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Titre : Télédétection par système vidéo de la dynamique des courants induits
par les vagues et de l’evolution morpholoqique des plages soumises aux houles
énergétiques

Résumé : Comprendre les circulations induites par les vagues et les évolutions mor-
phologiques du littoral est important scientifiquement et répond à une forte demande
sociétale. Toutefois l’acquisition de ces données sur le terrain est coûteuse et reste
un véritable défi logistique. Le développement de la télédétection optique combiné
à la démocratisation de plateformes vidéo et d’algorithmes ouverts d’analyse d’image
permet maintenant d’obtenir à faible cout une grande quantité d’informations sur le
littoral. Ce travail s’appuie sur techniques existantes en imagerie vidéo, et sur des nou-
veaux développements, afin d’inférer la bathymétrie de l’avant-côte et les courants dans
la zone de déferlement. Les méthodes sont validées avec une campagne de mesures
intensive sur la plage d’Anglet dans le sud-ouest de la France. Pour la première fois,
l’évolution spatiale et temporelle à la fois des courants et de la morphologie de la plage
sont étudiés en présence de vagues de tempête.
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évolution morphologique; stabilisation d’images

Title : Remotely-sensed rip current dynamics and morphological control in
high-energy beach environments

Abstract : Understanding the surf zone circulation and the morphological changes
within the nearshore is essential for both scientific and societal interests. However, di-
rect measurements with in-situ instruments are logistically challenging and expensive.
The development of optical remote sensing techniques in combination with low-cost
image platforms and open-source algorithms offers the possibility of collecting large
amounts of information at a reasonable instrumental and computational cost. This
work builds on existing and new video monitoring techniques to remotely sense the
nearshore bathymetry as well as the surf zone circulation in a high-energy meso-macro
tidal beach environment, including storm events. The methods are validated against
a dense data set acquired during an intensive field campaign conducted at Anglet
beach, SW France. For the first time the temporal and spatial variability of concurrent
nearshore bathymetry and surface currents are addressed under high-energy wave
forcing.
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1.1 General context

The nearshore zone, extending from the beach to water depths of the order of 10 to

20 m, is the region of the coast where the forces of the sea react against the land

(Simm et al., 1996). Although the nearshore zone constitutes only 10−3 of the ocean’s

surface area, it is a critical resource for recreation, industry, commerce and defense

(Holman and Haller, 2013). Apart from these societal interests, the nearshore zone

embodies a significant research interest since it is a highly dynamic environment where

processes of circulation and sediment transport occur (Perkovic, 2008). Wave-induced

currents transport and mix sediment, nutrients and pollutants along the surf zone and

the offshore influencing the nearshore morphology at spatiotemporal scales of hours to

decades and meters to tens of kilometers (Aarninkhof, 2003).
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Along open sandy beaches longshore currents are produced under oblique incident

waves (Figure 1.1a) and rip currents and associated circulation cell systems are pro-

duced mostly under near shore-normally incident waves (Figure 1.1b). Rip currents are

narrow and concentrated seaward-directed flows that extend from close to the shore-

line, through the surf zone, and varying distances beyond. Although rip currents and

associated circulations are essentially driven by wave breaking, they are also controlled

by beach morphology and modulated by the tide, thus resulting in a broad family of

rips with different mechanisms and behaviors (Castelle et al., 2016b).

Figure 1.1 – Schematic of the flow patterns of a (a) longshore current and a (b) rip cur-
rent under different angles of wave incidence. Figure modified from Winckler (2020).

The mutual adjustment between hydrodynamic processes and morphology towards

and equilibrium relationship is what is known as morphodynamics (Wright and Thom,

1977). The morphodynamic system within the nearshore can be considered to be com-

posed of two main interdependent components: the dynamics of a wave field over the

shoaling bathymetry of a beach, and the reciprocal response through sediment transport

of the beach bathymetry to that wave field (also influenced by tidal forcing) (Holman

et al., 1993). The ability to capture the spatial and temporal variations in mean flows

in the surf zone is key to predicting the morphological change of the nearshore topog-

raphy and shoreline (Perkovic, 2008). Although the nearshore circulation along open

sandy beaches is relatively well known (Jackson and Short, 2020), the coupled rip cur-

rent morphodynamic system under high-energy wave forcing is still poorly understood

(Castelle et al., 2016b). This is particularly true for geologically-constrained beaches

containing features such as headlands or reefs (Mouragues et al., 2020b).
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An explanation for this lack of quantitative understanding is that most of the studies

in the nearshore zone are based on short-term field measurements, therefore limiting

the range of wave, tide and morphological conditions. In situ instruments are typically

deployed only for a short duration in single sparse points. Although measurements are

very accurate, the deployment of instruments is expensive, time-consuming and logis-

tically complicated, particularly under high-energetic wave-dominated beach environ-

ments. For storm events, breaking waves in the surf zone are violent and wave-driven

currents can be strong, which makes work in the surf zone dangerous to both people

and instruments (Holman and Haller, 2013). Moreover, fixed instruments are difficult

to maintain since they can be buried over surprisingly short periods due to large mor-

phological changes in sandy bottoms.

The previous limitations led to the concept of using remote sensing techniques

to transform signals from different sensors into geophysical data in order to infer

nearshore hydrodynamic and morphological processes away from the hostile marine

conditions (Holman et al., 1993). Since many nearshore processes have optical sig-

natures, video imaging offers the unique capability to collect high volumes of data at

high temporal and spatial resolution over long periods with relatively low cost (Perugini

et al., 2019). For this reason, shore-based video monitoring has been developed into a

very popular method for sampling indirectly the nearshore environment (Holman and

Stanley, 2007). It has become one of the fastest growing remote sensing techniques in

the past 40 years due to its wider access by the international community. Examples of

research-based video camera systems around the world are Argus (Holman et al., 1993),

Cam-Era (www.niwa.co.nz), EVS (http://www.svm.it), Sirena (Nieto et al., 2010),

COSMOS (Taborda and Silva, 2012), and Kosta (http://www.kostasystem.com). Typi-

cal standard image products derived from video systems are snapshot, 10-min averaged

time-exposure images (timex), 10-min variance images and 10-min timestack images

(pixel transect time series) (see Figure 1.2).
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Figure 1.2 – Typical standard video-derived products. (a) Snapshot, (b) timex, (c)
variance and (d) timestack image.

Oblique images can be transformed to a longshore/cross-shore local ground co-

ordinate system through a standard photogrammetric transformation (Holland et al.,

1997; Hartley and Zisserman, 2004). The mapping conversion (rectification) requires

a camera calibration to correct lens distorsion effects and spatially distributed surveyed

ground control points (GCPs) for georeferencing. When only one camera is used, the

vertical coordinate of the projection is usually assigned to the instant sea level, which

is usually retrieved from a nearby tide gauge or pressure sensor. As shown by the timex

image in Figure 1.3, once the image is rectified, the visible signatures associated with

nearshore morphological features can be analyzed and quantified.
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Figure 1.3 – Rectified timex image from Figure 1.2b emphasizing preferential wave
breaking and depicting different nearshore morphological features.

The development of nearshore video techniques has taken place over many years.

Optical signatures have been exploited to infer hydrodynamic processes such as surface

currents and wave characteristics. For example, wave crests can be tracked to determine

the wave celerity (Stockdon and Holman, 2000; Almar et al., 2009), the foam left by

breaking waves can be used as a tracer to infer underlying currents (Chickadel et al.,

2003; Almar et al., 2016; Dérian and Almar, 2017; Anderson et al., 2021) and the foam

pixel intensity can be used as a proxy for wave dissipation (Aarninkhof and Ruessink,

2004). A summary of the key processes that have been examined by video remote

sensing in the last decades with examples of related publications is shown in Table 1.1.
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Table 1.1 – Key international research outcomes provided by video remote sensing.
Modified from Splinter et al. (2018b).

Process Example Publications

Shoreline behavior Alexander and Holman (2004); Coco et al. (2005); Turner (2006); Davidson and Turner (2009)

Pearre and Puleo (2009); Almar et al. (2012b); Davidson et al. (2013); Splinter et al. (2011b, 2014, 2017)

Pianca et al. (2015)

Sandbar behavior Plant et al. (1999); Van Enckevort and Ruessink (2003); van Enckevort et al. (2004)

Ruessink et al. (2009); Castelle et al. (2010b); Pape et al. (2010); Splinter et al. (2011a, 2018a)

Nearshore morphology Lippmann and Holman (1989, 1990); Price and Ruessink (2011, 2013)

Nearshore bathymetry Stockdon and Holman (2000); Aarninkhof (2003); van Dongeren et al. (2008); Holman et al. (2013)

Inter-tidal topography Holland and Holman (1997); Plant and Holman (1997); Aarninkhof and Roelvink (1999)

Madsen and Plant (2001); Aarninkhof et al. (2003); Uunk et al. (2010); Didier et al. (2017)

Tidal inlet dynamics Pianca et al. (2014); Harrison et al. (2017)

Rip current location and persistence Bogle et al. (2001); Holman et al. (2006); Turner et al. (2007); Quartel (2009)

Nearshore wave celerity Holland and Holman (1999); Stockdon and Holman (2000); Plant et al. (2008); Almar et al. (2009)

Nearshore wave angle Holman and Chickadel (2005)

Nearshore wave dissipation Lippmann and Holman (1989); Aarninkhof and Ruessink (2004); Aarninkhof et al. (2005)

Nearshore surface currents Chickadel et al. (2003); Almar et al. (2016); Horstmann et al. (2017); Dérian and Almar (2017)

Anderson et al. (2021); Rodríguez-Padilla et al. (2021)

Wave height from stereo pairs De Vries et al. (2011); Shand et al. (2012); Vieira et al. (2020)

Swash characteristics Stockdon and Holman (1996); Power et al. (2011); Senechal et al. (2011); Ibaceta et al. (2014)

Palmsten and Splinter (2016); Blenkinsopp et al. (2016)

Dune erosion Palmsten and Holman (2012)

Much effort has been dedicated to derive bathymetry maps from video imagery

through the linear dispersion relationship for free surface waves. The cBathy algo-

rithm (Holman et al., 2013) is nowadays the most popular algorithm to obtain two-

dimensional bathymetries from video stations (Simarro et al., 2019). According to

Holman et al. (2013), bathymetry maps are estimated with a typical accuracy of 10s

of centimeters. Nevertheless, these estimates are obtained under quasi-ideal circum-

stances, e.g. micro tidal environment and moderate waves. As mentioned by Bergsma

(2017), although the depth estimation technique is promising, it should be tested under

more energetic wave conditions and larger tidal ranges since the accuracy depends to

a large extent on the wave conditions; depth-inversion errors typically increase with

increasing wave energy.

On the other hand, there is clear interest in the ability to directly measure currents

and circulation in the nearshore (for example, for estimating longshore sediment trans-

port and rip currents). It is important to note that prior to this manuscript (before

2018), existing works in the literature to determine two-dimensional surface currents

from video imagery relied primarily on cross-correlation techniques, in particular using
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particle image velocimetry (PIV; Adrian 1991; Holland et al. 2001). Within the surf

zone, only a few studies were devoted to estimating surface currents (Chickadel et al.,

2003; Almar et al., 2016), but only addressing the velocity component along a given

transect. The work presented by Dérian and Almar (2017) shows the first attempt to

optically derive two-dimensional surface currents using a technique common in the re-

search field of computer vision based on optical flow. Part of the manuscript is inspired

by the method proposed by Dérian and Almar (2017) which leads to the motivation

to improve and fill the preceding knowledge gap of their work as it was designed to

address surface flow in the swash.

Overall, the development and application of new concepts in video remote sens-

ing techniques opens new perspective to monitor both surface currents (e.g., Dérian

and Almar, 2017; Anderson et al., 2021) and the underlying bathymetry (e.g., Holman

et al., 2013) on a high spatio-temporal scale, thus providing new insights into nearshore

hydro- and morphodynamics processes.

1.2 Objectives and approach

The main aim of this work is to implement and develop optical remote sensing tech-

niques to study nearshore morphodynamic and hydrodynamic processes under high-

energetic wave conditions in a meso-macro tidal environment. For that purpose, Hol-

man et al. (2013) cBathy algorithm and Liu (2017) optical flow algorithm are adapted

in order to get nearshore bathymetry estimations as well as surf-zone surface veloci-

ties fields from high-sampled image sequences. An implicit objective is to seek image

processing solutions that provide the highest accuracy in the final image product (e.g.,

image stabilization methods). These technical advances are then, as a preliminary study,

used to address for the first time the temporal and spatial variability of nearshore circu-

lation at a beach in southwest France under high-energy wave forcing.
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1.3 Thesis outline

This manuscript is divided into six chapters and one appendix. Each chapter contains

its own state of art for easier reading. The thesis is structured as follows:

• Chapter 2: Field site and data. We present the field site of La Petite Chambre

d’Amour (PCA) beach, located in one of Anglet beaches (SW France) and describe

the 3-week comprehensive field experiment carried out in October 2018.

• Chapter 3: Image stabilization. We investigate the impact of camera viewing

angle deviation when monitoring the nearshore and present an efficient semi-

automatic procedure to stabilize an image sequence using state-of-the-art tech-

niques in order to remove unwanted camera movement after video acquisition.

• Chapter 4: Nearshore bathymetric mapping from video imagery. We apply a

video-based linear depth inversion algorithm for three consecutive weeks (during

daylight hours) to examine PCA beach morphological response under a wide range

of wave and tide conditions.

• Chapter 5: Optically derived wave-filtered surface currents. We explore the po-

tential to derive 2-D wave-filtered surface currents from video images by tracking

the drifting foam, left after the passage of breaking waves, using an open-source

optical flow algorithm.

• Chapter 6: Conclusions and perspectives. We summarize the concluding re-

marks and place the results in perspective for future investigation.
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Chapter 2

Field site and data

Contents

2.1 Study site: La Petite Chambre d’Amour (PCA), Anglet Beach . . . . . 9

2.1.1 Tide and wave forcing . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Biarritz lighthouse video monitoring system . . . . . . . . . . . 15

2.2 October 2018 field experiment . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Topography and bathymetry data . . . . . . . . . . . . . . . . . 18

2.2.2 Hydrodynamic data . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Video data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Offshore wave, tide and wind conditions . . . . . . . . . . . . . 22

2.1 Study site: La Petite Chambre d’Amour (PCA), An-

glet Beach

The study site throughout this work is the beach of Anglet located on the Basque Coast

in southwestern France (Figure 2.1). Anglet beach is a 4-km long sandy embayment

delimited by a prominent 500-m long rocky headland (Cape Saint-Martin) in the South

and by the southern Adour river training wall in the North. It is a major national

and international tourism destination and a worldwide famous recognized surfing spot
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(Benedet et al., 2007) that has been facing serious erosion issues over the last decades

(Birrien et al., 2013). This has resulted in a number of coastal engineering works based

on the implementation of coastal hard structures and beach nourishments to constrain

shoreline variability. Anglet beach is structurally-engineered with 6 groins and 3 distinct

sectors where the beach is backed by a seawall.

Figure 2.1 – (a) Location of Anglet along the Aquitaine south coast (SW France). (b)
Location of available in situ instruments (yellow dots) and modelled wave data from
HOMERE database (red dot). (c) Map of Anglet beach showing the location of the
groins (black thick lines), the Adour river, the tide gauge from Bayonne and the video
system (yellow dots), as well as a photo of Saint-Martin headland with the Biarritz
lighthouse on which the video stations have been mounted. The red line indicates
where the beach is backed by a seawall.

This study is primarily focused on the 3-week field experiment (October 2018) car-

ried out in one of Anglet beaches, La Petite Chambre d’Amour (PCA) beach, located at

the southern end of Anglet beach (Figure 2.7). PCA beach is bounded by the Saint-

Martin rocky headland in the South and a 90-m long groin in the North. It is character-

ized by the presence of an approximately 20-m wide complex natural submerged rocky

reef which exerts persistent wave breaking and occasionally bathymetrically-controlled

rips at low tide under low-energy waves (Mouragues et al., 2020b).

The following subsections provide an overall description of the field site environ-

mental conditions. The reader is also referred to subsections 3.3.3 and 5.3.4 for a

summarized description of the field site and data used within the published research

articles in the Journal of Remote Sensing.
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2.1.1 Tide and wave forcing

There is no tide gauge at Anglet beach. The nearest tide gauges are the Bayonne-Boucau

tide gauge, located within the mouth of the Adour river at 4 km north of PCA beach, and

the Saint-Jean-De-Luz Socoa tide gauge, located 15 km southwest of the study site (see

Figure 2.1). In this study, hourly water level measurements were retrieved from Saint-

Jean-De-Luz Socoa tide gauge from SHOM website (https://data.shom.fr). Data

from the Saint-Jean-De-Luz Socoa tide gauge were preferred to those from the Bayonne-

Boucau tide gauge to avoid the influence of the Adour river discharge on the water level

measurements. Figure 2.2 shows Saint-Jean-De-Luz reconstructed astronomical tide

from 2010 to 2020 along with the tidal parameters indicating different mean water level

positions with respect to the mean sea level (MSL). The tide is semi-diurnal (average

period of 12 h 20 min) and is characterized by a meso-macro tidal regime with an

average tidal range varying between 1.69 m (for neap tides) and 3.94 m (for spring

tides).

Figure 2.2 – Astronomical tide time series computed from Saint-Jean-De-Luz tide
gauge. Water elevation is relative to the mean sea level.

In situ wave measurements were retrieved from a permanent directional wave buoy,

CANDHIS (Centre d’Archivage National de Données de Houle In Situ; http://candhis.

cetmef.developpement-durable.gouv.fr), located approximately 6 km offshore from

the study site and moored in 50-m water depth (Figure 2.1). Wave parameters such as

the significant wave height Hs, peak period Tp and the peak wave angle of incidence

θp were collected every 30 min by the Candhis buoy from January 2013 to September

11

https://data.shom.fr
http://candhis.cetmef.developpement-durable.gouv.fr
http://candhis.cetmef.developpement-durable.gouv.fr


CHAPTER 2. FIELD SITE AND DATA

2018. In addition, hourly wave parameters were retrieved from HOMERE database

(http://marc.ifremer.fr/produits/rejeu_d_etats_de_mer_homere) in order to fill

the gaps present in Candhis time series (Figure 2.3a,b). The HOMERE database

(Boudière et al., 2013; Accensi and Maisondieu, 2015) is a hindcast of oceanographical

parameters covering the period 1994–2017. Outcomes are produced by WAVEWATCH

III model (Tolman, 1991) over a high-resolution grid comprising the Channel - Bay of

Biscay area. HOMERE wave data was extracted from the grid point located 300 meters

away from the Candhis wave buoy position (see Figure 2.1). Following Castelle et al.

(2014b), HOMERE significant wave height HsHOMERE was corrected via a linear regression

using Candhis buoy data HsHOMERE
, as shown in Figure 2.3c and 2.4a.

Figure 2.3 – Offshore significant wave height Hs long-term time series. Hs is displayed
every 60- and 30-min using (a) HOMERE and (b) Candhis wave data, respectively.
(c) Corrected significant wave height Hs = 1.08HsHOMERE

− 0.166 (black line) merged
with Candhis subsampled (60-min) wave data (blue line). The corresponding scatter
diagram is shown in Figure 2.4.

Anglet beach is predominantly exposed to incident shore-normal high-energetic At-

lantic swells coming from the WNW direction (θ̄p ≈ 300°; Figure 2.4b) generated by

extra-tropical low-pressure systems tracking eastwards (Castelle et al., 2017b). The

coast also experiences more variable locally generated wind waves (Abadie et al., 2005).
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Figure 2.4 – (a) Scatter diagram of measured significant wave height at the Candhis
buoy (HsCandhis

) versus modelled significant wave height (HsHOMERE
), with the red line

indicating the linear regression giving Hs = 1.08HsHOMERE
−0.166 and the black line the

1:1 perfect match. (b) Resulting scattered directional plot of significant wave height Hs

for the long-term dataset (see Figure 2.3). The orange line indicates the 30° shoreline
orientation at Anglet.

The incident wave energy is strongly seasonally modulated, with an annual mean signif-

icant wave height and peak period of Hs = 1.57 m and Tp = 10 s, respectively. The wave

data present numerous storm events, including the outstanding winter of 2013/2014

(Castelle et al., 2015; Masselink et al., 2016), which resulted in waves up to 10 m height

causing serious beach erosion and sea defense damage (Figure 2.5). Tide-induced cur-

rents are weak along the Anglet shore and breaking waves are by far the dominant

driver of nearshore currents, with tide elevation affecting breaking patterns and in turn

modulating nearshore currents (Sous et al., 2020).
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Figure 2.5 – Water level elevation time series during the outstanding winter of
2013/2014 computed from Saint-Jean-De-Luz tide gauge and Candhis offshore buoy
(Figure 2.1). (a) Astronomical tide (dark gray filled area), total water level (TWL) de-
fined as the sum of the astronomical tide and the vertical runup (light gray line) and
significant wave height Hs with colors indicating the corresponding peak wave period
Tp. The name of the most significant winter storms are indicated with red color. Snap-
shots during (b) storm "Hercules" (Jan 6, 2014), (a) storm "Petra" (Feb 5, 2014) and
(c) storm "Christine" (Mar 3, 2014) causing flooding, serious erosion, infrastructure
damage and even a shipwrecking in Anglet beach.

2.1.2 Morphology

According to Wright and Short (1984) classification, Anglet is a high energy intermedi-

ate beach with the presence of a seasonally modulated double-bar (occasionally single-

bar) system (Huguet et al., 2016). Anglet beach is characterized by a non-dimensional

embayment scaling parameter (Castelle and Coco, 2012) δ ≈ 40 and is therefore char-

acterized by a normal beach circulation (Short and Masselink, 1999), meaning that

Anglet beach tends to behave as an open coast, except close to the headland where PCA

beach is located (Birrien et al., 2013). The beach is composed of medium to coarse

sand (D50 ≈ 2 mm) with a steep beach face (tan β ≈ 1/10) and a more gentle sloped

surf zone (tan β ≈ 1/50) (Mouragues et al., 2020b). The relatively steep beach face
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favors the formation of beach cusps with shoreline dynamics strongly controlled by the

geometry of the surf-zone sandbar (Birrien et al., 2013).

Unlike the open sandy beaches along the northern Aquitaine coast, the Basque coast-

line is characterized by ubiquitous headlands exposing rocky substratum and coastal

structures such as groins and training walls (Huguet et al., 2016). PCA beach in particu-

lar is barred with prominent inherited geology, characterized by the presence of a 500-m

headland, bordered by rocks that emerge around low tide, and a natural submerged reef

located approximately 150 m from the headland (Figure 2.7). These two morphological

characteristics play an important role on beach circulation inducing headland rips and

bathymetrically controlled rips with a potential competition/combination between one

another that can favor sediment transport and headland bypassing (McCarroll et al.,

2018; Mouragues et al., 2020b).

2.1.3 Biarritz lighthouse video monitoring system

In January 2013, a permanent video system composed of three cameras was installed

on the top of Biarritz lighthouse (70 m above mean sea level) located near the tip

of Saint-Martin headland (Figure 2.6). The combined video cameras monitor about

2 km of the southern beach that includes PCA beach and four groins. Each camera

provides different image products in the daylight. From September 2013 to February

2017, single snapshot images, 10-min averaged time-exposure images (timex), 10-min

variance images and 10-min timestack images (e.g., Figure 1.2) were collected every

20 min at 1 Hz. In March 2017, the configuration changed. From April 2017 to the

present, images products were collected every 15 min at 1 Hz during an average period

of sampling of 14 min. Moreover, since 2017, an additional single video camera was

installed at the same location. This camera can, on demand, acquire continuously high-

frequency (1 Hz) video images during particular events such as the field campaign of

October 2018. However, the video-monitoring area of this camera comprises only PCA

beach (Figure 2.6 and 2.7).
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Figure 2.6 – Study site showing the video monitoring area and corresponding field of
view of each camera. The fixed camera video system is installed at the top of Biarritz
lighthouse near the tip of the headland. Cam 1, 2 and 3 provide standard video prod-
ucts every 20 min and cam 4 collects, on demand, continuously high-frequency (1 Hz)
images.

2.2 October 2018 field experiment

An intensive field campaign was conducted at PCA beach from 3 to 26 October 2018

under a range of energetic wave conditions including a spring tide cycle (Figure 2.8).

The 3-week field experiment was carried out in the frame of the MEPELS project, per-

formed under the auspices of the DGA and led by SHOM. The experiment involved the

collaboration of teams from three different laboratories (EPOC-University of Bordeaux,

Coastal Marine Applied Research CMAR-University of Plymouth and SIAME-University

of Pau and Pays de l’Adour) that coordinated the deployment and data collection of

a large array of instruments including: four current profilers, six surf-zone drifters,

topo-bathymetric surveys, image acquisition from a fixed video-camera and a camera-

equipped Unmmaned Aerial Vehicle (UAV), as well as continuous tide, wave and wind

data collection from nearby in situ stations (Figure 2.1 and 2.7). The following sub-

sections describe the instruments and data collected during the three-week field exper-

iment. The works of Mouragues et al. (2020a,b) provide a detailed analysis of PCA

beach wave-induced circulation during October 2018 field campaign.
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Figure 2.7 – Experimental setup of October 2018 field campaign at PCA beach (modi-
fied from Mouragues et al. 2020b). (a) Bathy-topo map of the field site during the be-
gining of the experiment. Color represents elevation (m) in NGF-IGN69 (Global French
Leveling). Magenta dots indicate the location of each current profiler. The shaded area
and the red dot show the location of the reef and the lighthouse, respectively. Red lines
indicate the headland-based camera field of view. (b) Example of a raw image recorded
by the headland-based camera. (c) Aerial view of the field site. Google Earth images
showing the headland and the submerged reef during low-energy wave conditions (d)
and moderate-energy wave conditions (e).
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Figure 2.8 – Offshore wave and tide conditions during October 2018 field experiment
at PCA beach (extracted from Mouragues et al. 2020b). (a) Tidal level (blue line),
significant wave height (Hs; black line) and maximum wave height (Hmax; red dots).
(b) Peak wave period (Tp; blue dots) and mean wave period (Tm02; black line). (c) Peak
wave incidence relative to shore normal (θp; blue dots) and its 12 h-averaged values
(black line). (d) Deployment schedule for each measurement item. H-b Cam and U-m
Cam stand for the headland-based and the UAV-mounted camera, respectively.

2.2.1 Topography and bathymetry data

An initial multi-beam bathymetric survey was conducted on 26 June 2018 to map

the submerged reef and surrounding rocks of the headland. Two additional mono-

beam bathymetric surveys with cross-shore transects spaced 50 m apart were carried

out to capture the sandy beach morphology at the beginning (5/Oct/2018) and end

(26/Oct/2018) of the field experiment. All bathymetries were obtained through Real
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Time Kinematic Global Navigation Satellite System (RTK-GNSS) surveyed from a boat.

The upper and intertidal beach topography were surveyed using a Post Processing Kine-

matic Differential Global Navigation Satellite System (PPK-GNSS) carried in by walk on

15 and 22 October 2018. In addition, a high-resolution topographic survey employing

photogrammetry (Laporte-Fauret et al., 2019) obtained by an UAV was performed at

spring low tide on 24 October 2018 to measure the headland topography as well as

the upper shore-face topography. The vertical uncertainty (95% CI) from bathymet-

ric and topographic surveys is estimated to be less than 0.20 and 0.07 m, respectively

(Mouragues et al., 2020b). These numerous surveys were combined and gridded us-

ing a natural neighbor interpolation approach that took cross-shore transect anisotropy

into account. Figure 2.7 shows a comprehensive bathy-topo map relative to NGF-IGN69

leveling resulted from combination of bathymetric (26 June and 5 October 2018), to-

pographic (15 October 2018) and UAV-derived topographic surveys. The submerged

reef’s maximum elevation is around -2.9 m (NGF-IGN69), corresponding to -2.5 m rela-

tive to the mean sea level. Figure 2.7b,e depicts the reef’s significant influence on wave

breaking patterns. It is worth noting that the connection between the beach and the

headland is rather curved (see Figure 2.7a,d,e).

2.2.2 Hydrodynamic data

2.2.2.1 ADCP data

Four Acoustic Doppler Current Profilers (ADCPs) were installed at different locations

across the field site to continuously measure and store pressure and velocity data along

the water column in order to assess the natural variability of bathymetrically controlled

circulation and headland rips. As described in Mouragues et al. (2020b), SIG1 (Nortek

Signature 500 kHz; 4 Hz; cell size: 0.5 m), SIG2 (Nortek Signature 1000 kHz; 8 Hz;

cell size 0.2 m), SIG3 (Nortek Signature 1000 kHz; 1 Hz; cell size: 0.2 m) and AQ

(Nortek Aquadopp; 2 MHz; 1 Hz; cell size 0.1 m) were deployed far offshore (800 m

offshore), few meters off the reef, along the headland and in the vicinity of the reef,

respectively (see Figure 2.7). For convenience, velocities components were transformed

to a cross-shore/alongshore local coordinate system by rotating 60° (counter-clockwise
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direction) the North-East velocity coordinate system (Figure 2.9) using the following

equations (Sous et al., 2020):

u = uE cos(θ) + uN sin(θ)

v = −uE sin(θ) + uN sin(θ).
(2.1)

Figure 2.9 – Velocity frame rotation. The black arrows indicate the original North
(vN)/ East (uE) velocity reference frame while the blue arrows indicate the cross-shore
(v)/ alongshore (u) velocity local coordinate system after rotation. Anglet shoreline is
indicated in magenta color and is oriented 30° with respect to the True North.

It is worth to note that only the Aquadopp current profiler (Figure 2.10a) is consid-

ered throughout this study since it is the only ADCP deployed within the fixed-camera

view field that can be used to validate the video remote sensing techniques (see Figure

2.7).

2.2.2.2 Drifter data

The drifter experiment was supported by the very experienced team of CMAR (Coastal

Marine Applied Research, coastal consultancy at University of Plymouth) who provided

six surf-zone drifters and help in the field during drifter deployment. The drifters were

released multiple times near the reef to measure Lagrangian surface current velocities

and capture a wider spatial extent of circulation variability than Eulerian measurements.

