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Résumé

Les troubles de la parole sont une manifestation précoce et fréquente des troubles
neurologiques. Par conséquent, l’analyse des troubles de la parole et la détection
de la pathophysiologie sous-jacente revêtent une grande importance pour la pratique
clinique. Le parkinsonisme est un trouble neurologiques qui fait référence à la maladie
de Parkinson idiopathique (MP) et aux syndromes parkinsoniens atypiques (SPA),
tels que la paralysie supranucléaire progressive (PSP) et l’atrophie multisystématisée
(AMS). Le diagnostic différentiel entre ces groupes de maladies est une tâche difficile
en raison de la similitude des symptômes aux premiers stades, alors que la certitude
du diagnostic précoce est essentielle pour le patient en raison du pronostic divergent.
En effet, malgré des efforts récents, aucun marqueur objectif validé n’est actuellement
disponible pour guider le clinicien dans le diagnostic différentiel. Cette thèse vise à
concevoir des marqueurs vocaux adaptés au diagnostic différentiel du parkinsonisme et
à fournir des indications sur leur spécificité qui pourraient être utiles dans le diagnostic
différentiel précoce.

Le premier défi de cette thèse était de concevoir des marqueurs vocaux distinctifs
pour le diagnostic différentiel entre la MP et l’AMS-P, le sous-type parkinsonien du
l’AMS. Nous avons commencé par analyser la réalisation des consonnes initiales des
mots à partir de pseudo-mots en utilisant à la fois l’inspection visuelle du spectro-
gramme et une méthode objective. Nous avons utilisé une base de données collectée
dans le cadre du projet Voice4PD-MSA et qui consiste en des enregistrements vocaux
de patients français PD et AMS-P ainsi que de témoins sains. L’analyse a révélé un
dévoisement fréquent des obstruentes voisées chez les patients AMS-P par rapport aux
patients PD. L’occurrence de bursts dans les fricatives non voisées a également été
identifiée, en utilisant la détection visuelle et automatique, comme un autre marqueur
vocalique distinctif de l’AMS-P.

La réalisation des voyelles a été analysée en utilisant des voyelles tenues et une
phrase extraite d’un text lu. Des anomalies dans la synchronisation de la vibration
des plis vocaux et des mouvements involontaires des articulateurs ont été identifiées
comme des troubles distinctifs de l’AMS-P. La réduction de l’espace vocalique est
également prédominante chez les patients atteints d’AMS-P par rapport à ceux at-
teints de la maladie de Parkinson. La diadochokinésie (DDK), répétition rapide de
mouvements alternés des articulateurs, a été analysée à l’aide de tâches de répétition
de syllabes. Elle a révélé un déviance rythmique plus importante chez les patients
atteints de l’AMS-P par rapport à ceux atteints de la MP.

Le deuxième défi de cette thèse était de concevoir des marqueurs de parole pour
le diagnostic différentiel entre la PSP et l’AMS. Pour effectuer l’analyse, nous avons
utilisé une base de données d’enregistrements vocaux de patients tchèques MP, PSP
et AMS. Nous avons adopté une procédure semi-supervisée de combinaison linéaire de
caractéristiques pour concevoir deux ensembles de nouvelles caractéristiques vocales
distinctives. Le premier est lié aux sous-systèmes de production de la parole : respi-
ration, phonation, articulation, prosodie et timing. Le second est lié aux sous-types
de dysarthrie : hypokinétique, ataxique et spastique. Les deux ensembles ont permis
de discriminer la PSP et l’AMS avec une grande précision.
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Dans l’ensemble, cette thèse a fourni un cadre pour détecter et concevoir des
marqueurs vocaux interprétables et distinctifs, à partir de différentes tâches vocales,
pour le diagnostic différentiel entre les troubles parkinsoniens. Certains des résultats
de cette thèse pourraient servir de base et/ou d’inspiration pour de futures recherches
visant à atteindre l’objectif final très ambitieux : le diagnostic différentiel précoce.

