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En Mathématiques et Modélisation
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ABSTRACT

This PhD thesis aims to study the coupling of nonlinear shallow water models at different scales, with
application to the numerical simulation of urban floods. Accurate simulations in this domain are usually
prohibitively expensive due to the small mesh sizes necessary for the spatial discretization of the urban
geometry and the associated small time steps constrained by stability conditions. Porosity-based shal-
low water models have been proposed in the past two decades as an alternative approach, consisting of
upscaled models using larger mesh sizes and time steps and being able to provide good global approx-
imations for the solution of the fine shallow water equations, with much smaller computational times.
However, small-scale phenomena are not captured by this type of model. Therefore, we seek to formulate
a numerical model coupling the fine and upscaled ones, in order to obtain more accurate solutions inside
the urban zone, always with reduced computational costs relatively to the simulation of the fine model.
The guideline for this objective lays on the use of predictor-corrector iterative parallel-in-time numerical
methods, which naturally fit to this fine/coarse formulation. We focus on the parareal, one of the most
popular parallel-in-time methods. As a main challenge, temporal parallelization suffers from instabili-
ties and/or slow convergence when applied to hyperbolic or advection-dominated problems, such as the
shallow water equations. Therefore, we consider a variant of the method using reduced-order models
(ROMs) formulated on-the-fly along parareal iterations, using Proper Orthogonal Decomposition (POD)
and the Empirical Interpolation Method (EIM), being able to improve the stability and convergence of
the parareal method for solving nonlinear hyperbolic problems. We investigate the limitations of this
ROM-based parareal method and we propose a number of modifications that provide further stability
and convergence improvements: enrichment of the input snapshot sets used for the model reduction pro-
cedure; formulation of local-in-time ROMs; and incorporation of an adaptive parareal approach recently
presented in the literature. The original and ROM-based parareal methods, including the proposed im-
provements, are compared and evaluated in terms of stability, convergence towards the fine solution and
numerical speedup obtained in a parallel implementation. In a first part, the methods are formulated,
studied and implemented considering a set of numerical simulations coupling the classical shallow water
equations (without the porosity concept) at different scales. After this initial study, we implement them
for coupling the classical and the porosity-based shallow water models, for the simulation of urban floods.

Keywords: porosity-based shallow water equations, multiscale models, parallel-in-time, parareal
method, reduced-order models, urban floods
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RÉSUMÉ

Cette thèse de doctorat porte sur l’étude du couplage des modèles de Saint-Venant non linéaires à
différentes échelles, appliqué à la simulation numérique d’inondations urbaines. Des simulations précises
dans ce domaine ont, en général, un coût computationnel prohibitif dû aux petites tailles de maille
nécessaires pour la discrétisation spatiale de la géométrie urbaine et, par conséquent, les petits pas de
temps restreints par des conditions de stabilité. Au cours des deux dernières décennies, des modèles de
Saint-Venant à porosité ont été proposés comme une alternative, s’agissant des modèles à échelle élargie
utilisant des mailles et des pas de temps plus grands, et capables de fournir des bonnes approximations
globales aux solutions des modèles fins, avec un temps de calcul considérablement plus petit. Néanmoins,
certains phénomènes à petite échelle ne sont pas capturés par ce type de modèle. Nous cherchons donc à
formuler un modèle numérique couplant les modèles à petite et à large échelle, afin d’obtenir des solutions
plus précises à l’intérieur des zones urbaines, toujours avec des temps de calcul plus petits par rapport à
la simulation des modèles fins. La ligne directrice de ce travail est l’utilisation de méthodes itératives de
parallélisation en temps, du type prédicteur-correcteur, qui s’adaptent naturellement à cette formulation
fin/grossier. Nous nous concentrons sur la méthode Pararéel (parareal method), une des méthodes de
parallélisation en temps les plus connues. Comme défi majeur, la parallélisation en temps présente en
général des instabilités et une convergence lente dans le cadre de la résolution de problèmes hyperboliques
ou dominés par l’advection, comme les équations de Saint-Venant. Nous considérons donc une variante
de la méthode qui incorpore des modèles d’ordre réduit (Reduced-Order models - ROMs) formulés à la
volée au cours des itérations de la méthode Pararéel, utilisant la decomposition orthogonale aux valeurs
propres (Proper Orthogonal Decomposition - POD) et la méthode d’interpolation empirique (Empirical
Interpolation Method - EIM), et capable d’améliorer la stabilité et la convergence de la méthode pour
la résolution de problèmes hyperboliques non linéaires. Nous étudions les limitations de cette méthode
Pararéel basée sur des ROMs et nous proposons des modifications qui fournissent des améliorations ad-
ditionnelles à la stabilité et la convergence : l’enrichissement des données d’entrée pour les techniques
de réduction de modèle ; la formulation des ROMs locaux en temps ; et l’incorporation d’une méthode
Pararéel adaptative proposée récemment dans la littérature. La méthode Pararéel originale et celle basée
sur des modèles réduits, y compris les modifications proposées, sont comparées et évaluées en termes de
stabilité, convergence vers la solution du modèle fin et accélération de la simulation numérique obtenue
dans une implémentation parallèle. Dans un premier temps, les méthodes et améliorations proposées sont
formulées, étudiées et implémentées en considérant des simulations numériques couplant les équations de
Saint-Venant classiques (sans le concept de porosité) à différentes échelles. Après cette étude initiale,
nous appliquons les méthodes au couplage des équations classiques et des équations à porosité, pour la
simulation d’inondations urbaines.

Mots-clés: équations de Saint-Venant à porosité, modèles multi-échelles, parallélisation en temps,
méthode Pararéel, modèles d’ordre réduit, innondations urbaines
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RÉSUMÉ DÉTAILLÉ EN FRANÇAIS

Chapitre 1: Introduction

Dans cette thèse de doctorat, on s’intéresse au couplage de modèles de Saint-Venant (en anglais, “Shallow
Water Equations” - SWE) à différentes échelles pour la simulation d’inondations urbaines. En général, ce
type de simulation requiert l’utilisation de maillages fins pour la représentation de la géométrie urbaine,
avec des cellules de l’ordre du mètre, ce qui implique que les pas de temps doivent être également petits,
à cause des conditions de stabilité du type CFL. Par conséquent, les temps de calcul sont élevés et
impraticables pour des simulations en temps réel à l’échelle des villes. Une approche alternative consiste
à utiliser des modèles à échelle élargie, appelés modèles de Saint-Venant à porosité, dans lesquels des
coefficients de porosité sont définis pour chaque cellule et interface du maillage afin d’indiquer la présence
ou non d’obstacles (bâtiments, etc.). Cela permet d’utiliser des mailles beaucoup plus grandes (et aussi
des pas de temps plus grands, à cause des conditions de stabilité), conduisant à des temps de calcul
considérablement plus petits (entre deux et trois ordres de grandeur moins élevés).

Bien que les modèles de Saint-Venant à porosité soient capables de fournir des bonnes approxima-
tions globales des solutions du modèle fin (les équations de Saint-Venant classiques, résolues avec une
discrétisation spatio-temporelle fine), certains phénomènes à petite échelle ne sont pas bien représentés.
On cherche donc à coupler ces deux modèles afin de garder les meilleures caractéristiques de chacun : la
précision du modèle fin et le coût computationnel réduit du modèle grossier.

Pour faire ce couplage, on utilise des méthodes itératives de parallélisation en temps (“parallel-in-time”
- PinT) du type prédicteur-correcteur, qui sont propices à cette formulation fin-grossier. Plus précisément,
on s’intéresse à la méthode “Pararéel”, une des méthodes PinT les plus populaires. Néanmoins, il est bien
connu que les méthodes PinT, le Pararéel compris, sont peu efficaces pour la résolution des problèmes
hyperboliques (comme les équations de shallow water). Nous explorons donc l’utilisation d’une variante
de la méthode Pararéel utilisant des modèles d’ordre réduit et conçue pour améliorer la performance
lors de la résolution des problèmes hyperboliques. Nous proposons des améliorations à la méthode et
comparons sa performance et celle de la méthode Pararéel originale (ou classique) pour résoudre les
équations de Saint-Venant et le couplage proposé dans ce travail.

Chapitre 2 - Les modèles de Saint-Venant à différentes échelles

Ce chapitre est consacré à une revue des modèles de Saint-Venant à différentes échelles. Nous présentons
d’abord les équations classiques et, après une revue du concept de passage à large échelle (“upscaling”),
nous présentons différents modèles à porosité qui ont été développés au cours des deux dernières décennies
et qui sont obtenus en moyennant en espace les équations classiques.

Les modèles présentés en détail sont :

• Le modèle à porosité unique (Single Porosity - SP) (Guinot and Soares-Frazão, 2006), où les
équations sont modifiées en introduisant un seul paramètre de porosité, représentant la fraction de
l’aire d’un domaine ou d’une maille qui n’est pas couverte par des obstacles (donc disponible pour
le fluide)

• Le modèle à porosité multiple (Multiple Porosity - MP) (Guinot, 2012), où le domaine est
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divisé en régions où l’écoulement a différentes propriétés (e.g. des zones d’eau mobile, d’eau stag-
nante, des intersections de rues dans la géométrie urbaine, etc.). Dans chaque région, l’écoulement
est décrit par des équations et des coefficients de porosité spécifiques.

• Le modèle à porosité intégrale (Integral Porosity - IP) (Sanders et al., 2008) : contrairement
aux deux modèles précédents, ce modèle est proposé dans une formulation intégrale, ce qui permet
de définir deux coefficients de porosité : un coefficient de stockage, représentant la fraction d’une
aire qui n’est pas couverte par des obstacles et défini pour chaque maille (analogue au coefficient de
porosité dans le modèle SP) et un coefficient de passage, défini pour chaque interface du maillage
et représentant la fraction de l’interface disponible pour le fluide. Avec cette formulation, le modèle
est capable de mieux représenter des phénomènes anisotropes que dans le modèle SP.

• Le modèle à porosité intégrale duale (Dual Integral Porosity - DIP) (Guinot et al., 2017) :
ce modèle améliore le modèle IP en définissant deux ensembles de variables conservées, une pour
les mailles et l’autre pour les interfaces du maillage. Un modèle de fermeture est proposé pour lier
ces deux ensembles. Cette approche permet de mieux représenter les vitesses d’onde. En outre, des
conditions sur les porosités de stockage et de passage sont définies pour assurer que le modèle reste
hyperbolique et valable physiquement.

Après cette présentation des modèles, on décrit un schéma en volumes finis (FV) explicite en temps
pour leur résolution numérique. Ce schéma est valable pour les équations de Saint-Venant classiques et à
porosité. On propose notamment une reformulation globale en espace du schéma, ce qui sera utile pour
la formulation des modèles réduits dans le chapitre suivant.

On conclut le chapitre avec l’application des équations de Saint-Venant classiques et des modèles SP
et DIP pour la résolution d’un cas test simple, illustrant un écoulement dans une zone urbaine fictive,
comme motivation pour la suite du travail. On constate que les modèles à porosité sont beaucoup moins
coûteux (avec un temps de calcul cent fois plus petit par rapport aux équations classiques), mais ne
fournissent qu’une approximation globale de la solution fine. En comparant les résultats des modèles SP
et DIP, on constate aussi que le dernier fournit des meilleures approximations.

Chapitre 3 - La méthode Pararéel et quelques adaptations pour des problèmes
hyperboliques

Dans ce chapitre, on présente les méthodes de parallélisation en temps qui seront utilisées pour le couplage
proposé dans ce travail.

On présente d’abord la méthode Pararéel classique (Lions et al., 2001). Il s’agit d’une méthode
itérative, du type prédicteur-correcteur, s’appuyant sur l’utilisation simultanée d’un modèle (propagateur)
fin et un modèle (propagateur) grossier. Le premier, qu’on considère comme modèle de référence, est
précis et avec un coût computationnel très élevé (en général, par l’utilisation d’un petit pas de temps),
tandis que le deuxième est beaucoup moins cher mais moins précis (en utilisant par exemple des pas
de temps plus grands). La méthode se construit en divisant le domaine temporel en un certain nombre
d’intervalles. À chaque itération, des prédictions sont calculées en utilisant le modèle grossier de façon
séquentielle au long de tout le domaine temporel, et des corrections sont fournies par le modèle fin
calculé de façon parallèle, la propagation fine au long de chaque intervalle de temps étant calculée par
un processeur. Par conséquent, en parallélisant l’évolution coûteuse du modèle fin, la méthode permet
de réduire le temps nécessaire pour calculer la solution précise.

Il est facile de montrer que la solution de la méthode Pararéel converge exactement vers la solution
de référence (celle du modèle fin) en un nombre fini d’itérations (égal au nombre d’ intervalles de temps).
Néanmoins, la méthode n’est intéressante (i.e. moins coûteuse qu’une simulation séquentielle du modèle
fin) que si elle fournit une convergence beaucoup plus rapide. Cela est bien vérifié pour des problèmes
paraboliques et diffusifs, mais pas pour des problèmes hyperboliques ou dominés par des phénomènes
advectifs, pour lesquels la méthode présente des instabilités et une convergence lente. Ce comportement
est dû aux différences de vitesse de phase discrète entre le modèle fin et le modèle grossier (Ruprecht,
2018).

On s’intéresse donc à une variante de la méthode Pararéel où le modèle grossier est remplacé par
des modèles d’ordre réduit (ROMs) formulés à la volée au cours des itérations, à partir des réalisations
(snapshots) de la solution fournies par les itérations précédentes (Chen et al., 2014). Ce modèle réduit
est résolu avec le même petit pas de temps que celui du propagateur fin, ce qui permet d’espérer des
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meilleures approximations des vitesses de phase. Pour le problème considéré ici (les équations de Saint-
Venant), la réduction de modèle est effectuée en combinant deux techniques, la décomposition orthogonale
aux valeurs propres (Proper orthogonal decomposition - POD) et la méthode d’interpolation empirique
(Empirical Interpolation Method - EIM), ce qui convient à des problèmes non linéaires (Barrault et al.,
2004; Chaturantabut and Sorensen, 2010).

Des premiers résultats numériques, réalisés sur des problèmes relativement petits et simples, et cou-
plant les équations de Saint-Venant classiques à différents échelles (i.e. sans encore utiliser le concept de
porosité), montrent que la méthode Pararéel basée sur des modèles réduits est plus performante que la
méthode classique dans des situations où celle-ci présente des instabilités et/ou une convergence lente.
En outre, à travers une implémentation parallèle (même sur des petites dimensions), on est capable de
comparer les variantes de la méthode Pararéel en termes de temps de calcul. La méthode utilisant des
modèles réduits présente des coûts beaucoup plus grands, en mettant en évidence l’importance d’une
implémentation efficace de la réduction de modèle.

Ces résultats montrent aussi que la performance de la méthode basée sur des modèles réduits est
influencée par plusieurs paramètres et configurations, par exemple la troncature des modèles réduits, le
maillage et la régularité de la solution. De façon plus générale, on peut conclure que cette performance
est conditionnée par la qualité de modèles réduits formulés à la volée et par leur efficacité à reproduire
la dynamique du modèle fin, ce qui motive le travail présenté dans le prochain chapitre.

Chapitre 4 - Améliorations de la méthode Pararéel basée sur des modèles
d’ordre réduit

On commence le chapitre en investiguant de façon plus détaillée la qualité du modèle réduit formulé à
la volée au cours des itérations. Comme difficulté majeure, ces modèles réduits sont construits à partir
des snapshots peu précis (puisque fournis au cours des itérations de la méthode Pararéel). Il est donc
nécessaire d’améliorer la qualité de la réduction de modèle. Néanmoins, ces améliorations ne doivent
pas entrâıner des coûts importants, sinon la méthode Pararéel perdrait son intérêt. On propose trois
approches, qui sont étudiées en utilisant les mêmes cas test définis dans le chapitre précédent :

• Enrichissement des ensembles de snapshots utilisés pour la réduction de modèle : dans
la formulation originale de la méthode Pararéel basée sur des modèles réduits, les snapshots sont
pris dans les instants définissant les intervalles de temps. Néanmoins, il existe des solutions calculées
dans des pas de temps intermédiaires (lors de la correction fine dans l’algorithme Pararéel) qui ne
sont pas utilisées. On propose donc d’enrichir les ensembles de snapshots avec un certain nombre
de ces solutions intermédiaires (ce qui n’implique pas des coûts additionnels pour les calculer,
puisqu’elles sont déjà disponibles). Néanmoins, la réduction de modèle elle-même devient plus
coûteuse, à cause de sa complexité quadratique par rapport au nombre de snapshots. On constate
que des enrichissements simples (avec peu de snapshots additionnels) permettent d’améliorer la
convergence et stabilité de la méthode Pararéel, avec des temps de calcul qui restent raisonnables.
Pour des enrichissements plus importants, les améliorations sont moins notables mais les temps de
calcul deviennent prohibitifs.

• Formulation des modèles réduits locaux en temps : cette approche, inspirée de la méthode
de décomposition en intervalles principaux (Principal Intervals Decomposition - PID) (Ijzerman,
2000), consiste à diviser le domaine temporel em fenêtres (qui peuvent elles mêmes contenir plusieurs
intervalles de temps de la méthode Pararéel) et faire des réductions de modèle dans chacune d’elles
(au lieu d’une réduction globale en temps), afin de mieux capturer des phénomènes locaux. La PID
a été originellement conçue dans le cadre de la POD ; on l’étend au cadre de la POD-EIM et on
l’introduit dans la méthode Pararéel. Cette approche fournit quelques améliorations à la stabilité
de la méthode ; néanmoins, dans des cas où la réduction de modèle globale est déjà efficace,
cette formulation locale a des effets négatifs sur la convergence et la stabilité. Concernant le coût
numérique, les temps de calcul deviennent prohibitifs quand le nombre de fenêtres augmente, à
cause de la formulation de plusieurs modèles réduits à chaque itération.

• Utilisation d’une approche adaptative : basée sur la méthode Pararéel adaptative proposée par
Maday and Mula (2020) dans le cadre de la méthode Pararéel classique, cette approche consiste à
utiliser, au cours des itérations, des modèles fins qui se raffinent progressivement, au lieu d’un modèle
fixe et très cher (celui de référence). On étend cette approche au cadre de la méthode Pararéel
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basée sur des modèles réduits. On constate que des améliorations de la stabilité et notamment des
temps de calcul sont obtenus. La méthode fournit des solutions avec des précisions donnés avec un
temps computationnel moins important, même si plus d’itérations s’avèrent nécessaires, puisque les
itérations intermédiaires sont considérablement moins chères.

On conclut le chapitre en étudiant l’utilisation combinée de ces approches. Notamment, l’enrichissement
des ensembles de snapshots, avec peu de snapshots additionnels, combiné avec l’approche adaptative, se
révèle être une bonne solution pour établir un compromis entre convergence et temps de calcul.

Chapitre 5 - Stratégies pour des simulations plus longues utilisant la méthode
Pararéel

Dans les chapitres précédents, la performance des variantes de la méthode Pararéel a été évaluée en
utilisant des exemples relativement simples, et il a été illustré que, sous les mêmes configurations, la
méthode basée sur des modèles réduits peut être plus performante que la méthode classique. Dans ce
chapitre, on étudie comment les deux méthodes se comportent dans des problèmes de taille plus grande.
On considère des problèmes analogues à ceux étudiés auparavant, mais définis dans des domaines spatiaux
et temporels plus grands. Dans un premier temps, à titre de motivation, il est constaté que, en gardant
les mêmes configurations qui se sont montrées efficaces pour les petits problèmes, la méthode basée sur
des modèles réduits présente des instabilités et une convergence plus lente pour les problèmes de taille
plus grande. On compare donc deux stratégies pour résoudre ces problèmes :

• Utilisation des intervalles de temps plus grands : dans les simulations des chapitres
précédents, les intervalles de temps (sur lesquels la parallélisation de la méthode Pararéel s’appuie)
ont été considérés comme égaux aux pas de temps associés au propagateur grossier (ce qui était un
choix naturel vu la petite dimension des problèmes). On définit donc des intervalles plus grands,
contenant plusieurs pas de temps grossiers, et on étudie le comportement des variantes de la méthode
Pararéel en fonction des tailles des intervalles. On vérifie que la stabilité et la convergence de la
méthode classique sont considérablement améliorées en choisissant des intervalles plus grands. Pour
la méthode basée sur des modèles réduits, on observe aussi des améliorations, mais la relation entre
la performance et la taille des intervalles est moins claire.

• Définition des simulations locales en temps de la méthode Pararéel : dans cette approche,
on garde les petits intervalles de temps, mais on fait des simulations de la méthode Pararéel dans
des fenêtres de temps (au lieu d’une simulation couvrant tout le domaine temporel). Dans chaque
sous-intervalle, un certain nombre d’itérations est réalisé, fournissant la solution initiale pour la
fenêtre suivante. Il est vérifié que, en définissant des fenêtres à chaque fois plus petites, la méthode
Pararéel basée sur des modèles réduits devient plus stable et converge plus vite. Cela est aussi vrai
pour la méthode classique mais, dans ce cas, si les intervalles restent petits, la convergence et la
stabilité sont limitées.

Comme conclusion de ce chapitre, la performance de la méthode Pararéel classique semble plutôt
conditionnée par la taille des intervalles de temps distribués à des processeurs. D’autre part, la méthode
basée sur des modèles réduits est plus efficace en effectuant des sous-simulations. Cela indique que la
réduction de modèle, réalisée au cours des itérations en utilisant des snapshots fournis par la méthode,
est assez difficile quand elle est faite sur des longs intervalles de temps ; donc, la méthode basée sur
des modèles réduits est moins appropriée pour résoudre des problèmes définis dans des grands domaines
temporels.

Il faut noter que les deux approches étudiées dans ce chapitre limitent l’accélération de la simulation
computationnelle qui peut être fournie par la méthode Pararéel. Dans le premier cas, en définissant
des intervalles de temps plus grands, le nombre de processeurs qui peuvent être utilisés en parallèle
devient plus petit. Dans le deuxième cas, on sérialise partiellement la simulation de la méthode Pararéel,
et chaque sous simulation contient un petit nombre d’intervalles de temps (donc moins parallélisable).
Pour cette deuxième approche, il existe aussi une limitation de la convergence de la solution obtenue:
puisque chaque sous-simulation reçoit comme condition initiale une solution fournie par les simulations
précédentes, sa convergence est limitée par la qualité de cette solution initiale.
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Chapitre 6 - Couplage entre les équations de Saint-Venant classiques et à
porosité

Après des études initiales où la méthode Pararéel classique et celle basée sur des modèles réduits ont été
appliquées au couplage des équations de Saint-Venant classiques à différentes échelles, on étudie, dans
ce chapitre, leur application à de simulations d’inondations urbaines, où des modèles de Saint-Venant à
porosité jouent le rôle de propagateur grossier.

D’après les résultats observés dans les chapitres précédents, on peut s’attendre à des difficultés impor-
tantes dans cette application. Des simulations d’inondations urbaines sont en général caractérisées par
des grands domaines en espace et temps, et par des solutions fortement discontinues due à la présence
d’obstacles. Un premier exemple illustre bien cette difficulté: il s’agit d’un des cas tests considérés dans les
chapitres précédents et pour lequel la méthode Pararéel basée sur des modèles réduits est particulièrement
efficace. En modifiant le cas test par l’introduction des obstacles dans le domaine, la méthode, sous les
mêmes configurations, devient fortement instable.

La majorité de l’étude dans ce chapitre se base sur un cas test représentant un écoulement dans
une zone urbaine fictive. On s’intéresse d’abord à l’influence du grossissement entre les modèles fin et
grossier sur la convergence et la stabilité des méthodes Pararéel. Pour cela, on définit différents modèles
de référence (i.e. différentes discrétisations des équations de Saint-Venant classiques), en plus de deux
discrétisations des modèles à porosité.

Dans un premier temps, on fixe le modèle grossier (une discrétisation des équations à porosité) et on
considère plusieurs modèles de référence. Dans le cadre de la méthode Pararéel classique, on observe une
relation très claire entre la vitesse de convergence et le raffinement du modèle fin : quand celui-ci est plus
grossier (donc plus proche du modèle à porosité), l’erreur de la solution Pararéel décrôıt plus rapidement.
Cette relation est moins claire dans la méthode basée sur des modèles réduits.

Dans une deuxième approche, on fixe le modèle fin (la plus fine des discrétisations des équations
de Saint-Venant classiques) et on utilise différents modèles grossiers (les modèles classique et à porosité
avec différentes tailles de maille et de pas de temps). Pour la méthode Pararéel classique, on observe
une convergence plus rapide quand le modèle grossier est plus fin, et notamment quand il s’agit d’une
discrétisation du modèle classique. Dans la méthode basée sur des modèles réduits, on observe un
comportement instable dans toutes les configurations, indépendamment du raffinement du propagateur
grossier, surtout à la fin du domaine temporel, où le profil de la solution est plus complexe et présente
de fortes discontinuités.

On conclut que, tandis la méthode Pararéel classique est clairement influencée par le grossissement
entre les modèles fin et grossier, la performance de la méthode basée sur des modèles réduits semble plutôt
conditionnée par la capacité des modèles réduits à représenter la dynamique du modèle de référence, ce
qui se révèle particulièrement difficile quand celui-ci est très fin, défini dans des grands domaines en espace
et en temps et caractérisé par des solutions présentant des fortes variations et discontinuités. Comme ce
scénario est typique de la simulation des inondations urbaines, la méthode Pararéel basée sur des modèles
réduits convient mal à cette application.

Après cette étude initiale, où on s’intéressait à la stabilité et la convergence des méthodes, on analyse
ses performances, en termes d’accélération de la simulation, en fonction des paramètres choisis. Des
bonnes approximations de la solution de référence sont obtenues avec la méthode Pararéel classique,
mais avec des configurations assez restrictives (choix de grands intervalles de temps, définition des sous-
simulations) afin d’assurer la stabilité, ce qui impose des fortes limitations à l’accélération attendue. En
effet, en général la simulation de la méthode Pararéel est au plus deux ou trois fois plus rapide que la
simulation du modèle fin, ce qui représente une petite efficacité parallèle puisque toutes les simulations
ont été exécutées avec vingt processeurs. Des bonnes approximations peuvent aussi être obtenues avec la
méthode basée sur des modèles réduits, mais avec des configurations encore plus restrictives, ce qui rend
la méthode moins intéressante que la méthode classique.

Des résultats intéressants sont aussi obtenus en utilisant l’approche adaptative, décrite dans le Chapitre
4. En utilisant des modèles fins qui se raffinent progressivement au cours des itérations, les performances
des méthodes Pararéel classique et basée sur des modèles réduits sont considérablement améliorées.
Néanmoins, en pratique, il s’avère plus efficace d’utiliser un des modèles fins intermédiaires directement
comme propagateur grossier : même si les itérations sont plus chères, la convergence est plus rapide, et
des solutions avec la même précision sont obtenues avec un temps de calcul moins important. Malgré
cela, l’amélioration de la stabilité et de la convergence indiquent que des méthodes de parallélisation en
temps à plusieurs niveaux peuvent être envisagées comme une approche plus performante.
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Résumé détaillé en français

Chapitre 7 - Conclusions et perspectives

Dans ce travail, on a étudié l’application de méthodes de parallélisation en temps pour le couplage
des modèles de Saint-Venant à différentes échelles pour la simulation d’inondations urbaines. À cause
des difficultés d’application de ces méthodes à des problèmes hyperboliques, on a considéré la méthode
Pararéel dans sa formulation originale ainsi qu’une de ses variantes utilisant des modèles réduits formulés
au cours des itérations et résolus avec le même discrétisation temporelle du modèles de référence.

Il a été vérifié que cette variante peut apporter d’importantes améliorations à la méthode Pararéel dans
des configurations où la méthode classique présente des instabilités et une convergence lente. Néanmoins,
ces améliorations ne se vérifient que pour des problèmes simples, résolus dans de petits domaines en espace
et en temps et avec des solutions relativement lisses qui peuvent être capturées de façon efficace par la
réduction de modèle. Pour des problèmes plus complexes, comme dans le cas des inondations urbaines,
la méthode utilisant des modèles réduits présente des fortes instabilités qui limitent son utilisation aux
applications envisagées dans ce travail.

En conclusion, il est plus efficace d’utiliser la méthode parallèle classique. Néanmoins, afin d’assurer
sa stabilité et sa convergence, il se révèle nécessaire d’utiliser des configurations très restrictives, ce qui
limite fortement l’accélération qui peut être fournie par la méthode. Donc, dans l’état actuel de ce travail,
la méthode Pararéel n’est pas envisageable comme seul outil pour fournir d’importantes accélérations
des simulations d’inondations urbaines. Pour cela, il faut l’utiliser, par exemple, en complément à des
méthodes de décomposition de domaine spatial, donc dans un cadre de parallélisation en espace et en
temps.
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The objective of this PhD thesis is to develop a numerical model coupling shallow water models
at different scales for the simulation of urban floods. More precisely, we aim to couple the classical
shallow water equations, an accurate and computationally expensive model solved within fine spatial and
temporal discretizations, with the so-called porosity-based shallow water equations, consisting in upscaled
and low-expensive approximations to the fine model. The idea is to keep the best properties of shallow
models at each scale: the accuracy of the fine model and the low computational cost of the upscaled one.
We explore here the use of iterative predictor-corrector parallel-in-time methods, namely the parareal
method and some of its variations, which naturally fit to the proposed coupling between fine and coarse
models.

1.1 Context and challenges of urban flood modelling

1.1.1 Urban floods: an increasing issue

Floods are increasingly important and frequent events whose extensive human and socio-economic impacts
pose real challenges for societies and governments. According to a 2015 report by the Centre for Research
on the Epidemiology of Disasters (CRED) and the United Nations Office for Disaster Risk Reduction
(UNDRR, formely UNISDR), floods were the most frequent weather-related natural disasters in the
period 1995-2015, accounting for 47% of the reported events and affecting 2.3 billion people (CRED and
UNISDR, 2015). In the period 1997-2006, the number of flood events doubled, the largest increase among
all water-related disasters (Adikari and Yoshitani, 2009). Data obtained from the CRED’s Emergency
Events Database (EM-DAT)1 attest the increasing frequency of flood events (Figure 1.1), a scenario that

1EM-DAT, CRED / UCLouvain, Brussels, Belgium – www.emdat.be (D. Guha-Sapir)

1

www.emdat.be
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tends to get worse in the following decades due to climate changes and the consequent larger frequency
of extreme weather events (Jha et al., 2011; CRED and UNISDR, 2015).
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Figure 1.1: Number of reported flood events per year since 1900. Data extracted from the CRED’s
Emenergency Events Database (EM-DAT).

Urban floods are protagonist in this context, with many of major flood events taking place in highly
dense urban areas (Jha et al., 2011). The urbanization process itself is a major factor for increasing
the frequency and intensity of flood events, due to the land use leading to less impermeable surfaces,
obstructions of flow paths and generation of urban microclimates, among other factors that affect local
hydrological characteristics (Jacobson, 2011). Fast and unplanned urbanization processes contribute to
increase these impacts. The consequences of flood hazards also tend to be more drastic in urban areas,
because of their highly concentrated and growing population, with 55% of the world population living
in urban areas, a rate projected to reach 68% by 2050 (United Nations, 2019), in addition to other
indirect impacts such as water-borne diseases, water pollution and interruption of essential supply chains
(Tucci, 2007; Jha et al., 2011). Therefore, urban floods are an increasing issue requiring an integrated
risk management for reducing its impacts.

1.1.2 Mathematical and numerical modelling as components of urban flood
management

A large variety of structural and non-structural measures may be adopted for the management of urban
flood hazards, in order to avoid or minimize their impacts (Tucci, 2007; Jha et al., 2011). Structural mea-
sures are infrastructural works for containing discharges, increasing drainage and reducing and delaying
flood peaks. Non-structural ones include e.g. forecasting, monitoring and warning systems, civil defence
actions and educational campaigns.

Mathematical and numerical modelling of hydrodynamics processes, also referred as hydroinformat-
ics, are essential non-structural components of urban flood management, either by providing real-time
forecasting or pre-simulating scenarios to guide decision-making (Hénonin et al., 2013). Various types of
models exist, e.g. one-dimensional modeling of drainage systems, two-dimensional shallow-water-based
free-surface models and coupled free-surface and drainage models, with different advantages, disadvan-
tages and applicability contexts (Hénonin et al., 2013; Guo et al., 2020).

Two-dimensional free-surface models are able to provide detailed flood simulations and have been
an intensely studied research topic. A large variety of models are developed, with different numerical
schemes, spatial and temporal discretizations and shock-capturing algorithms, aiming to provide more
accurate and realistic numerical simulations and overcome challenges such as wetting-drying problems
and flows over discontinuous bathymetries (Teng et al., 2017). However, these models present a high
computational complexity, which limits their application as real-time forecasting models or when several
simulations need to be performed. Indeed, reasonable balances between accuracy and computational
effort, ensuring proper representation of small-scale phenomena, require fine computational meshes, with
cells in the order of meters, or even smaller near singularities (Guinot, 2012), which also limits the time
step due to stability conditions (Gallegos et al., 2009), leading to prohibitive simulation times in large
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spatial and temporal domains. Domains larger than 1000 km2 are usually considered impracticable to be
modelled with two-dimensional hydrodynamic models when resolutions smaller than 10 m are required
(Teng et al., 2017). As a result, while 1D drainage models are operational for real-time application, 2D
surface models and coupled 1D drainage - 2D surface models are in research stage (Hénonin et al., 2013;
Guo et al., 2020).

Research efforts have been made for accelerating the numerical simulation of 2D urban free-surface
models. A research guideline is to use high-performance computing (HPC), with CPU- or GPU-based
parallelization and spatial domain decomposition techniques, features included in many of the available
software packages for 2D hydraulic modelling (Neelz and Pender, 2013; Guo et al., 2020). Recent works
prove the potentials in using HPC for urban flood modelling, e.g. with high-resolution city-scale sim-
ulations completed in nearly real-time in a multi-GPU implementation (Xing et al., 2018). Another
approach for reducing the computational cost of 2D shallow water simulations is considering simplified
models (Guo et al., 2020). It can be done for example by neglecting specific terms of the governing equa-
tions, which gives reasonable approximations under certain flow hypothesis but may lead to inaccurate
results in more general frameworks. This approach can be useful for obtaining simplified information in
large scale applications, such as the flood extent and water of level, but at the cost of inaccurate or no
representation of dynamic processes and velocity fields (Teng et al., 2017).

1.1.3 Porosity-based shallow water models

An alternative approach for simplifying and reducing the complexity of 2D shallow water models consists
in looking the urban zone from a macroscopic point of view. Instead of a detailed representation of build-
ings, obstacles, streets and other small-scale (relative to the city scale) elements of the urban geometry,
one seeks a statistical, large-scale description: for example, the fraction of a certain area or cross section
of the urban zone that is not covered by buildings or obstacles, thus being available for the flow.

In this sense, the urban geometry can be seen as a porous media, where buildings and obstacles are
the impermeable solid fraction, and streets and avenues are voids. Macroscopic representations of porous
media have been studied for a long time, using different techniques known as upscaling, and this idea
could be translated to the modelling of urban flows. It gave rise to the so-called porosity-based shallow
water models. First proposed by (Defina et al., 1994) for treating wet and dry regions with uneven
bathymetries, this approach was later introduced in the context of urban floods by (Hervouet et al.,
2000) and (Guinot and Soares-Frazão, 2006). Under this porosity approach, fine computational meshes
are no longer required, since the urban geometry is not physically discretized (i.e. as holes in the mesh);
instead, coarser meshes can be used and the urban geometry is taken into account by defining spatial
porosity parameters, attributed to each computational cell and introduced in the governing equations. It
is illustrated with an example in Figure 1.2, showing the computational meshes used for the simulation
of a flood in the neighborhood of West Sacramento (California, USA).

The use of coarser meshes, with cells sizes of about one order magnitude larger than in the fine,
classical shallow water models, and the consequent larger (in the same proportion) time steps allowed
by stability conditions lead to much smaller computational times (between two and three orders of
magnitude smaller) (Guinot et al., 2017). Therefore, porosity-based shallow water models provide low-
computational approximations to the fine ones, and, through a steady evolution along the past two
decades, these approximate models have become more accurate and physically meaningful.

However, although these constant developments and improvements, fine scale phenomena cannot be
accurately represented by porosity-based models, due to its upscaled nature. This motivates the work
developed in this thesis. By coupling fine and upscaled shallow water models, we aim to construct a
model able to provide accurate solutions, including fine scale features, within smaller computational
costs compared to the fine model.

1.2 Parallelization-in-time

1.2.1 A further direction for parallelization

Possibilities and limits in scientific computing are determined by the current computing capacity and
performance, with numerical simulations needing to satisfy a trade-off between accuracy and compu-
tational cost. Along decades, computer development has been guided by the well-known Moore’s law
(Moore, 1965, 1975), which stated that the number of transistors in computing chips would double every
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Figure 1.2: Example of computational meshes for the simulation of an urban flood at different scales.
The meshes discretize the neighborhood of West Sacramento (California, USA) Top: mesh used for the
classical shallow water model, with small cells and the buildings represented as holes in the mesh. Bottom:
mesh used for the porosity-based shallow water models, with larger cells and the buildings not physically
represented in the mesh. Figures extracted from (Guinot et al., 2017).

two years. This prediction has and still is verified, but with decreasing growth rates that may lead to
a stagnation in the following years. Moreover, increasing the number of transistors is not translated
into a gain of performance at the same rate (Shalf, 2020). Summed up to manufacturing and energy
consumption issues (Markov, 2014), these factors indicate an obsolescence of Moore’s law. It explains a
movement, from the 2000’s, towards a multicore computing paradigm, in which performance gains are
obtained rather by increasing the number of parallel processors than improving the processors themselves
(Parkhurst et al., 2006; Dolean et al., 2015).

Scientific computing has naturally followed this trend, and research efforts have been made for devel-
oping numerical methods and algorithms able to take advantage of parallelism (Dolean et al., 2015). In
the context of the numerical simulation of partial differential equations, spatial domain decomposition
methods have a long history in this direction. First proposed by (Schwarz, 1870) and formulated in
a parallel framework by (Lions, 1988), this class of numerical methods consists in dividing the spatial
domain in many subdomains and solving the governing equations iteratively in each of them, in parallel
relative to each other.

Parallel-in-time (PinT) methods are more recent, being proposed and developed over almost 60 years,
since the work of Nievergelt (1964), and having gained special importance over the past two decades, due
to the emergence and improvement of massively parallel computers. The increasing number of scientific
publications on the subject over the past years (Figure 1.3) confirms its growing importance. The
parallelization of the temporal direction shows itself as a new path for further computational speedup
when spatial parallelization saturates. Evidently, the causality principle, i.e. the exclusively forward
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advance of time, imposes a conceptual challenge for the development of PinT algorithms (Gander, 2015).

1960 1970 1980 1990 2000 2010 2020
Year

0

10

20

30

40

50

N
um

b
er

of
pu

bl
ic

at
io

ns

Figure 1.3: Number of scientific publications related to parallel-in-time methods per year. Data obtained
from Parallel-in-Time website2.

1.2.2 Classification and examples of parallel-in-time methods

Various PinT methods have been presented in the literature, and we refer to Gander (2015) and Ong and
Schroder (2020) for detailed reviews. Following (Bellen and Zennaro, 1989), they can be classified into
three categories :

• Parallelization across the method : it consists in parallelizing the numerical scheme used for updating
the solution within each time step. These methods are also referred as direct solvers by (Gander,
2015) since they usually do not involve an iterative process. Some examples are Runge-Kutta
schemes with independent steps computed in parallel (Burrage and Suhartanto, 1997) and the
Revisionist Integral Deferred Correction (RIDC) (Christlieb et al., 2010);

• Parallelization across the system, or across the problem, in which the problem is distributed among
processors. For example, for a system of ordinary differential equations, each equation is computed
by a parallel processor in an iterative procedure, which is the principle of the waveform relaxation
method (Lelarasmee et al., 1982); its extension to space-time partial differential equation, called
Schwarz waveform relaxation method (Gander, 1996), is a parallel-in-time algorithm based on
spatial domain decomposition, performing an iterative simulation of the problem in each spatial
subdomain;

• Parallelization across the time, or across the steps, in which the problem is solved simultaneously
over several time steps. It is performed via iterative processes using a low-expensive and less
accurate coarse model along with an expensive and accurate fine one, the former being computed
sequentially along the entire temporal domain and the latter in parallel among time steps. These
methods are either based on multiple shooting or multigrid ideas, and some examples are the
parareal (Lions et al., 2001), the Parallel Implicit Time-integrator Algorithm (PITA) (Farhat and
Chandesris, 2003), the Multigrid Reduction In Time (MGRIT) (Friedhoff et al., 2013; Falgout
et al., 2014) and the Parallel Full Approximation Scheme in Space and Time (PFASST) (Emmett
and Minion, 2012).

Figure 1.4 schematizes the basic ideas behind each iteration of methods proposing parallelization
across the system and across the time. We remark that this classification is not rigid, and methods
may be combined for further improvements. We can cite, for example, combined parareal and waveform
relaxation method (Gander et al., 2013), thus mixing parallelization across the time and across the
system, and a recent proposed PFASST method with inner parallel solvers (Schöbel and Speck, 2020),
thus combining parallelization across the time and across the method.

2https://parallel-in-time.org
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Figure 1.4: Basic ideas behind each iteration of methods proposing parallelization across the system (left)
and parallelization across the time (right). In parallelization across the system, the spatial domain is
divided into several subdomains and the problem is solved in each of them (red, dashed arrows), and
information (interface boundary conditions) are exchanged between the subdomains (blue, horizontal
arrows). In parallelization across the time, the expensive, fine simulation along the entire temporal
domain (red, full line) is replaced by fine computations in parallel along smaller time slices (red, dashed
lines), relying on a less expensive and less accurate solution computed sequentially (blue, dotted line).

In this work, we focus on the parareal method, one the most popular PinT methods and whose name
stands for “parallel in real-time”. It is an iterative predictor-corrector method that consists in sequentially
computing predictions using a coarse model, whereas the corrections, given by an accurate and expensive
fine model, are computed in parallel along time slices dividing the temporal domain. Through iterations,
the parareal solution converges to the reference solution, given by a sequential simulation of the fine
model. This formulation using simultaneously a coarse and a fine models is a well-fitting approach for
the purposes of this work, aiming to couple the porosity-based shallow water models, a low-expensive and
less accurate model solved within larger time steps and computational cells, with the classical shallow
water equations, which are more accurate and expensive since they are solved using finer discretizations.

1.2.3 Challenges and alternatives for hyperbolic problems

Parallel-in-time methods have been applied to a large variety of problems. For mentionining some few,
recent examples, we cite applications to fluid-structure interactions (Margenberg and Richter, 2021),
atmospheric circulation models (Hamon et al., 2020), turbulent flow (Lunet et al., 2018), molecular
dynamics (Rosa-Ráıces et al., 2019), thermodynamics (Stump and Plotkowski, 2020), electrodynamics
(Bolten et al., 2020), poromechanics (Borregales et al., 2019), plasma dynamics (Samaddar et al., 2019),
optimal control problems (Wu and Liu, 2020) and blood flow modelling (Blumers et al., 2021), with
many implementations in massively parallel HPC systems. The most successful applications are for
parabolic, diffusive problems, for which PinT methods are able to provide substantial reduction of the
computational costs. It is not the case, however, of hyperbolic or advection-dominated problems, even
the simplest ones, for which this class of methods, including the parareal, usually presents stability and
convergence issues (Ruprecht, 2018). Therefore, the application of PinT for fluid dynamics problems,
described by hyperbolic and advective phenomena, is a substantial challenge. Since the shallow water
equations are an hyperbolic model, such challenges have to be faced in this work.

Adaptations of PinT methods are presented in the literature proposing alternatives for improving
their performance when applied to hyperbolic problems. In the framework of predictor-corrector iterative
methods, using coarse and fine models, a class of adaptations consists in modifying and improving the
coarse model by reusing information computed in the previous iterations. In the case of parareal, proposed
methods consist in formulating reduced spaces spanned by solutions of previous iterations (the Krylov-
subspace-enhanced parareal method, initially proposed in the PITA framework by Farhat et al. (2006)
and showed to be equivalent to the parareal case, for linear problems, by Gander and Petcu (2008)) and
reduced-order models (ROMs) also constructed from previous solutions (Chen et al., 2014). While the
former approach is efficient only for linear problems, the latter can also be applied to nonlinear ones, by
using suitable model reduction techniques.

In this work, we give a special attention to the parareal variant using reduced-order models, to which
we refer here as ROM-based parareal method. By applying it to a large variety of problems, Chen et al.
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(2014) showed that it is able to greatly improve the stability and convergence of the parareal method in
some situations, but fail in others. We then investigate its performance for solving the two dimensional
nonlinear shallow water equations, and, in a second moment, for coupling the classical and porosity-based
shallow water models.

We notice that model order reduction is a vast domain, comprising a large variety of methods. As a
common goal, these methods aim to reduce the complexity, thus the computational time, of an expensive
problem. Their application in the parareal framework consists in replacing the low-expensive and low-
accurate coarse model by a low-expensive ROM approximating the dynamics of the fine model. Even if
various model reduction methods could be considered, we focus here in a method combining two tech-
niques, the Proper Orthogonal Decomposition (POD) (Kosambi, 1943) and the Empirical Interpolation
Method (EIM) (Barrault et al., 2004), which is suitable for nonlinear problems and can be efficiently
implemented by using well performing linear algebra software libraries.

1.3 Objectives and methodology

We investigate in this work the application of the parareal method for coupling the classical and porosity-
based shallow water equations (which act respectively as fine and coarse models) to the simulation of urban
floods. Here, in the context of predictor-corrector iterative parallel-in-time methods, the term “coupling”
should be understood as the simultaneous use of different discretizations (i.e. at different scales) of a
mathematical model, or the use of different models for the same physical problem, in order to obtain an
approximate numerical solution to it. It is different from the usual meaning e.g. in climate simulations in
Earth System Models (Washington et al., 2009), in which models describing different physical processes
and possibly defined in different spatial domains (e.g. atmospheric and oceanic circulation models) are
simulated simultaneously and exchange information. Therefore, along this work we refer to a coupling
between classical and porosity-based shallow water models, or even to a coupling between classical shallow
water models with different discretization sizes.

Due to well known issues of the parareal method when applied to hyperbolic problems, we consider the
ROM-based parareal method as alternative approach and we compare its performance with the original
(or classical) parareal. However, the introduction of model reduction techniques in the parareal iteration
may lead to additional computational costs that limit the effective interest in using this approach, even if
possible improvements in terms of stability and convergence can be obtained. Thus, we propose here to
evaluate and compare the variants of the parareal method also in terms of computational cost, via real
parallel implementations (even if in small scales).

Therefore, along this work we perform a detailed comparison, in terms of convergence, stability and
computational cost, between the classical and ROM-based parareal methods for solving the problem
proposed here. This study is performed by considering a gradually increasing complexity. In a first
moment, we evaluate the performance of the methods in relatively simple problems, solved in small spatial
and temporal domains and coupling the classical shallow water equations at different scales (i.e. the
porosity-based models are not considered at this point). Based on these first observations, we investigate
if further modifications of the ROM-based parareal can improve its performance. In a second moment,
we still couple the classical model at different scales, but within larger spatial and temporal domains,
and we investigate how the classical and ROM-based parareal methods behave in function of chosen
parameters. Finally, we investigate the performance of both methods when used for coupling the classical
and porosity-based models, in problems that are naturally more challenging, since they are usually solved
in large domains and are characterized by highly discontinuous flows, due to the presence of obstacles in
the urban geometry.

1.4 The SW2D-LEMON software

This PhD work took place in LEMON, a research team between Montpellier antenna from Inria Sophia
Antipolis-Méditerranée center and the laboratories HydroSciences Montpellier (HSM) and Institut Mont-
pelliérain Alexander Grothendieck (IMAG) from Université of Montpellier. LEMON (Littoral, Environ-
ment: MOdels and Numerics)3 is a interdisciplinary team working on the mathematical modelling and
numerical simulation of nearshore natural processes, including the development and implementation of
porosity-based shallow water models.

3https://team.inria.fr/lemon/
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Among its research activities, LEMON team develops SW2D-LEMON 4 (Caldas Steinstraesser et al.,
2021a), a C++ multi-platform software for the simulation of shallow water models, including the upscaled,
porosity-based ones. The software can be executed either from command line or a graphical user interface
(GUI) allowing the visualization of output results, and is used both for research and educational purposes.
Figure 1.5 presents an example of numerical simulations performed using SW2D-LEMON and visualized
using its GUI. These simulations correspond to the West Sacramento test case, whose computational
meshes are presented in Figure 1.2, and are solved using both the classical and porosity-based shallow
water models.

The development of SW2D-LEMON was part of this PhD work. In order to facilitate the study and
development of the parallel-in-time methods, a standalone software has been developed, into which the
main features of the classical and porosity-based shallow water models were incorporated. A merge of the
two softwares, i.e. the implementation of the developed PinT methods into SW2D-LEMON, is intended.
Part of this merge has already been performed. Namely, the formulation of a matricial, global-in-space fi-
nite volume (FV) scheme, described in Section 2.10.3 and required for constructing reduced-order models,
was implemented, prestoring time-independent geometric information and replacing the more traditional
FV algorithm that loops on cells and interfaces of the computational mesh. This reformulation showed
to be able to reduce the computational time (from factors between 2 and 4 in the performed simula-
tions), even if other relatively important costs are present in SW2D-LEMON (e.g. the online storage of
output results). In the standalone software developed in this work, which has simplified features such
that the FV algorithm represents a more important fraction of the execution time, the reduction of the
computational cost reached the order of tenths.

Figure 1.5: Examples of numerical simulations performed using the SW2D-LEMON software and visu-
alized using its GUI. This problem correspond to the simulation of an urban flood in the neighborhood
of West Sacramento (see Figure 1.2), using the classical shallow water model (left) and a porosity-based
model (right). Figures present the water depth at a given time instant of simulation.

1.5 Publications and conferences

The following publications and conference presentations concern the work developed in this PhD thesis:

Publication in journals

• Caldas Steinstraesser, J. G., Guinot, V., and Rousseau, A. (2020a). Modified parareal method for
solving the two-dimensional nonlinear shallow water equations using finite volumes. Journal of
Computational Mathematics. Submitted;

4http://sw2d.inria.fr/
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Conference proceedings

• Caldas Steinstraesser, J. G., Vincent, and Rousseau, A. (2021c). Application of a modified parareal
method for speeding up the numerical resolution of the 2D shallow water equations. In Simhydro
2021 – 6th International Conference Models for complex and global water issues – Practices and
expectations;

• Caldas Steinstraesser, J. G., Delenne, C., Finaud-Guyot, P., Guinot, V., Kahn Casapia, J. L.,
and Rousseau, A. (2021a). SW2D-LEMON: a new software for upscaled shallow water modeling.
In Simhydro 2021 – 6th International Conference Models for complex and global water issues –
Practices and expectations;

Conference presentations

• Caldas Steinstraesser, J. G., Guinot, V., and Rousseau, A. (2020b). A modified ROM-based parareal
method for solving the two-dimensional nonlinear shallow water equations. CAN-J 2020 (Congrès
d’Analyse Numérique pour les Jeunes). Online;

• Caldas Steinstraesser, J. G., Guinot, V., and Rousseau, A. (2021b). Coupling shallow-water models
at different scales using parallel-in-time methods. 8ème école EGRIN (Écoulements Gravitaires et
RIsques Naturels). Online.

CEMRACS 2019

Moreover, the author participated in the research session of CEMRACS 20195. CEMRACS (Centre
d’Eté Mathématique de Recherche Avancée en Calcul Scientifique - Summer Center in Mathematics and
Advanced Research on Scientific Computing) is a scientific event in Applied Mathematics organized by
the French Applied and Industrial Mathematical Society (SMAI), gathering young and senior scientists to
work in research projects linked to a given theme. The 2019 edition of CEMRACS focused on geophysical
fluids and gravity flows, and the author worked in a project on the simulation of landslide-generated
tsunamis, in collaboration with Emmanuel Audusse (Université Paris 13), Louis Emerald (Université
de Rennes), Philippe Heinrich (CEA), Alexandre Paris (Université de Pau) and Martin Parisot (Inria,
CARDAMOM team). The project aimed to compare the performance of shallow water and Boussinesq
models in simulating the generation and propagation of waves formed by landslides, w.r.t. to reference
simulations provided by the 3D Navier-Stokes equations. In a second moment, the inverse problem,
i.e. the recovering of a landslide displacement from a given generated wave, is tackled via optimization
techniques. This work is presented in the following published proceedings article:

• Audusse, E., Caldas Steinstraesser, J.G., Emerald, L., Heinrich, P., Paris, A., and Parisot, M.
(2021). Comparison of models for the simulation of landslide generated tsunamis. ESAIM: ProcS,
70:14–30.

1.6 Summary of the thesis

This thesis is organized as follows:
Chapter 2 is devoted to a review on shallow water models at different scales, namely the classical

shallow water equations (the fine model) and the porosity-based shallow water equations (the coarse
one). After the introduction of the main concepts of volume averaging for model upscaling, we present
a historical evolution of some of the main porosity-based models, ranging from models in which a single
porosity parameter is defined to models defining a dual set of porosities and able to more accurately
represent flow anisotropies and wave velocities. An explicit finite-volume (FV) discretization of the
classical and porosity-based models is presented, and we introduce a global-in-space form of the FV
scheme that will be useful to the formulation of reduced-order models in the next chapter. A numerical
example of a flow on a fictitious urban zone is presented for illustrating the accuracies and computational
costs of the classical and porosity-based models.

In Chapter 3, we present a review of the parareal method and some of its variants for tackling
hyperbolic problems. Basic definitions, properties and challenges of the original or classical parareal

5http://smai.emath.fr/cemracs/cemracs19/
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method are presented. We then review the parareal variant using reduced-order models (the ROM-based
parareal method), with ROMs formulated using the combined POD-EIM method. A speedup estimation
of the parareal methods is presented and interpreted, providing guidelines for their efficient application.
A set of numerical tests with increasing complexity is introduced for comparing the classical and ROM-
based parareal methods, in terms of convergence, stability and computational cost, and for identifying
factors that may influence their performance. We remark that the test cases in this and the following two
chapters consider a coupling between fine and coarse discretizations of classical shallow water equations,
i.e. at this moment we still do not consider the porosity-based models.

Chapter 4 focuses on the improvement of the ROM-based parareal method. After identifying some
factors that limit the quality of the formulated reduced-order models, and thus of the parareal simulations
in which they are used, we propose three modifications for the method: the enrichment of the input
snapshots sets used for the model reduction, with extra snapshots whose computation does not require
any additional computational cost, but make the model reduction more expensive; the formulation of
local-in-time ROMs, an approach known as principal interval decomposition (PID), for better capturing
local phenomena; and the incorporation of an adaptive approach recently proposed in the framework
of the classical parareal method, and consisting in the use of progressively refined propagators through
parareal iterations. In a first moment, these modification are studied and evaluated alone, independently
of each other, by using the same test cases as in Chapter 3. A combined application of the proposed
modifications is studied in a second moment.

In Chapter 5, we study the behaviour of the classical and ROM-based parareal methods for solving
problems defined in larger temporal domains, for which convergence and stability are more challenging.
We compare their performances under two strategies: firstly, by increasing the length of the time slices
dividing the temporal domain; secondly, by performing local-in-time parareal simulations, instead of
a global one. This study is still performed using numerical tests coupling the classical shallow water
equations at different scales.

In Chapter 6, we study the application of the parareal methods for coupling the classical and
porosity-based shallow water models, for the simulation of urban floods. We begin by identifying some
challenges that may arise due to the introduction of obstacles in the domain and the resulting more
complex flow profile (e.g. with discontinuities of the velocity fields). We then define a set of numerical
tests simulating a flow in a fictitious urban zone. By considering various discretizations of the problem
(mesh and time step sizes), we investigate the influence of the coarsening between the fine and coarse
models on the performance of the classical and ROM-based parareal methods. An investigation of the
achieved convergence and numerical speedups in function of the chosen parareal configurations is also
performed. After this initial study, we tackle a more challenging problem, defined in a larger temporal
domain, by solving the numerical test presented in Chapter 2 for illustrating the classical and shallow
water models.

A conclusion is presented in Chapter 7. Some details of the parallel implementation, model reduction
procedures and spatial interpolation are provided respectively in Appendices A, B and C.
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2.1 Introduction

A commonly faced issue when modeling urban floods using shallow water equations is the high compu-
tational cost for their numerical simulation. Accurate simulations w.r.t. experimental and/or analytical
solutions require a precise representation of the urban geometry (streets and buildings), which is achieved
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by using very fine computational meshes. This fact, summed to the Courant–Friedrichs–Lewy (CFL) sta-
bility condition that arises in explicit temporal discretizations and imposes very small time steps due to
the small mesh sizes, make it impractical to perform numerical simulation covering large areas and large
time periods.

Shallow water models with porosity have gained popularity in the past two decades as an alternative
for overcoming this difficult. In a very general description, they upscale the classical shallow water
equations and introduce the concept of porosity, for taking into account the presence of obstacles in the
domain (i.e. the reduction of storage areas and exchange sections). Therefore, the computational mesh
does not need to represent accurately the obstacles’ geometry and can be much coarser compared to
the mesh required by the classical model. As a consequence, time steps are also allowed to be much
larger, and porosity-based models are able to reduce the the computational time by two to three orders
of magnitude, when compared to the classical shallow water equations (Guinot, 2017).

Porosity-type parameters were firstly introduced in the shallow water equations by Defina et al.
(1994), as a “storativity coefficient analogous to the one used in groundwater hydraulics” for taking into
account dry and wetted parts of the computational domain, and, in a more general framework, by Defina
(2000), Hervouet et al. (2000) (in which the term “porosity” is introduced) and Guinot and Soares-Frazão
(2006). In these approaches, known as Single Porosity (SP) models, a single isotropic porosity parameter
is introduced in the differential form of the shallow water equations. Since then, many modeling and
numerical improvements have been proposed and more complex porosity models have been formulated:
for example, the multiple porosity (MP) model (Guinot, 2012), which divides the domain into regions
with different flow properties, defining a porosity for each region and exchange parameters between them;
the Integral Porosity (IP) model (Sanders et al., 2008), which, by considering the integral formulation of
the equations and distinguishing a storage cell-defined porosity and a conveyance edge-based porosity, is
able to take into account anisotropic phenomena; and the Dual Integral Porosity (DIP) model (Guinot
et al., 2017), that improves the IP model with a better resolution of wave propagation speeds.

In this chapter, we present an overview of the main porosity-based shallow water models. The classical
shallow water equations are briefly recalled in Section 2.2. As an introduction to the porosity-based
models, we present an overview of upscaling techniques in Section 2.3. In Section 2.4, we make a detailed
description of the SP approach, for illustrating the derivation of porosity-based models. For the other
models (MP, IP, and DIP, respectively in Sections 2.5, 2.6 and 2.7), their main concepts, motivations and
properties are presented. Note that the porosity-based models are not presented in a strict chronological
order: we first present those formulated in a differential form (SP and MP), and then those formulated
in an integral one (IP and DIP), for keeping a more continuous sequence of ideas. Other developments
and porosity approaches, including models designed for applications others than the simulation of urban
floods, are briefly presented in Section 2.8. A discussion on the hyperbolicity of the classical and porosity-
based shallow water models is proposed in Section 2.9, since it is a main issue for their simulation using
parallel-in-time methods, as discussed in the next chapter. A finite volume (FV) discretization of the
models is presented in Section 2.10. Finally, some numerical examples for illustrating the results of the
SWE, SP and DIP models are presented in Section 2.11, and a conclusion is given in Section 2.12.

2.1.1 Notation

Let us introduce some basic notation used along this and the following chapters. We denote by x = (x, y)
the two horizontal coordinates. The conserved variables of the classical and porosity-based shallow water
equations are arranged in the vector

U = U(x, t) :=




h
hux
huy




where h = h(x, t) is the water depth and ux and uy are respectively the x− and y−components of the

velocity vector u = u(x, t) = (ux, uy)
T

. Therefore, hux and huy are the unit discharges (volumetric
discharge per unit of length) respectively in the x− and y−directions. The intensity of the gravitational
acceleration and the fluid density are denoted respectively by g and ρ. The bottom elevation is considered
constant in time and defined as zb = zb(x) w.r.t. an arbitrary reference z = 0 along the vertical coordinate.
The free surface elevation is defined as η = η(x, t) = zb(x)+h(x, t). Some of these definitions are presented
along the x− z plan in Figure 2.1.

In order to formulate a unique and general finite volume discretization in Section 2.10, valid for all the
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z = 0

x×
y

z

zb(x)

h(x, t)

η(x, t)
ux(x, t)

×
uy(x, t)

Figure 2.1: Schematic representation in the x − z plan of some definitions used in the classical and
porosity-based shallow water models. The red and the blue lines represent respectively the bottom
elevation and the free surface elevation.

porosity-based models and also for the classical shallow water equations (differing only on the formulation
of the numerical fluxes), all the models are presented in the conservative form

∂

∂t

(
UMODEL(x, t)

)
+

∂

∂x

(
FMODEL(U(x, t))

)
+

∂

∂y

(
GMODEL(U(x, t))

)
= SMODEL(U(x, t)) (2.1)

where UMODEL is the solution U possibly scaled by porosity coefficients, FMODEL and GMODEL are flux
terms and SMODEL is a source term. Finally, “MODEL” can be “SWE”, “SP”, “MP”, “IP” or “DIP”,
even if the validity of a differential formulation for the porosity model is questioned in the integral models
(IP and DIP), as discussed in Section 2.6. In any case, the FV discretization for the proposed equations
is the same that would be obtained for the integral formulation.

2.2 The classical shallow water equations (SWE)

First presented by Barré de Saint-Venant (1871), the shallow water equations (SWE), also known as
Saint-Venant equations, is a two-dimensional depth-averaged approximation of the Navier-Stokes equa-
tions widely used in many fluid dynamics applications, e.g. river hydrodynamics (Churuksaeva and
Starchenko, 2015), transport of polluants (Audusse and Bristeau, 2003), nearshore ocean modeling (Broc-
chini and Dodd, 2008), erosional dambreak flows (Fraccarollo and Capart, 2002) and atmospheric dy-
namics (Verkley, 2009).

The SWE equations are obtained from the Navier-Stokes by assuming an hydrostatic pressure (a
derivation is presented by Gerbeau and Perthame (2001)), which implies that the velocity field is constant
along the vertical direction. Therefore, it consists of a system of equations depending only on the two
horizontal dimensions. In its inviscid form, and following the proposed notation (2.1), the SWE can be
written as

∂

∂t

(
USWE(x, t)

)
+

∂

∂x

(
F SWE(U(x, t))

)
+

∂

∂y

(
GSWE(U(x, t))

)
= SSWE(U(x, t)) (2.2)

where

USWE = U =




h
hux
huy


 , F SWE(U) =




hux
hu2

x + gh2/2
huxuy


 ,

GSWE(U) =




huy
huxuy

hu2
y + gh2/2


 , SSWE(U) =




0
SSWE

0,x + SSWE
f,x

SSWE
0,y + SSWE

f,y




.
The first equation of (2.2) is called the continuity equation and the remaining two equations are called

respectively the x− and y−momentum equations. Moreover,

SSWE
0,x = −gh∂zb

∂x
, SSWE

0,y = −gh∂zb
∂y

are source terms due to topography variations and
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SSWE
f,x = −ghux ‖u‖

[
1

K2h4/3
+ sx

]
, SSWE

f,y = −ghuy ‖u‖
[

1

K2h4/3
+ sy

]

are friction source terms for which we adopt the same formulation proposed by Guinot and Soares-Frazão
(2006) for the SP model and presented in detail in Section 2.4.

2.3 An overview on model upscaling

The porosity-based shallow water models are obtained via an upscaling of the classical SWE (2.2).
Techniques of upscaling differential equations are widely studied in various applications, e.g. groundwater
flow (Wen and Gómez-Hernández, 1996), thermal transport and chemical reactions in porous media
(Whitaker, 1999; Yang et al., 2015) , composite materials (Otero et al., 2015), elastodynamics (Willis,
1997) and seismology (Capdeville et al., 2020). As discussed by Capdeville et al. (2020), several types
of uspcaling methods have been proposed in the literature. As a common goal, they seek a macroscopic,
effective description of physical processes characterized by small-scale features. For mentioning two
different upscaling approaches, we cite the asymptotic homogenization analysis (Bensoussan et al., 1978)
and the volume averaging procedure (Whitaker, 1999).

In the asymptotic homogenization analysis, two spatial variables are introduced, for describing the
large and small scales, and the upscaled or homogenized equations are obtained via an asymptotic analysis.
As described by Allaire (2010), asymptotic homogenization is “a rigorous version of what is known as
averaging” and is equipped with a solid mathematical theory. However, its application to porous media
is not straightforward, because assumptions on which most of the homogenization theory relies, such as
the periodicity of the medium and large separation between the fine and coarse scales, are not always
valid (Auriault et al., 2005). Moreover, Auriault (2005) shows that advection problems in homogeneous
media are not homogenizable, due to their dependence on macroscopic boundary conditions.

On the other hand, the volume averaging approach is based on a more physical and intuitive idea. It
consists in averaging the governing equations over a given volume, which is supposed to be large enough
to provide a representative average but small enough to capture phenomena of interest (Arce et al.,
2005). This approach is based on the so-called spatial averaging theorem, formulated independently by
(Anderson and Jackson, 1967; Slattery, 1967; Whitaker, 1967). Let Ω be a volume control composed by
two phases, α- and β-phase, defined respectively in the subdomains Ωα and Ωβ of Ω (see Figure 2.2),
and ψβ a quantity defined in Ωβ . The volume averaging theorem is a three-dimensional formulation of
the Leibniz integral rule, stating that the integral of a gradient over Ωβ is the sum of the gradient of the
integral with an integral along the boundary:

〈∇ψβ〉 = ∇〈ψβ〉+
1

|Ω|

∫

Γβ,α

nβ,αψβdΓ (2.3)

where

〈·〉 =
1

|Ω|

∫

Ωβ

· dΩ (2.4)

is usually known as phase average, Γβ,α is the interface between Ωα and Ωβ , and nβ,α is the unit normal
vector to Γβ,α pointing outwards Ωβ . Reviews on the derivation of (2.3) are presented by (Howes and
Whitaker, 1985; Whitaker, 1999). Moreover, when the spatial derivatives are replaced by temporal ones,
(2.3) is usually referred to as Reynolds transport theorem (Takatsu, 2017).

The application of the volume averaging theorem to a given space-dependent problem provides a
spatially smoothed governed equation. As pointed out by Whitaker (1999), this smoothed equation
depends explicitly on the interface boundary conditions between the phases, due to the last term of (2.3).
The interface integral can only be computed by establishing a relation between the values of ψβ in Ωβ
and Γβ,α, which is called a closure model.

As described in details in the following sections, the porosity-based shallow water models upscale the
SWE via a volume averaging procedure. The conserved variables and fluxes are averaged for taking into
account the presence of obstacles, and thus the availability or not for the flow, which is translated by
the introduction of porosity parameters. The averaging procedures and obtained equations take different
forms in each of the porosity-based models. It will also be discussed that the notion of closure model is
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Ωα

ΩβΩβ

Γβ,αΓβ,αΩ

nβ,α

Figure 2.2: Definitions for the volume averaging theorem. The α- and β− phases are defined respectively
in Ωα (orange regions) and Ωβ (blue, dotted region). Eq. (2.4) is an average over Ω of quantities defined
in Ωβ .

explicitly introduced and developed only in the DIP model. In all precedent porosity-based approaches,
a somewhat natural closure model is implicity considered in the derivation of the equations.

Finally, we remark that upscaling can be seen as as a filtering problem (Farmer, 2002), in which the
spatial average (2.4) acts as filter. Indeed, a large variety of averaging procedures, alternatively to eq.
(2.4), is proposed and studied in the literature and the choice of the one to be used should rely on desired
properties of the average fields and equations and attributes of the domain (Wen and Gómez-Hernández,
1996; Davit and Quintard, 2017). Thus, these different average formulations correspond to different
filtering procedures. It is also worth noting that these averages are performed only in space; averaging
or filtering in time could be possible paths to be explored in the context of upscaling.