Deployment methods varied from surfzone seeding by hand (swimming the drifter into
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Figure 2.10 – (a) Aquadopp (AQ) current profiler and (b) one of the six surface drifters
deployed during October 2018 field experiment.

position) and drifter seeding by jet ski. Drifters were based on the design of MacMa-

han et al. (2009) and consisted of a 110-cm long thin PVC pole with a GNSS antenna

attached on top (Figure 2.10b). To minimize surfing behavior, the mast was coupled

to a 40-cm long submerged PVC tube that served as ballast, with a dampening plate

and exterior fins. This type of drifter design has been previously used to measure sur-

face flows associated with rips (e.g., Austin et al. 2013; McCarroll et al. 2014; Scott

et al. 2016). The drifter positions were telemetered in real time to a coastal ground sta-

tion to facilitate deployment and retrieving logistics. QPS Qinsy hydrographic software

was used to track drifter positions. Drifters’ data collected at 2.5 Hz allowed studying

surface current circulation patterns over the course of four days (18, 19, 22, and 23

October 2018). Individual deployment duration for each day ranged from 2 h to 3 h 30

min with spatial coverage ranging from 330 to 950 m relative to the shoreline position.

According to Mouragues et al. (2020b), drifter position and velocity uncertainties are

estimated to be less than 3 m and approximately 0.1 m/s, respectively. Furthermore,

the error associated to the effect of wind slippage on drifter trajectory is below 0.04

m/s.
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2.2.3 Video data

As shown in subsection 2.1.3 (Figure 2.6), high-frequency (1 Hz) sampled images

recorded at 1624x1234 px were collected continuously during daylight hours for al-

most the entire three-week field experiment from a single video camera located inside

Biarritz lighthouse (see Figure 2.8d; H-b Cam). Additional video monitoring was made

using a camera-equipped UAV (e.g., Figure 2.7c).

2.2.4 Offshore wave, tide and wind conditions

During the field experiment, PCA beach was exposed to incident wave conditions char-

acterized by long-period moderate- to high-energy wave events. Offshore significant

wave height Hs ranged from 0.4 to 4.2 m, with a mean of 1.5 m (Figure 2.8a), while

offshore peak wave period Tp and mean wave period Tm02 ranged from 6 to 16 s and

from 5 to 11 s, respectively (Figure 2.8b).

Wave conditions were also characterized by a wide range of wave incident obliquity,

from shore-normal to very oblique waves (Figure 2.8c). The peak wave incidence (angle

of wave incidence relative to the shore normal) θp ranged from -23 to 27°. The sign of

θp is set depending on which side of the headland waves are coming from (Figure 2.8a).

While θp = 0° indicates shore-normal waves (hereafter called shore-normal configura-

tion), θp < 0° and θp > 0° mean that the headland is located at the updrift (hereafter

called shadowed configuration) or downdrift (hereafter called deflection configuration)

side of the embayment, respectively. Overall, the first and third weeks of measurements

correspond to deflection configuration, while the second week was mostly shadowed

configuration.

Hourly wind data was retrieved from the Biarritz airport meteorological station (71

m altitude) located approximately 3 km SW of the study site (Figure 2.1). wind condi-

tions were relatively weak during the field experiment, with mean wind speed around

3 m/s coming primarily from the S-SE sector, reaching wind speed up to 12 m/s com-

ing from the W-NW (roughly shore normal) direction. In addition to the offshore wave

condition variability, the experiment was characterized by different tidal level with tidal

range varying from 4.4 m during spring tides to 1.1 m during neap tides (Figure 2.8a).
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3.1 Preamble

This chapter is based on the research article Rodriguez-Padilla et al. (2020) published in

the Journal of Remote Sensing, available in open access: https://www.mdpi.com/602702

The motivation for this work arose in response to the need to overcome a quite

common issue that is typically overlooked in most studies involving video-derived data,
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which is concerned to unwanted camera movement. In the case of this study, during the

early stage of image processing we realized that the images did not remain static over

time, implying camera movement. Preliminary results obtained using this set of shifted

images showed large errors associated to even slightly camera viewing angle deviation

resulting in questionable and unreliable video-derived products. It is important to note

that camera movement was sort of unexpected since the fixed-mounted cameras were

located inside the lighthouse sheltered from the external elements (e.g., wind or rain)

which would lead to the assumption that there should not be any factor that could al-

ter its position. Nevertheless, thermal expansion was the responsible for this particular

type of camera motion which evidently was an issue difficult to avoid or prevent. An

alarming founding was that image-shifting was present and spread on a wide range of

timescales over the total 5-year long image time series representing a major source of

error for further video analysis. Thus, it was imperative to devote some time to inves-

tigate the impact of camera viewing angle deviation and find an approach to reorient

(i.e., stabilize) each of the shifted images in order to guarantee an optimal accuracy.

This chapter summarizes an approach to correct/stabilize a low-sampled (daily) im-

age sequence, as there was no straightforward image stabilization method available that

worked under large variations of brightness between frames. The developed approach

consists of quantifying the displacement in the image plane (induced by camera move-

ment) by tracking fixed recognizable feature points and further using them to warp the

image with respect to a reference position. What makes this method really unique from
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other existing stabilization methods is the implementation of a Canny filter (Canny,

1986) which adds robustness to track features under varying brightness and contrast

conditions making it suitable for large databases processing. This method is generic

(pending fixed salient points) and has also been tested using UAV imagery proving to

be useful against undesirable flight movements such as repositioning or high-frequency

vibrations. Therefore, the present stabilization method opens new perspectives to rou-

tinely improve camera geometry of video monitoring systems to further derive higher

quality remotely sensed hydrodynamic and morphological products.

3.2 Introduction

The use of shore-based video systems has become a very popular and accessible low-

cost tool for coastal monitoring given their capability to deliver continuous and high-

resolution temporal data over large enough spatial scales. However, the reliability of

the final image products can be compromised by external factors, sometimes over-

looked, that can alter the image geometry over time. In particular, unwanted cam-

era movement, produced either by thermal or mechanical effects, can lead to signifi-

cant geo-rectification errors if not properly corrected. Several studies (Bouvier et al.,

2019; Holman and Stanley, 2007; Pearre and Puleo, 2009; Vousdoukas et al., 2011a,b)

have acknowledged the presence of camera motion and have proposed different post-

processing procedures, often referred to as image stabilization methods, to compensate

for camera movement. This chapter addresses an alternative straightforward method to

stabilize an either continuous or subsampled image sequence based on state-of-the-art

techniques and available routines. This method can also be applied to remove high-

frequency camera movements obtained when using unmanned aerial vehicles (UAVs)

for monitoring purpose. Image stabilization is a fundamental post-processing step that

should always be performed in general coastal imaging applications to increase the

accuracy of video-derived products, such as shoreline/sandbar position and depths es-

timate.
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3.3 Article: A Simple and Efficient Image Stabilization

Method for Coastal Video Monitoring Video Systems

3.3.1 Abstract

Fixed video camera systems are consistently prone to importune motions over time due

to either thermal effects or mechanical factors. These, even subtle, displacements are

mostly overlooked or ignored, although they can lead to large geo-rectification errors.

This paper describes a simple and efficient method to stabilize an either continuous or

sub-sampled image sequence based on feature-matching and sub-pixel cross-correlation

techniques. The method requires the presence and identification of different land-sub-

image regions containing static recognizable features referred to as keypoints, such as

corners or salient points. A Canny edge detector (CED) is used to locate and extract

the boundaries of the features. Keypoints are matched against themselves after com-

puting their two-dimensional displacement with respect to a reference frame. Pairs of

keypoints are subsequently used as control points to fit a geometric transformation in

order to align the whole frame with the reference image. The stabilization method is

applied to 5 years of daily images collected from a three-camera permanent video sys-

tem located at Anglet Beach, southwest France. Azimuth, tilt and roll deviations are

computed for each camera. The three cameras showed motions on a wide range of time

scales, with a prominent annual signal in azimuth and tilt deviation. Camera move-

ment amplitude reached up to 10 pixels in azimuth, 30 pixels in tilt and 0.4° in roll,

together with a quasi-steady counter-clockwise trend over the 5-year time series. More-

over, camera viewing angle deviations were found to induce large rectification errors of

up to 400 m at a distance of 2.5 km from the camera. The mean shoreline apparent

position was also affected by an approximately 10-20 m bias during the 2013/2014 out-

standing winter period. The stabilization semi-automatic method successfully corrects

camera geometry for fixed video monitoring systems and is able to process at least 90%

of the frames without user assistance. The use of the CED greatly improves the perfor-

mance of the cross-correlation algorithm by making it more robust against contrast and

brightness variations between frames. The method appears as a promising tool for other
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coastal imaging applications such as removal of undesired high-frequency movements

of cameras equipping unmanned aerial vehicles (UAVs).

3.3.2 Introduction

Over the past decades, the use of shore-based video systems has become a very popular

and accessible low-cost tool for coastal monitoring given their capability to deliver con-

tinuous, high-frequency (e.g., daily) data over large enough spatial scales (Holman and

Stanley, 2007; Splinter et al., 2018b). Among the many applications using video-based

remote sensing are shoreline and sandbar position tracking (van Enckevort et al., 2004;

Coco et al., 2005; Huguet et al., 2016), nearshore bathymetry estimation (Stockdon

and Holman, 2000; van Dongeren et al., 2008; Holman et al., 2013), determination

of intertidal beach slope (Aarninkhof and Roelvink, 1999; Madsen and Plant, 2001),

rip channel formation and evolution, (Bogle et al., 2001; Holman et al., 2006; Turner

et al., 2007; Quartel, 2009), estimation of longshore currents (Chickadel et al., 2003;

Almar et al., 2016), wave celerity, period and direction (Lippmann and Holman, 1991;

Holland and Holman, 1999; Stockdon and Holman, 2000), as well as breaking wave

height (Almar et al., 2012a).

Nevertheless, successful and reliable video-based products can only be produced

if accurate image transformation into real-world coordinates is achieved. This is per-

formed through photogrammetry techniques which provides relationship between the

2-D image geometry and the 3-D real-world coordinates. A common approach con-

sists in using projective transformation (Holland et al., 1997; Hartley and Zisserman,

2004) that usually takes into account two types of calibration: an intrinsic calibration,

which accounts for the physical characteristics of the camera lens and can be obtained

directly in the lab prior to field installation (in order to remove distortion effects); and

an extrinsic calibration, which depends on the camera location and orientation after

installation, as well as a set of surveyed ground control points (GCPs), correspondingly

manually digitized from the image. Both calibrations are often done just once assuming

that the physical properties of the lens remain unchanged over time and that the video

cameras and their mounting structure do not move. Hence, the real-world coordinates

of the fixed GCPs are supposed to systematically coincide with the digitized GCPs image
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coordinates for all video frames. However, the latter assumption is challenged by many

observations showing that even fixed-mounted video cameras are never perfectly static

(Holman and Stanley, 2007; Pearre and Puleo, 2009; Vousdoukas et al., 2011b; Bouvier

et al., 2019).

Common non-anthropogenic causes that may produce camera movement or vibra-

tion are attributed to thermal expansion and insulation effects as well as rain and wind

forcing (Holman and Stanley, 2007; Bouvier et al., 2019). This is particularly evident in

outdoor installations where cameras are directly exposed to the elements. One possible

but tedious solution to address this issue is to digitize all the GCPs for each presum-

ably displaced image in order to obtain separately geometric solutions (Bouvier et al.,

2019). Another potentially more efficient alternative is to use (semi-)automatic image

stabilization.

Image stabilization refers to any technique used to create a video sequence in which

any unwanted camera motion is removed from the original sequence. In coastal im-

agery, Holman and Stanley (2007) were the first to address the problem of camera

viewing angle variations due to thermal and wind effects. In order to compensate

the camera movement after acquisition, they used a template matching method that

consisted in selecting small high-contrast regions of an image (including fixed objects

and salient points) and match them with a reference image (from a survey date with

a known geometry solution) to compute their displacement (deviations of tilt and az-

imuth) in terms of pixel shift. Using this technique they found an almost daily diurnal

signal with an amplitude of approximately 2 pixels in tilt as a result of thermal response

of the tower on which the cameras were mounted. After geo-rectification, this shift was

equivalent to an error of approximately 30 m in the longshore direction 1000 m away

from the camera. With the further increased use of Unmanned Aerial Vehicles (UAVs)

such method has been refined and automatized to create and recognize features (virtual

GCP’s) within a user specified window and a brightness intensity threshold (Holman

et al., 2017; Bergsma et al., 2019).

Similar automated feature matching image stabilization methods have been devel-

oped using the same principle of image comparison. Pearre and Puleo (2009) used

correlation techniques, a procedure similar to particle image velocimetry (PIV; (Adrian,
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1991)) to correct camera azimuthal and tilt movement. They showed that geo-rectified

image errors owing to camera movement grows nonlinearly with the distance between

the camera and the object of interest. Therefore, even small pixel variations can lead to

large errors in real-world coordinates (500 m error 2300 m away from the camera at Re-

hoboth Beach, Delaware; (Pearre and Puleo, 2009)). Moreover, they found that despite

all the cameras experienced slight movements, the motion effect after geo-rectification

was more evident on the camera with the longest focal length as this camera was more

sensitive to small changes in tilt. Another semi-automatic image stabilization proce-

dure is described by Vousdoukas et al. (2011a,b) for UAVs and fixed cameras. Their

method consists first in defining a mask to remove the sea from the land for all frames.

The next step is to extract and match pairs of features (keypoints) between consecu-

tive frames. This can be done either using a Scale-Invariant Feature Transform (SIFT;

(Lowe, 1999, 2004)) or a Speeded-Up Robust Features (SURF) algorithm (Bay et al.,

2008). Both algorithms are capable to detect and extract distinctive features such as

corners and salient points, under some variations of illumination, scale, and orientation

between frames. In order to identify the correct matches, a random sample consensus

(RANSAC) algorithm (Fischler and Bolles, 1981) is implemented to filter the outliers,

followed by a least squares fit approach, as well as a sub-sampling of keypoints pairs to

reduce computation time.

All the above techniques rely upon the presence of land-based features or any fixed

region that includes objects with high contrast in the camera field of view. However, in

some cases, cameras just look at the ocean covering only a small beach portion offering

little of no fixed salient features. Some studies have overcome this limitation by track-

ing the horizon and using it as a geometric constraint in order to estimate the camera

position and stabilize the images (Schwendeman and Thomson, 2015; Sánchez-García

et al., 2017). On the other hand, anticipating or predicting the movement of a camera

can also be considered as an alternative approximation to reduce image deviation af-

ter acquisition when no features are available in the camera view field. Bouvier et al.

(2019) identified the primary environmental parameters controlling cameras shift (air

temperature, wind conditions, nebulosity and solar position) and used them to develop

an empirical model to simulate camera movement. Their model showed a good agree-
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ment against the observed camera viewing angles deviations (r2 = 0.71, RMSE =

0.12° for tilt and roll anomaly) confirming that, at their site, camera motion is primarily

controlled by thermal expansion of the pole where the cameras were mounted, which

is modulated in magnitude by the solar azimuth angle and cloud coverage. Bouvier

et al. (2019) indicated that the rectification error is up to 200 m and 20 m in the long-

shore and cross-shore direction, respectively, which can be decreased by 80% with their

automated stabilization method.

Image stabilization is a fundamental topic in the research field of Computer Vision

(Szeliski, 2010) with many applications in object recognition (Torii et al., 2011), motion

analysis (Rawat and Singhai, 2011), image restoration (Wang and Tao, 2016), among

others (Chalom et al., 2013). Similar stabilization methods have been developed with

other purposes outside the field of coastal imagery (Hsieh and Kao, 2010; Chang Li

and Yangke Liu, 2011; Kulkarni et al., 2017; Souza and Pedrini, 2018). One primary

problem with existing stabilization methods is that they are sensitive to changes in illu-

mination making them prone to failure (El-gayar et al., 2013). Brightness and contrast

variations due to illumination changes are typical for image sequences and can often

change within a few frames (Matas et al., 2003). Moreover, if the image sequence is

sub-sampled, these parameters can substantially change between consecutive frames.

The purpose of the present work is to develop a new straightforward method for im-

age stabilization to overcome this limitation. This method provides a robust solution to

stabilize an image sequence under varying illumination with the ability to process large

databases. It builds on state-of-the-art techniques and available routines, with valuable

input for the coastal imaging research community. The following sections will describe

the basic steps to stabilize an image sequence compensating for camera motion to avoid

positioning errors in the image. Furthermore, the image stabilization method will be

applied to 5 years of continuous video data collected from a three-camera video system

located at Anglet Beach, southwest France.

3.3.3 Study site and video data

Anglet Beach is a structurally-engineered embayed sandy beach located on the Basque

Coast in southwest France (Figure 3.1). The beach is delimited by a prominent head-
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land in the South and extends over 4 km up to a 1 km long jetty protecting the entrance

of the river mouth. According to Wright and Short (1984) classification, Anglet Beach

is an intermediate-reflective beach composed of medium to coarse sand with a steep

beach-face slope (tan β ≈ 0.1) characterized by a mostly double bar system (Birrien

et al., 2013; Huguet et al., 2016). Given the WNW beach orientation, the coast is

predominantly exposed to North Atlantic high-energy swells coming from the WNW

direction with an average annual significant offshore wave height Hs = 1.57 m (occa-

sional wave heights > 10 m during winter storms) and average peak period Tp = 10

s (Enjalbert et al., 2011; Birrien et al., 2013). Tides in the area are semi-diurnal with

average ranges of 3.94 m for spring tides and 1.69 m for neap tides (i.e., meso-macro

tidal range).

Figure 3.1 – Map of Anglet Beach (Basque Coast, southwest France) showing the lo-
cation and field of view of the three-camera video system installed inside the Biarritz
lighthouse (photo by M. Bourbon).

A permanent video-monitoring station has been operating since September 2013 at

the southern end of Anglet Beach. It is installed inside the Biarritz lighthouse, 70 m

above mean sea level. The station consists of three cameras: camera 1 (12 mm lens),

camera 2 (25 mm lens) and camera 3 (8 mm lens) that together cover approximately

2.5 km of the southern beach shoreline, including 4 groins that extend about 100 m

seaward (Figure 3.1). Each camera provides different image products during daylight.
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From September 2013 to February 2017, single snapshot images, 10-min averaged time-

exposure images (timex), 10-min variance images and 10-min timestack images (e.g.,

Holman and Stanley, 2007) were collected every 20 min at 1 Hz. In March 2017, the

configuration of the video-station changed. Since April 2017 to the present, image prod-

ucts are collected every 15 min at 1 Hz during an averaged period of sampling of 14-

min. According to Castelle et al. (2014b), the best shoreline proxy for meso-macrotidal

multiple-barred beaches is obtained at mean high water level (MHW), since the inner-

bar and berm dynamics have little influence on the shoreline cross-shore displacement

for this elevation contour. In order to have at least one image per day, the lowest high

tide level was preferred. For this study, time-exposure images were selected at mean

high water neap level time (MHWN = 0.86 m) with a mean accuracy of ± 0.08 m and

a maximum error of ± 0.28 m. This resulted in a 5-year daily time-exposure image

time series consisting of approximately 1500 frames per camera spanning from October

1, 2013 to September 9, 2018. The timex time series will be treated as a continuous

image sequence and will be further used to compute the long-term image displacement

for each camera.

3.3.4 Image stabilization method

The image stabilization method developed below is based on feature matching and

necessarily requires the presence of at least a few recognizable static features distributed

in both dimensions in the field of view. Features should not be collinear so that the

geometric transformation can be correctly applied to the whole image. The concept

of the method is to compute the two-dimensional displacement (azimuth and tilt) of

the features between frames and use them as matching control points to estimate a 2-

D geometric transformation that incorporates translation, rotation and scaling to align

the whole image with a reference image. The following subsections will describe the

basic steps to stabilize an image sequence through a semi-automatic procedure using

state-of-the-art techniques.
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3.3.4.1 Reference image and sub-image regions selection

The first step consists of defining a reference image. All the frame motions will be

estimated relative to this reference image. The selection of the reference image should

correspond to the time when the GCPs were surveyed. The next step is to identify static

recognizable features within the reference frame. The features should be easily visible

fixed objects such as buildings or any inland hard structure containing corners or salient

points. The features should not only appear in the reference image, but also in every

frame of the whole time series. Around each feature, a sub-image region (hereinafter

referred to as zone) should be manually defined. This user-defined zone surrounding

the feature must also contain a single reference point, referred to as keypoint, specified

by the user. Every zone will act as a search region to identify the keypoint, representing

the feature, that will be drifting with time. This implies that the user needs to estimate

a possible range of camera pixel shift to design the zone within which the feature and

keypoint is always visible. This can be done easily through a visual inspection of the

entire image sequence. To test if the zone size is adequate, the zone from the reference

frame can be compared with the last frame of the image sequence (assuming that the

last frame is shifted) or any other random frame to verify if the zone still isolates the

feature containing the keypoint. It must also bear in mind that the user must design a

not too large zone to keep computation time reasonable since every zone is treated as

an individual sub-image sequence. The number of keypoints depends on the geometric

transformation that will further be used (at least two keypoints are necessary; more is

better) and should be distributed as much as possible throughout the reference image

to avoid collinearity. The keypoint pixel positions will be defined as (κz,cu , κ
z,c
v ), where z

is the sub-image zone index and c is the camera number index.

Figure 3.2 shows an example of the selection of four different sub-image zones for

camera 2 of Anglet video station. The sizes of the zones vary but are kept to roughly

250×90 pixels. It is worth to mention that it is not advised to choose groins as keypoints

since the corresponding zone will include non-stationary features from the water (such

as foam patches) that can be mistakenly identified as keypoints and can introduce sig-

nificant errors during the image stabilization method (Vousdoukas et al., 2011a). For

the present study four zones were defined for camera 1 and 2, and five zones for camera
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3. The reference image for each camera was defined as the first frame of each image

sequence (Oct/01/2013 - 09:40:00 GMT).

Figure 3.2 – Selection of different fixed land regions (zones) with their respective key-
points for camera 2.

3.3.4.2 Canny edge detector

Many popular algorithms automatically recognize, extract and match keypoints be-

tween frames without any a priori knowledge using corner and blob recognition un-

der similar illumination conditions (Tareen and Saleem, 2018). Examples of widely

used feature detection algorithms are: SIFT (Scale-Invariant Feature Transform; (Lowe,

1999, 2004)), FAST (Features from Accelerated Segment Test; (Rosten and Drummond,

2005)) and SURF (Speeded-Up Robust Features; (Bay et al., 2008)). Although these

algorithms have proven to be very efficient in object recognition applications, their per-

formance is only robust against small brightness changes between frames. This does

not represent an inconvenience if the image sequence to stabilize is sampled at a high-

frequency frame rate during a small period of time (e.g., UAV survey at 2 Hz during 17

min) since the contrast and brightness between frames barely change. However, in long-

term coastal monitoring, it is common to work with sub-sampled image sequences (e.g.,
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daily images as for this study) where consecutive frames usually change substantially

in terms of brightness and contrast owing to different weather and daylight conditions

leading the feature detector algorithms to degrade and fail.

The present stabilization method makes use of a Canny edge detector (CED;

(Canny, 1986)) to enhance and extract the edges that define the boundaries of the pri-

mary features within a sub-image zone. Although the CED is not insensitive to changes

in illumination, it is quite robust at recognizing the same edges between frames even

under luminosity variations. The CED works in 5 steps: a) smooth the image using

a Gaussian filter in order to remove the noise; b) determine the image intensity gra-

dient in both vertical and horizontal directions; c) apply a non-maximum suppression

to discard all the points that do not occur at the gradient local maximum; d) apply

double threshold to preserve certain edges and e) track and keep weak edges that are

connected to strong edges via an edge threshold (referred to as hysteresis).

3.3.4.3 Image sub-pixel cross-correlation and translation

Before registering and aligning images, a mathematical relationship should be estab-

lished so that pixel coordinates can be mapped from one image to another. In this

sense, a displaced image g(u′, v′) can be expressed as a coordinate transformation (T )

of a reference image f(u, v). A 2-D affine transformation that considers only transla-

tion is valid to apply if the size, shape and orientation of the displaced image remain

the same as that of the reference image. This mapping can be represented as a ma-

trix multiplication (g = Tf) using homogeneous coordinates (Hartley and Zisserman,

2004):


u′

v′

1

 =


1 0 ∆u

0 1 ∆v

0 0 1



u

v

1

 =


u+ ∆u

v + ∆v

1

 , (3.1)

where ∆u and ∆v denote the two-dimensional displacement (i.e., pixel shift) of g(u′, v′)

with respect to f(u, v).

The 2-D pixel rigid translation (∆u,∆v) is obtained using the optimized cross-

correlation algorithm of Guizar-Sicairos et al. (2008a) (also referred to as single-step
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discrete Fourier transform algorithm). This algorithm allows registering the image

displacement within a user-specified fraction of a pixel. The algorithm starts by up-

sampling two times the resolution of the image dimensions (M and N) and applying

a discrete fast Fourier transform (DFT) over all image points (u, v) to get an initial es-

timate of the location of the cross-correlation peak. The cross-correlation (CCfg) of

f(u, v) and g(u′, v′) can be expressed as follows:

CCfg(∆u,∆v) =
∑
u,v

f(u, v)g∗(u′ −∆u, v′ −∆v)

=
∑
m,n

F (m,n)G∗(m,n) exp

[
i2π

(
m∆u

M
+
n∆v

N

)]
,

(3.2)

where (∗) denotes complex conjugation and uppercase letters represent the DFT of the

images, as given by:

F (m,n) =
∑
u,v

f(u, v)√
MN

exp
[
−i2π

(mu
M

+
nv

N

)]
. (3.3)

For a higher up-sampling factor, instead of computing all the up-sampled points of

the array, only a small neighborhood around the initial peak estimate is up-sampled

using a matrix-multiply discrete Fourier transform to refine the peak location. This

dramatically reduces computation cost without losing accuracy. A detailed description

of the algorithm is beyond the scope of the present contribution and can be found

in (Guizar-Sicairos et al., 2007, 2008a). In addition, a MATLAB code version of the

algorithm is freely available and can be found in the MATLAB MathWorks File Exchange

(Guizar-Sicairos et al., 2008b).

Once ∆u and ∆v corresponding to the cross-correlation peak are found, the dis-

placed image can be relocated to the reference image position through an inverse trans-

formation by mapping the pixel coordinates back to the reference image (f = T−1g):
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u

v

1
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1 0 −∆u

0 1 −∆v

0 0 1
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u′

v′

1

 =


u′ −∆u

v′ −∆v

1

 . (3.4)

As the image shift has sub-pixel accuracy, pixel values at fractional coordinates need

to be retrieved. This is achieved by interpolating the surrounding pixels onto the refer-
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ence image grid in order to compute the new intensities.

2-D rigid image translation is properly valid only for a perpendicular oriented cam-

era. For an oblique view, the 2-D pixel rigid translation between frames can be in-

terpreted as projections of the camera movement in the azimuth and tilt direction

(∆u = ∆Azimuth,∆v = ∆Tilt; (Holman and Stanley, 2007; Pearre and Puleo, 2009;

Vousdoukas et al., 2011b)). Given the changes in perspective, the 2-D shifts between

frames will also vary depending on the sub-region of the image. For the present method,

2-D shifts are computed only with the purpose to match keypoints distributed in differ-

ent zones of the image. The stabilization of the whole image, on the other hand, will

be performed using these keypoints with another type of geometric transformation with

more degrees of freedom to account for the image deformation produced by the relative

angle variation of the camera.

At this stage, the keypoints and their corresponding surrounding zones have been

defined and filtered through the CED in order to extract the edges of the features and

improve the performance of the cross-correlation algorithm. The next step consists to

use these features along consecutive frames to estimate, via sub-pixel cross-correlation,

the two-dimensional displacement of each zone and camera (∆uz,cj,r ,∆v
z,c
j,r ); where, j

is the frame number index, and r is the reference frame used for the computation of

the 2-D sub-pixel shift. Figure 3.3 shows an example of keypoint matching between

a pair of sub-images from zone 1 (z = 1) of camera 2 (c = 2). First, the CED is

applied to both sub-images: the reference sub-image (r = 1; Oct/01/2013 - 09:40:00

GMT) and the displaced sub-image (j = 1301; Feb/06/2018 - 09:15:00 GMT). The sub-

pixel shift between frames is subsequently computed using an up-sampling factor of 20:

∆u1,21301,1 = −2 pixels, ∆v1,21301,1 = −29.2 pixels. Finally, the shift is used to translate the

displaced sub-image to match with the keypoint of the reference sub-image represented

by the green cross (κ1,2u = κ1,2u′ −∆u1,21301,1, κ
1,2
v = κ1,2v′ −∆v1,21301,1) in Figure 3.3.
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Figure 3.3 – Keypoint matching between a pair of sub-images corresponding to zone 1
of camera 2. (a) Reference sub-image: Oct/01/2013 - 09:40:00 GMT; (b) unstabilized
sub-image: Feb/06/2018 - 09:15:00 GMT; (c) reference sub-image after applying the
CED; (d) unstabilized sub-image after applying the CED; (e) reference and unstabi-
lized sub-image overlapped; (f) sub-image translation after computing azimuth and tilt
pixel shift; (g) same figure as (a); (h) stabilized sub-image: Feb/06/2018 - 09:15:00
GMT. The green cross represents the static keypoint that should match between frames.

A semi-automatic method is developed to perform the same steps as shown in Figure

3.3 for a given image sequence. Figure 3.4 illustrates a single iteration of this procedure.

The goal is to compute the pixel shift of every frame with respect to the reference im-

age (∆uz,cj,r ,∆v
z,c
j,r ) in order to retrieve the keypoints displaced positions (κz,cu′j , κ

z,c
v′j

). The

routine works under a loop that iterates over all the frames of a given zone and camera.

At each iteration, the algorithm automatically applies a CED to the sub-image zone

and computes the pixel shift of the current frame with respect to the reference frame

(case 1). An additional condition is used to assess the congruence of the estimated pixel

shift. The condition assumes that the pixel shift between consecutive frames is small. A
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typical diurnal signal due to thermal expansion is approximately 2-pixel range (Holman

and Stanley, 2007), so even if the image sequence is sub-sampled it is reasonable to

stipulate that the pixel shift of a frame with respect to the previous one should not be

larger than 10 pixels, either in u or v directions. In the case that the condition is not

fulfilled, there is no certain way to discern if the estimated pixel shift is anomalously

large because the cross-correlation algorithm has been fooled or if the displacement is

actually true and resulted from other factors (e.g., human intervention, strong wind,

etc.). The CED plays a critical role in decreasing the effect of brightness and contrast

changes between frames by just retrieving the edges, however, the cross-correlation al-

gorithm is still likely to fail if some edge patterns of the same keypoint do not match, or

even worst, if patterns resemble mistakenly while corresponding to different real-world

patterns. To verify that the two frames are as similar as possible, a second option (case

2) is proposed to estimate ∆uz,cj,r and ∆vz,cj,r without directly computing the pixel shift

with respect to the reference frame. Instead, the pixel shift is computed with respect to

the previous stabilized frame: f(uz,cj−1, v
z,c
j−1) = g(u′z,cj−1 −∆u

z,c
j−1,r, v

′z,c
j−1 −∆v

z,c
j−1,r), which

in turn is also relative to the reference frame. If despite the above two cases the pixel

shift remains greater than 10 pixels, the algorithm enters in a semi-automatic mode and

offers the user four different options:

• Keep the pixel shift computed by using the reference frame (case 1).

