the weights j k and m k .

Figure IV. 4 :

 4 Figure IV.4: Illustration of the support of a RWG basis function: is the length of the common edge, T ± denote the two triangles and r ± the position vectors from the vertices opposite to the common edge. A positive current is chosen to ow from T + to T -.

  Fig. IV.5 and ω l are the corresponding weights of the Gauss-Legendre quadrature. For the square, they are simply dened as ω l = 16/81.

  Figure IV.6: Magnetic and electric equivalent currents (imaginary part) projected on a mesh over a sphere.

Figure IV. 7 :

 7 Figure IV.7: Equivalent magnetic currents M eq (real part) normalized with respect to the theoretical ones on the aperture plane. The rectangular aperture is displayed and meshed by squares of side λ/4.

Figure IV. 8 :

 8 Figure IV.8: Electric and magnetic equivalent currents (imaginary part) over a box enclosing a E-plane horn. These currents are computed from the theoretical far eld samples.

Figure IV. 9 :

 9 Figure IV.9: Example of the rst equivalent characteristic current distributions over a box (real part).

  Figure IV.10: Normalized magnitudes of the eight rst characteristic radiated eld modes, in uv-maps, corresponding to the current distributions in Fig IV.9.

ForFigure IV. 11 :

 11 Figure IV.11: Normalized singular value distribution of the far-eld radiation matrix of a sphere of radius 2λ = 0.2 m. The truncation index T for R = -50 dB corresponds to the number of SW in the expansion for N = 19.The step widths correspond to the number of SW for each degree n. A similar pattern can also be found in[13].

  The results of the reconstruction of several SW are shown in Fig. IV.12. The truncation index T for a noise oor R = -50 dB always leads to an ENL lower than R for all tested SW, validating numerically the proposed criterion (IV.10).
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Figure IV. 12 :

 12 Figure IV.12: ENL between the SW, F smn , and y, its estimation from the truncated radiation matrix A T . The truncation index T = 798 ensures a proper reconstruction of all SW up to N = 19. Unmarked dashed curves show the reconstruction performances of other SW for degrees n ≤ 19.

Figure IV. 13 :

 13 Figure IV.13: Normalized singular value distributions for two sets of equivalent surfaces having the same area. The light grey curves correspond to surfaces whose area is twice larger than the colored ones.

  S) N SW .(IV.13) where A(S) is the area of the surface of the minimal sphere and N SW = 2( ka +n 1 )( ka + n 1 )+2 with n 1 a positive integer, as seen in Chapter II. The order of the antenna characterization model is deduced only from the area of the equivalent surface Σ and the maximum dimension of the AUT. An illustration of this statement is shown in Fig.IV.14 and a comparison between the number of degrees of freedom given by Bucci et al. in[5] in (IV.12) and the order of our model given by (IV.13) of T is provided in Fig. IV.15. We clearly observe very close behaviours between both methods.

Figure IV. 14 :

 14 Figure IV.14: Truncation index T (i.e. the number of unknowns) as a function of the area of Σ, the surface enclosing the AUT, for various shapes and a noise oor R = -50 dB. Three dierent margins for the number of SW, N SW , n 1 = 5, 6, 7 are shown. Note that a cube of side length 4λ has an area of 96 λ 2 .

  3.d, we aim at reconstructing each of the characteristic modes u k , k = 1, . . . , T from only M S sampling points by solving ν (s) = arg min

  Fig. IV.16(a). Note that both M s and T logically increase when the noise oor level R is reduced.The inuence of the surface shape Σ on the measurement ratio has also been investigated. The results, shown in Fig.IV.16(b), demonstrate that a measurement ratio of1.25 is sucient for all shapes and by extension most antenna geometries.

Figure IV. 16 :

 16 Figure IV.16: Mean ENL reconstructions of the radiated modes for a noise oor R = -50 dB. (a) Comparison between sampling strategies: the grey curves are obtained for R = -40 and -60 dB with an igloo sampling. (b) Comparison of various shapes using an igloo sampling.

The antenna is measured at 10

 10 GHz in the MVG multi-probe system StarLab [22] of IETR-INSA, the measurement conguration is shown in Fig. IV.17. The reference and the measurement eld samplings are generated in far eld at any position using the spherical coecients returned by the MVG software.

