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Développements Optiques pour la Mesure et le Contrôle Micrométrique de la Température en 

Optogénétique.  

La combinaison de la microscopie optique et de la génétique moléculaire - l'optogénétique - a récemment 

bouleversé le domaine des neurosciences. L’utilisation d’opsines et d’indicateurs fluorescents codés 

génétiquement permet désormais de contrôler et suivre optiquement l’activité neuronale de manière peu 

invasive. La stimulation à 2 photons permet d’adresser individuellement plusieurs centaines de neurones 

en profondeur dans le cerveau, mais la puissance laser nécessaire entraîne des effets thermiques photo-

induits qu’il est nécessaire d’évaluer précisément, puisqu’ils sont susceptibles d’altérer potentiellement 

certaines fonctions neuronales. 

Dans ce manuscrit, nous décrivons le développement d'une sonde thermométrique basée sur la 

luminescence, permettant de mesurer in vivo la température à l'extrémité d'une fibre optique lors d’une 

stimulation optogénétique à 2 photons. Cette sonde offre une sensibilité en température de 0,05 K, une 

résolution temporelle de 2 ms et une résolution spatiale comparable à la taille d'un neurone (~15µm). 

Elle permet ainsi d’estimer l’élévation de température induite par diverses conditions d’illumination 

optogénétique. Pour évaluer l'altération de l'activité neuronale lors de telles variations thermiques, nous 

avons développé une plateforme qui offre un contrôle spatial précis de la température à l'échelle du 

micron. Nous démontrons que des profils de température de forme arbitraire et rapidement 

reconfigurables peuvent être générés en projetant un motif d’illumination sur un ensemble homogène 

de nanoparticules plasmoniques absorbantes. Enfin, nous avons utilisé ce concept de contrôle thermique 

à l’échelle micrométrique pour développer des dispositifs de contrôle du front d'onde basés sur des 

résistances induisant des effets thermo-optiques. Nous avons montré que des matrices de micro-

lentilles électro-thermo-optiques permettent l'imagerie calcique de l'activité de neurones à différentes 

profondeurs simultanément.  

Mots clés : Thermométrie par luminescence, optogénétique à deux photons, diffusion de la chaleur, 

thermoplasmonique, nanoparticules, détection du front d'onde, effets thermo-optiques, imagerie 

multiplan. 

Optical Developments for Microscale Measurement and Control of Temperature in Optogenetics 

The combination of optical microscopy and molecular genetics - optogenetics - is revolutionizing the 

field of neurosciences. Genetically-encoded fluorescent indicators and opsins now allow the optical 

monitoring and control of neuronal activities with minimal invasiveness. While 2-photon stimulation 

can now address individually hundreds of neurons, deep inside the brain, the associated increase in laser 

power leads to photo-induced thermal effects which require a careful evaluation as they can potentially 

alter neural functions. 

In this manuscript, we describe the development of a luminescence-based thermometric probe, that 

provides in vivo temperature measurements at the end of a single optical fibre during 2-photon 

optogenetic stimulation. The method provides 0.05 K temperature sensitivity, 2 ms temporal resolution, 

and single-neuron-size-range spatial resolution (~15µm). This allowed us to precisely evaluate the 

temperature rise induced by various optogenetic illumination conditions, deep inside tissues. To evaluate 

the alteration of neural activity induced by such thermal variations, we developped a platform that 

provides precise spatial control of the temperature at the microscale. Fast, accurate, and reconfigurable 

temperature patterns are demonstrated over arbitrarily shaped regions by tailoring an optical pattern 

projected on a homogeneous array of absorbing plasmonic nanoparticles. Finally, we utilized this 

concept of microscale temperature control to develop wavefront-shaping devices based on tailored 

resistors inducing thermo-optical effects. We demonstrate that tunable electro-thermo-optical micro-

lenses arrays allow the simultaneous Ca2+ imaging of neuron activities at different depths.  

Keywords: Luminescence thermometry, two-photon optogenetics, heat diffusion, thermoplasmonics, 

gold nanoparticles, wavefront sensing, thermo-optical effects, multiplane imaging 
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Introduction 

 Advancements in optical microscopy have been pushing the frontier of understanding 

living tissues for centuries. Since Antoni van Leeuwenhoek (1632-1723) discovered micro-

organism using his hand-made high magnification microscope based on a simple lens, 

microscopy has become one of the most popular tools for exploring biological structure. Today, 

with much more sophisticated optical instrumentations and advanced bioengineering 

techniques, microscopes enable a broad range of studies in living tissues. For example, in one 

of the fascinating research areas – brain study, genetically encoded proteins allow to optically 

record and control the activity of neuronal circuits with more and more spatiotemporal 

precisions and penetration depths.  

During the 200 years which followed Leeuwenhoek’s innovation, developments in 

optical microscopy mainly focused on technological improvements such as the correction of 

chromatic and geometrical aberrations to enhance spatial resolution. During the late 19th and 

early 20th centuries, as electric lamps became available as light sources, breakthroughs in the 

illumination techniques brought the wide-field imaging quality of classical optical microscopy 

close to today's levels. In particular, August Köhler developed the illumination method that 

bears his name in 1893. It allows the homogeneous illumination of the specimen, which highly 

improves the imaging quality. Most importantly, the Köhler illuminator allowed the 

development of the phase-contrast microscope decades later. In the 1930', Frits Zernike 

invented the phase-contrast microscope (Nobel Prize in Physics in 1953) that measures light 

interferences. Instead of relying on the intensity of light absorption or reflection, his 

development gave access to an entirely new type of contrast: sensitivity to the refractive index 

allowed much-improved imaging of transparent samples, like living mammalian cells. 

Later in the 20th century, the development of fluorescence microscopy brought imaging 

performances to yet another level. Fluorescence provides a unique specificity by labelling 

targeted biological molecules with fluorophores such as fluorescent stains, fluorescent-labelled 

antibody or genetically encoded fluorescent proteins. However, it is mostly after the invention 

of confocal microscopy (patented by Marvin Minsky in 1957) that fluorescence microscopy 

reached its full potential. Confocal microscopy uses a scanned point-source to illuminate 

fluorophores and a pinhole at the conjugated plane to remove out-of-focus signals, providing 

spatial resolution and optical sectioning that was never accessible using traditional wide-field 

approaches. High-resolution 3D maps of biological samples then became accessible. 
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At the end of the last century, two-photon microscopy (or 2PM, pioneered by Winfried 

Denk and James Stricker in 1990) brought 3D imaging deeper into tissues. Two-photon 

scanning microscopy is intrinsically confocal but can provide optical sectioning in even thicker 

samples than the confocal approach. It is based on the two-photon excitation process, as 

theoretically proposed by Maria Goeppert-Mayer in 1931. It is a nonlinear excitation of 

fluorescence after absorbing two photons with ~half the energy of the emission light. The 

excitation probabilities depend quadratically on the light intensity; thus, the process demands 

high spatial and temporal energy concentration of light, which can be efficiently performed 

using femtosecond pulsed infrared laser. As a result, 2PM provides high spatial confinement in 

3D, and the use of infrared light allows better penetration depths into biological tissues.  

2PM is one of the most promising methods for optical brain investigations because it is 

a minimally invasive manner to achieve in vivo three-dimensional imaging with good 

penetration depth and spatial resolution. In most cases, 2PM can reach imaging depths of around 

500 µm within the brain, which is enough to allow the imaging of, e.g. the superficial cortical 

layers of mice. The depth has been extended to more than 1mm to image the whole cortical 

layer through many approaches, such as adaptive optics, higher excitation pulse energy, longer 

excitation wavelengths, three-photon microscopy (3PM) or developing brighter fluorophores.1 

In the meantime, a revolutionary method called ‘Optogenetics’ emerged in 

neurosciences at the beginning of this century. It uses light to control neurons that are 

genetically modified to express light-sensitive ion channels or pumps. Those ion channels or 

pumps are transmembrane proteins called opsins, which can permit flux of specific ions across 

the membrane upon illumination at suitable wavelengths to induce electrical potential changes 

on the local membrane. These potential changes can induce activation or inhibition of neurons. 

Through optogenetics, one can optically control individual neurons in living tissue or even 

freely moving animals. In a broader sense, optogenetics also includes techniques that optically 

monitors neurons activities by the use of genetically encoded activity indicators that change 

their fluorescence properties when a neuron is activated. All in all, the combination of 

optogenetics reporters and actuators with advanced optical approaches enables both imaging 

and manipulation of neuronal circuits, which is also today often referred to as the all-optical 

recording of neuronal circuits.  

Like fluorescence microscopy, optogenetic effects can be obtained through single-

photon (1P) or two-photon (2P) absorption approaches. 1P optogenetics undergoes similar 

constraints as 1P microscopy: the reduced penetration depth and lack of optical sectioning, 

which can be solved, as done for imaging, by performing 2P optogenetics. More specifically, 
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the optical sectioning of 2P in combination with 3D laser beam scanning or holographic light 

shaping techniques, enables in-depth single or multi-neuron activation with single-cell or sub-

cell resolution opening the way to a precise optical manipulation of neuronal circuits. 

However, as we will see, the need to reach a high number of neurons for in-depth 

activation requires amplified powerful lasers. This brings forward a major concern related to 

possible photodamage effects. For optical configurations using parallel illumination which, as 

we will see, deliver low excitation density light on large surfaces, the main sources of 

photodamages are photoinduced thermal effects.  

In this thesis, I will therefore specifically focus on the theoretical and experimental 

investigation of the temperature rise associated with 2P optogenetic stimulation.  

In Chapter 1, I will introduce the technique of 2P optogenetics and the mathematical 

models to predict the temperature rise induced during a 2P optogenetic experiment. The model 

is based on the Fourier’s heat diffusion equation solved using the Green’s functions formalism.  

In Chapter 2, I will present a fibre-based luminescence thermometry technique, that I 

developed to measure in vivo the temperature rises induced during 2P optogenetic experiments 

and to validate the prediction of the model. I will present several experimental results in vitro 

and in living mice and compare them to the simulations.  

In Chapter 3, I will introduce a reconfigurable temperature control technique as a 

possible tool to help control temperature rises and study their influences. The method is based 

on the plasmonic thermal effect of gold nanoparticle assemblies and realised by light shaping 

illumination. The temperature shaping ability is validated by wavefront thermal sensing. 

Through proof-of-principle experiments, we show the potential of the technique for the study 

of living cell thermal responses. During the work of Chapter 3, I studied microscale thermal 

control and thermo-optical effects, which brought me to another - related- horizon: thermally 

tunable optics. 

In Chapter 4, I will demonstrate a micro-device that can modify optical wavefronts 

through electrically generated heat in a thermo-optical medium. Using one of the functions of 

this device, a new 3D imaging method is developed. The thermally controlled tunable lens array 

is used to focus on different planes during a single wide-field image acquisition. Preliminary 

experiments of simultaneous multiplane imaging of neuron activities were carried out in 

zebrafish larvae combined with calcium imaging.  
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Chapter 1  

Two-Photon Optogenetics and Thermal Effects 

Summary 

1.1. Photostimulation of neurons 9 

1.1.1. Electrical activities in neurons 9 

1.1.2. Optogenetic stimulations 12 

1.1.3. 2P excitation and 2P optogenetics 15 

1.1.4. Photo-induced thermal effects in the brain 18 

1.2. Thermal phenomena 21 

1.2.1. Fourier equation of heat diffusion 21 

1.2.2. Green's function and thermal point-spread function 22 

1.2.3. Step response for a point source 24 

1.2.4. Steady-state, point-source response 25 

1.3. Photo-induced thermal effects in 2P optogenetics 26 

1.4. Conclusion 29 

The brain is one of our body's most fascinating organs. For decades, more and more 

advances technologies have been applied to investigate it. Nowadays, to better understand its 

complex mechanisms, research increasingly focuses on the cellular, even subcellular level– 

neurons, synapses, and the networks they compose. Photonic methods have brought important 

new perspectives to this subject, and light is increasingly used for manipulating and observing 

brain circuits.  
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1.1. Photostimulation of neurons  

1.1.1. Electrical activities in neurons  

The mammalian brain is composed of billions of neurons interconnected into circuits by 

trillions of synapses2,3. Neurons include various cell types responsible for different functions 

like reception, processing, and transmission of signals4. They communicate through electrical 

or chemical signals and form complex neural systems. To decode neuronal networks, one 

should answer system-level questions, like the role of neurons in a neural circuit or behaviour, 

as well as molecular- and cellular-level questions, like how membrane proteins like ion 

channels and other molecules give each neuron its physiological characteristics. Perturbing one 

element in a neural circuit is a strategy often used in the domain of neuroscience, e.g. for 

describing the neural system anatomically or for functional dissection of individual cell types 

and their synaptic connections. This is usually realised by manipulation of neural electrical 

activity, such as to activate (or inhibit) certain neurons for a “gain of function” (or “loss of 

function”) experiment while using electrophysiology tools to listen to the changes in electrical 

signals3,5. 

To manipulate neural electrical activity (activate or inhibit), it is essential to understand 

a key phenomenon: the action potentials (AP). AP is the sudden transient potential change on 

the plasma membrane that propagates along the axon to the synapse, transmitting signals 

downstream to directly connected neurons6. In all animal cells, a difference in electrical charge 

between the intracellular and extracellular sides of the plasma membrane creates an electrical 

potential. A neuron membrane at resting potential is about –70 mV (more negative inside than 

outside). By opening and closing specific membrane ion-channel proteins (who are permeable 

to specific ions), neurons undergo controlled changes in their membrane potentials. While the 

inside potential becomes more positive than the resting potential, we call it the depolarisation 

process; while it becomes more negative than the resting potential, we call it 

hyperpolarisation. The action potential is a cycle of membrane depolarisation, 

hyperpolarisation and returning to the resting state. 

- When a neuron is at the resting state, the resting potential (inside negative) across the plasma 

membrane is maintained by an electro-chemical equilibrium of several ions, mainly K+, Na+ 

and Cl-, each of different permeability through the membrane. For each ion, its equilibrium 

is determined by the differences in ion concentrations and electrical potentials between the 

inside and outside of the membrane. K+ is the most permeable as there are many open resting 
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K+ channels at the resting state. Let us take K+ as an example to explain the process: resting 

K+ channels are always open and allow only K+ to pass, shown in Figure 1.1(a). The 

concentration of K+ is much higher inside animal cells than in extracellular fluid; due to this 

concentration gradient, K+ ions flow out of the cell through the resting K+ channels and 

leave an excess negative charge on the cytosolic face. Meanwhile, this negative charge 

balance the K+ efflux. Such an equilibrium and negative potential are maintained because 

of Na+/K+ active pumping (by an enzyme called Na⁺/K⁺-ATPase, taking K+ in and Na+ out) 

to keep the ions concentration. 

- When a region of the plasma membrane is depolarised slightly, voltage-gated Na+ 

channels open for a short period (~1ms) and allow the influx of Na+ ions (see Figure 1.1(b)). 

This influx results from two forces driving in the same direction: the concentration gradient 

of Na+ ions (lower in the cell) and the resting membrane potential (negative in the cytosol 

side). The influx causes further depolarisation of the region, which spreads along the 

membrane surface and continue to depolarise adjacent regions of the membrane, opening 

even more voltage-gated Na+ channels. As a result, explosive entry of Na+ ions is completed 

within a fraction of a millisecond, causing sudden and transient depolarisation, the action 

potential. The voltage-gated Na+ channels close after this short period, entering a refractory 

period and cannot be reopened as long as the membrane stays depolarised.  

 

Figure 1.1 Ion channels in neuronal plasma membranes. Each type of channel protein has a 

specific function in the electrical activity of neurons. (a) Resting K+ channels are responsible 

for generating the resting potential across the membrane. (b) Voltage-gated channels are 

responsible for propagating action potentials along the axonal membrane. (c, d) Two types of 

ion channels in dendrites and cell bodies are responsible for generating electric signals in 

postsynaptic cells. (Two triangles on the right stand for the concentration gradient of Na+ and 

K+). (Adapted from ref 7) 
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- Following the opening and closing of voltage-gated Na+ channels, voltage-gated K+ 

channels open (with a millisecond or so delay after the initial depolarisation), which causes 

an increased efflux of K+ from the cytosol. It repolarises the membrane to its resting 

potential. Actually, before returning to resting value, the membrane experience a brief 

instant of hyperpolarisation, when the potential is more negative than the resting potential. 

The voltage-gated K+ channels remain open until the membrane potential returns an inside 

negative value.  

- Eventually, the voltage-gated Na+ and K+ channels are all closed, and the membrane returns 

to the resting state. This cycle lasts 1 – 2 ms and can happen hundreds of times a second. 

Around the peak of an action potential, the membrane depolarisation can depolarise 

downstream segments of the membrane to re-initiate the cycle, thus ensuring the 

propagation of action potential without diminution.7  

Naturally, the initial trigger that evokes an action potential in the postsynaptic neuron 

can be neurotransmitters or electrical current at the synapse. For example, in the case of 

chemical synapses, in Figure 1.1(c,d), the ligand-gated ion channel opens while binding a 

specific extracellular neurotransmitter; the signal-gated channel opens in response to 

intracellular signals induced by binding of the neurotransmitter to a separate receptor protein 

(not shown). Both of them are responsible for generating an electrical signal in the postsynaptic 

neuron. In another case, in electrical synapses, electrical current from a presynaptic neuron can 

evoke depolarisations directly on the postsynaptic one. However, initial depolarisation does not 

always result in action potential; it can result in subthreshold depolarisations when the action 

potential threshold is not reached8,9. For simplicity, inhibition in neuron synaptic connections 

is not discussed here.  

To artificially generate action potential in vivo, the most used method is electrical 

stimulation: an electrode is placed near neurons of interest (extracellular stimulation) or inside 

a neuron of interest (intracellular stimulation), and an electrical current is applied at fixed 

frequency and time. It elicits action potential by changing the extracellular environments or 

intracellular potential such that voltage-gated Na+ channels open. Although electrical 

stimulation protocols have been developed and refined in the last century to produce reliable 

activation and minimise neural tissue damage, it still has some main limitations. As shown in 

Figure 1.2(a), extracellular electrical stimulation non-specifically affects all cell types near the 

electrode, inducing side effect on adjacent neurons and resulting in a large population of 

neurons excited without cellular resolution or cell specificity. Intracellular stimulation provides 

single-cell specificity, but only very few electrodes can be inserted in the sample and targeting 
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a large population is not possible. Also, most of the time, the electrode stimulation approach is 

not reproducible. When an experiment requires several days of operation, it is hard to go back 

to the same cell or group of neurons once taking out the electrodes.  

 

 

Figure 1.2 (a) Electrical stimulation non-specifically affects all cell types near the electrode, 

causing side effects on adjacent neuron; (b) Genetically targetable optogenetic constructs 

enable more precise stimulation of specified neural subtypes intermingled with nontargeted 

neurons. (Adapted from ref 10) 

In the last decade, a new method called optogenetic stimulation has emerged, as shown 

in Figure 1.2(b), allowing the use of light to stimulate and probe neuron functions without 

inserting a stimulation electrode, with high specificity and reproducibility, which has provided 

abundant advantages over traditional electrode-based methods. 

1.1.2. Optogenetic stimulations 

Optogenetics is based on the optical stimulation of photosensitive membrane-bound ion 

channels and pumps that are genetically encoded in activable neurons. Its mechanism was first 

discovered in microbial organisms in which bacteriorhodopsin acts as a light-activated ion 

pump 11. Further research on this mechanism and its variants found similar membrane-bound 

proteins that permit ions flux across the membrane upon stimulation at a suitable wavelength, 

known as channelrhodopsins12,13 and halorhodopsins14. Two variations of channelrhodopsins 

were subsequently selected for their ease of expression, conductance and photosensitivity: 

Channelrhodopsin-1 and Channelrhodopsin-2 (ChR2). In 2005, for the first time, the genetic 

code for ChR2 was introduced and expressed in mammalian neurons, allowing to reliably and 
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precisely control action potentials generation15. Since then, this method has drawn increasing 

interest in neuroscience research. 

As shown in Figure 1.3, under illumination at around 470 nm, ChR2 opsins on the neural 

membrane open and allow the passive entry of cations into the cell (mostly Na+ and very low 

levels of Ca2+)16. This results in the depolarisation of the local membrane, where they are 

expressed and activated. Sufficiently high depolarisation could further open voltage-gated Na+ 

channels and possibly trigger the generation of an action potential. Other types of opsins can 

cause inhibition, like halorhodopsin (NpHR), which hyperpolarises membranes by actively 

pumping Cl– ions into cells in response to yellow light with peak absorption at 570 nm. In the 

last years, the palette of optogenetics actuators that work with different wavelengths or provide 

different functions has significantly expanded3.  

 

Figure 1.3 Schematic of channelrhodopsin-2 (ChR2) and the halorhodopsin (NpHR) pump. 

Illuminated with blue light (activation maximum ~470 nm), ChR2 allows the entry of cations 

(mostly Na+ and very low levels of Ca2+) into the cell. NpHR is activated by yellow light 

(activation maximum ~580 nm, and allows the entry of Cl– anions. (Adapted from ref 16) 

Compared to the classical electrical stimulation method, the main advantages of 

optogenetics are that: it can be non-invasive; it enables exciting only a specific cell type and 

subcellular domain using genetically encoded and targetable probes2. 

Combined with single-photon (1P), wide-field illumination (as shown in Figure 1.4(a)) 

or fibre induced illumination, optogenetic neuronal targeting has already shown enormous 

potential in neuroscience. It has enabled the optical control of entire neuronal networks15,17–19 

and disentangled their role in controlling specific behaviours20–22. In these studies, cellular 

specificity relied exclusively on genetic targeting strategies that enable the expression of opsins 

in specific cell types. This, however, offers a limited understanding of brain function since 



Liu Chang – Thèse de doctorat - 2021 

14 

 

neurons belonging to the same cell type and brain region may present diverse response 

patterning23–25. In order to understand the fine-scale organisation of the brain, e.g. the number 

of neurons required to trigger a certain behaviour or the importance of a certain node in neural 

circuits over others, the spatial range of light-based investigation needs to be scaled-down from 

genetically targeted neuronal population to individual neurons. This has encouraged researchers 

to develop a variety of light-targeting strategies26,27 that enables arbitrarily controlling the 

spatial distribution of light into the sample and selectively target defined neurons, subsets of 

neurons, within the opsin-positive population, as shown in Figure 1.4(b). Light-targeting is 

typically achieved following two classes of approaches: either by scanning micro-scale 

Gaussian spots to serially activate targets, or by modulating light intensity and/or phase to 

obtain arbitrarily defined patterns of illumination to parallelly activate targets;  sometimes, a 

combination of both approaches is used28.  

 

Figure 1.4 Single-photon optical approaches for optogenetic stimulation. (a) The genetically 

targeted, opsin-expressing neurons are activated via wide-field illumination. (b) Targeted 

investigations by selective activation of a specific pool of neurons via specific optical targeting. 

(Adapted from ref 28) 

A critical challenge of using light to stimulate neurons is that it requires to overcome 

tissue scattering to access neurons deep in the brain. A further challenge is related to the 

necessity to highly confine the illumination and reach a high 3D spatial resolution, which is 

essential to mimic natural and realistic neural activity patterns accurately28. Replacing single-

photon (1P) excitation with two-photon (2P) excitation is currently one of the most promising 

approaches29 to solve these issues.  



Liu Chang – Thèse de doctorat - 2021 

15 

 

1.1.3. 2P excitation and 2P optogenetics 

Single-photon excitation is based on a linear photon absorption process. An atom or a 

molecule is excited by the absorption of one photon. As shown in Figure 1.5 (one-photon), a 

photon excites a ground-state electron to a higher energy level. The 1P excitation probability 

depends linearly on light intensity. It follows that, as shown in Figure 1.6(a), for a focused 

beam, 1P absorption also occurs out of focus. 

 

Figure 1.5 Energy-level diagram of one-photon and two-photon 

excitations. (Adapted from ref 30) 

In 2-photon absorption processes, two photons with half the energy of those used in 1P 

processes must reach the molecule within an ultrashort time window limited by the intermediate 

virtual state (~1fs, as shown by a dashed line in Figure 1.5 ) 31,32 in order to promote the electron 

to the excited state. Such events have reasonable probabilities of occurring only if the photon 

density is high enough, both in space (focusing) and time (high-intensity beams and/or short 

and intense pulses). Therefore, 2P excitation is typically provided via focused, high-energy 

lasers with short pulse duration, which provide a high density of photons in the excitation area. 

During the 2P process, the absorption probability is quadratically dependent on the light 

intensity33–35. As illustrated in Figure 1.6 (adapted from ref35), this quadratic dependency 

intrinsically provides high spatial confinement in the z-direction (and, more marginally, in the 

x and y directions) compared to 1P process33. 
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Figure 1.6 Localisation of single-photon and two-photon excitation. (a) Single-photon 

excitation of fluorescein by focused 488nm wavelength light (NA = 0.16). (b) Two-photon 

excitation with focused femtosecond pulses of 960nm light (NA = 0.16). (Adapted from ref 35) 

Besides, 2P excitation has the important advantage of using longer-wavelength photons, 

usually in the infrared, which are much less scattered than shorter-wavelength blue photons, as 

the scattering coefficient decreases with the wavelength (see Figure 1.8(b)). 2P excitation is, 

therefore, able to address neurons at a greater depth than 1P excitation.  

With higher spatial resolution and penetration depth, 2P excitation provides 

optogenetics with potentials of single-neuron precision, selective multi-neuron targeting, and 

in-depth neuron circuit investigation. However, considering the low conductance of some opsin 

(for ChR2: ~80 femtosiemens)36, in order to guarantee reliable neuron activation and elicit 

action potentials, which require strong depolarisation, a large number of photoactivated ion 

channels are necessary37. A tightly 2P focused beam is not able, in most of the cases, to open a 

sufficient number of channels within its two-photon focal volume (~2-5 µm3); increasing 

excitation density would not help either, as saturation of excited ChR2 channels is quickly 

reached owing to the high two-photon absorption cross-section of ChR2 (~260 Goeppert-Mayer 

units at 920 nm) and the long lifetime of the conducting excited states (~10 ms)37. An elegant 

solution that consists of illuminating the entire cell body rather than a single point using 

computer-generated holography (CGH), was first proposed in 2008 in 1P and in 2P (see ref38,39). 

As shown in Figure 1.7, an adapted pattern is projected into the sample using a spatial light 

modulator (SLM). This pattern illuminates the entire cell bodies of selected neurons and 

maximises the fraction of the cell membrane stimulated. All opsins in the cell are thus 

simultaneously opened, and depolarisation can reach the voltage threshold to action potential 
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generation. In order to improve illumination axial resolution (<6 μm) and propagation through 

scattering tissue, CGH can be combined with temporal focusing37,40. That is achieved by using 

a dispersive optical setup to modulate the temporal profile of the pulse, such that the pulse is 

stretched away from the objective focal plane, compressed as it travels toward it and stretched 

again beyond it. Temporally focused CGH illumination has allowed generating action 

potentials with millisecond temporal resolution37,41 and sub-millisecond temporal onset 

precision42,43. The principal alternative to this parallel illumination method is the scanning 

method, in which a focused beam is scanned sequentially over the entire soma of one or several 

neurons in order to increase the number of accessible channels and integrate over time the 

current generated in different locations of the cell28.  