• Keep the pixel shift computed by using the previous stabilized frame as reference

(case 2).

• Select manually the keypoint position to compute the pixel shift (case 3).

• Discard the frame (case 4).

An additional visual representation (similar to Figure 3.3) shows the user how the sta-

bilized frame would look like if case 1 or case 2 pixel shift were used. If neither op-

tion is appropriate, the user has the possibility to select manually the keypoint position

(κz,cu′j , κ
z,c
v′j

) in the current frame in order to compute the correspondent pixel shift (case

3). Alternatively, the frame can present serious contamination in the form of sun glint,

raindrops or fog in which case the frame can be discarded (case 4). Finally, the pixel

shift is stored at each iteration so that all the keypoints of a given zone and camera can

be matched against themselves.
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Figure 3.4 – Automatization steps to stabilize a sub-image zone of an image sequence
by estimating the 2-D pixel shift with respect to a reference frame.
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3.3.4.4 Geometric transformation

The number of corresponding keypoints identified between images establishes the type

of geometric transformation that can be defined to map and relocate the displaced

image points onto a reference image. A geometric transformation is constrained by the

degrees of freedom (DOF). At least one corresponding keypoint is necessary to estimate

the 2-D rigid translation motion between frames (2 DOF). Two pairs of non-collinear

keypoints are enough to solve the four parameters of a similarity transformation:


u′

v′

1

 =


s cos θ −s sin θ ∆u

s sin θ s cos θ ∆v

0 0 1



u

v

1

 =


us cos θ − vs sin θ + ∆u

us sin θ + vs cos θ + ∆v

1

 , (3.5)

defined as a linear combination of translation (∆u,∆v), rotation (θ) and a scale factor

(s). The rotation is defined as a counter-clockwise rotating angle with respect to the

reference frame and can often be interpreted as the camera angle movement on its roll

axis. The similarity transformation lacks the ability to represent a true three dimen-

sional motion model, however, it can adequately estimate motion between frames if

the camera movement or the scene are constrained to certain conditions (Ortiz Cayon,

2013). Jin et al. (2000) stated that if the translations of the camera are zero and the rel-

ative angle variation of the camera between frames is very small (e.g., less than 5°), the

effect of the depth of scene points can be neglected. This means that camera roll is the

main factor of image rotation (θ = ∆Roll) and small camera azimuth and tilt variations

can be represented by 2-D translations of the image (∆u = ∆Azimuth,∆v = ∆Tilt).

On the other hand, if image points are of the same depth, or the depth difference among

image points is much less than the average depth (i.e., the camera is far away from the

object), small camera translation will mainly cause homogeneous scaling and transla-

tion of 2-D images (Jin et al., 2001). The latter assumptions are valid for the case

of fixed cameras as long as the viewing angles shift slightly. It is important to note

that camera orientation always goes in the opposite direction from the relative frame

displacements with respect to the reference image (Figure 3.5).
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Figure 3.5 – (a) Camera angle movements according to (b) azimuth, tilt and roll devi-
ations with respect to a reference image.

Working with a similarity transformation has the advantage to be fast and simple

in terms of computational complexity (Lim et al., 2017). The similarity motion param-

eters can be estimated over an iterative process using the keypoints correspondences

of all sub-images zones for every frame of a given camera. These parameters allow

performing a global transformation to warp and stabilize the whole image sequence.

3.3.4.5 Image geo-rectification

After all the images are correctly stabilized, the coordinates of the 2-D images (u, v)

must be transformed to 3-D real-world coordinates (x, y, z) through a photogrammetric

transformation. The determination of the transformation is called camera calibration

and involves two sets of parameters: extrinsic and intrinsic parameters. The extrinsic

parameters contain the information related to the position and orientation of the cam-

era (the three coordinates of the camera location and the three rotation angles) and the

intrinsic parameters comprise the physical characteristics of the lens of the camera (the

image center coordinates, the effective focal length and the scale factors). Direct linear

transformation (DLT) developed by Abdel-Aziz and Karara (1971) is perhaps the most

commonly used camera calibration method because it does not require initial knowl-

edge of the extrinsic and intrinsic parameters (Sánchez-García et al., 2017). These

parameters are implicit in the 11 transformation parameters, however, nonlinear effects

such as radial distortion are not taken into account and can lead to coupling errors be-

tween parameters affecting the camera calibration accuracy (Zhao et al., 2016). DLT
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method represents a closed form solution requiring non-coplanar real-world surveyed

GCPs with corresponding image coordinates. Each GCP generates two linear equations

that can be expressed as the following matrix multiplication:

 x y z 1 0 0 0 0 −ux −uy −uz

0 0 0 0 x y z 1 −vx −vy −vz

L =

 u

v

 , (3.6)

where L = (L1, L2, ..., L11)
T are the transformation parameters. At least six GCPs are

necessary to build an overdetermined set of linear equations to estimate the 11 trans-

formation parameters using a least square method. The limitation of working with one

single camera, or many cameras that are not looking at the same object, is that one

coordinate must be constrained to a fixed value to allow inverse mapping. When study-

ing the nearshore zone, the vertical coordinate (z) is usually assigned to be equal to

the instant sea level. However, if the topography is known and the swash zone is the

subject of study (e.g., wave runup), an iterative rectification method using the beach

topography can be applied to reduce rectification positioning errors as described by

Blenkinsopp et al. (2016).

Another popular calibration method is the one proposed by Holland et al. (1997). In

their method, they solve the five intrinsic parameters in lab and solve the six remaining

extrinsic parameters using at least three GCPs and a standard nonlinear solver (Holman

et al., 2017; Bergsma et al., 2019). The intrinsic parameters can be estimated using the

Caltech camera calibration toolbox for Matlab (Bouguet, 2015) prior to camera instal-

lation in order to remove lens distortion. Although there are many well-documented

camera calibration methods (Faig, 1975; Tsai, 1987; Clarke and Fryer, 1998; Wang

et al., 2010), deciding which one to use is up to the user convenience.

For this particular paper, DLT was used to generate the plan-view (geo-rectified)

images considering 8-10 GCPs per camera. Images were merged and projected into a

horizontal plane with a grid size of 1×1 m and elevation equal to mean high water neaps

(zMHWN = 0.86 m). In addition, non-stabilized and stabilized geo-rectified images

were compared to estimate the induced real-world positioning error due to camera

movement.

43



CHAPTER 3. IMAGE STABILIZATION

3.3.5 Results

3.3.5.1 Keypoint tracking

The stabilization method was applied to 5 years of daily images collected from the

permanent three-camera video system located at Anglet Beach. Figure 3.6 illustrates

estimates of horizontal (azimuth) and vertical (tilt) displacements of the four key-

points distributed at different sub-image regions of camera 2 (see Figure 3.2). Azimuth

and tilt deviations were expressed as pixel differences from the initial image position

(Oct/01/2013 - 09:40:00 GMT). Results show a high variability in the position of the

four keypoints indicating that the camera has been moving throughout the study period.

Deviations of azimuth and tilt varied respectively from -10 pixels to 8 pixels and -33 pix-

els to 2 pixels. The standard deviation of the detrended pixel displacement, which is a

measure of the magnitude of camera movements, was 2 and 5 pixels in the horizontal

and vertical directions, respectively. The camera oblique view generated an approxi-

mately constant offset (0.2 pixels horizontal; 0.4 pixels vertical) in the displacement

between zones. An annual motion signal (≈4 pixels amplitude) together with a quasi-

steady trend (1.6 pixels/year horizontal; -3.4 pixels/year vertical) can be identified,

suggesting that camera 2 orientation has been gradually moving towards the southwest

direction.

Figure 3.6 – Daily (a) azimuth and (b) tilt displacements of the different sub-image
zones in cam 2 expressed in terms of pixel shift. The deviations are computed with
respect to the reference image: Oct/01/2013 - 09:40:00 GMT.
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3.3.5.2 Camera movement correction

Figure 3.7 shows the evolution of the transformation parameters (translation, rotation

and scaling) derived from a Euclidean (a.k.a Similarity) transformation for the three-

camera video system. All cameras showed motion throughout the study period on a

wide range of time scales. Camera 1, 2 and 3 movement amplitude reached approxi-

mately 5.6 pixels, 10.4 pixels and 5.7 pixels in azimuth and 9.5 pixels, 30.7 pixels and

15.1 pixels in tilt, respectively. The standard deviation of detrended azimuth for the

three cameras was 1.5 pixels, 2.5 pixels and 1.4 pixels with trends of -0.8 pixels/year,

1.6 pixels/year and -0.4 pixels/year. Respectively, the standard deviation of detrended

tilt was 2.9 pixels, 4.7 pixels and 1.8 pixels with trends of 0.8 pixels/year, -2.9 pix-

els/year and -2.1 pixels/year. An annual signal of about 0.6 pixels (camera 1), 2.3

pixels (camera 2) and 0.4 pixels (camera 3) in azimuth and 1.9 pixels (camera 1), 4.2

pixels (camera 2) and 1.8 pixels (camera 3) in tilt deviation were apparent on the total

record. Moreover, the three cameras presented variations in roll angle up to 0.4°, 0.2°

and 0.1° with a standard deviation of 0.05°, 0.03° and 0.03° for camera 1, 2 and 3,

respectively. Camera 1 and 2 exhibited an increasing counter-clockwise trend in roll

angle (0.08°/year and 0.03°/year, respectively) over the 5-year time series. An overall

enlargement was notable after 2015, particularly for camera 1. The scale factor (s)

increased up to 10% the image size of camera 1 and 3% the image size of camera 2.

Camera 3 presented no significant changes in image scale (maximum of 0.6%).

The transformation parameters were used to warp and align the whole image se-

quence with the reference frame. Figure 3.8 shows the long-term averaged video (span-

ning the complete time series) using raw video frames and corrected frames from cam-

era 2. The raw input mean is blurry (Figure 3.8a) indicating significant image shifts

induced by the camera movement. The mean of the corrected frames (Figure 3.8b)

shows the efficacy of the stabilization method by preserving the same image sharpness

(of the fixed features) as the reference frame.
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Figure 3.7 – (a) Azimuth, (b) tilt, (c) roll and (d) scale parameters of the similarity
transformation matrix computed for the three cameras relative to the reference image:
Oct/01/2013 - 09:40:00 GMT.

Figure 3.8 – Time series average (spanning Oct/01/2013 - Sep/09/2018) of all the (a)
unstabilized frames and (b) stabilized frames of camera 2.
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3.3.5.3 Geo-rectification error

Camera movements result not only in image deformation but also in geo-rectification

errors. Figure 3.9 provides an example of positioning error due to camera motion. A

comparison between stabilized and unstabilized geo-rectified images for a specific date

is presented together with a spatial description of the error to highlight the impact of

camera viewing angle deviations. Figure 3.9a shows the reference frame (Oct/01/2013

- 09:40:00 GMT) plain view image in real-world coordinates obtained after geo-

rectification of the time-exposure images collected from the three-camera video system.

Figure 3.9b,c show geo-rectification of a subsequent image when large camera view-

ing angle deviation was present (Feb/06/2018 - 09:15:00 GMT; same date chosen as

for Figure 3.3). Figure 3.9b considers stabilization of the time-exposure images before

geo-rectification, while Figure 3.9c does not take it into account. Figure 3.9d presents

the associated geo-rectification error (
√

alongshore error2 + cross-shore error2) of Fig-

ure 3.9c produced by camera movement. This error depends on the grazing angle

and lens properties and typically increases with increasing distance from the camera

(Bouvier et al., 2019). The comparison between images highlights the differences in

position, size and shape of fixed objects when stabilization is omitted. For this partic-

ular date, horizontal errors exceed 400 m (400 m in the alongshore and 100 m in the

cross-shore direction). For instance, a displacement of the groins is readily apparent,

with the alongshore location of the right-hand groin varying from 1750 m to 2000 m.

Furthermore, the whole beach area appeared to shrink approximately 50 m in contrast

to the stabilized geo-rectified image. The geo-rectified image that considered stabiliza-

tion kept the groins well aligned with respect to their original position, with all the fixed

objects retaining their initial size and shape.
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Figure 3.9 – Anglet Beach geo-rectified time-exposure images highlighting the impact
of camera viewing angle deviation. (a) Reference geo-rectified image: Oct/01/2013 -
09:40:00 GMT; (b) stabilized geo-rectified image: Feb/06/2018 - 09:15:00 GMT; (c)
unstabilized geo-rectified image: Feb/06/2018 - 09:15:00 GMT; (d) positioning error
due to camera movement for Feb/06/2018 - 09:15:00 GMT. White dashed lines indicate
groins original position.

3.3.6 Discussion

The semi-automatic stabilization method was applied to 5 years of daily time-exposure

images collected from three synchronized cameras located at Anglet Beach, southwest

France. For keypoint matching, approximately 1500 frames were processed for each

sub-image zone requiring an average processing time between 1 s and 4 s per frame

on a standard commercial personal computer (4th generation Core i5-4690, 3.5 GHz).

The distribution of cases used to compute the 2-D pixel shift displacement for each

keypoint (Figure 3.4) gives an estimation of the performance of the algorithm in terms

of how much user assistance was required. For example, just for sub-image zone 1 of

camera 2, 97% of the pixel shifts were computed using case 1, 0.92% were computed

using case 2, 0.26% using case 3 and 1.7% using case 4. This means that four frames,
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corresponding to that zone, required manually pixel shift computation and 26 frames

were manually discarded. The overall distribution of cases used for all cameras and

all sub-image zones was: 90.42% (case 1), 1.38% (case 2), 4.91% (case 3) and 3.28%

(case 4). It is important to note that some matching cases corresponding to case 1 and

case 2 also required user visual control. User confirmation for those cases was necessary

when the automatically computed pixel shift between consecutive frames was larger

than the threshold (10 pixels) but still correct. Much of the user intervention essentially

consisted of discarding low-quality frames. For future work, a possible improvement

could be achieved by pre-selecting frames or explore this issue further by developing a

separate procedure to automatically keep/discard frames prior to image stabilization.

The use of the CED is crucial for a robust performance of the cross-correlation al-

gorithm when differences in contrast, brightness and illumination conditions between

frames are present. Figure 3.10 shows the effect of the CED on the stabilization with re-

spect to a reference sub-image (Figure 3.10a,e,i) under three representative cases of il-

lumination conditions: under shinny (overexposed image; Figure 3.10b), cloudy (high-

contrast image; Figure 3.10f) and foggy (low-contrast image; Figure 3.10j) weather

conditions. The cross-correlation between sub-images without CED determines the

similarity between frames based on their color/grayscale pixel intensity. This means

that the performance of the cross-correlation not only depends on the features present

in the frame, but also on changes in light conditions between frames. Large changes

can lead to errors as shown in Figure 3.10c,g,k. On the other hand, when using the

CED, pixels intensities are converted to only two possible values: 1 if edges that define

the boundaries of the features are detected and 0 if not. The efficiency of the cross-

correlation in combination with the CED relies upon the fact that the amount of data

to be processed is reduced. Moreover, the cross-correlation algorithm together with the

CED estimates the similarity between frames based only on the boundaries and edges

detected, regardless of contrast and brightness variations between frames, as long as

the features are still visible and easily recognizable by their shape and form (Figure

3.10d,h,l).
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Figure 3.10 – Sub-image stabilization of zone 1 of camera 2 under different illumination
conditions. (a,e,i) Reference sub-image: Oct/01/2013 - 09:40:00 GMT; (b,f,j) unstabi-
lized sub-images under shinny, cloudy and foggy weather conditions; cross-correlation
between the reference sub-image and the unstabilized sub-images with (d,h,l) and with-
out (c,g,k) using the CED. The green cross represents the static keypoint that should
match between frames.

The performance of the cross-correlation algorithm (together with the CED) de-

pends strongly on the land-region zone selected, therefore the sub-image region selec-

tion is the most important step of the method. It is advised to define a large enough

window to allow inter-frame movement not only for the keypoint, but also for the whole

feature (e.g., building structure, billboard, road, etc.) to guarantee better results and

reduce as much as possible user assistance during the pixel shift computation process.

The compromise of having a larger zone-size is just related to the computation time

that it will take for the cross-correlation algorithm to work on each frame. However,

it is more important to be careful to not choose a very small zone where the feature

(including the keypoint) might drift out of view, which in this case, would lead the

cross-correlation algorithm to fail. A limitation of the method is that it requires the

presence of fixed features in the camera view field. However, for fixed video systems

where usually camera viewing angles shift slightly (e.g., less than 5°) and camera trans-

lational movements are small, a similarity transformation (4 DOF) can be performed to
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stabilize the images with a minimum of two non-collinear pairs of keypoints between

frames. The advantage of this approach, besides requiring fewer keypoints, is that it

is computationally efficient and robust enough to achieve good results. Nevertheless,

registration reliability and accuracy can be increased by selecting more landmarks in

the image. Having more spread keypoints in the image reduces foreground-background

bias and also allows the possibility to implement other more complex types of geometric

transformations with higher degrees of freedom (Hartley and Zisserman, 2004), such

as a 2-D affine (6 DOF) or planar nonlinear homography (8 DOF) transformation to

remove perspective deformation introduced by the camera oblique view (really neces-

sary for UAVs). The method has been tested on UAV flights (data not shown) showing

that the performance largely improves (with 99% matches for case 1 and case 2) when

using higher frequency frame rates (>1 Hz) during smaller periods of time (<20 min),

although other geometric transformations with higher degrees of freedom are necessary

due to the fact that camera translation movements become significant.

The time evolution of the transformation parameters show that camera movements

occur on a wide range of timescales (see Figure 3.7). The annual signal in azimuth and

tilt deviation can potentially be attributed to the sun position and thermal expansion

fluctuations (Bouvier et al., 2019). It is important to note that all cameras were in-

stalled inside the lighthouse mounted in a wooden structure and isolated by an acrylic

glass from the outside elements, so wind is not expected to be a source of camera

motion for the present study. While movements were likely occurring for all cameras,

the effects of azimuth and tilt motion were most notable for camera 2 (which had the

longest focal length; 25 mm lens) and less evident for camera 3 (wide-angle 8 mm

lens). This is in line with Pearre and Puleo (2009), who previously showed that the

longer the focal length (e.g., 50 mm), the smaller the angle of view and the larger the

sensitivity to cause significant changes in image location even for small changes in the

tilt of the camera. Moreover, small changes in perspective were found to modify the size

of the objects (uniform scaling) when objects were far away from the camera, as shown

in Figure 3.7d for camera 1. On the other hand, the quasi-steady counter-clockwise

trend observed in roll angle (Figure 3.7c) suggests that the wooden structure where the

cameras are mounted is gradually arcing with time, although this cannot be verified.
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Previous studies have shown that small camera viewing angle deviations can induce sig-

nificant changes in image location and, in turn, introduce large geo-rectification errors

(Pearre and Puleo, 2009; Bouvier et al., 2019; Bergsma et al., 2019). However, besides

camera variation angles, the related error is also modulated with the pixel footprint

that depends on the distance from the camera and the lens properties. For example,

even though camera 2 presented the largest deviations in azimuth and tilt (see Figure

3.6), its associated geo-rectification error was slightly lower with respect to the other

cameras for the same distances (see Figure 3.9d). This result might be explained by

the fact that camera 2 has a higher pixel resolution and hence a lower pixel footprint

that counteracts for the induced pixels real-world location error. Nevertheless, evidence

still points out that geo-rectification errors induced by camera movement can become

significant and should not be neglected. In an attempt to demonstrate the impact of

this error (in perhaps the most common coastal video application), 2.5 km of shore-

line were manually digitized for the outstanding winter period of 2013/2014 (Castelle

et al., 2015; Masselink et al., 2016; Castelle et al., 2017a) using non-stabilized and

stabilized time-exposure geo-rectified images to estimate the real-world horizontal po-

sitioning error due to camera movement (Figure 3.11). The mean shoreline position

(intersection of wet and dry parts of the beach (Coco et al., 2005)) was defined as

the alongshore-averaged shoreline position. The alongshore standard deviation of the

shoreline position was also computed to give a measure of the alongshore variability

of the cross-shore position. During the winter period of 2013/2014 high-energy wave

conditions (Hs > 5 m) drove important changes in Anglet Beach shoreline dynamics

(Huguet et al., 2016). Part of the seasonal erosion cycle is captured in Figure 3.11

where the shoreline position varied around a range of 30 m. The mean shoreline appar-

ent position was also affected by an approximately 10-20 m bias showing that incorrect

tilt may bias positions of features by condensing or stretching the image in the cross-

shore direction. This result highlights that overlooking camera movement can result in

strongly under- or over- estimation of shoreline response to extreme events.
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Figure 3.11 – Daily alongshore averaged shoreline position extracted from stabilized
(red dots) and unstabilized (blue dots) geo-rectified images for the outstanding winter
period of 2013/2014. The alongshore standard deviation of the cross-shore position is
indicated by the vertical error bars.

3.3.7 Conclusions

In this paper, we developed an efficient semi-automatic method to remove unwanted

camera movement after video acquisition. The method consisted in defining and track-

ing a few fixed feature points between consecutive frames using Guizar-Sicairos et al.

(2007) sub-pixel cross-correlation algorithm together with a CED (Canny, 1986). The

use of the CED greatly improved the performance of the cross-correlation algorithm

by making it more robust against contrast and luminosity brightness variations. The

tracked features allowed to compute the parameters of a similarity transformation

(translation, rotation and scale) to estimate the motion between frames and compensate

for it. For the keypoint matching, the method worked under a scheme of four cases. The

algorithm was capable of computing automatically the 2-D sub-pixel shift of a keypoint

with respect to an initial position as long as the displacements between consecutive

frames remained smaller than 10 pixels. Otherwise, user input was required to discern

if the calculated pixel shift was legitimate or the frame had to be discarded. Results

showed that the semi-automatic method is able to process at least 90% of the frames

without user assistance. However, future work should examine the possibility to auto-

matically discard low-quality images acquired under adverse rain or foggy conditions in
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order to reduce user intervention. Image stabilization is a fundamental post-processing

step that should always be performed in coastal imaging applications to increase the ac-

curacy of video-derived products, such as shoreline/sandbar position, wave celerity and

depths estimate. The framework presented here opens new perspectives and appears

as a promising tool for other coastal imaging applications such as removal of undesired

high-frequency jitters from UAVs.
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CHAPTER 4. NEARSHORE BATHYMETRIC MAPPING FROM VIDEO IMAGERY

4.1 Preamble

This chapter comprises the results of the work performed during my second year of

my PhD. Once the images were stabilized and corrected from camera movement, the

main objective was to implement an existing video-based linear depth inversion algo-

rithm (cBathy; Holman et al. 2013) in order to investigate PCA beach morphological

response and time evolution during the storm events of October 2018 field campaign.

One important aspect was to assess video-derived bathymetries with available topo-

bathymetry surveys and evaluate the performance of cBathy under high-energy wave

conditions since cBathy has been rarely tested in beach environments with waves larger

than 2 m height.

The following sections of this chapter describe the most popular methods, currently

available, for obtaining intertidal and subtidal bathymetry based on video remote sens-

ing techniques. The spectral depth inversion method cBathy (Holman et al., 2013) is

introduced, applied and discussed, and the results are placed into perspective with the

limitations of the optical conditions and the physics assumptions.

4.2 Introduction

Bathymetry is probably the most critical variable for understanding and modelling the

hydro-sedimentary processes and variability of the nearshore, yet it is often poorly

known (Holman et al., 2013). Morphological changes of the beach profile are spread

over a wide range of spatio-temporal scales that vary from a few hours (storm) to sev-

eral weeks (changes in swell regimes) at the scale from ripples to sandbars. Decisions

on coastal zone management are mainly based on understanding sediment budgets and

the location and health of beach sand volumes (Davidson et al., 2007). This is a chal-

lenging task since, the impact on, and recovery rate of the sub- and inter-tidal zone

varies greatly depending on the location (Masselink et al., 2016).
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Until the 1990s, one common way of directly measuring beach profiles was through

the use of bottom-contacting vehicles such as the Coastal Research Amphibious Buggy

(CRAB; Birkemeier and Mason 1984) in combination with a fathometer to compile a

comprehensive bathymetry. Nowadays, in situ bathymetric data is traditionally obtained

using an echo sounder mounted behind a jet ski (Dugan et al., 2001) or a small ves-

sel (MacMahan, 2001) equipped with a Real-Time Kinematic and Differential Global

Positioning System (RTK DGPS) sensor that can retrieve depths within a couple of cen-

timeters accuracy (Van Son et al., 2009). Although these methods are accurate, for

logistical and economic reasons, in situ beach surveys are usually performed at most

twice per month and are restricted to periods of fair weather conditions with low waves

(Honegger et al., 2019). Consequently, considerable effort has gone into the devel-

opment of a wide range of depth measurements techniques based on remote sensing

that exploit various depth signatures in order to fill the spatial and temporal gaps in

surveyed bathymetry Holland et al. (2018).

4.3 Indirect bathymetric mapping

The following subsections will give a brief overview regarding the research that have

been done using remote sensing, with special focus on optical methods, to estimate the

nearshore bathymetry.

4.3.1 Intertidal bathymetry mapping

Plant and Holman (1997) proposed the first method to map the intertidal beach

bathymetry based on the composition of different shoreline elevation contours through-

out a tidal cycle. Greyscale timex images are used to detect the shoreline (de-

fined as the transition zone between beach pixels and water pixels) by extracting the

pixel "Shore-Line Intensitiy Maximum" (SLIM) at which wave breaking is maximized.

High-frequency intensities that are caused by individual waves and foam motion are

smoothed by time-averaging images to isolate a mean shoreline position. As the tidal

elevation is known at each time, the video-detected shoreline can be associated to a

particular elevation. Thus, a time series of shoreline elevation contours from low tide to
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high tide can be combined to reconstruct the three-dimensional intertidal bathymetry.

Aarninkhof et al. (2003) improved this method by incorporating RGB-color timex im-

ages for an easier shoreline detection as well as concurrent tide and wave data. Pixels

are clustered in a hue-saturation-value (HSV) color space where the shoreline is defined

as the transition between water and land pixels. Almar et al. (2012b) extended this ap-

proach by using a Minimum Shoreline Variability (MSV) method to detect shorelines at

complex meso-macro tidal beaches subject to high energy waves.

Although intertidal bathymetry mapping based on video techniques has proven to

be very useful, it is not the main challenge of this work, as one can survey the intertidal

zone by traditional means at low tide. The scope and interest relies on estimating

the subtidal bathymetry which is both expensive and highly time consuming through

surveys.

4.3.2 Subtidal bathymetry mapping

Maximum pixel intensities corresponding to wave breaking can also be used to esti-

mate two- and three-dimensional subtidal morphology. For example, the location of the

sandbar(s) can be determined by identifying one or more white alongshore bands of

high intensity (Lippmann and Holman, 1989, 1990; Van Enckevort and Ruessink, 2003;

van Enckevort et al., 2004). Several remote sensing approaches have been suggested

to estimate the subtidal bathymetry. Among these group of methods are the one based

on light penetration in the water column and the subsequent reflection of the seabed

(see subsection 4.3.2.1) and the one based on sea surface characteristics. The latter

group can broadly be subdivided into methods that rely on wave dissipation patterns

caused by depth-induced wave breaking (see subsection 4.3.2.2) and changes in local

wave celerity over a varying depth profile (see subsection 4.3.2.3).

4.3.2.1 Multi- and hyperspectral depth inversion

For clear water with a visible bottom, multi- or hyperspectral sensors display color vari-

ations that can be correlated to depth (Lyzenga and Ahrens, 1978; Lee et al., 1999;

Mobley et al., 2005; Lyzenga et al., 2006). As different colors penetrate water at differ-
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ent depths, the disparity between them can provide information about the depth. For

example, Mobley et al. (2005) created a database based on remote-sensing reflectance

according to different water depths, so that the measured reflectance for a particular im-

age pixel could be matched with a look-up-table and inverted to retrieve water depth.

Although this depth-by-colour method can provide relatively inexpensive high-spatial

resolution bathymetry maps, the method generally requires in-situ ground calibration

which limits this technique to accessible areas only (Almar et al., 2019). Moreover, in-

version methods from multi- or hyperspectral satellite are subject to atmospheric and

water clarity, while coastal waters in many areas of the world, including the current

study site, are often turbid (Gao, 2009).

4.3.2.2 Depth estimation from wave energy dissipation

Local depth information can be obtained by coupling the pixel intensities to wave energy

dissipation rates in relation to an underlying depth profile (Battjes and Janssen, 1978).

Under this concept, Aarninkhof and Ruessink (2004); Aarninkhof et al. (2005, 2006)

developed a method where cross-shore breaking-wave dissipation patterns from timex

images are compared with numerical modelled dissipation proxies over a series of test

bathymetries to find the one that is most consistent with observations. van Dongeren

et al. (2008) extended this wave dissipation method through a data-model assimilation

framework called Beach Wizard. Moreover, Wilson et al. (2010) showed that through

further data assimilation (the addition of wave and current measurements) using an

ensemble Kalman filter, the accuracy of an updated modelled bathymetry can be en-

hanced. The main drawback of wave energy dissipation methods is that evidently they

are limited to wave breaking areas (e.g., surf zone) and require full numerical model

run for each guess which makes it difficult for operational purposes.

