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Introduction en français

Cette courte introduction en français a pour but de présenter succinctement les motivations et les objectifs de cette thèse. Elle n'a pas la même importance que celle écrite en anglais se trouvant au Chapitre 1 qui est plus progressive, plus détaillée et plus approfondie. En complément de ce qui suit, nous vous invitons donc à aller regarder la Section 1.1 qui, par ailleurs, a été écrite dans le but de pouvoir être lue sans prérequis mathématiques et présente de nombreuses illustrations ainsi que quelques simulations.

Motivations physiques et modélisation mathématique

Dans de nombreux processus naturels [START_REF] Barabási | Fractal concepts in surface growth[END_REF][START_REF] Krug | Kinetic roughening of growing surfaces in solids far from equilibrium: Growth, morphology and defects[END_REF], on peut observer des surfaces dont le mouvement semble être régi par des phénomènes qui, à l'échelle microscopique, paraissent aléatoires. C'est le cas, par exemple, pour la croissance du manteau neigeux par déposition de ocons de neige, la formation de cristaux, la fonte d'un glaçon dans un verre d'eau ou encore pour l'extension d'une tache de café sur une feuille de papier.

Diérents modèles mathématiques ont été conçus pour essayer de mieux comprendre les mécanismes d'évolution de ces interfaces, d'un point de vue qualitatif. L'idée générale issue de la Physique Statistique est de représenter un système par ses (très) nombreuses composantes microscopiques qui évoluent en suivant transitions élémentaires aléatoires. Ces modèles sont en général des chaînes de Markov souvent en relation avec d'autres modèles de la Physique Statistique comme les modèles de particules en interaction, le modèle de dimères ou encore les pavages aléatoires (voir Figure 1.5).

Par exemple, parmi les modèles de croissance d'interfaces les plus simples gure celui proposé par Eden [START_REF] Eden | A probabilistic model for morphogenesis[END_REF] en 1956 pour décrire l'extension d'une colonie de bactérie par morphogénèse. Dans ce modèle illustré par la Figure 1.1, des cellules sont disposées sur les cases d'un damier de taille inni et, initialement, une cellule se trouve infectée au centre du damier. À chaque étape, une nouvelle cellule est infectée au hasard parmi celles qui sont encore saines et qui sont voisines d'une cellule déjà infectée. On peut alors suivre l'évolution de la surface aléatoire formée par l'ensemble des cellules infectées. Comme en atteste la simulation de la Figure 1.2a, on remarque qu'après un grand nombre d'étape, l'interface observée de loin semble se rapprocher invariablement d'une forme limite déterminée à l'avance qui ressemble à un cercle. Cela peut sembler à première vue surprenant de part la nature aléatoire du modèle microscopique mais constitute en réalité un exemple de la bien connue Loi des Grands Nombres. v vi

Limites hydrodynamiques et uctuations

Un des dés principaux est de démontrer mathématiquement que l'évolution de l'interface microscopique aléatoire converge, après rééchelonnement spatio-temporel, vers le mouvement d'une interface macroscopique déterministe et continue qui est régit par une Équation aux Dérivés Partielles (EDP) non linéaire de type Hamilton-Jacobi :

∂ t u = v(∇u).
(0.0.1)

Les simulations des Figures 1.3 et 1.7 illustrent ce type de convergence qui, dans le contexte, s'appelle limite hydrodynamique. Ensuite, on s'intéresse aux uctuations, c'est à dire à l'écart entre l'interface aléatoire et sa limite hydrodynamique comme illustré à la Figure 1.2b. Il s'agit d'un problème bien plus compliqué que le précédent qui a attiré activement les mathématiciens depuis quelques dizaines d'années. Ce que suggèrent les simulations numériques, c'est que ces uctuations se comportent, à grande échelle, comme la solution de l'équation KPZ, une Équation aux Dérivés Partielles Stochastiques (EDPS) qui porte le nom de ses inventeurs : Kardar, Parisi et Zhang [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF] :

∂ t h = ν Δh + λ ∇h, H ∇h + √ D ξ, (0.0.2)
où ξ est un bruit blanc et H est une matrice symétrique (typiquement la Hessienne de la fonction v apparaissant en (0.0.1)). On conjecture que cette équation jouerait un rôle universel pour décrire les uctuations des modèles de croissance d'interfaces indépendamment de leurs particularités microscopiques, un peu à la manière de la loi Gaussienne pour la moyenne d'expériences aléatoires indépendantes ou du mouvement Brownien pour le mouvement des particules dans un uide. Lorsque le comportement à grande échelle d'un modèle ressemble à celui de la solution de l'équation KPZ, on dit qu'il appartient à la classe d'universalité KPZ. Si de nombreux progrès ont été réalisés depuis les années 2000 pour les modèles d'interfaces unidimensionnelles (voir les revues [START_REF] Corwin | The KardarParisiZhang equation and universality class[END_REF][START_REF] Quastel | Introduction to KPZ. Current developments in mathematics[END_REF] à ce sujet), peu de résultats ont pour l'instant été montrés en dimensions supérieures (voir [START_REF] Toninelli | 2 + 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and anisotropic KPZ growth[END_REF] pour une revue sur des résultats récents en dimension 2). En dimension 2, la conjecture de Wolf [START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF] prévoit deux classes d'universalités : KPZ Isotrope et KPZ Anisotrope selon les symétries du système ou plus précisément de la signature de la matrice H de l'équation (0.0.2). En particulier, Wolf conjecture que les uctuations de l'interface des modèles dans la classe KPZ Isotrope grandissent comme t β avec β 0.24 alors que pour ceux de la classe KPZ Anisotrope, il conjecture qu'elles grandissent comme √ log t.

Objectifs de la thèse

Dans cette thèse, on étudie principalement deux modèles de croissances d'interfaces bidimensionnelles qui appartiennent à la classe d'universalité KPZ Anisotrope et qui seront dénis précisément au Chapitre 2. Le premier a été proposé par Gates et Westcott dans [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] comme modèle de développement de cristal couche par couche (une illustration gure sur la première page de couverture). Plus tard, ce modèle a été étudié vii par Spohn et Prähofer [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF] qui ont notamment calculé la fonction de vitesse v apparaissant dans l'équation (0.0.1) associée au modèle. Le deuxième peut être vu comme une dynamique d'empilement de cubes ou comme une dynamique de particules entrelacées et a été introduit par Borodin et Ferrari dans [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF] et étudié par la suite dans [START_REF] Chhita | A combinatorial identity for the speed of growth in an anisotropic KPZ model[END_REF][START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF][START_REF] Chhita | Speed and uctuations for some driven dimer models[END_REF].

Les résultats que nous avons obtenus (et qui seront présentés en détails au Chapitre 3) sont les suivants. D'abord, nous avons démontré les limites hydrodynamiques des modèles de Gates-Westcott et de Borodin-Ferrari, respectivement dans les Chapitres 4 et 5. Notre résultat, qui est valable en tout temps et pour tout prole initial pour lequel l'équation limite (0.0.1) est bien dénie, fait partie d'un des premiers de ce genre pour des modèles de croissance d'interfaces en dimension 2 et dans le cas d'un Hamiltonian (la fonction v de (0.0.1)) ni convex ni concave, ce qui rend l'étude de l'équation bien plus compliqué essentiellement car la solution n'a pas de formulation variationnelle. Cela generalise le résultat obtenu par Legras et Toninelli dans [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] où la limite hydrodynamique pour le modèle de Borodin-Ferrari a été démontrée seulement soit jusqu'au temps de choc (à partir duquel le gradient de la solution de (0.0.1) devient discontinu) ou sous une hypothèse de convexité de la surface initiale. Par ailleurs, la convergence que nous montrons a lieu dans un sens plus fort (celui de la convergence presque sûre) que les résultats précédents. Notre preuve adapte la méthode introduite par Rezakhanlou dans [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF] dont l'idée sera expliquée dans le Chapitre 3). Ensuite, dans le Chapitre 4 nous avons montré que, conformément à la conjecture de Wolf, les uctuations de l'interface pour le modèle de Gates-Westcott croissent au plus comme √ log t (un résultat analogue pour le modèle de Borodin-Ferrari a été montré dans [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Chhita | Speed and uctuations for some driven dimer models[END_REF]).

Enn, dans le Chapitre 6 nous nous sommes intéressés aux ressemblances entre les deux modèles que nous avons étudiés. Nous avons montré que le modèle de Gates-Westcott est en fait en bijection avec une version continue du modèle de Borodin et Ferrari à condition de changer les coordonnées spatio-temporelles et de généraliser la notion de condition initiale (une première correspondance avait au préalable déjà été obtenue par Borodin et Ferrari dans [START_REF] Borodin | Random tilings and markov chains for interlacing particles[END_REF] mais dans un contexte diérent). Des conséquences et perspective en lien avec cette bijection sont également présentées à la n du chapitre. viii Introduction 1.1 Interface growth models: physical motivations Interfaces appear naturally in Biology and Physics when a system can be decomposed into two (or more) spatial regions characterised by dierent structural properties e.g dierent states of matter (solid, liquid, gas) or magnetisations. The motion of the interface, which is dened as the boundary between regions, may depend on the parameters of the system (temperature, pressure, external magnetic eld...). For instance, what happens to an ice cube dropped in a glass of water or to the ice layer on top of a frozen pond is very dierent whether the temperature is above or is equal to 0 degree Celsius. In the former case, the solid/liquid interface is shrinking until ice totally disappears (the system is out of equilibrium) while in the latter, the interface relaxes until it reaches equilibrium and the two states of matter persist. As often in Statistical Physics models, strong assumptions are made to simplify the extremely complex and chaotic microscopic particle interactions: the main one supposes that the microscopic elementary transitions of a system are random. Think for instance of the growth of a snow layer due to snowakes deposition. The motion of each individual snowake is erratic but we may reasonably assume that they depose randomly on the surface of snow. Similar mechanisms may be found in nature among crystal growth, sedimentation, expansion of a bacterial colony or spin dynamics in ferromagnetic materials.

The focus of the present work is on non-equilibrium random growth models, a large variety of whom have been introduced in the last fty years (see e.g [START_REF] Barabási | Fractal concepts in surface growth[END_REF][START_REF] Krug | Kinetic roughening of growing surfaces in solids far from equilibrium: Growth, morphology and defects[END_REF] for a nice introduction on the topic). One of the main challenges is to explain how discrete stochastic interface models, on the microscopic scale, can describe smooth and deterministic interface motions on the macroscopic scale. This may rst appear paradoxical but is actually an instance of the well-known law of large numbers in mathematics. Remarkably enough, on an intermediate mesoscopic scale, most random growth models are expected to share the same characteristic features in relation with the Kardar-Parisi-Zhang (KPZ) stochastic partial dierential equation [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF]: we speak of universality of uctuations.

In dimension 1 (i.e when the interface is a curve), great mathematical progress has been achieved in this direction, especially since 2000 [START_REF] Corwin | The KardarParisiZhang equation and universality class[END_REF][START_REF] Quastel | Introduction to KPZ. Current developments in mathematics[END_REF]. However, in higher 2 CHAPTER 1. INTRODUCTION dimensions (i.e when the interface is a general surface), much less is known (see e.g [START_REF] Toninelli | 2 + 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and anisotropic KPZ growth[END_REF] for a survey on recent results). Our main contribution is to demonstrate rigorous law of large numbers (called hydrodynamic limit in this context) for two-dimensional models belonging to a specic universality class called Anisotropic KPZ.

Modelling by irreversible Markov chains

In order to explain and make predictions on a Physical system, we need to understand its microscopic rules of evolution. Unfortunately, knowing precisely the microscopic state of a system is almost impossible since it requires to take into account too much information (e.g positions and speeds of a huge number of particles). Consequently, we have to make simplications so as to obtain a model that is easy enough to do calculations but still captures the main features of reality. The approach of statistical Physics is to consider that the microscopic evolution of a system is given by random elementary transitions (that can depend on some external parameters of the system such as pressure, temperature, magnetic eld...). Mathematically speaking, the evolution of the microscopic states is modelled by a Markov chain which is a random process satisfying the so-called Markov property: conditional on the present state, the future states are independent from the past states. Markov chains are widely used in mathematical modelling for two reasons: they are very easy to simulate numerically on a computer (they can be seen as probabilistic automata) and they enjoy a rich theory developed for more than one century.

When the process started from equilibrium looks the same (meaning that its probability law is unchanged) when time is reversed, we say that the Markov chain is reversible and otherwise we say that it is irreversible. The former case is used to model physical systems at equilibrium while the latter describes systems out of equilibrium, which is our situation of interest. Mathematically, reversible Markov chains enjoy nice tools coming from the spectral theory of self-adjoint operators which make them easier to study compared to irreversible Markov chains.

A rst introductory example: the Eden model

As an illustrating example, let us present a very simple model introduced by Murray Eden in 1956 to describe bacterial colony expansion [START_REF] Eden | A probabilistic model for morphogenesis[END_REF]. Imagine that the plane is tiled by squares and that initially, a single square is occupied. Then, at each step, bacteria expand on a randomly chosen perimeter square of the cluster (i.e on a empty square adjacent to an occupied square) as illustrated in Figure 1.1. Let us note C(n) the cluster obtained after n steps. The stochastic process (C(n)) n∈N is indeed a Markov chain since the elementary transition from step n to step n + 1 only depends on the perimeter of C(n) and not on the past states C(0), • • • , C(n-1). Moreover, it is irreversible since the cluster can only grow with time.

Even if C(n) is random and hence diers from one sample to another, we can try to make predictions by studying its probability distribution. Are there shapes that come
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interface growth models. In this context, the assumptions of the CLT are not satised and the study of uctuations appears much more challenging than that of the hydrodynamic limit. What numerical simulations of the Eden model show (see Figure 1.2b) is that the standard deviation perpendicular to the limiting shape is of order t 1/3 where t is the characteristic length of the cluster (typically the radius which is here of order √ n after n steps). Note that the exponent 1/3 is dierent from the exponent 1/2 appearing in the CLT. Moreover, the typical correlation length parallel to the interface is of order t 2/3 . Even if there is still no mathematical proof of these facts for the Eden model and most of other growth models, the characteristic exponents 1/3 and 2/3 are observed in most simulations of one-dimensional interface models and are conjectured to be universal. In addition, under rescaling as in Figure 1.2b, uctuations are conjectured to converge to a stationary stochastic process called Airy process with a marginal distribution called Tracy-Widom (as opposed to the Gaussian distribution coming from the CLT). At the beginning of this century, rigorous results have been proven in the case of one-dimensional "integrable" growth models (that will be introduced in the next section) including the corner growth model [START_REF] Johansson | Shape uctuations and random matrices[END_REF] and the polynuclear growth model [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF]. However, much less is known in higher dimensions...

Towards KPZ universality

The intermediate mesoscopic scale is ne enough to see the random uctuations but is coarse enough to ignore the microscopic details. Therefore, the main features of the uctuations (characteristic exponents, limiting probability distribution...) are expected not to depend on the choice of the model but only on the dimension and on the symmetries of the system. Think for instance of random walks used to describe e.g the motion of a gas particle colliding with other particles. Under general assumptions given by Donsker's theorem, they all behave, on a large scale, like the Brownian motion named after the botanist Robert Brown for his observations about the motion of pollen grains suspended in water. In this sense, Brownian motion is said to be universal. Analogously, the KPZ equation, called after Kardar, Parisi and Zhang was introduced in [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF] as a universal stochastic model of interface growth. Indeed, it is conjectured (and proven in some particular cases but only in dimension 1) that, on a large scale, most growth models behave like the KPZ equation: we speak of KPZ universality class. As we will explain in the next section, there are dierent KPZ universality classes depending on the dimension and on the symmetries of the system.

Scaling limits and (stochastic) partial dierential equations

In this section, we will introduce more probabilistic and analytic notations aiming at presenting the dierent equations that are supposed to describe the large scale motion of interfaces including Hamilton-Jacobi equations for the hydrodynamic limits and the KPZ equation for the uctuations.

h :

Z d × R + → Z Z d d R + (d + 1) +1 h h(•, t) t≥0 h(x, t) t x h(x, t) h x (1 + 1) t ≥ 0 h(•, t) Z Z |h(x+1, t)-h(x, t)|= 1 x ∈ Z t ≥ 0 ∨ ∧ 2 1 1 (h(•, t)) t≥0 1 h(x + 1, 0) -h(x, 0) = -1 x + 1/2 (2 + 1) 1 1 (h(x, t) -h(0, t)) x∈Z d π ρ ρ ∈ R d d (π ρ ) ρ∈R d 0 π ρ π ρ t ∈ R + E πρ [h(x, t) -h(0, t)] = ρ • x, x ∈ Z d . ρ ∈ R d v(ρ) π ρ v(ρ) := ∂ t E πρ [h(0, t) -h(0, 0)] t=0 . π ρ E πρ [h(x, t) -h(0, 0)] = ρ • x + v(ρ) t. πρ 0 t ρ v(ρ) t 1 2 ρ ∈ [-1, 1] 1 (1 + ρ)/2 -1 (1 -ρ)/2
(1ρ)/2 ρ ∨ 0 10 CHAPTER 1. INTRODUCTION right) multiplied by 2 (the elementary height increase after a transition that happens at rate 1). Thus, the speed of growth for the Corner Growth model in dimension 1 is given by

∀ρ ∈ [-1, 1], v(ρ) = 1 -ρ 2 × 1 + ρ 2 × 2 = 1 -ρ 2 2 .
(1.2.4)

The invariant measures for the Corner Growth model are not known in higher dimensions. However, in dimension 2, for a modication of the dynamic where an arbitrary high stack of cubes may be added at each elementary transition (that will be introduced in Section 2.3.2), the invariant measures can be expressed in terms of measures on dimer congurations on the hexagonal lattice.

Hydrodynamic Limits and Hamilton-Jacobi equations

As explained in previous sections, on a macroscopic scale, the properly rescaled interface seems to move deterministically with a local normal speed of expansion that may depend on the orientation of the vector normal to the interface. The goal of this section is to make this scaling precise and to introduce the notion of Hamilton-Jacobi equations that are conjectured to rule the macroscopic motion of the interface.

Ballistic scaling

The ballistic scaling consists in rescaling space and time by the same factor L and thus considering the following rescaled height function dened for all x ∈ R d and t ∈ R + by h L (x, t) := 1 L h( Lx , Lt), (1.2.5)

where • denotes the coordinate-wise oor function. In words, we zoom out on the microscopic interface by a factor L and accelerate time by the same factor in order to observe something non-trivial on this new scale. What we call informally "macroscopic limit" has to be thought of as the limit when L tends to innity of this ballistic scaling. As a side remark, the ballistic scaling diers from the diusive scaling: h L (x, t) = L -1 h( Lx , L 2 t) which appears for reversible interface models such as the one-dimensional corner growth model with symmetric corner ips related to the Symmetric Simple Exclusion Process (SSEP) whose rescaled prole converges to the solution of the heat equation [START_REF] Kipnis | Scaling limits of interacting particle systems[END_REF].

Hydrodynamic limits and Hamilton-Jacobi PDEs

The hydrodynamic limit is often formulated in these terms. Let f : R d → R be any continuous height prole and (h L (•, 0)) L∈N be a sequence of (possibly random) initial height proles that we rescale ballistically as in (1.2.5). If, initially,

h L (x, 0) -→ L→∞ f (x),
(1.2.6) 1.2. SCALING LIMITS AND (S)PDES 11 then, in a sense of convergence of random functions that has to be specied,

h L (x, t) -→ L→∞ u(x, t), (1.2.7)
where u : R d × R + → R is a continuous function which is solution of the following non-linear rst-order Partial Dierential Equation (PDE) of Hamilton-Jacobi type:

∂ t u = v(∇u) if t > 0 u(•, 0) = f if t = 0.
(1.2.8)

In this equation, the function v is the same as the stationary speed of growth dened in (1.2.2) and (-v) is more conventionally called the Hamiltonian. By the assumptions made on the discrete growth models (homogeneous in space and time and vertically translation invariant), the speed function v simply depends on the gradients of u but not on t, x or u.

Remark 1.2.1. Even if equation (1.2.8) gives the local vertical speed of expansion of the macroscopic interface as a function of the inclination its tangent vector, this is equivalent to giving the normal speed of expansion of the interface as a function of the orientation of the normal vector, modulo changing the coordinate system as explained in [KS91, Section 2].

Heuristically, under the ballistic space-time scaling, we expect the height prole to be locally at equilibrium everywhere with a slope parameter ρ corresponding to the macroscopic gradients ∇u of the prole. Given that the average growth rate at stationarity is given by v(ρ), the temporal derivative ∂ t u of the macroscopic prole is thus expected to be equal to v(∇u). This is illustrated in Figure 1. 7 For one-dimensional spaces, Hamilton-Jacobi equations are equivalent (modulo spatial dierentiation/integration of the solution) to transport equations arising e.g in the macroscopic limit of interacting particle systems. In addition, since evolving height functions are often in bijection with interacting particle systems with stationary measures of i.i.d type, the proof of hydrodynamic limits in dimension one is often much easier than in higher dimension. As an example, the hydrodynamic limit for the 1-d Corner Growth model (or equivalently for the TASEP) is a classical result proven e.g in [START_REF] Kipnis | Scaling limits of interacting particle systems[END_REF]. In this case, the Hamiltonian is explicit and is given by (1.2.4). Other examples of hydrodynamic limits beyond the case of explicit stationary measures and in a random environment setting can be found in [START_REF] Bahadoran | Constructive euler hydrodynamics for one-dimensional attractive particle systems[END_REF] for a family of asymmetric 1-d interacting particle systems called misanthrope processes (including TASEP and the zero-range process).

Formation of shocks and viscosity solutions

When dealing with PDEs, one should pay attention to the well-posedness of the problem: what notion of solution should we dene in order to guarantee existence and uniqueness? For the Hamilton-Jacobi equation (1.2.8), under extra regularity assumptions on f and v, it is possible to apply the method of characteristics to obtain a classical solution in a

∇u v(∇u) v f v εΔu ε v ∀(x, t) ∈ R d × R + , u(x, t) = inf y∈R f (y) + t g y -x t ,
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where g is the concave conjugate of -v given by g(x) = inf ρ∈R {ρ • x + v(ρ)}. As we will explain in Section 2.1.3, when the growth models satisfy a microscopic property called "envelope property" or sometimes "strong monotonicity", there exist standard arguments based on sub-additivity to show that the rescaled height function converges to the Hopf-Lax formula of a certain Hamilton-Jacobi equation with a Hamiltonian that is necessarily convex (or concave). For this reason, most hydrodynamic results (in multiple-dimensional spaces) are shown in this setting. Our main contribution in this thesis is to develop techniques introduced by Rezakhanlou [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF] to demonstrate hydrodynamic limits for two-dimensional interface growth models with neither convex nor concave Hamiltonian, for which that standard method fails.

Fluctuations, KPZ equation, Wolf conjecture and Anisotropic KPZ class

This section mainly serves as motivation since this thesis is not directly about the KPZ equation and universality classes but rather about hydrodynamic limits. First of all, we introduce the KPZ equation, a non-linear stochastic partial dierential equation (SPDE) conjectured to capture the large-scale behaviour of uctuations of interface growth models. Then, we state some asymptotic properties of the "solution" depending on the dimension and on the signature of the non-linearity. Finally, we state the Wolf conjecture for the bi-dimensional case and dene the Anisotropic KPZ universality class, which is the class we focus on in this thesis.

The KPZ equation

As explained before, Kardar, Parisi and Zhang introduced in [KPZ86] a non-linear SPDE as a universal model for stochastic interface growth. The KPZ equation can be written as follows:

∂ t h = ν Δh + λ ∇h, H ∇h + √ D ξ, (1.2.10)
where ν, λ and D are positive parameters, H is a symmetric d × d matrix and ξ is a space-time white noise. The Laplacian term and the white noise in the equation stand respectively for the local smoothing mechanism and the random increase of height that are visible on a mesoscopic scale. The non-linear term takes into account the slopedependent growth: the matrix H has to be thought of as the Hessian of the speed of growth v (appearing in the hydrodynamic limit (1.2.8)) evaluated at some slope ρ:

H = D 2 ρ (v). (1.2.11)
Indeed, if we write the gradient of the height function as ρ + ∇h (where ∇h is a lower order uctuating term around the macroscopic slope ρ), a second order Taylor expansion of v around ρ yields

v(ρ + ∇h) v(ρ) + D ρ (v) • ∇h + 1 2 ∇h, H ∇h , (1.2.12) CHAPTER 1. INTRODUCTION
and the rst two terms can be eliminated from the KPZ equation by a linear change of coordinates: h(x, t)

:= h(x -D ρ (v) t, t) -v(ρ) t.
Remark 1.2.2. This change of coordinates corresponds to subtracting the average growth v(ρ) t and following the height function along the characteristic lines of the Hamilton-Jacobi equation (1.2.8) whose equations are of the type

x = x 0 -D ρ (v) t.
Let us point out that, because of the non-linear term and the irregularity of white noise, the KPZ equation is singular and some care must be taken to dene a notion of solution. This a highly challenging question that we won't address: several approaches have been developed recently in this direction such as regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF] and paracontrolled distributions that work, in the case of the KPZ equation only for d = 1 (see e.g [START_REF] Gubinelli | An introduction to singular spdes[END_REF] for a panorama on the topic). Alternatively, the solution can be dened by regularising the noise or by means of the so-called Hopf-Cole transform (when H = Id).

Asymptotic behaviour and relevance/irrelevance of non-linearity

In this section, we ask ourselves about the asymptotic behaviour of the solution to the KPZ equation. Namely, depending on the dimension of space, we may wonder what is the eect of the non-linearity in (1.2.10) when λ is small compared to the case λ = 0 which corresponds to the so-called Edward Wilkinson equation a.k.a stochastic heat equation:

∂ t h = ν Δh + √ D ξ. (1.2.13)
This equation is linear and standard techniques (see e.g the lecture notes of Hairer [START_REF] Hairer | An introduction to stochastic pdes[END_REF]) allow to dene a solution (in the sense of distributions when d ≥ 2). In particular, the probability distribution of the solution is asymptotically Gaussian and its asymptotic correlations can be described by the dimension-dependent characteristic exponents:

α EW = 2 -d 2 , β EW = 2 -d 4 , z EW = 2, (1.2.14)
where α is the roughness exponent (the stationary spatial uctuations are of order x α ), β is the growth exponent (the temporal uctuations are of order t β ) and z is the dynamic exponent (the correlation length at time t is of order t 1/z ) which is, almost by denition, equal to α/β (we refer to [START_REF] Barabási | Fractal concepts in surface growth[END_REF] for an introduction to characteristic exponents). These exponents are also scaling exponents. For instance the Edward Wilkinson equation is exactly invariant under rescaling by ε α EW h(x/ε, t/ε 2 ). Note that dimension two is critical because α EW = β EW = 0 and, in this case, the spatial and temporal uctuations actually grow logarithmically. Models behaving asymptotically like the solution of (1.2.13) belong to the Edward Wilkinson universality class.

If the large-scale features of the solution to the KPZ equation with λ > 0 is dierent from that with λ = 0 (i.e when the KPZ and EW universality classes are distinct), we say that the non-linearity is relevant and otherwise, we say that the non-linearity is irrelevant. Let us remark that, in addition to the equation z = α/β, in the case where the non-linearity is relevant, the KPZ exponents are related by α KP Z +z KP Z = 2 (in contrast with z EW = 2) and thus knowing one exponent is enough to recover all the others. In

SCALING LIMITS AND (S)PDES

15 what follows, we present some known results about the KPZ equation depending on the dimension.

If d = 1, the properties of the solution to the KPZ equation (exact marginal distribution, asymptotics, stationary measure...) are now well-known. In particular, the characteristic exponents are given by

α KP Z = 1 2 , β KP Z = 1 3 , z KP Z = 3 2 , (1.2.15)
and the asymptotic marginal distribution of h i.e the distribution of h(x, t) normalised by t 1/3 for xed x and large t is of Tracy-Widom type (depending on the geometry of the initial condition). Since these exponents are dierent from those of (1.2.14) for d = 1, the non-linearity is relevant.

Let us remark that most properties of the KPZ solution (such as the exact onepoint distribution) were originally obtained thanks to the study of microscopic growth models and for two reasons. First of all, Bertini and Giacomin showed in [START_REF] Bertini | Stochastic burgers and kpz equations from particle systems[END_REF] that a weakly asymmetric version of the corner growth model converges to the Hopf-Cole solution of the KPZ equation. Then, since 2000, spectacular progress has been made about the uctuations of some growth models such as the (partially asymmetric) corner growth model or the polynuclear growth model (showing, in particular, that they indeed share the universal KPZ exponents). We refer to [START_REF] Corwin | The KardarParisiZhang equation and universality class[END_REF][START_REF] Quastel | Introduction to KPZ. Current developments in mathematics[END_REF] for an overview on results around the 1-d KPZ equation and universality class. In the original paper of Wolf [START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF], it was conjectured that, in the latter case, the non-linearity is irrelevant i.e the APKZ and Edward-Wilkinson universality classes coincide. However, the conjecture is not precise enough to claim that a result as strong as in dimension 3 should hold. On the contrary, in the recent work [START_REF] Cannizzaro | The stationary akpz equation: logarithmic superdiusivity[END_REF] of Cannizzaro, Erhard and Toninelli, the authors showed that logarithmic corrections have to be added to the diusive scaling in order to obtain a non-trivial limit. More precisely, they showed that the stationary solution to the mollied AKPZ equation (with H the diagonal matrix with entries +1 and -1) is superdiusive and that the diusion coecient diverges like a power of log t. Since, for the EW equation, the diusion coecient is independent of t, this suggests a dierent large-scale behaviour between the AKPZ and the EW equations, contrarily to Wolf's conjecture. In any case, as remarked by the authors, their conclusion is not in contradiction with the asymptotic logarithmic growth of the height variance at a single point which could be a feature shared by the equations with or without non linearity.

Goals and organisation of the Thesis

While one-dimensional growth models in the KPZ universality class are now quite well understood, supported by many results about hydrodynamic limits and uctuations shown in the last decades, much less is known in higher dimensions. The class of bi-dimensional growth models in the AKPZ universality class has enjoyed recent progress in the last few years (see [START_REF] Toninelli | 2 + 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and anisotropic KPZ growth[END_REF] for a survey and Chapters 2 and 3 for more context). One of the main reasons for this progress in the AKPZ class comes from the existence of explicit stationary measures [PS97, CF17, Ton17, CT16, CFT19] while none of those are known for models in the KPZ class in dimension 2 or higher. Let us briey present the main results of this thesis (we refer to Chapter 3 for precise statements).

GOALS AND ORGANISATION OF THE THESIS

Informal description of the main results of the thesis

In this thesis, we focus on two bi-dimensional models in the AKPZ class: the Gates-Westcott model and the Borodin-Ferrari dynamic. Both of these models have been studied before and more context will be given in Chapters 2 and 3. The former is a layer by layer crystal growth model introduced in [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] generalising the one-dimensional Polynuclear Growth model and whose stationary measures have been previously studied by Spohn and Prahofer in [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF]. The latter is an interlaced particles dynamic introduced by Borodin and Ferrari in [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF] and generalised in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF] which can be seen as a version of the bi-dimensional Corner Growth model (introduced in Section 1.2.1) where several adjacent cubes in a same stack can be removed simultaneously. The invariant measures have been studied by Toninelli in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF]. The main results of this thesis can be summed up as follows:

Hydrodynamic limit for the Gates-Westcott model and Borodin-Ferrari dynamics.

In the latter case, our result generalises that obtained by Legras and Toninelli in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] where the hydrodynamic limit was shown only either up to the rst time where the solution develops shocks or for convex initial height proles. For both models, we obtained the convergence of the rescaled height prole to the viscosity solution of the corresponding Hamilton-Jacobi equation at all time, for all initial prole for which the hydrodynamic limit makes sense and in a strong almostsure sense of convergence (whereas all previous results hold for the convergence in probability). As explained before, this cannot be shown thanks to classical envelope property and sub-additive arguments because we are dealing with non-convex Hamiltonian, by denition of the AKPZ class. Instead, we adapt an approach based on semi-groups introduced by Rezakhanlou in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF] (the main ideas will be explained in Chapter 3).

Logarithmic upper bound for the variance of the temporal growth for the stationary Gates-Westcott model, in agreement with Wolf's conjecture (the corresponding upper bound for the Borodin-Ferrari dynamic was obtained in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Chhita | Speed and uctuations for some driven dimer models[END_REF]).

A new bijection between the Gates-Westcott model and a continuous version of the Borodin-Ferrari dynamic. We show that the Gates-Westcott model is in bijection with a continuous space limit of the Borodin-Ferrari dynamic modulo a rotation of the coordinates (and of the boundary condition). Our approach diers from that of Borodin and Ferrari who showed in [START_REF] Borodin | Random tilings and markov chains for interlacing particles[END_REF] (only for a specic initial condition) that a discrete time version of their dynamic with parallel update was in bijection with the domino shuing algorithm for the aztec diamond (which was known to be in bijection with the discrete Gates-Westcott model in a droplet geometry [START_REF] Prähofer | Scale invariance of the png droplet and the airy process[END_REF][START_REF] Johansson | Non-intersecting paths, random tilings and random matrices[END_REF]). Finally, we show a hydrodynamic limit for the Gates-Westcott model with generalised boundary conditions and, as a corollary, a hydrodynamic limit for the continuous limit of the Borodin-Ferrari dynamic.

CHAPTER 1. INTRODUCTION 1.3.2 Organisation of the thesis

In Chapter 2, the goal is to dene the Gates-Westcott and Borodin-Ferrari models. In order to better understand these models, we rst introduce their one-dimensional analogues: the Polynuclear Growth model and the Hammersley process. We also show how we can derive a hydrodynamic limit for models with convex Hamiltonian (such as the Polynuclear Growth model and its higher dimensional isotropic generalisations) by using general arguments based on the so-called "envelope property" and on sub-additive arguments.

In Chapter 3, rigorous statements of our main results are stated. We also explain the idea of the proofs, the novelty w.r.t previous methods and give some perspectives for future works.

In Chapter 4, we prove the hydrodynamic limit for the Gates-Westcott model and the logarithmic upper bound on the variance of the height function. This is the content of the article [START_REF] Lerouvillois | Hydrodynamic limit of a (2 + 1)-dimensional crystal growth model in the anisotropic kpz class[END_REF], published on 8 July 2020 in Electronic Journal of Probability.

In Chapter 5, based on a joint work with Fabio Toninelli [START_REF] Lerouvillois | Hydrodynamic limit for a 2d interlaced particle process[END_REF], we show how to extend the hydrodynamic limit result of [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] to all time (namely after the time of shocks) and to general initial proles.

In Chapter 6, we give a precise graphical construction of the Gates-Westcott model with generalised boundary conditions. Then, we show how it yields a bijection between the Gates-Westcott model and a continuous limit of Borodin-Ferrari dynamics. Finally, we show a hydrodynamic limit for this model with generalised boundary conditions, give some corollaries and perspectives.

Chapter 2

Presentation of the models

The main purpose of this Chapter is to introduce the models of interest of this thesis: the Gates-Westcott and Borodin-Ferrari dynamics. Before that, it is useful to introduce their one-dimensional analogues: the Polynuclear Growth model (a.k.a PNG) and the Hammersley process. We also make a little detour to present the envelope property mentioned in Chapter 1 and explain how it can be used together with sub-additive arguments to obtain a hydrodynamic limit with convex (or concave) Hamiltonian, as it is the case for the PNG and its isotropic multi-dimensional generalisations. Let us stress once more that this method doesn't apply to anisotropic models such as the Gates-Westcott and Borodin-Ferrari models and that our results rely on a dierent approach that will be explained in Chapter 3.

Models in dimension 1

Even if the corner growth model (introduced briey in Chapter 1) is maybe the most classical one-dimensional interface growth model, we rather focus on the PNG and on the Hammersley process that serve as preliminary examples before introducing their 2-d analogues in Section 2.3.

The Polynuclear Growth Model

The PNG can be seen as a simple one-dimensional model that can describe e.g the growth of a crystal in contact with its gaseous phase. The pressure is higher than gas-solid equilibrium pressure so that atoms deposition on the surface of the crystal dominates evaporation (that will be neglected). The crystal is modelled by a stack of microscopic terraces. For energetic reasons, atom deposition is faster on the kinks of the terraces than away from their edges. For this reason, in the PNG model, the terraces expand laterally at constant speed while deposition away from the edges happens at rare random locations. In Sections 2.2 and 2.3, we will see bidimensional generalisations of the PNG that are physically more realistic.

CHAPTER 2. PRESENTATION OF THE MODELS

Let us start by dening the space of height functions for the PNG before presenting the dynamic.

Height functions

In this model, the interface is described by a discrete height function h : R → Z which is piece-wise constant with a locally nite number of ±1-valued jumps as in Figure 2.1. By convention, we impose that the values at discontinuity points make the function upper semi-continuous. Therefore, the discontinuities can be of three dierent types:

kink : h(x -) = h(x) = h(x + ) + 1 antikink : h(x -) + 1 = h(x) = h(x + ) kink-antikink pair : h(x -) + 1 = h(x) = h(x + ) + 1.
The kinks and antikinks dene the variations of the height function. Therefore, the height function is entirely determined by the height at the origin and the position of the kinks/antikinks. Notice that the interface here is not discrete but semi-discrete since the height function is dened from R into Z.

Dynamic

The evolution of the height prole of the PNG relies on three mechanisms: the rst two are deterministic while the last one is random.

Lateral Expansion : each terrace expands laterally at speed 1, i.e. each kink (resp. antikink) of the height function is moved at speed +1 (resp -1).

Annihilation : whenever two terraces meet, they merge, i.e. whenever a kink and an antikink meet, they annihilate each other.

Creation : At uniformly random space-time positions (x, t), a new elementary terrace (i.e an antikink/kink pair) is created at position x and at time t which means that the height function at x increases by 1 at time t: h(x, t) = h(x, t -) + 1.

The locations where creations occur is given by a Poisson Point Process (PPP) of intensity 2 on R 2 which is a probabilistic object that samples points uniformly at random in the plane with an average density equal to 2.

Remark 2.1.1. The intensity of the PPP could be any other positive real number but the constant 2 is a standard choice (made to simplify calculations). Likewise, the speed of lateral expansion could be any other positive number but we don't lose generality by xing it to 1 modulo a time rescaling.

Remark 2.1.2. Since the set of discontinuities of the height function is countable, with probability one, creations never happen on an terrace edge and thus, at any time, the height function is piece-wise constant with ±1-valued jumps.
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Hammersley process and higher dimensional generalisations [START_REF] Seppäläinen | A growth model in multiple dimensions and the height of a random partial order[END_REF], ballistic deposition [START_REF] Seppäläinen | Strong law of large numbers for the interface in ballistic deposition[END_REF] and a wider class of models [START_REF] Rezakhanlou | Continuum limit for some growth models[END_REF] (although the Hamiltonian is never explicit apart from one-dimensional cases with explicit invariant measures). This method can also be adapted to the Eden model introduced in Chapter 1 even though the interface is not given by a height function (the hydrodynamic limit makes sense by seeing the interface as the level line of a function that satises, in the limit, a Hamilton-Jacobi equation).