 

Figure 1.7 CGH setup. Principle of 2P parallel illumination of several neurons simultaneously 

(at the same plane). An illumination intensity pattern in FFP is here applied using a phase-only 

liquid crystal spatial light modulator (LC-SLM) placed in a conjugated plane (BFP*) of the 

BFP, based on the shape and location of neurons of interest. The whole cell bodies are 

photoactivated at the same time, recruiting as many opsins as possible. (BFP: back focal plane; 

FFP: front focal plane; BFP/FFP* conjugated back/front focal plane). (Adapted from ref 28,44)  

By combining the above strategies with high-energy amplified lasers (with up to 10W 

output) and highly sensitive opsins, it is now possible to target hundreds of cells within mm3-

size illumination volume simultaneously. In the next paragraphs, we will discuss the possible 

sources of photodamage induced using 2P parallel illumination.  
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1.1.4. Photoinduced thermal effects in the brain 

1.1.4.1. Light absorption processes 

In the brain, several components are responsible for light absorption. Water is the most 

absorbing element, followed by blood components, while absorption by proteins (including 

opsins or fluorescent proteins) usually remains negligible. The absorption spectrum specific to 

each of these components is shown in Figure 1.8(a). To reduce thermal effects, the excitation 

wavelength should then clearly be chosen to minimise absorption. In living tissues, the 

attenuation of light as it propagates is caused by absorption and also by scattering. The "optical 

window" usually refers to the 600 – 1200 nm wavelength range, where this attenuation caused 

by both absorption and scattering is minimal.  

  

Figure 1.8 (a) Light absorption spectra of several important compounds in biological tissues. 

HbO2 for oxygenated and Hb for deoxygenated haemoglobin. (b) Reduced scattering 

coefficients of different biological tissues. Wavelengths cover the UV, visible, NIR-I and NIR-

II windows (violet, blue, green and red shaded regions, respectively). (Adapted from ref 45) 

Different photodamages can appear depending on the medium, and the characteristics 

of the illumination source, as shown in Figure 1.9. Those damages are distinguished by different 

pathways of absorption and dissipation. It should be clarified that the absorption process that 

we are discussing here is not the 1P or 2P absorption of optogenetic or fluorescent actuators, 

but of the biological tissue itself. For low irradiance (below 106 W/cm2)46, and long 

illuminations (millisecond scale), after excitation, the molecules can go back to their ground 

state in a non-radiative manner, transferring this absorbed energy in the form of local heating, 
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resulting primarily in a local temperature rise. At longer illumination times, other mechanisms 

can cause local chemical perturbations, as is the case for de-excitations that involve 

dissociation, changes in the redox state of the absorbing molecules, or transfer of energy to a 

dioxygen molecule to form reactive oxygen species. For higher irradiance, above the 106 W/cm2 

thresholds, more severe effects appear, even within a short illumination time (femtoseconds to 

nanoseconds). When the irradiance is high enough, the ionisation of molecules occurs as 

additional photons are absorbed. Released electrons can also absorb photons and collide with 

other molecules, generating even more free electrons. This phenomenon is known as the inverse 

bremsstrahlung avalanche effect47. This avalanche effect can lead to a low-density plasma 

which can cause photochemical damage. Even higher irradiances can induce mechanical 

damages as cells receive supersonic shock waves caused by the formation of bubbles followed 

by their explosion, breaking the tissue structure and killing the cell. 

 

Figure 1.9 Photodamages in biological tissues depending on the irradiance and exposure time 

of illumination. (Adapted from ref 44,46) 

In a typical 2P optogenetics experiment using parallel illumination, the conditions used 

to elicit an AP typically involve: 3-20 ms illumination pulses with 10-40 mW mean power over 

around 100µm² cell surface, corresponding to a mean irradiance of ~104 W/cm2. Typical laser 

sources provide 250 fs pulses with a 500 kHz repetition rate. Thus, the peak irradiance reaches 

~1010 W/cm2. As indicated in Figure 1.9, these values correspond to a range dominated by 
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photothermal effects and, therefore, by a linear dependence on the average power density of the 

laser.  

1.1.4.2. Brain sensitivity to thermal perturbations 

 

Figure 1.10 Brain tissue responses to temperature increases. (Adapted from ref 44,48) 

Different levels of temperature rise in the brain could result in different kind of 

perturbations, as shown in Figure 1.10. Relatively small temperature rises (less than 2K) induce 

modulation in neuron behaviours such as the form of action potentials49, the firing rate50,51, and 

the channel conductance52–54 or fluctuation of synaptic responses55,56. Higher temperature rise 

(3-4K) can cause severe damages such as proteins denaturation, cell structure changes and 

eventually cell apoptosis57,58. Even higher temperature rise will damage the tissue through 

swelling, coagulation and inflammatory responses59,60. 

These considerations lead us to conclude that the main sources of possible photodamage 

in 2P optogenetics experiments are damages related to local temperature rise. It highlights the 

importance for a theoretical model able to predict these effects, as discussed in the next 

paragraph. 
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1.2. Thermal phenomena 

In this section, we introduce a model able to describe photon-induced thermal effects in 

the brain. Photon-induced temperature rises in tissues are the consequences of i) light absorption 

and conversion into heat followed by ii) heat diffusion in the surrounding media. 

Using Fourier’s equation for heat diffusion, we calculate the temperature distribution 

using a Green's function-based strategy. 

1.2.1. Fourier equation of heat diffusion 

The Fourier equation describes heat diffusion in a homogeneous media as61:  

 
𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
− 𝐷𝛻2𝑇(𝑟, 𝑡) =

𝑄(𝑟, 𝑡)

𝜌𝐶
 Equation 1.1 

Here 𝑇(𝑟, 𝑡)  is the induced temperature rise due to the absorption of 𝑄(𝑟, 𝑡), 𝑟  the spatial 

coordinate in 3D, t the time, 𝑄 the absorbed power in each unit of volume [W.m-3]; the medium 

is characterised by its thermal diffusivity D [m2s-1], its mass density ρ [kg.m-3] and its thermal 

capacity C [J.kg-1.K-1].  

In living tissue, metabolic processes can contribute as a positive (heating due to 

metabolic process) 𝑞𝑚 or negative (cooling due to blood perfusion) 𝑞𝑝 term to the temperature, 

in processes often described using the Pennes bio-heat equation62. Adding these to the Fourier 

equation (Equation 1.1), we have:  

 
𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
− 𝐷𝛻2𝑇(𝑟, 𝑡) =

𝑄(𝑟, 𝑡)

𝜌𝐶
+

𝑞𝑚 − 𝑞𝑝

𝜌𝐶
 Equation 1.2 

The sink term 𝑞𝑝 can be expressed as 𝑞𝑝 = 𝜌𝑏𝐶𝑏𝑤𝑏((𝑇0 + 𝑇(𝑟, 𝑡)) − 𝑇𝑏) with T0 the initial 

temperature of the tissue, 𝑇(𝑟, 𝑡) the induced temperature rise, and where ρb, Cb, wb and Tb 

respectively stand for the mass density, the thermal conductivity, the flow and the temperature 

of the blood. In physiological condition and while 𝑇(𝑟, 𝑡) = 0 , 𝑞𝑚  and 𝑞𝑝  are equal, 

maintaining the tissue temperature at a constant value. Using typical values48,51 of ρb, Cb and 

wb, and considering a tissue temperature rise of 1 K, the term 
𝑞𝑚−𝑞𝑝

𝜌𝐶
 is estimated to be roughly63 

-9.10-3 K.s-1. Under typical 2P photostimulation conditions, 
𝑄(𝑟,𝑡)

𝜌𝐶
 is of the order of 2.103K.s-1 

(for an illumination spot of 12µm diameter, 10mW illumination power inside the spot and 
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absorption coefficient of tissue 𝛼 = 0.06 mm-1, the absorbed power is 𝑄(𝑟, 𝑡) ~ 6.10-6 mW/µm3). 

While it could be crucial in some cases, the metabolic contribution 
𝑞𝑚−𝑞𝑝

𝜌𝐶
 to local temperature 

changes can clearly be neglected compared to 2-photon-stimulation-induced heating, as 

discussed in a previously published article63. 

Thus, heat source and sink contributions from metabolic and blood perfusion are omitted 

in our analysis. The tissue is considered as a homogeneous medium with a fixed optical 

absorption coefficient (𝛼=0.06 mm-1 for brain grey matter (Yaroslavsky et al. 2002)) and 

thermal properties (very similar to those of water). Equation 1.1 will now be solved in the case 

of either a transient or steady-state heat source. 

1.2.2. Green's function and thermal point-spread function 

To solve the Fourier Equation 1.1, we use a Green's function-based approach. Green’s 

function is obtained for a unit source term 𝛿(𝑟 − 𝑟0)𝛿(𝑡 − 𝑡0): 

 
𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
− 𝐷𝛻2𝑇(𝑟, 𝑡) = 𝛿(𝑟 − 𝑟0)𝛿(𝑡 − 𝑡0) Equation 1.3 

The solution gives the form64:  

 𝐺(𝑟, 𝑟0, 𝑡, 𝑡0) =
1

(4𝜋𝐷(𝑡 − 𝑡0))3/2
𝑒𝑥𝑝 (−

(𝑟 − 𝑟0)2

4𝐷(𝑡 − 𝑡0)
) Equation 1.4 

and the temperature 𝑇(𝑟, 𝑡) is obtained by the convolution of the Green’s function and the 

actual spatiotemporal distributed source term 
𝑄(𝑟,𝑡)

𝜌𝐶
: 

 𝑇(𝑟, 𝑡) = 𝐺(𝑟, 𝑡)  ∗
𝑄(𝑟, 𝑡)

𝜌𝐶
 Equation 1.5 

For a unit source term at 𝑟0 = 0 and 𝑡0 =0: 

 𝑇(𝑟, 𝑡) =  
1

(4𝜋𝐷𝑡)3/2
𝑒𝑥𝑝 (−

𝑟2

4𝐷𝑡
) Equation 1.6 

We can plot it in Figure 1.11 at various multiples of an arbitrary duration  against the 

normalised radial distance to the point source.  
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Figure 1.11 Radial distribution of the temperature response to a pulsed point-source excitation. 

Both coordinates are normalised in arbitrary units. 

Green's function 𝐺𝑇(𝑟, 𝑡) for heat diffusion can therefore be written as: 

 𝐺𝑇(𝑟, 𝑡) =
1

(4𝜋𝐷𝑡)𝑛/2
𝑒𝑥𝑝 (−

𝑟2

4𝐷𝑡
) Equation 1.7 

where 𝑛 = 1, 2 or 3, and 𝑟 = |𝑥|, √𝑥2 + 𝑦2 or √𝑥2 + 𝑦2 + 𝑧2 respectively for 1D, 2D or 3D 

heat diffusion.  

In the presence of a source term 𝑄(𝑟, 𝑡) which has a structure in both space and time, 

the temperature solution 𝑇(𝑟, 𝑡) to Equation 1.1 can then be obtained by a convolution over 

space and time of the term 
𝑄(𝑟,𝑡)

𝜌𝐶
 with Green's function 𝐺𝑇(𝑟, 𝑡) as expressed in Equation 1.7. 

In our case, the spatial and temporal dependencies in 𝑄(𝑟, 𝑡)  can be separated, to write 

𝑄(𝑟, 𝑡) =  𝛤(𝑟)𝛱(𝑡)𝑄 , and the spatial distribution 𝛤(𝑟) and time dependence 𝛱(𝑡) can be 

treated separately.  
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1.2.3. Step response for a point source 

An interesting case is that of a point-like heat source 𝛤(𝑟) = 𝛿(𝑟) applied from t=0 

onwards, e.g. a focused laser beam being turned on at t=0. In this case, 𝛱(𝑡) = 𝐻(𝑡), with H(t) 

the Heaviside step function, and:  

 𝑇(𝑟, 𝑡) =  
𝑄

𝜌𝐶
𝐺𝑇(𝑟, 𝑡) ∗ 𝐻(𝑡) =

𝑄

𝜌𝐶
∫ 𝐺𝑇(𝑟, 𝑡′)𝑑𝑡′

𝑡

0

 Equation 1.8 

This yields:  

 
𝑇(𝑟, 𝑡) =

𝑄

𝜌𝐶

𝑒𝑟𝑓𝑐 (
𝑟

√4𝐷𝑡
)

4𝜋𝐷𝑟
 

Equation 1.9 

where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 in the 3D problem. For an arbitrary distance r0 to the heat source, 

the time dependence of this temperature solution is plotted in arbitrary units in Figure 1.12. As 

expected, temperature rise strongly slows down and tends towards a steady-state (time 

independent) value:  

 

Figure 1.12 Transient temperature response to a point-like 

step heat source at various distances from the source 
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1.2.4. Steady-state, point-source response 

For a continuous point source 𝛤(𝑟) = 𝛿(𝑟), 𝛱(𝑡) = 1, we obtain:  

 
𝑇(𝑟) =  

𝑄

𝜌𝐶
𝑙𝑖𝑚
𝑡→∞

𝑒𝑟𝑓𝑐 (
𝑟

√4𝐷𝑡
)

4𝜋𝐷𝑟
=

𝑄

𝜌𝐶

1

4𝜋𝐷𝑟
 

Equation 1.10 

Therefore, the radial temperature dependence at a distance r from a point source is simply, to a 

constant factor, a 1/r function, a familiar result in thermal sciences. For e.g. 𝑄 = 4𝜋𝐷𝜌𝐶, this 

function is plotted in Figure 1.13.  

 

Figure 1.13 - Temperature profile around a continuous point source. 

The thermal diffusivity is defined as 𝐷 = 𝜅/𝜌𝐶, where 𝜅 is the thermal conductivity 

(𝑊𝑚−1𝐾−1). We define here the thermal Green’s function in steady-state:  

 𝐺𝑇
𝑆𝑇 =  

1

4𝜋𝜅𝑟
 Equation 1.11 

For a steady-state system, the temperature distribution is thus the convolution of the heat 

sources spatial distribution with the thermal Green’s function in steady-state 𝐺𝑇
𝑆𝑇. This result 

will be used in Chapter 3 and Chapter 4. 
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1.3. Photo-induced thermal effects in 2P optogenetics 

As described in section 1.1, 2P optogenetic photostimulation induces local thermal 

effects, which can now be described quantitively using the formalism introduced in Section 1.2. 

From the discussion of Section 1.2.2, the temperature response can be modelled as the 

convolution of the thermal Green's function 𝐺𝑇(𝑟, 𝑡) with the spatiotemporal distribution of the 

heat source 𝑄(𝑟, 𝑡) =  𝛤(𝑟)𝛱(𝑡)𝑄. In our case, which is weak absorption (linear coefficient: 

𝛼), the heat source distribution 𝑄 is proportional to the light intensity distribution 𝐼: 𝑄 = 𝛼𝐼. 

The heat source is then defined linearly by the spatiotemporal distribution of light intensity.  

For holographic illumination, the description of the light source 𝛤(𝑟) must take into 

account the shape and position of the holographic spots, but also the distortions induced by light 

propagation in the brain, which is a strongly scattering tissue. In the holographic process, a 

given phase profile is applied on an SLM and projected on the sample to produce constructive 

interference in the regions which must be illuminated, and destructive interference everywhere 

else. This complex phase profile is typically determined using an iterative procedure called 

Gerchberg-Saxton algorithm38,65, and the projected optical field is written:  

𝐸𝑆𝐿𝑀(𝑟, 𝑡) = 𝐴(𝑥, 𝑦)𝑒𝑖𝜑(𝑥,𝑦) 

with 𝐴 the amplitude distribution sent to the SLM and 𝜑 the phase introduced by the SLM. 

In a homogeneous transparent medium, the propagation of this wave to any sample 

plane can be simulated using the angular spectrum method66. To model the scattering medium, 

we have used the so-called “Beam Propagation Method”67–69. This method consists in 

propagating the field through the medium in a series of finite discreet “steps” and applying a 

random thin phase mask at each of these steps. The statistics of this random distortion was 

based on optical measurements of the attenuation in acute brain slices of various 

thicknesses41,70. Using these parameters, we were able to realistically model the 3D distribution 

of light in the mouse brain, as shown in Figure 1.14(b). A full description of this procedure, as 

well as the detailed code and validation of its outcome by comparison to experiments, is shown 

in Annex 1 to this manuscript.  

Precisely, Figure 1.14 shows the modelling of the temperature rise induced by 100 two-

photon optogenetic holographic spots focused at various 3D positions inside 

300µm×300µm×300µm volume. These 100 spots were chosen using a 3D image of a mouse 

brain and arbitrarily selecting target neurons. In Figure 1.14(c), heat diffusion in the volume of 

the brain is clearly visible, and collective contributions from these heat sources lead to higher 
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temperature rises at the centre of the volume where the 100 spots are focused, and lower 

temperatures near the edges of this region63.  

 

Figure 1.14 Simulated temperature rise produced by multiple holographic spots with power 

and duration conditions typically used for in vivo action potential stimulation in mice. (a) 3D 

view of an in vivo two-photon fluorescence stack of the 2/3 layer in the mouse visual cortex. 

The sample is labelled with GFP, and the position of 100 holographic spots is marked in red. 

(b) 3D spatial distribution of irradiance produced by these 100 holographic spots (each spot is 

12 µm in diameter and receives 0.1mW/µm2 at =1030nm). (c) 3D spatial distribution of the 

temperature rise produced by these holographic spots. Scale bar: 100µm. (Adapted from ref 63) 

Using this model, the predicted temperature rises under the illumination conditions 

typically used to evoke an action potential, i.e. P = 11mW, t = 3ms, with a spot diameter of 

12µm, is shown in Figure 1.15(a,b), revealing a maximum temperature rise of about 0.3 K 

which, as expected, varies linearly with the optical power (Figure 1.15(b)) and increases for 

longer pulses (Figure 1.15(c)). When trains of pulses are applied (10 pulses in (Figure 1.15(c)), 

the accumulation of heat, which does not entirely dissipate between one pulse and the next, is 

visible as an increase in the temperature baseline, the more important the longer is the 

illumination time. 
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Figure 1.15 Spatial-temporal evolution of the temperature rise generated by a speckled 

holographic illumination pattern and holographic simulations with varying parameters. (a) 2D 

spatial distribution of the temperature (normalised) after 0.04ms (time step used in simulation), 

0.1 ms, 1.5 ms and 3 ms of illumination. Scale bar = 10 µm. (b, c, d) Calculated temperature 

in the centre of the spot for a =1030 nm, 12 µm diameter holographic spot in vivo; (b) 

temperature for various optical powers and an illumination time 3 ms; (c) Temperature for 

variations of illumination durations, with an optical power 11 mW; (d) Same peak power 11mW 

and various pulse durations, and a 100 Hz repetition frequency. 
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1.4. Conclusion 

In this chapter, we focused on the importance of the heating induced under a typical 

optogenetic experiment. 

In order to predict the magnitude of this effect, we have described a theoretical model 

previously developed by the Emiliani’s lab and have shown how the model enables to predict 

the spatial and temporal distribution of the temperature rise induced by the illumination of 

single or multiple targets under the illumination conditions typically used in a 2P optogenetic 

experiment. 

In the next chapter, we will describe the experiments to validate this model in vitro using 

Er/Yb co-doped glass particles embedded in an agar gel and in vivo mice brain using a novel 

temperature endoscope (Chapter 2). Later on, in Chapter 3, we will present the development of 

a reconfigurable microscale temperature control technique that is adaptable to study the thermal 

response of cells, and show proof of principle experiments. Supported by the same thermal 

diffusion theory, we introduce in Chapter 4 the application of a thermal lens device applied to 

allow simultaneous, multiplane neuron imaging.  
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2.1. Introduction 

As shown in the previous chapter, the expected simulated temperature rise caused by 2P 

optogenetic stimulation is of the order of few Kelvins, with a millisecond rising time. To 

measure the temperature changes with this degree of precision, we propose to use rare-earth-

doped glass particles whose photoluminescence spectrum contains two bands that are thermally 

coupled. We use these particles to validate the model first in vitro and then in vivo. To this end, 

we will present a new optical thermometry method which we will call "thermal endoscope", 

since it uses optical fibre, although it doesn't allow imaging. This system has sub-0.1 K 

temperature sensitivity, millisecond temporal resolution and single neuron (10–20 

micrometres) spatial resolution and enables temperature measurement in vivo mice brain. In 

this chapter, we will first describe several classical thermometry methods and then introduce 

luminescence thermometry. We will focus on the application of luminescence thermometry for 

2P optogenetics temperature evaluation. We will show the result for in vitro and in vivo 

temperature measurements under 2P optogenetics holographic spot stimulation and compare it 

with the simulation model.  
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2.2. State of the art on temperature measuring methods 

There is an extensive range of techniques to measure temperature, based on diverse 

phenomena such as thermal expansion, thermoelectricity, temperature-dependent variation of 

electrical conductors' resistance, fluorescence and its spectral characteristics71. Depending on 

their degree of invasiveness, they can be divided into 3 categories: 

1) Invasive. The measuring device is in direct contact with the sample. Techniques mainly 

include thermal expansion (gas, liquid, solid) devices72–77, thermoelectric devices and 

thermocouples78,79, electrical resistance devices 80, semiconductor devices81, fibre optics 

probes82,83 and capacitance thermometers84. Note that invasiveness can be defined as 

mechanical, but also thermal (i.e. measurement disrupts the temperature of the sample). 

2) Semi-invasive. The sample of interest is treated in a way that enables remote observation 

using contrast agents or transducers. Techniques include thermographic phosphors 

(quantum dots85,86, organics dyes87–90, metal nanoparticles91, Ln3+ based phosphors92–95, 

thermoresponsive polymers96), thermochromic liquid crystals97,98, heat-sensitive paints99.  

3) Non-invasive. The temperature of the sample is observed remotely, with or without 

additional stimulation of the sample. Those technologies mainly include optical related 

methods- infrared thermography100–102, refractive index-based methods103,104, absorption 

and emission spectroscopy105,106, spontaneous Rayleigh and Raman scattering107–110, 

Coherent anti-stokes Raman scattering111, degenerate four-wave mixing112 and laser-

induced fluorescence thermometry113. 

All those techniques have their strengths and drawbacks, as summarised in Figure 2.1. 

A few of them are practical for in vivo temperature measurement and have the potential to fulfil 

the requirement of sub-0.1 K temperature accuracy, millisecond temporal resolution and tens 

of µm spatial resolution at the same time. Thermocouples generally have fast temporal 

responses and high sensitivity. They are probably one of the most commonly applied 

temperature measurement techniques 114, although they are invasive mechanically (usually 

hundreds of µm diameter) and thermally (metallic material). Infrared thermometry is another 

method widely used to study the photoinduced temperature rise in tissue 115, since it has the 

advantage of being non-invasive and entirely passive (no external stimulation needed). 

Thermographic fluorophore-based methods are relatively new approaches. They are performant 

in terms of temperature sensitivity, and many types of fluorophores are available for various 
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applications and temperature ranges. They have been widely applied to perform nanoscale 

thermometry in biological samples116,117. 

 

Figure 2.1 Guide to temperature measurement technique identification(Red rectangle: 

invasive, blue rectangle: semi-invasive, green: non-invasive.) (Adapted from 71) 
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In the following state-of-the-art section, we focus on three methods, which have 

received the most attention for temperature measurement in biological samples: thermocouple, 

infrared thermographic camera, and luminescence thermometry.  

2.2.1. Classical thermometric methods for in vivo measurement  

2.2.1.1. Thermocouple 

The thermocouple is a widely used temperature sensor based on the Seebeck effect 71,118: 

a temperature gradience across the conductor can build up an electrical potential (dV). It is 

mathematically expressed using the Seebeck coefficient of the conductor S(T):  

In order to measure this potential, as shown in Figure 2.2, two conductors of different 

materials are put in contact to form a junction (at sensed temperature, Tsense). A temperature-

dependent potential appears between point a and b if the conductors have different Seebeck 

coefficients (SA and SB). Other junctions are necessarily formed (at Tref, with metal C, and Tmeter 

is the temperature of the voltmeter), but their effects will be cancelled out in the calculation 

(Equation 2.2). While Tref and the Seebeck coefficient curves SA(T) - SB(T) are often already 

known, one can deduce the temperature Tsense from the following equation:  

 

Figure 2.2 Illustration of standard thermocouple measurement configuration. The measured 

voltage can be used to calculate Tsense, given that Tref is known. 

 dV = 𝑆(𝑇)𝑑𝑇 Equation 2.1 

 

V =  ∫ 𝑆𝐶(𝑇)𝑑𝑇
𝑇𝑚𝑒𝑡𝑒𝑟

𝑇𝑟𝑒𝑓

+ ∫ 𝑆𝐵(𝑇)𝑑𝑇
𝑇𝑟𝑒𝑓

𝑇𝑠𝑒𝑛𝑠𝑒

+ ∫ 𝑆𝐴(𝑇)𝑑𝑇
𝑇𝑠𝑒𝑛𝑠𝑒

𝑇𝑟𝑒𝑓

+ ∫ 𝑆𝐶(𝑇)𝑑𝑇
𝑇𝑟𝑒𝑓

𝑇𝑚𝑒𝑡𝑒𝑟

= ∫ (𝑆𝐵(𝑇) − 𝑆𝐴(𝑇))𝑑𝑇
𝑇𝑟𝑒𝑓

𝑇𝑠𝑒𝑛𝑠𝑒

 

Equation 2.2 
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This common technique has been applied in several studies to evaluate temperature rise 

during optogenetics experiments114,119,120. Figure 2.3 shows an example of using a 

thermocouple to measure temperature rise induced by fibre illumination in tissue, the distance 

between the fibre and thermocouple is around 1mm114. Although the proposed problems in 

those studies are solved, there are still a few limits and drawbacks to thermocouples:  

- The size of most commercial thermocouples is too large. Needle-like thermocouples have 

diameters of typically hundreds of microns, making them physically invasive in the context 

of brain studies (e.g. typical diameter used for in vivo applications: 330 µm114, 220 µm119 

and 500 µm120). Even for the smallest commercial thermocouple available121, the diameter 

is 80µm, far from the 10 to 20 µm which are necessary to evaluate the temperature evolution 

caused by a ~10 µm optogenetics holographic spot in brain tissues. There are very recent 

publications on the fabrication of microscale thermocouples using lithography that reduced 

massively the size122,123, but no in vivo application has been demonstrated so far.  

- Due to the high thermal conductivity of most metals(or semiconductors), thermocouples 

are thermally invasive: by "draining" heat from the investigated region, they are strongly 

perturbative to the temperature measurement—for example, the J-type thermocouple 

consists of constantan/iron pair with thermal conductivities of 23 W.mK-1 and 80 W.mK-1 

respectively124, while that for water is only 0.53 W.mK-1. Heat will therefore diffuse 

preferentially along the thermocouple. In the context of microscale, small and fast 

temperature variation, this will potentially affect the temperature measurement.  

 

Figure 2.3 Example of temperature measurement using a thermocouple 

during fibre guided 1P optogenetic stimulation. (Adapted from ref 114) 
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2.2.1.2. Infrared thermographic camera 

Infrared imaging (Figure 2.4) is a non-invasive method based on Max Planck's 

blackbody radiation principle. By measuring and analysing the thermal radiation of a target 

object, one can deduce the temperature of the object surface.  

 

Figure 2.4 Radiation received by an infrared camera. (Adapted from ref125) 

Although a correction factor called emissivity ( here) should be taken into account, the 

thermal radiation spontaneously emitted by most ordinary objects (including biological objects) 

can be approximated as blackbody radiation, which has a specific spectrum of wavelengths that 

depends on the temperature of the body, as shown in Figure 2.5. Around the temperature of 

living tissues (30-40 °C), the blackbody emission is essentially in the infrared, with a maximum 

wavelength given by Wien's law125 (max=b/T, with b=2898 µm.K), at λ=9.3 µm, as shown in 

Figure 2.5. An infrared camera sensitive to this wavelength range (usually in the 3-5 µm or 8-

12 µm wavelength ranges) can detect the emitted thermal radiation to deduce temperature 

images using the following relation:  

where 𝑊𝑡𝑜𝑡 is the total radiation received by the camera, 𝜎 is the Stefan-Boltzmann constant 

(𝜎=5.67×10-8 W/m²∙K4). Other parameters must ideally be taken into account: 𝜀 the emissivity 

of the object, 𝑇𝑟𝑒𝑓𝑙 the reflected temperature, 𝜏 the transmittance of the atmosphere and 𝑇𝑎𝑡𝑚 

the temperature of the atmosphere. In practice,  and  are often simply approximated to 1 

(which is reasonable in living tissue and in the transmission bands of the atmosphere, 

respectively), and reflections are experimentally minimised rather than corrected.  