4.3.2.3 Depth inversion through wave dispersion relationship

One of the most common approach to estimate water depth is through the wave disper-

sion relationship which for the simplest case is derived from linear wave theory under

the assumption of small amplitude waves and locally horizontal bottom. In this case,

the radial frequency ω (2π/T ) is directly related to the water depth h, the gravitational
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acceleration (g) and the radial wave number k (2π/L), as shown in the following equa-

tion:

ω =
√
gk tanh(kh) + uk. (4.1)

The term uk accounts for the Doppler shift due to mean currents (u). This term is

often neglected for open beaches with small influence of rip currents since u is consid-

ered to be small compared to the wave celerity in the same direction as u. Wave celerity

or phase speed c in the absence of Doppler shifts is expressed as:

c =
ω

k
=
L

T
. (4.2)

From Eq. 4.1 and 4.2 the celerity of a wave, based on linear wave theory is:

c =

√
g

k
tanh(kh), (4.3)

which can be inverted to estimate the water depth:

h =
tanh−1( c

2k
g

)

k
=

tanh−1(ω
2

gk
)

k
=

L

2π
tanh−1

(
2πL

gT 2

)
(4.4)

Attemps to retrieve nearshore bathymetry from Eq. 4.4 have been investigated since

World War II (Williams, 1947). Sequences of air photos of enemy-held beaches were

manually analyzed to determine wavelengths L and wave periods T (Johnson, 1949;

Fuchs, 1953). Nowadays, the use of depth inversion from linear wave dispersion has

been extended to X-Band radars (Bell, 1999; Bell and Osler, 2011), satellites (Mancini

et al., 2012; Bian et al., 2020) and of course video-monitoring stations (Stockdon and

Holman, 2000; Holman et al., 2013). It is important to note that the linear dispersion

relation implies that depths can only be inverted to a limited depth which theoreti-

cally corresponds to intermediate water depths (in practice: h < L/2). The validity

of the linear dispersion relation is also bounded to the increasing degree of wave non-

linearity (finite amplitude effects) as waves approach the shore leading to larger propa-

gation speeds for higher waves (Grilli, 1998; Bergsma and Almar, 2018). Correction for

finite-amplitude dispersion in shallow water requires a modification in the wave celerity

equation, i.e., c =
√
g(h+H) which implies knowledge of the wave height H that is
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usually unknown and difficult to obtain remotely. Examples of depth inversion through

non-linear wave dispersion relationship are addressed by Holland (2001); Catálan and

Haller (2008); Almar et al. (2011). The application of non-linear depth inversion re-

quires either in-situ wave data or a computation effort which is additional compared to

the linear dispersion relationship (Bergsma, 2017).

Two different approaches for depth inversion using the linear dispersion relation-

ship are applied in nearshore video camera systems; a temporal and a spectral method

(Bergsma and Almar, 2018). The temporal method (Almar et al., 2009) correlates time-

varying wave signals between neighboring positions from timestack images to find the

best correlation that is related to wave celerity. The spectral method (Plant et al., 2008;

Holman et al., 2013) transforms a spatial neighborhood of pixel intensity time series

to the frequency domain for cross-spectral analysis and complex Empirical Orthogonal

Function (EOF) analysis in order to derive the most coherent and dominant frequency

and wavenumber pairs. Although both approaches result in depth estimates with simi-

lar accuracy using synthetic cases (Bergsma and Almar, 2018), the spectral method has

the advantage to be extended into two spatial dimensions while the cross-correlation

temporal method is limited to one-dimension and subject to errors for an oblique wave

incidence angle (Thuan et al., 2019). Another advantage of the spectral method over

the temporal method is that a larger amount of signals in space and time are used for

each point where the bathymetry is intended to be estimated. For weakly monochro-

matic noisy wave conditions, the spectral method is then often more robust than the

temporal method (Bouvier, 2019).

The cBathy algorithm, developed by (Holman et al., 2013), is a spectral depth inver-

sion method that has been widely used in nearshore regions (intermediate and shallow

water) to remotely estimate bathymetric data (Brodie et al., 2018). It incorporates a

temporal Kalman filter (Kalman, 1960) based on present and prior bathymetric esti-

mates to provide robustness in case of sporadic camera or weather problems such as

fog or rain. Although cBathy was originally conceived for fixed shore-based coastal

monitoring video stations, its implementation has also been tested on X-band radars

(Honegger et al., 2019, 2020) and UAVs (Aarnink, 2017; Bergsma et al., 2019). The

cBathy algorithm consist of three phases that will be explained in the section below.
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4.4 cBathy algorithm

The cBathy algorithm (Holman et al. 2013; https://github.com/

Coastal-Imaging-Research-Network/cBathy-toolbox) is based on the linear

wave dispersion relationship to estimate depth and thus requires a time series of

images with the presence of waves in intermediate and shallow water. Images are

typically sampled at 1 or 2 Hz over a 17-min collection to yield a burst or stack of

images. Data runs are typically collected hourly but can be reduced to half-hourly for

field experiments or places where conditions (for example, tide or morphology) change

rapidly. The image spatial resolution should be adequate to resolve the anticipated

dominant wavelengths. It is recommended that no fewer than four pixels per expected

wavelength be used for sampling. For the case of Anglet beach, the wavelength for

a typical 10-s wave in 1 m depth is ∼31 m. This means that for a cross-shore (∆xp)

and alongshore (∆yp) spacing of 5 and 10 m, respectively, 6 points will be provided

in the cross-shore to resolve the wavelength, which is fine to keep computation time

reasonable (alongshore scales are longer, so can be well resolved with a larger sample

spacing). Once the stack of images is recorded the analysis is carried out sequentially

at a series of user-selected analysis points (xm, ym) for which a group of neighboring

pixels is used within a user-specified range (xm ± Lx, ym ± Ly) or tile (Figure 4.1).

cBathy algorithm consist of three processing steps or phases. The objective of phase

1 is to estimate a wavenumber k at the point (xm, ym) for a user-defined set of candidate

frequencies fb. These frequencies fb are typically defined between 0.056 and 0.250 Hz

and correspond to wave periods ranging from 4 to 18 s. Each pixel within the analysis

tile (xm±Lx, ym±Ly) is treated as an individual pixel intensity time series and converted

to the frequency domain through a Fourier transformation. A cross-spectral matrix is

then computed between all possible pixel pairs inside the tile for each of the desired

frequency bands fb. A selection of the most coherent frequencies (commonly four;

cBathy default value) are identified and extracted through spatial empirical orthogonal

function (EOF) to determine the dominant spatial phase of the wave. The corresponding

wavenumbers k are derived by fitting the wave patterns of the observed spatial phase

to a forward modelled wave train. A skill value is provided to indicate the percentage
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4.4. CBATHY ALGORITHM

Figure 4.1 – Pixel array used for cBathy analysis. Time series are collected at every
pixel. Analysis at any example location (e.g., red dot) is based on data from the sur-
rounding tile of pixels (green dots) of size +/- Lx and Ly. The image is rotated, since
cBathy assumes that the x-axis increases offshore.

of the variance explained by the fit where a skill score of 1 corresponds to a perfect

match. Finally, for each fb − k pair, a depth h̃(xm, ym) can be estimated using the linear

dispersion relationship (Eq. 4.4). Since cBathy estimates depth, not bathymetry, tidal

elevations must be subtracted from estimates to yield depths relative to a fixed tidal

datum.

In phase 2, a single depth ĥ(xm, ym) is computed by combining the multiple fb − k

pairs estimated from phase 1 through a weighted non-linear least squares fit so that

the best correspondence to the linear dispersion relationship is found. Phase 2 depths,
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like those of phase 1, must be tide-corrected to yield bathymetry data referenced with

respect to a tidal datum.

Phase 3 uses a Kalman filter (Kalman, 1960) to smooth and average the datum-

referenced depths in order to provide a robust and reliable depth estimate, h(xm, ym).

As the Kalman filter depends on both the current and the previous cBathy-estimated

bathymetry, this step only works if more than one video-derived bathymetry is available.

The purpose of the Kalman filter is to provide an estimate of beach morphology over

certain areas even when in situ conditions are not favorable by filling gaps in coverage

and objectively averaging new estimates with prior estimates.

4.5 cBathy results and previous validation

The quality of bathymetric estimates derived from cBathy has previously been compared

with conventional bathymetric surveys obtained from echo sounder and acoustic altime-

ters for a number of different beaches (summarized in Table 4.1). However, cBathy has

rarely been tested in beach environments with waves bigger than 1.7 m, and almost

never in presence of waves bigger than 2 m with Tp >10 s due to the difficulty of con-

ducting in situ surveys in the presence of large waves (Brodie et al., 2018). As shown

in Table 4.1, the discrepancies between measured and computed (cBathy) bathymetric

data range from 0.34 to 2.05 m and from 0 to 0.92 m, RMSE and bias, respectively. The

error variability depends largely on the resolution of the video system, site morphology,

and hydrodynamic conditions at the time of acquisition. Maximum errors are usually

located offshore, several hundred meters away from the video system due to the alter-

ation of the pixel footprint, and close to the shoreline where analysis tiles tend to mix

information from waves, swash and static dry sand (Holman et al., 2013). Moreover,

saturation of the surf zone, due to (large) waves breaking, affects the readability of

the wave signature and thus compromises the accuracy of cBathy performance (Bouvier

et al., 2020). As stated before, errors are often larger in shallow waters where linear

theory becomes less valid due to wave breaking and finite amplitude effects (Holland

et al., 2001; Bergsma and Almar, 2018).
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Table 4.1 – cBathy performance statistics from prior work, organized by decreasing Hs.
Adapted from Brodie et al. (2018).

Date Hs Tp Bias RMSE Tide Location # Reference Notes
[m] [s] [m] [m] [m] Obs.

Sep/2015 to Sep/2016 0.3-4.3 m 4-18 -0.26 0.75 - Beach near Duck, NC, USA 8 Brodie et al. (2018)
2009-2011 0.25-2.00 - 0.19 0.51 0.98 Duck, NC, USA 16 Holman et al. (2013)

Mar/2013 to Mar/2014 <1.65 - 0.59 0.79 - SandEngine Netherlands 6 Rutten et al. (2016) -10<depth<-5 m
Mar/2013 to Mar/2014 <1.65 - -0.01 0.34 - SandEngine Netherlands 6 Rutten et al. (2016) -5<depth<-1 m
Mar/2013 to Mar/2014 <1.65 - -0.92 0.34 - SandEngine Netherlands 6 Rutten et al. (2016) -1<depth<0 m

4-13/Dec/2016 1.52 9.2 - 1.28 0.4-1.6 Saint Louis, Senegal 1 Bergsma et al. (2019) ĥ results; via UAV
13/Jul/2013 - 7.1 -0.41 0.56 >3 Agate Beach, OR, USA 1 Holman et al. (2013)

17/May/2012 1.19 5-7 0 0.52 - New River Inlet, NC, USA 1 Holman and Stanley (2013)
10/Apr/2014 1.16 10.5 - 1.06 2.78 Porthowan, Cornwall, England 1 Bergsma et al. (2016)

9-17/Sep/2010 0.5-1 - 0.26 0.49 - Duck, NC, USA 1 Honegger et al. (2019) via X-band radar
July-Aug/2013 - - 0.11 0.35 - Benson Beach, WA, USA 1 Honegger et al. (2019) via X-band radar

Feb/2017 0.70-0.97 - - 0.37-0.87 - Scheveningen, Netherlands 1 Aarnink (2017) via UAV
20/Feb/2013 0.64 5.8 -0.18 1.01 1.4-1.9 Kijkduin, Netherlands 1 Wengrove et al. (2013) ĥ results
17/Abr/2014 0.52 10.4 - 2.05 6.03 Porthowan, Cornwall, England 1 Bergsma et al. (2016)
Jan-Mar/2018 0.52 8 0.01 0.38 0.2 Lido of Sète, France 1 Bouvier et al. (2020)
Jul-Dec/2018 0.52 8 0.02 0.37 0.2 Lido of Sète, France 1 Bouvier et al. (2020)
1-4/Jul/2013 <0.50 - - 0.48-0.66 - SandEngine Netherlands 1 Radermacher et al. (2014)
17/Feb/2013 0.22 8.5 -0.5 1.27 1.4-1.9 Kijkduin, Netherlands 1 Wengrove et al. (2013) ĥ results

Average: -0.08 0.72

4.6 cBathy settings for PCA beach field experiment

The objective of this study is to determine PCA beach morphological time evolution

during October 2018 field experiment and assess the ability of cBathy algorithm to esti-

mate nearshore bathymetries under high-energy waves. For this purpose, 1-Hz sampled

images were continuously collected during daylight hours on 5,8-15,18-30/Oct/2018

(Figure 2.8d and 4.5). Images were collected from a single camera (cam4) located on

top of Biarritz lighthouse (Figure 2.6 and 2.7). Following subsection 4.4, time series of

images were rotated and rearranged into stacks of ∼17 min (1024 s) duration yielding

one image-stack every 30 min. cBathy algorithm (v1.2) was then applied to a total of

330 image-stacks. The parameters used for cBathy are shown in Table 4.2. Time series

of water depth were estimated on a 25×10 m analysis grid (alongshore × cross-shore

spacing) and further referenced to NGF-IGN69 (Global French Levelling) to produce

bathymetry maps. The Kalman filter was then consecutively applied over time to yield

a stable running average depth by automatically weighting better estimates from prior

information. It should be noted that for the 5th of October 2018 (the same day as the

first bathymetry survey) only one image-stack was available, meaning that the Kalman

filter could not be applied during that day.
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Table 4.2 – cBathy Parameters used for October 2018 field experiment.

Description Value

Pixel cross-shore spacing (∆xp) 5 m
Pixel alongshore spacing (∆yp) 10 m
Cross-shore depth analysis spacing (∆xm) 10 m
Alongshore depth analysis spacing (∆ym) 25 m
Cross-shore analysis smoothing scale (Lx) 30 m
Alongshore analysis smoothing scale (Ly) 75 m
Temporal resolution (∆t) 1 s
Record length of each stack (τ) 1024 s
Number of stacks (Nstack) 330
Minimum acceptable depth (hmin) 0.25 m
Analysis frequency bins (fb)

[
1

18 s
: 1
100 s

: 1
4 s

]
Number of frequency bins to retain (Nkeep) 4

4.7 Topo-bathymetry surveys comparison

As previously described in subsection 2.2.1, during October 2018, several surveys were

conducted with the purpose to quantify inter- and sub-tidal morphological variations

throughout the experiment. Inter-tidal topography surveys were performed on 15

and 24 October, and bathymetry surveys were performed on 5 and 26 October 2018.

As shown in Figure 4.3, comparison between surveys indicate the formation of an

alonghore uniform sandbar centered at cross-shore position = 300 m with a net depo-

sition of sand (around 1-m of accretion) at the respectively longshore and cross-shore

position (400 m, 300 m). The overall erosion in the cross-shore distance between 400

and 600 m indicates an overall onshore sediment transport that drove the development

of the bar, as well as beach accretion (at cross-shore position ≈ 100 m), despite the

moderate- to high-energy wave conditions during that period. The development of a

shallow rip channel is also observed at alongshore distance = 400−500 m and cross-

shore distance = 250 m.
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Figure 4.2 – Topo-bathymetry surveys comparison. (a) Interpolated bathymetry
(05/Oct/2018) and intertidal topography (15/Oct/2018). (b) Interpolated bathymetry
(26/Oct/2018) and intertidal topography (24/Oct/2018) merged together into a single
bathy-top map. (c) Difference between surveys where red colors indicate sand accretion
and blue colors sand erosion.

It was decided not to merge the bathymetry data collected on 5 October with the to-

pography collected on 15 October, as a high-energy wave event occurred between both

dates (Hs up to 4 m on 7 October 2018; see figure 2.8) potentially inducing changes in

the sea bed morphology. On the other hand, the topographic and bathymetric data col-

lected on 24 and 26 October 2018, respectively, were interpolated and merged together

to produce a single bathy-topo map. Thus, only the bathymetry data (05/Oct/2018),

as well as the topo-bathymetric ensemble (24,26/Oct/2018) representing the morpho-

logical conditions during the beginning and end of the experiment, respectively, will be

used as ground truth to further validate cBathy estimations.

4.8 cBathy results

4.8.1 cBathy video-derived bathymetries vs. surveys

Figure 4.3 presents the non-filtered cBathy bathymetry estimation computed for the

same day as the first bathymetry survey (05/Oct/2018). Wave and tide conditions dur-

ing cBathy computation (Hs = 0.55 m; Tp = 12.5 s; θp = 3.6°; Tide = 1.58 m) showed

no wave breaking as illustrated in the standard deviation image (Figure 4.3a). The

bulk performance of cBathy to reproduce morphological features present in the first

bathymetry survey achieves 0.57 m root-mean-square-error (RMSE) with 0.37 m bias.

The intermediate water region comprised between alongshore distance = 350−800 and
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cross-shore distance = 300−450 is well reproduced by cBathy. However, the remain-

ing shallow water regions, including the sandbar, are fairly reproduced in shape, but

overestimated in depth (inaccuracies around 1 m), as shown in Figure 4.3d and the

cross-shore and alongshore profile transects in Figure 4.3e,f.

Figure 4.3 – cBathy vs. surveyed bathymetry for the 5th of October 2018. (a) Standard
deviation image to highlight preferential wave breaking; the magenta line indicate the
zero-elevation contour. (b) cBathy-derived bathymetry, (c) surveyed bathymetry and
(d) difference between both, where red (blue) colors indicate depth overstimation (un-
derestimation) in cBathy results. (e) Cross-shore and (f) alongshore transects, indicated
by the black dashed lines in panel (c), showing the comparison bewteen cBathy (black
solid line) and the surveyed profile (red solid line).

Figure 4.4 shows the estimated Karman-filtered cBathy bathymetry correspond-

ing to the topo-bathymetry survey conducted by the end of the field experiment

(24,26/Oct/2018). The standard deviation image (Figure 4.4a) depicts an oblique rip

channel within the surf zone between alongshore distance = 400-500 consistent with

the surveyed topo-bathy map (Figure 4.4c). However, this rip channel is not resolved by

cBathy estimations. cBathy shows an overall RMSE and bias of 0.56 and 0.29 m, respec-

tively, with larger errors near the steep shoreline and reef location, as shown in Figure

4.4d and the cross-shore and alongshore profile transects in Figure 4.4e,f. cBathy per-

formance is hypothesized to be lowered by wave breaking due to low tide and relatively

large waves (Hs = 0.85 m; Tp = 12.5 s; θp = 16°; Tide = -1.28 m).
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Figure 4.4 – cBathy (26/Oct/2018) vs. interpolated topo- (24/Oct/2018) bathymetry
(26/Oct/2018) survey. (a) Standard deviation image to highlight preferential wave
breaking; the magenta line indicates the zero-elevation contour. (b) cBathy-derived
bathymetry, (c) surveyed topo-bathy and (d) difference between both, where red (blue)
colors indicate depth overstimation (underestimation) in cBathy results. (e) Cross-shore
and (f) alongshore transects, indicated by the black dashed lines in panel (c), showing
the comparison bewteen cBathy (black solid line) and the surveyed profile (red solid
line).
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4.8.2 cBathy video-derived morphological evolution

Figure 4.5 shows the two bathymetric surveys conducted on 5 and 24-26 October 2018

(top panels), as well as six of the most representative cBathy video-derived bathyme-

tries. Standard deviation images are also included to highlight preferential wave break-

ing and provide visual aid to detect morphological features and validate if they are in

agreement with the corresponding bathymetric estimates. The hours of video recording

from which the 330 bathymetries were computed are indicated over the time series of

tidal elevation and significant wave height Hs. The bathymetry time evolution shows

the transition from a Low Tide Terrace (LTT) to a Transverse Bar and Rip (TBR) beach

state according to Wright and Short (1984) classification. During the beginning of the

field experiment, the sandy bed morphology was reasonably uniform alongshore show-

ing a terrace bar attached to the shore with a slight central crest located around 250 m

in the cross-shore. At high tide when waves were less than 1 m height, waves passed

over the sandbar without breaking until they reach the beach face, much like in a re-

flective beach. Throughout the experiment wave energy increased over time (Hs > 1

m up to 4 m on 07/Oct/2018) inducing the formation of rip channels with an oblique

orientation and thus introducing morphological discontinuities in the surf zone area.
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Figure 4.5 – cBathy video-derived bathymetries during October 2018 field experiment.
The middle panel shows the wave and tide conditions during cBathy implementation.
Non-shaded regions in the time series indicate video recording during daylight hours.
The magenta and black lines depict the zero elevation contour line and the red line
indicates the camera monitoring area. Standard deviation images are included to em-
phasize preferential wave breaking and provide visual aid to identify morphological
features.
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4.8.3 cBathy video-derived profile response

Different cross-shore profile transects were selected (Figure 4.6e) to investigate the

temporal evolution of the sandbar position over the 3-week field experiment. Wave and

tide conditions are presented in order to associate morphological evolution to hydro-

dynamic conditions at PCA beach (Figure 4.6a). Unexpectedly, all beach profiles (Fig-

ure 4.6e,f,g) show an unusual diurnal fluctuation in depth (around 1- to 1.5-m depth

amplitude). A close inspection of the profile temporal evolution reveals a direct tide

dependency on this high-frequency depth fluctuation, where high (low) tide is associ-

ated with deeper (shallow) profiles. This non-physical depth inaccuracy was removed

by applying a moving-average with a temporal window of two (daylight) days over the

whole bathymetry time series.

The smoothed cross-shore profile time-evolution (Figure 4.7e) shows an overall sand

deposition close to the reef by the end of October 2018 linked by the increasingly ener-

getic wave conditions after 27 October 2018, which is consistent with the sand accretion

for the same region in the topo-bathymetric survey conducted at the end of the experi-

ment (Figure 4.3c). The temporal evolution of the smoothed cross-shore profile transect

centered at alongshore distance = 700 m (Figure 4.7g) illustrates the temporal detach-

ment of the sandbar from the beach face creating a rip channel on 20-22/Oct/2018

(see standard deviation images for the same period in Figure 4.5). Overall, the cBathy-

derived cross-shore profiles transects (Figure 4.7h,i,j) are consistently below the sur-

veyed profiles with a positive bias of around 1 m depth.

Similarly, Figure 4.8 shows PCA beach 2-day time-averaged vertical profile response

over time for three different alongshore transects depicted in Figure 4.8e,f,g. A sys-

tematic change in sea bed elevation is evident after 23 October 2018 with more sand

accumulation close to the reef’s alongshore-distance location (∼300 m). The temporal

evolution of the alongshore transect corresponding to the shallowest sub-tidal region

(Figure 4.8f) shows an overall bias with respect to the ground truth surveys that might

be related with non-linear effects resulting in depth overestimation.
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Figure 4.6 – PCA beach cross-shore profile morphological evolution over October 2018
derived from cBathy estimates. (a,b,c) The cross-shore profile transects are indicated
by the black dashed lines. (d) Offshore significant wave height Hs (red line) and
tidal elevation (blue line) time series corresponding to the computed cBathy Kalman-
filtered stacks. (e,f,g) cBathy-derived timestacks along with (h,i,j) the time evolution
of each cBathy cross-shore profile (shown with different colors). The solid and black
dashed lines correspond respectively to profile transects obtained from bathymetry
(05/Oct/2018) and topo-bathymetry (24,26/Oct/2018) surveys. For better visualiza-
tion, the time is concatenated during available cBathy stacks (e.g., nightlight hours and
absent data from 16 and 17 October are removed).
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Figure 4.7 – PCA beach cross-shore profile morphological evolution over October 2018
derived from 2-day time-averaged cBathy estimates. (a,b,c) The cross-shore profile
transects are indicated by the black dashed lines. (d) Offshore significant wave height
Hs (red line) and tidal elevation (blue line) time series corresponding to the computed
cBathy Kalman-filtered stacks. (e,f,g) cBathy-derived timestacks along with (h,i,j) the
time evolution of each cBathy cross-shore profile (shown with different colors). The
solid and black dashed lines correspond respectively to profile transects obtained from
bathymetry (05/Oct/2018) and topo-bathymetry (24,26/Oct/2018) surveys. For better
visualization, the time is concatenated during available cBathy stacks (e.g., nightlight
hours and absent data from 16 and 17 October are removed).
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Figure 4.8 – PCA beach alongshore profile morphological evolution over October 2018
derived from 2-day time-averaged cBathy estimates. (a,b,c) The alongshore profile
transects are indicated by the black dashed lines. (d) Offshore significant wave height
Hs (red line) and tidal elevation (blue line) time series corresponding to the computed
cBathy Kalman-filtered stacks. (e,f,g) cBathy-derived timestacks along with (h,i,j) the
time evolution of each cBathy alongshore profile (shown with different colors). The
solid and black dashed lines correspond respectively to profile transects obtained from
bathymetry (05/Oct/2018) and topo-bathymetry (24,26/Oct/2018) surveys. For better
visualization, the time is concatenated during available cBathy stacks (e.g., nightlight
hours and absent data from 16 and 17 October are removed).
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4.9 cBathy error assessment

Following the approach proposed by Bouvier et al. (2020), a quality assessment was

computed for each of the non-filtered cBathy-derived bathymetries ĥ(xm, ym) by count-

ing the number of points for which the cBathy algorithm returns a physical value (skill

higher than 0.5 with associated depth errors lower than 1 m). The quality assessment

(Qual) of video-derived bathymetries was assessed in percentage terms in relation to the

total number of grid points inside the camera viewfield delimited by values below the

zero-elevation contour line. In other words, the quality assessment counts how many

non-NaN depth estimates are retrieved from cBathy within the sampled area. Figure

4.9 shows the cBathy quality assessment for the 330 computed bathymetries according

to their corresponding tidal elevation and offshore significant wave heights (Hs).

Figure 4.9 – Bathymetric inversion quality (Qual) as a function of tidal elevation (with
respect to MSL) and offshore significant wave height (Hs).

Tidal elevation has an influence on the quality of depth inversion with appreciable

errors associated to low tide stage. During low tide, waves break over the reef and

sandbar affecting the readability of the wave signature and resulting depth estimates.

Surprisingly, large waves (Hs > 2 m) do not appear to significantly reduce cBathy esti-

mations in the sampled area, as opposed to Bouvier et al. (2020) results. Nevertheless,

it is important to note that this quality assessment is based only on the total number of

individual depth outputs within the grid which performance at the end is given by the

same cBathy algorithm.
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4.10 Discussion

Video-derived bathymetry estimations showed noticeable depth deviations modulated

by a diurnal signal dependent on the tide. As only half of the tide-period is captured

during daylight hours video-recording, depth deviations appear to fluctuate around a

diurnal cycle (rather than at the semi-diurnal tide) due to an aliasing effect. Tide-

dependent bias in cBathy depth estimation has been previously addressed by Bergsma

et al. (2016) as a consequence of the limited inclusion of tidal elevation in the code.

cBathy assumes fixed geographical pixel locations over the entire stack period. As de-

scribed by Bergsma et al. (2016), the pixel spatial footprint changes as the water level

rises and lowers with the tide. As the water level rises, pixels move towards the camera

contracting its size, while during a falling tide the opposite occurs, a relative expansion

of the pixel footprint is produced as the distance with the camera increases (see Figure

4.10). Incorrect pixels positions result in a shorter sensed wavelength than in reality at

low tide, leading to an overestimation of the wave number and thus an underestimation

of the depth, and vice versa for high tide. To overcome this issue, before cBathy com-

putation, we rectified all images within a ∼17 min stack by setting the reference level

(tidal elevation) according to the time of the middle image of the stack. Consequently

we updated the tidal elevation for every stack. The maximum horizontal shift as a per-

centage of the distance between pixel and camera system can be found with the ratio

TE/zcam where TE is the vertical tidal excursion and zcam is the vertical position of the

camera system. For the case of PCA beach, the camera height is 70 m and the tide varies

approximately 0.1 m during 8.5 min. Thus, a ratio of 0.14% is found to produce pixel

shift inaccuracies in the horizontal plane. This means that when the camera viewfield

reach a distance in the far end of the domain (around 900 m) the pixels move around

1.3 m back and forth within the ∼17 min duration of a stack. Therefore, we suspect

that this deviation in accuracy due to pixel shifting is not sufficient to induce signifi-

cant variations in depth after cBathy computations. However, vertical inaccuracies in

bathymetry estimates can become significant if, for example, a longer video recording

period is desired for a stack (>17 min) in an environment where tidal elevation varies

rapidly such as the present field study.
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Figure 4.10 – The squares represent a selection of pixels moving up and down with the
tidal elevation. The pixel set moves respectively towards the camera system and away
from it. At the same time, relative contraction and expansion between pixels take place.
Figure and caption extracted from Bergsma et al. (2016).

In any case, the spurious tide-dependent depth-modulation seems likely to be related

with an inaccuracy on how the vertical fixed elevation is taken into account for the

pixel to ground coordinate transformation (subsection 3.3.4.5). An absolute error in

rectification (unreliability in the extrinsic and intrinsic parameters) obtaining the 11

transformation parameters can also lead to positioning errors. Therefore, these non-

physical sources of errors will require further investigation.

The very upper part of the beach face is related with less accurate results as analysis

tiles can contain partly wet/dry pixels at the sea-land interface mixing unuseful sub-

aerial and acceptable subaqueous signals (Rutten et al., 2016). The systematic shallow

water bias (overestimation of true depth) can also be explained by finite amplitude ef-

fects that increase wave celerity as waves shoal and break reducing the validity of the

linear dispersion relationship (Bergsma and Almar, 2018; Brodie et al., 2018). Figure

4.11 illustrates an example of this case. Since the depth inversion estimation depends

upon accurate estimates of frequency and wave number pairs, we selected a stack (un-

der typical wave conditions at high tide) and compared the f − k pairs, estimated from
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cBathy, with the linear dispersion relationship relative to the spectrum at the specific

depth and location given by the Aquadopp (AQ) current profiler installed within the

reef (see AQ position in Figure 2.7). As shown in Figure 4.11, the cBathy-derived wave

numbers according to the sea-swell frequency band are overall deviated from the linear

dispersion relationship. The straight line for the wave numbers is indicative of non-

linear interactions and that high-frequency components are bound or phase locked to

the wave group. Indeed, bound high harmonics contribute to an increase in skewness

and height of wave crests, which has for effect to enhance their propagation speed (Mar-

tins et al., 2021). Nevertheless, the overall mismatch between the cBathy-derived wave

numbers and the analytical linear dispersion relationship is too large to be attributed

solely to non-linear effects. As the cBathy computed wave numbers are smaller than the

predicted linear theory, when inverted, large depth overestimation are produced, up to

70% than the real water depth as shown for the case of the shallow water AQ location,

even though associated skill values (>0.5) indicate confident estimates. As mentioned

before, this large discrepancy in depth may be due to rectification errors although it

remains unclear.

The current cBathy version does not include the effects of currents and Doppler

shifting in the dispersion relation (Eq. 4.1). For the case of PCA beach, persistent rip

currents (e.g., near the headland) can potentially interact with incident (short-period)

waves, shortening their wavelength (k increases) and thus underestimating local depth.

However, with cBathy typical settings (Table 4.2), short-period waves and rapid cross-

shore depth changes over the sample domain cannot be resolved, unless a denser pixel

spacing is defined and more (higher) frequencies are accounted for analysis (thus re-

quiring more computational effort) (Holman et al., 2013; Brodie et al., 2018). On the

other hand, several studies have reported significant variation in cBathy performance

with increasing wave height (Holman et al., 2013; Bergsma et al., 2016; Bouvier et al.,

2020), since breaking waves are spread over a wider surf zone, obscuring the optical

wave signal. Despite this issue, the quality assessment computed using Bouvier et al.

(2020) approach, indicates the capability of cBathy to return depth estimates for more

than 70% of the domain even under waves larger than 2 m. However, the fact that

depth outputs (with a skill score > 0.5) are still retrieved even under large wave condi-
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tions does not necessarily mean that they are correctly estimated, as previously shown

in Figure 4.11.

