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“Have no fear of perfection, you will never reach it.”

(Salvador Dali)

“You cannot hope to build a better world without improving the
individuals. To that end, each of us must work for his own improvement and, at
the same time, share a general responsibility for all humanity, our particular duty

being to aid those to whom we think we can be most useful.”

(Marie Curie)

Dedico a minha familia.
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Abstract

Intensification of water erosion by agricultural activities is one of the main causes
of soil degradation in subtropical regions. In addition to the on-site negative impacts
observed in cropland, the excess of surface runoff increases the transfer of sediments and
contaminants to water bodies, resulting in environmental, economic and social
deleterious effects. The objective of this thesis is to develop and apply original sediment
source fingerprinting techniques in two tributaries of the Uruguay River Basin with
contrasting conditions in terms of geology, land use, management, and soil types,
representative of those found in the drainage area (266,132 km?). The Concei¢do River
catchment (804 km?) is located in upper parts of the Uruguay River Basin. This catchment
is representative of the basaltic plateau, where deep Ferralsols rich in clay and iron
oxides predominate, and are cultivated for soybean, corn and cereals production or
covered with pastures for dairy farming. In contrast, the Ibirapuitd River catchment
(5,943 km?) is representative of the sandstone plateau. With a predominance of shallow
Regosols and sandy Acrisols more sensitive to degradation, it is mainly occupied by
native grasslands of the Brazilian Pampa Biome with extensive cattle ranching, although
irrigated rice fields are also found in lowlands. Moreover, a rapid increase in the surface
area cultivated with soybean in this catchment has been observed in the last twenty
years. Soil samples were collected to characterize land use-based sediment sources and
suspended sediment was sampled at the outlet of these catchments using different
strategies. All samples were analyzed for a panel of properties. Their geochemical
composition, diffuse reflectance spectroscopy properties, radionuclide activities and
magnetic susceptibility were determined to provide a set of potential tracing parameters.

Magnetic and diffuse reflectance spectroscopy analyses were also carried out on
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sediment samples collected on the main stream of the Uruguay River, downstream of its
confluence with both representative tributaries. Results of sediment source contribution
are consistent with field observations. However, as catchment area and source number
increase, more uncertainty is observed. Surface sources (pasture and cropland) were
indicated as the main source of suspended sediment in the Concei¢do catchment,
contributing with approximately 50%. Stream banks provided the second main source of
fine bed sediment, contributing with approximately 35%. Cropland was also found to
provide the main source in the Ibirapuitd catchment, contributing 32% of the sediment
despite occupying only 9.5% of the total catchment area, followed by subsurface sources
(stream bank and gully) with 29%. Unpaved roads and native grassland provided lower
contributions (24 and 15%, respectively) in Ibirapuitd catchment. These results indicate
that the soil conservation practices used in these catchments are not enough to prevent
soil erosion in cropland. Moreover, agricultural activities may enhance erosion and
sediment delivery to the river systems, causing soil impoverishment and contamination
of water resources. Finally, through the comparison of sediment properties of both
tributary catchments, this thesis provided - to our knowledge - the first insights into the
contribution of both contrasting geomorphologic regions to the main Uruguay River. The
sediment samples collected in the bottom deposits of the Uruguay River, had similar
characteristics as the suspended sediment of the Ibirapuita River, indicating the Pampa
region as the main likely source. Despite the associated uncertainties, these results
further increase the current concerns regarding the ongoing land use changes observed
in the Pampa biome. Appropriate soil conservation practices should therefore be urgently
applied in agricultural areas of this region to reduce soil erosion and sediment delivery

to the river systems.
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Resumo

A intensificacdo da erosdo hidrica pelas atividades agricolas é uma das principais
causas da degradacdo do solo em regides subtropicais. Além dos impactos negativos
observados na lavoura, o excesso de escoamento superficial aumenta a transferéncia de
sedimentos e contaminantes para os corpos d'adgua, resultando em efeitos deletérios
ambientais, econ6micos e sociais. O objetivo desta tese é desenvolver e aplicar técnicas
originais de tracagem das fontes de sedimentos em dois tributarios da bacia do rio
Uruguai com condig¢des contrastantes em termos de geologia, uso do solo, manejo e tipos
de solo, representativas das encontradas na area de drenagem (266.132 km?). A bacia
hidrografica do Rio Conceicdo (804 km?) esta localizada na porcio superior da Bacia do
Rio Uruguai. Esta bacia é representativa do planalto basaltico, onde predominam os
Ferralsols profundos ricos em argila e 6xidos de ferro, e sdo cultivados para a producao
de soja, milho e cereais ou cobertos com pastagens para a produgdo leiteira. Em contraste,
a bacia hidrografica do Rio Ibirapuita (5.943 km?) é representativa da planicie de arenito.
Com predominancia de Regosols rasos e Acrisols arenosos mais sensiveis a degradacdo,
é ocupada principalmente por pastagens nativas do Bioma Pampa brasileiro com
pecuadria extensiva, embora os campos de arroz irrigados também sejam encontrados em
terras baixas. Além disso, nos dltimos vinte anos, observou-se um rapido aumento da
superficie cultivada com soja nesta bacia hidrografica. Amostras de solo foram coletadas
para caracterizar as fontes de sedimentos baseados no uso do solo e sedimentos em
suspensao foram amostrados na saida destas bacias utilizando diferentes estratégias.
Todas as amostras foram analisadas para um painel de propriedades. Sua composicao
geoquimica, propriedades de espectroscopia de reflexdo difusa, atividades de
radionuclideos e suscetibilidade magnética foram determinadas para fornecer um

conjunto de parametros tracadores potenciais. Também foram realizadas analises por
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espectroscopia de reflexdo difusa e suscetibilidade magnéticas em amostras de
sedimentos coletadas no Rio Uruguai, a jusante da confluéncia com ambos os tributarios
representativos. Os resultados da contribui¢do das fontes de sedimentos sdo consistentes
com as observacdes de campo. Entretanto, a medida que a area de captagdo e o numero
de fontes aumentam, mais incerteza é observada. As fontes superficiais (pastagens e
lavouras) foram indicadas como a principal fonte de sedimentos em suspensao na bacia
hidrografica do Rio Conceigao, contribuindo com aproximadamente 50%. Os bancos do
canal de drenagem foram a segunda fonte principal de sedimentos em suspensao,
contribuindo com aproximadamente 35%. As lavouras também foram indicadas como a
principal fonte na bacia do Ibirapuitd, contribuindo com 32% do sedimento, apesar de
ocupar apenas 9,5% da area total da bacia, seguida pelas fontes subsuperficiais (bancos
do canal de drenagem e vogorocas) com 29%. Estradas ndo pavimentadas e campos
nativos proporcionaram contribuicdes menores (24 e 15%, respectivamente) na bacia
hidrografica do Ibirapuita. Estes resultados indicam que as praticas de conservag¢do do
solo utilizadas nestas bacias ndo sao suficientes para evitar a erosdo do solo nas lavouras.
Além disso, as atividades agricolas podem aumentar a erosdo e a entrega de sedimentos
aos sistemas fluviais, causando empobrecimento do solo e contaminacdo dos recursos
hidricos. Finalmente, através da comparagdo das propriedades dos sedimentos de ambas
as bacias tributarias, esta tese forneceu - ao nosso conhecimento - os primeiros
conhecimentos sobre a contribuicao de ambas as regioes geomorfoldgicas contrastantes
para o Rio Uruguai. As amostras de sedimento coletadas no fundo do rio Uruguai,
apresentaram caracteristicas semelhantes as do sedimento em suspensdao do rio
Ibirapuitd, indicando a regido do Pampa como a provavel fonte principal. Apesar das
incertezas associadas, estes resultados aumentam ainda mais as atuais preocupacgdes
com as mudanc¢as no uso do solo observadas no bioma Pampa. Portanto, praticas
apropriadas de conservacdo do solo devem ser urgentemente aplicadas em areas
agricolas desta regido para reduzir a erosao do solo e a entrega de sedimentos aos

sistemas fluviais.
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Résumé

L'intensification de 1'érosion hydrique par les activités agricoles constitue 1'une
des principales causes de dégradation des sols dans les régions subtropicales. En plus des
impacts négatifs observés a 'amont, l'exces de ruissellement accroit le transfert de
sédiments et de contaminants vers les masses d'eau. L'objectif de cette étude est de
développer des techniques originales de tracage des sources de sédiments dans deux
affluents-type du fleuve Uruguay présentant des conditions contrastées en termes de
géologie, d'utilisation des terres, de gestion et de types de sols, représentatifs de ceux que
I'on trouve dans la zone de drainage (266 132 km?). Le bassin de la riviére Concei¢do
(804 km?) est représentatif du plateau basaltique ol prédominent les Ferralsols profonds
riches en argile et en oxydes de fer, ou sont cultivés le soja, le mais, les céréales et ou on
trouve des paturages pour l'élevage laitier. Au contraire, le bassin de la riviéere Ibirapuita
(5 943 km?) est représentatif du plateau gréseux ou prédominent les Regosols et Acrisols
plus sensibles a la dégradation, les prairies indigénes utilisées pour I'élevage bovin
extensif prédominent, bien que l'on trouve également des riziéres irriguées dans les
plaines alluviales. Des échantillons de sol ont été prélevés pour caractériser les sources
de sédiments liées a l'utilisation des terres. Des échantillons de sédiments en suspension
ont été collectés a 'exutoire de ces bassins versants en utilisant différentes stratégies.
Tous ces échantillons ont été analysés avec plusieurs techniques. Leur composition
géochimique, leurs propriétés de spectroscopie de réflectance diffuse, leurs activités en
radionucléides et la susceptibilité magnétique ont été déterminées afin de fournir un
ensemble de parametres de tracage potentiels. Des analyses magnétiques et de
spectroscopie ont également été réalisées sur des échantillons de sédiments collectés sur
le cours principal du fleuve Uruguay, en aval de la confluence avec les deux affluents