The envelope property

A very useful property to compare microscopic height proles started from dierent initial conditions is the monotonicity a.k.a attractiveness property. This means that, under the natural coupling that consists in using the same Poisson Point Process, the usual partial order between height functions is preserved by the dynamic. For instance, if we note (x, t) → h(x, t; ϕ, ω) the height function following the PNG dynamic started from the initial height prole ϕ and with realisation of the PPP ω, then, for any t ≥ 0,

ϕ 1 ≤ ϕ 2 ⇒ h(•, t; ϕ 1 , ω) ≤ h(•, t; ϕ 2 , ω).
(2.1.2) The envelope property is a stronger property sometimes called strong monotonicity. It says that for any family of initial height functions (ϕ i ) i∈I such that sup i∈I ϕ i is also an admissible height function, for any t ≥ 0,

h(•, t; sup i∈I ϕ i , ω) = sup i∈I h(•, t; ϕ i , ω).
(2.1.3) It can be shown that the PNG satises this property by using only the denition of the dynamic. Moreover, there exists a family of initial conditions called droplet or narrow-wedge that are minimal in some sense and such that any height function can be expressed as the superior envelope of such functions. Indeed, if we note ϕ drop the height function that takes value 0 at the origin and -∞ elsewhere, then we have that for any initial height function ϕ and any x ∈ R,

ϕ(x) = sup y∈R {ϕ(y) + ϕ drop (x -y)}.
(2.1.4)

The droplet initial condition can be seen as a degenerate height function where there is only one elementary terrace located at 0 at time 0 that expands laterally at speed one and where the creations can only occur above this primitive terrace (see Figure 2.2a). This is equivalent to restricting the PPP to the set of points (x, t) such that |x|≤ t. If we call h drop the height function following the PNG dynamic started from ϕ drop , then, by (2.1.3), (2.1.4) and vertical translation invariance of the model, the height function can be expressed at all time t ≥ 0 by the following microscopic variational formula:

h(•, t; ϕ, ω) = sup y∈[x-t,x+t] ϕ(y) + h drop (x -y, t; θ y ω) ,
(2.1.5)

where θ y ω is the spatial translation of ω by -y. Notice that the supremum can be restricted to the interval

[x -t, x + t] because h drop (x, t) = -∞ if |x|> t. L = 100 1 +∞ R + x → |x| 1 (x, t) ∈ R × R + n, m ∈ N h ((n + m)x, (n + m)t; ω) ≥ h (mx, mt; ω) + h (nx, nt; θ m (x,t) ω), θ m (x,t) ω ω -(x, t) m -(mx, mt) θ (x,t) ω L -1 h (Lx, Lt; ω) (x, t)
mogeneous and concave. By some continuity arguments, one can extend the limit to any real points and show that there exists a concave function g : R → R such that, ω-a.s, for any (x, t),

1 L h drop (Lx, Lt; ω) -→ L→∞ t g(x/t).
(2.1.7)

The convergence of the ballistically rescaled PNG droplet to the limit shape given by the function g is illustrated numerically in Figure 2.2b.

Existence of hydrodynamic limits

The hydrodynamic limit can be easily obtained by taking the limit (thanks to the superadditive ergodic theorem) in the microscopic variational formula given by the envelope property. Doing so, one obtains a macroscopic variational formula which is exactly the Hopf-Lax formula (reminded in Section 1.2.3) associated to some Hamilton-Jacobi with Hamiltonian related to the speed of growth of stationary states (if they are known).

The hydrodynamic limit for the PNG can be formulated as follows. Assume that initially, we are given a sequence of (possibly random) initial height proles (ϕ L ) L∈N whose scaling limit converges (say point-wise and in probability) to a continuous function f : R → R. After rescaling ballistically the variational formula (2.1.5), we have for all x ∈ R and t ≥ 0,

1 L h(Lx, Lt; ϕ L , ω) = sup y∈[x-t,x+t] 1 L ϕ L (Ly) + 1 L h drop (L(x -y), Lt; θ Ly ω) (2.1.8) -→ L→∞ sup y∈[x-t,x+t] f (y) + t g x -y t ,
(2.1.9)

where the last limit holds in probability w.r.t the law of the PPP and can be shown thanks to (2.1.7) and some continuity and compactness arguments (to interchange the limit and the supremum). As explained in Section 1.2.3 the limit obtained is the Hopf-Lax solution to the Hamilton-Jacobi

∂ t u = -g * (∂ x u) if t > 0 u(•, 0) = f if t = 0 (2.1.10)
where g * is the concave conjugate of g given by g * (ρ) = inf x∈R {ρ • xg(x)}.

Explicit expression of the Hamiltonian thanks to stationary states

Finally, one can obtain an explicit expression of the Hamiltonian and the limit shape g if one knows the stationary measures. Here, the PNG stationary measure of slope ρ ∈ R is the law of a bi-lateral random walk that jumps by +1 at rate ρ + and by -1 at rate ρ -with ρ + , ρ -> 0 satisfying that ρ +ρ -= ρ and ρ + ρ -= 1 (so that the rate of annihilations and creations are balanced as explained in [Prä03, Chapter 3]). By denition of the PNG dynamic, the speed of growth is given by the sum of the stationary densities of kinks and antikinks i.e v(ρ) = ρ + + ρ -= 4 + ρ 2 , as a elementary computation shows. Since the hydrodynamic limit must hold in particular for linear macroscopic initial proles (that can be approximated microscopically by stationary height proles whose average speed of growth is known), one deduces that

∀ρ ∈ R, -g * (ρ) = v(ρ) = 4 + ρ 2 , (2.1.11)
and then, by concave duality, we can recover the equation of the limit shape of the droplet initial condition given by the function g in (2.1.7)

∀x ∈ R, g(x) = (g * ) * (x) = 2 1 -x 2 if |x|≤ 1 -∞ otherwise.
(2.1.12)

Let us stress once again that in higher dimensions, due to a lack of explicit invariant measures, there is no known hydrodynamic limit with explicit Hamiltonians apart from some models in the AKPZ class for which we need to use an alternative method that will be explained in details in this thesis.

Link with Ulam's problem and context

In this section, we explain briey how the PNG and the Hammersley process are related to Ulam's problem that consists in estimating the longest increasing subsequence of a random permutation. For this, we introduce the graphical constructions of these models which will be used in Chapters 4, 5 and even more in Chapter 6. We also take a little detour to introduce a bit of context about Ulam's problem and the progress realised in the last 50 years.

Graphical construction and link of the PNG and Hammersley processes

In order to see the link with increasing sequences of permutations, it is useful to introduce the graphical construction of the PNG (and similarly for the Hammersley process).

The idea is to draw the sequence of space-time level lines of the PNG height function given the initial height function and the realisation of the underlying Poisson Point Process. These level lines are given by the space-time trajectories of kinks and antikinks, which are straight lines oriented respectively North-Eastward and North-Westward (since they move at speed ±1). Because of the annihilation rule, whenever two such straight lines touch each other, they stop. Finally, due to the creation rule, we draw two straight lines going North-East and North-West starting from each Poisson point. This gives a well-dened graphical procedure to obtain the level lines of the PNG as shown in Figure 2.3a.

Then, the height dierence h(x, t)h(y, s) with (y, s) in the backward light cone of (x, t) i.e |y -x|≤ ts, is equal to the number of level lines crossed by a light-path starting from (y, s) and ending at (x, t) i.e a continuous path γ : [0, 1] → R 2 such that for any a ≤ b, γ(b) is in the forward light cone of γ(a). Notice that this light-path has to stay in the light-rectangle R (y,s),(x,t) which we dene as the intersection of the backward light cone of (x, t) with the forward light-cone of (y, s). It is easy to see that

R (y,s),(x,t) h(x, t) -h(y, s) L ↑ (ω ∩ R (y,s),(x,t) ) ω R (y,s),(x,t) h(x, t) h(x, t) = sup y∈[x-t,x+t] h(y, 0) + L ↑ (ω ∩ R (y,s),(x,t) ) , π/4 (x, t) (y, 0) R (y,s),(x,t) h (x, t) = L ↑ (ω ∩ R (0,0),(x,t) ). (x 1 , t 1 ), • • • , (x n , t n ) R (0,0),(x,t) n := n(ω, x, t) 2 Leb(R (0,0),(x,t) ) = t 2 -x 2 (x i , t i ) = (x i + t i , t i -x i ) L ↑ (ω ∩ R (0,0),(x,t) ) is equal to the maximal length of a sequence i 1 , • • • , i k such that x i 1 < • • • < x i k and t i 1 < • • • < t i k ,
which only depends on the relative order of the x i and of the t i . If we note σ, the unique permutation of 1, n such that the x 1 , • • • , x n are in the same relative order as the t σ(1) , • • • , t σ(n) , then, we have [START_REF] John | A few seedlings of research[END_REF] who showed that n -1/2 L n indeed converges (in probability) to a constant c ∈ [1, e] where e is Euler's constant. In 1977, it was proven by Logan and Shepp [START_REF] Benjamin | A variational problem for random young tableaux[END_REF] and independently by Vershik and Kerov [VK77,VK85] that c = 2. Aldous and Diaconis gave an alternative proof in [START_REF] Aldous | Hammersley's interacting particle process and longest increasing subsequences[END_REF] by dening the Hammersley process that they named after the particle process introduced by Hammersley in [START_REF] John | A few seedlings of research[END_REF]. Notice that this can also be proven thanks to the hydrodynamic limit of the PNG discussed in Section 2.1.3 which yields, as a corollary, the asymptotic shape of the droplet: h drop (Lx, Lt) ∼ 2L √ t 2x 2 (by (2.1.7) and (2.1.12)) which can be related to L n by (2.1.15) with n ≈ L 2 (t 2x 2 ). It took longer to nd the order of the uctuations of L n . In 1999, Baik, Deift and Johansson proved in [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] that the uctuations where of order n 1/6 and they also found out that the rescaled asymptotic distribution converges to a Tracy-Widom random variable as for the largest eigenvalue of a GUE n × n random matrix; at that time, this appeared surprising and remarkable.

h drop (x, t) = L(σ) := max{k, ∃i 1 < • • • < i k , σ(i 1 ) < • • • < σ(i k )}, ( 2 
As a consequence, by (2.1.15), the uctuations of the PNG droplet at time t is of order t 1/3 and the rescaled asymptotic distribution is a GUE Tracy-Widom distribution, as expected for models in the one-dimensional KPZ universality class. The asymptotic distribution of uctuations starting from other geometries such as the at initial condition i.e h(x, 0) = 0 for all x and the stationary initial condition are dierent from the droplet case (GOE Tracy-Widom in the former case) and were obtained soon after by Baik and Rains respectively in [START_REF] Baik | Symmetrized random permutations[END_REF][START_REF] Baik | The asymptotics of monotone subsequences of involutions[END_REF] and in [START_REF] Baik | Limiting distributions for a polynuclear growth model with external sources[END_REF]. Moreover, the asymptotic spatial joint distribution of the PNG (properly rescaled according to the KPZ characteristic exponents) in the droplet and at geometries were obtained respectively by Spohn and Prähofer in [START_REF] Prähofer | Scale invariance of the png droplet and the airy process[END_REF] and by Ferrari in [START_REF] Ferrari | Polynuclear growth on a at substrate and edge scaling of goe eigenvalues[END_REF]. The associated limiting processes are respectively Airy 2 and Airy 1 processes which are one dimensional stationary stochastic processes with GUE (resp. GOE) Tracy-Widom marginal distribution. This is also typical for the KPZ universality class. We refer to [START_REF] Ferrari | One-dimensional stochastic growth and Gaussian ensembles of random matrices[END_REF] for a review on the PNG and related models.
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Anisotropic models in dimension two

The purpose of this section is to introduce the main two models of interest in this thesis i.e the Gates-Westcott model and the Borodin-Ferrari dynamic, for which we will show hydrodynamic limits. These models have a slope-dependent speed of growth that is neither concave nor convex and thus, as explained before, there is no hope to apply the general arguments based on the envelope property and sub-additivity presented in Section 2.1.3. However, contrarily to their isotropic analogues, we can take advantage of the good understanding of the invariant measures of these two models.

The Gates-Westcott model

The Gates-Westcott model can be seen as a bidimensional generalisation of the Polynuclear Growth model seen in Section 2.1.1. It has been introduced originally by Gates and Westcott in [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] as a layer by layer crystal growth model in dimension 2; the rst with explicit stationary distributions. This model was studied soon after by Spohn and Prähofer in [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF] who completed the description of stationary states and computed the speed of growth and the asymptotic spatial variance.

Height function and dynamic

In this model representing the evolution of a slice of a crystal out of equilibrium, the interface is described by a discrete height function h : R × Z → Z such that, for each y ∈ Z, x → h(x, y) is an admissible PNG height function i.e it is piece-wise constant with locally nite ±1-valued jumps and upper semi-continuous, the following slope constraint along y is satised : for any (x, y) ∈ R × Z, we have h(x, y + 1)h(x, y) ∈ {-1, 0}.

(2.3.1) As for the PNG, the discontinuities along x can be of three types: kink, antikink or kink-antikink pair (see Section 2.1.1). The interface described by such height function looks like a stack of terraces seen from above, as shown in Figure 2.5.

Then, the Gates-Westcott dynamic can be informally expressed as follows. For all line y ∈ Z, the one-dimensional height functions x → h(x, y) follow simultaneously the PNG dynamic with creations accepted only if they preserve the slope constraint given by (2.3.1). This leads to non-trivial correlations along y that makes the model much more complicated than the PNG. More precisely, the dynamic is given by three rules: the rst two are deterministic while the last one is random.

Lateral Expansion : each terrace expands laterally at speed 1, i.e. each kink (resp. antikink) of the height function moves at speed +1 (resp -1) along the x direction.

Annihilation : whenever two terraces meet, they merge, i.e. whenever a kink and an antikink meet, they annihilate each other.

(x, y, t) 2 R × Z × R + h (x, y) t t (x, y) h(x, y -1, t -) -h(x, y, t -) = 1 h(x, y, t -) -h(x, y + 1, t -) = 0 ρ = (ρ 1 , ρ 2 ) ∈ R×(-1, 0) ρ 1 = 0 of i.i.d type.
Based on fermionic Fock spaces techniques, they showed that the stationary measures have a determinental structure (with kink/antikink correlations decaying like the inverse of the distance squared) and were able to compute the associated speed of growth:

v(ρ 1 , ρ 2 ) = 1 π π 2 ρ 2 1 + 4 sin 2 (πρ 2 ). (2.3.2)
Since the determinant of the Hessian of the speed function v can be shown to be strictly negative at any slope in R × (-1, 0), this models falls in the AKPZ class. Moreover, the asymptotic analysis carried out by Spohn and Prähofer shows that the spatial variance of the height dierences in the stationary states behaves logarithmically, which is a typical feature of the Gaussian Free Field and Edward-Wilkinson universality class. At that time, this was an important result supporting Wolf's conjecture.

Borodin-Ferrari dynamic

Let us now introduce a bidimensional interlaced particle process generalising a discretespace version of the Hammersley process (introduced in Section 2.1.2). As we will see, this model is equivalent to that introduced by Borodin and Ferrari in [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF] and thus we will refer to it as the Borodin-Ferrari dynamic.

Interlaced particle conguration and dynamic

In this model, particles lie on a bidimensional lattice which consists in an innite collection of discrete horizontal lines labelled by an index ∈ Z. As for the Hammersley process, each line contains an innite number of particles labelled by (p, ) with p ∈ Z. The horizontal position of particle (p, ) is denoted by z (p, ) ∈ Z + ( mod 2)/2 (notice that adjacent horizontal lines are shifted by 1/2) and satises z (p, ) < z (p+1, ) . We will consider interlaced particle congurations as in Figure 2.6. This means that for any (p, ) ∈ Z × Z, there exists a unique p ∈ Z such that z (p, ) < z (p , +1) < z (p+1, ) (and as consequence, also a unique p ∈ Z such that z (p, ) < z (p , -1) < z (p+1, ) ). Modulo relabelling the particles, one can assume, without loss of generality that p = p (and thus p = p + 1). Now, let us give an informal description of the dynamic. For all line ∈ Z, the particle congurations (z (p, ) ) p∈Z follow simultaneously the discrete Hammersley process (where discrete means that the particle jumps are given by a PPP on Z instead of R) with jumps cancelled if the interlacement condition is violated (see Figure 2.6). Notice that, as for the Gates-Westcott model, this leads to non-trivial correlations between lines. More precisely, we associate a PPP of intensity 1 on R + independently to each site ( , z) such that ∈ Z and z ∈ Z+( mod2)/2. When the clock labelled ( , z) rings, the leftmost particle to the right of z (let (p, ) be its label) jumps to position z if z (p-1, +1) < z and z (p, -1) < z and otherwise nothing happens.

As for the Hammersley process, in order to ensure that the dynamic is well dened, one needs to impose the following additional condition:

∀ ∈ Z, lim p→-∞ p -2 z (p, ) = 0. (2.3.3) (p, ) 1 R 3 z R 3 0 e 1 = (1/2, -1) e 2 = (1/2, 1) R 3 1 z (x, y) 0 1 34 CHAPTER 2.

PRESENTATION OF THE MODELS Stationary states and previous results

In [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF], Fabio Toninelli studied a generalisation of this model where particles can jump in both directions i.e particles attempt to jump at any site on its left and on its right and does it respectively at rates p and q such that p + q = 1 (the case p = 1 and q = 0 coincides with Borodin-Ferrari dynamic). He identied a family of explicit invariant measures which are more easily expressed in terms of rhombi tilings (or equivalently dimer congurations). For any ρ = (ρ 1 , ρ 2 ) such that 0 < ρ 1 , ρ 2 and ρ 1 + ρ 2 < 1, the stationary measures π ρ whose height dierences have average slope ρ (in the coordinate system given by the unit vectors e 1 and e 2 of Figure 2.7) is the unique translation-invariant ergodic Gibbs measure on rhombi tilings of the plane such that ρ 1 , ρ 2 and 1ρ 1ρ 2 are respectively the densities of the North-East, North-West and North rhombi under π ρ (here Gibbs means that the measure is locally uniform given the tiling outside a nite domain). The measure π ρ is reversible for the symmetric dynamic (p = q) and irreversible for the asymmetric dynamics (p = q). As for Gates-Westcott stationary distributions, π ρ has a determinental structure whose kernel is given by the inverse of the Kasteleyn matrix and the rhombus-rhombus correlations decay like the inverse of the distance squared (we refer to [START_REF] Kenyon | Lectures on dimers[END_REF][START_REF] Kenyon | Dimers and amoebae[END_REF] for an introduction on the topic). Using this nice structure, the slope-dependent average speed of growth was computed in [Ton17, CF17]: for any ρ = (ρ 1 , ρ 2 ) such that 0 < ρ 1 , ρ 2 and ρ 1 + ρ 2 < 1, in the totally asymmetric case (p = 1 and q = 0),

v(ρ 1 , ρ 2 ) = - 1 π sin(πρ 1 ) sin(πρ 2 ) sin(π(ρ 1 + ρ 2 )) , ( 2.3.4) 
(there is a factor (qp) instead of -1 in the general case). Moreover, the author showed that the temporal height variance at stationarity grows at most logarithmically, as predicted by Wolf's conjecture. As a remark, similar results were obtained in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Chhita | Speed and uctuations for some driven dimer models[END_REF] for a analogue dynamic with domino (instead of rhombus) tilings. Finally, let us mention that in the case of the specic initial condition studied in [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF], the authors showed that, in a large space-time subset, the rhombi correlation function is determinental and were able to obtain a law of large number and even a CLT on scale √ log t, thus supporting strongly Wolf's conjecture. However, their approach covers neither general initial height functions nor stationary proles. In that respect, Legras and Toninelli treated the case of initial height functions approaching a general smooth prole in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] for which they showed a partial hydrodynamic limit (restricted either to the rst time where shocks appear or to convex proles). As we will explain in Chapter 3, completing this hydrodynamic limit is one of the main result of this thesis.

Chapter 3

Results of the thesis

The goal of this chapter is to state the main results shown in this thesis (a summary of which can be found in Section 1.3). For each result (corresponding to the rst three sections), we explain how it completes or improves previous works in the domain and give the main ideas of the proof while emphasising the novelties w.r.t previous methods. Finally, in the last section, we will also give some perspectives for future works.

Hydrodynamic limits for the Gates-Westcott and Borodin-Ferrari models

By far, the main result of the present work is the hydrodynamic limit of the two models in the AKPZ class introduced in Chapter 2 i.e the Gates-Westcott model and the Borodin-Ferrari dynamic whose proofs are written respectively in Chapters 4 and 5 (and in [START_REF] Lerouvillois | Hydrodynamic limit of a (2 + 1)-dimensional crystal growth model in the anisotropic kpz class[END_REF][START_REF] Lerouvillois | Hydrodynamic limit for a 2d interlaced particle process[END_REF]). These results are all the more interesting as they are among the rst instances of hydrodynamic limits in dimension (2 + 1) with (explicit) non-convex Hamiltonian which, furthermore, are valid at all times and for all continuous initial proles for which the Hamilton-Jacobi equation makes sense.

In what follows, we will start by stating the two new theorems before giving some context, explaining the progress obtained with respect to previous results in the literature and introducing the new ideas employed to prove them.

Statement of the two new theorems

For both models, we start by introducing some notations completing those already introduced in Chapter 2 in order to write the theorems accurately.

Hydrodynamic limit for the Gates-Westcott model

Let Γ GW denote the state space of admissible discrete height functions for the Gates-Westcott models i.e the set of functions ϕ : R × Z → Z such that x → ϕ(x, y) is piece-wise constant with locally nite ±1 jumps (and upper semi-continuous) and such 36 CHAPTER 3. RESULTS OF THE THESIS that ϕ satises the slope constraint (2.3.1) along the y coordinates as explained at the beginning of Section 2.3.1.

For any initial height prole ϕ ∈ Γ GW and any realisation ω of the Poisson Point Process of intensity 2 on R × Z × R + , let us note h GW (x, y, t; ϕ, ω) the height function evaluated at space position (x, y) ∈ R × Z and at time t ≥ 0 following the Gates-Westcott dynamic with initial height prole ϕ and with creation locations given by ω.

Then, let us dene the associated continuous state space of proles:

ΓGW := f ∈ C R 2 , ∀x ∈ R, ∀y 1 ≤ y 2 ∈ R, f(x, y 2 ) -f (x, y 1 ) ∈ [-(y 2 -y 1 ), 0] . (3.1.1) If f is dierentiable, this means that its gradient belong to R × [-1,
0] (which is the continuous analogue of (2.3.1)). As we will show in Proposition 4.4.10, ΓGW is the subset of continuous height functions that can be approached by a sequence of rescaled height proles in Γ GW , in the sense of convergence written below in (3.1.2).

We are now ready to state the main theorem about the Gates-Westcott model. Theorem 3.1.1. Let (ϕ L ) L∈N be a sequence of admissible initial height functions in Γ GW approaching a continuous function f ∈ ΓGW in the following sense:

∀R > 0, sup (x,y) ≤R 1 L ϕ L (Lx, Ly ) -f (x, y) -→ L→∞ 0. (3.1.2)
Then, for almost all realisation ω of the underlying Poisson Point Process,

∀T > 0, ∀R > 0, sup (x,y) ≤R,t∈[0,T ] 1 L h GW (Lx, Ly , Lt; ϕ L , ω) -u(x, y, t) -→ L→∞ 0, (3.1.3)
where u is the unique viscosity solution of the Hamilton-Jacobi equation

∂ t u = v(∇u) u(•, •, 0) = f, (3.1.4)
and where v is the speed function v already dened in (2.3.2) by

v(ρ 1 , ρ 2 ) = 1 π π 2 ρ 2 1 + 4 sin 2 (πρ 2 ). (3.1.5)
We refer to Section 3.1.3 for a formal denition of viscosity solution together with a few facts about existence and uniqueness.

Before coming back to this theorem, its context and its idea of proof, let us state the corresponding result for the Borodin-Ferrari dynamic.
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Hydrodynamic limit for the Borodin-Ferrari dynamic Contrarily to the Gates-Westcott model, the speed function associated to the Borodin-Ferrari dynamic dened in (2.3.4) has singular slopes at which it diverges. Consequently, extra care must be taken to restrict the state space to height proles for which the Hamilton-Jacobi in the hydrodynamic limit makes sense.

Let us start by denoting Γ BF the general state space of admissible discrete height functions of the Borodin-Ferrari dynamic i.e the set of height functions that can be associated to a conguration of interlaced particle satisfying condition (2.3.3), as seen in Section 2.3.2. As explained before, the height functions are dened on a lattice that can be identied to Z 2 by choosing the coordinates system induced by the vectors e 1 , e 2 (and by xing an origin) as shown in Figure 2.7. Therefore, we will note ϕ(x) the height at the point of coordinates x = (x 1 , x 2 ) in this coordinates system.

For any initial height prole ϕ ∈ Γ BF and any realisation ω of the Poisson Point Process of intensity 1 on G × R + (where G is the lattice isomorphic to Z 2 on which particles can lie), let us note h BF (x, t; ϕ, ω) the height function evaluated at space position x = (x 1 , x 2 ) ∈ Z 2 and at time t ≥ 0 following the Borodin-Ferrari dynamic with initial height prole ϕ and with jump locations given by ω.

In this setting, one can check that the set of admissible slopes ρ is equal to the following triangle:

{(ρ 1 , ρ 2 ) ∈ [0, 1] 2 , ρ 1 + ρ 2 ≤ 1}. In fact, 1 -ρ 1 -ρ 2 corresponds
to the density of particles lying on a line. Since the speed function dened in (2.3.4) has singularities for all slopes such that ρ 1 + ρ 2 = 1, we are going to reduce the state space to height proles with slopes uniformly away from this singular set. In that respect, we dene, for all integer M ∈ N, the subset Γ BF M ⊆ Γ BF that can be associated to particle congurations such that, on every line, the inter-particle distances are uniformly upper bounded by M . This guarantees that the particle density on each line is uniformly lower bounded by M -1 and thus that the slope ρ 1 +ρ 2 is uniformly upper bounded by 1-M -1 . Now, we dene the associated continuous state space ΓBF M consisting in all continuous functions f : R 2 → R that are non-decreasing in both coordinates and such that

∀x ∈ R 2 , ∀λ > 0, f (x + λ(1, 1)) -f (x) λ ≤ 1 - 1 M . (3.1.6)
If f is dierentiable, this means that its gradients belong to the triangle T M dened by

T M := {ρ ∈ [0, 1] 2 , ρ 1 + ρ 2 ≤ 1 -M -1 }. (3.1.7)
As we will see later in Chapter 5, any function in ΓBF M can be approximated by a sequence of rescaled height functions in Γ BF M in the sense of convergence as in (3.1.8). Moreover, restricted to T M , the speed function dened in (2.3.4) is well-dened and Lipschitz con- tinuous. This will be enough to dene a proper hydrodynamic limit, as formulated in the next theorem.

Theorem 3.1.2 (L., Toninelli, 2020). Given an integer M , let f be a continuous height prole in ΓBF M and let (ϕ L ) L∈N be a sequence of height functions Γ BF M approaching f in the following sense:

∀R > 0 sup x ≤R 1 L ϕ L ( Lx ) -f (x) -→ L→∞ 0. (3.1.8)
Then, for almost every realization ω of the underlying Poisson Point Process,

∀T > 0 ∀R > 0 s u p x ≤R,t∈[0,T ] 1 L h BF ( Lx , Lt; ϕ L , ω) -u(x, t) -→ L→∞ 0 , (3.1.9)
where u is the unique viscosity solution of the Hamilton-Jacobi equation:

∂ t u = v(∇u) u(•, 0) = f, (3.1.10)
where v was dened in (2.3.4) by

v(ρ 1 , ρ 2 ) = - 1 π sin(πρ 1 ) sin(πρ 2 ) sin(π(ρ 1 + ρ 2 )) . (3.1.11)
Remark 3.1.3. As remarked before, the function v is not well-dened on R 2 so the meaning of the PDE (3.1.10) deserves some explanations. In fact, it is implicitly assumed that u is the unique viscosity solution of the PDE where v is replaced by any Lipschitz extension ṽ of v to the whole R 2 that coincides with v on T M . Since, in this case, the Hamiltonian is Lipschitz, the standard theory of viscosity solutions (see Section 3.1.3) implies that the solution u exists and is unique. Moreover, this solution doesn't depend on the way v is extended outside T M . Indeed, an easy corollary of the comparison principle (see Proposition 3.1.7) shows that if f ∈ ΓBF M , then, whatever the choice of the Lipschitz extension ṽ, the solution u(•, t) stays in ΓBF M at all times (informally ∇u ∈ T M ) and thus only the denition of ṽ inside T M matters to characterise the viscosity solution.

Remark 3.1.4. The requirement that f ∈ ΓBF M for some integer M is not a qualitative condition but a technical condition that ensures that the slopes remain uniformly away from the the set ρ 1 + ρ 2 = 1 where the speed v is ill-dened. This restriction is in a sense optimal: in fact, if f is for instance the ane function of slope ρ with {ρ 1 + ρ 2 = 1} and ϕ L approaches f as in (3.1.8), then the limit height prole will be either +∞ for all positive times (if ρ 1 ∈ (0, 1)) or the limit is not necessarily unique (if ρ 1 ∈ {0, 1}), i.e. it may depend on the way f is approached by ϕ L . Besides, the restriction to discrete height proles in ϕ L ∈ Γ BF M for some integer M helps to get a (weak) "nite speed of propagation" property (see Proposition 5.3.3); this condition could be somewhat weakened.

Context, new ideas and sketch of proof

Context and novelties with respect to previous results in the literature

The theorems 3.1.1 and 3.1.2 are among the rst hydrodynamic results for growth models in dimension (d + 1) with d ≥ 2 and with non-convex (though explicit) Hamiltonians. Let us recall that the lack of convexity makes this kind of derivation dicult since a variational formula is missing both for the Hamilton-Jacobi PDE and for the microscopic model as opposed to the models introduced in Sections 2.1 and 2.2. Also, our theorems hold for all times and for all initial proles for which the limit equation makes sense. In this sense, Theorem 3.1.2 completes that of Legras and Toninelli in [LT18] who obtained a hydrodynamic limit either up to the rst time of shocks (when the gradient of the classical solution becomes discontinuous) or when the initial prole is convex (in which case, the solution can also be expressed by a variational formula).

The approach used here was introduced by Rezakhanlou in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF] to study a family of growth models with bounded height gradients. It relies on a characterisation of the semi-group associated to the Hamilton-Jacobi equation by a list of conditions (reminded e.g in Proposition 4.3.5) which are also satised at the microscopic level. The diculty of his method comes from showing that the sequence of random semi-groups associated to the rescaled dynamic is tight (in order to apply Prokhorov theorem) and to show that any limit in distribution satises these conditions. Even if his method is potentially quite robust, the only examples for which Rezakhanlou could obtain a full hydrodynamic limit were one-dimensional. In higher dimensions, due to a lack of knowledge about the structure of invariant measures of the models he considered, only a partial result was obtained: any limit in distribution of the sequence of rescaled height functions is concentrated on a set of viscosity solutions of Hamilton-Jacobi equations with a possibly random Hamiltonian.

Inspired by Rezakhanlou's method, Xufan Zhang obtained in [START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF] the rst complete hydrodynamic result for a growth model in the AKPZ class related to the so-called domino shuing algorithm whose stationary distributions are given by weighted dimer congurations on Z 2 .

With respect to [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF], we had to overcome additional diculties related to the unboundedness of the gradients for the Gates-Westcott model which requires a non-trivial a priori bound on the spatial height dierences and to the unboundedness of particle jumps for the Borodin-Ferrari model which prevents from using a nite speed of propagation property, uniform in the initial prole, as required by Rezakhanlou's technique. Because of the latter obstacle, Legras and Toninelli used a dierent approach based on comparing directly the evolution of the rescaled height prole with the classical solution of the PDE which can be approximated locally by ane stationary proles (with slopes staying uniformly away from the line {ρ 1 + ρ 2 = 1}), as long as it stays dierentiable. The main trick that we found to overcome this diculty is a new locality result that we will mention the next subsection.

Besides, we adapted the method of [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF] so that the proof of compactness is somehow simpler in the sense that, instead of replacing the discrete height function by a continuous interpolation in order to apply Prokhorov's theorem to the sequence of microscopic semi-groups, we use a more elementary approach of compactness adapted from Azrelà-Ascoli's theorem that we apply directly to the rescaled sequence of (discontinuous) height functions.

In addition, our method allows an improvement with respect to usual results as in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF][START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF]. The hydrodynamic limits obtained in Theorems 3.1.1 and 3.1.2 hold in a stronger sense: that of almost sure convergence with respect to the underlying Poisson Point Process (instead of convergence in probability).

Before explaining the strategy of our proof, let us mention the work [BGRS19] of Bahadoran, Guiol, Ravishankar and Saada who showed hydrodynamic limits for a class of one-dimensional asymmetric interacting particle systems including the misanthrope process (and that can be mapped to height processes without envelope property). They used a constructive approach introduced in [BGRS02] based on showing rst the hydrodynamic limit for any stepped initial condition (called Riemann initial condition) and then extending it to general initial conditions thanks to an approximation scheme (inspired by Glimm's scheme for conservation laws) using microscopic properties such as a nite speed of propagation and attractiveness (in a spirit similar to the work [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] of Legras and Toninelli). Their results hold for all time, either in a probability or almost sure sense, without requiring explicit invariant measures and either in a homogeneous or quenched random environnement, which constitute interesting improvements compared to our result, although in the one-dimensional case.

Sketch of proof and key steps

Let us describe briey the main steps in the proof of Theorems 3.1.1 and 3.1.2 which is inspired from Rezakhanlou's approach but presents some dierences namely in the proof of compactness.

1. Construction of a sequence of random discrete semi-groups S L (s, t; f, ω) that cor- respond to the rescaled (by a ballistic scaling factor L) height function following the dynamic started close from the continuous initial prole f and with Poissonian points ω restricted between the macroscopic times s and t (with s ≤ t).

2. Compactness: we show that for almost all realisation ω of the PPP, the sequence of semi-groups (S L (•, •; •, ω)) L∈N is contained in a (possibly random) compact set in the sense that for any subsequence (L k ) k∈N , we can extract a subsubsequence (L k l ) l∈N such that for any admissible continuous prole f , the sequence of functions

(x, s, t) → S L k l (s, t; f, ω)(x) converges uniformly on all compact sets to a certain function S ∞ (•, •; f, ω)(•)
that is continuous in space and time. The proof relies on an adaptation of Arzelà-Ascoli's Theorem (see e.g Appendix 4.D). 3. Identication of the limit : we show that, with probability one w.r.t the PPP, any such continuous limit S ∞ (., .; ., ω) inherits the following properties: invariance under vertical translations, monotonicity (i.e attractiveness), locality, semi-group property and compatibility with linear solutions (precise statements can be found in Proposition 4.3.5). This characterises the limit as the unique semi-group associated to the Hamilton-Jacobi PDE and thus the sequence of rescaled height functions indeed converges almost surely to the unique viscosity solution.

In the Gates-Westcott case, a key step to show compactness is the control of the spatial gradients of the rescaled height functions w.r.t to the rst variable (w.r.t the second variable, the height functions are 1-Lipschitz, by denition) and of the temporal speed of growth which are a priori unbounded. For this, we used a comparison with the one-dimensional Polynuclear Growth model and its variational formula (2.1.13) with ω replaced by a (non trivial) random subset together with standard estimates related to Ulam's problem (introduced at the end of Section 2.1.4).

As far as the Borodin-Ferrari dynamic is concerned, compactness could be shown by means of a locality (or nite speed of propagation) property already shown in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] (which is weak in the sense that the speed of propagation is not uniform w.r.t the initial height prole) and the assumption made on the maximal initial distance between particles. However, due to a lack of control on the inter-particle distances at positive times t > 0, the latter locality property is not enough to identify the limit. Instead, we found a new statement of locality (Proposition 5.3.5) whose intuition comes from a bijection between the Borodin-Ferrari dynamics and the Gates-Westcott model (see Section 3.3) for which a uniform locality property holds.

In both cases, a necessary condition in the identication step 3 above was to show a hydrodynamic limit for linear initial proles (and in an almost sure sense of convergence). To achieve this goal, we relied on previous works about stationary measures [PS97,Prä03, Ton17, CFT19] and, in particular, on a control of the variance of the spatio-temporal height dierences. Such control was missing for the Gates-Westcott model and comes as one of our side result presented in Section 3.2.

Viscosity solutions of Hamilton-Jacobi equations

In this section, we give an intrinsic denition of viscosity solutions of Hamilton-Jacobi PDE and remind standard properties about them, namely that there is existence and uniqueness in the case of a Lipschitz Hamiltonian. We refer to [START_REF] Lawrence | Partial dierential equations[END_REF][START_REF] Barles | An introduction to the theory of viscosity solutions for rst-order HamiltonJacobi equations and applications[END_REF] for nice introductions on the topic.

As explained in the introduction (Section 1.2.3), the following Hamilton-Jacobi PDE

∂ t u = v(∇u) in R d × (0, +∞) u(•, 0) = f at t = 0, (3.1.12)
doesn't always admit solutions in the classical sense and if it does, its gradient often develops singularities (shocks) in nite time. The notion of viscosity solution introduced by Evans [Eva10] and by Crandall and Lions [START_REF] Michael | Viscosity solutions of hamiltonjacobi equations[END_REF] gives a meaning to the solution at all time and, under some assumptions, guarantees uniqueness and existence. As often when dealing with weak solutions, the idea is to transfer the regularity of the solution to a family of smooth test functions that satisfy (3.1.12) in the following sense.

CHAPTER 3. RESULTS OF THE THESIS Denition 3.1.5 (Viscosity solution). A continuous function u : R d × R + → R is a subsolution (respectively a supersolution) of (3.1.12) if for all φ ∈ C ∞ (R d × (0, +∞)) and all (x 0 , t 0 ) ∈ R d × (0, +∞) such that uφ has local maximum (resp. minimum) at (x 0 , t 0 ), then the following inequality holds:

∂ t φ(x 0 , t 0 ) ≤ v(∇φ(x 0 , t 0 )) (resp. ∂ t φ(x 0 , t 0 ) ≥ v(∇φ(x 0 , t 0 )) ). (3.1.13)
Finally, we say that u :

R d × R + → R is a viscosity solution of (3.1.12) if u is continuous, u(x, 0) = f (x)
for all x ∈ R d and u is both a subsolution and a supersolution.

It is very easy to see that any smooth solution in the classical sense is also a viscosity solution. Conversely, any viscosity solution satises the PDE (3.1.12) at all points where it is dierentiable. Remark 3.1.6. This denition comes from the vanishing viscosity method in which a small regularising term ε Δu is added to the r.h.s of the PDE (3.1.12) (in this case, the solution exists in a classical sense and satises a maximum principle). The limit obtained after sending ε to 0 is a viscosity solution in the sense of Denition 3.1.5. Now, we introduce some classical properties of viscosity solutions that are used along this work. It is enough for our purposes to consider the case of a Lipschitz Hamiltonian. In this case, one can show a strong nite speed of propagation property (see [Bar13, Section 5.3]) that implies, in particular the so-called comparison principle that we express as follows:

Proposition 3.1.7 (Finite speed of propagation and Comparison principle). Let u 1 and u 2 be viscosity solutions of the Hamilton-Jacobi equation ∂ t u = v(∇u) on R d × (0, +∞) with v a Lipchitz function on R d . Then, there exists some constant C > 0 such that for any R ≥ 0 and t ≥ 0,

(u 1 (•, 0) ≤ u 2 (•, 0) in B(0, R)) =⇒ (u 1 (•, t) ≤ u 2 (•, t) in B(0, R -C t)) .
(3.1.14)

In particular, we have the following comparison principle: for any t ≥ 0,

u 1 (•, 0) ≤ u 2 (•, 0) =⇒ u 1 (•, t) ≤ u 2 (•, t). (3.1.15)
This yields uniqueness of the viscosity solution to equation (3.1.12). With respect to existence, Perron's method (and the nite speed of propagation property) can be used to show that viscosity solutions of (3.1.12) do exist (we refer the interested reader to [Bar13, Section 7]). Consequently, the following proposition holds. Proposition 3.1.8 (Existence and Uniqueness). When v is a Lipschitz function on R d , the Hamilton-Jacobi equation (3.1.12) admits a unique viscosity solution.
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Logarithmic upper bound on the variance of the temporal growth for the stationary Gates-Westcott model

As explained in the previous section, an upper bound on the variance of the height dierence: h(0, t)h(0, 0) for large t for the stationary Gates-Westcott model was a necessary step to prove the hydrodynamic limit for linear initial proles. In that respect, we showed that the variance of h(0, t)h(0, 0) is bounded by O(log t), as t goes to innity. This upper bound supports Wolf's conjecture on the asymptotic behaviour of growth models in the AKPZ universality class.