2.4 The Single Porosity (SP) model

2.4.1 The porosity parameter

In the single porosity approach for the SWE equations, a spatial porosity parameter φ = φ(x) is defined
for representing the presence of obstacles in the domain, e.g. buildings in an urban zone. More precisely,
this parameter represents the fraction of the domain available for the storage or passage of the fluid, i.e.
the fraction of the domain not containing obstacles, as illustrated in Figure 2.3.

Figure 2.3: Definition of the porosity parameter φ. The triangle with dashed borders is a cell of the
computational mesh and the orange quadrilaterals with full borders are obstacles (e.g. buildings in an
urban zone). The blue, dotted area is available for the flow, and φ is the fraction this area represents
relative to the cell’s area.
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In the first work developing this approach, Defina et al. (1994) propose a number of formulations for
a depth-dependent porosity parameter φ = φ(x, η) in the case of uneven bathymetries in a given small
and finite region Ω of the domain, based on the bottom elevation zb(x), the mean bottom elevation zb in
Ω, the highest bottom elevation zlim above zb, the free surface elevation η(x), the area |Ω| of Ω and the
wetted area |Ωwet(η)|, with Ωwet(η) := {x ∈ Ω|η(x) > zb(x)}:

φ(x, η) =
|Ωwet(η)|
|Ω| (2.5a)

φ(x, η) =




e
−0.7

(
1−
η − zb
zlim

)
, η − zb < zlim

1, η − zb ≥ zlim

(2.5b)

φ(x, η) = P (η > zb) (2.5c)

The first definition (2.5a) corresponds to the wetted fraction of Ω (as represented in Figure 2.3); the
second one (2.5b) is derived from the examination of real topography profiles; and the last one (2.5c) is
a statistical approach taking into account the wetting probability. These quantities may vary in time,
since they depend on the water depth, but the time-dependance is omited for simplification.

The definition of φ as the wetted fraction is presented more formally by Defina (2000) as

φ(x, η) = ν(x, η)

where ν is the integral over Ω of a phase function ϕ indicating wet zones:

ν(x, z) =
1

|Ω|

∫

Ω

ϕ(x, z)dΩ (2.6a)

ϕ(x, z) =

{
1, z > zb(x)

0, z ≤ zb(x)
(2.6b)

i.e. ν is the phase average (2.4) of φ.
These concepts are introduced in the modeling of urban floods by Hervouet et al. (2000) and Guinot

and Soares-Frazão (2006). In these works, the porosity parameter φ = φ(x) is considered independent
of the water depth, which corresponds to consider the emerged structures to have a constant horizontal
transverse section along the vertical axis. Moreover, since the urban geometry is considered constant
in time, so is the porosity parameter. Alternatively to the definition of the porosity parameter as the
fraction of the urban zone, in numerical tests presented by (Guinot and Soares-Frazão, 2006) the porosity
parameter is computed as the percentage of the cross-section normal to the flow direction that is available
for the fluid, representing the fraction of this section not covered by buildings, or contractions of a
channel’s width in the case of flows in a channel.

We present the SP model by considering the formulation proposed by Guinot and Soares-Frazão
(2006). They validated the model by comparing its results with analytical or semi-analytical solutions of
the classical SWE in one- and two-dimensional dambreak problems, and also with experimental data. A
more detailed experimental validation is presented by Soares-Frazão et al. (2008).

2.4.2 Derivation of the SP shallow water equations

In the following, we briefly present the derivation of the single porosity-based shallow water equations as
proposed by Guinot and Soares-Frazão (2006).

The continuity equation
The continuity equation is obtained by defining the fluid volume in an infinitesimal rectangular control

volume [x0, x0 + δx]× [y0, y0 + δy] by

V =

∫ x0+δx

x0

∫ y0+δy

y0

(φh)(x)dydx
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and by imposing the volume balance over this control volume (balance between the volume variation in
time and the volumetric fluxes across the boundaries). The fluxes are defined for the four boundaries of
the infinitesimal control volume and read, e.g. for the western boundary x = x0,

FW =

∫ y0+δy

y0

(φhux)(x0, y)dy

By taking the limits δx, δy → 0 in the volume balance, the continuity equation reads

∂

∂t
(φh) +

∂

∂x
(φhux) +

∂

∂y
(φhuy) = 0 (2.7)

The momentum equations
The momentum equations in the horizontal directions are derived analogously. The total x− and

y−momentum in the control volume are defined respectively by

Mx =

∫ x0+δx

x0

∫ y0+δy

y0

φhux(x)dydx, My =

∫ x0+δx

x0

∫ y0+δy

y0

φhuy(x)dydx

In the case of the x−momentum equation, four forces act on the control volume:

• The pressure force on the western and eastern boundaries; for example, for the western one:

PW =
ρg

2

∫ y0+δy

y0

(φh2)(x0, y)dy

• A reaction due to the variation of the porosity in the x−direction:

Wx =
ρg

2

∫ x0+δx

x0

∫ y0+δy

y0

(
∂φ

∂x
h

)
(x)dydx

• A reaction due to the variation of the topography in the x−direction:

Bx = −ρg
∫ x0+δx

x0

∫ y0+δy

y0

(
φh
∂zb
∂x

)
(x)dydx

• A friction force, represented by a classical Strickler law with a Strickler coefficent K:

Rx = −ρgh
∫ x0+δx

x0

∫ y0+δy

y0

( ‖u‖
K2h4/3

φux

)
(x)dydx

where ‖u‖ =
√
u2
x + u2

y. Other friction formulations (e.g. Manning, Chéey) could also be considered

(Guinot and Soares-Frazão, 2006).

Proceeding as in the derivation of the continuity equation, we impose the momentum balance in the
x−direction, by summing up the moment fluxes and the force contributions, and we take the limits
δx, δy → 0 for obtaining the x−momentum equation

∂

∂t
(φhux) +

∂

∂x

(
φ

(
hu2

x +
gh2

2

))
+

∂

∂y
(φhuxuy) = SSP

0,x + SSP
f,x (2.8)

A similar procedure leads to the y−momentum equation

∂

∂t
(φhuy) +

∂

∂x
(φhuxuy) +

∂

∂y

(
φ

(
hu2

y +
gh2

2

))
= SSP

0,y + SSP
f,y (2.9)

In equations (2.8) and (2.9), we have the source terms

SSP
0,x = −φgh∂zb

∂x
+ g

h2

2

∂φ

∂x
, SSP

0,y = −φgh∂zb
∂y

+ g
h2

2

∂φ

∂y
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SSP
f,x = −φghux ‖u‖

[
1

K2h4/3
+ sx

]
, SSP

f,y = −φghuy ‖u‖
[

1

K2h4/3
+ sy

]

where the head loss coefficients sx and sy account for singular head losses, respectively in the x− and
y−directions, due to singularities of the urban geometry (see Guinot and Soares-Frazão (2006, Appendix
B) for a justification).

2.4.3 Final formulation

Grouping the continuity equation (2.7) and the momentum equations (2.8) and (2.9), we can write the
SP model under the form (2.1) as

∂

∂t

(
USP(x, t)

)
+

∂

∂x

(
F SP(U(x, t))

)
+

∂

∂y

(
GSP(U(x, t))

)
= SSP(U(x, t)) (2.10)

where

USP = φUSWE = φU =




φh
φhux
φhuy


 , F SP(U) = φF SWE(U) = φ




hux
hu2

x + gh2/2
huxuy


 ,

GSP(U) = φGSWE(U) = φ




huy
huxuy

hu2
y + gh2/2


 , SSP(U) =




0
SSP

0,x + SSP
f,x

SSP
0,y + SSP

f,y




.
Note that, by taking an uniform unitary porosity parameter φ ≡ 1, we recover the classical shallow

equations (2.2).

2.5 The Multiple Porosity (MP) model

The multiple porosity (MP) model, introduced by Guinot (2012), proposes a more complex formulation
of the porosity approach for the shallow water equations by dividing the computational domain Ω into
a number of non-overlapping regions. In each of them, the flow dynamics has different properties, thus
being described by different flow variables, equations and porosity parameters. In the following, UMP

ρ :=

(hρ, hρux,ρ, hρuy,ρ)
T

denotes the solution in a generic region Ωρ, with uρ := (ux,ρ, uy,ρ)
T

. Additional
source terms are included in the equations for taking into account the mass and moment exchange between
the regions.

The proposed regions in the MP model are:

• Isotropic mobile water region (Ωm): zone available for the water to flow, governed by the classical
shallow water equations and occupying a fraction φm of the domain’s area;

• Stagnant water region (Ωs): region, occupying a fraction φs in which the flow has zero speed us = 0.
Variations of the water depth hs in this region are exclusively induced by exchanges with Ωm;

• M anisotropic, connected mobile water regions Ωk, k = 1, . . . ,M , occupying a fraction φk of the
domain, in which the flow is parallel to a preferential direction ek ∈ R2 (‖ek‖ = 1) induced by the
urban geometry (thus corresponding to the flow in streets). The equations are projected and solved
in the direction ek;

• (M − 1)M/2 non-connected isotropic mobile water regions Ω(k,p), k, p = 1, . . . ,M, k 6= p, occupying
a fraction φ(k,p) of the domain and corresponding to crossroads and intersections between the
anisotropic regions Ωk and Ωp and exchanging water exclusively with them.

• Buildings region (Ωb): region in which there is no flow, occupying a fraction 1− φ of the domain’s
area, with

φ = φm + φs +

M∑

k=1

φk +
∑

k,p=1,...,M
k 6=p

φ(k,p)
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Numerical tests presented by Guinot (2012) show that the MP model outperforms the SP one in
representing the flow inside urbans zones containing stagnant zones and preferential directions. Therefore,
the model stands out for introducing an alternative approach for taking into account anisotropic properties
of the flow. As presented in the following two sections, flow anisotropy is a capital motivation in the
integral porosity models, first introduced by Sanders et al. (2008).

As in the SP model, the governing equations of the MP model are formulated in a differential form.
Following (2.1), we write

∂

∂t

(
UMP(x, t)

)
+

∂

∂x

(
FMP(U(x, t))

)
+

∂

∂y

(
GMP(U(x, t))

)
= SMP(U(x, t))

where UMP = UMP
ρ if x ∈ Ωρ and the formulation of the fluxes and source terms depends on the region.

We refer the reader to Guinot (2012) for details. As said above, we highlight that SMP
ρ defined for

each region Ωρ includes, besides the friction source term and those arising from topography and porosity
variations, an additional source term Qρ representing the exchange between different regions.

2.6 The Integral Porosity (IP) model

An integral formulation of the porosity-based shallow water equations is proposed by Sanders et al.
(2008). In the continuous level, the presence of obstacles or empty zones in space is represented via
a binary density function ε(x), equal to 0 or 1 if x correspond to a void or an obstacle, respectively,
analogously to the phase function (2.6b) defined by Defina (2000). In the discrete level, two porosity
parameters are defined: a volumetric or storage porosity φΩ, and an areal or conveyance porosity φΓ.
The former, defined for each cell of the mesh, represents the fraction available to store fluid. The latter,
defined for each interface of the mesh, represents the fraction of the interface available for exchanging
fluxes. Also analogously to the definition (2.6a) proposed by Defina (2000), these two porosities are
defined, respectively to the i−th mesh’s cell Ωi (with area Ai) and to to the j−th mesh’s interface σj
(with length wj), as

φΩi :=
1

Ai

∫

Ωi

ε(x)dΩ, φΓj :=
1

wj

∫

σj

ε(x)dΓ

An illustration of these definitions is presented in Figure 2.4.

Figure 2.4: Definition of the storage and conveyance porosity parameters, respectively φΩ and φΓ. The
triangle is a cell of the computational mesh and the orange quadrilaterals are obstacles (e.g. buildings
in an urban zone). The blue, dotted area and the coloured, full lines are available for the flow. φΩ is
the fraction the dotted area represents relative to the cell’s area, and, for each cell’s interface, φΓ is the
fraction the coloured, full segment represents relative to the interface’s length.

The continuity and momentum equations in the IP model are derived by applying the Reynolds
transport theorem and read, for an arbitrary control volume Ω with boundary ∂Ω,
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∂

∂t

∫

Ω

εhdΩ +

∫

∂Ω

εh(u · n)dΓ = 0 (2.11)

∂

∂t

∫

Ω

εhudΩ +

∫

∂Ω

ε

[
hu(u · n) +

gh2

2
n

]
dΓ =

∫

∂Ω

εsΓdΓ +

∫

Ω

εsΩdΩ (2.12)

where n is the unit normal vector along ∂Ω pointing outwards Ω and sΩ and sΓ are respectively the
domain and boundary source terms, given by

sΩ = −g (h− h|z0)∇zb − (CfD + CbD)u ‖u‖ , sΓ =
gh|2z0

2
n (2.13)

where η0 is the mean surface elevation over Ω, h|η0
(x) = η0 − zb(x), and CfD and CbD are respectively a

friction and a building drag coefficients.
By distinguishing these two porosity parameters, the IP model is able to take anisotropic effects into

account, since the conveyance porosity φΓ is direction-dependent. Therefore, a better representation of
preferential flow directions can be done. Such anisotropic effects may arise due to irregularities of the
urban geometry (asymmetric shapes, spaces and alignment of buildings).

As a drawback, the integral formulations of porosity-based shallow water equations present a strong
dependence on the mesh configuration, since the conveyance porosity depends on the direction of the
interfaces, whereas the isotropic, differential models (SP and MP) are almost insensitive to the mesh
(Guinot, 2017). Sanders et al. (2008) state that the position of the mesh nodes should be chosen in
order to well capture the anisotropies induced by the buildings configuration; more precisely, the best
configuration, called by the authors as gap-conforming, is the one in which mesh nodes are placed in the
center of the buildings, and the edges between nodes are the gaps between the buildings. Guinot (2017)
proposes a detailed consistency study explaining this sensitivity on the mesh in the case of triangular
and quadrilateral ones and states that φΓ should be finely defined in function of the edges orientation,
and not only the buildings configuration.

This integral formulation of the porosity-based SWE is motivated by a discussion on the non-existence
of a representative elemental volume (REV). By definition, the REV is the smallest size of a subset of
a given domain in which the statistical properties of the heterogeneous, porous media can be considered
constant, i.e. representative of the whole domain (Bear, 1988; Sanders et al., 2008; Guinot, 2012). A
REV smaller than the scale in which the porosity is defined is a necessary assumption for the derivation
of porosity-based models in differential form (e.g. the SP model), since it assumes the continuity of
the solution. However, the REV imposes φΩ = φΓ, not allowing to represent anisotropic phenomena.
Guinot (2012) proposes a more detailed discussion on the REV and assesses via numerical tests that the
REV is usually larger than the urban zone, thus theoretically invalidating the differential formulation
of porosity-based models; nevertheless, as shown with numerical examples, it does not impede their
successful application in practice.

Even if the REV hypothesis is not valid, we consider here the differential form (2.1) for equations
(2.11)-(2.12). It can be easily done by using the divergence theorem, taking the limit of an infinitesimal
control volume Ω, and considering the solution and flux terms scaled respectively by φΩ and φΓ. We then
obtain

∂

∂t

(
U IP(x, t)

)
+

∂

∂x

(
F IP(U(x, t))

)
+

∂

∂y

(
GIP(U(x, t))

)
= SIP(U(t)) (2.14)

where

U IP = φΩU =




φΩh
φΩhux
φΩhuy


 , F IP(U) = φΓ




hux
hu2

x + gh2/2
huxuy


 ,

GIP(U) = φΓ




huy
huxuy

hu2
y + gh2/2


 , SIP(U) =




0
SIP

0,x + SIP
f,x

SIP
0,y + SIP

f,y




.
and
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SIP
0,x = −φΩg (h− h|η0

)
∂zb
∂x

+
g

2

∂

∂x

(
φΓh|2η0

)
, SIP

0,u = −φΩg (h− h|η0
)
∂zb
∂y

+
g

2

∂

∂y

(
φΓh|2η0

)

SIP
f,x = −φΩg(CfD + CbD)ux ‖u‖ , SIP

f,y = −φΩg(CfD + CbD)uy ‖u‖
Note that, by considering the isotropic case φΩ ≡ φΓ in equation (2.14), one recovers the SP model

(2.10) (except for minor differences in the formulation of the source terms). Moreover, we highlight
that the FV discretization of (2.14) is the same that would be obtained for the integral formulation
(2.11)-(2.12).

2.7 The Dual Integral Porosity (DIP) model

The dual integral porosity (DIP) model, proposed by Guinot et al. (2017), improves the IP model by

defining a dual set of flow variables, UΩ = (hΩ, hΩux,Ω, hΩuy,Ω)
T

and UΓ = (hΓ, hΓux,Γ, hΓuy,Γ)
T

,
defined respectively for the interior Ω\Γ of a control volume Ω and for its boundary Γ. By replacing the
dual variables in equations (2.11)-(2.12), we obtain

∂

∂t

∫

Ω

εhΩdΩ +

∫

∂Ω

εhΓ(uΓ · n)dΓ = 0 (2.15)

∂

∂t

∫

Ω

εhΩuΩdΩ +

∫

∂Ω

ε

[
hΓuΓ(uΓ · n) +

gh2
Γ

2
n

]
dΓ =

∫

∂Ω

εsΓdΓ +

∫

Ω

εsΩdΩ (2.16)

where uΩ := (ux,Ω, uy,Ω)
T

and uΓ := (ux,Γ, uy,Γ)
T

.
These two sets of variables are linked via closure models. Firstly, the closure is established by imposing

the continuity of the flux QAB across a segment AB lying on Γ and the flux QA′B′ across a segment
A′B′, with the same length of AB and obtained by an infinitesimal shift of AB towards the interior of Ω:

QAB = φΓhΓ(uΓ · n) = φΩhΩ(uΩ · n) = QA′B′ (2.17)

where n is the unit normal vector to AB and A′B′. Eq. (2.17) yields

uΓ =
φΩ

φΓ

hΩ

hΓ
uΩ (2.18)

Secondly, concerning the dual water depths, it is assumed that

hΩ = hΓ (2.19)

under the hypothesis that obstructions due to buildings affect mainly the flow velocity, having negligible
effects on the surface elevation.

As already discussed, DIP is the first porosity-based model that explicitly introduces a closure model
between inner domain and boundary variables. In the previous models, in which this dual set of variables
is not proposed, it is implicitly supposed that domain and boundary variables are equivalent.

Guinot et al. (2017) also states that the conveyance porosity cannot be larger than the storage porosity,
i.e. one must have φΓ ≤ φΩ, what was not established in the IP model. The authors show that the non-
respect of this conditions leads to non-physical behaviours, such as wave propagation speeds larger than
the ones obtained in the classical SWE. Moreover, as detailed in Section 2.9, φΓ > φΩ can lead to a loss
of hyperbolicity and make the initial value problem ill-posed.

Moreover, Guinot et al. (2017) propose a momentum dissipation mechanism for a more realistic repre-
sentation of the solution and wave propagation speeds, specially in the case of rising water depths. This
mechanism is formulated by defining momentum dissipation parameters µxx, µxy, µyx and µyy depending
on the orientation of the urban layout and that should be calibrated from fine simulations using the
classical SWE or experimental results. An anisotropic model is also proposed for the building drag, with
coefficients CbD,xx, C

b
D,xy, C

b
D,yx and CbD,yy and a frontal area parameter a.

The final proposed model, comprising these anistropic formulations, already considering the closure
relations (2.18) and (2.19) and omitting the sub-index Ω for hΩ, ux,Ω and uy,Ω, reads
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∂

∂t
φΩU +

∫

dΓ

M̂F̂ndΓ =

∫

Ω

ε (sΩ + s′Ω) dΩ +

∫

Γ

εsΓdΓ (2.20)

with

F̂ = φΓ




βhu βhv

βhu2
x + g h

2

2 βhuxuy
βhuxuy βhu2

y + g h
2

2


 M̂ =




1 0 0
0 1− µxx −µxy
0 −µyx 1− µyy


 , β =

φΩ

φΓ
≥ 1

s′Ω = −




0 0
CbD,xx CbD,xy
CbD,yx CbD,yy


 ahu ‖u‖

with sΩ and sΓ defined as in the IP model (eq. (2.13)).
We consider here a simplified framework in which the momentum dissipation and the anisotropic

building drag effects described above are neglected. Then, as done for the IP model, a differential
formulation for (2.15)-(2.16) under the form (2.1) reads

∂

∂t

(
UDIP(x, t)

)
+

∂

∂x

(
FDIP(U(x, t))

)
+

∂

∂y

(
GDIP(U(x, t))

)
= SDIP(U(t)) (2.21)

where

UDIP = φΩU =




φΩh
φΩhux
φΩhuy


 , FDIP(U) = φΓ




βhux
β2hu2

x + gh2/2
β2huxuy


 ,

GDIP(U) = φΓ




βhuy
β2huxuy

β2hu2
y + gh2/2


 , SDIP(U) = SIP(U)

.

2.8 Other developments and porosity models

Many works propose more detailed analyses of the porosity models presented in the previous sections.
Schubert and Sanders (2012) compare, in terms of quality of the results and complexity of implementation
(production of the mesh, parametrization, computational time for the simulation, etc.), four approaches
for representing the presence of buildings in the simulation of urban floods: the porosity model (more
specifically the IP model); the “buildings-hole” method, in which buildings are not meshed; the “building-
resistance” method, in which a large resistance parameter is assigned to cells in buildings regions; and
the “building-block” method, in which buildings correspond to elevations in the topography. The authors
conclude that flow velocities are very sensitive to the chosen method and list the positive and negative
aspects of each one that should be taken into account depending on the objectives and available resources
for the simulation.

Kim et al. (2015) performs a detailed study on the sources of errors in the simulation of the shallow-
water porosity models w.r.t. real solutions and divide them in three types: structural model errors,
due to the hypothesis for deriving the shallow water model; scale errors, originated by the upscaling
performed by the porosity models (fine to pore scale); and parametrization errors, coming from the
determination of porosity parameters for representing obstacles in the sub-grid scale, in addition to other
parameters, e.g. head loss and friction coefficients. By comparing numerical simulations to laboratory
experiments, the authors conclude that parametrization errors are smaller than structural ones but much
larger than scale errors. Therefore, there is still room for improving the porosity models, specially
concerning the representation of flow velocities. The authors also confirm the superiority of anisotropic
porosity approaches. Detailed experimental validations of porosity-based models are also presented by
Soares-Frazão et al. (2008) and Velickovic et al. (2017).

Besides the models presented here, other porosity approaches are proposed in the literature for the
simulation of urban floods. Chen et al. (2012a) propose a model considering two types of porosity coeffi-
cients, called building covering ration (BCR) and conveyance reduction factor (CRF), defined analogously
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to the storage φΩ and conveyance φΓ porosities in the IP model (in fact, their complementary to the
unity), but modifying only the continuity equation. This approach fails to represent situations in which
buildings bisect a computational cell, since the internal flow is blocked by the CRF. This problem is
overcame in (Chen et al., 2012b) by considering a multi-layer approach, in which the equations are solved
in multiple layers for representing individual flowpaths separated by buildings inside a cell.

More recent works propose the formulation of depth-dependent porosities, paving the way to applica-
tions others than urban floods. This depth-dependent approach is considered in the initial works in the
domain, e.g. by Defina (2000), but are not considered in the models presented in this chapter. Özgen
et al. (2016a) proposes an integral porosity model depending on the water depth and allowing the full
inundation of computational cells. An application to urban floods is presented in Özgen et al. (2016b),
in which the porosity parameters are defined using a probability mass function of the fine bathymetry,
unresolved in the pore scale. A depth-dependent porosity model based on the DIP approach is proposed
by Guinot et al. (2018), for representing meandering channels and submerged buildings, for example. In
the discrete level, the authors propose a tabulation of the porosity in function of the water depth using
simple predetermined profiles (linear, constant by pieces, etc.). Finally, a depth-dependent SP model
with anisotropic resistance and application to agriculture is proposed by Viero and Valipour (2017) for
simulating the flow in irrigation and draining channels.

2.9 Hyperbolicity of the shallow water models

We briefly discuss in this section the hyperbolicity of the shallow water models presented along this
chapter, since it is a major issue for their simulation using parallel-in-time methods, as described in
Chapter 3. We refer to (Lhomme, 2006; Guinot, 2012; Guinot et al., 2017) for more detailed analyses of
the hyperbolic structure of the classical and porosity-based shallow water equations. For simplicity, we
consider the one-directional form of the governing equations (2.1), without source terms:

∂

∂t
UMODEL +

∂

∂x

(
FMODEL(U)

)
= 0 (2.22)

where the dependence of U on x and t is omitted for the sake of clarity. A formal derivation of this
unidirectional form is presented in Section 2.10 in the context of a finite volume discretization.

By supposing the continuity and differentiability of U and UMODEL, we rewrite (2.22) under the
non-conservative form

∂

∂t
UMODEL +AMODEL ∂

∂x
UMODEL = 0 (2.23)

where

AMODEL :=
∂FMODEL(U)

∂UMODEL

=
∂FMODEL(U)

∂U

∂U

∂UMODEL
∈ R3×3

is the Jacobian matrix of FMODEL(U) w.r.t. UMODEL. The hyperbolicity of (2.23) can be determined
via an eigenvalue analysis, the system being hyperbolic if AMODEL has three distinct real eigenvalues.
Let us perform this analysis for the classical SWE and the SP, IP and DIP models. In the following
paragraphs, I3 denotes the identity matrix in R3×3.

2.9.1 Classical SWE

For the classical SWE, we have USWE = U and

F SWE(U) =




hux
hu2

x + gh2/2
huxuy


 =




hux
(hux)2/h+ gh2/2

(hux)(huy)/h




Therefore,
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ASWE =
∂F SWE(U)

∂U

∂U

∂USWE
=
∂F SWE(U)

∂U
I3

=




0 1 0
c2 − u2

x 2ux 0
−uxuy uy ux




where c :=
√
gh. The eigenvalues of ASWE are

λSWE
1 = ux − c, λSWE

2 = ux, λSWE
3 = ux + c

thus the classical SWE are a hyperbolic system of equations.

2.9.2 SP model

In the SP model, we have USP = φU and F SP (U) = φF SWE(U). Therefore,

ASP =
∂F SP(U)

∂U

∂U

∂USP
=
∂
(
φF SWE(U)

)

∂U

∂
(
USP/φ

)

∂USP

= φ
∂F SWE(U)

∂U

1

φ
I3

= ASWE

then ASP has the same eigenvalues as ASWE:

λSP
1 = ux − c, λSP

2 = ux, λSP
3 = ux + c

and the SP model is also hyperbolic.

2.9.3 IP model

For the IP model, U IP = φΩU and F IP = φΓF
SWE, such that

AIP =
∂F IP(U)

∂U

∂U

∂U IP
=
∂
(
φΓF

SWE(U)
)

∂U

∂
(
U IP/φΩ

)

∂U IP

= φΓ
∂F SWE(U)

∂U

1

φΩ
I3

=
1

β
ASWE

with β = φΩ/φΓ > 0. The eigenvalues of AIP read

λIP
1 =

1

β
(ux − c), λIP

2 =
1

β
ux, λIP

3 =
1

β
(ux + c)

and the IP model is hyperbolic.

2.9.4 DIP model

Finally, in the DIP model we have UDIP = φΩU and

FDIP(U) = φΓ




βhux
β2hu2

x + gh2/2
β2huxuy


 = φΓ




βhux
β2(hux)2/h+ gh2/2
β2(hux)(huy)/h




then
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ADIP =
∂FDIP(U)

∂U

∂U

∂UDIP
=

= φΓ




0 β 0
c2 − β2u2

x 2β2ux 0
−β2uxuy β2uy β2ux



∂
(
UDIP/φΩ

)

∂UDIP

=




0 1 0
c2/β − βux 2βux 0
−βuxuy βuy βux




whose eigenvalues read

λDIP
1 = βux − c̃, λDIP

2 = βux, λDIP
3 = βux + c̃

where

c̃ := β1/2

[
(β − 1)u2

x +
c2

β2

]1/2

Note that, contrary to the previous models, imaginary eigenvalues can appear if (β−1)u2
x+c2/β2 < 0,

i.e. if no restriction is imposed to β, leading to a loss of hyperbolicity of the model. Therefore, as discussed
in Section 2.7, the DIP model is always hyperbolic if the storage and conveyance porosity parameters
satisfy β = φΩ/φΓ ≥ 1.

2.10 Finite volumes discretization

2.10.1 Notations

The shallow water models described in the previous sections (both the classical and the porosity-based
ones) are discretized is this work using a finite volume (FV) scheme, with an explicit Euler discretization
in time. The discretization presented hereafter is formulated for the generic model (2.1) and can be
implemented for all shallow water models presented here, their difference being on the formulation of the
numerical fluxes.

We begin by introducing some notations for the FV discretization.

• We consider a given domain Ω ∈ R2 discretized with a mesh T containing M cells Ωi, i = 1, . . . ,M ,
possibly intersecting only on their boundaries ∂Ωi and such that

⋃M
i=1 Ωi = Ω;

• Each cell Ωi is a polygon with an arbitrary number di ≥ 3 of sizes (triangles, quadrilaterals,
etc.). It is not required to all cells to have the same value of di. The edges of Ωi are denoted by

eji , j = 1, . . . , di, such that ∂Ωi =
⋃di
j=1 e

j
i .

• The area and the barycenter of Ωi ⊂ T are denoted respectively by Ai = |Ωi| and ci(xci , yci).

• The set of cells’ edges lying on ∂Ω is denoted by ∂T = {eji |i = 1, . . . ,M ; j = 1 . . . di; and |eji ∪∂Ω| >
0}. Let Mb = |∂T | the number of such edges.

• For properly taking into account the boundary conditions in the numerical scheme presented in the
following, we define a ghost cell for each edge on ∂T (see Figure 2.5). These cells are numbered

from M + 1 to M +Mb and we set T̃ := T ∪ {ΩM+1, . . . ,ΩM+Mb
};

• The set of the indices of neighbours cells to Ωi ⊂ T is defined as N (i) := {Ωj ⊂ T̃ | |∂Ωi ∪ ∂Ωj | >
0, j 6= i}. This definition include ghost cells neighbour to Ωi.

• The number of interfaces of the mesh is denoted by I. For each Ωi and for each j ∈ N (i), we denote

by σi,j = ∂Ωi ∪ ∂Ωj the interface between the cells Ωi and Ωj of T̃ , with length wi,j = |σi,j |;

• The unit normal vector to the interface σi,j , pointing outwards the cell Ωi, is denoted by ni,j =
(nxi,j , n

y
i,j)

T . From this definition, we have nj,i = −ni,j . We also define an unit normal vector

ñi,j =
(
ñxi,j , ñ

y
i,j

)T
, but unique to each interface, corresponding to a chosen orientation for it
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(hereafter, we call Ωi and Ωj respectively the “left” and “right” cells w.r.t. σi,j). We also define a
coordinate system (ηi,j , ξi,j) attached to the interface. Some of these definitions are illustrated in
Figure 2.6.

Ωi
Ωj

ΩM+1 ΩM+2

ΩM+Mb

Figure 2.5: Illustration of some elements defining the mesh. Thick, full lines represent a subset of the
boundary ∂Ω; thin, full lines represent internal edges; dashed lines represent the interfaces of ghost cells.

σi,j

ξi,j

ηi,j

ni,j

Ωi

Ωj

wi,j

Figure 2.6: Some definitions for the finite volume discretization

• Finally, by indexing the interfaces of T from 1 to I, we define the maps ψ and ψ′ (eq. 2.24 and 2.25,
respectively) between the interfaces indices l = 1, . . . , I and the pairs (i, j) corresponding to the
neighbour cells of interface σl. We notice that, for each l = 1, . . . , I, ψ(l) is unique and expresses
the arbitrarily fixed orientation for the interface. For the second map, we have ψ′(i, j) = ψ′(j, i).

ψ : {1, 2, . . . , I} → {1, 2, . . . ,M +Mb}2
l 7→ (i, j), σl = Ωi ∩ Ωj

(2.24)

ψ′ : {1, 2, . . . ,M +Mb}2 → {1, 2, . . . , I}
(i, j) 7→ l, σl = Ωi ∩ Ωj

(2.25)

Concerning the approximate solution given by the finite volume scheme, we denote by U i the average
value of U = (h, hux, huy)

T
over the cell Ωi ⊂ T . As presented below, we are also interested in the

solution Ũ := (h, hu, hv)
T

defined on the (ξi,j , ηi,j)-coordinate system attached to the interface σi,j ,
where u and v are the velocity components along directions ξi,j and ηi,j , respectively. The transformation
from the (x, y) to the (ξi,j , ηi,j) coordinates is made by defining the rotation matrix

P̃i,j =




1 0 0
0 ñxi,j −ñyi,j
0 ñyi,j ñxi,j




such that U = P̃i,jŨ and Ũ = P̃−1
i,j U .
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Note that P̃i,j is unique for the given arbitrary orientation chosen for the interface σi,j . For the FV
discretization, it will also be useful to define, for each interface σi,j , the rotation matrices

Pi,j =



ni,j · ñi,j 0 0

0 nxi,j −nyi,j
0 nyi,j nxi,j




which satisfy Pi,j = −Pj,i.

2.10.2 Discretization

We describe now the discretization of the generic shallow water model (2.1). Instead of discretizing
directly this set of equations, we consider for each interface a one-dimensional problem solved in the
direction ξ normal to the interface σi,j (we omit hereafter the indices (i, j) for ξi,j). By left-multiplying

(2.1) by P̃−1
i,j , we obtain

∂

∂t
Ũ

MODEL
(t) +

∂

∂ξ
F̃

MODEL
(Ũ(t)) = S̃

MODEL

0 (U(t)) (2.26)

where, for each model,

Ũ
SWE

= Ũ =




h
hu
hv


 , Ũ

SP
= φŨ , Ũ

IP
= Ũ

DIP
= φΩŨ

and the average flux and source terms in the normal direction to the interface are given by

F̃
SWE

=




hu
hu2 + gh2/2

huv


 , F̃

SP
= φF̃

SWE
, F̃

IP
= φΓF̃

SWE
,

F̃
DIP

= φΓ




βhu
β2hu2 + gh2/2

β2huv




and

S̃
MODEL

0 =




0
SMODEL

0,ξ

0




with

SSWE
0,ξ = −gh∂zb

∂ξ
, SSP

0,ξ = −φgh∂zb
∂ξ

+ g
h2

2

∂φ

∂ξ

SIP
0,ξ = SDIP

0,ξ = −φg(h− h|η0

∂zb
∂ξ

+
g

2

∂

∂ξ

(
φΓh|2η0

) (2.27)

Note that friction source terms are not present in (2.27), since they are computed in a separated step,
using a time splitting procedure with an exact analytical solution (see (Guinot and Soares-Frazão, 2006)
for an example). In this manuscript, the friction forces are neglected. In the case of the MP model, the
exchange source terms are also solved separately using an analytical solution (Guinot, 2012).

In what follows, we omit the superscript MODEL in order to lighten the notation. By discretizing
(2.26) in space with a standard finite volume procedure and returning to the global (x, y)−coordinates
systems, we obtain

d

dt
U i(t) = − 1

Ai

∑

j∈N (i)

wi,j

[
Pi,jF̃ i,j

+P̃i,j

(
1{ni,j ·ñi,j>0}S

L
i,j + 1{ni,j ·ñi,j<0}S

R
i,j

)]
, i = 1, . . . ,M

(2.28)

where 1{condition} is the indicator function for a given condition, defined as
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1{condition} =

{
1, if condition is true

0, else

and

F̃ i,j =




F̃
[1]
i,j

F̃
[2]
i,j

F̃
[3]
i,j


 , S̃

L

i,j =




0

∆S̃Li,j
0


 , S̃

R

i,j =




0

∆S̃Ri,j
0


 (2.29)

are respectively the average flux in the normal direction to σi,j and the source term contributions to the
“left” (L) and “right” (R) cells w.r.t. σi,j (for the chosen arbitrary orientation), and can be determined
using an approximate Riemann solver. We refer to Guinot and Soares-Frazão (2006) and Guinot et al.

(2017) for details on the expressions for the numerical fluxes F̃
[l]
i,j , l = 1, 2, 3 and source terms ∆S̃Li,j and

∆S̃Ri,j . We remark that these notations comprise both internal and boundary interfaces:

F̃
[l]
i,j =

{
F̃

[l],internal
i,j , i, j ≤M
F̃

[l],boundary
i,j , i > M or j > M

∆S̃Li,j = ∆S̃Ri,j = 0, i > M or j > M

The numerical flux and source terms defined in (2.29) are unique to each interface (i.e. , F̃ i,j = F̃ j,i
and similarly to the source terms). Note that, for a given interface σi,j , the contribution of the flux term

F̃ i,j for cells Ωi and Ωj have equal absolute value but opposite signs, since Pi,jF̃ i,j = −Pj,iF̃ j,i. On the
other hand, the source term has different contributions for the two cells, which is translated in (2.28) by

the multiplication by P̃i,j and the separation into two terms “L” and “R”.
Finally, an explicit Euler temporal discretization of (2.28) with a constant time step ∆t leads to the

final numerical scheme

Un+1
i = Un

i −
∆t

Ai

∑

j∈N (i)

wi,j

[
Pi,jF̃ i,j

+P̃i,j

(
1{ni,j ·ñi,j>0}S̃

L

i,j + 1{ni,j ·ñi,j<0}S̃
R

i,j

)]
, i = 1, . . . ,M

(2.30)

where Un
i is an approximation of U in the cell Ωi at time tn.

2.10.3 Global-in-space matrix formulation of the finite volume scheme

The proposed discretizations (2.28) and (2.30) are the usual and intuitive presentation of a finite volume
scheme, in which the solution in each cell is updated by the sum of contributions from all its neighbour
cells. However, for the formulation of the reduced models in Section 3.5, we need to write (2.28) under a
matricial, global-in-space form, corresponding of a system of M ordinary differential equations (ODEs).

For that purpose, we recall the maps (2.24) and (2.25) linking the indexes (i, j) ∈ {1, . . . ,M +Mb}2
and l ∈ {1, . . . I} of the mesh’s interfaces and we define the following vectors containing the numerical
flux and source terms for all interfaces

F̃
(1)

:=



F̃ ψ(1) · e1

...

F̃ ψ(I) · e1


 , F̃

(2)
:=



F̃ ψ(1) · e2

...

F̃ ψ(I) · e2


 ,

F̃
(3)

:=



F̃ ψ(1) · e3

...

F̃ ψ(I) · e3


 , F̃

(4)
:=




S̃
L

ψ(1) · e2

...

S̃
L

ψ(I) · e2


 ,

F̃
(5)

:=




S̃
R

ψ(1) · e2

...

S̃
R

ψ(I) · e2




(2.31)
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where ei, i = 1, 2, 3, are the vectors of the canonical basis of R3 and F̃
(l) ∈ RI , l = 1, . . . , 5. In what

follows, F̃
(l)

i,j := F̃
(l)

ψ′(i,j) refers to the ψ′(i, j)-th component of F (l).
Similarly, we define the following vectors containing the solution’s components in all the mesh’s cells:

U (1) :=




U1 · e1

...
UM · e1


 , U (2) :=




U1 · e2

...
UM · e2


 , U (3) :=




U1 · e3

...
UM · e3


 (2.32)

with U (l) ∈ RM , l = 1, 2, 3. Hereafter, U
(l)
i denotes the i-th component of U (l).

Using (2.31) and (2.32), we can rewrite (2.28) under the form

d

dt
U

(1)
i (t) = − 1

Ai

∑

j∈N (i)

(ni,j · ñi,j)wi,jF̃
(1)

i,j

d

dt
U

(2)
i (t) = − 1

Ai

∑

j∈N (i)

[
nxi,jF̃

(2)

i,j − nyi,jF̃
(3)

i,j

+ ñxi,j1{ni,j ·ñi,j>0}F̃
(4)

i,j

+ñxi,j1{ni,j ·ñi,j<0}F̃
(5)

i,j

]
wi,j

d

dt
U

(3)
i (t) = − 1

Ai

∑

j∈N (i)

[
nyi,jF̃

(2)

i,j + nxi,jF̃
(3)

i,j

+ ñyi,j1{ni,j ·ñi,j>0}F̃
(4)

i,j

+ñyi,j1{ni,j ·ñi,j<0}F̃
(5)

i,j

]
wi,j

(2.33)

which can be arranged in the global-in-space form

d

dt
U (1) = B(1)F̃

(1)
(U)

d

dt
U (2) = B(2)F̃

(2)
(U) +B(3)F̃

(3)
(U) +

B(4,x)F̃
(4)

(U) +B(5,x)F̃
(5)

(U)

d

dt
U (3) = −B(3)F̃

(2)
(U) +B(2)F̃

(3)
(U) +

B(4,y)F̃
(4)

(U) +B(5,y)F̃
(5)

(U)

(2.34)

where B(1), B(2), B(3), B(4,x), B(4,y), B(5,x), B(5,y) ∈ RM×I are sparse matrices depending only on prop-
erties of mesh (thus needing to be computed only once during a numerical simulation in the case where
the mesh is constant in time) and whose component in the i-th row and l-th column is given by

[B(1)]i,l =




− (ni,j · ñi,j)

wi,j
Ai

, j ∈ N (i), l = ψ′(i, j),

0, else

[B(2)]i,l =




−nxi,j

wi,j
Ai

, j ∈ N (i), l = ψ′(i, j),

0, else

[B(3)]i,l =




nyi,j

wi,j
Ai

, j ∈ N (i), l = ψ′(i, j),

0, else

[B(4,x)]i,l =




nxi,j

wi,j
Ai

, j ∈ N (i), ni,j · ñi,j > 0, l = ψ′(i, j),

0, else
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[B(4,y)]i,l =




nyi,j

wi,j
Ai

, j ∈ N (i), ni,j · ñi,j > 0, l = ψ′(i, j),

0, else

[B(5,x)]i,l =




nxi,j

wi,j
Ai

, j ∈ N (i), ni,j · ñi,j < 0, l = ψ′(i, j),

0, else

[B(5,y)]i,l =




nyi,j

wi,j
Ai

, j ∈ N (i), ni,j · ñi,j < 0, l = ψ′(i, j),

0, else

In a more compact form, we write (2.34) as

d

dt
Ŭ(t) = B̆

˘̃
F (Ŭ) (2.35)

where

Ŭ :=



U (1)

U (2)

U (3)


 ∈ R3M ,

˘̃
F :=




F̃
(1)

...

F̃
(5)


 ∈ R5I ,

B̆ :=




B(1) 0 0 0 0
0 B(2) B(3) B(4,x) B(5,x)

0 −B(3) B(2) B(4,y) B(5,y)


 ∈ R3M×5I

This global-in-space form (2.34), being written in a matricial form, with matrices that are precomputed
since they depend only on constant-in-time geometric information, provides substantial reductions of the
computational cost compared to the local-in-space, loop-based formulation (2.28). As said before, this
reformulation has been implemented in the software LEMON-SW2D developed by Inria LEMON team.
We remark that, in all results presented in this work, only the global-in-space form (2.34)-(2.35) is used.
Notably, in the parareal methods developed and presented in the following chapters, both the fine and
coarse models use this less expensive formulation.

Stability condition

Since (2.34) is an explicit scheme in time, it must satisfy a Courant-Friedrich-Lewy (CFL)-type stability
condition, imposing a maximum permissible time step. This condition is based on the concept of domain
of dependence, defined, for a given point x ∈ Ω, as the set of points of Ω whose solution at a previous
time instant influence the solution at x at the current time, i.e. it is the set of departure points whose
solution reaches x within a time step ∆t. Soares Frazão and Guinot (2007) show that the stability of an
explicit FV scheme as (2.30) is guaranteed if, for each cell Ωi ⊂ T of the computational mesh, the sum
of the areas of the domains of dependence of each interface σi,j , j ∈ N (i) of Ωi does not exceed the area
Ai of Ωi.

The solution entering Ωi through σi,j can be decomposed into three waves travelling with speed
λMODEL
k , k = 1, 2, 3 (the eigenvalues associated to each shallow water model, as presented in Section 2.9).

In order to avoid computations to determine which wave component enters the cell, Guinot and Soares-
Frazão (2006) and Soares Frazão and Guinot (2007) propose to majorate the domain of dependence Ai,j
of σi,j by

Ai,j ≤ wi,j∆tλ̃MODEL
3,(i,j) (2.36)

where λMODEL
3,(i,j) is a majoration of the largest wave speed at interface σi,j and reads, for each shallow

water model,

λ̃SWE
3,(i,j) = λ̃SP

3,(i,j) = max{‖ui‖+ ci, ‖uj‖+ cj}

λ̃IP
3,(i,j) =

1

β
max{‖ui‖+ ci, ‖uj‖+ cj}

λ̃DIP
3,(i,j) = max{β ‖ui‖+ c̃i, β ‖uj‖+ c̃j}
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where ci =
√
ghi; hi and ui are respectively the water depth and the velocity vector in cell Ωi, and

c̃i = β1/2[(β−1) ‖ui‖+c2i /β2]1/2. Therefore, the domains of dependence Ai,j are majorated by considering
the largest wave velocity, which is itself majorated by using the velocity norm and the flow variables from
the neighbours cells to σi,j . Note from (2.36) that Ai,j is a rectangle of sides wi,j (the interface length)

and ∆tλ̃MODEL
3,(i,j) (the distance covered by the fastest wave along a time step ∆t).

Therefore, for each cell Ωi, it must be verified

∑

j∈N (i)

Ai,j ≤ Ai (2.37)

and the global time step for advancing the numerical solution (2.30) is chosen such that (2.37) holds for
every Ωi ⊂ T :

∆t ≤ min
i=1,...,M

Ai∑
j∈N (i) wi,j λ̃

MODEL
3,(i,j)

(2.38)

2.11 Numerical examples

We present in this section some numerical simulations illustrating the results given by classical, SP and
DIP shallow water models, consisting in the simulation of a flow in a fictitious “urban zone”. The results
of the porosity-based SWE are compared to the ones given by the classical SWE in a finer mesh with
smaller time steps (considered as the reference solution), for motivating the work presented in this thesis.

Domain and discretizations

We consider a rectangular domain Ωtotal = [0, Lx] × [0, Ly], with Lx = 500 and Ly = 45. Denoting by
Ωbuildings the disjoint domain occupied by the buildings, the computational domain for the classical SWE
and the porosity-based models are respectively ΩSWE = Ωtotal\Ωbuildings and Ωporosity = Ωtotal. Without
risk of confusion, both ΩSWE and Ωporosity are denoted by Ω in the following.

The urban zone is defined in the region Ωurban := [200, 295] × [0, Ly] ⊂ Ω, consisting of a 10 × 4
Cartesian disposition of homogeneous square-shaped buildings with size lx = ly = 5, also homogeneously
separated by a distance wx = wy = w = 5 in each direction. A schematic representation of the urban
zone is presented in Figure 2.7.

lx lx lxwx wx

ly

ly

ly

wy

wy

· · ·

· · ·

· · ·

...
...

...

Figure 2.7: Numerical example: schematic representation of the urban zone. Squares represent buildings,
with dimensions lx and ly respectively in the x− and y− direction, and separated by wx and wy in each
direction. Only a 3× 3 grid of buildings is represented.

The reference simulation of the classical shallow water equations is performed in an unstructured
mesh, with mesh diameters varying from 1 (inside the urban zone) to 10 (outside the urban zone) and
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the buildings represented physically as holes in the mesh (see Figure 2.8). The porosity-based models are
solved in a coarser Cartesian mesh with mesh sizes ∆x = 12.5 and ∆y = 11.875 (see Figure 2.9, in which
the positions of the buildings, not physically present in the mesh, are indicated with dashed lines). The
fine and coarse meshes have respectively 8472 and 160 cells. Concerning the temporal discretization, the
classical SWE and the porosity-based models use homogeneous time steps respectively equal to δt = 0.05
and ∆t = 0.5, chosen in order to verify the stability CFL condition (2.38).

The simulations are run from t = 0 to t = T := 120.

Porosity fields

As shown in Figure 2.10, simplified porosity fields are adopted for both the SP and DIP simulations,
taking a constant value in Ωurban. Outside the urban zone (in Ω\Ωurban), all porosities are unitary,
φ = φΩ = φΓ = 1. In Ωurban, both φ and φΩ are equal to the fraction of Ωurban not occupied by buildings,
i.e.

φ(x) = φΩ(x) =





1, x ∈ Ω\Ωurban

1− |Ωbuildings|
|Ωurban|

= 1− 40l2

|Ωurban|
≈ 0.77, x ∈ Ωurban

The conveyance porosity φΓ is equal to the fraction of the y−section not covered by buildings:

φΓ(x) =





1, x ∈ Ω\Ωurban

5w

Ly
≈ 0.56, x ∈ Ωurban

The porosity values are attributed to each cell or interface depending if its barycenter lays on Ωurban

or Ω\Ωurban. Note that the condition φΩ ≥ φΓ is satisfied in the whole domain.

Initial and boundary conditions

The initial solution is a lake-at-rest with zero initial water depth:

h(x, t = 0) = 0, ux(x, t = 0) = uy(x, t = 0) = 0, x ∈ Ω (2.39)

and, for the boundary conditions, an inward unitary flux (volumetric flux per length) is defined on the
left boundary ∂Ωinward := {x ∈ ∂Ω|x = 0}, a zero water depth is imposed on the right one (∂Ωoutward :=
{x ∈ ∂Ω|x = Lx}) and a null flux (closed boundaries) is defined for the rest of the boundary:





hu · n = 1, x ∈ ∂Ωinward, t ∈ [0, T ]

h = 0, x ∈ ∂Ωoutward, t ∈ [0, T ]

hu · n = 0, x ∈ ∂Ω\(∂Ωinward ∪ ∂Ωoutward), t ∈ [0, T ]

(2.40)

where n = n(x) is the unit normal vector to ∂Ω.
Figure 2.11 compares the solution of the classical and porosity-based shallow water models at the

final time of simulation in the entire spatial domain. The solutions along the slice y = 22.5, at t = T/2
and t = T , are shown in Figure 2.12. The computational times for each simulation are presented in
Table 2.1. We observe that both porosity models provide, globally, a relative good approximation for
the reference solution with a much smaller computational cost (approximately 100 times smaller). The
use of a more complex porosity-based model (DIP instead of SP) does not increase the computational
time since both rely on the same numerical scheme and discretization sizes. However, although this good
global approximation, small scale phenomena inside the urban zone are not well represented. The better
performance of the DIP model, compared to the SP, is clear in the case of the representation of the water
depth. The SP model provides a better approximation of the x−unit discharge inside the urban zone, but
overestimates it on the downstream. Concerning the y−unit discharge, both models provide a solution
identical to zero, since the porosity fields do not depend on y, thus failing to represent the effects of the
flow reflection on the buildings.
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Figure 2.8: Numerical example: fine mesh used for the classical SWE. Top: full domain; bottom: zoom
on the urban zone. The red line indicates the slice y = 22.5 along which the solutions are compared.
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Figure 2.9: Numerical example: coarse mesh used for the porosity-based models. Top: full domain; bot-
tom: zoom on the urban zone. Dashed lines represent the buildings’ positions (not physically represented
in the mesh).

Classical SP DIP
8.54 0.09 0.08

Table 2.1: Numerical example: computational times (in seconds) for the simulation of the classical and
the porosity-based shallow water models.
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Figure 2.10: Numerical example: porosity fields used in the simulations of the porosity-based models.
Top: porosity φ for the SP model; bottom: storage porosity φΩ (left) and conveyance porosity φΓ

(right) for the DIP model. The conveyance porosity is presented as an interpolated field for an easier
visualization. Zoom on the urban zone. All the porosities are equal to one in the rest of the domain.

2.12 Conclusion of the chapter

This chapter was dedicated to an overview of shallow water equations at different scales for modeling
urban floods. After recalling the classical SWE, we presented a number of porosity-based shallow water
models that have been proposed and studied in the past two decades as an alternative for speeding up
urban flood simulations. They are volume-averaged upscaled models relying on the definition of porosity
parameters for representing the urban geometry, i.e. the presence or absence of obstacles and the resulting
space available for the flow. This average description allows to use coarser computational meshes than
with the classical SWE, and, as a consequence of CFL-type stability conditions, the time-stepping can
be performed using larger time steps, thus resulting in much cheaper numerical simulations. In this
overview, we focused on presenting the historical evolution of some of the main porosity-based models.
This evolution starts from an averaged description using a single porosity parameter, corresponding to
the fraction of the space not occupied by obstacles, to models formulated in an integral form, defining
two porosity parameters and a dual set of flow variables linked by closure relations, being able to better
represent anisotropic phenomena and wave propagation speeds.

An explicit-in-time finite volume (FV) discretization of the presented shallow water models (the
classical and the porosity-based ones) was presented, including its formulation in a global-in-space form
necessary for its application in model reduction techniques, performed in the next chapter. We also
showed that the classical and the porosity-based SWE are hyperbolic, which constitute a major challenge
for their simulation using parallel-in-time methods.

Finally, a simple set of numerical examples, simulating a flow through an urban zone, was presented
for illustrating the porosity-based models and motivating the work in the following chapters. The results
show that the upscaled models provide relatively good approximations to the solution of the classical
SWE (solved in a finer mesh, with smaller times steps), within a computational time smaller of two
orders of magnitude. However, small scale phenomena originated e.g. by the reflection of flow against
the obstacles are misrepresented. Therefore, in this work we aim to couple the shallow water models at
different scales for taking advantage of the properties of each one, namely the more accurate solutions,
provided by the classical SWE, and the reduced computational times, ensured by the porosity-based
models.
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Figure 2.11: Numerical example: comparison of the solutions given by the classical SWE (reference) and
the porosity-based SWE (SP and DIP) for t = T = 120. Top left group of figures: water depth; top
right group: x-unit discharge; bottom group: y-unit discharge. In each group of three figures, the top
one, the middle one and the bottom one correspond respectively to the solution of the classical SWE,
the SP and the DIP models. Zoom on [125, 375]× [0, Ly]. The solutions of the porosity-based models are
interpolated to the fine mesh used for the classical model.
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Figure 2.12: Numerical example: comparison of the solutions given by the classical SWE (reference) and
the porosity-based SWE (SP and DIP) along the slice y = 22.5 for t = T/2 = 60 (left) and t = T/2 = 120
(right). First, second and third rows: water depth, x-unit discharge and y-unit discharge, respectively.
The solutions of the porosity-based models are interpolated to the fine mesh used for the classical model.
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Chapter 3. The parareal method and some adaptations for hyperbolic problems

3.1 Introduction

In this chapter, we present the parareal method and some of its variants proposed for improving its
performance when applied to hyperbolic problems.

As discussed in Section 1.2, Parallel-in-Time (PinT) methods have gained special attention over the
past decades as alternative for overcoming the trade-off between accuracy and computational cost of
numerical simulations and the saturation of spatial parallelization. Among them, the parareal, first
proposed by Lions et al. (2001), is one of the most popular. This predictor-corrector iterative method,
in which sequential predictions are provided by a coarse, low-expensive model and fine corrections are
obtained, in parallel, using a fine, expensive and accurate one, stands out for a simple, non-intrusive and
problem- and discretization- independent formulation. Indeed, since only the solutions of the fine and
coarse models are required by the parareal algorithm, these models can be used in a “black-box” fashion.
The popularity of the method can be explained by this simplicity and also by its successful application to
a large variety of problems, specially parabolic and diffusive ones, for which a fast convergence is observed,
thus allowing to obtain a numerical solution close to the reference one within a reduced computational
time.

However, in the case of hyperbolic and advection-dominated problems, the parareal method (as well
as other parallel-in-time methods) suffers from instability and/or convergence issues (Ruprecht, 2018).
Variants of the method are proposed in the literature for overcoming these difficulties. One can cite,
for example, parareal modifications using information obtained along parareal iterations, by formulating
Krylov subspaces (Farhat et al., 2006; Gander and Petcu, 2008) or reduced-order models (ROMs) (Chen
et al., 2014); asymptotic approximations of the solution (Haut and Wingate, 2014); semi-Lagrangian
temporal discretization (Schmitt et al., 2018) and optimization techniques (De Sterck et al., 2021).

We remark that temporal parallelization has been little explored for solving the shallow water equa-
tions, which can been explained by its challenging application to hyperbolic problems. Recently, PinT
has been proposed and applied for the SWE on the rotating sphere, using an asymptotic parareal method
(Haut and Wingate, 2014), rational approximation of exponential integrators (Schreiber and Loft, 2019;
Schreiber et al., 2019; Caliari et al., 2021), the MGRIT method combined with exponential integra-
tors (Abel et al., 2020) and the PFASST method combined with a spatial discretization using spherical
harmonics. These applications rely on specific choices of spatial and temporal discretizations and on
properties of the rotating SWE, such as the presence of fast oscillations due to a linear term. For the
SWE on the plane, Arbenz et al. (2012) explored a spatial and temporal parallelization when periodic
boundary conditions are considered, making use of the formulation of the problem as cyclic nonlinear
system of equations, in a scheme that can be classified as a method for parallelization across the method,
as discussed in Section 1.2. More recently, Nielsen et al. (2018) implemented the parareal method for
solving the two-dimensional nonlinear shallow water equations in the plane, discretized using explicit-
in-time finite volume schemes. Contrary to the most usual practice in parareal applications, in their
implementation the coarse and fine model differ only by the order of time-evolution scheme, using the
same spatial meshes and adaptive time steps for attaining the maximum admissible CFL number. With
this approach, only dissipative errors exist between the two models and, and stable and converging simu-
lations are obtained. With an implementation in an HPC environment and optimized schedules of parallel
tasks, large accelerations of the simulation are obtained, in the order of hundreds times faster than the
simulation of the fine model.

The objective of this work being the coupling between the classical and porosity-based shallow water
equations, coarsening between the fine and coarse models is a constraint, so we place ourselves in a more
usual parareal scenario. We also give a special attention to the ROM-based parareal variant proposed
by Chen et al. (2014), which is suitable for treating nonlinear hyperbolic problems, such as the SWE.
Numerical examples presented in that work illustrate that this method is able to outperform the original
parareal in some problems, in terms of stability and convergence, but are less effective in others. We
explore and compare the application of the original and ROM-based parareal methods for solving the SWE
and, in the following chapters, we propose modifications for improving performance of the ROM-based
method and we study its behaviour in larger and more challenging problems.

We present along this chapter a historical evolution of the parareal method, from the original to the
ROM-based one. The classical or original method is presented in Section 3.2, along with some numerical
examples for illustrating its lack of performance when applied to hyperbolic problems. In Section 3.3, the
Krylov subspace-enhanced parareal method, proposed by Farhat et al. (2006) and suitable for treating
linear hyperbolic problems, is presented for introducing the idea of reusing information from previous
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parareal iterations. The ROM-based method proposed by Chen et al. (2014) is presented in Section
3.4, along with the model reduction techniques considered in this work, namely the combined Proper
Orthogonal Decomposition (POD) and Empirical Interpolation Method (EIM). These ROM techniques
are applied to the 2D nonlinear SWE in Section 3.5. The classical and ROM-based parareal algorithms are
illustrated and compared in a set of relatively small numerical examples in Section 3.6. These numerical
tests are performed for providing a first insight of the performance of the two methods, as well as the
factors and parameters that may influence it. Concluding remarks are presented in Section 3.7.

3.1.1 Basic notation and definitions

Propagators and discretizations

We introduce some basic notations and definitions for the description of the parareal methods in this
chapter. We are interested in the numerical simulation over a temporal domain [0, T ], with T > 0. This
domain is divided into N∆T = T/∆T non-overlapping time slices [t0, t1], [t1, t2], . . . , [tN∆T−1, tN∆T

], which
we assume to have the same length ∆T . Therefore, the N∆T + 1 discrete time instants defining the time
slices read

tn := n∆T, n = 0, . . . , N∆T (3.1)

with t0 = 0 and tN∆T
= T . The instants defined in 3.1 are called hereafter as parareal time instants.

Let Eδτ : RM ×R+×R+ → RM be a generic numerical propagator for a given problem, i.e. a discrete
time-evolution scheme, using a constant time step δτ . The evolution of a given quantity y ∈ RM by Eδτ
from an instant t to s, with s− t ≥ dτ , is denoted by Eδτ (y, s, t).

More specifically, we define a fine propagator Fδt, associated to a constant time step δt < ∆T , and
a coarse propagator G∆t, associated to a constant time step ∆t ≤ ∆T . The coarse propagator provides
less expensive and less accurate solutions compared to Fδt, usually with ∆t � δt. The real numbers δt
and ∆t are called respectively the fine and coarse time steps hereafter. The reader is referred to Figure
3.1 for a schematic representation of the time steps definitions. Other similar notations are introduced
along this chapter for defining modified propagators in the variants of the parareal method. We assume
that the length of the time slices is a multiple integer both of ∆t and δt, i.e. p∆t := ∆T/∆t ∈ N
and pδt := ∆T/δt ∈ N. Neither the homogeneity of the time steps ∆T,∆t, δt nor the assumption
p∆t, pδt ∈ N are necessary (see e.g. (Carlberg et al., 2016; Nielsen et al., 2018)), but are considered here
for simplification.

0 t1 t2 tN∆T −1 T
• • • • • • • • • • • • • • • • • • • • • •• • • • • • • •

∆T

∆t

δt

Figure 3.1: Definition of the temporal discretization of Fδt (small and large bullets), G∆t (only orange,
large bullets) and the parareal time slices (green, vertical ticks), associated respectively to homogeneous
time steps δt, ∆t and ∆T . The time instants tn, n = 0, . . . , N∆T , correspond to the temporal discretization
using ∆T . In this illustrative example, each time slice contains p∆t = 2 coarse and pδt = 6 fine time
steps.

The number of coarse and fine time steps in [0, T ] are respectively N∆t := T/∆t and Nδt := T/δt.
The ratios p∆t = ∆T/∆t = N∆t/N∆T and pδt = ∆T/δt = Nδt/N∆T represent respectively the number
of coarse and fine time steps within each time slice. Note that a possible choice for the time steps is
∆t = ∆T , i.e. the coarse time steps associated to the coarse propagator G∆t coincide with the time slices.

We remark that a coarser temporal discretization is not the only possible simplification of G∆t w.r.t.
Fδt. Indeed, coarser spatial discretizations, lower-order numerical schemes and simplified models from
the physical and/or mathematical point of view can be considered for defining G∆t (Maday, 2010).

The approximation of a quantity y at time tn is denoted by

yn ≈ y(tn)
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As described in the next section, the parareal method iteratively produces approximations to the
solution of a given problem. We denote by ykn the approximation obtained in the k−th parareal iteration
for the solution at tn. The reference solution yref for a given problem with initial solution y0 is the one
obtained by the sequential simulation of the fine propagator Fδt and its values at each parareal time
instant tn is denoted by

yref,n := Fδt(y0, tn, 0) (3.2)

Concerning the spatial discretization, the number of cells in the spatial meshes associated to Fδt and
G∆t are denoted respectively by Mf and Mc.

Errors and speedup

In order to study and compare the performance of the parareal method along iterations, we define the
following relative errors, computed over the mesh associated to the fine, reference propagator Fδt:

• Error at parareal time instant tn and iteration k:

ekn :=

∑dfMf

i=1 |[ykn]i − [yref, n]i|
∑dfMf

i=1 |[yref,n]i|
(3.3)

• Error at iteration k:
ek := max

n=0,...,N∆T

ekn (3.4)

where [y]i denotes the i−th component of the vector y ∈ RdfMf and df is the number of degrees-of-
freedom for each discrete spatial point or cell, depending on the numerical scheme, such that dfMf is the
total number of components of the solution vector. In the case of the shallow water models presented in
the previous chapter, df = 3 (for each computational cell in a FV scheme, the water depth and the x−
and y−unit discharges are computed).

Evidently, the evaluation of parallel-in-time methods concerns not only the quality of its solution, but
also its ability in speeding up the reference numerical simulation. The speedup s = s(k) of a parareal
method is defined as the acceleration provided by the method w.r.t. the sequential simulation of the fine,
reference propagator, at the end of the k−th parareal iteration. Therefore, by defining Tpar(k) and Tref

as the computational times for the parareal (after k iterations) and reference simulations, respectively,
the speedup reads

s(k) =
Tref

Tpar(k)
(3.5)

The goal in using the parareal method is to obtain s(k) > 1. The parareal computational time Tpar(k)
and the speedup s(k) depend not only on the number of iterations, but also on the number of parallel
processors used in the simulations and the configurations of the fine and coarse propagators, among
other factors. Along this work, estimations for the speedup are provided for the parareal method and its
variants.

3.2 The original parareal method

3.2.1 Presentation of the algorithm

Following Baffico et al. (2002); Bal and Maday (2002), we present the original parareal method as a
predictor-corrector iterative scheme. We consider a simple time-dependent problem

{
d
dty(t) +Ay(t) = 0, in [0, T ]

y(0) = y0

(3.6)

where, for simplification, A is assumed independent of time.
The objective of the parareal method is to avoid the expensive computation of the approximate

solutions of (3.6) using the fine propagator Fδt sequentially over [0, T ], as given by (3.2). It is done by
computing an initial sequential prediction given by the low-expensive coarse propagator G∆t:
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y0
n+1 = G∆t(y

0
n, tn+1, tn), n = 0, . . . , N∆T − 1 (3.7)

and by introducing the following predictor-corrector iterative scheme, in which G∆t is used as predictor:

yk+1
n+1 = G∆t(y

k+1
n , tn+1, tn)︸ ︷︷ ︸

Prediction

+Fδt(ykn, tn+1, tn)− G∆t(y
k
n, tn+1, tn)︸ ︷︷ ︸

Correction

, n = 0, . . . , N∆T − 1 (3.8)

for k = 0, . . . , Nitermax − 1, where Nitermax is an user-defined maximum number of iterations. Iteration
(3.8) provides approximate values yk+1

n , n = 1, . . . , N∆T , for the solution y at the end of each time slice.
The “trick” of the parareal method relies on the fact that, in iteration k+1 (which provides yk+1

n , n =
0, . . . , N∆T ), the correction term, (that uses the fine, expensive propagator Fδt), depends only on ykn, n =
0, . . . , N∆T − 1, which are already available since these quantities have been computed in the previous
iteration for all parareal time instants t0, . . . , tN∆T

. Therefore, the fine propagations over the time slices
[tn, tn+1], n = 0, . . . , N∆T − 1, are independent and can be computed in parallel.

Supposing that the parareal method is executed using as many processors as there are time slices,
each parallel processor advances the expensive fine propagator over only pδt fine time steps per iteration,
instead of pδtN∆T as it would be required in a sequential simulation. The only sequential term of the
parareal iteration (3.8) is the prediction given by the coarse propagator, which is supposed to be much
cheaper than the fine one. Figures 3.2 and 3.3 represent respectively the sequential coarse prediction and
the parallel fine correction steps of the parareal method.

0 t1 t2 tN∆T −1 T

• • • • • • • •
G∆t G∆t G∆t G∆t G∆t G∆t

. . . . . . . . .

Figure 3.2: Schematic representation of the coarse prediction step in the classical parareal algorithm.
The low-expensive coarse propagator is executed sequentially along the entire temporal domain [0, T ].
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FδtFδtFδtFδtFδtFδt
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. . .

. . .
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Figure 3.3: Schematic representation of the fine correction step in the classical parareal algorithm. Each
parallel processor performs the fine propagation along one time slice ∆T .

The parareal method (which we call hereafter as classical or original parareal algorithm) is presented
in detail in Algorithm 1. Along this work, we name as “k−th parareal iteration” the parareal iteration
that produces the approximate solution ykn, n = 0, . . . , N∆t. Algorithm 1 (and all parareal algorithms
presented here) follow e.g. Ruprecht and Krause (2012); Astorino et al. (2012); Chen et al. (2014) in the
sense that the k−th parareal iteration is indexed by k− 1 in the iteration loop. The solution at the 0-th
iteration (initial prediction given the coarse propagator, eq. (3.7)) is performed before the iteration loop.