Mots clés: Troubles de la parole, Neurodégénération, Maladie de Parkinson, At-
rophie du système multiple, Paralysie supranucléaire progressive, Dysarthrie, Traite-
ment pathologique de la parole, Diagnostic différentiel.
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Abstract

Speech disorder is an early and prominent manifestation of neurological
disorders. Therefore, the breakdown of speech disorders and detecting un-
derlying pathophysiology have a valuable importance to clinical practice.
Parkinsonism is one of the neurological disorder that refers to idiopathic
Parkinson’s Disease (PD) and Atypical Parkinsonian Syndromes (APS),
such as Progressive Supranuclear Palsy (PSP) and Multiple System At-
rophy (MSA). Differential diagnosis between these disease groups is a
challenging task due to similar symptoms at the early stages, while early
diagnostic certainty is essential for the patient because of the diverging
prognosis. Indeed, despite recent efforts, no validated and cost-effective
objective marker is currently available to guide the clinician for the dif-
ferential diagnosis. This thesis aims to design speech markers suitable
for differential diagnosis in Parkinsonism and to provide some insights on
the disease-specificity of some impairments that could be useful in early
differential diagnosis.

The first challenge of this thesis was to design distinctive speech mark-
ers for differential diagnosis between PD and MSA-P, the Parkinsonian
subtype of MSA. We started by analysing the realization of word-initial
consonants from pseudo-words using both visual spectrogram inspection
and an objective method. We used a database collected in the framework
of the Voice4PD-MSA project and which consists in speech recordings
of PD and MSA-P French patients as well as healthy controls. Analysis
revealed frequent devoicing in voiced obstruents for MSA-P patients as
compared to PD. The occurrence of bursts in unvoiced fricatives was also
identified, using visual and automatic detection, as another distinctive
speech markers of MSA-P.

Vowel realization was analyzed using sustained vowels and a sentence ex-
tracted from a passage reading. Abnormality in vocal folds vibration
timing, and involuntary movements of articulators came up as distinctive
speech disorder for MSA-P. Reduced vowel space area was also found to
be predominant for MSA-P patients compared to PD. Diadochokinesis
(DDK), the rapid repetition of alternating movements of articulators, was
analyzed using syllable repetition tasks. It revealed a more prominent
rhythmic disorder of MSA-P patients compared to PD.

The second challenge of this thesis was to design speech markers for differ-
ential diagnosis between PSP and MSA. To conduct the analysis, we used



a database of speech recordings of PD, PSP, and MSA Czech patients.
We adopted a semi-supervised feature linear combination procedure to
design two sets of new distinctive speech features. The first one is related
to subsystems of speech production: respiration, phonation, articulation,
prosody and timing. The second one is related to dysarthria subtypes:
hypokinetic, ataxic and spastic. Both sets led to discrimination between
PSP and MSA with a high accuracy.

Overall, this thesis provided a framework to detect and design inter-
pretable disease specific speech markers from different speech tasks for
differential diagnosis between Parkinsonian disorders. Some of the results
of the thesis could serve as basis and/or inspiration for future research
towards the very challenging ultimate target: early differential diagnosis.

Key words: Speech disorders, Parkinson’s disease, Multiple system atro-
phy, Progressive supranuclear palsy, Dysarthria, Pathological speech pro-
cessing, Differential diagnosis.
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Résumé étendu en Français

Les troubles de la parole sont une manifestation précoce et importante des trou-
bles neurologiques. Par conséquent, la décomposition des troubles de la parole et la
détection de la pathophysiologie sous-jacente ont une importance inestimable pour
la pratique clinique. Les troubles de la parole sont généralement attribués au vieil-
lissement, mais le modèle de trouble est surtout distinct pour la voix neurogène.
Le parkinsonisme est l’un des troubles neurologiques qui fait référence à la maladie
de Parkinson idiopathique (MP) et aux syndromes parkinsoniens atypiques (SPA),
tels que la paralysie supranucléaire progressive (PSP) et l’atrophie multisystémique
(AMS). Le diagnostic différentiel de ces derniers groupes de maladies (MP et SPA)
reste une tâche difficile en raison de la similitude des symptômes aux stades précoces,
alors que la certitude diagnostique précoce est essentielle pour le patient en raison
du pronostic divergent. En effet, malgré des efforts récents, aucun marqueur objectif
validé de la parole n’est actuellement disponible pour guider le clinicien dans son
diagnostic différentiel. Cette thèse a donc pour but de concevoir et de définir les mar-
queurs de la parole qui permettraient de mieux comprendre les troubles de la parole
causés par des maladies neurologiques, puis de poser un diagnostic différentiel.