Figure 4.11 – Frequency and wave number pairs estimated from cBathy using a ∼17
min stack from 11 October 2018 at 07:00 GMT. Field conditions according to the sam-
pled stack: Tide = 1.18 m (high tide); Hs = 1 m; Tp = 11.8 s; θp = 3.6° (respect
to shore normal). The curve shows the linear dispersion relationship for the specified
water depth (4.29 m) given by the Aquadopp (AQ) during the same time. The markers
indicate the f −k pairs estimated from cBathy at the Aquadopp grid position. The color
of the markers is proportional to the skill used as a threshold quality control within
cBathy code; f − k pairs with a skill score below 0.5 are usually rejected for depth
inversion.

4.11 Conclusions

Video-based depth inversion through the linear dispersion relationship for free surface

waves using the cross spectral correlation analysis, cBathy (Holman et al., 2013) was

applied consecutively for 3-weeks in a highly energetic macro-tidal environment. The

comparison between surveys and cBathy estimates reveals an overall RMSE = 0.37 m

and bias = 0.57 m for the beginning of the experiment (05/Oct/2018), and a RMSE =

0.29 m and bias = 0.56 m over the whole domain by the end of the experiment (24-

26/Oct/2018). With exception of the rip channel formed by the end of the experiment,

the morphological features are in approximately the right places but with a significant

vertical offset (1−1.5 m) over the whole domain and enhanced at the shallowest parts

(reef and beach shore face) where depth is consistently overestimated. Application of
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cBathy revealed two main issues: 1) inaccurate depth estimations dependent on the

tidal level and 2) less accurate depth estimates due to non-linear effects occurring in

shallow water regions. The first issue is most probably related with a rectification in-

accuracy and is currently under investigation. The second issue might be addressed by

incorporating non-linearity into the phase speed which requires additional knowledge

of the local wave height (Catálan and Haller, 2008). In conclusion, our results are in

agreement with Brodie et al. (2018) findings (the only study considering waves bigger

than 2 m), suggesting that bathymetric inversion should not be used to quantify mor-

phological evolution during storms, but rather when conditions are calmer at the time

of the rise or fall of each storm.
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5.1. PREAMBLE

5.1 Preamble

This chapter is based on the research article Rodríguez-Padilla et al. (2021) published

in the Journal of Remote Sensing, available in open access: https://www.mdpi.com/

1104840

The work behind this paper comprises a year of my PhD searching for a methodology

on how to estimate nearshore currents from consecutive video images. By the time we

started this research, we knew that the optical signature was always there; foam left by

breaking waves carried by the flow, as suggested by previous studies (e.g., Chickadel

et al. 2003; Almar et al. 2016). The challenge with respect to previous studies was

to find a method to track the two-dimensional foam displacement in the image plane

without tracking the influence of the passing waves. For this purpose, we built on Dérian

and Almar (2017) approach which consisted of tracking the foam trajectories using an

optical flow algorithm. Through trial and error and a lot of testings, we found a way

to filter out the wave signal from the image sequence in order to track the remnant

foam supposedly advected by the underlying currents. Nevertheless, it is important to

mention that during the period of writing this research article, Anderson et al. (2021)

simultaneously published a very similar article, which delayed the publication of our

manuscript as we had to restructure the content to put their work in context.

Before introducing the article, a brief recompilation of different methods to estimate

surface velocities using remote sensing is provided.
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5.2 Introduction

5.2.1 Surface currents estimation based on remote sensing tech-

niques

The observation and monitoring of nearshore currents is an important task for coastal

protection, erosion control, flood mitigation, marine operations and beach safety (Novi

et al., 2020). However, direct measurements of currents in the nearshore are logistically

challenging and expensive. Remote sensing of the current field is typically achieved

using radar-based techniques (Streßer et al., 2017). Aircraft and satellite-based scat-

terometers, altimeters and synthetic aperture radars are able to scan large areas of the

ocean, however, the coarse spatial resolution, infrequent sampling and interference by

adjacent land areas limits the measurements to regions well seaward of the surf zone

(Perkovic, 2008). On the other hand, ground-based radars such as high-frequency (HF)

radars (3−30 MHz) and microwave (S-band: ∼3 GHz or X-band ∼10 GHz) marine

radars have shown to be very useful to measure surface currents over coastal areas

of different extension (Novi et al., 2020). HF systems reach larger offshore distances

(1.5−200 km; "over the horizon") at lower spatial resolutions (0.25−3 km), which lim-

its its utility inside the nearshore, whereas X-band systems achieve a smaller offshore

range (2−5 km; "line-of-sight"), but with a significantly higher spatial resolution (5−10

m) sufficient to resolve the dominant surface wave motions.

HF radars measure ocean surface currents by calculating the Doppler shift of re-

turning energy that is Bragg scattered from surface gravity waves (Paduan and Graber,

1997; Kaplan et al., 2005). The difference between expected and observed Doppler

shift is used to calculate the radial surface current moving toward or away from the

radar station. Therefore, at least two HF radar stations are needed to combine these

radial currents to produce total surface current vectors.

For X-band radars, currents are estimated based on their Doppler shifting from the

predicted dispersion relationship (Holman and Haller, 2013). As described by Young

et al. (1985), a three-dimensional fast Fourier transform (3-D FFT) is applied to a series

of spatial wave images to determine the three-dimensional spectrum E(kx, ky, ω). In the

absence of a surface current the spectral energy in the three-dimensional wave number
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frequency space is expected to lie on a shell defined by the dispersion relationship. Any

deviation from the analytical dispersion relationship is attributed to a current shifting

the wave frequency. Therefore, a least square curve fitting technique can be used to de-

termine the surface current required to account for the observed Doppler shift (Streßer

et al., 2017). The main limitation of this approach is that 3D-FFT methods maximize

spectral information at the expense of spatial resolution (Honegger et al., 2020). Thus,

the inherent limitation of spatial resolution make this method unsuitable for solving

currents within the surf zone (Holman and Haller, 2013).

The use of video imagery to detect surface currents relies on tracking contrasting

features that are assumed to move from frame to frame with the flow velocity (Anderson

et al., 2021). In the surf zone, foam and bubbles generated by the breaking process

create contrast with the ambient water and provides a means to observe currents by

quantifying the passive advection of coherent features (Perkovic et al., 2009). However,

optical images also sense light reflections from sloped water surfaces and turbidity that

alters background color (Anderson et al., 2021). Thus, the challenge is to separate the

foam that is carried only by the flow from wave-breaking rollers that propagate at wave

celerity (Dérian and Almar, 2017).

A few studies were dedicated to the estimation of surface currents along one di-

mension using timestack approaches (Chickadel et al., 2003; Almar et al., 2016). The

alongshore orientation allows to isolate the drifting foam motion and filter out breaking

waves that appear as horizontal streaks in the timestack. To estimate two-dimensional

surface velocities from optical imagery, most approaches rely on cross-correlation meth-

ods such as particle image velocimetry (PIV), borrowed from the fluid mechanics com-

munity (e.g., Adrian, 1991) or more recently on optical flow techniques, borrowed from

the computer vision community (e.g., Horn and Schunck, 1981). Both methods have

the capability to extract velocity vector fields from consecutive images and have been

used to estimate surface currents in the swash and surf zone (Holland et al., 2001;

Puleo et al., 2003; Perkovic et al., 2009; Wilson et al., 2014; Dérian and Almar, 2017;

Anderson et al., 2021). However, none of the previous studies (with the exception of

Anderson et al. 2021) have addressed an approach to remove the dominant optical

clutter of incident waves from the image sequence to avoid capturing foam patterns
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superimposed on propagating waves.

Therefore, in this contribution, we propose a new approach to filter the dominant

optical signal associated with sea-swell waves from an image sequence. Moreover, we

explore the potential of computing two-dimensional wave-filtered surface currents by

tracking the residual drifting foam using an open-source optical flow algorithm.

5.3 Article: Wave-Filtered Surf Zone Circulation under

High-Energy Waves Derived from Video-Based Opti-

cal Systems

5.3.1 Abstract

This paper examines the potential of an optical flow video-based technique to estimate

wave-filtered surface currents in the nearshore where wave-breaking induced foam is

present. This approach uses the drifting foam, left after the passage of breaking waves,

as a quasi-passive tracer and tracks it to estimate the surface water flow. The optical

signature associated with sea-swell waves is first removed from the image sequence to

avoid capturing propagating waves instead of the desired foam motion. Waves are re-

moved by applying a temporal Fourier low-pass filter to each pixel of the image. The

low-pass filtered images are then fed into an optical flow algorithm to estimate the foam

displacement and to produce mean velocity fields (i.e., wave-filtered surface currents).

We use one week of consecutive 1-Hz sampled frames collected during daylight hours

from a single fixed camera located at La Petite Chambre d’Amour beach (Anglet, SW

France) under high-energy conditions with significant wave height ranging 0.8− 3.3 m.

Optical flow-computed velocities are compared against time-averaged in situ measure-

ments retrieved from one current profiler installed on a submerged reef. The computed

circulation patterns are also compared against surf-zone drifter trajectories under dif-

ferent field conditions. Optical flow time-averaged velocities show a good agreement

with current profiler measurements: coefficient of determination (r2) = 0.5 − 0.8; root

mean square error (RMSE) = 0.12 − 0.24 m/s; mean error (bias) = −0.09 to −0.17
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m/s; regression slope = 1± 0.15; coherence2 = 0.4− 0.6. Despite an underestimation of

offshore-directed velocities under persistent wave breaking across the reef, the optical

flow was able to correctly reproduce the mean flow patterns depicted by drifter trajecto-

ries. Such patterns include rip-cell circulation, dominant onshore-directed surface flow

and energetic longshore current. Our study suggests that open-source optical flow al-

gorithms are a promising technique for coastal imaging applications, particularly under

high-energy wave conditions when in situ instrument deployment can be challenging.

5.3.2 Introduction

Currents induced by wave breaking constitute the primary driving mechanism of sed-

iment transport and morphological change in the nearshore (Castelle et al., 2006).

Currents flowing along the shore (longshore currents) have the capacity to transport

hundreds of thousands of cubic meters of sand per year, reshaping the underlying

bathymetry and mobilizing nutrients, pollutants and biological species (Komar, 1998;

Chickadel et al., 2003). Wave action in the breaker zone induces a net transport of wa-

ter toward the shore, however, at certain locations along the coastline, the water returns

seawards through relatively narrows zones as rip currents (Inman, 2002). Rip currents

are concentrated fast-moving flows of water that extend from close to the shoreline

through the surf zone, sometimes beyond the breaking region (Castelle et al., 2016b).

These seaward-directed currents can pull swimmers offshore into deeper water making

them the leading cause of fatal drowning and lifeguard rescues on beaches worldwide

(Castelle et al., 2016a). Rip currents and associated surf-zone circulations are subject

to tidal and wave group modulation as well as to local bathymetry variations making

them highly variable in space and time, with flow pulsing within the infragravity (0.004

- 0.04 Hz) and very low frequency (VLF) band (<0.004 Hz) (MacMahan et al., 2006;

Castelle et al., 2010a). In this context, characterizing the nearshore circulation system

is crucial for efficient coastal infrastructure planning, reliable environmental assessment

and appropriate beach safety strategy.

Traditional nearshore surf-zone velocity measurements are obtained by instruments

deployed in situ collecting Eulerian or Lagrangian data. Examples of these instruments

are electromagnetic current meters, acoustic sensors, and surface drifters (Rijn, 2007;
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Inch, 2014). Although these measuring techniques are robust and accurate, they are

usually limited to punctual measurements over short durations (Almar et al., 2016).

Moreover, the deployment and periodic maintaining of the instruments require a sig-

nificant amount of money, manpower and logistics resources (Streßer et al., 2017).

Overall, collecting Eulerian and particularly Lagrangian data in high-energy beach envi-

ronments is one of the greatest challenges (Castelle et al., 2016b). In order to overcome

these limitations, remote sensing provides an attractive alternative.

Over the past decades, the use of low-cost shore-based video systems and more re-

cently camera-equipped unmanned aerial vehicles (UAVs) have enabled access to high-

resolution temporal and spatial data of the water surface layer (Holman et al., 2017;

Splinter et al., 2018b; Andriolo et al., 2019). A few approaches based on optical re-

mote sensing techniques have been developed to identify and characterize local surface

currents associated with specific frequency bands. Dispersion relation fitting techniques

(Young et al., 1985; Horstmann et al., 2017; Streßer et al., 2017) are one of such meth-

ods. Using the Doppler shifting of the surface gravity wave field, the surface velocity

vector is estimated from the difference between observed wave phase velocity and that

given by the linear dispersion relation (Horstmann et al., 2017). However, the use of the

linear wave dispersion in the nearshore region is questionable since non-linear effects in

wave hydrodynamics become significant (e.g., see Thornton and Guza, 1982). More-

over, the method requires a strong optical signature from the waves, which becomes

problematic in the surf zone due to the presence of foam and broken waves.

Alternatively, the presence of foam have actually been exploited by optical tracking

algorithms to estimate the surface flow velocity and the propagation speed of (broken)

wave crests (Holland et al., 2001; Chickadel et al., 2003; Puleo et al., 2003; Almar

et al., 2016; Dérian and Almar, 2017; Anderson et al., 2021). In the case of low wind,

the remnant foam produced by breaking waves is assumed to act as a quasi-passive

tracer being advected only by the underlying currents as long as the passing waves are

removed. This assumption has been exploited to estimate mean longshore currents in

the surf zone along a transect of pixels parallel to the shore (Chickadel et al., 2003;

Almar et al., 2016).

For extraction of the two-dimensional velocity field, perhaps the most common and
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well-documented video-based technique is particle image velocimetry (PIV) (Adrian,

1991; Thielicke and Stamhuis, 2014). This method essentially splits the image into sev-

eral user-defined image segments or windows. The spatially-averaged displacement of a

cluster of particles inside each window is computed over time using a cross-correlation

approach. PIV-based techniques are typically performed in laboratory conditions using

particle images (fluids containing reflective and neutrally buoyant tracer particles) to

determine the velocity of the flow (Cox and Anderson, 2001; Kimmoun and Branger,

2007). Nevertheless, several studies have applied the PIV-based approach using shore-

based and UAV video footage to estimate bore celerities and surface currents in the

nearshore (surf zone and swash zone) (Puleo and Holland, 2000; Holland et al., 2001;

Puleo et al., 2003; Perkovic et al., 2009; Wilson et al., 2014; Wilson and Berezhnoy,

2018; Chapman et al., 2019).

An alternative video-based technique that estimates the velocity field between con-

secutive images are optical flow algorithms (Horn and Schunck, 1981). Dérian and

Almar (2017) presented a methodology based on an optical flow algorithm named "Ty-

phoon" capable to estimate instantaneous nearshore surface currents from image se-

quences. More recently, Anderson et al. (2021) presented a new technique for process-

ing surf-zone imagery called WAMFlow. Their approach consists of filtering the domi-

nant optical clutter of incident waves from an image sequence by averaging frames over

a sliding window in time with size of twice the dominant wave period. The resulting

wave-averaged movie (WAM) contains residual foam features which are tracked using

an optical flow algorithm to estimate the underlying mean flow motion inside the surf

zone.

This paper builds on Anderson et al. (2021) similar wave-averaged approach. How-

ever, an alternative technique is proposed to remove the dominant wave optical signa-

ture present in the image sequence based on the use of a temporal Fourier low-pass

filter. The present paper aims to compare for the first time optical flow-derived ve-

locities against in situ velocity measurements from a fixed bottom-mounted Acoustic

Doppler Current Profiler (ADCP). Optical flow estimates are also qualitatively compared

with Lagrangian drifters deployed at the southern end of Anglet beach (Basque Coast,

SW France) during an intensive field experiment carried out in October 2018 under
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different wave, tide and wind conditions. Furthermore, this study provides some stan-

dard parameters for Liu (2017) MATLAB open-source optical flow program ("OpenOp-

ticalFlow") so that anyone can reproduce and estimate wave-filtered surface velocity

fields within the surf zone from consecutive images.

This paper is organized as follows. A brief introduction of the optical flow algorithm,

as well as the physics-based equations, are detailed in section 5.3.3. The study site and

the field experiment, including all available instruments, are described in section 5.3.4.

The main processing steps before and after optical flow implementation are introduced

in section 5.3.5. Results, performance and limitations of the optical flow method are

presented in section 5.3.6 and further discussed in section 5.3.7 before conclusions are

drawn in section 5.3.8.

5.3.3 Optical flow algorithm

Optical flow can be described as the apparent motion of individuals pixels (i.e., bright-

ness patterns) between consecutive frames on the image plane (Horn and Schunck,

1981; Turaga et al., 2010). The present optical flow method is a differential approach

based on a global formulation with a smoothness constraint which is capable to esti-

mate the entire vector flow field simultaneously by solving a single equation (Dérian

and Almar, 2017; Liu, 2017). The estimated pixel displacement and the known time

interval between frames allow computing 2D velocity components within the entire im-

age domain. The underlying assumption is that the image intensity from one frame to

another remains invariant such that the time derivative of the image intensity can be

accurately evaluated (Liu et al., 2012). This holds under the hypothesis that the pixel

displacement is sufficiently small so that the pixel intensity remains constant (Horn and

Schunck, 1981).

We used Liu (2017) MATLAB open-source optical flow program ("OpenOpticalFlow")

to extract high-resolution velocity fields from an image sequence containing continuous

patterns. The physical and mathematical foundations of Liu (2017) optical flow method

are well established and have been validated for various fluid flow visualizations using

laboratory, cloud and ocean images (Liu and Shen, 2008; Liu et al., 2012, 2015). The

physics-based optical flow equation in image coordinates is given by:
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∂I

∂t
+∇ · (Iu) = f(x1, x2, I), (5.1)

where I is the normalized image pixel intensity, u = (u1, u2) is the velocity vector with

(x1, x2) coordinates in the image plane referred to as the optical flow and f(x1, x2, I)

is related to the boundary term and diffusion term. ∇· is the divergence operator and

∇ =
(

∂
∂x1
, ∂
∂x2

)
is the spatial gradient. Eq. 5.1 is a generic form of the projected-motion

equations derived by Liu and Shen (2008) where the optical flow u is proportional to the

path-averaged velocity of fluid or particles in flow visualizations. Eq. 5.1 is treated as

an inverse problem since it is one equation with two unknowns (u1, u2). To determine

the optical flow, a variational formulation with a first-order smoothness constraint is

typically used (Horn and Schunck, 1981; Liu and Shen, 2008). Given I and f , we

define a functional:

J (u) =

∫
Ω

[
∂I

∂t
+∇ · (Iu)− f

]2
dx1dx2 + λ

∫
Ω

(
|∇u1|2 + |∇u2|2

)
dx1dx2, (5.2)

where λ is the Lagrange multiplier and Ω is the image domain. Minimization of the

functional J (u) leads to the Euler-Lagrange equation:

I∇
[
∂I

∂t
+∇ · (Iu)− f

]
+ λ∇2u = 0, (5.3)

where ∇2 =
(
∂2

∂x21
+ ∂2

∂x22

)
is the Laplace operator and λ is the Lagrange multiplier that

controls the smoothness of the field. In the special case where ∇u = 0 and f = 0, Eq.

5.1 reduces to the Horn and Schunck (1981) brightness constraint equation:

∂I

∂t
+ u · ∇I = 0, (5.4)

and further to the Euler-Lagrange equation originally given by Horn and Schunck

(1981): [
∂I

∂t
+ u · ∇I

]
∇I − λ∇2u = 0. (5.5)

Eq. 5.3 and Eq. 5.5 are solved using the standard finite difference method with the

Neumann condition ∂u
∂n

= 0 on the image domain boundary ∂Ω (Liu and Shen, 2008;

Wang et al., 2015). In computations, the solution of Eq. 5.5 is used as an initial approx-
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imation for Eq. 5.3 for faster convergence. The subroutines inside OpenOpticalFlow

(Liu, 2017) in charge of solving Eq. 5.5 and Eq. 5.3 are "horn_schunck_estimator.m"

and "liu_shen_estimator.m", respectively. Further details on the mathematical develop-

ment and error analysis of the optical flow method can be found in (Liu and Shen, 2008;

Liu et al., 2015; Wang et al., 2015; Liu, 2017).

Liu (2017) OpenOpticalFlow program also includes additional subroutines for image

pre-processing (e.g., Gaussian filter for local illumination correction and random noise

removal) and a coarse-to-fine iterative scheme for improvement of the optical flow com-

putation in case of large pixel displacements. A brief description of the relevant input

parameters is presented in Appendix A and can be found in Liu (2017).

5.3.4 La Petite Chambre d’Amour beach experiment

5.3.4.1 Study site

Figure 5.1 – (a) Study site of PCA beach, southwestern France. The green star indicates
the location of the fixed camera system installed at the top of Biarritz lighthouse near
the tip of the headland. (b) Example of a snapshot (oblique image) captured by the
video monitoring system. The orange and purple polygons show the image-domains
used for optical flow implementation. The orange domain corresponds to the drifter
experiment area and the purple domain to the ADCP (purple dot) continuous recording
within the submerged reef.

La Petite Chambre d’Amour (PCA) beach is the most southern stretch of the 4-km

long sandy embayment of Anglet beach located on the Basque Coast, SW France (Fig-

ure 5.1). PCA beach is bounded by a prominent 500-m long rocky headland in the

South and comprises a 90-m groin in the North. These two morphological characteris-
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tics play an important role on the beach state and rip current location (Huguet et al.,

2016). Close to the headland, a 20-m wide submerged rocky reef is present exert-

ing persistent wave breaking and occasionally bathymetrically-controlled rips at low

tide under low-energy waves (Mouragues et al., 2020b). The beach is composed of

medium to coarse sand (D50 ≈ 2 mm) and is classified as a high-energy intermediate

beach with the presence of a double-bar (occasionally single-bar) system (Huguet et al.,

2016). The relative steep beach face (tan β ≈ 1/10) favors the formation of beach

cusps with shoreline dynamics strongly controlled by the geometry of the surf-zone

sandbar (Birrien et al., 2013). The coast is predominantly exposed to Atlantic W-NW

high-energy incoming swells with an average annual offshore significant wave height

Hs = 1.57 m (up to 10 m during winter storms) and average peak wave period Tp = 10

s (Abadie et al., 2005). The tide is semi-diurnal characterized by a meso-macro tidal

regime with an average range varying between 1.69 m (for neap tides) and 3.94 m (for

spring tides) (Rodriguez-Padilla et al., 2020). Breaking waves are the dominant driver

of nearshore currents, with tide elevation affecting breaking patterns and in turn mod-

ulating nearshore currents (Sous et al., 2020). As opposed to the northern Aquitaine

open sandy beaches, PCA beach responds predominantly at individual storm frequency

rather than at seasonal timescales (Huguet et al., 2016).

5.3.4.2 Field experiment

An intensive field campaign was performed at PCA beach from 3 to 26 October 2018

with the objective to investigate the nearshore current circulation and headland flows

under a range of energetic wave conditions (Mouragues et al., 2020a). The 3-week field

experiment involved a large display of instruments including four Acoustic Doppler Cur-

rent Profilers (ADCPs), six surf-zone drifters and high-frequency video monitoring from

a fixed video-camera and a camera-equipped UAV. In-situ directional wave and wind

measurements were also continuously collected (every 30 min and 1 hr, respectively)

by a permanent directional wave buoy located approximately 6 km offshore and by the

Biarritz airport meteorological station (71 m altitude) located 3 km SE of the study site,

respectively. Hourly water level measurements were retrieved from Saint-Jean-De-Luz

tide gauge located 15 km SW of the study site. In the frame of the large-scale field exper-
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iment described in Mouragues et al. (2020b), the present dataset gathers the data col-

lected during the longest continuous fixed-camera video recording (08-15/Oct/2018)

together with simultaneous Eulerian measurements collected from a single available

ADCP installed over the submerged reef within the camera view field (Figure 5.1). The

field conditions during this week are shown in Figure 5.2 and are described in the

following subsection. In addition, the present study examines simultaneous video and

drifter data during four days (on 18, 19, 22 and 23 October 2018) under different wave,

wind and tide conditions (Table 5.1).

5.3.4.3 Field conditions and overall nearshore circulation

The 1-week (08-15/Oct/2018) continuous set of measurements used in this study (Fig-

ure 5.2) builds on the same experiment presented by Mouragues et al. (2020b). Over-

all, PCA beach was exposed to relatively energetic offshore wave conditions (average

Hs = 1.6 m) with high-energy wave events (Hs > 2 m) with peak wave period Tp rang-

ing from 7 to 15 s (Figure 5.2a,b). Offshore wave conditions also featured a wide range

of wave angle of incidence (−23 < θp < 20°; Figure 5.2c). The sign of the peak wave

incidence θp (angle of wave incidence relative to the shore normal) indicates on which

side of the headland waves were coming from. Wind conditions (Figure 5.2d,e) were

relatively weak with mean wind speed values around 3 m/s coming primarily from the

S-SE sector. A single moderate wind event was captured on 14 October 2018, reaching

wind speed up to 12 m/s coming from the W-NW (roughly shore normal) direction.

During the field experiment, PCA beach morphology corresponded to a low-tide terrace

beach state (Wright and Short (1984) classification) with a mostly alongshore-uniform

sandy bed that barely evolved throughout the experiment. The reader is referred to

Mouragues et al. (2020a,b) for more information about PCA bathymetry details.

Mouragues et al. (2020b) classified wave-induced circulation patterns observed at

PCA into three wave angle of incidence configurations. According to this classification,

the 1-week dataset was identified as a deflection (θp > 0°; 8-10/Oct/2018), shore-

normal (θp = 0°; 11/Oct/2018) and shadowed (θp < 0°; 12-15/Oct/2018) configura-

tion. During deflection configuration (8-10/Oct/2018), the ADCP captured longshore

currents flowing toward the headland (Figure 5.2f). The seaward deflection of the
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Figure 5.2 – Field conditions during the 1-week (08-15/Oct/2018) continuous ADCP
recording. Offshore (a) significant wave height (Hs), (b) peak wave period (Tp) and
(c) peak wave angle of incidence relative to the shore normal (θp; green dots) and
its 12h-averaged values (purple line). (d) Wind direction; wind incidence relative to
the shore normal (green dots). The red line shows the north direction with respect
to the shore normal (60°). (e) Longshore (purple line) and cross-shore (orange line)
wind speed components. (f) ADCP 5-min time-averaged surface longshore (purple line)
and cross-shore (orange line) velocity components. Positive cross-shore (longshore)
surface velocities values correspond to an offshore-directed (directed away from the
headland) current (see Figure 5.1). The latter convention is the same for the wind speed
components. The gray filled area represents the water depth time series at the ADCP
location and the red line shows the temporal evolution of wave breaking water depth
(hbr) defined as hbr = Hs/0.5. Non-shaded regions indicate video recording during
daylight hours (blue shaded regions corresponds to nightlight hours). Field conditions
during the drifter experiment are shown in Table 5.1, as drifters were deployed on 18,
19, 22 and 23 October 2018 outside of the 1-week ADCP recording period.

longshore current against the headland produced deflection rips with offshore surface

velocities sporadically exceeding 0.4 m/s. On the single day of shore-normal configu-
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ration (11/Oct/2018) the surface flow was characterized by cross-shore motions with

surface velocities oscillating between -0.4 and 0.4 m/s. During the shadowed regime

(12-15/Oct/2018) surface currents were primarily onshore directed flowing away from

the headland driven by alongshore variations in wave breaking induced by the shad-

owing effect of the headland (Castelle et al., 2016b). Overall, surface currents were

found to be strongly modulated by the tide, which coincided with a spring tide cycle

with the water depth column varying from 1.5 to 5.9 m at the location of the ADCP

(gray shaded region in Figure 5.2f). As opposed to open sandy beach embayments, PCA

beach inherited geological features (headland and submerged reef) exert a strong con-

trol on nearshore circulation. A close inspection of the time evolution of wave breaking

water depth, defined as hbr = Hs/0.5 for PCA field site, indicates that the ADCP is within

the outer edge of the surf zone only around low tide for Hs < 2 m (red line in Figure

5.2f). Therefore, the submerged reef (where the ADCP is installed) is assumed to play a

major control in flow dynamics as waves start to break over the reef when water depth

decreases.

In the frame of the drifter experiment described in Mouragues et al. (2020b), four

days of drifter deployments were selected to analyze PCA beach main circulation pat-

terns under different oblique wave configurations with varying wave, wind and tide

conditions (Table 5.1). In particular, during the rising neap low tide on 23 October

2018, a deflection rip was found to systematically advect drifters from the surf zone to

at least 1,000 m offshore. The spatial structure of the rip consisted of an approximately

150-m wide rip neck along the headland with a wider rip head extending further off-

shore the headland. Lagrangian and Eulerian measurements registered mean surface

velocities around 0.3 m/s in the rip neck and 0.35 m/s in the rip head along with VLF rip

pulsations with characteristic periods around 30 and 50 min (Mouragues et al., 2020b;

Sous et al., 2020).
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Table 5.1 – Field conditions during the four days of drifter deployments. Offshore peak
wave angle of incidence (θp) and wind direction incidence are relative to the shore
normal.

18/Oct/2018 19/Oct/2018 22/Oct/2018 23/Oct/2018

Time [GMT] 11:52 to 13:57 07:26 to 10:28 07:42 to 10:34 08:02 to 08:35 08:36 to 11:38

Configuration Shore-normal Shadowed Shore-normal Deflection Deflection

Drifter Deployments 16 28 46 5 30

Hs [m] 1.9 1.6 1 1.7 1.6

Tp [s] 14 13 11 13 11

θp [°] 0 -5 0 4 8

Wind Speed [m/s] 2.4 1.1 3.6 0.6 1.7

Wind Direction [°] 10 -50 30 -180 140

Tide Stage Ebb Flood Flood Ebb Flood

Water Level Range [m] 0.66 to 0.08 -0.42 to 0.58 -1.49 to -0.46 -1.70 to -1.74 -1.75 to -0.13

5.3.4.4 Video data

High-frequency sampled images (1 Hz) recorded at 1624x1234 px were collected from

a single permanent camera video station installed on the top of Biarritz lighthouse (70

m above mean sea level) located near the tip of the headland (green star in Figure 5.1).

The resulting oblique images covered part of PCA near the headland, including the sub-

merged reef and the surf zone. Unfortunately, only one of the four ADCPs deployed

during the experiment was within the camera view field. In order to compare opti-

cal flow derived velocities against in-situ instruments, one week of continuous daylight

video recording corresponding to simultaneous ADCP measurements were selected from

08/Oct/2018−07:00:00 to 15/Oct/2018−15:30:00 GMT. Moreover, Lagrangian mea-

surements together with simultaneous video data were used to provide a spatial insight

of the surface flow. Drifter trajectories were captured by the video system on four dif-

ferent days. Between 2 and 3.5-h burst of images were selected from each day of drifter

deployment for further post-processing and analysis.