Note that all parallel fine correction terms are computed in the beginning of each iteration, and the
sequential predictor-corrector is performed later. Also note that a convergence criterion is implemented
based on the fine correction and on the parareal solution. It is splitted in two steps: firstly, between the
correction and the predictor-corrector steps, it is used for determining the times in which the solution
needs to be updated; then, at the end of the iteration, the parareal algorithm terminates if only the
solution at the last time of simulation has been updated. This implementation follows e.g. (Astorino
et al., 2012), and the convergence criterion is detailed and justified in Section 3.2.3.

As a last remark on the formulation of the parareal algorithm, in the case where the coarse propagator
is also coarser in space w.r.t. the fine one, the initial prediction (3.7) and the parareal iteration (3.8)
should include interpolation operators between the coarse and the fine mesh. For the sake of clarity, these
operators are not written explicitly in the parareal algorithms presented in this work.
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1 Initialization: initial guess given by the coarse propagator:
2 y0

0 = y0

3 for n← 0 to N∆T − 1 do
4 y0

n+1 = G∆t(y
0
n, tn+1, tn)

5 end
6

7 n0 = 0
8 Iterations:
9 for k ← 0 to Nitermax − 1 do

10 Compute the fine term of the correction (in parallel):
11 for n← n0 to N∆T − 1 do

12 ỹkn+1 = Fδt(ykn, tn+1, tn)
13 end
14

15 Find the first instant ñ ∈ {1, . . . , N∆T } not satisfying a convergence criterion based on ykn, ỹ
k
n

16 n0 ← ñ− 1
17

18 Compute the coarse predictions and correct them to obtain the final solution in the iteration
(sequentially):

19 for n← n0 to N∆T − 1 do

20 yk+1
n+1 = G∆t(y

k+1
n , tn+1, tn) + ỹkn+1 − G∆t(y

k
n, tn+1, tn)

21 end
22

23 if all instants converged (ñ = N∆T ) then
24 break;
25 end

26 end
Algorithm 1: Original or classical parareal algorithm.

3.2.2 Speedup estimation

We present in the following paragraphs an estimation for the numerical speedup (defined in eq. (3.5)) of
the classical parareal method.

Let τc be the computational time for advancing one coarse time step ∆t using G∆t. Similarly, τf
is defined as the computational time for advancing one fine time step δt using Fδt. Inherent costs
of parallelism (initialization of the processors, communication, etc.) are neglected. We consider that
Np ≤ N∆T processors are used for the parareal simulation, with N∆T as a multiple integer of Np.
The parallel tasks are homogeneously distributed to the processors, such that each of them performs
the parallel fine correction step along N∆T /Np time slices. We recall that each time slice contains
pδt = Nδt/N∆T fine time steps.

The computational time Tref necessary for a sequential simulation of the fine model reads

Tref = Nδtτf (3.9)

In the classical parareal method, the following steps are performed:

• an initial full coarse prediction (iteration k = 0), taking Tc = N∆tτc;

• within each iteration k ≥ 1:

– the parallel computation of the fine term of the correction, taking

Tcorr,f =
N∆T

Np
pδtτf =

N∆T

Np

Nδt
N∆T

τf =
Nδt
Np

τf

– the sequential computation of the predictions, taking

Tpred = N∆tτc
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Note that, in algorithm (3.8), the coarse term of the correction has already been computed in the
predictor step of the previous iteration.

Then, the computational time for completing k̂ iterations of the classical parareal method reads

Tclassical-parareal(k̂) = Tc + k̂ (Tcorr,f + Tpred)

= N∆tτc + k̂

[
Nδt
Np

τf +N∆tτc

]
= (1 + k̂)N∆tτc + k̂

Nδt
Np

τf
(3.10)

Then, the speedup provided by classical parareal method is estimated as

sclassical-parareal(k̂) =
Tref

Tclassical-parareal(k̂)

=
1

(k̂ + 1)
N∆tτc
Nδtτf

+
k̂

Np

(3.11)

Following Ruprecht and Krause (2012), we derive and interpret some simple bounds for (3.11), in
order to obtain some guidelines on the choice of the various parameters when setting up a parareal
simulation. Similar bounds will be derived and interpreted for variants of the parareal method presented
along this work. For that, we first introduce estimates for the computational times τc an τf . Since,
for the application considered in this work, we make numerical simulations using explicit-in-time finite
volume schemes (eq. (2.30)), these computational times are proportional to the spatial complexity of the
discrete models, that is, τc = O(Mc) and τf = O(Mf ), where Mc and Mf are the number of cells in the
coarse and fine meshes, respectively.

Thus, we have the following bounds:

• Bound due to the complexities of the fine and the coarse propagators: from the coarse prediction
term, we have

sclassical-parareal(k̂) <
1

k̂ + 1

Nδtτf
N∆tτc

=
1

k̂ + 1

NδtMf

N∆tMc
(3.12)

indicating that the coarse propagator is expected to be much less expensive than the fine one,
which is obtained by increasing ∆t (thus reducing N∆t) and/or reducing Mc. Moreover, the factor

1/(k̂ + 1) indicates the limitation of the speedup by the number of iterations;

• Bound due to the number of processors and iterations: from the fine prediction term, we obtain

sclassical-parareal(k̂) <
Np

k̂
(3.13)

It indicates that the parallel efficiency of the parareal method (i.e. the speedup divided by the num-

ber Np of processors) is limited by the number of iterations, decreasing by a factor 1/k̂. Therefore,
(3.13) shows that the speedup is improved when more processors are used and a fast convergence
(within a small number of iterations) is obtained, which can be achieved by increasing the accuracy
of the coarse propagator G∆t.

We remark that bounds (3.12) and (3.13) translate a trade-off that needs to be established when
performing a parareal simulation: the coarsening of the G∆t (smaller N∆t and Mc) can improve bound
(3.12), but the resulting poorer quality of G∆t may require more iterations for obtaining a given accuracy
for the parareal solution, thus affecting bound (3.13) negatively.

Note that, in Algorithm 1, all fine correction terms ỹkn, n = 1, . . . , N∆T , are computed in parallel; then,
the sequential step, computing coarse predictions and using the computed fine corrections, is performed by
a single processor for obtaining yk+1

n , n = 1, . . . , N∆T . However, it is possible to implement a scheduling
of parallel tasks that allows the computation of the coarse prediction and fine correction steps to overlap,
as proposed by Aubanel (2011), which improves the speedup estimate (3.11) and the parallel efficiency
of the method. The idea of this scheduling is that the coarse propagation is also distributed among
processors, and, when yk+1

n is made available, it is transmitted to next processor, which can compute

both ỹk+1
n+1 (used in the next iteration) and yk+1

n+1. Nevertheless, we consider in this work the simpler
formulation presented in Algorithm 1, since only small-scale parallelism is considered in the simulations
presented here. Moreover, as discussed in the following chapters, this improved scheduling cannot be
applied in the variant of the parareal method using reduced-order models.
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3.2.3 Exact convergence in a finite number iterations

It is easy to see (Gander, 2008) that the parareal method (3.8) gives, at each iteration, exact convergence
towards the reference solution for one time slice, i.e. ykn = yref,n ∀n ≤ k. Indeed, this is true for k = 0,
since the initial solution y0 is exact. Suppose now that it is true for the iteration k > 0. Therefore

G∆t

(
yk+1
k , tk+1, tk

)
= G∆t

(
yref,k, tk+1, tk

)
= G∆t

(
ykk, tk+1, tk

)
(3.14)

Replacing (3.14) in (3.8), we obtain

yk+1
k+1 = Fδt

(
yref,k, tk+1, tk

)
= yref,k+1

As a consequence, the parareal method always provides exact convergence w.r.t. the fine, reference
solution in [0, T ] in a finite number of iterations; more precisely, in at most N∆T iterations. However,
the algorithm is interesting only if it converges (or, at least, provides a considerable error reduction) in

a much smaller number of iterations k̂: supposing that there are as many processors as there are time
slices (Np = N∆T ), each iteration of the parareal algorithm costs at least 1/N∆T of the sequential fine

simulation; then, if k̂ = N∆T , the parareal simulation is more expensive than the reference one (since
other computational costs are enrolled in the parareal algorithm, e.g. the computation of the coarse
predictions and parallel overhead). This property is evident in bound (3.13), since

sclassical-parareal(k̂ = N∆T = Np) <
Np
Np

= 1

The progressive convergence of the parareal method is translated in Algorithm 1 by a convergence
criterion based on the relative distance between the parareal solution ykn and the fine correction ỹkn:

εkn :=

∥∥∥ỹkn − ykn
∥∥∥

‖ykn‖
< εTOL (3.15)

for a given tolerance εTOL and a given norm ‖·‖ in RMf . The discrete norm L1(RMf ) is considered here.
At each iteration, the first instant tn0+1 not satisfying the criterion (3.15) is found, and the solution is
updated only for n ≥ n0 +1. Therefore, the number of time steps to be computed by the parareal method
is monotonically decreasing along iterations (which improves the speedup estimate (3.11)).

The convergence criterion (3.15) can be justified by

∥∥yref,n − ykn
∥∥ ≤

∥∥yref,n −Fδt(ykn−1, tn, tn−1)
∥∥+

∥∥Fδt(ykn−1, tn, tn−1)− ykn
∥∥

≤
∥∥Fδt(yref,n−1, tn, tn−1)−Fδt(ykn−1, tn, tn+1)

∥∥+
∥∥Fδt(ykn−1, tn, tn−1)− ykn

∥∥

≤ L
∥∥yref,n−1 − ykn−1

∥∥+
∥∥∥ỹkn − ykn

∥∥∥

≤
n∑

j=1

Ln−j
∥∥∥ỹkj − ykj

∥∥∥

≤
n∑

j=k+1

Ln−j
∥∥∥ỹkj − ykj

∥∥∥

(3.16)

supposing that Fδt is Lipschitz continuous with Lipschitz constant L. Therefore, the difference ỹkn − ykn
between the parareal solution and the fine propagation starting from the previous parareal time instant
is an indicator of the error w.r.t. the reference solution. This is quite intuitive since a small ỹkn − ykn
means that the parareal iteration is close to the fine propagator in [tn−1, tn]. Then, the criterion (3.15)
is used here even if the hypothesis on the Lipschitz continuity of Fδt is not verified. In the last line of
(3.16), we used the fact that ykj = ỹkj = yref,j ∀j ≤ k.

The convergence criterion (3.15) is proposed by Astorino et al. (2012), but other convergence criteria
could be adopted, based e.g. on the difference between the solution of two consecutive parareal iterations
(e.g. in (Ruprecht and Krause, 2012)). Also, other norms could be considered, and a detailed study could
be conducted for determining an optimal criterion and tolerance εTOL. In all simulations performed in this
work, we consider the convergence tolerance εTOL = 10−10. In practice, for the problems considered here,
it is verified that this tolerance leads to a convergence at the minimum rate of one time slice per iteration
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(even if, as said above, considerable error decreases can be obtained along iterations). Therefore, the
convergence verification in Algorithm 1 could be equivalently replaced by the simpler update n0 ← n0 +1.

3.2.4 Performance of the classical parareal method

Besides its simple and generic formulation, the parareal method stands out for its successful application to
many problems, specially parabolic or diffusive ones, including very complex problems (Ruprecht, 2018).
Some examples found in the literature are the heat equation (Lions et al., 2001; Astorino et al., 2012;
Ruprecht et al., 2016; Zeng et al., 2019), the reaction-diffusion problem in chemical dynamics (Duarte
et al., 2011), the Navier-Stokes equations (Fischer et al., 2005; Trindade and Pereira, 2004) and a splitting
coupling between the heat transfer and heat flow equations (Geiser and Güttel, 2012).

However, in the case of hyperbolic problems, even the simplest ones as the one-dimensional advection
equation with constant speed, the parareal method presents slow convergence and/or instabilities. Many
works have shown (Mercerat et al., 2009; Dai and Maday, 2011; Steiner et al., 2015) and studied this
behaviour. Bal (2005) performs an analysis for PDEs with linear operators and concludes that the
parareal algorithm is unconditionally stable for most discretizations of parabolic problems, but not for
hyperbolic ones. Gander and Vandewalle (2007) show that parareal presents superlinear convergence on
bounded time intervals both for the heat and the advection equation, but for the latter the convergence
constants are larger than the unity. A study for the advection equation using characteristics is proposed
by Gander (2008), who concludes that parareal is not the ideal way to parallelize this problem. Finally,
Ruprecht (2018) indicates that parareal instabilities are caused by the mismatch between the discrete
phase speeds of the coarse and fine propagators for high wavenumbers, for which the convergence is also
shown to be slower; thus, the different performances of the parareal method when applied to parabolic
and hyperbolic problems can be explained by the fact that high wavenumbers are damped in the former
but not in the latter.

We present some simple examples for illustrating these different behaviours of the parareal method
when applied to hyperbolic or parabolic problems. As done by Ruprecht (2018), we consider the one-
dimensional advection-diffusion equation

∂u

∂t
+
∂u

∂x
= ν

∂2u

∂x2
(3.17)

since the hyperbolicity and parabolicity can be easily controlled by choosing the diffusion coefficient
ν ≥ 0. Eq. (3.17) is discretized by finite differences, using an implicit backward Euler scheme in time,
and standard first-order backward and centered second-order discretizations for the first and second
spatial derivatives, respectively. Using the notation proposed in Section 3.1.1, the parareal solution at
iteration k and time tn is denoted

ykn =




u1

...
uMf


 ∈ RMf

and the reference solution yref,n ∈ RMf at tn is given by a sequential simulation of (3.17) using the fine
propagator.

For comparing the solutions between the proposed simulations, we consider the errors defined in (3.3)
and (3.4), with df = 1 as the number of degrees-of-freedom for each discrete spatial point and dfMf = Mf

as the total number of components of the solution vector.
We first consider a domain [0, 10] with periodic boundary conditions and the Gaussian initial condition

u(x, t = 0) = exp
(
−5(x− 5)2

)
, x ∈ [0, 10]. The fine and coarse propagator Fδt and G∆t are defined by

the same spatial mesh sizes δx = ∆x = 0.2 and by time steps δt = 0.01 and ∆t = 1, respectively.
The time slices coincide with the coarse time steps, i.e. ∆T = ∆t = 1. The simulation is run from
t = 0 to t = T = 10, such that N∆T = 10, i.e. exact convergence towards the reference solution is
obtained in at most ten iterations. Four simulations are considered, from the most to the less hyperbolic:
ν = 0, ν = 0.01, ν = 0.1 and ν = 1. Figure 3.4 shows the evolution of the maximum error (3.4) along
iterations. We observe a much faster error decay when the problem becomes less dominated by advection
phenomena. It can also be observed in Figure 3.5, which compares the reference and parareal solutions
in the final time of simulation. Fewer iterations are needed in the high-diffusive simulations for obtaining
solutions visually very close to the reference one.

45



Chapter 3. The parareal method and some adaptations for hyperbolic problems

0 2 4 6 8 10
Iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ax

. e
rro

r p
er

 it
er

at
io

n 
(e

k )

= 0
= 0.01
= 0.1
= 1

Figure 3.4: Maximum error per iteration for the one-dimensional advection-diffusion equation, with
Gaussian initial condition and periodic boundary conditions, for four parareal simulations with different
diffusion coefficients. Exact convergence is obtained in ten iterations.
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Figure 3.5: Parareal solution along iterations at t = T = 10 for the one-dimensional advection-diffusion
equation, with Gaussian initial condition and periodic boundary conditions, for four parareal simulations
with different diffusion coefficients (top left: ν = 0; top right: ν = 0.01; bottom left: ν = 0.1; bottom
right: ν = 1). Dashed lines represent the reference solution. Exact convergence is obtained in ten
iterations.
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We then consider a second set of test cases, solved in the spatial domain [0, 20], also with periodic
boundary conditions and same temporal domain [0, T ], time slices and fine and coarse propagators as
above. We consider four pure-advection simulations (ν = 0), with initial solutions u(x, t = 0) = sin(κx)
and wavenumbers κ = 8π/10, κ = 4π/10, κ = 2π/10 and κ = π/10. Figures 3.6 and 3.7 present
respectively the maximum error per iteration and the solution at t = T along iterations. As stated by
Ruprecht (2018), we notice a much better behaviour of the parareal method for the solutions with small
wavenumber. For the simulations with high wavenumber, a slow convergence and unstable behaviours,
such as non-physical amplifications, are observed.
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Figure 3.6: Maximum error per iteration for the one-dimensional advection-diffusion equation, with
sinusoidal initial condition and periodic boundary conditions, for four parareal simulations with different
wavenumbers. Exact convergence is obtained in ten iterations.

3.2.5 Other interpretations of the parareal method

The parareal method is commonly presented under the form of a predictor-corrector iterative algorithm,
but other derivations and interpretations are found in the literature. Indeed, in its first appearance, by
Lions et al. (2001), the method consists in computing and propagating “jumps” given by the difference
between the solution of a coarse solver and a finer or exact solution over a time step, a formulation that
cannot be directly applied to nonlinear problems. A similar formulation using jumps is presented by
Farhat and Chandesris (2003) under the name of Parallel Implicit Time-integration Algorithm (PITA),
which is equivalent to (3.8) in the case of linear problems (Gander and Petcu, 2008).

The presentation of the algorithm as a predictor-corrector scheme is introduced by Baffico et al. (2002)
and Bal and Maday (2002), being generalized to both linear and nonlinear problems. We also remark that,
in the predictor-corrector framework, the nomenclature “prediction” and “correction” for the algorithm’s
steps have different definitions in the literature. We consider here (eq. 3.8) the interpretation used e.g.
by Fischer et al. (2005), which is the opposite from the one adopted by Ruprecht and Krause (2012)
and Chen et al. (2014). A discussion on the various interpretations of the predictor-corrector scheme is
proposed by Maday (2010).

A matricial formulation of the algorithm is introduced by Maday and Turinici (2002b), allowing it to
be interpreted as a preconditioning procedure and extended to control problems in PDEs. Gander and
Vandewalle (2007) propose a presentation under the form of a multiple shooting method, solved with a
Newton’s method in which the Jacobian is approximated using the coarse propagator. The same authors
also propose a formulation as a nonlinear multigrid method.
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Figure 3.7: Parareal solution along iterations at t = T = 10 for the one-dimensional advection-diffusion
equation, with sinusoidal initial condition and periodic boundary conditions, for four parareal simulations
with different wavenumbers (top left: κ = 8π/10; top right: κ = 4π/10; bottom left: κ = 2π/10; bottom
right: κ = π/10). Dashed lines represent the reference solution. Exact convergence is obtained in ten
iterations.

3.3 The Krylov subspace-enhanced parareal method for linear
hyperbolic problems

A successful approach for overcoming the convergence and stability issues of PinT methods for linear
hyperbolic problems, consisting in formulating Krylov subspaces along iterations, is presented in the
framework of the Parallel Implicit Time-integrator Algorithm (PITA) by Farhat et al. (2006) and extended
to the nonlinear case by Cortial and Farhat (2009), with applications to structural dynamics. Gander and
Petcu (2008) showed that PITA and parareal are equivalent in the linear case, and called the modified
method as Krylov subspace-enhanced parareal. This method was further extended to hyperbolic flow
problems by Ruprecht and Krause (2012), with application to a linear acoustic-advection problem.

The idea of this modified parareal approach is to improve the coarse propagations by reusing previously
computed information. It is done by defining a subspace Sk ⊂ RMf spanned by the parareal solution
computed in all previous iterations and all parareal time instants (called snapshots):

Sk := span{yjn, n = 0, . . . , N∆T , j = 0, . . . , k} (3.18)

The coarse propagator in the k−th iteration is replaced by the operator

Kk∆t(y, tn+1, tn) := G∆t((I− Pk)y, tn+1, tn) + Fδt(Pky, tn+1, tn) (3.19)

where I ∈ RMf×Mf is the identity operator and Pk ∈ RMf×Mf is the projection operator onto Sk. The
modified parareal iteration reads
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yk+1
n+1 = Kk∆t(yk+1

n , tn+1, tn)︸ ︷︷ ︸
Prediction

+Fδt(ykn, tn+1, tn)−Kk∆t(ykn, tn+1, tn)︸ ︷︷ ︸
Correction

, n = 0, . . . , N∆T − 1 (3.20)

The detailed method is presented in Algorithm 2, in which the modifications w.r.t. to the classical
parareal algorithm (Algorithm 1) are highlighted. Note that the coarse correction term needs to be
computed at each iteration (since it is given by the current propagator Kk∆t), contrary to the classical
parareal method (in which the coarse correction is already available from the previous iteration).

The name of the method comes from the fact that the space S0 at iteration k = 0 is a Krylov subspace:

S0 = span{y0
0,G∆ty

0
0,G2

∆ty
0
0 . . . ,GN∆T−1

∆t y0
0} (3.21)

even if, for the following iterations, the spaces Sk, k ≥ 1, have a more complicated structure (Gander and
Petcu, 2008). A lighter notation Gn∆ty0

0 := G∆t(y
0
0, tn, t0) = y0

n, n = 0, . . . , N∆T , is adopted in (3.21).
The subspace S0 can be computed using a QR decomposition of the matrix whose columns are the input
snapshots and, given a subspace Sk, the subspace Sk+1 can be obtained by adding the new snapshots
using the Gram-Schmidt procedure, since

Sk = Sk−1 ∪ span{ykn, n = 0, . . . N∆T } (3.22)

However, it is preferable to perform a full QR decomposition in each iteration, due to unstable behaviours
of the Gram-Schmidt method (Ruprecht and Krause, 2012).

Note, in (3.19)-(3.20), that the fine propagator is introduced in the sequential correction step, which
would impede any speedup w.r.t. the fine, reference simulation, since each iteration would be more
expensive than it. This issue can be avoided in the case of linear problems. Let us denote by W k :=
[sk1 , . . . , s

k
r ] ∈ RMf×r, with r = min{k(N∆T + 1),Mf}, a matrix whose columns are the vectors of an

orthonormal basis of Sk. Thus, the projection operator reads Pk = W k(W k)T and the coordinates of
Pky w.r.t. Sk are ck := (W k)Ty = [ck1 , . . . , c

k
r ]T ∈ Rr, i.e.

Pky = W k(W k)Ty = W kck =

r∑

j=1

ckj s
k
j (3.23)

Replacing (3.23) into the fine term of (3.19) and using the linearity of the problem, we obtain

Fδt(Pky, tn+1, tn) = Fδt




r∑

j=1

ckj s
k
j , tn+1, tn


 =

r∑

j=1

ckjFδt(skj , tn+1, tn); (3.24)

which can be efficiently computed by noticing that the basis vectors skj do not depend on time. Therefore,
it suffices to propagate them over a single time slice ∆T :

s̃kj := Fδt(skj , t+ ∆T, t), j = 1, . . . , r

which can be done in parallel, since these propagations are independent, and update the projection
coefficients at each time tn by computing Ck,n := [ck,n1 , . . . , ck,nr ]T = (W k)Tykn ∈ Rr. In summary, (3.24)
is computed as

Fδt(Pky, tn+1, tn) =

r∑

j=1

ck,nj s̃kj , n = 0, . . . , N∆T − 1

As a last remark, note that a more efficient scheduling of parallel tasks as proposed by Aubanel
(2011) cannot be applied to the Krylov-subspace-enhanced parareal algorithm, since the subspace Sk,
formulated using the solution at time slices from previous iterations, need to be computed before starting
the predictor-corrector step.

3.4 The ROM-based parareal method for nonlinear hyperbolic
problems

The introduction of Reduced-Order Models (ROMs) in the parareal algorithm is proposed by Chen
et al. (2014) for overcoming two drawbacks of the Krylov subspace enhanced-based parareal method:
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1 Initialization: initial guess given by the coarse propagator:
2 y0

0 = y0

3 for n← 0 to N∆T − 1 do
4 y0

n+1 = G∆t(y
0
n, tn+1, tn)

5 end
6

7 n0 = 0
8 Iterations:
9 for k ← 0 to Nitermax − 1 do

10 Compute the fine term of the correction (in parallel):
11 for n← n0 to N∆T − 1 do

12 ỹkn+1 = Fδt(ykn, tn+1, tn)
13 end
14

15 Compute the subspace

16 Sk = Sk−1 ∪ span{ykn, n = 0, . . . N∆T }
17

18 Find the first instant ñ ∈ {1, . . . , N∆T } not satisfying a convergence criterion based on ykn, ỹ
k
n

19 n0 ← ñ− 1
20

21 Compute the coarse term of the correction and the final correction term(in parallel):
22 for n← n0 to N∆T − 1 do

23 ykn+1 = Kk∆t(ykn, tn+1, tn)

24 y
k
n+1 = ỹkn+1 − ykn+1

25 end
26

27 Compute the coarse predictions and correct them to obtain the final solution in the iteration
(sequentially):

28 for n← n0 to N∆T − 1 do

29 yk+1
n+1 = Kk∆t(yk+1

n , tn+1, tn) + y
k
n+1

30 end
31

32 if all instants converged (ñ = N∆T ) then
33 break;
34 end

35 end
Algorithm 2: Krylov subspace-enhanced parareal algorithm. Modifications w.r.t. the classical
parareal method (Algorithm 1) are highlighted.

firstly, in this method the number of basis vectors grows linearly with the iterations, thus increasing the
computational cost for evaluating (3.24); secondly, being based on the assumption of linearity, a parallel
efficient implementation, less expensive than the sequential simulation of the fine model, is not applicable
to nonlinear problems.

The term reduced-order modeling, or model order reduction, refers to a large family of numerical
methods aiming to reduce the complexity of numerical simulations of mathematical models, by capturing
the essential features of the problem dynamics. Being developed mainly from the 1980’s, ROMs have
gained popularity in several applications for overcoming computational resources limitations (Schilders,
2008). Reviews on the main ROM techniques are proposed e.g. by Antoulas (2004); Rozza et al. (2008);
Schilders (2008).

Chen et al. (2014) propose to use Proper Orthogonal Decomposition (POD)-based (Kosambi, 1943)
and Empirical Interpolation Method (EIM)-based (Barrault et al., 2004) reduced-order models in the
parareal method. More specifically, the use of a particular case of the EIM that uses POD features,
which we call hereafter as POD-EIM (but also found in the literature under the name POD-Discrete
Empirical Interpolation Method (POD-DEIM) (Chaturantabut and Sorensen, 2010)), is also proposed.
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Whereas the POD ROM is restricted to linear problems, the EIM and POD-EIM procedures are effective
to reduce the dimension of nonlinear ones. In the following paragraphs, we briefly describe the three
mentioned approaches and their application to the parareal method. In the sequel of this work, we
consider the POD-EIM-based parareal method for solving the shallow water models. The computational
implementation of this method is detailed in Appendix B.

We follow the presentation proposed by Chaturantabut and Sorensen (2010), by considering the system
of ODEs (or a spatially discretized PDE)

d

dt
y(t) = Ay(t) + F (y(t)) (3.25)

where y ∈ RMf , A ∈ RMf×Mf is constant in time and F : RMf → RMf is a nonlinear function with values
on RMf . Problem (3.25) is called hereafter as Full-Order Model (FOM). If Mf is large, the computational
simulation of (3.25) may be very expensive, which motivates the use of model order reduction techniques
to formulate an approximate problem with smaller dimension. We choose here the notation Mf , the
same used for the size of the spatial discretization of the fine propagator Fδt in the parareal method, for
highlighting that a model order reduction of this expensive propagator will be performed in the parareal
framework.

3.4.1 The Proper Orthogonal Decomposition (POD): reduction of the linear
term

The Proper Orthogonal Decomposition (POD) is one of the most known and popular model order reduc-
tion approaches, widely used in several applications since its first proposition by Kosambi (1943). It is
also known under different names in other application domains, such as Principal Component Analyisis
(PCA), Karhunen-Loève expansion and empirical orthogonal functions (Narasimha, 2011). See (Berkooz
et al., 2003) for a historical review of the method. As discussed below, the POD allows to reduce the
complexity of a linear problem; more precisely, it is able to reduce the dimension of the left-hand side
and first right-hand side terms in eq. (3.25).

We consider here the description of the method as in (Chaturantabut and Sorensen, 2010). The
objective of the POD, or POD-Galerkin, is to define a reduced subspace Sq ⊂ RMf with small dimension
q � Mf and spanned by realizations (called snapshots) of the solution of (3.25) in a given number of
time instants, and construct the reduced-order system via a Galerkin projection of the FOM onto Sq.

Let Y = [y(t1), . . . ,y(tns)] ∈ RMf×ns be the snapshots matrix, containing in its columns the solution
of (3.25) in chosen ns time instants. The columns of Y span the subspace Y with dimension r ≤
min(Mf , ns) (in general, the number of degrees-of-freedom of the problem is much larger than the number
of snapshots, i.e. Mf � ns). The POD subspace Sq of dimension q ≤ r is defined as the subspace spanned
by the orthonormal vectors {ϕi}qi=1 ⊂ RMf , called POD modes, that best approximates Y in the sense
of solving the minimization problem

min
{ϕi}qi=1

ns∑

j=1

∥∥∥∥∥y(tj)−
q∑

i=1

((y(tj))
Tϕi)ϕi

∥∥∥∥∥

2

2

ϕTi ϕj = δij , i, j = 1, . . . , q

(3.26)

where ‖·‖2 is the Euclidian norm and δij is the Kronecker delta function. In other words, we search
a space Sq such that the sum of the differences between the snapshots and their projection onto Sq is
minimal.

It is well-known that the solution of (3.26) is given by the q first left singular vectors of the snapshots
matrix Y , i.e. the left singular vectors associated to the largest singular values. Therefore, the POD can
be performed via the singular value decomposition (SVD) of Y :

Y = V ΣWT (3.27)

where V = [v1, . . . ,vr] ∈ RMf×r and W = [w1, . . . ,wr] ∈ Rns×r are matrices whose columns are
respectively the left and right singular vectors of V , and Σ = diag(σ1, . . . , σr) ∈ Rr×r, σ1 ≥ · · · ≥ σr > 0
is a diagonal matrix containing their respective singular values. The basis vectors of Sq are ϕi = vi, i =
1, . . . , q. The truncation of the POD basis (i.e. the value of q) is usually determined by choosing a
fraction of the “energy” to be retained (Camphouse et al., 2008; Marquez et al., 2013):
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∑q
i=1 σi∑r
i=1 σi

> 1− εsv (3.28)

for a given (small) threshold εsv. In general, only few POD modes are necessary to represent more than
99% of the snapshots information (Schilders, 2008). We remark that other approaches than the SVD are
possible for performing the POD, such as the so-called method of snapshots, based on the solution of an
eigenvector problem of the covariance matrix of Y , and partitioned approaches, based on the partition of
the snapshots set (Wang et al., 2015). The method of snapshots is more efficient for matrices Y ∈ RMf×ns

with Mf � ns (which is the situation encountered in the applications in this work), since the covariance
matrix Y TY ∈ Rns×ns has smaller dimension, but may affect the POD basis due to round-off errors for
computing Y TY (Chaturantabut and Sorensen, 2011). We consider here the SVD approach, efficiently
performed using the dgesvd function from the MKL-LAPACK suite, as described in Appendix B.

With the basis vectors computed, the model reduction proceeds with a Galerkin projection. Let
Vq = [ϕ1, . . . ,ϕq] ∈ RMf×q. Then, the approximation of y(t) in Sq reads

y(t) ≈
q∑

i=1

ỹi(t)ϕi = Vqỹ(t) (3.29)

where ỹ := (ỹ1, . . . , ỹq)
T

are the coordinates of this approximation in Sq. By replacing (3.29) in (3.25)
and projecting (3.25) onto Sq (i.e. by left-multiplying it by V Tq ), we obtain the POD-reduced-order model

d

dt
ỹ(t) = V Tq AVqỹ(t) + V Tq F (Vqỹ(t))

= Âỹ(t) + V Tq F (Vqỹ(t))

(3.30)

where we used the property V Tq Vq = I, with I ∈ Rq×q being the identity matrix, since the basis {ϕi}qi=1

is orthonormal.
Note that matrix Â := V Tq AVq ∈ Rq×q does not depend on time, thus it can be computed once at the

beginning of the simulation. Also note that both the left-hand side and the linear term in (3.30) have
reduced dimension q � Mf w.r.t. the FOM (3.25). However, the nonlinear term is still expensive to
compute: it needs to be evaluated in Mf points in each time step, since Vqỹ ∈ RMf . It motivates the use
of an alternative model order reduction approach for treating this term.

3.4.2 The empirical interpolation method (EIM): reduction of the nonlinear
term

The reduction of the nonlinear term of eq. (3.25) can be achieved with the Empirical Interpolation
Method (EIM). First proposed by Barrault et al. (2004), EIM is a reduced-basis approach consisting in
a greedy determination of a low-dimensional space and a set of interpolation points and functions for
computing the approximation of a parameter-dependent function in this space. The method proposed
by Barrault et al. (2004) is applicable to problems with a nonaffine parameter dependency; more general
frameworks and applications, including to the order reduction of PDEs models, are presented by Grepl
et al. (2007) and Maday et al. (2008). A particular and simplified case of the EIM, using information
provided by a POD, is presented by Chaturantabut and Sorensen (2010) under the name of POD-Discrete
Empirical Interpolation Method (POD-DEIM), to which we refer indistinguishably as POD-EIM. These
methods allow to reduce the complexity of nonlinear terms in reduced models, an unresolved issue in
POD ROMs, as discussed above. Due to the introduction of a second stage of complexity reduction,
EIM and POD-DEIM are usually referred as “hyperreduction methods” (Hernández et al., 2017), a class
of model reduction approaches among which one of the best known is the Gappy-POD (Everson and
Sirovich, 1995).

In the following paragraphs we briefly present the general and particular frameworks of the EIM and
the POD-DEIM, respectively, pointing out the connection between them. For that, we propose as far
as possible a unified notation for both presentations. In the rest of this manuscript, we consider the
simplified formulation proposed by Chaturantabut and Sorensen (2010).
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The empirical interpolation method

Let f = f(x;µ) be a parameter-dependent function, with x ∈ Ω and µ ∈ D being respectively the spatial
variable and a set of parameters on which f depends. The objective of the EIM is to approximate f by

f(x;µ) ≈ fm(x;µ) :=

m∑

i=1

ci(µ)ϕ̂i(x) (3.31)

where ϕ̂i(x), i = 1, . . . ,m, span the approximation space Ŝm of dimension m containing fm, and ci(µ), i =
1, . . . ,m, are coefficients determined via interpolation by solving

Bmc(µ) = f(µ) (3.32)

where Bm ∈ Rm×m, c(µ) = (c1(µ), . . . , cm(µ))
T

and f(µ) = (f(x̂1;µ), . . . , f(x̂m;µ)
T

, with x̂i, i =
1, . . . ,m, being a set of chosen interpolation points.

The EIM consists of two greedy procedures:

1. In the first greedy procedure (Algorithm 3), a set of parameters samples Ŷm := {µ1, . . . , µm} is

determined and used for constructing the approximation space Ŝm = span{ξi(x) := f(x;µi), i =
1, . . . ,m}, spanned by the function f computed on these parameters. Note that, for all l = 2, . . . ,m,
the chosen parameters are those that maximize the error between f and its best approximation in the
intermediate space Ŝl−1; the idea is to keep the parameters that introduce more “new information”
to the approximation space;

2. In the second greedy procedure (Algorithm 4), a set of interpolation points T = {x̂1, . . . , x̂m}
and interpolation functions ϕ̂i, i = 1, . . . ,m, constructed from ξi, i = 1, . . . ,m, are determined.
Each iteration l = 2, . . . ,m, begins by solving a (l − 1) × (l − 1) linear system, which provides
the coefficients vector σ for writing the new input function ξl, computed in the already chosen
spatial points, as a linear combination of the already constructed functions ϕ̂1, . . . , ϕ̂l−1. That is, σ
provides exact interpolation of ξl in the already chosen points. Then, a residual rl is defined as the
difference between ξl and a full spatial interpolation using the same coefficients vector σ. Similarly
to the previous greedy algorithm, the new chosen spatial point xl is the one that maximizes the
residual rl, thus introducing more information to the interpolation procedure.

1 Input: The dimension m of the approximation space; a finite-dimensional subset Ξ ⊂ D of the
parameter’s domain

2 Output: a set Ŷm := {µ1, . . . , µm} ⊂ Ξ of parameters instances; the function f computed on

these parameters (ξi(x) := f(x;µi), i = 1, . . . ,m); the approximation space Ŝm
3 µ1 = argmaxµ∈Ξ{‖f(·;µ)‖L∞(Ω)}
4 ξ1(x) = f(x, µ1)

5 Ŷ1 = {µ1}
6 Ŝ1 = span{ξ1(x)}
7 for l← 2 to m do

8 Find the best approximation of f(·;µ) in Ŝl−1: f∗l−1(·;µ) = argminz∈Ŝl−1
‖f(·, µ)− z‖L∞(Ω)

9 Compute the associated error ε∗l−1(µ) =
∥∥f(·;µ)− f∗l−1(·;µ)

∥∥
L∞(Ω)

10 Set µl = argmaxµ∈Ξ{ε∗l−1(µ)}
11 ξl(x) = f(x, µl)

12 Ŷl = Ŷl−1 ∪ {µl}
13 Ŝl = span{ξj(x), j = 1, . . . , l}
14 end

Algorithm 3: EIM: greedy algorithm for choosing the parameters instances and constructing the
approximation space
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1 Input: The approximation space Ŝm; the functions ξi(x) := f(x;µi), i = 1, . . . ,m
2 Output: a set of interpolation points T = {x̂1, . . . , x̂m} ⊂ Ω and interpolation functions

ϕ̂i = ϕ̂i(x), i = 1, . . .m, and a matrix Bm ∈ Rm×m
3 x̂1 = argsupx∈Ω|ξ1(x)|
4 ξ1(x) = f(x, µ1)

5 ϕ̂1(x) = ξ1(x)
ξ1(x̂1)

6 Define B1 ∈ R1×1, with [B1]1,1 = 1
7 for l← 2 to m do

8 Solve Bl−1σ = ξ for σ, with ξ = (ξl(x̂1), . . . , ξl(x̂l−1))
T ∈ Rl−1

9 Define the residual rl(x) = ξl(x)− σ · ϕ̂(x), where ϕ̂(x) = (ϕ̂1(x), . . . , ϕ̂l−1(x))
T

10 Set x̂l = argsupx∈Ω|rl(x)|
11 ϕ̂l(x) = rl(x)

rl(x̂l)

12 Define Bl ∈ Rl×l, with [Bl]i,j = ϕ̂j(x̂i)

13 end
Algorithm 4: EIM: greedy algorithm for constructing the interpolation functions and points

The discrete empirical interpolation method (POD-DEIM)

The POD-DEIM approach, proposed by Chaturantabut and Sorensen (2010), is a simplified and particular
case of the EIM in the sense that:

• The DEIM is formulated directly on the discrete level, i.e. it seeks an approximation of the vector

f(µ) =
(
f(x1;µ), . . . , f(xMf

;µ)
)T

containing the function f computed at the Mf spatial points
corresponding to the degrees-of-freedom of the full-order problem;

• The basis vectors of Ŝm and interpolation functions ϕ̂i ∈ RMf , i = 1, . . . ,m, are equal and cor-
respond to the orthonormal modes given by a POD applied to snapshots of f . Therefore, the
first greedy algorithm of the EIM (Algorithm 3) is replaced by a POD, and only the second one
(Algorithm 4), for choosing the interpolation points, has an equivalent in the DEIM (Algorithm 5)

1 Input: vectors {ϕ̂l}ml=1 ⊂ RMf of a POD reduced basis

2 Output: the indices P = (P1, . . . ,Pm)T ∈ Rm; the matrix P̂ ∈ RMf×m

3 P1 = argmax{|ϕ̂1|}
4 V̂ = [ϕ̂1], P̂ = [eP1 ], P = [P1]
5 for l← 2 to m do

6 Solve (P̂T V̂ )σ = P̂T ϕ̂l for σ

7 Define the residual rl = ϕ̂l − V̂ σ
8 Choose the new spatial point: Pl = argmax{|rl|}
9 V̂ ← [V̂ ϕ̂l], P̂ ← [P̂ ePl ], P ←

(
P
Pl

)

10 end
Algorithm 5: DEIM algorithm

The POD applied to the snapshots matrix Ŷ = [f(µ1), . . . ,f(µns)] ∈ RMf×ns provides a set of m

orthonormal vectors {ϕ̂i}mi=1 ⊂ RMf , which form a basis of a subspace Ŝm ⊂ RMf and define the columns

of the matrix V̂m = [ϕ̂1, . . . , ϕ̂m] ∈ RMf×m. In the application considered here, f is a time-dependent
function, such that µi = ti, i = 1, . . . , ns. In the DEIM algorithm (Algorithm 5), m spatial interpolation
points are chosen greedily as in the EIM (the points maximizing a residual and containing more “new
information” are kept). Their indices are denoted by Pl ∈ {1, . . . ,Mf}, l = 1, . . . ,m, and, as output, the

algorithm gives a matrix P̂ ∈ RMf×m whose column l, for every l = 1, . . . ,m, is the Pl−th canonical
vector of RMf , denoted by ePl . Note that a left-hand multiplication of a vector v ∈ RMf by P̂T returns
a vector in Rm containing the elements of v with indices P1, . . . ,Pm.

Therefore, the POD-DEIM approximation of f reads
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f(µ) ≈ fm(µ) := V̂mc(µ) (3.33)

analogously to (3.31) in the EIM. The coefficients vector c(µ) ∈ Rm can be uniquely determined by

selecting m rows with indices P1, . . . ,Pm (i.e. by left-multiplying by P̂T ) from the overdetermined
system

V̂mc(µ) = f(µ)

resulting in the linear system

(
P̂T V̂m

)
c(µ) = P̂Tf(µ) (3.34)

Note that the linear systems (3.32) and (3.34), for the EIM and the DEIM, respectively, are equiv-
alent: their right-hand sides correspond to the function f computed at the chosen interpolation points,
and, in the left-hand side, the matrix multiplying the unknown vector (respectively Bm ∈ Rm×m and

P̂T V̂m ∈ Rm×m) contains in each column j = 1, . . . ,m, the interpolation function ϕ̂j computed on the m
interpolation points (or, equivalently, the POD modes ϕ̂j restricted to the spatial indices P1, . . . ,Pm).

We now proceed to the introduction of the POD-DEIM or POD-EIM for reducing (3.25). Supposing

P̂T V̂m to be nonsingular, we replace the linear system (3.34) into (3.33) for obtaining

f(µ) ≈ V̂m
(
P̂T V̂m

)−1

P̂Tf(µ) (3.35)

Taking f(µ) = F (Vqỹ(t)) and replacing into (3.30) yields the POD-EIM reduced-order model

d

dt
ỹ(t) = V Tq AVqỹ(t) + V Tq V̂m

(
P̂T V̂m

)−1

P̂TF (Vqỹ(t))

= Âỹ(t) + B̂P̂TF (Vqỹ(t))

(3.36)

Note that matrix B̂ := V Tq V̂m

(
P̂T V̂m

)−1

∈ Rq×m, analogously to Â, does not depend on time and

can be precomputed. Moreover, P̂TF (Vqỹ(t)) is a vector of size m � Mf . In the case where F is

evaluated pointwise, the last term of (3.33) can also be written as B̂F (P̂TVqỹ(t)). Eq. (3.35) means that
the nonlinear term is approximated by its computation on only m points, thus avoiding its evaluation on
Mf points, as in the POD-based ROM (3.30). Ştefănescu et al. (2014) illustrate the advantages, in terms
of computational time, of using POD-EIM instead of POD for approximating high-dimensional nonlinear
systems.

3.4.3 Introduction of ROMs in the parareal method

The ROM-based parareal iteration

Inspired by the Krylov subspace-enhanced parareal method (Algorithm 2), Chen et al. (2014) propose
to introduce reduced-order models formulated using the techniques described above, thus allowing an
efficient application to nonlinear hyperbolic problems (and also linear ones). The idea is to replace the
modified coarse propagator K∆t, defined in Algorithm 2, by the reduced-order model:

K̂k∆t(y, tn+1, tn) := Fkr,δt(Pky, tn+1, tn) (3.37)

Thus, the ROM-based parareal iteration reads

yk+1
n+1 = Fkr,δt(Pkyk+1

n , tn+1, tn)
︸ ︷︷ ︸

Prediction

+Fδt(ykn, tn+1, tn)−Fkr,δt(Pkykn, tn+1, tn)
︸ ︷︷ ︸

Correction

, n = 0, . . . , N∆T − 1

(3.38)
The 0-th iteration is not changed, being provided by a sequential simulation (3.7) of the coarse

propagator G∆t. Therefore, in the ROM-based parareal method, G∆t is only used for computing the initial
prediction, being replaced by reduced-order models in the following iterations. The detailed method is
presented in Algorithm 6, with the modifications w.r.t. the Krylov subspace-enhanced parareal method
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(Algorithm 2) being highlighted. We omit (as well as in the following of this work), the subindices
indicating the dimension of the subspaces.

The advantage of K̂∆t compared to K∆t is that the fine propagator, present in the definition of the
latter, is replaced by a reduced, thus cheaper, one. Since K̂∆t must be computed sequentially in the
prediction step of the parareal algorithm, a full sequential simulation of the expensive, fine model is
avoided. Also note that the second term of K∆t (coarse propagation of (I− Pk)y) is not present in K̂∆t.
It is justified by Chen et al. (2014) by supposing that the projection error vanishes asymptotically.

Simulation of the reduced-order models

The operator Pk in (3.37) is a projection operator for approximating y ∈ RMf in a subspace Sk of
dimension q � Mf defining the reduced model and indicates that Fkr,δt is solved for the coordinates of

Pky in Sk (as in eq. (3.36)). Thus, in the simulation of (3.37), the following steps are performed:

1. Compute the reduced variables, i.e. the coefficients of the approximation of y in Sk: ỹ(tn) =
(V k)Ty(tn) ∈ Rq;

2. Solve the ROM for ỹ from tn to tn+1 in the reduced space;

3. Return to the physical space: y(tn+1) ≈ V kỹ(tn+1).

where V k ∈ RMf×q is a matrix whose columns are the vectors of an orthonormal basis of Sk. Note
that, in the case of a combined POD-EIM reduced model, it is also defined by a subspace Ŝk, obtained
from snapshots of the nonlinear term of the problem. Moreover, depending on the problem, the reduced
model may be defined by multiple subspaces Sk and Ŝk. It is the case of the SWE (2.35), whose reduced-

order model is defined by three subspaces Sk and five subspaces Ŝk, obtained respectively via POD and
POD-EIM. A detailed formulation of the reduced SWE is presented in Section 3.5.

The notation Fkr,δt in (3.37) is chosen to indicate that the reduced model is solved with the same
time step δt associated to the fine propagator Fδt. Therefore, instead of using the coarse propagator,
with large time steps ∆t, for computing the parareal predictions, one uses a ROM that can be seen as
an approximation of Fδt. By solving both Fδt and Fkr,δt with the same time step, one can expect to
reduce the mismatch of their discrete phase speeds, which, as discussed in Section 3.2.4, was identified
by Ruprecht (2018) to be at the origin of instabilities of the parareal method when applied to hyperbolic
problems.

Formulation of reduced-order models in the parareal framework

Chen et al. (2014) propose two formulations of the ROM-based parareal algorithm, for linear and nonlinear
problems, the first one using POD and the second one using EIM or POD-EIM. We focus here on the
ROM-based parareal method for nonlinear problems using POD-EIM, as indicated in Algorithm 6. Note
that the ROMs are reformulated at each parareal iteration (which explains the superindex k in Fkr,δt)
using snapshots collected at all parareal time instants and all previous iterations (as in the Krylov
subspace-enhanced parareal method).

The subspaces Sk and Ŝk are obtained respectively from snapshots of the fine correction term (prop-
agated from the parareal solution along each time slice) and the nonlinear function computed on them,
i.e.

Y k := {ỹjn, j = 0, . . . , k; n = 0, . . . , N∆T }, Ŷ := {F (ỹjn), j = 0, . . . , k; n = 0, . . . , N∆T }

where Y and Ŷ are the snapshots sets used respectively in the POD and the POD-EIM procedures.
Along this work, we refer to Y and Ŷ indistinguishably as snapshots sets or snapshots matrices. Since
the ROM is seen as an approximation for the fine, reference model, the idea is to use snapshots produced
using Fδt. Therefore, the snapshots are expected to be representative of the fine dynamics.

For expliciting the inputs for the model reduction, we define, in Algorithm 6, the POD and POD-EIM
as functions of the snapshots sets and thresholds for the POD basis truncation. These thresholds may
be different for the two types of subspaces and, with some abuse of nomenclature, are called respectively
as “linear” and “nonlinear”.
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We also remark that, as in the Krylov-subspace-enhanced parareal method, it is not possible to
implement a scheduling of parallel tasks, as proposed by Aubanel (2011), in the ROM-based framework.
In each iteration, the reduced-order models are formulated using the fine correction terms, such that the
fine and coarse propagations cannot overlap.

1 Initialization: initial guess given by the coarse propagator:
2 y0

0 = y0

3 for n← 0 to N∆T − 1 do
4 y0

n+1 = G∆t(y
0
n, tn+1, tn)

5 end
6

7 n0 = 0
8 Iterations:
9 for k ← 0 to Nitermax − 1 do

10 Compute the fine term of the correction (in parallel):
11 for n← n0 to N∆T − 1 do

12 ỹkn+1 = Fδt(ykn, tn+1, tn)
13 end
14

15 Find the first instant ñ ∈ {1, . . . , N∆T } not satisfying a convergence criterion based on ykn, ỹ
k
n

16 n0 ← ñ− 1
17

18 Define the snapshots sets:

19 Y k = {ỹjn, j = 0, . . . , k; n = 0, . . . , N∆T }
20 Ŷ k = {F (ỹjn), j = 0, . . . , k; n = 0, . . . , N∆T }
21

22 Compute the spaces and define the reduced model Fkr,δt:
23 Sk(Y k, εsv,linear) (using POD)

24 Ŝk(Ŷ k, εsv,nonlinear) (using POD-EIM)

25

26 Compute the coarse term of the correction and the final correction term(in parallel):
27 for n← n0 to N∆T − 1 do

28 ykn+1 = Fkr,δt(Pkykn, tn+1, tn)

29 y
k
n+1 = ỹkn+1 − ykn+1

30 end
31

32 Compute the coarse predictions and correct them to obtain the final solution in the iteration
(sequentially):

33 for n← n0 to N∆T − 1 do

34 yk+1
n+1 = Fkr,δt(Pkyk+1

n , tn+1, tn) + y
k
n+1

35 end
36

37 if all instants converged (ñ = N∆T ) then
38 break;
39 end

40 end
Algorithm 6: ROM-based parareal algorithm. Modifications w.r.t. the Krylov subspace-enhanced
parareal method (Algorithm 2) are highlighted.
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An on-the-fly model reduction procedure

It should be noted that the ROM formulation in the parareal framework is quite different from classi-
cal model reduction procedures. In general, model reduction relies on an offline and an online stages
(Salmoiraghi et al., 2016). In the first one, performed as a pre-processing step, the reduced model is
formulated: a series of fine, reference simulations are performed, for a chosen set of parameters, in or-
der to obtain the input snapshots sets, from which the reduced subspaces are computed. It is a very
expensive stage and may rely on High Performance Computing (HPC) for processing and/or storage
needs. The second, online stage consists on the simulation of the reduced model itself, for a new set of
parameters. Since the reduced model has small dimension, the online stage is very fast, thus representing
the advantage of the ROM w.r.t. the FOM.

Evidently, the model reduction procedure used in the parareal method is also described by an offline-
online splitting. However, the ROMs are computed on-the-fly and reformulated at each iteration, using
updated and more precise information given by the parareal iterations. Therefore, the offline stage must
not be expensive, since it would inhibit the interest in using the parareal method. Then, the snapshots
sets are not obtained from an expensive set of fine simulations of the reference model, but from the fine
correction terms computed along parareal iterations. In comparison to the standard offline-online proce-
dure, this on-the-fly approach has the advantage of producing snapshots sets using the same parameters
set as the reference model. However, since the snapshots are obtained along parareal iterations, they can
possibly be inaccurate and affect the quality of the formulated ROM, which will be discussed in more
details in the next chapter.

Performance of the ROM-based parareal method

Stability and convergence results are derived by Chen et al. (2014) for the ROM-based parareal method,
under assumptions on the quality of the ROM w.r.t. the FOM. Numerical simulations presented by the
authors on a variety of problems show that the proposed method converges faster in situations where the
classical parareal method already converges, but slower convergences are verified in some cases, indicating
a dependence on the quality of the ROMs. The method has also been applied by Iizuka and Ono (2018)
for studying the influence of phase accuracy in parareal convergence for solving linear mass-spring systems
and a linear advection-diffusion equation (with reduced-order models formulated with only POD), and
results indicate that convergence is influenced by the POD truncation and the number of input snapshots.
In this work, we study the ROM-based method applied to the 2D nonlinear SWE, with ROMs formulated
via a combined POD-EIM, and we focus on improving its convergence and stability by improving the
ROMs formulated along the parareal iterations. Also, we evaluate the speedup performance of the method
in real parallel implementations (even with a relatively small number of processors), which was not studied
in the works mentioned above.

Other applications of reduced-order models to the parareal method

As a final remark, we cite other applications of reduced-order models in the framework of the parareal
method. He (2010) and Grigori et al. (2021) propose respectively the use of reduced basis methods and
reduced-order models obtained from asymptotic expansions for reducing the computational cost of the
coarse propagator, but with a previously computed offline stage (and not on-the-fly as considered here).
Carlberg et al. (2016) defines the coarse propagator as a local forecast, a technique relying on model
reduction and introduced by Carlberg et al. (2015) that consists in performing the fine simulation over
a small number number of time steps for predicting the solution at the end of the parareal time slices.
However, this method also assumes that a low-dimensional basis is available; for example, a POD basis
obtained via a standard offline-online model reduction approach.

3.4.4 Speedup estimation

We formulate in the following paragraphs an estimate for the speedup provided by the ROM-based
parareal method (Algorithm 6) at a given final iteration k̂. As done for the classical parareal method in
Section 3.2.2 and inspired by Ruprecht and Krause (2012) and Chen et al. (2014), we derive and interpret
some bounds for the speedup.

We recall the definitions, presented in Section 3.2.2, of τc and τf as the computational times for
advancing one coarse time step ∆t using G∆t and one fine time step δt using Fδt, respectively. Similarly,
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we define τr(k) as the computational time for advancing one fine time step δt using the reduced propagator
Fkr,δt defined at iteration k. The dependence of τr on k is due to the reformulation of the reduced-order
model at each iteration, using an increasing set of input snapshots.

Concerning the ROM formulation, we define the computational time τS(k) for obtaining, at iteration

k, one subspace Sk (from snapshots of the solution, using POD) or Ŝk (from snapshots of the nonlinear

term, using POD-EIM). Similarly, we define the computational time τB̂(k̂) for obtaining a matrix defining

the reduced-order model (Â or B̂, see eq. (3.36)). We recall that, depending on the problem, several
subspaces and matrices may be defined. Let Nspaces and Nmatrices be respectively the total number of
subspaces and matrices to be computed at each iteration. In the case of the two-dimensional nonlinear
SWE, Nspaces = 8 and Nmatrices = 9 (with only “B̂-type” matrices, thus the chosen notation for τB̂), as
detailed in Section 3.5. Moreover, since the formulations of the subspaces and matrices are independent,
they can possibly be distributed to Np,r processors (or groups of processors), as discussed in Appendix
B.2.

The computational time Tref for the fine, sequential simulation is defined in (3.9). For the ROM-based

parareal method, the following steps compose the total computational time TROM-parareal(k̂):

• an initial full coarse prediction, using G∆t and taking Tc = N∆tτc;

• within each iteration k:

– the parallel computation of the fine term of the correction, taking

Tcorr,f =
N∆T

Np
pδtτf =

N∆T

Np

Nδt
N∆T

τf =
Nδt
Np

τf

– the possibly parallel formulation of the reduced-order models (subspaces and matrices), taking

TROM =
1

Np,r

(
NspacesτS(k) +NmatricesτB̂(k)

)

– the parallel computation of the coarse term of the correction, using the ROM Fkr,δt and taking

Tcorr,c =
N∆T

Np
pδtτr(k) =

N∆T

Np

Nδt
N∆T

τr(k) =
Nδt
Np

τr(k)

– the sequential computation of the predictions, using the ROM Fkr,δt and taking

Tpred = Nδtτr(k)

Therefore,

TROM-parareal(k̂) = Tc + k̂ (Tcorr,f + TROM + Tcorr,c + Tpred)

= N∆tτc + k̂

[
Nδt
Np

(
τf + τr(k̂)

)
+
NspacesτS(k̂) +NmatricesτB̂(k̂)

Np,r
+Nδtτr(k̂)

]
(3.39)

where τS , τr and τB̂ are majorated by their costs at the last iteration k̂, which is expected due to the
increasing amount of snapshots used for the ROM formulation.

Then, the speedup provided by the ROM-based parareal method is estimated as

sROM-parareal(k̂) =
Tref

TROM-parareal(k̂)

=
1

N∆tτc
Nδtτf

+
k̂

Np

τf + τr(k̂)

τf
+ k̂

τr(k̂)

τf
+ k̂

NspacesτS(k̂) +NmatricesτB̂(k̂)

Np,rNδtτf

(3.40)

We now derive and interpret some simple bounds for (3.40). We recall the assumptions τc = O(Mc)

and τf = O(Mf ). Similarly, we assume that the computational cost τr(k̂) associated to the reduced-

order model satisfies τr(k̂) = O(m̂), where m̂, as a simple majoration, is the largest dimension among all
subspaces computed along the parareal simulation.

We then have the following bounds:
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• Bound due to the initial prediction:

sROM-parareal(k̂) <
Nδtτf
N∆tτc

=
NδtMf

N∆tMc
(3.41)

which is analogous to the classical parareal bound (3.12) but reflects the fact that the coarse
propagator G∆t is used only in the 0−th iteration of the ROM-based parareal method. At first sight,
it indicates that the coarsening between Fδt and G∆t is less determinant, in terms of speedup, than
in the classical parareal. However, a too inaccurate initial prediction may lead to the formulation
of also inaccurate snapshots, impacting the quality of the reduced-order models and slowing down
the convergence.

• Bound due to the complexity of the fine and reduced propagators: the coarse prediction term (for
k ≥ 1) yields

sROM-parareal(k̂) <
τf

k̂τr(k̂)
=
Mf

k̂m̂
(3.42)

This bound plays the same role as bound (3.41) for k ≥ 1 and points out the importance of formu-

lating low-dimensional reduced-order models. Moreover, the factor 1/k̂ indicates the limitation of
the speedup by the number of iterations;

• Bound due to the number of processors and iterations: contrary to the classical parareal, in which
only the fine term is computed in the correction step (the coarse one being already available from the
previous iteration), in the ROM-based method the coarse correction term must also be computed,
since it is given by the ROM formulated at the current iteration. Then, the correction term yields

sROM-parareal(k̂) <
Np

k̂

τf

τf + τr(k̂)
=
Np

k̂

Mf

Mf + m̂
≈ Np

k̂
(3.43)

in which the last equality is approximated by assuming, as intended, that m̂�Mf , thus τr(k̂)� τf .
Under this assumption, the approximate bound (3.42) is equal to (3.13).

• Bound due to the formulation of the reduced-order models:

sROM-parareal(k̂) <
Np,rNδtτf

k̂
(
NspacesτS(k̂) +NmatricesτB̂(k̂)

) (3.44)

with the computational times τS(k) and τB̂(k) (respectively for formulating the reduced subspaces
and ROM matrices) being estimated by

τS = O
(
Mf k̂

2N2
∆T +

m̂4

4
+ m̂Mf

)
(3.45)

τB̂ = O
(
2m̂2Mf

)
(3.46)

A detailed derivation of estimates (3.45) and (3.46) is given in Appendix B.3.

Thus, (3.44), can be rewritten as

sROM-parareal(k̂) <
Np,rNδtMf

k̂
[
Nspaces

(
Mf k̂2N2

∆T + m̂4

4 + m̂Mf

)
+ 2Nmatricesm̂2Mf

] (3.47)

showing a strong dependence of the speedup on the dimension of the reduced model, and also
on the number of iterations, since the number of snapshots, k(N∆T + 1), increases linearly along

iterations. Indeed, the term k̂2N2
∆T reflects a quadratic dependence on the number of snapshots.

As a last remark, we note that bound (3.47) can be improved by computing the spaces and matrices
in parallel (i.e. by taking Np,r > 1). A discussion on this subject is proposed in Appendix B.2.
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3.5 Application of the ROM-based parareal method to the SWE

In this section, we describe the application of the ROM-based parareal algorithm (Algorithm 6) for solving
the two-dimensional nonlinear shallow water equations. We firstly describe the formulation of the reduced
SWE, using the combined POD-EIM procedure described in Section 3.4.2; then, we implement it in the
parareal method and, in the next section, we present some numerical tests for comparing its performance
w.r.t. the classical parareal method (Algorithm 1) and also for showing its limitations, which motivates
the work presented in the following chapters.

3.5.1 Formulation of the POD-EIM-based reduced SWE

We formulate here a POD-EIM-based reduced-order model for the SWE discretized using a finite volume
scheme (eq. 2.34). ROMs using the same model-order reduction technique are formulated for the SWE
by Ştefănescu and Navon (2013) and for the spherical SWE by Zhao et al. (2014), both in the framework
of a finite difference discretization, and by Lozovskiy et al. (2016) in the case of finite elements.

Since eq. (2.34) is valid for the SWE and all porosity-based SWE presented in Chapter 2, so is
the reduced model formulated in the following. However, we are only interested in the reduced-order
model for the classical SWE, since it acts as fine propagator, and the model reduction is performed for
approximating it.

We begin by identifying (2.34) with equation (3.25), used as starting point for the description of
the model reduction in the previous section. Both are systems of time-dependent ODEs, with nonlinear
terms on their right-hand sides. Note that there is no linear term in the right-hand side of (2.34), thus

simplifying the model reduction. Since (2.34) contains three unknown vectors U (i) ∈ RMf , i = 1, 2, 3,

and five different nonlinear functions F̃
(i)

(U) ∈ RIf , i = 1, . . . , 5 (where Mf and If are respectively the
number of cells and interfaces in the mesh), the computation of the following subspaces are required for
the model reduction:

• Three subspaces S(i), i = 1, 2, 3, with dimension qi �Mf and obtained respectively from snapshots

of the solution U (i) via a POD; their orthonormal basis vectors are the columns of the matrices
V (i) ∈ RMf×qi , respectively;

• Five subspaces Ŝ(i), i = 1, . . . , 5 with dimensions mi � If and obtained respectively from snapshots

of the nonlinear term F̃
(i)

(U) via a POD-EIM; their orthonormal basis vectors are the columns of

the matrices V̂ (i) ∈ RIf×mi , respectively, and the matrices containing the chosen spatial indexes
via DEIM are denoted as P̂ (i) ∈ RIf×mi ;

The reduced variables are denoted by Ũ
(i) ∈ Rqi , i = 1, 2, 3, and satisfy the approximations U (i) ≈

V (i)Ũ
(i)

. By defining

Ũ :=



Ũ

(1)

Ũ
(2)

Ũ
(3)


 ∈ Rq1+q2+q3 , V :=




V (1) 0 0
0 V (2) 0
0 0 V (3)


 ∈ R3Mf×(q1+q2+q3)

we can write

V Ũ =




V (1)Ũ
(1)

V (2)Ũ
(2)

V (3)Ũ
(3)


 ∈ R3Mf

With these definitions, the reduced-order formulation following (3.36) is straightforward: it suffices

to replace U (i) by V (i)Ũ
(i)
, i = 1, 2, 3, in (2.34); project the equations onto their respective associ-

ated subspaces S(i) (left-hand multiplication by (V (i))T ); and replace the nonlinear terms F̃
(j)

(U) by

V̂ (j)
(

(P̂ (j))T V̂ (j)
)−1

(P̂ (j))T F̃ (V Ũ(t)), j = 1, . . . , 5. The obtained ROM reads
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d

dt
Ũ

(1)
= B̂(1)

(
P̂ (1)

)T
F̃

(1)
(
V Ũ

)

d

dt
Ũ

(2)
= B̂(2,1)

(
P̂ (2)

)T
F̃

(2)
(
V Ũ

)
+ B̂(2,2)

(
P̂ (3)

)T
F̃

(3)
(
V Ũ

)
+

B̂(2,3)
(
P̂ (4)

)T
F̃

(4)
(
V Ũ

)
+ B̂(2,4)

(
P̂ (5)

)T
F̃

(5)
(
V Ũ

)

d

dt
Ũ

(3)
= B̂(3,1)

(
P̂ (2)

)T
F̃

(2)
(
V Ũ

)
+ B̂(3,2)

(
P̂ (3)

)T
F̃

(3)
(
V Ũ

)
+

B̂(3,3)
(
P̂ (4)

)T
F̃

(4)
(
V Ũ

)
+ B̂(3,4)

(
P̂ (5)

)T
F̃

(5)
(
V Ũ

)

(3.48)

where the matrices B̂(∗) do not depend on time and are defined by

B̂(1) :=
(
V (1)

)T
B(1)V̂ (1)

[(
P̂ (1)

)T
V̂ (1)

]−1

∈ Rq1×m1

B̂(2,1) :=
(
V (2)

)T
B(2)V̂ (2)

[(
P̂ (2)

)T
V̂ (2)

]−1

∈ Rq2×m2

B̂(2,2) :=
(
V (2)

)T
B(3)V̂ (3)

[(
P̂ (3)

)T
V̂ (3)

]−1

∈ Rq2×m3

B̂(2,3) :=
(
V (2)

)T
B(4,x)V̂ (4)

[(
P̂ (4)

)T
V̂ (4)

]−1

∈ Rq2×m4

B̂(2,4) :=
(
V (2)

)T
B(5,x)V̂ (5)

[(
P̂ (5)

)T
V̂ (5)

]−1

∈ Rq2×m5

B̂(3,1) := −
(
V (3)

)T
B(3)V̂ (2)

[(
P̂ (2)

)T
V̂ (2)

]−1

∈ Rq3×m2

B̂(3,2) :=
(
V (3)

)T
B(2)V̂ (3)

[(
P̂ (3)

)T
V̂ (3)

]−1

∈ Rq3×m3

B̂(3,3) :=
(
V (3)

)T
B(4,y)V̂ (4)

[(
P̂ (4)

)T
V̂ (4)

]−1

∈ Rq3×m4

B̂(3,4) :=
(
V (3)

)T
B(5,y)V̂ (5)

[(
P̂ (5)

)T
V̂ (5)

]−1

∈ Rq3×m5

(3.49)

As in eq. (2.35), a more compact form of (3.48) reads

d

dt
Ũ(t) = B̃

¨̃
F (V Ũ) (3.50)

where

¨̃
F :=




(
P̂ (1)

)T
F̃

(1)

...(
P̂ (5)

)T
F̃

(5)



∈ R

∑5
i=1 mi ,

B̃ :=




B̂(1) 0 0 0 0

0 B̂(2,1) B̂(2,2) B̂(2,3) B̂(2,4)

0 B̂(3,1) B̂(3,2) B̂(3,3) B̂(3,4)


 ∈ R

∑3
i=1 qi×

∑5
i=1 mi

Therefore, the reduced-order model for the SWE, formulated in a FV framework, is a problem of
dimension

∑3
i=1 qi, with numerical fluxes computed on

∑5
i=1mi chosen interfaces. The full-order model

is a problem solved in Mf cells, with the fluxes computed on If interfaces. We thus expect in the model

reduction to have
∑3
i=1 qi �Mf and

∑5
i=1mi � If .
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3.5.2 The ROM-based parareal method for solving the SWE

The ROM-based parareal method (Algorithm 6) for solving the shallow water models uses the following
propagators

• Reference propagator (Fδt), corresponding to a fine temporal discretization (with time step δt) of
(2.35) (classical SWE).

• Coarse propagator (G∆t), corresponding to a coarse discretization (with time step ∆t) of (2.35).
Either the classical or the porosity-based SWE can be used as coarse propagator.

• Reduced propagator (Fkr,δt), defined at each parareal iteration and corresponding to a fine temporal
discretization (with time step δt) of (3.50).