Figure IV. 17 :

 17 Figure IV.17: Picture of the X band horn in the MVG StarLab system.

Figure

  Figure IV.18: (a) Representation of the three equivalent current surfaces Σ (sphere, cylinder and box) used for the horn characterization. (b) Normalized singular value distribution of the corresponding radiation matrices.

Figure IV. 19 :Figure IV. 20 :

 1920 Figure IV.19: ENL reconstruction metric between the reference eld y and its estimation y using the reduced order model for a noise oor of R = -45 dB for various sample sizes M S . The vertical lines are the number of samples corresponding to an oversampling of χ = 1.25 for the respective shapes.

Figure IV. 22 :Fig

 22 Figure IV.22: ENL reconstruction metric between the reference eld and its estimation using the reduced order model as a function of the measurement ratio (or oversampling factor).

Figure IV. 23 :

 23 Figure IV.23: Normalized reconstruction of the eld components in the main cutting plane in ϕ for several oversampling factors.

Figure IV. 24 :

 24 Figure IV.24: Estimated eld acquisition durations at IETR using the standard approach and the proposed fast antenna characterization procedures.

  tern reconstruction without resorting to any additional measurement. More specically, techniques to optimize the positioning of the antenna under test from the spherical wave spectrum of its radiated eld, have been developed and described. In a nutshell, the appropriate choice of the antenna position and orientation produces a more compact spherical wave spectrum which eases the radiated eld interpolation. These approaches harness the analytical formulas for translation and rotation of the spherical waves. This antenna positioning technique has been validated numerically and experimentally in various representative and frequently encountered scenarios including the case where antennas are mounted on a structure that inevitably contributes to the radiation.The achievement of this PhD work has required the development, the implementation and validation of several codes as well as the use and adaptation of existing mathematical routines. Thus, electromagnetic modelling methods have been developed such as the spherical wave expansion of the radiated eld and a surface integral equation method of moment. Mathematical tools related to spherical waves have been implemented such as the translation and rotation of the spherical waves. Finite element based tools have been used, adapted and implemented such as the surface meshing and the current visualization.

Figure V. 2 :

 2 Figure V.2: Roll-over-azimuth positioning system for spherical measurements of IETR-UR1.

Figure V. 3 :

 3 Figure V.3: Modelling of the speed variation through time

σ 1 ← σ 2 , P 1 ← P 2 27 :σ 2 ← σ 3 , P 2 ← P 3 28 :σ 3 ←

 122723283 10 x 1 +(x 4 -x 2 ) 29:P 3 = ( Ax σ 3 -y 2 , x σ 3 1 )30: return σThe values for m < 0 are simply derived from the relations mP m n (cos θ) sin θ = -|m|P |m| n (cos θ)

  with the nancial support of the CNES 1 and the LNE 2 . Among their numerous activities, these two institutions are involved in the characterization of radiating structures and can therefore directly benet from the results of this thesis. Besides, the last part of this thesis (use of reduced order model for a fast antenna characterization) has been done in collaboration with Prof. M. Mattes from the DTU 3 in Denmark.

2 in the IETR laboratory in collabor- 1 Institut d'Électronique et des Technologies du numéRique 2 Université de Rennes 1 INTRODUCTION 15 ation and

  boils down to solve the standard least square problem. As the regularization parameter λ increases, the solution of the least square problem is more and more forced to exhibit the smallest possible energy, x 2 .The curve dened by λ → ( Axy 2 , x 2 ) presents typically a L-shape in 2 regularization contexts, as displayed in Fig. II.11a. It has been shown that the most relevant choice of λ without further assumptions is given by the value corresponding to the corner of this curve[27]. We illustrate this criterion with an example in Fig.II.11 and II.12.

The quantity x λ denotes the solution of the 2 regularization problem (II.30) for λ as the regularization parameter. A true signal y 0 , displayed in Fig.

II

.12 is reconstructed using 21 noisy data points, which is modelled by Gaussian white noise, for a Discrete Cosinus Transform (DCT) matrix with 101 coecients, or unknowns.