 𝑇𝑜𝑏𝑗 =  √
𝑊𝑡𝑜𝑡 − (1 − 𝜀) ∙ 𝜏 ∙ 𝜎𝑇𝑟𝑒𝑓𝑙

4 − (1 − 𝜏) ∙ 𝜎 ∙ 𝑇𝑎𝑡𝑚
4

𝜀 ∙ 𝜏 ∙ 𝜎

4

 Equation 2.3 
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Figure 2.5 Planck's Law: electromagnetic radiation emitted by a blackbody in thermal 

equilibrium at a given temperature. Radiation emitted by objects with high temperature is 

mostly in the middle wave infrared (a), while for objects with low temperature, it is mostly the 

in long-wave infrared range(b). (Adapted from ref125)  

However, while water vapour absorption can be minimised and neglected in the 

appropriate bands, liquid water is significantly absorbing in the infrared (absorption coefficient 

being 104 to 106 m-1 in this range). For this reason, the collected infrared radiation only comes 

from the topmost surface (typ. a few micrometres deep) and carries little information on the 

temperature of buried structures. Although limited to exposed surface areas, infrared 

thermography has been applied to studying temperature rise in optogenetic experiments115, as 

shown in Figure 2.6. However, measuring temperature changes several hundreds of microns 

under the brain surface is clearly impossible with an infrared camera.  
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Figure 2.6 Example of using an infrared camera to measure temperature rise on the brain 

surface induced by fibre guided optogenetic stimulation. (a) Schematic representation of the 

setup. (b) Close-up view of the craniotomy; fibre is placed on top of the exposed surface of the 

brain, and the illuminated spot is imaged with the IR-camera; (c) Thermography image of the 

craniotomy during laser illumination. (d) Example of a temperature-time trace with 

illumination pulses. (Adapted from ref115) 

2.2.2. Luminescence thermometry  

2.2.2.1. General overview 

Luminescence is the light emission from excited electronic states of a given atom or 

molecule populated by an external excitation source, which can be an electric source 

(electroluminescence), a chemical source (chemiluminescence), a thermal source 

(thermoluminescence) or a light source (photoluminescence)126. The properties of emitted 

photons are related to the properties and population of electronic states that are involved in this 

emission process, which depend on the local environment (local field, etc.) of the molecule and 

particularly on its temperature. Luminescence spectrometry can thus be used to access the 

temperature of the emitter environment. In the last decade, numerous thermometry methods 

based on photoluminescence have been proposed.  
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Figure 2.7 Possible effects of temperature on luminescence spectra. (Adapted from ref126) 

As schematically shown in Figure 2.7, a broad range of features of the emitted light can 

be affected by temperature, and luminescence thermometry methods are thus classified into the 

following sub-classes126:  

• Spectral Luminescence Thermometry is based on the analysis of the spectral position of the 

emission lines, which typically changes when the energy difference between two electronic 

levels is affected by temperature. Based on this phenomenon, the temperature can be 

deduced from spectral shifts.  

• Band-Shape Luminescence Thermometry. When the electronic states of emitting lines are 

close enough in energy, they can be thermally coupled. Temperature variation can then 

change the electron repartition and the relative intensity between those coupled spectral 

lines. By measuring the intensity ratio between different lines, one can then deduce the 

temperature.  

• Bandwidth Luminescence Thermometry. The temperature increase induces a homogeneous 

line broadening. Under appropriate conditions, a measurement of this broadening can 

provide temperature measurements.  
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• Intensity Luminescence Thermometry. Photon emission rates change with temperature, 

usually through thermal activation and/ or luminescence quenching or the increase of non-

radiative decay probabilities. 

• Polarization Luminescence Thermometry. Molecules illuminated by a linearly polarised 

light re-emit a luminescence signal that is partially polarised along the same direction. 

However, the orientation of the molecular dipoles is quickly randomised through thermal 

agitation, and this orientation is quickly lost, so that partially polarised luminescence is 

emitted, with a ratio that is temperature-dependent127.  

• Lifetime Luminescence Thermometry. Luminescence lifetime  is the time that emitted 

luminescence intensity decays to 1/e of its initial value. The variation of this lifetime with 

temperature can be described through the Mott-Seitz model 𝜏(𝑇) = 1 (𝐴𝑅 + 𝐴𝑁𝑅(𝑇))⁄ , 

where 𝐴𝑅 the radiative transition rate (independent of temperature) and 𝐴𝑁𝑅(𝑇) the non-

radiative transition rate described by a Boltzmann law128 𝐴𝑁𝑅(𝑇) = 𝐴𝑁𝑅(0). exp (−
Δ𝐸

𝑘𝑇
). 

Time-resolved luminescence measurement can thus make lifetime thermometry possible.  

Among those phenomena, we chose to use 'Band-Shape Luminescence Thermometry', 

which has proved its robustness and versatility in several applications where its relative 

insensitivity to the excitation intensity proved an important advantage93,129,130. Using rare-earth-

doped materials provide the additional advantages of good photon yields and robustness against 

photodamage. Furthermore, the method requires less sophisticated instrumentation than life-

time based temperature methods. 

2.2.2.2. Rare-earth doped material and upconversion  

Lanthanide elements (also called rare-earth elements) have an electronic configuration 

that gives them interesting spectroscopic properties. As shown in Figure 2.8, rare earth elements 

have an incomplete electronic shell (4f2-14) shielded from external fields by two complete shells 

(5s25p6). Due to this partial screening of the 4f electrons, the energy level scheme of a particular 

rare-earth ion remains practically unchanged from host to host. Therefore, electrons from the 

4f shell can emit luminescence that is only weakly sensitive to the external host environment. 

For this reason, the position of the atom in the crystal structure has little influence. Among all 

optically active ions, lanthanides ions are distinguished for the following important 

characteristics131:  
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• the emission and absorption wavelengths are relatively insensitive to host material of ions; 

• long lifetime of metastable states (from hundreds of µs to several ms); 

• high quantum efficiency.  

 

Figure 2.8 Electronic configuration of rare earth materials. (Adapted from 131) 

In addition to these properties, rare earth ions possess the interesting capacity to emit a 

luminescent photon at higher energy than the absorbed photons, which is called "upconversion". 

During this process, several photons are absorbed one after another to emit one luminescent 

photon. As opposed to two-photon absorption, in which photons must arrive quasi-

simultaneously, this phenomenon relies on electronic energy states with long enough lifetimes 

that act as intermediaries for upconversion absorption. Thus, there is no need for high photon 

densities to increase the probability of simultaneous photon arrival. A classical, inexpensive 

infrared laser can meet the requirement, and no ultrafast laser (which is hardly compatible with 

optical fibres) is required.  

Furthermore, a combination of different rare earth elements in the same crystalline 

matrix, or co-doping, can considerably increase the luminescence efficiency for the same 

pumping power. This relies on the difference in absorption cross-section for different dopants. 

In this thesis, we chose to use a co-doped Erbium/Ytterbium material. Ytterbium, which 
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exhibits a large absorption cross-section at wavelengths around 976 nm, is used as an efficient 

intermediary for excitation132. Excited Ytterbium then transfers its energy to Erbium by various 

processes, and predominantly by resonant energy transfer. This interaction will allow the 

transfer of energy from one system to another, as illustrated in Figure 2.9(c). Since those two 

elements are co-located in the co-doped host material, energy from the 4F5/2 level of Ytterbium 

can be transferred to the 4I11/2 level of Erbium. Erbium at the level 4I11/2 can then absorb another 

photon and be brought efficiently to the state 4F7/2. 

Another possible mechanism consists of two successive absorption processes of 976nm 

photons by the same electron, bringing the Erbium ion from its ground state 4I15/2 to state 4I11/2 

with the first absorption and then to 4F7/2 with the second absorption. 

Afterwards, non-radiative de-excitation brings the ion from the 4F7/2 level to states 2H11/2, 

4S3/2 and 4F9/2, from which ions can deexcite to the ground state and emit photons at 525 nm, 

550 nm and 660 nm. 

 

Figure 2.9 Energy band diagram and optical transitions of Er3+ ions for different excitation 

wavelengths; (a) λexc = 450nm; (b) λexc = 685 nm; and (c) λexc = 975 nm, with Ytterbium used 

as excitation intermediary. (Adapted from ref 93) 
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2.2.2.3. Principle of luminescence thermometry  

In Erbium, as can be seen in Figure 2.9, the 2H11/2 and 4S3/2 states are energetically very 

close to each other. As the energy difference of these two states is weak (~800cm-1)133, the 

population distribution of the two states can be described by the Maxwell-Boltzmann statistics. 

They are in thermal equilibrium, and the luminescence intensities from the two excited states 

(λ = 525 nm and λ = 550 nm) respect the following relation130: 

where I525 and I550 are the integrated luminescence intensities at 525 nm and 550 nm, E is the 

energy gap between the 2H11/2 and 4S3/2 states, k the Boltzmann constant, and T the temperature 

(in Kelvins) of the emitting ions. This expression can be rewritten as 
𝐼525

𝐼550
= A. exp (−

𝐵

𝑇
), where 

A and B are constants. If A and B are known, the measurement of the luminescence intensities 

I525 and I550 provides a measurement of the temperature of the Erbium ions. 

Er-Yb Co-doped crystals or glasses are therefore excellent thermometers, in which Yb 

is used as an intermediary for efficient excitation and, after energy transfer, the luminescence 

of Er is used as a sensitive and quantitative temperature reporter. 

These ions have been used in various matrices over the last decade. In particular, the 

first reported use of NaYF4:Er3+,Yb3+ nanoparticles as thermal nanoprobes in liquids and cells 

by measuring the spectrum of the temperature-sensitive green luminescence emission was in 

2010 (ref133).  

 
𝐼525

𝐼550
∝ exp (

−𝛥𝐸

𝑘𝑇
) Equation 2.4 
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2.3. Rare-earth particle-based thermometry on model sample  

In this section, our goal is to assess the potential of luminescence thermometry (based 

on Er/Yb co-doped glass particle) for measuring the temperature rise induced by a transient 

holographic spot that mimics an optogenetic stimulation. In this first step, we carried out the 

validation of the luminescent-based thermometer in a model system instead of real biological 

conditions, in which the Er/Yb Co-doped glass particle is at a fixed position, in a transparent 

medium with known thermal properties, as described in Figure 2.10. In addition to validating 

the principle and performances of the thermometric concept, this simple setting is particularly 

adapted to numerical modelling of the temperature field since the optical and thermal properties 

of the medium surrounding the particle are homogeneous and isotropic. Er/Yb co-doped glass 

particles (50% GeO2 – 40% PbO – 10% PbF2 – 1%ErF3 – 1%YbF3) have been synthesised at 

Chimie ParisTech, in the laboratory of Michel Mortier and Patrick Gredin. In the following, we 

will refer to Er/Yb co-doped glass particle as "Er/Yb particles" for the sake of simplicity.  

2.3.1. Description of the setup 

As a transparent medium, we used the water/agar gel (mass fraction of agar: 0.5%). 

Since the agar concentration is very low, the optical scattering is negligible, the refractive index 

is almost the same as water134, and the thermal properties are similar to those of water (at 20°C, 

thermal conductivity for 0.5% mass fraction of agar being 0.588 W·m−1·K−1, and for water 

being 0.601 W·m−1·K−1)135. The gel is rigid enough to avoid any convection, sedimentation or 

Brownian motion, so that a ~10-µm-diameter Er/Yb particle can be kept in the middle of the 

medium, as shown in Figure 2.11(b). We chose the probe size to obtain sufficient temperature 

sensitivity and short integration times (4ms); therefore, we measured the temperature rise 

averaged on a size comparable to the cell soma. The whole sample is surrounded laterally by 

two layers of silicone rubber isolator (0.5 mm deep each, Invitrogen P24743) and sandwiched 

between two coverslips (No. 1, 140 µm thickness).  

First, to calibrate the temperature probe, we use a PID-controlled electrical foil heater 

integrated with a thermistor (Thorlabs, HT10K) to maintain the global temperature in the agar-

gel chamber, as shown in Figure 2.11(c). It applies a constant (or slowly varying) temperature 

to the entire sample. A thin thermocouple (Omega, HYP0-33-1-T-G-60-SMP-M), 

implemented in the sample close to the probe, is used to precisely measure the reference 

temperature induced by electrical heating.  
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Figure 2.10 Illustration of the experimental setup for temperature measurement on a model 

sample using Er/Yb particle. 2P scanning imaging path (red) is used to localise and 

continuously illuminate the Er/Yb particle (green); the fibre collimator collects luminescence 

light (green path). The holographic photostimulation (orange path) generates a heat-inducing 

spot of 15-µm-diameter beside the Er/Yb probe. The wide-field imaging path is not shown here. 

The thermocouple and PID controlled heating element are for calibration purpose. 

 

Figure 2.11 Closer view of the sample. (a) Widefield image (xy-plane) of the Er/Yb particle 

near the holographic spot (illustrative). Scale bar:10µm. (b) Cartoon in xz-plane of the probe 

and the holographic spot. (c) The agar gel chamber and the calibration setups (thermocouple, 

resistive foil heater, thermistor). 
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Secondly, we measure the temperature rise due to the holographic photostimulation 

spot, using the calibrated Er/Yb probe. The measurements were performed on a system built 

around a commercial upright microscope (Zeiss, Axio Examiner Z1) coupled with two pulsed 

infrared excitation paths through a polarizing beamsplitter (PBS), shown in Figure 2.10.  

A 1030 nm laser (GOJI, Amplitude Systemes, operated at a repetition rate of 10 MHZ 

and laser pulse width of ~250 fs) was used to create a heat-inducing holographic spot at 

specific positions near the probe. The laser beam was triggered by an acousto-optic modulator 

(MQ40-A2, AA Optoelectronic) and expanded to illuminate the screen of the spatial light 

modulator (LCOS-SLM X10468-07 Hamamatsu Photonics). The SLM plane was then 

projected by two telescopes (equivalent magnification of 0.5) on the back aperture of a 20x-1.0 

NA water immersion Zeiss objective. To maximize output power, the back aperture was 

underfilled, resulting in the generation of a holographic beam of ~0.5 effective NA. The SLM 

was addressed with phase profile calculated via Gerchberg-Saxton based algorithm, in order to 

generate a 15 mm diameter holographic circular spot over different positions of the sample. The 

zero and higher diffraction orders (>1) were blocked before entering the microscope. The 

position-dependent diffraction efficiency of the SLM136 was compensated by adjusting the total 

laser power for each lateral displacement (Figure 2.13(d)) of the spot. The power (P=500mW) 

and the shape of the heat-inducing spot (15-µm-diameter) were kept identical at each position.  

The same objective was used to excite the Er/Yb particle with a 980 nm laser (Mai Tai-

Deep See, Spectra Physics, repetition rate 80 MHz, pulse width around 100 fs). The laser beam, 

modulated by a Pockel cell (350-80, Conoptics), entered a commercial 2P scanning head (VIVO 

2-PHOTON, 3i-Intelligent Imaging Innovations) and was focused on the Er/Yb probe by 

adjusting the position of two galvanometric mirrors. It illuminated the Er/Yb particle with a 

constant average intensity, delivering a constant optical excitation. The absorption of this laser 

by the medium or the particle generates some spurious heating, but since this heating is 

continuous, the temperature reaches a new equilibrium T0 after few seconds. This is not 

detrimental to measure additive transient temperature changes induced by the optogenetic pulse 

laser.  

During the temperature measurement, luminescence light was collected from the top of 

the sample through the same objective. It was then collected by the confocal entrance of a fibre 

spectrometer (Avantes, AvaSpec-ULS2048L-EVO). Acquisitions are taken every 4 ms, with 

an integration time of 2 ms. The position of the glass probe was identified through DIC imaging 

on a CMOS camera (Thorlabs DCC 1545M) (not shown). 
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2.3.2. Calibration of the system  

From Equation 2.4, the relation between the luminescence spectrum and temperature 

can be written as: 

Here, the coefficients A and B strongly depend on the nature of the Er/Yb particle and its 

doping, but also on its local environment. They need to be determined by calibration whenever 

one of these parameters changes, but can be considered constant otherwise. Once A and B are 

known, the absolute temperature can be deduced quantitatively from measurements of I525/I550.  

To achieve this calibration, the sample (agar gel chamber) is heated on the PID-

controlled heating element (as shown in Figure 2.10 and Figure 2.11(c)). The probe is 

illuminated constantly, and its luminescence spectrum is measured to derive I525/I550 (the 

integration range for I525 and I550 are respectively Band 1: 510.3 - 529.1 nm and Band 2: 535.0 

– 575.9 nm, shown in (a)) for various temperature values T, as measured by the thermocouple. 

These measurements were achieved at thermal equilibrium, between 296.6 K and 309.8 K, and 

repeated five times to increase the reliability of the calibration. A linear fit on ln(I525/I550) as a 

function of 1/T, shown in (b), yields A = 4.67 and B = 1195.9K with good precision (coefficient 

of determination R2= 0.9362). 

 

Figure 2.12 (a) Change of luminescence spectrum shape caused by temperature rise and (b) 

calibration of luminescence thermo-spectroscopy 

 
1

𝑇
= −

1

𝐵
. ln (

1

𝐴

𝐼525

𝐼550
) Equation 2.5 
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2.3.3. Experimental results in agar and comparison with numerical simulations 

Using the calibrated Er/Yb probe and the holographic photostimulation system (Figure 

2.10 and Figure 2.11(b)), we measure the temperature rise induced by a 15-µm-diameter 

holographic spot (λ=1030nm, P=500mW). In Figure 2.13(a), a single 500 ms laser stimulation 

pulse with an average power of 500mW (after objective) was applied to the agar-based sample, 

focused on the holographic spot located 30 µm away from the probe, both at a depth of 150 µm 

inside the agar gel. The temperature was deduced from the emission band ratio using Equation 

2.5 and the calibration coefficients (A and B) given above. Figure 2.13(b,c) show temperature 

rises induced by two trains of pulses with 50ms-pulse duration and repetition rate of 2Hz and 

10 Hz, respectively, using the same peak power and laser-probe distance (30 µm). In Figure 

2.13(d), to validate the ability to measure spatial heat distribution, we took the peak temperature 

rise values at different distances by laterally moving the spot away from the probe; illumination 

conditions were the same as in Figure 2.13(a).  

 

Figure 2.13 Temperature rise induced by a 15-mm-diameter holographic spot (experimental 

results and simulation). a-c): Time-traces for different pulse durations (a: 500ms, b, c: 50ms) 

and repetition frequencies (a: single spot, b: 2Hz, c: 10Hz). d): Peak temperature rises as a 
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function of the distance X between the Er/Yb particle and the holographic spot using the same 

illumination conditions as in (a). (The red lines represent the excitation pulses; blue trace and 

point: measurement; black trace: simulation.) 

These experimental results were used to validate the model described in Section 1.2 and 

1.3 (also in ref63). Here, the absorption coefficient137 (α = 0.06mm-1) and thermal properties of 

the agar gel were assumed to have the same values as those of water 138,139. As can be seen in 

Figure 2.13, our experimental results all fit perfectly with the prediction using no free 

parameters. 

These results show that the use of Er/Yb co-doped particles enables minimally invasive 

optical temperature measurement with micrometre spatial resolution and millisecond temporal 

resolution, and also enables to validate the theoretical model previously described. However, 

in these experiments, to increase the signal to noise ratio, we used much higher power and 

longer pulse durations than the ones used in typical conditions of in vivo 2P optogenetics 

experiments; and we used a phantom sample whose optical properties might differ from the one 

of a living mouse brain. As a next step, we then developed an experimental strategy to measure 

the temperature rise induced at the exact same conditions used for in vivo 2P optogenetics. 

2.3.4. Limit of the methods for in vivo measurement 

Using the previously introduced setup to measure the temperature rise under in vivo 

conditions requires focusing the excitation light (to pump the probe) and collecting the evoked 

luminescence for spectral analysis using an Er/Yb particle placed deep in a living (scattering) 

brain, and finding the exact position of the probe with respect to the optogenetic excitation spot. 

Moreover, as the tissue moves during in vivo experiments, one has to find a strategy to maintain 

both the probe and its illumination stable during the experiment. To solve all these challenges, 

we designed a thermometer endoscope where we fixed the probe at the extremity of an optical 

fibre and used the fibre both to transmit the excitation and to collect the luminescence, ensuring 

mechanical and optical stability. Optical glass fibres can be thin enough (up to 125µm diameter) 

to be compatible with in vivo use, and glass has a thermal conductivity (1 W.m-1K-1) which is 

much closer to that of water (0.6 W.m-1.K-1) than metals (typically 200 to 400 W.m-1.K-1). This 

will ensure minimal thermal invasiveness, i.e., opposite to the case of a thermocouple, glass 

fibres will not drain heat out of the investigated region. 

 In the next section, we will describe the system in detail.  
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2.4. Development of a fibred probe for in vivo thermometry 

The thermometer endoscope is shown in Figure 2.14. We fix the Er/Yb glass probe at 

the end of an optical fibre and use the fibre as guidance to illuminate the probe and collect its 

emission signal.  

 

Figure 2.14 Illustration of the fibred luminescence thermometer endoscope. Inset: photograph 

of the extremity of the fibred probe. 

2.4.1. Double-clad optical fibre 

Optical fibres are optical waveguides allowing light to propagate over long distances. 

They are normally classified into two families: multi-mode fibres and single-mode fibres. In 

multi-mode fibres, light propagates in many different spatial modes, while in single-mode fibre, 

only one propagating mode is possible. The distribution of energy is thus dimensionally more 

confined in single-mode fibres than in multi-mode fibres. The light-guiding core shown in 

Figure 2.15 is much smaller for single-mode fibres than for multi-mode fibres, and light 

coupling in single-mode fibres requires more stringent coupling conditions. Optical fibres are 

also characterised by their numerical aperture (NA) value, which determines the angle of the 

acceptance cone ( 𝜃0), and is given by the refractive indices in the medium (𝑛0), core (𝑛𝑐𝑜𝑟𝑒) 

and cladding (𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔) of the fibre: 𝑠𝑖𝑛𝜃0 = 𝑁𝐴 =
1

𝑛0
√𝑛𝑐𝑜𝑟𝑒

2 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2 . 
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Figure 2.15 Principle of light propagation in optical fibres 

Besides these two classical families of fibres, there is another, less common type: 

double-clad fibres. As shown in Figure 2.16, double-clad fibres have two concentric cores with 

different refractive indices surrounding the fibre core. In the central fibre, single-mode light can 

propagate, while multi-mode propagation occurs in the 1st cladding. Each of the two fibres has 

a different refractive index, and therefore different NA value. A second cladding ensures light 

confinement, as in classical single fibres. Finally, the whole fibre is often coated with Acrylate, 

which has no optical role but mechanically protects it. 

 

Figure 2.16 (a) Double-clad fibre structure and (b) refractive index profile. (Adapted from ref 

140) 

2.4.2. The conception of the system  

We chose to use the double-clad fibre as a waveguide to both send excitation light to 

the probe (through the central core), and to collect luminescence light (through the 1st cladding). 

To maximise photon yield, the probe (with a typical diameter of 10~20 µm) needs to be 

illuminated as efficiently as possible. The luminescence light should also be collected 

efficiently. Double-clad fibres are good candidates to fulfil these conditions. The central single-

mode core(core diameter = 9.0 µm) ensures optimal spatial confinement of the excitation light 

on the probe. However, due to its low NA (NA = 0.12), it is relatively inefficient to collect light 
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emitted in all directions of space by the luminescent probe. The multi-mode fibre corresponding 

to the 1st cladding has a higher NA and collection angle (NA = 0.2) and a larger collection 

surface (diameter = 105.0 ± 5.0 µm), and is, therefore, more efficient for luminescence light 

collection. After propagation in the direction opposite to that of the excitation, this 

luminescence light is separated from the illumination light path using a dichroic mirror and 

coupled to a fibred spectrometer for spectrum analysis.  

 

Figure 2.17 Optical path of stimulation and luminescence light 

in the double-clad optical fibre 

2.4.3. Fabrication of the endoscope 

The main difficulty in fabricating the endoscope is to attach a luminescent probe 

properly onto the end of the optical fibre, well superposed with the fibre core. As the probe is 

around 20 µm (which corresponds to the size of a single neuron), twice the size of the fibre 

core, the precision needs to be around 10 µm. In order to achieve this, the cleaved fibre is fixed 

onto an XYZ micro stage on top of a microscope glass slide. Another microscope, perpendicular 

to the fibre axis, is used to observe along the horizontal direction. The complete process which 

we optimised is as follows (shown in Figure 2.18):  

Step 1 - Move along the z-direction to dip the fibre in a small droplet of UV-curable 

glue and then move back, leaving only very little glue on the fibre tip.  

Step 2 - Change for another slide with Er/Yb particles powder. Send illumination light 

into the fibre from the distal side and approach the proximal fibre end to the glass slide.  

Step 3 - Move the glass slide with the micro stage to select an Er/Yb particle with proper 

size and maximum luminescence intensity (some particles are more efficient than others) by 

observing with the microscope camera (from the bottom) and the spectrum of the luminescence 

light. Once the targeted probe is selected, move it carefully to the centre of the optical fibre 
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until it is glued to the core of the fibre. Make sure the spectrum of luminescence light is always 

optimised. Then move the fibre back up.  

Step 4 - Use UV light to polymerise the glue in order to fix the probe.  

Step 5 - To mechanically and chemically protect the Er/Yb particle, dip the ensemble 

{fibre + particle} into UV glue as in step 1) to have a very small amount of glue that covers the 

tip and particle. 

Step 6 - Polymerise it with UV lamp.  

Several probes were fabricated in each batch to ensure the availability of operational 

probes, as they can be easily damaged during experiments. 

 

Figure 2.18 Fibred probe fabrication process 

2.4.4. Calibration 

On the day of the experiment, we performed a calibration in water, using a process 

similar to the one described for experiments in agar. Instead of an agar gel, the fibred probe is 

put in water, close to a commercial thermocouple used as a temperature reference (as shown in 

Figure 2.19(a)). While increasing the water temperature slowly, the spectrum of the 

luminescence light 𝑆𝜆(𝑇) was recorded every 2ms with an external trigger to the spectrometer, 

and the temperature of the commercial thermocouple T was recorded every 2s using its internal 

trigger. The temperature of the water was increased from room temperature to several degrees 
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above 37°C, to cover the range which is relevant to our studies in vivo. After the acquisition, 

we took 500 spectra acquired in 1s and averaged them to reliably derive the I525/I550 value. A 

linear fit is made on ln(I525/I550) as a function of 1/T to derive the A and B values which will be 

used later (as shown in Figure 2.19(b)).  

 

Figure 2.19 Calibration of a temperature probe. (a) Er/Yb fibre probe is put close to the 

thermocouple and immersed in water; the hotplate heats the water slowly while the fibred 

system is registering the luminescence spectrum 𝑆𝜆(𝑇)  and thermocouple is registering 

reference temperature T. (b) Calibration curve for finding the parameter A and B. 

Also, we realized that it is very important to perform a calibration for each fibre probe 

on each day of the experiment, as, due to the possible environmental variations on the setup and 

fabrication variations of the fibred probe, the calibrated values of A and B can significantly 

vary from a day to another. Figure 2.20 shows the A and B values for 13 different calibrations 

conducted on different days and different fibre probes in water. If we use calibration for one 

probe to calculate the temperature rise values of another probe, they may yield variations up to 

the order of 30% in the experimental result. It is thus essential to calibrate each probe on the 

day of the experiment. 
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Figure 2.20 Variation of calibrated factors A and B for different probes 

2.4.5. Improving the signal to noise ratio for in vivo measurement 

In typical optogenetics experiments, we use 3-20 ms illumination time and 10-40 mW 

of excitation power in a holographic spot of ~12 µm diameter. Therefore we need a temperature 

resolution of the order of a few hundreds of millikelvin, and the temporal resolution should be 

in the tens of milliseconds range. It is, therefore, crucial to optimise the signal to noise ratio of 

our in vivo measurement for short acquisition time. In the following part, we discuss how the 

integration time of the spectrometer, the illumination laser power, and the "periodic" averaging 

method are chosen to improve the SNR, notably by decreasing noises, which we characterise 

through the standard deviation of temperature 𝜎𝑇.  