représentatifs. Les résultats de la contribution des sources de sédiments sont cohérents
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avec les observations sur le terrain. Cependant, plus la superficie du bassin versant et le
nombre de sources augmentent, plus les incertitudes sont importantes. Les sources
superficielles (paturages et terres cultivées) ont été indiquées comme la principale
source de sédiments dans le bassin de Conceicdo, avec environ 50% d’apports. Les berges
ont fourni, quant a elles, la seconde source de sédiments, avec une contribution d'environ
35%. Les terres cultivées se sont également avérées étre la principale source de
sédiments dans le bassin d'Ibirapuitd, fournissant 32% des sédiments bien qu'elles
n'occupent que 9,5% de la surface totale du bassin, suivies par les sources de subsurface
(berges et ravines) avec 29%. Les routes et les prairies indigenes ont fourni, au contraire,
des contributions bien plus faibles (24 et 15%, respectivement). Ces résultats indiquent
que les activités agricoles peuvent augmenter 1'érosion et 1'apport de sédiments dans les
systéemes fluviaux, provoquant l'appauvrissement des sols et la contamination des
ressources en eau. Enfin, en comparant les propriétés des sédiments des deux affluents-
type, cette thése a fourni - a notre connaissance - la premiére estimation de la
contribution de ces deux régions géomorphologiques contrastées aux sédiments du
fleuve Uruguay. Les échantillons de sédiments collectés dans le lit du fleuve Uruguay
présentaient des caractéristiques similaires a celles des sédiments en suspension du
fleuve Ibirapuitd, ce que indique que la Pampa en constitue la source principale. Malgré
les incertitudes associées, ces résultats renforcent les préoccupations actuelles en lien
avec les changements d'utilisation des terres observés dans la Pampa. Il est donc urgent
de mettre en ceuvre des stratégies de conservation des sols dans les zones agricoles de
cette région afin de réduire 1'érosion des sols et 'apport de sédiments aux systémes

fluviaux.
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1 INTRODUCTION

Water erosion intensified by agricultural activities is one of the main factors of soil
degradation in subtropical regions (Golosov and Walling, 2019). The increase of soil
erosion by human activities can generate several negative impacts on the environment.
On-site, erosion reduces the productive potential of soils as a consequence of nutrient,
water and soil losses, which are accelerated in the absence of conservation practices
(Bertol etal.,, 2017; Londero et al., 2018; Ramos et al., 2019). Off-site, the excess of runoff
and erosion increases the transfer of sediment and contaminants to water bodies, causing
the siltation and the eutrophication of rivers and reservoirs (Bennett et al., 2001). At the
same time, rivers supply the main source of water for large urban centres along with a
potential source of energy for electric power generation. Thus, any action carried out in
ariver catchment will have direct and/or indirect consequences for the society as a whole
(Boardman et al., 2019; Telles et al., 2011).

Studies conducted at the river catchment scale provide information that relate all
these impacts, since the river integrates all the processes that occur in its drainage area,
receiving and transporting the sediments and contaminants generated further upstream
(Lloyd etal., 2019; Minella et al., 2014a). During the last decade, several studies have been
carried out in river catchments of southern Brazil to assess the impact of agriculture on
water resources. In the framework of long-term monitoring programmes carried out in
river catchments such as Arvorezinha catchment (Minella et al., 2017b, 2014b), the
Guaporé River (Le Gall et al.,, 2017; Tiecher et al., 2017c; Zafar et al,, 2016), and the
Conceicao River (Tiecher et al., 2018), it was found that croplands provide the main
source of sediment and contaminants due to the absence or the inadequate
implementation of soil conservation practices for surface runoff control.

Recently, siltation and eutrophication of the reservoir of the Salto Grande
Hydroelectric Power Plant built in 1980 on the Uruguay River have been reported by
technicians and engineers who manage the dam, as it has accumulated large quantities of
sediments presumably produced in the agricultural land areas located to the northwest
and southwest of Rio Grande do Sul (RS), the western part of Santa Catarina State (SC),
forests and grasslands of north-eastern Argentina, and paddy fields and grasslands of
northern Uruguay. The Uruguay River basin drains most of the RS state territory (57% of

the total area), where land use and occupation are dominated by agricultural, livestock



and agro-industrial activities (Figure 1). At the same time, the Uruguay basin drains about
50% of the territory of SC, including its entire western region, in which intensive farming,
with high population and industrial densities predominate across the catchments of the
Peixe River and the Chapecoé River. Currently, despite the concerns associated with water
quality, there is a lack of quantitative information on the amount of sediment
accumulated in the Salto Grande reservoir, which potentially reduces the lifetime of the
reservoir. Information regarding the potential sources supplying this material is also
lacking.

The study of erosion processes and sediment transfer in sub-basins that drain into
the Uruguay River is a way to understand the fragility of distinct economically significant
regions for Brazil. Regions with distinct physiographic characteristics that drain into the
Uruguay River are affected by processes of sediment generation and transfer that are still
unknown. The understanding of these phenomena at the catchment scale can help to
design specific conservationist farming strategies for each of the regions. Besides that,
the identification of the main regions contributing with sediment and contaminants to
the Uruguay River will assist in directing efforts to the regions with the greatest
problems. Therefore, this thesis aims to characterize the main sediment transfer
processes and to quantify the contribution of each sediment source across the Uruguay
River basin, which covers an area of 365,000 km?, 57% of which is located in the Brazilian
territory, 31% in Uruguay and 12% in Argentina. As a first step, the current thesis
dissertation will focus on improving our understanding of the processes of erosion and
sediment transfer in the Brazilian part of this river basin. To this end, the main erosion
and sediment transfer processes will be investigated in two tributaries of the Uruguay
River, representing the two main contrasting geomorphological regions. More
specifically, it seeks to evaluate the impact of land use and management on sediment
transfer processes, making a critical evaluation of the natural and anthropogenic factors
involved. In addition, this thesis will deal with methodological questions regarding the
technique for identifying sediment sources, with an emphasis on the differences
occurring when implementing different types of tracers in homogeneous or
heterogeneous catchments, in terms of soil type, parental material and land use.

This thesis is related to two main research projects that aim to assess the impact
of agricultural land use and management on water quality, energy and food production

capacity, which provided financial support for field and laboratory activities. The most



recent project (NEXUS Pampa Biome) address the so-called MCTI/CNPq N° 20/2017
action - Nexus II: Research and Development in Integrated and Sustainable Actions for
the Guarantee of Water, Energy and Food Security in the Pampa, Pantanal and Atlantic
Forest Biomes, which is entitled "Livestock production systems in the Ibirapuitd River
Catchment and their relationship with water and energy in food production”, under the
coordination of Professor Dr. Vicente C. P. Silva of the Federal University of Santa Maria.
The investigations carried out in the Ibirapuita River catchment presented in this
doctoral project contribute to meet the demands of this large project linked to ensuring
water, energy and food security, discussing the impact of soil degradation by erosion on
food production and the availability and quality of water.

The second project, initiated in 2014 and extended until 2018, is a cooperation
project between Brazilian universities and French research institutions of the
CAPES/COFECUB program (Call 19/2014, n® 870/15). The project entitled "Use of
radionuclides and geochemistry in soils and sediments to quantify erosion rates and
identify sediment and pollutant sources in agricultural catchments to support the
development of soil conservation measures"”, coordinated by Professor Dr. Jean Paolo
Gomes Minella of the Federal University of Santa Maria and by Dr. Olivier Evrard of the
Laboratory of Climate and Environmental Sciences (LSCE) supervised by the National
Scientific Research Center (CNRS) of France, the French Atomic Energy Commission
(CEA) and the University of Versailles/Paris-Saclay. The current doctoral thesis fits in the
continuation of studies related to the CAPES/COFECUB project already carried out in the
Conceicao river catchment. Together with the studies to be carried out in the Ibirapuita
River catchment, we will explore in more details the techniques developed for identifying
the sources of sediment and improve these methods for implementing them in regions
with limited information on soil and sediment characteristics, starting as an initial step
to understand the main sources of sediment contributing to such a large river basin as
that of the Uruguay River. Besides this, this CAPES/COFECUB project granted my fourteen

months’ doctoral stay in France (November 2018 - December 2019).
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Figure 1.1. Uruguay River basin and the studied tributaries - Concei¢do River and
Ibirapuita River catchments.

The doctoral thesis document is organized in six chapters. Before them, an overall
literature review about the soil erosion processes at the catchment scale and the previous
knowledge is presented. It is followed by the section detailing the research hypothesis,
the objectives and the materials and methods. After these, a chapter detailing each
specific study is developed, including a meta-analysis of the sediment fingerprinting

studies that used geochemical composition as potential tracers.



2 BACKGROUND: LITERATURE REVIEW

A literature review was carried out seeking to address basically three aspects
related to the sediment dynamics in a river catchment and their relationship with
changes in land use and management under different geomorphological contexts. First,
the relationship between erosion processes and their impacts on society is discussed.
Then, the effect of changes in land use and management and the geomorphological
features of the river catchment on sediment dynamics is discussed. Finally, the sediment
tracing technique and the main problems associated with the method that will be

addressed in this study are discussed.