The result we obtained in Lemma 4.6.4 can be reformulated more easily as follows:

Theorem 3.2.1. For any slope parameter ρ ∈ R × (-1, 0),

Var πρ h GW (0, 0, t) -h GW (0, 0, 0) = O t→∞ (log t) , (3.2.1)
where the variance Var πρ is with respect to the law of the stationary process with initial distribution sampled from the stationary measure π ρ (whose construction will be reminded in Section 4.3.3).

Notice that, because of the spatial translation invariance of the stationary measures, the same result holds at any other xed space position (x, y) ∈ R × Z.

In the literature, analogous upper bounds were obtained in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Chhita | Speed and uctuations for some driven dimer models[END_REF] for dimer dynamics on Z 2 or on the Hexagonal lattice (which covers the case of the Borodin- Ferrari dynamic). More recently, in [START_REF] Cannizzaro | The stationary akpz equation: logarithmic superdiusivity[END_REF], the authors showed a similar logarithmic upper bound for the stationary solution of the mollied AKPZ equation (1.2.10) with a diagonal matrix H with entries +1 and -1. In the same spirit, let us also mention the interesting works [START_REF] Chhita | A (2+1)-dimensional Anisotropic KPZ growth model with a smooth phase[END_REF][START_REF] Chhita | The domino shuing algorithm and anisotropic kpz stochastic growth[END_REF] of Chhita and Toninelli who studied the domino shuing algorithm with periodic weights and showed the existence of slopes at which the speed function v is not dierentiable and the r.h.s of (3.2.1) is O(1) instead of O(log t) (Wolf's conjecture says nothing for slopes at which the Hessian of v is ill-dened).

Sketch of proof

The method to obtain this kind of result was introduced by Toninelli in [Ton17] and seems to be very general. The main ingredients are an estimate on the kink/antikink (or dimer-dimer) decorrelation, a logarithmic upper bound for the spatial variance of the stationary height dierences (which is typical for models in the AKPZ class according to Wolf's conjecture) and the Cauchy-Schwarz inequality. Such inequality can only yield an upper bound and, so far, no general lower bound has been found for the variance of the stationary growth of multi-dimensional models (the only example for which such bound exists is the integrable initial condition considered by Borodin and Ferrari in [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF]).

In the proof of Theorem 3.2.1, the idea is to look at the height integrated on a large square domain Λ of R × Z (or Z 2 in the case of the dimer model):

h Λ (t) := Λ h(x, y, t) dx dμ(y), (3.2.2)
where μ denotes the counting measure on Z. By denition of the Gates-Westcott dynamic (more precisely by the lateral expansion rule at kink/antikinks locations), this function satises

h Λ (t) -h Λ (0) = t 0 n Λ (s) ds, (3.2.3)
where n Λ (s) is the number of kinks and antikinks inside Λ at time s (in [Ton17, CFT19], certain local functions of the dimer conguration play the role of the kinks/antikinks). Thanks to the Cauchy-Schwarz inequality, and the stationarity of the law of kinks and antikinks w.r.t π ρ ,

Var πρ (h Λ (t) -h Λ (0)) = t 0 t 0 Cov πρ (n Λ (s), n Λ (s )) ds ds ≤ t 2 Var πρ (n Λ (0)).
(3.2.4)

Next, we bound the variance of the number of kinks/antikinks in Λ under π ρ to obtain that Var πρ (n

Λ (0)) ≤ C |Λ| log|Λ|, (3.2.5)
where C > 0 is a constant (that depends only on ρ) and |Λ| is the measure of the domain Λ. For this, a key step consists in showing (in Appendix 4.B) that the asymptotic kink/antikink correlations decay like the inverse of the distance squared (an upper bound is enough for our purposes). Notice that a similar behaviour holds for the dimer-dimer correlations.

The nal step consists in comparing h Λ (t)h Λ (0) with |Λ|(h(0, 0, t)h(0, 0, 0)). Thanks to the logarithmic bound on the variance of the spatial height dierences (which was shown in [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF][START_REF] Prähofer | Stochastic Surface Growth[END_REF]), we show that

Var πρ (h Λ (t) -h Λ (0) -|Λ|(h(0, 0, t) -h(0, 0, 0))) ≤ C |Λ| 2 log|Λ|, (3.2.6)
for some constant C > 0.

Altogether, one gets that

|Λ| 2 Var πρ (h(0, 0, t) -h(0, 0, 0)) ≤ 2C t 2 |Λ|log|Λ|+2C |Λ| 2 log|Λ|, (3.2.7)
and the proof of (3.2.1) is concluded by choosing |Λ| of order t 2 .

A new bijection between the Gates-Westcott model and a continuous limit of the Borodin-Ferrari dynamic

The last result in this thesis is a new bijection between the Gates-Westcott model and a continuous version of the Borodin-Ferrari dynamic. This correspondence comes from a graphical construction of the Gates-Westcott model with a boundary condition on a generalised space-time domain (instead of the usual intial condition at t = 0): when the boundary conditions is chosen on a specic set of the form {(x, y, t), t = a x} with a ∈ [-1, 1], we recover either the standard Gates-Westcott model for a = 0, a continuous limit

a = 1 a ∈ (-1, 1) 1 π/4 π/4 t = 0 t = x t = x t = x t = x t = γ(x) γ : R → R 1 h (x, t; h γ , ω) := sup y∈R, |y-x|≤t-γ(y) {h γ (y, γ(y)) + L ↑ (ω ∩ R (y,γ(y)),(x,t) )}, y → h γ (y, γ(y)) ω 2 R 2 1 γ ω γ ±1 -1 +1 (x, t) γ {(x, y, t), t = x} 1 γ : R → R Γ γ {(x, y, t) ∈ R × Z × R, t = γ(x)} (x, y) → h γ (x, y, γ(x)) ∈ Z y ∈ Z x → h γ (x, y, γ(x)) ±1 (x, y) ∈ R × Z h γ (x, y + 1, γ(x)) -h γ (x, y, γ(x)) ∈ {0, -1}, h γ y ∈ Z x, x ∈ R h γ (x, y, γ(x)) ≤ h γ (x , y, γ(x )) γ(x) = γ(x ) -|x -x|,
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3. If lim x→±∞ γ(x) + |x| = +∞, then h γ satises a decay condition at innity:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ lim x→-∞ γ(x) -x = +∞ or ∀y ∈ Z, lim x→-∞ h γ (x, y, γ(x)) |x| = -∞ lim x→+∞ γ(x) + x = +∞ or ∀y ∈ Z, lim x→+∞ h γ (x, y, γ(x)) √ x = -∞. (3.3.4)
Similarly to the condition (2.3.3) for the density of particles at -∞ for the BF dynamic, the last condition in the previous denition is a control on the density of kinks and antikinks at ±∞ which is necessary to obtain a well-dened dynamic. Such condition is not required if lim x→±∞ γ(x) + |x|= +∞. Keep in mind that the case γ(x) = x (which falls in case 3) will correspond to a continuous limit of the BF dynamic.

In contrast with the Polynuclear Growth model, there is no simple variational formula analogue to (3.3.1) to extend easily the denition of the Gates-Westcott model. Instead, we dened an iterative procedure that, given a boundary condition h γ ∈ Γ γ and given a Poisson Point Process ω on R × Z × R, associates a height function dened for all y ∈ Z and t ≥ γ(x): h GW (x, y, t; h γ , ω), (3.3.5) that has to be though of as the height function evolving according to the Gates-Westcott model with boundary condition h γ on the set t = γ(x). The idea is to decide iteratively for all point in ω (in a consistent order) whether it leads to an "accepted" creation (i.e a height increase at the given Poisson point) or not by checking condition (2.3.1). In the end, one recovers a variational formula similar to (3.3.1) with ω replaced by the subset ω of accepted creations (the details of the procedure can be found in Section 6.2.1).

As a sanity check, we showed that if γ ≡ 0, then this construction produces a height function that is consistent with the Gates-Westcott model with usual initial condition at t = 0.

A continuous version of the BF dynamic

Let us explain briey what the continuous version of the Borodin-Ferrari dynamic is. The dierence with the Borodin-Ferrari dynamic dened in Chapter 2 is that the particles lie and jump on a lattice R × Z instead of Z × Z. As in the discrete setting, the particles are interlaced in the sense that, between any two neighbouring particles on a line y, there exists a unique particle on line y + 1 whose position is between those of the two neighbouring particles. Particles attempt to jumps leftwards according to a Poisson Point Process on R × Z × R + of intensity 1: at any Poisson point (x, y, t), the leftmost particle on line y to the right of x jumps to x at time t if the conguration remains interlaced after the jump and otherwise nothing happens (see Section 6.2.3 for a more precise denition of the model). Moreover, the same condition on the density of particles at -∞ as in (2.3.3) must be satised so that the dynamic is well dened.

In order to make the bijection more explicit, we specify (in Denition 6.2.14) a mapping between such interlaced particles conguration and height functions which is one-toone (modulo xing the height at the origin) . The gradient h BF (x , y)-h BF (x, y) is dened as the number of particles on line y in [x, x ] (for x < x ) and h BF (x, y + 1) -h BF (x, y) is equal to -1 if the unique particle on line y + 1 which lies between the two neighbouring particles on line y surrounding x stands to the right of x and is equal to 0 if it stands to the left of x. Moreover, between times t and t , the height at (x, y) decreases by the number of particles on line y crossing position x in the time interval [t, t ]. Let us note Γ BF the set of such admissible height functions (with some abuse, we take the same nota- tion as for the discrete case). Notice that, by analogy with (2.3.3), such height functions

satisfy lim x→-∞ |x| -1/2 h BF (x, y) = -∞.
We note h BF (x, y, t; h 0 , ω) the height function associated to the continuous version of the BF dynamic started from initial conguration h 0 ∈ Γ BF and with particle jumps given by a PPP realisation ω.

The bijection

We are know ready to state the following Theorem: Theorem 3.3.2. Fix any boundary condition h γ π/4 on the set {(x, y, t) ∈ R × Z × R), t = x} that satises the conditions of Denition 3.3.1 with γ π/4 (x) = x. For almost all realisation ω of a Poisson point process of intensity 2 on R × Z × R, for all t ≥ x and all

y ∈ Z, h GW (x, y, t; h γ π/4 , ω) = h BF (x + t, y, t -x, h 0 , ω ), (3.3.6) with h 0 := (x, y, 0) → h γ π/4 (x/2, y, x/2) ∈ Γ BF and ω = {(x + t, y, t -x), (x, y, t) ∈ ω}, the images of h γ π/4 and ω under the change of coordinates (x, t) → (x + t, t -x).
Analogously to Figure 3.1 in dimension one, the bijection can also be seen as follows: the interlaced space-time trajectories of the particles for the continuous BF dynamic correspond (under space-time rotation of coordinates (x, t)) to the level lines of the height functions (x, t) → h GW (x, y, t) that are interlaced for successive values of y as showed in Figure 3.3.

As we will explain at the end of Section 6.2.3, Theorem 3.3.2 implies that the GW model started from a droplet initial conguration is equivalent to the continuous space limit of the triangular initial condition considered by BF in [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF].

Remark 3.3.3. Similarly, the Gates-Westcott model with boundary condition on the set {(x, y, t), t = tan(α)x with α ∈ (-π/4, π/4)} is in bijection, under rotation of angle α of the space-time coordinates (x, t), with the Gates-Westcott model with kinks and antikinks moving at speed

v k (α) = tan(π/4 + α) and v a (α) = -tan(π/4 -α) (instead of ±1).

Hydrodynamic limits with generalised boundary conditions and corollaries

Finally, we showed a hydrodynamic limit for the Gates-Westcott model with general boundary condition, and as a consequence for the continuous limit of the Borodin-Ferrari dynamic that can be expressed as follows.

{(x, y, t) ∈ R × Z × R, t = x} {(x, y, t) ∈ R × Z × R, t = x} π/4 y 0 1 y y = 0 y = 1 y = 0 y = 1 h(x, y + 1, t) -h(x, y, t) ∈ {0, -1} γ 1 (x, y) → f γ (x, y, γ(x)) y ∈ R f γ (x, y , γ(x)) -f γ (x, y, γ(x)) ∈ [-(y - y), 0] y < y x ∈ R L ∈ N γ L = x → Lγ(x/L) (h L γ ) L∈N Γ γ L f γ ∀R > 0, sup (x,y) ≤R 1 L h L γ (Lx, Ly , Lγ(x)) -f γ (x, y, γ(x)) -→ L→∞ 0. lim x→±∞ γ(x) + |x|= +∞ lim x→-∞ γ(x) + |x| = ∞ ⇒ lim sup x→-∞ sup L∈N h L γ (Lx, Ly , Lγ(x)) L |x| = -∞, ∀y ∈ R x +∞ γ(x) = x u {(x, y, t) ∈ R 3 , t ≥ γ(x)} all realisation ω of a PPP of intensity 2 on R × Z × R, ∀R > 0, sup (x,y,t) ≤R t≥γ(x) 1 L h(Lx, Ly , Lt; h L γ , ω) -u(x, y, t) -→ L→∞ 0. (3.3.8)
The function u is a viscosity solution of

⎧ ⎨ ⎩ ∂ t u = 4 sin 2 (π∂ y u)/π 2 + (∂ x u) 2 for t > γ(x) u = f γ for t = γ(x).
(3.3.9)

Moreover, under assumption (H1), u is the unique viscosity solution of (3.3.9).

Remark 3.3.5. If (H1) doesn't hold, uniqueness of the viscosity solution of (3.3.9) in the general case of (H2) is a priori non trivial. However, uniqueness can be guaranteed under stronger assumptions on the gradients of f γ as written in Corollary 6.3.5.

As a consequence of Theorems 3.3.2 and 3.3.4 (and Remark 3.3.3), we obtain two corollaries: the hydrodynamic limit for the continuous version of the Borodin-Ferrari dynamic and for the Gates-Westcott model with asymmetric kink/antikink speeds. We refer to Corollaries 6.3.5 and 6.3.3 for the precise statements.

Perspectives for future works

Before moving to the detailed proofs of our results, let us give a few words about ongoing projects and possible extensions of our work:

Convergence of the stationary measures of the Gates-Westcott model to the Gaussian Free Field. Prähofer and Spohn showed in [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF] that, under the invariant measures, the variance of the spatial height dierences grows like the logarithm of the distance between points. Actually, with extra work, thanks to the determinental structure of kink/antikink correlations, we should be able to compute any moments of the from E πρ [ n i=1 (h(x i , y i )h(x i , y i ))] and then show, by the method of moments, that the stationary height prole (seen as a random eld) converges to the massless Gaussian Free Field in dimension 2, as expected by Wolf's conjecture. The method to obtain such derivation in the context of measures on dimer congurations is explained e.g in [START_REF] Kenyon | Lectures on dimers[END_REF][START_REF] Laslier | How quickly can we sample a uniform domino tiling of the 2l × 2l square via glauber dynamics?[END_REF].

Consequences of the bijection between the Gates-Westcott model and the Borodin-Ferrari dynamic. As we will argue at the end of Chapter 6, in Subsection 6.3.1, the result of Theorem 3.3.2 suggests that, modulo a continuous space limit, we can transfer the results of [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF] to the GW model in a droplet initial setting and deduce, in particular a CLT on scale √ log t. Moreover, since the BF dynamic at stationarity enjoys determinental spatial height correlations (see e.g [Ken09, Ton17]), we expect from the bijection that the Gates-Westcott model has also determinental corelations (and converge to the GFF) along the planes {(x, y, t), t = x} and also t = ax with a ∈ [-1, 1]. However, this would not say anything about the non-trivial height correlations that we expect to see along the characteristic lines of the PDE (3.1.5).

Hydrodynamic limit for the non-totally asymmetric Borodin-Ferrari dynamic. Although the method of Rezakhanlou has already been employed to show hydrodynamic limits for partially asymmetric growth models in dimension 1 (see [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF]), as far as we know, there is no such result in higher dimensions and in a non-totally asymmetric setting. Therefore, it would be very interesting to show a hydrodynamic limit for the Borodin-Ferrari dynamic where particles can perform jumps in both directions as in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF]. Even if most properties true for the totally asymmetric can be easily adapted, the main obstacle comes once again from controlling the speed of propagation of information (that can now travel both leftwards and rightwards). In particular, the (weak) locality property shown in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] and the new locality statement that we used to show Theorem 3.1.2 now fail and it seems non-trivial to adapt them to the partially asymmetric setting.

Chapter 4

Hydrodynamic Limit for the Gates-Westcott model

In this Chapter, we study a model, introduced initially by Gates and Westcott [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] to describe crystal growth evolution, which belongs to the Anisotropic KPZ universality class [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF]. It can be thought of as a (2+1)-dimensional generalisation of the well known (1+1)-dimensional Polynuclear Growth Model (PNG). We show the full hydrodynamic limit of this process i.e the convergence of the random interface height prole after ballistic space-time scaling to the viscosity solution of a Hamilton-Jacobi PDE: ∂ t u = v(∇u) with v an explicit non-convex speed function. The convergence holds in the strong almost sure sense.

The content of this Chapter is has been taken from the article [START_REF] Lerouvillois | Hydrodynamic limit of a (2 + 1)-dimensional crystal growth model in the anisotropic kpz class[END_REF]. For this reason, the notations adopted here may dier slightly from those of Chapter 3.

Introduction

Crystal growth belongs to a wider class of random interface growth phenomena that appear naturally in physics and biology [START_REF] Barabási | Fractal concepts in surface growth[END_REF]. Trying to better understand the behavior of these natural phenomena is a source of interest in itself. On the other hand, random growth models mainly caught the attention of mathematicians in the last couple of decades because of their conjectural universality properties and relation with the KPZ (Kardar-Parisi-Zhang) equation [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF] which presumably encodes their long-time uctuation behavior (see e.g [Cor12, FS10, Qua11] for reviews on the topic in dimension

(1 + 1) and [START_REF] Toninelli | 2 + 1)-dimensional interface dynamics: mixing time, hydrodynamic limit and anisotropic KPZ growth[END_REF] in dimension (2 + 1)).

To x ideas, the microscopic d-dimensional interface is typically modelled by the graph of a discrete height function h : Z d × R + → Z (here, R + represents the time variable) and evolves according to an asymmetric Markovian dynamic which is often related to interacting particles systems. The transition rates are assumed to depend only on height gradients, so that the dynamics is invariant by vertical translations of the interface. The rst problem one may address is the law of large numbers or hydrodynamic limit, i.e the typical macroscopic behavior of the randomly evolving height function. Under space-time 54 CHAPTER 4. HYDRODYNAMIC LIMIT FOR THE GW MODEL ballistic rescaling of the form n -1 h( nx , nt), the height prole is expected to converge to the solution of a rst-order non-linear PDE of Hamilton-Jacobi type:

∂ t u = v(∇u), (4.1.1)
where the growth velocity v only depends on the slope and not on u itself since the model is vertically translation invariant. Next, and more challengingly, comes the study of uctuations, i.e the behavior of the discrete height function around its hydrodynamic limit. The large-scale uctuations are expected to look qualitatively like the solution of the KPZ equation and in particular share the same universal characteristics exponents. Most results in this direction are established for d = 1. In dimension two, growth models are conjectured [START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF] to fall into two universality classes depending on the convexity properties of v. When v is strictly convex (or concave), we speak simply of KPZ universality class: it is predicted and numerically observed that uctuations grow like t β with a universal exponent β > 0 and spatial uctuations at equilibrium grow with a roughness exponent α = 2β/(β + 1). When the Hessian of v has signature (+, -) the model is conjectured to belong to the so-called Anisotropic KPZ (AKPZ) class where spatial and temporal uctuations are expected to grow logarithmically and spatial uctuations to scale to a Gaussian Free Field, as is the case for the stochastic heat equation with additive noise. One says that the non-linearity in the KPZ equation is irrelevant in the AKPZ regime and relevant in the KPZ one.

The model we are considering in this paper was introduced by Gates and Westcott in [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] to describe crystal growth evolution and its stationary states. The interface can be described by a height function h : (R × Z) × R + → Z, semi-discrete in space and continuous in time, whose level lines are piece-wise constant functions with ±1 jumps. Even if we adopt a dierent viewpoint, the Gates-Westcott dynamic can be viewed as a multi-line generalisation of the PNG dynamic where each level line follows simultaneously the PNG dynamic with kink/antikink creations suppressed whenever two lines intersect. Although the PNG is a solvable model that can be mapped to the problem of the longest increasing subsequence of a random permutation, to random polymers and to random matrix ensembles (see [START_REF] Ferrari | One-dimensional stochastic growth and Gaussian ensembles of random matrices[END_REF] for a nice review on the topic), the Gates-Westcott dynamics induces non-trivial interaction among level lines, which makes the model harder to analyse. In [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF], Prähofer and Spohn identied a slope-dependent family of stationary distributions for the dynamic restricted to a bi-dimensional torus (note that Gates and Westcott already computed equilibrium measures in [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] but only for a one-dimensional subset of slopes ρ). In a certain thermodynamic limit of large torus, they were able to compute the slope-dependent growth velocity v(ρ) at stationarity. This is the natural candidate for the speed function v(ρ) in (4.1.1). As expected, the Hessian of v has signature (+, -) everywhere so the model belongs to the AKPZ universality class. The authors of [PS97] also showed that the spatial uctuations at equilibrium are of logarithmic order with respect to the distance between points; this is typical of the two-dimensional Gaussian Free Field. However, they didn't treat the temporal uctuations (also expected to grow logarithmically). Our contribution to the study of the model is the rigorous proof of the hydrodynamic limit starting from arbitrary initial condition. As an intermediate step, we also get a logarithmic upper bound on uctuation growth w.r.t. time in the stationary states (see Lemma 4.6.4).

In the literature, most results about hydrodynamic limits in multi-dimensional spaces are given for convex velocities v, where the viscosity solution of (4.1.1) can be expressed in terms of the variational Hopf-Lax formula. The strategy is to show that the discrete height function enjoys a variational formula (sometimes called "envelope property") at the microscopic level, which passes to the limit thanks to the sub-additive ergodic theorem. This applies e.g to the Corner Growth Model [Sep08, Section 9], Ballistic deposition [START_REF] Seppäläinen | Strong law of large numbers for the interface in ballistic deposition[END_REF] and a wider family of grows models on Z d [START_REF] Rezakhanlou | Continuum limit for some growth models[END_REF], and yields existence of such a hydrodynamic limit without providing an explicit expression of the speed function v. The function v can be explicitly identied when equilibrium measures are known, as is the case for various one-dimensional models, such as ASEP and PNG. For twodimensional models in the AKPZ class, such envelope property and Hopf-Lax formula cannot hold, otherwise the speed function in the hydrodynamic limit would automatically result to be convex.

In his seminal article [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF], Rezakhanlou introduced a dierent approach to hydrodynamic limit for growth processes based on a compactness argument and on a list of conditions that allow to identify any limit point with the unique viscosity solution of (4.1.1). This method does not require convexity of v, but the only examples for which a full hydrodynamic limit was proved in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF] are one-dimensional where the structure of ergodic translation invariant stationary measures is better understood. For d ≥ 2, only a partial result was obtained, namely, that any limit in distribution of the rescaled height prole is concentrated on a set of viscosity solutions of Hamilton-Jacobi equations with a possibly random speed function. However, a precise description of equilibrum measures is available for some of these models (e.g the Gates-Westcott model [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF] and models related to the two-dimensional dimer model [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF][START_REF] Corwin | Stationary measure of the driven two-dimensional q-whittaker particle system on the torus[END_REF][START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Chhita | A (2+1)-dimensional Anisotropic KPZ growth model with a smooth phase[END_REF] where the stationary measures are given by translation invariant Gibbs measures on perfect matchings [START_REF] Kenyon | Dimers and amoebae[END_REF]). Inspired by Rezakhanlou's technique, Zhang obtained the rst full hydrodynamic limit [START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF] for a (2 + 1)-dimensional growth model. Specically, he considered the dimer shuing-algorithm, whose stationary distributions are given by weighted random dimer congurations on Z 2 . Let us also mention the works [BF14,LT18] about a long jump two-dimensional interlaced particle dynamic generalising the Hammersley process. In [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF], the authors showed the hydrodynamic limit starting from a very specic initial condition (with a CLT for temporal uctuations on scale log t) while in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF], the authors proved the hydrodynamic limit either up to the rst time when a shock appears, or under the assumption of a convex initial prole [START_REF] Lawrence | Envelopes and nonconvex HamiltonJacobi equations[END_REF].

The present article follows the main idea of [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF] in terms of proof structure. The idea consists in constructing a sequence (labeled by the parameter n associated to the ballistic rescaling) of discrete random semi-groups associated to the rescaled microscopic dynamic, showing compactness in some sense and identifying the limiting continuous semi-group with the one associated with the unique viscosity solution of the PDE. The identication relies both on the sucient conditions given in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF] (summarised in Proposition 4.3.5) and on a precise analysis of the stationary processes. With respect to [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF], non-trivial additional diculties we had to overcome in the proof of compactness are related to the semi-continuous character of the model and to unboundedness of the slopes and of the speed function. In particular, we had to control the evolution of spatial gradients (Proposition 4.5.6) while this was trivial in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF] since gradients are bounded. To do so, we related the height function along the rst coordinate to the PNG with a random subset of Poissonian creations and used a representation in terms of random directed polymers. Also, instead of showing tightness of probability measures like in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF], we showed that, for a certain topology, the sequence of random semi-groups is almost surely contained in a (random) compact set and then proved almost sure uniqueness of the possible sub-sequential limits. Let us emphasize that the hydrodynamic limit we obtained is in the strong sense of almost sure convergence (on an underlying probability space determined by the Poissonian clocks).

The article is structured as follows. The Gates-Westcott model is introduced in Section 2: we dene the state space of admissible height functions and its dynamic via a Poisson Point Process on R × Z × R + representing space-time locations of kink-antikink creations. In section 3, we start by stating the main result: the hydrodynamic limit for the height function (Theorem 4.3.1). Then, we remind elements of Hamilton-Jacobi PDE theory and useful results on equilibrium measures. The rest of the article is dedicated to the proof of the main theorem (the strategy of the proof is briey explained at the end of Section 3). In Section 4, we rst show elementary facts about the microscopic dynamic and a fundamental property of locality (Corollary 4.4.8) and then construct the sequence of random discrete semi-group mentioned above. Section 5 is about proving compactness. A key step in this proof is the control of random spatio-temporal gradients (Propositions 4.5.5 and 4.5.6). Then, we apply a Arzelà-Ascoli type theorem (Proposition 4.D.1) and show compactness of the sequence of discrete semi-groups. Finally, in Section 6, we identify the limit points as the semi-group associated with the unique viscosity solution of (4.3.5) thanks to Proposition 4.3.5 and the results about equilibrium measures.

The Gates-Westcott model

Height function

In this model, the surface will be described by a discrete height function ϕ : R × Z → Z which lives in the state space given as follows: Denition 4.2.1. Let Γ be the set of functions h : R × Z → Z satisfying the following two conditions:

1. For any y ∈ Z, x → h(x, y) is piece-wise constant with a locally nite number of ±1-valued jumps. By convention, we impose that the values at discontinuity points make the function upper semi-continuous.

2. For any x ∈ R, h(x, y + 1)h(x, y) ∈ {-1, 0}.

Because of condition 1, the discontinuities along direction x can be of three dierent types:
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kink : h(x, y) = h(x -, y) = h(x + , y) + 1 antikink : h(x, y) = h(x -, y) + 1 = h(x + , y)
kink-antikink pair : h(x, y) = h(x -, y) + 1 = h(x + , y) + 1.

A height function looks like a stack of terraces seen from a plane (see Figure 4.1), the edges of each terrace along the x direction corresponding to the kinks and antikinks of the height function. Due to the rst condition in Denition 4.2.1, each function h(•, y) is entirely determined by the position of its kinks and antikinks and its height at any point x 0 ∈ R. In other words, the kinks and antikinks dene the variations of the height function along the x direction.

Remark 4.2.2. In the article [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF] of Gates and Westcott, condition 2 was replaced by the height function being integer-valued and non-decreasing along the y direction so that arbitrary slopes could be allowed (which is physically more realistic). However, there exists a one-to-one correspondence between height functions according to these two denition variants, as explained in [Prä03, p.91].

Dynamic

Let ω be a Poisson Point Process of intensity 2 on R × Z × R + seen as a random, locally nite, set of points in R × Z × R + that will be called creations. Starting from a conguration in the state space Γ, the Gates-Westcott dynamic is dened by three rules: the rst two are deterministic while the last one is random.

Lateral Expansion : each terrace expands laterally at speed 1, i.e. each kink (resp. antikink) of the height function is moved at speed +1 (resp -1) along the x direction.

Annihilation : whenever two terraces meet, they merge, i.e. whenever a kink and an antikink meet, they annihilate each other.

Creation : If (x, y, t) ∈ ω, then the height h at (x, y) increases by one at time t if the height function obtained remains in Γ. In other words, a kink-antikink pair is created at time t and at space position (x, y) if the height function remains in Γ after the transition, i.e. if h(x, y -1, t -)h(x, y, t -) = 1, h(x, y, t -)h(x, y + 1, t -) = 0 and if there is no preexisting discontinuity of h(•, y, t -) at x. Note that the last condition is veried with probability 1, since the discontinuities are locally nite hence countable for any function in Γ.

Remark 4.2.3. As usual in interacting particle systems, some care has to be taken to ensure that the process is well dened on the innite lattice. If we worked in a nite domain, there would be a nite number of creations in nite time intervals and we could know the height function deterministically up to the rst time of creation, determine whether this creation occurs or not and repeat the procedure inductively on the number of creations. On the innite lattice it makes no sense to look at the rst creation but 

h(x, y, t) (x, y, t) ∈ [a, b] × c, d × [0, T ] 1 x [a -T, b + T ] y - y + c d (x, y, t) ∈ [a -T, b + T ] × {y ± } × [0, T ] y > y + y < y - h(x, y, t) (x, y, t) ∈ [a, b] × c, d × [0, T ] (x, y, t) ∈ [a -T, b + T ] × y -, y + × [0, T ] a < b ∈ R T > 0 y ± T T 4.
Γ := f ∈ C R 2 , ∀x ∈ R, ∀y 1 ≤ y 2 ∈ R, f(x, y 2 ) -f (x, y 1 ) ∈ [-(y 2 -y 1 ), 0] . (4.3.2) Notice that a continuously dierentiable function on R 2 is in Γ if and only if its gradient takes values in R × [-1, 0].
Theorem 4.3.1. Let (ϕ n ) n∈N ∈ Γ N be a sequence of admissible initial height functions approaching a continuous function f ∈ Γ in the following sense:

∀R > 0 sup |x|,|y|≤R 1 n ϕ n (nx, ny ) -f (x, y) -→ n→∞ 0 . (4.3.3)
Then, for almost all ω in Ω,

∀T > 0 ∀R > 0 s u p |x|,|y|≤R,t∈[0,T ] 1 n h(nx, ny , nt; ϕ n , ω) -u(x, y, t) -→ n→∞ 0 , (4.3.4)
where u is the unique viscosity solution of the Hamilton-Jacobi equation

∂ t u = v(∇u) u(•, •, 0) = f , (4.3.5) with v(ρ 1 , ρ 2 ) = 1 π π 2 ρ 2 1 + 4 sin 2 (πρ 2 ) . (4.3.6)
Remark 4.3.2. For any continuous function f ∈ Γ, we can always nd a sequence of functions ϕ n ∈ Γ approaching f in the sense of (4.3.3) as we will show later in Proposition 4.4.10.

Before proving this theorem, we will remind the denition of the viscosity solution of Hamilton-Jacobi equations in the next section, explain why it is unique and state sucient conditions to identify it. In Section 4.3.3, we will present useful results about equilibrium measures taken from [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF][START_REF] Prähofer | Stochastic Surface Growth[END_REF], where the speed function in (4.3.6) is also computed.

Viscosity solutions of Hamilton-Jacobi equations

In this section, we briey recall some elements of the theory of Hamilton-Jacobi Partial Dierential Equations. In order to show Theorem 4.3.1, all we need to know about viscosity solutions is gathered in Theorem 4.3.4 and in Proposition 4.3.5. The interested reader can nd more background and motivations about Hamilton-Jacobi equations in the monography [START_REF] Lawrence | Partial dierential equations[END_REF] for instance.

Given f, v ∈ C(R d ), we consider the following rst order PDE:

∂ t u = v(∇u) on R d × (0, +∞) u(•, 0) = f on R d . (4.3.7)
Under some further regularity conditions on v and f , it is possible to apply the method of characteristics to obtain a local classical solution. In general, whatever the regularity of v and f , shocks for ∇u appear in nite time and the solution is no more dierentiable.

In order to give a denition of solution that is global in time, we introduce the classical concept of viscosity solution that guarantees existence and uniqueness under suitable assumptions.

Denition 4.3.3. We say that u : R d × [0, T ] → R is a viscosity solution of (4.3.7) on

R d × [0, T ] if u is continuous, u(., 0) = f
and u is both a subsolution and a supersolution. A function u is a subsolution (respectively a supersolution) if for all φ ∈ C ∞ (R d × (0, T )) and all (x 0 , t 0 ) ∈ R d × (0, T ) such that φ(x 0 , t 0 ) = u(x 0 , t 0 ) and φ ≥ u (resp. φ ≤ u) on a neighbourhood of (x 0 , t 0 ), the following inequality holds:

∂ t φ(x 0 , t 0 ) ≤ v(∇φ(x 0 , t 0 )) (resp. ∂ t φ(x 0 , t 0 ) ≥ v(∇φ(x 0 , t 0 )) ).
(4.3.8)

We won't address the question of general existence of viscosity solutions because, in our case, we will show existence by proving that the hydrodynamic limit is indeed a solution of (4.3.5). However, a result of uniqueness will be needed to identify the potential limit points. The following Theorem shown by Ishii can be obtained as a corollary of [Ish84, Th. Since the function v in (4.3.6) is globally Lipschitz, there is at most one viscosity solution of (4.3.5).

The next proposition gives sucient conditions to identify the viscosity solution of (4.3.5). Even if it is stated for the special case of functions living in the two-dimensional continuous state-space Γ dened in (4.3.2) and for the speed function v dened in (4.3.6), it can be easily extended to a more general framework. Proposition 4.3.5. Let T be a positive real number and S(s, t, •) 0≤s≤t≤T be a family of functions from Γ into itself satisfying the following properties:

1. Translation invariance : for all f ∈ Γ, all c ∈ R and all s ≤ t, S(s, t, f + c) = S(s, t, f ) + c.

2.

Monotonicity: for all s ≤ t, and all f, g ∈ Γ, f ≤ g ⇒ S(s, t, f ) ≤ S(s, t, g).

3. Locality: There exists α > 1 such that for all f, g ∈ Γ, all s ≤ t, all x ∈ R 2 and all

R ≥ 0 sup z∈B(x,R) |S(s, t, f )(z) -S(s, t, g)(z)|≤ sup z∈B(x,R+α(t-s)) |f (z) -g(z)|,
where B(x, r) is the ball of centre x and radius r for the supremum norm on R 2 .

4. Semi-group : for all r ≤ s ≤ t and all f ∈ Γ, S(r, t, f ) = S(s, t, S(r, s, f )) and S(t, t, f ) = f.

Compatibility with linear solutions : for all linear function

f ρ : x → ρ • x with ρ ∈ R × [-1, 0] and all s ≤ t, S(s, t, f ρ ) = f ρ + v(ρ)(t -s).
For any f ∈ Γ, if (x, t) → S(0, t, f)(x) is continuous, then it is a viscosity solution of (4.3.7).

The proof of this proposition is postponed to appendix 4.A.

Equilibrium measures

In this section, we briey remind a few facts about equilibrium measures, following Prähofer and Spohn [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF][START_REF] Prähofer | Stochastic Surface Growth[END_REF]. They identied a family of random height functions, whose spatial height dierences have a law that is translation-invariant with a slope parameter ρ in R × (-1, 0), and are stationary with respect to time (Gates and Westcott already treated the case ρ ∈ {0} × (-1, 0) when they introduced their model in [START_REF] Gates | Stationary states of crystal growth in three dimensions[END_REF]).

Prähofer and Spohn also computed the stationary growth speed v(ρ) which gives the candidate speed function of the Hamilton-Jacobi equation (4.3.6) in Theorem 4.3.1 and showed that the variance of spatial height dierences behaves logarithmically. To do so, they used fermionic Fock space tools to carry out a ne analysis of the equilibrium measures. Let us sum up useful results, most of which can be recovered or easily deduced from [Prä03, Section 6] and others will be detailed in Appendix 4.B.

The starting point of Prähofer and Spohn [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF][START_REF] Prähofer | Stochastic Surface Growth[END_REF] is the analysis of the Gates-Westcott model in a periodized setting, i.e. on a torus [-M, M ) × -N, N -1 . Let us remark that, even though we use dierent notations, we follow the construction of [START_REF] Prähofer | Stochastic Surface Growth[END_REF] rather than [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF] in which a more complicated "twisted" periodic boundary condition is considered (both constructions lead to the same results in the innite volume limit of the torus). The allowed height proles have space gradients that are periodic with horizontal period 2N and vertical period 2M . They evolve according to the periodised Gates-Westcott dynamic i.e the Gates-Wescott dynamic with periodised Poissonian creations [ω] M,N dened from ω as follows:

(x, y, t) ∈ [ω] M,N ⇔ ([x] M , [y] N , t) ∈ ω, (4.3.9)
where [x] M is the unique number in [-M, M ) equal to x modulo 2M and similarly for [y] N . In [Prä03, Section 6.2], the author dened a family of random height functions (see [Prä03, equation (6.9)]) taking values in Γ, whose law is indexed by weight parameters η ± on antikinks and on kinks and a slope parameter along y (related to the density of level lines). The space gradients of these functions are 2M, 2N periodic and their law is translation invariant and time stationary. Fixing properly the weights η ± and the line density, one can guarantee that the average slope approaches any xed ρ in R × (-1, 0) when the size of the torus tends to innity (sending rst M and then N to innity). We call then ϕ M,N,ρ the stationary periodized prole with limit slope ρ, so that

∀(x, y) ∈ R × Z lim N →∞ lim M →∞ E [ϕ M,N,ρ (x, y)] = ρ • (x, y) (4.3.10)
(we are xing here ϕ M,N,ρ (0, 0) = 0) and stationarity translates into

∀t ≥ 0 h(•, •, t; ϕ M,N,ρ , [ω] M,N ) -h(0, 0, t; ϕ M,N,ρ , [ω] M,N ) law = ϕ M,N,ρ (•, •). (4.3.11)
In [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF][START_REF] Prähofer | Stochastic Surface Growth[END_REF], the authors showed that the joint probability density of kinks, antikinks and occupation variables (i.e the set of (x, y) such that ϕ M,N,ρ (x, y + 1)ϕ M,N,ρ (x, y) = -1) has a determinantal structure and identied the associated kernel. When the size of the torus tends to innity, the expression of this kernel somehow simplies (see [Prä03, equation (6.20)]). Also, the average growth velocity is equal to the sum of the kink and antikink densities (independent of time by stationarity), and one obtains [Prä03, Equation (6.24)]:

∀(x, y, t) ∈ R × Z × R + lim N →∞ lim M →∞ E h(x, y, t; ϕ M,N,ρ , , [ω] M,N ) = ρ • (x, y) + v(ρ) t,
(4.3.12) with v(ρ) as in (4.3.6).