L’analyse des troubles de la parole nécessite au moins une base de données vocales
permettant d’évaluer le modèle des anomalies de la parole. La base de données vocales
des maladies neurologiques MP et AMS-P n’est pas disponible en langue française.
Ainsi, le développement d’une base de données vocales (Voice4PD-MSA) pour les
groupes PD et MSA-P était l’un des objectifs de cette thèse. Lors du développement
de la base de données Voice4PD-MSA, nous avons exploré la base de données Czech-
Data qui comprend des échantillons de parole des groupes de maladies MP, PSP et
AMS en langue tchèque pour le diagnostic différentiel.

L’algorithme automatique est toujours en demande pour quantifier l’observation
perceptive et visuelle afin de capturer des troubles particuliers de la parole. Les com-
posantes de la parole cliniquement interprétables sont considérées comme des anoma-
lies de la respiration, de la production de voyelles, des mouvements de l’articulateur et
de la prosodie par des méthodes objectives à partir de voyelles soutenues, de consonnes
initiales de mots, de tâches diadochocinétiques (DDK) et de la parole continue. Les
voyelles imprécises comprennent les déficits d’ouverture et de fermeture des plis vo-
caux, les mouvements involontaires de l’articulateur, l’hypernasalité, les tremblements
et les modifications de la zone de l’espace vocal sont observés comme étant impor-
tants pour le diagnostic différentiel des patients atteints de AMS-P et de MP. Dans
les obstructions imprécises, le dévoicing dans les obstructions voisées et l’éclatement
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dans les fricatives (anti-spirantisation) sont identifiés comme des marqueurs vocaux
distinctifs pour le AMS-P. En outre, les indices vocaux liés au sous-système de pro-
duction de la parole et à la dysarthrie permettent une différenciation encourageante et
une spécificité de la maladie dans les groupes de maladies. Compte tenu de la faible
quantité de données, les caractéristiques vocales bidimensionnelles sont conçues de
manière à ce que l’un des groupes de maladies prédomine dans une dimension vocale,
ce qui permet de distinguer les groupes de maladies avec un bon score de classification.

Le diagnostic différentiel précoce était un autre objectif essentiel de la présente
étude. La présente étude a observé des indications encourageantes sur le diagnos-
tic différentiel précoce en explorant la tendance des marqueurs vocaux par rapport
aux signes cliniques. Ainsi, nous aspirons à ce que la méthodologie présentée dans
cette thèse serve d’outil de diagnostic potentiel dans la pratique clinique et inspire
le développement de méthodes automatiques pour étudier les troubles de la parole
dans le parkinsonisme. Ainsi, les sections suivantes décriront la contribution au
développement de la base de données de la parole, les troubles des voyelles à par-
tir de la voyelle soutenue et de la lecture de texte, les consonnes initiales des mots à
partir du logatome, de la tâche diadochocinétique et de la tâche de lecture pour les
patients atteints de la MP et de l’AMS-P. De plus, il décrira le diagnostic différentiel
de la PSP et du AMS.

0.1 Base de données

Deux bases de données vocales différentes ont été utilisées pour trouver des marqueurs
vocaux spécifiques à la maladie pour le diagnostic différentiel. La base de données,
Voice4PD-MSA était dédiée à la collecte d’échantillons de parole (voyelles soutenues,
/s/ soutenu, tâche diadochocinétique, lecture de texte, monologue et logatomes) en
langue française de patients PD et AMS-P. De 2018 au moment de la rédaction de
cette thèse, un total de 60 locuteurs français ont été recrutés dans le cadre d’un
projet de recherche impliquant les services de neurologie et d’ORL de 2 hôpitaux
universitaires français. 27 patients (8 femmes et 19 hommes) ont été diagnostiqués
avec une MP idiopathique, avec un âge moyen de 60 ans et une durée moyenne des
symptômes de 4 ans. 13 sujets (8 femmes et 5 hommes) ont reçu un diagnostic d’AMS-
P, avec un âge moyen de 67 ans et une durée moyenne des symptômes de 3,5 ans. une
durée moyenne des symptômes de 3,5 ans. 20 témoins sains (HC) d’un âge moyen
de 56 ans (10 femmes et 10 hommes) sans antécédents de troubles neurologiques
ou de communication ont été recrutés. D’autres modes d’enregistrement tels que
l’électroglottographe (EGG), les données aérodynamiques et la laryngostroboscopie
ont également été pris en compte.