2.1 The context of soil erosion and its on-site and off-site impacts

Currently, the global demand for raw materials and food has increased the price
of commodities, such as soybean, encouraging the development of agriculture in
environmentally fragile areas, which associated with the occurrence of extreme weather
events, has accelerated erosion processes (Marengo, 2012). Under this scenario, the
challenge will be to produce food for 9 billion people, a number that should be reached
by the middle of this century (Godfray et al., 2010). According to these authors, producing
food in a sustainable manner, reducing greenhouse gas emissions and conserving water
supplies, currently in decline, is a great challenge to achieve the millennium development
goal of ending hunger (UNDP, 2003). Soil erosion has been considered as a threat for
supplying food, fibre, and fuel production in the next years (Lal, 2007; Pimentel, 2006).
In addition, the concerns of society have increased in recent years, especially regarding
the quality and availability of water (Boholm and Prutzer, 2017), as extreme dry or wet
events, with either water deficit or the occurrence of floods, have happened more
frequently (Rogger et al., 2017). Thus, we thereby highlighted two of the soil functions -
namely the support for plant growth and a regulator of water flows - illustrating that this
resource is more than ever an essential component in ensuring food production and the
supply of high quality water (Weil and Brady, 2016).

The absence of soil conservation practices has reduced the natural capacity of soils
to fulfil their functions. In general, erosion rates are higher than those of soil formation.
The time required to form one centimeter of soil can vary from 500 to 1000 years in

tropical wet-dry climate (Evans, 2020), while this same amount of soil can be lost during



a single rainfall event. In an assessment of the impact of human activities on soil
degradation, based on studies conducted in the United States, Nearing et al. (2017) found
that erosion rates in cultivated soils reach 6.7 Mg ha'l year!, while under natural
conditions these rates do not exceed 1.9 Mg ha'! year-L. In the Brazilian Cerrado region,
the removal of natural vegetation has increased erosion rates from 0.1 Mg ha'! year-!
under natural conditions to 12.4 Mg ha1 year-! (Oliveira et al,, 2015). In a meta-analysis
of studies conducted on erosion plots in Brazil, Anache et al. (2017) found that the
average soil losses observed under different cultivation systems and land uses can range
from 0.1 Mg km-2 year-1 (under native fields and pastures in southern Brazil) to 136.0 Mg
km-2 year! under conventional cropland in the north-eastern region of the country.
Although most cultivated fields in Brazil are under no-till, soil erosion continues to be one
of the main agents of soil degradation (Guerra et al., 2014).

The climatic and geological diversity of Brazil results in a great diversity of soil
types, and consequently, each location has a specific land use and management capacity.
However, the improper occupation of naturally fragile soils or their inadequate
management, both through agricultural activities and urbanization, can generate
environmental, social and economic costs that are estimated to several billions of dollars
per year (Dechen et al., 2015; Hernani et al., 2002). Some studies have sought to quantify
the costs of erosion both "on-site" (where erosion occurs) and "off-site" (sites affected by
sediment originating from upper catchment parts). In an estimate of on-site costs in
Brazil, relative to losses of nutrients such as P, K, Ca and Mg, Dechen et al. (2015)
estimated a cost of about US$ 1.3 billion per year, considering only nutrient losses,
without taking into account the replacement costs, where the soil losses were estimated
to be approximately 616.5 million tons per year. This calculation took into account the
area occupied by annual crops by different soil preparation systems, based on data from
the 2006 agricultural census, as published by Llanillo et al. (2013). Some off-site costs of
erosion in Brazil were taken into account in a study carried out by Hernani et al. (2002),
considering the loss and replacement of nutrients, water treatment, replacement of
reservoirs, greenhouse gas emissions, among others, annual costs of around US$ 10.59
billion were estimated (approximately 69% internal/on-site and 31% external/off-site).
As an example given by Hernani et al. (2002), according to Derpsch et al. (1991), in 1982,
about 12.5 million tons of sediment were deposited in the Itaipu dam. Of this amount,

considering only the sediments from the state of Parana (4.8 million tons), it is estimated
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aloss of the main nutrients, N, P, K, Ca and Mg corresponding to a value of US$ 419 million
per year. In a way, on-site costs are relatively easy to estimate, however, off-site costs
require a much broader approach, taking into account technical engineering, social and
environmental aspects, which is particularly difficult to accurately assess.

Some of the off-site erosion costs can be more easily calculated based on available
datasets, such as the costs estimated by Evrard et al. (2007) related to road cleaning,
infrastructure repair, assistance to population, dredging of river canals, based on Disaster
Fund databases. However, there are several costs related to environmental impacts, the
silting up of river channels and reservoirs, the contamination of water resources by
excessive agrochemical waste, floods and droughts, and the destruction of roads, among
others that are not taken into account. The same applies to on-site costs. Alfsen et al.
(1996) has taken a broad approach to estimate the local costs of erosion in Nicaragua, but
found that these are still uncertain results, as the impacts range from the loss of soil
productive potential to the impacts on the agricultural market and migrations between
rural and urban areas. In a review on soil erosion, Boardman (2006) points out that in
most cases, we do not really know the severity of the problem associated with erosion.
There is a need to identify erosion hotspots based not only on on-site effects, but also on
off-site impacts.

Other social and environmental impacts due to erosion are difficult to calculate,
although based on the data already collected, it is possible to verify that there is an urgent
need to implement practices to mitigate erosion processes and control the surface runoff.
Investment in prevention is a benefit to society as a whole and not just to landowners.
Public policies are essential to encourage the adoption of conservation practices, and it is
important to develop tools that can help to collaborate to use resources in a sustainable

way, justifying the relevance of research on soil erosion.

2.2 Sediment discharge monitoring to understand the erosion processes in

the catchment scale

Soil management, geomorphological features and climate control erosion
processes and sediment transfers in the catchments. Thus, monitoring the variability of
sediment yield, flow and concentration of contaminants, is a strategy to quantify the
effects of land use and management, together with climate change, on water resources at

the river catchment scale (Li et al, 2009; Minella et al., 2009b). Monitoring provides
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quantitative information regarding the sediment transfer processes. However, to better
understand the erosion process, complementary techniques such as hydrological
modelling of erosion and tracing of sediment sources are essential.

In a long-term monitoring study conducted in a small rural catchment with
intensive agriculture on fragile landscapes (i.e. the Arvorezinha catchment, 1,2 km?),
Minella et al. (2017) found that the implementation of conservation practices reduced
erosion rates significantly. The inclusion of conservation practices in tobacco fields
reduced sediment yield by approximately 70% compared to the period without
conservation practices, and cropland areas were identified as the main source of
sediment. Through hydro-sedimentary monitoring and mathematical modelling at the
Conceicdo River catchment (804 km?), Didoné et al. (2017) found that erosion rates have
increased in recent years due to inadequate soil management, with sediment yields
reaching the order of 36 to 260 t km-2 year-! in predominantly agricultural catchments in
southern Brazil. Using techniques to identify sediment sources, Tiecher et al. (2018)
found that current soil conservation techniques, where no-tillage is implemented in
southern Brazil without complementary practices to control surface runoff, have not
been efficient in controlling erosion in cropland fields used for grain production. About
50% of the sediment yield in the Conceicdo River catchment, in the northwest of Rio
Grande do Sul state, originate from agricultural areas (cropland and pastures). Another
50% of the sediment comes from drainage channels, which can be the result of excess
runoff, because in no-till areas, the straw deposited on the soil surface may be efficient to
control soil loss, but not water excess. Consequently, this water, which will inexorably
need to satisfy its sediment transport capacity, ends up causing erosion in the drainage
channels, as it was also already observed in the Arvorezinha catchment by Minella et al.
(2009). These are some examples of how river catchment scale studies help in
understanding erosion and sediment transfer processes.

Studies combining watershed monitoring and the identification of sediment
sources conducted in Brazil have concentrated on the country’ southern region (Table
2.1). Of the seventeen river catchments studied in Brazil that applied the technique of
identifying sediment sources, ten are located in the State of Rio Grande do Sul. Outside of
this state, Franz et al. (2014) sought to identify sediment sources in the Paranoa Lake
catchment and the Riacho Fundo sub-catchment in the Federal District. Batista et al.

(2018) and Lima et al. (2020) worked in the Ingai River catchment and Rio Grande
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catchment, respectively, in Minas Gerais state. Lately, another study was developed in
Pernambuco, Northeast Brazil, seeking to quantify the source contributions in a large
catchment and in a sub-catchment to understand the scale dependency in sediment
sources (Amorin et al., 2021). Almost all river catchments already studied in Brazil are
predominantly agricultural areas, with the exception of the Diluvio stream catchment,
which is located in the metropolitan region of Porto Alegre, and Lake Paranod, which
receives a large contribution from urban areas.

Table 2.1. Sediment fingerprinting studies in Brazil.

Catchments Catchment .
studied Authors Year area (km?) Location
Lajeado Ferreira (Clarke and Minella, 2016; Minella et 2008- Arvorezinha
Creek - al.,, 2009a, 2008a, 2007, 2004; Tiecher 2021 1.23 RS ’
Arvorezinha etal, 2021, 2019, 2017a, 2016, 2015)
Agudo (Minella etal., 2007) 2007 1.68 Agudo, RS
Diluvio Creek (Poleto et al., 2009) 2009 0.83 Viamao, RS
Alvorada . Julio de
Settlement 1 (Tiecher etal, 2017b) 2017 1.4 Castilhos, RS
Alvorada . 2014- Julio de
Settlement 2 (Tiecher etal, 2017b, 2014) 2017 0.8 Castilhos, RS
Vacacai-Mirim (Miguel et al,, 2014a, 2014b) 2014 20 SantaRl\S’Ia“a'
Guaporé River (Le Gall etal, 2017; Tiecher etal, 2017 2030 Guaporé, RS
2017c)
Terra Dura Forest (Rodrigues et al., 2018) 2018 0.98 Eldsourlaclizos do
Conceigdo River (Tiecher etal., 2018) 2018 804 [jui, RS
Eucalyptus (Valente et al,, 2020) 2018 0.83 Sdo Gabriel, RS
catchment
Grassland (Valente et al., 2020) 2018 1.1 Sdo Gabriel, RS
catchment
Paranod Lake (Franz et al., 2014) 2014 950 Brasilia, DF
Riacho Fundo (Franz etal,, 2014) 2014 224 Brasilia, DF
Ingaf River (Batista et al., 2018) 2018 1200 Ingai, MG
Posses Catchment (Bispo et al.,, 2020) 2020 12 Extrema, MG
Upper Grande .
River Catchment (Lima et al., 2020) 2020 0.8and 1.75 Lavras, MG
Goiana Catchment (Farias Amorim et al., 2021) 2021 2857 PB

Abbreviations: RS — Rio Grande do Sul State, DF — Distrito Federal State, MG — Minas Gerais State and PB —
Pernambuco State.