Table III

 III 

	Translation Distance	0λ	1λ	2λ	3λ
	H	0.84	0.80	0.77	0.73
	H mod dB	-69.1	-67.7	-52.4	-24.1

.1: Means of the cumulative n-spectra of the Horn at 30 GHz for Several Translations over the z-axis:

Table III

 III 

	.2: Characteristics of the investigated antenna measurements:
	Antenna	Size a(λ) Coef. N c Meas. set Subsample
	Lens 12 GHz	6	4606	9746	3702
	RCA 6 GHz	2.6	1456	2332	1088
	RA 12 GHz	6	4606	10970	2628

Table III .

 III 3: EES Values, Corresponding Eective Sparsities k -40 :

		k -40 (%)			EES (dB)	
	Antenna	Raw	SOA	GP	Raw	SOA	GP
	Lens (single)	62	43	41	-46.9	-50.0	-51.2
	Lens (double)	58	37	37	-43.6	-48.3	-49.3
	RCA	33	15	15	-37.2	-39.0	-39.1
	RA	40	40	29	-48.0	-48.0	-50.9

  independent durations for 6 parameters to estimate. They are gathered into the following tables:

	Angle	Acceleration (deg/s 2 )	Cruising speed (deg/s)
	ϕ	5.2		17.5
	θ	1.4		4.3
		Table V.2: Estimated engines parameters.
		Time considered		Value (s)
		Stop at each point t stop	2.5
		Polarization change t pol

13 Table V.3: Additional estimated duration.

  C 2 ← C(P 1 , P 2 , P 3 ), Curvature at P 2 C 3 ← C(P 2 , P 3 , P 4 ), Curvature atP 3 Ax σ 2 -y 2 , x σ 2 1 )Computing the curvature C 2 at σ 2 , C 2 ← C(P 1 , P 2 , P 3 ) 4 ← σ 3 , P 4 ← P 3 21:σ 3 ← σ 2 , P 3 ← P 2 22: σ 2 ← 10 (x 4 +ϕx 1 )/(1+ϕ) Ax σ 2 -y 2 , x σ 2 1 )

	8: while σ 4 -σ 1 σ 4	> ε do
	9:	
	10:	
	11:	while C 3 < 0 do
	12:	
	16:	
	17:	
	18:	if C 2 > C 3 then
	19:	σ ← σ 2
	20:	
	23: P 2 = ( 24:

σ 4 ← σ 3 , P 4 ← P 3 13: σ 3 ← σ 2 , P 3 ← P 2 14:

σ 2 ← 10 (x 4 +ϕx 1 )/(1+ϕ) 15:

P 2 = ( σ

Available at https://www.ietr.fr/ plateforme-m2ars-manufacturing-measurement-analysis-radiating-systems.
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urement considerations. This number depends on the area of the surface enclosing the antenna under test. This work conrms, and somehow extends by means of numerical tools, the fundamental and pioneering analytical derivations on the minimum non-redundant sampling by Bucci et al. [5]. The proposed method has been applied to characterize the far eld of two antennas at 10 and 230 GHz, respectively. These measurements, carried out in two dierent facilities, validate experimentally the proposed approach and show its potentialities.

IV.2.d Radiation matrix construction

The boundary element method can be implemented in various manners. Our choices regarding the basis functions f k , the numerical integration rule and the matrix construction are now given.

Linear square elements

The equivalent surface Σ has rst been approximated by square cells. The basis functions are then dened by a couple of adjacent square cells. In each cell, the current ows in the two directions determined by each couple of parallel edges, as displayed in 

Triangular cells and RWG basis functions

The equivalent surface Σ can also be approximated by triangles. This choice provides a greater exibility to approximate a given surface than the use of square cells as triangular ones indeed enable to better t curved surfaces (such as spheres or cylinders) than square cells. The Rao-Wilton-Glisson (RWG) [16] basis functions are a widely spread choice for its ease of computation while ensuring continuous normal uxes across the common edge of two adjacent triangles. Each couple of adjacent triangles, sharing an edge, denes a basis function, as illustrated in Fig. IV.4, given by

where A ± are the areas of the triangles T ± , respectively, and r ± the position vectors from the vertices of each triangle that are opposite to the common edge. Note that three elements are required per triangle cell instead of four in the case of square cells.

Numerical integration

Each integral term in (IV.3) is approximated for a given observation position r using the Gauss-Legendre quadrature rule. The 9-point version of the quadrature rule is used as given in [17], either for triangles when using RWG functions or for square when using square cells. 