La base de données tchèque est constituée d’échantillons de parole provenant
des groupes de maladies MP, PSP et AMS. Le groupe sain comprend 150 sujets
(95 hommes et 55 femmes). Le groupe MP idiopathique comprend 25 patients (16
hommes et 9 femmes). Le groupe PSP contient 20 patients (13 hommes et 7 femmes),
tandis que 19 patients PSP ont diagnostiqué le syndrome de Richardson (PSP-RS).
D’autre part, le groupe AMS compte 25 patients (15 hommes et 10 femmes).
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0.2 Distorsion des voyelles dans la MP et l’AMS-P

L’altération des voyelles est la plus fréquente dans les troubles neurologiques, et
donc largement étudiée [45] pour évaluer les déficits de la vibration des plis vocaux
et des mouvements de l’articulateur. Cependant, des études supplémentaires sont
nécessaires pour valider les résultats précédents et, en particulier, pour trouver des
marqueurs objectifs de la parole liés à la production de voyelles pour le diagnostic
différentiel.

La présente étude explore l’altération des voyelles par des déficits laryngés et
des mouvements imprécis de l’articulateur. Deux tâches vocales différentes sont
utilisées pour cette évaluation. Tout d’abord, la voyelle soutenue /a/ est utilisée pour
évaluer le dysfonctionnement laryngé, l’instabilité de l’articulateur et les activités
vélopharyngées.Ensuite, la tâche de lecture de texte est utilisée pour l’évaluation de
l’espace vocalique (VSA). À notre connaissance, la VSA n’a jamais été utilisée pour
le diagnostic différentiel du MP et du AMS-P.

Les caractéristiques acoustiques de la phonation telles que le jitter, le shimmer,
le HNR, la moyenne et la déviation standard du Quotient Quasi-Open (QOQ), la
dérivée de F0, le degré de voiceless (DUV), l’indice d’intensité du tremblement de
fréquence (FTRI) calculé par Disvoice toolkit, et les scripts Praat. Pour évaluer les
mouvements volontaires de l’articulateur, les caractéristiques acoustiques telles que
la déviation standard de la densité spectrale de puissance dans la bande de fréquence
et les caractéristiques nasales sont calculées par l’auteur de la thèse en suivant des
études précédentes [211, 130]. Les caractéristiques acoustiques liées à la vibration des
plis vocaux permettent une discrimination encourageante entre les patients MP et
AMS-P. De plus, les patients atteints d’AMS-P présentent des déficits prédominants
dans les dimensions de l’articulation et de la parole nasale. Deux indices de la parole
sont développés pour mesurer la sévérité globale des sous-systèmes de phonation et
d’articulation, ce qui améliore les différences de groupe entre la MP et l’AMS-P.
L’utilisation de deux indices vocaux dans l’arbre de décision donne une précision de
95 %, une spécificité de 96,29 % et une sensibilité de 92,30 %.