5.3.4.5 ADCP data

A single ADCP (Nortek Aquadopp Profiler 2 MHz) was deployed within the fixed camera

view field approximately 280 m away from the video station (Figure 5.1). This ADCP
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was used to retrieve current measurements to further validate optical flow surface ve-

locities. The ADCP was mounted horizontally on an AquaCross aluminum frame (Figure

5.3) near the bottom of the submerged rocky reef between 1.5-5.9 m depth (depending

on the tide elevation). 1-Hz continuous measurements of pressure and velocities along

the water column were collected during 1 week (8-15 October 2018) for optical flow

comparison. The pressure sensor was located 0.2 m above the seabed (δs). The velocity

profile was measured over vertical cells (zcell) of 0.1 m size (δc = cell size) after a blank-

ing distance (δb) of 0.1 m from the instrument. Velocity measurements were assigned

to the center of each cell starting with the bottom cell at 0.35 m (zcell1 = δs + δb + δc/2;

Figure 5.3) above the sand bed.

Direct comparison of remotely sensed currents with fixed in situ instruments is not

a trivial task (Dérian and Almar, 2017; Anderson et al., 2021). Video-derived velocities

are extracted from the time-varying water surface layer which is locally influenced by

instantaneous wave and wind conditions. On the other hand, conventional ADCPs typ-

ically discard data from the upper region of the water column leading to an inevitable

spatial mismatch for a true velocity comparison. Upper cells emerge intermittently at

the passage of a wave trough restricting the analysis within the water column below this

elevation (Sous et al., 2020). To overcome this limitation, we make use of the concept

of σ-layers which will be described below.

According to the shallowness parameter µ, the water surface at the location of the

ADCP was characterized by weakly dispersive waves propagating in shallow waters

(µ ≈ 0.12). The shallowness parameter µ is defined as:

µ = (h0k)2 , (5.6)

where h0 is the mean water depth and k the typical wave number (k ≈ 0.08 1/m).

The pressure was used to reconstruct the water surface elevation using Bonneton et al.

(2018) non-linear shallow water reconstruction formula, valid for weakly dispersive

waves propagating in the shoaling and surf zone (see (Mouragues et al., 2019; Martins

et al., 2020)):
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Figure 5.3 – Sketch showing the ADCP velocity measuring positions throughout the
water column in terms of vertical cells (zcell) and σ layers. The red line (hSNL) rep-
resents the reconstructed water depth time evolution. δs indicates the pressure sensor
height (green line) with respect to the bottom. The velocity profile is measured after a
blanking distance (δb; black line) from the instrument. The measurements are assigned
to the middle of each cell (δc= cell size) delimited by the orange dashed lines. The blue
lines represent the user-defined σ layers normalized by the distance between the first
cell and the water surface. σ layers are designed to follow the irregular shape of the
water surface at different elevations of the water column. Velocities measurements at
these positions are obtained by interpolating the vertical cells’ velocity profile.

ζH =
Ps − Patm

ρg
− h0 + δs, (5.7)

ζSL = ζH −
h0
2g

(
1−

(
δs
h0

)2
)
∂2ζH
∂t2

, (5.8)
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ζSNL = ζSL −
1

g

(
∂

∂t

(
ζSL

∂ζSL
∂t

)
−
(
δs
h0

)2(
∂ζSL
∂t

)2
)
, (5.9)

where ζH is the hydrostatic reconstruction, ζSL the linear shallow water reconstruction,

ζSNL the non-linear shallow water reconstruction above the mean water level, ∂2

∂t2
the

second-order time derivative, ρ the water density, g the gravity, Ps the pressure mea-

sured at distance δs above the bottom and Patm the (constant) atmospheric pressure.

The reconstructed water depth is defined as:

hSNL = h0 + ζSNL. (5.10)

For this study, the mean water depth h0 and the reconstructed water surface ζSNL

were computed consecutively over∼17-min segments throughout the whole time series.

ADCP cells above the reconstructed water surface were discarded from the analysis and

submerged cells were depth-normalized. ADCP horizontal velocities along the water

column were transformed to a vertical σ coordinate system in order to measure the

velocities close to the water surface consistent with video-camera derived optical flow

estimation (see Figure 5.3). In addition, ADCP depth-averaged velocities were also com-

puted for comparison with optical flow estimates. The σ coordinate system is expressed

by a user-defined number of vertical layers m, hereafter referred to as σ-layers. Each σ-

layer j is normalized by the distance between the first ADCP cell and the instantaneous

water surface elevation:

σj =
(j − 1) ∆z − zcell1
hSNL − zcell1

; j = 1, 2, 3, ...,m; ∆z =
hSNL − zcell1

m− 1
. (5.11)

The first sigma layer (σ1) corresponding to the near-bottom is equal to zero and the

last sigma layer corresponding to the water surface (σm) is equal to one. ADCP vertical

cells zcelli are interpolated to each σ-layer σj before normalization. Regardless of the

water depth, σ-layers are constrained to be equally divided along the water column so

their individual value in terms of sigma (between 0 and 1) remains constant, whereas

the thickness between σ-layers (∆z) in terms of meters is varying at each time step.

σ-layers coincide with the irregular water wave surface within the water column and

allow the calculation of residual velocity around the mean water surface level (Giddings
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et al., 2014; Cheng, 2020). For the present study, 21 σ-layers were defined where each

layer corresponded to 5% of the instantaneous water column. Moreover, the three σ-

layers closest to the water surface were averaged (σ19, σ20 and σ21) and are hereafter

referred to as the ADCP surface velocity measurements. Similarly, all the 21 σ-layers

were averaged and are hereafter referred to as the ADCP depth-averaged velocity mea-

surements.

5.3.4.6 Drifter data

Six GPS-tracked surf-zone drifters were released multiple times on four different days

(on 18, 19, 22 and 23 October 2018) with the purpose of providing greater spatial cov-

erage of rip cell circulation. Deployments lasted from 2 to 3.5 h (Table 5.1). Drifters

were individually seeded over the submerged reef region using a jet ski or by swim-

mers under reasonably safe conditions. Drifters’ positions logged at 2.5 Hz were locally

stored on an SD card and transmitted in real-time to a shore station for visualization

and retrieving strategy. The drifters were of a robust PVC design modified from that of

Schmidt et al. (2003) consisting of a subaerial mast containing the GPS antenna and

a submerged dampener (circular bottom plate) with external fins to reduce surfing ef-

fects and vertical motions (MacMahan et al., 2009). Drifters were provided by CMAR

(Coastal Marine Applied Research, coastal consultancy at the University of Plymouth)

which have been previously tested for the measurement of surf-zone flows (Austin et al.,

2013; McCarroll et al., 2014; Scott et al., 2016). According to Mouragues et al. (2020b),

drifter position and velocity uncertainties were estimated to be less than 3 m and ap-

proximately 0.1 m/s, respectively, with a maximum windage error of 0.1 m/s due to the

effects of wind slippage (Murray, 1975) during drifter deployment.

5.3.5 Video processing

5.3.5.1 Image pre-processing

Following Rodriguez-Padilla et al. (2020), oblique images were first converted to

grayscale, then stabilized and further geo-rectified through a photogrammetric trans-

formation (Hartley and Zisserman, 2004) into a longshore/cross-shore local reference
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frame with 1x1 m grid resolution. A direct linear transformation (Abdel-Aziz and

Karara, 1971) was used to generate the plan-view images considering 16 spatially

distributed surveyed ground control points (GCPs) on both land and water. To avoid

tide-related inaccuracies in image rectification (Bergsma et al., 2016), each image was

rectified onto a grid that was updated every 1-min in the vertical coordinate using inter-

polated water elevation measurements from a tide gauge located 15 km SW of the study

site. The intrinsic parameters of the camera (e.g., image center coordinates, effective

focal length and scale factors) were also taken into account to remove nonlinear effects

such as radial distortion in the images (Holland et al., 1997). Two different sub-image

domains were selected to reduce computational time when applying the optical flow

algorithm: a 100x100 m square domain centered at the ADCP image location for the

1-week continuous surface currents measurements (purple polygon in Figure 5.1) and

a 600x500 m domain for the drifter deployments (orange polygon in Figure 5.1).

The approach of the present study is to use the drifting foam, left after the passage

of breaking waves, as a quasi-passive tracer and track it to estimate the water surface

flow. When using optical flow over consecutive images, the main challenge is to avoid

capturing the foam (or any water pixel parcel) moving at wave celerity. As shown in

Figure 5.4, the visible sea-swell wave signature can be removed by applying a temporal

Fourier low-pass filter on a pixel-by-pixel basis to the whole image sequence. This is

an accurate alternative to remove waves in the frequency domain instead of applying

a moving-average over consecutive frames as proposed by Anderson et al. (2021).

Figure 5.4a shows a raw rectified frame containing readily visible alongshore patterns

of propagating waves while Figure 5.4b shows the same frame after wave-filtering all

pixels over time using a low-pass filter with cutoff-frequency fc of 1/20 Hz. Figure

5.4c presents the pixel intensity power spectral density (PSD) computed at the image

location of the ADCP (purple and orange dot) using raw and low-pass filtered images.

The PSD computed from the raw image time series (purple line) contains the swell

and wind sea wave signal centered at frequencies around 1/13.4 Hz and 1/6.6 Hz,

respectively. This is in agreement with the average offshore peak wave period (Tp = 12

s) previously shown in Figure 5.2b. The low-pass filter cutoff-frequency fc should

be selected preferably below the lowest peak wave frequency fp of the entire record,
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to ensure that no wave-train is leaked into the image sequence and tracked by the

optical flow algorithm. However, it is important to note that the selection of the

cutoff-frequency fc also regulates the degree of image smoothing. Maintaining a

sufficient amount of texture (i.e., pixel intensity variations) in the image allows the

optical flow algorithm to track fine-scale foam patterns. Thus, a trade-off between

separating the optical wave signal and keeping the texture from the image should be

considered. During the field experiment, the lowest peak wave frequency registered

by the offshore buoy was fp = 1/15 Hz (see Figure 5.2b). For this study, raw images

were low-pass filtered using two different cutoff-frequencies: fc = 1/20 Hz (as shown

in Figure 5.4b,c) and fc = 1/60 Hz. These two different set of low-pass filtered

image sequences will be used as input for the optical flow algorithm to estimate two

independent set of wave-filtered surface currents hereafter referred to as OF (fc = 1/20

Hz) and OF (fc = 1/60 Hz). Confronting the optical flow estimates using two sets of

cutoff frequency will help understand the effect of the selection of fc on the results.
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Figure 5.4 – Surface gravity waves removal from images. (a) Raw rectified image
sequence containing visible waves; (b) rectified image sequence after wave-filtering.
(c) Pixel intensity power spectral density (PSD) computed at the image location of
the ADCP (purple and orange dot). The PSD is computed from the raw image time
series (purple line) and the low-pass filtered image sequence (orange dashed line). The
black dashed line corresponds to the cutoff frequency (1/20 Hz) of the low-pass filter
previously applied to the raw image sequence.

5.3.5.2 Implementation and assessment

The optical flow algorithm was applied consecutively to more than 257,000 frames

(71.5 h) in an area of 100x100 m at an image resolution of 1 m/px. The optical flow

estimated surface velocities were spatially interpolated to the ADCP image location and

compared against the instrument upper layer σ-velocities (average between σ19, σ20

and σ21) and depth-averaged velocities. Surface velocity time series and PSDs were

computed from both, optical flow estimates and ADCP measurements for a qualitative

comparison. Optical flow and ADCP velocity values corresponding to the time when the
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ADCP was outside the surf zone (hADCP > hbr) were identified and excluded from the

analysis to ensure the presence of foam and reduce optical flow near-zero velocities.

Consequently, the 1-week daylight dataset was reduced by 53% of the original dataset

to approximately 137,000 images (38 h). The PSDs of 1-week surface velocity time se-

ries were computed using Welch’s method with 17 Hann-windowed non-overlapping

records of 2 hours (approximately two segments per day). Similarly, the squared-

coherence between ADCP and optical flow-derived velocities was estimated from the

corresponding 1-week surface velocity time series using the same procedure. This re-

sulted in each spectral estimate having 34 degrees of freedom and a spectral resolution

of 0.00014 Hz.

5-min time-averaged optical flow and ADCP velocities associated with different

ranges of significant wave height Hs were compared in order to assess the optical flow

performance under different wave height conditions. Moreover, optical flow and ADCP

velocities were averaged over a sliding window in time in order to reduce random noise.

Different window sizes, ranging from 1 to 30 min, were selected for the moving aver-

age computation. For each window size selected, the resulting estimated and measured

time-averaged velocities were quantitatively compared. Performance statistics, compris-

ing the coefficient of determination (r2), the root mean square error (RMSE), the mean

error (bias) and the linear regression slope were computed to assess the optical flow

ability to reproduce in situ measurements.

5.3.6 Results

5.3.6.1 1-week continuous surface currents measurements (08-15/Oct/2018)

Figure 5.5 shows the 5-min time-averaged surface velocity components time series cor-

responding to 1-week of daylight measurements. For the longshore surface velocity

component (Figure 5.5a), the optical flow derived-velocities recreate fairly well the slow

fluctuations found in ADCP surface measurements. However, northward-directed cur-

rents (positive longshore velocity values) appear to be slightly underestimated. Regard-

ing the cross-shore component (Figure 5.5b), onshore-directed currents overall match

well between optical flow and ADCP, while offshore-directed velocities are less in agree-
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ment. This underestimation will be discussed in section 5.3.7. In general, the optical

flow velocities obtained using low-pass filtered images with fc = 1/20 Hz and fc = 1/60

Hz are similar in pattern. However, OF (fc = 1/60 Hz) present a smaller amplitude (i.e.,

smaller velocities values) with respect to OF (fc = 1/20 Hz). It is important to note that

near-zero optical flow values correspond to the time of high tide water elevation with

Hs < 2 m when no wave breaking was present over the reef and no foam was available

for tracking close to the ADCP location (see Figure 5.2f; blue shaded regions in Figure

5.5).

Figure 5.5 – Five minute time-averaged (a) longshore and (b) cross-shore surface ve-
locity components time series from 8 to 15 October 2018. ADCP surface velocity mea-
surements (average between σ19, σ20 and σ21) are displayed with a purple line. Optical
flow velocity estimates computed from low-pass filtered images with fc = 1/20 Hz and
fc = 1/60 Hz are shown with an orange and a green line, respectively. Positive cross-
shore (longshore) surface velocities values correspond to an offshore-directed (directed
away from the headland) current. Non-shaded (blue shaded) regions indicate the time
when the ADCP is located inside (outside) the surf zone. For better visualization, sur-
face velocities are concatenated in time to avoid gaps during nightlight hours.
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Figure 5.6 shows the 5-min time-averaged ADCP and optical flow surface velocity

components of Figure 5.5 as a comparison under different ranges of significant wave

height Hs. Surface velocities were grouped into seven Hs bins of 0.5-m size. The

corresponding statistics for each bin are summarized in Table 5.2 and 5.3 and depicted

with histograms of different colors in Figure 5.6. Around 80% of the velocity data

is concentrated between 1 and 2.5 m of Hs. OF (fc = 1/20 Hz) and ADCP surface

velocities within this range show a relatively good agreement (r2 ≈ 0.5 and RMSE ≈ 0.2

m/s). However, the bias and the skewed bivariate histograms indicate a northward- and

offshore-directed current underestimation that becomes more evident for Hs > 2.5 m

(bias ≈ 0.2 m/s).

Comparison between OF (fc = 1/60 Hz) and ADCP surface velocities shows a smaller

bias and less dispersion of the data with respect to OF (fc = 1/20 Hz). Although r2 sug-

gests a similar linear agreement (r2 ≈ 0.5), optical flow velocities are overall smeared

as shown in the histograms of Figure 5.6c,d. This is also evidenced by the steeper values

of the regression slope (slope > 2).
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Figure 5.6 – Five minute time-averaged ADCP vs. optical flow surface velocity compo-
nents from 8 to 15 October 2018 under different wave height conditions during low tide
when the ADCP is located inside the surf zone. ADCP surface velocity measurements
(average between σ19, σ20 and σ21) are compared against optical flow velocity estimates
computed from low-pass filtered images with (a-b) fc = 1/20 Hz and (c-d) fc = 1/60
Hz. The colors denote the velocities associated with different ranges of offshore signifi-
cant wave height Hs. The red line indicates the linear regression and the black line the
1:1 perfect match. Positive cross-shore (longshore) surface velocities values correspond
to an offshore-directed (directed away from the headland) current.

Figure 5.7 quantifies the agreement between optical flow surface velocity estimates

and ADCP measurements. ADCP measurements consisted of surface velocities (average

between σ19, σ20 and σ21) and depth-averaged velocities (average of all σ-layers within

the water column). The estimated and measured time series were moving-averaged

and compared against different window size selections. Based only on r2, the longshore

surface velocity component (Figure 5.7a) is better reproduced by the optical flow when

using low-pass filtered images with fc = 1/60 Hz as input. Comparison between OF

(fc = 1/60 Hz) and ADCP surface velocities, for a window size larger than 10 min,
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Table 5.2 – Five minute time-averaged ADCP vs. optical flow surface velocity compo-
nents from 8 to 15 October 2018 under different ranges of offshore significant wave
height Hs during low tide when the ADCP is located inside the surf zone. Optical flow
velocities are computed from low-pass filtered images with fc = 1/20 Hz.

ADCP vs. OF (fc = 1/20 Hz) r2 RMSE [m/s] Bias [m/s] Slope # Points (%)

Velocity component Long. Cross. Long. Cross. Long. Cross. Long. Cross. Long. Cross.

Hs < 0.5 m - - - - - - - - 0 (0%)
0.5 ≤ Hs < 1 m 0.02 0.49 0.14 0.27 0.06 -0.26 0.45 1.52 3482 (3%)
1 ≤ Hs < 1.5 m 0.31 0.69 0.12 0.19 -0.01 -0.16 0.69 1.38 26879 (20%)
1.5 ≤ Hs < 2 m 0.63 0.74 0.16 0.17 -0.13 -0.13 1.16 1.35 60416 (44%)
2 ≤ Hs < 2.5 m 0.67 0.68 0.16 0.24 -0.13 -0.20 1.28 1.24 25920 (19%)
2.5 ≤ Hs < 3 m 0.41 0.13 0.08 0.23 -0.01 -0.21 1.02 0.33 12658 (9%)
Hs ≥ 3 m 0.69 0.59 0.07 0.27 -0.03 -0.27 1.29 0.59 7338 (5%)
Hs ≥ 0 m 0.50 0.70 0.15 0.21 -0.09 -0.17 1.00 1.13 136693 (100%)

Table 5.3 – Five minute time-averaged ADCP vs. optical flow surface velocity compo-
nents from 8 to 15 October 2018 under different ranges of offshore significant wave
height Hs during low tide when the ADCP is located inside the surf zone. Optical flow
velocities are computed from low-pass filtered images with fc = 1/60 Hz.

ADCP vs. OF (fc = 1/60 Hz) r2 RMSE [m/s] Bias [m/s] Slope # Points (%)

Velocity component Long. Cross. Long. Cross. Long. Cross. Long. Cross. Long. Cross.

Hs < 0.5 m - - - - - - - - 0 (0%)
0.5 ≤ Hs < 1 m 0.07 0.38 0.18 0.27 0.13 -0.26 1.15 1.72 3482 (3%)
1 ≤ Hs < 1.5 m 0.35 0.44 0.15 0.20 0.09 -0.12 1.37 2.93 26879 (20%)
1.5 ≤ Hs < 2 m 0.45 0.48 0.13 0.18 -0.02 0 1.73 2.35 60416 (44%)
2 ≤ Hs < 2.5 m 0.52 0.61 0.14 0.24 -0.05 -0.16 2.00 2.33 25920 (19%)
2.5 ≤ Hs < 3 m 0.06 0.01 0.10 0.11 0.03 0.08 0.72 0.20 12658 (9%)
Hs ≥ 3 m 0.58 0.02 0.08 0.07 -0.01 0.02 2.17 0.21 7338 (5%)
Hs ≥ 0 m 0.47 0.52 0.13 0.19 0.01 -0.05 1.82 2.45 136693 (100%)

show r2 values ranging from 0.55 up to 0.65 with associated RMSE between 0.12 and

0.11 m/s. Similarly, OF (fc = 1/60 Hz) vs. ADCP depth-averaged velocities exhibit

r2 ranging from 0.5 up to 0.6 with lower RMSE between 0.10 and 0.08 m/s. A fair

performance is still found when using low-pass filtered images with fc = 1/20 Hz. OF

(fc = 1/20 Hz) vs. ADCP longshore velocity measurements (surface and depth-averaged

velocities) show a consistent agreement (r2 = 0.5) for any window size larger than 5

min, although RMSE values are relatively lower when compared against ADCP depth-

averaged velocities (RMSE between 0.12 and 0.13) than with surface velocities (RMSE

between 0.13 and 0.14). By contrast, ADCP cross-shore surface and depth-averaged

velocities are better correlated with OF (fc = 1/20 Hz) than with OF (fc = 1/60 Hz)

velocity estimates. For a window size larger than 5 min, r2 values vary between 0.7-

0.8 and 0.5-0.7, respectively (Figure 5.7b). OF (fc = 1/20 Hz) vs. ADCP cross-shore
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velocity RMSE decreases from 0.21 to 0.19 m/s as the window size increases from 5 to

30 min regardless if the optical flow estimates are compared against surface or depth-

averaged ADCP velocities. On the other hand, as the window size increases from 5 to

30 min, OF (fc = 1/60 Hz) vs. ADCP cross-shore surface velocity RMSE decreases from

0.13 to 0.12 m/s and OF (fc = 1/60 Hz) vs. ADCP cross-shore depth-averaged velocity

RMSE decreases from 0.11 to 0.08 m/s. In addition to r2 and RMSE metrics, it is worth

noting the values of the linear regression slope for both velocity components (Figure

5.7e,f). Slope values equal to one indicate a correct steepness for the one-to-one linear

relationship between optical flow estimates and ADCP measurements. According to the

regression slope, OF (fc = 1/20) velocity estimates indeed reproduce better the ADCP

measurements for both velocity components with slope values around 1± 0.15. Overall,

as the window size is increased, high-frequency noise-related variability (i.e., RMSE) is

reduced improving performance metrics (Figure 5.7c,d).

The bias has been intentionally omitted in Figure 5.7 as it poorly depends on the

time-averaging window size. Regardless of the window size selection for the moving-

average, the bias remain constant and correspond to the same values previously shown

in Figure 5.6 and Table 5.2 and 5.3: OF (fc = 1/20 Hz) vs. ADCP longshore velocity

bias = −0.09 m/s, OF (fc = 1/20 Hz) vs. ADCP cross-shore velocity bias = −0.17 m/s,

OF (fc = 1/60 Hz) vs. ADCP longshore velocity bias = 0.01 m/s and OF (fc = 1/20 Hz)

vs. ADCP cross-shore velocity bias = −0.05 m/s. Moreover, the bias does not appear to

change with ADCP surface or depth-averaged velocity measurements.
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Figure 5.7 – Statistical parameters showing the agreement between ADCP vs. optical
flow velocity components by changing the temporal moving-average window size. Data
set from 8 to 15 October 2018 using low-pass filtered images with fc = 1/20 Hz (orange
line) and fc = 1/60 Hz (green line) for optical flow input. Optical flow velocities are
compared against ADCP surface velocities (average between σ19, σ20 and σ21; line with
circles) and depth-averaged velocity measurements (average of all σ-layers; line with
triangles). (a-b) Coefficient of determination (r2), (c-d) root mean square error (RMSE)
and (e-f) linear regression slope for longshore and cross-shore velocity components. The
black dots correspond to the 5-min time-averaging window used in previous figures.
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Figure 5.8 shows the surface velocity PSDs computed over the 17-averaged 2-h

segments 1-week time series. The PSDs reveal a variety of signals present in both ADCP

and optical flow time series (e.g., infragravity and VLF fluctuations). As expected,

the velocity spectral energy associated with the sea-swell frequency band, previously

removed from the image sequence, is subsequently attenuated for frequencies higher

than the image low-pass filter cutoff-frequency (fc = 1/20 Hz and fc = 1/60 Hz; black

dashed lines). The squared coherence is significant at the 95% confidence level in

the infragravity frequency range (0.004 - 0.04 Hz) with values around 0.4 for the

cross-shore velocity component. Nevertheless, the frequency region with the highest

coherence (≈ 0.6) is associated with the VLF band (<0.004 Hz). Overall, the squared

coherence shows a better agreement for OF (fc = 1/20 Hz) velocities. The low spectral

energy found in OF (fc = 1/60 Hz) estimates is related to the low amplitude found in

the surface velocity time series.
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Figure 5.8 – Surface velocity components power spectral density (PSD) and squared
coherence computed from the 1-week time series (8 to 15 October 2018) during low
tide when the ADCP is located inside the surf zone. (a) Longshore and (b) cross-shore
surface velocity auto-spectra. Squared coherence computed between ADCP and optical
flow (c) longshore and (d) cross-shore surface velocity components along with the 95%
confidence bar (red dashed lines). The purple lines indicate the PSDs computed from
1-Hz ADCP surface velocity measurements (average between σ19, σ20 and σ21). The
orange and green lines show the PSDs generated from optical flow instantaneous (1
Hz) velocity estimates computed from low-pass filtered images with fc = 1/20 Hz and
fc = 1/60 Hz, respectively. Frequencies equal to 1/20 and 1/60 Hz are shown with
black dashed lines.

5.3.6.2 Drifter deployments

Figure 5.9 shows drifter tracks on 18, 19, 22 and 23 October 2018 along with corre-

sponding optical flow stream plots under different field conditions (Table 5.1). The pixel

intensity standard deviation image is also overlaid in each plot to highlight wave break-

ing spatial variability (e.g., surf zone and reef location) and foam availability during

drifter deployment. Days corresponding to 18 and 19 October 2018 (Figure 5.9a,b,c,d)

show evidence of primarily onshore-directed flows. Intermittent traces of foam along

the headland made it possible to compute mean optical flow estimates outside the surf

zone, although velocities in this region may not be reliable due to a lower number of
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observations (Anderson et al., 2021). This is the main reason why only qualitatively

streamlines are shown to represent the mean surface flow.

More complex circulations are described by the drifters on 22 October 2018 (Figure

5.9e,f). The presence of a quasi-steady circulation cell at the location of the reef is

displayed under a combination of moderate-energy and shore-normal incident waves

(Hs = 1 m; Tp = 11 s; θp = 0°) around low tide. It is interesting to note the evolution of

rip channels inside the surf zone which in turn influences the circulation. Nevertheless,

optical flow estimation of the circulation patterns is consistent with the observed drifter

tracks. Figure 5.9g presents the trajectories of the first set of drifters released around

neap low tide on 23 October 2018, whereas Figure 5.9i shows the trajectories of the

remaining drifters deployed during rising low tide. During low tide (Figure 5.9g,h), the

wave-induced longshore current is deflected against the headland and affected by wave

breaking across the reef resulting in a transient counter-clockwise circulation cell and a

deflection rip. As the water level increases (Figure 5.9i,j), the reef exerts less control on

rip dynamics allowing the dominant longshore current to completely deflect offshore

resulting in a fully-developed deflection rip.

Movies were generated for the four days of drifter deployments and are provided as

Supplementary Material (Video S1, Video S2, Video S3 and Video S4). The movies con-

tain the 2-min time-averaged optical flow velocity field overlapped with drifter trajecto-

ries. Overall, optical flow is able to recreate satisfactorily the main circulation patterns

described by drifters trajectories reproducing smaller circulation structures with a great

spatial resolution. Moreover, results are in agreement with previous studies describing

the same events (Mouragues et al., 2020b; Sous et al., 2020).
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Figure 5.9 – Drifter trajectories (left panel) and optical flow image-derived velocity
stream plots (right panel) corresponding to (a,b) 18, (c,d) 19, (e,f) 22 and (g,h,i,j) 23
October 2018. (g,h) Neap low tide and (i,j) rising low tide on 23 October 2018. For
each event, the pixel intensity standard deviation image is overlaid to highlight wave
breaking spatial variability and foam availability. The blue points indicate the location of
drifter seeding. The headland is located within the white masked image region between
0 and 150 m in the alongshore distance.
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5.3.7 Discussion

5.3.7.1 Comparison to other optical flow-based methods

In the context of coastal imagery, the shortcomings of the PIV approach and cross-

correlation based methods, is that the estimated velocity field resolution is dependent

on the size of the user-defined image segments (i.e., one displacement vector per image

segment or window) being sparser than the input image resolution (Dérian and Almar,

2017). PIV is also prone to errors under conditions of insufficient surface texture, lim-

iting it to spatially small areas (Puleo et al., 2003). On the other hand, the optical flow

method is capable to provide a velocity vector at every pixel of the image. Despite the

high potential of this technique, coastal applications are scarce (Philip and Pang, 2016;

Dérian and Almar, 2017; Anderson et al., 2021) in contrast with PIV studies (Puleo and

Holland, 2000; Holland et al., 2001; Puleo et al., 2003; Perkovic et al., 2009; Wilson

et al., 2014; Wilson and Berezhnoy, 2018; Chapman et al., 2019).

Table 5.4 summarizes the performance of existing optical flow-based techniques pre-

viously reported in the literature (Dérian and Almar, 2017; Anderson et al., 2021) for

estimating two-dimensional nearshore surface currents. The velocity outcomes pro-

vided by each method are compared with measurements from specific in situ instru-

ments deployed under different field conditions at particular sites. The main difference

between the three methods relies in the pre-processing of the images before the op-

tical flow is applied. In Dérian and Almar (2017) method, a two-dimensional spatial

high-pass median filter is applied to each image in order to enhance the foam texture.

While this filter improves the fine-scale foam patterns from large-scale structures such

as propagating wave rollers, it does not remove the optical wave signal from the images.

Their method has the potential to compute instantaneous (wave-by-wave fluctuations)

surface velocities, however, the optical flow algorithm is also subject to track pixels

propagating at wave celerity and disregard the actual flow. By contrast, Anderson et al.

(2021) and the present method filter the wave signal from the image sequence in order

to track coherent foam patterns carried by the time-averaged flow, thus constraining the

computed surface velocities below the sea-swell frequency band.