Along this and the following chapters, we initially study the application of the parareal method (both
the classical and the ROM-based one) for the SWE by considering G∆t as a coarse discretization of the
classical SWE. In other words, we first study a coupling between the classical SWE at different scales.
The coupling with porosity-based models, for which additional challenges need to be dealt with, such as
more complex geometries, is left to Chapter 6.

3.6 Numerical examples

We present in this section three tests cases for illustrating the application of the classical and ROM-
based parareal methods to the solution of the 2D nonlinear SWE. These simulations are performed for
comparing the two methods, evaluating the influence of the POD thresholds εsv,linear and εsv,nonlinear

on the performance of the ROM-based one, as well as other simulation parameters, and identifying
advantages and limitations of the ROM-based parareal method. These tests cases have an increasing
complexity: the first two are “pseudo-2D” simulations (solved numerically in two dimensions, but with
only one direction of propagation), respectively with and without spatial coarsening between the coarse
and fine propagators; and the third test case is a real 2D one, with spatial coarsening between the
propagators. To make clear the relation between the pseudo-2D test cases, they are named respectively
as Test cases 1 and 1c, where “c” stands for “coarsening”. The 2D test case is named for simplicity
as Test case 2. In the following chapters, Test cases 1 and 2 are largely used for studying the parareal
method and its proposed variants. We recall that, in all test cases, both the fine and coarse propagators
are defined as discretizations of the classical SWE. The coupling with porosity-based models, which would
act as coarse propagator, is left to Chapter 6.

We remark that the test cases defined in this chapter do not reflect practical choices of fine and
coarse propagators. Indeed, since the models are discretized using an explicit-in-time scheme, one would
choose time steps as large as possible, close to their maximum permissible value based on CFL stability
conditions. By defining a test case without spatial coarsening between Fδt and G∆t (as Test case 1), it is
clear that the former, by using smaller time steps, is largely over-resolved. Moreover, the use of too small
time steps (i.e. too small CFL numbers) may increase the numerical diffusion and lead to situations in
which the coarse propagator (which uses a CFL number closer to the unity) is more accurate than the
fine one w.r.t. the analytical solution. It is the case, as showed below, for Test case 1, for which the
analytical solution can be easily derived. However, the objective in these first examples is to compare the
performance, in terms of stability, convergence and computational time, of the classical and ROM-based
parareal methods under the same (simple) configurations, for approximating a numerical solution defined
as reference one (the solution given by the fine propagator). Also, by defining test cases with or without
spatial coarsening, we seek to identify additional challenges that may be introduced by using spatial
interpolation.

For the simulations involving spatial coarsening, a linear interpolation procedure is used, with Section
3.6.8 being dedicated to a discussion on the influence of the interpolation on the performance of the
parareal methods. For evaluating and comparing the solutions, we consider the errors ekn (3.3), defined
for each iteration and each parareal time instant, and ek (3.4), defined for each iteration; and also the
speedup s(k) (3.5) computed at each iteration. We set a maximum number of iterations Nitermax = 5.
All simulations are executed using 20 parallel processors, and we consider the time slices to coincide with
the coarse time steps associated to the coarse propagator (∆T = ∆t).
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3.6.1 Definition of the test cases

Test case 1: pseudo-2D without spatial coarsening

In this first test case, Fδt and G∆t use the same Cartesian, spatial mesh. The initial condition is a a
lake-at-rest:

h(x, t = 0) = 1, ux(x, t = 0) = uy(x, t = 0) = 0, x ∈ Ω (3.51)

and, concerning the boundary conditions, all the boundaries are closed (null mass flux), except for the
left one (∂Ωinward := {x ∈ ∂Ω|x = 0}), on which a unit inward flux is defined:

{
hu · n = 1, x ∈ ∂Ωinward, t ∈ [0, T ]

hu · n = 0, x ∈ ∂Ω\∂Ωinward, t ∈ [0, T ]
(3.52)

The configurations of the test case are presented in Table 3.1.

Spatial domain Ω = [0, 20]2

Maximum simulation time T = 4
Length of each time slice ∆T = 0.2
Number of time slices N∆T = 20
Number of parallel processors Np = 20
Maximum number of iterations Nitermax = 5

Fδt G∆t

Time step δt = 0.001 ∆t = 0.2
Mesh size (x-direction) δx = 1 ∆x = 1
Mesh size (y-direction) δy = 1 ∆y = 1

Table 3.1: Configurations of Test case 1 (pseudo-2D without spatial coarsening)

Test case 1c: pseudo-2D test case with spatial coarsening

In this test case, the same initial (eq. (3.51)) and boundary (eq. (3.52)) conditions of the first case are
considered. Concerning the parareal configurations, the only difference w.r.t. the previous test case is
the spatial mesh of the coarse propagator. We consider for G∆t a spatial mesh five times coarser than the
fine mesh in each direction. The simulation parameters are presented in Table 3.2. Figure 3.8 illustrates
the evolution of the reference water depth in Test cases 1 and 1c.

Spatial domain Ω = [0, 20]2

Maximum simulation time T = 4
Length of each time slice ∆T = 0.2
Number of time slices N∆T = 20
Number of parallel processors Np = 20
Maximum number of iterations Nitermax = 5

Fδt G∆t

Time step δt = 0.001 ∆t = 0.2
Mesh size (x-direction) δx = 1 ∆x = 5
Mesh size (y-direction) δy = 1 ∆y = 5

Table 3.2: Configurations of Test case 1c (pseudo-2D with spatial coarsening)

Test case 2: 2D with spatial coarsening

We propose a more complex simulation with a 2D flow propagation and spatial coarsening between the
fine and coarse propagators. All boundaries are closed (hu · n = 0,x ∈ ∂Ω, t ∈ [0, T ]) and the initial
solution is a Gaussian water depth with null velocity:
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Figure 3.8: Test cases 1 and 1c (pseudo-2D): water depth provided by the reference model Fδt at t = 0
(left), t = T/2 (middle) and t = T (right). The x−unit discharge profile is similar and the y-unit discharge
profile is identically zero.

h(x, t = 0) = h0 + exp

(
− (x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
, u(x, t = 0) = 0, x ∈ Ω (3.53)

with h0 = 1, x0 = y0 = 50 and σx = σy = 7.5. The configurations for the parareal simulations are
presented in Table 3.2, and the evolution of the reference water depth, presented in Figure 3.9, shows
that the solution presents stronger variations in time when compared to Tests case 1 and 1c, being
possibly more challenging to solve with the parareal methods.

Spatial domain Ω = [0, 100]2

Maximum simulation time T = 5
Length of each time slice ∆T = 0.25
Number of time slices N∆T = 20
Number of parallel processors Np = 20
Maximum number of iterations Nitermax = 5

Fδt G∆t

Time step δt = 0.001 ∆t = 0.25
Mesh size (x-direction) δx = 2 ∆x = 5
Mesh size (y-direction) δy = 2 ∆y = 5

Table 3.3: Configurations of Test case 2 (2D)
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Figure 3.9: Test case 2 (2D): water depth provided by the reference model Fδt at t = 0 (left), t = T/2
(middle) and t = T (right).
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3.6.2 Simulation using the classical parareal method

Figures 3.10, 3.11 and 3.12 present the evolution of the error per iteration and time instant (ekn) and the
maximum error per iteration (ek) using the classical parareal method, respectively for Test cases 1, 1c
and 2. For Test case 1, which is relatively simple due to the one-dimensional solution and the absence of
spatial coarsening between Fδt and G∆t, the classical parareal presents instabilities, leading to increasing
errors across iterations. Test case 1c has a slightly better behaviour but instabilities are still observed.
The best behaviour, closest to what is expected in a parareal simulation, is observed in Test case 2,
with a decreasing error along iterations (even if slow), despite of a degradation of the solution in the
first iteration. As discussed in Section 3.6.8, this initial degradation is due to the low-order interpolation
between the spatial meshes of Fδt and G∆t.
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Figure 3.10: Test case 1 (pseudo-2D without spatial coarsening): relative error ekn per iteration and time
instant (left) and maximum error ek per iteration (right) using the classical parareal method.
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Figure 3.11: Test case 1c (pseudo-2D with spatial coarsening): relative error ekn per iteration and time
instant (left) and maximum error ek per iteration (right) using the classical parareal method.

The speedups obtained in each simulation are presented in Table 3.4. The increasing speedups from
Test case 1 to Test case 2 illustrate that larger accelerations are obtained when there is a more important
coarsening between the fine and coarse propagators, as discussed in Section 3.2.2.
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Figure 3.12: Test case 2 (2D): relative error ekn per iteration and time instant (left) and maximum error
ek per iteration (right) using the classical parareal method.

Iteration
1 2 3 4 5

Test case 1 6.89 4.63 3.55 2.85 2.41
Test case 1c 7.25 4.93 3.79 3.06 2.58
Test case 2 14.11 7.78 5.42 4.15 3.37

Table 3.4: Test case 1, 1c and 2: speedup s(k) along iterations using the classical parareal method.

3.6.3 Simulation using the ROM-based parareal method

As discussed in Section 3.4.3 and shown in Algorithm 6, the POD-EIM model reduction procedure takes
as arguments two thresholds for the truncation of the POD subspaces, namely εsv,linear and εsv,nonlinear,
which are used respectively for the POD applied to snapshots of the solution and the POD-EIM applied
to snapshots of the nonlinear term. We investigate the influence of these thresholds on the performance
of the ROM-based parareal method, in terms of convergence and stability. In order to compare with the
results of the classical parareal method, we consider the same three test cases as above.

Test case 1 (pseudo-2D without spatial coarsening)

For this test case, the ROM-based parareal method is executed considering (εsv,linear, εsv,nonlinear) ∈
{10−1, 10−3, 10−5, 10−7}2, in a total of 16 simulations. The relative errors of each simulation are presented
in Figure 3.13. The maximum error per iteration is presented in Figure 3.14 for a selected set of simulations
(those with εsv,linear = εsv,nonlinear) and compared to the errors obtained by the classical parareal method.
Note that the error range in the vertical axis of Figures 3.13 and 3.14 (10−12−100) is larger than the one
in Figure 3.10 (10−5−100), since considerably smaller errors are obtained using the ROM-based parareal
method, specially when smaller thresholds are considered (i.e. when the formulated ROMs have higher
dimension). Also note that the simulations with small εsv,linear and large εsv,nonlinear present instabilities.
Some of them do not complete Nitermax = 5 iterations, since negative water depths are computed, and
only their errors before the termination of the execution are presented.

For the sake of conciseness, we present only the speedup of each simulation at the first and fifth
parareal iterations in Table 3.5. Not surprisingly, the speedups are smaller than the ones observed in
the classical parareal method, since the introduction of the model reduction complexifies the parareal
algorithm. After Nitermax = 5 iterations, all simulations have a larger computational time than the
reference one. We also observe a decrease of the speedup by increasing the dimension of the subspaces
(smaller thresholds εsv,linear and εsv,nonlinear). It is due not only to the more expensive reduced models,
but also to more expensive executions of the greedy DEIM algorithm and computation of the ROM
matrices, due to the increasing dimension of the subspaces Ŝ(i) along iterations (see (3.47)), as discussed
below. The POD cost itself is not influenced by the dimensions of the subspaces, since the truncation is
a post-process of the model reduction.

67



Chapter 3. The parareal method and some adaptations for hyperbolic problems

10−12

10−9

10−6

10−3

100

E
rr

or
p

er
it

er
at

io
n

an
d

in
st

an
t

(e
k n

) (10−1, 10−1)

iter 0

iter 1

iter 2

iter 3

iter 4

iter 5

10−12

10−9

10−6

10−3

100
(10−1, 10−3)

10−12

10−9

10−6

10−3

100
(10−1, 10−5)

10−12

10−9

10−6

10−3

100
(10−1, 10−7)

10−12

10−9

10−6

10−3

100

E
rr

or
p

er
it

er
at

io
n

an
d

in
st

an
t

(e
k n

) (10−3, 10−1)

10−12

10−9

10−6

10−3

100
(10−3, 10−3)

10−12

10−9

10−6

10−3

100
(10−3, 10−5)

10−12

10−9

10−6

10−3

100
(10−3, 10−7)

10−12

10−9

10−6

10−3

100

E
rr

or
p

er
it

er
at

io
n

an
d

in
st

an
t

(e
k n

) (10−5, 10−1)

10−12

10−9

10−6

10−3

100
(10−5, 10−3)

10−12

10−9

10−6

10−3

100
(10−5, 10−5)

10−12

10−9

10−6

10−3

100
(10−5, 10−7)

0 2 4
t

10−12

10−9

10−6

10−3

100

E
rr

or
p

er
it

er
at

io
n

an
d

in
st

an
t

(e
k n

) (10−7, 10−1)

0 2 4
t

10−12

10−9

10−6

10−3

100
(10−7, 10−3)

0 2 4
t

10−12

10−9

10−6

10−3

100
(10−7, 10−5)

0 2 4
t

10−12

10−9

10−6

10−3

100
(10−7, 10−7)

Figure 3.13: Test case 1 (pseudo-2D without spatial coarsening): relative error ekn using the ROM-based
parareal method for various thresholds (εsv,linear, εsv,nonlinear). Each curve corresponds to a parareal
iteration and the horizontal axis indicate the simulation time. Graphs in the same row correspond to the
same εsv,linear and graphs in the same column correspond to the same εsv,nonlinear.
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Figure 3.14: Test case 1 (pseudo-2D without spatial coarsening): relative error ek using the ROM-based
parareal method for selected thresholds (εsv,linear, εsv,nonlinear) and the classical parareal method.

Iteration k = 1 Iteration k = 5

εsv,linear

εsv,nonlinear 10−1 10−3 10−5 10−7 10−1 10−3 10−5 10−7

10−1 3.21 2.94 2.95 2.89 0.82 0.75 0.73 0.72
10−3 3.11 2.97 2.96 2.83 * 0.74 0.71 0.69
10−5 3.04 2.79 2.75 2.82 * 0.71 0.68 0.68
10−7 2.96 2.94 2.75 2.65 * 0.72 0.68 0.66

Table 3.5: Test case 1 (pseudo-2D without spatial coarsening): speedup at the first and fifth iterations of
the ROM-based parareal method, for various pairs of thresholds εsv,linear (rows) and εsv,nonlinear (columns).
Simulations indicated with an asterisk present instabilities and do not complete five iterations.

In order to illustrate what “reduced” means when formulating reduced-order models, we present the
average dimensions of the computed reduced subspaces along iterations in Table 3.6, for the subspaces
computed from snapshots of the solution (using POD) and of the nonlinear terms (using POD-EIM).

The subspaces S(3) and Ŝ(3) (computed respectively from snapshots of the y−unit discharge and of the
third flux component of the SWE) are null spaces (due to the one-dimensional propagation) and are not

considered in the averages. Also, the subspaces Ŝ(4) and Ŝ(5), accounting for the source terms, which are
not considered here, are null spaces then discarded from the averages. We first observe that the number
of snapshots and subspace dimensions increase along iterations, and the formulation and simulation of the
ROMs become more expensive. However, we recall that, in the full-order model, the FV discretization
leads to a problem of dimension dfMf (i.e. with df degrees-of-freedom per computational cell), with
nonlinear fluxes computed on If interfaces. On the other hand, in the reduced-order model, the dimension
of the problem is given by the sum of the dimensions of the subspaces S(i), i = 1, 2, 3, and the number of
interfaces on which the nonlinear term is computed is given by the sum of the dimensions of the subspaces
Ŝ(i), i = 1, . . . , 5. For Test case 1, the mesh used by Fδt has 400 cells and nonlinear fluxes computed on
840 interfaces; whereas the dimensions of the reduced subspaces remain in the order of tenths, and, as a
consequence, the ROM is much less expensive than the FOM.

Finally, we illustrate, in Figure 3.15, the physical solution (water depth) obtained in the first two
iterations of the classical and ROM-based parareal methods, this last one using (εsv,linear, εsv,nonlinear) =
(10−5, 10−5), and compared with the reference and coarse (iteration k = 0) solutions. We also com-
pare with the analytical solution, which can be determined by applying the Rankine-Hugoniot condition
(LeFloch and Thanh, 2007) to the shock, with travelling speed λ (unknown); left state hL (unknown)
and hLux,L = 1 (given by the boundary conditions); and right state hR = 1 and hRux,R = 0 (given by
the initial condition), yielding
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Average - S(i) Average - Ŝ(i)

εsv

Iteration k
1 2 3 4 5 1 2 3 4 5

Number of snapshots 21 42 63 84 105 21 42 63 84 105
10−1 2 2 2 2 2 3 3 3 3 3
10−3 11 11 11 11 11 12 14 15 15 15
10−5 15 16 17 17 17 17 24 25 25 25
10−7 17 19 19 19 19 19 27 28 29 29

Table 3.6: Test case 1 (pseudo-2D without spatial coarsening): average dimensions (q1 + q2)/2 of the
subspaces S(i), i = 1, 2, computed from snapshots of the solutions, and (m1 + m2)/2 of the subspaces

Ŝ(i), i = 1, 2, computed from snapshots of the nonlinear term, for each iteration of the ROM-based
parareal method, in function of εsv = εsv,linear (for S(i)) and εsv = εsv,nonlinear (for Ŝ(i)). For a given
εsv,linear, the dimensions are nearly the same for all values of εsv,nonlinear, and vice versa. q3, m3, m4

and m5 are not considered in the averages since S(3), Ŝ(3), Ŝ(4) and Ŝ(5) are null spaces due to the
one-dimensional flow and the absence of source terms. The number of snapshots indicated in the second
row is the upper limit for each dimension.

{
(hRux,R)− (hLux,L) = λ(hR − hL)[(

gh2
R

2 + hRu
2
x,R

)
−
(
gh2
L

2 + hLu
2
x,L

)]
= λ(hRux,R − hLux,L)

(3.54)

which is a nonlinear system on hL and λ with solution hL ≈ 1.2665 and λ ≈ 3.75232. Therefore, the
shock position at time t is x = λt.

As discussed before, under the chosen configurations for the fine and coarse propagators, the latter
is more accurate w.r.t. the analytical solution, due to the use of a CFL number closer to the unity. We
compare, however, the performance of the classical and ROM-based parareal methods in approximating
a numerical solution defined as reference. We observe in Figure 3.15 that the classical method presents a
clear unstable behaviour, whereas the solution of the ROM-based solution almost visually coincides with
the reference one from the second iteration.
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Figure 3.15: Test case 1 (pseudo-2D without spatial coarsening): final water depth (t = T = 4) along
y = 10 at the two first parareal iterations. Dashed and dot-dashed curves represent respectively the
reference (provided by Fδt) and analytical solutions. Small bullets represent the coarse solution (given
by G∆t, at the 0-th parareal iteration). Left: classical parareal method. Right: ROM-based parareal
method with (εsv,linear, εsv,nonlinear) = (10−5, 10−5).

Test case 1c (pseudo-2D test case with spatial coarsening)

For the simulation of Test case 1c using the ROM-based parareal method, we consider the same 16 pairs
of thresholds used for Test case 1. The maximum relative error per iteration for selected thresholds and
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the errors per iteration and time for all simulations are presented respectively in Figures 3.16 and 3.18.
As in Test case 1, a large range 10−12−100 is considered, compared to Figure 3.11. The behaviour of the
method in function of (εsv,linear, εsv,nonlinear) is similar to the one observed for Test case 1, with better
convergence for simultaneously small εsv,linear and εsv,nonlinear, and unstable behaviours for small εsv,linear

combined with large εsv,nonlinear. However, for the simulations presenting a good convergence behaviour,
the error decrease is less remarkable than in Test case 1, which is clear by comparing Figures 3.14 and
3.16. The speedups and dimensions of the subspaces are similar to Test case 1 and omitted.

Figure 3.17 presents the water depth provided by the classical and ROM-based methods at t = T .
We observe that, in this test case, the very low spatial resolution of the coarse propagator strongly
degrades its quality w.r.t. the analytical solution. The classical parareal method presents a less unstable
behaviour, when compared to Test case 1, but still with a very slow convergence towards the reference
solution. For the ROM-based method, we choose the same model reduction thresholds as in Test case
1, namely (εsv,linear, εsv,nonlinear) = (10−5, 10−5). Under these configurations, an unstable behaviour is
observed for advanced times of the simulation (which is clear by comparing Figures 3.13 and 3.18), and
more iterations are required for well approximating the reference solution. Therefore, in this case better
choices of model reduction thresholds would be (εsv,linear, εsv,nonlinear) = (10−5, 10−7), (10−7, 10−7).
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Figure 3.16: Test case 1c (pseudo-2D with spatial coarsening): relative error ek using the ROM-based
parareal method for selected thresholds (εsv,linear, εsv,nonlinear) and the classical parareal method.
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Figure 3.17: Test case 1c (pseudo-2D with spatial coarsening): final water depth (t = T = 4) along y = 10
at the first, third and fifth first parareal iterations. Dashed and dot-dashed curves represent respectively
the reference (provided by Fδt) and analytical solutions. Small bullets represent the coarse solution
(given by G∆t, at the 0-th parareal iteration). Left: classical parareal method. Right: ROM-based
parareal method with (εsv,linear, εsv,nonlinear) = (10−5, 10−5).
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Figure 3.18: Test case 1c (pseudo-2D with spatial coarsening): relative error ekn using the ROM-based
parareal method for various thresholds (εsv,linear, εsv,nonlinear). Each curve corresponds to a parareal
iteration and the horizontal axis indicate the simulation time. Graphs in the same row correspond to the
same εsv,linear and graphs in the same column correspond to the same εsv,nonlinear.
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Test case 2 (2D)

For this test case, we perform 16 simulations, but with (εsv,linear, εsv,nonlinear) ∈ {10−1, 10−2, 10−3, 10−4}2.
These thresholds are larger than the ones considered for the pseudo-2D tests cases due to a more critical
stable behaviour for small εsv,linear in this more complex simulation. Indeed, the evolution of the errors
per iteration and time, presented in Figure 3.19, reveals unstable behaviours, to a greater or lesser extent,
for all simulations with εsv,linear ≤ 10−3. Note that the error range 10−5 − 100 in the vertical axis of the
graphs is the same of Figure 3.12, since no remarkable error reduction using the ROM-based parareal
method is observed. It is clear in Figure 3.20: although a faster reduction of the maximum error in the
first iteration for εsv,linear = εsv,nonlinear = 10−3 and εsv,linear = εsv,nonlinear = 10−4, there is no further
improvement in the following iterations, such that the classical parareal method performs better.

The speedups at the first and fifth iteration are presented in Table 3.7. As observed for the classical
parareal method, these speedups are considerably larger than in the simpler Test cases 1 and 1c and,
after five iterations, they remain larger than the unity. However, all simulations are considerably more
expensive than the classical parareal method.

Iteration k = 1 Iteration k = 5

εsv,linear

εsv,nonlinear 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

10−1 7.39 7.17 7.29 6.24 1.64 1.60 1.59 1.44
10−2 7.21 7.12 7.18 7.15 1.56 1.57 1.52 1.44
10−3 6.15 6.93 6.82 6.68 1.41 1.44 1.39 1.33
10−4 6.55 6.59 6.70 5.07 1.31 1.27 1.28 1.09

Table 3.7: Test case 2 (2D): speedup at the first and fifth iterations of the ROM-based parareal method,
for various pairs of thresholds εsv,linear (rows) and εsv,nonlinear (columns).

The average dimension of the subspaces computed with POD and POD-EIM are presented in Table
3.8. Since Test case 2 is a two-dimensional problem, only Ŝ(4) and Ŝ(5) are not considered in the averages
(due to the absence of source terms). As in Test case 1, the reduced spaces have small dimension, in
the order of tenths for all iterations and threshold values, but here the reduction of the computational
complexity provided by the ROM is much more important, since the computational mesh for Fδt in Test
case 2 has 2500 cells and 5100 interfaces.

Average - S(i) Average - Ŝ(i)

εsv

Iteration k
1 2 3 4 5 1 2 3 4 5

Number of snapshots 21 42 63 84 105 21 42 63 84 105
10−1 1 1 1 1 1 1 1 1 1 2
10−2 3 3 4 4 5 3 4 5 5 5
10−3 5 7 9 11 13 6 9 11 13 17
10−4 7 12 16 20 30 8 14 19 23 27

Table 3.8: Test case 2 (2D): average dimension (q1 + q2 + q3)/3 of the subspaces S(i), i = 1, 2, 3 computed

from snapshots of the solutions, and (m1 +m2 +m3)/3 of the subspaces Ŝ(i), i = 1, 2, 3 computed from
snapshots of the nonlinear term, for each iteration of the ROM-based parareal method, in function of
εsv = εsv,linear (for S(i)) and εsv = εsv,nonlinear (for Ŝ(i)). For a given εsv,linear, the dimensions are nearly
the same for all values of εsv,nonlinear, and vice versa. m4 and m5 are not considered in the average since

Ŝ(4) and Ŝ(5) are null spaces due to the absence of source terms. The number of snapshots indicated in
the second row is the upper limit for each dimension.

The final water depth along y = 50 is presented in Figure 3.21. The classical parareal method degrades
the quality of the solution in the first iteration, but is able to slowly converge in the following ones. In
the case of the ROM-based method, using (εsv,linear, εsv,nonlinear) = (10−4, 10−4), the general profile of the
reference solution is well approximated from the first iteration, but instabilities arise near the peaks and
the valley in the following iterations. These different behaviours are clearer by comparing the solution in
the entire spatial domain (Figure 3.22).
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Figure 3.19: Test case 2 (2D): relative error ekn using the ROM-based parareal method for various thresh-
olds (εsv,linear, εsv,nonlinear). Each curve corresponds to a parareal iteration and the horizontal axis indicate
the simulation time. Graphs in the same row correspond to the same εsv,linear and graphs in the same
column correspond to the same εsv,nonlinear.
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Figure 3.21: Test case 2 (2D): final water depth (t = T = 5) along y = 50 at the first, third and fifth first
parareal iterations. Dashed curves represent the reference (provided by Fδt). Small bullet represents the
coarse solution (given by G∆t, at the 0-th parareal iteration). Left: classical parareal method. Right:
ROM-based parareal method with (εsv,linear, εsv,nonlinear) = (10−4, 10−4).

3.6.4 Some indications for understanding the parareal performance

As shown by (Ruprecht, 2018) and discussed in Section 3.2.4, the performance of the parareal method is
related to its behaviour on high wavenumbers of the solution. The parareal convergence is slower near
the end of the spectrum and instabilities appear for high wavenumbers due to the difference of discrete
phase speeds between the fine and coarse propagators.

Therefore, the wavenumber spectrum of the solution can provide useful information for understanding
the parareal behaviour. We make use of it in order to obtain some clues on why the classical parareal
method is stable in Test case 2 and unstable in the simpler Test case 1, and also on the behaviour of the
ROM-based method for different model reduction thresholds (εsv,linear, εsv,nonlinear). For that, we consider
the “one-dimensional version” of Test cases 1 and 2, solved respectively in Ω = [0, 20] and Ω = [0, 100],
with same initial and boundary conditions and parareal, and same propagators and configurations as
above, but restricted to x−direction. Since Test case 1, solved in a Cartesian mesh, has only one
direction of propagation, it is equivalent to its one-dimensional version; for Test case 2, the solution
of the 2D problem along the x−direction is not identical to the solution of the 1D problem, but quite
similar behaviors are observed, e.g. the convergence of the classical parareal method and the performance
of the ROM-based one in function of εsv,linear and εsv,nonlinear, even if, in general, a faster convergence is
obtained in the one-dimensional case.
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Figure 3.22: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: final water depth (t = T = 5). Top left:
reference solution; top right: coarse solution (0-th solution of the parareal methods). Second row: classical
parareal method. Third row: ROM-based parareal method with (εsv,linear, εsv,nonlinear) = (10−4, 10−4).
First, second and third columns: parareal iterations k = 1, 3, 5, respectively.

We perform a Fourier analysis by computing the Discrete Fourier Transform (DFT) of a given function
ψ defined in Ω (Sundararajan, 2001):

ψ̂(κ) =

Mf−1∑

j=0

ψ(xj)e
−i2π j

Mf
κ

=

Mf−1∑

j=0

ψ(xj)e
−i2πjκ

where κ ∈ {0, 1, . . . ,Mf − 1}, is the wavenumber, expressed in cycles per unit spatial distance, κ :=

κ/Mf ∈ [0, 1[ is a normalized wavenumber, ψ̂(κ) ∈ C is the Fourier mode of ψ at κ, i is the imaginary

unit and xj , j = 0, . . . ,Mf are the equally Mf spatial points discretizing Ω. We denote by |ψ̂(k)| the

amplitude of ψ̂(k). The DFT is performed using the Python’s library Numpy.
In the following paragraphs, we study how the amplitude of the wavenumber spectra behaves along

parareal iterations for the one-dimensional versions of Test cases 1 and 2. However, as said above, the
parareal performance is rather linked to the mismatch between discrete phase speeds of the coarse and
fine propagators, and a more comprehensive study should rely on the study of the phase speed of the
numerical schemes and discretizations considered here. Also, even if it is observed that similar behaviours
are obtained in one and two-dimensional problems, a more complete and complex investigation should
be conducted in the two-dimensional context.
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Behaviour of the classical and ROM-based parareal methods in Test cases 1 and 2

Figures 3.23 and 3.24 present, respectively for Test cases 1 and 2, the wavenumber spectra ĥ(k) of the
water depth computed by the fine and coarse propagators and by the classical and ROM-based parareal
methods, at the final time of simulation (t = T ). By comparing both test cases, we observe that the
Fourier modes at the end of the spectrum have much larger amplitudes in Test case 1 than in Test case
2, which can give indications for explaining the poor performance of the classical parareal method for
solving the former.

Interestingly, the amplitude errors between the fine and coarse propagators are much smaller in Test
case 1 than in Test case 2. In the latter case, we notice that the coarse propagator largely overestimates
the amplitude of high wavenumber modes. This, however, does not contradict the stability behaviours
of the simulations presented above. Indeed, as pointed out by (Ruprecht, 2018), phase speed errors,
and not amplitude ones, are at the origin of parareal instabilities. The author observes that, when the
fine and coarse propagators have the same phase speed, amplitude errors are quickly corrected through
iterations. Therefore, although a good amplitude representation in Test case 1, phase mismatches may
exist between the fine and coarse propagators, leading to unstable behaviours. In Test case 2, peaks and
valleys of the fine and coarse solutions are in the same spatial position (see Figure 3.21), suggesting a
good phase representation, although an amplitude mismatch.
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Figure 3.23: One dimensional version of Test case 1: wavenumber spectrum (amplitude of modes in
function of the wavenumber) of the water depth computed by the fine (reference) and coarse propagators,
and parareal solutions at t = T for given iterations. Left: classical parareal method. Right: ROM-based
parareal method with (εsv,linear, εsv,nonlinear) = (10−5, 10−5).
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Figure 3.24: One dimensional version of Test case 2: wavenumber spectrum (amplitude of modes in
function of the wavenumber) of the water depth computed by the fine (reference) and coarse propagators,
and parareal solutions at t = T for given iterations. Left: classical parareal method. Right: ROM-based
parareal method with (εsv,linear, εsv,nonlinear) = (10−4, 10−4).
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Concerning the convergence of the spectra in the parareal simulations, we observe, in Test case 1,
that an amplification of the modes propagates towards high wavenumbers along iterations of the classical
parareal method, whereas the ROM-based one is able to quickly approximate, from the first iteration, the
amplitudes in the entire spectrum. It suggests that the formulated ROMs are able to minimize the phase
speed mismatch w.r.t. fine propagator. In Test case 2, the classical and the ROM-based methods have
a similar behaviour in terms of convergence of the spectrum. After few iterations, small wavenumbers
in the parareal solutions are well approximated, but a much slower convergence is observed for high
wavenumbers.

Behaviour of the ROM-based parareal method for different model reduction thresholds

Figures 3.13, 3.18 and 3.19 indicate that the ROM-based parareal method converges faster when the
POD reduced bases (formulated from snapshots of the solution) are enough high-dimensional (i.e. for
small values of the threshold εsv,linear), but instabilities may arise when the POD-EIM bases (formulated
from snapshots of the nonlinear term) are not high-dimensional as well (i.e. if εsv,nonlinear is too large).
This behaviour is observed systematically in the application of the ROM-based parareal method.

Then, we fix, for Test cases 1 and 2, the smallest threshold εsv,linear considered above (respectively
10−7 and 10−4) and we vary εsv,nonlinear. The spectra of the water depth provided at the first and
fifth parareal iterations are presented in Figure 3.25. In both test cases, a slow or no convergence of
high wavenumbers is observed when εsv,nonlinear is not sufficiently small. For Test case 1, the spectrum
at the fifth iteration visually coincides with the reference one for εsv,nonlinear ≤ 10−5; for Test case 2,
εsv,nonlinear = 10−4 clearly outperforms larger values of εsv,nonlinear.
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Figure 3.25: One dimensional version of Test cases 1 (left) and 2 (right): wavenumber spectrum (ampli-
tude of modes in function of the wavenumber) of the water depth computed by the ROM-based parareal
methods at t = T , for fixed thresholds εsv,linear = 10−7 (left) and εsv,linear = 10−4 (right), and various
values of εsv,nonlinear. First and second row: first and fifth parareal iterations, respectively.

Also interesting results are illustrated in Figure 3.26, showing the spectra of the water depth pro-
vided by the reduced model at the first and fifth iterations, i.e. the spectra of Fkr,δt(Pky0, tn, 0), n =
0, . . . , N∆t; k = 1, 5. In the fifth iteration of Test case 1, the spectrum for all (εsv,linear, εsv,nonlinear) =
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(10−7, εsv,nonlinear) visually coincides with the reference one, even for (εsv,linear, εsv,nonlinear) = (10−7, 10−3),
whose parareal solution presents strong instabilities and fails in approximating the reference spectrum
(see Figures 3.13 and 3.25) An exception is made for (εsv,linear, εsv,nonlinear) = (10−7, 10−1), which does
not reach five iterations due to instabilities in the second parareal iteration. Results are less remark-
able in Test case 2, but we notice a clear improvement of the quality of the amplitude spectrum of the
reduced model by reducing εsv,nonlinear. Therefore, a possible explication for the ROM-based parareal
performance is that, for small εsv,linear, decreasing εsv,nonlinear improves the reduced model in terms of
spectrum amplitude, but if εsv,nonlinear is not sufficiently small, phase speed errors w.r.t. the reference
model may still be present and lead to instabilities of the ROM-based parareal method.
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Figure 3.26: One dimensional version of Test cases 1 (left) and 2 (right): wavenumber spectrum (ampli-
tude of modes in function of the wavenumber) of the water depth at t = T computed by the reduced-order
models formulated at the first (first row) and fifth (second row) parareal iterations, for fixed thresholds
εsv,linear = 10−7 (left) and εsv,linear = 10−4 (right), and various values of εsv,nonlinear.

3.6.5 A first discussion on the influence of the length time slices

In all numerical examples presented above, it was considered that the parareal time slices ∆T coincide
with the coarse time steps ∆t associated to the coarse propagator G∆t. Since the temporal domain is
relatively small, containing only N∆t = 20 coarse time steps, it is a quite natural choice allowing to make
use of the maximum possible parallelization, since the fine correction step of the parareal algorithm is
distributed among N∆T parallel processors.

It is possible, evidently, to choose ∆T > ∆t, i.e. N∆T < N∆t, which may lead both to positive and
negative influence on the performance of the parareal method. By increasing ∆T , we reduced the number
N∆T of time slices, and the convergence is expected to be faster, since the parareal solution converges
exactly towards the reference one in at most N∆T iterations, as discussed in Section 3.2.4. Moreover, as
observed by Ruprecht (2018), the parareal convergence is slower when the number of time slices increase,
specially for high wavenumbers. On the other hand, the reduction of N∆T also reduces the expected
speedup. More precisely, bound (3.13), formulated in the framework of the classical parareal method,
should be rewritten as
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sclassical-parareal(k̂) <
min(Np, N∆T )

k̂
(3.55)

i.e. if N∆T < Np, the fine correction step is distributed among only N∆T parallel processors, meaning
that all available Np processors cannot be used for parallelizing the parareal simulation.

We present in the following paragraphs a first study of the influence of the time slice length on the
convergence of the classical and ROM-based parareal methods. For the small problems considered here,
only few lengths of time slices can be chosen. A more detailed study covering both convergence and
speedup and considering problems defined in larger temporal domains (thus allowing larger ranges for
∆T ) is proposed in Chapter 5.

We consider Test cases 1 and 2. For each of them, we perform simulations both in the classical
and ROM-based frameworks, with N∆T ∈ {5, 10, 20}, corresponding respectively to ∆T ∈ {0.8, 0.4, 0.2}
for Test case 1 and ∆T ∈ {1, 0.5, 0.25} for Test case 2. We still consider Nitermax = 5. Note that, in
the cases with N∆T = 5, exact convergence is obtained after Nitermax = 5 parareal iterations. In the
ROM-based simulations, we fix the model reduction thresholds (εsv,linear, εsv,nonlinear) = (10−5, 10−5) and
(εsv,linear, εsv,nonlinear) = (10−4, 10−4) respectively for Test cases 1 and 2.

Figure 3.27 compares the evolution of the relative error ek for each simulation. We observe, both for
Test cases 1 and 2, that the increase of the time slice length has a positive influence on the convergence
of the classical parareal method. In Test case 1, instabilities are controlled and the error decreases
monotonically for large enough time slices. In Test case 2, which already converges for small ∆T ,
the convergence speed increases with larger ∆T . A less clear influence is observed in the ROM-based
simulations. In Test case 1, the convergence slows down by increasing ∆T , contrary to what is observed in
the classical method. In Test case 2, a slightly faster convergence is observed by increasing ∆T , but still
relatively slow. As will be discussed in details in the next chapter, the performance of the ROM-based
method also depends on the number of snapshots used in the model reduction. Since the snapshots are
taken on the parareal time instants, their number decreases when ∆T increases, which can degrade the
quality of the ROMs w.r.t. the reference solution since they are formulated using a smaller amount of
input information.
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Figure 3.27: Test cases 1 (left) and 2 (right): evolution of the relative error ek for the classical (“CL”,
full lines) and ROM-based parareal (“ROM”, dashed lines) methods using various lengths of time slices.
The ROM-based simulations use the thresholds (εsv,linear, εsv,nonlinear) = (10−5, 10−5) (Test case 1) and
(εsv,linear, εsv,nonlinear) = (10−4, 10−4) (Test case 2).

As said above, a more detailed discussion on the influence of ∆T will be performed in Chapter 5 by
using larger problems in time. In this and the next chapter, we still work on relatively small problems
and consider ∆T = ∆t, unless explicitly specified.

3.6.6 Influence of nonlinearities

We consider Test case 2 for investigating how the intensity of nonlinear effects influence the convergence of
the classical and ROM-based parareal methods. The importance of nonlinear effects in wave propagation
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models can be described by the ratio between the wave amplitude and the mean water depth (Filippini
et al., 2015). Therefore, the nonlinearities in Test case 2 can be controlled by modifying its initial
condition (3.12), e.g. by keeping a fixed Gaussian amplitude and varying the mean water depth h0. We
consider h0 ∈ {1/16, 1/4, 1, 4}, with h0 = 1 as the default case presented above. We do not consider
h0 > 4 since the solution quickly reaches the domain boundaries, having its profile strongly modified.

Note that the reference solution is different for each value of h0, and the relative error (3.3) between
the coarse and fine propagators (i.e. at iteration k = 0) is naturally smaller for larger h0. Therefore,
for properly comparing the error evolution in each case, we present, in Figure 3.28, the evolution of
ek/e0, i.e. the fraction represented by the maximum error per iteration relative to the initial error (at
the 0-th iteration). In the classical parareal method, after an initial degradation of the solution (which
is due to the linear interpolation procedure, as will be discussed in Section 3.6.8), the error decreases in
the following iterations for all values of h0, with a slightly faster convergence for larger h0 (i.e. for less
important nonlinear effects). In the ROM-based framework, an opposite behaviour is observed: after an
initial important error decrease in all simulations, the quality of the solution degrades in the following
iterations, specially for larger values of h0, indicating a bad quality of the formulated ROMs. The
different behaviours of the classical and ROM-based methods are clearer when we analyse the evolution
in time of eNitermax

n /e0
n, i.e. the fraction represented by the error eNitermax

n , computed at the last iteration,
w.r.t. e0

n, computed at k = 0. These errors are also presented in Figure 3.28. In the classical parareal
method, smaller errors are obtained for larger values of h0, and in all cases we observe a relatively small
degradation of the solution in time. On the other hand, this degradation is much more important in
the ROM-based parareal method for large h0, expliciting the poor quality of the model reduction for
advanced time steps.
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Figure 3.28: Test case 2 (2D) with various initial water depths h0: fraction represented by the maximum
relative error per iteration (top) and error per time instant at the final iteration (bottom) relative to the
initial error, i.e. ek/e0 and eNitermax
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n. Values expressed in percentage. Left; classical parareal method.

Right: ROM-based parareal method with (εsv,linear, εsv,nonlinear) = (10−4, 10−4) .
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Some hypotheses can be formulated for understanding these different behaviours of the classical and
ROM-based methods. Figure 3.29 illustrates the final water depth, at t = T , provided by Fδt with
h0 ∈ {1/16, 1, 4}. For small initial depth, the larger nonlinearity of the problem leads to the formation
of propagating shocks, i.e. the profile of the solution is closer to the one of Test case 1. However, due to
the numerical discretization, this profile is relatively smooth and simple, when compared to the profiles
obtained with larger initial water depths, for which we observe the formation of peaks and valleys. For
h0 = 4, the propagating wave reaches the domain boundaries near the end of the simulation, increasing
the complexity of the solution profile. As will be discussed in the next chapter, POD-based reduced-order
models are known to perform better when approximating smooth and simple solutions. It can explain
the poor performance of the ROM-based method when h0 is larger, since the model reduction becomes
more challenging.

On the other hand, if we look to the wavenumber spectra of the reference solutions for each value of h0,
computed using the one-dimensional version of Test case 2 (Figure 3.30), we notice that the amplitudes
of the Fourier modes increase for smaller h0, mainly for medium to high wavenumbers (thus looking
more similar to the spectrum in Test case 1), which suggests a possible explication to the observed
performance of the classical parareal method, with a slightly faster convergence for larger h0. In the end
of the simulation (t = T ), we notice an amplification of high wavenumbers for h0 = 4, which may be due
to the reflection of the solution on the domain boundaries; however, this reflection only occurs near the
end of the temporal domain, and no impact on the overall convergence behaviour is observed.

x

0
20

40
60

80
100

y

0
20

40
60

80
100

h

0.10

0.15

0.20

0.25

0.30

Water depth in t = 5.0
h0 = 1/16

x

0
20

40
60

80
100

y

0
20

40
60

80
100

h

0.90

0.95

1.00

1.05

1.10

Water depth in t = 5.0
h0 = 1

x

0
20

40
60

80
100

y

0
20

40
60

80
100

h

3.925
3.950
3.975
4.000

4.025

4.050

4.075

4.100

Water depth in t = 5.0
h0 = 4
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3.6.7 Influence of the type of computational mesh

All presented simulations were performed considering Cartesian meshes, both for the fine and coarse
propagators. We investigate here if the computational mesh is relevant for the performance of the
classical and ROM-based parareal methods. For that, we consider Test case 1 (pseudo-2D without
spatial coarsening) and Test case 2 (2D) with the same parameters as described respectively in Tables
3.1 and 3.3, but using structured triangular meshes instead of Cartesian ones. The mesh sizes are chosen
such as to respect the CFL stability condition both by the coarse and fine propagators, and we compare
the solutions for some chosen pairs (εsv,linear, εsv,nonlinear) of model reduction thresholds.

Test case 1 (pseudo-2D without spatial coarsening)

The structured triangular mesh for this test case has 128 cells, against 400 in the quadrilateral, Cartesian
mesh. Under this configuration, the classical parareal method presents even more important instabilities
and is not able to complete all iterations, as shown in Figure 3.31. For the ROM-based parareal method,
we perform simulations with εsv,linear = εsv,nonlinear ∈ {10−3, 10−4, 10−5}. The maximum error per
iteration, compared to the ones obtained with the same thresholds but in the case of the Cartesian mesh,
are also presented in Figure 3.31. We notice that the use of a triangular mesh clearly degrades the
performance of the ROM-based parareal method, with strong instabilities for smaller thresholds and slow
convergence for the largest ones. For εsv,linear = εsv,nonlinear = 10−7, the simulation does not complete
four parareal iterations.

This behaviour can be explained by the solution profile induced by the computational mesh. Even
if the analytical flow is purely one-dimensional, the numerical solution is not, since the triangular mesh
contains interfaces not aligned with the x− and y−directions. Indeed, as shown in Figure 3.32, the
y−unit discharge presents strong discontinuities, induced by the orientation of the diagonal interfaces
(we recall that, with the quadrilateral mesh, the y−unit discharge is strictly equal to zero in this case).
As a consequence, oscillations are also observed in the profile of the x− unit discharge. Then, the
poor convergence and stability of the ROM-based parareal method are due, firstly, to the more complex
problem (2D instead of 1D), and, secondly, to the introduction of discontinuities of the solution, which
represents a challenge for the model reduction, as will be discussed in Section 4.2. Therefore, if an
unstructured mesh were used, we could expect an even worse behaviour.
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Figure 3.31: Test case 1 (pseudo-2D without spatial coarsening): evolution of the relative error
ek for the classical (left) and ROM-based (right) parareal methods using εsv,linear = εsv,nonlinear ∈
{10−3, 10−4, 10−5}, considering Cartesian (“Quad.”, full lines) and structured triangular (“Tri.”, dashed
lines) computational meshes. Some of the simulations do not complete all iterations due to instabilities.

Test case 2 (2D)

For the two-dimensional test case, we consider structured triangular meshes both for the coarse and fine
propagators, respectively with 392 and 2312 cells (respectively against 400 and 2500 in the quadrilateral
meshes). The maximum error per iteration for the classical and ROM-based parareal method, the last
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Figure 3.32: Test case 1 (pseudo-2D without spatial coarsening) with a structured triangular mesh: x−
(left) and y−unit discharge at t = T . Solution provided by the fine, reference propagator Fδt.

one considering the thresholds εsv,linear = εsv,nonlinear ∈ {10−2, 10−3, 10−4}, is presented in Figure 3.33.
Note that a slightly better performance is obtained using Cartesian meshes, but much less notably than
in Test case 1. For the classical method, the simulations using Cartesian and triangular meshes present
nearly the same convergence rate, and for the ROM-based method we observe similar unstable and slow
converging behaviours. Indeed, since Test case 2 is already two-dimensional, the effects of introducing a
computational mesh not aligned with the axes is less important than in Test case 1.
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Figure 3.33: Test case 2 (pseudo-2D without spatial coarsening): evolution of the relative error ek for
the classical (left) and the ROM-based (right) parareal methods using using εsv,linear = εsv,nonlinear ∈
{10−2, 10−3, 10−4}, considering Cartesian (“Quad.”, full lines) and structured triangular (“Tri.”, dashed
lines) computational meshes. Some of the simulations do not complete all iterations due to instabilities.

3.6.8 Influence of the interpolation procedure

Spatial coarsening between the fine and coarse propagators represents an additional challenge for parareal
simulations. In the framework of the one-dimensional advection-diffusion equation, Ruprecht (2014)
noticed that a faster convergence of the parareal method is obtained when higher-order interpolation
schemes are used, specially when the problem is discretized with high spatial resolutions. Using a Fourier
analysis applied to the one-dimensional advection equation, Lunet (2018) identified that the parareal
method with spatial coarsening leads to the formation of wavenumbers not present in the initial solution
and to the amplification of high wavenumbers, these effects being less important when higher-order
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interpolation is used. These benefits are confirmed by Lunet (2018) in the simulation of the three-
dimensional Navier-Stokes equations using Cartesian meshes.

In the following paragraphs, we consider theses aspects for evaluating the influence of the interpolation
scheme on the presented simulations and to decide the main scheme to be used along this work. This
choice should rely on the types of mesh commonly used in the envisaged applications of this work. As
stated by Kim et al. (2014), the optimal mesh for flooding simulation depends on the problem and the
computational domain. For simulations in rectangular channels, Cartesian meshes are more efficient (with
efficiency defined by the authors as accuracy per computational effort), but unstructured meshes perform
better with uneven topographies and when obstacles are present in the domain. Local mesh refinements
and the use of mixed meshes combining triangular and quadrilateral elements are also shown to improve
the accuracy. Therefore, in the context of urban floods, unstructured meshes are more likely to be used
(see e.g. the meshes shown in Figures 1.2 and 2.8). Moreover, even if structured meshes are used, the
presence of obstacles (i.e. “holes” in the mesh) may impede the application of high-order interpolation
schemes, since the necessary points for the interpolation stencil may not be available.

Thus, we consider a more flexible interpolation scheme, being able to interpolate between unstruc-
tured grids. It is also applied for the test cases presented in this chapter, even if interpolation procedures
based on regular grids could be used for these examples. Namely, we use interpolation procedures
based on Delaunay triangulations of the cell barycenters, as detailed in Appendix C. We consider lin-
ear and cubic interpolations: for the linear one, we use the open-source C++ library delaunay linterp1,
which was incorporated to the code developed in this work; for the cubic one, we use the function
CloughTocher2DInterpolator of the Python Scipy library2, which produces cubic, piecewise continuously
differentiable interpolants. In both cases, the interpolation weights are precomputed and reused for all
simulations using the same computational meshes.

All simulations with spatial coarsening presented along this chapter used linear interpolation. We
choose some of them for comparing the results obtained with the cubic one, namely the simulations
using the classical parareal method (both for Test cases 1c and 2), the ROM-based one with εsv,linear =
εsv,nonlinear = 10−3 and εsv,linear = εsv,nonlinear = 10−7 (for Test case 1c), and the ROM-based one with
εsv,linear = εsv,nonlinear = 10−2 and εsv,linear = εsv,nonlinear = 10−4 (for Test case 2).

The evolution of the errors per iteration and time for Test cases 1c and 2 are presented respectively in
Figures 3.34 and 3.35. The maximum error per iteration is presented in Figure 3.36 for both test cases.

For the classical parareal method, there is almost no difference in using linear or cubic interpolation
in Test case 1c, with the error curving presenting the same (unsatisfactory) behaviour. On the other
hand, notable improvements are observed in Test case 2, specially in the first parareal iteration. The
initial degradation of the solution with linear interpolation is no longer observed with the cubic one.

On the other hand, the observed behaviours are quite different in the ROM-based parareal method.
We recall that, in this case, spatial interpolation is performed only in the 0−th parareal iteration, since
the coarse propagator is not used in the following ones. With cubic interpolation, we notice an important
loss of quality of the solution of Test case 1c, specially in the case εsv,linear = εsv,nonlinear = 10−7, which
presented a fast convergence with linear interpolation, but is unstable with the cubic one, not completing
two parareal iterations. The reasons for this behaviour are not clear. A possible explication for this result
is that, in this problem, the cubic interpolation introduces behaviours of the solution not corresponding
to the dynamics of the problem, thus leading to unstable reduced models. A discussion on the quality
of the reduced order models formulated in the parareal framework is addressed in the next chapter. We
can also suppose that, the computational meshes being relatively small, there are not enough cells for
properly defining stencils for the cubic interpolation. For Test case 2, the ROM-based parareal method
with linear or cubic interpolation behaves similarly.

A major drawback in increasing the interpolation order is the larger computational cost. As discussed
in Appendix C, the stencils for the cubic interpolation are much larger than in the nonlinear case,
since global approximations of the solution derivatives are performed, and important costs are observed,
mainly when the fine and coarse meshes contain a large number of cells (which is the case of Test case
2 compared to Test case 1). It is clear in Table 3.9, showing the speedup after five iterations for Test
cases 1c and 2 using linear and cubic interpolation, with severe reductions of the computational cost in
the two-dimensional case. This reduction is more important in the classical parareal framework, since
interpolations in both senses between the fine and coarse meshes are performed at each iteration. In the
ROM-based method, interpolation is only performed in the 0-th iteration, from the coarse to the fine

1https://github.com/rncarpio/delaunay_linterp
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html
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mesh, and the impacts of using a higher-order interpolation are less important.
Based on these observations, we consider the linear interpolation procedure in the following chapters,

which focus on improving the ROM-based parareal method and studying the behaviour of both parareal
methods for solving problems defined in larger spatial and temporal domains. Therefore, the proposed
studies are performed considering the same interpolation scheme for all simulations. In Chapter 6, for
the application of parareal methods for coupling the classical and porosity-based shallow water models,
we briefly come back to the discussion on the influence of the spatial interpolation order.
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Figure 3.34: Test case 1c (pseudo-2D with spatial coarsening): relative error ekn with linear (first
row) and cubic (second row) spatial interpolation. “CL” stands for the classical parareal method
and “ROM (εsv,linear, εsv,nonlinear)” stands for the ROM-based parareal method using the thresholds
(εsv,linear, εsv,nonlinear). The simulation ROM (10−7, 10−7) is unstable and does not complete two parareal
iterations.

Test case 1c Test case 2

Interpolation CL ROM
(10−3, 10−3)

ROM
(10−7, 10−7)

CL ROM
(10−2, 10−2)

ROM
(10−4, 10−4)

Linear 2.58 0.77 0.68 3.37 1.57 1.09
Cubic 2.47 0.70 * 0.70 1.31 1.05

Table 3.9: Test cases 1c and 2: speedup s(5) at the fifth iteration with linear (first row)
and cubic (second row) spatial interpolation. “CL” stands for the classical parareal method
and “ROM (εsv,linear, εsv,nonlinear)” stands for the ROM-based parareal method using the thresholds
(εsv,linear, εsv,nonlinear). The simulation indicated with an asterisk presents instabilities and does not
complete five iterations.
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Figure 3.35: Test case 2 (2D): relative error ekn with linear (first row) and cubic (second row) spatial
interpolation. “CL” stands for the classical parareal method and “ROM (εsv,linear, εsv,nonlinear)” stands
for the ROM-based parareal method using the thresholds (εsv,linear, εsv,nonlinear).
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Figure 3.36: Test cases 1c (left) and 2 (right): relative error ek using the ROM-based parareal method
with linear (full lines) and cubic (dashed lines) spatial interpolation. “CL” stands for the classical
parareal method and “ROM (εsv,linear, εsv,nonlinear)” stands for the ROM-based parareal method using
the thresholds (εsv,linear, εsv,nonlinear).

3.6.9 Some conclusions on the numerical simulations

The following conclusions can be made from the three test cases presented in this section:

• The deficiencies of the classical parareal method when applied to hyperbolic problems is well illus-
trated in the relatively simple Test cases 1 and 1c. A better convergence behaviour is observed in
Test case 2, but it is still far below the performance verified for parabolic problems (see e.g. Figure
3.4). Under the same configurations, and depending on the considered model reduction parame-
ters, the ROM-based method is able to provide a much faster convergence and also more stable
behaviours, specially in Test case 1 and 1c, at the cost of a considerably more expensive simulation,
when compared to the classical method;
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• The performance of the ROM-based parareal method is strongly determined by the reduced-order
models formulated along the iterations. Both the subspaces computed from snapshots of the solution
and from snapshots of the nonlinear terms have an influence, but with different behaviours;

• Low-dimensional POD spaces computed from snapshots of the solution (large values of εsv,linear) lead
to a very slow convergence of the parareal method, with a very small error decrease along iterations.
We can conclude that the ROMs do not contain enough information for properly approximating
the reference model. In the three test cases, when the largest εsv,linear is used (εsv,linear = 10−1), no
improvement is observed by decreasing εsv,nonlinear (compare the graphs in the first row of Figures
3.13, 3.18 and 3.19);

• On the other hand, high-dimensional POD spaces computed from snapshots of the solution (small
values of εsv,linear) are able to accelerate the parareal convergence, but may lead to unstable be-
haviours. Several simulations stop before Nitermax due to the computation of negative water depths.

• These instabilities are reduced by increasing the dimension of the POD-EIM spaces computed from
snapshots of the nonlinear terms (i.e. by reducing εsv,nonlinear). We conjecture that this behaviour
is due to the improvement of the approximating reduced space and of the interpolation procedure;

• Even if the cost of the POD does not depend on the thresholds εsv,linear and εsv,nonlinear (since the
truncation is a post-process of the model reduction), the improvements obtained by increasing the
dimensions of the subspaces has as drawback more expensive parareal simulations, due to the more
expensive greedy algorithm for choosing the interpolation points, the larger ROM matrices to be
computed and the more expensive simulation of the larger-dimensional ROMs;

• Note however that, even when small thresholds εsv,linear and εsv,nonlinear are considered, the ROMs
remain effectively low-dimensional problems when compared to the FOM, specially in the two-
dimensional test case, in which the dimensions of the reduced spaces remain at the other of tenths,
against the thousands of cells and interfaces of the fine computational mesh.

• The three test cases were presented in an increasing order of complexity, and we observe a influence
of this factor on the ROM-based parareal performance. Firstly, by comparing the one-dimensional
test cases (Test cases 1 and 1c) with the two-dimensional one (Test case 2), much smaller errors are
obtained in the former case. Secondly, the errors are smaller in Test case 1 than in Test case 1c,
with remarkable error reductions in the first parareal iteration: since there is no spatial coarsening
between the fine and the coarse propagator in the former, the snapshots and the ROM are a better
representation of the reduced model. The instabilities are also influenced by the complexity of the
problem, being less remarkable in the one-dimensional simulations. Indeed, in Test case 2, the
chosen range of (εsv,linear, εsv,nonlinear) is smaller than in Test cases 1 and 1c due to more critical
unstable behaviours of the method.

• Finally, simulations were performed for identifying other factors that may influence the performance
of the classical and ROM-based parareal methods. We considered different degrees of nonlinearity
of the problem (by choosing various initial water depths for a given wave amplitude), the use of
Cartesian or triangular meshes, the spatial interpolation order, and the length ∆T of the parareal
time slices. The classical parareal method showed to be most influenced by the length of time slices
and by the order of spatial interpolation. For the ROM-based method, the simulations indicate that
its performance strongly depends on the quality of the ROMs and on its ability in approximating
the reference solution. Notably, a better convergence behaviour is observed when the reference
solution has simpler profiles, which can be obtained by using Cartesian meshes when there is a
preferential flow direction, or by avoiding the formation of peaks and valleys in the solution profile
via an increment of the nonlinearity of the problem. These factors had smaller or even opposite
effects on the performance of the classical parareal method. The influence of ∆T is less clear for the
ROM-based method, since it also affects the number of input snapshots for the model reduction,
which will be considered in detail in the next chapter. Concerning the spatial interpolation, no or
even negative effects are observed in the ROM-based method, contrary to the classical one, and
more detailed investigations should be performed for identifying the causes. In the rest of this work,
we consider linear interpolation, unless explicitly specified.
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3.7 Conclusion of the chapter

In this chapter, we made an overview of the parareal method and some of its variants specially conceived
for treating hyperbolic problems. The classical or original parareal was presented and we discussed and
illustrated its weaknesses when applied to hyperbolic or advection-dominated problems by using some
simple numerical examples. Then, we presented the evolution of variants of the parareal method that aim
to overcome these issues by reusing information from the previous parareal iterations. An introduction to
this idea was presented with the Krylov-subspace-enhanced parareal method, designed for improving the
parareal performance when solving linear hyperbolic problems, and, with more details, we presented the
introduction of reduced-order models formulated on-the-fly in the parareal algorithm. By formulating
ROMs using the combined POD-EIM procedure, this ROM-based parareal method can be efficiently
implemented for treating nonlinear hyperbolic problems. Speedup estimations for the classical and the
ROM-based parareal method were derived and interpreted, providing guidelines for their implementation.

After this presentation of the methods, we proposed their application to the parallel-in-time simula-
tion of the two-dimensional nonlinear SWE. We considered both the classical and ROM-based parareal
methods. For implementing the latter, we firstly formulated a POD-EIM reduced-order model for the
SWE discretized with a finite volume scheme.

The numerical tests presented in this chapter performed a coupling between the classical SWE at
different scales. Even if relatively small, the tests allowed to obtain a first overview of the behaviour and
performance of the parareal methods applied to this problem. By comparing the results of the classical
and ROM-based methods using the same configuration, we noticed that the latter is able to provide faster
convergence and more stable behaviour, but with a larger computational cost. Moreover, the performance
of the ROM-based parareal method strongly depends on the truncation of the POD basis computed with
POD or POD-EIM, indicating that the quality of the formulated ROMs is a major determinant factor.
This subject is treated in details in the next chapter. Other factors influencing the performance of the
classical and ROM-based parareal methods were identified. As a general conclusion, the ROM-based
method showed to behave better when the problem’s solution has simpler profiles, that can be easily
captured by the model reduction procedure, which depends on factors such that the computational mesh
and the nonlinearity of the problem. The classical parareal method showed to be most influenced by
other factors, such as the length of parareal time slices and the order of spatial interpolation.
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4.1 Introduction

In this chapter, we propose a number of modifications to the ROM-based parareal method in order to
improve its stability and convergence behaviour.

The numerical tests presented in Section 3.5 show that, even if able to outperform the classical parareal
method when applied to the SWE, the ROM-based one still presents instabilities, specially for advanced
times of the numerical simulation and when the problem complexity increases. This unstable behaviour
can be avoided by considering very small-dimensional ROMs (i.e. by considering large thresholds εsv,linear

for the POD), but with sacrifice of the parareal convergence. Better behaviours are obtained by reducing
both thresholds εsv,linear and εsv,nonlinear, but unsatisfactory results are still observed in the end of the
temporal domain. These results indicate that the ROMs formulated on-the-fly have not enough quality
for providing good results when used in the parareal iterations.

Therefore, we propose here three modifications of the ROM-based parareal method for overcoming
these issues. The first one consists in enriching the snapshots sets used as input for the model reduction
procedures, with extra snapshots whose computation does not require any additional computational cost,
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since they are naturally computed along the parareal iterations. This approach has been studied in a
submitted paper (Caldas Steinstraesser et al., 2020a). The second modification consists in performing
local-in-time model reductions, i.e. within time windows in the temporal domain. Known as principal
interval decomposition (PID) (Ijzerman, 2000), this approach was formulated in the POD framework,
and we extend it to the combined POD-EIM and apply it to the ROM-based parareal method. Finally,
the last modification is an adaptive approach, based on the method proposed by Maday and Mula (2020)
in the classical parareal framework, and consisting in using progressively refined fine propagators along
parareal iterations, instead of a fixed and expensive one. Here, we also extend this approach to the
ROM-based method.

For formulating and testing these improvements, we still place ourselves in the coupling between fine
and coarse discretizations of the classical SWE. This study will provide insights and guidelines for the
application of the methods to the coupling with porosity-based models, presented later in this work. In
order to keep a consistent comparison and with different degrees of complexity, the methods proposed here
are evaluated using Test cases 1 and 2 presented in Section 3.5, the former being an example of test with
stable behaviour and fast convergence but smaller speedup, and the latter a test with larger speedup but
slower convergence and more critical stability behaviour. We consider a fixed pair (εsv,linear, εsv,nonlinear)
of model reduction thresholds for each case, namely (εsv,linear, εsv,nonlinear) = (10−5, 10−5) for Test case 1
and (εsv,linear, εsv,nonlinear) = (10−4, 10−4) for Test case 2. In a first moment, each proposed modification
is tested and studied alone, without the influence of the others, and after that we consider their combined
application.

This chapter is organized as follows: in Section 4.2, we propose and illustrate a discussion on the
quality of the reduced models formulated in the ROM-based parareal method; the proposed modifications
(enrichment of the snapshots sets, PID and adaptive approach) are presented respectively in Sections 4.3,
4.4 and 4.5. Their combined application is tested in Section 4.6 and a conclusion is presented in Section
4.7.

4.2 Discussion on the quality of the reduced models

POD reduced-order models are constructed as the best representation of a given dataset of snapshots:
by definition, the POD basis is optimal, in the sense of solving the minimization problem (3.26) (Chat-
urantabut and Sorensen, 2010). However, if the snapshots themselves are not a good representation of
the reference problem, then one can not expect the reduced model to be a good approximation of the
reference one. Moreover, even if the POD is the best approximation of a given dataset, it is not neces-
sarily a proper representation of the dynamics of the problem that produced the snapshots, since it may
be induced by low-energy features, which are neglected in the POD (Rowley, 2005; Azäıez et al., 2021).
Therefore, keeping more POD modes, i.e. choosing smaller thresholds εsv for the truncation (3.28), can
degrade the quality of the reduced-order model and lead to non-physical behaviours (Rowley et al., 2004).

Several approaches are proposed in the literature for overcoming these difficulties in the formulation
of POD reduced-order models. Some examples are the mean subtraction of snapshots (Müller, 2008)
(a common but not consensual (Chen et al., 2012c; El Adawy et al., 2018) procedure in POD); the
enrichment of the snapshots, using e.g. finite difference quotients (Müller, 2008) or the gradient of the
solution (Akkari et al., 2017); greedy selection of snapshots (Chen et al., 2018); greedy basis construction
(Haasdonk, Bernard and Ohlberger, Mario, 2008); the so-called balanced POD method (Rowley, 2005)
(which requires the formulation and simulation of a dual problem); and the introduction of stabilization
terms to the governing equations (Azäıez et al., 2021).

An illustrative example
Let us present a simple example to illustrate these difficulties on the formulation of ROMs. We

propose to verify the influence of the quantity and quality of the input snapshots w.r.t. the reference
problem and the number of kept POD modes. We consider an one-dimensional test case for the classical
SWE, solved with a finite volume discretization in spatial and temporal domains Ω = [0, 100] and [0, T ],
respectively, with T = 20. Closed boundary conditions (null mass fluxes) are imposed on both boundaries
and the initial solution y0 is given by

h(x, t = 0) = h0 + exp

(
− (x− x0)2

2σ2
x

)
, hux(x, t = 0) = 0, x ∈ Ω
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with h0 = 1, x0 = 50 and σx = 7.5. Note that this test case corresponds to the one-dimensional version
of Test case 2, but solved in a larger temporal domain.

We consider as reference solution the one provided by the simulation of the classical SWE (2.35)
using a propagator Fδt defined by an homogeneous time step δt = 0.005 and an homogeneous mesh size
δx = 2, resulting on Nδt = 4000 time steps and Mf = 50 spatial cells. The formulated reduced model
is denoted as Fδt,r and solved with the same time step δt. This ROM is formulated using the combined
POD and EIM techniques, with the POD applied to a snapshots set Y of the solution, with a threshold
εsv,linear for the truncation of the reduced basis, and the POD-EIM applied to a snapshots set Ŷ of the
nonlinear term and threshold εsv,nonlinear, as described in the previous chapter. By defining the time
instants t̃n = nδt, n = 0, . . . , T/δt = Nδt, (the tilde being used for avoiding any confusion with the times
tn = n∆T defined in the previous chapter in the parareal framework), the reference and reduced solutions
at time t̃n, are respectively denoted by

yref,n = Fδt(y0, t̃n, 0) ∈ RdfMf , yr,n = Fδt,r(Py0, t̃n, 0) ∈ RdfMf , n = 0, . . . , Nδt − 1

with df = 2 for the 1D SWE.
In order to compare the quality of the reduced order model under different configurations, we define,

for each time t̃n, the error

en :=

∑dfMf

i=1 |[yr,n]i − [yref, n]i|
∑dfMf

i=1 |[yref,n]i|
(4.1)

analogous to the parareal error (3.3).
We begin by illustrating the influence of the number of snapshots on the quality of the ROM. The

model reduction is performed using snapshots provided by the fine, reference solution, taken at every
∆̂T = αs∆T , where ∆T = 2 and αs takes value in {1/8, 1/4, 1/2, 1}. The “s” in αs stands for “snapshots”.
We define N∆T := T/∆T = 10. Smaller values of αs mean that more snapshots are used for the model
reduction. Therefore, the snapshots sets used for the POD and POD-EIM procedures read respectively

Y = {yref,n, 0 ≤ n ≤ Nδt | tn = l∆̂T = lαs∆T, l ∈ N}
Ŷ = {F (yref,n), 0 ≤ n ≤ Nδt | tn = l∆̂T = lαs∆T, l ∈ N}

(4.2)

where F is the nonlinear term of the governing equations. As in the previous chapter, (4.2) is a generic
notation equivalent to the one used in the definition of the ROM-based parareal method (Algorithm 6).
It is implicit that, in the model reduction of the SWE, a set of snapshots is defined for each solution
component, flux term and source term (see Section 3.5).