Prähofer and Spohn also computed the covariance (or "structure function") between kinks, antikinks and occupation variables (see [Prä03, Equation (6.30)] and [PS97, Equation ( 27) and (29)]). They deduced that, after taking the innite volume limit, the variance of the height dierence at equilibrium is equivalent to π -2 log( (x, y) ) as (x, y) → ∞, but under the technical constraint that y/x is constant or x = o(y). For our purposes, we will simply need the following upper bound that holds without technical restriction on x, y: Finally, it can be shown that the kink/antikink covariance decays like the inverse of the distance squared multiplied by a bounded oscillating term (an upper bound will be proven in Appendix 4.B). Note that this is similar to the large-distance behavior of dimer-dimer correlations in dimer models [START_REF] Kenyon | Lectures on dimers[END_REF]. From this, it is easy deduce (see Appendix 4.B) that

lim N →∞ lim M →∞ Var (ϕ M,N,ρ (x, y)) = O (x,
lim N →∞ lim M →∞ Var N ± M,N,ρ (Λ R ) = O R→∞ R 2 log R , (4.3.14)
where

N ± M,N,ρ (Λ R ) is the number of antikinks/kinks of ϕ M,N,ρ in the domain Λ R := [-R, R] × -R, R .

Strategy of proof of Theorem 4.3.1

The crucial point is Proposition 4.3.5 which gives sucient conditions for identifying the viscosity solution of (4.3.5). Most of these conditions are naturally satised by the microscopic Gates-Westcott dynamics, apart from the compatibility with linear solutions which requires a study of the process started from the translation invariant stationary measures, beyond what was obtained in [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF][START_REF] Prähofer | Stochastic Surface Growth[END_REF]. The rest of the proof is based on compactness arguments, that allow to show sub-sequential existence of S(s, t, •) as the limit of the random microscopic semi-group S n (s, t, •, ω), associated to the rescaled Gates-Westcott dynamics. At the end, one identies the limiting continuous semi-group thanks to Proposition 4.3.5. The main steps of the proof are summed up as follows:

1. Construction of a sequence of random discrete semi-groups (S n (s, t; ., ω)) 0≤s≤t,n∈N (that will be dened more precisely in Section 4.4.2, Denition 4.4.9): S n (s, t; ., ω) :

⎧ ⎨ ⎩ Γ -→ F (R 2 ) f -→ 1 n h(n., n. , n(t -s); ϕ f n , τ ns ω), with ϕ f n ∈ Γ approaching f in the sense of (4.3.3): 1 n ϕ f n (n., n. )-f ∞ ≤ 2/n
, τ ns ω is the time translation by -ns of ω dened later in (4.4.8) and where F(R 2 ) is the set of functions from R 2 to R. The function S n (s, t, f ; ω) should be thought of as the rescaled height function following the dynamic starting close from the continuous initial prole f and with Poissonian creations taken between the macroscopic times s and t.

2. Compactness : Show that there exists a subset Ω 0 ⊆ Ω of probability 1 such that for any xed ω ∈ Ω 0 , from any subsequence (n k ) k∈N , we can extract a subsubsequence (n k l ) l∈N such that for any function f ∈ Γ, (S n k l (•, •; f, ω)) l∈N (seen as a sequence CHAPTER 4. HYDRODYNAMIC LIMIT FOR THE GW MODEL of functions from {(s, t) ∈ [0, T ] 2 , s ≤ t} to F(R 2 )) converges for the topology of uniform convergence on all compact sets to a certain limiting function S(•, •; f, ω) which is continuous in space and time. The proof relies on a control of spatiotemporal height dierences and on an adaptation of Arzelà-Ascoli's Theorem (see Proposition 4.D.1). 3. Identication of the limit : Show that any such limit S(., .; ., ω) satises the sucient conditions of Proposition 4.3.5 thus (x, y, t) → S(0, t; f, ω)(x, y) is the unique viscosity solution of (4.3.5). The knowledge on equilibrium measures explained in section 4.3.3 will be used to show compatibility with linear solutions.

Construction of a sequence of random discrete semigroups

Let us start by dening, for later use, the set of creations that lead to an actual height increase.

Denition 4.4.1. For all ω ∈ Ω and all ϕ ∈ Γ, we dene the subset of eective creations:

ω ϕ := {(x, y, t) ∈ ω : h(x, y, t; ϕ, ω) -h(x, y, t -; ϕ, ω) = 1}. (4.4.1)
It is a subset of ω that depends (non trivially) only on ϕ and ω. For all y ∈ Z, we dene the restriction of ω ϕ and ω to line y:

ω ϕ y := ω ϕ ∩ (R × {y} × R + ) (4.4.2
)

ω y := ω ∩ (R × {y} × R + ) (4.4.3)
By abuse of notation, we will see ω y and ω ϕ y as subsets of R 2 .

Useful properties of the microscopic dynamic

In this section, we present useful properties satised by the microscopic dynamic that will be useful to apply Proposition 4.3.5 later on but also to show compactness.

Lemma 4.4.2 (Translation invariance). For all constant m ∈ Z, all ω ∈ Ω, all ϕ ∈ Γ Lemma 4.4.3 (Monotonicity). For all ϕ 1 , ϕ 2 ∈ Γ, for all ω ∈ Ω, and all t ∈ R + , ϕ 1 ≤ ϕ 2 ⇒ h(., ., t; ϕ 1 , ω) ≤ h(., ., t; ϕ 2 , ω). (4.4.5)

and all t ∈ R + , h(•, •, t; ϕ + m, ω) = h(•, •, t; ϕ, ω) + m. ( 4 
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Proof. As explained in Remark 4.2.3, the dynamic can be dened locally and thus it is enough to show this Lemma when there are nitely many creations. It is not hard to show that the deterministic part of the dynamic (lateral expansion and annihilation) is non-decreasing with respect to the initial condition. We just have to check that any creation preserves monotonicity. Suppose that there is a creation at (x, y, t) and that h(., ., s; ϕ 1 , ω) ≤ h(., ., s; ϕ 2 , ω) for s < t. Let us show that h(x, y, t; ϕ 1 , ω) ≤ h(x, y, t; ϕ 2 , ω). If h(x, y, t -; ϕ 1 , ω) < h(x, y, t -; ϕ 2 , ω), then there is nothing to show since the height can only jump by one after a creation. If h(x, y, t -; ϕ 1 , ω) = h(x, y, t -; ϕ 2 , ω) and if the creation is allowed for the dynamic starting from ϕ 1 , then so it is for the one starting from ϕ 2 because

h(x, y -1, t -; ϕ 2 , ω) -h(x, y, t -; ϕ 2 , ω) ≥ h(x, y -1, t -; ϕ 1 , ω) -h(x, y, t -; ϕ 1 , ω) = 1 (4.4.6) and h(x, y, t -; ϕ 2 , ω) -h(x, y + 1, t -; ϕ 2 , ω) ≤ h(x, y, t -; ϕ 1 , ω) -h(x, y + 1, t -; ϕ 1 , ω) = 0.
(4.4.7) In any case, the monotonicity is preserved after a creation.

For ω ∈ Ω, we dene τ s ω, the time translation by -s of ω as follows: and for all 0 ≤ r ≤ s ≤ t, h(., ., tr; ϕ, τ r ω) = h(., ., ts; h(., ., sr; ϕ, τ r ω), τ s ω).

∀(x, y, t) ∈ R × Z × R + , (x, y, t) ∈ τ s ω ⇔ (x, y, t + s) ∈ ω. ( 4 
(4.4.10)

Proof. From Remark 4.2.3, we can assume that ω contains nitely many points. In this case, the rst point follows directly from the construction of the dynamic. The second point is obtained from the rst point applied to (s , t , ω ) = (sr, tr, τ r ω).

Next, as announced in Remark 4.2.3, we are going to show that the dynamic on a bounded space-time domain only depends on the initial height function and the creations on a bigger domain that grows linearly with time with high probability. To make this statement precise, for any x ∈ R 2 , R ≥ 0, t ∈ R + and α > 0, let us dene

A x,R,t,α = ⎧ ⎪ ⎨ ⎪ ⎩ ω ∈ Ω, ∀ϕ, ϕ ∈ Γ ∀ω ∈ Ω if ϕ = ϕ on B(x, R + α t) and ω = ω on B(x, R + α t) × [0, t] then ∀u ≤ t, h(•, •, •; ϕ, τ u ω) = h(•, •, •; ϕ , τ u ω ) on B(x, R) × [0, t -u] ⎫ ⎪ ⎬ ⎪ ⎭
(4.4.11) where the notation B abusively denotes the ball (for the supremum norm) intersected with R × Z.

Proposition 4.4.5 (Linear propagation of information). There exist constants α > 1 and γ > 0, such that for all R > 0, all t ∈ R + and all x ∈ R 2 ,

P (A nx,nR,nt,α ) n→∞ = 1 -O e -γt n .
Proof. To lighten the notations, without loss of generality, we will assume that x = 0.

The idea of the proof is the following. If the height functions dier on B(0, R) × [0, t] and if initial conditions and creations agrees on B(0, R + αt), then there must exists a "chain of creations" of length at least αt (connecting B(0, R) to the complement of B(0, R + αt)) in a time interval of length less than t (see Lemma 4.4.6). This is unlikely if α is chosen big enough and if t goes to innity. Lemma 4.4.6. Let ϕ, ϕ ∈ Γ agreeing on B(0, R+αt) and ω, ω ∈ Ω agreeing on B(0,

R+ αt) × [0, t]. If h(•, •, •, ϕ; ω) and h(•, •, •, ϕ ; ω ) dier on B(x, R) × [0, t],
then, there must exist a sequence (x i , y i , t i ) 0≤i≤k with k := αt satisfying

|y 0 |≤ R and |y i+1 -y i |≤ 1, for all i ∈ 0, k -1 , 0 ≤ t k ≤ • • • ≤ t 0 ≤ t and (x i , t i ) ∈ ω y i for all i ∈ 0, k , with ω y as in Denition (4.4.1) |x 0 |≤ R + t -t 0 and |x i+1 -x i |≤ t i -t i+1 for all i ∈ 0, k -1 .
Before proving this Lemma, let us nish the proof of Proposition 4.4.5. If ω / ∈ A 0,R,t,α , then there must exists ϕ, ϕ , ω as in Lemma 4.4.6 and some u ∈ [0, t] such that h(•, •, •, ϕ; τ u ω) and h(•, •, •, ϕ ; τ u ω ) dier on B(x, R)×[0, t-u]. By applying Lemma 4.4.6 at time t-u and with creations τ u ω and τ u ω we get a chain of creations (x i , y i , t i ) 0≤i≤ αt such that (x i , y i , t i + u) 0≤i≤ αt satises the 3 points in Lemma 4.4.6. In order to be consistent with the denition of C ↑ in Appendix 4.C, we relabel this sequence by setting (x i , y i , t i ) 0≤i≤ αt := (x αt -i , y αt -i , t αt -i + u) 0≤i≤ αt so that |x i+1x i |≤ t i+1t i . Doing this, we see that 

c A 0,R,t,α ⊆ ȳ ∈Y R, αt C ↑ ω, ȳ (T R,t ) where Y R,n is dened by Y R,n := {(y 0 • • • y n ) ∈ Z n+1 , |y n |≤ R, ∀i ∈ 0, n-1 |y i+1 -y i |≤ 1} and T R,
P C ↑ ω, ȳ(T R,t ) ≤ 2 (2Rt + t 2 ) 4e 2 t 2 αt 2 αt .
Now, since Y R, αt is of cardinality bounded by (2 R + 1) 3 αt , by union bound,

P ( c A 0,R,t,α ) ≤ 2 (2Rt + t 2 ) (2 R + 1) 12e 2 t 2 αt 2 αt , ( 4 
.4.12)
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and thus, for α := √ 24 e we get

P ( c A 0,nR,nt,α ) n→∞ = O n 3 2 -αnt ,
and the proof of Proposition 4.4.5 is concluded by choosing any γ < α ln 2.

Proof of Lemma 4.4.6. Let us introduce some notations (we will also use the notation ω ϕ , ω ϕ y as in Denition 4.4.1). For all (x, t) ∈ R × R + , we dene C - x,t := {(z, s) ∈ R × R + , |z -x|≤ t -s}. By speed one propagation of kinks/antikinks, h(x, y, t, ϕ; ω) only depends on ω ϕ y ∩ C - x,t and on ϕ(z, y) for z ∈ [xt, x + t]. This fact can also be seen as a consequence of Lemma 4.5.3 below. Now, we are going to construct by induction a chain of creations like in Lemma 4.4.6.

Construction of (x 0 , y 0 , t 0 ) : Assume that there exists (x, y, s) ∈ B(0, R) × [0, t] such that we have h(x, y, s, ϕ; ω) = h(x, y, s, ϕ ; ω ). Let us x such a (x, y, s) and set y 0 := y. By the discussion above, since ϕ(•, y 0 ) and ϕ (•, y 0 ) agree on the interval

[-R -αt, R + αt] ⊇ [x -t, x + t] (because |x|≤ R and α > 1), necessarily ω ϕ y 0 ∩ C - x,s and (ω ) ϕ y 0 ∩ C - x,s
are distinct. In other words, we can nd (x 0 , t 0 ) ∈ ω y 0 ∩ C - x,s (= ω y 0 ∩ C - x,s by assumption on ω ) corresponding to a kink/antikink creation that occurs for one of the dynamics but not for both (and such that |x 0 |≤ R + tt 0 ). Consequently, the height functions must dier either at (x 0 , y 0 -1, t - 0 ), (x 0 , y 0 , t - 0 ) or (x 0 , y 0 +1, t - 0 ) (otherwise the creation would have been accepted or rejected simultaneously in both dynamics).

Construction of (x i+1 , y i+1 , t i+1 ) : According to the three possibilities above, we set y 1 to be equal to y 0 -1, y 0 or y 0 +1 (respectively in the rst, second and third possibility). If y 1 is still in B(0, R + αt), we can repeat the procedure above and nd some (x 1 , t 1 ) ∈ ω y 1 ∩ C - x 0 ,t 0 (hence |x 1x 0 |≤ t 0t 1 ) corresponding to a creation that occurs for one of the dynamic but not for both and so on. This construction continues as long as y i ∈ B(0, R + αt) and note that y i cannot exit B(0, R + αt) for i ≤ αt . Overall, we constructed a sequence as in Lemma 4.4.6. Its length is at least αt + 1. Now, let us show a Lemma that relates the linear propagation of information with a Lipschitz property with respect to the initial height prole. Lemma 4.4.7. For all R ≥ 0, all s ≤ t, all x ∈ R 2 and all n ∈ N, the following event happens with probability 1-O (e -γn ) as n goes to innity (with γ as in Proposition 4.4.5):

sup z∈nB(x,R) |h(z, v-u; ϕ, τ u ω)-h(z, v-u; ϕ , τ u ω)|≤ sup z∈nB(x,R+α(t-s)) |ϕ(z)-ϕ (z)|, (4.4.13)
for every ϕ, ϕ ∈ Γ and every u, v such that ns ≤ u ≤ v ≤ nt (and with α as in Proposition 4.4.5). Proof. By time translation invariance of the law of the Poisson process, we can assume that s = 0. We are going to show that the event A nx,nR,nt,α is included in the event in the l.h.s. of (4.4.13). To do this, let us x ω ∈ A nx,nR,nt,α , ϕ, ϕ ∈ Γ and 0 ≤ u ≤ v ≤ nt.

We set

m = sup z∈nB(x,R+αt) |ϕ(z) -ϕ (z)|∈ N ,
and φ := ϕ ∨ (ϕ + m). It is not hard to show that φ ∈ Γ. Now, for all z ∈ nB(x, R),

h(z, v -u; ϕ, τ u ω) ≤ h(z, v -u; φ, τ u ω) by Lemma 4.4.3 since ϕ ≤ φ = h(z, v -u; ϕ + m, τ u ω) ω ∈ A nx,nR,nt,α and φ = ϕ + m on nB(x, R + αt) = h(z, v -u; ϕ , τ u ω) + m by Lemma 4.4.2.
We can prove the other inequality by exchanging ϕ and ϕ which concludes this proof.

Let us conclude this section by the next corollary which will be very useful later on.

Corollary 4.4.8 (Asymptotic locality). There exists α > 1 and a subset Ω 0 ⊆ Ω of probability 1 such that for all ω ∈ Ω 0 , x ∈ R 2 , R ≥ 0, (s, t) ∈ R 2 with 0 ≤ s ≤ t, there exists N (ω) ∈ N such that for all n ≥ N (ω) and all ϕ, ϕ ∈ Γ:

sup s≤u≤v≤t h (n•, n• , n(v -u); ϕ, τ nu ω) -h n•, n• , n(v -u); ϕ , τ nu ω B(x,R) ∞ ≤ ϕ(n•, n• ) -ϕ (n•, n• ) B(x,R+α(t-s)) ∞ . (4.4.14)
The proof follows easily from Lemma 4.4.7, Borel-Cantelli Lemma and rational approximation (up to choosing an α slightly larger than the one in Lemma 4.4.7).

Denition of the sequence of random discrete semi-groups

We are going to dene a sequence of functions (S n (s, t, f, ω)) n∈N describing the rescaled dynamic, between times s and t and Poissonian creations ω, starting at time s from an initial height prole close to a continuous function f . Denition 4.4.9. For all ω ∈ Ω and (s, t) ∈ T := {(s, t) ∈ [0, T ] 2 , s ≤ t}, we dene S n (s, t; ., ω) :

⎧ ⎨ ⎩ Γ -→F (R 2 ) f -→ 1 n h(n•, n• , n(t -s); ϕ f n , τ ns ω), (4.4.15)
where F(R 2 ) denotes the set of functions from R 2 to R, τ ns is the temporal translation dened in (4.4.8) and ϕ f n is the height prole in Γ approaching f as in the following Proposition 4.4.10. Proposition 4.4.10. For all n ∈ N, there exists a mapping

Γ -→ Γ f -→ ϕ f n (4.4.16)
satisfying that for all c ∈ R and f ∈ Γ, ϕ f +n -1 nc n = ϕ f n + nc , and such that

sup x,y∈R 2 1 n ϕ f n (nx, ny ) -f (x, y) ≤ 2 n , (4.4.17)
Therefore, the sequence of functions (ϕ f n ) n∈N approaches f in the sense of (4.3.3).
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Remark 4.4.11. We cannot just choose ϕ f n := (x, y) → nf (n -1 x, n -1 y) because it could possibly have an accumulation point of discontinuities if f oscillates too much; this would violate the rst condition in Denition 4.2.1.

Proof. For any xed y ∈ Z, we are going to dene ϕ f n (•, y) as piecewise constant on R + (we will construct it similarly on R -). Let us dene inductively X y 0 = 0, ϕ f n (0, y) := nf (0, y/n) and

X y i+1 := inf{x ≥ X y i , |nf (x/n, y/n) -ϕ f n (X y i , y)|≥ 1} (with inf ∅ = +∞) ϕ f n (•, y) = ϕ f n (X y i , y) on (X y i , X y i+1 ) ϕ f n (X y i+1 , y) = nf (X y i+1 /n, y/n).
By induction and by continuity of f , ϕ f n (X y i , y) ∈ Z for all i. Still by continuity, X y i+1 > X y i and {X y i , i ∈ N} is a locally nite subset of R + with lim i→∞ X y i = +∞. Similarly, we construct ϕ f n (•, y) on negative real numbers. Up to modifying the value at discontinuity points, we obtain a function ϕ f n (•, y) which satises point 1 of Denition 4.2.1 and which satises the translation invariance property ϕ f +n -1 c n = ϕ f n +c for all c ∈ Z by construction. Moreover, by construction, for all

(x, y) ∈ R × Z, |ϕ f n (x, y) -nf (x/n, y/n)|≤ 1 and thus sup (x,y)∈R 2 | 1 n ϕ f n (nx, ny ) -f (x, y)| ≤ sup (x,y)∈R 2 | 1 n ϕ f n (nx, ny ) -f (x, ny /n)|+ sup (x,y)∈R 2 |f (x, ny /n) -f (x, y)| ≤ 1 n + | ny /n -y|≤ 2 n because f ∈ Γ.
It remains to check that ϕ f n satises point 2 of Denition 4.2.1 and hence is in Γ. To do this, let us x y ∈ Z and show that for all x ≥ 0, ϕ f n (x, y + 1)ϕ f n (x, y) ∈ {-1, 0} (the case x < 0 being similar). Let x ≥ 0 and i, j be the unique integers such that

X y i ≤ x < X y i+1 and X y+1 j ≤ x < X y+1 j+1 . By construction of ϕ f n , ϕ f n (x, y) = nf (X y i /n, y/n) ϕ f n (x, y + 1) = nf (X y+1 j /n, (y + 1)/n) .
There are two cases: either

X y+1 j ∈ [X y i , X y i+1 ) or X y i ∈ [X y+1 j , X y+1 j+1
). Since they are similar, we will just treat the rst one. By denition of X y i+1 , for all z ∈ [X y i , X y i+1 ) we have |nf (z/n, y/n)nf (X y i /n, y/n)|< 1 and thus

ϕ f n (x, y + 1) -ϕ f n (x, y) = nf (X y+1 j /n, (y + 1)/n) -nf (X y i /n, y/n) = nf (X y+1 j /n, (y + 1)/n) -nf (X y+1 j /n, y/n) ∈[-1,0] since f ∈ Γ + nf (X y+1 j /n, y/n) -nf (X y i /n, y/n) ∈(-1,1) since X y+1 j ∈[X y i ,X y i+1 )
. First, we need to introduce some new denitions. Denition 4.5.1. For any nite set A ⊆ R 2 , we dene L ↑ (A) as the maximal number of points in A that can be collected by a light-path i.e a continuous path γ :

Finally, ϕ f n (x, y + 1) -ϕ f n (x, y) ∈ (-2, 1) ∩ Z = {-1, 0}.
[0, 1] → R 2 satisfying that for any 0 ≤ a ≤ b, we have γ(b) -γ(a) ∈ {(x, t) ∈ R 2 |x|≤ t}.
We say that a rectangle R ⊆ R 2 is a light-rectangle if its sides are parallel to the straight lines t = x or t = -x. For any s < t and (x, s), (y, t) such that |y -x|≤ ts, we note R (x,s),(y,t) the unique light-rectangle of diagonal [(x, s), (y, t)].

Remark 4.5.2. We let the reader check that the area of R (x,s),(y,t) is

((t -s) 2 -(y -x) 2 )/2 and that if |x -x|≤ s -s then R (x,s),(y,t) ⊆ R (x ,s ),(y,t) while if |y -y|≤ t -t then R (x,s),(y,t) ⊆ R (x,s),(y ,t ) .
The next Lemma is an easy extension to arbitrary initial conditions of the equivalence between the PNG and the directed polymers model as explained in [FP06, Section 2.3 and 3.1] for special droplet and at initial conditions (see also Figure 4.2). Lemma 4.5.3. For al l (x, y, t) ∈ R × Z × R + , all ϕ ∈ Γ and ω ∈ Ω,

h(x, y, t; ϕ, ω) = sup z∈[x-t,x+t]

{ϕ(z, y) + L ↑ (ω ϕ y ∩ R (z,0),(x,t) )}, (4.5.1) and the supremum is attained for some z ∈ [xt, x + t].

In order to control the space gradients of the interface, we need an upper bound on L ↑ (ω ϕ y ∩ R) (or on L ↑ (ω y ∩ R) since ω ϕ y ⊆ ω y ) for large rectangles R. This quantity is well studied as it is related to the length of the longest increasing subsequence of a random uniform permutation, which was shown rst by Hammersley to behave like the square root of the number of Poisson points in R (this is also known as Ulam's problem; see [START_REF] John | A few seedlings of research[END_REF]). Lemma 4.5.4. There exists a constant c > 0 such that for al l ω in a subset of Ω of probability 1, for al l light-rectangle R ⊆ R 2 and al l Y > 0, lim sup

n→∞ sup y∈ -nY,nY 1 n L ↑ (ω y ∩ nR) ≤ c Leb(R), (4.5.2)
where Leb(R) is the area of R. Therefore, up to intersecting this subset of probability 1 with Ω 0 (dened in Corollary 4.4.8) we can assume that (4.5.2) holds for al l ω ∈ Ω 0 .

ϕ(•, y) ω

ϕ y ωy \ ω ϕ y y ∈ Z k ∈ N P L ↑ (ω y ∩ R) ≥ k ≤ 2e 2 Leb(R) k 2 k . c = 2e P sup y∈ -nY,nY 1 n L ↑ (ω y ∩ nR) ≥ c Leb(R) ≤ 2nY 2 -nc √ Leb(R) . ω Y > 0 lim sup n→∞ sup y∈ -nY,nY 1 n L ↑ (ω y ∩ nR) ≤ c Leb(R). R R → L ↑ (ω y ∩ nR) ω ∈ Ω 0 f ∈ Γ s ≤ t (x, y) ∈ R 2 lim sup n→∞ S n (s, t, f ; ω)(x, y) ≤ sup |z-x|≤t-s f (z, y) + √ 2 c (t -s),
where c is the same constant as in Lemma 4.5.4.

Proof. By denition of S n and by Lemma 4.5.3, We conclude the proof with Lemma 4.5.4 and Leb(R (x,2s-t),(x,t) ) = 2(ts) 2 . Now, we establish a crucial lemma that guarantees a priori that, at any time, the asymptotic rescaled height function has at least the worst regularity between that of the initial height prole and 1/2-Hölder regularity. A posteriori, after the proof of the main theorem, we will have that it stays Lipschitz at any time if the initial condition is itself Lipschitz since this is the case for viscosity solutions of Hamilton-Jacobi equations. Proposition 4.5.6 (Control on height dierences along x). There exists a constant C (that depends on the time horizon T ) such that for all ω ∈ Ω 0 , all f ∈ Γ, all (x, y) ∈ R 2 , and all δ ∈ [0, 1], lim sup

S n (s, t, f ; ω)(x, y) = 1 n h(nx, ny , n(t -s); ϕ f n , τ ns ω) = sup |z-x|≤t-s 1 n ϕ f n (nz, y) + 1 n L ↑ (τ ns ω) ϕ f n ny ∩ R (nz,0),(nx,n(t-s)) ≤ sup |z-x|≤t-s f (z, y) + 2 n + 1 n L ↑ (τ ns ω) ny ∩ nR (z,
n→∞ sup x 1 ,x 2 ∈[x-δ,x+δ] 0≤s≤t≤T |S n (s, t, f ; ω)(x 2 , y) -S n (s, t, f ; ω)(x 1 , y)| ≤ sup x 1 ,x 2 ∈[x-δ-T,x+δ+T ] |x 2 -x 1 |≤2δ |f (x 1 , y) -f (x 2 , y)|+C √ δ. (4.5.4)
Proof. We start by showing the following Lemma.

Lemma 4.5.7. For all y ∈ Z, all

x 1 < x 2 ∈ R, all t ≥ 0, all ϕ ∈ Γ, |h(x 2 , y, t; ϕ, ω) -h(x 1 , y, t; ϕ, ω)| ≤ sup z,z ∈[x 1 -t,x 2 +t] |z-z |≤|x 2 -x 1 | |ϕ(z, y) -ϕ(z , y)|+ max L ↑ (ω y ∩ R 1 ) , L ↑ (ω y ∩ R 2 ) , (4.5.5) with R 1 := R ( x 1 +x 2 2 -t,- x 2 -x 1 2
),(x1,t) and R 2 := R ( x 1 +x 2 2 +t,-

x 2 -x 1 2 ),(x2,t) . h(x 2 , y, t; ϕ, ω) -h(x 1 , y, t; ϕ, ω) ≤ sup z∈[x 1 +t,x 2 +t] |ϕ(z, y) -ϕ(x 1 + t, y)|+L ↑ (ω y ∩ R 2 ) . z ∈ [x 2 -t, x 2 + t] h(x 2 , y, t; ϕ, ω) = ϕ(z, y) + L ↑ (ω ϕ y ∩ R (z,0),(x 2 ,t) ) . z ∈ [x 1 -t, x 1 + t] h(x 1 , y, t; ϕ, ω) ϕ(z, y) + L ↑ (ω ϕ y ∩ R (z,0),(x 1 ,t) ) h(x 2 , y, t; ϕ, ω) -h(x 1 , y, t; ϕ, ω) ≤ L ↑ (ω ϕ y ∩ R (z,0),(x 2 ,t) ) -L ↑ (ω ϕ y ∩ R (z,0),(x 1 ,t) ). A, B ⊆ R 2 L ↑ (A ∪ B) ≤ L ↑ (A) + L ↑ (B), A, B ⊆ R 2 L ↑ (A) -L ↑ (B) ≤ L ↑ (A \ B). A = ω ϕ y ∩ R (z,0),(x 2 ,t) B = ω ϕ y ∩ R (z,0),(x 1 ,t) A \ B R 2 h(x 2 , y, t; ϕ, ω)- R (z,0),(x 2 ,t) R (z,0),(x 1 ,t) h(x2, y, t) h(x1, y, t) h(x 1 , y, t; ϕ, ω) ≤ L ↑ (ω ϕ y ∩ R 2 ) 74 CHAPTER 4. HYDRODYNAMIC LIMIT FOR THE GW MODEL (ii) If z ∈ [x 1 + t, x 2 + t],
then by choosing z = x 1 + t in the variational formula (4.5.1), we get that h(x 1 , y, t; ϕ, ω) ≥ ϕ(x 1 + t, y) hence h(x 2 , y, t; ϕ, ω)h(x 1 , y, t; ϕ, ω)

≤ ϕ(z, y) + L ↑ (ω ϕ y ∩ R (z,0),(x 2 ,t) ) -ϕ(x 1 + t, y) ≤ sup z∈[x 1 +t,x 2 +t] |ϕ(z, y) -ϕ(x 1 + t, y)|+L ↑ ω ϕ y ∩ R 2 , since R (z,0),(x 2 ,t) ⊆ R ( x 1 +x 2 2 +t,- x 2 -x 1 2 ),(x2,t) = R 2 for all z ∈ [x 1 + t, x 2 + t],
as shown in Figure 4.3. This also implies (4.5.6).

The proof of Lemma 4.5.7 is concluded by showing similarly that

h(x 1 , y, t; ϕ, ω) -h(x 2 , y, t; ϕ, ω) ≤ sup z∈[x 1 -t,x 2 -t] |ϕ(z, y) -ϕ(x 2 -t, y)|+L ↑ (ω y ∩ R 1 ) .
Lemma 4.5.7 yields that for all xδ ≤ x 1 ≤ x 2 ≤ x + δ and all t ≥ 0,

|h(x 2 , y, t; ϕ, ω) -h(x 1 , y, t; ϕ, ω)| ≤ sup z,z ∈[x-δ-t,x+δ+t] |z-z |≤2δ |ϕ(z, y) -ϕ(z , y)| + max L ↑ (ω y ∩ R (x-t,-δ),(x,t+δ) ), L ↑ (ω y ∩ R (x+t,-δ),(x,t+δ) )
since one can check that

R ( x 1 +x 2 2 -t,- x 2 -x 1 2
),(x1,t) ⊆ R (x-t,-δ),(x,t+δ) and R ( x 1 +x 2 2 +t,-

x 2 -x 1 2
),(x2,t) ⊆ R (x+t,-δ),(x,t+δ) . Thus, for all x 1 , x 2 ∈ [xδ, x + δ], all s, t such that 0 ≤ s ≤ t ≤ T , all f ∈ Γ and all n ∈ N,

|S n (s, t, f ; ω)(x 2 , y) -S n (s, t, f ; ω)(x 1 , y)| = 1 n h(nx 2 , ny , n(t -s), ϕ f n , τ ns ω) - 1 n h(nx 1 , ny , n(t -s), ϕ f n , τ ns ω) ≤ sup z,z ∈[x-δ-(t-s),x+δ+(t-s)] |z-z |≤2δ 1 n ϕ f n (nz, ny ) - 1 n ϕ f n (nz , ny ) + max 1 n L ↑ (ω ny ∩ nR (x-(t-s),s-δ),(x,t+δ) ), 1 n L ↑ (ω ny ∩ nR (x+(t-s),s-δ),(x,t+δ) ) ≤ sup z,z ∈[x-δ-T,x+δ+T ] |z-z |≤2δ f (z, y) -f (z , y) + 4/n + max 1 n L ↑ (ω ny ∩ nR (x-T,-δ),(x,T +δ) ), 1 n L ↑ (ω ny ∩ nR (x+T,-δ),(x,T +δ) ) ,
where the last inequality holds because of (4.4.17) and because R (x±(t-s),s-δ),(x,t+δ) is included in R (x±T,-δ),(x,T +δ) . Note that this upper bound is uniform in x 1 , x 2 ∈ [xδ, x + δ] and in s, t such that 0 ≤ s ≤ t ≤ T . We conclude the proof of Proposition 4.5.6 by applying Lemma 4.5.4 to R (x±T,-δ),(x,T +δ) which are of area 2(δT + δ 2 ) ≤ 2(T + 1) δ since δ ∈ [0, 1] and by choosing C := c 2(T + 1) (c is the same constant as in Lemma 4.5.4).

Choice of the metric

We endow F(R 2 ) and Γ ⊆ C(R 2 ) ⊆ F(R 2 ) with the distance of uniform convergence on all compacts, e.g.

∀f 1 , f 2 ∈ F(R 2 ), d ∞,c (f 1 , f 2 ) := ∞ i=1 2 -i f 1 -f 2 [-i,i] 2 ∞ ∧1 . (4.5.7)
For this distance, a sequence of functions (f n ) n∈N converges to f ∈ F(R 2 ) if and only if it converges uniformly on all compact sets of R 2 to f . Proposition 4.5.8. The metric space

(F(R 2 ), d ∞,c ) is complete. The metric space ( Γ, d ∞,c
) is complete and separable (i.e. a Polish space).

Proof. The completeness of

(F(R 2 ), d ∞,c ) is a classical fact. Since Γ is a closed subset of C(R 2 ) (which is complete because closed in F(R 2
) and separable by approximation by polynomials with rational coecients on any compact set) it is in turn a complete separable metric space. Now, we denote F T := F(T , F(R 2 )) the set of functions from T (dened in Denition 4.4.9) into F(R 2 ) which we endow with the uniform distance:

∀F 1 , F 2 ∈ F T , D ∞ (F 1 , F 2 ) := sup 0≤s≤t≤T d ∞,c (F 1 (s, t), F 2 (s, t)).
(4.5.8)

The following Proposition is standard when dealing with functional spaces with a complete set of destination such as F(R 2 ) (by Proposition 4.5.8) and endowed with the uniform distance. Proposition 4.5.9. The metric space (F T , D ∞ ) is complete.

Compactness for any xed ω in a subset Ω 0 of probability 1

We recall that Ω 0 is a subset of Ω of probability 1 introduced in Corollary 4.4.8 and Lemma 4.5.4. The goal of this section is to show the following proposition: Proposition 4.5.10. For all ω ∈ Ω 0 , and all sub-sequences (n k ) k∈N , we can extract a sub-sub-sequence (n k l ) l∈N such that for all f ∈ Γ, the sequence (S n k l (., .; f, ω)) l∈N converges to a certain S(•,

•; f, ω) in F T , i.e, ∀R > 0, sup 0≤s≤t≤T |x|,|y|≤R S n k l (s, t, f ; ω)(x, y) -S(s, t, f ; ω)(x, y) -→ l→∞ 0.
By this and Proposition 4.5.6,

lim sup n→∞ sup (x ,y )∈R 2 |x-x |,|y-y |≤δ |S n (s, t, f ; ω)(x, y) -S n (s, t, f ; ω)(x , y )| ≤ lim sup n→∞ sup x ∈[x-δ,x+δ] |S n (s, t, f ; ω)(x, y) -S n (s, t, f ; ω)(x , y)|+δ ≤ sup x 1 ,x 2 ∈[x-δ-T,x+δ+T ] |x 2 -x 1 |≤2δ |f (x 1 , y) -f (x 2 , y)|+C √ δ + δ .
(4.5.11)

By uniform continuity of f on any compact, the right-hand side tends to 0 when δ tends to 0.

Therefore, by Proposition 4.D.1, any subsequence of (S n (s, t, f ; ω)) n∈N has a subsequence that converges in (F(R 2 ), d ∞,c ) and any limit point is continuous. Actually, by taking the limit in (4.5.10), any limit point is in Γ. This concludes the proof of Lemma 4.5.13.

To nish the proof of Lemma 4.5.12, we are going to show asymptotic equi-continuity of ((s, t) → S n (s, t, f ; ω)) n∈N . Let us x ω ∈ Ω 0 , f ∈ Γ and (s, t) ∈ T . By denition of d ∞,c , it is enough to show that for any ε > 0 and R > 0 there exists δ > 0 such that:

lim sup n→∞ sup (s ,t )∈T |s -s|≤δ, |t -t|≤δ S n (s, t, f ; ω) -S n (s , t , f; ω) [-R,R] 2 ∞ ≤ ε .
We claim that for any (s , t ) ∈ T , there exists some r ≤ t ∧ t and u ≥ s ∨ s such that

S n (s, t, f ; ω) -S n (s , t , f; ω) [-R,R] 2 ∞ ≤ S n (r, t, f ; ω) -S n (r, t , f; ω) [-R,R] 2 ∞ + S n (s, u, f ; ω) -S n (s , u, f; ω) [-R,R] 2 ∞ .
(4.5.12) Indeed, at least one of the two conditions occurs: s ≤ t or s ≤ t. In the rst case, (4.5.12) holds with (r, u) = (s, t ) while in the second case, (r, u) = (s , t). Therefore, asymptotic equi-continuity of ((s, t) → S n (s, t, f ; ω)) n∈N follows from the next Lemma. Lemma 4.5.14. For all ω ∈ Ω 0 , (s, t) ∈ T , f ∈ Γ, R > 0 and ε > 0, there exists δ > 0 such that

lim sup n→∞ sup r,t ∈[0,T ] r≤t∧t , |t -t|≤δ S n (r, t, f ; ω) -S n (r, t , f; ω) [-R,R] 2 ∞ ≤ ε (4.5.13) and lim sup n→∞ sup u,s ∈[0,T ] u≥s∨s , |s -s|≤δ S n (s, u, f ; ω) -S n (s , u, f; ω) [-R,R] 2 ∞ ≤ ε.
(4.5.14)

Proof. We are going to prove (4.5.13) rst. Let (x, y) ∈ R 2 and suppose rst that r ≤ t ≤ t . By Lemma 4.4.4,

S n (r, t , f; ω)(x, y) = 1 n h nx, ny , n(t -r), ϕ f n ; τ nr ω = 1 n h nx, ny , n(t -t), h(n•, n• , n(t -r), ϕ f n , τ nr ω); τ nt ω .
Now, by Lemma 4.5.3 applied with initial condition

ψ := h(n•, n• , n(t -r), ϕ f n , τ nr ω), S n (r, t , f; ω)(x, y) = sup |z-x|≤|t -t| 1 n ψ(z, y) + 1 n L ↑ (τ nt ω) ψ ny ∩ nR (z,0),(x,t -t) ≤ sup |z-x|≤|t -t| 1 n ψ(z, y) + 1 n L ↑ (τ nt ω) ny ∩ nR (z,0),(x,t -t) = sup |z-x|≤|t -t| S n (r, t, f ; ω)(z, y) + 1 n L ↑ ω ny ∩ nR (z,t),(x,t ) ≤ sup |z-x|≤|t -t| S n (r, t, f ; ω)(z, y) + 1 n L ↑ ω ny ∩ nR (x,t-|t -t|),(x,t ) , since R (z,t),(x,t ) ⊆ R (x,t-|t -t|),(x,t ) for all |z -x|≤ |t -t|. Similarly if r ≤ t ≤ t, S n (r, t, f ; ω)(x, y) ≤ sup |z-x|≤|t -t| S n (r, t , f; ω)(z, y) + 1 n L ↑ ω ny ∩ nR (x,t -|t -t|),(x,t) .
In any case, since R (x,t-2δ),(x,t+δ) contains both R (x,t-|t -t|),(x,t ) and R (x,t -|t -t|),(x,t) ,

sup r,t ∈[0,T ] r≤t∧t , |t -t|≤δ S n (r, t , f; ω)(x, y) -S n (r, t, f ; ω)(x, y) ≤ sup z∈[x-δ,x+δ] r≤t∧t S n (r, t ∧ t , f; ω)(z, y) -S n (r, t ∧ t , f; ω)(x, y) + 1 n L ↑ ω ny ∩ nR (x,t-2δ),(x,t+δ) .
Therefore, by Proposition 4.5.6 and Lemma 4.5.4, since Leb R (x,t-2δ),(x,t+δ) = (3δ) 2 /2, r,t ,f;ω)(x,t,f ;ω)(x,y)

lim sup n→∞ sup r,t ∈[0,T ] r≤t∧t , |t -t|≤δ S n (
≤ sup x 1 ,x 2 ∈[x-δ-T,x+δ+T ] |x 2 -x 1 |≤2δ |f (x 1 , y) -f (x 2 , y)|+C √ δ + c 3 √ 2 δ .
(4.5.15) The right-hand side tends to 0 when δ goes to 0. To nish o the proof of (4.5.13), we need to get a uniform control in (x, y) ∈ [-R, R] 2 . To do this, we cover the rectangle [-R, R] 2 by a nite union of balls of radius δ. Let (x 1 , y 1 ), • • • , (x p , y p ) be the centers of 4.5. COMPACTNESS 79 these balls. By (4.5.11), for any i,

lim sup n→∞ sup (r,r )∈T (x,y)∈B((x i ,y i ),δ) S n (r, r , f; ω)(x, y) -S n (r, r , f; ω)(x i , y i ) ≤ sup x 1 ,x 2 ∈[x-δ-T,x+δ+T ] |x 2 -x 1 |≤2δ |f (x 1 , y) -f (x 2 , y)|+C √ δ + δ,
This bound proves the uniform control in (x, y) ∈ B((x i , y i ), δ). Since (4.5.15) holds simultaneously for all (x i , y i ), (4.5.13) holds for any δ > 0 chosen small enough.