The studies of erosion processes associated with different land uses in river
catchments in the state of Rio Grande do Sul (RS) were mostly concentrated on the
basaltic plateau and its borders, where clay soils from basalt of the Serra Geral Formation
predominate (Figure 2.1). In these catchments, small family farms predominate, with

land use for grain production and intensive cattle ranching. The main sources of sediment
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in these catchments are grain production areas, unpaved roads and drainage channels. In
the Guaporé River catchment, cropland areas provide the main source of sediment (78%)),
followed by drainage channels (20%) and unpaved roads (2%) (Tiecher et al., 2017c). In
the Conceigdo River catchment, drainage channels provide the most important source of
sediment, contributing more than 55% of the total sediment produced, while cropland
fields contribute approximately 45%, based on sediment samples collected by time
integrated suspended sediment samplers (Tiecher et al, 2018). In smaller river
catchments, such as Arvorezinha, cropland contributes approximately 57% of sediments,
followed by unpaved roads that contribute 23% and the stream channel 20% (Minella et
al., 2008b; Tiecher et al., 2017a). In the Vacacai-Mirim Stream catchment, in the central
region of the state, unpaved roads become the main sources of sediment, contributing up
to 80% of the sediments depending on the sediment sampling period (Miguel et al., 2014).
From these studies, it is clear that a large variability of source contributions is found
depending on the river catchment, which can be attributed to different land uses, relief,
management measures, but also to different sampling designs or catchment scales.

In addition to the studies developed in the basaltic plateau region and its borders,
three other studies were developed on catchments located in the southern half of the RS
state, where geomorphological conditions and main land uses are distinct. Among them,
one of the first sediment fingerprinting studies in Brazil was developed in the urban
catchment of the Diluvio Stream, where Poleto et al. (2009) verified that there is a large
variability in the contribution of each sediment source during individual rainfall events.
The variability in the contributions of paved and unpaved roads, and the drainage
channel itself, shows that the method of sediment fingerprinting is very sensitive to the
period of sample collection. The second study is that conducted in the Terra Dura Forest
catchment, which is located in the region of the central depression of RS and which is
planted with eucalyptus forests, where soils have a sandy texture developed on a bedrock
of intrusive igneous material. In this catchment, the drainage channels provide the main
sources of fine and coarse sediment, as the instability of the stream channels increase the
processes of landslides (Rodrigues et al., 2018). Another recent study was carried out in
two small paired catchments, one occupied with native grassland and the other with
eucalyptus forests, over granites of the central depression of RS, where channel banks
were identified as the main sediment source (Valente et al.,, 2020). In both studies, a high

uncertainty was associated with the sediment source contributions obtained for certain
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sediment samples, which was attributed to the small number of tracers available (Poleto
et al., 2009) and also the low discrimination between potential sources by the selected

tracers (Rodrigues et al., 2018; Valente et al., 2020).
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Figure 2.1. Location of the sediment fingerprinting studies conducted in the Rio Grande
do Sul State.

Monitoring studies involving the identification of sediment sources in southern
Brazil have been mostly conducted in catchments where clayey soils developed on basalt
material and where intensive agricultural production is dominant. However, an extensive
area of agricultural production in the state of RS is found in the Pampa biome, where the
land is occupied predominantly with native grasslands for extensive livestock
production, rice production and more recently with an increase of the surface area
devoted to soybean production and eucalyptus plantations (Roesch et al.,, 2009). The
study of Silveira et al. (2017) shows that in 15 years (2000 to 2015), the annual cropland
areas in the Pampa biome increased by 57%. The soils of this region have a high
susceptibility to erosion and land degradation processes, where soils originating from

sedimentary rocks and less weathered soils derived from volcanic rocks occur
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(EMBRAPA, 2013). The predominantly sandy soils show a low resistance to erosion
processes, which makes them very sensitive to degradation. Similarly, the low stability of
drainage channels results in their high sensitivity to erosion, generating large quantities
of sediment available for subsequent transportation. In addition, the current expansion
of soybean and cultivated forest production areas without land conservation practices at
the expense of native grasslands may increase the erosion processes, which may lead to
a state of irreversible degradation over the short term, as in the case of sandy areas that
have already been formed in the region (Roesch et al., 2009). At the same time, the high
content of carbon naturally stocked in natural grasslands, can be reduced to less than
50% following their conversion into cropland without the implementation of effective
soil conservation practices (Guo and Gifford, 2002; Pillar et al., 2012).

Therefore, the analysis of sediment flows, as well as the identification of the main
sources of sediment in environmentally fragile areas, are crucial for the public managers,
to identify the main areas where active erosion occurs, which should be prioritized in the
allocation of resources for implementing conservation practices (Koiter et al., 2013b).
However, more research still needs to be conducted to optimize the methods of
identification of sediment sources and enable the application of this technique in this
particular region. This is a demand for the technique to move from being just a research
tool to being a management and control tool that could be inserted into regulatory

programs for controlling soil and water quality (Mukundan et al.,, 2012).

2.3 Challenges associated with the sediment fingerprinting technique

under different environmental conditions

The need to quantify the contribution of sediment sources in river catchments to
guide the implementation of practices capable of reducing the delivery and impact of
sediment excess in rivers, reservoirs and lakes, has encouraged the development of
techniques for identifying sediment sources (Collins et al.,, 2017a). An increase in the
number of studies applying or developing this technique has been reported since the first
studies carried out in the mid-1970s (Walling, 2013). The technique of sediment
fingerprinting is based on two main assumptions stating (i) that the various potential
sources of sediment can be discriminated by the analysis of different diagnostic

properties and (ii) that the sediment collected in the river preserve the properties of their
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sources, allowing through the comparison of these properties to estimate the importance
of each potential source (Walling et al., 1993).

The first approaches to identify sediment sources originate from the 1970s
(Klages etal., 1975; Wall and Wilding, 1976; Walling et al., 1979), seeking to calculate the
contribution of different diffuse sources of sediment in river catchments in a rather
qualitative way. Subsequently, an important advance in the identification of sediment
sources was the use of multiple combined properties to estimate quantitatively the
proportion with which each source contributes to each individual sediment sample
(Collins et al., 1997; Walling et al., 1993; Yu and Oldfield, 1989). In one of the first articles
published on the identification of sediment sources, Klages et al. (1975) used mineralogy
to infer on the main tributary catchments as sediment sources. At the same time, Wall
and Wilding (1976) used mineralogy combined with some geochemical elements to
differentiate surface sources from subsurface material, a discrimination also explored
later by Walling et al. (1979), although using magnetic properties, in order to design a
more robust methodology for the identification of sources that was not destructive, with
a low cost technique that required a small amount of samples.

Currently, the most consolidated tracing properties are the geochemical
composition and the contents in fallout radionuclides, such as 210Pb, 137Cs and 7Be (Evrard
etal, 2016; Huisman and Karthikeyan, 2012; Minella et al., 2008b). Other properties such
as geogenic radionuclides (238U, 232Th, 40K) (Evrard et al., 2013; Sellier et al., 2020a),
stable isotopes of hydrogen, carbon and nitrogen (82H, §1°N and §13C) (Hancock and
Revill, 2013; Stewart et al,, 2015), geochemical isotope composition (87Sr/86Sr) (Le Gall
etal, 2016), ultra-violet-visible spectra (UV) and infrared spectroscopy (Poulenard et al,,
2012; Tiecher et al., 2015), colour parameters derived from UV, magnetic susceptibility
(Foster et al., 2007), rare earth elements (Habibi et al., 2019), plant pollen (Brown et al,,
2008), soil enzymes (Nosrati et al., 2011), organic compounds (Cooper et al,, 2015),
carbon and nitrogen contents (Evrard et al., 2013), were also used in previous studies.

The application of each type of tracer is variable according to the objective of each
study, the financial resources and tools available in each laboratory. Fallout
radionuclides, for example, are very efficient for differentiating surface sources from
subsurface sources (Walling and Woodward, 1992; Wilkinson et al., 2009), despite their
high analytical cost. Accordingly, 137Cs is strongly adsorbed to the surface soil particles

after its atmospheric deposition, so that the highest concentrations of 137Cs in sediment
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samples will be attributed to surface sources (He and Walling, 1996; Parsons and Foster,
2011). Geochemical tracers, major, trace and rare earth elements, are related to the
geological substrate, but may also have been transformed during the soil formation and
weathering processes, or by the addition of fertilizers, manure, and other residues, and,
therefore, have the potential to discriminate between different soil types and land uses
(Collins et al., 2010c). Mineral magnetic properties, which are sensitive to soil formation
processes and contaminations, are a low-cost alternative and have the potential to
discriminate between different soil parental materials (Rowntree et al., 2017). The stable
isotopic signature (613C) of specific organic compounds (CSSI) combined with
conventional geochemical composition have been useful to identify sources under
specific crops (Blake et al., 2012; Gibbs, 2008), but they are relatively expensive analyses
and dependent of historical data of past vegetation in the sources (Hirave et al., 2019).
Reiffarth et al. (2019) showed that biomarkers are strongly dependent on environmental
conditions and a high variability is expected both in space and time, making sampling
methods one of the main challenges when using CSSI. Recently, diffuse reflectance
spectroscopy has proven to be an efficient low cost and quick tool to characterize and
identify potential sediment sources in catchments (Martinez-Carreras et al., 2010b;
Tiecher et al., 2017a).