Les modifications des fréquences des formants des voyelles sont évaluées par l’aire
de l’espace vocalique (VSA), l’indice d’articulation vocalique (VAI), le rapport des
formants et la dispersion des formants. Comme le dimorphisme du sexe peut jouer
un rôle important dans les fréquences des formants, les caractéristiques acoustiques
indépendantes du sexe sont prises en compte pour le diagnostic différentiel du MP et
de l’AMS-P. La conversion de l’unité Hz en demi-ton fournit des propriétés indépendantes
du sexe dans les mesures de l’VSA et de la dispersion des formants. Dans la plupart
des cas, les patients atteints d’AMS-M ont montré une sévérité prédominante par
rapport à la MP. Il est important de noter que l’énergie de la bande de la deuxième
fréquence des formants est comparativement plus faible chez les patients atteints
d’ASA-M que chez les patients atteints de la MP, probablement en raison d’une hy-
pokinésie.
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0.3 Distorsion des consonnes dans la MP et l’AMS-

P

La production d’une consonne implique toujours une synchronisation et une coordi-
nation des fonctions articulatoires et laryngées. L’analyse de la distorsion consonan-
tique se limite principalement aux obstructions (où le flux d’air est partiellement ou
totalement obstrué) en raison de sa prévalence dans les troubles du langage. Les ob-
struents se composent de plosives et de fricatives arrêtées. Les arrêts non voisés sont
principalement analysés par les propriétés du burst (réalisation de la fermeture de
l’articulateur). D’autre part, le mode de frication est examiné pour les fricatives non
voisées. Les propriétés des obstruents ont été explorées dans des études précédentes
: Blumstein1979, Kazumi2009.

Selon le mode d’articulation de la consonne, les obstructions sont classées en deux
groupes : les obstructions voisées et les obstructions non voisées. Les obstructions
voisées sont caractérisées par la présence d’une vibration des plis vocaux et d’un type
particulier d’obstruction par l’articulateur. Dans cette étude, nous avons d’abord
exploré les anomalies de la production d’obstructions voisées par le MP et le AMS-
P. Ensuite, les obstructions non voisées sont étudiées pour trouver des anomalies
spécifiques.

Dans cette étude, les distorsions ciblées de la parole sont d’abord détectées par des
méthodes visuelles, puis des mesures objectives sont proposées. Par ce processus, nous
avons observé un dévoicing (absence de vibration des plis vocaux) significatif dans les
obstructions vocales chez les patients atteints d’AMS-P par rapport à ceux atteints
de MP. Notamment, le dévoicing est plus fréquent dans les obstructions vélaires. Une
mesure objective est proposée par l’auteur de la thèse pour quantifier le degré de
dévoicing dans les obstructions vocales. De plus, des mesures temporelles comme
le temps d’apparition de la voix (VOT) et le rapport du temps d’apparition de la
voix (VOTR) sont calculées comme mesures conventionnelles. Dans les deux cas, les
patients de l’AMS-P présentent un temps d’apparition de la voix et un rapport de
temps d’apparition de la voix plus faibles que ceux de l’MP et de l’HC.

La distorsion des obstructions non voisées est évaluée par le mode d’éclatement des
obstructions, comme la présence d’éclatement dans les fricatives, d’éclatement faible
dans les plosives stop et d’éclatement multiple dans les plosives stop. Ce dernier trou-
ble a d’abord été évalué par la méthode visuelle. Ensuite, une méthode automatique
est proposée pour mesurer ces anomalies. Nous avons observé la présence fréquente
de bursts dans la fricative bilabiale /f/ chez les patients AMS-P par rapport aux MP
et HC. La méthode automatique correspond également au résultat de l’observation
visuelle. Un faible burst est observé dans le stop alvéolaire /t/ pour les patients MP
et AMS-P. Bien que l’éclatement faible ne soit pas adapté au diagnostic différentiel,
il pourrait servir d’indice de trouble de la parole. Les VOT et VOTR des plosives
stop sont plus longs chez les patients AMS-P que chez les patients MP.
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0.4 Trouble de la parole dans la production diado-