2.4.5.1. Integration Time  

The uncertainty of our temperature measurement can be derived from Equation 2.5: 

where 𝑁525 and 𝑁550 are numbers of photoelectrons collected by the spectrometer for the two 

peaks at λ = 525 nm and 550 nm, respectively.  

To maximise the SNR, we used a more sensitive spectrometer based on Czerny-Turner 

optical design (Andor, Shamrock 500i coupled to an EMCCD-camera Ixon 888) with a grating 

optimised to minimise optical losses in the λ = 500-600 nm wavelength range of interest. 

 𝜎𝑇 =
𝑇2

𝐵
[
𝜎𝑁525

𝑁525
+

𝜎𝑁550

𝑁550
] Equation 2.6 
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Furthermore, the excitation power of the Er/Yb particle is chosen so as to work in a regime 

where a large number of photoelectrons is detected (typ. 106-107) in each band. In such 

conditions, we work in a regime limited by the photon noise 𝜎𝑆𝑁 and the camera reading noise 

(typ. 10) 𝜎𝑟𝑒𝑎𝑑 can be neglected:  

Considering 𝑁550 = Φ550 ∗ 𝑡𝑖𝑛𝑡  and 𝑁525 = Φ525 ∗ 𝑡𝑖𝑛𝑡  where Φ525  and Φ550  are the 

flux of photoelectrons in each band and 𝑡𝑖𝑛𝑡 the integration time, we can derive the temperature 

measurement noise as: 

 Therefore, we expect the standard deviation of temperature to be inversely proportional 

to the square root of the integration time, which is in good agreement with the experimental 

measurements shown in Figure 2.21. 

 

Figure 2.21 Standard deviation of the measured temperature as a 

function of the square root of the integration time of the spectrometer 

 𝜎𝑁550
= √𝜎𝑆𝑁,550

2 + 𝜎𝑟𝑒𝑎𝑑
2 ≈ √𝜎𝑆𝑁,550

2 = √𝑁550 Equation 2.7 

 𝜎𝑁525
= √𝜎𝑆𝑁,525

2 + 𝜎𝑟𝑒𝑎𝑑
2 ≈ √𝜎𝑆𝑁,525

2 = √𝑁525 Equation 2.8 

 𝜎𝑇 =
𝑇2

√𝑡𝑖𝑛𝑡𝐵
[

1

√Φ525

+
1

√Φ550

] Equation 2.9 
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For integration times in the 0.5–4ms range, the standard deviation for a typical 

measurement is well above the 1K scale. It is not sufficient for detecting temperature variation 

during an optogenetics experiment. Moreover, other averaging techniques are necessary in 

order to reach such performances while achieving millisecond temporal resolutions.  

2.4.5.2. Illumination laser power 

By increasing the illumination laser power on the Er/Yb particle probe, we can increase 

the luminescence intensity emitted by the particle, thus increasing the number of collected 

photons. Here, we study the relation between luminescence intensity and excitation laser power. 

The luminescence intensity of the two emission lines was measured for excitation laser powers 

from 2.28e-2 to 6.73 mW, as shown in Figure 2.22.  

 

Figure 2.22 Increase in luminescence intensity with excitation laser power 

The measurement results are fitted separately for each emission band (=525 or 550nm) 

with a power law: 𝐼𝜆 = 𝑎𝜆𝐼𝑙𝑎𝑠𝑒𝑟
𝑏𝜆 . the coefficients 𝑎𝜆  and 𝑏𝜆 in this measurement are 

a525=7.22.105 and b525=1.23 for the =525 nm line, and a550=4.07.106 and b550=1.17 for the 

=550 nm line. These values are consistent with those measured in other works141,142 and, as 

clearly visible in Figure 2.22, the upconversion phenomenon obeys the power law. We can thus 

improve the signal by increasing the incident pumping laser power, and therefore use shorter 

integration times.  
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However, when increasing the illumination laser power, the local temperature of the 

Er/Yb particle increases. This is mainly due to the absorption and nonradiative de-excitation in 

the Er/Yb particle. This temperature increase is therefore related to the chemical composition 

of the material and increases linearly with the incident laser power. In Figure 2.23, we compared 

probes made using a glass of “50 GeO2 - 40 PbO - 10 PbF2 - 1 ErF3 - 1 YbF3” treated under 

390°C for 10 hours (Er:Yb=1:1, called "composition 1" in Figure 2.23); and “PbO GeO2 PbF2 

– Yb 20 Er 5” treated under 360°C for 4 hours (Er:Yb=5:20, "composition 2").  

 

Figure 2.23 Temperature baseline increase with the excitation laser power, in 2 materials with 

different chemical copositions: 50 GeO2 - 40 PbO - 10 PbF2 - 1 ErF3 - 1 YbF3 treated under 

390°C for 10 hours (composition 1) and PbO GeO2 PbF2 – Yb 20 Er 5 treated under 360°C for 

4 hours (composition 2) 

Although it should stay within reasonable limits to avoid interference with cell or tissue 

metabolism, this offset does not influence the temperature measurement as we are usually 

interested only in fast transient temperature rises induced by the optogenetic stimulation, but 

not in the absolute temperature. All the following experiments have been carried out with 

composition 2. 
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2.4.5.3. Periodic averaging  

Averaging is clearly an efficient way to increase SNR. In order to maintain sufficient 

time resolution while allowing as many averages as necessary to obtain the desired signal-to-

noise ratios, we used a time sampling strategy which is typically used in e.g. pump-probe 

experiments based on periodic excitation. The method is illustrated in Figure 2.24. For each 

optogenetic pulse (pulse duration tpulse = 30 ms), n spectra Si (with i=1 to n, here n=125) are 

acquired out at a fast rate (period tsampling= 2ms). The spectrum Si (and temperature Ti) therefore 

corresponds to a delay 𝑡𝑖 = 𝑖. t𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 with respect to the start of the optogenetic laser pulse. 

This process can then be repeated as many times as necessary (here, N=500 times). Each of the 

N spectra labelled Si corresponds to the same delay with respect to the excitation pulse and can 

therefore be averaged together. This averaged spectrum <Si> clearly offers a measurement of 

temperature at the instant 𝑡𝑖 = 𝑖. t𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 with a much better SNR than a single spectrum Si as 

discussed in Figure 2.25. As illustrated in Figure 2.24, the necessary signals are driven by an 

Arbitrary Function Generator. By averaging the temperature rise time-trace with N=500 times, 

the noise is massively decreased.  

 

Figure 2.24 Principle of the triggering scheme used for time-resolved spectra averaging. One 

time-trace is the averaging result of N traces, and each trace is sampled by n times. Period 

ttriger is chosen so that the photoinduced temperature peak can drop close to 0. 
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In Figure 2.25, we plotted the measured standard deviation of temperature σT under 

different numbers of average. It shows that the standard error can be reduced massively by 

averaging measurements. For 500 spectra averaged, the temperature noise σT reaches 0.05K 

(for a pump power Ppump=60mW and an integration time tint=0.8ms).  

 

Figure 2.25 Temperature noise reduction by averaging. (a) Evolution of the standard deviation 

of temperature with the number of averaged spectra (N), measured for 0.8 ms integration time. 

(b) Histogram of temperature variation from the mean temperature; (c) Temperature trace at 

thermal equilibrium in water during 250 ms. For two different number of average (N = 1 and 

N = 500).  
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2.5. Validation in water 

2.5.1. Coupling to the two-photon optogenetic setup 

The two-photon optogenetic setup used for the in vivo experiment has been previously 

described143, and it is similar to the one described in section 2.3.1. Briefly, The holographic 

stimulation path is based on an LC-SLM located in a plane conjugated with the back focal plane 

of the objective lens, which allows generating one or several 2P holographic spots. The laser is 

externally gated to quickly modulate the intensity to generate optical holographic pulses or train 

of pulses with typically 10-50 ms duration. In contrast to section 2.3.1, the thermometry 

modality is now independent of the 2P scanning path, in the sense that the fibre endoscope 

allows now both excitation of the Er/Yb probe and collection of the luminescence signal. 

However, the 2P imaging path is needed to precisely locate in 3D the sensitive area of the 

thermometric endoscope, e.g. the 15-20 µm diameter Er/Yb particle, within the sample. 

 

Figure 2.26 Two-photo imaging and holographic stimulation in one setup. (a) while performing 

the 2P imaging, the pump laser inside the fibre is turned off, and the Er/Yb particle can be 

located through 2P scanning imaging. (b) while performing the holographic stimulation, the 

fibre probe measures temperature beside the stimulation spot. A dichroic mirror (D1) combines 

the two paths. 
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2.5.2. Experimental process 

Before the in vivo experiment, a control experiment was conducted in water to validate 

the system and avoid useless animal sacrificing. The thermometric endoscope was passed 

through a glass capillary (with a sharpened end prepared by a micropipette puller) held by a 

micromanipulator oriented with an angle of θ0 =31° to the horizontal plane, as shown in Figure 

2.27. Using a water immersion objective (N40X-NIR - 40X Nikon CFI APO NIR Objective, 

0.80 NA), the luminescence of the probe allows its localisation when a 2-photon imaging scan 

is carried out (Figure 2.28).  

 

Figure 2.27 Laser- induced temperature rise measurement using fibred Er/Yb particle thermal 

sensor in a water cuvette 

One should note that, when measuring 2P luminescence from the top, the excitation 

light is refracted by the glass of the fibre (see Figure 2.28(b)). Therefore, as clearly visible in 

Figure 2.28(a), the 2P image of the luminescent probe is strongly distorted, but also shifted with 

respect to its actual position. To evaluate and compensate for this effect, we developed a simple 

model based on geometrical optics (detailed in Annex 2). Our calculation shows that the lateral 

distance between the holographic spot and the probe is underestimated systematically by ~4µm 

(considering 0=31°), and the depth of the probe is underestimated by ~30µm. Since the 

temperature varies very quickly with the distance to the holographic spot, this offset was taken 

into account during experiments and simulations.  
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Figure 2.28 (a) Two-photon scanning image of the probe at the end of the optical fibre, in 

water, viewed from the top, with a schematic indication of the holographic spot position; (b) 

Schematic of the probe and holographic spot viewed from the side. 𝜃0 = 31° is the angle of the 

fibre to the x-axis. The optical axis of the microscope objective is along the z-direction. The 2P 

image of the probe (a) is refracted by the fibre while scanning from the top (z-direction). 

2.5.3. Experimental conditions 

During the temperature measurement, the probe is continuously illuminated by a pump 

laser through the fibre core (λ = 976nm, P = 63.1mW at the exit of fibre), while the 

luminescence light is collected through the 1st cladding of the fibre. A 12µm diameter 

holographic spot is then periodically projected at a chosen distance from the temperature probe 

(pulse duration tpulse =30 ms, a repetition rate of 4 Hz, an average power of P=170 mW). After 

each optogenetic pulse, a series of n=125 spectra Si is acquired at a frequency of 500 Hz (period: 

tsampling=2 ms) with an integration time of tint=0.8 ms. After N=500 optogenetic pulses, spectra 

acquired at the same delay are averaged. The calibration (A, B) described above is then applied 

to these n=125 spectra <Si> to obtain 125 values of the temperature rise at instants ti=i.tsampling. 

The signal to noise ratio is highly improved by averaging these 500 time-traces to obtain a 

single 125-points time-trace, as the error is decreased to 0.05 K.  
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2.5.4. Result and comparison with the simulation  

Figure 2.29 shows the evolution of temperature during the 250 ms following a laser 

pulse. During this typical optogenetic stimulation, we observe a maximum temperature rise of 

about 0.6 K. The averaging of 500 experiments gives a high temperature and time sensitivity to 

resolve this temperature rise time-trace (following the protocol shown in Figure 2.24). In order 

to remove the remaining DC components to the temperature, this signal is processed by 

assuming that the temperature rise at the end of the measurement (25 points, between 200 and 

250 ms after the pulse) reaches 0, as shown in Figure 2.29(a) (hollow circles).  

 

Figure 2.29 Measured and simulated time-trace of the temperature rise caused by a single 

holographic spot in water (P = 177mW, tpulse = 30ms, D = 12µm, distance from the probe r= 

73µm). The two sets of measurement points represent the same data (a) without, or (b) with 

compensation of a temperature baseline of 0.04 K. The error bar here contains the 

measurement sensitivity of the system which is 0.05 K.  

These experimental results were compared to the simulation described in Section 1.2, 

with improvements in terms of calculation speed and proper handling of the cyclic boundary 

condition effect (aliasing) linked to the representation of an infinite medium in a finite 

calculation space (see in Annex1).  

Temperature offset (0.04K): To compare the measured transient temperature rise (ΔT) 

with the model, we need to subtract the baseline temperature value from the experimental data. 

Our temperature time-trace is acquired by the periodic averaging, as discussed in Section 
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2.4.5.3. In Figure 2.29(a), we assumed that the steady-state (ΔT=0) is reached 200 ms after the 

optogenetic pulse. Thus, we approximated the baseline temperature as the average value of the 

measured temperature between 200-250ms and removed it from the experimental results 

(shown in hollow circles). However, simulations show that (black line in (a) and (b) is the same 

simulation), the average value between 200-250ms is 0.04K, slightly over 0. For this reason, 

data processing in Figure 2.29(a) that assumed a steady-state, which is not perfectly reached, 

suffer from a slight offset.  

The model shows that reaching ΔT=0 K would require measurements at delays well 

beyond 250 ms, which cannot be measured on our setup since the buffer of the spectrometer 

cannot withstand a greater number of spectra. Therefore in Figure 2.29(b), we show the same 

data to which a positive 0.04 K has been applied (full blue dots). Taking this offset into account, 

the agreement between measurements and simulation is particularly good, both in terms of 

maximum temperature rise value and decay dynamics.  
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2.6. In vivo experiments 

2.6.1. The simulation method for scattering medium 

After having validated our model with the experiment in water, we performed the 

experiment in vivo mice brain. In this case, the temperature probe can only provide 

measurements at some finite distance 𝑟 ≥ 60 µ𝑚  from the centre of the holographic spot 

(depending on the inserting angle and probe fabrication, as shown in Figure 2.28). This requires 

us to precisely estimate, from these measurements at distance 𝑟, the temperature rise inside the 

spot. To this end, we have adapted the simulation code to take into account the spatial 

distribution of the heat source on and, due to the scattering, right outside the holographic spot. 

Scattering at the macroscopic scale is characterized by two parameters (ls: scattering coefficient, 

g: anisotropy) which have been measured or estimated for various biological tissues in 

literature144. We will use the in vivo measurements outside of the holographic spot to validate 

this model and then use it to estimate the exact temperature rise value inside the spot. 

Figure 2.30 shows the simulation process. It consists of mainly two parts: 1) building 

the holographic spot heat source and 2) calculating the temperature map caused by heat 

diffusion.  

1) The field on SLM is calculated through an iterative Gerchberg-Saxton algorithm. A Fourier 

transform of this field ESLM provides the non-scattered field distribution in the focal plane. 

Using Fresnel propagation, we can back-propagate the field on the focal plane to the tissue's 

surface. From this field Esurface, we then use the “Beam Propagation Method” and add 

scattering effect, to propagate forward step by step. The scattering effect is materialised by 

multiplying the previous field with the complex transmission of a random phase mask 

characterised by ls and g at each finite step of the propagation. In this way, the 3D 

distribution of the holographic spot I in scattering tissue is simulated.  

2) For weak absorption, the heat source distribution Q is proportional to the light intensity 

distribution: 𝑸 = 𝛼𝑰, with 𝛼 the absorption coefficient. As discussed in Section 1.2.2, the 

induced temperature rise can be expressed as the convolution of the heat diffusion equation 

Green's function 𝐺𝑇(𝑟, 𝑡)  by the heat source 𝑸(𝑟, 𝑡)  whose spatial and temporal 

dependencies can be treated separately in our case: 𝑸(𝑟, 𝑡)= 𝛤(𝑟) Π(t). We first calculate 

the convolution for the spatial distribution 𝛤(𝑟) in the Fourier space through multiplication 

while considering an impulsive source in time (e.g. simulation time step dt=1ms). Then, 

for different pulse shape, a linear summation can realise the convolution for temporal term 
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Π(t). To solve the boundary effect in Fourier space while heat reaches the border of the 

simulated volume, and ‘adapted voxel’ method is used to enlarge the voxel size with time 

steps. More details could be found in the Annex 1. 

 

Figure 2.30 Simulation process. (a) Simulation of a holographic spot in scattering tissue, using 

the beam propagation method. (b) Temperature simulation using the convolution of Green's 

function of heat diffusion with the heat source Q. 

Once the 3D spatiotemporal map of the temperature rise is calculated, we can average 

this distribution inside a sphere that represents the position and size of the Er/Yb probe to 

simulate the time-traces measured in experiments.  

2.6.2. Experimental methods 

Transgenic mice of cortical expression of the calcium indicator GCaMP6s were used 

during the in vivo experiments. They are 10-15 months old mice of the mouse line GP4.3 (The 

Jackson Laboratory). A craniotomy at the primary visual cortex was prepared on the day of the 

experiment. Cortical neurons expressing the fluorescence protein of GCaMP6s help indicate 

the surface of the brain tissue and depth of Er/Yb particle beneath the brain by performing 2P 

imaging. The mice preparation, 2P imaging and 2P optogenetic stimulations were operated by 

I-Wen Chen, postdoc in the Emiliani's team. During experiments, mice were anesthetised with 

isoflurane (2% for induction and 0.5–1% for experiments) and head-fixed under the water 

immersed microscope objective. 

In vivo experiments require much caution to minimise damage and bleeding during the 

penetration into brain tissues. A sharp glass capillary (pulled by micropipette puller and broken 
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with a ceramic cutter at suitable diameter to let passe the fibre probe) held by a 

micromanipulator is used to pierce the tough first layer of the brain surface, the meninges. This 

capillary is then used to protect and guide the fibred probe during the first steps of its insertion 

into the brain tissue. Figure 2.31(b) shows while using the sharp end of the glass capillary to 

pierce the meninges, the fibre probe stays inside the capillary (the bright spot is the illuminated 

probe while it is not yet penetrated into the tissue). Figure 2.31(c) shows that, after the capillary 

has entered the tissue, it stays in its position, and the fibre probe is pushed into the tissue with 

the guidance of the capillary. The fibre probe was positioned at 200~300 µm beneath the brain 

surface. We can see the change of the bright spot compared to Figure 2.31(b), as tissue scatters 

the luminescence light from the probe in Figure 2.31(c). 

 

Figure 2.31 Widefield images of thermal 'endoscope' insertion process into the brain. On the 

left image(a), the glass capillary is visible, and the probe is slightly out of the capillary. In the 

middle(b), the luminescent particle at the tip of the probe is illuminated and clearly visible. The 

probe stays inside the capillary while the capillary tip is penetrating the meninges. On the right 

images(c), the luminescent particle stays illuminated as the probe is inserted through the 

meninges with the cut pierced by the capillary tip. The scale bar is 500 µm. 

As shown in Figure 2.31(c) and Figure 2.32(a), the brain tissue is optically scattering, 

particularly at visible wavelengths. For this reason, we used 2-photon scanning imaging, which 

is less prone to scattering, to localise the probe, shown in Figure 2.32(b). Once the probe is 

localised, two-photon holographic laser pulses of a 12 µm-diameter spot are focused under the 

brain surface, at the depth at which the temperature probe is inserted. The measurement protocol 

described earlier, in water, is applied to obtain the corresponding temperature rise. 
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Figure 2.32 Widefield and 2-photon scanning images of the probe after insertion in brain 

tissues. In (a), the broad bright spot corresponds to the luminescence of the probe, which is 

scattered by brain tissue, as the Er/Yb particle is excited by IR light sent through the fibre. 

Accurate localisation of the probe is difficult to achieve because of this scattering. (b) The same 

probe, imaged (false colours) using a scanned 2-photon illumination. The red spot is a 

schematic indication of the holographic spot position. The probe is situated 330 µm below the 

brain surface and around r=75 µm away from the optogenetic holographic spot. Scale bars are 

50 µm. 

2.6.3. Results and comparison with the simulation  

2.6.3.1. Single-pulse  

We started by measuring the temperature rise induced by a stimulation spot of a 

wavelength λ = 1030nm, diameter D = 12µm, average power at objective exit P = 180mW, 

pulse duration tpulse = 30ms, at depth z = 330µm under the brain surface. We found that the 

maximum temperature rise measured at a distance r = 75µm from the holographic spot centre 

was ΔT = 1.06 ± 0.05K, as shown in Figure 2.33.  
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Figure 2.33 In vivo temperature rise measured 75 µm away from a 180mW-30ms holographic 

spot focused 330 µm below the surface of a live mouse brain. Blackline: simulation result with 

r =75µm, ls = 166µm; black dashed line: simulation result with r =75µm, ls = 218µm; the grey 

area is the error bar induced by uncertainty on the distance (r = 75±5µm) and scattering length 

(ls varies between 166 and 218 µm, depending on the authors). 

This temperature rise is higher than what measured in water for similar illumination 

conditions (Fig. 2. 29), which is consistent with the fact that, although their thermal properties 

are very similar, at 1030 nm wavelength, brain tissues have three times higher optical absorption 

coefficient than water137 (αbrain = 0.06 mm-1). Another feature that distinguishes the two 

conditions (water and brain) is that brain tissues are highly scattering even in the infrared range; 

as a result, the photons are deviated by their ballistic trajectory generating heating in a broader 

region. The effects of scattering and consequent heat broadening are taken into account in the 

simulation with two parameters: the scattering length ls and the scattering anisotropy g (see for 

more details the Annex 1). The simulations shown in Figure 2.33 have been obtained by using 

two values of the scattering length found in the literature, ls = 166µm (human grey matter137) 

and ~ 218µm (model for mouse cortex145). While for the anisotropy factor, we use its value g 

≈ 0,9, reported for different types of tissues137.  Higher ls means less scattering, thus inducing 

a ΔT more localised around the holographic spot. The black line in Figure 2.33 is the simulation 

with ls = 166 µm, r =75µm, which fits better the experiment than for ls = 218µm. In the 

following simulations (Figure 2.34, Figure 2.35 and Figure 2.36), we will therefore only use ls 
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= 166 µm. The uncertainty on probe position (±5µm) also plays a role in determining the exact 

temperature rise, as we will see below. 

Next, we measured the dependence of the temperature rise on the excitation power and 

pulse duration. Figure 2.34 shows time-traces (dots) for different pulse powers P=180, 90 and 

45 mW (other condition stays the same as Figure 2.33). Here, the peak values are proportional 

to the laser power of the holographic spot, indicating that power and temperature rise have a 

linear relationship consistent with the theoretical predictions (solid line and described in Section 

1.2).  

 

Figure 2.34 Temperature rises for different laser powers 

(other conditions stay the same as Figure 2.33) 

Figure 2.35 shows the ΔT time-trace for different pulse durations tpulse = 10, 20 and 30 

ms (other condition stays the same as Figure 2.33). The time constants of the temperature rises 

are similar, as expected, and longer pulse durations lead to higher maximum temperature rises. 

Precisely, for short pulses, the heating remains confined in the excitation spot and the 

temperature increases nearly linearly with the pulse duration. For longer pulses, diffusion of the 

heat out of the illuminated spot produces a sublinear dependence of ΔT on the pulse duration 

tpulse, which follows a 𝑒𝑟𝑓𝑐 (
𝑟

2√𝐷𝑡
).  The peak value of the temperature is therefore not 

proportional to the pulse duration. For long pulse durations, this value tends towards the DC 

temperature induced by a continuous laser. The rise and decay fit perfectly with the simulation, 

which means the thermal diffusivity 𝐷 = 𝜅/𝜌𝐶 are well represented in the model.   
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Figure 2.35 Temperature rise (experiment and simulation) for different 

pulse durations tpulse (other conditions stay the same as Figure 2.33) 

2.6.3.2. Heat accumulation of pulses train  

The linearity of heat diffusion allows us to simulate multi-pulse heating by a linear 

summation of sequential pulses. Figure 2.36 shows temperature rises for five pulses of 10-ms 

(power P = 180 mW) with variable repetition rates. For 10 Hz stimulation, the heat dissipation 

after each photostimulation pulse is fast enough to bring the cell back to the equilibrium 

temperature before the arrival of the next photostimulation pulse. Increasing the stimulation 

repetition rate generates a heat accumulation after each photostimulation, which at a high 

repetition rate (40Hz), makes the contribution of each pulse hardly distinguishable. In this case, 

the peak temperature is about two times higher than the peak reached at 10 Hz repetition rate.  
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Figure 2.36 Temperature rise caused by a 5-pulses train with different repetition rates. 

2.6.3.3. Evolution of the maximum temperature rise with distance  

The most relevant information to define the heating during our optogenetic experiment 

is the maximum temperature reached on the stimulated cells. Clearly, this temperature is 

reached at the end of the excitation pulse, and at the centre of the holographic spot. However, 

measurements within the holographic spot are not possible with our temperature endoscope, 

since the 2-photon excitation would contribute to the excitation of the luminescent material and 

change the calibration and temperature measurement. We can, however, use our thermal model 

to extrapolate from the measurements carried out at a known distance from the sample, the 

temperature rise at the centre of the spot. Figure 2.37 shows the measured maximum 

temperature rise value at different distances of the probe from the centre of the holographic 

spot. Each point corresponds to the peak of the corresponding time traces like those of Figure 

2.33, acquired at various known distances from the centre of the holographic spot. Simulations 

were carried out using two different ls values: 166 and 218 µm, in order to indicate margins of 

error related to this value (in grey). The error bar on experiment results stands for σT=0.05K 
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(vertical) and uncertainty on the distance σr=5µm (horizontal). It is worth mentioning that time-

traces at all these positions fit the simulations equally well, as in Figure 2.33 

 

Figure 2.37 Maximum temperature rise at different distances from the holographic spot. 

Consistent with the findings reported in Figure 2.35, Figure 2.37 shows that simulation 

results for ls = 166 µm indicate a better agreement with the measurements than for ls=218µm 

(except for ls, all other simulation parameters are fixed). With this curve, our evaluation of the 

maximum temperature rise at the centre of a 12-µm diameter holographic spot is around 3.5K 

(P = 180mW, tpulse = 30ms). This means that for a typical in vivo 2P optogenetics holographic 

stimulation (λ = 1030nm, NA = 0.8, P = 10 - 50mW, tpulse = 10 - 30ms), the maximum 

temperature rise in the centre will not exceed a single K, as shown by simulation in Figure 2.38 

and Figure 2.39 and summarised in the following table:  

Table 1 Expected maximum temperature rise induced by a 12µm-diameter holographic spot at 

z=330µm under brain surface for different power(objective exit) and pulse duration. ΔTmax [K] 

tpulse [ms] 
Maximum temperature rise ΔTmax [K] 

P = 10 mW P = 50 mW 

10 0.14 0.70 

30 0.20 0.99 
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Figure 2.38 Expected temperature rise induced by a 10ms-pulse duration, 12µm-diameter, 

holographic spot at 330µm deep from the brain surface. (a) Temperature maps on the focal 

plane at different time delays from the start of the pulse; the pulse power is 50mW. (b) 

Temperature time-trace on the spot, the average value within the spot area (dashed line) and 

maximum value in the centre (line); red for 50mW pulse power and black for 10mW pulse 

power. Using scattering coefficient ls =166µm, g = 0.9. 
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Figure 2.39 Expected temperature rise induced by a 30ms-pulse duration, 12µm-diameter, 

holographic spot at 330µm deep from the brain surface. (a) Temperature maps on the focal 

plane at different time delays from the start of the pulse; the pulse power is 50mW. (b) 

Temperature time-trace on the spot, the average value within the spot area (dashed line) and 

maximum value in the centre (line); red for 50mW pulse power and black for 10mW pulse 

power. Using scattering coefficient ls =166µm, g = 0.9.  
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2.7. Conclusion  

We have designed and implemented an experimental system to measure in vitro and in 

vivo the temperature rise caused by microscale holographic illumination with a thermal 

sensitivity that can reach 0.05 K and millisecond temporal resolution.  