In addition to estimating the contribution of each source according to the land use
and management, it is possible to obtain information on the spatial contribution,
considering tributary catchments as sources, or even considering different types of soil
as source materials (Evrard et al., 2011; Haddadchi et al., 2015). Maher et al. (2009) used
magnetic properties of the sand fraction of sediments in a large catchment covering
130,000 km? in Australia, seeking to identify the respective contributions of the main
tributary sub-catchments of the Burdekin River catchment. In the study of Maher et al.
(2009), it was possible to identify the contribution of each sub-catchment by means of
their magnetic properties, which are directly related to mineralogy, magnetic domain
state, composition and morphology of the source material, preserving the properties
from its sources in host silicate particles. This approach allows to identify which regions
have the greatest erosion problems and contribute with the greatest amount of
sediments, even allowing to infer about the effect of the catchment geomorphology of

each tributary river catchment or their main land uses.
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As the size of the river catchment increases, the complexity of the processes
involved increases as well and, consequently, the identification of the sources may
become less assertive, requiring a greater care with the details of the technique (Koiter
et al., 2013a). Large deposition zones in the catchment, or even the occurrence of
reservoir deposits, can alter the transference and properties of sediments, causing a
selectivity in particle size, where larger particles tend to deposit while finer particles are
transported over greater distances (Bainbridge et al, 2014). In addition, sediment
properties may change their physical and chemical properties from their source,
according to the environmental conditions and processes involved. In general, the
average particle size decreases due to disaggregation and abrasion, and selectivity may
occur during the different stages of the erosion process (Koiter et al, 2013b).
Consequently, the need to apply correction factors regarding particle size and organic
matter content, as well as conservative tests, are issues widely discussed in the literature
and they require attention (Koiter et al., 2013b; Sherriff et al., 2015). According to the
review made by Laceby et al. (2017), each tracer property has different concentrations
or values according to the particle size or specific surface area. Therefore, for each river
catchment, these properties tend to be different, resulting in different optimal sets of
tracers for each case.

The complexity of quantifying the erosion process at the river catchment scale is
due to the large number of factors that interfere with the disaggregation, transport and
deposition of sediments. Among these, the physical characteristics of soils and sediments
are one of the main parameters evaluated for understanding the process, since they
interfere in the ability to form aggregates and resist to the impact of rainfall, in its
transportability on the hillside and rivers, and in its ability to transport nutrients and
contaminants (Beuselinck et al., 1998; Horowitz, 1991; Walling and Woodward, 2000).
The particle size directly influences the erodibility of soils. On the one hand, clay particles
have a higher binding energy with the substrate around them, resulting in a greater
power of aggregation and resistance to detachment processes, but they are easily
transported. The coarse sand particles, on the other hand, have a greater capacity to resist
to the transportation processes due to their larger size and weight, but they show a lower
resistance to detachment. Silt-sized particles and fine sand are more susceptible to be

disintegrated and transported, due to their small size and low reactive power in relation
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to the clay fraction, hindering the formation of aggregates (Bradford et al., 1992; Morgan,
2005; Torri and Poesen, 1992).

Consequently, the concentration of tracer properties (geochemical composition,
radionuclides, TOC) tends to be dependent on the transported particle size (Horowitz and
Elrick, 1987). The concentration of trace elements associated with the physical
properties such as size and specific surface area of sediment are widely studied
(Parizanganeh, 2007; Ujevic et al., 2000; Wei et al., 2015), since these are key physical
parameters controlling the adsorption of chemical elements (Adiyiah et al., 2014; Xiao et
al.,, 2013). The concentration of trace elements has an inverse relationship with the
particle size and with the specific surface area, which are the most important physical
factors in relation to the concentration of trace elements in suspended sediments
(Horowitz, 1991). This relationship is due to the fact that there is a need for exposure of
reactive surfaces to allow the adsorption of ions to particle surfaces. The main mechanism
of interaction of the elements is the adsorption, which can occur with or without the
exchange of cations, which should not be confounded with absorption, which involves the
penetration of the element in the mineral or an inner-sphere complex. Therefore, the
selectivity between the geochemical properties and the granulometry may be different
for each element, depending on how it is incorporated in the sediment (being part of the
mineral structure or adsorbed) (Laceby etal., 2017).

The majority of sediment fingerprinting studies have selected the fraction smaller
than 63 pum, to eliminate the effect of the particle size when comparing the properties in
the sediments with those of the potential sources (Collins et al.,, 1997; Wilson et al,, 2011).
The same fraction was used in a previous study already conducted in the Conceicao River
catchment (Tiecher et al., 2018), which is valid, since the average diameter of suspended
sediments transported during rainfall events are less than 20 um (Kochem, 2014).

The knowledge of the relative importance of each component of the sediment
yield (i.e. suspended sediment and bedload) by means of conventional monitoring is
fundamental to define the sediment source fingerprinting strategy. Suspended sediments
are usually the finest fraction, while bedload is mainly composed of coarse sediments.
Therefore, the selection of the particle size fraction adopted in a sediment fingerprinting
approach should take into account the main particle size transported in the system
(Laceby et al., 2017). However, tracing coarse sediment sources remains a challenge,

since most tracer properties rely on the adsorption to the finest soil particles that are
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chemically reactive. Therefore, the technique of sediment fingerprinting needs to be
adapted in order to find the best strategies for sediment tracing in the Uruguay River
basin where soils are heterogeneous. Protocols of the fingerprinting technique need to
be verified, such as the number of potential sources, the spatial distribution of sources
based on the main tributaries, sediment sampling and the selection of the most
appropriate tracers for this basin (Haddadchi et al, 2015). Through improving our
understanding of the sediment fluxes in the geomorphological contrasting environments
of the Uruguay River basin, it will be possible to obtain substantial knowledge advances

in our knowledge of sediment dynamics in such a large catchment.
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3 HYPOTHESIS

The land use change in the Pampa biome region and the absence of effective land
conservation practices in agricultural areas in the Southern Brazilian plateau region,
make agricultural cropland areas the main source of suspended sediments in the Uruguay

River basin.

4 AIM AND OBJECTIVES

4.1 Aim

Quantify sediment source contribution in two contrasting tributaries of the

Uruguay River basin, which differ mainly in terms of soil types and land uses.

4.2 Objectives

Calculate the contribution of multiple sources of sediment in a large catchment
(804 km?) with highly weathered and homogeneous soils of the plateau region of Rio
Grande do Sul state.

Quantify the contribution of potential sediment sources from a representative
catchment of the Pampa Biome (5,943 km?), assessing the impact of recent land use
change.

Identify and analyse the signature of the sediments collected in the Uruguay River,
comparing with those of the representative tributaries of the two main regions that are
found in the basin, and propose directions for future studies of sediment source tracing

in such large river basins (242,000 km?).
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5 MATERIALS AND METHODS

5.1 Study catchments

This study will be carried out in two tributary catchments of the Uruguay River,
representative of two contrasting geomorphological regions of the southern region of
Brazil. The Uruguay River is one of the largest rivers in the southern region of South
America, draining an area of approximately 242,000 km? (considering the Salto Grande
Hydroelectric Plant as the outlet of the catchment), with 70% of its area located in
southern Brazil, 20% in Argentina and 10% in Uruguay (Figure 1.1). On the one hand,
land use in the catchment is predominantly agricultural, with intensive agricultural
production in the states of Rio Grande do Sul (RS-Brazil) and Santa Catarina (SC-Brazil),
where small farms (<50 ha) predominate in the more undulating relief regions (with
dairy crops, intensive poultry and pig farming, natural and cultivated forests), while
larger properties (mostly <100 ha) are located in flatter areas (with dominant soybean,
corn and wheat productions). Similar conditions are also observed in the northernmost
portion of the Argentinian side, in the Atlantic biome, where land use is predominantly
occupied by plantations of mate, tea, and also eucalyptus plantations. On the other hand,
in the southwestern regions of RS and northern Uruguay, large properties are
predominant (>100 ha). In general, in these regions, most of the areas are occupied with
pasture for extensive ranching and irrigated rice production in the plains, with an
increased soybean production in the region during the last few years. The southernmost
part of the Argentinian side comprises the flooded grasslands and savannahs, an
extremely flat region, with hydromorphic soils where pastures and planted forests for
the extraction of wood and cellulose are predominant.

Along the course of the Uruguay River and its tributaries, there are approximately
44 dams, which are predominantly used for electric power generation, while some
reservoirs are used for water abstraction for basic sanitation. These dams are located in
the upper portion of the Uruguay River basin, where the relief is more mountainous and
allows for a more effective use of the potential river energy, with the exception of the
Salto Grande Hydroelectric Power Plant dam, which is the most downstream dam of the

basin, located in the flattest portion of the basin. Therefore, the two study sites were
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chosen because they represent two very contrasting regions and the main
geomorphological features of the Uruguay River basin, which have a high environmental,

economic and social significance.