For truncating the POD basis, we consider εsv,linear = εsv,nonlinear =: εsv, with εsv ∈ {10−γ , γ =
1, . . . , 5}. Figure 4.1 shows the evolution of en for these thresholds and the chosen values for αs. We
observe that, for a fixed truncation threshold εsv, the quality of the ROM increases by reducing αs,
i.e. by using more snapshots, mainly for smaller values of εsv. Moreover, the quality of the solution
increases when more POD modes are kept (smaller thresholds εsv). An exception is made for αs = 1/4
and εsv = 10−5. For this case, an unstable behaviour is observed, possibly indicating that non-physical
features are captured by the POD, as discussed in the beginning of this section.

We now perform a second set of test cases, with the same configurations as above, but with a different
procedure for generating the snapshots, closer to the one performed in the ROM-based parareal method.
We define a coarse model G∆t, using a time step ∆t = ∆T = 2 and the same mesh size ∆x = δx = 2 of
Fδt. The time instants associated to the temporal discretization using ∆T are denoted, as in the parareal
method, by tn, n = 0, . . . , N∆T . The numerical solution given by G∆t is denoted by

ŷn = G∆t(y0, tn, 0) ∈ RdfMf , n = 0, . . . , N∆T − 1

The snapshots are generated by propagating the coarse solution ŷn using the fine model Fδt along
each time slice [tn, tn+1], n = 0, . . . N∆T − 1. That is, we define

Ψn := {Fδt(ŷn, tn + lαs∆T, tn), l ∈ N∗ | tn + lαs∆T ∈ ]tn, tn+1]}, n = 0, . . . , N∆T − 1 (4.3)

as the set of fine solutions propagated from ŷn and defined at times in ]tn, tn+1] separated by ∆̂T = αs∆T .
Then, the snapshots sets are defined by
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Figure 4.1: Relative error between the reduced and reference models, for various POD truncation thresh-
olds and rates αs for taking snapshots. The snapshots are obtained from the reference solution.

Y = {y0} ∪
(
N∆T−1⋃

n=0

Ψn

)

Ŷ = {F (y0)} ∪
(
N∆T−1⋃

n=0

F (Ψn)

) (4.4)

where F (Ψn) is a set containing the nonlinear term F of the SWE computed on each element in Ψn, i.e.
F (Ψn) := {F (v),v ∈ Ψn}.

Note that, in the case αs = 1, the ROM constructed using the snapshots sets defined by (4.3)-(4.4)
coincides with the ROM constructed in the first iteration of the ROM-based parareal method using G∆t

and Fδt as coarse and fine propagators, respectively (see Algorithm 6), i.e. the ROM constructed from

the snapshots sets Y 0 and Ŷ 0. Indeed, these sets contain the solution of G∆t propagated by Fδt along
each time slice.

The relative errors for this new set of reduced models are presented in Figure 4.2. As before (Figure
4.1), we notice that larger numbers of kept POD modes (smaller εsv) increase the quality of the ROM
solution, but may lead to instabilities (in this case, instabilities are observed for αs = 1/2 and εsv = 10−4).
However, the improvements in function of εsv are less important than in the previous case. We also observe
an improvement of the ROM by increasing the number of snapshots (smaller αs), but mainly with large
numbers of POD modes (smaller εsv). Moreover, by comparing the order of magnitude of the errors in
Figures 4.1 and 4.2, we conclude that the ROM formulated from more precise snapshots (obtained from
the reference solution) is more accurate than the one formulated using coarser solutions.

Therefore, summarizing the results presented above, we can list three factors influencing the quality
of the reduced model, which will be used in this chapter for proposing modifications to the ROM-based
parareal method:

• Number of snapshots: higher-quality ROMs seems be obtained by increasing the number of input
snapshots, i.e. if ∆̂T = αs∆T � δt, then there may be not enough snapshots for representing the
dynamics of the fine, reference model;

• Accuracy of the snapshots: snapshots constructed from more accurate simulations, closer to the
reference model, gives a better representation of the fine dynamics and can produce more accurate
ROMs;

• Number of kept POD modes: increasing the number of POD basis vector can improve the ROMs
quality, but may lead to instabilities and non-physical behaviours, as discussed by Rowley et al.
(2004).
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Figure 4.2: Relative error between the reduced and reference models, for various POD truncation thresh-
olds and rates αs for taking snapshots. The snapshots are obtained from the fine propagation of coarse
solutions. For εsv = 10−4 and αs = 1/2, the solution is unstable, not completing the simulation, and its
error is not presented.

4.3 Enrichment of the snapshots sets

4.3.1 Proposed modification

As suggested by the results presented in Section 4.2, the quality of the reduced-order models and the
parareal method using them strongly depend on the snapshots used in the model reduction procedures.
Therefore, an obvious improvement of the method consists in improving the input snapshots sets. As
identified above, it could be done by increasing the number of snapshots and/or constructing them using
more accurate simulations. The POD improvement techniques listed above (greedy procedures, balanced
POD, etc.) could also be considered. We recall, however, that the ROMs are formulated on-the-fly at
each parareal iteration, as discussed in Section 3.4.3. Therefore, the offline stage of the model reduction
procedure should not be too expensive. The listed improvements techniques may require an important
computational time, and are more adequate to a classical ROM procedure, in which an expensive offline
stage is a less important constraint. Furthermore, increasing the quality of the snapshots would also make
the parareal method more expensive, since a more accurate coarser model would be needed for producing
them.

Therefore, we focus here in improving the ROMs by increasing the number of input snapshots. As
detailed in Algorithm 6, the snapshots at each iteration k are the fine correction terms of the parareal
solution, i.e. ỹjn = Fδt(yjn, tn+1, tn), j = 0, . . . k, n = 0, . . . , N∆T . Similarly, the snapshots for reducing
the nonlinear terms of the equations are obtained by computing the nonlinear function on these quantities.
Note that the snapshots are taken exclusively at the parareal time instants tn, n = 0, . . . , N∆T defining
the time slices. However, each fine propagation over [tn, tn+1] computes intermediate solutions on the
time steps of the fine discretization comprised between tn and tn+1. This intermediate information is not
used neither in the classical nor in the ROM-based parareal methods.

We then propose to enrich the snapshots sets with a certain number of these intermediate solutions
obtained in the fine correction step of the parareal algorithm. Note that this modification does not require
any additional computational cost to compute the extra snapshots, since they are already available from
the fine prediction step of the algorithm. However, as discussed in Section 4.3.2, this enrichment leads
to more expensive model reduction procedures. We remark that an influence of the number of snapshots
has been observed by Iizuka and Ono (2018) in an application of the ROM-based parareal method, using
POD-only reduced-order models for solving linear problems. Results presented by the authors indicate
that convergence is accelerated when sufficiently large numbers of input snapshots are used for the model
reduction, but no discussion on this influence is proposed.

By reusing the notation introduced in the numerical examples of Section 4.2, we define a time step
∆̂T = αs∆T for taking the extra snapshots, with the enrichment rate αs ≤ 1 defined such that δt ≤
∆̂T ≤ ∆T and ∆̂T is an integer multiple of δt (see Figure 4.3).

Analogously to eq. (4.3) and (4.4), we define the sets
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tn tn+1

• • • • • • • • • •• • • • • • • • • •� �

∆̂T = αs∆T

∆T

•Extra snapshots
Figure 4.3: Definition of the time step ∆̂T for taking the extra snapshots in the enriched ROM-based
parareal method (red squares). Zoom on a time slice [tn, tn+1]. Blue dots and red squares indicate
time instants of the fine temporal discretization. For simplification, time instants of the coarse temporal
discretization are not represented.

Υk
n := {Fδt(yn, tn + lαs∆T, tn), l ∈ N∗ | tn + lαs∆T ∈ ]tn, tn+1[}, n = 0, . . . , N∆T − 1

containing the extra snapshots computed at parareal iteration k and defined in each time slice [tn, tn+1].
Then, the enriched snapshots sets, used respectively for the POD and the POD-EIM procedures, read

Y k := {ỹjn, j = 0, . . . , k; n = 0, . . . , N∆T }
N∆T−1⋃

n=0

k⋃

j=0

Υk
n

Ŷ k := {F (ỹjn), j = 0, . . . , k; n = 0, . . . , N∆T }
N∆T−1⋃

n=0

k⋃

j=0

F (Υk
n)

where F (Υk
n) := {F (v), v ∈ Υk

n}.
The modified ROM-based parareal algorithm is presented in Algorithm 7, in which the modifications

w.r.t. Algorithm 6 are highlighted.

4.3.2 Speedup estimation

Even if the proposed modification does not imply additional costs for obtaining the extra snapshots, it
increases the computational cost τS(k̂) for the model reduction (defined in Subsection 3.2.2), since larger
input datasets are used. More precisely, the bound (3.47) now reads

sROM-enriched-parareal(k̂) <
Np,sNδtMf

k̂
[
Nspaces

(
Mf k̂2α2

sN
2
∆T + m̂4

4 + m̂Mf

)
+ 2Nmatricesm̂2Mf

] (4.5)

The dependence of bound (4.5) on α2
s is a direct consequence of the quadratic dependence of the

POD on the number of snapshots. Moreover, the enrichment of the snapshots set can introduce indirect
additional costs for the ROM-based parareal method, since the dimension m̂ of the ROM, and conse-
quently the computational time τr(k̂) for solving it, are likely to be larger, as well as the time τB̂(k̂) for
computing the ROM matrices. Then, it is evident that one should keep the number of snapshots as small
as possible, i.e. αs should not be too small. A natural first choice is αs = 1/2, which means that only
one extra snapshot is taken at each time slice. In the next paragraphs, we present some numerical tests
for studying the influence of αs on the quality of the parareal solution and on the computational time.

4.3.3 Numerical examples

We illustrate and study the enriched ROM-based parareal method by considering Test cases 1 (pseudo-2D
without spatial coarsening) and 2 (2D) presented in Section 3.6 and whose configurations are presented
respectively in Tables 3.1 and 3.3. For each of them, we perform simulations using the ROM-based
parareal method with enrichment of the snapshots sets (Algorithm 7) for several values of αs ≤ 1. The
objective is to study the influence of the number of the snapshots on the quality of the solution and on
the computational time. We recall that αs = 1 corresponds to the non-enriched ROM-based parareal
method (Algorithm 6).
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1 Initialization: initial guess given by the coarse propagator:
2 y0

0 = y0

3 for n← 0 to N∆T − 1 do
4 y0

n+1 = G∆t(y
0
n, tn+1, tn)

5 end
6

7 n0 = 0
8 Iterations:
9 for k ← 0 to Nitermax − 1 do

10 Compute the fine term of the correction (in parallel):
11 for n← n0 to N∆T − 1 do

12 ỹkn+1 = Fδt(ykn, tn+1, tn)

13 Store intermediary solutions defined at each ∆̂T = αs∆t, δt ≤ ∆̂T ≤ ∆T :

Υk
n := {Fδt(yn, tn + lαs∆T, tn), l ∈ N∗ | tn + lαs∆T ∈ ]tn, tn+1[}

14 end
15

16 Find the first instant ñ ∈ {1, . . . , N∆T } not satisfying a convergence criterion based on ykn, ỹ
k
n

17 n0 ← ñ− 1
18

19 Define the snapshots sets:

20 Y k = {ỹjn, j = 0, . . . , k; n = 0, . . . , N∆T }
N∆T−1⋃

n=0

k⋃

j=0

Υk
n

21 Ŷ k = {F (ỹjn), j = 0, . . . , k; n = 0, . . . , N∆T }
N∆T−1⋃

n=0

k⋃

j=0

F
(
Υk
n

)

22

23 Compute the spaces and define the reduced model Fkr,δt:
24 Sk(Y k, εsv,linear) (using POD)

25 Ŝk(Ŷ k, εsv,nonlinear) (using POD-EIM)
26

27 Compute the coarse term of the correction and the final correction term(in parallel):
28 for n← n0 to N∆T − 1 do
29 ykn+1 = Fkr,δt(Pkykn, tn+1, tn)

30 y
k
n+1 = ỹkn+1 − ykn+1

31 end
32

33 Compute the coarse predictions and correct them to obtain the final solution in the iteration
(sequentially):

34 for n← n0 to N∆T − 1 do

35 yk+1
n+1 = Fkr,δt(Pkyk+1

n , tn+1, tn) + y
k
n+1

36 end
37

38 if all instants converged (ñ = N∆T ) then
39 break;
40 end

41 end
Algorithm 7: ROM-based parareal algorithm with enrichment of the snapshots sets used for the
model reduction. Modifications w.r.t. the ROM-based parareal method (Algorithm 6) are highlighted.
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Test case 1 (pseudo-2D without spatial coarsening)

As shown in Figure 3.13, the ROM-based parareal method with εsv,linear = εsv,nonlinear = 10−5 provides
a good convergence behaviour for Test case 1, being able to overcome the instabilities verified in the
classical method (Figure 3.10). Thus, we expect a faster convergence by enriching the snapshot sets.
We perform simulations with αs taking value in {1, 1/2, 1/4, 1/10, 1/200}. We remark that 1/200 is the
smallest possible value for αs, since pδt = ∆T/δt = 200, which means that snapshots are taken at every
time step of the fine discretization.

The evolution of the error per time instant and iteration (ekn) and the maximum error per iteration (ek)
are presented respectively in Figures 4.4 and 4.5. By using the simplest enrichment possible (αs = 1/2,
i.e. one extra snapshot per time slice), an important improvement of the solution is obtained in the first
two iterations, mainly in the first half of the temporal domain, for which the average error decreases from
10−3 (in the non-enriched case) to 10−5, approximately. We also observe a reduction of the maximum
error (which corresponds to the error at t = T in all simulations), of approximately one order of magnitude
in the second iteration. Less or no improvements are observed by taking smaller values of αs.
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Figure 4.4: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 10−5:
relative error ekn using the classical parareal method (top left) and the ROM-based one without (αs = 1,
top middle) and with enrichment of the snapshots sets for various values of αs < 1 (remaining figures).

As an illustration of the physical solution provided by the parareal methods, Figure 4.6 shows the
water depth at the final time of simulation along y = 10. The solution of the non-enriched ROM-based
parareal method is already very close to the reference one, and even better approximations are obtained
with the simplest enrichment (αs = 1/2).

Figure 4.7 shows the computational time and the speedup along iterations for each parareal simulation.
Note that the classical parareal method is much cheaper than the ROM-based methods, due to its simpler
formulation. Also, the drawback of using too small values of αs is clear, specially for αs = 1/10 and
αs = 1/200; in this last case, the parareal method is slower than the reference simulation from the
first iteration. It is confirmed in Table 4.1, showing the fraction of the computational time spent in
the model reduction procedures. With no enrichment (αs = 1), this fraction remains small in the first
iterations, whereas for αs ≤ 1/10, the model reduction rapidly corresponds to more than a half of the
total iteration time. Note that apparently inconsistent results are observed when comparing the first
iteration for αs = 1 and αs = 1/2, 1/4. The reason is that, for αs < 1, a computational structure is
created in the first iteration for storing the additional snapshots, thus increasing the total iteration time
and leading to a smaller fraction represented by the model reduction itself.
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Figure 4.5: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 10−5:
maximum error per iteration (ek) using the classical parareal method and the ROM-based one without
(αs = 1) and with enrichment of the snapshots sets for various values of αs < 1.
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Figure 4.6: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 10−5: final
water depth (t = T = 4) along y = 10. Blue, dashed curves represent the reference solution. Orange,
dashed curves represent the coarse solution (0-th parareal iteration). First and second rows: ROM-based
method with αs = 1 and αs = 1/2, respectively. First and second columns: first and second parareal
iterations, respectively. Iterations are plotted separately for a better visualization.
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Figure 4.7: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 10−5:
computational time Tpar(k) (left) and speedup s(k) (right) along iterations using the classical parareal
method and the ROM-based one without (αs = 1) and with enrichment of the snapshots sets for various
values of αs < 1. The horizontal, dashed lines correspond to the computational time of the reference
simulation (left) and a unitary speedup (right).

By joining the observations on the convergence and speedup behaviours of the performed simulations,
we can say that the best compromise is verified for the ROM-based method without enrichment (αs = 1),
if one looks to the maximum error per iteration, or with few extra snapshots per time slice (αs = 1/2 and
αs = 1/4), by considering the error evolution along the entire temporal domain. In these three cases, the
parareal simulation is slower than the reference simulation after few iterations (four for αs = 1 and three
for αs = 1/2 and αs = 1/4) , but, as shown in Figures 4.4, 4.5 and 4.6, a high-quality approximation
is obtained in the first iteration, corresponding to a speedup of approximately 3 for the non-enriched
case and 2 for the enriched ones. These speedups are considerably smaller than the one obtained by
the classical parareal method, which, however, is not able to improve the quality of the solution along
iterations.

The results presented and discussed above are obtained for a fixed pair of model reduction thresholds,
namely εsv,linear = εsv,nonlinear = 10−5. We remark that, in this relatively simple and one-dimensional
problem, in which the model reduction is able to well represent the reference solution, an even faster
convergence can be obtained by increasing the ROM dimension, i.e. by keeping a larger number of
POD basis functions. Figure 4.8 illustrates it, presenting the errors obtained by the ROM-based parareal
method with αs ∈ {1, 1/2, 1/4}, for εsv,linear = εsv,nonlinear = 0 (i.e. without truncation of the reduced
bases). We observe that for αs = 1/2, exact convergence (up to the chosen parareal convergence threshold
εTOL = 10−10) is obtained after one parareal iteration in the first half of the temporal domain; for
αs = 1/4, the first iteration provides almost exact convergence in the entire temporal domain. However,
this result cannot be generalized to more complex problems, e.g. Test case 2 and even Test case 1 solved
in larger temporal and spatial domains (as discussed in chapter 5), for which instabilities are observed
when relatively high-dimensional ROMs are considered.

Iteration k
αs 1 2 3 4 5
1 6.5% 4.1% 6.3% 7.9% 10.8%

1/2 3.4% 8.1% 12.6% 14.7% 22.2%
1/4 5.9% 15.1% 27.6% 31.0% 39.6%
1/10 15.6% 35.7% 52.8% 54.9% 70.0%
1/200 67.4% 76.4% 78.5% 82.5% 80.1%

Table 4.1: Test case 1 (pseudo-2D without spatial coarsening): fraction of the computational time spent
on the model reduction procedures w.r.t. the total simulation time in the ROM-based parareal method,
for each iteration and various values of αs.
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Figure 4.8: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 0: relative
error ekn using the ROM-based parareal method without (αs = 1, left) and with enrichment of the
snapshots sets, for αs = 1/2 (middle) and αs = 1/4 (right). The legend is omitted for the sake of clarity
and is the same as in Figure 4.4. Exact convergence is obtained in the case αs = 1/4 after two iterations.

Test case 2 (2D)

As a last illustration of the ROM-based parareal method with enrichment of the snapshots sets, we
consider the two-dimensional test case presented in the previous chapter, with εsv,linear = εsv,nonlinear =
10−4. As shown in Figure 3.19, the ROM-based parareal method is unstable under these configurations,
whereas the classical method (Figure 3.12) presents a more stable behaviour. We run the enriched method
with αs taking value in {1, 1/2, 1/5, 1/10, 1/250}, with the last one being the smallest possible value for
αs, since pδt = ∆T/δt = 250.

The errors ekn and ek for each parareal simulation are presented respectively in Figure 4.9 and 4.10.
We observe that the enrichment of the snapshots sets is able to stabilize the parareal solution, such that
the increasing error within iterations is no longer observed for αs ≤ 1/2, and mainly for αs ≤ 1/5. For
αs = 1/2, a less important unstable behaviour is still present in the very last time slices in the third
iteration, but it is further controlled. No improvement is observed for αs < 1/5, with a slightly lower
performance for αs ≥ 1/10, possibly indicating that the additional information captured by the ROM
does not improve its quality. We also notice that all ROM-based simulations, including for αs = 1,
provide much smaller errors, compared to the classical method, in the first half of the simulation. Since
the initial water depth is a Gaussian curve, the solution in the beginning of the simulation is relatively
smooth and is well captured by the ROMs. Larger errors are observed in the end of the simulation (when
the solution presents a more complex profile) and are relatively close to the errors of the classical method;
this is evident in Figure 4.10, since the maximum error per iteration corresponds to the error at the final
instant t = T in all simulations.

The physical results are illustrated in Figure 4.11 with the final water depth along iterations for
the non-enriched ROM-based method and the one with αs = 1/5. In the former case, a slightly better
approximation is obtained in the first iteration, but instabilities arise in the following ones, confirming
the error behavior presented in Figures 4.9. These instabilities are not present in the enriched simulation,
with a very close approximation to the reference solution.

The speedup for each simulation along iterations is presented in Figure 4.12. We first notice that the
speedups are globally larger than in Test case 1 (Figure 4.7), which, accordingly to bounds (3.42) and
(3.41), is due to the more expensive fine propagator used in this two-dimensional test case. As before,
the classical parareal method is much cheaper than the ROM-based one, and the latter only provides
limited speedups. A good but still relatively rough approximation of the reference solution is provided
after one iteration of the non-enriched method, with a speedup close to 5. More accurate solutions require
more iterations and the use of αs < 1. For example, three iterations with αs = 1/5 (whose solution is
illustrated in Figure 4.11) provide a speedup no larger than 2. Since the classical parareal method is
stable in this test case, it is more interesting than the ROM-based one: for example, its maximum error
e5 at the fifth iteration is close to the error e3 at the third iteration of the ROM-based method with
αs = 1/5 (see Figure 4.10), but with a speedup factor of approximately 4, i.e. nearly two times faster.
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Figure 4.9: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: relative error ekn using the classical
parareal method (top left) and the ROM-based one without (αs = 1, top middle) and with enrichment
of the snapshots sets for various values of αs < 1 (remaining figures). The legend is omitted for the sake
of clarity and is the same as in Figure 4.4.
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Figure 4.10: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: maximum error per iteration (ek)
using the classical parareal method and the ROM-based one without (αs = 1) and with enrichment of
the snapshots sets for various values of αs < 1.
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Figure 4.11: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: final water depth (t = T = 5) along
y = 50. Blue, dashed curves represent the reference solution. Orange, dashed curves represent the coarse
solution (0-th parareal iteration). First and second rows: ROM-based method with αs = 1 and αs = 1/5,
respectively. First and second columns: first and third parareal iterations, respectively. Iterations are
plotted separately for a better visualization.
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Figure 4.12: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: speedup s(k) along iterations using
the classical parareal method and the ROM-based one without (αs = 1) and with enrichment of the
snapshots sets for various values of αs < 1.
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4.4 A principal interval decomposition (PID) approach

In this section, we propose the introduction of the method known as Principal Interval Decomposition
(PID) in the ROM-based parareal method. Whereas the enrichment approach proposed in the previous
section aims to construct input snapshots sets more representative of the fine dynamics problem, this
PID approach focuses in constructing ROMs more capable of capturing local phenomena in space and
time.

As pointed out by Borggaard et al. (2016), good ROM representations of smooth flows can be obtained
using very few POD modes; however, this model-order reduction technique can be ineffective for approx-
imating highly non-stationary, nonlinear problems, since the POD modes are a global representation of
the solution and are associated to an energy distributed over the entire domain. Thus, local in time and
space features of the flow can be misrepresented by the POD ROM. We remark that these difficulties may
arise in the applications envisaged in this thesis (simulations of urban floods), specially when complex
urban geometries are considered. Small scale phenomena such as discontinuities of the flow velocity due
to the reflection on obstacles may constitute a challenge for the model reduction.

4.4.1 The principal interval decomposition and extension to the POD-EIM

An alternative for obtaining better representation of these local phenomena is proposed by Ijzerman (2000)
under the name of principal interval decomposition (PID). It consists in subdividing the temporal domain
in a given number of non-overlapping time windows, and a POD ROM is formulated in each one of them,
using local-in-time snapshots. In its original formulation, a single POD basis function (the dominant
mode) is defined per time interval and the lengths of the intervals are chosen adaptively for attaining a
prescribed accuracy. Extensions allowing to use more POD modes per interval and using modes from
neighbours intervals are proposed by Borggaard et al. (2007). A simpler and more computationally
efficient approach, using a predetermined number of homogeneous time windows, is explored by San and
Borggaard (2015). This last approach is also implemented by Zokagoa and Soulaimani (2018) for solving
the nonlinear SWE, with the nonlinearities being approximated using statistical mean values.

We describe the principal interval decomposition following its presentation by San and Borggaard
(2015), and we extend its main idea to the POD-EIM framework for treating nonlinear problems. We
call this extension hereafter as PID-EIM ROM. We divide the temporal domain [0, T ] into NPID non-
overlapping windows T(i) := [t̃i−1, t̃i], i = 1, . . . , NPID, to which we refer as PID windows, with t̃0 = 0
and t̃NPID = T . For simplicity and already aiming the application of PID-EIM to the parareal method,
we suppose that the extremities of the windows are parareal time instants, associated to the time step
∆T , i.e.

{t̃i, i = 0 . . . , NPID} ⊂ {ti, i = 0, . . . , N∆T } (4.6)

Figure 4.13 illustrates the definition of the PID windows.

t̃0 = 0 t̃1 t̃2 t̃NPID−2 t̃NPID−1 t̃NPID
= T

T(1) T(2) T(NPID−1) T(NPID)

∆T

t̃i−1 t̃i

• •• • ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• • • • • • •
∆T

T(i)

Figure 4.13: Definition of the PID time windows. Top: representation of several windows, with only
the parareal time instants (green, vertical ticks, defining the parareal time slices) represented. Bottom:
zoom over a time window containing three time slices, also showing the fine (blue and orange bullets)
and coarse (large, orange bullets) temporal discretizations.
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Let Y, Ŷ ∈ RMf×ns be the snapshots matrices (respectively of the solution and of the nonlinear term
of the problem) containing in their columns ns snapshots defined along the entire temporal domain, at

times t̂i ∈ [0, T ], i = 1, . . . , ns. For each time interval T(i) we define the snapshot submatrices Y (i), Ŷ (i) ∈
RMf×n(i)

s defined by keeping the n
(i)
s columns respectively of Y and Ŷ that correspond to times t̂i ∈ T(i).

The POD procedure is then applied for each Y (i) for obtaining the reduced subspaces S(i) spanned by

V
(i)
qi := [φ

(i)
1 , . . . ,φ(i)

qi ] ∈ RMf×qi with dimension qi � Mf . Similarly, the POD-EIM applied to Ŷ (i)

produces a subspace Ŝ(i) spanned by V̂
(i)
mi := [φ̂

(i)

1 , . . . , φ̂
(i)

mi ] ∈ RMf×mi with dimension mi � Mf , and

a matrix P(i) ∈ RMf×mi whose columns are the canonical vectors of RMf corresponding to the chosen
spatial interpolation points. Then, analogously to (3.36), the local ROMs for (3.25), defined in each
window T(i), read

d

dt
ỹ(t) = (V (i)

qi )TAV (i)
qi ỹ(t)+(V (i)

qi )T V̂ (i)
mi

(
(P̂ (i))T V̂ (i)

mi

)−1

(P̂ (i))TF (V (i)
qi ỹ(t)), i = 1, . . . , NLTP (4.7)

We denote by F (i)
r,δt the reduced propagator defined by (4.7). The propagation of a vector y ∈ RMf

by F (i)
r,δt between two times t and s, with s > t, is defined if [t, s] ⊂ T(i) and the propagated solution is

denoted by

F (i)
r,δt(P

(i)y, s, t) (4.8)

where P(i) is a projection operator onto the subspace S(i) defined in T(i). As in (3.37), it is implicit, in
notation (4.8), that the propagation consists in projecting y onto S(i) for obtaining ỹ, propagating ỹ
using (4.7) and then coming back to the physical space.

Therefore, the PID-EIM defined in the entire temporal domain [0, T ] reads

Fr,δt(y, s, t) =

NPID∑

i=0

1{[t,s]⊂T(i)}F (i)
r,δt(y, s, t) (4.9)

if [t, s] overlaps only one PID window. If it is not the case, then the propagation along each subinterval
of [t, s] is performed using the reduced propagator associated to the time window containing the subin-
terval. Special care must be taken at the intersecting times between the windows. If ỹi denotes the

reduced solution defined at t̃i = T(i)
⋃
T(i+1) and provided by a propagation in T(i) using F (i)

r,δt, then the

initial solution for the propagation in T(i+1) using F (i+1)
r,δt reads (V (i+1))TV (i)ỹi (which corresponds to a

projection from S(i) onto the physical space, followed by a projection onto S(i+1)).

4.4.2 A PID-ROM-based parareal method

We investigate here the use of the PID-EIM approach in the parareal method. At each iteration, we define,
for each i = 1, . . . , NPID, the snapshot sets Y (i),k and Ŷ (i),k as submatrices of Y k and Ŷ k, respectively,

which are used for computing the local reduced spaces S(i),k and Ŝ(i),k and defining the local ROM F (i),k
r,δt .

Under assumption (4.6), the time slices [tn, tn+1], n = 0, . . . , N∆T , intersect only one PID time window
each and the ROM at iteration k and in [0, T ] is defined, following (4.9), as

Fkr,δt(y, tn+1, tn) =

NPID∑

i=0

1{[tn+1,tn]⊂T(i)}F (i),k
r,δt (y, tn+1, tn)

The proposed method, to which refer as PID-ROM parareal method, is presented in details in Algo-
rithm 8, in which the modifications w.r.t. Algorithm 6 are highlighted.

4.4.3 Speedup estimation

As a major feature, the formulation of the subspaces S(i) in the PID model reduction procedure has a
smaller computational cost compared to the full POD applied over the entire temporal domain [0, T ], due
to the superlinear cost of the SVD w.r.t. the number of snapshots, as discussed in Section 3.2.2. Indeed,
in the case of the MKL-LAPACK function dgesvd, considered in this work and whose application to a
matrix in Rq×n has a complexity O(qn2 + n3) (see Appendix B.3), the cost of the full POD applied to a
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1 Initialization: initial guess given by the coarse propagator:
2 y0

0 = y0

3 for n← 0 to N∆T − 1 do
4 y0

n+1 = G∆t(y
0
n, tn+1, tn)

5 end
6

7 n0 = 0
8 Iterations:
9 for k ← 0 to Nitermax − 1 do

10 Compute the fine term of the correction (in parallel):
11 for n← n0 to N∆T − 1 do

12 ỹkn+1 = Fδt(ykn, tn+1, tn)
13 end
14

15 Find the first instant ñ ∈ {1, . . . , N∆T } not satisfying a convergence criterion based on ykn, ỹ
k
n

16 n0 ← ñ− 1
17

18 for i← 1 to NPID do
19 Define the snapshots sets:

20 Y (i),k = {ỹjn, j = 0, . . . , k; n | tn ∈ T(i)}
21 Ŷ (i),k = {F (ỹjn), j = 0, . . . , k; n | tn ∈ T(i)}
22

23 Compute the local spaces and define the local reduced model F (i),k
r,δt :

24 S(i),k(Y (i),k, εsv,linear) (using POD)

25 Ŝ(i),k(Ŷ (i),k, εsv,nonlinear) (using POD-EIM)

26

27 end
28 Compute the coarse term of the correction and the final correction term(in parallel):
29 for n← n0 to N∆T − 1 do
30 ykn+1 = Fkr,δt(Pkykn, tn+1, tn)

31 y
k
n+1 = ỹkn+1 − ykn+1

32 end
33

34 Compute the coarse predictions and correct them to obtain the final solution in the iteration
(sequentially):

35 for n← n0 to N∆T − 1 do

36 yk+1
n+1 = Fkr,δt(Pkyk+1

n , tn+1, tn) + y
k
n+1

37 end
38

39 if all instants converged (ñ = N∆T ) then
40 break;
41 end

42 end
Algorithm 8: PID-ROM-based parareal algorithm. Modifications w.r.t. the ROM-based parareal
method (Algorithm 6) are highlighted.
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snapshot matrix in RMf×ns is proportional to Mfn
2
s+n3

s. By supposing that all NPID time windows have
the same length, then the PID applied to NPID matrices in RMf×(ns/NPID) has a complexity proportional
to NPID

[
Mf (ns/NPID)2 + (ns/NPID)3

]
= Mfn

2
s/NPID + n3

s/N
2
PID < Mfn

2
s + n3

s.

Therefore, in the PID-EIM approach, the computational time τS(k̂) for computing NPID subspaces
using the POD-EIM approach can be estimated, under the same hypotheses considered for deriving (3.45),
by

τS(k̂) = NPIDO
(
Mf k̂

2

(
N∆T + 1

NPID

)2

+ k̂3(N∆T + 1)3 +

m̂∑

i=2

i3 + m̂Mf

)

= O
(
Mf k̂

2N2
∆T

NPID
+NPID

(
m̂4

4
+ m̂Mf

)) (4.10)

where no assumption is made on the dimension m̂ of the subspaces in function of the number and size
of the NPID windows. Therefore, the computation of the subspaces in the PID-EIM is likely to be less
expensive due to the POD step (the first term in (4.10)), but more expensive due to the DEIM step (the
second term in (4.10)).

Moreover, in each PID time window and each parareal iteration, a full set of Nmatrices needs to be
computed, thus totalizing NPIDNmatrices and leading to a larger computational cost. Therefore, bound
(3.47), estimated in Section 3.4.4 in the ROM-based parareal framework, is rewritten under the PID-EIM
approach as

sROM-PID-parareal(k̂) <
Np,sNδtMf

k̂
[
Nspaces

(
Mf k̂2N2

∆T

NPID
+NPID

(
m̂4

4 + m̂Mf

))
+ 2NPIDNmatricesm̂2Mf

] (4.11)

The influence of the formulation of several subspaces and ROM matrices on the computational time
of the PID-ROM parareal is assessed in the following paragraphs using some numerical examples.

4.4.4 Numerical examples

We illustrate the PID-ROM-based parareal method by considering the PID-approach as the only im-
provement for the model reduction (i.e. we consider αs = 1 for not enriching the input snapshot sets).
For each test case, we perform simulations with various numbers of time windows.

Test case 1 (pseudo-2D without spatial coarsening)

For Test case 1, we perform simulations with NPID taking value in {1, 2, 4, 10, 20}, the first one of the
these values being equivalent to the ROM-based method and the last one being the largest value possible
for NPID, since each PID window has the length of one time slice ∆T . For each value of NPID, all time
windows have the same length.

The evolution of the errors ekn and ek is presented respectively in Figures 4.14 and 4.15. It is clear
that the PID approach, with NPID > 1, degrades the performance of the ROM-based parareal method.
Indeed, the method with NPID = 1 behaves well in this test case because the model reduction is able to
properly represent the dynamics of the global, fine solution, which consists of a relatively simple profile.
By formulating local-in-time ROMs to be used for updating the global solution at each parareal iteration,
this good global representation is no longer observed. Indeed, we observe in Figure 4.14 that the first time
window in all simulations presents a similar behaviour, with larger errors near the end of the window
(which is also observed for NPID = 1, within the entire temporal domain). Therefore, less accurate
solutions are used as initial conditions for the model reduction in the next window, such that different
error behaviours are observed along the temporal domain.

Test case 2 (2D)

We now consider Test case 2 with εsv,linear = εsv,nonlinear = 10−4, which has an unstable behaviour
in the ROM-based parareal method, as illustrated in Figure 3.19. As for Test case 1, we consider
NPID ∈ {1, 2, 4, 10, 20}, with homogeneous time windows in each case. After a deterioration of the
quality of the solution (compared to NPID = 1) in the first iteration, the instabilities in the end of the
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Figure 4.14: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 10−5:
relative error ekn using the PID-ROM-based parareal method for various numbers of PID windows.
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Figure 4.15: Test case 1 (pseudo-2D without spatial coarsening) with εsv,linear = εsv,nonlinear = 10−5:
maximum error per iteration (ek) using the PID-ROM-based parareal method for various numbers of
PID windows.

temporal domain are less important, and smaller errors are obtained, as presented in Figure 4.16. The
solution of Test case 2 presents stronger variations when compared to Test case 1, being more challenging
for the model reduction, and some benefits are observed by formulation local-in-time ROMs. However, as
shown in Figure 4.17, the error decrease is still small for all simulations, and this proposed PID approach
is considerably less performing than the enrichment of the input snapshots sets (compare with Figure
4.10).

We use this second test case for debriefing and evaluating the PID-ROM parareal method in terms
of computational time. The speedup for each simulation is presented in Figure 4.18. The accelerations
for NPID = 1, 2, 4 are quite close, but important slowdowns are observed for larger number of PID
windows. This behaviour can be explained by the results shown in Table 4.2, which details, for the first
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and fifth iterations of each simulation, the fraction of the total iteration times spent in computing the
ROM spaces and ROM matrices. The computational time for obtaining the reduced spaces presents
only a slight increasing in function of NPID, indicating that the compromise between the positive and
negative effects of the PID approach respectively on the costs of the POD and the DEIM (see eq. (4.11))
remains quite balanced. On the other hand, we observe an important increase of the computational
time for obtaining the ROM matrices, exceeding 20% and 30% of the iteration time for NPID = 10 and
NPID = 20, respectively. We recall that a full set of ROM matrices need to be computed for each PID
window and each parareal iteration.
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Figure 4.16: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: relative error ekn using the PID-ROM-
based parareal method for various numbers of PID windows.
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Figure 4.17: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: maximum error per iteration (ek)
using the PID-ROM-based parareal method for various numbers of PID windows.
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Figure 4.18: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: speedup s(k) along iterations using the
PID-ROM-based parareal method for various numbers of PID windows. The red, dashed line corresponds
to an unitary speedup.

Iteration k = 1 Iteration k = 5
NPID Spaces Matrices Spaces Matrices

1 1.5% 1.8% 10.1% 3.4%
2 1.9% 6.0% 12.2% 7.8%
4 1.7% 10.1% 10.6% 13.7%
10 2.1% 20.7% 12.2% 24.8%
20 2.2% 32.9% 14.0% 37.4%

Table 4.2: Test case 2 (2D) with εsv,linear = εsv,nonlinear = 10−4: fraction of the computational time spent
for computing the ROM spaces and ROM matrices w.r.t. the total iteration time at the first and fifth
iterations, using the PID-ROM-based parareal method for various numbers of PID windows.

4.5 An adaptive approach

In this section, we consider an adaptive approach recently introduced by Maday and Mula (2020) in the
framework of the classical parareal method and we explore its application to the ROM-based algorithm.
This approach is proposed by the authors to overcome the major limitation, in terms of parallel efficiency,
of the parareal algorithm: the cost of the fine solver. Indeed, since the fine propagator used along parareal
iterations has the same accuracy as the reference one, the fine computation at each iteration using Np
processors has, in an ideal case, a cost 1/Np times smaller than the cost of the reference solution. This issue
is evident in bound (3.43), which indicates that the numerical speedup after k parareal iterations decreases
by a factor 1/k. Therefore, the adaptive algorithm consists in using an adaptive fine propagator, with
an increasing accuracy (and thus an increasing cost) across iterations, instead of the expensive, reference
propagator with a fixed accuracy. In this section, we briefly describe this approach and its properties,
following its presentation by Maday and Mula (2020), before proposing its application to the ROM-based
parareal algorithm.

The adaptive parareal method

Let [E(y, tn+1, tn); ζ] be a generic propagator for solving a time-dependent problem, say (3.6), and defined
by an accuracy ζ, in the sense that

‖Eexact(y, tn+1, tn)− [E(y, tn+1, tn); ζ]‖ ≤ ζ(tn+1 − tn)(1 + ‖y‖) (4.12)

where ζ is the time step in the case of an Euler scheme and Eexact(y, tn+1, tn) is the exact propagator
for (3.6). By defining the accuracies of the fine and the coarse propagators respectively as εFδt and εG∆t

,
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definition (4.12) yields Fδt(y, tn+1, tn) = [E(y, tn+1, tn); εFδt ] and G∆t(y, tn+1, tn) = [E(y, tn+1, tn); εG∆t
].

The idea of the adaptive parareal method is to replace (3.8) by the predictor-corrector iteration

yk+1
n+1 = G∆t(y

k+1
n , tn+1, tn)︸ ︷︷ ︸

Prediction

+ [E(y, tn+1, tn); ζkn]− G∆t(y
k
n, tn+1, tn)︸ ︷︷ ︸

Correction

, n = 0, . . . , N∆T − 1 (4.13)

i.e. the fine, reference model is replaced by a propagator with an accuracy ζkn to be chosen adaptively and
depending on the iteration and time of simulation. If ζkn ≥ εFδt , then this new propagator is less expensive
than the reference one. By using propagators with an increasing accuracy across iterations (i.e. with a
decreasing ζkn), a substantial reduction of the computational cost is obtained in early iterations, for which
a too precise simulation may not be necessary since the parareal solution itself is relatively inaccurate.
Maday and Mula (2020) show that the adaptive approach, in an ideal framework, has always a larger
parallel efficiency (defined as the ratio between the speedup and the number of parallel processors) than
the classical one and independent of the number of iterations. Thus, the main obstacle for the parallel
efficiency is no longer the cost of the fine, reference propagator, but that of the coarse one.

A question that naturally arises when using (4.13) is how to choose the accuracies ζkn. Maday and Mula
(2020) derive an expression for the maximum ζkn that delivers at iteration k a solution whose accuracy is
close to the one delivered by an idealized parareal method that uses the exact propagator Eexact as fine
one. However, since the derived expression is based on theoretical assumptions on the propagators, it
was verified that it does not give good results when used in practice. As pointed out by the authors, the
choice of the adaptive accuracies should rely on a posteriori error estimators. However, they tested, with
satisfactory results, a simpler and predetermined formulation

ζkn =

{
ε

1− k+1

k̂

G ε
k+1

k̂

Fδt , k < k̂

εFδt , k ≥ k̂
(4.14)

where k̂ is the number of iterations for the convergence, to a given target accuracy εFδt , of the classical
parareal method using Fδt as fine propagator in all iterations.

4.5.1 An adaptive ROM-based parareal method

We propose to use a similar approach in the framework of the ROM-based parareal method. However,
in contrast to (4.14), in which a new fine propagator is used at each iteration, we consider a simplified
scenario where there exists a fixed number Nad of fine propagators, each one defined by a time and space
discretizations. We propose this approach having in mind the application envisaged in this work: this
scenario is likely to be met in the simulation of urban floods, where the mesh size and the time step are
usually linked by stability conditions and the mesh generation may be laborious, such that few different
propagators may be available.

Let F̂Nad−1
δtNad−1

, F̂Nad−2
δtNad−2

, . . . , F̂0
δt0

be the Nad fine propagators, defined with increasing accuracy such

that F̂0
δt0

= Fδt. The propagator F̂ jδtj has an homogeneous time step δtj and a mesh size hj , j =
0, . . . Nad − 1. Since Nad may be smaller than the number Nitermax of parareal iterations, each propa-
gator may be used in more than one iteration. Then, we define a function J : {0, . . . , Nitermax − 1} →
{0, . . . , Nad − 1} indicating the fine propagator to be used in each iteration. Thus, the iteration of the
proposed approach (which we call hereafter as adaptive ROM-based parareal method) reads

yk+1
n+1 = F̂k,J(k)

r,δtJ(k)
(PJ(k)yk+1

n , tn+1, tn)
︸ ︷︷ ︸

Prediction

+ F̂J(k)
δtJ(k)

(ykn−1)− F̂k,J(k)
r,δtJ(k)

(PJ(k)ykn, tn+1, tn)
︸ ︷︷ ︸

Correction

, n = 0, . . . , N∆T−1

(4.15)

where F̂k,J(k)
r,δt is a ROM approximating F̂J(k)

δtJ(k)
and PJ(k) is the projection operator into the reduced

subspace defining F̂k,J(k)
r,δt .

The ROMs are formulated as in Algorithm (6), using the POD and POD-EIM procedures applied
respectively to snapshots of the solution and snapshots of the nonlinear term. The only difference concerns
the number of snapshots in each iteration. As discussed in Section 3.4.3, the idea behind the definition
of the snapshot sets Y k and Ŷ k, which contain respectively the fine evolution of the parareal solutions
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along each time slice (ỹjn, j = 0, . . . , k; n = 0, . . . , N∆T , with ỹjn = Fδt(yjn−1)), and the nonlinear term

computed on these quantities (F (ỹjn), j = 0, . . . , k;n = 0, . . . , N∆T ), is to represent the dynamics of
the fine, reference model. In the adaptive approach, the snapshots obtained in previous iterations using
coarser intermediate models may not be a good representation of the dynamics of the current model

F̂J(k)
δtJ(k)

used in iteration k. Therefore, the ROM F̂k,J(k)
r,δtJ(k)

that approximates F̂J(k)
δtJ(k)

is formulated using

only the snapshots obtained in the iterations in which F̂J(k)
δtJ(k)

is used. Then, we define the snapshots sets

for each iteration k as:

Y kad = {ỹjn, j | 0 ≤ j ≤ k and J(j) = J(k); n = 0, . . . , N∆T }
Ŷ kad = {F (ỹjn), j | 0 ≤ j ≤ k and J(j) = J(k); n = 0, . . . , N∆T }

(4.16)

Therefore, since the number of snapshots used for the model reduction is smaller than in the non-
adaptive ROM-based parareal method, we can also expect an improvement of the speedup due to the
less expensive model reduction procedures.

As a last remark in the definition of the adaptive algorithm, note that the property ykn = yref,n ∀n ≤ k
is no longer valid, i.e. the adaptive parareal method (both in the classical and ROM-based frameworks)
does not ensure exact convergence for one time slice per iteration, since the reference model is not used
in all iterations. Indeed, this property is verified only in the iterations using F̂0

δt0
= Fδt:

ykn = yref,n ∀n ≤ k − k̃

where k̃ := min{0 ≤ k ≤ Nitermax | J(k) = 0} is the first iteration using F̂0
δt0

= Fδt.

Definition of the fine models used in each iteration

A criterion must be chosen for defining the function J(k), i.e. for deciding whether to move from one fine
propagator to the next (a more refined one). In the same spirit of (3.16) and under the same assumptions,
we write

∥∥yref,n − ykn
∥∥ ≤

∥∥yref,n −Fδt(ykn−1, tn, tn−1)
∥∥+

∥∥∥F̂J(k)
δtJ(k)

(ykn−1, tn, tn−1)− ykn
∥∥∥

+
∥∥∥Fδt(ykn−1, tn, tn−1)− F̂J(k)

δtJ(k)
(ykn−1, tn, tn−1)

∥∥∥

≤
∥∥Fδt(yref,n−1, tn, tn−1)−Fδt(ykn−1, tn, tn+1)

∥∥+
∥∥∥F̂J(k)

δtJ(k)
(ykn−1, tn, tn−1)− ykn

∥∥∥

+
∥∥∥Fδt(ykn−1, tn, tn−1)− F̂J(k)

δtJ(k)
(ykn−1, tn, tn−1)

∥∥∥

≤ L
∥∥yref,n−1 − ykn−1

∥∥+
∥∥∥ỹkn − ykn

∥∥∥+ (δt+ δtJ(k))∆T (1 +
∥∥ykn−1

∥∥)

≤
n∑

j=1

Ln−j
∥∥∥ỹkj − ykj

∥∥∥+ (δt+ δtJ(k))∆T

n∑

j=0

Ln−j(1 +
∥∥ykj−1

∥∥)

(4.17)

where we used (4.12) for estimating

∥∥∥Fδt(ykn−1, tn, tn−1)− F̂J(k)
δtJ(k)

(ykn−1, tn, tn−1)
∥∥∥ ≤

∥∥Fδt(ykn−1, tn, tn−1)− Eexact(y
k
n−1, tn+1, tn)

∥∥

+
∥∥∥Eexact(y

k
n−1, tn+1, tn)− F̂J(k)

δtJ(k)
(ykn−1, tn, tn−1)

∥∥∥
≤ δt∆T (1 +

∥∥ykn−1

∥∥) + δt∆T (1 +
∥∥ykn−1

∥∥)

= (δt+ δtJ(k))∆T (1 +
∥∥ykn−1

∥∥)

In the last line of (4.17), the first term is a summation of the differences between the parareal
solutions ykj and the fine propagation along the previous time slice using the intermediate fine model

F̂J(k)
δtJ(k)

(ỹkj = F̂J(k)
δtJ(k)

(ykj−1, tj , tj−1)). The second term is an estimation of the error between F̂J(k)
δtJ(k)

and the reference propagator Fδt. In other words, the error in the adaptive parareal method w.r.t. the
reference solution can be decomposed in a term accounting for the error in approximating the solution of

F̂J(k)
δtJ(k)

and a second term intrinsic to the use of F̂J(k)
δtJ(k)

instead of Fδt.
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Therefore, as in (3.15), we propose an adaptive criterion based on the residual
∥∥∥ỹkn − ykn

∥∥∥ between

the parareal solution and the fine propagation using the intermediate fine propagator F̂J(k)
δtJ(k)

:

rk := max
0<n≤N∆t

∥∥∥ỹkn − ykn
∥∥∥

‖ykn‖
≤ εad (4.18)

for a small εad, which means that the transition between one fine propagator to the next (finer) one is
performed when a good approximation to the former is obtained. Then, the function J(k) can be defined
as

J(0) = Nad − 1;

J(k) = max{0, J(k − 1)− θk−1}, k = 1, . . . , Nitermax−1

(4.19)

where

θk :=

{
1, if rk ≤ εad or k > N

J(k)
itermax − 1

0, else

and N
J(k)
itermax−1 is a maximum iteration index in which F̂J(k)

δtJ(k)
should be used, being defined in situations

in which the residual rk decreases slowly.
The resulting adaptive ROM-based parareal method is presented in details in Algorithm 9. It can be

straightforwardly simplified to the framework of the classical parareal method.

4.5.2 Speedup estimation

Contrary to the snapshot enrichment and PID approaches, presented respectively in Sections 4.3 and 4.4
and whose impact on the speedup concerns mainly the model reduction procedure (thus modifying bound
(3.44)), the adaptive approach has influence on several terms of the computational time of the parareal
iteration (eq. (3.39)).

In order to make the speedup estimation more tangible, we formulate some hypothesis on the fine
models F̂ iδti , i = 0, . . . , Nad − 1. We suppose that a constant factor 0 < β < 1 links the temporal
discretizations of two consecutive fine models, i.e. δti = βδti+1, i = 0, . . . , Nad − 2, such that their
respective numbers of time steps satisfy Nδti + 1 = (Nδti+1 + 1)/β, thus Nδti ≈ Nδti+1/β. Similarly,
the spatial mesh sizes are linked by a constant factor 0 < γ ≤ 1: hi = γhi+1, i = 0, . . . , Nad − 2 (in a
Cartesian mesh, one would have δxi = γδxi+1 and δy = γδyi+1). In a two-dimensional mesh, it implies
the approximate relation Mf i ≈Mf i+1/γ

2 between the numbers of mesh cells. Therefore, the dimensions
of each intermediate fine propagator are linked to the reference one by

Nδti ≈ βiNδt0 = βiNδt, τf i ≈ γ2iτf 0 = γ2iτf , i = 0, . . . , Nad − 1 (4.20)

where τf i = O(Mf i) is the computational time necessary for advancing one time step δti using F̂ iδti .
Note that keeping the same CFL number along the fine models means that β = γ. Finally, we suppose
that each fine model F̂ iδti is used along k̂i iterations of the parareal simulation, with

∑Nad−1
i=0 k̂i =: k̂.

Under these assumptions, the major improvement of the parareal speedup concerns bound (3.43), i.e.
the one related to the parallel computation of the fine correction term. Indeed, the fine parallel step at
the k−th parareal iteration reads, in the adaptive approach,

T kcorr,f =
N∆T

Np

NδtJ(k)

N∆T
τf J(k) = βJ(k)γ2J(k)Nδt

Np
τf <

Nδt
Np

τf (4.21)

Similarly, the parallel computation of the coarse correction term (given by the reduced model) in
iteration k takes the computational time

T kcorr,c =
N∆T

Np

NδtJ(k)

N∆T
τr(k) = βJ(k)Nδt

Np
τr(k) <

Nδt
Np

τr(k) (4.22)

Using (4.21) and (4.22) in a similar reasoning for deriving (3.43), and supposing that βJ(k)τr(k) �
βJ(k)γ2J(k)τf (thus T kcorr,c � T kcorr,f), we obtain the new bound associated to the correction step of the
parareal algorithm:
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1 Initialization: initial guess given by the coarse propagator:
2 y0

0 = y0

3 for n← 0 to NN∆T − 1 do
4 y0

n+1 = G∆t(y
0
n, tn+1, tn)

5 end
6

7 n0 = 0
8 J(0) = Nad − 1
9 Iterations:

10 for k ← 0 to Nitermax − 1 do
11 Compute the fine term of the correction (in parallel):
12 for n← n0 to N∆T − 1 do

13 ỹkn+1 = F̂J(k)
δtJ(k)

(ykn, tn+1, tn)

14 end
15

16 Find the first instant ñ ∈ {1, . . . , N∆t} not satisfying a convergence criterion based on ykn, ỹ
k
n

17 n0 ← ñ− 1
18

19 Define the snapshots sets:

20 Y k
ad = {ỹjn, j s.t. 0 ≤ j ≤ k and J(j) = J(k); n = 0, . . . , N∆T }

21 Ŷ
k

ad = {F (ỹjn), j s.t. 0 ≤ j ≤ k and J(j) = J(k); n = 0, . . . , N∆T }
22

23 Compute the spaces and define the reduced model F̂k,J(k)
r,δt :

24 Sk(Y k
ad, εsv,linear) (using POD)

25 Ŝk(Ŷ
k

ad, εsv,nonlinear) (using POD-DEIM)
26

27 Compute the coarse term of the correction and the final correction term(in parallel):
28 for n← n0 to N∆T − 1 do

29 ykn+1 = F̂k,J(k)
r,δt (Pkykn, tn+1, tn)

30 y
k
n+1 = ỹkn+1 − ykn+1

31 end
32

33 Compute the coarse predictions and correct them to obtain the final solution in the iteration
(sequentially):

34 for n← n0 to N∆T − 1 do

35 yk+1
n+1 = F̂k,J(k)

r,δt (Pkyk+1
n , tn+1, tn) + y

k
n+1

36 end
37

38 Decide whether the transition to the next fine propagator will be made

39 if J(k) > 0 and ( rk ≤ εad or k + 1 > N
J(k)
itermax ) then

40 J(k + 1) = J(k)− 1
41 n0 ← 0
42 Interpolate solutions to finer mesh;

43 else
44 J(k + 1) = J(k);
45 end

46 end
Algorithm 9: Adaptive ROM-based parareal algorithm. Modifications w.r.t. the ROM-based
parareal method (Algorithm 6) are highlighted.
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sROM-adaptive-parareal(k̂) <
Tref

∑k̂
k=1 (T kcorr,f + T kcorr,c)

≈ Tref
∑k̂
k=1 T

k
corr,f

=
Nδtτf

∑k̂
k=1 β

J(k)γ2J(k)Nδt
Np
τf

=
Np∑Nad−1

i=0 k̂iβiγ2i

=
Np

k̂0 +
∑Nad−1
i=1 k̂iβiγ2i

(4.23)

We remark that this estimate is also valid for the adaptive approach applied to the classical parareal
method. In the last line of (4.23), we make explicit the influence of the k̂0 iterations using F̂0

δt0
and the

iterations using the intermediate propagators. Note that k̂0 +
∑Nad−1
i=1 k̂iβ

iγ2i < k̂ =
∑Nad−1
i=0 k̂i. There-

fore, by only comparing bounds (3.43) and (4.23), one easily concludes that sROM-adaptive-parareal(k̂) >

sROM-parareal(k̂) = Np/k̂, i.e. for the same number of iterations, the adaptive parareal approach is always

faster than the non-adaptive one, since in the latter we have k̂0 = k̂. Therefore, the major parallel limi-
tation of the parareal algorithm is overcame. If β and γ are small enough, one concludes from (4.23) that

the computational time for the fine corrections is largely dominated by the (few) k̂0 iterations in which Fδt
is used (instead of k̂ iterations as in the non-adaptive approach). Moreover, in the particular case where

β = γ and Nad = k̂, with each fine propagator being used in one iteration (k̂i = 1, i = 0, . . . Nad − 1), eq.
(4.23) yields

sROM-adaptive-parareal(k̂) <
Np∑Nad−1

i=0 β3i
=

(1− β3)

1− β3Nad
Np ≈ (1− β3)Np

by supposing that β3Nad � 1. It means that the parallel efficiency of the parareal method is no longer
limited by the number of iterations, which is one of the main conclusions of the work of Maday and Mula
(2020).

Similarly but less remarkably, bound (3.42), linked to the prediction term (given by the reduced
model), is rewritten as

sROM-adaptive-parareal(k̂) <
Mf

m̂(k̂0 +
∑Nad−1
i=1 k̂iβi)

(4.24)

where the factor 1/k̂ is replaced by the larger factor 1/(k̂0 +
∑Nad−1
i=1 k̂iβ

i). Note that we do not make any
additional assumption on the dimension m̂ of the ROM and the cost τr(k) for solving it in the adaptive

approach, and we still majorate this cost by τr(k̂) = O(m̂).
Finally, concerning the formulation of the reduced-order models, we also expect a smaller computa-

tional cost for two reasons: firstly, the input snapshot matrices for the POD have a smaller number of
rows, due to the smaller spatial discretization of the intermediate fine models (in iteration k, each snap-
shot matrix has γ2J(k)Mf rows, instead of Mf as in the non-adaptive approach); secondly, as already
discussed, the snapshot matrices in the adaptive approach contain only snapshots produced by the current
intermediate model, thus resulting in a smaller number of columns (at most k̂J(k)(N∆T +1) columns in it-
eration k, instead of k(N∆T +1) in the non-adaptive method). Then, by assuming, for simplification, that

all the fine models are used in the same number of parareal iterations (i.e. k̂i = k̂/Nad, i = 0, . . . , Nad−1),
bound (3.44) is improved to

sROM-adaptive-parareal(k̂) <
Np,sNδtMf

k̂Nspaces
m̂4

4
+ k̃Mf

[
Nspaces

(
k̂2

N2
ad

N2
∆T + m̂

)
+ 2Nmatricesm̂2

] (4.25)

where the second term in the denominator is multiplied by k̃ :=
∑Nad−1
i=0 k̂iγ

2i instead of the larger value

k̂, and the quadratic term on k̂ is divided by N2
ad.

As a drawback of the adaptive approach concerning the speedup, a spatial interpolation must be
performed at each transition between two consecutive fine models F̂ iδti and F̂ i−1

δti−1
(in the case where they

use different spatial meshes). Evidently, this additional cost is larger for transitions between the finest
propagators (i.e. for smaller pairs (i, i− 1) ∈ {0, . . . , Nad − 1}2).
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4.5.3 Numerical examples

We consider here Test cases 1 and 2 for illustrating the adaptive parareal method, both in the frameworks
of the classical and ROM-based methods (respectively eq. (4.13) and (4.15)). As described above, we

consider a small number Nad of predefined fine propagators, with F̂ iδti refined in space and/or in time

w.r.t. F̂ i+1
δti+1

, i = 0, . . . , Nad− 2. We also consider two different thresholds εad for the transition between
the fine models.

Test case 1 (pseudo-2D without spatial coarsening)

Test case 1 does not involve spatial coarsening (see Table 3.1). Therefore, the intermediate adaptive
fine propagators are defined exclusively by decreasing time steps, chosen so as to be integer multiples
of each other. We consider Nad = 5 fine propagators (the reference and four intermediate ones), whose
configuration are summarized in Table 4.3

Propagator Time step Mesh size

F̂4
δt4

δt4 = 0.1 δx4 = δx = δy4 = δy = 1

F̂3
δt3

δt3 = 0.05 δx3 = δx = δy3 = δy = 1

F̂2
δt2

δt2 = 0.01 δx2 = δx = δy2 = δy = 1

F̂1
δt1

δt1 = 0.005 δx1 = δx = δy1 = δy = 1

F̂0
δt0

= Fδt δt0 = δt = 0.001 δx0 = δx = δy0 = δy = 1

Table 4.3: Test case 1 (1D without spatial coarsening): definition of the fine propagators for the adaptive
parareal method.

Concerning the use of these propagators, we consider two adaptive configurations, named for simplicity
as ADA and ADB, for which we consider respectively the thresholds εad = 10−2 and εad = 10−3 for
deciding whether a transition between fine propagators is made. In both configurations, we perform ten
parareal iterations (Nitermax = 10), with each fine propagator used at most in two iterations. These
configurations are summarized in Table 4.4 and are also considered for the simulation of Test case 2.

Configuration Nitermax εad N4
itermax N3

itermax N2
itermax N1

itermax N0
itermax

ADA 10 10−2 2 4 6 8 10
ADB 10 10−3 2 4 6 8 10

Table 4.4: Test cases 1 and 2: configuration of the adaptive parareal method.

We perform the adaptive parareal simulations both in the framework of the classical and the ROM-
based parareal methods. Figures 4.19 and 4.20 present respectively the relative errors ekn and ek for
each simulation. We observe a small improvement of the classical parareal method by using the adaptive
approach, but globally the error reduction is still unsatisfactory. For the ROM-based method, a good
convergence is observed, but needing more iterations than in the non-adaptive approach, since coarser
fine propagators are used along the simulation. We notice that, in all adaptive simulations, the residual
rk defined in (4.18) remains between 10−3 and 10−2 in all iterations. As a consequence, the intermediate

fine propagators F̂ iδti , i = 1, . . . , 4 are used in only one iteration each in configuration ADA (the transition

between the propagators being determined by rk < εad = 10−2), and F̂0
δt0

= Fδt is used from the fifth
to the tenth iterations. On the other hand, in configuration ADB, each fine propagator is used in two
iterations (the transition being ruled by N i

itermax, i = 0, . . . , Nad − 1). It explains the faster convergence,
in terms of number of iterations, of configuration ADA compared to ADB.

The computational times presented in Figure 4.21 clearly illustrates the interest in using the adaptive
parareal approach. In the adaptive simulations, the computational times are largely dominated by the
iterations using the reference propagators F̂0

δt0
= Fδt (iterations 5-10 in configuration ADA and iterations

9-10 in configuration ADB). It is particularly clear in the ROM-based simulations, since the adaptive
approach also reduces the cost of the model reduction procedures. Therefore, even if the convergence
is slower (in terms of number of iterations) in the adaptive simulations, a faster simulation (in terms of
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speedup) can be obtained. It is illustrated in Figure 4.20 by comparing the number of iterations required

by each simulation for reaching the accuracy of the finest intermediate propagator (F̂1
δt1

) w.r.t. F̂0
δt0

,
indicated by an horizontal line: three iterations are needed in the non-adaptive ROM-based simulation,
whereas adaptive configurations ADA and ADB require respectively five and eight iterations. As shown
in Figure 4.21, three non-adaptive iterations takes almost the reference computational time; on the other
hand, five and eight iterations of configurations ADA and ADB are completed within less than half of
this cost.

It is more objectively illustrated in Table 4.5, showing the number of iterations and respective speedup
for obtaining given target accuracies, corresponding to the maximum error per iteration (the results for
the classical parareal method are not shown due to its poor convergence behaviour, as illustrated in
Figure 4.20). The non-adaptive approach converges in fewer iterations, but the same errors can be
obtained within smaller computational times by using adaptive configurations. This evaluation of the
number of iterations and speedup for reaching target accuracies is defined more precisely in Section 4.6
and used for objectively comparing several configurations of the parareal method.
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Figure 4.19: Test case 1 (pseudo-2D without spatial coarsening): relative error ekn using the classical
(top) and ROM-based (bottom) parareal methods, without (NA) and with the adaptive approach, for
configurations ADA and ADB. For the sake of conciseness, only some iterations are indicated in legend.

ROM, NA ROM, ADA ROM, ADB

Target accuracy (ek) Iteration Speedup Iteration Speedup Iteration Speedup
10−2 2 1.56 3 5.89 3 6.02
10−3 3 1.09 5 3.31 7 2.65
10−4 4 0.83 6 1.77 10 1.01

Table 4.5: Test case 1 (pseudo-2D without spatial coarsening): number of iterations and respective

speedup for obtaining given target accuracies (maximum error per iteration) w.r.t. Fδt = F̂0
δt0

, for the
ROM-based parareal method without (NA) and with the adaptive approach (configurations ADA and
ADB). The error e0 in the 0-th iteration (corresponding to the error between G∆t and Fδt) is 4.66×10−2.
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Figure 4.20: Test case 1 (pseudo-2D without spatial coarsening): relative error ek using the classical (full
lines) and ROM-based (dashed lines) parareal methods, without (NA) and with the adaptive approach,
for configurations ADA and ADB. The dash-dotted, horizontal line indicates the maximum error in time
between F̂1

δt1
(the finest intermediate propagator) and Fδt.
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Figure 4.21: Test case 1 (pseudo-2D without spatial coarsening): computational time along iterations
using the classical (full lines) and ROM-based (dashed lines) parareal methods, without (NA) and with
the adaptive approach, for configurations ADA and ADB. The horizontal, dashed line indicates the
computational time of the reference simulation.

Test case 2 (2D)

Contrary to Test case 1, in Test case 2 there is spatial coarsening between the fine and coarse propagators
(Table 3.3), which is taken into account for defining the adaptive propagators. We consider five fine
propagators (the reference and four intermediate ones), i.e. Nad = 5, all of them characterized by
homogeneous time steps and Cartesian spatial meshes, as described in Table 4.6. Each fine propagator
is refined w.r.t. the previous one in time and/or space. Note that they are not formulated following
strictly the notation introduced for the speedup estimation (Section 4.5.2), since we do not consider
constant ratios β and γ for defining the time step and mesh sizes. However, as presented in the following,
the conclusions on the speedup are observed in practice. Concerning the use of the propagators along
iterations, the same configurations ADA and ADB presented in Table 4.4 are considered. As in Test case
1, the residuals rk remains between 10−2 and 10−3 in all iterations, and the number of iterations in which
each fine propagator is used is the same as above.
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Propagator Time step Mesh size

F̂4
δt4

δt4 = 0.05 δx4 = δy4 ≈ 3.85

F̂3
δt3

δt3 = 0.05 δx3 = δy3 ≈ 2.94

F̂2
δt2

δt2 = 0.005 δx2 = δy2 ≈ 2.94

F̂1
δt1

δt1 = 0.005 δx0 = δx = δy0 = δy = 2

F̂0
δt0

= Fδt δt0 = δt = 0.001 δx0 = δx = δy0 = δy = 2

Table 4.6: Test case 2 (2D): definition of the fine propagators for the adaptive parareal method.

The relative errors ekn and ek for this test case are presented respectively in Figures 4.22 and 4.23.
For the classical parareal simulations, we observe a similar convergence behaviour, with slightly larger
errors in the adaptive approach due to the use of less refined models. For the ROM-based simulations,
the adaptive approach leads to a slower convergence in the beginning of the temporal domain, but the
instabilities observed in the non-adaptive simulation for advanced time steps are less important. It
indicates that a gradual formulation of the reduced-order models in the parareal framework may improve
its stability: instead of using the relatively inaccurate snapshots, obtained along parareal iterations, for
constructing a ROM approximating the very fine model F̂0

δt0
= Fδt, they are used for constructing a

ROM that approximates the less fine propagators F̂J(k)
δtJ(k)

at each iteration k.

The computational times presented in Figure 4.24 behave similar than in Test case 1, but the ad-
vantages of using the adaptive approach are more remarkable, since Test case 2 is a larger problem and
the intermediate fine propagators are coarsen both in time and space w.r.t. the reference one. The
computational times of the adaptive simulation are largely dominated by the iterations using F̂0

δt0
= Fδt.

Table 4.7, presenting the number of iterations and respective speedup for reaching given target accuracies,
reveals important advantages in using the adaptive approach in the classical parareal framework. For
the ROM-based method, less remarkable advantages are observed since the maximum error per iteration
decreases slowly. We consider larger target accuracies than in Test case 1 since the parareal methods are
less performing in Test case 2.