The system uses the temperature dependence of the luminescence from Er/Yb glass 

particles to measure local temperature rises induce by two-photo illumination. 

At first, we have embedded the Er/Yb glass particles in an agar solution and water and 

optimized the model parameters to reproduce the experimental data. Secondly, we have 

extended the use of our system for in vivo experiments in mice brain.  

To this end, we have demonstrated a thermal endoscope where an Er/Yb glass particle 

is glued at the tip of a double-clad fibre inserted in a glass micropipette placed into the brain 

using a micromanipulator. A 12µm-diameter holographic spot was generated at 330µm under 

the brain surface using a 1030nm laser. For a single pulse of 180mW-power and 30ms-duration 

sent to the holographic spot, we observed at 66 µm away from the spot centre a maximum 

temperature rise of 1.25K at the end of 30ms illumination. Using our simulation model validated 

by the experimental data, we estimate the maximum temperature rise at the centre of the spot 

as 3.5K after 30ms illumination. For typical in vivo 2P optogenetic experiments, 5-30ms pulse 

duration and 10-50mW laser power is usually used. We estimate for a single stimulation pulse 

with 10ms-duration, the maximum temperature rise on the spot is 0.71K for 50mW-power 

(0.14K for 10mW-power); for 30ms-duration, the maximum temperature rise on the spot is 

0.99K for 50mW-power (0.20K for 10mW-power). To our knowledge, such 2P optogenetics-

induced temperature rises had never been measured so far. 

We also show that, for a train of optogenetic stimulation pulses, the repetition rate 

should be limited in order to avoid heat accumulation from one pulse to the next. The heat 

accumulation is a linear process thus easy to deduce from our single pulse model. This 

simulation model can, therefore, predict the temperature rise caused by multiple pulses with 

various pulse durations or repetition rates.  

This temperature endoscope was explicitly developed to predict temperature rise under 

a 2P optogenetics experiment but is actually quite versatile. It can also be applied in many other 

contexts, for example, to measure the temperature rise caused by 2P/3P imaging. The design of 

the endoscope can also be adjusted for different needs. For example, the double-clad fibre 

structure can be replaced by a thinner fibre structure, such as single-mode fibres or fibres with 

a tapered tip, particularly if lower sensitivities are acceptable (since thinner fibres will collect 
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luminescence less efficiently. With a thinner probe, one can measure closer to the target and 

cause less damage but sacrifice fast temporal resolution or thermal sensitivity. 

 

1) The results presented in Section 2.3 of this chapter have been published in: 

Temperature Rise under Two-Photon Optogenetic Brain Stimulation 

Cell Reports 2018 24 (5), 1243-1253.e5, DOI: https://doi.org/10.1016/j.celrep.2018.06.119 

2) The rest of the results presented are collected in a manuscript in preparation. 

https://doi.org/10.1016/j.celrep.2018.06.119
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3.1. Introduction 

In the previous chapter, we have demonstrated an experimental system to measure 

photoinduced temperature variations inside the brain with high temperature and spatiotemporal 

resolution. These experiments enabled the validation of a previously developed theoretical 

model to predict the temperature rise under different illumination conditions to prevent eventual 

thermal damages when designing an optical experiment on biological preparation.  

Although the literature on thermal photodamage effect is very rich, only very few pieces 

of information are today available on the effects of small (few Ks) temperature increases on, 

e.g., the electrophysiological properties114 of small cellular compartments (dendrites, axon, cell 

soma). Such effects are also the main focus of an emerging field in neuron science, called 

thermogenetics146–148, where controlled heating is applied to locally modify neuronal activity. 

Also, the effects of local heating on organs, non-neuronal cells or organelles are of much 

interest to understand hyperthermia (e.g. surgery, or cancer cell destruction) and heat-induced 

metabolic changes. In all of these cases, an essential first step is to be able to deliver heat to 

living cells or organelles in a careful and localised fashion, in order to reach the targeted 

purposes efficiently, with minimal perturbation or damage to surrounding tissue. It is thus 

important to control precisely the spatial extent of temperature rises.  

In addition to spatial control, temporal aspects are also essential. Some biological 

activities, such as, e.g. action potential onset in neurons, happen at the millisecond scale. Being 

able to modify the temperature on similarly short time scales is important. There are existing 

temperature control techniques at different scales based on different physics: heating ovens, 

chambers, chucks or stages, using various heat sources (electrical, optical, chemical, phase 

transitions…) and various means to carry heat to the target (diffusion in conductive materials, 

fluid transport…). However, very few techniques are suitable for biological applications. They 

either take too long to reach thermal equilibrium (thermalizing an incubator, or an entire 

microscope, takes minutes to hours), due to the large heated volume or cannot heat locally and 

homogeneously at the microscale. Due to thermal diffusion, the spatial and temporal aspects 

are intrinsically interwoven, and a faster and local thermal response adapted to cell activities is 

required.  

Here we introduce a new temperature control technique using thermo-plasmonic 

nanoparticles as efficient optical absorbers to generate thermal effects associated to light 

shaping, which allows to control the local temperature at microscale reconfigurably with short 

response time and high precision. The applications of thermo-plasmonic gold NPs in biology 
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have already drawn much attention for decades. Gold NPs are stable and have excellent 

biological compatibility149–151. They display resonances that can be tuned from visible to NIR 

by modifying their morphology and size. Gold also has rich surface chemistry that allows 

functionalisation with various chemical compounds. This feature allows targeting chosen 

locations, cells, or organ types in the body. For example, it has been applied to the 

thermotherapy of cancers152,153 using gold nanoshells. It can also be applied to neuron thermal 

activation by binding gold NPs to neuronal membrane proteins154. 

 

Figure 3.1 General illustration of microscale reconfigurable temperature control by light 

shaping. The upper layer is a substrate with a homogeneous thermo-plasmonic NPs carpet. The 

light pattern (in green) is projected on this layer to create temperature variations on it. 

In this chapter, we will first introduce the physics and recent applications of plasmonic 

thermal effects in gold NPs. Then we will present an existing deterministic method that uses 

gold NP assemblies as light-to-heat transducers to control temperature rises at the microscale155. 

In this method, a pre-engineered array of NPs is employed, in which the collective heating 

effect caused by heat diffusion is carefully managed to obtain the desired heat distribution. Gold 

NPs are distributed on a substrate into a pattern that leads to a desired temperature rise result 

under homogeneous light illumination. However, this temperature pattern is fixed. 

Inspired by this method, we will introduce a new method that tailors the illumination 

light intensity instead, while using homogeneous gold NPs distribution, as shown in Figure 3.1, 

to achieve the same purpose but in a reconfigurable manner. By changing the projected light 

pattern, temperature patterns can be tuned at will. This new method is demonstrated 

experimentally on a planar surface while the temperature map is measured using a wavefront 

sensing technique103,104.  
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3.2. Plasmonic thermal effect of gold nanoparticles  

3.2.1. Modelling of light absorption by a single particle  

Plasmonic heating is caused by an enhanced light absorption during the surface 

plasmonic resonance process. Gold nanoparticles (NPs) feature remarkable optical properties 

allowing plasmonic processes. They support resonances in electron plasma-photon known as 

Localized Surface Plasmons (LSPs) that can be excited upon illumination. This strong 

electronic movement in a lossy, or resistive, metal such as gold induces Joule heating. 

Depending on the morphology and dielectric environment of the NPs, those resonances can be 

tuned from the visible to the near-infrared frequency range. LSPs are responsible for the 

enhanced absorption and scattering of light in these NPs, which was considered as an unwanted 

effect for a long time. However, it was realized recently that this effect can transform the NP 

into a remotely-controllable nano heat source, providing a powerful way of thermally-induced 

phenomena at the nanoscale.156,157 

 

Figure 3.2 Photothermal heating of a 100 nm gold nanosphere placed in water. (a) Schematic 

view of a nanosphere with the external electric field 𝐸 and wavevector 𝑘 of the illumination 

light, (b) electric near-field intensity normalized to the incident field intensity, (c) heat 

generation density, and (d) equilibrium distribution of temperature increases for a light 

wavelength of λ=530 nm, (e) absorption power as a function of light wavelength. The light 

incident intensity is 1 mW/µm² for all cases. (Figure adapted from ref157) 

To present the physics of plasmonic heating, we consider a simple model: a gold 

nanosphere with complex relative permittivity 𝜀(𝜔) is immersed in a transparent dielectric 

medium of real relative permittivity 𝜀𝑠 = 𝑛𝑠
2, 𝑛𝑠 being the refractive index. This nanosphere is 

illuminated by a light with a complex amplitude 𝐄𝟎(𝐫) , defined such that 𝐄𝟎(𝐫, t) =

𝑅𝑒[𝐄𝟎(𝐫)eiωt]; 𝜔 is the angular frequency, defined as 𝜔 = 𝑐0𝑘0 =
𝑐0𝑘

𝑛𝑠
, where 𝑐0 is the speed 
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of light in vacuum, 𝑘0 and 𝑘 are the wave vectors in free space and in the medium, respectively, 

as illustrated in Figure 3.2(a). 

LSPs are generated by the interaction between light and conductive NPs of a size 

comparable to or smaller than the light wavelength. Here, the sphere radius 𝑅 is much smaller 

than the wavelength (tens of nm), and the NPs can be considered as an electromagnetic dipole. 

Under this assumption, the sphere polarizability reads: 

 𝛼(𝜔) = 4𝜋𝑅3
𝜀(𝜔) − 𝜀𝑠

𝜀(𝜔) + 2𝜀𝑠
. Equation 3.1 

and relates the complex amplitude of the polarization vector of the NP to the excitation field 

via 𝐏 = 𝜀0𝜀𝑠𝛼𝐄𝟎. From Equation 3.1, the resonance occurs at a frequency 𝜔 where the bottom 

part of the fraction approaches zero, i.e. 𝜀(𝜔) ≈ −2𝜀𝑠. This can occur at visible frequencies in 

some noble metals and leads to a high polarizability value 𝛼(𝜔) . However, the dipolar 

approximation only holds for small particles. More complex models are required for larger 

spheres, such as the Mie theory, which considers retardation effects in particles with non-

negligible sizes compared to the wavelength. For NPs with more complex geometries, 

numerical simulations such as discrete dipole approximation (DDA) can be used to find the 

resonance wavelength158.  

This plasmonic resonance is responsible for peaks in both light absorption and scattering. 

For example, in a spherical gold NP with a diameter smaller than 30 nm in water, this resonance 

occurs around λ=530 nm159. The efficiency of these processes can be described by the following 

absorption (𝜎𝑎𝑏𝑠) and scattering (𝜎𝑠𝑐𝑎𝑡) cross-sections: 

 𝜎𝑎𝑏𝑠 = 𝑘𝐼𝑚(𝛼) −
𝑘4

6𝜋
|𝛼|2 Equation 3.2 

 𝜎𝑠𝑐𝑎𝑡 =
𝑘4

6𝜋
|𝛼|2 Equation 3.3 

 𝜎𝑒𝑥𝑡 = 𝜎𝑎𝑏𝑠 + 𝜎𝑠𝑐𝑎𝑡 = 𝑘𝐼𝑚(𝛼) Equation 3.4 

Depending mostly on the morphology of NPs, the relative efficiency of absorption and 

scattering processes is often quantified by the photothermal efficiency 𝜇 =
𝜎𝑎𝑏𝑠

𝜎𝑠𝑐𝑎𝑡
 160,161. For 

example, in water, for gold NPs smaller than 90 nm, absorption is the dominant effect, while 

for larger gold NPs, scattering dominates. According to this property, one can design NPs that 

are optimised for light absorption and heat conversion.  
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 Using the absorption cross-section 𝜎𝑎𝑏𝑠, the power absorbed by a NP illuminated with 

an irradiance I reads: 

 𝑄 =  𝜎𝑎𝑏𝑠𝐼  Equation 3.5 

It can also be derived from the heat power density 𝑞(𝐫)  inside the NP such that 𝑄 =

∫ 𝑞(𝐫) 𝑑3𝑟
𝑉

, with 𝑉 the spatial domain limited by the volume of the NP. 𝑞(𝐫) is generated via 

the Joule effect and reads162,163:  

 𝑞(𝐫) =
1

2
𝑅𝑒[𝐉∗(𝐫) ∙ 𝐄(𝐫)] 

Equation 3.6 

 

where 𝐉(𝐫) = 𝑖𝜔𝐏 is the electronic current density, and 𝐄 is the electrical field inside the NP. 

As 𝐏 = 𝜀0𝜀(𝜔)𝐄, 𝑞(𝐫) is finally:  

 𝑞(𝐫) =
𝜔

2
𝜀0𝐼𝑚(𝜀(𝜔))|𝐄(𝐫)|2 Equation 3.7 

3.2.2. Heat diffusion for a single particle model  

For a single gold NP under continuous-wave illumination, the steady-state temperature 

distribution 𝑇(𝐫) inside and outside of the NP should then be resolved with the heat diffusion 

equation: 

 −𝜅𝑔𝑜𝑙𝑑𝛻2𝑇(𝐫) = −𝑞(𝐫) for |𝐫| ≤ 𝑅 Equation 3.8 

 𝜅𝑤𝑎𝑡𝑒𝑟𝛻2𝑇(𝐫) = 0 for |𝐫| > 𝑅 Equation 3.9 

Here, we consider a single NP immersed in water and a visible-range illumination. The light 

absorption in water can be neglected at the wavelength we use (532 nm); Equation 3.8 and 

Equation 3.9 only considers heat sources inside the sphere ( |𝐫| ≤ 𝑅 ). The large thermal 

conductivity of gold (𝜅𝑔𝑜𝑙𝑑 = 318 𝑊𝑚−1𝐾−1), its large contrast with the conductivity of water 

(𝜅𝑤𝑎𝑡𝑒𝑟 = 0.6 𝑊𝑚−1𝐾−1), and the small size of the particle mean that the temperature can be 

considered homogeneous inside the particle although 𝑞(𝐫) is not necessarily uniform. In other 

words, heat diffuses so fast inside the NP that the temperature inside the NP is nearly uniform 

compared to the temperature distribution in water. This Uniform Temperature Approximation 
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(UTA) is commonly used to solve the problem157. Under this approximation, the temperature 

increases in the particle and in the surrounding medium, deduced from the heat diffusion 

equation, can be approximated as164: 

 ∆𝑇(𝐫) ≈ ∆𝑇𝑁𝑃 =
𝑄

4𝜋𝜅𝑤𝑎𝑡𝑒𝑟𝑅
 for |𝐫| ≤ 𝑅 Equation 3.10 

 ∆𝑇(𝐫) =
𝑄

4𝜋𝜅𝑤𝑎𝑡𝑒𝑟𝑟
= 𝐺𝑇

𝑆𝑇 . 𝑄 for |𝐫| > 𝑅 Equation 3.11 

where ∆𝑇𝑁𝑃 =
𝑄

4𝜋𝜅𝑤𝑎𝑡𝑒𝑟𝑅
 is generated by the absorbed power 𝑄 =  𝜎𝑎𝑏𝑠𝐼 = ∫ 𝑞(𝐫) 𝑑3𝑟

𝑉
 in a 

homogeneous medium of thermal conductivity 𝜅𝑤𝑎𝑡𝑒𝑟, 𝐺𝑇
𝑆𝑇 is the thermal Green’s function in 

steady-state 𝐺𝑇
𝑆𝑇 =

1

4𝜋𝜅𝑤𝑎𝑡𝑒𝑟𝑟
 defined in Chapter 1 (Equation 1.11). The temperature diffuses as 

1

𝑟
 outside of the NP heat source. Taking 𝑅 = 1 and ∆𝑇𝑁𝑃 = 1, the temperature increase has a 

radial distribution which is shown in Figure 3.3.  

 

Figure 3.3 Temperature profile with a spherical gold NP heat source, according to Equation 

3.10 and Equation 3.11, using normalised coordinates 𝑅 = 1 and ∆𝑇𝑁𝑃 = 1.  

When modelling the 2D temperature induced by a collection of nanoparticles, collective effects 

must be taken into account. This can be achieved by calculating the convolution of the heat 

source distribution with the thermal Green’s function in steady-state 𝐺𝑇
𝑆𝑇, as discussed in the 

following sections. 
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3.3. Reconfigurable temperature control using light shaping 

3.3.1. Temperature shaping by gold nanoparticles assemblies 

By distributing gold NPs into the targeted medium and using light at a wavelength 

overlapping their plasmonic resonance, one can efficiently heat the NPs as well as the 

surrounding medium. Since heat is a diffusive phenomenon, it is harder to manipulate than light, 

which is a propagating phenomenon, but using NPs as light-to-heat transducers offers an 

efficient way to turn a light distribution into a heat distribution. However, the relation between 

light absorption and the temperature is not straightforward because of heat diffusion: uniform 

light absorption does not lead to uniform temperature distribution, an issue that needs to be 

carefully addressed.  

To solve this issue, we calculate an appropriate Heat Source Density (HSD) to pre-

compensate heat diffusion and create a temperature profile that optimally approaches desired 

values. This approach has been proposed and demonstrated experimentally by Baffou et al. in 

2014 by locally engineering the light absorption of the substrate155. Assemblies of metal NPs 

were fabricated by e-beam lithography165 on a thermally insulating, 2D substrate, with a local 

density of absorbers matching the desired HSD. Homogeneous illumination of these assemblies 

then yielded the desired temperature distribution. The average temperature could be changed 

easily by tuning the optical intensity. However, the temperature distribution could not be 

modified after e-beam fabrication: the thermal pattern was fixed. 

Here, we show that a homogeneous array of plasmonic NPs on glass can also be used to 

obtain a chosen temperature pattern. Instead of shaping the substrate itself, we propose to use 

an absorbing layer that is homogeneous at the wavelength scale and to pattern the illumination 

to produce the desired HSD, as illustrated in Figure 3.1. Among the various available light-

patterning techniques, we chose to use a phase Spatial Light Modulator (SLM) as it provides 

interesting speed and good power-efficiency. Using it to engineer the wavefront properly in the 

Fourier plane, we created chosen intensity patterns in the image plane to illuminate the 

homogeneous NPs array.  
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3.3.2. Collective effects in heat diffusion 

 

Figure 3.4 Calculated temperature rise (right) induced by a homogeneous 

HSD applied within a square region (left). The temperature is clearly higher 

at the centre of the square region than at the edges. 

Here, we aim at creating a 2D temperature pattern in a microscopic region of a 

macroscopic sample with thermal conductivity 𝜅. The whole sample typically has cm-range 

dimensions. It can therefore be assumed to remain at a constant bulk temperature 𝑇0, or can be 

actively stabilized at 𝑇0 if necessary. The 2D domain of interest (D), where ∆𝑇(𝑟) is targeted, 

is meshed using 𝑁  identical square units, each with an area 𝑎2  and an identical average 

absorption cross-section 𝜎, since the substrate has a homogeneous absorption at the scale of 𝑎 

(the number of absorbing nanoparticles within 𝑎2 is large enough to neglect variations). For 

each unit cell 𝑖 , we note 𝑄𝑖  the heat source (in W) and ∆𝑇𝑖  the temperature rise. The ∆𝑇𝑖 

distribution in the sample is actually the convolution of the HSD with the thermal Green’s 

function in steady-state 𝐺𝑇
𝑆𝑇 =

1

4𝜋𝜅𝑤𝑎𝑡𝑒𝑟𝑟
, as mentioned in Chapter 1 (Equation 1.11). 

A relatively natural idea in order to obtain a homogeneous temperature within a chosen 

domain of interest D (e.g. a square) would be to apply a homogeneous HSD within the domain 

of interest D. However, as shown in Figure 3.4, simulations indicate that the resulting 

temperature increase profile has a hot centre. It is not hard to understand that the centre receives 

thermal contributions from all neighbouring heat sources within the square domain, whereas 

the edges of the square, for instance, do not. These collective effects have been discussed in 

detail in ref166.  
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3.3.3. Pre-compensating the collective effect 

 

Figure 3.5 Calculated HSD yielding a homogeneous temperature 

rise within a targeted area and resulting temperature rise. 

If the temperature is obtained by the convolution ∆𝑻 = 𝑸 ∗ 𝐺𝑇
𝑆𝑇, it appears reciprocally 

that the HSD 𝑄𝑖 which must be applied to a sample in order to obtain a chosen temperature 

pattern ∆𝑻 can be calculated by deconvolving by 𝐺𝑇
𝑆𝑇. This deconvolution can be computed 

numerically by a matrix inversion restricted to the domain D, as described in ref155. When 

applying a spatial HSD noted 𝐐 in vector form (𝐐 = (𝑄𝑖)𝑖∈[1,𝑁]), where “𝑖” designates one of 

the 𝑁  location coordinates, the resulting temperature increase distribution ∆𝐓  ( ∆𝐓 =

(∆𝑇𝑖)𝑖∈[1,𝑁]) can be calculated using a simple matrix multiplication: ∆𝐓 = 𝔸𝐐, where 𝔸 is an 

𝑁 × 𝑁 coupling matrix defined by:  

 𝔸𝑖𝑗 = {

ln(1+√2)

𝜋𝜅𝑎
, 𝑖 = 𝑗

1

4𝜋𝜅𝑟𝑖𝑗
, 𝑖 ≠ 𝑗

  Equation 3.12 

Each term 𝔸𝑖𝑗  corresponds to the contribution of the heat deposited in region 𝑗  to the 

temperature of region 𝑖, with 𝑟𝑖𝑗 the distance between these two regions. Inverting this matrix 

𝔸 provides a way to calculate the HSD 𝐐 yielding the desired temperature map ∆𝐓, which 

writes: 𝐐 = 𝔸−1∆𝐓.  
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3.3.4. Temperature shaping implementation 

 

Figure 3.6 Comparison of two temperature shaping methods. Method 1(left column): NP 

distribution tailoring while using a homogeneous illumination (top left sketch). The SEM image 

(bottom) of NP distribution is adapted from ref 155. Method 2(right column): Illumination 

tailoring on a homogeneous NP substrate (top right sketch). The experimental image of the 

corresponding shaped illumination (bottom right) shows the backscattering by the substrate, 

which reflects the illumination pattern. The inhomogeneity of light intensity is due to speckle, 

which will be discussed later in 3.5.4.1. 

As mentioned at the beginning of 3.3.1, there are two ways to obtain a tailored HSD: 

tailoring the distribution of NPs or tailoring the intensity of illumination. The 1st method is 

illustrated in Figure 3.6 (left): metal NPs are patterned by lithography on a 2D substrate to 

reproduce the calculated HSD. Under homogeneous illumination at their plasmonic resonance 

wavelength, the desired temperature rise can be created. This method developed by Baffou et 

al. in 2014 was named TSUNA for “Temperature Shaping Using Nanoparticle Assemblies”155. 

It is deterministic and effective. However, e-beam lithography is costly, and once the pattern is 

determined and fabricated, it cannot be changed. This feature is particularly problematic for 
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biological applications since the position and shape of the cells (or organelles) is not known in 

advance. 

Instead of shaping the NP distribution, we chose to shape the light distribution under 

the microscope and use a distribution of plasmonic NPs homogeneous on the planar substrate 

(Figure 3.6–Method 2). As 𝑄 =  𝜎𝑎𝑏𝑠𝐼, the light intensity pattern is identical to the HSD pattern. 

The substrate absorbs the light energy at the resonant wavelength and creates a designed 

temperature map. Following a workflow that will be discussed in 3.4.3, one can change the 

temperature map at will.  



Liu Chang – Thèse de doctorat - 2021 

91 

 

3.4. Experimental setups and methods  

3.4.1. Optical path of the setup 

 

Figure 3.7 Experimental setup for temperature shaping and temperature imaging 

The optical path of the experimental setup is shown in Figure 3.7. There are two beams 

combined in this setup for separated functions: a heating beam at λ = 532nm and a probe beam 

at λ = 407nm. The heating beam is a plane-wave coming out of the laser source and is expanded 

to illuminate all the SLM pixels. The SLM modifies the wavefront and projects the desired light 

intensity pattern, identical to the HSD pattern, onto the sample plane to illuminate the 

homogeneous surface absorber. There is an intermediate image plane between the SLM and 

objective, where a spatial mask cancels higher-order images and the 0-order diffraction peak. 

Another plane-wave passes through the sample from the top of the sample, illuminating a region 

that includes the heated sample. The sample is then imaged on a wavefront sensor for further 

thermal imaging analysis based on wavefront sensing.  
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3.4.2. Homogeneous surface absorber 

 

Figure 3.8 (a) Example of a SEM image of a quasi-hexagonal array of gold NPs obtained by 

diblock copolymer lithography (adapted from ref166). (b) Image of the sample fixed in a petri 

dish (a window is opened at the centre of the petri dish), taken by a simple cell phone camera 

with white background. (c) Cross-section of extinction, absorption and scattering for spherical 

gold nanoparticles of 28 nm-diameter, normalised by πR² where R is the radius of the sphere. 

The calculation is done using the Mie theory167. 

In order to efficiently convert optical intensity into heat, the substrate has to be covered 

with a homogeneous surface absorber, ideally with narrow-band absorption to allow 

transmission imaging at other wavelengths. We used a substrate consisting of an array of 28 

nm-diameter spherical gold NPs on a glass coverslip, with uniform quasi-hexagonal 

distribution; an example is shown in Figure 3.8(a), and a 72 nm average interparticle distance. 

The sample was made by diblock copolymer micellar lithography, based on a protocol 

developed by J. Polleux165; an image is shown in Figure 3.8. Under illumination at NP 

resonance wavelength, near λ = 532 nm, much of the optical energy is converted into heat, an 

efficient process sometimes called thermo-plasmonic conversion. This localized heat then 

diffuses into the surrounding medium. The non-percolated gold NPs are not expected to 

substantially change the lateral heat diffusivity, which is essentially that of the glass substrate. 

The plasmonic resonance wavelength of the particles is well adapted to efficient absorption 

over a relatively narrow band near λ= 532 nm, and the biocompatibility of the NP system is 

excellent156.  

There are two distinct regimes describing the temperature repartition for a gold NPs 

array under CW illumination: a) the temperature confinement regime, where the temperature 

increase is confined to the vicinity of each nano heat source, and b) the temperature 
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delocalization regime, where temperature is smooth throughout the whole illuminated region166. 

Figure 3.9 shows examples of the two regimes. Figure 3.9(a) is in the temperature confinement 

regime, whereas Figure 3.9(b) in the temperature delocalization regime. A factor ζ is defined in 

the publication of Baffou et al. 2013166 to predict which regime applies (for a 1D array: ζ1=

𝑝

2𝑅𝑙𝑛(𝑁)
, for 2D distribution: ζ2=

𝑝2

3𝐿𝑅
, where p is the interdistance, R the radius of nanosphere, L 

the characteristic size of the illuminated area and N the number of particles). The interparticle 

distances, the diameter of NPs and number of illuminated NPs (or characteristic size of the 

illuminated zone) can all contribute to this factor. In our case, the size of the NP is driven by 

the resonance wavelength (28 nm and 532 nm respectively), and the interparticle distance is the 

main parameter to reach the temperature delocalization regime (b), which ensures a smooth 

temperature all over the NP carpet under CW illumination despite the nanometric size of the 

NPs. With a 72 nm interdistance, ζ is much smaller than 1, which means that we are in the 

temperature delocalization regime and the NPs layer can be considered as a spatially 

homogeneous absorbing layer. 