chocinétique de la parole

La dysarthrie est une manifestation courante du trouble parkinsonien. La dégénérescence
des ganglions de la base peut affecter les aspects temporo-spatiaux de la parole motrice
et du rythme de la parole [293, 40, 94]. En revanche, la dégénérescence du cervelet
peut affecter le maintien de la précision de l’intervalle de synchronisation [265, 288].
Ainsi, nous pouvons émettre l’hypothèse que toute activité rythmique nécessite une
interaction étroite entre les ganglions de la base et les circuits de contrôle cérébelleux.
Comme la voyelle soutenue a été considérée pour évaluer la vibration des plis vocaux,
la tâche de répétition de syllabes servirait à vérifier les mouvements articulatoires.
En outre, les tâches de parole complexes peuvent révéler un large éventail de trou-
bles de la parole par rapport à la simple phonation soutenue. Par conséquent, la
tâche diadochocinétique (DDK) a été conçue pour évaluer principalement les déficits
dans les mouvements articulatoires et la coordination des sous-systèmes respiratoires,
phonatoires et articulatoires pour la parole pathologique. De plus, la tâche diado-
chocinétique conviendrait pour mesurer les consonnes imprécises, le débit des syllabes,
l’irrégularité dans la répétition des syllabes ; [74].

Dans cette étude, nous avons mesuré plusieurs mesures acoustiques telles que la
durée des voyelles (VD), la déviation standard de la densité spectrale de puissance
(stdPWR), le taux de DDK (DDKR), l’irrégularité de la DDK (DDKI), l’accélération
de la DDK (DDKA), le VOT, le Weak Burst (WB) pour évaluer la tâche diado-
chocinétique /pa-ta-ka/ pour les patients MP et AMS-P. Une méthodologie automa-
tique est développée pour segmenter les consonnes et les voyelles d’arrêt avec une
grande précision. Les mesures objectives ont montré une sévérité prédominante chez
les patients atteints d’AMS-P par rapport à ceux atteints de la maladie de Parkinson.
Notamment, le mode rapide de /pa-ta-ka/ a produit plus de troubles pour les mal-
adies neurologiques. La combinaison du stdPWR et du VD permet une très bonne
discrimination entre la MP et l’AMS-P par rapport à la MP, probablement en raison
de l’ataxie plus importante chez les patients de l’AMS.

0.5 Trouble de la parole dans la lecture d’un texte

La parole spontanée est le modèle le plus complexe de production de la parole. Il
comprend des fonctions cognitives ainsi que l’exécution de fonctions motrices de la
parole. Dans l’aspect cognitif, les pensées, les sentiments et les émotions sont d’abord
formés en fonction du langage pour la communication verbale. Ensuite, le message
verbal prévu doit être organisé pour l’exécution neuromusculaire. Ces activités com-
prennent la sélection, le séquençage et la régulation de ”programmes” sensorimoteurs
qui activent les muscles de la parole à des moments coarticulés, des durées et des
fréquences appropriés. temps, durées et intensités coarticulés appropriés [69]. Ainsi,
les tâches d’élocution spontanée peuvent révéler des déficits dans la coordination des
fonctions phonatoires et respiratoires, des mouvements articulatoires précis, et de la
coordination laryngée et supra-laryngée (lèvres, mâchoire, langue, etc.), qui reflètent
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également l’aspect prosodique et temporel de la parole.
La présente étude se penche sur l’analyse de la lecture de textes en langue française

pour les patients MP et l’AMS-P. Par conséquent, cette étude a d’abord tenté de
segmenter manuellement les événements de la parole (vocale, non vocale, pause, res-
piration). Ensuite, nous avons adopté la méthodologie décrite dans [306, 130] pour
calculer plusieurs caractéristiques acoustiques afin d’étudier la disparité entre MP et
AMS-P. En outre, un autre logiciel open-source est également utilisé pour extraire les
paramètres acoustiques.

Les mesures objectives de la segmentation manuelle donnent des troubles de la
parole encourageants pour la MP et l’AMS-P. Cependant, une simple moyenne des
mesures acoustiques permet d’évaluer la qualité de la parole. Cependant, une sim-
ple moyenne des mesures acoustiques, qui représentent la dysarthrie hypokinétique,
donne une bonne discrimination entre la MP et l’AMS-P. De plus, les caractéristiques
prosodiques ont été calculées par une bôıte à outils open-source, Disvoice, qui a
également observé des troubles de la parole chez les patients atteints de la MP et de
l’AMS-P.