However, even if the adaptive approach allows to reach given errors faster than the non-adaptive
method, it still provides quite unsatisfactory results in terms of convergence for Test case 2. Indeed,
as shown in Figure 4.23 the accuracy of F̂1

δt1
is not reached by any of the performed simulation within

Nitermax iterations. Therefore, in order to obtain a good approximation for the reference solution, it
would be more interesting to perform a serial simulation of F̂1

δt1
, which would provide a speedup roughly

equal to 5, since F̂1
δt1

uses the same spatial mesh as Fδt but a time step five times larger. It indicates
that the configurations of the intermediate propagators, which were chosen arbitrarily, are not well suited,
and more efficient choices should be made. In any case, as discussed above, interesting conclusions can
be made from this study of the adaptive approach, specially concerning the improved stability of the
ROM-based parareal method.

CL, NA CL, ADA CL, ADB

Target accuracy (ek) Iteration Speedup Iteration Speedup Iteration Speedup
10−2 5 3.37 7 4.23 9 6.23

5× 10−3 7 2.46 8 3.38 10 4.54
ROM, NA ROM, ADA ROM, ADB

Target accuracy (ek) Iteration Speedup Iteration Speedup Iteration Speedup
10−2 8 0.69 10 0.80 10 1.69

5× 10−3 9 0.62 # # # #

Table 4.7: Test case 2 (2D): number of iterations and respective speedup for obtaining given target
accuracies (maximum error per iteration), for the classical (CL) the ROM-based parareal methods without
(NA) and with the adaptive approach (configuration ADA and ADB). “#” indicates that the target
accuracy is not attained within Nitermax iterations. The error e0 in the 0-th iteration (corresponding to
the error between G∆t and Fδt) is 4.51× 10−2.
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Figure 4.22: Test case 2 (2D): relative error ekn using the classical (top) and ROM-based (bottom) parareal
methods, without (NA) and with the adaptive approaches, for configurations ADA and ADB. For the
sake of conciseness, the legend is omitted and coincides with the legend in Figure 4.20.
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Figure 4.24: Test case 2 (2D): computational time along iterations using the classical (full lines) and ROM-
based (dashed lines) parareal methods, without (NA) and with the adaptive approaches, for configurations
ADA and ADB. The horizontal, dashed line indicates the computational time of the reference simulation.

4.6 Combination of the proposed improvements

Along this chapter, the three proposed modifications to the ROM-based parareal method were tested and
evaluated alone. These approaches were able to improve, to a greater or lesser extent, the convergence
and stability of the method, with different influences on the computational cost and, as a consequence, on
the numerical speedup w.r.t. the reference simulation. In this section, we test and study the behaviour
of the combined implementation of these modifications.

Since each proposed approach depends on user-defined parameters (the snapshot enrichment factor αs;
the number of PID windows NPID and their sizes; and the number Nad of adaptive fine models and their
configuration), a proper study of their combination may lead to a large number of parareal simulations.
Therefore, an objective criterion must be chosen for comparing them. We then define

kε,n := minKε,n (4.26)

with

Kε,n = {0 ≤ k ≤ Nitermax | ekn ≤ ε} (4.27)

and

sε,n := s(kε,n)
tn
T
, Kε,n 6= ∅ (4.28)

That is, kε,n is the first parareal iteration such that the relative error ekn at tn is no larger than a
given threshold ε; and sε,n is the parareal speedup at this iteration, scaled by tn/T (since the reference
simulation from 0 to tn would take approximately tn/T of the simulation from 0 to T ). In the case where
the relative error does not reach ε within Nitermax iterations (i.e. Kε,n = ∅), the speedup sε,n is not
defined. Both kε,n and sε,n are used for comparing the simulations presented in this section.

Finally, all the simulations are performed with Nitermax = 10.

Test case 1 (1D without spatial coarsening)

The following configurations are considered for each modification of the ROM-based parareal method:

• Enrichment of the input snapshot sets: αs takes value in {1, 1/2, 1/4} (3 possible configurations);

• PID approach: NPID takes value in {1, 2, 4}, with homogeneous time windows (3 possible configu-
rations);
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• Adaptive approach: we consider the same Nad = 5 fine propagators presented in Table 4.3 and
configurations ADA and ADB presented in Table 4.4, in addition to the non-adaptive approach (3
possible configurations).

Additionally, the classical parareal method is also run in the non-adaptive and adaptive frameworks
(ADA and ADB). Therefore, a total of 27 ROM-based and 3 classical parareal simulations are performed.
The values of kε,n and sε,n are presented respectively in Tables 4.8 4.9, for ε ∈ {10−2, 10−3, 10−4} and
n ∈ {N∆T /2, N∆T }

Test case 2 (2D)

We consider the following configurations for each modification of the ROM-based parareal method:

• Enrichment of the input snapshot sets: αs takes value in {1, 1/2, 1/5} (3 possible configurations);

• PID approach: NPID takes value in {1, 2, 4}, with homogeneous time windows (3 possible configu-
rations);

• Adaptive approach: we consider the non-adaptive configuration and the configurations ADA and
ADB described in Table 4.4 for the adaptive approach, with the fine propagators as in Table 4.6 (3
possible configurations).

As in the previous test case, the classical parareal method is also run in the non-adaptive and adaptive
frameworks (configurations ADA and ADB), Thus, 27 ROM-based and 3 classical parareal simulations are
performed. The number of iterations kε,n and their respective speedups sε,n, also for n ∈ {N∆T /2, N∆T }
but for ε ∈ {10−2, 5× 10−3, 10−3}, are presented respectively in Table 4.10 and 4.11.

Discussion

The results presented in Tables 4.8- 4.11 reveal that, among the three proposed approaches, the adaptive
one provides the most notable improvements in terms of speedup. Even if more iterations are required to
reach a given relative error (specially under configuration ADB, in which the intermediate fine propagators
are used in more than one iteration each), the reduced costs along parareal iterations provide interesting
accelerations of the simulation. In Test case 1, the error ekN∆t

in the final instant of simulation decreases
from 4.35 × 10−2 to 10−2, 10−3 and 10−4 with approximate speedups up to 6, 3 and 2, respectively, in
the adaptive configurations. In Test case 2, the obtained solutions are less accurate and the speedups
smaller, but good accelerations of the numerical simulation are observed. In both Test cases 1 and 2,
the adaptive configuration ADB requires more iterations to reach the target accuracies, but, while in
Test case 1 the speedups for ADA and ADB are quite similar, in Test case 2 ADB performs better, since
the coarsening between the intermediate and reference propagators is more important. Also, as already
discussed, the adaptive approach in the framework of the classical parareal method provides good results
in Test case 2 but not in Test case 1.

We also observe some positive effects by combining the proposed approaches, specially in Test case
2, in which the non-modified ROM-based parareal method presents instabilities and slow convergence
(see Figure 3.19). A decrease of the number of iterations and large speedups for reaching the target
accuracies at t = T are obtained by taking an enrichment factor αs < 1, both in the non-adaptive and
adaptive approaches, indicating that this enrichment improves the quality of the formulated ROMs at
advanced times of simulation. The PID approach also improves the performance of the method, showing
that local-in-time ROMs is beneficial for ensuring the quality of the solution in this test case, as discussed
previously in this chapter. For example, the simulation with αs = 1/2, NPID = 1/2 and configuration
ADB presents good results in terms of number of iterations and speedup, for reaching both the accuracies
10−2 and 5× 10−3 at t = T . However, the accuracy 10−3 is not reached within the performed iterations.

These combined improvements are less remarkable in Test case 1, in which the non-modified ROM-
based parareal method already presents a good convergence (see Figure 3.13). For a given low target
accuracy (ε = 10−2), the enrichment of snapshots sets (αs < 1) is able, in some simulations, to accelerate
the initial convergence and reduce the number of iterations kε,n, thus increase the speedup sε,n. In
some adaptive cases, slightly larger speedups are observed with αs < 1 than with αs = 1 for the same
kε,n, due to the very low-expensive first iterations (in which coarser fine models are used) and small
variabilities of the computational time among executions. However, best speedups for attaining higher
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accuracies (smaller ε) are obtained in adaptive simulations with αs = 1 and NPID = 1. Indeed, for a
given adaptive configuration and a given target accuracy ε, the number of iterations kε,n is quite similar
for most of the simulations; therefore the enrichment and the PID approaches are more likely to increase
the computational time, specially at advanced iterations. Good results in terms of number of iterations
and speedup are observed mainly with NPID = 1 and αs = 1, 1/2, in both adaptive configuration ADA

and ADB.
It is also interesting to note that, in general, in Test case 1 the same number of iterations is necessary

for reaching the target accuracies at t = T/2 and t = T , whereas in Test case 2 more iterations are
necessary for t = T . It reflects the behaviour of the error in time in these two simulations, as shown
in the error curves presented along this chapter. For Test case 1, the error for a given iteration is more
uniform in time, whereas a more important degradation of the solution for advanced time steps is observed
in Test case 2.

4.7 Conclusion of the chapter

In this chapter, we proposed and evaluated three modifications for improving the ROM-based parareal
method, in terms of stability, convergence and speedup. They were motivated by verifying that the per-
formance of the parareal method strongly depends on the quality of the reduced-order models formulated
along parareal iterations. It is a major issue in this context, because the ROMs are constructed using
solutions obtained from the parareal iterations; therefore, they may not be a good enough representation
of the dynamics of the fine, reference model, mainly in the first iterations. It is important to note that
the ROMs are formulated on the fly along the parareal iterations, thus the proposed modifications should
remain low-expensive.

The first modification is the enrichment of the input snapshots sets for the model reduction procedure
by collecting extra snapshots. As a major feature, these extra snapshots do not require any extra
additional cost to be computed, since they are naturally provided by the fine correction step of the parareal
method. In the ROM-based parareal method proposed by (Chen et al., 2014), the snapshots are taken
only on the parareal time instants (defining the time slices), and we proposed to collect extra snapshots
at intermediate time steps. However, even if the snapshots are computed with no extra cost, they should
not be too numerous, since the POD model reduction has a quadratic cost on the number of snapshots.
Numerical tests showed that this approach provides important improvements to the convergence of the
ROM-based parareal method, and good compromises between quality of the solution and numerical
speedup were obtained by enriching the snapshots sets with few extra snapshots per time slice.

The second proposed modification is the formulation of local-in-time reduced models within a given
number of time windows, inspired by the principal interval decomposition (PID) proposed by Ijzerman
(2000). This approach was extended to the POD-EIM framework and incorporated to the parareal
method. Numerical experiments showed that the PID-ROM-based parareal method has a more stable
behaviour when the POD-based parareal method presents instabilities; however, when the latter already
presents a good convergence, the PID approach may degrade the parareal solution. In terms of com-
putational time, the PID does not significantly increase the cost for computing the reduced subspaces;
however, a full set of ROM matrices needs to be computed in each time window, and its cost becomes
important for a large number of windows. As a more general conclusion, among the three approaches
proposed in this chapter, the PID one showed to be the less efficient in improving the ROM-based method.

Finally, the last modification consists in an adaptive parareal approach, as proposed by Maday and
Mula (2020). We extended it to ROM-based parareal method. Contrary to the snapshots enrichment and
the PID approaches, the adaptive parareal is applicable both in the classical and ROM-based frameworks.
It consists in using progressively refined fine propagators along parareal iterations, instead of a fixed one
(the reference propagator) in all iterations, with the objective of reducing the computational cost. In
the ROM-based framework, numerical tests showed that this approach is not only able to improve the
speedup, reaching given target accuracies within smaller computational times (even if more parareal iter-
ations are required), but also to improve the stability, indicating that gradual formulations of the ROMs
can be beneficial (instead of formulating ROMs, using relatively inaccurate snapshots, to approximate
very refined propagators).

We closed the chapter by testing the combined application of the proposed approaches. Advantages
in terms of stability and speedup were observed mainly for Test case 2, which does not behave well in
the non-modified ROM-based parareal method.
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t = T/2 t = T
Error at iteration 0 e0

N∆T /2
= 4.40E-2 e0

N∆T
= 4.35E-2

ε 1E-2 1E-3 1E-4 1E-2 1E-3 1E-4
Adaptive NPID 1/αs

ROM

NA

1
1 1 1 4 2 3 4
2 1 1 1 1 2 4
4 1 1 1 1 2 4

2
1 2 3 5 3 5 7
2 1 3 4 2 3 4
4 1 3 4 2 3 4

4
1 3 4 6 5 4 8
2 2 3 4 2 4 5
4 2 2 4 2 3 5

ADA

1
1 3 5 6 3 5 6
2 3 5 6 3 5 6
4 3 5 6 3 5 7

2
1 3 5 7 3 7 9
2 3 5 6 3 6 8
4 3 5 6 3 7 8

4
1 5 8 10 8 10 #
2 4 6 7 3 8 9
4 3 6 7 3 8 9

ADB

1
1 3 7 9 3 7 10
2 3 7 8 3 7 8
4 3 7 8 3 7 8

2
1 3 7 9 3 9 #
2 3 7 8 3 7 9
4 3 7 8 3 7 9

4
1 5 8 10 8 10 #
2 4 7 9 3 8 10
4 3 7 8 3 7 9

CL
NA −− −− 7 9 10 # # #

ADA −− −− 4 10 # # # #
ADB −− −− 5 # # 8 # #

Color codes (ranges of kε,n)
# 7− 10 5− 6 3− 4 1− 2

Table 4.8: Test case 1 (1D without spatial coarsening): number of iterations kε,n for reaching a given
relative error ε, for n = N∆T /2 and n = N∆T , and ε ∈ {10−2, 10−3, 10−4}, for the parareal simulations
combining the snapshot enrichment, PID and adaptive approaches. “ROM” and “CL” stand respectively
for the ROM-based and the classical parareal method, and “NA” stands for “non-adaptive”. The PID
and enrichment configurations do not apply to the classical parareal. The relative errors at iteration 0
(given by the coarse propagator G∆t) are indicated in the top of the table. A color code corresponding to
ranges of kε,n is defined. “#” indicates that the error ε is not reached within the performed iterations.
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t = T/2 t = T
Error at iteration 0 e0

N∆T /2
= 4.40E-2 e0

N∆T
= 4.35E-2

ε 1E-2 1E-3 1E-4 1E-2 1E-3 1E-4
Adaptive NPID 1/αs

ROM

NA

1
1 1.38 1.38 0.45 1.37 0.90 0.70
2 1.10 1.10 1.10 2.20 1.26 0.67
4 1.04 1.04 1.04 2.08 1.18 0.59

2
1 0.80 0.55 0.34 1.10 0.67 0.49
2 1.12 0.44 0.33 1.28 0.88 0.66
4 1.05 0.39 0.29 1.17 0.77 0.58

4
1 0.55 0.41 0.28 0.83 0.67 0.42
2 0.63 0.42 0.32 1.27 0.65 0.52
4 0.57 0.57 0.28 1.13 0.75 0.45

ADA

1
1 2.94 1.66 0.89 5.89 3.31 1.77
2 3.29 1.50 0.66 6.58 3.00 1.33
4 3.05 1.33 0.61 6.11 2.66 0.85

2
1 2.54 1.44 0.57 5.08 1.13 0.69
2 2.89 1.35 0.63 5.78 1.26 0.66
4 2.67 1.17 0.57 5.33 0.79 0.59

4
1 1.45 0.82 0.43 1.65 0.87 #
2 1.75 0.59 0.42 5.24 0.65 0.53
4 2.40 0.53 0.38 4.80 0.59 0.47

ADB

1
1 3.01 1.33 0.69 6.02 2.65 1.01
2 3.27 1.12 0.52 6.53 2.25 1.05
4 3.12 0.90 0.47 6.24 1.80 0.95

2
1 2.82 1.20 0.64 5.64 1.28 #
2 2.89 1.00 0.50 5.78 1.99 0.76
4 2.63 0.8 0.45 5.27 1.60 0.68

4
1 1.46 0.82 0.43 1.64 0.86 #
2 1.88 0.87 0.43 5.07 1.44 0.67
4 2.41 0.75 0.42 4.82 1.51 0.65

CL
NA −− −− 0.93 0.74 0.68 # # #

ADA −− −− 2.92 0.90 # # # #
ADB −− −− 2.32 # # 3.13 # #

Color codes (ranges of sε,n)
# 0− 1 1− 2 2− 4 4−

Table 4.9: Test case 1 (1D without spatial coarsening): speedup sε,n for reaching a given relative error
ε, for n = N∆T /2 and n = N∆T , and ε ∈ {10−2, 10−3, 10−4}, for the parareal simulations combining the
snapshot enrichment, PID and adaptive approaches. “ROM” and “CL” stand respectively for the ROM-
based and the classical parareal method, and “NA” stands for “non-adaptive”. The PID and enrichment
configurations do not apply to the classical parareal. The relative errors at iteration 0 (given by the
coarse propagator G∆t) are indicated in the top of the table. A color code corresponding to ranges of
speedup sε,n is defined. “#” indicates that the error ε is not reached within the performed iterations.
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t = T/2 t = T
Error at iteration 0 e0

N∆T /2
= 3.79E-2 e0

N∆T
= 4.72E-2

ε 1E-2 5E-3 1E-3 1E-2 5E-3 1E-3
Adaptive NPID 1/αs

ROM

NA

1
1 1 4 6 7 8 #
2 1 2 4 3 4 8
5 1 2 4 3 4 8

2
1 1 3 5 6 8 10
2 1 2 4 3 5 7
5 1 2 3 3 4 6

4
1 2 3 5 6 8 #
2 1 2 4 3 5 7
5 1 2 4 3 4 6

ADA

1
1 4 6 8 10 # #
2 5 5 7 6 7 #
5 4 5 7 6 8 10

2
1 4 6 8 9 # #
2 4 4 6 6 7 10
5 4 4 7 6 7 #

4
1 4 6 8 9 # #
2 4 5 7 6 7 10
5 4 4 7 5 7 10

ADB

1
1 7 7 # 10 # #
2 7 8 10 8 10 #
5 7 8 10 8 10 #

2
1 7 7 10 7 # #
2 7 7 10 7 9 #
5 7 7 9 7 10 #

4
1 7 7 # 7 10 #
2 7 7 10 7 9 #
5 7 7 9 7 9 #

CL
NA −− −− 4 4 9 5 7 #

ADA −− −− 5 6 9 7 8 #
ADB −− −− 8 9 # 9 10 #

Color codes (ranges of kε,n)
# 7− 10 5− 6 3− 4 1− 2

Table 4.10: Test case 2 (2D): number of iterations kε,n for reaching a given relative error ε, for n = N∆T /2
and n = N∆T , and ε ∈ {10−2, 5 × 10−3, 10−3}, for the parareal simulations combining the snapshot
enrichment, PID and adaptive approaches. “ROM” and “CL” stand respectively for the ROM-based
and the classical parareal method, and “NA” stands for “non-adaptive”. The PID and enrichment
configurations do not apply to the classical parareal. The relative errors at iteration 0 (given by the
coarse propagator G∆t) are indicated in the top of the table. A color code corresponding to ranges of kε,n
is defined. “#” indicates that the error ε is not reached within the performed iterations.
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t = T/2 t = T
Error at iteration 0 e0

N∆T /2
= 3.79E-2 e0

N∆T
= 4.72E-2

ε 1E-2 5E-3 1E-3 1E-2 5E-3 1E-3
Adaptive NPID 1/αs

ROM

NA

1
1 1.39 0.68 0.46 0.69 0.62 #
2 1.2 0.80 0.48 0.96 0.79 0.51
5 1.08 1.08 0.51 1.39 0.80 0.44

2
1 1.37 0.67 0.44 0.89 0.65 #
2 1.23 1.23 0.58 1.17 0.92 0.48
5 2.16 1.11 0.38 1.00 0.76 0.42

4
1 1.39 0.68 0.54 0.75 0.75 0.51
2 2.34 0.81 0.59 1.18 0.92 0.54
5 2.16 0.68 0.49 1.37 0.75 0.43

ADA

1
1 4.88 1.00 0.56 0.80 # #
2 1.51 1.51 0.68 1.90 1.36 #
5 3.33 1.27 0.58 1.61 0.89 0.58

2
1 4.32 1.01 0.57 0.93 # #
2 3.81 3.81 0.89 1.79 1.28 0.68
5 2.92 2.92 0.53 1.49 1.06 #

4
1 3.65 0.93 0.54 0.88 # #
2 3.44 1.34 0.63 1.72 1.26 0.66
5 2.88 2.88 0.56 2.44 1.13 0.56

ADB

1
1 3.55 3.55 # 1.69 # #
2 3.02 2.25 0.75 4.49 1.50 #
5 1.99 1.47 0.60 2.94 1.19 #

2
1 2.96 2.96 0.82 5.93 # #
2 2.68 2.68 0.75 5.35 2.10 #
5 1.81 1.81 0.80 3.62 1.17 #

4
1 2.55 2.55 # 5.10 1.54 #
2 2.29 2.29 0.68 4.59 1.84 #
5 1.71 1.71 0.77 3.41 1.54 #

CL
NA −− −− 2.71 2.07 0.97 3.37 2.46 #

ADA −− −− 4.13 2.79 1.41 4.23 3.38 #
ADB −− −− 5.09 3.11 # 6.23 4.54 #

Color codes (ranges of sε,n)
# 0− 1 1− 2 2− 4 4−

Table 4.11: Test case 2 (2D): speedup sε,n for reaching a given relative error ε, for n = N∆T /2 and
n = N∆T , and ε ∈ {10−2, 5×10−3, 10−3}, for the parareal simulations combining the snapshot enrichment,
PID and adaptive approaches. “ROM” and “CL” stand respectively for the ROM-based and the classical
parareal method, and “NA” stands for “non-adaptive”. The PID and enrichment configurations do not
apply to the classical parareal. The relative errors at iteration 0 (given by the coarse propagator G∆t)
are indicated in the top of the table. A color code corresponding to ranges of speedup sε,n is defined.
“#” indicates that the error ε is not reached within the performed iterations.

127



Chapter 4. Improvements of the ROM-based parareal method

128



CHAPTER 5

STRATEGIES FOR LONGER PARAREAL
SIMULATIONS

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Motivating numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Choice of the length of time slices . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Local-in-time parareal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.2 Speedup estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.1 Introduction

In Chapter 3, an initial comparison of the performances of the classical and ROM-based parareal was
performed; in Chapter 4, modifications of the ROM-based method were presented, and, to a greater or
lesser extent, they showed to be able to improve the stability and convergence of the method. In both
chapters, the study was performed considering relatively simple test cases, defined in small spatial and
temporal domains. All simulations considered N∆T = N∆t = 20 time slices, i.e. each parallel processor
was responsible for performing the parallel fine correction step along one coarse time step ∆t, which was
convenient since Np = 20 parallel processors were considered for the simulations.

In this chapter, we will see that, in the case of more challenging simulations, performed within more
time steps and in larger spatial domains, convergence and stability are harder to obtain. Notably, the
proposed improvements to the ROM-based parareal method may not be enough to obtain good results.
Indeed, most of the error figures presented in the previous chapter (e.g. Figures 4.4, 4.9, 4.16 and 4.22)
indicate a degradation of the parareal solution near the end of the temporal domain. Motivated by these
observations, we investigate in this chapter two strategies for performing larger parareal simulations in
time, and we compare their impact on the performance of the classical and ROM-based parareal methods.

The first strategy is to consider larger time slices, with each slice containing several coarse time steps,
i.e. ∆T > ∆t. By increasing ∆T , we reduced the number N∆T of time slices, and the convergence is
expected to be faster, since the parareal solution converges exactly towards the reference one in at most
N∆T iterations, as discussed in Section 3.2.4. Moreover, as observed by Ruprecht (2018), the parareal
convergence is faster when the number of time slices decreases, mainly for high wavenumbers.

The second strategy is to perform local-in-time applications of the parareal method, i.e. instead
of applying the method for solving the problem in the entire temporal domain, we solve a sequence of
parareal simulations defined in smaller time windows, which we expect to present a more stable behaviour.
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In this approach, the solution of each “local parareal” is used as initial condition for the next ones. We
remark that a similar approach is proposed by Eghbal et al. (2017) and referred as windowing technique,
formulated in the framework of the Navier-Stokes for controlling parareal instabilities observed with high
Reynolds number (which corresponds to an advection-dominated problem). This approach is also used by
Nielsen et al. (2018) for solving the two-dimensional nonlinear shallow water equations with the parareal
method in an HPC environment. In their implementation, faster convergence is obtained by dividing
the simulation in time windows, and the speedup is improved by estimating their optimal length and
by proposing a scheduling of parallel tasks allowing the concurrent computation of more than one local
parareal simulation.

If one does not consider the possible beneficial effects on the parareal convergence, both the use of
large time slices and parareal simulations defined in time windows present obvious drawbacks concerning
the possible parallelization that can be achieved. In the first approach, the number of time slices to be
distributed among parallel processors is smaller. If we consider a fixed number Np of available processors,
this is not an issue while N∆T ≥ Np, but otherwise, there will be an underuse of these available parallel
resources. In the local-in-time approach, the expected parallelism efficiency decreases, since the algorithm
is decomposed into sequential parts, each one containing a smaller number of time slices to be parallelized.
Moreover, additional computational costs due to the initialization of each parareal simulation can possibly
be important. Note that this second strategy also poses a convergence limitation to the method: if a
local parareal receives the solution of a previous one that has not converged exactly to the fine, reference
solution, it will not be able to converge neither, since the initial conditions are not exact. However, if
each local parareal is able to reasonably reduce the error w.r.t. the reference model, one could a expect
a good global parareal solution, with a good speedup provided by parallelism.

This chapter is organized as follows: in Section 5.2, we present some motivating numerical examples,
which are the same of the previous chapters, but using larger spatial and temporal domains, and we show
that convergence and stability become more challenging. In Sections 5.3 and 5.4, we study respectively
the influence of the time slice lengths and the local-in-time approach, both in the classical and ROM-based
frameworks. Detailed considerations on the speedup impact of defining local-in-time parareal simulations
are presented. A conclusion is made in Section 5.5.

5.2 Motivating numerical examples

In order to motivate the work presented in this chapter, we illustrate the limitations of the proposed
modifications to the ROM-based parareal method by simulating Test case 1 (pseudo-2D without spatial
coarsening) and Test case 2 (2D) presented previously in this work, but in larger temporal and spatial
domains. For evidencing the relation to the previous simulations, these modified tests are named here as
Test cases 1.1 and 2.1, respectively. We make the simulations considering parareal configurations that
presented relatively good convergence and speedup behaviour, as shown in Tables 4.8-4.11, in order to
evidence that less satisfactory results are obtained in these modified test cases.

Test case 1.1 (pseudo-2D without spatial coarsening in larger spatial and temporal domains)

We modify Test case 1 by considering a 5 times larger spatial domain in the x−direction (along which the
flow propagates). The temporal domain is also taken 5 times larger than before. The mesh sizes and time
steps for the fine and coarse propagators are not modified. These and other basic parareal configurations
are summarised in Table 5.1.

Note that, under these configurations, the solution profiles in Test cases 1 and 1.1 are similar, differing
only for their position in time and along the x−direction. We consider the ROM-based parareal method
with αs = 1/2, NPID = 1 and configuration ADA for the adaptive approach (see Tables 4.4 and 4.3). As
shown in Tables 4.8-4.9, this combined configuration presented a good behaviour in terms of convergence
and speedup. This is no longer the case when the same configurations are used for solving Test case 1.1,
with instabilities arising in the very last time steps of the first parareal iterations, as shown in Figure 5.1.
This unstable behaviour rapidly evolves and produces negative water depths that terminate the execution
at the second parareal iteration.
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Spatial domain Ω = [0, 100]× [0, 20]
Maximum simulation time T = 20
Length of each time slice ∆T = 0.2
Number of time slices N∆T = 100
Number of parallel processors Np = 20

Fδt G∆t

Time step δt = 0.001 ∆t = 0.2
Mesh size (x-direction) δx = 1 ∆x = 1
Mesh size (y-direction) δy = 1 ∆y = 1

Table 5.1: Configurations of Test case 1.1 (pseudo-2D without spatial coarsening in larger spatial and
temporal domains)
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Figure 5.1: Test cases 1 (left) and 1.1 (right): evolution of the relative error ekn. Both tests use the same
parareal configurations (α = 1/2, NPID = 1, adaptive configuration ADA). Test case 1.1 is performed in
larger spatial and temporal domains and does not complete two iterations due to instabilities.

Test case 2.1 (2D in larger spatial and temporal domains)

This second motivating test case is related to Test case 2, also studied in details for various parareal
configurations in Chapter 4. We modify it by doubling the spatial domain size in both directions, as well
as the total simulation time. The initial and boundary conditions, mesh sizes and time steps of the fine
and coarse propagators are maintained. Table 5.2 presents the basic parareal configurations. We consider
the ROM-based parareal method with αs = 1/2, NPID = 2 and adaptive configuration ADB (see Tables
Tables 4.6 and 4.4), which provided relatively good convergence and speedup for Test case 2, as shown
in Tables 4.10 and 4.11.

Spatial domain Ω = [−50, 150]2

Maximum simulation time T = 10
Length of each time slice ∆T = 0.25
Number of time slices N∆T = 40
Number of parallel processors Np = 20

Fδt G∆t

Time step δt = 0.001 ∆t = 0.25
Mesh size (x-direction) δx = 2 ∆x = 5
Mesh size (y-direction) δy = 2 ∆y = 5

Table 5.2: Configurations of Test case 2.1 (2D in larger spatial and temporal domains)
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Figures 5.2 and 5.3 compare respectively the evolution of the relative errors ekn and ek, for Test cases 2
and 2.1 under the same parareal configurations. The conclusions are the same as for the one-dimensional
test case. Even if in Test case 2.1 the parareal simulation is able to complete all iterations, instabilities
are observed for advanced time steps and the error presents a slower decrease across iterations, compared
to Test case 2.
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Figure 5.2: Test cases 2 (left) and 2.1 (right): evolution of the relative error ekn. Both tests use the same
parareal configurations (αs = 1/2, NPID = 2, adaptive configuration ADB). Test case 2.1 is performed in
larger spatial and temporal domains.
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Figure 5.3: Test cases 2 and 2.1: evolution of the relative error ek. Both tests use the same parareal
configurations (αs = 1/2, NPID = 2, adaptive configuration ADB). Test case 2.1 is performed in larger
spatial and temporal domains.

5.3 Choice of the length of time slices

We begin by studying the influence of the length of the time slices on the performance of the classical and
ROM-based parareal methods. It is a more natural approach, since it is simply a choice of parameters for
the parareal simulation. An initial study of the influence of the time slice length was already performed
in Chapter 3, and showed that larger time slices presented a positive influence mainly for the classical
parareal method. This study was quite limited in that case, since it was performed on small simulations,
containing few coarse time steps, thus limiting the range of time slice lengths. As discussed in that
chapter, the increase of ∆T may reduce the expected possible parallelism and lead to an underuse of
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the available parallel capacity (see eq. (3.55)). Therefore, the use of an adaptive approach should be
envisaged for ensuring reasonable speedups. It is considered in the examples present below. For both Test
cases 1.1 and 2.1, we present two sets of simulations, one for the classical and another for the ROM-based
parareal method, using different lengths of time slices. In all simulations, we set Nitermax = 10.

Test case 1.1 (pseudo-2D without spatial coarsening in larger spatial and temporal domains)

For the one dimensional test case, we consider the following parareal configurations:

• Classical parareal method with adaptive configuration ADA;

• ROM-based parareal method with αs = 1/2, NPID = 1 and adaptive configuration ADA.

Note that the configuration for the ROM-based method is the same used in the motivating example
presented in Section 5.2, which quickly lead to an unstable behaviour (Figure 5.1).

In each case, we perform simulations with ∆T ∈ {0.2, 0.4, 1, 2}, corresponding respectively to N∆T ∈
{100, 50, 20, 10}. We remark that ∆T = 0.2 is the smallest possible value for N∆T , since ∆t = 0.2. Also,
since we consider Np = 20 parallel processors, only half of the available parallel capacity is used in the
case ∆T = 2 (N∆T = 10).

Figure 5.4 presents the evolution of the maximum error per iteration for each simulation. We observe,
in the framework of the classical parareal method, a clear improvement of the convergence in function
of the length of the time slices. For smaller ∆T , instabilities are present and lead to increasing errors, a
similar behaviour to the one observed in Test case 1, presented in Chapter 3. For the smallest ∆T , the
simulation is not able to complete Nitermax = 10 iterations. On the other hand, for larger ∆T , the error
decreases monotonically, and a relatively fast convergence is obtained for ∆T = 2.

In the ROM-based simulations, we observe similar results but with a less clear influence of the number
of time slices. For ∆T = 0.2 and ∆T = 0.4, the simulations are unstable and only complete few parareal
iterations. For larger time slices, a better convergence is observed, but the error behaviour still indicates
the presence of instabilities. For advanced iterations, the convergence stagnates for ∆T = 2, and better
results, with errors close to the one observed in the best classical parareal simulation, are obtained for
∆T = 1.

Figure 5.5 presents the evolution of the computational time for each simulation, and the speedups
at iterations k = 5 and k = Nitermax = 10 are indicated in Table 5.3. Note that the adaptive approach
ensures relatively large speedups, at least in the beginning of the simulations. Indeed, in the chosen
adaptive configuration ADA, each intermediate fine propagator is in general used along one iteration
(due to the large threshold εad = 10−2), and the reference model is used only from k = 5. Thus, for the
classical parareal method, all simulations are faster than the reference one after ten iterations, even in
the case ∆T = 2, for which ten non-adaptive iterations would necessarily lead to exact convergence and
a speedup smaller than the unity. In the ROM-based case, the adaptive approach also allows to obtain
larger speedups, but the computational cost remains a major issue, with speedups smaller than the unity
at the last iteration.

Classical ROM-based
s(5) s(10) s(5) s(10)

∆T = 0.2 5.64 * * *
∆T = 0.4 7.12 2.01 * *
∆T = 1 9.94 2.66 2.80 0.79
∆T = 2 6.32 1.53 2.48 0.68

Table 5.3: Test case 1.1: speedup at the fifth and tenth iterations for the classical and ROM-based
parareal methods, for various time slice lengths. Asterisks indicate that the simulation is unstable and
does not reach the respective iteration.
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Figure 5.4: Test case 1.1: evolution of the relative error ek using the classical (left) and ROM-based
(right) parareal methods for various time slice lengths. Some simulations do not complete Nitermax = 10
iterations due to instabilities.
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Figure 5.5: Test case 1.1: evolution of the computational times (in seconds) using the classical (left) and
ROM-based (right) parareal methods for various time slice lengths. The dashed, horizontal line indicates
the computational time for the reference simulation. Some simulations do not complete Nitermax = 10
iterations due to instabilities.

Test case 2.1 (2D in larger spatial and temporal domains)

As in the previous test case, we perform, for Test case 2.1, simulations using both the classical and the
ROM-based framework. We choose configurations that performed relatively well in the smaller Test case
2, as shown in Tables 4.10-4.11:

• Classical parareal method with adaptive configuration ADB;

• ROM-based parareal with αs = 1/2, NPID = 2 and adaptive configuration ADB.

where the second configuration is the same used in the motivating example presented in Section 5.2.
The lengths of the time slices are set to ∆T ∈ {0.25, 0.5, 1, 2.5}, corresponding respectively to N∆T ∈
{40, 20, 10, 4}, with ∆T = 0.25 as the smallest possible value. The available parallel resources (Np = 20)
are underused for ∆T = 1 and ∆T = 2.5.

Figure 5.6 presents the evolution of the maximum error per iteration for each simulation. The con-
clusions are the same as in the one-dimensional test case. A clearly faster convergence is observed in the
classical parareal method when the time slices are larger; improvements are also observed in the ROM-
based case, but less clearly and remarkably. In both cases, smaller errors are obtained for ∆T = 2.5, for
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which N∆T = 4, i.e. exact convergence should be expected in at most four iterations, and the speedup
should decrease following 4/k. The use of an adaptive approach with the intermediate fine propaga-
tors used in more than one iteration (configuration ADB, with a relatively small threshold εad = 10−3),
provide a relatively good performance in terms of speedup, as shown in Figure 5.7 and Table 5.4.
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Figure 5.6: Test case 2.1: evolution of the relative error ek using the classical (left) and ROM-based
(right) parareal methods for various time slice lengths.
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Figure 5.7: Test case 2.1: evolution of the computational times (in seconds) using the classical (left) and
ROM-based (right) parareal methods for various time slice lengths. The dashed, horizontal line indicates
the computational time for the reference simulation.

Classical ROM-based
s(5) s(10) s(5) s(10)

∆T = 0.25 30.57 2.65 15.08 1.75
∆T = 0.5 47.21 3.53 17.48 1.88
∆T = 1 44.23 3.02 19.01 1.63

∆T = 2.5 24.92 1.40 15.33 1.00

Table 5.4: Test case 2.1: speedup at the fifth and tenth iterations for the classical and ROM-based
parareal methods, for various time slice lengths.
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5.4 Local-in-time parareal

In this second approach, we investigate the sequential execution of parareal simulations defined in smaller
time windows, i.e. we propose to divide the temporal domain into a given number of non-overlapping
time windows and execute a full parareal simulation in each of them, providing the initial solution to the
next time window. We refer to this approach as “Local-in-Time Parareal”, or, more concisely, “LTP”.
Analogously, the parareal method executed in the entire temporal domain is referred to as “global-in-
time” parareal. In the following paragraphs, we briefly describe the proposed strategy (whose definitions
are closely related to the PID, described in Section 4.4). We also define the global solution provide by
this local-in-time approach, and we propose a more detailed discussion of its impacts on the expected
speedup.

5.4.1 Proposed approach

We define NLTP time windows T̆(i) := [t̆i−1, t̆i], i = 1, . . . , NLTP. The times t̆i, i = 0, . . . , NLTP are
parareal time instants, i.e. {t̆i, i = 0, . . . , NLTP} ⊂ {ti, i = 0, . . . , N∆T }, with t̆0 = 0 and t̆NLTP

= T .
We also define n̆i, i = 0, . . . , NLTP, as the global indices (relative to the parareal time slices) of the times
defining the LTP windows, i.e. t̆i = tn̆i with n̆0 = 0 and n̆NLTP = N∆T . Figure 5.8 illustrates these
definitions. Note that the time windows can have different lengths.

t̆0 = 0 t̆1 t̆2 t̆NLTP−2 t̆NLTP−1 t̆NLTP
= T

T̆(1) T̆(2) T̆(NLTP−1) T̆(NLTP)

∆T

t̆i−1 = tn̆i−1 t̆i = tn̆i
∆T

T̆(i)

tn̆i−1+1 tn̆i−1+2 tn̆i−1

Figure 5.8: Definition of the LTP time windows. This definition is analogous to the PID windows
(see Figure 4.13). Top: representation of several windows, with only the parareal times instants (green,
vertical ticks, defining the parareal time slices) represented. Bottom: zoom over a time window containing
six parareal time slices. Instants of the fine and coarse temporal discretizations are not represented for
simplification.

We denote by

P(i) : RdfM −→ RdfM

y 7−→ y̆(i) := P(i)(y)
(5.1)

a parareal instance defined in T̆(i) = [t̆i−1, t̆i] that starts with an initial solution y ∈ RdfM defined at

t̆i−1 and, after a given number of iterations, returns a solution y̆(i) := P(i)(y) ∈ RdfM defined at t̆i.
We recall that df is the number of degrees-of-freedom for each one of the M computational cells of the
discrete spatial domain (df = 3 in the case of the SWE). For denoting the solution of P(i) along time

and iterations, we keep the notation using the global indices of the temporal discretization. Then, y
(i),k
n

is an approximation for y(tn) at the k−th iteration of P(i), with tn ∈ T̆(i) = [tn̆i−1
, tn̆i ]; and the initial

solution for P(i) is y
(i),0
n̆i−1

.

Eq. (5.1) is a simplified definition of the parareal instances, pointing out only its initial solution.
Indeed, one should include the several parameters on which the parareal simulation depends and write
P(i) = P(i)(y, Nitermax,Type, εTOL, εsv,linear, εsv,nonlinear, NPID, Nad, . . . ), thus specifying the maximum
number of iterations, the type of parareal simulation (classical or ROM-based), the convergence tolerance,
the thresholds for the model reduction, the number of PID windows and the number of adaptive fine
propagators, for listing a few examples of parameters. We remark that the NLTP parareal instances do
not necessarily use the same configurations, and different parameters could be considered depending on
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the behaviour of the solution within each time window. However, for the numerical simulations presented
in this chapter, we consider that the same configuration are used by all parareal instances.

In this local-in-time parareal approach, each parareal instance P(i) provides the initial solution for

the next one, P(i+1). It means that y
(i+1),0
n̆i

= y
(i),Nitermax

n̆i
=: y̆(i), where y̆(i) := y

(i),Nitermax

n̆i
is the final

solution of P(i), after Nitermax iterations, and y
(i+1),0
n̆i

is the initial solution for P(i+1), both defined at

the intersecting time t̆i = tn̆i . We remark that, instead of setting a maximum number of iterations
Nitermax, the transition between two parareal instances can also be decided based on a parareal residual
(as considered by Nielsen et al. (2018)), which would be more suitable for a practical implementation.
We consider here, for simplification, that each parareal instance performs a fixed number Nitermax of
iterations, and we perform a study of the convergence and speedup in function of this value.

Finally, we define the global parareal solution ykn, n = 0, . . . , N∆T provided by the local-in-time
approach at iteration 1 ≤ k ≤ Nitermax as the union of the solutions of each parareal instance at iteration
k. In order to maintain the coherence between LTP and the global-in-time parareal methods, the solution
at iteration k = 0 is still defined as the solution of the coarse propagator G∆t simulated sequentially in
the full temporal domain. Thus,

ykn :=

{
G∆t(y0, tn, 0), k = 0∑NLTP

i=0 1{tn∈ ]t̆i−1,t̆i]}y
(i),k
n , k = 1, . . . , Nitermax

, n = 1, . . . , N∆T

where y0 =: yk0 , k = 0, . . . , Nitermax, is the global initial solution, defined at t0.
Two main drawbacks can be identified in this-local-time approach. Firstly, it partially serializes the

parareal algorithm. The parallel resources available for the simulation may be underused depending on
the number of processors and LTP windows, which is discussed in details in Section 5.4.2. Secondly,
this approach imposes a limitation for the convergence towards the reference solution. If the parareal
simulation in P(i) does not converge exactly, the next parareal instance P(i+1), which uses the solution
of the previous one as initial condition, will not converge either, since a different problem w.r.t. the
reference one is solved. The numerical tests presented in Section 5.4.3 are used to evaluate the impact of
these limitations.

Differences between the PID and LTP approaches

Note that the local-in-time approach is very similar to the PID-ROM parareal method, presented in
Section 4.4. Their difference consists in the fact that, in the PID-based method, only the reduced-order
models are formulated within time windows, being used for updating the full, global parareal solution at
each iteration. In the LTP approach, this update is made only within each time window. Moreover, this
last approach is applicable both for the classical and ROM-based methods, whereas the PID one is, by
definition, only applicable in the framework using ROMs. Evidently, the PID model reduction can be
performed within each time window T̆(i), i.e. T̆(i) can be decomposed into several smaller time windows,
with a model reduction performed in each of them. For avoiding any confusion, when applying the LTP
method with NPID PID windows, it means that there are NPID intervals per time window T̆(i).

5.4.2 Speedup estimation

For the sake of simplicity, we consider that all NLTP time windows have the same length. Therefore, if
the global parareal simulation contains N∆T time slices, N∆t coarse and Nδt fine time steps, then each
local parareal instance will be solved within N∆T /NLTP time slices, N∆t/NLTP coarse and Nδt/NLTP fine
time steps. In the adaptive parareal approach, the number of time steps associated to each intermediate
fine propagator is also scaled by 1/NLTP.

We place ourselves in the framework of the classical parareal method in order to develop the main
ideas concerning the speedup provided by the LTP approach. By considering that the sequential, coarse
prediction step has a negligible computational cost compared to the fine correction and that the number
N∆T of time slices (in the entire temporal domain) is a multiple integer of the number Np of processors,

then the computational time for completing k̂ iterations of the global, classical parareal method (eq.
(3.10)) and the speedup (eq. (3.11)) simplify respectively to

Tclassical-parareal(k̂) ≈ k̂Nδt
Np

τf (5.2)
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sclassical-parareal(k̂) ≈ 1

k̂

Np

=
Np

k̂
(5.3)

For the local-in-time parareal method, each parareal instance is parallelized across the N∆T /NLTP

time slices contained in the time window. If N∆T /NLTP < Np, the simulation is distributed among
only N∆T /NLTP processors, meaning that only a fraction of the parallel resources is used. Therefore,

the computational time for completing k̂ iterations of the LTP (i.e. for completing k̂ iterations in each
parareal instance) reads

Tclassical-parareal-LTP(k̂) = NLTP

[
k̂

Nδt/NLTP

min (Np, N∆T /NLTP)
τf

]
+ cLTP

where cLTP is an additional computational time taking into account the initialization of the parareal
instances and the transmission of the solution between them. The initialization cost was neglected in the
global parareal case but may become important if NLTP is large. Then, the speedup in the LTP approach
can be estimated as

sclassical-parareal-LTP(k̂) =
Tref

Tclassical-parareal-LTP(k̂)
=

Nδtτf

NLTP

[
k̂

Nδt/NLTP

min (Np, N∆T /NLTP)
τf

]
+ cLTP

where Tref = Nδtτf is the computational time for performing the sequential, reference simulation (eq.
(3.9)).

Therefore,

sclassical-parareal-LTP(k̂) =
k̂

Np

Nδtτf

NLTP

[
k̂

Nδt/NLTP

min (Np, N∆T /NLTP)
τf

]
+ cLTP

sclassical-parareal(k̂)

which implies that

sclassical-parareal-LTP(k̂) <
min (Np, N∆T /NLTP)

Np
sclassical-parareal(k̂) (5.4)

evidencing that the speedup of the LTP, compared to the global parareal, is limited by the underuse
of the parallel resources. Notably, the case NLTP = N∆T is equivalent to a serial execution of the fine,
reference propagator (since the parareal instances are performed along single time slices). Also, the
case in which each LTP window contains Nitermax time slices is equivalent to the reference simulation
(since the exact convergence is obtained at most after Nitermax iterations in each LTP window), unless a
faster convergence is obtained. As in the study of the influence of the length of time slices (Section 5.3),
these remarks indicate that the use of the adaptive approach may be necessary for ensuring a reasonable
speedup of the LTP, since it improves the bound sclassical-parareal(k̂) < Np/k̂.

In the case of the of the ROM-based parareal method, the speedup estimation becomes more complex.
Similarly to what was discussed in the speedup estimation of the PID-ROM parareal method (Section
4.4.3), the cost of the ROM formulations is a balance between a less expensive POD (due to its quadratic
dependence on the number of snapshots, which becomes smaller by dividing the temporal domain into
windows) and a more expensive DEIM (by assuming that the dimension of the subspaces are the same
in the global- and local-in-time approaches), and possibly important costs may take place due to the
larger number of ROM matrices to be computed. Moreover, even if the parallel resources are possibly
underused in the parallel fine correction step of the parallel algorithm, all parallel processors can be used
for performing the model-order reduction procedures. We then omit a speedup estimation for the LTP in
this case, but we retain the main conclusions discussed above concerning Np and N∆T /NLTP for guiding
the application of the method.
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5.4.3 Numerical examples

Investigation of the computational time using the classical parareal method

We consider Test case 1.1, presented in Section 5.2 as a motivating example. We first implement the LTP
approach in the framework of the non-adaptive, classical parareal method, i.e. each parareal instance
P(i), i = 1, . . . , NLTP corresponds to a simulation of the original parareal (Algorithm 1). We notice that
the LTP approach is not able to improve stability and performance of this test case. However, we present
these simulations for analysing the impact of the local-in-time approach on the computational times
and the speedup, assessing the magnitude of the additional cost cLTP and comparing with the estimates
presented in Section 5.4.2, which were formulated for the classical parareal method.

We perform LTP simulations for NLTP taking value in {1, 2, 4, 5, 10, 20}, with NLTP = 1 corresponding
to the global parareal. For all simulations, Np = 20 parallel processors are used and the parareal time
slices have length ∆T = ∆t = 0.2. Since N∆T = 100, the simulations with NLTP > N∆T /Np = 5
underuse the available parallel processors, as discussed in Section 5.4.2. For avoiding the interruption of
the simulations due to instabilities, we consider Nitermax = 2 for all time windows. Finally, in each LTP
simulation the time windows are homogeneous, having the same length.

Table 5.5 presents the speedup at the end of the simulation for the global parareal (NLTP = 1)
and for each LTP configuration. Contrary to the theoretical expectations, we observe some important
reductions of the speedup between NLTP = 1, NLTP = 2 and NLTP = 4, whereas NLTP = 5 has a closer
speedup to NLTP = 1. This can be explained by the unbalanced load of parallel tasks in the parallel
fine correction step of the parareal algorithm. Indeed, for NLTP = 1, all Np = 20 processors perform the
fine simulation along the same quantity of time slices (N∆T /Np = 5). For NLTP = 5 the same situation
occurs: since each parareal instance has N∆T /NLTP = 20 time slices, each parallel processor computes
the fine correction along one time slice. This is it not the case for NLTP = 2 and NLTP = 4, for which
there are respectively N∆T /NLTP = 50 and N∆T /NLTP = 25 time slices per parareal instance, being
unequally distributed among Np = 20 processors. The effects of this unbalanced load are clear when we
compare the computational times spent in the fine correction step, as shown in Table 5.6.

Apart from that, the results meet our expectations. Firstly, we observe close speedups and computa-
tional times forNLTP = 1 andNLTP = 5, which use the same parallel capacity, since min (Np, N∆T /NLTP) =
20 in both cases. These close results also show that the additional computational costs cLTP for initializing
the parareal instances have small magnitude, as indicated in Table 5.7: these additional costs represent
less than 2% of the total simulation time for all values of NLTP, and their average magnitude per LTP
time window slightly decreases for larger NLTP. Secondly, for NLTP = 10 and NLTP = 20, we expected
increases of the computational time by factors of 2 and 4, respectively. It is approximately observed
for the speedup and mainly for the computational time spent in the parallel fine correction step of the
parareal algorithm (respectively in Tables 5.5 and 5.6). We remark that the speedups presented in Table
5.5 have no practical meaning concerning the parareal solution (since the simulations are unstable and
do not provide good convergence) and are considered here only for analyzing the computational times
and speedups in function of NLTP.

NLTP 1 2 4 5 10 20
s(Nitermax = 2) 6.87 5.84 4.86 6.70 4.07 2.24

Table 5.5: Test case 1.1: speedup at the final iteration (Nitermax = 2) for various numbers of parareal
instances in the local-in-time (LTP) approach, in the classical parareal framework. NLTP = 1 corresponds
to the global parareal.

NLTP 1 2 4 5 10 20
Comp. time - fine correction 1.23 1.49 1.97 1.23 2.47 4.84

Table 5.6: Test case 1.1: average computational time (in seconds) spent per iteration in the fine correction
step for various numbers of parareal instances in the local-in-time (LTP) approach. NLTP = 1 corresponds
to the global parareal. For NLTP > 1, the computational times are obtained the summing up the
computational times of all the parareal instances.
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NLTP 1 2 4 5 10 20
cLTP/Tpar −− 1.08% 1.13% 1.51% 1.52% 1.28%
cLTP/NLTP −− 0.022 0.014 0.011 0.009 0.007

Table 5.7: Test case 1.1: percentage of the total simulation time (Tpar) represented by the cost cLTP

inherent to the local-in-time parareal (LTP) approach (corresponding to the initialization of the parareal
instance and transmission of the solution between them), and average cost cLTP (in seconds) per LTP
time window, for various numbers of parareal instances, in the classical parareal framework. cLTP is
computed taking into account only the additional costs due to the local-in-time approach, therefore it
does not apply to NLTP = 1, which corresponds to the global parareal.

Test case 1.1 (pseudo-2D without spatial coarsening in larger spatial and temporal domains)

After this study of the computational times, we implement the LTP approach to investigate its impacts
on the parareal performance. We consider the same configurations as used in Section 5.3 for studying
the influence of the length of the time slices on Test case 1.1. Note, however, that the number Nitermax of
parareal iterations becomes a more important parareal parameter in the local-in-time approach. Indeed,
since Nitermax iterations must be performed by each parareal instance, the value of Nitermax influences the
quality of the initial solution transmitted to the next parareal instance, and thus the convergence that can
be achieved by it. Therefore, a sufficiently large number of iterations should be considered. However, if
Nitermax is too large, the expected speedup becomes smaller, since Nitermax iterations must be necessarily
performed by each parareal instance (unless exact convergence is obtained within less iterations).

We evaluate this compromise relying on Nitermax by modifying the adaptive approach configuration
ADA. In most of the simulations using this configuration, the intermediate fine propagators are used
in only one parareal iteration, since the adaptive criterion threshold εad = 10−2 is relatively large, and
the reference propagator is used in all remaining ones. We then simplify ADA by fixing the number of
iterations in which each fine propagator is used, i.e. the transition between consecutive propagators does
not depend on εad, which is equivalent to set εad = 0. We recall that Nad = 5 fine propagators are used
here (the reference and four intermediate ones). We force each intermediate propagator to be used in a
single iteration, and we set Nitermax = 5, 6, 10, such that the reference model is used respectively in one,
two and six iterations. These configurations are named respectively as AD5, AD6 and AD10 (where the
subscript indicates Nitermax) and are summarised in Table 5.8.

Configuration Nitermax εad N4
itermax N3

itermax N2
itermax N1

itermax N0
itermax

AD5 5 0 1 2 3 4 5
AD6 6 0 1 2 3 4 6
AD10 10 0 1 2 3 4 10

Table 5.8: Test case 1.1: configurations of the adaptive parareal method

We perform simulations forNLTP ∈ {1, 2, 4, 5, 10, 20}, with homogeneous time windows. In simulations
using adaptive configuration AD10, NLTP = 20 is not considered since it leads to exact convergence (since
each time window contains N∆T /NLTP = 100/20 = 5 time slices and the reference propagator is used in
six iterations).

The evolution of the maximum error per iteration is presented in Figure 5.9. For the classical parareal
method, most of the simulations present instabilities at intermediate time windows. The configurations
able to finish the simulation are those with the largest numbers of LTP time windows (NLTP = 10, 20).
These results reinforce the conclusions made in Section 5.3: the stability of the classical parareal method
is closely related to the length ∆T of the time slices. Since these lengths are small in the simulations
presented here (∆T = ∆t = 0.2), instabilities rapidly arise in this test case. For larger values of NLTP,
the LTP time windows are smaller, and the local in time execution of parareal instances is able to control
the error evolution in time.

Better results are obtained with the ROM-based parareal method, in which the simulations are able
to complete all time windows for NLTP ≥ 4. Some instabilities are still observed in the last time window
with NLTP = 4, but they are no longer present for NLTP ≥ 5. Note that, contrary to what was observed in
the study of the influence of the time slices (see Figure 5.4), we notice a clear improvement of the ROM-
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based method when the number of LTP time windows increases. It indicates that the method performs
better when the reduced-order models are formulated and used for updating the parareal solution in
smaller time domains. Also, we observe, as expected, an improvement of the convergence when more
iterations are performed by each parareal instance, except in the case NLTP = 4, due to the still present
instabilities.
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Figure 5.9: Test case 1.1: evolution of the relative error ek for the global parareal (NLTP = 1) and the
local-in-time approaches (NLTP = 2, 4, 5, 10, 20), for various maximum numbers of iterations (each one
corresponding to an adaptive configuration). Top left: stable simulations using the classical parareal
method; top right: ROM-based with configuration AD5, bottom left: ROM-based with configuration
AD6; bottom right: ROM-based with configuration AD10.

For illustrating the behaviour in time of the LTP approach, and also to evidence its limitations in
terms of convergence, we present in Figure 5.10 the evolution of the relative errors ekn in the case AD5, for
each value of NLTP. We clearly observe the local-in-time behaviour of the errors induced by the execution
of sequential, smaller instances of the parareal method. The error decrease at each parareal instance P(i)

is limited by the final error of the previous instance, i.e. by the accuracy of the received initial solution.
We notice, however, that this approach is able to improve the stability, compared to the global parareal
simulation, and a better convergence behaviour is observed. As said above, instabilities are still observed
for advanced time steps for NLTP = 4, but for NLTP ≥ 5 all simulations are stable.

Table 5.9 presents the speedups at the end of the simulations. Note that, in the LTP approach,
there is no meaning in analysing the speedup at an intermediate iteration k < Nitermax, since Nitermax

iterations are necessarily performed by each parareal instance. We then report only the speedups at the
final iterations. We first observe that faster simulations are obtained with NLTP = 5 than with NLTP = 4,
due to the unbalanced distribution of parallel tasks in the latter case, as already discussed. The adaptive
approach, by performing less expensive iterations, ensures speedups larger than the unity in this test case
in almost all simulations. The speedups and the errors presented in Figure 5.9 reveal that a trade-off
should be established when choosing the number of time windows and the number of parareal iterations.
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Figure 5.10: Test case 1.1: evolution of the relative error ekn for the global parareal (NLTP = 1) and
the local-in-time approaches (NLTP = 4, 5, 10, 20), under the same parareal configurations (α = 1/2,
NPID = 1, adaptive configuration AD5). The global parareal simulation is unstable and does not complete
two iterations.
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For example, for NLTP = 5, the error eNitermax provided by AD5 and AD6 are respectively equal to 3×10−4

and 1 × 10−4, approximately, but the latter provides 70% of the speedup of the former. Also, for AD6

fixed, the error for NLTP = 10 reduces to 6×10−5, but at a higher computational cost. Finally, the small
speedups for configuration AD10 show that the number of iterations performed by each parareal instance
should be kept as small as possible.

AD5 AD6 AD10

NLTP CL ROM CL ROM CL ROM
1 * * * * * *
2 * * * * * *
4 * 2.06 * 1.42 * 0.60
5 * 2.34 * 1.63 * 0.74
10 * 2.13 * 1.45 1.24 0.64
20 2.57 1.58 1.65 1.06 −− −−

Table 5.9: Test case 1.1: speedup at the final iteration for different various numbers NLTP of parareal
instances in the local-in-time approach. “CL” and “ROM” stand respectively for the classical and ROM-
based parareal methods. NLTP = 1 corresponds to the global parareal. Asterisks indicate that the
simulation is unstable and does not complete Nitermax iterations. Simulations indicated with “−−” were
not performed since they are equivalent to a serial execution of the reference model.

Test case 2.1 (2D in larger spatial and temporal domains)

For Test case 2.1, we consider the same configurations used in the study of the length of time slices
(Section 5.3), both for the classical and ROM-based parareal methods. In this case, we considered
adaptive configuration ADB, in which, in general, each intermediate fine propagator is used in two
iterations, due to the relative small threshold εad = 10−3. That is, the number of parareal iterations
using the reference propagator F̂0

δt0
= Fδt is smaller than in configuration ADA. Therefore, we do not

modify configuration ADB, and Nitermax = 10 iterations are performed by each parareal instance.
We perform simulations for NLTP ∈ {1, 2, 4, 5, 10}, all the simulations being stable and completing all

iterations. The case NLTP = 20 is not considered because it is equivalent to a sequential simulation of
the reference model, since, in this test case, N∆T = 40 and Fδt is used in at least two parareal iterations.
The maximum error per iteration ek the speedups s(Nitermax) at the end of simulations are presented
respectively in Figure 5.11 and Table 5.10.
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Figure 5.11: Test case 2.1: evolution of the relative error ek for the global parareal (NLTP = 1) and
the local-in-time approaches (NLTP = 2, 4, 5, 10), in the classical (left) and ROM-based (right) parareal
frameworks.

Contrary to Test case 1.1, improvements of the classical parareal method in function of NLTP are
clearly observed. Indeed, in Test case 2.1 there are no instabilities due to the chosen length of time slices
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NLTP 1 2 4 5 10
Classical 2.65 2.77 1.95 1.69 0.97

ROM-based 1.75 1.49 1.02 0.89 0.58

Table 5.10: Test case 2.1: speedup at the final iteration for various numbers of parareal instances in the
local-in-time (LTP) approach, in the adaptive ROM-based parareal framework. NLTP = 1 corresponds
to the global parareal.

(∆T = ∆t), and a relatively good convergence is obtained within each parareal instance. Improvements
are also observed for the ROM-based parareal, but more remarkably for NLTP ≥ 4. As in Test case
1.1, the improvements of the ROM-based method in function of NLTP are much clearer than in function
of the length of the time slices (Figure 5.6). The error behaviour suggests that instabilities are still
present for NLTP ≤ 2. Note that the errors are still relatively large for all simulations, but a reduction
from approximately 10−2 for NLTP = 1 to errors smaller than 10−3 for NLTP = 4 and NLTP = 5 are
observed, with still interesting speedups compared to NLTP = 1 in the classical parareal framework. In
the ROM-based case, the simulations with NLTP ≥ 4 have similar or smaller computational times than
the reference one. Also, in both parareal frameworks, the simulations with very small time windows
(NLTP = 10) provide substantial error reductions in the last two iterations, in which F0

δt0
= Fδt is used

as fine propagator, but at the cost of speedups smaller than the unity. We remark that, in this test case,
there are N∆T = 40 time slices and, by using Np = 20 processors, the parallel capacity is underused when
NLTP is larger than N∆T /Np = 2. Finally, in the case of the classical parareal method, we notice that a
smaller speedup is obtained for NLTP = 1, compared to NLTP = 2, since the adaptive transition to the
reference propagator is performed one iteration before in the former case.

5.5 Conclusion of the chapter

In this chapter, we considered two different strategies for performing longer parareal simulations in time,
and we compared their impacts on the performances of the classical and ROM-based parareal methods.
This study was motivated by noticing that parareal simulations become more challenging in terms of
stability when performed in large temporal and spatial domains.

The first strategy is to choose larger parareal time slices, i.e. increase ∆T . Contrary to the simulations
presented in the previous chapter, in which we considered ∆T = ∆t, we now allowed each time slice to
contain several coarse time steps. Improvements of the convergence were observed both for the classical
and ROM-based methods, but much clearly in the former case. Indeed, stable and fast convergence
behaviours were obtained by choosing larger ∆T in the classical method, even in the one-dimensional
test case, for which the method presented instabilities when ∆T = ∆t. These results are coherent
with conclusions presented by Ruprecht (2018), who indicates that faster convergence is obtained by
increasing ∆T . Improvements were also observed in the ROM-based parareal method, but larger ∆T did
not necessarily improved the convergence in all iterations. It suggests that its convergence is limited by
the quality of the reduced-order model formulated in the entire temporal domain [0, T ].

The second approach consists in performing local-in-time parareal simulations, in small time windows,
with each parareal instance providing the initial solution for the next one. In this case, clear improvements
of the ROM-based method were observed, with faster convergence by considering more time windows.
It reinforces that the method performs better when the reduced-order models are formulated locally in
time. In the case of the classical method, also clear improvements were observed in the two-dimensional
test case, for which the global-in-time method (executed in [0, T ]) is already stable. However, in the
one-dimensional test case, in which the length ∆T of the time slice is critical in terms of stability, stable
solutions were obtained only by considering very small time windows, thus limiting the error increase in
time.

Both studied approaches present drawbacks in terms of parallel performance, since they reduce the
possible parallelization of the parareal method. Also, the local-in-time approach limits the convergence
towards the reference solution, since the quality of the solution in each parareal instance depends on the
solution received from the previous one. Therefore, the choices of the length of the time slices and/or
number of time windows and number of parareal iterations should be guided by a compromise between
accuracy, stability and expected speedup. The use of the adaptive parareal approach, described in Section
4.5, contributes to achieve good accelerations of the simulation. Also, it was shown that additional costs
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due to the definition of several parareal instances remain small relative to the total parareal iteration
time.

Note that these approaches can obviously be combined, by dividing the simulation into several parareal
instances and using large time slices. Evidently, the negative impacts on the expected speedup would
be more important. Finally, we remark that the local-in-time approach opens room for using different
and more suitable configurations in each parareal instance, based e.g. on the behaviour of the solution
in each time window. These possibilities are explored in the next chapter.
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6.1 Introduction

After comparing and studying the performance of the classical and ROM-based parareal methods for
solving the two-dimensional nonlinear shallow water equations, with both fine and coarse propagators
defined as discretizations of the classical SWE, we apply the methods for coupling the classical and
porosity-based shallow-water models.

This application is not straightforward. In Chapters 3 and 4, the parareal methods and the proposed
modifications to the ROM-based one were tested using relatively simple test cases, defined within small
spatial and temporal domains and with relatively simple and smooth solutions. In Chapter 5, it was
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illustrated that convergence and stability become more challenging in the case of larger problems, de-
manding the use of larger parareal time slices or the definition of local-in-time parareal instances, which
limits the possible speedup that can be achieved by the method. Urban flood simulations usually cover
larger temporal domains and use very refined spatial meshes for the classical SWE. Moreover, the solu-
tion usually presents strong discontinuities, due to the reflection of the flow on urban obstacles, imposing
additional challenges for the parareal methods. As shown along this chapter, it is more challenging to
ensure stability and a good convergence behaviour of the parareal methods in this scenario.

Most of the study presented in this chapter is performed considering a relatively simple, fictitious urban
zone, for which we are able to define several discretizations of the classical shallow water equations, with
various spatial and temporal mesh sizes. For the porosity-based equations, we consider both the single
porosity (SP) and dual integral porosity (DIP) models. With this approach, we look for some indications
on how do the classical and ROM-based parareal methods behave in function of the coarsening intensity
between the fine and coarse propagators. More precisely, we seek to answer the following questions:

• For a given coarse propagator (a discretization of the porosity based models), how does the parareal
convergence depend on the choice of reference model (a finer or coarse discretization of the classical
SWE)?

• For a given fine propagator (a fine discretization of the classical SWE), how does the parareal
convergence depend on the choice of the coarse propagator? What is the influence of the choice
of porosity-based model (SP or DIP)? What is influence of choosing a porosity-based model or a
coarse discretization of the classical SWE as coarse propagator?

This study is performed using parareal configurations that ensure relative stability (large time slices,
definition of local-in-time parareal instances), even if not always optimal in terms of computational time.
In a second moment, we study the influence of parareal parameters on the stability, convergence and
achieved speedup. The definition of several discretizations of the classical SWE also allows to use an
adaptive approach, both for the classical and ROM-based methods, and we propose a discussion on the
practical utility of using it.

Finally, based on conclusions made from these preliminary studies, we use the parareal methods to
solve the numerical example presented in Section 2.11 for illustrating the classical and porosity-based
SWE. Even if still relatively simple, this example presents additional challenges, e.g. the larger temporal
domain and the use of unstructured spatial meshes. We investigate the performance of the parareal
methods in function of the initial water depth and we identify limitations for its application in typical
situations of urban flood modelling in which the initial water depth is zero.

This chapter is organized as follows: in Section 6.2, small examples, consisting of modified versions
of Test case 1, are used to illustrate the challenges that may be encountered when simulating urban
floods using parareal methods. The test case used in most part of this chapter is presented in Section
6.3. The influence of the coarsening between the fine and coarse propagators is studied in Section 6.4
and the comparison of parareal configurations in terms of convergence, stability and speedup is covered
in Section 6.5. The parallel-in-time simulation of the example introduced in Section 2.11 is performed in
Section 6.6. Conclusions are presented in Section 6.7.

6.2 A simple and challenging example

We begin by presenting a set of simple test cases coupling the classical and porosity-based SWE, in order
to illustrate that additional challenges arise in the application of the parareal method for the simulation
of urban floods, due to the more complex geometry and induced discontinuities of the flow variables.

We consider Test case 1, as described in Table 3.1, but the computational domain Ω = [0, 20]2 is
modified for the fine, reference propagator, by the introduction of a contraction in the y−direction.
This contraction is symmetric w.r.t. y = 10, starts at x = xc,0 = 8., ends at x = xc,f = 12 and has
a width wc = 20φc in the y-direction, where φc is the fraction represented by the contracted width
w.r.t. the full width in the rest of the domain. Therefore, the computational domain for Fδt reads
Ωf := [0, xc,0]× [0, 20] ∪ [xc,0, xc,f ]× [10− wc/2, 10 + wc/2] ∪ [xc,f , 20]× [0, 20], as shown in Figure 6.1.