Let us now prove (4.5.14). If s ≤ s ≤ u, by Lemma 4.4.4,

S n (s, u, f ; ω) = 1 n h n•, n• , n(u -s ), h(n•, n• , n(s -s), ϕ f n ; τ ns ω); τ ns ω ,
and

S n (s , u, f; ω) = 1 n h(n•, n• , n(u -s ), ϕ f n ; τ ns ω).
Therefore, by Corollary 4.4.8, there exists N (ω) ∈ N such that for all n ≥ N (ω) and all

s ≤ s ≤ u ≤ T , S n (s, u, f ; ω) -S n (s , u, f; ω) [-R,R] 2 ∞ ≤ 1 n h(n•, n• , n(s -s), ϕ f n ; τ ns ω) - 1 n ϕ f n (n•, n• ) [-R-α(u-s ),R+α(u-s )] 2 ∞ ≤ S n (s, s , f; ω) -S n (s, s, f ; ω) [-R-αT,R+αT ] 2 ∞ .
We can do similarly for s ≤ s ≤ u and nally get that for all n ≥ N (ω),

sup u,s ∈[0,T ] u≥s∨s , |s -s|≤δ S n (s, u, f ; ω) -S n (s , u, f; ω) [-R,R] 2 ∞ ≤ sup s ∈[0,T ] |s-s |≤δ S n (s ∧ s , s, f; ω) -S n (s ∧ s , s , f; ω) [-R-αT,R+αT ] 2

∞

and the proof is concluded by the rst case (4.5.13) (with (t, t ) = (s, s ) and r = s ∧ s ). This shows the asymptotic equi-continuity of ((s, t) → S n (s, t, f ; ω)) n∈N . Together with Lemma 4.5.13 and Proposition 4.D.1, this concludes the proof of Lemma 4.5.12.

The proof of Proposition 4.5.10 is complete up to showing Lemma 4.5.11.

Proof of Lemma 4.5.11. Let ω ∈ Ω 0 , ε > 0 and I ∈ N such that 2 -I ≤ ε/2. By denition of the metric D ∞ , for any f, g ∈ Γ,

D ∞ (S n (•, •, f; ω), S n (•, •, g; ω)) = sup 0≤s≤t≤T ∞ i=1 2 -i S n (s, t, f ; ω) -S n (s, t, g; ω) [-i,i] 2 ∞ ∧1 ≤ sup 0≤s≤t≤T I i=1 2 -i S n (s, t, f ; ω) -S n (s, t, g; ω) [-i,i] 2 ∞ ∧1 + ε/2.
CHAPTER 4. HYDRODYNAMIC LIMIT FOR THE GW MODEL Now, by (4.4.14), there exists N (ω) ∈ N such that for all n ≥ N (ω) for all f, g ∈ Γ and all 0 ≤ s ≤ t ≤ T ,

S n (s, t, f ; ω) -S n (s, t, g; ω) [-i,i] 2 ∞ ≤ 1 n ϕ f n (n•, n• ) - 1 n ϕ g n (n•, n• ) [-i-αT,i+αT ] 2 ∞ ≤ f -g [-i-αT,i+αT ] 2 ∞ +4/n.
by (4.4.17)

Therefore, for all n ≥ max(N (ω), ε/8) and all f, g ∈ Γ,

D ∞ (S n (•, •, f; ω), S n (•, •, g; ω)) ≤ I i=1 2 -i f -g [-i-αT,i+αT ] 2 ∞ ∧1 + 4/n + ε/2 ≤ 2 αT ∞ i=1 2 -i-αT f -g [-i-αT ,i+ αT ] 2 ∞ ∧1 + ε ≤ 2 αT d ∞,c (f, g) + ε.
4.6 Identication of the limit 4.6.1 Properties of the limit points

In this section, we are going to show that any subsequential limit of (S n (., .; f, ω)) n∈N (as in Denition 4.4.9) satises the sucient conditions of Proposition 4.3.5, most of these properties being automatically satised by the analogous microscopic properties stated in Section 4.4.1 or by Proposition 4.5.10 concerning continuity.

Proposition 4.6.1. Let ω ∈ Ω 0 and (n k ) k∈N a subsequence such that for all f ∈ Γ,

(S n k (•, •; f, ω)) k∈N converges to a certain S(•, •; f, ω) in F T , i.e ∀R > 0, sup (s,t)∈T |x|,|y|≤R |S n k (s, t, f ; ω)(x, y) -S(s, t, f ; ω)(x, y)| -→ k→∞ 0.
Any such limit (f → S(s, t, f ; ω)) 0≤s≤t≤T is a family of continuous functions from Γ into itself satisfying the rst four properties listed in Proposition 4.3.5. Moreover, for any f ∈ Γ, (s, t, x, y) → S(s, t, f ; ω)(x, y) is continuous.

Proof. -Continuity : By Proposition 4.5.10, for all f ∈ Γ, (s, t) → S(s, t, f ; ω) is con- tinuous from T into Γ (which is composed of continuous functions) hence (s, t, x, y) → S(s, t, f ; , ω)(x, y) is continuous.

-Translation invariance : For any c ∈ R, s ≤ t and k ∈ N, by Lemma 4.4.2 and by translation invariance property of ϕ f n stated in Proposition 4.4.10,

S n k (s, t; f + n -1 k n k c , ω) = S n k (s, t; f, ω) + 1 n k n k c .
When k goes to innity, the right-hand side tends to S(s, t; f, ω) -Semi-group : the fact that S(t, t, f ) = f , for all t ∈ [0, T ] and f ∈ Γ is an immediate consequence of (4.4.17). Now, for any 0 ≤ r ≤ s ≤ t ≤ T , we have by Lemma 4.4.4,

+ c in (F(R 2 ), d ∞,
S n k (r, t, f ; ω) = 1 n k h(n•, n• , n(t -s), h(•, •, n(s -r), ϕ f n k ; τ nr ω); τ ns ω),
and since S(r, s, f ; ω) ∈ Γ, we can apply S n k (s, t, •; ω) and write

S n k (s, t, S(r, s, f ; ω); ω) = 1 n k h(n•, n• , n(t -s), ϕ S(r,s,f ;ω) n k ; τ ns ω).
Therefore, by Corollary 4.4.8, for all R ≥ 0 and k large enough,

S n k (r, t, f ; ω) -S n k (s, t, S(r, s, f ; ω); ω) [-R,R] 2 ∞ ≤ 1 n k h(n•, n• , n(s -r), ϕ f n k ; τ nr ω) - 1 n k ϕ S(r,s,f ;ω) n k (n•, n• ) [-R-αT,R+αT ] 2 ∞ ≤ S n k (r, s, f ; ω) -S(r, s, f ; ω) [-R-αT,R+αT ] 2 ∞ + 2 n k by (4.4.17)
which tends to zero when k goes to innity. Consequently, for all R ≥ 0, S(r, t, f ; ω) -S(s, t, S(r, s, f ; ω); ω)

[-R,R] 2 ∞ = lim k→∞ S n k (r, t, f ; ω) -S n k (s, t, S(r, s, f ; ω); ω) [-R,R] 2 ∞ = 0,
which concludes the proof of the semi-group property.

Hydrodynamic limit for linear initial proles

The only condition missing to apply Proposition 4.3.5 is the compatibility with linear initial proles. We start with the following result:

Proposition 4.6.2. For all ρ ∈ R × (-1, 0), all t ∈ [0, T ] and all (x, y) ∈ R 2 :

ω -a.s S n (0, t; f ρ , ω)(x, y) -→ n→∞ f ρ (x, y) + t v(ρ), (4.6.1) with f ρ := (x, y) → ρ • (x, y).
Before proving this Proposition, let us show the following Corollary that gives the compatibility with linear solutions.

Corollary 4.6.3. There exists Ω 1 ⊆ Ω of probability one such that for all

ω ∈ Ω 0 ∩ Ω 1 , if (n k ) k∈N is a subsequence such that for all f ∈ Γ, (S n k (•, •; f, ω)) k∈N converges towards S(•, •; f, ω) in F T , then ∀ρ ∈ R × [-1, 0] ∀0 ≤ s ≤ t ≤ T S(s, t, f ρ ; ω) = f ρ + (t -s)v(ρ). (4.6.2)
Proof of Corollary 4.6.3. By Proposition 4.6.2, there exists a subset Ω 1 ⊆ Ω of proba- bility one such that (4.6.1) holds for any ρ, t, x, y in a countable dense subset of their respective set of denition. Therefore, for all ω ∈ Ω 0 ∩ Ω 1 , any subsequential limit

S(•, •, •; ω) of S n (•, •, •; ω) satises that for any such ρ, t, x, y, S(0, t, f ρ ; ω)(x, y) = f ρ (x, y) + t v(ρ).
By continuity with respect to (t, x, y) of both sides (by Proposition 4.6.1), this holds actually for all (x, y) ∈ R 2 and t ∈ [0, T ]. Similarly, by continuity of ρ → v(ρ) (dened in (4.3.6)) and of ρ → f ρ on R × [-1, 0] (including the endpoints of the interval) for the topology of convergence on all compact sets and by continuity of f → S(0, t, f; ω) for the same topology (still by Proposition 4.6.1) we deduce that it holds also for all ρ ∈ R × [-1, 0]. Finally, we get the result for any s > 0 by the semi-group property satised by S (by Proposition 4.6.1):

f ρ + t v(ρ) = S(0, t, f ρ ; ω) = S(s, t, S(0, s, f ρ , ω); ω) = S(s, t, f ρ + s v(ρ); ω) = S(s, t, g ρ ; ω) + s v(ρ)
by translation invariance property and thus S(s, t,

f ρ ; ω) = f ρ + (t -s) v(ρ).
Proof of Proposition 4.6.2. This proof requires the knowledge on equilibrium measures developed by Prähofer and Spohn in [START_REF] Prähofer | Stochastic Surface Growth[END_REF][START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF]. As in section 4.3.3, we note ϕ M,N,ρ the height function with asymptotic average slope ρ ∈ R×(-1, 0) (in the thermodynamic limit N → ∞, M → ∞) and whose gradients are stationary w.r.t time for the periodised Gates-Westcott dynamic (i.e the Poisson point process is periodised on a torus of size 2M and 2N and noted [ω] M,N as in (4.3.9)). There are two key ingredients in this proof: to show that, in the limit M, N → ∞, ϕ M,N,ρ approaches f ρ in the sense of (4.3.3) and that n -1 h(0, 0, nt; ϕ M,N,ρ , [ω] M,N ) approaches f ρ + t v(ρ). From (4.3.10) and (4.3.12), this is true on average. It remains to show concentration via variance estimates as in the next Lemmas.

Lemma 4.6.4. For any ρ ∈ R × (-1, 0) and t ≥ 0, lim sup

N →∞ lim sup M →∞ Var h 0, 0, t; ϕ M,N,ρ , [ω] M,N = O t→∞ (log t) .
(4.6.3) Lemma 4.6.5. For any ρ ∈ R × (-1, 0), any ε > 0, any n ∈ N * and any compact set

K ⊆ R 2 , lim sup N →∞ lim sup M →∞ P sup (x,y)∈K 1 n ϕ M,N,ρ (nx, ny ) -f ρ (x, y) ≥ ε = O n→∞ n -2 log n .
(4.6.4)
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Let us admit rst these Lemmas and nish the proof of Proposition 4.6.2. Let us x ρ, t, x, y as in Proposition 4.6.2. We also x ε > 0 and n ∈ N. For any M, N ∈ R + , A) The rst term is easy to control thanks to the linear propagation of information. For any M, N large enough, ,y). Consequently, by (4.4.12) and since α M,N tends to innity when M, N tend to innity,

P(|S n (0, t; f ρ , ω)(x, y) -f ρ (x, y) -tv(ρ)|≥ 2ε) ≤ P S n (0, t; f ρ , ω)(x, y) = S n (0, t; f ρ , [ω] M,N )(x, y) }A + P |n -1 h(nx, ny , nt; ϕ M,N,ρ , [ω] M,N ) -f ρ (x, y) -tv(ρ)|≥ ε }B + P |S n (0, t; f ρ , [ω] M,N )(x, y) -n -1 h(nx,
[-M, M ) × -N, N -1 contains B((nx, ny), α M,N nt) with α M,N := (M ∧ N )/(2nt). For such M, N , if ω ∈ A n(x,y),0,nt,α M,N (dened in (4.4.11)), then S n (0, t; f ρ , ω)(x, y) = S n (0, t; f ρ , [ω] M,N )(x
P S n (0, t; f ρ , ω)(x, y) = S n (0, t; f ρ , [ω] M,N )(x, y) ≤ P c A n(x,y),0,nt,α M,N -→ M,N →∞ 0.
(4.6.6) B) Let us write h(nx, ny , nt; ϕ M,N,ρ ) for h(nx, ny , nt; ϕ M,N,ρ , [ω] M,N ). By Chebyshev's inequality,

P(|n -1 h(nx, ny , nt; ϕ M,N,ρ ) -f ρ (x, y) -tv(ρ)|≥ ε) ≤ ε -2 E |n -1 h(nx, ny , nt; ϕ M,N,ρ ) -f ρ (x, y) -tv(ρ)| 2 = ε -2 E n -1 h(nx, ny , nt; ϕ M,N,ρ ) -f ρ (x, y) -tv(ρ) 2 + ε -2 Var (h(nx, ny , nt; ϕ M,N,ρ )) n 2 .
By (4.3.12), the rst term of the r.h.s in the last equality goes to zero when M, N tends to innity. To treat the second term, we write h(nx, ny , nt; ϕ M,N,ρ ) = h(0, 0, nt; ϕ M,N,ρ )+ h(nx, ny , nt; ϕ M,N,ρ )-h(0, 0, nt; ϕ M,N,ρ ) and use that the variance of the sum is smaller than twice the sum of the variances:

Var(h(nx, ny , nt; ϕ M,N,ρ )) ≤ 2 Var (h(0, 0, nt; ϕ M,N,ρ )) + 2 Var (h(nx, ny , nt; ϕ M,N,ρ ) -h(0, 0, nt; ϕ M,N,ρ )) = 2 Var (h(0, 0, nt; ϕ M,N,ρ )) + 2 Var (ϕ M,N,ρ (nx, ny )) . by (4.3.11)
The rst term of the r.h.s is controlled by Lemma 4.6.4 and the second by (4.3.13). Therefore,

lim sup N →∞ lim sup M →∞ P n -1 h(nx, ny , nt; ϕ M,N,ρ ) -f ρ (x, y) -tv(ρ) ≥ ε = O n→∞ n -2 log n .
(4.6.7) C) By Lemma 4.4.7 and by (4.4.17), for any n ≥ 2/ε

P |S n (0, t; f ρ , [ω] M,N )(x, y) -n -1 h(nx, ny , nt; ϕ M,N,ρ , [ω] M,N )|≥ ε ≤ P sup (x ,y )∈B((x,y),αt) f ρ (x , y ) - 1 n ϕ M,N,ρ (nx , ny ) ≥ ε/2 + O n→∞ e -γ n .
Consequently, by Lemma 4.6.5, lim sup

N →∞ lim sup M →∞ P |S n (0, t; f ρ , [ω] M,N )(x, y) -n -1 h(nx, ny , nt; ϕ M,N,ρ , [ω] M,N )|≥ ε = O n→∞ n -2 log n .
(4.6.8) Altogether, by taking the limsup when M, N goes to innity in (4.6.5) and by (4.6.6), (4.6.7) and (4.6.8),

P (|S n (0, t; f ρ , ω)(x, y) -f ρ (x, y) -tv(ρ)|≥ 2ε) = O n→∞ n -2 log n ,
and the proof of Proposition 4.6.2 follows from Borel-Cantelli Lemma. Now, as promised, we prove Lemmas 4.6.4 and 4.6.5.

Proof of Lemma 4.6.4. Again we write h(x, y, t; ϕ M,N,ρ ) instead of h(x, y, t; ϕ M,N,ρ , [ω] M,N ).

For any rectangle

Λ R = [-R, R] × -R, R with R > 0 and any t ≥ 0 if we dene h(Λ R , t; ϕ M,N,ρ ) := R y=-R R -R h(x, y, t; ϕ M,N,ρ ) dx, then it is easy to see h(Λ R , t; ϕ M,N,ρ ) -h(Λ R , 0; ϕ M,N,ρ ) = t 0 N + M,N,ρ (Λ R , s) + N - M,N,ρ (Λ R , s) ds, (4.6.9)
where N ± M,N,ρ (Λ R , s) is the number of antikinks/kinks in the domain Λ R at time s for the dynamic starting from ϕ M,N,ρ . Then, 

Var (h(Λ R , t; ϕ M,N,ρ ) -h(Λ R , 0; ϕ M,N,ρ )) = t 0 t 0 Cov (N + + N -) M,N,ρ (Λ R , s), (N + + N -) M,N,ρ (Λ R , s ) ds ds ≤ t 2 Var (N + + N -) M,N,ρ (Λ R , 0) ≤ 2t 2 Var N + M,N,ρ (Λ R , 0) + Var N - M,N,ρ (Λ R , 0) ,
M →∞ Cov(h(0, 0, t; ϕ M,N,ρ ) -h(x, y, t; ϕ M,N,ρ ), h(0, 0, t; ϕ M,N,ρ ) -h(x , y , t; ϕ M,N,ρ )) ≤ lim sup N →∞ lim sup M →∞ Var (ϕ M,N,ρ (x, y)) Var (ϕ M,N,ρ (x , y )) = O t→∞ (log t),
by (4.3.13) and thus lim sup

N →∞ lim sup M →∞ Var ⎛ ⎝ t y=-t t -t (h(0, 0, t; ϕ M,N,ρ ) -h(x, y, t; ϕ M,N,ρ )) dx ⎞ ⎠ = O t→∞ (t 4 log t).
By the same argument, we get lim sup

N →∞ lim sup M →∞ Var ⎛ ⎝ t y=-t t -t ϕ M,N,ρ (x, y) dx ⎞ ⎠ = O t→∞ (t 4 log t).
Therefore, using (4.6.11), (4.6.10) and that the variance of the sum of three terms is less than three times the sum of the variances,

(2t(2 t + 1)) 2 lim sup N →∞ lim sup M →∞ Var (h(0, 0, t; ϕ M,N,ρ )) = O t→∞ (t 4 log t),
which concludes the proof of the Lemma.

Proof of Lemma 4.6.5. Since K is compact, for any δ > 0, we can cover K by a nite

number l δ ∈ N of balls B((x i , y i ), δ) 1≤i≤l δ . Fix i ∈ 1, l δ and (x, y) ∈ B((x i , y i ), δ). For all Y ∈ n(y i -δ) , n(y i + δ) , f ρ (x, y) - 1 n ϕ M,N,ρ (nx, ny ) ≤ |f ρ (x, y) -f ρ (x i , y i )| + f ρ (x i , y i ) - 1 n ϕ M,N,ρ (nx i , ny i ) + 1 n ϕ M,N,ρ (nx i , ny i ) - 1 n ϕ M,N,ρ (nx i , Y ) + 1 n ϕ M,N,ρ (nx i , Y ) - 1 n ϕ M,N,ρ (nx, Y ) + 1 n ϕ M,N,ρ (nx, Y ) - 1 n ϕ M,N,ρ (nx, ny ) ≤ C ρ δ + f ρ (x i , y i ) - 1 n ϕ M,N,ρ (nx i , ny i ) + 1 n (N + M,N,ρ -N - M,N,ρ )(nI x,x i × {Y }) ≤ C ρ δ + f ρ (x i , y i ) - 1 n ϕ M,N,ρ (nx i , ny i ) + 1 n (N + M,N,ρ + N - M,N,ρ )(nI x i -δ,x i +δ × {Y }),
where

C ρ := |ρ 1 |+|ρ 2 |+3, N ± M,N,ρ (D)
is the number of antikinks/kinks of ϕ M,N,ρ in a domain D and I a,b := [a ∧ b, a ∨ b] (the second inequality holds because the height slope in the y direction is bounded by 1). One could simply choose Y = ny i in the last inequality and try to control the variance of (N + M,N,ρ + N - M,N,ρ )(nI x i -δ,x i +δ × { ny i }) for large n (after sending M, N to innity) but it is not obvious to get a bound better than O(n) (which is insucient). Instead, we average the last inequality for all possible values of Y in n(y iδ) , n(y i + δ) in order to get sup (x,y)∈B((x i ,y i ),δ)

f ρ (x, y) - 1 n ϕ M,N,ρ (nx, ny ) ≤ C(ρ) δ + f ρ (x i , y i ) - 1 n ϕ M,N,ρ (nx i , ny i ) + 1 (2δn -1)n N + M,N,ρ + N - M,N,ρ ((nx i , ny i ) + Λ nδ+1
), (4.6.12) where Λ nδ+1 is the rectangle dened as at the beginning of the proof of Lemma 4.6.4. Now, we know from (4.3.10), from (4.3.13) and from BienayméChebyshev inequality that lim sup

N →∞ lim sup M →∞ P f ρ (x i , y i ) - 1 n ϕ M,N,ρ (nx i , ny i ) ≥ ε/4 = O n→∞ n -2 log n .
(4.6.13) Moreover, by (4.3.14) and by invariance by translation of the stationary measures,

lim N →∞ lim M →∞ Var (N + M,N,ρ + N - M,N,ρ )((nx i , ny i ) + Λ nδ+1 ) = O n→∞ (n 2 log n).
Besides, since the sum of the asymptotic kink and antikink densities is equal to the average speed v(ρ),

lim N →∞ lim M →∞ E N + M,N,ρ + N - M,N,ρ ((nx i , ny i ) + Λ nδ+1 ) ∼ n→∞ (2nδ) 2 v(ρ).
Note that the two previous limits exist as explained in Appendix 4.B. Dividing by (2δn -1)n and using BienayméChebyshev inequality yields lim sup

N →∞ lim sup M →∞ P 1 (2δn -1)n (N + M,N,ρ + N - M,N,ρ ) ((nx i , ny i ) + Λ nδ+1 ) ≥ 2δv(ρ) + ε/4 = O n→∞ n -2 log n .
(4.6.14) From (4.6.12), (4.6.13) and (4.6.14), we get that for any δ > 0, lim sup where u is the unique viscosity solution of (4.3.5).

N →∞ lim sup M →∞ P sup (x,y)∈K f ρ (x, y) - 1 n ϕ M,N,ρ (nx, ny ) ≥ C ρ δ + ε/2 ≤ l δ i=1 lim sup N →∞ lim sup M →∞ P sup (x,y)∈B((x i ,y i ),δ) f ρ (x, y) - 1 n ϕ M,N,ρ (nx, ny ) ≥ C ρ δ + ε/2 = O n→∞ n -2 log n , with C ρ := |ρ 1 |+|ρ 2 |+3 + 2v(ρ)
Proof. Assume that convergence (4.6.15) does not hold for some ω ∈ Ω 0 ∩ Ω 1 , f ∈ Γ and R, T > 0. Then, there exists ε > 0 and a subsequence (n k ) k∈N such that 

sup |x|,|y|≤R,t∈[0,T ] |S n k (0, t; f, ω)(x, y) -u(x,
S n (0, t; f, ω)(x, y) - 1 n h(n•, n• , nt, ϕ n ; ω) -→ n→∞ 0, ( 4 
.6.17) since both rescaled initial height functions n -1 ϕ f n (n•, n• ) and n -1 ϕ n (n•, n• ) converges to f uniformly on [-R -αT, R + αT ] 2 by (4.4.17) and assumption (4.3.3).

4.A Sucient conditions for viscosity solutions of Hamilton-Jacobi equations

In this section, we give a self-contained proof of Proposition 4. Proof. Let us show that u : (x, t) → S(0, t, f)(x) dened from R 2 × [0, T ] to R is a viscosity solution of (4.3.5). First of all, by assumption, u in continuous on

R d × [0, T ].
Then, by the Semi-group property:

u(•, 0) = S(0, 0, g) = g.
We are left to show that u is a subsolution (the proof that u is a supersolution being identical). Let φ ∈ C ∞ (R d × (0, T )) and (x 0 , t 0 ) ∈ R d × (0, T ) such that φ(x 0 , t 0 ) = u(x 0 , t 0 ) and φ ≥ u on a neighbourhood of (x 0 , t 0 ). At rst, we introduce the following ane approximation of φ around x 0 :

ψ(x, t) := φ(x 0 , t) + ∇φ(x 0 , t 0 ).(x -x 0 ).
As ψ and φ have the same value and derivatives at (x 0 , t 0 ), it is enough to show that

∂ t ψ(x 0 , t 0 ) ≤ v(∇ψ(x 0 , t 0 )), (4.A.1)
by studying ψ(x 0 , t 0 )ψ(x 0 , t 0δ) for small positive δ.

On the one hand, by the semi-group property and the denition of u,

ψ(x 0 , t 0 ) = u(x 0 , t 0 ) = S(t 0 -δ, t 0 , u(•, t 0 -δ))(x 0 ). (4.A.2)
On the other hand, it is easy to show that ∇φ(x 0 , t 0 ) ∈ R × [-1, 0] thanks to the assumptions φ ≥ u around (x 0 , t 0 ) with equality at (x 0 , t 0 ) and the slopes constraints satised by functions in Γ such as u(•, t 0 ). Therefore, by compatibility with linear solutions and translation invariance,

S(t 0 -δ, t 0 , ψ(., t 0 -δ))(x 0 ) = ψ(x 0 , t 0 -δ) + δ v(∇ψ(x 0 , t 0 )). (4.A.3)
We are left to compare S(t 0δ, t 0 , ψ(., t 0δ))(x 0 ) with S(t 0δ, t 0 , u(•, t 0δ))(x 0 ). Thanks to locality and monotony, this can be done by comparing ψ(., t 0 -δ) with u(•, t 0δ) in the ball B(x 0 , α δ). By Taylor expansion of φ and ψ at order 2 around (x 0 , t 0 ),

φ(x, t) = ψ(x, t) + O x -x 0 2 ∞ +|t -t 0 | 2 .
Moreover, u ≤ φ on a neighbourhood of (x 0 , t 0 ) hence u(•, t 0δ) ≤ φ(•, t 0δ) on B(x 0 , α δ) for δ small enough. Altogether, there exists C > 0 such that for all δ small enough,

∀x ∈ B(x 0 , α δ) u(x, t 0 -δ) ≤ ψ(x, t 0 -δ) + C δ 2 . (4.A.4)
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Now, we set g := u(., t 0δ) ∧ ψ(., t 0δ). By locality property (applied at x 0 with R = 0),

|S(t 0 -δ, t 0 , u(., t 0 -δ))(x 0 ) -S(t 0 -δ, t 0 , g)(x 0 )|≤ sup x∈B(x 0 ,α δ) |u(x, t 0 -δ) -g(x)|≤ Cδ 2 ,
(4.A.5) where the last inequality holds because of (4.A.4). Since ψ ≥ g, S(t 0δ, t 0 , ψ(., t 0δ))(x 0 ) ≥ S(t 0δ, t 0 , g)(x 0 ) by monotonicity

≥ S(t 0 -δ, t 0 , u(., t 0 -δ))(x 0 ) -Cδ 2 by (4.A.5) = ψ(x 0 , t 0 ) -Cδ 2 . by (4.A.2)
Using (4.A.3), we nally get

ψ(x 0 , t 0 -δ) + δv(∇ψ(x 0 , t 0 )) ≥ ψ(x 0 , t 0 ) -Cδ 2 .
and then

∂ t ψ(x 0 , t 0 ) = lim δ→0 ψ(x 0 , t 0 ) -ψ(x 0 , t 0 -δ) δ ≤ v(∇ψ(x 0 , t 0 )).
4.B Stationary kink/antikink correlations and proof of (4.3.14)

In this section, we give more details about the determinantal structure of the stationary measures introduced in Section 4.3.3 and show that the kink/antikink correlations are bounded by the inverse of the distance squared in order to deduce (4.3.14). Let us rst x M and N , the sizes of the torus, and a slope ρ = (ρ 1 , ρ 2 ) ∈ R × (-1, 0). The existence of a stationary height prole ϕ M,N,ρ (with value xed e.g to 0 at the origin) whose average slope approaches ρ was already discussed in Section 4.3.3. The height function (and in particular the kinks and antikinks) are totally determined by the occupation variables η(x, y) for (x, y) ∈ R × Z that take value 1 if there is a level line of the height function passing by (x, y) (i.e if ϕ M,N,ρ (x, y + 1)ϕ M,N,ρ (x, y) = -1) and 0 otherwise. In [START_REF] Prähofer | Stochastic Surface Growth[END_REF], the author showed, that any moments of the occupation variables can be computed thanks to a determinant: for any (x 1 , y 1 ),

• • • , (x m , y m ) ∈ R × Z, E [η(x 1 , y 1 ) • • • η(x m , y m )] = det (S M,N,ρ (x k , y k ; x l , y l )) 1≤k,l≤m , (4.B.1)
where S M,N,ρ is an explicit kernel that somehow simplies in the innite volume limit: with ε(k) = -η s cos(k) + iη a sin(k) and where η s > 0, η a ∈ R are parameters uniquely determined by ρ. In particular, the law of ϕ M,N,ρ admits an innite volume limit in the sense that the average of any local function has a limit as N → ∞ after M → ∞.

lim N →∞ lim M →∞ S M,N,ρ (x , y ; x, y) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 2π πρ 2 -πρ 2 e (x -x)ε(k) e i(y -y)k dk for x ≥ x - 1 2π 2π-πρ 2 πρ 2 e (x -x)ε(k) e i(y -y)k dk for x < x,
Thanks to this determinental structure, Prähofer and Spohn computed the innite volume limit of the densities of kinks and antikinks and deduced the speed of growth v(ρ) (dened in (4.3.6)) depending on the slope ρ. Furthemore, they computed the covariance (or "structure function") between kinks, antikinks and occupation variables (see [START_REF] Prähofer | Stochastic Surface Growth[END_REF]Equation (6.30)] and [PS97, Equation ( 27) and (29)]). For our purposes, we only need the antikink/antikink and kink/kink covariances between the origin and (x, y) denoted respectively by S + ρ (x, y) and S - ρ (x, y) and which can be written as:

S ± ρ (x, y) = η 2 ± (2π) 2 ρ 2 π -ρ 2 π e |x|ε(k) e i( x |x| y±1)k dk A × 2π-ρ 2 π ρ 2 π e -|x|ε(k ) e i( x |x| y±1)k dk B , (4.B.3)
where η ± are positive constants determined by ρ. Let us show that

S ± ρ (x, y) = O (x,y) →∞ 1 (x, y) 2 . (4.B.4)
Without loss of generality, let us treat the case of S + and x ≥ 0. First of all, the modulus of A in (4.B.3) is bounded by 2 ρ 2 π 0 e -ηsx cos(k) dk whose asymptotic behavior for large x only depends on the behavior of the integrand around ρ 2 π where it attains its maximum. Therefore, by a Taylor approximation, we get that for all (x, y),

|A|≤ 2 +∞ 0 e -(ηs cos(ρ 2 π)-k/C)x dk = 2C
e -ηs cos(ρ 2 π)x x , (4.B.5) for some constant C > 0. Now, by integration by parts, we get that

A = 1 i(y + 1) e xε(k) e i(y+1)k ρ 2 π -ρ 2 π -x ρπ -ρπ (η s sin(k) + iη a cos(k))e xε(k) e i(y+1)k dk
and thus, by using (4.B.5) to bound the second term, we obtain

|A|≤ 1 |y + 1| 2e -ηs cos(ρ 2 π)x + x η 2 s + η 2 a 2C e -ηs cos(ρ 2 π)x x ≤ C e -ηs cos(ρ 2 π)x |y| ,
(4.B.6) for some constant C > 0. In any case, we have that which concludes the proof of (4.B.4), by equivalence of norms on R 2 . Now, let us show how we can deduce (4.3.14). The variance of the number of antikinks/kinks in the domain Λ R is given by: lim

N →∞ lim M →∞ Var(N ± M,N,ρ (Λ R )) = [-R,R] 2 y,y ∈ -R,R S ± ρ (x -x, y -y) dx dx .
By standard approximation of sums by integrals arguments and by (4.B.4), the proof of (4.3.14) is concluded thanks to the following inequality:

[-R,R] 4 C 1 (x -x, y -y) 2 ∨ M dx dy dx dy ≤ [-R,R] 2 C 2 log R dx dy ≤ C 2 R 2 log R,
where M is the sup norm of S + ρ and C 1 , C 2 > 0 are constants chosen large enough.

4.C Longest light-chain of Poisson points

In this section we give a control on the maximal length of Poisson points in a domain that can be collected by a light-path (as in Denition 4.5.1). Let

ω ∈ Ω, k ∈ N, ȳ = (y 1 , • • • , y k ) ∈ Z k and D a bounded domain of R 2 .
We dene the event

C ↑ ω, ȳ(D) := ω ∈ Ω, ∃(x i , t i ) 1≤i≤k ∈ k i=1 (ω y i ∩ D) , ∀i ∈ 1, k -1 |x i+1 -x i |≤ t i+1 -t i ,
(4.C.1) which means that there exists a light-path that collects at least one point per set ω y i ∩ D in a precise order (from i = 1 to i = k). The link with L ↑ of Denition 4.5.1 is the following. If ȳ = (y, • • • , y) where y ∈ Z appears k times, then

L ↑ (ω y ∩ D) ≥ k = C ↑ ω, ȳ(D).
The next Lemma gives a control on the probability of this event when D is a lightrectangle (see Denition 4.5.1).

Lemma 4.C.1. For any light-rectangle R ⊆ R 2 , any k ∈ N and any

ȳ = (y 1 , • • • , y k ) ∈ Z k , P C ↑ ω, ȳ(R) ≤ 2e 2 Leb(R) k 2 k .
Proof. This probability is invariant by translation of R and up to a rotation of angle -π/4, we can suppose that R = [0, a] × [0, b] and that where are considering nondecreasing paths instead of light-path in the denition of C ↑ . Therefore, by the union 92 CHAPTER 4. HYDRODYNAMIC LIMIT FOR THE GW MODEL bound inequality,

P C ↑ ω, ȳ(R) = P ∃(r i , s i ) 1≤i≤k ∈ k i=1 ω y i , 0 ≤ r 1 ≤ • • • ≤ r k ≤ a, 0 ≤ s 1 ≤ • • • ≤ s k ≤ b ≤ 0≤r 1 ≤•••≤r k ≤a 0≤s 1 ≤•••≤s k ≤b P k i=1 # {ω y i ∩ [r i , r i + dr i ] × [s i , s i + ds i ]} = 1 ≤ 0≤r 1 ≤•••≤r k ≤a 0≤s 1 ≤•••≤s k ≤b 2 k dr 1 • • • dr k ds 1 • • • ds k (since the ω y i are independent PPPs of intensity 2 on R × Z × R + ) = (2ab) k (k! ) 2 ≤ 2e 2 Leb(R) k 2 k .
In the last inequality, we used that k! ≥ (k/e) k valid for all k ∈ N (this classical inequality can be obtained from

e x ≥ x k /(k! ) evaluated at x = k).
Now we give a Corollary that can be useful when dealing with domains dierent from light-rectangles (the upper bound obtain is not optimal, yet enough for our purposes).

Corollary 4.C.2. For any domain D ⊆ R 2 , any k ∈ N and any

ȳ = (y 0 , • • • , y k ) ∈ Z k+1 , P C ↑ ω, ȳ(D) ≤ 2 Leb(D) 4e 2 v(D) 2 k 2 k ,
where v(D) is the vertical diameter of D i.e the longest distance between two points in D aligned vertically. Proof. In order to realise the event C ↑ ω, ȳ(D), once we have chosen (x 0 , t 0 ) ∈ ω y 0 ∩ D, then the rest of the points (x 1 , t 1 ) • • • (x k , t k ) must be in the intersection between D and the cone {(x, t), |xx 0 |≤ tt 0 } which is included in a certain light-square denoted R x 0 ,t 0 whose diagonal is of length less than 2v(D), hence is of area less than 2v(D) 2 . By the union bound inequality and Lemma 4.C.1,

P C ↑ ω, ȳ(D) ≤ D P C ↑ ω,(y 1 •••y k ) (R x 0 ,t 0 ) b2dx 0 dt 0 ≤ D 2e 2 2v(D) 2 k 2 k 2dx 0 dt 0 = 2 Leb(D) 4e 2 v(D) 2 k 2 k .

4.D Compactness for asymptotically continuous functions

In this section, we show a generalisation of Arzelà-Ascoli theorem, that gives sucient conditions for almost continuous functions (e.g. sequences of functions with jumps of size tending to 0) to converge uniformly on all compact sets.
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Proposition 4.D.1. Let (f n ) n∈N be a sequence of functions from a separable metric space (E, d) to a complete metric space (F, d ) such that:

1. Asymptotic equi-continuity: For all x ∈ E and all ε > 0, there exists δ > 0 such that

lim sup n→∞ sup y∈E d(x,y)≤δ d (f n (x), f n (y)) ≤ ε. (4.D.1)
2. Pointwise relative compactness: For all x ∈ E, the sequence (f n (x)) n∈N is contained in a compact set of F .

Then, for any subsequence (n k ) k∈N , (f n k ) k∈N has a subsequence that converges uniformly on all compact subsets of E to a function f : (E, d) → (F, d ). Moreover, any limit point is continuous.