5.2 Conceic¢ao River catchment

The Conceigao River catchment is located on the southern plateau in the state of
Rio Grande do Sul, with an area of approximately 804.3 km? (Figure 5.1). The catchment
outlet is located next to the monitoring point number 75200000 of the National Water
Agency (ANA) (28°27'22" S, 53°58'24" O) in the municipality of [jui. According to the
Koéppen classification, the climate is Cfa type, humid subtropical without a defined dry
season, with an average precipitation of 1900 to 2200 mm per year and an average
temperature of approximately 18°C (Alvares et al, 2013). This catchment is
representative of the basalt plateau region of the Serra Geral Formation, where the main
soil classes found are the Ferralsols (80%), Nitosols (18%) and Acrisols (2%), rich in iron
oxides and kaolinite, with the Ferralsols being the most widespread soil type in the
catchment (Figure 5.1a). Small areas from the Tupanciretd Formation, which are
remnants of the Botucatu Formation amidst the volcanic spills of the Serra Geral
Formation, are also found. The relief of the region is characterized by gentle slopes (6-
9%) at the top and moderate or steep slopes (10-14%) near the drainage channels, with
altitude ranging from 270 to 480 m a.s.l. In this catchment, the main land use is cropland
for grain production and dairy farming, where inadequate soil management has resulted
in high erosion rates (Didoné et al., 2015b). The main land use is cropland (82%) mainly
cultivated with soybean (Glycine max) under no-tillage system in the summer and wheat
(Triticum aestivum) for grain production, oat (Avena sativa and Avena strigosa) and
ryegrass (Lolium multiflorum) for dairy cattle feed or soil cover during the winter.
However, inadequate soil management in these areas has resulted in high erosion rates
in the last decades (Didoné et al., 2019, 2015a). Pastures (grassland, pasture and mosaics
of agriculture and pasture, according to the Mapbiomas classification), mainly used for
cattle raising, cover 12% of the total surface area, whereas forest is found on only 5% of
the surface (Figure 5.1b). In the Conceicdo River catchment, the pasture area obtained
from Mapbiomas, includes both perennial and temporary pastures, although only

perennial pastures were sampled in this study site.
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Figure 5.1. Soil types and geology of the Concei¢do River catchment (a) and land
use map of 2012 based on the classification of the MapBiomas database (b).

5.3 Ibirapuita River catchment

The Ibirapuita River catchment is located in the extreme south of Brazil and is
representative of the southern grassland region, typical of the Pampa biome, covering
approximately 7975 km? The outlet of the studied catchment is located next to
monitoring point number 76750000 of ANA (28°27'22" S, 53°58'24" 0O) in the
municipality of Alegrete (5943 km?), representing 75% of the total area of the Ibirapuita
catchment. According to the Kdppen classification, the climate is Cfa type, humid
subtropical without a defined dry season, with an average precipitation of 1,600 to 1,900
mm per year and an average temperature of 17°C (Alvares et al., 2013). The altitude of
the catchment is comprised between 70 and 370 m a.s.l, and the elevations above 280
meters are located in the headwaters of the catchment, near the border between Brazil
and Uruguay and represent less than 15% of the catchment area. Approximately 90% of
the catchment area has slopes of less than 15%, and the slopes decrease in the northern
direction, varying from 2 to 5% in the lower Ibirapuita region. Land use is predominantly

occupied by native grasslands with extensive livestock activity (81%) (Figure 5.2),
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although as in the whole Pampa region, it tends to be increasingly occupied by soybean
production areas. The catchment is composed of three sub-catchments. The (i) Ibirapuita
Environmental Protection Area subcatchment (EPA), which is an environmental
protection area controlled by the Chico Mendes Institution of Biodiversity Conservation
(ICMBio) from the National Ministry of the Environment, where native grasslands (85%)
and natural forests (10%) predominate. Located in the central portion of the Ibirapuita
River catchment, the EPA subcatchment has an area of 3196 km?, where the main soil
types are Regosols in the upper half and Acrisols in the lower half, from basalts of the
Serra Geral formation (Facies Alegrete) and sandstones/silts of the Botucatu formation
(Facies Gramado, Caxias and Guard), respectively. The (ii) Pai-Passo Stream
subcatchment covers approximately 1043 km?, and it is mainly occupied by native
grassland (83%) areas with extensive livestock on shallow Regosols originating from
basalt (Facies Alegrete), and paddy fields for irrigated rice production (10%) located in
the lower and flat positions of the landscape, where Planosols and Vertisols occur. The
(iii) Cavera Stream subcatchment covers approximately 1455 km?, and it is the tributary
catchment with the higher percentage of cropland (irrigated rice and soybean) and
cultivated pastures (15%), where the native grassland (73%) has been converted into
cropland on deeper soils, predominantly Acrisols originating from sandstones of the

Botucatu formation (Figure 5.3).
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Figure 5.2. Land uses and location of the source samples collected in the Ibirapuita
River catchment.
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5.4 Sediment source sampling

The potential sediment sources were chosen during reconnaissance campaigns,
where the main components of the landscape showing potential for sediment
contribution were identified. For the Conceicdo River catchment, sediment source
samples collected by Tiecher (2015) in 2012 were used in this study, distributed among
croplands (n = 77), unpaved roads (n = 38), stream banks (n = 34), gullies (n = 14) and
permanent pastures (n = 24).

In the Ibirapuitd River catchment, soil samples from potential sources were
collected at representative areas that showed active erosion and that were connected to
the drainage network, following the same principle adopted by Tiecher (2015). Care was
taken to avoid those sites that have accumulated sediment originating from other
sources, not to collect transiting material. In the surface sources, soil from the upper 0-2
cm layer was collected, as this layer is the most likely to be eroded and transported to the
waterways. In the subsurface sources, samples were collected at the edge of the drainage
channels at exposed sites sensitive to erosion. For each composite source sample, around
10 sub-samples were collected within a radius of approximately 50 meters, mixed in a
bucket and approximately 500 grams of material were stored. The source samples sites
were selected in order to cover all the soil types and the variability in slope positions, as
well as the three main tributary catchments. Samples were taken during the winter
period in 2018 under the following land uses and erosion features: croplands and
cultivated pastures (n = 28), paddy fields (n = 8), native grasslands (n = 31), unpaved

roads (n = 31), stream banks (n = 18) and erosion channels (n = 16).

5.5 Sediment sampling

For sediment characterization and quantification of suspended sediment fluxes,
sediment samples were collected using different strategies, in order to have enough
material for subsequent analyses. Three methods were used:

i. Time integrated suspended sediment sampler (TISS) - The sampler
designed by Phillips et al. (2000) consists in a plastic tube of 75 mm of
diameter and 80 cm length, which has a small inlet and outlet tubes (4 mm
of diameter) in the extreme edges, which allows the suspended sediment

to enter, reducing the flow velocity and allow the sediment to deposit

38



inside the tube based on the principle of sedimentation. The equipment is
submerged for a certain period of time integrating the sediments from
different rainfall events, in which the eroded material of the catchment is
mobilized under different conditions of transport and energy, and
consequently consists of contrasted physical, chemical and mineralogical
characteristics. The samples were collected during intervals of 2 to 3
months, varying according to the records of rainfall events.

ii.  Storm eventsamples (Event) - Samples collected during storm events were
collected at the outlet, where a large volume of water (50 to 200 litters)
was collected at different stages of the rainfall-runoff event to evaporate
the water and have enough material to perform the analyses.

iii.  Fine bed sediment samples (FBS) - in the Concei¢do River, samples were
collected with a suction device in the bottom of the river. Multiple samples
collected in different positions of the river bed close to the outlet composed
each individual sample. According to Horowitz et al. (2012), fine sediment
(<63 um) deposited in the first centimetres of the river bed can be used as
a surrogate to quantify the concentration of chemicals in suspended
sediment.

iv.  Flood deposits (FD) - sediment deposited in the flooding area after a storm
event were collected along the Ibirapuita River. Care was taken to sample

only material that was deposited by the previous major rainfall event.

For the Conceicdo River catchment, sediment samples already collected by
Tiecher (2015) were used, where more information related to the samples can be found.
Sediment samples collected by TISS, Event and FBS methods were taken at the outlet of
the catchment in the period of March of 2011 to January of 2013. Samples were also
collected during the period of 2017 to 2019, however the samples could not be used in
this thesis due to the different analytical methods used.

In the Ibirapuita River catchment, suspended sediment samples were collected
during rainfall events that resulted in increased water discharge and sediment yield at
the main outlet. Samples were collected in duplicates, where one was used for sediment
concentration analysis and the other, with a greater volume, was collected to accumulate
enough sediment for subsequent physical and chemical analyses. A second method used

was the TISS that were installed in the three main sub-catchments of the Ibirapuita River
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(Pai-Passo Stream, Cavera Stream and the Ibirapuita-EPA catchment) and at the main

outlet (Figure 5.4).

(a)

\

()

Figure 5.4. TISS installed at the Ibirapuitd River catchment outlet (a), Cavera
Stream outlet (b), Ibirapuitd APA outlet (c) and Pai Passo Stream outlet (d). Source: the
author.
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Figure 5.5. Suspended sediment sampling to determine the concentration during
a monitoring campaign made in collaboration with the National Water Agency service
provider, the Brazilian Geological Service (CPRM) (a); Event sampling in the Ibirapuita
River during a storm event, sample taken with a bucket to obtain larger volumes (b) and
for suspended sediment concentration collected with a US-D49 sampler (d); Suspended
sediment sampling in the Conceicdo River before a storm event using a US-D49 on a
bridge (c). Source: the author (a, c), Paulo C. Ramon (b), Anténio A. Marquez (d).
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Figure 5.6. Flood deposit after a storm event in the outlet of the Ibirapuita River.
Source: Felipe Bernardi and Antonio A. Marquez.

In addition to the samples collected in the two tributaries (Conceicdao and
Ibirapuitd), samples were collected from a sediment profile located on an island of the
Uruguay River, situated downstream of the municipality of Uruguaiana, on the border
with Argentina. Samples were collected in 5 cm layers down to a depth of 50 cm, and at
10 cm intervals down to a depth of 1 meter. These samples were used to make a first
characterization of the sediment samples from the Uruguay River and compare them to

the samples from the tributaries.
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Figure 5.7. Sediment sampling in a deposit within an island of the Uruguay River.
Source: the author.