The computational domain for the coarse propagator has no contraction (Ωc := Ω). Therefore, we
consider a porosity approach for taking into account the reduction of area available for the flow, by
defining a porosity parameter smaller than the unity for [xc,0, xc,f ]× [0, 20]. Note that, in this case, the
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Figure 6.1: Test case 1 with contraction of the domain: spatial domain. The y-transverse section has a
contraction from xc = xc,0 = 8 to xc = xc,f = 12.

storage (φΩ) and conveyance (φΓ) parameters, defined in the DIP framework and accounting respectively
for the available area and transverse section, are equal, since

φΩ =
wc(xc,f − xc,0)

20(xc,f − xc,0)
= φc

φΓ =
wc
20

= φc

It means that the SP, IP and DIP porosity models are equivalent. Then, the porosity field for the
coarse propagator G∆t reads

φ(x) =

{
φc, x ∈ [xc,0, xc,f ]× [0, 20]

1, x ∈ Ω\ ([xc,0, xc,f ]× [0, 20])
(6.1)

The computational meshes used by the fine and coarse models in the case φc = 0.6 are shown in 6.2,
in which the porosity field is also presented.
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Figure 6.2: Test case 1 with contraction of the domain and φc = 0.6: computational mesh used by the
fine (left) and coarse (right) models, also representing the porosity field φc.

We perform parareal simulations considering φc ∈ {0.2, 0.4, 0.6, 0.8, 1}. Note that φc = 1 is equivalent
to Test case 1, without contraction. Since this test case presents instabilities in the classical parareal
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framework under configurations presented in Table 3.1, we consider only the ROM-based approach. No
modification of the method is considered here (i.e. αs = 1, NPID = 1, non-adaptive, NLTP = 1). Two
pairs of model reduction thresholds are considered, namely (εsv,linear, εsv,nonlinear) = (10−5, 10−5) and
(εsv,linear, εsv,nonlinear) = (10−3, 10−5).

Figure 6.3 presents the maximum error per iteration for each value of φc and each pair of model
reduction thresholds. For (εsv,linear, εsv,nonlinear) = (10−5, 10−5), all simulations with φc < 1 present in-
stabilities, and those with the most important domain contractions (φc = 0.2, 0.4) are not able to complete
Nitermax = 5 iterations, whereas the simulation without contraction (φc = 1) presents a faster conver-
gence. By using a pair of model reduction thresholds more likely to stabilize the ROM-based parareal
method, i.e. (εsv,linear, εsv,nonlinear) = (10−3, 10−5), all simulations are able to complete Nitermax = 5
iterations and their errors decreases almost monotonically, but at a rate still much slower for φc < 1
when compared to φc = 1. Note that these observations hold for all simulations with φc < 1, with only
a small but not too clear outperform by φc = 0.8 (the closest simulation to φc = 1).

These results reveal that the introduction of a more complex geometry strongly affects the performance
of the ROM-based parareal method, even in this relatively simple test case, performed within small spatial
and temporal domains and with no spatial coarsening between the fine and coarse propagators. In fact,
the impact on the performance of the method is analogous to what was observed, in Section 3.6.7, by
using an unstructured spatial mesh. Firstly, the flow is no longer unidirectional, since non zero velocities
arise along the y−direction due to the contraction of the domain and the reflection on the boundaries.
For the same reason, strong discontinuities are formed, mainly in the velocity fields. Both these factors
are challenging for the model reduction procedures and the ROM-based parareal method.

Therefore, the modifications proposed to the method in the previous chapter may be envisaged for
obtaining stable and fast converging solutions. In this small example, the simplest enrichment of the
snapshots sets for the model reduction, with one extra snapshot per time slice (αs = 1/2), is able to
improve the parareal performance, mainly in the case (εsv,linear, εsv,nonlinear) = (10−5, 10−5), as shown
in Figure 6.4. However, the performances for all simulations with φc < 1 are still far below than with
φc = 1.
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Figure 6.3: Test case 1 with contraction of the domain: evolution of the relative error ek for various
values of φc, using the ROM-based parareal method. Left: (εsv,linear, εsv,nonlinear) = (10−5, 10−5); right:
(εsv,linear, εsv,nonlinear) = (10−3, 10−5). For (εsv,linear, εsv,nonlinear) = (10−5, 10−5), the simulation φc = 0.2
does not complete the first parareal iteration and is not shown, and the simulation φc = 0.4 completes
only the two first iterations.
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Figure 6.4: Test case 1 with contraction of the domain: evolution of the relative error ek for various values
of φc, using the ROM-based parareal method, modified by taking αs = 1/2. Left: (εsv,linear, εsv,nonlinear) =
(10−5, 10−5); right: (εsv,linear, εsv,nonlinear) = (10−3, 10−5).

6.3 Description of a base test case

We first present the test case used in most part of the work presented in this chapter. We name it
hereafter as Test case 3.

6.3.1 Definitions

Domains and discretizations

We consider a square domain Ωtotal = [0, L]2 with L = 100, inside which a square urban zone Ωurban =
[au, bu]2, with au = 32 and bu = 68, is defined and composed by a 5×5 Cartesian grid of square buildings
with size lx = ly = l = 4 and separated one from another by wx = wy = w := 4 in each direction (see
Figure 2.7 for a schematic representation). We consider two discretizations for the coarse model, named
G0

∆t0
and G1

∆t1
, both using a Cartesian mesh, respectively with ∆x0 = ∆y0 ≈ 8.33 (totalizing 144 cells)

and ∆x1 = ∆y1 = 5 (totalizing 400 cells). We also define four fine propagators, named as F0
δt0

, F1
δt1

, F2
δt2

and F3
δt3

and defined in Cartesian meshes respectively with δx0 = δy0 = 0.5, δx1 = δy1 = 1, δx2 = δy2 = 2
and δx3 = δy3 = 4, totalizing resp. 38400, 9600, 2400 and 600 cells. Buildings are physically represented
as holes in the meshes for F0

δt0
, F1

δt1
, F2

δt2
and F3

δt3
(since these models are discretizations of the classical

SWE), but not in the meshes for G0
∆t0

and G1
∆t1

(in which the presence of buildings is represented via
porosity parameters). We consider here either the SP and DIP models for G0

∆t0
and G1

∆t1
.

Concerning the temporal domain and discretizations, the simulations are run from t = 0 to t =
T := 16. All propagators are defined as to keep approximately the same CFL number and time steps
as multiple integers of each other, with δt0 = 0.025, δt1 = 0.05, δt2 = 0.1, δt3 = 0.2, ∆t0 = 0.4 and
∆t1 = 0.2.

Table 6.1 summarises the basic configurations for this test case. The computational meshes used by
F1
δt1

, F2
δt2

, F3
δt3

, F4
δt4

are represented in Figure 6.5 and those used by G0
∆t0

and G1
∆t1

are represented in
Figure 6.6.

Porosity fields

The porosity fields used by the coarse propagators G0
∆t0

and G1
∆t1

are computed analogously to the
numerical example presented in Section 2.11. They take two possible values, depending on the spatial
position w.r.t. Ωurban (more precisely, the location of the barycenter ci of each computational cell Ωi).
For the SP model, we have

φ(x) =





1, x ∈ Ω\Ωurban

1− |Ωbuildings|
|Ωurban|

= 1− 25l2

(bu − au)2
≈ 0.69, x ∈ Ωurban
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Figure 6.5: Test case 3: fine meshes (zoom on the urban zone) used respectively by the fine propagators
F0
δt0

(top left), F1
δt1

(top right), F2
δt2

(bottom left) and F3
δt3

(bottom right), discretizing the classical
SWE. The red lines indicate the slice y = 46 along which the solutions are compared.
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Figure 6.6: Test case 3: coarse meshes (zoom on the urban zone) used by the coarse propagators G0
∆t0

(left) and G1
∆t1

(right), both discretizing the porosity-based SWE. Dashed lines represent the position of
the buildings (not physically represented in the mesh).
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Spatial domain Ω = [0, 100]2

Max. simulation time T = 16
Nb. of parallel processors Np = 20

F0
δt0

F1
δt1

F2
δt2

F3
δt3

G0
∆t0 G1

∆t1

Time step δt0 = 0.025 δt1 = 0.05 δt2 = 0.1 δt3 = 0.2 ∆t0 = 0.4 ∆t1 = 0.2
Mesh size (x-direction) δx0 = 0.5 δx1 = 1 δx3 = 2 δx4 = 4 ∆x1 ≈ 8.33 ∆x0 = 5
Mesh size (y-direction) δy0 = 0.5 δy1 = 1 δy2 = 2 δy3 = 4 ∆y0 ≈ 8.33 ∆y1 = 5

Table 6.1: Test case 3: basic configurations and definition of the fine propagators F0
δt0

, F1
δt1

, F2
δt2

and F3
δt3

(discretizing the classical SWE) and the coarse propagators G0
∆t0

and G1
∆t1

(discretizing the porosity-based
SWE).

with the porosity value in Ωurban corresponding to the fraction of the area of Ωurban not covered by
buildings. For the DIP model, the storage and conveyance porosity fields read respectively

φΩ(x) = φ(x), x ∈ Ω

φΓ(x) =





1, x ∈ Ω\Ωurban

4w

(au − bu)
≈ 0.44, x ∈ Ωurban

with the conveyance porosity inside Ωurban corresponding to the fraction of the y-cross section of Ωurban

available for the flow. These porosity fields are represented in Figures 6.7 and 6.8, respectively for G0
∆t0

and G1
∆t1

.
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Figure 6.7: Test case 3: porosity fields used in the simulations of the porosity-based model G0
∆t0

. Storage
porosity φΩ (left) and conveyance porosity φΓ (right) for the DIP model. The porosity field φ for the
SP model coincides with φΩ. The conveyance porosity is presented as an interpolated field for an easier
visualization. Zoom on the urban zone. All porosity fields are equal to one in the rest of the domain.

Initial and boundary conditions

We consider for these simulation a lake-at-rest as initial condition, with initial water depth h(x, t = 0) = 1,
and closed boundary conditions (null mass flux) for all boundaries, except for the western one, in which
an inward unitary flux is defined:

h(x, t = 0) = 1, ux(x, t = 0) = uy(x, t = 0) = 0, x ∈ Ω (6.2)

{
hu · n = 1, x ∈ ∂Ωinward := {x ∈ Ω|x = 0}, t ∈ [0, T ]

hu · n = 0, x ∈ ∂Ω\(∂Ωinward), t ∈ [0, T ]
(6.3)
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Figure 6.8: Test case 3: porosity fields used in the simulations of the porosity-based model G1
∆t1

. Storage
porosity φΩ (left) and conveyance porosity φΓ (right) for the DIP model. The porosity field φ for the
SP model coincides with φΩ. The conveyance porosity is presented as an interpolated field for an easier
visualization. Zoom on the urban zone. All porosity fields are equal to one in the rest of the domain.

6.3.2 Comparison between the models

We first compare in Figure 6.9 the solutions provided by each model presented above (F0
δt0

, F1
δt1

, F2
δt2

,
F3
δt3

and G0
∆t0

, the last one using both the SP and DIP models) along y = 46 at two times of simulation
(t = T/2 and t = T ). The same results are presented in Figure 6.10, but comparing the fine models with
G1

∆t1
. We notice that G1

∆t1
provides a better approximation of the fine models, which is natural since it is

has a finer discretization than G0
∆t0

. Both models, however, fail notably in providing a good approximation
for the y-unit discharge, which presents strong discontinuities and may represent a particular challenge
for the parareal methods. Also, for a fixed coarse discretization (G0

∆t0
and G1

∆t1
), both porosity-based

models (SP) and (DIP) provide quite similar results, with a slight outperform by the DIP, as can be
assessed in Table 6.2, showing the relative errors of G0

∆t0
and G1

∆t1
, using the SP and DIP models, w.r.t.

F1
δt1

.
The computational times for the simulation of each model are presented in Table 6.3. Since the

models were designed in order to have nearly the same CFL number, we observe approximately a cubic
dependence of the computational time on the mesh and time step sizes. The coarser reference model F3

δt3
and the porosity-based ones (G0

∆t0
and G1

∆t1
) present closer computational times since they are too small

problems, such that overheads of the simulation (e.g. initialization) become relatively important.

t = T/2 t = T
Coarse model SP DIP SP DIP
G0

∆t0
8.18E-2 7.97E-2 1.32E-1 1.22E-1

G1
∆t1

4.77E-2 5.80E-2 9.96E-2 9.51E-2

Table 6.2: Test case 3: relative errors e0
n of porosity-based models (G0

∆t0
and G1

∆t1
, both with SP and

DIP) w.r.t. F0
δt0

, for n = N∆T /2 and n = N∆T . These errors correspond to the iteration k = 0 of the
parareal simulations.

F0
δt0

F1
δt1

F2
δt2

F3
δt3

G0
∆t0

- SP G0
∆t0

- DIP G1
∆t1

- SP G1
∆t1

- DIP

19.84 2.71 0.30 0.09 0.05 0.06 0.06 0.06

Table 6.3: Test case 3: computational times (in seconds) for the simulation of the reference models (F0
δt0

,
F1
δt1

, F2
δt2

, F3
δt3

) and the porosity-based ones (G0
∆t0

and G1
∆t1

, both with SP and DIP).
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Figure 6.9: Test case 3: solution of the fine propagators (dashed lines) and the coarse ones (G0
∆t0

with
SP and DIP, full lines) along slice y = 46, for t = T/2 = 8 (left) and t = T = 16 (right). First, second
and third rows: water depth, x-unit discharge and y-unit discharge, respectively. The solutions of the
porosity-based models are interpolated to the fine mesh used by F0

δt0
.
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Figure 6.10: Test case 3: solution of the fine propagators (dashed lines) and the coarse ones (G1
∆t1

with
SP and DIP, full lines) along slice y = 46, for t = T/2 = 8 (left) and t = T = 16 (right). First, second
and third rows: water depth, x-unit discharge and y-unit discharge, respectively. The solutions of the
porosity-based models are interpolated to the fine mesh used by F0

δt0
.
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6.4 Influence of the coarsening between the classical and the
porosity-based SWE

6.4.1 Study for a fixed coarse propagator

We investigate here the influence of the coarsening between the classical (reference) and the porosity-based
shallow water models on the performance of the parareal method. For that, we compare the solutions of
Test case 3 using with different fine, reference propagators (F iδti , i = 0, . . . , 3, given by the classical SWE
with different sizes of the spatial and temporal discretizations), and a fixed coarse propagator, namely the
coarsest one, G0

∆t0
. Since the SP and DIP models provide very close results in this test case, we consider

only the latter. Evidently, we do not expect to achieve speedups larger than the unity for the simulations
using the coarsest reference models, since they are already low-expensive and not much refined w.r.t. the
coarse propagator. Therefore, we perform, at this point, a study comparing only the convergence and
stability of the simulations.

Even if these simulations are performed in a relatively small temporal domain, they are challenging in
terms of convergence and stability, mainly in the ROM-based parareal framework, which can be attributed
to the more complex profiles of the solutions, including discontinuities of the velocity fields, as illustrated
in Figure 6.9. Therefore, the use of large time slices (∆T > ∆t0) or the execution of local parareal
instances (NLTP > 1) are necessary for ensuring the stability. We consider both these cases separately.

Use of large time slices

We begin by considering a small number of large time slices. In order to properly compare the convergence
behaviour in function of the coarsening between the coarse and reference propagators, we choose the
same configurations for all simulations, such that almost all of them are relatively stable, even if these
configurations may not be optimal in terms of computational time. Notably, stable simulations are
obtained for the less challenging cases (using F2

δt2
or F3

δt3
as fine propagator) with simpler and less

restrictive parareal configurations. We set ∆T = 4∆t0 = 1.6, such that there are N∆T = 10 time slices,
and a single parareal instance (NLTP = 1), both for the classical and ROM-based simulations. For the
ROM-based parareal method, we consider αs = 1/2, and the thresholds εsv,linear and εsv,nonlinear for the
model reduction procedures are chosen after an initial study on the non-modified ROM-based parareal
method, as done in Section 3.6. As before, instabilities are observed for small εsv,linear combined with large
εsv,nonlinear, then we consider εsv,linear = 10−3 and εsv,nonlinear = 10−5. We perform Nitermax = 3 parareal
iterations. Under these configurations, all simulations are stable, except the most challenging ones in the
ROM-based case, namely the ones using F0

δt0
(which does not complete two iterations) and F1

δt1
as fine

propagator. This last case is able to complete Nitermax = 3 iterations, but with clear instabilities that
terminate the simulation in the fourth iteration.

Figure 6.11 compares the errors obtained in each simulation. Since the reference model is not the
same in all cases, this information is presented as the fraction of the final parareal error (at iteration
Nitermax) relative to the initial error (at iteration 0), i.e. eNitermax

n /e0
n. We notice, both for the classical

and ROM-based parareal methods, that convergence is less challenging when the reference model is less
refined, thus closer to the coarse propagator. The results are coherent with conclusions made in Chapter
5: in the classical parareal framework, the use of a large ∆T ensures a stable behaviour for all simulations,
even with very fine reference propagators. This is not the case in the ROM-based method, in which the
formulation of reduced-order models in the entire temporal domain leads to unstable behaviours, although
the large ∆T . The less challenging simulations (using F2

δt2
or F3

δt3
as fine propagator) present a better

convergence, but a clear degradation of the solution near the end of the temporal domain is observed.

Use of local-in-time parareal instances

As in the previous case, we choose the same configurations for all test cases, in order to ensure relatively
stable simulations. We consider NLTP = 5 time windows for the local-in-time approach, with time slices
covering a single coarse time step (∆T = ∆t0 = 0.4, i.e. N∆T = 40), such that each LTP window
contains N∆T /NLTP = 8 time slices (thus exact convergence would be obtained after eight iterations per
window). In each parareal instance, Nitermax = 5 parareal iterations are performed. For the ROM-based
method, we set αs = 1/2.

Figure 6.12 compares the error evolution for each simulation. As before, we present the fraction of the
final parareal error (at iteration Nitermax) relative to the initial error (at iteration 0). We clearly notice,
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Figure 6.11: Test case 3 with G0
∆t0

-DIP as coarse propagator, various fine propagators, ∆T = 1.6,
NLTP = 1 and Nitermax = 3: fraction of the error at the last parareal iteration relative to the error at the
0−th iteration, for each parareal time instant (eNitermax

n /e0
n). Values expressed in percentage. Simulations

using the classical (left) and ROM-based (right) parareal methods. The simulation using F0
δt0

as fine
propagator is unstable in the ROM-based framework and does not complete Nitermax = 3 iterations.

in the case of the classical parareal method, a dependence on the coarsening between the fine and coarse
propagators, with a faster convergence in simulations using coarser reference models. The errors in the
most challenging simulations (using the most refined reference propagators, F0

δt0
and F1

δt1
) are larger

than in the case (∆T = 4∆t0, NLTP = 1) (Figure 6.11), indicating that the small time slice length limits
the parareal convergence. In the case of the ROM-based parareal method, a less clear dependence on the
coarsening intensity is observed. Indeed, except when F0

δt0
is used as fine propagator, a relatively fast

convergence is observed in all simulations, with errors smaller than 10% of the initial one in the entire
temporal domain and outperforming the simulations using the classical parareal method, which indicates
that the dynamics of the reference models are properly captured by the model reduction. By considering
a very refined reference propagator, the model reduction seems to be more challenging, such that the
error remains relatively small in the beginning of the simulation (in the first two time windows), but
rapidly degrades at advanced times. In any case, and also in coherence with Chapter 5, the simulations
are more stable and the errors smaller when compared to simulations using NLTP = 1 (Figure 6.11), since
the ROMs are formulated and used for updating the parareal solution within smaller time windows.
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Figure 6.12: Test case 3 with G0
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-DIP as coarse propagator, various fine propagators, ∆T = 0.4,
NLTP = 5 and Nitermax = 5: fraction of the error at the last parareal iteration relative to the error at the
0−th iteration, for each parareal time instant (eNitermax

n /e0
n). Values expressed in percentage. Simulations

using the classical (left) and the ROM-based (right) parareal methods. The legend is the same for both
figures.
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6.4.2 Study for a fixed fine, reference propagator

We now study the coarsening influence by an opposite approach. We fix F0
δt0

as fine, reference propagator,
and we perform simulations using all other propagators (G0

∆t0
and G1

∆t1
with DIP, F3

δt3
, F2

δt2
and F1

δt1
)

as coarse model. This comparison can also be seen as a study of the influence of the choice of coarse
model, since we consider both classical and porosity-based models as coarse propagator. As before, we
consider separately the cases (∆T = 4∆t0, NLTP = 1) and (∆T = ∆t0, NLTP = 5). In each case, the
same parareal configurations are set for all simulations (and identical to the ones used in Section 6.4.1).

Use of large time slices

In this case, with ∆T = 4∆t0 = 1.6 and NLTP = 1, all simulations using the ROM-based parareal
method are unstable and do not complete Nitermax = 3 iterations, indicating that the formulation of a
high-quality reduced-order model, approximating the finest model F0

δt0
in the entire temporal domain,

remains a major issue, independently of the refinement of the coarse propagator. Therefore, only the
errors for the classical parareal method are presented in Figure 6.13. We notice that smaller final errors
are obtained when finer coarse propagators are used, but in this case the initial error (at iteration k = 0)
is also smaller. Therefore, for making clearer the influence of the coarsening intensity, and also for
maintaining the coherence with the results presented in Section 6.4.1, we present, also in Figure 6.13,
the fraction of the final error (at iteration Nitermax) relative to the initial error, i.e. eNitermax

n /e0
n, even if

the reference model is the same in all simulations. As before, we clearly observe that the convergence is
faster when the coarsening intensity is smaller, i.e. when the coarse propagator is closer to the reference
one. Notably, all simulations using a discretization of the classical SWE as coarse propagator outperform
those using the porosity-based models. Indeed, similar errors are obtained in the simulations using G0

∆t0
and G1

∆t1
. The latter presents a slightly faster convergence, but it slows down near the end of temporal

domain.
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Figure 6.13: Test case 3 with various coarse propagators, ∆T = 1.6, NLTP = 1 and Nitermax = 3:
evolution of the maximum error per iteration (left) and fraction of the error at the last parareal iteration
relative to the error at the 0−th iteration, for each parareal time instant (eNitermax

n /e0
n, right), using various

models as coarse propagator. Only simulations using the classical parareal method are considered, since
all simulations in the ROM-based framework are unstable and do not complete Nitermax = 3 iterations.
The legend is the same in both figures.

Use of local-in-time parareal instances

We repeat the simulations presented above (with a fixed fine propagator and different coarse ones) by
considering smaller time slices ∆T and the use of the local-in-time parareal approach. As in Section 6.4.1,
we consider NLTP = 5 and Nitermax = 5 iterations per parareal instance in order to ensure relative stable
simulations in all cases, and a time slice length ∆T = ∆t0 = 0.4 (equal to the time step of the coarsest
propagator G0

∆t0
) is used in all simulations. Figure 6.14 presents, as above, the evolution of the maximum
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error per iteration ek and the fraction of the final error relative to the initial error (eNitermax
n /e0

n), both in
the classical and ROM-based parareal frameworks.
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Figure 6.14: Test case 3 with ∆T = 0.4, NLTP = 5 and Nitermax = 5: evolution of the maximum error
per iteration (left) and fraction of the error at the last parareal iteration relative to the error at the 0−th
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Values expressed in percentage. Simulations using the classical (top) and the ROM-based (bottom)
parareal methods. The legend is the same in all figures.

In the case of the classical parareal method, the conclusions are the same as with (NLTP = 1, ∆T = 1.6)
(Figure 6.13), with a faster convergence when the coarse model is closer to the reference one. As observed
in the study using a fixed coarse propagator (Section 6.4.1), the differences in the parareal performance in
function of the coarsening intensity are more important than in the previous case, due to relatively small
time slice ∆T = ∆t0 and the execution of local-in-time parareal simulations. When a relatively fine model
is used as coarse propagator, a fast convergence is obtained within each time window. However, when
the coarse propagator is less refined (e.g. G0

∆t0
), this convergence slows down, also affecting negatively

the convergence in the following parareal instances. An important improvement can be observed e.g. by
using a finer discretization of the porosity-based models (G1

∆t1
instead of G0

∆t0
), whereas both present

similar error behaviours in the case (NLTP = 1, ∆T = 1.6), mainly near the end of the temporal domain.
For the ROM-based method, more stable simulations than with (NLTP = 1, ∆T = 1.6) are obtained,

but a less clear behaviour of the maximum error per iteration is observed. Indeed, as shown in Figure
6.14, the errors remain relatively small in the first time windows of all simulations (with a slightly slower
convergence by the simulation using G0

∆t0
as coarse propagator), but strongly increase near the end of the

temporal domain, indicating the formation of instabilities. Therefore, as in Section 6.4.1, we can conclude
that, independently of the coarse propagator, the formulation of reduced-order models approximating
the finest model F0

δt0
is a major challenge for the stability and convergence of the ROM-based parareal

method.
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6.4.3 Some general conclusions

The numerical simulations presented in this section illustrate that the performance of the classical parareal
method for solving the proposed problem is clearly influenced by the coarsening between the fine and
coarse propagators. The convergence is faster when, for a fixed coarse propagator, the reference one is
coarser, or when, for a fixed reference model, the coarse one is finer. Also, as already observed previously
in this work, convergence is accelerated and stability improved by using larger time slices or by limiting
the error increase along the temporal domain by using the local-in-time approach.

In the case of the ROM-based parareal method, the influence of the coarsening is not so clear. Indeed,
convergence seems to be influenced rather by the refinement of the reference model. It was shown that the
method converges faster when the reference model is coarser, but, for a fixed reference propagator (the
finest one, F0

δt0
), the method presents instabilities for any coarse model. It can be explained by the fact

that, among all fine propagators considered here, F0
δt0

has the largest spatial complexity and produces
solutions with stronger discontinuities and more complex profiles (see Figure 6.9), which represent a
challenge for the model reduction procedures, as assessed previously in this work.

It also explains the observed convergence behaviours in time. Whereas the classical parareal method
presents a quite uniform error decrease along the temporal domain, in the ROM-based one the conver-
gence is faster in the beginning of the simulation (even with important coarsening intensities between
propagators), but slower and strongly unstable near its end. Indeed, Test case 3 is characterized by a
wave propagating from x = 0 and reaching the urban zone (x = au = 32) at a time t. The analytical
solution for t ≤ t is the same as in Test case 1, being determined by applying the Rankine-Hugoniot
condition to the propagation shock (eq. (3.54)). The analytical wave propagates with speed λ ≈ 3.75232
and reaches the urban zone at t ≈ 8.53. Therefore, the solution in the beginning of the simulation has
a simple profile (similar to Test case 1), being successfully captured by the model reduction procedures,
which is favored by the use of a Cartesian mesh. For t > t, and mainly near the end of the simulation,
the solution profile becomes more challenging to the model reduction. In the case of less refined reference
models (e.g. F3

δt3
), the solution profile is less discontinuous, and relatively good performances of the

ROM-based parareal method can be obtained in the entire temporal domain, as illustrated in Figures
6.11 and 6.12.

6.5 Setting parareal configurations for improving its performance

After this initial study on the influence of the coarsening on the parareal convergence, we investigate
in the following paragraphs if good results both in terms of convergence and numerical speedup can be
obtained by choosing adequate parareal configurations. This choice is guided by the study performed
in the previous chapters, performed in simpler sets of test cases, and also by the results observed in
Section 6.4. Notably, a proper choice of time slice length, along with a combined use of the adaptive and
local-in-time approaches could lead to better results, both for the classical and ROM-based methods. For
the latter, the performance could also be improved by a reasonable enrichment of the input snapshots
sets for the model reduction procedures and by the formulation of local ROMs in the PID framework.

This study is performed for the most challenging parareal configuration, i.e. by considering the
finest model (F0

δt0
) as reference and the coarsest one (G0

∆t0
) as coarse propagator. It makes room for

implementing the adaptive parareal approach, in which the coarser fine propagators defined in Section
6.3 act as intermediate ones. Recalling the notation introduced in Section 4.5, we consider Nad = 3 fine
propagators (the reference and the two intermediate ones, namely F1

δt1
and F2

δt2
). We do not consider

F3
δt3

in this adaptive approach since it is only slightly more accurate than the porosity-based models (see
Figures 6.13 and 6.14). For deciding on the transition between fine propagators, we consider a simplified
approach, in which each of them is used in a fixed number of iterations, as considered in Chapter 5. It
is equivalent to set εad = 0, i.e. the transitions are not determined by a convergence criterion based on
the parareal residuals (see eq. (4.18)). This choice allows to have a better control on the computational
time spent at each iteration. Then, we define two adaptive configurations, named AD3 and AD6, in
which the subscripts denote the maximum number of parareal iterations. Each fine propagator is used
in one and two parareal iterations, respectively in configurations AD3 and AD6. We also consider a
non-adaptive approach, using only the reference propagator F0

δt0
and for which we define a maximum

number of iterations Nitermax = 3. Table 6.4 summarises these configurations.
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Configuration Nitermax εad N2
itermax N1

itermax N0
itermax

NA 3 −− −− −− 3
AD3 3 0 1 2 3
AD6 6 0 2 4 6

Table 6.4: Test case 3: adaptive parareal configurations. N i
itermax is the last parareal iteration using the

fine propagator F iδti , i = 0, . . . , 2. “NA” stands for non-adaptive, for which εad and N i
itermax, i = 1, . . . , 2,

do not apply.

6.5.1 Comparison between configurations of the ROM-based parareal method

We begin by comparing and choosing some configurations for the ROM-based parareal method (use of
adaptive approach, enrichment of the snapshots sets, formulation of local-in-time reduced-order models)
in terms of convergence and stability. Results presented in Section 6.4 show that, in Test case 3, using the
most refined reference propagator, the ROM-based method provides a relatively good convergence in the
beginning of the simulation, in which the solution profile is simpler, but the quality of the parareal solution
rapidly degrades towards the end of the simulation, indicating that the model reduction cannot properly
represent the highly discontinuous fine solution. Therefore, for minimizing possible instabilities, in all
simulations we consider two parareal instances (NLTP = 2), with relatively large time slices (∆T = 1.6,
i.e. N∆T = 10, with five time slices per parareal instance). We set Nitermax = 3 iterations per parareal
instance.

First, we perform simulations using various adaptive configurations (the non-adaptive one and con-
figurations AD3 and AD6). As shown in Figure 6.15, the use of the adaptive approach, with gradual
approximations to the reference solution, greatly improves the convergence of the method. In the non-
adaptive framework, strong instabilities are observed, notably in the second half of the temporal domain,
leading to larger errors than in the 0-th iteration. Even if still present, these instabilities are relatively
controlled and the convergence improved in the adaptive case, mainly when more iterations are performed
using each fine propagator (configuration AD6).
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Figure 6.15: Test case 3 using the non-adaptive (NA) and adaptive configurations AD3 and AD6 in the
ROM-based parareal method: fraction of the error at the last parareal iteration relative to the error at
the 0−th iteration, for each parareal time instant (eNitermax

n /e0
n). All simulations use ∆T = 1.6, NLTP = 2,

αs = 1 and NPID = 1. The reference and coarse propagators are respectively F0
δt0

and G0
∆t0

.

We now fix the adaptive configuration AD6 and consider various values for αs and NPID. For the
former, we take αs ∈ {1, 1/2, 1/4, 1/8}. For the latter, we consider NPID ∈ {1, 5} per parareal instance.
Note that these are the only possible values for NPID allowing to have homogeneous PID windows, since
each parareal instance contains N∆T /NLTP = 5 time slices. The final errors for each simulation are
presented in Figure 6.16. We observe that the convergence behaviour in the first half of the simulation
is similar to the results presented in the previous chapters for the one-dimensional Test case 1, since the
solution has a similar and simple profile in both cases: a faster convergence is obtained by increasing
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the number of input snapshots used for the model reduction (smaller αs), while the formulation of local-
in-time ROMs (NPID > 1) increases the obtained error. However, the behaviour in the second half of
the domain is quite different from previous results. Indeed, by taking too small values for αs (1/4, 1/8),
i.e. by using more snapshots, the solution becomes highly unstable for advanced times of simulations.
In the case (αs = 1/8, NPID = 5), the simulation is not able to complete all iterations. Therefore, the
formulation of ROMs approximating the highly discontinuous solution in the second time window seems
not to be improved by using more (also discontinuous) input information for the model reduction.
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Figure 6.16: Test case 3 using various values of NPID and αs: fraction of the error at the last parareal
iteration relative to the error at the 0−th iteration, for each parareal time instant (eNitermax

n /e0
n). Values

expressed in percentage. Left: NPID = 1; right: NPID = 5. All simulations use ∆T = 1.6, NLTP = 2 and
adaptive configuration AD6. The reference and coarse propagators are respectively F0

δt0
and G0

∆t0
. The

simulation with (NPID = 5, αs = 1/8) does not complete all iterations due to instabilities.

6.5.2 Comparison between the classical and ROM-based parareal methods

We now compare, both in terms of convergence behaviour and numerical speedup, some few configurations
for the classical and ROM-based simulations. For the latter, based on the preliminary study presented
above, we consider αs = 1/2 and NPID = 1, which provided a faster convergence in the first half of the
domain and a relatively controlled stable behaviour in the second half. We also combine some time slices
lengths and numbers of LTP windows, namely ∆T ∈ {0.8, 1.6} (i.e. N∆T ∈ {20, 10}) and NLTP ∈ {1, 2}.
The three adaptive configurations (non-adaptive, AD3 and AD6) are used both for the classical and ROM-
based parareal methods. It results in twelve configurations in each case. The simulations are performed
using Np = 20 parallel processors. Therefore, only the configurations with (N∆T = 20, NLTP = 1)
use all available processors for performing the fine correction step. The case with the smallest expected
speedup is (N∆T = 10, NLTP = 2), in which the fine correction step is distributed among five processors.
We recall, however, that all processors are used in the ROM-based method for performing the model
reduction procedures.

The errors for the simulations in the classical parareal framework are presented in Figure 6.17. In
this case, all twelve performed simulations are able to complete all iterations. It is easy to observe that
the parareal solution is greatly improved by doubling the length of the time slices. The impacts of using
an adaptive approach are also clear: for ∆T = 0.8, the non-adaptive simulations are relatively unstable,
and the final parareal error at the end of the temporal domain is larger than in the 0-th iteration. These
instabilities are controlled by using adaptive configurations. For ∆T = 1.6, similar results are obtained in
the non-adaptive and adaptive configuration AD3, with smaller errors by considering AD6. Therefore, as
a general conclusion, better results are obtained by performing more iterations using each intermediate
fine propagator (configuration AD6). Finally, important improvements are obtained in the second half of
the temporal domain by dividing it into two parareal simulations (NLTP = 2).

In the case of the ROM-based parareal method, it is considerably more challenging to obtain stable
simulations. As shown in Figure 6.18, only four among the twelve simulations complete all iterations.
Notably, all non-adaptive simulations are unstable. This is also the case of configurations with a single

163



Chapter 6. Coupling between the classical and the porosity-based shallow water equations

parareal instance (NLTP = 1), except for one of the simulations. For the simulations with NLTP = 2,
instabilities arise in the second half of the temporal domain. We can observe, for example, that the
simulation with ∆T = 1.6, NLTP = 2 and adaptive configuration AD6 outperforms the classical parareal
simulations in [0, T/2] (and even in the beginning of [T/2, T ]), but the solution rapidly degrades in the
last time slices.
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Figure 6.17: Test case 3 using various configurations of the classical parareal method: fraction of the error
at the last parareal iteration relative to the error at the 0−th iteration, for each parareal time instant
(eNitermax
n /e0

n). Values expressed in percentage. Left: ∆T = 0.8. Right: ∆T = 1.6. Full and dashed lines
indicate simulations using respectively NLTP = 1 and NLTP = 2. The legend is the same in both figures
and the reference and coarse propagators are respectively F0

δt0
and G0

∆t0
.
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AD6, NLTP = 1, ∆T = 1.6
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AD6, NLTP = 2, ∆T = 0.8

Figure 6.18: Test case 3 using various configurations of the ROM-based parareal method: fraction of
the error at the last parareal iteration relative to the error at the 0−th iteration, for each parareal time
instant (eNitermax

n /e0
n). Values expressed in percentage. Only simulations able to perform all iterations

are presented. The reference and coarse propagators are respectively F0
δt0

and G0
∆t0

.

The speedups at the final iteration of each simulation are presented in Tables 6.5 and 6.6, respectively
in the classical and ROM-based parareal frameworks. In the first case, larger speedups are obtained,
mainly by using adaptive configurations, but they are smaller in the simulations presenting the best
convergence behaviours, since more restrictive parareal configurations are necessary. The simulation
with smallest final errors (∆T = 1.6, NLTP = 2 and adaptive configuration AD6) provide a speedup no
larger than 2. In the ROM-based framework, the speedups are naturally smaller, but all simulations
are still faster than the reference one. However, the sole simulation providing relatively small errors
(∆T = 1.6, NLTP = 2 and adaptive configuration AD6) provides a speedup only slightly larger than 1.
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∆T = 0.8 ∆T = 1.6
Adaptive configuration NLTP = 1 NLTP = 2 NLTP = 1 NLTP = 2

NA 3.01 2.04 2.46 1.47
AD3 7.38 5.12 6.28 3.60
AD6 3.98 2.61 3.23 1.85

Table 6.5: Test case 3 using various configurations of the classical parareal method: speedup s(Nitermax)
at the final iteration of each simulation. The reference and coarse propagators are respectively F0

δt0
and

G0
∆t0

.

∆T = 0.8 ∆T = 1.6
Adaptive configuration NLTP = 1 NLTP = 2 NLTP = 1 NLTP = 2

NA * * * *
AD3 * * * 2.32
AD6 * 1.09 1.60 1.12

Table 6.6: Test case 3 using different configurations of the ROM-based parareal method: speedup
s(Nitermax) at the final iteration of each simulation. The reference and coarse propagators are respectively
F0
δt0

and G0
∆t0

. Asterisks indicate that the simulation does not complete all iterations due to instabilities.

6.5.3 Combining the classical and ROM-based parareal methods

The error curves illustrated in Figures 6.17 and 6.18 and the different behaviours of the classical and ROM-
based parareal simulations along the temporal domain, related to the different profiles of the solution,
suggest that a combined use of both approaches could improve the quality of the solution at advanced
times of simulation. Under the same configurations (AD6, ∆T = 1.6, NLTP = 2), the ROM-based method
converges faster in the first time window, with a degradation in the second one, whereas the classical
parareal method provides a relatively more uniform error along the entire temporal domain.

Therefore, it is natural to expect that smaller errors could be obtained by using the ROM-based
parareal method in the beginning of the simulation, and the classical method for more advanced time
steps, with large enough time slices for ensuring stability and a relatively fast convergence. We test two
configurations, namely (AD6, ∆T = 1.6, NLTP = 2) and (AD6, ∆T = 0.8, NLTP = 2). In both cases, the
ROM-based and classical parareal methods are used respectively in the first and second time windows.

Contrary to these expectations, we notice that the error behaviour at the very last time steps in the
combined configuration is nearly the same as in the simulation using only the classical parareal method,
even if smaller errors are obtained in the beginning of the second time window, as shown in Figure 6.19.
It indicates that the convergence near the end of the simulation is conditioned by the particular choice of
parareal configurations (classical method, adaptive configuration, length of time slices), and improving
the quality of the initial solution received from the previous time window does not provide substantial
improvements of the final solution. It is confirmed, also in Figure 6.19, by simulations in which the
reference propagator F0

δt0
is used in the first time window, i.e. the initial solution received by the second

window is exact. In this case, a slight reduction of the error is observed, but at t = T the error is nearly
the same as in other configurations.

However, even if this combined use of the classical and ROM-based parareal methods does not greatly
improve the quality of the final solution, it can be seen as a way to establish a compromise between
computational time and a higher quality of the solution in the entire temporal domain, since considerably
smaller errors are obtained in the first time window (in which the ROM-based method is used). As shown
in Table 6.7, the combined configurations provides an intermediate speedup between the full classical and
full ROM-based simulations.

The physical solutions obtained by the classical, the ROM-based and the combined configurations in
the case (AD6, ∆T = 1.6, NLTP = 2) are illustrated in Figure 6.20, for t = 4T/5 = 12.8 and t = T = 16,
along y = 46. At t = 4T/5 all three solutions are high-quality approximations to the reference one and
greatly outperform the coarse solution. The ROM-based solution is almost visually indistinguishable
from the reference solution, whereas the classical and combined parareal solutions present only small
misrepresentations. We notice that even high discontinuities of the y−unit discharge profile are well
represented. At t = T , the quality of the solutions is less remarkable, but the classical and combined
configurations approximate well the general profile of the reference solution and also some small scale
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features. In the case of the ROM-based method, a quite good approximation of the general profile is also
obtained, but clear instabilities can be observed. It can also be noticed in Figure 6.21, which illustrates
the solution in the entire domain Ω at t = T .
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Figure 6.19: Test case 3: fraction of the error at the last parareal iteration relative to the error at the 0−th
iteration, for each parareal time instant (eNitermax

n /e0
n). Values expressed in percentage. The reference and

coarse propagators are respectively F0
δt0

and G0
∆t0

. Simulations using combined (“ROM-based/classical”)
configurations of the ROM-based (first time window) and classical (first time windows) parareal methods.
The errors obtained using only the classical and only the ROM-based methods are also presented, as well
as simulations (“REF/classical”) in which the solution in the first time window is exact.

AD6, ∆T = 0.8, NLTP = 2 AD6, ∆T = 1.6, NLTP = 2
Config. s(Nitermax) Config. s(Nitermax)

Only CL 2.61 Only CL 1.85
Only ROM 1.09 Only ROM 1.12
Combined 1.49 Combined 1.32

Table 6.7: Test case 3: speedup s(Nitermax) at the final iteration for the classical (“Only CL”), ROM-
based (“Only ROM”) and combined parareal simulations. The reference and coarse propagators are
respectively F0

δt0
and G0

∆t0
.
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Figure 6.20: Test case 3 with adaptive configuration AD6, ∆T = 1.6 and NLTP = 2: water depth
along y = 46, at t = 4T/5 (left) and t = T (right), for the reference, coarse (0-th parareal iteration)
and parareal solutions (at iteration Nitermax = 6), for the classical (“CL”), ROM-based (“ROM”) and
combined (“ROM/CL”) approaches. The reference and coarse propagators are respectively F0

δt0
and

G0
∆t0

.
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Figure 6.21: Test case 3 with adaptive configuration AD6, ∆T = 1.6 and NLTP = 2: final solution
(t = T = 16) in Ω. First, second and third columns: water depth, x-unit discharge and y-unit discharge,
respectively. First, second, third and fourth rows: reference solution, coarse solution (0-th parareal
iteration), final parareal solution using the classical method, and final parareal solution using the ROM-
based parareal method, respectively. The reference and coarse propagators are respectively F0

δt0
and

G0
∆t0

.
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6.5.4 Some comments on the use of the adaptive approach

Results presented in Figures 6.15, 6.17-6.18 and Tables 6.5-6.6 indicate that the adaptive approach is able
to greatly improve the stability, convergence and speedup of the parareal method, both in the classical and
ROM-based frameworks. The more stable and faster converging solutions can be attributed to the fact
that the reference propagator is closer to the coarse one at intermediate iterations (thus minimizing phase
speed mismatches and the associated issues for high wavenumbers of the solution), and the acceleration of
the simulation is due to the use of less expensive reference models. One can observe, in Figure 6.22, that
the final solutions provided by the classical and combined ROM-based/classical parareal configurations
with (AD6, ∆T = 1.6, NLTP = 2) outperform all intermediate fine propagators (F iδti , i = 1, 2, 3) in the
entire temporal domain, in terms of accuracy w.r.t. F0

δt0
, whereas the ROM-based simulation presents

larger errors in the last time steps due to its unstable behaviour.
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Figure 6.22: Test case 3: error eNitermax
n at the final parareal iteration, provided by the classical, ROM-

based and combined configurations (full lines) with (AD6, ∆T = 1.6, NLTP = 2), compared to the
accuracy w.r.t. F0

δt0
of the propagators F iδti , i = 1, 2, 3 (dashed lines). The reference and coarse propa-

gators are respectively F0
δt0

and G0
∆t0

.

However, one may wonder if better results could be obtained within smaller computational times by
using one of the intermediate fine propagators as coarse one, instead of this adaptive approach. Surely,
it would lead to more expensive iterations, since the sequential prediction step of the parareal algorithm
would be performed using finer coarse models. On the other hand, Figures 6.13 and 6.14 reveal that the
classical parareal simulations using one of the fine propagators F iδti , i = 1, 2, 3, as coarse one provides
faster convergence. Therefore, more accurate solutions, compared to the ones using G0

∆t0
, could possibly

be obtained with much fewer iterations.
It is confirmed in Figure 6.23, presenting the evolution of the maximum error per iteration in the

combined (ROM-based and classical) parareal simulation using G0
∆t0

-DIP as coarse propagator (the same

simulation considered above) and in non-adaptive classical parareal simulations using F iδti , i = 1, 2, 3, as
coarse propagator (with the same configuration as in Figure 6.13). We observe that a single iteration of
the parareal method using F1

δt1
outperforms the simulation using G0

∆t0
. With F2

δt2
, two iterations provide

nearly the same accuracy than with G0
∆t0

. The only simulation with a relatively slower convergence (but
still faster than with G0

∆t0
) is the one using the coarsest fine propagator F3

δt3
, for which five iterations are

required for outperforming G0
∆t0

.
Table 6.8 confirms that better accuracies are obtained within smaller computational times by using

F iδti , i = 1, 2, 3 as coarse propagators. One and two iterations of the simulation using F1
δt1

provides
speedups (respectively 3.01 and 1.80) larger than the one obtained with G0

∆t0
after Nitermax = 6 iterations

(1.32). Two iterations using F2
δt2

also provides a larger speedup (2.64). For the coarsest fine propagator
F3
δt3

, the speedup for obtaining more accurate solutions is only slightly larger (s(5) = 1.48).
Therefore, if intermediate propagators are available, it seems more interesting to directly use them

as coarse propagator. Possibly, better results using the adaptive approach could be obtained with better
guided choices of intermediate propagators and criteria for the transition between them, using e.g. a
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Figure 6.23: Test case 3 using G0
∆t0

(combined ROM-based classical simulation, adaptive configuration

AD6, ∆T = 1.6, NLTP = 2) and F iδti , i = 1, 2, 3 (classical parareal, non-adaptive, ∆T = 1.6, NLTP = 1)

as coarse propagators: evolution of the maximum error per iteration (ek). The dashed, horizontal line
indicates the final accuracy obtained by the simulation using G0

∆t0
as coarse propagator. All simulations

consider F0
δt0

as reference model.

Coarse propagator
G∆t-DIP F3

δt3
F2
δt2

F1
δt1

s(1) 18.32 6.16 4.31 3.01
s(2) 16.12 3.34 2.64 1.80
s(5) 2.28 1.48 1.27 0.88
s(6) 1.32 1.26 1.09 0.77

Table 6.8: Test case 3 using G0
∆t0

(combined ROM-based classical simulation, AD6, ∆T = 1.6, NLTP = 2)

and F iδti , i = 1, 2, 3 (classical parareal, non-adaptive, ∆T = 1.6, NLTP = 1) as coarse propagators:
speedup at given iterations. All simulations consider F0

δt0
as reference propagator.

posteriori error estimates, as stated by Maday and Mula (2020).
Nevertheless, in some situations it may not be possible to define intermediate propagators. For

example, in simulations in urban zones with very small gaps between obstacles, making it impossible to
define large computational cells (and thus limiting the time step). In this case, more restrictive parareal
configurations, limiting the possible parallelization, e.g. with larger values of ∆T and NLTP, would be
necessary for ensuring stable and converging solutions, mainly in the ROM-based framework. We can
also expect to obtain more accurate solutions by using finer discretizations of the porosity-based models
(e.g. G1

∆t1
, defined in Table 6.1). For illustrating that, we consider the following three non-adaptive

parareal simulations, which we call for simplification as configurations A, B and C:

• A: Classical parareal, with ∆T = 1.6 (N∆T = 10) and NLTP = 2. This simulations has already
been considered in this section (see Figure 6.17);

• B: Classical parareal, with ∆T = 3.2 (N∆T = 5) and NLTP = 1;

• C: ROM-based parareal, with ∆T = 0.8 (N∆T = 20) and NLTP = 4.

which are used both with G0
∆t0

and G1
∆t1

as coarse propagator. Note that, in all cases, exact convergence
is reached in N∆T /NLTP = 5 iterations. For the simulations with NLTP > 1, we consider Nitermax = 3
performed by each parareal instance, and the maximum expected speedup is no larger than 5/3 ≈ 1.67.
For the second simulation, that uses a larger time slice and NLTP = 1, we stop the simulation at Nitermax =
2, with a maximum speedup no larger than 5/2 = 2.5.

For all simulations, the error decrease is much slower than in the adaptive simulations, as shown in
Figure 6.24. Smaller errors are obtained by using the finer coarse propagator (G1

∆t1
), both due to the
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smaller initial error (at iteration k = 0) and to a faster error decrease, compared to the simulations
using G0

∆t0
, but the convergence behaviour is very similar in both cases. As already observed in previous

simulations, the ROM-based configuration provides smaller errors in the beginning of the temporal domain
but is unstable for advanced time steps.

In practice, this slower convergence corresponds to a rougher approximation to the reference solution,
as shown in Figure 6.25. For all simulations (except for the ROM-based one at t = T , due to instabilities),
the general profile of the solution (position and amplitude) is well represented, specially by using G1

∆t1
as coarse propagator, and clearly outperforms the coarse one, but small scale oscillations are less well
approximated, when compared to adaptive simulations (compare e.g. with Figure 6.20). Evidently, this
qualitative analysis depends on user expectations in using the parareal method. As shown in Table 6.9,
the classical parareal simulation using N∆T = 5 time slices (configuration B) provides a speedup larger
than two, since only two iterations are performed. Also, only small additional costs are observed by
using the finer propagator G1

∆t1
. Therefore, these relatively restricted parareal configurations can be

useful if one expects to obtain stable and more accurate approximations, even if still relatively rough,
to the fine, reference solution. In this case, performing few iterations of the classical parareal method
using a small number N∆T of time slices provides the best compromise. As seen in Table 6.9, the
classical and ROM-based parareal configurations using larger time slices and Nitermax = 3 (configurations
A and C, respectively) provide smaller speedups (mainly the latter, which is more expensive than the
reference simulation), and even if they provide smaller errors (at least in part of the temporal domain),
no remarkable qualitative improvements are observed.

Coarse propagator
Configuration G0

∆t0
G1

∆t1

A: Classical, ∆T = 1.6, NLTP = 2 1.46 1.38
B: Classical, ∆T = 3.2, NLTP = 1 2.12 2.09

C: ROM-based, ∆T = 0.8, NLTP = 4 0.64 0.47

Table 6.9: Test case 3 with non-adaptive configuration: speedup s(Nitermax) at the final iteration of each
simulation. All simulations consider F0

δt0
as reference propagator.
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Figure 6.24: Test case 3 with non-adaptive configurations: evolution of the relative error ek along it-
erations (left) and fraction of the error at the last parareal iteration relative to the error at the 0−th
iteration, for each parareal time instant (eNitermax

n /e0
n), with values expressed in percentage (right). Full

and dashed lines correspond to simulations using respectively G0
∆t0

and G1
∆t1

as coarse propagator. All
simulations consider F0

δt0
as reference propagator.
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Figure 6.25: Test case 3 with non-adaptive configurations: water depth along y = 46, at t = 4T/5 (left)
and t = T (right), for the reference, coarse (0-th parareal iteration) and parareal solutions, using G0

∆t0
(top) and G1

∆t1
(bottom) as coarse propagator. All simulations consider F0

δt0
as reference propagator.

6.6 Towards more challenging examples

After an initial investigation using relatively simple test cases, solved within small time domains and
allowing to study the behaviour of the classical and ROM-based parareal methods for the coupling
proposed in this work, we move towards more challenging simulations, by going back to the numerical
example presented in Section 2.11 for illustrating the classical and porosity-based shallow water models.
Note that this example is less expensive than Test case 3 with F0

δt0
as reference propagator, due to the use

of locally refined mesh only near the urban zone (instead of an homogeneous Cartesian mesh). However,
it is solved for a larger final time T = 120 (against T = 16 in Test case 3) and uses an unstructured
mesh, which may bring additional challenges, mainly in the context of the model reduction, due to
discontinuities of the flow variables induced by the orientation of mesh interfaces, as discussed in Section
3.6.7.

We recall and summarise the configurations for this simulation, to which we refer hereafter as Test
case 4, in Table 6.10. The reference (classical SWE) and porosity-based models (porosity-based SWE,
either SP or DIP) are named respectively as Fδt and G∆t. For the purposes of studying the convergence
of the parareal method using a coarser discretization of the classical SWE as coarse propagator, we also
define a third propagator F1

δt1
, whose computational mesh is illustrated in Figure 6.26 and defined by

mesh diameters equal to 10 and 2.5 respectively outside and inside the urban zone. The time steps δt
(for Fδt) , δt1 (for F1

δt1
) and ∆t (for G∆t) are chosen to be multiple integers of each other and keep close

CFL numbers for all propagators.
We consider, as in the example presented in Section 2.11, a lake-in-rest as initial conditions, but with

various initial water depths:

172



Chapter 6. Coupling between the classical and the porosity-based shallow water equations

Spatial domain Ω = [0, 500]× [0, 45]
Maximum simulation time T = 120
Number of parallel processors Np = 20
Maximum number of iterations Nitermax = 5

Fδt F1
δt1

G∆t

Time step δt0 = 0.05 δt1 = 0.25 ∆t = 0.5
Minimum mesh size 1 2.5 11.875

Table 6.10: Configurations of test case 4.
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Figure 6.26: Test case 4: computational mesh used by propagator F1
δt1

(classical SWE). Top: full domain;
bottom: zoom on the urban zone.

h(x, t = 0) = h0, ux(x, t = 0) = uy(x, t = 0) = 0, x ∈ Ω

with h0 ∈ {0, 0.1, 0.5}. The boundary conditions are also kept the same as before (inward flow in the
western boundary and imposed water depth in the eastern one), but with the imposed water depth equal
to h0:





hu · n = 1, x ∈ ∂Ωinward, t ∈ [0, T ]

h = h0, x ∈ ∂Ωoutward, t ∈ [0, T ]

hu · n = 0, x ∈ ∂Ω\(∂Ωinward ∪ ∂Ωoutward), t ∈ [0, T ]

In what follows, we compare the performance of some parareal configurations for each of the initial
water depths.

6.6.1 Initial water depth h0 = 0.5

Simulation using the classical parareal method

For the classical parareal method, we perform a global-in-time parareal simulations (NLTP = 1) with
various time slice lengths. We notice that relative large time slices are necessary for ensuring stability.
When a porosity-based model is used as coarse propagator (G∆t-SP or G∆t-DIP), simulations with more
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than N∆T = 10 time slices (i.e. with ∆T < 12) are unstable and not able to complete all iterations.
When the coarser discretization F1

δt1
of the classical SWE is used as coarse propagator, simulations using

smaller time slices can complete all iterations, since, even if still present, instabilities are less important
and do not lead to negative water depths.

Figure 6.27 presents the evolution of the maximum error per iteration for each simulation. In the
case of G∆t being used as coarse propagator, a small range of numbers of time slices is considered and,
for a N∆T fixed, we observe that similar convergence behaviours are obtained when using the SP and
DIP models, with a slightly better performance with SP. As illustrated in Figures 2.11-2.12, in this
test case the DIP model gives a better representation of the water depth field, whereas the SP model
approximates better the amplitude of the x-unit discharge field inside the urban zone, but overestimates
on the downstream, compared to DIP. As a consequence, the errors of the two models, w.r.t. the reference
solution, are relatively close (see the 0−th iteration in Figure 6.27), and also close results are obtained in
the following iterations. Concerning the simulations using F1

δt1
as coarse propagator, a larger variety of

time slices lengths can be used. Except for ∆T = 1 (N∆T = 120), the error decreases along iterations for
all values of ∆T , with a faster convergence for larger ∆T . Note that, for the same value of ∆T , smaller
errors are obtained with F1

δt1
as coarse propagator than with G∆t-SP or G∆t-DIP.
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Figure 6.27: Test case 4 with h0 = 0.5: evolution of the relative error ek for various time slice lengths
using the classical parareal method. Left: G∆t-SP (full lines) and G∆t-DIP (dashed lines) used as coarse
propagator; right: F1

δt1
used as coarse propagator.

For comparing the simulations in terms of speedup, we define, analogously to (4.26)-(4.28), a quantity
kε corresponding to the number of iterations such that the maximum error at this iteration (ekε) is
no larger than a given accuracy ε, and a quantity sε corresponding to the speedup for completing kε
iterations:

kε := minKε = min{0 ≤ k ≤ Nitermax | ek ≤ ε}

sε := s(kε), Kε 6= ∅
The values of kε and sε for given time slice lengths are presented respectively in Tables 6.11 and 6.12.

For the majority of cases, the simulations using F1
δt1

as coarse propagator reach the given accuracies in less
iterations than with G∆t, thus providing larger speedups, despite of a more expensive coarse simulation
along parareal iterations.

Figure 6.28 illustrates the final water depth along y = 22.5 at the first three parareal iterations,
compared to the coarse and reference solutions, for chosen time slice lengths (N∆T ∈ {6, 8} for G∆t-
SP and G∆t-DIP as coarse propagator, and N∆T ∈ {10, 20} for F1

δt1
as coarse propagator). Note that

an important degradation of the solution is observed in the first iteration, mainly for the simulations
using G∆t as coarse propagators. The quality of the solution is improved in the following iterations, and
for k = 3 and N∆T = 6, the parareal solution is visually very close to the reference one. Also good
approximations, with only small misrepresentations, are obtained for k = 3 and N∆T = 8. As indicated
in Tables 6.11 and 6.12, these results are obtained with speedups of approximately 1.66 (for N∆T = 6)
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Coarse propagator: G∆t Coarse propagator: F1
δt1

ε 1E-1 5E-2 1E-2 5E-3 1E-1 5E-2 1e-2 5E-3
N∆T ∆T

4 30 2 2 3 3 1 1 2 3
6 20 2 3 4 4 1 2 3 4
8 15 3 4 5 # 1 2 3 4
10 12 4 5 # # 1 2 4 5
20 6 * * * * 2 3 # #

Table 6.11: Test case 4: number of iterations kε for reaching given accuracies ε, for various time slice
lengths using G∆t and F1

δt1
as coarse propagators, in the classical parareal framework. The speedups for

G∆t refer to G∆t-SP, and the ones for G∆t-DIP are similar and omitted for the sake of conciseness. “#”
indicates that the given accuracy is not reached within Nitermax = 5 iterations and asterisks indicate that
the solution is unstable and does not complete Nitermax iterations.

Coarse propagator: G∆t Coarse propagator: F1
δt1

ε 1E-1 5E-2 1E-2 5E-3 1E-1 5E-2 1E-2 5E-3
N∆T ∆T

4 30 1.72 1.72 1.18 1.18 2.39 2.39 1.39 1.00
6 20 2.40 1.66 1.27 1.27 2.95 1.78 1.28 1.02
8 15 1.97 1.53 1.26 # 3.41 2.09 1.53 1.21
10 12 1.89 1.53 # # 3.55 2.24 1.31 1.11
20 6 * * * * 3.12 2.35 # #

Table 6.12: Test case 4 with h0 = 0.5: speedup sε for reaching given accuracies ε, for various time slice
lengths using G∆t and F1

δt1
as coarse propagators, in the classical parareal framework. The speedups for

G∆t refer to G∆t-SP, and the ones for G∆t-DIP are similar and omitted for the sake of conciseness. “#”
indicates that the given accuracy is not reached within Nitermax = 5 iterations and asterisks indicate that
the solution is unstable and does not complete Nitermax iterations.

and 1.97 (for N∆T = 8). In the cases where F1
δt1

is used as coarse propagator, the degradation of the
solution in the first iteration is much less important, and relatively good approximations of the reference
solution are obtained after only two parareal iterations, both with N∆T = 10 and N∆T = 20 time slices,
and corresponding respectively to speedups of 2.24 and 3.12.

The better performance of the classical parareal method using F1
δt1

rather than G∆t can naturally
be attributed to the fact that the former is closer to the reference propagator, by using finer spatial
and temporal discretizations and also by discretizing the classical SWE (instead of the porosity-based
models), which lead to a better representation of the velocity fields, since the obstacles in the domain
are physically taken into account in the computational mesh. Due to the unidirectionality of the flow,
the use of a Cartesian mesh and the independence of the porosity fields w.r.t. y-direction (see Figure
2.10), the y-unit discharge provided by G∆t-SP and G∆t-DIP is identically zero in the entire temporal
domain, whereas the reference y-unit discharge is highly discontinuous (see Figure 2.12). We choose two
simulations (G∆t-SP as coarse propagator, with N∆T = 6; and F1

δt1
as coarse propagator, with N∆T = 10)

for illustrating, in Figure 6.29, the more challenging convergence of the unit discharge fields in the former
case. With G∆t, we notice a very important degradation of the x-unit discharge field along y = 22.5 in the
first iteration, including the formation of negative velocities ux, whereas the reference one is non-negative
along the entire slice. The quality of the solution increases in the following iterations, but we notice
that three iterations are required for well approximating the amplitudes of the x- and y- unit discharges.
When F1

δt1
is used as coarse propagator, the unit discharges remain close to the reference ones in the first

iteration and a good approximation is obtained in the second one.
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Figure 6.28: Test case 4 with h0 = 0.5: water depth along y = 46, at t = T , for the reference and coarse
solution (0-th parareal iteration) and first three parareal iterations, using the classical parareal method.
First row: G∆t-SP as coarse propagator, with N∆T = 6 (left) and N∆T = 8 (right) time slices. Second
row: G∆t-DIP as coarse propagator, with N∆T = 6 (left) and N∆T = 8 (right) time slices. Third row:
F1
δt1

as coarse propagator, with N∆T = 10 (left) and N∆T = 20 (right) time slices.
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Figure 6.29: Test case 4 with h0 = 0.5: x- (left) and y- (right) unit discharges along y = 46, at t = T , for
the reference and coarse solution (0-th parareal iteration) and first three parareal iterations, using the
classical parareal method. First row: G∆t-SP as coarse propagator, with N∆T = 6 time slices. Second
row: F1

δt1
as coarse propagator, with N∆T = 10 time slices.

Simulation using the ROM-based parareal method

As can naturally be expected from the results present in the previous sections (Test case 3), the application
of the ROM-based parareal method for solving Test case 4 is particularly challenging in terms of stability,
due to the relatively long temporal domain and complex behaviour of the solution induced by the presence
of obstacles. Also, the performance of the ROM-based method is expected to be compromised even in the
beginning of the simulation, before the incoming wave reaches the urban zone, since the one-dimensional
reference inflow is, numerically, a discontinuous two-dimensional one due to the use of an unstructured
mesh.

Indeed, it is observed that stable simulations are only obtained by considering very restrictive con-
figurations for the ROM-based method. Namely, very low-dimensional ROMs need to be considered, by
taking εsv,linear = 10−1. It relatively ensures stability, since further POD modes that lead to instabilities
are discarded, but strongly affects the parareal convergence, as discussed in Section 3.6. Therefore, in
the simulations presented below, we consider εsv,linear = 10−1 and εsv,nonlinear = 10−5. Concerning the
other configurations of the ROM-based method, we take αs = 1 and NPID = 1. We do not consider an
enrichment of the snapshots sets motivated by the observation, made in Section 6.5, that αs < 1 may
lead to unstable behaviours for approximating highly discontinuous solutions.

We begin by comparing the performance of the ROM-based parareal method in function of NLTP

and N∆T . We consider the pairs (NLTP, N∆T ) ∈ {(1, 4), (2, 8), (5, 20)}. In all cases, exact convergence is
attained in NLTP/N∆T = 4 iterations, and we set Nitermax = 3. Simulations are performed using G∆t-SP
and F1

δt1
as coarse propagator, and all of them are able to complete Nitermax iterations, except the case

(G∆t, NLTP = 5, N∆T = 20). Figure 6.30 presents the evolution of the relative error ek, showing that the
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use of local-in-time parareal instances does not contribute for improving the stability and convergence,
with NLTP = 1 providing better results. Contrary to Test case 3, presented in the previous sections,
in Test case 4 there is no region of the temporal domain in which the convergence of the ROM-based
method is expected to be remarkably less challenging, due to the use of unstructured meshes, as discussed
above. Therefore, performing parareal simulations is small time windows seems to be less determinant
for ensuring convergence and stability than the use of large time slices.
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Figure 6.30: Test case 4 with h0 = 0.5: evolution of the relative error ek for various time slice lengths
and numbers of LTP windows using the ROM-based parareal method, with G∆t-SP (dashed lines) and
F1
δt1

(full lines) used as coarse propagator. The simulation with (G∆t, NLTP = 5, N∆T = 20) is unstable
and does not complete Nitermax = 3 iterations.

Therefore, we consider NLTP = 1 hereafter and we compare the performances obtained by the classical
and ROM-based parareal methods using the same configurations. We notice that, in the latter case, the
range of ∆T for which the simulations complete all iterations (Nitermax = 5) is much smaller than in the
former. Indeed, among the values of N∆T considered in the classical method, only N∆T = 4 (∆T = 30)
provides stable simulations in the ROM-based method using G∆t-SP and G∆t-DIP as coarse propagator.
When F1

δt1
is used as coarse propagator, a few more configurations are able to complete the simulation,

namely N∆T ∈ {4, 6, 8, 10} (respectively ∆T ∈ {30, 20, 15, 12}), which is, however, a range still restricted
when compared to the one used in the classical method. Figure 6.31 compares the evolution of the relative
errors ek using the classical and ROM-based methods with the same numbers of time slices. In all cases,
the error obtained with the ROM-based method is larger, except for the first iteration using N∆T = 4
and G∆t as coarse propagator. When F1

δt1
is used as coarse propagator, the error does not decrease along

iterations for N∆T ≥ 8.
We choose some of the performed simulations for illustrating the obtained physical solutions. Figure

6.32 compares the final water depth along y = 22.5 at the first three parareal iterations obtained in the
classical and ROM-based frameworks with G∆t as coarse propagator and N∆T = 4 time slices; and with
F1
δt1

as coarse propagator and N∆T ∈ {4, 6} time slices. In all cases, the solution obtained in the first
iteration of the ROM-based simulations visually outperforms the solution of the classical method, in terms
of amplitude of the solution, far away from the left and right domain boundaries, but misrepresents the
solution near them. After two iterations, all solutions are visually close to the reference one far away from
the boundaries. This misrepresentation close to the boundaries may be linked to the fact that, in general,
POD-based ROMs do not satisfy inhomogeneous boundary conditions, an issue for which alternative
approaches are proposed in the literature, e.g. the introduction of penalty terms in the equations and the
subtraction of the boundary conditions from the input snapshots sets (Stabile et al., 2017). The causes
explaining why this behaviour is observed in Test case 4, but not in the previous simulations in this work,
are not clear. They are possibly linked to the use of very low-dimensional POD ROMs in Test case 4. A
more detailed investigation should be made, also considering the fact that boundary conditions are taken
into account in the POD-EIM step of the model reduction considered in this work.

Therefore, even if the ROM-based parareal method provides visually better solutions in parts of the
spatial domain, the classical method remains more attractive, since given accuracies are reached within
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the same or smaller numbers of iterations, as shown in Tables 6.13 and 6.14. When G∆t is used as coarse
propagator, two iterations of the classical and ROM-based methods provide respectively speedups of 1.72
and 1.35. Note that, when F1

δt1
is used as coarse propagator, the ROM-based parareal method provides,

for the same number of iterations, very close speedups compared to the classical one, since the relatively
expensive coarse propagator F1

δt1
is replaced by a very low-expensive reduced-order model (due to the

large threshold εsv,linear = 10−1), and the model reduction remains relatively low-expensive due to the
large time slice length ∆T and the use of αs = 1. However, the classical parareal method is still more
interesting, mainly because less iterations are required for attaining smaller ε.
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Figure 6.31: Test case 4 with h0 = 0.5: evolution of the relative error ek for various time slice lengths
using the classical (“CL”, full lines) and ROM-based (“ROM”, dashed lines) parareal method. Left:
G∆t-SP and G∆t-DIP used as coarse propagator; right: F1

δt1
used as coarse propagator.