Proof. For the sake of simplicity and since any subsequence (f n k ) k∈N still satises as- sumptions 1 and 2, we can assume that (f n k ) k∈N = (f n ) n∈N without loss of generality. Let E 0 be a dense countable subset of E. By pointwise relative compactness and a diagonal extraction argument, we can nd a subsequence (n l ) l∈N such that for every x ∈ E 0 , (f n l (x)) l∈N converges in F . Let us show that actually, for all x ∈ E, (f n l (x)) l∈N is a Cauchy sequence, hence converges in F . Let x ∈ E and ε > 0. By assumption, there exists δ > 0 such that (4.D.1) is satised. By density, we can nd

x 0 ∈ E 0 such that d(x, x 0 ) ≤ δ. As (f n l (x 0 )) l∈N converges, it is a Cauchy sequence so for all l, m large enough, d (f n l (x 0 ), f nm (x 0 )) ≤ ε and thus d (f n l (x), f nm (x)) ≤ d (f n l (x), f n l (x 0 )) + d (f n l (x 0 ), f nm (x 0 )) + d (f nm (x 0 ), f nm (x)) ≤ 3ε,
for l, m large enough by (4.D.1). Let us call f the pointwise limit. By taking the limit in (4.D.1), we get immediately that any such limit point is continuous. Now, let K be a compact subset of E and let us show that f n l converges to f uniformly on K. Let ε > 0. By compactness and asymptotic equi-continuity assumption, we can nd a covering of K by a nite number p ∈ N of balls of centers

x 1 , • • • x p and radius δ 1 , • • • , δ p such that (4.D.1) is satised with (x, δ) = (x i , δ i ) for any i ∈ {1, • • • p}. Therefore, we can nd N ∈ N such that for all l ≥ N , ∀i ∈ {1, • • • , p} ∀y ∈ B(x i , δ) d (f n l (x i ), f n l (y)) ≤ ε. (4.D.2)
Moreover, by point-wise convergence we can assume that for all l ≥ N and all

i ∈ {1, • • • , p}, d (f n l (x i ), f(x i )) ≤ ε.
Therefore, for all l ≥ N and all y ∈ K, if we choose the index i such that d(y, x i ) ≤ δ i , then

d (f n l (y), f(y)) ≤ d (f n l (y), f n l (x i )) + d (f n l (x i ), f(x i )) + d (f (x i ), f(y)) ≤ 3 ε,
where we used (4.D.2) and point-wise convergence in the last inequality.

Chapter 5

Hydrodynamic Limit for the Borodin-Ferrari dynamics

The Markov dynamics of interlaced particle arrays, introduced by A. Borodin and P.

Ferrari in [BF14], is a classical example of (2 + 1)-dimensional random growth model belonging to the so-called Anisotropic KPZ universality class. In [LT18], a hydrodynamic limit the convergence of the height prole, after space/time rescaling, to the solution of a deterministic Hamilton-Jacobi PDE with non-convex Hamiltonian was proven when either the initial prole is convex, or for small times, before the solution develops shocks.

In the present work, we give a simpler proof, that works for all times and for all initial proles for which the limit equation makes sense. In particular, the convexity assumption is dropped. The main new idea is a new viewpoint about "nite speed of propagation" that allows to bypass the need of a-priori control of the interface gradients, or equivalently of inter-particle distances. The content of this Chapter is has been taken from the article [START_REF] Lerouvillois | Hydrodynamic limit for a 2d interlaced particle process[END_REF]. For this reason, the notations adopted here may dier slightly from those of Chapter 3.

Introduction

In this work, we study a (2 + 1)-dimensional stochastic growth model, or equivalently an irreversible Markov process for a two-dimensional system of interlaced particles which perform totally asymmetric, unbounded jumps. This model was originally introduced by A. Borodin and P. Ferrari in [BF14] (we will refer to it as Borodin-Ferrari dynamics) together with a larger class of growth models that belong to the so-called Anisotropic KPZ universality class [START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF]; we refer to [LT18, Ton18, BF14] for a discussion of this topic and for further references. Our focus here is not on interface uctuations but on the hydrodynamic limit (i.e. the law of large numbers for the height prole H(x, t)). For models in the AKPZ class, the rescaled height prole is conjectured to converge to the viscosity solution of a non-linear Hamilton-Jacobi PDE [START_REF] Barles | An introduction to the theory of viscosity solutions for rst-order HamiltonJacobi equations and applications[END_REF] ∂ t u + v(∇u) = 0, (5.1.1) 96 CHAPTER 5. HYDRODYNAMIC LIMIT FOR THE BF DYNAMICS with non-convex Hamiltonian v. In fact, the feature that distinguishes the AKPZ class from the usual KPZ class is that the Hessian D 2 v has negative determinant [START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF]. The absence of convexity has an important consequence on the hydrodynamic behavior. First of all, there is no Hopf-Lax formula for the solution of (5.1.1). Moreover, there is no hope that the subadditivity arguments developed in [START_REF] Seppäläinen | Strong law of large numbers for the interface in ballistic deposition[END_REF][START_REF] Rezakhanlou | Continuum limit for some growth models[END_REF] apply, since they would automatically yield a convex Hamiltonian. Let us recall that the methods of [START_REF] Seppäläinen | Strong law of large numbers for the interface in ballistic deposition[END_REF][START_REF] Rezakhanlou | Continuum limit for some growth models[END_REF] require (at the microscopic level) the so-called envelope property, which is a strong version of monotonicity and which gives a microscopic analog of Hopf-Lax formula. For AKPZ models, the envelope property simply fails to hold.

In the previous work [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF], the convergence (in probability) of the height prole to the viscosity solution of (5.1.1) was proven, under the important restriction that either the initial prole u 0 is convex, or that time is smaller than the time when shocks (discontinuities of ∇u) appear. Earlier, in [BF14, Th. 1.2] the result was shown for a non-convex but very specic and integrable triangular initial condition; in this case, it was also proven that the height prole satises a central limit theorem on the √ log t scale. In the present article we prove the hydrodynamic limit result for all initial proles and for all times (and convergence holds almost surely). We do not address the behavior of uctuations and in particular the very interesting question of how they behave along the shocks; for one-dimensional growth models such as TASEP, uctuations at shocks have been studied e.g. in [START_REF] Patrik | Anomalous shock uctuations in tasep and last passage percolation models[END_REF]. Our proof is strongly inspired by the method developed by F. Rezakhanlou in [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF]; in few words, it consists in showing that the Markov semigroup that encodes the dynamics is tight in a certain topology and that all of its limit points satisfy a set of properties that are sucient to identify them with the unique semi-group associated to the PDE (5.1.1). These ideas have been recently employed in [START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF][START_REF] Lerouvillois | Hydrodynamic limit of a (2 + 1)-dimensional crystal growth model in the anisotropic kpz class[END_REF] to obtain a full hydrodynamic limit for other (2 + 1)-dimensional growth models in the AKPZ class, namely the domino shuing algorithm and the Gates-Westcott model [START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF]. The reason why Rezakhanlou's method was not employed in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] is that it requires a strong (i.e. uniform with respect to the initial condition) form of locality or of nite speed of propagation for the dynamics. Such property is easy to check for the domino shuing or the Gates-Westcott dynamic, but it fails for the Borodin-Ferrari dynamics. The reason for this is that particle jumps are not bounded; the larger the typical inter-particle distance in the initial condition, the faster information propagates through the system.

The main new idea of the present work, that allows to overcome the limitations of [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF], is the following. The usual locality property would say that the height function H(x, t), for xed x and t ≤ T , is with high probability not inuenced (for T large and uniformly in the initial condition ) by the value of the initial prole H(•, 0) outside a ball of radius O(T ) centered at x. This fails for the Borodin-Ferrari dynamics: locality holds but not uniformly, due to the lack of any a-priori control of typical inter-particle distances at times t > 0. In contrast, our Proposition 5.3.5 shows that the height H(x, t) is entirely determined by the height H on a certain deterministic, compact subset of space-time, depending on (x, t) but independent of the initial condition. As explained in Section 5.3.2, underlying this property is a bijection between the Borodin-Ferrari dynamics and a discretized version of the Gates-Westcott growth model. This bijection is the analogue of the well-known mapping between the Hammersley process and the Polynuclear growh (PNG) growth model [START_REF] Ferrari | One-dimensional stochastic growth and Gaussian ensembles of random matrices[END_REF].

As a side remark, with respect to the method of [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF], we avoid studying directly the convergence of the Markov semi-group; this is possible in our case because we know the stationary measures of the process and their hydrodynamic behavior, which is not the case in the framework of [START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF].

Organization of the article. This work is organized as follows. The model and its height function are dened in Section 5.2.1 and 5.2.2, while the main theorem is given in Section 5.2.4. Section 5.3 proves a few general properties of the process, including the new locality statement. Compactness of sequences of rescaled height proles is proven in Section 5.4 and the identication of limit points with the solution of the PDE is obtained in Section 5.5.

The model and the main result

The Borodin-Ferrari dynamics

We start by recalling the denition of the Borodin-Ferrari dynamics, as a Markov evolution of a two-dimensional array of interlaced particles. In the original reference [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF], particles perform jumps of length 1 to the right and can push a number n ≥ 0 of other particles; we rather follow the equivalent representation used in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF], where particles jump a distance k ≥ 1 to the left, and no particles are pushed. The lattice where particles live consists of an innite collection of discrete horizontal lines, labeled by an index ∈ Z. Each line contains an innite collection of particles, each with a label (p, ), p ∈ Z. See Figure 5.1. Horizontal particle positions z (p, ) are discrete:

z (p, ) ∈ Z + ( mod 2)/2
(note that adjacent horizontal lines are displaced by a half interger). Denition 5.2.1. We let Ω be the set of particle congurations η satisfying the following properties:

1. no two particles in the same line share the same position z (p, ) . We label particles in each line in such a way that z (p, ) < z (p+1, ) . Labels are attached to particles, and they do not change along the dynamics.

2. particles are interlaced: for every and p, there exists a unique p ∈ Z such that z (p, ) < z (p , +1) < z (p+1, ) (and, as a consequence, also a unique p ∈ Z such that z (p, ) < z (p , -1) < z (p+1, ) ). Without loss of generality, we assume that p = p (and therefore p = p + 1). This can always be achieved by deciding which particle is labeled 0 on each line. Also, by convention, the particle labeled (0, 0) is the left-most one on line = 0, with non-negative horizontal coordinate. CHAPTER 5. HYDRODYNAMIC LIMIT FOR THE BF DYNAMICS rhombus denes the line the particle is on, and its horizontal coordinate corresponds to the z (p, ) coordinate of the particle. If lengths are rescaled in such a way that rhombi have sides of length 1, then horizontal positions are shifted by half-integers between neighboring lines (as is the case for particles). It is well known (and easy to understand from the picture) that horizontal positions of rhombi in neighboring lines satisfy the same interlacing conditions as particle positions z (p, ) , and that the tiling-to-particle conguration mapping is a bijection. Given a rhombus tiling as in Figure 5.4 and viewing it as the boundary of a stacking of unit cubes in R 3 , a natural denition of height function is to assign to each vertex of a rhombus the height (i.e. the z coordinate) w.r.t. the (x, y) plane of the point (in R 3 ) in the corresponding unit cube. As a consequence, height is integer-valued and dened on points that are horizontally shifted 1/2 w.r.t. centers of rhombi, i.e. on points of G * . The height function dened in the previous section equals the height of the stack of cubes w.r.t. the (x, y) plane.
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Slopes and speed

Here we dene the set of continuous height functions that are possible scaling limits of the discrete height prole H, and the speed of growth function v (or Hamiltonian) that appears in the limit PDE. Given an integer M , dene ΓM to be the set of functions f : R 2 → R that are non-decreasing in both coordinates and such that

f (x + λ(1, 1)) -f (x) λ ≤ 1 - 1 M for every x ∈ R 2 , λ ∈ R.
If f is dierentiable, this means that ∇f belongs to the triangle T M dened by

T M := {ρ ∈ R 2 : ρ 1 , ρ 2 ≥ 0, ρ 1 + ρ 2 ≤ 1 -M -1 }.
(5.2.12) Dene also

Γ := M ∈N ΓM and T := {ρ ∈ R 2 : ρ 1 , ρ 2 ≥ 0, ρ 1 + ρ 2 < 1} = M ∈N T M .
(5.2.13)

The average speed of growth of the interface in the translation invariant stationary state of average slope ρ was computed in [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF][START_REF] Chhita | A combinatorial identity for the speed of growth in an anisotropic KPZ model[END_REF] and it turns out to be

v(ρ) = 1 π sin(πρ 1 ) sin(πρ 2 ) sin(π(ρ 1 + ρ 2 )) ≥ 0, ρ ∈ T (5.2.14) with the convention that v(0) = 0. Note that v(•) vanishes if ρ ∈ T with min(ρ 1 , ρ 2 ) = 0. Also, v(•) tends to +∞ if ρ → (ρ 1 , 1 -ρ1
) with ρ1 ∈ (0, 1). On the other hand, v(•) does not admit a unique limit for ρ → (0, 1) or ρ → (1, 0) (any value in [0, +∞] can be obtained as limit point).

Remark 5.2.4. The speed function v is non-decreasing in both coordinates and is Lipschitz on every T M since ∇v(ρ) = sin 2 (πρ 2 ) sin 2 (π(ρ 1 +ρ 2 )) , sin 2 (πρ 1 ) sin 2 (π(ρ 1 +ρ 2 )) is bounded on T M . One can also check that the determinant of the Hessian of v is negative (strictly negative in the interior of T) and thus the model belongs to the AKPZ universality class [START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF].

The hydrodynamic limit

We are now ready to state our main result: Theorem 5.2.5. Given an integer M , let f ∈ ΓM and let (h L ) L∈N ∈ Γ N M be a sequence of height functions approaching f in the following sense:

∀R > 0 sup x ≤R 1 L h L ( Lx ) -f (x) -→ L→∞ 0.
(5.2.15)

Then, for almost every realization W , the following hydrodynamic limit holds:

∀T > 0 ∀R > 0 s u p x ≤R,t∈[0,T ] 1 L H( Lx , Lt; h L , W ) -u(x, t) -→ L→∞ 0 , (5.2.16)
where u is the unique viscosity solution of the Hamilton-Jacobi equation:

∂ t u + v(∇u) = 0 u(•, 0) = f.
(5.2.17) Remark 5.2.6. The condition h L ∈ Γ M for some integer M makes sure that the dynamics is well dened and satises the "nite speed of propagation" property (see Proposition 5.3.3); this condition could be somewhat weakened. On the other hand, the requirement that f ∈ ΓM 0 for some integer M 0 (we take for simplicity M 0 = M ) ensures that the slopes remain uniformly away from the side ρ 1 + ρ 2 = 1 of the triangle T where the speed v is singular. This condition is in a sense optimal: in fact, if f is for instance the ane function of slope ρ with ρ 1 + ρ 2 = 1 and h L approaches f as in (5.2.15), then the limit height prole will be either +∞ for all positive times (if ρ 1 ∈ (0, 1)) or the limit is not necessarily unique (if ρ 1 ∈ {0, 1}), i.e. it may depend on the microscopic details of the initial condition h L .

Remark 5.2.7. As observed above, the function v(•) cannot be extended continuously to the whole boundary of T, so Eq. (5.2.17) requires some care. What is really meant in the theorem is that u is the unique viscosity solution of the PDE where v(•) is replaced by ṽ(•), which is any Lipschitz extension of v(•) to the whole R 2 that coincides with v on T M . Since in this case the Hamiltonian is Lipschitz and depends only on the gradient, the standard theory of viscosity solutions implies that the solution u exists and is unique, and the comparison principle shows that if f ∈ ΓM , then u(•, t) ∈ ΓM for all times, so that u does not depend on the way ṽ is dened outside T M . For a reference on Hamilton-Jacobi equations, see e.g [Bar13, Sections 5 and 7].

Properties of the microscopic dynamic

In this section, we recall some basic properties of the dynamics following [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF]. In addition, we prove in Section 5.3.2 a new locality property that is crucial in the proof of Theorem 5.2.5.

Proof. If we apply Lemma 5.3.2 with n := LT /Δ , use an union bound for all x in B(0, L 2 ) (so that it includes all x in B(Lx 0 , LR) for any xed x 0 ∈ R 2 and all L large enough) and apply Borel-Cantelli Lemma, we get the following. For almost every W , every integer M , every rational T > 0, every x 0 ∈ R 2 and every R ≥ 0, (5.3.2) holds all L large enough and for every W that coincides with W on the domain B(Lx 0 , L(R + αT )) × [0, LT ] with α chosen large enough (α = 2Δ -1 suces) such that this domain contains every R LT /Δ (x) with x ∈ B(Lx 0 , LR). The rest of the proof follows from rational approximation of T .

Corollary We point out that the speed of propagation α(M ) is not uniform in M . This is a problem, since later we would need to apply the propagation of information result from time s > 0 to time t > s but, while we know by construction that the initial condition belongs to Γ M , the same does not hold at the later times s > 0 (and we do not see how to obtain an apriori control on M (s) such that η(s) ∈ Γ M (s) ). This is the main diculty that prevented a proof of a full hydrodynamic limit in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] and this is why we call a result like Corollary 5.3.4 weak locality (it is much weaker than the locality statements used e.g. in [START_REF] Lerouvillois | Hydrodynamic limit of a (2 + 1)-dimensional crystal growth model in the anisotropic kpz class[END_REF][START_REF] Rezakhanlou | Continuum limit for some growth models II[END_REF][START_REF] Zhang | Domino shuing height process and its hydrodynamic limit[END_REF] to prove full hydrodynamic limits). One of the novelties of this article is a smarter locality property that we state and prove in the next section. From [LT18, Lemma 2.5] we have that, given f ∈ ΓM for some integer M as in the statement of Theorem 5.2.5 and any L ∈ N, there exists a natural discrete height function h f L (x) that satises (a stronger version of) (5.2.15): it suces to set h f L (x) := Lf (x/L) . Then, h f L ∈ Γ M and moreover one has
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1 L h f L ( xL ) -f (x) ≤ 1 L ∀x ∈ R 2 , (5.4.1)
which is stronger than (5.2.15). A simple consequence of Corollary 5.3.4 is that it is sucient to prove Theorem 5.2.5 for the initial condition h f L . Indeed, if (h L ) L∈N ∈ Γ N M converges to f in the sense of (5.2.15), then by an immediate consequence of Corollary 5.3.4, for all T, R ≥ 0, lim sup

L→∞ sup x∈B(0,R), t∈[0,T ] 1 L H( Lx , Lt, h L , W ) - 1 L H( Lx , Lt, h f L , W ) ≤ lim sup L→∞ sup x∈B(0,R+αT ) 1 L h L ( Lx ) - 1 L h f L ( Lx ) ≤ lim sup L→∞ sup B(0,R+αT ) 1 L h L ( Lx ) -f (x) + sup B(0,R+αT ) 1 L h f L ( xL ) -f (x) = 0,
because of (5.2.15) and (5.4.1). Therefore, from now on we will assume that h L = h f L .

Denition 5.4.1. For every f ∈ Γ, every realisation of the Poisson process W and any scaling parameter L ∈ N, we dene the rescaled height function

H L (x, t; f, W ) := 1 L H( Lx , Lt; h f L , W ).
(5.4.2)

Bound on temporal height dierences

The goal of this section is to obtain a control on the temporal height dierences that will be useful for showing compactness of the sequence (H L (•, •; f, W )) L∈N .

Proposition 5.4.2. For almost every W , for every integer M , there exists a constant

C = C(M ) such that for all x ∈ R 2 , t ≥ 0, δ > 0 and all f ∈ ΓM , lim sup L→∞ sup s∈[t-δ,t+δ] |H L (x, t; f, W ) -H L (x, s; f, W )| ≤ C √ t + δ √ δ. (5.4.3) Proof. Let x ∈ R 2 , t ≥ 0, δ > 0, f ∈ ΓM .
Since the height functions are non-increasing with time, it is enough to get an upper bound on

H L (x, t -δ; f, W ) -H L (x, t + δ; f, W ).
The next Lemma relates the height dierences to increasing subsequences of Poisson points.

Lemma 5.4.3. Let x ∈ Z 2 , s, τ ≥ 0, k ∈ N. If H(x, s; h, W ) -H(x, s + τ ; h, W ) ≥ k for some h ∈ Γ and W , then there exist increasing subsequences z

0 < • • • < z k-1 ≤ z(x), and s ≤ t 0 < • • • < t k-1 ≤ s + τ such that (z i , ¯ (x), t i ) ∈ W for all i.
For all n ≥ k, the probability that there exists an increasing sequence in W as above with z 0 > z(x) -n is upper bounded by

(τ n) k (k!) 2 ≤ e 2 τ n k 2 k .
The proof is easy and is postponed to the end of the section. With Lemma 5.4.3, Borel-Cantelli Lemma, and a rational approximation argument it is possible to show that for almost every W , for all M, x, t, δ as in Proposition 5.4.2, for all L large enough, for all h ∈ Γ M , Proof of Lemma 5.4.3. By denition, if H(x, s; h, W ) -H(x, t; h, W ) ≥ k, then k particles crossed x between time s and t. We denote by (p, ) the label of the left-most particle to the right of x at time s (i.e = ¯ (x) and p = min{p, z (p, ) (s) > z(x)}). Since k particles crossed x in the time interval [s, t], there exist some time t k-1 ∈ [s, t] where particle (p + k -1, l) crossed x and landed at some position z k-1 < z(x). Necessarily, (z k-1 , , t k-1 ) ∈ W (since it corresponds to a jump) and particle (p + k -2, ) was strictly on the left of z k-1 at time t k-1 (otherwise, the jump could not have occurred). This proves the case k = 1. If k ≥ 2, since particle (p + k -2, ) was on the right of z(x) (and z k-1 ) at time s, there exists some t k-2 ∈ [s, t k-1 ] when it jumped strictly on the left of z k-1 and landed at some z k-2 < z k-1 with (z k-2 , , t k-2 ) ∈ W . The proof proceeds by induction.

H( Lx , L(t -δ); h, W ) -H( Lx , L(t + δ); h, W ) ≤ 2e L2δ × Lα(t + δ)
The upper bound on the probability that such a sequence exists is standard (see e.g [Sep96, Lemma 4.1]), so we omit it. 

Compactness for almost every realisation of the Poisson process

H L km (x, t; f, W ) -H ∞ (x, t; f, W ) -→ m→∞ 0, (5.4.5)
for some continuous function Lemma 5.4.5. Let R, T > 0 and f ∈ ΓM . For almost every realisation of W , the following holds: every subsequence (L k ) k∈N contains a sub-subsequence (L km ) m∈N such that

H ∞ (•, •; f, W ) ∈ C(R 2 × R + ).
sup x ≤R,t∈[0,T ] H L km (x, t; f, W ) -H ∞ (x, t; f, W ) -→ m→∞ 0, (5.4.6) for certain a function H ∞ (•, •; f, W ) ∈ C([-R, R] 2 × [0, T ]).
Proof. Keeping in mind the ideas of the Arzelà-Ascoli Theorem, we will rst show pointwise boundedness and asymptotic equi-continuity with respect to (x, t).

1. Pointwise boundedness: By Proposition 5.4.2 (with δ = t), the height function grows at most linearly i.e there exists C > 0 such that

∀x, t ∈ R 2 × R + , lim sup L→∞ |H L (x, t; f, W ) -H L (x, 0; f, W ) →f (x)
|≤ C t.

(5.4.7)

2. Asymptotic equi-continuity with respect to x, t: Equi-continuity in x is automatic because the spatial discrete gradients of the interface are bounded by 1. Thus,

∀x, y, s ∈ R 2 × R 2 × R + |H L (x, s; f, W ) -H L (y, s; f, W )| ≤ x -y + 1 L .
Moreover, asymptotic equi-continuity with respect to t is a direct consequence of Proposition 5.4.2 and thus for all x, t, and δ > 0, lim sup

L→∞ sup y, y-x ≤δ s∈[t-δ,t+δ] |H L (y, s; f, W ) -H L (x, t; f, W )| ≤ δ + C √ t + δ √ δ.
(5.4.8)

Now, let (L k ) k∈N be a subsequence. By pointwise boundedness and by diagonal extraction, we can nd a sub-subsequence (L km ) m∈N such that for all x, t ∈ S, with S a countable dense countable subset of [-R, R] 2 × [0, T ], the sequence of real numbers (H L km (x, t; f, W )) m∈N converges to some limit to some H ∞ (x, t; f, W ).

Let us extend this limit to the whole [-R, R] 2 × [0, T ]. By asymptotic equi-continuity (5.4.8) and by density of S, it is not hard to show that for any

(x, t) ∈ [-R, R] 2 × [0, T ],
the sequence of real numbers (H L km (x, t; f, W )) m∈N is a Cauchy sequence and thus also converges. Consequently, (H

L km (•, •; f, W )) m∈N converges pointwise on [-R, R] 2 × [0, T ]
to some H ∞ (•, •; f, W ) which is automatically continuous by taking the limit in (5.4.8).

It remains to show that the convergence is uniform. This is easily done by using compactness of [-R, R] 2 × [0, T ] and asymptotic equi-continuity (5.4.8) so we omit the proof.

Let us nish the proof of Proposition 5.4.4. Since ΓM is separable for the topology of convergence on all compact sets, we can nd a countable dense subset that we call S . By Lemma 5.4.5 and diagonal extraction, from any subsequence (L k ) k∈N , we can extract a sub-subsequence (L km ) m∈N such that for any function g ∈ S , (H

L km (•, •; g, W )) m∈N con- verges uniformly on [-R, R] 2 ×[0, T ] to a continuous function H ∞ (•, •; g, W ) ∈ C([-R, R] 2 × [0, T ]).
We are going to extend this limit to any f ∈ ΓM by showing that (H L km (•, •; f, W )) m∈N is a Cauchy sequence in the space of functions from [-R, R] 2 × [0, T ] into R endowed with the uniform convergence which makes it complete. For this, we will need to use some equi-continuity with respect to f . It follows from Corollary 5.3.4 and from (5.4.1) that for all r ≥ 0 and all f, g ∈ ΓM ,

lim sup L→∞ sup x∈B(0,r) t∈[0,T ] |H L (x, t; f, W ) -H L (x, t; g, W )| ≤ sup x∈B(0,r+αT ) |f (x) -g(x)|.
(5.4.9)

Fix r large enough such that B(0, r) contains [-R, R] 2 and x f ∈ ΓM . Since the r.h.s of (5.4.9) can be taken arbitrarily small by choosing g ∈ S close enough to f and since (H L km (•, •; g, W )) m∈N is a Cauchy sequence for the uniform convergence on

[-R, R] 2 × [0, T ],
this is also the case for

(H L km (•, •; f, W )) m∈N . In conclusion, for any f ∈ ΓM , (H L km (•, •; f, W )) m∈N converges uniformly on [-R, R] 2 × [0, T ] to a continuous function H ∞ (•, •; f, W ) ∈ C([-R, R] 2 × [0, T ]).
This concludes the proof of Proposition 5.4.4.

Identication of the limit

All along this section, we will denote by H ∞ any continuous limit obtained by extraction of the sequence of rescaled height functions (H L ) L∈N as in Proposition 5.4.4. In order to nish the proof of Theorem 5.2.5, we need to show that there is only one possible limit H ∞ (•, •; f, W )that coincides almost surely with the unique viscosity solution of (5.2.17).

Properties of limit points

First of all, let us show some properties of H ∞ , inherited from those of the microscopic dynamics.

Proposition 5.5.1 (Vertical translation invariance). For almost every W , every f ∈ Γ and c ∈ R,

H ∞ (•, •; f + c, W ) = H ∞ (•, •; f, W ) + c.

Proof. From the denition of h

f L = Lf (x/L) , we observe that h f L + Lc ≤ h f +c L ≤ h f L + Lc + 1. By Proposition 5.3.1, we deduce that H L (•, •; f, W ) + Lc L ≤ H L (•, •; f + c, W ) ≤ H L (•, •; f, W ) + Lc + 1 L ,
which concludes the proof by taking the limit when L goes to innity.

Proposition 5.5.2 (Weak locality). For almost all W , all R, T > 0, all integer M and all f, g ∈ ΓM ,

sup x∈B(0,R),t∈[0,T ] |H ∞ (x, t; f, W ) -H ∞ (x, t; g, W )| ≤ sup x∈B(0,R+αT ) |f (x) -g(x)|. (5.5.1)
Proof. It suces to take the limit when L goes to innity of (5.4.9). Now, we are going to show a continuous version of Proposition 5.3.5. We rst have to introduce some notations. For all x ∈ R 2 and t > δ > 0, we dene Tδ , Ēδ and Ēx,t,δ the continuous versions of T , E et E x,t, by

Tδ := {y ∈ R 2 , y 1 ≤ 0, y 2 ≤ 0, -2δ ≤ y 1 + y 2 ≤ 0} ⊆ R 2 Ēδ := {(y 1 , y 2 , -δ -(y 1 + y 2 )/2), y ∈ Tδ } ⊆ R 2 × R Ēx,t,δ := (x, t) + Ēδ ⊆ R 2 × R + .
(5.5.2) Proposition 5.5.3 (Space-time locality). For almost every W , every x ∈ R 2 , every t > δ > 0 and every f, g ∈ Γ,

H ∞ (•, •; f, W ) ≤ H ∞ (•, •; g, W ) on Ēx,t,δ ⇒ H ∞ (x, t; f, W ) ≤ H ∞ (x, t; g, W )
Proof. The proof relies on Proposition 5.3.5 and a continuity argument. Assume that

H ∞ (•, •; f, W ) ≤ H ∞ (•, •; g, W )
on Ēx,t,δ . Fix ε > 0. By continuity of these functions and by compactness of Ēx,t,δ , there exists η > 0 such that

H ∞ (•, •; f, W ) ≤ H ∞ (•, •; g, W ) + ε on Ēη x,t,δ ,
where Ēη x,t,δ is the set of points a distance less than η from Ēx,t,δ . By compactness of Ēη x,t,δ and by uniform convergence on all compact sets of the sequences H L (•, •; f, W ) and H L (•, •; g + 3ε, W ), for all L large enough, the following inequalities hold on Ēη x,t,δ :

H L (•, •; f, W ) ≤ H ∞ (•, •; f, W ) + ε ≤ H ∞ (•, •; g, W ) + 2ε = H ∞ (•, •; g + 3ε, W ) -ε ≤ H L (•, •; g + 3ε, W ),
where we used Proposition 5.5.1 in the equality in the second line. Then, since we enlarged Ēx,t,δ by η > 0, it is not hard to check that, for all L large enough,

E Lx ,Lt, Lδ ⊆ {( Ly , Ls), (y, s) ∈ Ēη x,t,δ },
and thus

H L (•, •; h f L , W ) ≤ H L (•, •; h g+3ε L , W
) on E Lx ,Lt, Lδ . By Proposition 5.3.5, for all ε > 0, for all L large enough, we have

H( Lx , Lt; h f L , W ) ≤ H( Lx , Lt; h g+3ε L , W ).
Dividing by L and taking the limit when L → ∞ yields that for all ε > 0,

H ∞ (x, t; f, W ) ≤ H ∞ (x, t; g + 3ε, W ),
and the proof follows by letting ε go to 0 and using Proposition 5.5.1 again.

Finally, we need to need the hydrodynamic limit in the easy case where the initial prole is linear. Proposition 5.5.4 (Hydrodynamic limit for linear proles). For ρ ∈ T, we let f ρ (x) := ρ • x. For almost every W ,

H ∞ (•, t; f ρ , W ) = f ρ -v(ρ) t
∀t ≥ 0, ∀ρ ∈ T.

(5.5.3)

Proof. Consider rst ρ in the interior of T and let

H + ∞ (x, t; f ρ , W ) := lim sup L→∞ H L (x, t; f ρ , W )
and analogously with the liminf for H - ∞ (x, t; f ρ , W ). We will prove that, for any given x, t, one has W -a.s.

H + ∞ (x, t; f ρ , W ) ≤ f ρ (x) -v(ρ)t,
(5.5.4) (an analogous statement holds for H - ∞ (x, t; f ρ , W )). Given this, it is then easy to deduce that (5.5.3) holds, W -a.s., simultaneously for all x and for all t, using the continuity of (x, t) → H ∞ (x, t; f ρ , W ). Moreover, by continuity of ρ → v(ρ) and ρ → H ∞ (x, t; f ρ , W ) on T (thanks to Proposition 5.5.2), we can also deduce that (5.5.3) holds simultaneously for all ρ ∈ T.

Let us x ρ ∈

• T and x, t (we assume without loss of generality that x = 0) and let us prove that (5.5.4) holds W -as. First of all, we replace the initial condition h fρ L by a (random) initial condition, that we call h stat (stat for stationary), sampled from the stationary measure π ρ with average slope ρ, with height xed to δL/2 at position x = 0. We recall from [START_REF] Lucio | A (2 + 1)-dimensional growth process with explicit stationary measures[END_REF] that π ρ corresponds to the translation invariant Gibbs measure on rhombus tilings of the plane with average slope ρ [START_REF] Kenyon | Lectures on dimers[END_REF] and that it is a time-stationary measure for the interface gradients. Note that the L-dependence of h stat is trivial: only the height oset is L-dependent. We call H stat L (•, t; ρ, W ) the corresponding (space-time rescaled) height function at (macroscopic) time t, in analogy with (5.4.2). It is well known that, for any R > 0, one has π ρ -a.s. that h stat ≥ h fρ L = ρ • x on B(0, LR), for L large enough.

(5.5.5) where in the second inequality we used that u satises (5.5.24) hence is 1-Lipschitz and is non-increasing w.r.t time and that u satises (5.5.25). We also used u(y, 0) = u (y, 0) = f (y) in the last step. As a consequence,

ψ(x, t, y, s) ≤ x -y +ST -β ( x 2 + y 2 )
which tends to -∞ when x , y → +∞. By continuity of ψ, its maximum is attained at some (x, t, ȳ, s). Now, for any x, t,

ψ(x, t, ȳ, s) ≥ ψ(x, t, x, t) = u(x, t) -u (x, t) -ηt -2β x 2 ,
which shows the rst point of Lemma 5.A.1 by taking the supremum with respect to x, t. Then, from the positivity of M , we deduce that

x -ȳ 2 2ε 2 + | t -s| 2 α 2 + β ( x 2 + ȳ 2 ) ≤ u(x, t) -u (ȳ, s) - x -ȳ 2 2ε 2 by (5.A.7) ≤ x -ȳ +ST - x -ȳ 2 2ε 2 ≤ ST + 1 =: C 2
where the last inequality hold for all ε ≤ 1. This shows point (2).

From point (2), we know that for xed β and for any ε, α ∈ [0, 1], (x, t), (ȳ, s) stay in a compact set so, modulo sub-sequences, we can assume that they converge to the same point (x 0 , t 0 ) as α, ε → 0, since xȳ and | t -s| tend to 0. By continuity of u and u , we have

M ≤ M ≤ u(x, t) -u (ȳ, s) -η t -β ( x 2 + ȳ 2 ) -→ ε,α→0 u(x 0 , t 0 ) -u (x 0 , t 0 ) -η t 0 -2β x 0 2 ≤ M which proves point (3).
Finally, if (x 0 , t 0 ) is a common limit point of (x, t), (ȳ, s), then u(x 0 , t 0 )u (x 0 , t 0 )η t 0 -2β x 0 2 = M by the previous inequality and thus t 0 = 0 otherwise we would have M ≤ 0 (since u(x 0 , 0) = u (x 0 , 0)) which is a contradiction. This proves point (4).

Chapter 6 A new bijection between the Gates-Westcott model and a continuous version of the Borodin-Ferrari dynamic

In this Chapter, we show that the Gates-Westcott model is in bijection with a continuous limit of the Borodin-Ferrari dynamic under a space-time rotation of the coordinates (x, t) and of the boundary condition (the initial condition at t = 0 for the BF dynamic becomes a boundary condition at t = x for the GW model). Such correspondence was already well known for their one-dimensional analogue, i.e the Polynuclear Growth model and the Hammersley process.

In the literature, some connections were also made between the domino shuing algorithm for the Aztec diamond and a family of line ensembles [START_REF] Johansson | Non-intersecting paths, random tilings and random matrices[END_REF] that can be interpreted as the level lines of a discrete space and time version of the Gates-Westcott model started from a "droplet" type initial condition [START_REF] Prähofer | Scale invariance of the png droplet and the airy process[END_REF]. This was used e.g in [START_REF] Jockusch | Random domino tilings and the arctic circle theorem[END_REF] to show the Arctic circle theorem by mapping it with the hydrodynamic limit of the discrete TASEP with parallel updates (which is also equivalent to the discrete PNG i.e the rst line of the discrete GW model). Moreover, in [START_REF] Borodin | Random tilings and markov chains for interlacing particles[END_REF], Borodin and Ferrari explained the correspondence between the dynamic of the Aztec diamond and the discrete time interlaced particle dynamic they introduced in [START_REF] Borodin | Anisotropic growth of random surfaces in 2+1 dimensions[END_REF] which implies a connection between discrete Gates-Westcott and Borodin-Ferrari dynamics, in a discrete space-time setting (with parallel updates) and started from the droplet/triangular initial condition.

In contrast, the bijection we show in this chapter follows a dierent approach that works for general initial/boundary conditions (not only in the droplet or triangular setting) and is given in a continuous time and space (only for the rst coordinate) setting.

In Section 6.1, we rst remind the bijection between the PNG and the Hammersley process. Then, in Section 6.2, we give a construction of the Gates-Westcott model with generalised boundary conditions of the form t = γ(x) (with γ a 1-Lipschitz function) and

γ(x) = x (x , t ) = (x + t, t -x) t = γ(x) 1 t = 0 (x, t) h(x, t) := sup y∈[x-t,x+t] {h(y, 0) + L ↑ (ω ∩ R (y,0),(x,t) )} L ↑ (A) A ω R (x ,t ),(x,t) [(x , t ), (x, t)] (x , t ) (x, t)
6.1. BIJECTION BETWEEN THE PNG AND HAMMERSLEY DYNAMIC 125 dened in (6.1.4)). Notice that for particular choices of h(y, 0), we recover the PNG in the classical geometries:

if h(y, 0) = 0, we recover the PNG staring from the Flat initial condition if h(y, 0) = -∞ for y = 0 and h(0, 0) = 0, we get the PNG Droplet.

A generalised boundary condition

In what precedes we have the freedom to x the height on the line t = 0 and the height function was dened on the upper-half space t ≥ 0. We are going to extend the model by introducing a more general boundary condition. We start by dening a space time domain on which the height function is dened. The border of the domain is given by the graph of a 1-Lipschitz function γ dened from R to R and which satises the following property:

lim x→±∞ γ(x) + |x|= +∞. (6.1.2)
The height function will be dened on the domain

D γ := {(x, t) ∈ R 2 , t ≥ γ(x)}. (6.1.3)
Notice that because of condition (6.1.2), the intersection of ∂D γ (which is equal to the graph of γ) with the backward light-cone of any point in D γ is a compact curve where the backward light cone of a point (x, t) is dened by

C -(x, t) := {(x , t ) ∈ R 2 , |x -x|≤ t -t }. ( 6 
.1.4) Remark 6.1.1. As we will see later, we can dispense from condition (6.1.2) but then we have to impose a condition on the boundary condition to compensate the loss of compactness of C -(x, t) ∩ ∂D γ . For instance, in order to recover the Hammersley process one needs to choose γ(x) = x and impose (6.1.12). Now, we need to x a boundary condition i.e set the height value on ∂D γ . We let h γ be any function from ∂D γ into Z with locally nite ±1 jumps and with the following compatibility condition :

h γ (x , t ) ≤ h γ (x, t) if (x , t ) ∈ C -(x, t) ∩ ∂D γ and (x, t) ∈ ∂D γ .
(6.1.5) Remark 6.1.2. Notice that a couple ((x, t), (x , t )) as in (6.1.5) can exist only on a line segment on which γ has slope ±1.