5.6 Soils and sediment analysis

5.6.1 Sample preparation

Source and sediment samples were oven-dried at 45°C and gently disaggregated
using pestle and mortar and sieved with a 2.0 mm mesh to remove gravels and coarse
material. Soil source and sediment samples were divided into two parts, one preserved
as <2.0 mm and the other sieved to 63 um prior to the laboratory analysis in order to
compare similar grain-size fractions for conducting the sediment fingerprinting approach

(Koiter et al., 2013b; Laceby et al., 2017).

5.6.2 Biogeochemical analysis

For the Conceicdo River catchment samples, the biogeochemical tracers evaluated
were total organic carbon (TOC) estimated by wet oxidation (K2Cr207 + H2S04) and the
total concentration of several elements (Al Ba, Be, Ca, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na,

Ni, P, Sr, Ti, V, and Zn) using Inductively Coupled Plasma Optical Emission Spectrometry
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after microwave-assisted digestion with concentrated HCl and HNO3 (ratio 3:1) for 9.5
min at 182 °C.

For the Ibirapuita river catchment, TOC, total nitrogen (TN), 613C and §1°N isotope
ratios were measured using continuous flow isotope ratio mass spectrometry (EA-IRMS).
After sieving, the samples were hand-ground with a pestle and mortar to obtain a fine
and homogeneous powder and weighted in tin capsules. A tyrosine laboratory standard
was inserted after each successive 4 soil or sediment samples. X-ray diffraction analyses
were performed to certify the absence of carbonates in representative samples from each

source.

5.6.3 Magnetic susceptibility analysis

Samples from the Conceigdo, Ibirapuita and Uruguay Rivers were analysed for
magnetic susceptibility. Two grams of each sample were used to measure the magnetic
susceptibility in a Bartington MS2B Dual Frequency sensor, with three readings for each
sample in high (4.7 kHz) and low frequency (0.47 kHz) modes to obtain the mass specific
magnetic susceptibility for high (yur - m® kg-1) and low frequency (yLr - m* kg'1) (Mullins,
1977). Furthermore, the percentage of frequency dependent susceptibility (ym) was
calculated according to the Equation 1 (Dearing et al., 1996), which indicates the presence
of viscous grains lying at the stable single domain/superparamagnetic boundary and

their delayed response to the magnetizing field (Yu and Oldfield, 1989).

l(XLF - XHF)I
XLF

Xra(%) =100 X (1)

5.6.4 Radionuclide analyses

Samples for the Ibirapuitda and Uruguay Rivers were analysed for radionuclides.
Fallout (7Be, 137Cs and 21°Pb) radionuclide activities were measured by gamma
spectrometry  using  low-background  high-purity =~ germanium  detectors
(Canberra/Ortec). Between 10 to 20 grams of samples were weighted into polyethylene
containers and sealed airtight and analysed on a detector installed into a lead-protected
shield. Measurements were taken overnight (typically for 85,000 - 90,000 s) to optimise
counting statistics. The fallout radionuclides 210Pb, 7Be and 137Cs were obtained from the

counts at 46.5 keV, 477.6 keV and 661.6 keV, respectively. The unsupported or excess
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lead-210 (219Pbxs) was calculated by subtracting the supported activity from the total
210Pb activity using two 238U daughters, i.e. 214Pb (average count at 295.2 and 351.9 keV)

and 214Bi (609.3 keV). Radionuclide activities were decay-corrected to the sampling date.

5.6.5 Ultra-violet-visible, near and mid infrared diffuse reflectance analysis

5.6.5.1 Ultra-violet-visible diffuse reflectance analysis

Samples from the Conceicdo and Ibirapuita Rivers were analysed for ultra-violet-
visible (UV). The diffuse reflectance spectra in the UV wavelengths (200 to 800 nm, with
1 nm step) were measured for each powdered sample using a Cary 5000 UV-NIR
spectrophotometer (Varian, Palo Alto, CA, USA) at room temperature. Samples were
added into the sample port and care was taken to avoid differences in sample packing
and smoothness of the surface. BaSO4 was used as a 100% reflectance standard.

Twenty-four colour parameters were calculated from the ultraviolet-visible
spectra following the colorimetric models described in detail by Viscarra Rossel et al.
(2006), which are based on the Munsell HVC, RGB, the decorrelation of RGB data, CIELAB
and CIELUV Cartesian coordinate systems, three parameters from the HuterLab colour
space model and two indices (coloration - CI and saturation index - SI). First, the colour
coefficients XYZ based on the colour-matching functions defined by the International
Commission on Illumination - CIE (CIE, 1931) were calculated, where X and Z are the
virtual components of the primary spectra and Y represents the brightness. The XYZ
tristimulus were standardised with values corresponding to the Standard Illuminant D65
white point for 10 Degree Standard Observer (X=94.8110; Y =100.00; Z=107.304), then
transformed into the Munsel HVC, RGB, CIELAB and CIELUV Cartesian coordinate
systems using the equations from CIE (1978). Three parameters from the HunterLab
(HunterLab, 2015) colour space model, and two indices (coloration - CI and saturation
index - SI) (Pulley et al., 2018) were calculated as well. In total, 27 colourimetric
parameters were derived from the spectra of potential source and sediment samples (L,
L* a, a* b, b* C* h, Rl x, y, z, u*, v¥, u’, v/, Hvc, hVc, hvC, R, G, B, HRGB, IRGB, SRGB, CI and
SD).

Three other parameters were calculated from the second derivative curves of
remission functions in the visible range of soil and sediment samples, which displayed
three major absorption bands at short wavelengths commonly attributed to Fe-oxides

(Caner et al,, 2011; Fritsch et al,, 2005; Kosmas et al., 1984; Scheinost et al., 1998). The
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first band (A1, ~430 nm) corresponds to the single electron transition of goethite (Gt),
whereas the two others correspond to the electron pair transition for goethite (A2, ~480
nm) and for hematite (Hm) (A3, ~520 nm), respectively (Figure B1). The band intensity
is estimated from the amplitude between a minimum and the nearby maximum at its
lower energy side. The amplitudes of the three bands (A1, A2 and A3) are positively
correlated with the contents of Gt and Hm (Fritsch et al., 2005). A1 and A3 are commonly
used to assess the content of Gt and Hm, respectively, and the relative proportions of
hematite in Fe oxides (Hr) are estimated by applying the equation Hr (%) = Hm/(Hm+Gt).
The band intensities were measured from the amplitude between each band minimum

and its nearby maximum at higher wavelength.
5.6.5.2 Fourier Transform Infrared Spectroscopy analysis

Fourier Transform Infrared (FTIR) spectroscopy analyses were carried out in the
range of near (NIR) and mid infrared (MIR) wavelengths (10000 - 4000 cm! and 4000 -
400 cm'1, respectively) for the Conceicdo and Ibirapuita River samples. NIR spectra was
measured using a Nicolet 26700 FTIR spectrometer (Waltham, Massachusetts, USA) in
diffuse reflectance mode with an integrating sphere with an internal InGaAs detector with
2 cm1resolution and with 100 co-added scans per spectrum. MIR spectra were measured
using a Nicolet 510-FTIR spectrometer (Thermo Electron Scientific, Madison, WI, USA) in
reflection mode with a 2 cm-! resolution and with 100 co-added scans per spectrum. The
spectrometer was continuously purged with dry COz depleted air. For both analyses, care
was taken when adding a sample into the sample port to avoid differences in sample
packing and smoothness of the surface. Resulting data were collected and converted into
1 nm resolution using the Omnic software supplied by the spectrometer manufacturer

(Thermo-Nicolet, USA).
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Table 5.1. Summary with the types of samples collected and analyses performed on each of them.

Analyses
L Sampling Biogeochemical Diffuse reflectance ]
Sampling site strate Geochemical O i tt Radionuclide Magnetic
8y cochemical — Urganicmatier gy NR - MIR susceptibility
elements composition
Source samples X x1 X X X
. TISS X x1 X X X
Conceigdo River - Outlet
FBS X x1 X X X X
Event X X X
Source samples X X X X X
TISS
Ibirapuita River - Outlet X X X X X
FD X X X X X
Event X X X X
Ibirapuita River - EPA TISS X X X X X
catchment outlet FD X X X X X
Ibirapuita River - Cavera
catchment outlet TISS X X X X X
Ibirapuita River - Pai-Passo
catchment outlet TISS X X X X X
Uruguay River Sediment deposit X X X

ITotal organic carbon only; UV - Ultra-violet-visible; NIR - Near Infrared; MIR - Mid Infrared; TISS - Time Integrated Suspended Sediment; FBS -
Fine-bed Sediment; FD - Flood Deposit; Event — samples collected during rainfall-runoff events.
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5.7 Sediment source discrimination and apportionment

Two different methodologies for the sediment source discrimination and
apportionment were applied. The first one, where the approaches were based on discrete
variables (geochemical, magnetic, radionuclides and UV derived parameters), a classical
method based on a three-step procedure to selected the best set of variables was applied:
i) a range test; ii) the Kruskal-Wallis H test (KW H test); and iii) a linear discriminant
function analysis (LDA). The best set of variables selected by the LDA were then included
in the mixing model (Collins et al., 2010a). In the second method, multivariate models
were calibrated with the spectral data of artificial mixtures with known proportions from
each source and used to predict the source contributions to the sediment samples
(Brosinsky et al., 2014; Poulenard et al., 2009).