Coarse propagator: G∆t Coarse propagator: F1
δt1

ε 1E-1 5E-2 1E-2 5E-3 1E-1 5E-2 1e-2 5E-3
N∆T ∆T

CL
4 30 2 2 3 3 1 1 2 3
6 20 2 3 4 4 1 2 3 4

ROM
4 30 2 2 3 4 1 2 3 3
6 20 * * * * 1 2 4 4

Table 6.13: Test case 4 with h0 = 0.5: number of iterations kε for reaching given accuracies ε, for
NLTP = 1, various time slice lengths and using G∆t and F1

δt1
as coarse propagators, in the classical

(“CL”) and ROM-based (“ROM”) parareal frameworks. The speedups for G∆t refer to G∆t-SP, and the
ones obtained with G∆t-DIP are similar and omitted for simplicity. Asterisks indicate that the solution
is unstable and does not complete Nitermax iterations.

Coarse propagator: G∆t Coarse propagator: F1
δt1

ε 1E-1 5E-2 1E-2 5E-3 1E-1 5E-2 1e-2 5E-3
N∆T ∆T

CL
4 30 1.72 1.72 1.18 1.18 2.39 2.39 1.39 1.00
6 20 2.40 1.66 1.27 1.27 2.95 1.78 1.28 1.02

ROM
4 30 1.35 1.35 0.92 0.72 2.33 1.28 0.89 0.89
6 20 * * * * 2.94 1.65 0.89 0.89

Table 6.14: Test case 4 with h0 = 0.5: speedup sε for reaching given accuracies ε, for NLTP = 1, various
time slice lengths and using G∆t and F1

δt1
as coarse propagators, in the classical (“CL”) and ROM-based

(“ROM”) parareal frameworks. The speedups for G∆t refer to G∆t-SP, and the ones obtained with G∆t-
DIP are similar and omitted for simplicity. Asterisks indicate that the solution is unstable and does not
complete Nitermax iterations.
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Figure 6.32: Test case 4 with h0 = 0.5: water depth along y = 46, at t = T , for the reference and
coarse solution (0-th parareal iteration) and first three parareal iterations, using the classical (left) and
ROM-based (right) parareal methods. First row: G∆t-SP as coarse propagator, with N∆T = 4 time slices.
Second row: F1

δt1
as coarse propagator, with N∆T = 4 time slices. Third row: F1

δt1
as coarse propagator,

with N∆T = 6 time slices.
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Influence of the spatial interpolation order

We consider Test case 4 with h0 = 0.5 for coming back to the discussion on the influence of the spatial
interpolation order on the performance of the classical and ROM-based parareal methods, briefly intro-
duced in Section 3.6.8. In that occasion, by considering small test cases using the classical SWE both
as fine and coarse propagators, it was observed that the convergence of the classical method is improved
by using cubic instead of linear interpolation. However, if instabilities are present, no improvements are
observed. Moreover, it was illustrated that cubic interpolation has no or even negative influence on the
performance of the ROM-based method.

We repeat some of the simulations presented in this section, but using cubic interpolation. Figure
6.33 compares the evolution of the maximum error per iteration compared to those obtained with linear
interpolation, for various time slice lengths and both with G∆t-SP and F1

δt1
as coarse propagator.

For the simulations using F1
δt1

, we present the results for only some values of ∆T , for the sake of
clearness. We observe that, with cubic interpolation, a faster convergence is obtained in the cases where
parareal already converges in the linear case, and the initial degradation of the solution, in the first
iteration, is no longer present (similarly to what was observed in Section 3.6.8 for Test case 2). However,
in the case N∆T = 120, in which parareal with linear interpolation is not able to reduce the error
along iterations, there are no visible improvements by using cubic interpolation, indicating that the slow
converging and unstable behaviour induced by the small time slice is dominant. A small error reduction
is observed in the first iteration, but it increases in the following ones, such that the final error, for k = 5,
is nearly the same for both interpolation orders.

On the other hand, these results are not verified in the simulations using G∆t as coarse propagator.
For a fixed ∆T , the errors with linear and cubic interpolation are nearly identical in the first iterations,
and for advanced ones the linear case slightly outperforms. In these simulations, the coarsening intensity
between the fine and coarse spatial meshes is relatively important (by a factor of approximately 10 in the
urban zone); moreover, the coarse mesh contains a small number of cells (e.g. with only four cells in the
y-direction, as shown in Figure 2.9). These factors can possibly explain the observed results, since there
may be not enough cells for performing a proper cubic interpolation.
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Figure 6.33: Test case 4 with h0 = 0.5: evolution of error ek for various time slice lengths using the
classical parareal method, with linear (full lines) and cubic (dashed lines) spatial interpolation. Left:
G∆t-SP used as coarse propagator; right: F1

δt1
used as coarse propagator.

As discussed in Section 3.6.8, the drawback of using a higher-order spatial interpolation procedure
is the increase of the computational cost. It is illustrated in Tables 6.15 and 6.16, showing the number
of iterations and respective speedup for reaching given accuracies. For the sake of simplicity, results are
presented only for chosen time slices lengths (N∆T ∈ {6, 10, 20}), the conclusions being similar for other
values. In the simulations using G∆t as coarse propagator, the error behaviour is very similar with linear
and cubic interpolation, and the same number of iterations are required for attaining given accuracies.
Therefore, the simulations with cubic interpolation naturally provide smaller speedup. When F1

δt1
is used

as coarse propagator, less iterations, in general, are required with cubic interpolation, but with smaller
speedups than in the linear case (with few exceptions, e.g. for reaching ε = 5×10−2 with N∆T = 6). The
negative impacts of the cubic case are more important in the simulations using F1

δt1
since interpolation
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is performed between finer meshes.
Concerning the ROM-based framework, all simulations become highly unstable by using cubic inter-

polation, with a much more important initial degradation of the solution, and their execution terminates
after one or two iterations, both by using G∆t and F1

δt1
as coarse propagator, and even with very large

time slices. The influence of the interpolation order on the performance of the ROM-based method
remains an unresolved question requiring more detailed investigations.

Coarse propagator: G∆t Coarse propagator: F1
δt1

ε 1E-1 5E-2 1E-2 5E-3 1E-1 5E-2 1e-2 5E-3
N∆T ∆T

Linear
6 20 2 3 4 4 1 2 3 4
10 12 4 5 # # 1 2 4 5
20 6 * * * * 2 3 # #

Cubic
6 20 2 3 4 4 1 1 2 3
10 12 4 5 # # 1 2 3 4
20 6 * * * * 1 2 5 #

Table 6.15: Test case 4 with h0 = 0.5 using the classical parareal method: number of iterations kε
for reaching given accuracies ε, for NLTP = 1, various time slice lengths, using G∆t and F1

δt1
as coarse

propagators and with linear and cubic spatial interpolation. The speedups for G∆t refer to G∆t-SP, and
the ones obtained with G∆t-DIP are similar and omitted for simplicity. “#” indicates that the given
accuracy is not reached within Nitermax = 5 iterations and asterisks indicate that the solution is unstable
and does not complete Nitermax iterations.

Coarse propagator: G∆t Coarse propagator: F1
δt1

ε 1E-1 5E-2 1E-2 5E-3 1E-1 5E-2 1e-2 5E-3
N∆T ∆T

Linear
6 20 2.40 1.66 1.27 1.27 2.95 1.78 1.28 1.02
10 12 1.89 1.53 # # 3.55 2.24 1.31 1.11
20 6 * * * * 3.12 2.35 # #

Cubic
6 20 2.08 1.45 1.13 1.13 2.25 2.25 1.22 0.87
10 12 1.41 1.15 # # 2.09 1.17 0.83 0.66
20 6 * * * * 1.41 0.77 0.35 #

Table 6.16: Test case 4 with h0 = 0.5 using the classical parareal method: speedup sε for reaching given
accuracies ε, for NLTP = 1, various time slice lengths, using G∆t and F1

δt1
as coarse propagators and

with linear and cubic interpolation. The speedups for G∆t refer to G∆t-SP, and the ones obtained with
G∆t-DIP are similar and omitted for simplicity. “#” indicates that the given accuracy is not reached
within Nitermax = 5 iterations and asterisks indicate that the solution is unstable and does not complete
Nitermax iterations.

6.6.2 Initial water depth h0 = 0.1

When a smaller initial depth is considered, stability and convergence of the parareal method becomes
more challenging, both when G∆t and F1

δt1
are used as coarse propagator, since the degradation of the

solution in the first parareal iteration, as observed in several simulations in the case h0 = 0.5, is more
likely to produce negative water depths. Indeed, we perform simulations using the same values for N∆T

as above, and relatively stable ones are obtained only with N∆T = 4 time slices, whereas all others stop
in the very first iteration. With F1

δt1
used as coarse propagator, both simulations using the classical

and ROM-based methods are able to complete Nitermax iterations, but with G∆t (SP and DIP), only the
classical method provides relatively stable results.

Figure 6.34 presents the evolution of ek of these stable simulations, indicating that similar errors are
obtained by all of them from the second iteration. It is confirmed in Figure 6.35, showing that the solution
for k = 2 in all simulations is visually close to the reference one. Note that negative water depths are
produced in the first iteration of the simulations using the porosity-based models; however, since they
arise only in the final time of simulation and are not further propagated in time, the code execution is not
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interrupted and this unstable behaviour is controlled in the following parareal iterations. The speedups
obtained in the simulations are similar to those observed previously with h0 = 0.5 and N∆T = 4 and are
not presented.
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Figure 6.34: Test case 4 with h0 = 0.1: evolution of error ek using G∆t (full lines) and F1
δt1

as coarse
propagator. In the former case, only the classical parareal method (“CL”) provides stable simulations.
All simulations use N∆T = 4 time slices, and exact convergence is obtained after four iterations.

6.6.3 Initial water depth h0 = 0

As can be expected from the previous results using decreasing initial water depths, none of the parareal
configuration is able to provide stable simulations when h0 = 0, since negative water depth are quickly
produced. However, even if the challenging and unstable behaviour of the method when applied to the
problems considered here contribute to these unsatisfactory results, it should to be noticed that they
are also related to a more general drawback of the parareal method. Indeed, the parareal iteration (3.8)
does not necessarily preserve the positivity of the solution (Legoll et al., 2020). In a general framework,
no guarantees on the sign of the correction term Fδt(ykn, tn+1, tn) − G∆t(y

k
n, tn+1, tn) can be obtained,

and if the prediction term G∆t(y
k+1
n , tn+1, tn) is zero or close to zero, negative solutions can arise in the

predictor-corrector procedure.
Some alternatives exist for overcoming this issue. In (Legoll et al., 2020), the parareal method is

used for solving stochastic differential equations, whose solutions are probability density functions, thus
supposed to be positive and with unit integral over their domain of definition (unit mass). The authors
propose several approaches for satisfying these requirements: set negative values to zero and rescale for
satisfying unit mass; replace the additive predictor-corrector iteration (3.8) by a multiplicative one, i.e.
G∆t(y

k+1
n , tn+1, tn) × Fδt(ykn, tn+1, tn)/G∆t(y

k
n, tn+1, tn); also followed by a rescaling; replace (3.8) by

a norm-preserving rotation operator (an approach also proposed by Maday and Turinici (2002a)); and
the use of the parareal iteration to update auxiliary statistical functions not having positivity or norm
restrictions. It is illustrated that the parareal convergence strongly depends on the chosen approach, with
the last one providing considerable better results.

Positivity preservation of water depths is a required property on the simulation of shallow water
models and is particularly challenging in the case of urban floods since zero water depths, at least
in part of the spatial domain, would be naturally considered in real applications. Therefore, some of
the modifications listed above for the parareal method, such as setting negative water depths to zero or
using a multiplicative parareal update, could be considered for overcoming these difficulties, accompanied
by proper rescalings for ensuring mass and momentum conservation or other desired properties of the
numerical solution.
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Figure 6.35: Test case 4 with h0 = 0.1: water depth along y = 46, at t = T , for the reference and coarse
solution (0-th parareal iteration) and first three parareal iterations, using G∆t-SP (top left), G∆t-DIP
(top right) and F1

δt1
(bottom) as coarse propagators. All simulations use the classical parareal method,

except for the bottom right figure, in which the ROM-based method is used. In all cases, N∆T = 4 time
slices are considered.

6.7 Conclusion of the chapter

In this chapter, we tackled the main objective of this thesis: the coupling between the classical and
porosity-based shallow water equations for the simulation of urban floods. We considered both the
classical and ROM-based parareal methods, whose behaviour was studied in the previous chapters using
simpler test cases, within relatively small spatial and temporal domains, simple solution profiles and
using the classical shallow water equations for discretizing both the fine and coarse propagators. The
nature of urban flood problems imposes several challenges for their simulation using parareal methods,
mainly the ROM-based one, e.g. the highly discontinuous solutions induced by the presence of obstacles
in the domain and by the use of unstructured computational meshes, the large temporal domains and
the presence of zero or small water depths as initial solution.

In the first part of this study, we investigated the influence of the coarsening intensity between the fine
and coarse propagators. It was illustrated that, in the classical parareal framework, a faster convergence
is obtained when the propagators are close to each other. Therefore, if a porosity-based model is used as
coarse propagator, the classical parareal method performs better when the reference model is a coarser
discretization of the classical SWE. Analogously, if a very fine model is used as reference one, a faster
convergence is obtained by using finer discretizations of the porosity-based SWE and, notably, it is more
interesting to use a coarser discretization of the classical SWE as coarse propagator. However, even
with important coarsening intensities between the fine and coarse propagators, it was possible to perform
converging and stable simulations by choosing large enough parareal time slices, evidently with a negative
impact on the possible speedup that can be achieved.

184



Chapter 6. Coupling between the classical and the porosity-based shallow water equations

The execution of the same simulations, but using the ROM-based parareal method, showed to be much
more challenging. Instead of the coarsening between the fine and coarse propagators, the performance of
the method seems to be mostly influenced by the refinement of the reference model, which reflects the
ability of the model reduction procedures to properly approximate it. Indeed, when a very fine model
was defined as reference propagator, simulations presented instabilities even when using an also very fine
coarse propagator. These instabilities arise mainly in regions of the temporal domain in which the solution
profile is more complex and presents strong discontinuities, which are particularly challenging for the
model reduction. For the same reason, the method behaves better and outperforms the classical parareal
when the solution profile is simpler (e.g. before the inlet wave reaches the the urban zone). Therefore,
stable and converging ROM-based simulations could only be obtained by using very restrictive parareal
configurations, e.g. by dividing the temporal domain in windows separating different solution behaviours,
combined with the use of large time slices. Also, the simulations performed here show that the behaviour
of the ROM-based method in function of its parameters cannot be generalized both for simple and more
complex problems. Namely, it was observed, in Chapter 4, that increasing the number of input snapshots
for the model reduction (i.e. taking smaller αs) allows to greatly improve the stability and convergence
for approximating relatively simple profiles. In this chapter, however, we noticed an increasingly unstable
behaviour by using more snapshots for approximating highly discontinuous solutions.

Interesting conclusions were also made by performing a more detailed discussion on the use of the
adaptive parareal approach. As observed previously in this work in simpler tests cases, this approach also
allowed, in the problems considered in this chapter, to improve the stability, convergence and speedup both
of the classical and ROM-based parareal methods, due to the use of progressively refined fine propagators
along iterations. In the examples considered here, coarser discretizations of the classical SWE act as
intermediate fine propagator. It was shown, however, that more interesting results can be obtained by
using non-adaptive approaches in which one of the intermediate models act as coarse propagator: even if
the parareal iterations are more expensive (since a finer coarse model is used), less iterations are required
for reaching given accuracies, thus resulting in larger speedups. Despite of these remarks, the observed
results are meaningful since they indicate that challenging parareal simulations using very different fine
and coarse propagators can be stabilized and converge faster by using intermediate models. Then, it could
be explored, possibly in a more efficient way, in the framework of multilevel parallel-in-time methods,
e.g. MGRIT (Friedhoff et al., 2013; Falgout et al., 2014), with parallelization occurring at each level.

We closed this chapter by considering a more challenging example, solved in a larger temporal domain.
We studied the convergence of the parareal methods by considering either the porosity-based models or
a coarser discretization of the classical SWE as coarse propagator. The challenge was considerably larger
in the former case, requiring the use of few large time slices for obtaining stable and converging solutions,
thus imposing severe restrictions to the expected speedup. For the latter case, smaller time slices could be
used and the convergence was faster. In both cases, however, numerical solutions close to the reference one
(even if still far from exact convergence) were obtained by performing few iterations (two or three) of the
classical parareal method. Speedups up to 2 and 3, approximately, were observed by using a porosity-
based model or and a coarser discretization of the classical SWE as coarse propagator, respectively.
For the ROM-based method, convergence and stability were even more challenging, due to the large
temporal domain and the use of unstructured meshes. It was necessary to use larger time slices than in
the classical parareal, and to formulate very-low dimensional reduced-order models. Good approximations
were also obtained after two or three iterations, but the computational time is compromised by these
more restrictive configurations, with speedups no larger than 1.5.

Based on the study performed in this chapter, we list some main conclusions on the use of the parareal
method for coupling the classical and porosity-based shallow water equations:

• Under adequately chosen configurations, the classical parareal method can be used for coupling the
classical and porosity-based shallow water equations. Notably, large time slices are required for
ensuring stable and converging solutions. The method is not able to provide a too fast convergence
(i.e. exact convergence is only obtained at the maximum number of iterations, equal to the number
of time slices), but relatively good approximations, largely outperforming the porosity-based model,
can be obtained after few iterations;

• However, if available, it is more interesting to use a coarser discretization of the classical SWE as
coarse propagator. In addition to spatial and temporal discretizations closer to the ones used by
the reference model, a better approximation (compared to the one provided by the porosity-based
model), mainly of the velocity fields, is obtained already at the 0-th parareal iterations, resulting

185



Chapter 6. Coupling between the classical and the porosity-based shallow water equations

in a faster convergence;

• The ROM-based parareal method is not suited to the problems considered here. The discontinuous
nature of the solution in urban floods simulations, summed up to factors as large temporal domains,
complex geometries and unstructured meshes, lead to frameworks in which good reduced-order
models cannot be formulated on-the-fly, thus impacting the performance of the parareal method
using them. Too severe restrictions must be imposed for ensuring the stability and convergence of
the ROM-based method, thus increasing its computational cost and making it less interesting than
the classical one, which has a simpler formulation and is able to provide larger speedups.

• However, even in the classical parareal framework and using a coarse discretization of the classical
SWE as coarse propagator, one cannot expect to obtain large speedups, since large time slices are
required in order to ensure stability and convergence, and the simulation can only be distributed
to small numbers of processors. Therefore, for the problem considered here and in the current
state of this work, the parareal method cannot be used as unique tool for providing important
accelerations of the the simulation of urban floods, e.g. in massively parallel environments. It
could be envisaged as a complement to spatial domain decomposition methods, thus providing a
spatio-temporal parallelization.

Some other aspects were observed in this study and would require more detailed investigations to
be clarified. Firstly, no remarkable differences were observed using the SP and DIP models as coarse
propagator, their convergence behaviour being mostly determined by the spatial mesh and time step
sizes. One could design test cases in which one of the models largely outperforms the other, in order to
investigate the influence on the parareal performance. Also, other porosity-based models (e.g. the MP
and IP ones) could be considered in this study. Secondly, the numerical simulations presented in this
chapter illustrate that the parareal performance is influenced by the order of spatial interpolation, but
this influence is not completely clear, mainly in the ROM-based parareal framework. In some cases, the
linear interpolation provides better results, but in others the cubic one is preferable. Notably, complex
urban geometries naturally impose challenges for the interpolation procedures, which should be carefully
formulated for taking into account e.g. the presence of obstacles and the nature of the computational mesh
(structured or unstructured). Finally, good parareal results could only be obtained by considering a non-
zero water depth as initial solution, which is a situation not likely to be encountered in the simulation
of urban floods. When a zero initial water depth is considered, parareal simulation rapidly leads to
instabilities since the method does not ensure positivity of the solution. This situation could be handled
e.g. by imposing zero water depth when it becomes negative and rescaling the solution for ensuring mass
and momentum conservation.

As a last remark, we notice that only relatively small problems were considered here. The performance
of the parareal method in larger problems (e.g. for simulations in a real urban zone) should also be
investigated.
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CHAPTER 7

CONCLUSION AND PERSPECTIVES

In this PhD thesis, we studied a numerical coupling between small and large scale shallow water models
for the simulation of urban floods. The small scale model consists of fine spatio-temporal discretizations,
with buildings and other obstacles of the urban geometry physically represented as holes in the mesh,
leading to accurate numerical solutions but very large computational times, even prohibitive for some
applications such as real-time forecasting. In the large scale models, an upscaled, porosity-based approach
is considered, in which porosity parameters are defined for taking into account the presence or not of
obstacles and the consequent availability of area and cross sections to the flow. This approach allows to
use much larger computational meshes and time steps, resulting in smaller computational costs but less
accurate solutions, mainly for representing small scale phenomena.

This coupling was performed using predictor-corrector iterative parallel-in-time methods. In this type
of numerical scheme, predictions are provided by a coarse, cheap model computed sequentially along the
entire temporal domain, and corrections are given by a fine, expensive model, solved in parallel across
time steps. This coarse-fine formulation naturally fits to the purposes of this work. More precisely, we
considered the parareal method, one the of the simplest and most popular parallel-in-time methods.

However, temporal parallelization is well known to be inefficient when solving hyperbolic problems,
presenting slow convergence and unstable behaviour. We thus explored a variant of the parareal method
with reduced-order models formulated on-the-fly along iterations, using the parareal solution as snapshots.
The performance of the classical and ROM-based parareal methods for the problem proposed here was
studied and compared.

We summarize in the following paragraphs the main conclusions of this work and list some guidelines
for future works.

7.1 On the performance of the ROM-based parareal method

7.1.1 Synthesis and conclusions

The ROM-based parareal method proposed by Chen et al. (2014) was explored here as an alternative
for overcoming stability and convergence issues of the classical method when applied for solving the two-
dimensional nonlinear shallow water equations, an hyperbolic problem. The model reduction is performed
using a combined POD-EIM technique, which is suitable for reducing the complexity of nonlinear problems
and can be efficiently implemented by using singular value decomposition routines provided by well
validated and optimized linear algebra packages. In this combined approach, reduced spaces are computed
from snapshots from both the solution and nonlinear terms of the governing equations, and, in the latter
case, a small set of spatial points (or interfaces, in a finite volumes discretization) is chosen for computing
the nonlinear term.
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Initial and promising results for small problems

In Chapter 3, it was illustrated, using a set of relatively small and simple test cases coupling the classical
shallow water equations at different scales, that, when parameters for the model reduction are properly
chosen, the ROM-based method provides faster convergence and more stability compared to the classical
method using the same parareal configurations (coarse and fine propagators, length of time slices). No-
tably, the dimension of the computed reduced subspaces plays a major role, and it was illustrated that
stability and faster convergence are more likely to be achieved when both subspaces formulated from the
solution and nonlinear terms are enoughly high-dimensional.

Further improvements

It was illustrated, in Chapter 4, that the performance of the ROM-based parareal method can be improved
by some simple modifications:

• Enrichment of the snapshots sets used for the model reduction procedures, by taking additional
snapshots computed at intermediate fine time steps (instead of snapshots computed only on the
extremities of the parareal time slices). In the small test cases considered here, important improve-
ments of the quality of the ROMs formulated on-the-fly and consequently of the parareal method
using them are obtained with few extra snapshots, thus providing a good compromise between
convergence and computational time;

• Introduction of the adaptive approach proposed by Maday and Mula (2020), consisting in using
progressively refined fine propagators along parareal iterations, instead of a fixed and expensive one.
Originally formulated in the framework of the classical parareal method, this method also presents
benefits in the ROM-based case, providing more stable solutions and reaching given accuracies
within smaller computational times.

• Formulation of local-in-time ROMs, based on the principal interval decomposition (PID) method
proposed by Ijzerman (2000), with the objective of better representing local phenomena. Less
remarkably than the two previous modifications, this approach provide some improvements on the
stability of the parareal solution, but may degrade its quality when ROMs formulated in the entire
temporal domain already provides good approximation to the reference model.

Important challenges in more complex problems

However, although these good results observed in small problems, convergence and stability of the ROM-
based parareal method become more challenging for solving larger problems. In Chapter 5, the same
simple test cases considered before were solved in larger spatial and temporal domains and, in order to
obtain stable and converging solutions, the simulation needed to be divided in smaller time windows, with
parareal simulations performed in each of them, at the cost of smaller expected numerical speedups. It
indicates that the formulation of reduced-order models approximating solutions defined in large domains
is particularly challenging, thus the ROM-based parareal method is more suitable when applied to smaller
domains. Another effective approach explored in Chapter 5 for overcoming these issues consists in using
larger parareal time slices, which also limits the possible expected speedup. This approach is more
effective for improving the classical parareal method, whose utilisation becomes more attractive due to
its reduced computational cost compared to the ROM-based approach.

Additional and more important challenges for the ROM-based method arise when the problem’s
solution is characterized by more complex profiles, e.g. with discontinuities and strong variations, which
is usual in the simulation of urban floods due to the presence of obstacles in the domain. As discussed in
this work, it is known that POD-based model reduction is less effective for approximating discontinuous
solutions. It has a strong impact on the parareal method using reduced-order models, whose stability for
more challenging test cases presented in Chapter 6 was ensured by choosing very restrictive configurations
and limiting the expected speedup.

Complex parametrizations and less predictable behaviour

The comparisons made in this work, mainly in Chapter 6, between the classical and the ROM-based
parareal methods also allowed to assess, for the latter, additional challenges concerning more complex
parametrizations and less predictable behaviour and performance in function of the chosen parameters.
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Indeed, the classical parareal method already depends on several parameters (choice of coarse and fine
propagators, length of time slices), whose influence may depend on the considered problem, numerical
schemes and length of the temporal domain. In the ROM-based approach, other parameters, such as
thresholds for the model reduction procedures and number of input snapshots, increase the difficulty
in establishing and choosing optimal configurations. Moreover, by performing isolated studies of the
sensitivities of the methods w.r.t. the chosen parameters, e.g. the length of time slices and the coarsening
between the fine and coarse propagators, clear influences on the behaviour of the classical parareal method
were observed. These influences are much less clear in the case of the ROM-based method. Also, the
enrichment of the input snapshots sets for the model reduction, which showed itself to be effective for
improving the method applied to relatively simple problems, presented contrary effects when applied to
more complex ones.

Assessment of computational costs

We highlight that we provided, in this work, a first practical evaluation of the ROM-based parareal
method in terms of computational cost, even if it was performed in small parallel environments. The
method makes an on-the-fly use of model reduction techniques that can be excessively expensive and
impede any interest in using the parareal method. We then studied its cost in function of the several
parameters it depends on and analyzed the fraction of the computational time spent in each step of the
algorithm. The initial study coupling the classical SWE at different scales (Test cases 1, 1c and 2) did
not provide realistic computational costs and speedups (since their fine modes are largely over-resolved),
but were meaningful for comparing the costs of the classical and ROM-based methods. A more adequate
framework, in which the fine and coarse propagators were defined with approximately the same CFL
number (as usual in explicit discretizations), was performed for coupling the classical and porosity-based
SWE, and, even if speedups larger than the unity could be obtained in some simulations of the ROM-based
parareal method, they were considerably smaller than in the classical one.

7.1.2 Perspectives

Application to other problems and contexts

Even if the ROM-based parareal method showed not to be suitable for the more challenging problems
considered here, its use in other contexts cannot be immediately discarded. It was illustrated that the
method can largely outperform the classical one when the model reduction can properly represent the
dynamics of the fine model. Therefore, it can be useful e.g. in problems characterized by smooth solutions.

A more efficient implementation

The numerical examples presented in this work show that the ROM-based parareal method provides only
a limited speedup, due to important costs introduced by the model reduction performed at each iteration.
However, a more efficient implementation could be considered for minimizing these additional costs. For
example, it was shown that, in the case of the 2D SWE, eight reduced subspaces need to be formulated
at each iteration (three using POD and accounting for the conserved variables; and five using POD-EIM
and accounting for flux and source terms). These subspaces are independent from each other, and can
be computed simultaneously (which was not considered here), possibly providing further improvements
of the speedup, mainly in larger problems (evidently, in situations where the ROM-based presents good
stability and convergence). Similarly, the nine matrices defining the reduced 2D SWE are independent
and can be simultaneously. This “parallel” model reduction implementation is discussed in Appendix
B.2.

Use of other model reduction techniques

In this work, only the combined POD-EIM model reduction technique was considered for implementing
the ROM-based parareal method, but other approaches could be considered. For example, a full EIM
(which was also proposed by Chen et al. (2014)), or the Dynamic Mode Decomoisition (DMD) (Schmid,
2010), which has been explored in some works (Bistrian and Navon, 2015, 2017; Ahmed et al., 2020) for
reducing the complexity of the SWE . Evidently, their applicability as an on-the-fly model reduction (i.e.
their computational cost and their quality when formulated using snapshots provided by a coarse model)
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should be investigated in detail, as well as their performance in function of the parameters they depend
on.

7.2 On the performance of adaptive parareal methods

7.2.1 Synthesis and conclusions

One of the approaches considered in this work, based on the adaptive parareal method proposed by
Maday and Mula (2020), consists in using increasingly refined fine propagators along parareal iterations.
This idea was extended to the ROM-based parareal method. We proposed here to define beforehand
a given number of fine models, each one with a temporal and a spatial discretizations, and to decide
on the transition between consecutive propagators based either on parareal residuals or fixed number of
iterations. With this adaptive approach, improvements of the stability and convergence were observed
both for the classical and ROM-based methods, which can possibly be attributed to the less important
difference, thus less important mismatch of phase speeds, between the coarse and fine propagators along
iterations. In the case of the ROM-based method, benefits could also come from the fact that relatively
inaccurate snapshots are used for formulating ROMs that approximate also less accurate models, instead
of a very fine one. Moreover, it was observed that this adaptive approach allows to reach given accuracies
within smaller computational times than in the non-adaptive parareal method.

In practice, however, it was noticed that, if intermediate fine propagators are available, it is more
interesting to use them directly as coarse propagator for the parareal method. In this case, less iterations
are required for reaching given accuracies and larger speedups are obtained, despite of a more expensive
sequential prediction step in the parareal algorithm.

7.2.2 Perspectives

Better oriented formulations of the adaptive approach

In the adaptive approach implemented in this work, intermediate fine propagators were arbitrarily chosen,
as well as the criteria for deciding on the transition between them. Better oriented formulations, based
on estimations of the parareal error, could possibly lead to a more efficient convergence and make the
adaptive approach more interesting than using an intermediate fine model as coarse propagator.

Indications for a multilevel approach

Although this contestable utility of the adaptive approach as implemented here, the observed improve-
ments on the stability and convergence are meaningful by indicating that the parareal performance in
the problems considered in this work can be improved by gradually approximating the reference so-
lution, instead of using only a coarse and fine propagators, which may be very different and lead to
poor parareal behaviours. Therefore, it suggests that multilevel predictor-corrector PinT methods, e.g.
MGRIT (Friedhoff et al., 2013; Falgout et al., 2014), could be envisaged.

7.3 On the temporal parallelization of urban floods simulations

7.3.1 Summary and conclusions

Parallelization-in-time is envisageable, but with restrictive configurations

The application of the parareal methods for the simulation of urban floods showed to be particularly
challenging. Relatively good results were obtained in the numerical examples presented here, with the
parareal solution well approximating, to a greater or lesser extent, the profile of the reference one, but at
the cost of a limited speedup. Indeed, stability and relatively fast convergence were ensured by considering
very large parareal time slices, which means that only few processors could be used for parallelizing the
simulation. In practice, in the best results showed here, speedups no larger than 3, approximately, were
obtained. It means, at least in the current state of this work, that parareal alone cannot be envisaged
for large scale parallelism of urban flood simulations using shallow water models.
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Performances of the classical and ROM-based parareal methods

Concerning the use of the classical and ROM-based parareal methods for the problem proposed here,
the former presented a better performance in general, providing a good convergence behaviour with
less restrictive configurations. Relatively good results were also obtained by the latter, but in very
limited frameworks necessary for dealing with solutions presenting discontinuities and defined in large
domains (e.g. by considering very large parareal time slices, defining local-in-time parareal simulations,
and formulating very low-dimensional ROMs) such that the method behaves similarly or worse than the
classical one, and with smaller speedups. This challenge is due to the difficulty in formulating high-quality
ROMs on-the-fly along parareal iterations, using relatively inaccurate snapshots, for approximating a
complex and highly discontinuous reference model. It was observed that the ROM-based parareal method
is able to outperform the classical one only in very specific situations (with relatively smooth solutions,
using computational meshes favoring the model reduction) that are not likely to be encountered in realistic
contexts of urban flood simulations.

It is important to notice that the results presented in this work do not allow to conclude on the
suitability or not of model reduction itself for the simulation of urban floods using the shallow water
equations. As said above, the particularity of the ROMs considered in this work is that they are for-
mulated on-the-fly and in a relatively cheap manner, as required by the parareal method. In a more
traditional model reduction framework, a more expensive and careful offline stage would be performed,
using snapshots provided by accurate simulations and possibly other model reduction methods.

Choice of coarse propagator

It was also illustrated in this work that a better performance of the parareal method (both the classical
and ROM-based ones) applied to urban flood simulations can be obtained by using a coarse discretization
of the classical SWE as coarse propagator, instead of a porosity-based model. It is quite natural since, in
this framework, the fine and coarse models are closer to each other (they are discretizations of the same
model, with smaller differences of time steps and mesh sizes), and better approximations are already
obtained from the 0-th parareal iteration. As a consequence, fewer iterations are required for obtaining
relatively good approximations, resulting in larger speedups (even if the iterations themselves are more
expensive due to the use of a finer coarse propagator).

We also notice that no remarkable differences on the parareal performance were observed by using
different porosity-based model as coarse propagator (we considered here the SP and DIP models), with the
convergence behaviour depending mainly on the size of the spatial and temporal discretizations. Possibly,
numerical tests specially designed for highlighting different performances of the porosity models w.r.t.
the classical SWE could provide clearer differences in the parareal framework. Also, other porosity-based
models could be considered in this study.

7.3.2 Perspectives

Towards more realistic problems

Even if challenging, all problems considered in Chapter 6 for coupling the classical and porosity-based
SWE were relatively simple, being solved in small spatial and temporal domains and considering idealized
urban zones composed by Cartesian grids of buildings blocks. An investigation of the performance of
the parareal methods for solving more realistic problems, with larger domains and more complex urban
geometries, needs to be investigated. Based on the conclusions of this work, we can suppose that restrictive
parareal configurations would be necessary, by using larger time slices and even multiple local-in-time
parareal simulations, and that the ROM-based method would be less suitable than the classical one.

Coupling with spatial parallelization

As said above, at the current state of this work, large scale parallelization and speedups cannot be ob-
tained for the problems considered here by only using temporal paralellization with the parareal method.
However, other strategies could be considered, e.g. a combined spatio-temporal parallelization, in which
parareal is used for obtaining further speedups in spatial domain decomposition methods. A possibility
would be to consider a parareal waveform relaxation method (Gander et al., 2013).
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Improving interpolation

The results presented in this work show that the order of spatial interpolation has an influence on
the performance of the parareal method, but more detailed investigations need to be conducted for
investigating how this influence manifests itself. Indeed, improvements by using cubic rather than linear
interpolation were observed in some cases, but in others the parareal performance gets worse. Notably,
important degradations of the ROM-based parareal method were observed with cubic interpolation, and
the causes are not clear. Moreover, the interpolation procedures used in this work, based on Delaunay
triangulation of cells’ barycenters, may not be the best choice for the simulation of urban zones, and
better designed interpolation procedures should be developed, taking into account e.g. the position of
the cells w.r.t. elements of the urban geometry (obstacles, transverse and longitudinal streets).

Dealing with small water depths

An important aspect of urban flood simulations, concerning the computation of very small or even zero
water depths, has not been tackled in this work. It is a challenge when using parareal since the method
does not ensure the positivity of the solution. Therefore, small instabilities produced along parareal
iterations can lead to negative water depths. In the numerical solutions presented here, the use of large
enough initial water depths showed to be necessary for ensuring stable solutions. Possibilities for dealing
with this issue were cited, e.g. setting negative water depths to zero, and it should be studied how to
guarantee mass and momentum conservation.

Flexibility on the choice of time steps

In all simulations presented in this work, the fine and coarse propagators (as well as the intermediate fine
propagators in the adaptive approach) were designed such as to use homogeneous time steps, integers
multiple of each other and dividing the parareal time slice length ∆T in a integer number of steps. This
choice was made for simplifying the computational implementation. However, in explicit-in-time schemes,
one may usually want to use the largest possible time step allowed by stability conditions, thus being
computed adaptively along the simulation in function of the solution and the spatial mesh sizes. It is done
e.g. in the SW2D-LEMON software. In can also be implemented in a parareal framework, but requiring
interpolation in time or by choosing the fine and coarse time steps at the end of each parareal time slice
such as to fall exactly on each parareal time instant. In larger parallel applications, other possibly issues
such as a good balance of parallel tasks would also need to be dealt with.

Use of other discretization schemes

In this thesis, we restricted ourselves to the spatial and temporal discretizations adopted in SW2D-
LEMON software. Namely, both the classical and porosity-based shallow water models were discretized
using finite volumes and an explicit Euler time-stepping. Other numerical schemes can be considered and
possibly improve the stability and convergence of the parareal method, e.g. if they are able to provide
better representations of phase speeds. A possibility would to consider a semi-Lagrangian temporal
discretization (also known as method of characteristics). Schmitt et al. (2018) applied it for discretizating
the coarse propagator in the simulation of the viscous Burgers equations using the parareal method and
obtained more stable and faster converging solutions than with other temporal discretizations, even with
zero viscosity (i.e. in a purely hyperbolic problem). De Sterck et al. (2021) presented similar conclusions in
the framework of parareal and MGRIT for solving the linear advection equation, stating that the coarse
solver should track the solution along characteristic curves (which is the principle of semi-Lagrangian
methods) for ensuring a fast convergence. These results can possibly be attributed by the fact that
semi-Lagrangian temporal discretizations provide good phase speed representations (Wedi et al., 2019).
Therefore, this approach could be combined with a finite volume spatial discretization and envisaged for
the problem considered in this work.

Implementation in SW2D-LEMON

As discussed in Section 1.4, the work presented here was developed relying on a standalone software into
which the main features of the classical and porosity-based models of SW2D-LEMON were incorporated.
The following step is to move in the opposite direction, i.e. incorporate the parareal methods into
SW2D-LEMON, allowing further studies and developments (for example, studying the influence of uneven
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bathymetry or other source terms on the parareal performance, or using other porosity-based models as
coarse propagator).

In the case of the classical parareal method, this introduction in SW2D-LEMON could be performed
in two ways. The first one is to exploit the non-intrusive character of the parareal method, with each
simulation of the coarse and fine propagators corresponding to full executions of the software, and by
using an external script for managing the executions and collecting and distributing input and output
data. It would require minimal or any modification of the SW2D code, but possibly important costs
linked to the initialization of each execution and data communication would take place. In the second
approach, parallelism would be implemented directly in the SW2D code. It would be more efficient in
terms of computational cost but would require important restructuring of the software, in order to allow
e.g. the coexistence of two models in the same execution and the storage of more data. A detailed
evaluation of these aspects should be considered for choosing a paradigm. Moreover, in the case of
the ROM-based parareal method, an important intrusive character exists, due to the formulation and
simulation of reduced-order models, and modifications of the code would be necessary.
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APPENDIX A

SOME DETAILS ON THE PARALLEL
IMPLEMENTATION AND EXECUTION

The numerical results presented in this thesis were obtained using a C++ program developed during the
PhD work. This program implements an explicit finite volume solver for the classical and porosity-based
shallow water models (reproducing the implementation in the SW2D-LEMON software) and routines for
solving them using the classical and ROM-based parareal methods. We provide in this appendix some
details on the parallel implementation and execution of the software.

A.1 Parallelization using OpenMP

The parallelization of the parareal methods is performed in this work using the OpenMP API (Open Multi-
Processing Application Program Interface) (OpenMP Architecture Review Board, 2011). OpenMP is a
shared memory parallel programming paradigm, meaning that threads (the working unit in a processor
core) access the same memory. As a consequence, communication between parallel working unit is
not necessary, contrary to the distributed memory paradigm MPI (Message-Passing Interface) (Message
Passing Interface Forum, 2009). Indeed, parallelization of parts of a program is relatively simple with
OpenMP, requiring only minor modifications of the code. As a disadvantage, the number of threads
that can work simultaneously is limited by the number of processor cores available in a single computing
node (since each node has its own memory), ranging in the order of tenths in computing cluster used
in this work, as described below. This configuration is enough for the small-scale problems considered
here, but, for larger problems, a MPI or an hybrid OpenMP-MPI implementation should be considered
for executing the simulation in several nodes.

A.2 Software execution

Simulations are executed in the NEF computing platform from Inria Sophia Antipolis-Méditerranée cen-
ter composed by various types of CPU and GPU clusters. In order to perform proper comparisons of
computational times, all simulations, both the reference (simulations of the fine model using a single
processor core) and parareal ones (simulations using several cores), are executed in the same cluster,
namely in a single node dual-Xeon E5-2680 v2 with a frequency of 2.80GHz and 256GB of RAM capac-
ity, containing 20 cores1. It means that at most Np = 20 parallel processors can be used in parareal
simulations.

1https://wiki.inria.fr/ClustersSophia/Hardware
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A.3 Measurement of computational times

Computational times of all simulations, both the reference and parareal ones, are measured using the
OpenMP function omp get wtime. Input and output operations (e.g. lecture of meshes and configuration
files, storage of results) are not considered. All computational times and speedups reported in this work
correspond to an average of five executions.
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IMPLEMENTATION OF THE POD-EIM
MODEL REDUCTION

B.1 Implementation using MKL linear algebra functions

As described in Sections 3.4 and 3.5, in each iteration of the ROM-based parareal method, a reduced-order
model Fkr,δt is constructed. This formulation consists in two steps:

1. Formulation of the reduced subspaces (i.e. the computation of matrices containing their basis vec-
tors) using a chosen model reduction technique. In this work, we considered a combined application
of POD (for obtaining the basis matrix V k of the subspace Sk) and POD-EIM (for obtaining the

basis matrix V̂ k of the subspace Ŝk and a matrix P̂ k containing chosen spatial indices for computing
the nonlinear term of the governing equations).

2. Computation of the Nmatrices matrices defining the ROM Fkr,δt, based on V k, V̂ k and P̂ k.

In the case of the two-dimensional nonlinear shallow water equations, eight subspaces are computed
at each iteration, the first three using POD (thus producing matrices V (i), i = 1, 2, 3, where the index
accounting for the iteration number is omitted for simplification) and the remaining five using POD-

EIM (thus producing matrices V̂ (i), P̂ (i), i = 1, .., 5). In the case where source terms are neglected (as

done in this work), this computation can be simplified by directly setting Ŝ(4) and Ŝ(5) as null spaces.

Concerning the second step of the model reduction, nine matrices need to be computed (B̂(1), . . . , B̂(3,4),
see eq. (3.49)), with four of them not needing to be computed if source terms are neglected.

In the implementation proposed in this work, both model reduction steps rely on linear algebra
functions of the MKL-LAPACK and MKL-CBLAS suites, namely:

• LAPACKE dgesvd, for performing singular value decompositions required by the POD;

• LAPACKE dgesv, for solving linear systems required by the DEIM step of the POD-EIM;

• cblas dgemm, for performing matrix-matrix multiplications, necessary for computing the matrices
of the reduced-order model;

• LAPACKE dgetrf and LAPACKE dgetri for inverting matrices, also necessary for computing the
matrices of the reduced-order model.

By using functions provided by well validated and optimized linear algebra packages, a relatively
efficient model reduction can be performed, thus reducing its impact on the computational cost of the
parareal method. This efficiency is improved by the fact that MKL functions are parallelized using
OpenMP.
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B.2 Model reduction workflow

The workflow implemented in this work for the POD-EIM model reduction is schematized in Figure
B.1. In the “Compute ROM subspaces” step, the subspaces are computed sequentially w.r.t. each other,
and each computation is performed with inner OpenMP parallelization of the MKL functions using all
available computing cores. The same is valid for the “Compute ROM matrices” step, with the matrices
computed with inner parallelization and sequentially w.r.t. each other.

Snapshots
Compute

ROM subspaces
(POD/POD-EIM)

Compute
ROM matrices

Fkr,δt
V (i), i = 1, 2, 3

V̂ (i), P̂ (i), i = 1, .., 5

B̂(1), . . . , B̂(3,4)

Figure B.1: Implemented “sequential” workflow for the POD-EIM model reduction. In each “compute”
block, the computed elements (subspaces or ROM-matrices) are computed using all available computing
cores and sequentially w.r.t. each other.

An alternative workflow that has not been explored in details in this work, but could be interesting
in large problems, is illustrated in Figure B.2. It uses the fact that all ROM subspaces are independent,
so their computation can be parallelized, and the same for all matrices defining the reduced models.
Note however that these matrices depend on the formulated subspaces, and a gathering point is required
for collecting the computed subspaces (i.e. their basis matrices) and distributing those required for
computing each ROM matrix. Therefore, a possibly more efficient model reduction would consist in the
following steps:

1. Parallel formulation of the subspaces (each parallel unit is responsible for computing a matrix V (i),

or matrices V̂ (i), P̂ (i));

2. Gather all basis matrices V (i), i = 1, 2, 3, and V̂ (i), P̂ (i), i = 1, .., 5;

3. Distribute to each processor the required basis matrices for computing a given ROM matrix;

4. Parallel computation of the Nmatrices ROM matrices (each parallel unit is responsible for computing
a single matrix).

5. Gather the computed ROM matrices.

Snapshots

Compute S(1)

Compute S(2)

Compute Ŝ(4)

Compute Ŝ(5)

...

Compute B̂(1)

Compute B̂(2,1)

Compute B̂(3,3)

Compute B̂(3,4)

... Fkr,δt

V (1)

V (2)

V̂ (4), P̂ (4)

V̂ (5), P̂ (5)

V (1), V̂ (1), P̂ (1)

V (2), V̂ (2), P̂ (2)

V (3), V̂ (4), P̂ (4)

V (3), V̂ (5), P̂ (5)

Figure B.2: Proposed alternative “parallel” workflow for the POD-EIM model reduction. In each “com-
pute” block, the computed elements (subspaces or ROM-matrices) are computed in parallel w.r.t. to
each other. A gathering point is implemented between the two blocks for collecting and redistributing
elements necessary for computing the ROM matrices.

In this work, all simulations are performed in a single cluster node. In this case, in order to implement
the “parallel” workflow described above, each parallel unit would be a single core (or few cores of the
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node), implying that the inner OpenMP parallelization of the MKL functions would be performed using
less cores. Quick investigations indicated that it is less efficient than performing the “sequential” model
reduction illustrated in Figure B.1, in which each MKL function is parallelized among all cores available
in the node. Evidently, this efficiency can possibly depend on the size of the problem. Moreover, the
proposed “parallel” model reduction could be more efficient in an hybrid OpenMP-MPI implementation,
with each parallel unit corresponding to a different cluster node (thus allowing inner parallelization using
several cores).

B.3 Complexity of the POD-EIM model reduction procedures

A detailed description of the complexity of the model reduction procedure, used for estimating the
computational times τS and τB̂ in Section 3.4.4, is presented in the following paragraphs. We divide this
description in two parts, accounting for the two steps for the model reduction (the POD-EIM execution
and the computation of the ROM matrices).

We briefly recall some notations considered in Section 3.4.4. In parareal iteration k, each model
reduction is performed on a snapshots matrix (Y k or Ŷ k) of size Mf × k(N∆T + 1), since N∆T + 1
snapshots are collected per iteration. Mf is the spatial dimension (number of spatial cells in a FV
discretization) of the fine propagator Fδt. The number of interfaces in the fine mesh is denoted by
If . Nspaces subspaces and Nmatrices are computed per iteration (in the case of the 2D nonlinear SWE,
Nspaces = 8 and Nmatrices = 9). The largest dimension among all subspaces computed along the parareal
simulation is denoted by m̂.

B.3.1 Complexity of the POD-EIM procedure

We develop an estimate for the computational time τS(k) necessary for computing a ROM subspace,
formulated using POD or POD-EIM at parareal iteration k. We majorate τS(k) by considering a subspace
formulated using the POD-EIM procedure (which is obviously more expensive than the POD alone). The
POD-EIM for computing a subspace in iteration k consists in two steps:

1. A POD, via a SVD (eq. (3.27)) using as input a matrix of size Mf × k(N∆T + 1). The obtained
subspace has dimension m � Mf . The SVD is performed using the dgesvd function of the MKL-
LAPACK suite;

2. A DEIM (Algorithm 5), consisting in the sequential solution of m − 1 linear systems (using the
dgesv function of the MKL-LAPACK suite) and m lookups for the maximum element in vectors
of size Mf (using the max element function of the C++ Standard Library). The i-th linear system
has a size i× i;

The MKL-LAPACK function dgesvd applied to a matrix in Rq×n has a complexity O(qn2 + n3)
(Dongarra et al., 2018). Concerning dgesv, the complexity for a matrix in Rn×n is O(n3)1. For the
function max element, the complexity for looking up a vector in Rn is O(n)2.

Thus, by majorating m by m̂, we estimate, for the last parareal iteration k̂,

τS(k̂) = O
(
Mf k̂

2(N∆T + 1)2 + k̂3(N∆T + 1)3
)

︸ ︷︷ ︸
POD

+

m̂∑

i=2

O
(
i3
)

+O (m̂Mf )

︸ ︷︷ ︸
DEIM

= O
(
k̂2N2

∆T (Mf + k̂N∆T ) +

(
m̂2(m̂+ 1)2

4
− 1

)
+ m̂Mf

)

= O
(
Mf k̂

2N2
∆T +

m̂4

4
+ m̂Mf

)

where we assume Mf � k̂N∆T .

1http://www.netlib.org/lapack/lug/node71.html
2https://en.cppreference.com/w/cpp/algorithm/max_element#Complexity
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B.3.2 Complexity of the computation of ROM matrices

In each iteration of the ROM-based parareal method, we compute Nmatrices of the form

V TBV̂
(
P̂T V̂

)−1

∈ Rq×m (B.1)

where V ∈ RMf×q, V̂ , P̂ ∈ RIf×m and B ∈ RMf×If is a sparse matrix. P̂ is also a sparse matrix, but for
the practical implementation of its multiplication by V̂ , it is considered here as a dense one.

For computing (B.1), four matrix multiplications are required. All of them are performed using the
dgemm function of the MKL-CBLAS suite, whose complexity for O(n2) data is O(n3), such that its
complexity for multiplying two matrices in Rq×n and Rn×m is O(qnm) (Blackford and Dongarra, 1999).
The only exception is the dense-sparse matrix multiplication V TB, which is “handmade” implemented
by looping on the few non-zero elements of B (e.g. in a triangular mesh, each line of B contains three
non-zero elements). Therefore, the complexities for the matrix multiplications can be estimated by

•
[
V T
]

[B]: O(qIf ) = O(qMf );

•
[
V TB

] [
V̂
]
: O(qIfm) = O(qmMf );

•
[
P̂T
] [
V̂
]
: O(mIfm) = O(m2Mf );

•
[
V TBV̂

] [(
P̂T V̂

)−1
]
: O(qmm) = O(qm2)

where we used If = O(Mf ).

Moreover, it is necessary to invert C := P̂T V̂ ∈ Rm×m. In the MKL-LAPACK suite, it is performed
in two steps: firstly, the LU decomposition C = LU is computed using the dgetrf function, where
L,U ∈ Rm×m are respectively lower and upper triangular matrices. Then, C−1 is computed by the dgetri
function by solving the system C−1L = U−1. Both the mentioned routines have a complexity O(m3)
(Blackford and Dongarra, 1999).

Therefore, by majorating both q and m by m̂, the computational time τB̂(k̂) for computing (B.1) can
be estimated by

τB̂(k̂) = O
(
m̂Mf + m̂2Mf + m̂2Mf + m̂3

)
︸ ︷︷ ︸

multiplication

+O
(
m̂3 + m̂3

)
︸ ︷︷ ︸

inversion

= O
(
m̂2(3m̂+ 2Mf ) + m̂Mf

)

= O (m̂Mf (2m̂+ 1))

= O
(
2Mfm̂

2
)

by assuming Mf � m̂.

200



APPENDIX C

SPATIAL INTERPOLATION
PROCEDURES

In parareal simulations involving spatial coarsening between the fine and coarse propagators, spatial
interpolation needs to be performed between their respective meshes. Depending on the dimensions of
the problem, interpolation can represent an important fraction of the total computational time, mainly
in the classical parareal method, in which the solution must be interpolated between the fine and coarse
meshes, in both senses and in all iterations. In the ROM-based method, interpolation is performed only
in the 0-th iteration, from the coarse to the fine mesh. In the following iterations, the coarse propagator
is replaced by a a reduced-order model, which provides solutions computed in the fine mesh.

Let Tf and Tc be two computational meshes (associated e.g. to the fine and coarse propagators
in the parareal framework), containing respectively Mf and Mc cells. In a finite volume scheme, the
approximation of a given function ψ is considered constant at each computational cell Ωf,i (of Tf ) or Ωc,i
(of Tc). Let ψf ∈ RMf and ψc ∈ RMc be the approximations of ψ in all cells of Tf and Tc, respectively.
Then, the interpolation of ψf from Tf to Tc and the interpolation of ψc from Tc to Tf read respectively

Df→cψf ∈ RMc , Dc→fψc ∈ RMf

where Df→c ∈ RMc×Mf and Dc→f ∈ RMf×Mc are interpolation matrices. The element [Df→c]i,j in the i-
th line and j-th column of Df→c is the weight associated to cell Ωf,j ⊂ Tf for computing the interpolated
solution in Ωc,i ⊂ Tc, and analogously to Dc→f . These weights satisfy

Mf∑

j=0

[Df→c]i,j = 1, i = 1, . . . ,Mc

Mc∑

j=0

[Dc→f ]i,j = 1, i = 1, . . . ,Mf

Since the computational meshes are independent of time in the problems considered here, interpolation
weights can be precomputed, thus reducing the necessary time for interpolating. As described below, this
precomputation is quite straightforward in the linear case, but not in the cubic one. Therefore, weights
are computed, in practice, by interpolating a function that is equal to the unity in a single cell and zero
elsewhere, in order to obtain each column of matrices Dc→f or Df→c. For example, if ψf = 1 in cell
Ωf,j ∈ Tf and zero elsewhere, then the interpolation of ψf to Tc is equal to the j-th column of Df→c.

C.1 Delaunay triangulation

In this work, we opted for implementing flexible interpolation procedures, not relying on structured grids.
Indeed, unstructured meshes are usually considered for the simulation of urban floods, due to the complex
domain geometries and the presence of obstacles. We then implement interpolation procedures based on
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the Delaunay triangulation of the set of cells’ barycenters of a computational mesh. A triangulation of a
set of points X = {x1, . . . ,xM} ⊂ R2 is a set of triangles whose vertices are elements of X , intersecting
only on their interfaces and whose union is the convex hull of X . The Delaunay triangulation (Delaunay,

1934) of X is the unique triangulation T̃ such that, for every edge xixj of T̃ , with xi,xj ∈ X , there
exists a circumference passing trough xi and xj not containing any point of X in its interior. We refer
the reader to (Shewchuk, 1999) for a detailed review of Delaunay triangulation, its extension to higher
dimensions and its use as mesh generation and refinement method. Figure C.1 illustrates the Delaunay
triangulation of the cell’s barycenter of a computational mesh.
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Figure C.1: Example of a Delaunay triangulation used for interpolation. Left: example of computational
mesh, with the cells’ barycenters marked as blue dots. Right: Delaunay triangulation (red, dashed lines)
of the cells’ barycenters.

In the FV scheme, we consider that the value [ψf ]i of ψf in a computational cell Ωf,i ⊂ Tf is defined

on its barycenter xf,i (we recall that the FV solution is constant in each cell). Therefore, if T̃f denotes the
Delaunay triangulation of the barycenters Xf = {xf,1, . . . ,xf,Mf

} of the cells in Tf , then each triangle

of T̃f is associated to three values of ψf (defined on its vertices). Therefore, the interpolation from Tf
to Tc consists in finding, for each cell barycenter xc,1, . . . ,xc,Mc

, of Tc, the triangle of T̃f in which it is
contained and determining the interpolation weights Df→c based on a chosen interpolation order.

The interpolation from Tc to Tf is completely analogous: the Delaunay triangulation T̃c of the barycen-
ters Xc = {xc,1, . . . ,xc,Mc} is computed and each barycenter xf,1, . . . ,xf,Mf

, of Tf is located in a triangle

of T̃c for determining the interpolation weights Dc→f .
A special treatment must be considered in the case where the point to be located in a Delaunay

triangulation lays outside its convex hull. This treatment depends on the implementation considered for
each interpolation order (linear and cubic), as described in the following sections.

C.2 Linear interpolation

The linear interpolation procedure based on Delaunay triangulations is implemented and incorporated
to the code developed in this work by using the open-source C++ library delaunay linterp1. In order
to interpolate from Tf to a cell Ωc,i ⊂ Tc, its barycenter xc,i is located in a triangle of the Delaunay

triangulation T̃f and the interpolation weights are the barycenter coordinates of xc,i relative to the found
triangle. Therefore, each line of the interpolation matrix Df→c contains at most three non-zero values. If
xf,i1 , xf,i2 and xf,i3 denote the vertices of the found triangle, then their associated interpolation weights
satisfy

xc,i = [Df→c]i,i1xf,i1 + [Df→c]i,i2xf,i2 + [Df→c]i,i3xf,i2
[Df→c]i,i1 , [Df→c]i,i2 , [Df→c]i,i3 ≥ 0

[Df→c]i,i1 + [Df→c]i,i2 + [Df→c]i,i3 = 1

1https://github.com/rncarpio/delaunay_linterp
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In the case where xc,i lays outside T̃f , delaunay linterp library projects xc,i onto the closest external

interface of T̃f and computes the barycenter coordinates of this projection. The computation of the
interpolation matrix Dc→f is analogous.

C.3 Cubic interpolation

Since the library delaunay linterp only implements linear interpolation, the cubic case, not incorporated
to the code developed in this work, is computed previously with the function CloughTocher2DInterpolator
of the Python Scipy library2, which is also based on Delaunay triangulations. This function constructs
piecewise cubic, continuously differentiable Bézier polynomials using a Clough-Tocher split interpolant
scheme. We briefly explain these ingredients in the following paragraphs and we refer the reader to (Farin,
1986) for details.

Cubic Bézier polynomials

Let T ∈ R2 be a given triangle with vertices x1,x2,x3 and barycenter xc. Let also β1, β2, β3 be the
barycenter coordinates of a point x ∈ T , i.e. x =

∑3
i=1 βixi. The Bézier polynomial of degree d over T

is defined as

bd(x) := bd(β1, β2, β3) :=
∑

i,j,k∈N
i+j+k=d

bijkB
d
ijk(β1, β2, β3)

where bijk are called the Bézier ordinates of bd and Bdijk are the Bernstein polynomials of degree d over

T , defined by

Bdijk(x) := Bdijk(β1, β2, β3) :=
d!

i!j!k!
βi1β

j
2β

k
3 , i, j, k ∈ N, i+ j + k = d

and constituting a basis for all polynomials of degree d over T .
The Bézier ordinates are determined from data (function and/or derivative values, depending on the

chosen interpolating shceme) provided at control points of T of the form

xdijk :=
ix1 + jx2 + kx3

d
, i, j, k ∈ N, i+ j + k = d (C.1)

In the cubic case (d = 3), in which i, j, k vary from 0 to 3 and sum up 3, there are ten points under
the form (C.1), given by the vertices of T , the partition of its edges in thirds, and its barycenter xc, as
illustrated in Figure C.2.
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Figure C.2: Control points of a triangle T used for defining a cubic Bézier polynomial.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html
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Clough-Tocher split scheme

In the Clough-Tocher interpolant scheme, a given triangle T̆ with vertices x̆1, x̆2, x̆3 and barycenter x̆c
is splitted in three sub-triangles T̆1, T̆2, T̆3 by joining each vertex to the barycenter, as shown in Figure
C.3. Twelve data are used for constructing the cubic interpolant: the function value and gradient on the
vertices x̆1, x̆2, x̆3, in addition to normal derivatives on the midpoint of each edge of T̆ .

•
x̆1

•
x̆2

•x̆3

•
x̆c

T̆1

T̆2
T̆3

Figure C.3: Clough-Tocher split interpolant scheme. The triangle is divided in three sub-triangles and
data for interpolation is provided on the vertices (function and gradient values) and on the midpoint of
each edge (normal derivatives).

The cubic Bézier-Clough-Tocher interpolation

It can be shown that the interpolant constructed with the Clough-Tocher scheme is globally continuously
differentiable if cubic polynomials are defined in each sub-triangle. It can be done, for example, by
using Bézier polynomials in each T̆1, T̆2, T̆3, resulting in the set of control points illustrated in Figure
C.4. In the case of the interpolation scheme based on Delaunay triangulations, the represented triangle
corresponds to a triangle of a Delaunay triangulation whose vertices x̆1, x̆2, x̆3 are barycenters of the
base computational mesh (Tc or Tf ). In Figure C.4, each control point is identified based on how its
respective Bézier ordinate is computed: external points (red bullets) are defined from data defined on the
vertices x̆1, x̆2, x̆3; ordinates associate to blue square points are obtained form normal derivatives defined
on edges’ midpoints; ordinates at green triangle points are the average from neighbour blue squares; and
for the barycenter (orange star), the ordinate is the average of green triangles.
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Figure C.4: Bézier Clough-Tocher split interpolation. A cubic Bézier polynomial is defined in each
subtriangle obtained by the Clough-Tocher scheme. The Bézier ordinates in each control point are
defined depending on the point position.
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Approximation of derivatives

The interpolant construction requires the estimation of partial derivatives, which is performed in the
CloughTocher2DInterpolator function by using global estimates (Nielson, 1983; Renka and Cline, 1984)
(i.e. the estimated derivatives in each spatial point are influenced by the entire spatial domain). The
approximate derivatives are the ones that minimize the curvature of the constructed interpolant.

As a consequence of this global estimation approach, the interpolation produces a very large number of
nonzero weights, in general equal to the number of cells in the mesh (which means that the interpolation
matrices Dc→f and Df→c are dense, contrary to their sparse structures in the linear interpolation case).
It implies a prohibitive cost in the framework of the parareal method, with interpolation procedures
accounting for the majority of the total computational time. Therefore, in order to reduce this cost, we
discard all weights smaller than 10−10. It provides substantial reductions of the interpolation stencil and
computational time for interpolation (even if still much larger than the linear case), with only negligible
impacts on the parareal convergence behaviour.

Interpolation to points outside the Delaunay triangulation

Concerning the interpolation to a point xc,i located outside the convex hull of the Delaunay triangula-

tion T̃f , the CloughTocher2DInterpolator function does not provide an alternative approach based on a
projection of the point (as described above in the linear interpolation with delaunay linterp library) and
returns undefined values. Therefore, for treating these cases, we use a nearest interpolation procedure,
i.e. the barycenter xf,̃i ∈ Tf with smaller distance to xc,i is found and a unique weight [Df→c]i,̃i = 1 is
defined.
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Chen, A. S., Evans, B., Djordjević, S., and Savić, D. A. (2012b). Multi-layered coarse grid modelling in
2d urban flood simulations. Journal of Hydrology, 470-471:1 – 11.

209



BIBLIOGRAPHY

Chen, F., Hesthaven, J. S., and Zhu, X. (2014). On the Use of Reduced Basis Methods to Accelerate and
Stabilize the Parareal Method, pages 187–214. Springer International Publishing, Cham.

Chen, H., Reuss, D., and Sick, V. (2012c). On the use and interpretation of proper orthogonal decom-
position of in-cylinder engine flows. Measurement Science & Technology - MEAS SCI TECHNOL,
23.

Chen, W., Hesthaven, J. S., Junqiang, B., Qiu, Y., Tihao, Y., and Yang, Z. (2018). Greedy non-intrusive
reduced order model for fluid dynamics. AIAA Journal, 56:12.

Christlieb, A. J., Macdonald, C. B., and Ong, B. W. (2010). Parallel high-order integrators. SIAM
Journal on Scientific Computing, 32(2):818–835.

Churuksaeva, V. and Starchenko, A. (2015). Mathematical modeling of a river stream based on a shallow
water approach. Procedia Computer Science, 66:200–209. 4th International Young Scientist Conference
on Computational Science.

Cortial, J. and Farhat, C. (2009). A time-parallel implicit method for accelerating the solution of non-
linear structural dynamics problems. International Journal for Numerical Methods in Engineering,
77(4):451–470.

CRED and UNISDR (2015). The human cost of weather related disasters - 1995 - 2015.

Dai, X. and Maday, Y. (2011). Stable parareal in time method for first and second order hyperbolic
system. Technical report.

Davit, Y. and Quintard, M. (2017). Technical notes on volume averaging in porous media i: How to
choose a spatial averaging operator for periodic and quasiperiodic structures. Transport in Porous
Media, 119:1–30.

De Sterck, H., Falgout, R. D., Friedhoff, S., Krzysik, O. A., and MacLachlan, S. P. (2021). Optimizing
multigrid reduction-in-time and parareal coarse-grid operators for linear advection. Numerical Linear
Algebra with Applications.

Defina, A. (2000). Two-dimensional shallow flow equations for partially dry areas. Water Resources
Research, 36(11):3251–3264.

Defina, A., D’Alpaos, L., and Matticchio, B. (1994). New set of equations for very shallow water and par-
tially dry areas suitable to 2D numerical models. Proceedings of the Specialty Conference on Modelling
of Flood Propagation Over Initially Dry Areas, pages 72–81.

Delaunay, B. (1934). Sur la sphère vide. A la memoire de Georges Voronoi, Bulletin de l’Academie des
Sciences de l’URSS. Classe des sciences mathematiques et na, 6:793–800.

Dolean, V., Jolivet, P., and Nataf, F. (2015). An Introduction to Domain Decomposition Methods. Society
for Industrial and Applied Mathematics, Philadelphia, PA.

Dongarra, J., Gates, M., Haidar, A., Kurzak, J., Luszczek, P., Tomov, S., and Yamazaki, I. (2018). The
singular value decomposition: Anatomy of optimizing an algorithm for extreme scale. SIAM Review,
60(4):808–865.

Duarte, M., Massot, M., and Descombes, S. (2011). Parareal operator splitting techniques for multi-scale
reaction waves: Numerical analysis and strategies. ESAIM: Mathematical Modelling and Numerical
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Shalf, J. (2020). The future of computing beyond Moore’s law. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 378(2166):20190061.

215



BIBLIOGRAPHY

Shewchuk, J. R. (1999). Lecture notes on Delaunay mesh generation. Technical report, Department of
Electrical Engineering and Computer Science, University of California at Berkeley.

Slattery, J. C. (1967). Flow of viscoelastic fluids through porous media. AIChE Journal, 13(6):1066–1071.

Soares Frazão, S. and Guinot, V. (2007). An eigenvector-based linear reconstruction scheme for the
shallow-water equations on two-dimensional unstructured meshes. International Journal for Numerical
Methods in Fluids, 53(1):23–55.

Soares-Frazão, S., Lhomme, J., Guinot, V., and Zech, Y. (2008). Two-dimensional shallow-water model
with porosity for urban flood modelling. Journal of Hydraulic Research, 46(1):45–64.

Stabile, G., Hijazi, S., Mola, A., Lorenzi, S., and Rozza, G. (2017). Pod-galerkin reduced order methods
for cfd using finite volume discretisation: vortex shedding around a circular cylinder. Communications
in Applied and Industrial Mathematics, 8(1):210–236.
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