Denition 6.1.3. For any boundary curve γ and any boundary condition h γ satisfying the assumptions above and for any realisation of a Poisson Point Process ω on D γ (of intensity 2), we dene the random height function given by the following variational formula

∀(x, t) ∈ D γ , h(x, t) := sup (x ,t )∈C -(x,t)∩∂Dγ {h γ (x , t ) + L ↑ (ω ∩ R (x ,t ),(x,t) )}. (6.1.6) ω γ hγ -1 +1 (x, t) γ γ h γ h(x, t) = h γ (x, t) (x, t) ∈ ∂D γ γ ≡ 0 γ ≡ 0 h(y, 0) = -∞ y = 0 h(0, 0) = 0 γ(x) = |x| x h γ ≡ 0 h γ γ γ 1 f γ γ R γ L γ L : x → Lγ(x/L) (h γ L ) L∈N ∂D γ L Z ∀R > 0, sup |x|≤R 1 L h γ L (Lx, Lγ(x)) -f γ (x, γ(x)) -→ L→∞ 0. h(x, t; h γ L , ω) (x, t) h γ L ω ω ∀R > 0, sup (x,t) ≤R t≥γ(x) 1 L h(x, t; h γ L , ω) -u(x, t) -→ L→∞ 0, u ∂ t u = 4 + (∂ x u) 2 • D γ u = f γ ∂D γ . γ α x α ∈ (-π/4, π/4) α = π/4 γ α (x) = tan(α) x -α (x , t ) γ α t = 0 t = 0) h(x , t ) t ≥ 0 t x → h(x , t ) R Z ±1 t v k (α) v a (α) v k (α) = + tan(π/4 + α) v a (α) = -tan(π/4 -α). α α α α 128 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS becomes ⎧ ⎨ ⎩ ∂ t u = 1 cos(2α) 4 cos(2α) + (∂ x u) 2 -sin(2α)∂ x u if t > 0 u(x , 0) = f (x ) if t = 0, (6.1.11)
where f is any continuous function on R. Therefore, from Proposition 6.1.5, the PNG with asymmetric speed given by (6.1.10) has a hydrodynamic limit with a macroscopic prole that is the unique viscosity solution of (6.1.11).

Bijection with the Hammersley process

Now we investigate the case where the boundary is a line with angle α = π/4 i.e γ(x) = x (the case α = -π/4 is analogous). This is an important case since it corresponds to the Hammersley process dened in Chapter 2. In this case, condition (6.1.2) is no more satised at -∞ and the domain C -(x, t) ∩ ∂D γ appearing in the variational formula (6.1.6) becomes unbounded. If we want the supremum in (6.1.6) to remain nite, we need to impose the following decay on the boundary condition:

|x| -1/2 h(x, x) -→ x→-∞ -∞. (6.1.12)
With condition (6.1.12), for all x ≥ t, the supremum in (6.1.6) is almost surely attained (since L ↑ (ω ∩ R (x ,x ),(x,t) ) = O( |x |) when x goes to -∞) and thus the model is well dened.

Remark 6.1.6. Notice that condition (6.1.12) is the same as the condition on the asymptotic density of particles as in (2.1.1).

When we rotate the model by π/4 clockwise, the level lines correspond to the graphical construction of the Hammersley process i.e the trajectories of the particles lying on the line R as in Chapter 2 and on Figure 6.4. In term of height process, the particle trajectories coincide with the level lines of the height function dened in Section 2.1.2. It corresponds also to the limit of the PNG with asymmetric speed described in the previous section where the speed of kinks is +∞ and the speed of antikinks is 0. This means that as soon a new terrace is randomly created, it immediately extends rightwards up to the next terrace on its right.

Moreover, the Hamiltonian in (6.1.11) tends to 2/∂ x u when α tends to π/4. Therefore, in the canonical basis rotated by π/4, the Hydrodynamic limit of the Hammersley process (with height function chosen as in Section 2.1.2) will be given by the following Hamilton-Jacobi equation:

⎧ ⎨ ⎩ ∂ t u = 2 ∂ x u if t ≥ 0 u(x , 0) = f (x ) if t = 0.
(6.1.13) Remark 6.1.7. Because of the monotonicity of the discrete height function along the x -axis, ∂ x u is always non-negative. However, one needs to be careful to either give a

t = x t = x R ∂ x u = 0 0 2d 1 2 2 1 √ 2 1 α ∈ [-π/4, π/4] t = 0 t = tan(α)x 0 γ(x) = |x| R + 2d 2d 
130 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS of the Hammersley process). As in Section 6.1, we rst extend the notion of boundary condition for the GW model in Section 6.2.1 before explaining the bijection between the two models of interest in Section 6.2. Finally, we explore some applications of this bijection in Section 6.3.

The GW model with general boundary conditions

In this section we give an abstract graphical construction of the Gates-Westcott model with a generalised boundary condition. Later on, we will explain how the Gates-Westcott and continuous Borodin-Ferrari dynamics can be recovered from the model.

The boundary condition

As in Section 6.1, we introduce a boundary curve γ which is a 1-Lipschitz function from R to R and we dene the domain by the product

D Z γ = {(x, y, t) ∈ R × Z × R, t ≥ γ(x)}, (6.2.1)
where D γ is dened in (6.1.3). We also need to x a boundary condition i.e the height value on ∂D Z γ .

Denition 6.2.1. For any 1-Lipschitz function γ : R → R, we dene the set of admissible boundary conditions Γ γ by the set of all functions h γ : ∂D Z γ → Z satisfying the following conditions:

1. for all y ∈ Z, the function x → h γ (x, y, γ(x)) a right-continuous step function with locally nite ±1 jumps and satises that for all (x, y) ∈ R × Z, h γ (x, y + 1, γ(x))h γ (x, y, γ(x)) ∈ {0, -1}, (6.2.2) 2. h γ satises a compatibility condition as in (6.1.5): for all y ∈ Z and x, x ∈ R,

h γ (x, y, γ(x)) ≤ h γ (x , y, γ(x )) if γ(x) = γ(x ) -|x -x|, (6.2.3) 3. If lim x→±∞ γ(x) + |x| = +∞, then h γ satises a decay condition at innity: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ lim x→-∞ γ(x) -x = +∞ or ∀y ∈ Z, lim x→-∞ h γ (x, y, γ(x)) |x| = -∞ lim x→+∞ γ(x) + x = +∞ or ∀y ∈ Z, lim x→+∞ h γ (x, y, γ(x)) √ x = -∞.
(6.2.4) Remark 6.2.2. As we will se later in Section 6.2.3 , the continuous version of the Borodin-Ferrari dynamic corresponds to the case γ(x) = x and thus only the decay condition at -∞ in (6.2.4) is necessary in that case.
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The graphical construction

We are going to dene the height function on D Z γ . Let us keep in mind that the Gates-Westcott model can be seen as a discrete family of PNG model indexed by Z with interactions i.e for all y ∈ Z, the process (x, t) → h(x, y, t) follows the PNG dynamic with creations allowed only if the following slope constraint is preserved:

∀(x, y, t) ∈ D Z γ , h(x, y + 1, t) -h(x, y, t) ∈ {0, -1}. (6.2.5)
Therefore, in order to be consistent with the Gates-Westcott model, for each y ∈ Z, we want (x, t) → h(x, y, t) to follow the PNG dynamic with generalised boundary condition dened in Section 6.1 and with a subset of creations ω ⊆ ω that consists in Poisson rings at which a height transition is possible without violating (6.2.5). This set ω will be called the set of "accepted" creations. Once ω is dened, we can dene the height function h(x, y, t) with the same variational formula as in (6.1.6) but with ω replaced by the restriction of ω to the plane R × {y} × R (see (6.2.10)).

Determining the subset ω of allowed creations may be tricky when there are innitely many Poisson points. First of all, we are going to dene the height function h when ω is an almost surely nite subset of R × Z × R (e.g a Poisson point process intersected with a ball of radius Q ≥ 0) by dening a recursive procedure to check one by one whether the creation is accepted or not and thus dening ω. Then, we will take the monotone limit when the number of points tends to innity (e.g when Q goes to innity).

Let us assume that ω is a xed nite set of points in R × Z × R. In order to dene ω, the subset of allowed creations in ω, we need to dene in which order we are going to treat these points. Intuitively, by nite speed of lateral expansion of the GW model (along direction x), the height at (x, y, t) can be inuenced only by the creations (x , y , t ) such that (x , t ) ∈ C -(x, t), the backward light cone of (x, t) as dened in (6.1.4). Therefore, if (x, y, t) ∈ ω, all the Poisson points (x , y , t ) ∈ ω with (x , t ) ∈ C -(x, t) must be treated before (x, y, t). This leads to the following denition (see also Figure 6.5). Denition 6.2.3 (Consistent orderings). Let ω be a nite set of points in R × Z × R.

We say that ((x i , y i , t

i )) i∈ 1,n is a consistent ordering of ω if {(x i , y i , t i ), i ∈ 1, n } = ω and if for all i, j ∈ 1, n , (x i , t i ) ∈ C -(x j , t j ) ⇒ i ≤ j (6.2.6)
Remark 6.2.4. Consistent orderings of ω always exist as long as ω doesn't contain two points which share the same coordinates x and t (this is almost surely true for Poisson point process restricted to a bounded domain which is enough for our purposes). For instance, ordering points w.r.t their time coordinate t is a consistent ordering (this is the natural ordering chosen to dene the Gates-Westcott dynamic in [START_REF] Lerouvillois | Hydrodynamic limit of a (2 + 1)-dimensional crystal growth model in the anisotropic kpz class[END_REF]). Ordering them with respect to tx is also a consistent ordering that will be useful to recover the construction of the continuous limit of BF dynamic later on. Now, assume that we have xed a 1-Lipschitz boundary curve γ together with a boundary condition h γ ∈ Γ γ as in Denition 6.2.1 and a nite set of points ω. Consider

Consistency with the Gates-Westcott model

In this section we explain why the graphical construction of Section 6.2.1 gives a alternative construction of the usual Gates-Westcott model if we x a boundary condition on the line γ ≡ 0. By construction, we can restrict the underlying Poisson point process to a bounded domain and thus assume that it contains nitely many points. In addition, since both models satisfy a Markov Property, it is enough to show that they agree up to the rst time t 1 > 0 such that (x 1 , y 1 , t 1 ) is a Poisson point. Up to time t - 1 , the Gates-Westcott model evolves deterministically (by lateral expansion of speed 1 and annihilation) and thus, for all t < t 1 , h GW (x, y, t) = sup z∈[x-t,x+t] {h(z, y, 0)} which is consistent with (6.2.7). Moreover, creation (x 1 , y 1 , t 1 ) is accepted for the Gates-Westcott model if and only if

h GW (x 1 , y 1 + 1, t - 1 ) -h GW (x 1 , y 1 , t - 1 ) = 0 and h GW (x 1 , y 1 , t - 1 ) -h GW (x 1 , y 1 - 1, t - 1 ) = -1 which holds if and only if condition (6.2.8) is satised (for k = 1) because h GW (x 1 , y, t - 1 ) = sup z∈[x 1 -t 1 ,x 1 +t 1 ] {h(z, y, 0)} if x 1 ± t 1 are not discontinuity points of h(•, •, 0)
which is almost surely the case. Therefore, the graphical construction with γ ≡ 0 is compatible with the Gates-Westcott model. Remark 6.2.12. We let the interested reader check that, as in the one-dimensional case, if we choose an angle α ∈ (-π/4, π/4) and set a boundary condition on γ α (x) = tan(α)x, the straight line of angle α w.r.t the x-axis, up to a rotation of coordinates x and t by α, we get a a construction of the Gates-Westcott model with asymmetric speed i.e the kinks and antikinks move at dierent speeds given by (6.1.10) but the annihilation and random nucleations mechanisms obey the same rules as the standard Gates-Westcott model.

Bijection with a continuous limit of Borodin-Ferrari dynamic

The goal of this section is to show how the GW model with boundary condition on domain {(x, y, t), t = x} is in bijection with a continuous limit of the Borodin-Ferrari dynamic that we dene rst. The main statement is written in Proposition 6.2.20.

A continuous limit of the BF dynamic

In the BF dynamic introduced in Chapter 2, the particles lie on the discrete lattice that we call G which is isomorphic to Z 2 and their jumps are determined by an underlying Poisson point process on G × R + of intensity 1. In the continuous limit, the particles lie on the lattice R × Z (a discrete set of continuous straight lines) and the underlying point process is now a Poisson point process of intensity 1 on R × Z × R + .

More precisely, the state space contains all interlaced particles conguration on R × Z i.e the set of η = (z (p, ) ) (p, )∈Z 2 ∈ R Z 2 such that z (p, ) < z (p, +1) < z (p+1, ) , as in Figure 6.6, with the additional condition that on all line ∈ Z,

z (p, ) p 2 -→ p→-∞ 0, (6.2.20)
where z (p, ) is the position of the p th particle on line . The dynamic relies on a Poisson point process of intensity 1 on R × Z × R + . Informally, whenever a clock rings at (x, , t),

x (p x , ) x z (px-1, +1) < x z (px, -1) < x ε (p, ) εz (p, ) (εt) ε -1 1 ε 1 h η h η : R × Z → Z h η (0, 0) = y ∈ Z h η (x , y) -h η (x, y) (x, x ] x ≤ x x ∈ R y ∈ Z h η (x, y + 1) -h η (x, y) 0 z (px-1,y+1) < x -1 p x
138 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS label of the leftmost particle to the strict right of x on line = y. Finally, the temporal gradient h BF η (x, y, t )h BF η (x, y, t) is dened by the number of particles on line = y that crossed x between times t and t . Remark 6.2.15. Notice that, in addition to the dierent lattice, the height function chosen here is dierent from that of [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] and that of Chapter 5 for the discrete-space BF dynamic. Indeed, if we considered the height function of Chapters 5 and took the continuous limit as described in Remark 6.2.13, we would get slopes (ρ x , ρ y ) which would be equal to (1ρ x , -ρ y ) where (ρ x , ρ y ) are the slopes along x and y associated to the height function of Denition 6.2.14. Moreover, the temporal gradients would be opposite of each other.

We let the reader check that the sum of gradients along any closed circuit is zero and thus the height function h BF η is well dened. This leads to the following denitions. Denition 6.2.16. We dene Γ BF as the set of admissible height functions for the continuous Borodin-Ferrari dynamic by the set of functions h BF : R × Z → Z such that 1. for all y ∈ Z, x → h BF (x, y) is a non-decreasing right-continuous step function with +1 jumps and for all (x, y)

∈ R × Z, h BF (x, y + 1) -h BF (x, y) ∈ {0, -1}, 2. for all y ∈ Z, lim x→-∞ h BF (x, y)/ |x| = -∞.
Remark 6.2.17. As written in Denition 6.2.14, to each particle conguration, we can associate a unique height function in Γ BF up to a constant (corresponding e.g for the height at 0). Conversely, for any height function in Γ BF , there exists a unique particle conguration associated to it. Notice that condition 2. is equivalent to (6.2.20).

Remark 6.2.18. Let us set γ π/4 : x → x. It is straightforward to check that Γ γ π/4 h γ π/4 → h 0 : (x, y) → h γ π/4 (x/2, y, x/2) ∈ Γ BF (6.2.21) is a bijection between the state space Γ γ π/4 dened in Denition 6.2.1 and Γ BF . Denition 6.2.19. For all h 0 ∈ Γ BF and all realisation ω of a Poisson point process on

R × Z × R + , we dene h BF (x, y, t; h 0 , ω) (6.2.22)
as the height function associated to the continuous BF dynamic starting from the unique particle conguration associated to h 0 and whose jumps are determined by ω.

Bijection between GW and the continuous limit of BF

We are now ready to state the bijection between the Gates-Westcott model with boundary condition on D Z γ π/4 = {(x, y, t) ∈ R × Z × R, t = x} and the continuous version of the Borodin-Ferrari dynamic (see Figure 6.8 for an illustration).

x 1 In this section, we use the result shown in Chapter 4 for the usual Gates-Westcott model to deduce a hydrodynamic limit for the GW with general boundary condition and thus for the continuous limit of the Borodin-Ferrari dynamic, thanks to the bijection of Proposition 6.2.20. Although this result is the natural analogue of the hydrodynamic limit shown in Chapter 5 for the discrete-space BF dynamic, it couldn't be easily deduced from it due to non-trivial inversion of limits issues, as explained in Section 6.3.1. In other words, the bijection yields a new hydrodynamic result for the continuous BF dynamic with a proof that is dierent from that of its discrete-space analogue.

y 1 t 1 y 1 z 1 x 1 1 [x 1 , z 1 ) x ∈ R h (x , y 1 , t 1 ; h 0 , ω ) = h 0 (x , y 1 ) + x 1 ≤x <z 1 , (x 1 , y 1 , t 1 ) h γ π/4 (x, t) t = t 1 h (x, y 1 , t; h γ π/4 , ω) = max{h γ π/4 (x /2, y 1 , x /2), (h γ π/4 (x 1 /2, y 1 , x 1 /2) + 1) x ≥x 1 }. x ≥ x 1 h γ π/4 (x /2, y 1 , x /2) = h γ π/4 (x 1 /2, y 1 , x 1 /2) h 0 (x , y 1 ) = h 0 (x 1 , y 1 ) (x 1 , x ] z 1 > x y1 (x1,
We follow the notations of Section 6.2.1. For any 1-Lipschitz function γ : R → R, we dene the domain of R 3 : D R γ := {(x, y, t) ∈ R 3 , t ≥ γ(x)}. (6.3.1)

Let also f γ : ∂D R γ → R be any continuous function satisfying (6.2.3) for all y ∈ R and f γ (x, y , γ(x))-f γ (x, y, γ(x)) ∈ [-(y -y), 0], for all y < y and all x ∈ R. For any L ∈ N, let γ L = x → Lγ(x/L) be the rescaled boundary curve and (h L γ ) L∈N be a sequence of discrete height functions in Γ γ L approaching f γ in the following sense: ∀R > 0, sup Note that assumption (H2) is more general than (H1).

Theorem 6.3.1 (General Hydrodynamic Limit). Under assumption (H1) or (H2), there exists a continuous function u : D R γ → R such that for almost all realisation ω of a PPP of intensity 2 on R × Z × R, ∀R > 0, sup Moreover, under assumption (H1), u is the unique viscosity solution of (6.3.4).

CONSEQUENCES OF THE BIJECTION AND PERSPECTIVES

Remark 6.3.2. If (H1) doesn't hold, uniqueness of the viscosity solution of (6.3.4) in the general case of (H2) is a priori non trivial. However, uniqueness can be guaranteed under stronger assumptions on the gradients of f γ as written the in Corollary 6.3.5 and as explained in Remark 6.3.6.

Before giving a proof of Theorem 6.3.1, let us formulate a few corollaries of Theorem 6.3.1.

As observed in Remark 6.2.12, the GW model with boundary curve γ α (x) = tan(α)x for α ∈ (-π/4, π/4) can be interpreted as the Gates-Westcott dynamic with asymmetric kink/antikink speeds modulo a rotation of coordinates x and t by α. Let h GW α (•, •, •; h, ω) be the height function following the GW dynamic with kink/antikink speeds given by v k (α) = tan(π/4 + α) and v a (α) =tan(π/4α), whose height at time zero is given by h and with realisation ω of a PPP of intensity 2 on R × Z × R.

Corollary 6.3.3 (Hydrodynamic Limit for GW with asymmetric kink/antikink speeds).

Let f be any continuous prole in ΓGW and let (h L ) L∈N be any sequence of initial height proles in Γ GW (where Γ GW and ΓGW are dened e.g in Section 3.1). Assume that ∀R > 0, sup (6.3.6) Remark 6.3.4. Observe that the speed in (6.3.6) is obtained from the speed in (6.3.4) by a change of coordinates corresponding to the rotation of (x, t) by α.

Likewise, by Proposition 6.2.20, we know that the case α = π/4 corresponds to the continuous version of BF dynamic dened at the beginning of Section 6.2.3. Consequently, we deduce the following corollary. Corollary 6.3.5 (Hydrodynamic limit for the continuous BF dynamic). Let m > 0 and f : R 2 → R be a continuous prole such that f (x , y)f (x, y) ≥ m(xx) and f (x, y ) -f (x, y) ∈ [-(y -y), 0] for all x < x and y < y . Let also (h L ) L∈N be any sequence of initial height proles in Γ BF (dened in Denition 6.2.16) such that h L (x , y) -h L (x, y) ≥ m(x -x) for all L ∈ N, x < x and y ∈ Z. If ∀R > 0, sup where u is the unique viscosity solution of ⎧ ⎨ ⎩

∂ t u = 1 π 2 sin(π∂ y u) 2 ∂ x u if t > 0 u(•, •, 0) = f if t = 0.
(6.3.8) Remark 6.3.6. The uniform lower bound on height dierences along x for f and h L is stronger than (H2) and is there to give a meaning to equation (6.3.8) (whose Hamiltonian is ill-dened whenever ∂ x u = 0) and to guarantee uniqueness. Indeed, for the same reasons explained in Remark 3.1.3 , with this lower bound, there exists a unique viscosity solution of (6.3.8) whose gradients along x remain uniformly away from 0 at all time.

Remark 6.3.7. The Hamiltonian in (6.3.8) can be obtained as the limit when α tends to π/4 of (6.3.6) (and modulo rescaling space by √ 2 for the same reason as in Remark 6.1.8). Besides, one can check that it is consistent with the Hamiltonian in (3.1.11) for the discrete-space version of BF, after taking the continuous limit as in Remark 6.2.13. To do so, one should take into account the dierent coordinates used in Theorem 3.1.2 and the dierent denition of height function as explained in Remark 6.2.15.

Proof of Theorem 6.3.1 with (H1). We start by proving the Theorem assuming (H1) which guarantees that the intersection of any backward light-cone C -(x, t) with the graph of γ is compact. This somehow simplies the proof and will be crucial for showing Proposition 6.3.9 that implies uniqueness of the solution of (6.3.4). At the end of the proof, we will explain how we can proceed when we assume (H2) instead of (H1), without giving many details for the sake of simplicity and conciseness.

The strategy of the proof is the following. First of all, we show that any subsequence of the rescaled height functions admits a subsubsequence that converges uniformly on all compact sets of D R γ . Then, thanks to Markov Property (Proposition 6.2.11), we know that the height function behaves locally like the standard Gates-Westcott model (as explained in Section 6.2.2). Therefore, by the Hydrodynamic Limit result for the Gates-Westcott model shown in Chapter 4, we deduce that any limiting rescaled height function is a viscosity solution of (6.3.4). Finally, we conclude by a uniqueness result on such viscosity solution.

Assume that (H1) is satised and that (h L γ ) L∈N is a xed sequence of height converging to a continuous function f γ as in Theorem 6.3.1. For simplicity, let us denote by h L the rescaled space-time proles The rest of the proof follows from diagonal extraction, separability of D R γ and completeness of R (see Section 5.4.3).

h L := 1 L h(L•, L
Essentially, Properties 1 and 2 are consequences of the denition (6.2.10) and Lemma 4.5.4 which states that there exists a constant c > 0 such that for almost all realistion of ω, for all light-rectangle R ⊆ R 2 , and all Y > 0, where Leb(R) is the area of R and ω y is the restriction of ω to R×{y}×R. By assumption (H1), for all (x, t) ∈ D γ , the intersection C -(x, t) ∩ ∂D γ is bounded hence included in some light-rectangle R 0 ⊆ R 2 . Therefore, by applying (6.3.12) to R 0 , by (6.2.10) and by (6.3.2), we get that lim sup L→∞ h L (x, y, t) ≤ sup (x ,t )∈C -(x,t)∩Dγ f γ (x , y, t ) + c Leb(R 0 ) < +∞.

The monotonicity w.r.t to t of the dynamic and (6.3.2) gives an easy lower bound for h L (x, y, t) and this concludes pointwise boundedness. Now, let us show asymptotic equi-continuity (the proof is very similar to Proposition 4.5.6). By monotonicity w.r.t t + x and tx and since the height function is 1-Lipschitz along y, it is enough to show that lim sup L→∞ h L (x, y, t + δ)h L (x, y, tδ) tends to zero when δ goes to zero. We are going to show that almost surely, for all (x, y, t) ∈ D R γ and all δ > 0, lim sup with H(ρ) = -4 sin 2 (πρ y /2)/π 2 + ρ 2 x for all ρ = (ρ x , ρ y ) ∈ R 2 , modulo the linear change of coordinates (x, y, t) → (x, 2y, t). Thanks to this change variables one can check that ∇H(ρ) ≤ 1 (with • the Euclidean norm) for all ρ ∈ R 2 \ {(0, 0)} and thus ∀ρ, ρ ∈ R 2 , |H(ρ) -H(ρ )|≤ ρρ .

)) ≤ 1 L L ↑ (ω Ly ∩ L(R 1 ∪ R 2 )) ≤ 1 L L ↑ (ω Ly ∩ LR 1 ) + 1 L L ↑ (ω Ly ∩ LR 2 ) R 1 = R δ 1 R 2 = R δ 2 D γ ∩ (C -(x, t + δ) \ C -(x, t -δ)) O(δ) C -(x + δ, t + δ) ∩ ∂D γ ω L → ∞ O( √ δ) (x 0 , t 0 ) / ∈ C -(x, t -δ) ∩ ∂D γ R (x 0 ,t 0 ),(x,t+δ) ⊆ R 1 ∪ R 2 h L (x,
(h L k ) k∈N h ∞ ∀R ≥ 0, sup (x,y) ≤R 1 L k h L k t 0 -δ (L k x, L k y ) -h∞ (x, y, t 0 -δ) -→ k→∞ 0, h∞ (•, •, t 0 -δ) h ∞ (•, •, t 0 -δ) [x 0 -δ, x 0 + δ] × R (-∞, x 0 -δ] × {y} [x 0 + δ, +∞) × {y} y ∈ R (x, y, t) (x, t) ∈ C -(x 0 , t 0 ) t ≥ t 0 -δ h∞ t = t 0 -δ (x 0 , y 0 , t 0 ) D R γ h ∞ D R
(6.3.17)

Let us note C -(x 0 , y 0 , t 0 ) := {(x, y, t) ∈ R 3 , (x, y) -(x 0 , y 0 ) ≤ t 0 -t}, the backward light cone of (x 0 , y 0 , t 0 ) ∈ D R γ . Equation (6.3.17) is the key ingredient to show that information propagates at speed 1 i.e the value of the solution at (x 0 , y 0 , t 0 ) only depends on the boundary condition in C -(x 0 , y 0 , t 0 ) as written in the following Proposition. Proposition 6.3.9. Let u and v be respectively viscosity sub and super-solution of (6.3.16) inside D R γ . For any (x 0 , y 0 , t 0 ) ∈ D R γ , if u ≤ v on ∂D R γ ∩ C -(x 0 , y 0 , t 0 ), then u ≤ v also in D R γ ∩ C -(x 0 , y 0 , t 0 ). Remark 6.3.10. In the case where γ ≡ 0, we recover [Bar13, Theorem 5.3] i.e for any R > 0, if u ≤ v on B(0, R), then u(x, t) ≤ v(x, t) for any t ≤ R and x in B(0, Rt).

It is easy to see that Proposition 6.3.9 implies uniqueness of the viscosity solution of (6.3.16) and thus concludes the proof of Theorem 6.3.1 when (H1) is true.

Proof of Proposition 6.3.9. First of all, (6.3.17) implies that w := uv is a sub-solution of ∂ t w -∇w = 0 inside D R γ . (6.3.18)

The proof is easy and is done in [Bar13, Lemma 5.3] so we won't show it. It remains to show that if w ≤ 0 on ∂D R γ ∩ C -(x 0 , y 0 , t 0 ), then w ≤ 0 also in D R γ ∩ C -(x 0 , y 0 , t 0 ). Let M be the supremum of w on D R γ ∩ C -(x 0 , y 0 , t 0 ) (which is nite and attained since w is continuous and D R γ ∩ C -(x 0 , y 0 , t 0 ) is compact by assumption (H1) ). Assume, by contradiction, that M > 0 even though w ≤ 0 on ∂D R γ ∩ C -(x 0 , y 0 , t 0 ). Now, following [START_REF] Barles | An introduction to the theory of viscosity solutions for rst-order HamiltonJacobi equations and applications[END_REF], for all δ > 0, let χ δ : R → R be any smooth increasing function such that

χ δ (r) = 0 if r ≤ t 0 -δ M if r ≥ t 0 ,
and ϕ δ := (x, y, t) → χ δ ( (x -x 0 , y -y 0 ) +t) + δ (t -t min ), where t min := min{t, ∃(x, y, t) ∈ D R γ ∩ C -(x 0 , y 0 , t 0 )} is such that ϕ δ ≥ 0 on D R γ ∩ C -(x 0 , y 0 , t 0 ). It is easy to check that ϕ δ is a smooth strict super-solution of (6.3.18) 6.3. CONSEQUENCES OF THE BIJECTION AND PERSPECTIVES 151 inside the domain D δ := D R γ ∩ C -(x 0 , y 0 , t 0 ) ∩ {t ≤ t 0 -δ}. Therefore, since w is a sub-solution, the restriction of wϕ δ to D δ attains its maximum neither inside D δ nor on {t = t 0 -δ} (by [Bar13, Lemma 5.1]). Consequently, its maximum must be attained either on ∂D R γ ∩C -(x 0 , y 0 , t 0 ) or on D R γ ∩∂C -(x 0 , y 0 , t 0 ). On ∂D R γ ∩C -(x 0 , y 0 , t 0 ), we know that w ≤ 0 by assumption and that ϕ δ ≥ 0, by construction. On D R γ ∩ ∂C -(x 0 , y 0 , t 0 ), we have that ϕ δ ≥ M ≥ w, by construction. This implies that w ≤ ϕ δ on D δ and, in particular, that w(x, y, t) ≤ δ(tt min ) on D R γ ∩ C -(x 0 , y 0 , t 0δ), by construction of χ δ . Since this is true for all δ > 0 and since w is continuous, we nally get that w ≤ 0 on D R γ ∩ C -(x 0 , y 0 , t 0 ) which is a contradiction with M > 0.

Proof of Theorem 6.3.1 with (H2). The idea is to reduce ourselves to the case (H1) by

showing that if we modify the boundary curve γ far away from the origin, the local behaviour of the height function does not change, thanks to assumption (H2). More precisely, given any a > 0, we modify the boundary condition for |x|≥ a by dening e.g for all x ∈ R,

γ a (x) := ⎧ ⎪ ⎨ ⎪ ⎩ γ(x) if |x|≤ a γ(-a) if x < -a γ(a) if x > a,
and for all L ∈ N, we dene the rescaled boundary curve γ L a (x) = Lγ a (x/L). Then, we set for all (x, y) ∈ R × Z, and all L ∈ N, (6.3.20)

In particular, u is a viscosity solution of (6.3.4) on D R γ ∩((-a, a) × R × R). This concludes the proof of Theorem 6.3.1 in the case (H2) modulo the following locality Lemma applied together with Borel-Cantelli Lemma. Lemma 6.3.11 (Locality). Let K ⊆ D R γ be any xed compact domain. There exists a := a(K) > 0 and c = c(K) > 0 such that K ⊆ D R γa and for all L ∈ N, P (h L,a (x, y, t) = h L (x, y, t) for some (x, y, t) ∈ K) ≤ ce -L/c , (6.3.21) where h L,a and h L are the rescaled height functions dened in (6.3.19) and (6.3.9). 152 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS Proof. The proof of Lemma 6.3.11 is, in essence, similar to that of Proposition 4.4.5 and [LT18, Proposition 5.12]. The idea is to show that if h L,a and h L dier somewhere on K, then we can construct a long increasing sequence of Poisson points representing the "propagation of the perturbation" coming from outside [-a, a] and to show that such chain has a small probability to occur. Construction of a "long" chain of Poisson points. If h L (x 0 , y 0 , t 0 ) > h L,a (x 0 , y 0 , t 0 ) for some |x 0 |≤ a (the case where h L (x 0 , y 0 , t 0 ) < h L,a (x 0 , y 0 , t 0 ) can be treated similarly), let us explain briey how we can construct, by induction, some real number x such that |x |≥ a and a sequence of points (x i , y i , t i ) i∈ 1,n ∈ R3 such that (Lx i , Ly i , Lt i ) ∈ ω for all i (which requires Ly i ∈ Z) and 1. |Ly i+1 -Ly i |≤ 1 for all i ≤ n -1, 2. (x i+1 , t i+1 ) ∈ C -(x i , t i ) for all i ≤ n -1 and (x , γ(x )) ∈ C -(x n , t n ), 3. n ≥ L (h L (x 0 , y 0 , t 0 )h L (x , y 0 , γ(x ))).

Let (Lx , γ(Lx )) be a maximiser in the variational formula (6.2.10) computed for the height h(Lx 0 , Ly 0 , Lt 0 , h L γ , ω) 2 . By denition, there exists a sequence (Lx i , Ly 0 , Lt i ) 1≤i≤n of points in ω Ly 0 ∩ LR (x ,γ(x )),(x 0 ,t 0 ) satisfying the three conditions above.

-If |x |≥ a, then we are done.

-If |x |< a, since we assumed that h L (x 0 , y 0 , t 0 ) > h L,a (x 0 , y 0 , t 0 ) and since the boundary conditions of both functions agree on [-a, a], then there must exists some (Lx k 0 , Ly 0 , Lt k 0 ) in the previous sequence such that h L (x k 0 , y 0 , t - k 0 ) = h L,a (x k 0 , y 0 , t - k 0 ) but h L (x k 0 , y 0 , t k 0 ) > h L,a (x k 0 , y 0 , t k 0 ) and thus corresponds to a creation that has been accepted for the rst height function but not for the second. Since h L (x k 0 , y 0 , t - k 0 ) = h L,a (x k 0 , y 0 , t - k 0 ) and because of the slope constraint (6.2.5), this can happen only if h L (x k 0 , y 0 + ε 0 /L, t - k 0 ) > h L,a (x k 0 , y 0 + ε 0 /L, t - k 0 ) for some ε 0 ∈ {-1, 1}. We begin our construction by keeping (Lx i , Ly 0 , Lt i ) 1≤i≤k 0 and complete the chain by repeating the procedure starting from (Lx k 0 , Ly 0 + ε 0 , Lt k 0 ). We stop the construction when the maximiser in (6.2.10) is attained outside [-a, a] 3 . It remains to be checked that the length of the chain obtained by the procedure above satises condition 3. This can be done by induction on the number of steps needed for the procedure to stop.

If it stops after only one step, then, by construction, there is nothing to show.

If we assume that condition 3 is satised when the procedure nishes after p ≥ 1 steps, let us show that this is also the case if it nishes after p + 1 steps. Using the notations of the construction as above, the length of the chain is equal to the sum of k 0 2 we assume implicitly that ω is restricted to a xed nite ball chosen large enough so that h(Lx0, Ly0 , Lt0, h L γ , ω) > h(Lx0, Ly0 , Lt0, h L γa , ω).

(the length of the beginning of the chain obtained after the rst step of the procedure) and, by induction hypothesis, of L(h L (x k 0 , y 0 + ε 0 /L, t k 0 )h L (x , y 0 + ε 0 /L, γ(x ))) (where x satises |x |≥ a and is the ending point of the rest of the chain started from (Lx k 0 , Ly 0 +ε 0 , Lt k 0 ) and stopped after p more steps). Therefore, in order to show that the length of the chain satises condition 3, it is sucient to show that for any x ∈ R, k 0 + L(h L (x k 0 , y 0 + ε 0 /L, t k 0 )h L (x , y 0 + ε 0 /L, γ(x ))) ≥ L h L (x 0 , y 0 , t 0 )h L (x , y 0 , γ(x )) , (6.3.22)

where ε 0 , k 0 are as in the rst step of the construction above. By construction, we have that k 0 = L(h L (x 0 , y 0 , t 0 )h L (x k 0 , y 0 , t - k 0 )), so (6.3.22) is equivalent to h L (x k 0 , y 0 + ε 0 /L, t k 0 )h L (x k 0 , y 0 , t - k 0 ) ≥ h L (x , y 0 + ε 0 /L, γ(x ))h L (x , y 0 , γ(x )).

(6.3.23)

Since (Lx k 0 , Ly 0 , t k 0 ) corresponds to an accepted creation for h L , if ε 0 = 1, then the l.h.s of (6.3.23) must be equal to 0 and the r.h.s is always non-positive (because of (6.2.5)). Likewise, if ε 0 = -1, then the l.h.s of (6.3.23) must be equal to 1/L and the r.h.s is always less than 1/L (still by (6.2.5)). This concludes the proof of (6. 

  2.5]. Theorem 4.3.4. If v is globally Lipschitz, there is at most one viscosity solution of (4.3.7) on R d × [0, T ].

  .4.4) Proof. Having xed ω, by denition, the Gates-Westcott dynamic only depends on the height dierences of the initial height function (kinks/antikinks and relative height differences along y). Therefore, the temporal height growth h(•, •, t; ϕ, ω)ϕ depends on ϕ only through its spatial height dierences hence is invariant by addition of a constant m to the initial function ϕ.

  Control on spatio-temporal height dierencesIn this section, we control the spatio-temporal gradients of the height function following the Gates-Westcott dynamic by comparison with the PNG dynamic. By construction, (x, t) → h(x, y, t; ϕ, ω) follows the PNG dynamic (see e.g [FP06, Section 2] for an introduction to the model) starting from initial condition ϕ(•, y) with creation locations given by ω ϕ y as in Denition 4.4.1. This simple remark allows us to use the representation of PNG model in terms of directed polymer on Poisson points (see [FP06, Section 3.1]).

  ny , nt; ϕ M,N,ρ , [ω] M,N )|≥ ε . }C (4.6.5) Let us bound the limsup when M, N goes to innity of the three terms of the r.h.s called A, B and C.

  3.5 which is inspired from [Rez01, Lemma 5.3] and [Zha18, Proposition 7.1].

  HYDRODYNAMIC LIMIT FOR THE GW MODEL

  y) →∞ e -ηs cos(ρ 2 π)|x| max(|x|, |y|) , (4.B.7) and similar computations show that |B|= O (x,y) →∞ e ηs cos(ρ 2 π)|x| max(|x|, |y|) , (4.B.8) 4.C. LONGEST LIGHT-CHAIN OF POISSON POINTS 91

  Reducing to a simpler initial condition

  , (5.4.4) with W the restriction of W to B( Lx , Lα(t + δ)) × [0, (t + δ)L] (cf. (5.3.3)). The rest of the proof follows from Proposition 5.3.3 and by setting C(M ) = 2e 2α(M ).

W

  The goal is to show the following: Proposition 5.4.4. For almost every realisation of W the following holds: every subsequence (L k ) k∈N contains a sub-subsequence (L km ) m∈N such that for all function f ∈ Γ one has ∀T, R > 0 s u px ≤R,t∈[0,T ]

112CHAPTER 5 .

 5 HYDRODYNAMIC LIMIT FOR THE BF DYNAMICS Proof. Let us x W in the event of probability one on which Proposition 5.4.2 and Corollary 5.3.4 hold simultaneously. Since Γ is the countable union of the ΓM and since R 2 × R + can be written as a countable union of [-R, R] 2 × [0, T ], modulo a standard diagonal extraction procedure, we can restrict ourselves to the case of ΓM for a xed M and of a xed compact set [-R, R] 2 × [0, T ]. Let us start by showing the following Lemma where the function f is xed.

  , Ly , Lγ(x))f γ (x, y, γ(x)) to make assumptions on the boundary condition at innity. In what follows, we will assume one of the following:(H1) : lim x→±∞ γ(x) + |x|= +∞ (H2) : lim x→-∞ γ(x) + |x| = ∞ ⇒ lim sup x→-∞ sup L∈N h L γ (Lx, Ly , Lγ(x)) L |x| = -∞, ∀y ∈ R ,and the same holds when x tends to +∞.

∂

  , Ly , Lt; h L γ , ω)u(x, y, t) t u = 4 sin 2 (π∂ y u)/π 2 + (∂ x u) 2 inside D R γ

  (x,y) ≤R 1 L h L (Lx, Ly )f (x, y) -→ L→∞ 0.Then, we have for almost all realisation ω,∀R > 0, ∀T > 0, sup (x,y) ≤R ,t∈[0,T ] 1 L h GW α (Lx, Ly , Lt; h L , ω)u(x, y, t) -→ L→∞ 0, (6.3.5)where u is the unique viscosity solution of 2α) sin 2 (π∂ y u)/π 2 + (∂ x u) 2sin(2α)∂ x u if t > 0 u(•, •, 0) = f if t = 0.