In the range test for discrete variables, sediment concentration or values lying
outside the range of the sources were excluded. Three methods were tested: i) the values
observed in the sediment samples should lie within the minimum and maximum values
observed in the sources; ii) the average values * one standard deviation for the sediment
samples should remain within the average * on standard deviation of each individual
source; and iii) the sediment median values + the 25t or 75t percentiles should be
comprised within the range defined as the median values * the 25t or 75t percentiles of
the source (IQR). The KW H test was performed to test the null hypothesis (p < 0.05) that
the sources belong to the same population. The variables that provided significant
discrimination between sources were analysed with a forward stepwise LDA (p < 0.1) in
order to reduce the number of variables to a minimum that maximizes source
discrimination (Collins et al.,, 2010b). The statistical analyses were performed with R
software (R Development Core Team, 2017) and more details on the model can be found
in Batista et al. (2018).

The source contributions were estimated by minimizing the sum of squared

residuals (SSR) of the mass balance un-mixing model:

2
n

SSR = Z C; — <§: Psssi> /C; (2)

i=1

where n is the number of variables/elements used for modelling, Ci is the concentration

of the element i in the target sediment, m is the number of sources, Ps is the optimized
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relative contribution of source s, and Ssi is the concentration of element i in the source s.
Optimization constraints were set to ensure that source contributions were non-negative
and that their sum equalled 1. The un-mixing model was solved by a Monte Carlo
simulation with 2500 iterations. More information about model settings and compilation
can be found in Batista et al. (2018).

For the second method based on multivariate spectral models, artificial mixtures
with known proportion of each source have to be prepared to calibrate and validate the
models. Samples of each source were mixed in equal proportions in order to prepare a
single sample representative for the corresponding source. The reference samples of
each source were then mixed with different weight proportions to obtain different source
material ratios to calibrate the multivariate models and for validation of the mixing model
results. The UV, NIR and MIR spectra were obtained for each mixture and the
corresponding weight contribution of each sediment source were analysed by
multivariate models (e.g. partial least square regression - PLSR and support vector
machine - SVM). The model fitted from the spectra with known proportions was used to
estimate the contribution of each source to the sediment samples (Poulenard et al.,, 2012;
Tiecher et al, 2017a). The model accuracy was evaluated by the coefficient of

determination (R?) and the mean square root of the prediction error (RMSE).
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6 Chapter 1. Sediment fingerprinting using geochemical tracers: a

global meta-analysis

6.1 Introduction

The sediment tracing technique has been used in several studies around the world
to identify the main sources of sediment and indicate where efforts to control soil erosion
processes should be concentrated (Collins et al., 2017a). Soil erosion has been considered
as arisk to ensure food, fibre and energy production in the future, but also as a potential
source of diffuse pollution. Soil erosion studies have increased significantly in recent
years. According to a FAO report recently published (FAO, 2019), in the last 3 years
(2016-2018) the number of published articles on soil erosion was greater than that
released during the entire 20th century (5698 articles published between 1931 and
1999), with 7348 articles published, according to a survey using the Web of Science
database. Studies on sediment fingerprinting also increased sharply in the last three
decades, providing a lot of information about the sediment dynamics at the catchment
scale. According to a review of Walling (2013), the number of articles reporting sediment
source investigations increased exponentially from the first studies carried out in the
1970s to 2013, where around 50 studies were accounted for the year 2013 only. More
recently, Collins et al. (2020) published a bibliographic review discussing the main
themes related to sediment source fingerprinting and showed that the number of articles
on this subject continue to increase. According to this more recent bibliometric review
based on a search in the Web of Science and Google Scholar, an average of 31 articles per
year have been published in the period between 2013 and 2019.

Notwithstanding, according to Poesen (2017), additional studies are still needed
to understand the human impacts on soil erosion, mainly in large catchments or at the
regional scale, in order to analyse the links between soil erosion and its off-site effects
(Boardman et al., 2019). Therefore, to identify and diagnose the problems associated with
the transfer of sediments, nutrients and contaminants to water resources have gained
scientific relevance and their sources need to be quantified (Mukundan et al., 2012;
Owens and Xu, 2011).

Sediment fingerprinting studies have been developed for identifying the main

erosion problems, to understand the erosion processes and their impacts at the river
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catchment scale, and for directing solutions to the origin of the problems. There is no
defined methodology that can be applied in all cases and in any environment, since the
properties of soils and sediments vary according to the natural processes of formation
(parent material, climate, relief, living organisms and time), which requires specific
tracers or research designs (Collins et al., 2020; Motha et al., 2002). Although there is no
single methodology, several premises of the method must be met, including that: i) the
tracers must be conservative, i.e., the values of a certain parameter must lie within the
limits defined by their variability observed in the sources or vary in a predictable way; ii)
the parameters used must have a discrimination potential between at least two sources;
and iii) the tracer values in the sediment must be linearly additive in relation to its
sources (Haddadchi et al., 2013). Accordingly, attempts to trace sediments may be risky,
since investment in high-cost and time-consuming analyses may not be efficient in
discriminating between the potential sources observed or may not meet the method's
premises.

Therefore, several types of parameters have been tested as tracer variables,
among them parameters based on magnetic properties (Black et al., 1965; Slattery et al.,
1995), fallout radionuclides (Collins et al., 2001; Evrard et al., 2016; Gaspar et al., 2013;
Porto et al,, 2014; Walling and Quine, 1992), colour and spectral properties (Barthod et
al,, 2015; Martinez-Carreras et al.,, 2010c, 2010b, 2010a; Pulley et al., 2018; Tiecher et al,,
2015), mineralogy (Motha et al., 2003), geochemical elements (Lamba et al., 2015;
Tiecher et al., 2018), organic matter composition (TOC, TN, §°N and 613C) (Blake et al.,
2012; Brandt et al., 2018; Fox and Papanicolaou, 2007; Minella et al., 2008b; Sloto et al.,
2012).

Fallout radionuclides (137Cs, 219Pbxs, ’Be) are the most consolidated tracers, as they
are considered to be the most reliable and accurate tracers to calculate the contribution
of surface and subsurface sediment sources, especially for 137Cs (Evrard et al., 2016;
Wallbrink and Murray, 1993). Subsequently, the second classic set of tracers for sediment
tracing is the geochemical composition, usually used as a reference to validate other
alternative tracer results (Martinez-Carreras et al., 2010c¢; Tiecher et al., 2016). This type
of tracer allows the evaluation of a large number of parameters, usually analysed by
means of multi-elemental techniques such as inductively coupled plasma mass
spectrometry (ICP-OES/MS) or X-ray fluorescence (XRF). Geochemistry has been pointed

out by the review of Collins et al. (2020) as the most used set of tracers in fingerprinting
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studies, followed by radionuclides. The variability of the factors controlling the
concentration of certain elements, allows differentiating contrasted parent materials for
example, which controls the basic geochemical composition of soil and sediments, but
also differentiates land uses, since different processes of formation, positions in the
landscape, uses of fertilizers among others, may modify the chemical composition of the
soil.

Accordingly, different environmental conditions may lead to a specific set of
geochemical tracers being more efficient for each study. Because of this complexity
involving the use of geochemical tracers, to the best of our knowledge, there is no
indication in the literature on what would be the most appropriate chemical elements for
tracing sediment sources. However, it is possible that specific chemical properties of
certain elements, based on their ionic potential for example, may increase the probability
of these being effective in discriminating between sediment sources. Therefore, the
purpose of this chapter is to identify which geochemical tracers are more commonly
selected to discriminate between potential sediment sources based on a review of a set
of articles published in scientific journals and to identify trends related to the chemical
elements being more frequently selected. Furthermore, another objective is to analyse
the statistical procedures used to select the potential tracers, and identify the
relationships between the tracers selected, the statistical methods used and the study

designs.
6.2 Methodology

6.2.1 Review strategy

This review was conducted with the objective of compiling sediment
fingerprinting articles that incorporated the geochemical composition in the potential
suite of tracers used to discriminate between potential sediment sources and analyse
those that were selected in each study, according to the different methods applied. The
search was performed in English in the Web of Science (WoS) database with the following
conditions: TOPIC: ("sediment fingerprint*") AND TOPIC: ("soil erosion") OR TOPIC:
("sediment trac*") AND TOPIC: ("soil erosion") OR TOPIC: ("sediment source*") AND
TOPIC: ("soil erosion"). The search was conducted in November 2019, resulting in a set

of 374 articles and 14 reviews about the subject of interest. The articles were
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systematically reviewed to remove all those which have not met the following criteria:
include geochemical tracers; consider agricultural areas, tributaries or geological
material as potential sources; apply a quantitative sediment fingerprinting approach; and
being published before 2017, included. Articles cited in the 388 articles which were not
individually covered by the previous web search were also included in order to expand
the number of publications compiled, to satisfy the demand of this systematic review. As
aresult, after a screening according to the established criteria, a total of 111 articles were
retained which used geochemical tracers, but only 88 articles presented all the

information required for further analyses.

6.2.2 Data base and analysis

The information collected from the retained articles was organized in a
spreadsheet in which the bibliometric data was collected as well the data of interest for
the meta-analysis. The main information collected from each article was: bibliometric
information (authors, title, year of publication, journal), catchment under study,
geographical position, surface area of the catchment, types and number of sediment
sources, number of samples to characterize the sources, type of sediment samples,
number of sediment samples, particle size fraction of interest, correction factors applied,
tracers evaluated, statistical tests and tracers selected at each stage (conservative test,
mean test and discriminant analysis), percentage of samples correctly classified by the
discriminant analysis and the type of mixing model used. Some of the articles used more
than one sediment fingerprinting approach. An approach is considered as a sediment
fingerprinting procedure which is applied to an individual catchment using a determined
set of tracers, a given statistical procedure and a specific mixing model. As an example, if
in one publication, the authors tested different sets of tracers in the same catchment, each
test was considered as an individual approach. Overall, 111 publications and 463
approaches have been reviewed, each of which considered at least geochemical elements
as tracers, and from those, only 88 articles and 310 approaches met all the criteria to be
included in the final meta-analysis.

The list of geochemical tracers identified is: Ag, Al, Aldgi, Aldi+py, Alox, Alpy,