  

Figure 3.9 Calculated temperature distribution across a NP chain with different interparticle 

distances, illuminated in CW regime. (a) 5 NPs with 15nm diameter and 250nm interparticle 

distance; (b) 1001 NPs (only a few shown in the figure) with 25nm diameter and 100nm 

interparticle distance. (Figure adapted from ref166)   
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3.4.3. Phase-only SLM and Gerchberg-Saxton algorithm for light shaping 

 

Figure 3.10 Reconfigurable temperature-shaping workflow (calculated images). ∆𝑻  is the 

desired temperature increase distribution; 𝑸  is the associated HSD distribution; 𝚽 is the 

corresponding phase distribution in the Fourier plane of the illumination pattern; 𝑰 is the light 

intensity distribution in the sample plane; ∆𝑻′is the resulting temperature increase distribution. 

As discussed in Section 3.3.4, the HSD (Heat Source Density) can be created by 

projecting onto the surface an optical intensity pattern 𝐈 =
𝐐

𝜎
. While several techniques allow 

light patterning, parallel illumination techniques based on SLMs have the advantage of offering 

much higher temporal resolution compared to scanning-based methods. Acting either on the 

phase or the intensity of the incident beam, SLMs provide in both cases an arbitrarily-defined 

intensity distribution of light in the focal plane of the objective. The main drawback of intensity 

modulators (such as Digital Mirror Devices) is an extremely poor efficiency when creating 

sparse targets, as most of the light is rejected out of the optical path and does not reach the 

sample. Here, we modulate the phase using a Liquid Crystal SLM in order to preserve light 

power and efficiently generate heat sources. 

The appropriate phase pattern 𝚽 (see Figure 3.10) is displayed on the SLM located in 

the Fourier plane of the microscope and illuminated by a plane wave. We use the iterative 

Gerchberg-Saxton algorithm65, which is one of the most common numerical techniques to 

calculate . As shown in Figure 3.7, this pattern is projected by lens L1, which acts as a Fourier 

transformer, and imaged in an intermediate plane where a low-pass spatial filter mask cancels 
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unwanted higher diffraction orders and zero-order diffraction peak. After the lens L2 and the 

microscope objective, the desired intensity pattern 𝐈  (see Figure 3.10) is projected in the 

substrate plane and generates the temperature distribution ∆𝐓′ (see Figure 3.10). Within the 

chosen domain of interest D, this algorithm provides the targeted temperature map (∆𝐓′ = ∆𝐓). 

One should note, however, that since the temperature distribution is not constrained outside of 

D, temperature freely decays in 
1

𝑟
 due to thermal diffusion outside of D. 

Moreover, since we only use heat sources, and no cooling sources (all values in the 𝐐 

vector are strictly positive), some desired shapes with temperature gradients steeper than the 
1

𝑟
 

decay imposed by diffusion are impossible to reproduce155. Finally, we must note that the 

method is only adapted to 2D temperature control. A temperature decay also appears along the 

vertical z-direction away from the targeted plane, and depends on z and on the lateral size of 

the target155, but is not controlled in the present configuration. 

3.4.4. Temperature imaging using wavefront sensing  

To test the reliability of the heating result, we used a wavefront-imaging-based 

temperature imaging method to measure and validate the temperature variation maps caused by 

nanoscale heating sources. This method was originally proposed by Serge Monneret and first 

demonstrated by Guillaume Baffou and Pierre Bon in 2012103. The refractive index of most 

materials is temperature-dependent. As shown in Figure 3.11(a), temperature changes in the 

medium surrounding the NPs will therefore cause refractive index variations, which can be 

measured to deduce temperature. To probe the refractive index, we use a plane wave at a 

wavelength away from the NP resonance, for which the NP carpet is mostly transparent. The 

thermally-induced refractive index variations modify this plane wavefront and leave a 

fingerprint of the temperature distribution. We use a high-resolution wavefront sensor (SID4, 

Phasics) to analyse this perturbated wavefront, from which we deduce the temperature using a 

dedicated calculation.  
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Figure 3.11 Temperature imaging using wavefront sensing. (a) In the absence of excitation 

light, the probe beam has no thermally-induced wavefront distortion. This is considered as the 

“reference” wavefront. Note that the static refractive effects induced by the particles and the 

optics are neglected in this scheme. (b) While the sample is illuminated by light at the plasmonic 

resonant frequency, the increase of temperature in the medium changes the local optical 

refractive index. A plane wave that is out of resonance with the NPs will be deformed by the 

local variation of the refractive index. This phase-shift contains temperature information.  

3.4.4.1. Thermo-optical effects 

The main principle behind this thermometry method is the thermo-optical effect. The 

refractive index of most materials is temperature-dependent, and the relation can be described 

by a Taylor expansion of the refractive index with temperature168:  

 

𝑛(𝑇) = 𝑛(𝑇0) + (𝑇 − 𝑇0) ∙
𝜕𝑛

𝜕𝑇
(𝑇0) + ⋯

+
(𝑇 − 𝑇0)𝑚

𝑚!
∙

𝜕𝑚𝑛

𝜕𝑇𝑚
(𝑇0) + 𝜊(𝑇𝑚) 

Equation 3.13 

In our experiment, we use glycerol as the thermo-responsive liquid to increase the 

thermo-optical effect and improve the signal to noise ratio of the measurements. For 

temperature rises below typ. 60°C, we can limit ourselves to the first term of the Taylor 

Series169. This linear approximation is commonly used with most materials, over limited (a few 

tens of K) temperature ranges: 

 𝑛(𝑇) = 𝑛(𝑇0) + (𝑇 − 𝑇0) ∙
𝜕𝑛

𝜕𝑇
(𝑇0) Equation 3.14 
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Thus, we have: 

 𝛥𝑛 = 𝑛(𝑇) − 𝑛(𝑇0) ≈
𝑑𝑛

𝑑𝑇
(𝑇0) ∙ 𝛥𝑇,   Equation 3.15 

with 𝛥𝑇 = 𝑇 − 𝑇0. In order to describe the wavefront perturbation caused by the temperature 

rise in the sample, we need to apply Equation 3.15 to a 3-dimensional space. While the probing 

beam passes through the heated region, the refractive index variation in the medium will induce 

an Optical Path Difference (OPD), as illustrated in Figure 3.11(a). This OPD is the integral of 

the refractive index change 𝛥𝑛 along the optical path. It can be measured in one plane after 

propagating through the sample.  

To further simplify the demonstration, we first consider the case of a single nano-heater 

and consider it as a point source. In cylindrical coordinates, 𝜌 being the radial coordinate, with 

a z-axis corresponding to the optical axis, as shown in Figure 3.12, the wavefront perturbation 

OPD(𝜌) reads:  

 𝑂𝑃𝐷(𝜌) =  ∫ 𝛥𝑛(𝜌, 𝑧)𝑑𝑧

+∞

−∞

 Equation 3.16 

It is worth mentioning that experimentally, while the probe wave propagates through the 

sample, it accumulates a thermo-optically-induced OPD in the glass substrate170 (
𝑑𝑛

𝑑𝑇
 = 3 .10-6 

K-1) and in a thin layer (thickness ℎ = 1 mm) of glycerol169 (
𝑑𝑛

𝑑𝑇
 = -2.3 .10-4 K-1). Light then 

propagates in air (
𝑑𝑛

𝑑𝑇
 = -0.7 10-8 K-1), or immersion media (water, oil) before it reaches the 

objective, but the fast 1/z longitudinal decay of temperature means that their contribution to the 

thermo-optical OPD is negligible. In the sample itself, considering the large difference between 

the thermo-optical coefficients (2 orders of magnitude), the wavefront distortion in glass is 

negligible, and we can safely assume that only the glycerol layer contributes to the thermo-

optical OPD.  

 

Figure 3.12 Coordinates for calculating the wavefront perturbation OPD(𝜌)  
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Relating the heating and thermo-optical terms from Equation 3.11, Equation 3.15 and 

Equation 3.16, we have:  

 

𝑂𝑃𝐷(𝜌) =  ∫
𝑑𝑛

𝑑𝑇
(𝑇0)

𝑄

4𝜋𝜅√𝜌2 + 𝑧2
𝑑𝑧 

ℎ

0

 

=
𝑄

4𝜋𝜅

𝑑𝑛

𝑑𝑇
(𝑇0). sinh−1(ℎ

𝜌⁄ ) 

= 𝑄. 𝐺𝑂𝑃𝐷 

Equation 3.17 

with 𝐺𝑂𝑃𝐷(𝜌) =
1

4𝜋𝜅

𝑑𝑛

𝑑𝑇
(𝑇0)sinh−1(ℎ

𝜌⁄ ) and 𝑄 the point heat source term. Since the heat source 

is defined by a Dirac distribution in the point source approximation, the 𝐺𝑂𝑃𝐷  function 

corresponds to the Green’s function for the thermal OPD distribution. Experimentally, the 

particles are in contact with a glass slide on one side, and immersed in a liquid on the other. In 

this case, the thermal conductivity to be considered is the mean value between that of glass 

𝜅𝑔𝑙𝑎𝑠𝑠 and liquid 𝜅𝑙𝑖𝑞: 𝜅 = (𝜅𝑔𝑙𝑎𝑠𝑠 + 𝜅𝑙𝑖𝑞) 2⁄ .104 

Now that we have solved the thermo-optical problem for a point source, any set of heat 

sources distributed in a 2D plane with a distribution map 𝑄(𝑥, 𝑦) can also be modelled. The 

resulting OPD is then the convolution 𝑄(𝑥, 𝑦)  with Green’s function for the optical path 

difference, 𝐺𝑂𝑃𝐷 . If we change to a Cartesian coordinate system, and under the linear 

approximation of Equation 3.15 while the temperature is under 60°C, the 𝑂𝑃𝐷(𝑥, 𝑦) caused by 

a heat source distribution 𝑄(𝑥, 𝑦) writes: 

 
𝑂𝑃𝐷(𝑥, 𝑦) = ∬ 𝑄(𝑥0, 𝑦0)𝐺𝑂𝑃𝐷(𝑥 − 𝑥0, 𝑦 − 𝑦0)𝑑𝑥0d𝑦0  

  =  𝑄(𝑥, 𝑦) ∗ 𝐺𝑂𝑃𝐷(𝑥, 𝑦)  

Equation 3.18 

Equation 3.18 clearly shows that 𝑂𝑃𝐷(𝑥, 𝑦) is the convolution of 𝑄(𝑥, 𝑦).with 𝐺𝑂𝑃𝐷(𝑥, 𝑦). 

Therefore, the heat source distribution 𝑄(𝑥, 𝑦) can be determined by a deconvolution. An 

optical measurement of wavefront perturbations can therefore give access to the heat source 

term, and therefore, as shown below, to the temperature. 
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3.4.4.2. Wavefront sensing     

We use a shearing interferometry-based wavefront sensor (Phasics, SID4 171,172) in order 

to obtain the perturbation 𝑂𝑃𝐷(𝑥, 𝑦)103. In Figure 3.7, the optical path corresponding to this 

measurement arm is coloured in violet. The sample is illuminated by a halogen lamp spectrally 

filtered around λ = 407nm (Δλ = 40 nm), a wavelength at which the absorption by gold 

nanoparticles is much lower than at resonance (532 nm). With a total power of the order of the 

mW, this illumination can be safely assumed to be thermally non-perturbative. We use a Köhler 

illumination with a closed aperture diaphragm to maximize the spatial coherence and illuminate 

the sample with a quasi-plane wave. However, wavefront distortions in the setup need to be 

considered: a first reference phase image is acquired before any heating is applied Figure 

3.11(b), and the measured wavefront is subtracted from the subsequent acquisitions in order to 

extract the thermally-induced wavefront distortions.  

3.4.4.3. Retrieving temperature from wavefront images 

In the previous two sections, we have deduced the relation between wavefront distortion 

and explained the experimental way to acquire wavefront images (OPD image). Now we show 

how to retrieve the temperature map out of the wavefront images numerically. 

Transforming Equation 3.18 in the Fourier space, we have: 

 𝑇𝐹(𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦) = 𝑇𝐹(𝑄)(𝑣𝑥, 𝑣𝑦) ∙ 𝑇𝐹(𝐺𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦). Equation 3.19 

Theoretically, once the OPD image is acquired by the wavefront sensor, one can get the heat 

source distribution image in the Fourier space by 𝑇𝐹(𝑄)(𝑣𝑥, 𝑣𝑦) = 𝑇𝐹(𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦)/

𝑇𝐹(𝐺𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦) . However, in practice, the noises will be amplified when the value of 

Green’s function 𝐺𝑂𝑃𝐷 approaches zero. For this reason, we apply a filtering method that has 

been implemented by Baffou et al.103 to regulate these noises. The idea is to use an intermediate 

function 𝐺̅ which consists of a Tikhonov factor 𝛼𝑇, as defined by the following relation: 

 

1

𝐺̅(𝑣𝑥 , 𝑣𝑦)
=

1

𝑇𝐹(𝐺𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦)
∙

1

1 +
𝛼𝑇

|𝑇𝐹(𝐺𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦)|
2

 
Equation 3.20 
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The Tikhonov factor 𝛼𝑇 > 0  is defined empirically for each measurement. Using this 

regulation, we get 
1

𝐺̅(𝑣𝑥,𝑣𝑦)
≈ 1/𝑇𝐹(𝐺𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦) when the value of 𝑇𝐹(𝐺𝑂𝑃𝐷)(𝑣𝑥, 𝑣𝑦) is large 

enough compared to 𝛼𝑇, and 0 when it’s not the case, which means that noise amplification is 

avoided. By deconvolution of the measured optical path difference 𝑂𝑃𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒, we then have: 

 𝑄(𝑥, 𝑦) ≈ 𝑇𝐹−1 [
𝑇𝐹(𝑂𝑃𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒)

𝐺̅
] (𝑥, 𝑦).  Equation 3.21 

From the 𝑄(𝑥, 𝑦)  map and Equation 3.11 we can retrieve the temperature increase map 

∆𝑇(𝑥, 𝑦): 

 ∆𝑇(𝑥, 𝑦) = 𝑄(𝑥, 𝑦) ∗ 𝐺𝑇
𝑆𝑇 Equation 3.22 

This wavefront-sensing-based system can provide quick access (10 fps) to the temperature 

distribution in the sample, with a spatial resolution limited by both diffraction (λ/NA under 

spatially coherent illumination) and deconvolution inaccuracies. The phase resolution of the 

wavefront sensor for a single camera frame is 2 nm, which translates into a temperature 

resolution of the order of 1K and can be improved at the expense of temporal resolution upon 

averaging. 



Liu Chang – Thèse de doctorat - 2021 

101 

 

3.5. Results  

3.5.1. Uniform temperature increase control  

 

Figure 3.13 Photothermal stimulation shaping and thermal imaging process. (a) Desired 

temperature increase pattern; Two Heat Source Density maps are compared: (b-e) correspond 

to the case of uniform illumination while (f-i) correspond to the case of a calculated 

illumination (b,f) applied HSD; (c,g) Experimental reflectance images of light distribution in 

the sample plane; (d,h) OPDs measured by wavefront sensing; (e,i) temperature increase 

distributions retrieved from OPD; (j) Comparison of the temperature increase profiles. Scale 

bar: 20 µm. 

In order to illustrate the possibilities of the method for shaping temperature, we start by 

imposing either a homogeneous HSD (Figure 3.13(b)) or a precalculated HSD (Figure 3.13(f)) 

leading to a uniform temperature (Figure 3.13(a)) over a square region of 40 µm × 40 µm. After 

calculating and displaying the appropriate phase pattern on the SLM, a uniform light intensity 

I = 8 µW.µm-2 is sent onto the sample in this square region (Figure 3.13(c)) and constitutes the 
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HSD (note the speckling effect due to the coherent laser source). As shown in Figure 3.13(b-

e), an uniform illumination HSD (Figure 3.13(b-c)) does not yield a uniform temperature 

distribution since collective effects induced by heat diffusion lead to higher temperatures at the 

centre than on the edges of the square (Figure 3.13(e)). The orange profile in Figure 3.13(j) 

clearly shows the bell-shaped thermal response of the system, with a temperature increase 

varying between 29.4 K and 36.3 K over the heated region. As discussed above, HSD 

engineering can compensate for this effect. Figure 3.13(f,g) show the calculated and 

experimental HSDs which yield a constant temperature rise ∆𝑇 over the square region when 

imposing I ≤  I0 at any position. As expected, the highest HSD is found near the edges, where 

lateral heat dissipation is strongest. The resulting temperature distribution (Figure 3.13(i,j)) 

reaches the constant targeted value (∆𝑇 = 25 K) within the designated square region (standard 

deviation: 1.3 K). In both cases (uniform HSD and uniform ∆𝑇), the absolute temperatures 

profiles are in good agreement with the expected values. 

3.5.2. Temperature control with different locations and values 

 

Figure 3.14 Temperature control at different locations and values. (a,d,g) Desired temperature 

increase distribution; (b,e,h) Calculated HSD; (c,f,i) experimental temperature increase 

images retrieved from wavefront measurements. 

A major advantage of temperature shaping using a SLM is that patterns can be arbitrarily 

reconfigured in both time and space. Quantitative temperature shaping is illustrated in Figure 
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3.14, where arbitrary temperature targets ∆𝑇 of 20K or 10K are chosen within domains of 

variable shapes (Figure 3.14 (a,d,g)). The corresponding HSD (Figure 3.14(b,e,h)) and the 

phase pattern to display on the SLM are calculated using the algorithm described above. After 

projection on the plasmonic substrate, wavefront measurements yield the temperature images 

(Figure 3.14(c,f,i)). Heat spreading around the microstructures is clearly visible, particularly in 

central regions where the distance between heat sources is lower, but the temperature in the 

targeted regions is homogeneous and quantitatively reaches the desired values within a 15% 

error, mostly due to NPs sample absorption inhomogeneities, phase measurement noise and 

deconvolution noise. This shows that single-shot substrate illumination with the appropriate 

HSD can produce arbitrarily localized temperature rises. 

The reduction of the heated area also has the advantage of giving access to faster thermal 

dynamics, which can typically reach the millisecond range. Indeed, the characteristic time scale 

𝜏 for generating a stable 2D temperature distribution depends on the typical length 𝑙𝑐 of the 

pattern as follows:  

 𝜏 =
𝑙𝑐

2

4𝐷
 Equation 3.23 

with 𝐷 = 9.2 .10-4 cm2s-1 the thermal diffusivity of glycerol173 and 𝐷 = 3.4 .10-3 cm2s-1 that of 

glass, we can assume that glass drives the lateral thermal spread 174. Considering a square with 

side length 𝑙𝑐 = 10 µm, the system therefore reaches a stable temperature profile extremely 

quickly, within approximately 𝜏 = 70 µs. The rise time and fall time of the SLM we use, 10 and 

25 ms respectively, are much longer than 𝜏, and are therefore the main temporal limitation here. 

This can be improved relatively easily using kHz frame rate SLMs which are now available175. 
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3.5.3.  Towards biological application: selective heating at sub-neuron scale  

 

Figure 3.15 Selective heating of different parts of a cultured hippocampal neuron. (a) Confocal 

fluorescence images of a hippocampus neuron (light green: neuron staining, MAP2). The 

dashes outline the area of interest, i.e. the neuron. (b,e) Outline of the neuron, with targeted 

heating areas highlighted in yellow; (c,f) Calculated HSD to heat these areas. (d,g) 

Experimental temperature increase distribution and outline of the neuron position. 

One of the main applications envisioned for this temperature shaping technique lies in 

the field of biology, where temperature is an essential parameter. In the context of 2P 

optogenetics, photo-induced local temperature rises could influence neuronal activity: suppress 

spiking114, generate action potentials176, drive the growth of neurites177 and so on, which should 

be carefully evaluated. In this section, we show, as a proof of principle, the potential of the 

reconfigurable temperature control technique that we developed to address these problems.  

Here, we propose a methodology combining temperature shaping with fluorescence 

imaging to thermally target a given population of cells or organelles of interest. Since 

fluorescence staining is a ubiquitous tool providing excellent specificity, it gives access to 

biological regions of interest in which local, precise and dynamic temperature control can be 

performed. The size and shape of the neuron were derived from the image Figure 3.15(a), using 

neuron staining (MAP2, in green). Note that the red and blue channels in Figure 3.15(a), which 

represent cytoskeleton (Alpha tubulin) and presynaptic (synuclein) tagging, respectively, were 

not used here. As shown in Figure 3.15(b,e), the outlines of this image were used to define the 

thermal stimulation of the substrate with the shape of the soma (Figure 3.15(b-d)) or a dendrite 

(Figure 3.15(e-g)). Because the noise of the wavefront imaging limits the sensibility for short 

exposure times, we used a relatively high-power thermal stimulation for clarity, ∆T = 10K. 
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However, since this heating varies linearly with power, lower laser power can easily be applied 

to deliver more realistic and precise ∆T values (after a power-∆T calibration), which can be 

applied within millisecond-scale times, and are therefore well adapted to biological 

investigations.  

3.5.4. Discussion on homogeneity and reliability  

3.5.4.1. Influence of speckle  

 

Figure 3.16 2D Inhomogeneity caused by speckle. (a) Temperature rise cross-sections 

calculated in the presence of speckle distributions associated to NA= 0.2 (green) and 1.2 (red), 

and in the absence of speckle in the illumination (black dashes). (b) Evolution of the speckle-

induced spatial noise with NA, showing the effect of speckle grain-size decrease with NA. 

Since a coherent source is used to create our HSDs, the intensity patterns in Figure 

3.13(c) and g are clearly affected by speckle. Whether this speckle in turn induces 

inhomogeneity in the temperature distribution is an important question, driven in part by the 

size of the speckle grain, which varies as λ /NA where NA is the numerical aperture used to 

project the pattern. Due to the limited spatial and thermal resolution of the wavefront analyser, 

this subtle effect is difficult to characterize experimentally. To predict these inhomogeneities, 

we use the fact that the Gerchberg-Saxton algorithm imposes the intensity (that of the target 

pattern), but leaves the phase (which is displayed on the SLM) as a free parameter, thus 

producing after Fourier transformation a speckle pattern representative of the experimental one 

for a given NA. Figure 3.16(a) shows temperature profiles obtained by convolving the Fourier 

transform103 of Gerchberg-Saxton solutions for various NA values with the thermal Green’s 

function 𝐺𝑇
𝑆𝑇, thus producing realistic, speckle-affected temperature profiles. For a low NA = 
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0.2 (green line), local temperature inhomogeneities are clearly visible, with a relative error 
𝜎∆𝑇

∆𝑇
 

= 2% with respect to the targeted temperature rise ∆𝑇. However, these relative variations 

quickly fall below 1% and become negligible in practice for NA > 0.5, as shown in Figure 

3.16(b). In our experiment, we used microscope objectives with NA = 0.85 (Olympus, 

UPlanSApo, 20x) or NA = 1.42 (Olympus, oil immersion Plan Apo N 60x) to minimize this 

effect. Several strategies can be proposed to reduce speckle and improve temperature 

homogeneity. Experimentally, speckle scrambling using e.g. a rotating diffuser is of course 

possible if time-resolution is not an issue. Alternatively, it is possible to improve the Gerchberg-

Saxton algorithm by removing optical vortices responsible for intensity zeros. Such a control 

of both phase and intensity at the sample requires modulating both phase and amplitude in the 

Fourier plane. In practice, however, speckle control is achieved either at the expense of critical 

optical power losses178, or of experimental complexity179. 

3.5.4.2. Homogeneity in 3D  

 

Figure 3.17 3D temperature distribution and temperature homogeneity for a homogeneous 

(a,b,c) and pre-compensated illumination (d,e,f). (a,d) Temperature increase map in the xy-

plane (z=0); (b,e) Cross-section of the temperature increase map in the xz-plane (y=0). The 

white dashed lines represent the dimension of the assumed cylindrical object (e stands for the 

thickness and r for the radius of the cylinder). (c,f) Relative standard deviation of ΔT in the 

cylindrical volume. For both illuminations, the total laser power is the same. 
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In the previous sections, we essentially focused on the optimization of the lateral (x, y) 

temperature increase map. However, along the longitudinal (z) direction, there is also clearly a 

temperature distribution. This can be important in cases where e.g. a relatively thick adherent 

cell body needs to be brought to a constant temperature. While T(z) cannot be measured using 

the OPD method, we propose to model it. Here we report simulation results describing the 3D 

temperature distribution generated by heating an absorbing nanoparticles layer with a 

homogenous (Figure 3.17(a-c)) and thermally pre-compensated illumination (Figure 3.17(a-c)). 

We consider a disk shape target area with radius 𝑟 . For a homogeneous illumination, the 

temperature distribution in the nanoparticle plane (𝑧 = 0) is not homogeneous (see Figure 

3.17(a)). As described in the main text, it is however possible to calculate an illumination 

pattern leading to a uniform temperature distribution in the plane 𝑧 = 0 (see Figure 3.17(d)).  

Figure 3.17(b,e) show respectively the temperature distributions along the propagation 

direction of the heating beam (𝑧-direction) for a homogeneous (b) and pre-compensated (e) 

illumination. In both cases, temperature decreases away from the heating plane. Let us now 

estimate the temperature homogeneity inside a cylindrical volumetric object with radius 𝑟 and 

thickness 𝑒, represented by a dashed line rectangle in Figure 3.17(b,e). To this aim, we defined 

the Relative Standard Deviation: RSD=
𝜎𝛥𝑇

𝛥𝑇 𝑚𝑒𝑎𝑛
, with 𝜎𝛥𝑇 the standard deviation and 𝛥𝑇𝑚𝑒𝑎𝑛 

the average temperature increase inside the cylindrical volume. Figure 3.17(c,f) show the 

temperature inhomogeneity inside cylinders of variable radii 𝑟 (horizontal axis) and thicknesses 

𝑒 (vertical axis). Here, we assume 𝑒 < 𝑟, since this is typically the case for adherent culture 

cells which are relatively flat objects180. For any value of 𝑒 and 𝑟 in the tested range, the values 

of the RSD, i.e. the temperature inhomogeneity, is larger in Figure 3.17(c) than in Figure 

3.17(f): the pre-compensated illumination always provides a better temperature homogeneity 

than the non-compensated case. Furthermore, it is worth mentioning that Figure 3.17(f) also 

shows that RSD decreases: the 3D temperature homogeneity improves with the size of the 

heated region. However, this reduces the lateral spatial resolution of the thermal targeting as 

spurious heating can potentially be induced in the surrounding structures. 

3.5.4.3. Confinement in 3D - comparison with direct IR laser beam heating  

As discussed earlier, several methods for local heating coexist. One of the most 

straightforward and efficient methods is probably to heat water at wavelengths which it absorbs, 

i.e. in the infrared or near-infrared range. In this section, we compare the 3D temperature 
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distribution induced by an IR beam focused in water with the one induced when illuminating 

an absorbing nanoparticle layer.  

In this study, we considered a gaussian NIR beam (λ0 =1.8 µm as in ref181) focused in 

water, with a low numerical aperture, in order to generate a 15µm diameter spot (FWHM) at 

the sample plane (z=0, see Figure 3.18(a)). For the sake of simplicity, we considered a 

homogenous medium having the thermal and optical properties of water, and we neglected the 

intensity depletion of the heating beam during its propagation. Figure 3.18(b) shows the 

intensity distribution of the focused beam along the propagation direction (z-direction). The 

large axial extension of the focal volume is clearly visible: 𝐿𝑧 = 2𝑧𝑟 =
𝜋.𝐹𝑊𝐻𝑀2

 (λ0/n).𝑙𝑛2
≈ 700µ𝑚, 

where 𝑧𝑟 stands for the Rayleigh length and n=1.31 the refractive index of water at λ0. 
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Figure 3.18 Comparison of temperature confinement under focused infrared beam or pre-

compensated illumination. (a) Intensity map of a focused infrared beam in the z=0 plane of best 

focusing. (b) Cross-section of the beam intensity distribution (FWHM=15µm) in the xy-plane 

(y=0). (c) Temperature map induced by a gaussian beam in the focal plane (z=0) and d) Cross-

section of the temperature increase in the xz-plane (y=0). (e) Temperature increase map in the 

XY-plane of an absorbing nanoparticle layer (z=0) heated by a pre-compensated illumination 

leading to a 15 µm diameter homogeneous temperature disk; (f) Cross-section of the 
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temperature increase map in the xz-plane (y=0). (g) Temperature increase profiles along the 

x-direction (y=0, z=0). 