  Lx, Ly )f (x, y) -→ L→∞ 0, 146 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS then, we have for almost all realisation ω of a PPP of intensity 1, ∀R > 0, ∀T > 0, sup (x,y) ≤R ,t∈[0,T ] 1 L h BF (Lx, Ly , Lt; h L , ω) -u(x, y, t)

  ω y ∩ LR) ≤ c Leb(R), (6.3.12)

  h L γa (x, y, γ L a (x)) := h L γ (x, y, γ L a (x)),and similarly f γa (x, y, γ a (x)) = f γ (x, y, γ(x)). Since the boundary curve γ a now satises condition (H1), we can apply Theorem 6.3.1 in the case (H1) to get that, almost surely, the sequence of rescaled height functionsh L,a := 1 L h(L•, L• , L•; h L γa , ω) (6.3.19)converges uniformly on all compact sets to the unique viscosity solution of⎧ ⎨ ⎩ ∂ t u = 4 sin 2 (π∂ y u)/π 2 + (∂ x u) 2 inside D R γa u = f γa on ∂D R γa .

  3.22) and thus of the existence of such chain of Poisson points satisfying the three conditions above.Lastly, because of assumption (H2) (and monotonicity w.r.t time of h), we have thatL h L (x 0 , y 0 , t 0 )h L (x , y 0 , γ(x )) ≥ L C(a, K) |x |,uniformly on (x 0 , y 0 , t 0 ) ∈ K, |x |≥ a and L ∈ N and where C(a, K) is a constant that goes to innity when a tends to innity. The proof of Lemma 6.3.11 is concluded by showing that the probability that such a chain of Poisson points of length at least L C(a, K) |x | exists in a light-rectangle of area of order O(L 2 |x |) decays exponentially in L, if a is chosen large enough. This is a classical bound whose proof can be found e.g

  by numerical simulations[START_REF] Tang | Kinetic surface roughening. ii. hypercube-stacking models[END_REF][START_REF] Halpin | Universal correlators and distributions as experimental signatures of (2 + 1)-dimensional kardar-parisizhang growth[END_REF] that are precise enough to rule out the value 1/4 for β KP Z . The KPZ relation α KP Z + z KP Z = 2 is also veried numerically. We call the associated universality class Isotropic KPZ or simply KPZ. Wolf also conjectured that the spatial and temporal uctuations should grow logarithmically as conrmed numerically soon after by Halpin-Healyand and Assdah[START_REF] Halpin | On the kinetic roughening of vicinal surfaces[END_REF] and shown for the Gates-Westcott model by Spohn and Prähofer[START_REF] Prähofer | An exactly solved model of three-dimensional surface growth in the anisotropic KPZ regime[END_REF] (only for the spatial uctuations though). The universality class associated to the bi-dimensional KPZ equation with det(H) ≤ 0 is called Anisotropic KPZ (AKPZ) class. The name
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	If det(H) ≤ 0, then	
	α KP Z = 0 β KP Z = 0,	(1.2.17)
	as for the stochastic heat equation in dimension 2.	
	If det(H) > 0 (meaning that v is strictly convex or concave), then the non-linearity
	is relevant and	
	α KP Z 0.39 β KP Z 0.24,	(1.2.16)

If d ≥ 3 and H = Id, it has been shown very recently

[START_REF] Magnen | The scaling limit of the kpz equation in space dimension 3 and higher[END_REF][START_REF] Dunlap | Fluctuations of the solutions to the kpz equation in dimensions three and higher[END_REF] 

that, for all small enough λ, the Hopf-Cole solution to the KPZ equation rescaled by ε α EW (h(x/ε, t/ε 2 ) -E[h(x/ε, t/ε 2 ]) (with α EW as in (1.2.14)) converges (in distribution and in the sense of convergence of moments) to the solution of the Edward Wilkinson equation (where the diusion and noise parameters depend on λ). The (small) non-linearity is thus irrelevant. It is believed that the same should hold, for H = Id (but then there is no more Hopf-Cole transform to show it).

The case of dimension 2 and Wolf's conjecture Dimension 2 is in some sense critical: the asymptotics of the solution to the KPZ equation is expected to depend highly on the signature of H or, equivalently, on the convexity properties of the speed of growth v by (1.2.11) (see [Prä03, Section 2.2] for heuristics coming from perturbations of the hydrodynamic limit). In 1991, based on perturbative renormalisation-group arguments

[START_REF] Dietrich | Kinetic roughening of vicinal surfaces[END_REF]

, Dietrich E. Wolf conjectured the following picture. computed "anisotropic" comes from the fact that the eigenvalues of H have dierent signs, indicating an absence of symmetry in the microscopic models.

  First of all, let us introduce a few denitions and notations. We denote by Ω the set of locally nite subsets of R × Z × R + endowed with the σ-algebra and the probability measure induced by a Poisson Point Process of intensity 2 on R × Z × R + . For all ω ∈ Ω, for all admissible height function ϕ ∈ Γ and for all (x, y, t) ∈ R × Z × R + , we dene function at time t obtained by applying the Gates-Westcott dynamic described in the previous section with initial height prole ϕ and creations ω. Let us also dene the continuous state-space

	3. THE MAIN RESULT	59
	4.3 The main result	
	4.3.1 Hydrodynamic limit	
	h(x, y, t; ϕ, ω)	(4.3.1)
	as the height	

  .3.13) can be is easily shown by bounding the variance of ϕ M,N,ρ (x, y) by twice the sum of the variance of ϕ M,N,ρ (x, 0) and the variance of ϕ M,N,ρ (x, y)ϕ M,N,ρ (x, 0) (by Cauchy-Schwarz inequality) which grow logarithmically w.r.t |x| and |y|, according to the asymptotic computations of Prähofer and Spohn.

	4.3. THE MAIN RESULT		63
	Equation (4		
	y) →∞	(log ( (x, y) )) .	(4.3.13)

  c ) while the left-hand side goes to S(s, t; f + c, ω) by Lemma 4.5.11. -Monotonicity : By (4.4.17), if f ≤ g, then for all k ∈ N, ϕ f n k ≤ ϕ g n k + 4 so by Lemmas 4.4.3 and 4.4.2, S n k (s, t, f ; ω) ≤ S n k (s, t, g; ω) + 4/n k .

	Monotonicty follows by taking the limit k → ∞.
	-Locality : It is a direct consequence of Corollary 4.4.8 and (4.4.17).

  Now we are going to compare h(Λ t , t; ϕ M,N,ρ )h(Λ t , 0; ϕ M,N,ρ ) with t 2 h(0, 0, t; ϕ M,N,ρ ), using the logarithmic bound (4.3.13) on uctuations. We can write

					t	t
	2t(2 t + 1)h(0, 0, t; ϕ M,N,ρ ) =	(h(0, 0, t; ϕ M,N,ρ ) -h(x, y, t; ϕ M,N,ρ )) dx
					y=-t	-t
			t		t
		+			ϕ M,N,ρ (x, y) dx + h(Λ t , t; ϕ M,N,ρ ) -h(Λ t , 0; ϕ M,N,ρ ).
		y=-t	-t
						(4.6.11)
	By Cauchy-Schwarz inequality and by stationarity (4.3.11), for any (x, y), (x , y ) ∈ Λ t ,
	lim sup	lim sup			
	N →∞				
		where the two last inequalities hold by Cauchy-Schwarz inequality and by stationarity
		with respect to time. Therefore, by (4.3.14) applied for R = t,
		lim sup N →∞	lim sup M →∞	Var (h(Λ t , t; ϕ M,N,ρ ) -h(Λ t , 0; ϕ M,N,ρ )) = O R→∞	t 4 log t .	(4.6.10)

  which concludes the proof by setting δ = ε/(2C ρ ).

	4.6.3 Conclusion of the proof of Theorem 4.3.1

Propositions 4.5.10 (compactness) and Proposition 4.6.1 together with Corollary 4.6.3 provide all necessary ingredients to conclude the proof of Theorem 4.3.1. Proposition 4.6.6. For all

ω ∈ Ω 0 ∩ Ω 1 , all f ∈ Γ and all R, T > 0, sup |x|,|y|≤R,t∈[0,T ] |S n (0, t; f, ω)(x, y)u(x, y, t)| -→ n→∞ 0,

(4.6.15)

  5.3.4 (Weak Locality). For almost every W the following holds: for every integer M , every T > 0, every R ≥ 0, for L large enough ∈ Γ M , with α = α(M ) as in Proposition 5.3.3.Proof. We x W in the event of probability 1 of Proposition 5.3.3. Let M ∈ N, T > 0, R ≥ 0 and let h, h ∈ Γ M . We dene m as the supremum in the r.h.s of (5.3.4) and we set h := h + m. Since h ≤ h on B(0, L(R + αT )), the local version of monotonicity stated in [LT18, Theorem 5.10] implies that for all L ≥ 1

	sup	|H(x, t; h, W ) -H(x, t; h , W )|≤	sup	|h(x) -h (x)|	(5.3.4)
	x∈B(0,LR)		x∈B(0,L(R+αT ))		
	t≤LT				
	for every h, h H(x, t; h, W ) ≤ H(x, t; h , W ) for every x ∈ B(0, LR), t ≤ LT	
	where W is the restriction of W to B(0, L(R + αT )) × [0, LT ]. By nite speed of propa-
	gation (Proposition 5.3.3) and by vertical translation invariance (Proposition 5.3.1), for
	all L large enough, we have for all t ≤ LT and x ∈ B(0, LR),		
	H(x, t; h, W ) = H(x, t; h, W ) ≤ H(x, t; h , W )		
		= H(x, t; h + m, W ) = H(x, t; h , W ) + m.	
	Similarly, we can show that for all L large enough, for all t ≤ LT and x ∈ B(0, LR),
	H(x, t; h , W ) ≤ H(x, t; h, W ) + m, which concludes the proof of Corollary 5.3.4.	

  Given a positive constant C, let us consider the localised dynamics where the Poisson clocks outside the ball B(0, LC) are turned o in the time interval [0, Lt], i.e., where W is replaced by W := W ∩ (B(0, LC) × [0, Lt]). of Lemma 5.A.1. Let us rst show that the maximum of ψ is attained. We have for all x, y ∈ R 2 and all t, s ∈ [0, T ],

	CHAPTER 5. HYDRODYNAMIC LIMIT FOR THE BF DYNAMICS
	u(x, t) -u (y, s) ≤ |u(x, t) -u(y, t)|+u(y, t) -u (y, s) ≤ x -y +u(y, 0) + S T -u (y, 0) = x -y +S T	(5.A.7)
	By local monotonicity (more precisely,	
	apply [LT18, Th. 5.10]) and by (5.5.5), we deduce that	
	H stat L (0, t; ρ, W ) ≥ H L (0, t; f ρ , W ), for L large enough.	
	Now, from Proposition 5.3.3 we have that W -a.s.,	
	H L (0, t; f ρ , W ) = H L (0, t; f ρ , W ), for L large enough,	

Proof

  ∈ R × Z, h (x, y, 0) = |y| y≤0 ω ⊆ {(x, y, t), |x|≤ t}. ∀(x, y) ∈ R × Z, h (x, y, 0) = |y| y≤0 ω ⊆ R + × Z × R + .144 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS 6.3.2 Hydrodynamic limits for general boundary conditions

		ε → 0	
	+∞ + 1	t1) |x 1 |≤ t 1 (x 1 /2, x 1 /2) y 2 = 1 y = 1 y 1 = 0 x ≥ x 1 ω y 2 = -1 |x 1 -x 2 |≤ t 2 -t 1 (x /2, x /2) y y = 0 y ∈ Z x → |x| γ ≡ 0 π/4 = 0 t = 0 t = ax 1 t = 0 y = 1 h(x, y + 1, t) -h(x, y, t) ∈ {0, -1} γ π/4 0 (x1, t1) y 0 1 y = 0 |y| y≤0 (x, t) y ∈ Z x → |x| γ π/4 R + -1 ≥ 1 (x, t) π/4 t = x t = 0 |a|≤ 1 |x|< t ρ 1 -1 1 {(x, y, t), t = ax} a ∈ [-1, 1] ∀(x, y) x} ≤ -1 a = 0 a = 1	hγ π/4

{(x, y, t) ∈ R × Z × R, t = x} {(x, y, t) ∈ R × Z × R, t =

  Lemma 6.3.8. Almost surely, for any subsequence (L k ) k∈N , we can extract a subsubsequence (L km ) m∈N such that (h L km ) m∈N converges uniformly on all compact sets of D R γ to a continuous function h ∞ : D R γ → R which satises the slope constraint ∀y ≤ y , h ∞ (x, y , t)h ∞ (x, y, t) ∈ [-(yy), 0]. (6.3.10) Proof. As explained in the proof of Lemma 5.4.5, it is enough to show that the following holds almost surely: 1. Pointwise Boundedness : for all xed (x, y, t) ∈ D R γ , the sequence (h L (x, y, t)) L∈N is bounded. 2. Asymptotic equi-continuity : for all xed (x, y, t) ∈ D R γ and all ε > 0, there exists δ > 0 such that lim sup L→∞ sup (x ,y ,t )∈B((x,y,t),δ) h L (x , y , t )h L (x, y, t) ≤ ε. (6.3.11)

	• , L•; h L γ , ω).	(6.3.9)
	1) Compactness. Let us show the following Lemma:	

  L (x, y, t + δ)h L (x, y, tδ)) , t 0 ) := (x 0 (L, δ), t 0 (L, δ)) ∈ C -(x, t + δ) ∩ ∂D γ (x 0 , t 0 ) ∈ C -(x, tδ) ∩ ∂D γ h L (x, y, t + δ)h L (x, y, tδ) Ly ∩ LR (x 0 ,t 0 ),(x,t+δ) ) -1 L L ↑ (ω Ly ∩ LR (x 0 ,t 0 ),(x,t-δ) )Ly ∩ L(R (x 0 ,t 0 ),(x,t+δ) \ R (x 0 ,t 0 ),(x,t-δ)

		f γ			y ∈ R			
			δ					
			ω		C -(x + δ, t + δ) ∩ ∂D γ
		L ∈ N		h L (x, y, t + δ)			L(x 0 , t 0 )
		(x 0 ≤ 1 L L ↑ (ω ≤ 1 L L ↑ (ω						
	≤	sup	f γ (x , y, t ) -	sup	f γ (x , y, t ) + O(	√	δ).	(6.3.13)
		(x ,t )∈C -(x,t+δ)∩∂Dγ	(x ,t )∈C -(x,t-δ)∩∂Dγ				

L→∞

(h

  Ly ∩ LR 2 ) •, L(t 0δ); h γ L , ω) [L(x 0δ), L(x 0 + δ)] × Z (-∞, L(x 0δ)] × {y} [L(x 0 + δ), +∞) × {y} y ∈ Z h

								h ∞
	(x 0 , y 0 , t 0 )	D R γ						δ > 0	[x 0 -δ, x 0 +δ]×{t 0 -δ}
		γ					
	(x, y, t)							C -(x, t)
								L ∈ N
	(x, y, t)	(x, t) ∈ C -(x 0 , t 0 )	t ≥ t 0 -δ
		h L (x, y, t) =	1 L	h (Lx, Ly , Lt; h L t 0 -δ , ω),
	h L t 0 -δ h(•,							{t = L(t 0 -δ)}
	+	s u p (x ,t )∈C -(x,t+δ)∩∂Dγ	1 L	h L γ (Lx , Ly , Lt ) -	sup (x ,t )∈C -(x,t-δ)∩∂Dγ	1 L	h L γ (Lx , Ly , Lt ),
								R δ 1	R δ 2
							(x, t -δ)	(x, t + δ)	γ

y, t + δ)h L (x, y, tδ) ≤ 1 L L ↑ (ω Ly ∩ LR 1 ) + 1 L L ↑ (ω h t 0 -δ [x0δ, x0 + δ]

γ

  150 CHAPTER 6. A NEW BIJECTION BETWEEN THE GW AND BF MODELS the Hamiltonian is Lipschitz w.r.t the gradient of the solution. This will give a strong comparison principle that, in particular, implies uniqueness. Equation (6.3.4) is equivalent to∂ t u + H(∇u) = 0 inside D R

	γ γ , u = f γ on ∂D R	(6.3.16)

Here, we are viewing W as a locally nite subset of points of G × R+, where the rst coordinate corresponds to position of sites where the clocks ring, and the second coordinate corresponds to the time when they ring.

if in addition (x 1 /2, y, x 1 /2) is not a discontinuity points of hγ π/4 which is almost surely not the case

The procedure has to stop after nitely many steps because, otherwise, there would be an innite chain of Poisson points in [-La, La] × Z × [min{γ(Lx), |x|≤ a}, γ(Lx0)] which does not happen almost surely by standard arguments already explained e.g in Remark

4.2.3.

in Lemma 4.C.1.

Remerciements

Moreover, for all (s, t) ∈ T , f → S(s, t; f, ω) is continuous from Γ into itself and for all f ∈ Γ, (s, t) → S(s, t; f, ω) is continuous. Proof. In all this proof, we x ω ∈ Ω 0 . Let us apply Proposition 4.D.1 to the sequence of functions Γ f -→ S n (•, •, f; ω) ∈ F T . From Propositions 4.5.8 and 4.5.9, Γ is separable and F T is complete. Therefore, the proof of Proposition 4.5.10 follows easily from Proposition 4.D.1 together with the next two lemmas giving asymptotic equi-continuity and pointwise relative compactness.

Lemma 4.5.11 (Asymptotic equi-continuity of (f → S n (•, •, f; ω)) n∈N ). For all ω ∈ Ω 0 and all ε > 0, there exists N ∈ N such that

The proof comes from an easy corollary of (4.4.14) (we will prove it in details at the end of this section).

Lemma 4.5.12 (Pointwise relative compactness of ((s, t) → S n (s, t, f ; ω)) n∈N in F T ).

For any ω ∈ Ω 0 and f ∈ Γ, the sequence ((s, t) → S n (s, t, f ; ω)) n∈N is contained in a compact set of F T . Moreover, any limit point is continuous from T into Γ.

Proof of Lemma 4.5.12. We want to show that for any xed f ∈ Γ, from any subsequence of ((s, t) → S n (s, t, f ; ω)) n∈N , we can nd a uniformly converging sub-subsequence in F T . We are going to apply once again Proposition 4.D.1. The set F T is the set of functions from T which is compact into (F(R 2 ), d ∞,c ) which is complete (by Proposition 4.5.8). Therefore, it is enough to show asymptotic equi-continuity and pointwise relative compactness.

Lemma 4.5.13 (Pointwise relative compactness of (S n (s, t, f ; ω)) n∈N in F(R 2 )). For any ω ∈ Ω 0 , f ∈ Γ and 0 ≤ s ≤ t ≤ T , the sequence (S n (s, t, f ; ω)) n∈N is contained in a compact set of F(R 2 ). Moreover, any limit point is in Γ.

Proof of Lemma 4.5.13. As F(R 2 ) is endowed with the topology of convergence on all compact sets of R 2 , it is enough to show asymptotic equi-continuity and pointwise relative compactness in order to apply Proposition 4.D.1 once more.

1. Pointwise relative compactness: (S n (s, t, f ; ω)(x, y)) n∈N ∈ R By Bolzano-Weierstrass Theorem, it suces to show that this sequence is bounded. The upper bound is a direct consequence of Proposition 4.5.5 while the lower bound is trivial since height functions are non-decreasing with time.

2. Asymptotic equi-continuity of ((x, y) → S n (s, t, f ; ω)(x, y)) n∈N Let (x, y) ∈ R 2 . By the slope constraint for functions in Γ, it is easy to check that for any n ∈ N, x ∈ R and y < y : We begin with a couple of easy facts:

Proposition 5.3.1. The dynamics satises the following properties:

1. Vertical translation invariance:

The former statement is trivial and the latter follows from [LT18, Th. 5.7].

Next, we recall a locality property established in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] and we improve it to an almost sure statement (but the really new locality result will come in next section). Informally, Proposition 5.12 in [START_REF] Legras | Hydrodynamic Limit and Viscosity Solutions for a Two-Dimensional Growth Process in the Anisotropic KPZ Class[END_REF] tells that if we x a lattice site x and an initial height function h ∈ Γ M , then with probability 1-O(exp(-c(M )n) the height function at x up to time n only depends on the Poisson clocks at positions within distance O(n) from x. Without much extra eort (we leave details to the reader), it is possible to show the following slightly stronger statement (the dierence with respect to [LT18, Prop. 5.12] is that the claim (5.3.1) holds simultaneously for every h ∈ Γ M ): Lemma 5.3.2. Fix x ∈ Z 2 . For every integer M , there exist c = c(M ) > 0 and Δ = Δ(M ) > 0 such that the following holds for every x ∈ Z 2 . For every integer n, there exists a set of realizations W of probability 1ce -n/c of the Poisson process on which the following holds for any h ∈ Γ M :

with B(x, r) the ball of radius r centered at x.

In the proof of Theorem 5.2.5, we need instead an almost sure result: Proposition 5.3.3 (Finite speed of propagation). There exists a function N M → α(M ) < ∞ such that for almost every W the following holds: for every integer M , every time T > 0, every x 0 ∈ R 2 and every R ≥ 0, we have for L large enough

(5.3. 

(5.5.7)

for any δ > 0 where now P is the joint law of the process and of the initial condition. On the one hand, it follows from [Ton17, CF17] that -v(ρ)t is nothing but the average growth:

(5.5.8)

On the other hand, [CFT19, Th. 2.2] showed that Var H stat (0, t, ρ) -H stat (0, 0, ρ) = O(log t) which implies that

which is summable in L. The rest of the proof follows from Chebyshev's inequality.

Viscosity solution

Let us show the following:

Proposition 5.5.5. For almost every W , the following holds: for every f ∈ Γ, every (x, t) ∈ R 2 ×R >0 and every smooth function ϕ of space and time such that

(5.5.10) Remark 5.5.6. Observe that, because of the restriction ∇ϕ(x, t) ∈ T, the statement is a priori weaker than saying that H ∞ is a viscosity solution in the usual sense.

Proof. Suppose that

is similar, so we will not treat it) and ∇ϕ(x, t) ∈ T.

Let us start by replacing ϕ by an ane function ψ by setting for all y ∈ R 2 et s ≥ -t

(5.5.11)
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By Taylor expansion at order 2, there exists some C > 0 such that for all small enough δ and all y ≤ δ, |s|≤ δ,

(5.5.12)

From this inequality, we deduce that for all small enough δ,

(5.5.13) Now, we need the following Lemma in order to apply Proposition 5.5.3 afterwards.

Lemma 5.5.7. There exists ρ = ρ(x, t) ∈ T and, for every δ > 0 small enough, there exists

(5.5.14)

The values of ρ and c δ are uniquely determined by the conditions

(5.5.15)

Let us rst admit this Lemma and conclude the proof of Proposition 5.5.5. By Proposition 5.5.3, inequality (5.5.13) and Lemma 5.5.7,

Since this holds for all small enough δ > 0, we nally get that

(5.5.16) Now, combining (5.5.16) and the second equality in (5.5.15),

(5.5.17)

Then, since v is increasing with respect to ρ 1 + ρ 2 (see Remark 5.2.4) and since

(5.5.18) Finally, from (5.5.16), we get what we wanted:

(5.5.19) CHAPTER 5. HYDRODYNAMIC LIMIT FOR THE BF DYNAMICS Proof of Lemma 5.5.7. Let us look for a condition on ρ and c δ such that (5.5.14) is satised. On the one hand,

(5.5.20) and on the other hand, by Propositions 5.5.4 and 5.5.1,

(5.5.21) Therefore, it is necessary and sucient to nd ρ ∈ T and

(5.5.22) Notice that this system is equivalent to (5.5.15). We are going to show that this system has a unique solution (ρ, c ρ ) with ρ ∈ T and c δ ∈ R. With the change of coordinate

(5.5.23)

The rst equation xes the value of 

and thus there exists (a unique)

) satisfying the second equation in (5.5.23). This nally imposes the value of ρ and of c δ (by the third equation in (5.5.15)).

Uniqueness and conclusion

To conclude this section, we need to show that there is at most one viscosity solution in the sense of Proposition 5.5.5.

5.

A. PROOF OF PROPOSITION 5.5.8 119 Proposition 5.5.8. There exists a most one continuous function u on R 2 × R + with initial condition f ∈ Γ which is a viscosity solution of (5.2.17) in the sense of (5.5.10), which satises the following gradient bounds:

(5.5.24)

and which grows at most linearly in time, i.e there exists a nite S > 0 such that

(5.5.25)

Moreover, u coincides with u, the unique viscosity solution of (5.2.17).

The proof of this Proposition is postponed to the Appendix. Since any limiting function H ∞ (•, •; f, W ) satises (5.5.24) (by taking the limit in the gradient bounds (5.2.4) (5.2.5) and (5.2.6) satised by discrete height functions) and (5.5.25) (by taking the limit in (5.4.7) and by monotonicity w.r.t time), we deduce the following Corollary.

Corollary 5.5.9. For almost every W and for any limit H ∞ as in Proposition 5. 4.4 we have that for every f ∈ Γ, (x, t) → H ∞ (x, t; f, W ) is the unique viscosity solution of (5.2.17).

To complete the proof of Theorem 5.2.5 it is sucient to put together what we have obtained so far.

Proof of Theorem 5.2.5. Let us x W in an event of probability one such that Proposition 5.4.4 and Corollaries 5.3.4 and 5.5.9 hold simultaneously. Let f ∈ ΓM . By the discussion in Section 5.4.1, without loss of generality, we can replace the sequence of initial height proles h L approaching f as in Theorem 5.2.5 by h f L . Assume that for some T, R > 0, the limit (5.2.16) does not hold, i.e, there exists ε > 0 and a subsequence (L k ) k∈N such that ∀k ∈ N, sup

where u is the unique viscosity solution of (5.2.17). Then, by Proposition 5.4.4, we can extract a sub-subsequence (L km ) m∈N such that for all g ∈ Γ, the sequence of rescaled height functions (H L km (•, •; g, W )) m∈N converges uniformly on all compact sets to some continuous function H ∞ (•, •; g, W ). By Corollary 5.5.9, (x, t) → H ∞ (x, t; f, W ) has to be equal to u. This is in contradiction with (5.5.26).

5.A Proof of Proposition 5.5.8

The proof relies on an adaptation of a standard doubling of variables argument (see e.g [Bar13, p.64-72]). Let u be a continuous function initially equal to f ∈ ΓM for some integer M and which is a solution in the sense of Eq. (5.5.10) satisfying (5.5.24) and (5.5.25). Let u be the unique viscosity solution of (5.2.17). As explained in Remark 5.2.7, u(•, t) stays in CHAPTER 5. HYDRODYNAMIC LIMIT FOR THE BF DYNAMICS ΓM for all t so in particular, it satises (5.5.24) and by the comparison principle (and since v is positive on T M ), it satises (5.5.25) with S M := max ρ∈T M v(ρ).

Let us start by showing that u ≤ u . Suppose the contrary i.e u(x, t) > u (x, t) for some x, t. Therefore, we can x T ≥ t and arbitrary small η, β > 0 such that the supremum

is positive. Now, we introduce the function

where ε, α are penalisation parameters that make the supremum of ψ looks like M for small ε, α.

Lemma 5.A.1. Let us x positive T, η, β such that M > 0. For any ε, α

M 4. t, s > 0 for all ε, α small enough.

Let us admit this Lemma rst and conclude the proof of Proposition 5.5.8. The function dened on R 2 × [0, T ] by

has a local maximum at (x, t) where

Therefore, since u is solution of viscosity of (5.2.17), and by point (4) of Lemma 5.A.1, we have for all ε, α small enough,

(5.A.2) Remark 5.A.2. To be precise, we need to ensure that the viscosity inequality satised by u is still valid if the local optimum on R 2 × [0, T ] is attained at the border t = T . This is proven for example in [Bar13, Lemma 5.1] and the same proof can be easily adapted to the case of u . 

In order to use the viscosity inequality (5.5.10) satised by u , we rst have to make sure that ∇ϕ (2) (ȳ, s) ∈ T. From (5.5.24) and since uϕ (2) has a local minimum at (ȳ, s), it is easy to see that ∇ϕ (2) (ȳ, s) is necessarily in the closure of T. We still have to make sure that it stays away from the diagonal {ρ 1 + ρ 2 = 1}.

The idea is to show that ∇ϕ (2) (ȳ, s) is close to ∇ϕ (1) (x, t) which is in T M (because u(•, t) ∈ ΓM for all t as said in Remark 5.2.7 and because uϕ (1) has a local maximum at (x, t)). By computing the gradients, we nd that

where the last inequality is due to point (2) of Lemma 5.A.1. This shows that if β is chosen small enough, we have that for all ε, α small enough,

(5.A.4) Therefore, by (5.5.10),

(5.A.5) Combining (5.A.2) and (5.A.5), we get that for all ε, α small enough,

Finally, as noticed in Remark 5.2.4, v is Lipschitz on T M +1 . Therefore, there exists a constant K > 0 such that for all ε, α small enough,

because of (5.A.3). By (5.A.6), we get that

which is a contradiction for β small, since η is strictly positive and C, K are independent of η, β. We conclude that u ≤ u on R 2 × R + .

Although u and u don't play symmetric roles, we omit the proof that u ≤ u on R 2 × R + since it is very similar. any consistent ordering ((x i , y i , t i )) 1≤i≤n of ω∩{(x, y, t), t > γ(x)}. We are going to dene ω and h recursively by dening a sequence ω0

where ωk has to be thought of as the subset of accepted creations among ((x i , y i , t i )) i∈ 1,k and h k as the height function following the Gates-Westcott dynamic with boundary condition h γ and with creations restricted to ωk . In the end, when all points in ω have been treated, one gets ω := ωn and h := h n .

Initially, no creations have been accepted yet so we set for all (x, y, t) in D Z γ , ω0 = ∅ and h 0 (x, y, t) = sup

If ωk-1 and h k-1 are already dened for some k ∈ 1, n then we set

(6.2.8) Equation (6.2.8) is the condition for the creation (x k , y k , t k ) to be accepted and lead to a height increase of 1 without breaking the slope constraint (6.2.5) along y. Now we dene for all (x, y, t) in

where ωk y := ωk ∩ (R × {y} × R) is identied with a subset of R 2 with some abuse of notation. By induction, we obtain a sequence (ω i , h i ) 0≤i≤n and we dene nally ω = ωn and h = h n . By construction, we have for all (x, y, t) ∈ D Z γ , h(x, y, t) := sup (x ,t )∈C -(x,t)∩∂Dγ {h γ (x , y, t ) + L ↑ (ω y ∩ R (x ,t ),(x,t) )}, (6.2.10)

where ωy := ω ∩ (R × {y} × R) is identied with a subset of R 2 . Remark 6.2.5. The compatibility condition (6.2.3) ensures that h and h γ coincide on

Remark 6.2.6. Notice that (h i ) 0≤i≤n is a non-decreasing sequence of functions and (ω i ) 0≤i≤n

is a non-decreasing sequence of sets. Moreover,

where

Lemma 6.2.7. When ω is nite, the construction of ω and h dened recursively by (6.2.8) and (6.2.9) does not depend on the choice of the consistent ordering of ω.

Lemma 6.2.7, whose proof is postponed to the end of the section, allows us to dene the height function unambiguously on D Z γ as follows. 

THE BIJECTION BETWEEN GW AND BF

Let us explain briey why the limit (6.2.11) exists and is nite. As we will see in Proposition 6.2.10, h(x, y, t; h γ , ω Q ) is non-decreasing with respect to Q so the limit exists. Moreover, for all xed y ∈ Z, since ωQ

∩ ∂D γ is a compact set and thus the r.h.s in (6.2.12) is nite. Otherwise, since h γ satises the decay condition (6.2.4) and since

the r.h.s in (6.2.12) is also nite. In any case, we deduce that the limit in (6.2.11) is nite.

Proof of Lemma 6.2.7. Let (x i , y i , t i ) 1≤i≤n and (x σ(i) , y σ(i) , t σ(i) ) 1≤i≤n be two consistent orderings of ω ∩ {(x, y, t), t > γ(x)}, where σ is a permutation of 1, n . We note (ω i , h i ) 0≤i≤n and (ω i σ , h i σ ) 0≤i≤n the sequence of accepted creations and heights for these two respective consistent orderings. It is sucient to prove that ωn = ωn σ . Let us also dene for all k ∈ 0, n , ω k := {(x i , y i , t i ) ∈ ω, i ≤ k} and similarly ω k σ := {((x σ(i) , y σ(i) , t σ(i) ) ∈ ω, i ≤ k} which correspond to the points that have been treated up to step k. It is enough to show the following property by induction for all k ∈ 0, n :

In words, among all points that have been treated for both consistent ordering up to step k, the same have been accepted. Property P(0) is trivial. Assume P(k -1) for some k ∈ 1, n and let (x, y, t)

. By (6.2.9), it suces to show that for any xed (x , y , t

But by denition of consistent ordering, since (x , t ) ∈ C -(x, t) \ {(x, t)} and (x, y, t) ∈ ω i ∩ ω j σ , we know that (x , y , t ) necessarily belongs to ω i-1 ∩ ω j-1 σ and the proof is concluded by applying P(k -1).
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h 0 (x 1 , y 1 , t 1 ) where h 0 and h 0 are as in (6.2.7). Finally, in the case where (x 1 , y 1 , t 1 ) ∈ ω and h 0 (x 1 , y 1 , t 1 ) = h 0 (x 1 , y 1 , t 1 ), since h 0 (x 1 , y 1 ± 1, t 1 ) ≤ h 0 (x 1 , y 1 ± 1, t 1 ) we have by construction (see (6.2.8)) that if (x 1 , y 1 , t 1 ) ∈ ω1 , then (x 1 , y 1 , t 1 ) ∈ ω 1 . In all cases, we proved (6.2.16). Let h γ and h γ be the restrictions of h(•, •, •; h γ , ω) and h(•, •, •; h γ , ω ) to ∂D Z γ where γ is dened as the superior envelope of γ and C -(x 1 , t 1 ). Inequality (6.2.16) implies that h γ ≤ h γ . But now, the intersection of ω with the interior of D Z γ has N points. This concludes the proof by induction and modulo showing Proposition 6.2.11 for nite ω. Proposition 6.2.11 (Markov Property). Let ω be a nite set or a realisation of a Poisson point process on R × Z × R. Let γ and γ be two

where h γ is the restriction of h(•, •, •; h γ , ω) to ∂D Z γ . Proof. Let us start by proving Proposition 6.2.11 when ω is a nite subset of {(x, y, t), t > γ(x)}. First of all, let us remark that, by construction, h γ is in Γ γ so the r.h.s of (6.2.17) is well dened. Since γ ≤ γ and since they are both 1-Lipschiz functions, one can always nd a consistent ordering (x i , y i , t i ) 1≤i≤n+n of ω such that (x i , y i , t i ) n+1≤i≤n+n is a consistent ordering of ω. Let (h i , ωi ) 0≤i≤n+n and (h i , ω i ) 0≤i≤n ) be the sequences obtained when dening h(•, •, •; h γ , ω) and h(•, •, •; h γ , ω) recursively by (6.2.8) and (6.2.9). We are going to show by induction that for all k ∈ 0, n , 

where we used

) with equality for some (x , t ) ∈ C -(x, t) (if we assume that (6.2.18) holds) to show the third equality. By induction, this concludes the proof of Proposition 6.2.11 in the nite case. The case where ω is innite follows by taking the monotone limit as in (6.2.11). Proposition 6.2.20. Fix any boundary condition h γ π/4 ∈ Γ γ π/4 and note h 0 ∈ Γ BF its image under the bijection (6.2.21). For almost all realisation ω of a Poisson point process of intensity 2 on R × Z × R, for all t ≥ x and all y ∈ Z, h GW (x, y, t; h γ , ω) = h BF (x + t, y, t -x, h 0 , ω ), (6.2.23) where h GW is the height function of the Gates-Westcott model with generalised boundary condition dened in Denition 6.2.8 and ω = {(x + t, y, t -x), (x, y, t) ∈ ω}. Remark 6.2.21. By the change of variables, the random point process ω → ω is a Poisson point process of intensity 1 on R × Z × R.

Proof. By construction of the two models, without loss of generality we can restrict ω to a bounded domain and thus consider that it contains nitely many points (the general case is obtained by taking the innite cardinality limit). To any (x, t) ∈ R 2 , let us associate the new coordinates (x , t ) = (x + t, tx) and let (x 1 , y 1 , t 1 ) be the point among those in ω with t ≥ 0 with minimal t . Since both models satisfy a Markov Property (see Proposition 6.2.11), it is enough to show that both sides of (6.2.23) agree for all t ∈ [0, t 1 ].

On the one hand, by minimality of t 1 , we know that no particles attempt to jump for the continuous BF dynamic before time t 1 and thus h BF (•, •, t ) = h 0 , for all t ≤ t 1 .

On the other hand, by minimality of t 1 , for any (x, y, t) such that 0 ≤ t < t 1 , there is no point in ω whose rst and third coordinates lie in the backward light cone C -(x, t) intersected with the epigraph of γ π/4 . Moreover, the intersection of this cone with the graph of γ π/4 is the set {(z, z), 2z ≤ x }. Altogether, by the monotonicity of h γ π/4 induced by (6.2.3), we have that for all (x, y, t) such that 0 ≤ t < t 1 the supremum in (6.2.10) is attained at (x /2, y, x /2) and thus h GW (x, y, t; h γ π/4 , ω) = h γ π/4 (x /2, y, x /2) = h 0 (x , y) = h BF (x , y, t ; h 0 , ω ). (6.2.24) Now, we have to check that the creation (x 1 , y 1 , t 1 ) is accepted for the Gates-Westcott model if and only if the leftmost particle to the strict right of x 1 on line = y 1 can jump to position x 1 at time t 1 . Let (p x 1 , y 1 ) be the label of this particle. By denition of the dynamic, it can jump to x 1 if and only if it is not blocked by particles (p x 1 -1, y 1 +1) and (p x 1 , y 1 -1) i.e if and only if z (p x 1 -1,y 1 +1) (t 1 -) < x and z (p x 1 ,y 1 -1) (t 1 -) < x. By Denition 6.2.14, this is equivalent to the condition h BF

. By (6.2.24), this is the same condition 1 as (6.2.8) (for k = 1). Consequently, creation (x 1 , y 1 , t 1 ) is accepted if and only if the particle can jump at time t 1 .

If none of these events happens, both height functions still satisfy (6.2.24) also at time t 1 and the proof is concluded.

If both events happen, the heights remain unchanged for y = y 1 at time t 1 but they grow on line y 1 . Let us note z 1 := z (p x 1 ,y 1 ) (t - 1 ) the position of the leftmost particle to the Modèles de croissance de surfaces aléatoires : limites hydrodynamiques et uctuations. Mots-clés: évolution d'interfaces aléatoires, chaînes de Markov, limites hydrodynamiques, équation de Hamilton-Jacobi, uctuations, conjecture de Wolf, KPZ Anisotrope.

Random surface growth models: hydrodynamic limits and uctuations.

Abstract. This work is about some random interface growth models whose microscopic evolution is typically represented by a Markov chain. One of the main purposes is to show the hydrodynamic limit i.e the convergence of the rescaled interface to a deterministic macroscopic interface whose evolution is ruled by a Hamilton-Jacobi equation. Then, we are interested in uctuations i.e the dierence between the random interface and its hydrodynamic limit. It is conjectured that the large-scale uctuations behave like the solution of the Kardar-Parisi-Zhang equation independently of the microscopic details of the model considered: we speak of KPZ universality class. As far as two-dimensional interfaces are concerned, Wolf's conjecture predicts two dierent universality classes depending on the symmetries of the model: Isotropic or Anisotropic. In this thesis, we focus on two random surface models in the Anisotrpic KPZ universality class introduced respectively by Gates-Westcott and Borodin-Ferrari. Our main result is the proof of the hydrodynamic limit for both models. Also, we show an upper bound on the uctuations of the Gates-Westciott model that agrees with Wolf's conjecture. Finally, we explore the relations between these two models and generalise them.

Keywords: random growth models, Markov chains, hydrodynamic limits, Hamilton-Jacobi equations, uctuations, Wolf's conjecture, Anisotropic KPZ. Image de couverture : illustration du modèle de Gates-Westcott