Geometrical description

The measurement system is a roll-over-azimuth one. It allows a scan of the full sphere. 

Summary of the procedure

The igloo sampling strategy is used at IETR for reasons described in Section I.3.c. AS a reminder, it is dened as δϕ = δθ/ sin θ, so it has a constant azimuth step δϕ per sampled Θ position, which is also sampled with a constant step. Each θ, or latitude cut, is scanned twice, once for each polarization. The scan is done step-by-step, the positioning system stops completely at each sampling position to perform the measurement of the eld at the desired frequencies. The result estimation duration are given by: the time required to run through the whole sampling according to the IETR measurement procedure, the change of In all cases, the function v(t) has an axial symmetry according to t = tα 2 , thus:

The speed satises v(t) = min{v max , at} for t ∈ 0, tα 2 where a and v max are illustrated in The cruising speed v max is not reached: then v(t) = at for t ∈ 0, tα 2 . So dα = a tα The cruising speed v max is reached:

a and nally:

Let us assume that the AUT is at the position θ i and at the rst desired point in ϕ. Let M i the number of sampling points located in this θ-cut and T i the required time to go through the M i ϕ-points. We have:

where t ϕ,i is the time required between two consecutive ϕ-points of the sampling for the i-th θ cut, t stop the stopping time. The total time T of the whole eld acquisition is

where K = b θ δθ + 1 is the number of latitude cuts, b θ is the upper bound of the required θ interval (b θ = π/2 for an hemisphere), t pol is the time for polarization change (90°along the ω rotation axis according to Fig. V.2) and t θ is the time required for going from θ i to θ i+1 . Note that each θ cut has to be run through twice, hence the factor 2, but we only change θ once per cycle, except for the last one. Similarly, we do not count polarization change at the beginning and at the end, hence the -2t pol . More specically, for an equiangular sampling, T i is the same for every i and T i = 2π δϕ (t ϕ + t stop ) -t ϕ . 

Estimation of the parameters

C Computation of the Spherical Waves

A SW expansion code of the radiated eld has been developed during the thesis. A naive implementation of the formula in (II.8) and (II.9) leads to three main problems. The factorial terms in the denition of the normalized associated Legendre polynomial in (II.7)

induce overows for high truncation orders N (typically when N goes beyond 80 for the standard complex128 implementation in Python). The term 1 sin θ has to be considered care- fully to avoid a division by 0 at θ = 0 or π. Finally a non-optimized implementation of the SW matrices or transformation coecients rapidly induces unnecessary large computation times. These considerations led to writing a full code for spherical wave evaluation and transformation.

Normalized associated Legendre polynomials

The associated Legendre Polynomials P m n are computed from the following relations

Knowing that P 0 0 (x) = 1 and P 0 1 (x) = x, one can deduce the value of P m n (x) for any n, m ≥ 0 and 1 ∈ [0, 1]. The overowing problem can be avoided by dividing the former expression by n + 1, when computing the values recursively. This results in computing 

Recurrence relations for SW computation

The expressions involved in the denition of the SW are not directly the normalized associated Legendre polynomials but values derived from them. Fortunately, there expressions can also be computed recursively using our previous code for the evaluation of the Legendre polynomials, they also avoid the problematic factor 1 sin θ . They are for the rst terms [3] Abstract: This thesis deals with the characterization of antenna radiation patterns to improve the use of existing measurement systems. Two approaches are proposed in order to speed up the measurement of these radiation patterns, which is achieved by reducing the required number of field samples. The first one exploits the sparse spherical wave expansion of the field radiated by antennas. It only requires to know the maximum electrical dimension of the antenna. The second approach exploits the antenna external geometry and the measurement surface shape in order to build numerically an expansion basis tailored to the characterization problem.

For both techniques, the minimal number of required field samples and an estimation of the field acquisition time at the IETR facilities are given, showing their potentialities to speed up the antenna measurements.

Besides, an optimization strategy of the antenna positioning in post-processing is proposed. This procedure improves the quality of the reconstructed antenna radiation pattern from a given measurement.

All the proposed methods have been validated using numerical and experimental datasets from various antenna types, different operating frequency bands and measured in several facilities, demonstrating thereby their versatility and generality.