Water absorption of the NIR light (α = 8 cm-1 at λ0) along the beam propagation then 

results in a temperature increase that can be calculated by convolving the 3D heat source 

distribution with the 3D thermal Green’s function 𝐺𝑇
𝑆𝑇. Figure 3.18(c,d) show, respectively, the 

resulting temperature distribution in the xy-plane (z=0) and the xy-plane (y=0). This volumetric 

absorption leads to a broad distribution of temperature increase, particularly along the z-axis. 

For comparison, we also simulated the 3D temperature distribution generated when 

illuminating an absorbing layer of nanoparticles located at z=0. Here, we considered a pre-

compensated illumination leading to a 15 µm diameter homogeneous temperature disk (same 

size as the FWHM diameter of the Gaussian beam, see Figure 3.18(e,f). In this case, the 

temperature is much more confined, not only axially but also laterally. This effect can be clearly 

seen in Figure 3.18(g), where the temperature profiles in the xy-plane are compared (taken 

along the dashed lines in Figure 3.18(c,d). This lateral and vertical confinement is particularly 

important in biological applications as it reduces spurious thermal excitation of the surrounding 

structures (other cells, for instance) and thus provides a better spatial resolution on the thermal 

targeting.  
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3.6. Conclusion  

Combining wavefront engineering and thermo-plasmonics, we proposed and 

demonstrated a method to generate microscale reconfigurable temperature distributions in 

chosen domains of space. Using a spatial light modulator, we apply a Heat Source Density 

(HSD) which is calculated to compensate the heat diffusion effects within this domain and 

obtain the desired temperature profile. We experimentally demonstrate the feasibility of the 

procedure by imaging the temperature with micrometre resolution using a method based on 

wavefront-sensing. 

We show as proof of principle that this technique has the potential to create heat 

stimulation targeting different parts of a neuron. If we used adherent neuron cells on a NP 

substrate, this reconfigurable temperature control technique would allow to select different 

zones of interest in a neuron, or to create homogeneous temperature rises in a ~10µm thick (z-

direction) region above the substrate. As the temperature control setup is quite compact, it is 

possible to observe at the same time the neuron activities through patch-clamp, calcium imaging 

or voltage imaging, allowing the observation of electrophysiological responses to thermal 

stimulation. 

There are clearly limitations to the method: temperature gradients steeper than the 
1

𝑟
 

imposed by heat diffusion are not achievable without using negative heat sources, i.e. local 

cooling. For similar reasons, the temperature can only be driven in limited domains of space, 

and will be imposed by 
1

𝑟
 diffusion, collective effects (i.e. other neighbouring heat sources), and 

boundary conditions outside of the domain. Although limited to such microscale domains, 

overcoming thermal diffusion by pre-engineering thermal sources promises a wide range of 

applications, for which reconfigurable, fast and accurate temperature shaping is necessary. This 

includes not only biological applications (e.g. photoinduced thermal perturbation, metabolism 

stimulation, thermogenetic), but also applications in physics (e.g. phase changes, microscale 

thermal phenomena), microfluidics and chemistry, where thermal gradients are crucial to drive 

e.g. reaction kinetics. 

The results presented in this chapter have been published in: 

Reconfigurable Temperature Control at the Microscale by Light Shaping 

ACS Photonics 2019 6 (2), 422-428, DOI: https://doi.org/10.1021/acsphotonics.8b01354 

https://doi.org/10.1021/acsphotonics.8b01354
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4.1. Introduction 

We have seen in the previous chapter (see Section 3.4.4.1) that temperature variations 

in a material locally change its optical refractive index. A light beam passing through a given 

material thus experiences a wavefront distortion (or phase-shift) which directly depends on the 

temperature distribution within the material. We also have seen that the temperature distribution 

can be precisely shaped at the microscale by pre-compensating heat diffusion. Combining these 

two concepts, it clearly appears that one can precisely engineer an optical wavefront by shaping 

the temperature within a thermo-optical material. 

Based on this principle, we will introduce in this chapter a novel concept of tunable 

micro-optics called SmartLens (SL). The method, developed in close collaboration with the 

group of Romain Quidant (ETH Zurich), exploits electrically-induced thermal phase-shifts at 

the microscale. We will see that the Heat Source Distribution (HSD) generated by engineered 

microresistors can be optimised to produce free-form tunable wavefront distortions. 

Individually or in arrays, the SmartLens technique can generate complex functions based on 

either pure, or a combination of Zernike polynomials, including lenses or aberration correctors 

of electrically-tunable magnitude. This technology could offer a broad range of potential 

applications, especially in microscopy.  

As this project shares very similar physics with the temperature shaping technique and 

is of particular interest to the microscopy of neuronal circuits, I have participated in the 

characterisation and application of this technology in two aspects:  

- characterisation of the wavefront engineering performance: focus tuning and Bessel beam 

generation (published in ref182); 

- new development based on an array of SmartLenses: simultaneous in vivo multiplane 

fluorescence imaging to monitor brain activity in 3D.  

This chapter focuses on the multiplane imaging part, and we present the Bessel beam generation 

in Annex 3.  
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4.2. Background: 3D neuronal imaging 

4.2.1. Monitoring neural activities 

In the last decades, extensive efforts have been made to develop fluorescent reporters of 

neuronal activity to decipher the neural code under optical microscopes. Genetics and protein 

engineering have provided us with a powerful tool — optogenetics. These techniques are 

arguably one of the major breakthroughs of the beginning of the 21st century. Optogenetics not 

only provide access to the optical activation of neurons (as described in Section 1.1.2) but also 

enables converting electrical or chemical activities in neuron into fluorescence signals183, 

opening a new horizon for optical investigation of the brain. Among the advantages of using 

fluorescence compared to electrodes to detect neuron activities, one can mention reduced 

invasiveness, versatility, and the possibility to investigate a large population of neurons at once 

on living animals. Figure 4.1(a) shows an example (image acquired by Giulia Faini, post-doc 

in the group of F. Del Bene) of a wide-field fluorescence image of neuron in living Zebrafish 

larvae expressing the widely use GcaMP, a genetically encoded calcium indicator (GECI). 

These kind of indicators are the most widely used fluorescent proteins that respond to the 

binding of Ca2+. Because an influx of Ca2+ ions always accompanies the generation of action 

potentials in neurons, the calcium indicators can thus monitor neurons’ firing. Besides, there is 

another type of indicator – genetically encoded voltage indicator (GEVI), protein or chemical 

compounds whose fluorescence varies with the electrical activities of the neurons, which is 

even more powerful as it provides faster response time to sub-millisecond. Figure 4.1(b) shows, 

in another case, the comparison of calcium imaging signal and voltage imaging signal at the 

same region of interest, while three action potentials were evoked by direct current injection 

into the cell body. The faster response of GEVI and the faster electrical activity dynamic show 

clear advantages in time resolution, almost comparable to electrical recording.  
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Figure 4.1 (a) Widefield fluorescence imaging of a zebrafish larva brain (Danio rerio) 

expressing Gcamp6s – courtesy of Giulia Faini, Institut de la Vision. Scale bar: 50 µm. (b) (in 

another case) Voltage and calcium time-trace from the same region of interest on a basal 

dendrite of layer 5 cortical pyramidal neuron (adapted from ref184). In this illustrative example, 

three action potentials were evoked by direct current injection into the cell body. 

Optical imaging of neuronal activity using Ca2+ or voltage indicators requires 

developing dedicated optical imaging techniques to detect fluorescent signals from multiple 

targets with cellular resolution deep in living tissue. In particular, neuronal networks have 

complex and wide three-dimensional structures. It’s thus critical to achieve 3D images and 

detect activities over cellular structures located at different depths. Additionally, resolving 

spiking activity requires ms temporal resolution (Figure 4.1(b))..  

In order to tackle these challenges, several methods have been proposed to achieve 

volumetric acquisitions over large areas without compromising the acquisition speed or the 

signal-to-noise ratio (SNR). These methods can be roughly classified into two groups: (i) 

sequential (or scanning) imaging techniques, in which structures at different depths are imaged 

quickly one after the other, systematically requiring a delay between subsequent measurements 

at the same point; (ii) parallel imaging techniques which can image targets at different depths 

simultaneously. We will discuss the two types of approaches in the following two sections, 

giving a few examples in a non-exhaustive list. 

4.2.2. Sequential imaging-based techniques  

In this scheme, most of the instrumental efforts are focused towards the optimization of 

scanning delays. Increasing the frame rate is, of course, useful in itself, but it is even more 

essential in order to avoid missing short transient events occurring between frames. 
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Piezo-controlled objectives and electrically tunable lens (ETL): ): In two-photon 

microscopy or any other laser scanning microscopy, those are the most prevalent Z-scanners in 

combination with galvanometric mirrors (<10 fps) or resonant XY-scanners (>30 fps)185. Piezo-

controlled objectives have refocusing ranges of ~ 400 µm, with step and settling times186 shorter 

than 20 ms. ETLs have a faster settling time (<10 ms)187, but still they enable only a limited 

number of planes if combined with Ca2+ imaging and lack the temporal resolution for 

multiplane voltage imaging.  

Spatial Light Modulator (SLM): SLM is a ubiquitous wavefront shaping technique 

that can be used to obtain fast focus scanning elements as well as scanless parallel elements. 

Among the various wavefront engineering techniques, liquid-crystal spatial light modulators 

(LC-SLMs) are the gold standard for dynamic spatial phase control of wavefronts with a high 

spatial resolution. They can switch focus across > 500 µm while reducing the transition time 

between different illumination depths into < 3 ms by applying different digital phase masks on 

the wavefront188. Moreover, SLMs are compatible with beam multiplexing and adaptive optics 

to correct the aberration from the optical system and sample. However, they are highly 

chromatic since they work in a diffractive regime.  

Ultrasound / TAG Lens: Ultrasound lens, or acoustic gradient index of refraction 

(TAG) lens, is an alternative strategy for high-speed scanning. As opposed to other scanners 

whose frames are taken from xy-planes, each frame of ultrasound/TAG Lens scanners is taken 

along yz-planes with a continuous resonance frequency > 450 kHz in the Z direction. To avoid 

image distortions caused by oscillation instabilities, it needs a phase-locked loop. Eventually, 

the frame rate can typically189 reach ~1 kHz.  

Random access multiphoton (RAMP) microscopy: This method combines 

multiphoton excitation with an inertial free scanning mechanism—acousto-optic 

deflectors(AODs). While using two orthogonal AODs (for X and Y direction), one can steer a 

multiphoton excitation laser beam in an inertia-free manner, enabling the multiphoton 

excitation volume to be laterally repositioned to only locations of interest within the 

microscope’s specimen plane with very short latency190 (~15µs). It dramatically reduces the 

number of voxels that need to be sampled. Recording in vivo neuronal activities in a 

500µm×500µm plane up to depths of ~500µm at ~160Hz was realised; combining with piezo 

axial scanning, 3Hz volume rate is achievable to observe thousands of neurons in large V-FOVs 

(500µm×500µm×500µm) for single-cell resolution in the mouse neocortex191. It can also be 

combined with an acousto-optic lens to perform 3D random-access multiphoton points 

measurements at 35–50 kHz. However, the major limitation of AODs based devices is that they 
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cannot perform full-frame continuous line scanning away from the natural focal plane of the 

objective, which needs to be overcome for in vivo imaging192.  

Light-sheet microscope: Light-sheet microscopy can significantly increase time 

resolution using full-field (scanning-free) imaging along the XY direction. It uses a thin sheet 

of light projected into the sample from the side so that only a 2D section of the sample is 

illuminated, providing, therefore, micrometric optical sectioning. For relatively transparent 

samples that are not limited by light scattering effects, light-sheet microscopy is very efficient 

for the functional mapping of circuits across large volumes in (e.g.) transparent samples such 

as worms, Zebrafish and Drosophila larvae. In fluorophore-labelled samples, the emitted 

fluorescence signal from one plane is imaged along the direction orthogonal to the light sheet, 

and the plane of the light sheet is scanned along the z-direction. The volumetric recording of 

light-sheet scanning can reach >10 vol/s (depending on the size and resolution).176,193,194 

In general, those sequential (scanning) approaches for 3D imaging share the following 

features: 

- They achieve high resolution in 3D imaging, even deep in living tissue when combined with 

2P excitation; 

- However, being sequential approaches, they intrinsically suffer from loss of speed. For 

instance, for the same dwell time per voxel (same acquisition time spent in each location), 

the acquisition rate f is divided by the number of planes Nplane: 𝑓 ∝
1

𝑁𝑝𝑙𝑎𝑛𝑒
. This limit the 

overall speed achievable.  

4.2.3. Parallel imaging-based techniques  

Multiplexed point-scanning microscopy: Instead of increasing the scanning speed, an 

alternative approach is to increase (multiplex) the number of laser beams, a major route towards 

parallel imaging. This can be realised in several ways. For example, temporal multiplexing195 

separates nanosecond pulse trains into several copies, interleaved in intervals longer than the 

fluorescence lifetime. These temporally separated beams scan the different fields of views or 

depths simultaneously. Their fluorescent signals can be distinguished using the time interval 

separation. The number of multiplexed plane is, however, limited by the fluorescence decay 

time. Spatial multiplexing includes lateral approaches that196 use N beams to scan N lateral 

regions simultaneously and N PMTs (multianode PMTs) to detect each emission, respectively. 

It also includes axial approaches that use computational algorithms to extract multiplanes 

signals from overlapped images. Multiple focus spots188,197 or Bessel beam198 is used to scan 
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several planes or entire volume, and 1 PMT is used to record the 2D projection of 3D signals. 

A computational algorithm that considers the prior information of each plane (cell position and 

calcium indicator kinetics) can efficiently untangle the overlapped images into spatiotemporal 

signals of the neuron activities. The essential limitation of this method lies in how well crosstalk 

between different paths and SNR can be optimised. Spatiotemporal code multiplexing199 uses 

a digital mirror device (DMD) to add temporal patterns on separated beams (to scan different 

regions), and a single PMT to collect all signals. A decoding algorithm is applied to extracts 

emission signals that inherited the temporal code. Wavelength multiplexing200 uses multiple 

beams with different wavelengths to image cells labelled with different fluorophores. Multiple 

dichroic mirrors separate the multicolour signals. This can be useful for structural imaging or 

to distinguish activities arising from different cell types expressing two different indicators.  

While multiplexing approaches modulate the excitation PSF, the following approaches 

modulate mainly the detection PSF. 

Extended depth of field microscope: the method consists in enlarging the depth of 

field to image simultaneously objects that are located in different planes. It can be achieved, for 

example, with a computer-generated hologram (CGH, as mentioned earlier in Section 1.1.3), 

used on the fluorescence path. The 2P laser beam is then divided into multiple beamlets, 

precisely illuminating neurons of interest (as many as 100) at different depths. By placing a 

cubic phase mask in the detection path, fluorescence signals from different depths (up to 

hundreds of µm range) are all focused on the camera and recorded simultaneously201–203. This 

method has the disadvantage of completely sacrificing axial resolution. 

Light field microscopy: Computational imaging allows to extract different imaging 

depths from a single acquisition. To this aim, a microlens array is positioned before the camera 

so that richer information encoding the direction and intensity of the emitted light is recorded. 

With all this direction and intensity information, one can reconstruct a 3D image of the sample. 

For example, 20 vol/s light-field in vivo functional imaging of Zebrafish larval brain spanning 

700µm×700µm×200µm is reached using this method204,205.  

 

Compared to the sequential scheme, the parallel schemes have acquisition speed 

independent of the number of planes (Nplane). In particular, camera-based approaches can reach 

high acquisition rates up to kHz. They have promising potentials as they can match the fast 

response of voltage imaging indicators, thus providing higher temporal resolution to observe 

neuron activities. However, there are also challenges in terms of signal to noise ratio, axial 
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sectioning and spatial resolution, especially in dense and scattering samples, since existing 

methods spread the signal over many pixels and/or superimpose it to that of the other planes.  

In the next section, we introduce a new wavefront engineering concept, called 

“SmartLens”, that can be applied for simultaneous multiplane imaging. We will show that this 

technic could provide several advantages over existing technologies, making it a method worth 

studying for brain activity investigation. 
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4.3. Wavefront engineering SmartLenses using thermo-optical effects 

4.3.1. Overview of the SmartLens concept 

Figure 4.2 Principle of the electrically tunable SmartLens device. Electrically controlled 

resistive spirals induce a thermal refractive index modulation in the thermal-responsive 

material. (a) Schematic of a single device design; (b) Calculated 3D distribution of the 

temperature rise caused by electrical heating of the spiral; (c) Calculated refractive index 

variation induced by the temperature rise. 182 

The SmartLens (SL) technology exploits electrically-induced thermal phase shifts at the 

microscale182. Figure 4.2 describes the overall concept. A theoretical model enables the precise 

design of a resistive microwire. Following microfabrication, the device (Figure 4.2(a)) is 

electrically powered to deliver, through Joule effect, the pre-determined temperature landscape 

∆T(x,y,z) into a thermo-responsive polymer (see Figure 4.2(b)). Due to the temperature 

dependence of its refractive index (∆𝑛(𝑥, 𝑦, 𝑧) ≈ [
𝑑𝑛

𝑑𝑇
] ∆𝑇(𝑥, 𝑦, 𝑧) in the linear approximation, 

as discussed in Section 3.4.4.1), the polymer experiences a local refractive index modulation 

(see Figure 4.2(c)) that precisely shapes the incoming light wavefront with the pre-determined 

pattern.  

The SmartLens technology could complement the existing optical shaping toolbox (e.g., 

SLMs206, deformable mirrors207, tunable lens208–217) by offering the following advantages: 

- Polarisation insensitivity and quasi-achromaticity. These are important advantages 

compared to SLMs, especially for applications involving dim fluorescence signal. Indeed, 

since the SLMs involve birefringent index modulation, they can only shape one 

polarisation direction, leading to at least a 50% loss in fluorescence signal206. This feature 

has limited their applicability, especially in imaging. As discussed in ref182, Smartlenses 

can potentially reach transmission >90%. Furthermore, SLMs are highly chromatic as they 

work in a diffractive regime. On the contrary, since SmartLenses work in a refractive 
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regime, they can then be used over a broad wavelength range to (e.g.) manipulate the 

wavefront on both the excitation and fluorescence collection paths, as discussed in Section 

4.4.1. 

- Transmission mode. Unlike most SLMs or deformable mirrors, SmartLenses can operate 

in transmission, allowing compact optical systems that could be integrated into endoscopes 

or miniature microscopes. 

- Freeform wavefront distortion. Deformable tunable lenses have found many applications 

due to their compact design, cost efficiency and transmission operating mode. However, 

since they are usually based on polymer (or liquid) interface deformations, they are limited 

in terms of degrees of freedom, making it hard to achieve freeform optical elements. 

SmartLenses are more versatile in this respect, and the electrical design can be optimised 

to generate complex functions based on either pure or a combination of Zernike 

polynomials, including lenses, aberration correctors and other specific optical functions (as 

an example, see the inverted-axicon in Annex 3). This can be useful to optimise the PSF of 

our fluorescent multiplane microscope or specific beam generation.  

- Cost-effective. SmartLenses are relatively easy to manufacture. Since the method requires 

only one lithographic step, it makes the components relatively inexpensive and easy to 

fabricate. This would facilitate the dissemination of the technique within biology 

laboratories and make easily accessible customised designs.  

- Micrometre size. SmartLenses can be easily arranged in an array because of their 

micrometre size, which brings many potential benefits. For example, as will be discussed 

in the next section, an array of lenses with individually tunable focal lengths can be applied 

to achieve simultaneous focusing in different planes. Interestingly, the small size of the 

lenses potentially enables to integrate them into fibred endoscope systems.  

4.3.2. SmartLenses array for simultaneous multiplane imaging 

In the last years, extensive efforts have been made to develop tunable micro-lenses using 

various approaches, including electromechanical, electromagnetic, optical and thermal 

actuators or stimuli-responsive hydrogels. Still, only very few works proposed to arrange them 

in arrays. While the SmartLens technology belongs to the family of microscale wavefront 

engineering techniques, it can be designed into various optical functions, including lenses 

whose focal lengths change with voltages. Thus, it can also be classified into the tunable micro-

lens family and can be arranged in arrays using classical lithographic methods. 
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Figure 4.3 (a) Array of 5x5 Smartlenses. (b) Principle of 

simultaneous multiplane imaging using a SmartLens Array.  

The main idea of this chapter is to use an array of SmartLenses (see Figure 4.3(a)) to 

perform simultaneous multiplane imaging of brain activities (see Figure 4.3(b)). Indeed, 

while a single SmartLens already offers a powerful way to control a defocus (or other 

aberration), additional control possibilities are offered when several SmartLenses are arranged 

in an array. As a simple example, we recently demonstrated, with R. Quidant’s Group, 

broadband simultaneous multiplane imaging at the macroscale by simply inserting a SmartLens 

array in front of a standard camera182: by tunning each SmartLens independently, the method 

allows the simultaneous refocusing of several macro-objects located at various distances from 

the imaging system. Different planes of interest are monitored at the same time, without 

scanning. Here, we want to adapt this idea in fluorescence microscopy to simultaneously 

monitor several neurons located in different planes (see Figure 4.3(b)).  

4.3.3. SmartLens model and validation 

Before demonstrating the imaging system, a series of characterisations are necessary to 

understand the performances of the SmartLenses. Here we explain the principle of the device, 

the fabrication process and the characterisation through wavefront imaging.  

Electro-thermo-optical model: Similar to the laser pattern determination for 

temperature shaping in Section 3.3.3, the electrical design also requires theoretical modelling. 

Briefly, the model, proposed by Pascal Berto in ref182, considers a spiral electrical geometry 

(Figure 4.3(a)) modelled by an assembly of N circular wire-loops of radius ri. The electrical 

resistance of an infinitesimal wire segment of length 𝑑𝑙 reads: 

 𝑑𝑅(𝑟𝑖, 𝑇) =
𝜌(𝑇). 𝑑𝑙

𝑤(𝑟𝑖). ℎ𝑔
 Equation 4.1 
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where ℎ𝑔 stands for the wire thickness, 𝑤(𝑟𝑖) the wire width and 𝜌(𝑇) the electrical resistivity. 

The electric current flow I through the wire segment locally induces, by Joule effect, a 

dissipated heat power 𝑑𝑃(𝑟𝑖, 𝑇) = 𝑑𝑅(𝑟𝑖, 𝑇). 𝐼2. An incoming plane wave passing through the 

polymer accumulates an optical path difference (OPD) that can be calculated, as described in 

Section 3.4.4.1, by a simple convolution between the dissipated power 𝑃 and the phase Green’s 

function 𝐺𝑂𝑃𝐷:  

 𝑂𝑃𝐷 = 𝑃 ∗ 𝐺𝑂𝑃𝐷 Equation 4.2 

It is worth mentioning that, in practice, the model is a bit more sophisticated and takes into 

account the temperature-dependence of the resistivity.  

To validate this model, a SmartLens element is designed and fabricated based on a 

microfabricated gold wire with a simple electrical geometry: a 200-µm diameter spiral heater 

with 9 regularly spaced loops of constant width w (see Figure 4.4(b)). PDMS was chosen as a 

thermo-responsive polymer due to its high transparency in the visible region, its thermal 

stability at high temperature218, and because it exhibits relatively large refractive index 

variations with temperature219 ([𝑑𝑛 𝑑𝑇] = −4.5 ∙ 10−4 ⁄ 𝐾−1). 

Using this model, the design is optimized using a genetic algorithm: small variations are 

added to each generation of design. The electro-thermo-optical model is then used to determine 

how well this design fits the targeted wavefront. Sub-optimal designs are discarded, and the 

best ones are kept and reinjected in the optimization, in a process akin to Darwin’s natural 

selection rules. 

SmartLens fabrication: This has been performed in R. Quidant’s team at ICFO 

(Barcelona) by Johann Osmond and Laurent Philippet. The samples were produced in one lift-

off step, consisting of UV photolithography with a negative resist (Microchemicals AZ nLOF 

2020) on a soda-lime wafer. Subsequently, Ti (2 nm) / Au (50 nm) were deposited using e-

beam and thermal evaporation, respectively. Lift-off was completed by removing the resist with 

acetone. Finally, the whole samples were covered with h=1 mm thick of PDMS (Sylgard 184).  

SmartLens characterisation: We experimentally measured the thermal OPD using a 

wavefront sensor (SID4, Phasics S.A.) under a custom-built microscope (×10, NA=0.45) in the 

same way that we measured optically-induced thermal OPD in Section 3.4.4.2. The SmartLens 

was illuminated through a Köhler illuminator. To extract the thermal contribution to the OPD, 

we subtracted the reference wavefront measured while the device was off (V = 0) from the 

wavefront measured when heating the device (V ≠ 0). Figure 4.4(b) shows a good agreement 
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between experimental and simulated OPD maps for different applied voltages, thus validating 

the electro-thermo-optical wavefront modelling. Furthermore, from the thermal OPD 

measurement, we extracted the experimental temperature map in the plane of the resistor by 

deconvolution with the OPD Green’s function 𝐺𝑂𝑃𝐷 , as described in Section 3.4.4.3. This 

measurement also ensures that the ceiling temperature (T = 250 °C for PDMS218) is not reached, 

to avoid damage.  

 

Figure 4.4 Validation of model (adapted from ref182) . (a) Setup for characterization. A plane 

wave (Köhler illumination) illuminates the SmartLens that is imaged on a high-resolution 

wavefront sensor. (b) Simulation (top row) and measurement (bottom row) of the temperature 

and OPD maps for V=6V and 12 V.  

The OPD map in Figure 4.4(b) clearly show that the SmartLenses induce a negative 

phase curvature, as expected since the thermo-optical coefficient 
𝑑𝑛

𝑑𝑇
 of PDMS is negative. Thus, 

the simple design we chose (9 regularly spaced loops of constant width) acts as a tunable 

diverging lens.  

4.3.4. Dynamic focal range 

The experimental OPD profile measured in Figure 4.4 (b) can be approximated 136,188,220 

by a parabola  =  𝑓𝑆𝐿 (1 −
𝑥2

2𝑓𝑆𝐿
2 ) in order to estimate the focal length fSL of the Smartlens (see 

Figure 4.5(a) for V=3V). We performed the same measurement on Smartlenses of different 

diameters 𝐷 = 10, 50, 200, and 540 µm, all acting as tunable diverging lenses. Figure 4.5 (b) 

shows, for four spiral sizes, the measured focal length (in log scale) depending on the applied 

voltage V (in Volts). When the SmartLens is off (V = 0 V), the device acts as a plane-parallel 

plate (infinite focal length). Interestingly, the focal length |f| decreases faster with the applied 
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voltage V for smaller heaters, since the radius of curvature of the generated lens is shorter than 

for bigger heaters. For instance, the vergence of the 200 µm diameter spiral reaches fSL=-2.2mm 

for V = 12 V, which corresponds to an f-number |fSL /D|=11. Furthermore, it is noteworthy that 

the accuracy and precision of the phase, and thus of the focal length, are only limited by the 

applied voltage accuracy and precision. 