Dérian and Almar (2017) compared shore-based image-derived surface velocities
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against near-bottom velocities collected from a single Acoustic Doppler Velocimeter

(ADV) deployed within the swash zone. As the authors recognized, the comparison

between optical flow estimates and instrument measurements was limited by their dif-

ferent location of the vertical profile. Despite drifter measurements acquired during the

same field experiment were available (Castelle et al., 2014a; Scott et al., 2018), they

were not considered in their analysis. On the other hand, Anderson et al. (2021) com-

pared optical flow derived-velocities against surf-zone drifters velocities using 15x15 m

spatial bins. As mentioned by Anderson et al. (2021), drifters were often subject to

surfing effects from localized wave-breaking such that they experienced motions at the

scale of wave-by-wave fluctuations suggesting that in situ drifter might be unreliable

tools for estimating mean currents at the scale of wave groups.

Table 5.4 – Comparison of optical flow-based techniques previously reported in the
literature for estimating nearshore surface currents under different field conditions at
different sites.

Optical flow-based methods Dérian and Almar (2017)(Dérian and Almar, 2017) Anderson et al. (2021)(Anderson et al., 2021) Present study

Typhoon OpenCV OpenOpticalFlow

fs [Hz] 2 2 1

Image filtering approach High-pass median filter Moving-average Low-pass filter

Study site Grand Popo Beach, Benin Duck, USA PCA Beach, France

Hs range [m] 1.2 – 1.6 0.9 – 1.6 0.8 – 3.3

Tp range [s] 10 – 12 8 – 12 7 – 15

Water level range [m] 0.3 to 1.2 -0.14 to 0.90 1.5 to 5.9

Wind speed range [m/s] - 3.3 – 7.4 0 – 12

In situ validation ADV Drifters ADCP

Nearshore region Swash/Surf zone Surf zone Surf zone

Velocity component Longshore Cross-shore Longshore Cross-shore Longshore Cross-shore

Number of points 8130 8130 >90 >90 136,992 136,992

r2 range 0.13 – 0.29 0.05 – 0.58 - - 0.35 – 0.51 0.51 – 0.80

RMSE range [m/s] 0.22 – 0.65 0.12 – 0.58 0.15 0.13 0.12 – 0.17 0.19 – 0.24

5.3.7.2 Low-pass filter cutoff-frequency selection

The optical flow algorithm is very sensitive to the image input and the selection of the

cutoff-frequency for the temporal low-pass filter can have a great impact on the final

velocity estimates. OF (fc = 1/60 Hz) velocity estimates presented lower velocities and

less spectral energy than ADCP measurements. For the temporal low-pass filter, using a

cutoff-frequency of 1/60 Hz is equivalent to averaging images consecutively over 1 min.

By proceeding with this selection, the dominant sea-swell band is evidently removed
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from the image sequence, however, all residual foam features become smeared and

over-smoothed resulting in lower and underestimated velocity values (see histograms

in Figure 5.6c,d). Furthermore, time-averaging these values can result in velocities close

to zero with still a good linear correspondence to ADCP measurements with low RMSE

and low bias. This can lead to a misinterpretation of good performance, as shown by

the regression slope (Figure 5.6c,d and Figure 5.7e,f) and the damped velocity time

series (Figure 5.5). By contrast, OF (fc = 1/20 Hz) velocity estimates demonstrate

satisfactory agreement with surf-zone drifters tracks and ADCP measurements under

relatively high-energy waves (Hs < 2.5 m). Velocity RMSE of less than 0.25 m/s is a

reasonably satisfactory result considering that the spatial resolution of the image grid

is 1 m and the pixel footprint at the ADCP location is 0.6 m. On the other hand, the

apparent bias and overall underestimation in offshore-directed currents (overestimation

in onshore-directed currents) can be explained by other sources of error (see subsection

5.3.7.4).

5.3.7.3 ADCP measurements: surface vs. depth-averaged velocities

Directly comparing remote sensing products with in situ instruments is complicated.

Optical flow estimates are representative of the motions occurring in the water surface

layer, whereas, in the case of the ADCP, velocities corresponding to the upper region of

the water column are usually removed to avoid possible errors associated with sidelobe

interference, bubble injection, Stokes drift and wind contamination. Thus, it is difficult

to evaluate "true" errors as velocities are compared from different locations of the ver-

tical profile. However, for this particular study, the fact that r2 and RMSE do not differ

as much when compared against ADCP surface or depth-averaged velocities suggests

that the vertical variability of the flow is nearly depth-uniform. Figure 5.10 illustrates

three representative 2-h time-averaged velocity profiles in σ coordinates. The velocity

profiles were computed under different angles of wave incidence at low tide (around 2

and 3 m of water depth). The three configurations indicate shallow water flows with

no significant vertical gradient, consistent with previous observations around the ADCP

location (Sous et al., 2020; Mouragues et al., 2020b). These results show evidence of

a nearly depth-uniform flow, however, for other locations inside the surf zone the vi-
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sual surface layer might not always be representative of the entire water column. In

case of strong vertical shear, the proposed ADCP transformation to σ coordinates can be

an alternative to derive velocities near the water surface consistent with video-derived

estimates. However, caution must be exercised given the inherent limitations of the

instrument when measuring close to the free surface.

Figure 5.10 – ADCP 2-h burst-averaged σ-velocity profiles under different offshore
incident wave obliquity at low tide. (a) Deflection configuration (08/Oct/2018−08-
10:00:00 GMT), (b) shore-normal configuration (11/Oct/2018−11-13:00:00 GMT)
and (c) shadowed configuration (15/Oct/2018−12-14:00:00 GMT). Longshore (U > 0;
current directed away from the headland) and cross-shore (V > 0; offshore-directed
current) velocity components are shown in purple and orange colors, respectively.

5.3.7.4 Sources of error

It should be noted that optical flow struggled to reproduce offshore-directed velocities

at the ADCP location as revealed in the cross-shore velocity time series (Figure 5.5b) and

the one-to-one comparison (Figure 5.6b). This can be mainly attributed to wave break-

ing. Although the frequency band corresponding to sea-swell waves is removed from the

images, the source of foam, induced by wave breaking, appears as a blob that increases
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and spreads with time in the onshore direction following the filtered pre-existing wave

front. Figure 5.11 illustrates the instantaneous circulation flow under wave breaking

at two different instants separated by 7 s. In this representative example, ADCP veloc-

ities indicate a depth-uniform offshore-directed flow (as previously suggested). A close

inspection of the optical flow velocity field near the ADCP location (Figure 5.11a,c) re-

veals instead a transient clockwise circulation cell which after 7 s (Figure 5.11b,d) is

modified to be aligned with the incoming filtered wave front moving toward the shore.

This effect is also observed with the isolated foam blob advancing around coordinates

with alongshore distance = 410 m and cross-shore distance = 350 m (green polygon).

However, this issue occurs in any region where strong wave breaking is present (e.g.,

reef and sandbar) and is also observed with low-pass filtered images with fc = 1/60 Hz.

This suggests that the optical flow can erroneously track foam patches at the instant of

their creation potentially masking true underlying velocities at those times. Therefore, a

proper definition for the f(x1, x2, I) term inside the physics-based optical flow equation

(Eq. 5.1) is needed in order to account for specific foam properties such as source and

dissipation rates, or alternatively, remove the velocity estimates associated with pixels

that break in post-processing (Anderson et al., 2021).

Surface velocity accuracy can also be limited by windage effects. Ideally, foam is

expected to be advected only by the underlying currents, however, under high wind

conditions, wind stress can induce surface currents that can advect the foam in a dif-

ferent direction than the desired surface/near-surface water flow. This could be prob-

ably the case during the relatively strong wind event on 14 October 2018, when wind

speed reached up to 12 m/s. Other video-related sources of errors such as unwanted

camera movement (e.g., produced by wind) (Bouvier et al., 2019; Rodriguez-Padilla

et al., 2020), overlapping camera boundaries and tide dependent inaccuracies in geo-

rectification (Bergsma et al., 2016) may also affect the performance of the optical flow-

based technique and should be properly addressed before the optical flow method is

applied.
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Figure 5.11 – Influence of wave breaking on optical flow velocity estimates. Example of
filtered breaking waves captured at instant (a) 08/Oct/2018−09:09:20 GMT and (b) 7 s
after. (c,d) The same instants are shown for the image-region associated with the ADCP
location depicted with blue color. Instantaneous OF (fc = 1/20 Hz) velocity arrows are
displayed every 10 m for better visualization. The blue and green arrows correspond to
20-s time-averaged ADCP surface and depth-averaged velocities, respectively. Optical
flow and ADCP arrows are scaled the same. The thick red arrow represents the optical
flow-derived dominant circulation for each instant. The green dashed line polygon il-
lustrates an example of the creation of a foam blob advancing toward the shore induced
by wave breaking.

5.3.7.5 Recommendations and future work

Optical flow is a powerful technique, however, certain factors and limitations must be

considered in order to obtain satisfactory results. The first assumption, inherent to

any optical flow algorithm, is that the pixel intensity between two consecutive frames

should be nearly constant. Therefore, it is preferable to correct the scene illumination

(e.g., by histogram equalization) before applying the optical flow method to increase

accuracy. As described in Appendix A, we used a subroutine included in Liu (2017)
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OpenOpticalFlow algorithm to correct the local illumination intensity changes between

frames. Brightness variations can also be constrained to small changes if a coarse-to-

fine scheme is used (see Appendix A) or if frames are sampled at a high rate (>1 Hz).

However, this can have a direct impact on storage resources. An alternative to overcome

this issue, as proposed by Anderson et al. (2021), is to downsample the number of

frames (e.g., by a factor of 5) once the dominant optical sea-swell wave signal is filtered

from the image sequence, and then further apply the optical flow algorithm. Image

temporal downsampling is possible after removing the wave clutter since the residual

foam is smoothed in such a way that brightness variations between consecutive frames

are kept low. However, filtering the optical signature from the images is a key step that

must not be overlooked.

As shown in Figure 5.5, it is important to discard velocity values associated with pix-

els outside the surf zone or regions where no foam is present, otherwise, the optical flow

algorithm will assign velocity values close to zero and underestimate the actual surface

flow. For the ADCP pixel location we deduced the time when the instrument was in-

side the surf zone based on the water depth and kept only those corresponding velocity

values. On the other hand, for the drifter experiments we removed all time-averaged

velocities smaller than 0.02 m/s to ensure that the remaining velocities (streamlines)

corresponded to regions where foam was present (e.g., surf zone). Future work should

include a post-processing step, similar to the one proposed by Anderson et al. (2021),

to automatically identify and isolate foam regions based on a local pixel brightness vari-

ation threshold between frames in order to discard spurious velocities when there is

limited texture on the water surface to track.

It should be noted that the intermittent wave breaking region where the ADCP was

deployed was a particularly challenging location for the optical flow algorithm to pro-

duce accurate velocity estimations. Therefore, we propose that further research should

be undertaken by mounting current profilers distributed at different locations within the

surf zone to provide the optical flow algorithm the optimal conditions for a consistent

comparison.
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5.3.8 Conclusions

In this paper, we presented an alternative method to filter the dominant optical signal

associated with sea-swell waves from an image sequence. Waves were removed from

the image time series by applying a temporal Fourier low-pass filter to each pixel of the

image. After image-wave-filtering, the residual foam left by wave breaking was used

as a quasi-passive tracer and was assumed to be advected primarily by the underlying

flow; wind conditions during the experiment were relatively weak with mean wind

speed values around 3 m/s. Foam trajectories within the surf zone were tracked

using Liu (2017) open-source optical flow algorithm ("OpenOpticalFlow") to derive

wave-filtered surface velocities (comprising frequencies below 1/20 Hz and 1/60 Hz).

We proposed an approach based on depth-normalization of the water profile (σ-layers)

to retrieve surface velocities from ADCP measurements. A transformation of z to σ

coordinates ensures that the velocities derived from the ACDP are as consistent as

possible with those estimated from the optical flow algorithm. Optical flow-derived

velocities were compared with ADCP time-averaged surface and depth-averaged veloc-

ities. ADCP measurements displayed nearly depth-uniform time-averaged velocities.

Time-averaged optical flow velocity estimates, using low-pass filtered images with

fc = 1/20 Hz as input, showed to be in good agreement with ADCP measurements

(r2 = 0.5− 0.8; RMSE = 0.12− 0.24 m/s; bias = −0.09 to −0.17 m/s; slope = 1± 0.15;

coherence2 = 0.4 − 0.6). By contrast, optical flow-derived velocities, using low-pass

filtered images with fc = 1/60 Hz as input, were overall underestimated due to an

over-smooth of the foam features. In any case, optical flow offshore-directed velocities

were systematically underestimated. This outcome can be justified by waves breaking

over the reef (i.e., ADCP location) that produce and advect foam persistently toward

the shore. The onshore-directed motion of the foam, induced by wave breaking, can

differ from the actual underlying flow and can inadvertently be captured by the optical

flow algorithm. Despite this apparent limitation, optical flow was able to qualitatively

reproduce with a good agreement the mean current circulation patterns described

by drifter trajectories under different wave, tide and wind conditions. Among these

patterns, a rip-circulation cell was captured as well as a prominent and persistent

rip current flowing against the headland (deflection rip). Such findings highlight the
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ability to detect rip currents and associated circulations at different time-averaging

scales providing new insights into surf-zone hydrodynamics and invaluable resources

for beach safety strategy.

5.4 Implications and potential of optically derived

wave-filtered surface currents

The nearshore is difficult to study comprehensively using only in situ data as a large

number of instruments are required to adequately sample the time and spatial scales

associated with nearshore circulation (10 s−1000s meters) (Perkovic et al., 2009). As

stated by MacMahan et al. (2010), comprehensive kinematic fluid characteristics of the

surf zone motions is hindered by the lack of synoptically observed flow fields. For these

reasons, the optical current meter technique presented in this work has the potential

for providing new insight into fundamental surf zone dynamics not obtainable with

previous in situ measurements or remote sensing products.

The ability to continuously quantify surf zone circulation patterns over a large area

using a simple low-cost video system has the potential to reveal variability on time scales

ranging from tidal level changes (a few hours) to beach state progressions occurring on

the order of weeks to seasons. To our knowledge, there are no other observational ap-

proaches that can map surf-zone (wave-filtered) surface currents on comparable spatial

and temporal scales.

An illustrative example of the ability to capture short-term temporal variability is

provided in Figure 5.12, where estimated wave-filtered surface velocities were averaged

over 20 minutes for low tide and high tide on 22 October 2018 under shore-normal in-

cident waves. At low tide (Figure 5.12a), the intensity of wave breaking on the sandbar

became amplified, more foam was generated, the surf zone became wider (100 m)

and the swash zone contained less energy. This hydrodynamic and morphodynamic

configuration enabled complex circulation patterns. The mean vorticity field was com-

puted following (MacMahan et al., 2010) to highlight the positive vorticity associated

with the counter-clockwise rip circulation cell (at the location of the reef) and the eddy
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formed inside the rip channel (Figure 5.12b). By contrast, at high tide (Figure 5.12c),

the surf zone width decreased (50 m) with intermittent breaking on the sandbar and a

swash zone noticeable in the timex and pixel intensity standard deviation image (Fig-

ure 5.12c,d). Variability (standard deviation) ellipses show the mean surface velocities

along with their temporal variability at high tide.

Figure 5.12 – Mean optical flow-derived products from 20-min video recording on 22
October 2018 at low tide and high tide. (a) Mean surface velocity vector field over-
laid on the 20-min timex image and (b) associated vorticity field computed at low tide.
(c) Mean surface velocity vector field overlaid on the 20-min timex image and (d) as-
sociated variability ellipses overlaid on the 20-min pixel intensity standard deviation
computed at high tide.

Longshore sediment transport is the single most important agent of coastal change

along most of the world coastlines (Chickadel et al., 2003). Longshore transport of sed-

iment, pollutants and biological species is driven primarily by longshore mean currents
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which are induced by an obliquely incident wave field. Figure 5.13 shows the potential

in estimating the longshore current structure from video. Intensity and cross-shore ex-

tent of the longshore current can be analyzed to understand the hydro/morphodynamic

factors that control and modulate the current patterns. Optical flow-derived velocities

may also be useful to study very low frequency motions (<0.004 Hz) such as shear

waves, a type of motion in the surf zone associated with longshore current instabilities

(Bowen and Holman, 1989; Oltman-Shay et al., 1989). On the other hand, time series

analysis techniques, such as harmonic analysis can be applied to individual pixel grid

locations to separate the tidal constituents from other fluctuations in order to estimate

tidal currents in coastal environments such as tidal inlets or estuary mouths.

Figure 5.13 – Optical flow-derived velocities on 23 October 2018 corresponding to
the deflection rip event. (a) 3.5-h mean cross-shore profile of the longshore current
at different locations (U < 0; current directed toward the headland); the cross-shore
transects (dashed lines) are indicated with different colors. (b) Optical flow surface
velocity vector field overlaid on the 3.5-h timex image.
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6.1 General conclusions

This work primarily focused on the development and implementation of optical remote

sensing techniques to study nearshore morphodynamic and hydrodynamic processes

under high energy wave conditions in a meso-macro tidal environment. A side objec-

tive was to assess the extent to which remote sensing techniques could provide reliable

data under harsh field conditions and propose new processing approaches to guarantee

an optimal accuracy in the final video-derived product. The data used in this thesis

builds (mainly) upon the comprehensive 3-week field experiment carried out on Octo-

ber 2018 in one of Anglet beaches (SW France), La Petite Chambre d’Amour, where I

had the opportunity to participate and collaborate with researchers from other institu-

tions such as from the University of Plymouth and Université Pau et Pays de l’Adour.

In this final chapter, the general results are summarized and concluding remarks are

127



CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

briefly discussed. Finally, the results are placed in perspective and future investigation

is proposed.

6.1.1 Image stabilization

We developed an efficient semi-automatic procedure to stabilize an image sequence us-

ing state-of-the-art techniques in order to remove unwanted camera movement after

video acquisition. We investigated the impact of camera viewing angle deviation when

monitoring the nearshore. Our results show that camera movements occur on a wide

range of timescales and induce large geo-rectification errors at the fixed video monitor-

ing station of Anglet, which is often the case but is disregarded for many other video

stations worldwide. One primary problem with existing stabilization methods is that

they are sensitive to changes in brightness and contrast making them prone to failure.

This method provides a robust solution to stabilize an either continuous or sub-sampled

image sequence under varying illumination with the ability to process large databases.

The image stabilization method required the presence and identification of differ-

ent land-sub-image regions containing static recognizable features (referred to as key-

points), such as corners or salient points. Keypoints were matched against themselves

after computing their two-dimensional displacement with respect to a reference frame.

The vertical (tilt) and horizontal (azimuthal) pixel displacement was obtained using

a cross-correlation algorithm with sub-pixel accuracy (Guizar-Sicairos et al., 2008a)

together with a Canny edge detection filter (Canny, 1986). Pairs of keypoints were af-

terwards used as control points to fit a geometric transformation in order to align the

whole frame with the reference image. The stabilization method was applied to 5 years

of daily images collected from a three-camera permanent video system located at An-

glet Beach, 70 m above mean sea level. Azimuth, tilt and roll deviations with respect to

the initial frame were computed for each camera. In addition, 2.5 km of shoreline were

manually digitized for the outstanding winter period of 2013/2014 using non-stabilized

and stabilized rectified images to estimate the real-world horizontal positioning error

due to camera movement.

The three cameras presented motion during all the time series and showed a par-

ticular annual signal in azimuth and tilt deviation. This can potentially be attributed
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to the sun position and thermal expansion fluctuations. Camera movement amplitude

reached approximately 10 pixels in azimuth, 30 pixels in tilt and 0.4° in roll, together

with a quasi-steady counter-clockwise trend over the 5 year time series period. More-

over, camera viewing angle deviations were found to induce large rectification errors up

to 400 m at a distance of 2.5 km from the camera. The mean shoreline apparent posi-

tion was also affected by an approximately 10-20 m bias during the 2013/2014 winter

period.

6.1.2 Nearshore bathymetric mapping from video imagery

For three consecutive weeks we estimated bathymetry maps every 30 min during day-

light hours using a video-based linear depth inversion algorithm cBathy (Holman et al.,

2013) to examine PCA beach morphological response under a wide range of wave

(Hs = 0.5− 3.3 m; Tp = 6− 15 s) and tide (∼4 m) conditions. The assessment was car-

ried out by comparing concurrent video-derived bathymetries with in situ topo- bathy-

metric measurements collected during the beginning and end of the field experiment.

Comparisons between surveyed and video-derived bathymetric estimates showed a sim-

ilar performance with respect to previous studies (Brodie et al., 2018) with an overall

RMSE = 0.29−0.37 m and bias = 0.56−0.57 m. However, the temporal evolution

of estimated bathymetries revealed large discrepancies in depth (a systematic overes-

timation in depth fluctuating between 1 and 1.5 m over the whole domain). The sea

bed was found to vary instantaneously with the tide, which is non-physical. We sus-

pect that the tide-dependent depth inconsistency is attributed to a rectification issue

that will require further investigation. Meanwhile, the error seems to be closely re-

lated to the (varying) reference level at which the oblique image is projected, which

in case of inaccuracy, could potentially induce positioning errors and mistakenly feed

the cBathy algorithm. To overcome this problem, we filtered out the spurious high-

frequency depth-modulation signal to keep only the slow-varying (>2 days) changes in

depth.

The smoothed bathymetry time evolution showed the transition from a Low Tide

Terrace (LTT) to a Transverse Bar and Rip (TBR) beach state according to Wright and

Short (1984) classification. During the beginning of the field experiment, the sandy bed
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morphology was reasonably uniform alongshore showing a terrace bar attached to the

shore with a slight central crest located around 250 m in the cross-shore. Comparison

between surveys revealed the formation of an alonghore uniform sandbar centered at

cross-shore position = 300 m with a net deposition of sand (around 1-m of accretion)

within the reef region. This result is consistent with the gradual accumulation of sand

registered in the video-derived bathymetry estimates during the end of the experiment,

when an energetic wave event (waves up to 3 m high) occurred. As shown in the bathy-

metric surveys, the sand accretion is suspected to be driven by onshore sediment trans-

port, as all the region outside the surf zone (beyond the camera domain) eroded during

the course of the experiment. Furthermore, change in wave and tidal regime induced

the formation of a rip channel incising the sandbar, resulting in increased neashore

alongshore variability. .

Overall, cBathy-derived bathymetries were consistently overestimated with respect

to the surveys (and ADCP water depth measurements) with larger differences for the

upper part of the beach and the shallow region around the reef. As we encountered

a systematic tide-dependent bias, probably originated from a rectification inaccuracy,

it is difficult to assess the extent to which the vertical offset may be caused by nonlin-

ear effects and wave-current interactions reducing the validity of the linear dispersion

relation on which cBathy is based.

6.1.3 Optically derived wave-filtered surface currents

We explored the potential of computing 2-D wave-filtered surface currents from video

images by tracking the drifting foam, left after the passage of breaking waves, using an

open-source optical flow algorithm (Liu, 2017). This algorithm looks for nearby pixels

of the same brightness intensity assuming small motion between frames. The optical

flow algorithm relies on a global formulation with a smoothness constraint which is

capable to provide a velocity vector at every pixel of the image resolving the entire flow

simultaneously.

We proposed a new approach, based on a Fourier Low-pass filter, to remove the

dominant optical signal associated with sea-swell waves from an image sequence to

avoid tracking propagating waves instead of the desired foam assumed to be advected
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only by the flow. For the first time, we compared optical flow-derived velocities with in

situ current profiler measurements under high-energy wave conditions (Hs = 0.8 − 3.3

m) during one week of simultaneous measurements. In addition, we validated opti-

cal flow-derived circulation patterns with surf-zone drifter trajectories under different

field conditions. Our results show that the optical flow method is capable to repro-

duce mean surface velocities below the sea-swell frequency band with a fair agreement

(r2 = 0.5−0.8; RMSE= 0.12−0.24 m/s) and is able to capture time-averaged circulation

structures inside the surf zone with a great spatial resolution.

PCA beach inherited geological features (headland and submerged reef) exert a

strong control on nearshore circulation. At low tide, under shore-normal waves, the

submerged reef plays a mayor control in flow dynamics inducing cross-shore motions

and a rip cell circulation as waves start to break over the reef. On the other hand,

obliquely incident waves result either in a shadowed or deflection configuration de-

pending on which side of the headland waves are coming from. During shadowed

configuration, surface currents are primarily onshore directed flowing away from the

headland driven by alongshore variations in wave breaking induced by the shadowing

effect of the headland. By contrast, during deflection configuration, the longshore cur-

rent is deflected against the headland resulting in a strong seaward flow extending well

beyond the surf zone. These three main circulation regimes, previously described for the

same experiment in Mouragues et al. (2020a,b) using drifter measurements and a small

number of current profilers, were recreated fairly well by the optical flow time-averaged

surface velocity estimations.

6.2 Research perspectives

Many research groups worldwide use video monitoring systems to remotely sense

nearshore hydrodynamics and morphodynamics. Remote sensors are less invasive, are

easier to deploy and maintain, and offer wider areal coverage than typical arrays of in

situ instruments (Perkovic et al., 2009). The increasingly proliferation of low-cost and

flexible new platforms such as UAVs, swift cameras, CoastSnap (Harley et al., 2018),

etc., offers an attractive option to collect image products and derive measurements of
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the nearshore. Whether it is with fixed video station or camera-equipped UAV, the im-

age processing techniques should, in principle, be transferable and compatible between

platforms. As a demonstration, Figure 6.1 shows the image stabilization method pro-

posed in this thesis applied to an UAV flight in order to remove the unwanted movement

of a random frame. Overall, we observe that there is a satisfactory performance of the

method.

Figure 6.1 – Two snapshots captured from a drifting UAV-flight. (a,b) Reference image,
(c) unstabilized image and (d) stabilized image. The colored crosses are the user-
defined static keypoints with respect to the reference image, whereas the circles indicate
their shifted position.

Further work could be to use the UAV data collected during Anglet field experiment

to examine the offshore part of the deflection rip which was systemically outside from

the fixed camera view field. This could help to further understand the structure of such

rips as they detach offshore from the headland. However, this is only possible if enough

foam is advected by the deflection rip so it can be tracked by the optical flow algorithm.

Optical flow video-based technique has the potential to provide unprecedented in-

sight into surf zone hydrodynamic processes at scales that were previously difficult to

reach. As we applied the optical flow-based method to an optical video camera, sur-

face velocities can only be estimated during daylight hours. However, infrared video
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cameras are not constrained by this limitation. The same optical flow method can be

applied to infrared imagery to track the remnant foam (which is typically cooler than

the surface water and/or recently generated foam; Wilson et al. 2014) at any time ei-

ther daylight or nightlight hours. This could also be the case for X-band radar imagery

if enough sea-clutter is available for tracking.

Video-derived surface currents can provide critical contextual data for both theoreti-

cal and applied nearshore studies. From the perspective of hazard to recreational beach

users, identification and awareness of rip currents are essential for coastal and beach

safety (Castelle et al., 2016b). In this sense, the optical current meter enables to moni-

tor both the average and transient circulation, such as flash rips, for which the location

of occurrence is random. The rapid development of webcams and UAVs together with

the recent growing body of machine learning recognition algorithms offer the possibil-

ity to provide quantitative information at a reasonable instrumental and computational

cost (Dérian and Almar, 2017). Operational use of this optical flow-based current meter

using low-cost image platforms combined with open-source computer vision algorithms

to automatically detect rip currents could provide crucial near-real time safety messages

to beach users before entering the water.

To sum up, in this thesis we proved that nearshore remote sensing is a promising and

still ongoing discipline with the capability to link observations with specific geophysical

quantities. This study opens new perspectives to routinely improve camera geometry of

video monitoring systems and to further derive higher quality remotely sensed hydro-

dynamic and morphological products. Furthermore, this work opens up new avenues

for frequently monitoring rip currents and associated circulations, which is critical for

scientific interests and beach safety strategy. We therefore think that our findings will

impact the coastal community and our methods will be used by many research groups

worldwide.

133



134



List of publications and presentations

Contents

I . Scientific publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

II . Participation in conferences, meetings and workshops . . . . . . . . 136

I . Scientific publications

First author:

• Rodríguez-Padilla, I., Castelle, B., Marieu, V., Bonneton, P., Mouragues, A., Mar-

tins, K., and Morichon, D. (2021). Wave-Filtered Surf Zone Circulation under

High-Energy Waves Derived from Video-Based Optical Systems. Remote Sensing,

13(10):1874.

• Rodríguez-Padilla, I., Castelle, B., Marieu, V., and Morichon, D. (2020). A Simple

and Efficient Image Stabilization Method for Coastal Monitoring Video Systems.

Remote Sensing, 12(1):70.

Co-author:

• Mouragues, A., Bonneton, P., Castelle, B., Marieu, V., Barrett, A., Bonneton, N.,

Detand, G., Martins, K., McCarroll, J., Morichon, D., Poate, T., Rodríguez-Padilla,

I., Scott, T., and Sous, D. (2020a). Field Observations of Wave-induced Headland

Rips. Journal of Coastal Research, 95(SI):578–582.

135



List of publications and presentations

• Mouragues, A., Bonneton, P., Castelle, B., Marieu, V., Jak McCarroll, R.,

Rodríguez-Padilla, I., Scott, T., and Sous, D. (2020b). High-Energy Surf Zone

Currents and Headland Rips at a Geologically Constrained Mesotidal Beach. Jour-

nal of Geophysical Research: Oceans, 125(10):e2020JC016259. e2020JC016259

10.1029/2020JC016259.

II . Participation in conferences, meetings and work-

shops

• Rodríguez-Padilla, I., Castelle, B., Marieu, V., Bonneton, P., Mouragues, A., Mar-

tins, K., and Morichon, D. (2021). The Use of Optical Flow to Estimate Nearshore

Surface Currents From Video Imagery (2021). 8th edition of the Coastal Dynamics

Conference, Delft, Netherlands, Poster.

• Rodríguez-Padilla, I., Castelle, B., Marieu, V., and Morichon, D. (2020). Alter-

native Image Stabilization Method for Coastal Video Monitoring Systems. Virtual

International Conference on Coastal Engineering, Oral.

• Rodríguez-Padilla, I. (2019). Alternative Image Stabilization Method for Video

Systems. Third CIRN Boot Camp & CoastSnap Users Group Meeting, Toulouse,

France, Oral.

136



137



Bibliography

Aarnink, J. (2017). Bathymetry mapping using drone imagery.

Aarninkhof, S. and Roelvink, J. (1999). Argus-based monitoring of intertidal beach
morphodynamics. In Proceedings of Coastal Sediments 99, pages 2429–2444.

Aarninkhof, S., Ruessink, B., and Roelvink, J. (2005). Nearshore subtidal bathymetry
from time-exposure video images. Journal of Geophysical Research: Oceans, 110(C6).

Aarninkhof, S., Wijnberg, K., Roelvink, D., and Reniers, A. (2006). 2dh-quantification
of surf zone bathymetry from video. In Coastal Dynamics 2005: State of the Practice,
pages 1–14.

Aarninkhof, S. G. and Ruessink, B. G. (2004). Video observations and model predic-
tions of depth-induced wave dissipation. IEEE Transactions on Geoscience and Remote
Sensing, 42(11):2612–2622.

Aarninkhof, S. G., Turner, I. L., Dronkers, T. D., Caljouw, M., and Nipius, L. (2003). A
video-based technique for mapping intertidal beach bathymetry. Coastal Engineering,
49(4):275–289.

Aarninkhof, S. G. J. (2003). Nearshore bathymetry derived from video imagery.

Abadie, S., Butel, R., Dupuis, H., and Brière, C. (2005). Paramètres statistiques de la
houle au large de la côte sud-aquitaine. Comptes rendus geoscience, 337(8):769–776.

Abdel-Aziz, Y. and Karara, H. (1971). Direct linear transformation from comparator co-
ordinates into object space co-ordinates. In Proc. ASP/UI Symposium on Close-range
Photogrammetry.

Accensi, M. and Maisondieu, C. (2015). Homere. ifremer-laboratoire comportement des
structures en mer.

Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics.
Annual Review of Fluid Mechanics, 23(1):261–304.

Alexander, P. S. and Holman, R. A. (2004). Quantification of nearshore morphology
based on video imaging. Marine geology, 208(1):101–111.

Almar, R., Bergsma, E. W., Maisongrande, P., and de Almeida, L. P. M. (2019). Wave-
derived coastal bathymetry from satellite video imagery: A showcase with pleiades
persistent mode. Remote Sensing of Environment, 231:111263.

Almar, R., Bonneton, P., Senechal, N., and Roelvink, D. (2009). Wave celerity from
video imaging: a new method. In Coastal Engineering 2008: (In 5 Volumes), pages
661–673. World Scientific.

Almar, R., Cienfuegos, R., Catalán, P., Birrien, F., Castelle, B., and Michallet, H. (2011).
Nearshore bathymetric inversion from video using a fully non-linear boussinesq wave
model. Journal of Coastal Research, pages 20–24.

138



Bibliography

Almar, R., Cienfuegos, R., Catalán, P. A., Michallet, H., Castelle, B., Bonneton, P., and
Marieu, V. (2012a). A new breaking wave height direct estimator from video imagery.
Coastal Engineering, 61:42 – 48.

Almar, R., Larnier, S., Castelle, B., Scott, T., and Floc’h, F. (2016). On the use of the
radon transform to estimate longshore currents from video imagery. Coastal Engineer-
ing, 114:301 – 308.

Almar, R., Ranasinghe, R., Sénéchal, N., Bonneton, P., Roelvink, D., Bryan, K. R.,
Marieu, V., and Parisot, J.-P. (2012b). Video-based detection of shorelines at com-
plex meso–macro tidal beaches. Journal of Coastal Research, 28(5):1040–1048.

Anderson, D., Bak, A. S., Brodie, K. L., Cohn, N., Holman, R. A., and Stanley, J. (2021).
Quantifying optically derived two-dimensional wave-averaged currents in the surf
zone. Remote Sensing, 13(4):690.

Andriolo, U., Sánchez-García, E., and Taborda, R. (2019). Operational use of surf-
cam online streaming images for coastal morphodynamic studies. Remote Sensing,
11(1):78.

Austin, M. J., Scott, T. M., Russell, P. E., and Masselink, G. (2013). Rip current pre-
diction: development, validation, and evaluation of an operational tool. Journal of
coastal research, 29(2):283–300.

Battjes, J. A. and Janssen, J. (1978). Energy loss and set-up due to breaking of random
waves. In Coastal engineering 1978, pages 569–587.

Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Speeded-up robust features
(surf). Computer Vision and Image Understanding, 110(3):346 – 359. Similarity
Matching in Computer Vision and Multimedia.

Bell, P. S. (1999). Shallow water bathymetry derived from an analysis of x-band marine
radar images of waves. Coastal Engineering, 37(3-4):513–527.

Bell, P. S. and Osler, J. C. (2011). Mapping bathymetry using x-band marine radar data
recorded from a moving vessel. Ocean dynamics, 61(12):2141–2156.

Benedet, L., Pierro, T., and Henriquez, M. (2007). Impacts of coastal engineering
projects on the surfability of sandy beaches. Shore and Beach, 75(4):3.

Bergsma, E., Conley, D., Davidson, M., and O’Hare, T. (2016). Video-based nearshore
bathymetry estimation in macro-tidal environments. Marine Geology, 374:31–41.

Bergsma, E. W. and Almar, R. (2018). Video-based depth inversion techniques, a
method comparison with synthetic cases. Coastal Engineering, 138:199–209.

Bergsma, E. W., Almar, R., de Almeida, L. P. M., and Sall, M. (2019). On the operational
use of uavs for video-derived bathymetry. Coastal Engineering, 152:103527.

Bergsma, E. W. J. (2017). Application of an improved video-based depth inversion tech-
nique to a macrotidal sandy beach. PhD thesis, University of Plymouth.

Bian, X., Shao, Y., Zhang, C., Xie, C., and Tian, W. (2020). The feasibility of assessing
swell-based bathymetry using sar imagery from orbiting satellites. ISPRS Journal of
Photogrammetry and Remote Sensing, 168:124–130.

Birkemeier, W. A. and Mason, C. (1984). The crab: A unique nearshore surveying
vehicle. Journal of Surveying Engineering, 110(1):1–7.

139



Bibliography

Birrien, F., Castelle, B., Dailloux, D., Marieu, V., Rihouey, D., and Price, T. (2013). Video
observation of megacusp evolution along a high-energy engineered sandy beach: An-
glet, sw france. Journal of Coastal Research, 65(SIv2):1727–1732.

Blenkinsopp, C., Matias, A., Howe, D., Castelle, B., Marieu, V., and Turner, I. (2016).
Wave runup and overwash on a prototype-scale sand barrier. Coastal Engineering,
113:88 – 103. Barrier Dynamics Experiment II: sediment processes across a large-
scale sand barrier.

Bogle, J., Bryan, K., Black, K., Hume, T., and Healy, T. (2001). Video observations of
rip formation and evolution. Journal of Coastal Research, pages 117–127.

Bonneton, P., Lannes, D., Martins, K., and Michallet, H. (2018). A nonlinear weakly
dispersive method for recovering the elevation of irrotational surface waves from
pressure measurements. Coastal Engineering, 138:1 – 8.

Boudière, E., Maisondieu, C., Ardhuin, F., Accensi, M., Pineau-Guillou, L., and Lep-
esqueur, J. (2013). A suitable metocean hindcast database for the design of marine
energy converters. International Journal of Marine Energy, 3:e40–e52.

Bouguet, J.-Y. (2015). Camera calibration toolbox for matlab. Available online: http:
//www.vision.caltech.edu/bouguetj/calib_doc/, (2015).

Bouvier, C. (2019). Barres d’avant-côte et trait de côte: dynamique, couplage et effets
induits par la mise en place d’un atténuateur de houle. PhD thesis, Université de Bor-
deaux.

Bouvier, C., Balouin, Y., Castelle, B., and Holman, R. (2019). Modelling camera viewing
angle deviation to improve nearshore video monitoring. Coastal Engineering, 147:99
– 106.

Bouvier, C., Balouin, Y., Castelle, B., and Valentini, N. (2020). Video depth inversion
at a microtidal site exposed to prevailing low-energy short-period waves and episodic
severe storms. Journal of Coastal Research, 95(SI):1021–1026.

Bowen, A. and Holman, R. A. (1989). Shear instabilities of the mean longshore current:
1. theory. Journal of Geophysical Research: Oceans, 94(C12):18023–18030.

Brodie, K. L., Palmsten, M. L., Hesser, T. J., Dickhudt, P. J., Raubenheimer, B., Ladner,
H., and Elgar, S. (2018). Evaluation of video-based linear depth inversion perfor-
mance and applications using altimeters and hydrographic surveys in a wide range of
environmental conditions. Coastal Engineering, 136:147–160.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., 8(6):679–698.

Castelle, B., Almar, R., Dorel, M., Lefebvre, J.-P., Sénéchal, N., Anthony, E. J., Laibi,
R., Chuchla, R., and Penhoat, Y. d. (2014a). Rip currents and circulation on a high-
energy low-tide-terraced beach (grand popo, benin, west africa). Journal of Coastal
Research, (70):633–638.

Castelle, B., Bonneton, P., Senechal, N., Dupuis, H., Butel, R., and Michel, D. (2006).
Dynamics of wave-induced currents over an alongshore non-uniform multiple-barred
sandy beach on the aquitanian coast, france. Continental shelf research, 26(1):113–
131.

Castelle, B., Bujan, S., Ferreira, S., and Dodet, G. (2017a). Foredune morphological
changes and beach recovery from the extreme 2013/2014 winter at a high-energy
sandy coast. Marine Geology, 385:41 – 55.

140

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


Bibliography

Castelle, B. and Coco, G. (2012). The morphodynamics of rip channels on embayed
beaches. Continental Shelf Research, 43:10–23.

Castelle, B., Dodet, G., Masselink, G., and Scott, T. (2017b). A new climate index
controlling winter wave activity along the atlantic coast of europe: The west europe
pressure anomaly. Geophysical Research Letters, 44(3):1384–1392.

Castelle, B., Marieu, V., Bujan, S., Ferreira, S., Parisot, J.-P., Capo, S., Sénéchal, N., and
Chouzenoux, T. (2014b). Equilibrium shoreline modelling of a high-energy meso-
macrotidal multiple-barred beach. Marine Geology, 347:85 – 94.

Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N., and Ferreira,
S. (2015). Impact of the winter 2013–2014 series of severe western europe storms
on a double-barred sandy coast: Beach and dune erosion and megacusp embayments.
Geomorphology, 238:135 – 148.

Castelle, B., McCarroll, R. J., Brander, R. W., Scott, T., and Dubarbier, B. (2016a).
Modelling the alongshore variability of optimum rip current escape strategies on a
multiple rip-channelled beach. Natural Hazards, 81(1):663–686.

Castelle, B., Michallet, H., Marieu, V., Leckler, F., Dubardier, B., Lambert, A., Berni,
C., Bonneton, P., Barthélemy, E., and Bouchette, F. (2010a). Laboratory experiment
on rip current circulations over a moveable bed: Drifter measurements. Journal of
Geophysical Research: Oceans, 115(C12).

Castelle, B., Ruessink, B., Bonneton, P., Marieu, V., Bruneau, N., and Price, T. D.
(2010b). Coupling mechanisms in double sandbar systems. part 1: Patterns and
physical explanation. Earth Surface Processes and Landforms, 35(4):476–486.

Castelle, B., Scott, T., Brander, R., and McCarroll, R. (2016b). Rip current types, circu-
lation and hazard. Earth-Science Reviews, 163:1 – 21.

Catálan, P. A. and Haller, M. C. (2008). Remote sensing of breaking wave phase speeds
with application to non-linear depth inversions. Coastal Engineering, 55(1):93–111.

Chalom, E., Asa, E., and Biton, E. (2013). Measuring image similarity: an overview of
some useful applications. IEEE Instrumentation Measurement Magazine, 16(1):24–28.

Chang Li and Yangke Liu (2011). Global motion estimation based on sift feature match
for digital image stabilization. In Proceedings of 2011 International Conference on
Computer Science and Network Technology, volume 4, pages 2264–2267.

Chapman, H. R., O’Connor, H., Starek, M. J., and Kar, D. C. (2019). A framework for
determination of ocean wave properties using unmanned aerial systems. In Proceed-
ings of the International Conference on Scientific Computing (CSC), pages 35–39. The
Steering Committee of The World Congress in Computer Science, Computer . . . .

Cheng, P. (2020). On residual velocities in sigma coordinates in narrow tidal channels.
Acta Oceanologica Sinica, 39(5):1–10.

Chickadel, C. C., Holman, R. A., and Freilich, M. H. (2003). An optical technique for
the measurement of longshore currents. Journal of Geophysical Research: Oceans,
108(C11).

Clarke, T. A. and Fryer, J. G. (1998). The development of camera calibration methods
and models. The Photogrammetric Record, 16(91):51–66.

141



Bibliography

Coco, G., Payne, G., Bryan, K. R., Rickard, D., Ramsay, D., and Dolphin, T. (2005). The
use of imaging systems to monitor shoreline dynamics. In 1st International Conference
on Coastal Zone management and Engineering in the Middle East.

Cox, D. T. and Anderson, S. L. (2001). Statistics of intermittent surf zone turbulence and
observations of large eddies using piv. Coastal Engineering Journal, 43(2):121–131.

Davidson, M., Splinter, K., and Turner, I. (2013). A simple equilibrium model for pre-
dicting shoreline change. Coastal Engineering, 73:191–202.

Davidson, M. and Turner, I. (2009). A behavioral template beach profile model for pre-
dicting seasonal to interannual shoreline evolution. Journal of Geophysical Research:
Earth Surface, 114(F1).

Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A.,
Medina, R., Kroon, A., and Aarninkhof, S. (2007). The coastview project: Developing
video-derived coastal state indicators in support of coastal zone management. Coastal
Engineering, 54(6-7):463–475.

De Vries, S., Hill, D., De Schipper, M., and Stive, M. (2011). Remote sensing of surf
zone waves using stereo imaging. Coastal Engineering, 58(3):239–250.

Didier, D., Bernatchez, P., Augereau, E., Caulet, C., Dumont, D., Bismuth, E., Cormier,
L., Floc’h, F., and Delacourt, C. (2017). Lidar validation of a video-derived beachface
topography on a tidal flat. Remote Sensing, 9(8):826.

Dugan, J., Morris, W., Vierra, K., Piotrowski, C., Farruggia, G., and Campion, D. (2001).
Jetski-based nearshore bathymetric and current survey system. Journal of coastal
research, pages 900–908.

Dérian, P. and Almar, R. (2017). Wavelet-based optical flow estimation of instant sur-
face currents from shore-based and uav videos. IEEE Transactions on Geoscience and
Remote Sensing, 55(10):5790–5797.

El-gayar, M., Soliman, H., and meky, N. (2013). A comparative study of image low level
feature extraction algorithms. Egyptian Informatics Journal, 14(2):175 – 181.

Enjalbert, C., Castelle, B., Rihouey, D., and Dailloux, D. (2011). High-frequency video
observation of a geologically-constrained barred-beach: La grande plage de biarritz
(france). Journal of Coastal Research, pages 70–74.

Faig, W. (1975). Calibration of close-range photogrammetric systems: Mathematical
formulation. Photogrammetric engineering and remote sensing, 41(12).

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Com-
mun. ACM, 24(6):381–395.

Fuchs, R. A. (1953). Depth determination on beaches by wave velocity methods. Tech-
nical report, CALIFORNIA UNIV BERKELEY WAVE RESEARCH LAB.

Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy
and limitations. Progress in Physical Geography, 33(1):103–116.

Giddings, S. N., Monismith, S. G., Fong, D. A., and Stacey, M. T. (2014). Using depth-
normalized coordinates to examine mass transport residual circulation in estuaries
with large tidal amplitude relative to the mean depth. Journal of physical oceanogra-
phy, 44(1):128–148.

142



Bibliography

Grilli, S. T. (1998). Depth inversion in shallow water based on nonlinear properties of
shoaling periodic waves. Coastal Engineering, 35(3):185–209.

Guizar-Sicairos, M., Thurman, S. T., and Fienup, J. R. (2007). Efficient image reg-
istration algorithms for computation of invariant error metrics. In Adaptive Optics:
Analysis and Methods/Computational Optical Sensing and Imaging/Information Pho-
tonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, page SMC3. Optical
Society of America.

Guizar-Sicairos, M., Thurman, S. T., and Fienup, J. R. (2008a). Efficient subpixel image
registration algorithms. Opt. Lett., 33(2):156–158.

Guizar-Sicairos, M., Thurman, S. T., and Fienup, J. R. (2008b). Ef-
ficient subpixel image registration by cross-correlation. Available
online: https://www.mathworks.com/matlabcentral/fileexchange/
18401-efficient-subpixel-image-registration-by-cross-correlation, (ac-
cessed on 2 February 2019).

Harley, M., Kinsela, M., Sánchez-García, E. S., and Vos, K. (2018). Coastsnap: Crowd-
sourced shoreline change mapping using smartphones. In AGU Fall Meeting Abstracts,
volume 2018, pages EP52D–26.

Harrison, S. R., Bryan, K. R., and Mullarney, J. C. (2017). Observations of morphological
change at an ebb-tidal delta. Marine Geology, 385:131–145.

Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2 edition.

Holland, K. and Holman, R. (1997). Video estimation of foreshore topography using
trinocular stereo. Journal of Coastal Research, pages 81–87.

Holland, K., Puleo, J., and Kooney, T. (2001). Quantification of swash flows using
video-based particle image velocimetry. Coastal Engineering, 44(2):65–77.

Holland, K. T. and Holman, R. A. (1999). Wavenumber-frequency structure of infragrav-
ity swash motions. Journal of Geophysical Research: Oceans, 104(C6):13479–13488.

Holland, K. T., Holman, R. A., Lippmann, T. C., Stanley, J., and Plant, N. (1997).
Practical use of video imagery in nearshore oceanographic field studies. IEEE Journal
of Oceanic Engineering, 22(1):81–92.

Holland, K. T., Palmsten, M. L., et al. (2018). Remote sensing applications and bathy-
metric mapping in coastal environments. Advances in Coastal Hydraulics, pages 375–
411.

Holland, T. K. (2001). Application of the linear dispersion relation with respect to depth
inversion and remotely sensed imagery. IEEE Transactions on Geoscience and Remote
Sensing, 39(9):2060–2072.

Holman, R. and Chickadel, C. (2005). Optical remote sensing estimates of the incident
wave angle field during ncex. In Coastal Engineering 2004: (In 4 Volumes), pages
1072–1081. World Scientific.

Holman, R. and Haller, M. C. (2013). Remote sensing of the nearshore. Annual review
of marine science, 5:95–113.

Holman, R., Plant, N., and Holland, T. (2013). cbathy: A robust algorithm for estimat-
ing nearshore bathymetry. Journal of Geophysical Research: Oceans, 118(5):2595–
2609.

143

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation


Bibliography

Holman, R. and Stanley, J. (2007). The history and technical capabilities of argus.
Coastal Engineering, 54(6):477 – 491. The CoastView Project: Developing coastal
video monitoring systems in support of coastal zone management.

Holman, R. and Stanley, J. (2013). cbathy bathymetry estimation in the mixed wave-
current domain of a tidal estuary. Journal of Coastal Research, (65):1391–1396.

Holman, R. A., Brodie, K. L., and Spore, N. J. (2017). Surf zone characterization using
a small quadcopter: Technical issues and procedures. IEEE Transactions on Geoscience
and Remote Sensing, 55(4):2017–2027.

Holman, R. A., Sallenger, A. H., Lippmann, T. C., and Haines, J. W. (1993). The appli-
cation of video image processing to the study of nearshore processes. Oceanography,
6(3):78–85.

Holman, R. A., Symonds, G., Thornton, E. B., and Ranasinghe, R. (2006). Rip spac-
ing and persistence on an embayed beach. Journal of Geophysical Research: Oceans,
111(C1).

Honegger, D. A., Haller, M. C., and Holman, R. A. (2019). High-resolution bathymetry
estimates via x-band marine radar: 1. beaches. Coastal Engineering, 149:39–48.

Honegger, D. A., Haller, M. C., and Holman, R. A. (2020). High-resolution bathymetry
estimates via x-band marine radar: 2. effects of currents at tidal inlets. Coastal Engi-
neering, 156:103626.

Horn, B. K. and Schunck, B. G. (1981). Determining optical flow. In Techniques and Ap-
plications of Image Understanding, volume 281, pages 319–331. International Society
for Optics and Photonics.

Horstmann, J., Stresser, M., and Carrasco, R. (2017). Surface currents retrieved from
airborne video. In OCEANS 2017 - Aberdeen, pages 1–4.

Hsieh, S. and Kao, C. (2010). A study of the feature-based digital image stabilization
system. Journal of the Chinese Institute of Engineers, 33(4):635–641.

Huguet, J.-R., Castelle, B., Marieu, V., Morichon, D., and de Santiago, I. (2016).
Shoreline-sandbar dynamics at a high-energy embayed and structurally-engineered
sandy beach: Anglet, sw france. Journal of Coastal Research, 75(SI):393–397.

Ibaceta, R., Almar, R., Lefebvre, J.-P., Mensah-Senoo, T., Laryea, W., Castelle, B.,
Senechal, N., du Penhoat, Y., Laibi, R., and Hounkonnou, N. (2014). A new high
frequency remote sensing based method: application to the swash zone of a very
high reflective beach under high energetic conditions (grand popo, benin). Actes des
XIIIèmes Journées Nationales Génie Côtier-Génie Civil.

Inch, K. (2014). Surf zone hydrodynamics: Measuring waves and currents. Geomorpho-
logical Techniques, 3:1–13.

Inman, D. L. (2002). Nearshore processes. Retrieved from https://escholarship.
org/uc/item/204201x5.

Jackson, D. and Short, A. (2020). Sandy beach morphodynamics. Elsevier.

Jin, J. S., Zhigang Zhu, and Guangyou Xu (2000). A stable vision system for moving
vehicles. IEEE Transactions on Intelligent Transportation Systems, 1(1):32–39.

Jin, J. S., Zhu, Z., and Xu, G. (2001). Digital video sequence stabilization based on 2.5d
motion estimation and inertial motion filtering. Real-Time Imaging, 7(4):357 – 365.

144

https://escholarship.org/uc/item/204201x5
https://escholarship.org/uc/item/204201x5


Bibliography

Johnson, J. (1949). Wave-velocity method of depth determination by aerial pho-
tographs. Technical report, CALIFORNIA UNIV BERKELEY INST OF ENGINEERING
RESEARCH.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Kaplan, D. M., Largier, J., and Botsford, L. W. (2005). Hf radar observations of surface
circulation off bodega bay (northern california, usa). Journal of Geophysical Research:
Oceans, 110(C10).

Kimmoun, O. and Branger, H. (2007). A particle image velocimetry investigation on
laboratory surf-zone breaking waves over a sloping beach. Journal of Fluid Mechanics,
588:353.

Komar, P. D. (1998). Beach processes and sedimentation. prentice hall. New Jersey, 539.

Kulkarni, S., Bormane, D., and Nalbalwar, S. (2017). Video stabilization using feature
point matching. Journal of Physics: Conference Series, 787:012017.

Laporte-Fauret, Q., Marieu, V., Castelle, B., Michalet, R., Bujan, S., and Rosebery, D.
(2019). Low-cost uav for high-resolution and large-scale coastal dune change moni-
toring using photogrammetry. Journal of Marine Science and Engineering, 7(3):63.

Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., and Patch, J. S. (1999). Hyper-
spectral remote sensing for shallow waters: 2. deriving bottom depths and water
properties by optimization. Applied optics, 38(18):3831–3843.

Lim, A., Ramesh, B., Yang, Y., Xiang, C., Gao, Z., and Lin, F. (2017). Real-time optical
flow-based video stabilization for unmanned aerial vehicles. Journal of Real-Time
Image Processing.

Lippmann, T. and Holman, R. (1990). The spatial and temporal variability of sand bar
morphology. Journal of Geophysical Research: Oceans, 95(C7):11575–11590.

Lippmann, T. C. and Holman, R. A. (1989). Quantification of sand bar morphology: A
video technique based on wave dissipation. Journal of Geophysical Research: Oceans,
94(C1):995–1011.

Lippmann, T. C. and Holman, R. A. (1991). Phase speed and angle of breaking waves
measured with video techniques. In Coastal Sediments, pages 542–556. ASCE.

Liu, T. (2017). Openopticalflow: an open source program for extraction of velocity
fields from flow visualization images. Journal of Open Research Software, 5(1).

Liu, T., Merat, A., Makhmalbaf, M., Fajardo, C., and Merati, P. (2015). Comparison
between optical flow and cross-correlation methods for extraction of velocity fields
from particle images. Experiments in Fluids, 56(8):166.

Liu, T. and Shen, L. (2008). Fluid flow and optical flow. Journal of Fluid Mechanics,
614:253–291.

Liu, T., Wang, B., and Choi, D. S. (2012). Flow structures of jupiter’s great red spot
extracted by using optical flow method. Physics of Fluids, 24(9):096601.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceed-
ings of the Seventh IEEE International Conference on Computer Vision, volume 2, pages
1150–1157 vol.2.

145



Bibliography

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110.

Lyzenga, D. R., Malinas, N. P., and Tanis, F. J. (2006). Multispectral bathymetry using
a simple physically based algorithm. IEEE Transactions on Geoscience and Remote
Sensing, 44(8):2251–2259.

Lyzenga, G. A. and Ahrens, T. J. (1978). The relation between the shock-induced free-
surface velocity and the postshock specific volume of solids. Journal of Applied Physics,
49(1):201–204.

MacMahan, J. (2001). Hydrographic surveying from personal watercraft. Journal of
surveying engineering, 127(1):12–24.

MacMahan, J., Brown, J., Brown, J., Thornton, E., Reniers, A., Stanton, T., Henriquez,
M., Gallagher, E., Morrison, J., Austin, M. J., et al. (2010). Mean lagrangian flow
behavior on an open coast rip-channeled beach: A new perspective. Marine Geology,
268(1-4):1–15.

MacMahan, J., Brown, J., and Thornton, E. (2009). Low-Cost Handheld Global Po-
sitioning System for Measuring Surf-Zone Currents. Journal of Coastal Research,
2009(253):744 – 754.

MacMahan, J. H., Thornton, E. B., and Reniers, A. J. (2006). Rip current review. Coastal
Engineering, 53(2-3):191–208.

Madsen, A. and Plant, N. (2001). Intertidal beach slope predictions compared to field
data. Marine Geology, 173(1):121 – 139.

Mancini, S., Olsen, R. C., Abileah, R., and Lee, K. R. (2012). Automating nearshore
bathymetry extraction from wave motion in satellite optical imagery. In Algorithms
and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, vol-
ume 8390, page 83900P. International Society for Optics and Photonics.

Martins, K., Bonneton, P., and Michallet, H. (2021). Dispersive characteristics of
non-linear waves propagating and breaking over a mildly sloping laboratory beach.
Coastal Engineering, 167:103917.

Martins, K., Bonneton, P., Mouragues, A., and Castelle, B. (2020). Non-hydrostatic,
non-linear processes in the surf zone. Journal of Geophysical Research: Oceans,
125(2):e2019JC015521.

Masselink, G., Scott, T., Poate, T., Russell, P., Davidson, M., and Conley, D. (2016). The
extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along
the southwest coast of england. Earth Surface Processes and Landforms, 41(3):378–
391.

Matas, J., Krsek, P., Urban, M., Obdrzálek, Š., and Nohỳl, J. (2003). Geometric and
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A Optical flow algorithm setup

The relevant parameters used for Liu (2017) OpenOpticalFlow algorithm are listed in

Table A.1.

As previously mentioned in subsection 5.3.3, OpenOpticalFlow uses the Horn-

Schunck estimator for an initial solution and the Liu-Shen estimator for a refined so-

lution of Eq. 5.3. The term f(x1, x2, I) depends on a specific flow visualization. For

a transport of a scalar (i.e. foam concentration), it is related to the molecular diffu-

sion plus the boundary term. For simplicity, we defined f(x1, x2, I) = 0, a reasonable

approximation for most fluid mechanics problems where the convection is dominant

as shown in Liu and Shen (2008); Liu (2017). The Lagrange multipliers "lambda_1"

and "lambda_2" (λ in Eq. 5.5 and 5.3) are selected for the Horn-Schunck and Liu-Shen

estimators, respectively. The Lagrange multipliers act like a diffusion coefficient in the

corresponding Euler-Lagrange equations (Eq. 5.3 and 5.5) and tend to smooth out finer

flow structures (Liu et al., 2012, 2015; Liu, 2017). There is no rigorous theory for

determining the Lagrange multiplier in the variational formulation of the optical flow

equation. Within a considerable range of the Lagrange multipliers, the solution is not

significantly sensitive to its selection (Liu and Shen, 2008; Liu et al., 2012, 2015; Liu,

2017; Wang et al., 2015).
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The pixel displacement between frames should be small (typically less than 5 px

depending on the size of image patterns (Liu, 2017)). Otherwise, the time derivative

of the image intensity will be underestimated in the finite difference method and the

optical flow error would be significant (Liu et al., 2012). To handle large displacements

(e.g., >10 px), a coarse-to-fine iterative scheme is adopted to improve the accuracy

of optical flow computation (Liu, 2017). First, the raw images are downsampled by a

suitable scale factor (parameter called "scale_im") using the wavelet transform (Dérian

and Almar, 2017) so that the displacements in pixels remain small enough (1-5 px).

Next, the optical flow algorithm is applied to the downsampled images to estimate a

coarse-grained velocity field. Finally, the original resolution velocity field is recovered

by iterations (parameter called "no_iteration") using an image-shifting (image-warping)

algorithm with an embedded spatial interpolation scheme (Liu et al., 2015). Usually,

one or two iterations are sufficient (Liu, 2017). In addition to the main program, (Liu,

2017) OpenOpticalFlow include two image pre-processing routines (Gaussian filters)

for removing small random noise and correcting the effect of local illumination intensity

change. The mask size of the Gaussian filter is given by the parameter called "size_filter"

and the standard deviation of the Gaussian filter is 0.6 of the mask size. The standard

deviation (or size) of the Gaussian filter is given by the parameter called "size_average"

in the program. A full description of the parameters and subroutines involved in the

usage of OpenOpticalFlow can be found in (Liu, 2017).

For this study, the Lagrange multipliers in the Horn-Schunck and Liu-Shen estimators

were set at 20 and 2000, respectively. In the coarse-to-fine scheme, raw images were

initially downsampled by 2 (reduced to 50% of their original size) and then refined to

their original resolution by the first iteration. The mask sizes of the Gaussian filter for

removing small random noise was set to 4 px in the raw images, while the standard

deviation of the Gaussian filter was set at 60% of the mask size. The mask size of the

filter for correcting the effect of the changing illumination intensity was fixed at 30 px

for the raw images (Table A.1).
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Appendix

Table A.1 – Optical flow input parameters and settings.

Parameter Notation Value Note

Lagrange multipliers lambda_1 for the Horn-Schunk estimator 20 regularization parameters in

lambda_2 for the Liu-Shen estimator 2000 variational solution

scale factor for downsampling of scale_im 0.5 reduction of initial image size in

raw images coarse-to-fine scheme

number of iterations no_iteration 1 iteration in coarse-to-fine scheme

Gaussian filter size size_filter 4 px removing random image noise

Gaussian filter size size_average 30 px correction for local illumination

intensity change
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