 

Figure 4.5 Tunability range of SmartLenses for four different sizes. (a) Experimental OPD 

profile (dots) for a resistor diameter D = 540 µm, V = 3 V. The SmartLens element acts as a 

diverging lens, and the measured OPD profile is fitted by a parabola (red line) in order to 

estimate the focal length f. (b) Evolution of focal lengths estimated using the same method for 

various diameters D, plotted against the applied voltage  

When integrated into a microscale array (Figure 4.3(a)), those lenses can be tuned 

independently and allow focusing on different planes simultaneously. In the following section, 

we use a diverging SmartLens array to demonstrate focus tuning and multiplane imaging. 
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4.4. Development of a multiplane imaging fluorescence microscope 

As demonstrated at the macro-scale182, Smartlenses arrays allow the simultaneous 

refocusing of objects located in different planes, a technique that can be applied to 3D 

microscopy. This feature is of particular interest in functional voltage imaging, which allows 

the fluorescence monitoring of the activity of several neurons221,222. However, this method is 

particularly challenging since dim fluorescence signals located in non-deterministic 3D (x, y, 

z) positions need to be imaged at high frame rates (typ. 1 kHz) with a good SNR to detect short 

action potentials (typ. 1ms). In this context, a drawback of sequential z-scanning of the imaging 

plane is the reduction of SNR and temporal resolution222, and some important events can 

possibly be missed. Here, we propose to use a SmartLens array for parallel (simultaneous) 

monitoring of fast transient neuron activity at different depths. This simple strategy will be 

implemented in 1-photon fluorescence microscopy.  

4.4.1. Overview of the setup  

I developed the setup with a master student intern, Reda Berrada. The optical path is 

described in Figure 4.6: a defocusing SmartLens array is inserted in a homemade widefield 

fluorescence microscope to control both the illumination and imaging paths. A blue LED (λ = 

488 nm) excites the fluorescent targets, which are neurons expressing the GcaMP proteins 

(calcium indicators) in Zebrafish Larvae. Those neurons emit an increase of fluorescence during 

electrical activities. To excite only the neurons of interest (and therefore reduce the fluorescent 

background and improve the signal to noise ratio), a Digital Mirror Device (DMD) is placed 

in a conjugated object plane to shape the illumination in the transverse (XY) plane. The 

illumination light is reflected by a dichroic mirror and projected in an intermediate plane after 

the SmartLenses array; it is then projected in the sample by a microscope. The SmartLenses 

(SL) array, located close to an intermediate image plane (I.P) at a distance Δ, will be tuned 

electrically to illuminate neurons located at different depths z. Collected fluorescence light 

crossing the tuned SL on its way back will remain conjugated with the camera. It should be 

noted that the achromaticity and insensitivity to the polarisation of SLs are crucial here. Parallel 

methods37,70,136 (computed holography) based on polarisation-sensitive and chromatic LC-SLM 

would not allow this implementation. It is also important to mention that this setup is relatively 

simple, compact and cost-effective.  
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Figure 4.6 Schematic of the simultaneous multiplane imaging microscopy based on a 

SmartLens array (located close to an intermediate image plane). F1=f4=200mm, f2 = 50mm, f3 

= 125mm, the objective is ×20, water immersed. The dichroic mirror reflects 480 nm excitation 

light. OP: object plane, IP: intermediate image plane 

4.4.2. Modelling and measurement of the axial range 

In this section, we study the focal tuning performances of an individual SmartLens (SL), 

an essential characteristic of the multiplane imaging system. The estimated focal length for SL 

with a diameter of 540 µm is typically around -40 mm when applying a 10V voltage (Figure 

4.5(b)). We placed it in front of an intermediate imaging plane (marked A in Figure 4.7) and 

measure the defocusing ability ΔZ’ (BB’) in function with voltage V and distance Δ (OSLA).  

  

Figure 4.7 Schematic of the SL defocusing setup 

Figure 4.7 shows the setup using diverging SLs as defocusing device. F1-f2 is a telescope 

system that brings the image of a point source (i.e. a single pixel of the DMD) to an intermediate 

plane at position A, allowing space for implementing the SL system. The SL is at plane OSL 

before the intermediate plane A, Δ is the distance between plane OSL and plane A. When no 

voltage is applied to the SL, the point source image is in A. The microscope then images the 
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point source in B. Once a voltage is applied on the SL, it becomes a diverging lens (i.e. with a 

focal length f’SL<0), defocusing the intermediate image from plane A to plane A’ and the image 

from plane B to plane B’. We denote these defocusing values as AA’ = ΔZ and BB’ = ΔZ’. 

Using the Gaussian lens formula, ΔZ writes:  

 𝛥𝑍 = −
𝛥2

𝑓𝑆𝐿
′ + 𝛥

 Equation 4.3 

For the sake of simplicity, we use the approximation of small 𝛥𝑍 and 𝛥𝑍′values. Thus 

the relation between 𝛥𝑍 and 𝛥𝑍′ can be represented by the longitudinal magnification M² of 

the f3-fobjective system: 𝛥𝑍′ = 𝑀2𝛥𝑍  (where 𝑀 =
𝑓𝑇𝐿

𝑀𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓3
,  𝑀𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  the magnification 

indicated on the objective, and 𝑓𝑇𝐿 the focal length of the standard tube lens of the microscope, 

180 mm). Therefore we have:  

 𝛥𝑍′ = −
𝛥2

𝑓𝑆𝐿
′ + 𝛥

(
𝑓𝑇𝐿

𝑀𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓3
)

2

 Equation 4.4 

The value of fSL
′  being negative, it evolves with applied voltage as shown in Figure 4.5: 

the higher the voltage, the smaller the value |𝑓𝑆𝐿
′ |, thus the higher the value of ΔZ′ . From 

Equation 4.4, we can also deduce that ΔZ′ increases with the value of Δ. The term (
fTL

Mobjectivef3
)

2

 

shows that smaller magnification of the objective and focal length of 𝑓3 yield a larger defocus 

ΔZ′. However, Δ cannot increase without limit; it has to be smaller than |fSL
′ | to ensure that the 

image B’ is a real image; it also needs to be small enough so that the effective diameter of the 

SL will not limit the pupil of the system, which means that no light passes outside of the SL 

effective zone (considering a point source on the DMD). Figure 4.8 shows the theoretical and 

experimental relations between 𝑉𝑆𝐿 =
1

fSL
′  and ΔZ′  in chosen experimental conditions, and 

Figure 4.10 shows the PSF of the defocused point source. The experimental defocusing value 

is higher than the theoretical calculation, as shown in Figure 4.8. However, we consider in the 

model that the SmartLens is a thin lens located in the plane of the electrical resistor spirals, with 

a focal length estimated from Figure 4.5(b). In reality, the PDMS layer (Figure 4.2(a)) has a 

thickness of 1mm, which can induce an error in the estimation of the position of the actual 

thermal lens. The effect of the thin PDMS layer is not taken into consideration in the model. 

Also, as the sample that we used here was not yet optimised for aberrations, its focal length 
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values may have been influenced by the spherical aberration. Moreover, the estimation of focal 

lengths is not done for the exact SmartLens that we use here. The exact focal length might differ 

from that measured in Figure 4.5(b) for the same voltage applied. Those could be the reasons 

explaining the lower defocusing values that were measured, as compared to theoretical 

expectations. 

 

Figure 4.8 Theoretical and experimental relations between 𝑉𝑆𝐿  and 𝛥𝑍′  (with 𝛥=8mm, the 

diameter of SL DSL=540µm, f3=125µm, 𝑀𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =20, fTL=180mm). 𝑓𝑆𝐿  is estimated from 

Figure 4.5(b) for each voltage. 

4.4.3. PSF characterization  

In order to estimate the axial and lateral extension of the excitation PSF, a single pixel 

of the DMD (pitch 13.6µm) in the sample plane was imaged with the system described in Figure 

4.9. The total magnification of this system is given by 𝑀𝑡𝑜𝑡 = (𝑓𝑜𝑏𝑗𝑓3) (𝑓2𝑓1)⁄ . It should be 

noted that under these conditions, the geometrical image size of the pixel 

(𝑀𝑡𝑜𝑡 . 𝑠𝑝𝑖𝑥𝑒𝑙=0.247µm, with 𝑠𝑝𝑖𝑥𝑒𝑙 the pixel size) is negligible compared to the size of the PSF 

when the latter is limited by diffraction (typ. λ/2NA=0.6µm, considering NA=0.4). The pixel 

can therefore be considered as a point source. The 3D excitation PSF is then measured using a 

forward collection path consisting of a microscope objective with a large NA, a tube lens and a 

camera. For different voltages applied to the SmartLens, the objective is scanned axially to 

measure the 3D PSF (see Figure 4.9). 
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Figure 4.9 Schematic of the PSF characterisation setup. LED source λ = 488 nm, f1=200mm, 

f2 = 50mm, f3 = 125mm, f4=250mm. The objectives are both ×20, NA=0.40. 

Figure 4.10(c) shows that with this configuration (𝛥=8mm, DSL=540µm, f3=125µm, 

𝑀𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =20, the corresponding tube lens for objective fTL=180mm), we can distinguish 

different planes with around 10µm z-resolution, which evolves with defocusing depth 𝛥Z’. 

With 18V applied to the resistor, we can reach 79µm displacement in the z-direction.  
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Figure 4.10 Defocused point source, w𝑖𝑡ℎ 𝛥 = 8𝑚𝑚 , V = 0V, 3.6V, 9V and 18V. (a) XZ 

projection of the PSF defocused by SL with different voltages. (b) xy-projection of PSF on focus. 

(c) PSF profile along the optical axis (z-direction). (d) PSF profile along the x-direction. The 

excitation source is generated by 1 pixel on the DMD.  
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4.5.  Preliminary results on a Zebrafish 

 

Figure 4.11 6dpf Zebrafish larvae head-embedded in agar gel and free-

tailed, maintained in a solution that supports its life  

The zebrafish larvae (Danio rerio) are almost transparent, which makes them ideal for 

in vivo fluorescence imaging. Here we investigate 6 days post-fertilization (6dpf) larvae, 

genetically encoding calcium (Ca2+) indicator GcaMP6s to measure neuronal activity. When a 

neuron is active and fires an action potential, there is a Ca2+ influx into the cell that is sensed 

by the calcium indicator. This results in an increase in its green fluorescence under blue light 

illumination (λ = 488 nm). Here, the head of the fish is fixed in 2% agar gel so that it stays still 

during the imaging process. The tail of the fish remains free in the liquid so that it can move 

freely and evoke activities in the nerve system. In order to increase neuronal activity and thus 

fluorescence signals, we add in the water the drug Gabazine, which blocks inhibitory receptors 

of the cells and thus enhances activity. The zebrafish larvae sample has been prepared by Giulia 

Faini (post-doc in the group of F. Del Bene at Institut de la vision).  

We placed the SmartLens array at Δ=8 mm in front of the intermediate plane, as shown 

in Figure 4.6. Thus its structure is not visible in the sample image plane. In Figure 4.12(a), we 

can only see some shadows within the dashed circles due to the optical absorption of gold wires 

in excitation and collection. When a 0V voltage is applied to the SLs, no lens effect is activated; 

thus, we only see neurons at the focal plane z = 0. By tuning the voltages individually in chosen 

Smart Lenses, we can bring neurons located at different depths and different region of the field 

of view to the same image plane. For example, in Figure 4.12, 11V applied on SL#1 brings 

neurons at plan z=26µm into focus (positive z means deeper in tissue); 16V applied on SL#2, 
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neurons at z=42µm are on focus. Figure 4.12 (c) shows that neurons from the three different 

planes are all observed on the same image when the appropriate voltages are applied 

individually on different elements.  

 

Figure 4.12 Widefield calcium imaging of neuron activities at different depths in the zebrafish 

larvae. SmartLens elements are tuned with different voltages to focus in different planes. (a) 

0V applied on all elements; (b) 11V applied on element #1; (c) 11V applied on element #1 

and 16V applied on element #2.  
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In the images shown in Figure 4.12, a widefield illumination technique was used. This 

induces background fluorescence signals from the tissue, decreasing the signal to noise ratio 

(SNR). In order to increase the SNR, we can use a selective illumination of zones of interest 

using a digital mirror device (DMD). The selective illumination requires taking at first a long 

image stack, which records all active neurons’ positions; thus, one can address interesting zones 

afterwards. In Figure 4.13(a), widefield imaging outside of the green dashed circle is focused 

on plane z=0, while the zone in the green dashed circle is focused on plane z=36µm using the 

activated SL located here. A long stack acquisition of all the neuron activities is taken with this 

SL element activated (500 images were taken in ~2.5 minutes with a frame rate of 3.278 Hz). 

The stack is processed by counting the maximum of each pixel (Z-projection through ImageJ); 

thus, all the neurons which have fired during the acquisition were recorded, both in the plane z 

=0 (outside the green dashed line circle) and in the plane z=36µm (inside the green dashed line 

circle). Then, we chose several locations of interest, shown by white dashed squares in Figure 

4.13(a). Using the DMD device, calibrated illumination patterns (Figure 4.13(b)) were sent to 

the sample to illuminate only the chosen neurons rather than the entire imaged field. Figure 

4.13(c) shows the resulting patterned illumination: only neurons located in the illuminated 

zones of interest were possible to give fluorescence light when firing.  

 

Figure 4.13 Fluorescence images (calcium imaging) under wide-field illumination and 

selective illumination. (a) 'Z-projection' calculation results of 500 images taken during 2.5 

minutes while the whole field is illuminated to capture fluorescence from all active neurons; 

(b) illumination pattern on the DMD for preselected regions; (c) A fluorescence image taken 

with an integration time of 0.3s under the selective illumination condition reveals the activity 

of the illuminated neurons. 

Under selective illumination, we observed neuron activities in different planes. In Figure 

4.14(a), no SL is activated; thus, the whole image is taken in the plane z = 0. Very few neuron 

activities appear in z = 0, and there is almost no event detected within 2 minutes in zone 1 and 

2. 
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 In Figure 4.14(b), one SL is activated inside the white dashed circle and becomes a 

diverging lens: zones 3 and 4 stays in the plane z = 0 and zones 1 and 2 are brought to a deeper 

plane, z=36 µm. We observe neuron activities in zone 1 and 2 at z = 36 µm. In zones 3 and 4, 

there is no obvious change as we keep looking at the same neurons in the plane z =0, where the 

activity is low. 

This experiment illustrates the possibilities offered by SmartLenses when imaging 

multiple planes, as it offers the possibility of recording neural spiking in multiple planes, some 

of which were previously inaccessible. 

 

Figure 4.14 Recording spontaneous neuron activities through fluorescent imaging. (a) When 

the SL is off, the whole image is taken at z = 0. Only very few spontaneous neurons activities 

are observed at this depth, within zones 3 and 4; no neuron activities are observed inside zone 

1 and 2. (b) As the SL is activated inside an effective zone drawn in white dashes, the focusing 

is locally brought to a deeper plane z = 36µm; very frequent spontaneous neurons activities 

are observed at zone 1 and 2 at this depth; Zones 3 and 4 stay focused at z = 0: a firing rate 

similar to that of the initial situation (a) is observed. The time scale bar corresponds to 20 s; 

the intensity is in arbitrary units.  
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4.6. Discussion  

The results in Figure 4.12 and Figure 4.14 have demonstrated the feasibility of 

multiplane imaging using the SmartLens device. This proof-of-principle experiment also 

suggests several points for further improvements. 

• Setup improvement: The setup shown in Figure 4.6 is not perfectly confocal. The rejection 

of the fluorescence background would be much better if the fluorescence signal would be 

imaged back to the DMD. In this condition, the pixels "on" for selective excitation would 

also serve as a pinhole to reject the fluorescence emitted out of the regions of interest.  

• SmartLens transparency: So far, our work has focused on (50-nm thick) absorbing gold 

electrodes leading to a transmission of the order of 65 %, which is detrimental to both the 

optical excitation and collection. This effect is visible in e.g. Figure 4.13(a), where a 

defocused shadow of the SmartLens array is clearly visible. This needs to be improved to 

maximise the signal-to-noise ratio as well as to decrease the integration time (thus 

increasing the frame rate) of the camera, a critical point in Calcium and Voltage imaging. 

Preliminary tests on conductive oxides (Indium Tin Oxide – ITO) have demonstrated 

transmission and absorption at the desired level as well as reduced diffractive effects (only 

1.5% of the incident light is diffracted for 25-nm thick ITO electrodes) compared to 50-nm 

thick gold electrodes. However, this comes at the price of higher SL activation voltage 

values due to the resistivity of ITO. It is worth mentioning that the use of low absorption 

ITO would also make it possible to work in a 2-photon excitation regime in order to increase 

axial sectioning.  

• Thermal crosstalk: In steady-state, temperature profiles decay with the distance according 

to the steady-state thermal Green’s function. This induces thermal cross-talk between 

neighbouring SmartLenses. When we activate one SL, we also induce aberrations in the 

adjacent SLs. For example, in Figure 4.12(c), neuron images in zone #3 are influenced by 

the activation of the SL located in zone #2. An interesting strategy investigated in 

R.Quidant’s group consists in confining the temperature increase by engineering the 

thermal diffusivity around the resistor. Adding high thermal conductivity heat sinks around 

each SL would help mitigate this cross-talk.  

• Improving the PSF: PSF quality is an important factor for spatial resolution. In SmartLens 

applications, it can be improved by correcting aberrations through numerically engineering 

the OPD profile. To reach the desired OPD, one has to solve the inverse problem and find 
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out the electrical design that gives the proper heat source distribution. In article 182, a genetic 

algorithm is applied to determine the optimal resistor design leading to the targeted 

wavefront shape. The variables for one design are the number of wire circles, the radius and 

the width of each wire circle. The genetic algorithms give stochastic mutation and crossover 

on each parameter and select the optimal using a merit function. After typically 60 iterations 

which take around 30 minutes, one effective design can be obtained. The efficiency of this 

method is discussed in article182, and various wavefront shapes are acquired experimentally. 

In Figure 4.15, several different wavefronts are demonstrated: pure defocus, piston, hollow-

axicon and vertical astigmatism. It shows a high degree of freedom for wavefront control 

and broad potential applications. Annex 3 shows an example using the inverted axicon to 

generate tunable annular and Bessel beam. For our imaging system, where the SmartLens 

is located in an intermediate image plane, the PSF can also be optimised in advance using 

this approach to pre-compensate possible aberrations of the system and obtain an optimal 

PSF. 

 

 

Figure 4.15 Wavefront engineering with SmartLenses - Experimental results obtained on a set 

of four spiral geometries optimised for four different wavefronts: (a) Pure Defocus (diverging 

lens). (b) Flat profile (piston). (c) Conical surface (hollow-axicon). (d) Vertical astigmatism. 

In each case, an optical reflection image of the fabricated spiral design and the corresponding 

experimental temperature and wavefront is shown. 
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4.7. Conclusion  

We have demonstrated in preliminary experiments that a diverging SmartLens can be 

easily applied to simultaneous in vivo multiplane fluorescence imaging, with a local defocusing 

range of around 100µm and depth of field of around 10µm. In the present experiments, the 

heating spirals are made of gold, thus blocking a non-negligible amount of excitation and 

fluorescence light. To acquire enough photons, we are currently limited to 100-300ms frame 

integration times. This frame rate can be improved (i) by using a more powerful excitation 

source and, more importantly, (ii) by using ITO as electrical heating material, since it is almost 

transparent to visible light and causes little diffraction. Thus, one will not see the 'shadows' as 

in Figure 4.13(a) and could expect brighter and clearer images as well as higher frame rates. In 

Figure 4.13 and Figure 4.14, we only activated one of the SmartLenses in the array to observe 

activities in two planes simultaneously as an example. By optimising the optical system 

(increasing the defocusing range) and SL positions, massively multiplane imaging is possible. 

A new set of experiments showing applications of this concept to a biologically relevant 

problem will be carried out in the near future. Furthermore, this miniature device can be 

associated with GRIN (Gradient Index) lenses to achieve endoscopic multiplane imaging; it is 

light enough to be implemented in rodent-wearable microscopes. Last but not least, once the 

frame time is shortened through the optimisation of transmission, the advantages of 

simultaneous multiplane imaging can be fully appreciated when it allows the imaging of 

previously inaccessible millisecond voltage imaging signals in multiple 3D-distributed neurons. 

As shown in Figure 4.1(b), this will contribute to drawing even more interest towards fast in 

vivo observation of neuron activities in brain circuits.  

The results presented in this chapter have been partially published in:  

Tunable and free-form planar optics 

Nature Photonics 2019 13(9), 649–656 

DOI: https://doi.org/10.1038/s41566-019-0486-3 
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Conclusion 

This work started off centred on the evaluation of the temperature rise induced by two-

photon optogenetic stimulation in tissue. This was achieved through luminescence thermometry 

and a thermal model (Chapter 2). These developments led us to extend the scope towards two 

other themes, both also connected to optics, thermal phenomena, and the study of neural 

behaviour: reconfigurable temperature control using thermo-plasmonics (Chapter 3) and 

simultaneous multi-plane imaging using tunable thermo-optical SmartLenses (Chapter 4). The 

temperature control technology provides a platform for studying thermal perturbation on cell 

physiology and metabolism; the multi-plane imaging opens new perspectives for observing 

brain activities in 3D.  

Our luminescence thermometry 'endoscope' was realised by fixing the temperature-

sensitive probe (an Er/Yb glass particle) at the extremity of a double-clad fibre, which guides 

the pumping light to the probe and collects the luminescence light for spectral analysis. This 

system achieved stable and precise temperature measurements deep (~330µm) inside the brain, 

with a 2-millisecond temporal resolution, up to ~15µm spatial resolution and 0.05K temperature 

sensitivity (after 500 averages). There are trade-offs between those parameters.: for example, 

by increasing the integration time of the spectrometer, one can decrease the noise thus increase 

the temperature sensitivity, at the expense of a longer temporal resolution; by decreasing the 

Er/Yb probe size, one can have a finer spatial resolution, however fewer photons are then 

available which increases the noise. Our system is explicitly developed to measure the 

millisecond, microscale and sub-Kelvin temperature rise induced by 2P optogenetics 

stimulation. It can also be applied in many other contexts, for example, to measure the 

temperature rise caused by 2P/3P imaging, and even broader applications, whenever remote, 

minimally invasive temperature sensing is required. Depending on the spatial, temporal and 

temperature sensitivity requirements under different contexts, we can modify the acquisition 

parameters as well as the structure of the fibre probe. For example, the double-clad fibre 

structure can be replaced by a thinner fibre structure, e.g. thinner single-mode fibres or fibres 

with a tapered end, particularly if lower sensitivities are acceptable (since thinner fibres will 

collect luminescence less efficiently). With a thinner probe, one can measure closer to the target 

and cause less damage. One can also modify the optical structure at the fibre end to optimise 

luminescence collection. For example, instead of positioning the probe directly at the centre of 

the cleaved fibre, one could create a spherical lens (with optical glue, lithography, moulding or 
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by melting the fibre tip) and then position the Er/Yb probe at the focal point of the lens. Instead 

of using optical glue, one can also melt the probing material directly on the fibre, which could 

hopefully increase the illuminating efficiency and decrease loss by surface reflection. One can 

even add reflective coating around the probe to send more luminescence light to the fibre. On 

the other hand, now that we have achieved “single-pixel” measurement using one probe situated 

on the core of a double-clad fibre, it would thus be interesting to increase the pixel number 

using an optical fibre bundle and realise a thermal endoscope. For this purpose, finer 

manufacturing would be required to avoid cross-talk. Besides, the luminescence thermometry 

can be applied on various working mode without the use of an optical fibre as long as stable 

calibration is provided.  

Our in vivo temperature measurements have validated a thermal model that simulates 

photo-induced temperature rises in scattering tissues. The temperature probe cannot measure 

inside the heat source itself (a 2P optogenetic holographic stimulation spot) because this will 

influence the light absorption of the tissue and disturb the luminescence of the probe. For this 

reason, measurements were carried out at various lateral positions (66-200µm) away from the 

holographic spot, and we varied the pulse duration and power of the holographic spot. The 

experiments agree well with the thermal model for the chosen scattering coefficients, taken 

from publications. Using the model, we estimated the maximum temperature rises inside the 

holographic spot for typical 2P optogenetic stimulation conditions (12µm-diameter, 1030nm-

wavelength, 0.8-NA, 330µm deep in the brain, power P at the exit of objective and duration 

tpulse):  

tpulse [ms] 
Maximum temperature rise in spot centre [K] 

P = 10 mW P = 50 mW 

10 0.14 0.71 

30 0.20 0.99 

Due to the linearity of thermal phenomena with respect to the excitation power and based on 

these results, we can simulate with a good degree of confidence the temperature rise induced 

by a train of optogenetic stimulation pulses and multiple spots distributed in space. This model 

also allows for calculating the photo-induced thermal effect of 2P/3P scanning imaging. 

Combining the thermal probe and thermal model, we provide a toolbox to evaluate the photo-

induced thermal effect in tissue, which we believe will answer most thermal concerns within 

the optogenetics community. 
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The reconfigurable temperature control combines wavefront engineering and thermo-

plasmonics. It allows to create chosen temperature patterns in a specific domain of space at the 

microscale (down to sub-cell resolution) to e.g. study the influence of localized heating on cells. 

We experimentally demonstrated the feasibility of the procedure by imaging the temperature 

with micrometre resolution using a method based on wavefront-sensing. There are clearly 

limitations to the method: temperature gradients steeper than the 
1

𝑟
 imposed by heat diffusion 

are not achievable without using (currently unavailable) negative heat sources, i.e. local cooling. 

For similar reasons, the temperature can only be controlled in limited domains of space, and 

will be driven by 
1

𝑟
 diffusion, collective effects (i.e. other neighbouring heat sources), and 

boundary conditions outside of this domain. Nevertheless, overcoming thermal diffusion by 

pre-engineering thermal sources promises a wide range of applications, for which 

reconfigurable, fast and accurate temperature shaping is necessary. We showed as proof of 

principle that this technique has the potential to create heat stimulation targeting different parts 

of a neuron. In adherent neuron cells, we could select various zones of interest (spatially and 

temporally) in one neuron or for a group of neurons and create homogeneous temperature rises 

within a limited (~10µm) region above the substrate. As the setup is quite compact and only 

involves a quasi transparent coverslip on the sample side, it is possible to observe at the same 

time the neuronal activities through patch-clamp, calcium imaging or voltage imaging, allowing 

the observation of electrophysiological responses under controlled levels of thermal stimulation. 

This technique also raises interests in thermogenetics, where heat is used to evoke action 

potentials. We can imagine a cultured neuron circuit adherent to the substrate, thermally 

activable by spatiotemporal temperature patterns. The method is reconfigurable so that the 

stimulation pattern can be adjusted very fast during the experiment, making it possible to 

observe and adjust neuron stimulations on a coverslip in real-time.  

Besides application in biology, this approach can also be used in physics (e.g. phase 

changes, microscale thermal phenomena), microfluidics and chemistry, where thermal 

gradients are crucial to drive, e.g., reaction kinetics.  

Temperature control at the microscale can also be exploited to make tunable optical 

devices, which is very useful for 3D imaging. In the last chapter, we have demonstrated that a 

diverging SmartLens, realised through micro-electrical-resistor heating in a thermo-optical 

medium, can be easily applied to simultaneous in vivo multi-plane imaging. A preliminary 

demonstration was obtained by implementing a SmartLenses array into a full-field calcium 

imaging system and has shown great potential. By changing the voltage applied on resistors, 
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one can obtain a local defocusing range of around 100µm with a depth of field of around 10µm. 

This preliminary work still leaves several aspects open to optimization. Here, the tested device 

is made of gold heating spirals, which block a non-negligible amount of excitation and 

fluorescence light. To acquire enough photons, we are currently limited to 100-300ms frame 

integration times. This can be improved using ITO as electrical heating material, since it is 

almost transparent to visible light and causes little diffraction. This solution is being explored, 

and we can thus expect brighter and clearer images with higher frame rates. Also, by optimising 

the optical system and SLs position, massively multi-plane imaging should be possible. A new 

set of experiments showing the applications of this concept to a biologically relevant problem 

will be carried out in the near future. Furthermore, this miniature device can be associated with 

GRIN (Gradient Index) lenses to achieve endoscopic multi-plane imaging, or can be 

implemented in rodent-wearable microscopes. Last but not least, once the frame time is 

shortened through the optimisation of transmission, the advantages of simultaneous multi-plane 

imaging can be fully appreciated, allowing the imaging of previously inaccessible millisecond 

voltage signals in multiple 3D-distributed neurons. We are confident that this will draw even 

more interest towards fast in vivo observation of neuron activities in brain circuits.  
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