0.6 Diagnostic différentiel entre PSP et AMS

Le syndrome parkinsonien est un terme générique qui désigne la maladie de Parkinson
(MP), les syndromes parkinsoniens atypiques (SPA) comme la paralysie supranucléaire
progressive (PSP) et l’atrophie multisystémique (AMS). Le SPA diffère de la MP
par une atteinte neuronale plus étendue, qui se traduit par des signes cliniques
supplémentaires, une progression plus rapide de la maladie et une mauvaise réponse
au traitement de substitution de la dopamine [266]. La majorité des patients atteints
de PSP et l’AMS développent des caractéristiques cliniques qui chevauchent celles de
la MP. Ainsi, le diagnostic correct peut être très difficile à établir dans les premiers
stades de la maladie.

La présente étude se concentre sur la définition de nouveaux indices de la parole
qui peuvent mesurer objectivement les déficits des sous-systèmes de production de la
parole et/ou des sous-types particuliers de dysarthrie pour les groupes de maladies
PSP et MSA. Les dimensions acoustiques sont conçues de manière à pouvoir montrer
une spécificité de la maladie. Ces caractéristiques auront un comportement (statis-
tique) pour la PSP, qui est significativement différent de celui de l’AMS. De plus, ces
caractéristiques seront conçues de manière à pouvoir être interprétées afin d’améliorer
la compréhension des troubles de la parole dans la PSP et l’AMS. De toute évidence,
le premier avantage d’une telle étude serait une discrimination précise et objective
entre la PSP et l’AMS, étant donné que l’évaluation subjective est assez difficile en
raison du comportement perceptif similaire [197]. Le second avantage, plus impor-
tant, est de permettre de formuler des hypothèses concernant le stade précoce des
maladies. En outre, le sexe des participants est également pris en compte dans cette
étude, ce qui peut permettre de déduire des informations supplémentaires concer-
nant la pathologie. Des études antérieures ont également indiqué un dimorphisme de
genre, mais ces études ont surtout utilisé un nombre moins important de composantes
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acoustiques : [125, 282]. Inversement, certaines études ont montré que l’influence du
sexe était soit indépendante [247], soit ignorée [255, 164] dans les études précédentes
sur le diagnostic différentiel. Par conséquent, une analyse détaillée du dimorphisme
de genre est justifiée pour trouver l’influence du genre sur les paramètres de la parole.
A cette fin, nous proposons une méthodologie pour concevoir des marqueurs vocaux
bidimensionnels qui permettraient une bonne discrimination entre PSP et MSA.

Au total, 15 mesures acoustiques sont calculées séparément à partir de monologues
et de textes lus en langue tchèque par l’équipe SAMI de Prague. Nous poursuivons
l’expérimentation pour étudier le dimorphisme de genre, la spécificité de la maladie
dans les mesures acoustiques. Les indices de parole liés au sous-système de production
de la parole et à la dyasarthrie sont conçus pour le diagnostic différentiel des groupes
PSP et MSA.

La plupart des composantes acoustiques individuelles ont montré un dimorphisme
de genre. Peu de composantes acoustiques fournissent une différence de groupe entre
PSP et MSA, ce qui n’est pas suffisant pour un diagnostic différentiel. Par conséquent,
une combinaison de caractéristiques par sous-systèmes de la parole et de la dysarthrie
a été tentée, ce qui a donné une discrimination encourageante entre les PSP et les
MSA. Les patients atteints de PSP présentent des troubles prédominants dans la res-
piration et l’articulation par rapport à l’ASM, tandis que les patients atteints d’ASM
présentent une plus grande sévérité dans la phonation et un indice d’articulation
séparé. En ce qui concerne l’indice dysarthrique, les patients atteints de l’AMS
présentent une ataxie prédominante alors que les patients atteints de la maladie de
Parkinson présentent une hypokinésie plus importante. Les groupes PSP et MSA
présentent tous deux une spasticité. Enfin, des caractéristiques acoustiques bidimen-
sionnelles sont conçues et permettent d’obtenir une précision de classification de 88,63
%, une sensibilité de 89,47 % et une spécificité de 88 %.

La corrélation entre les indices de la parole et les sous-scores de gravité fournit
également un modèle encourageant qui indique un diagnostic différentiel précoce.
Cependant, des données supplémentaires sont nécessaires pour valider la présente
observation.

0.7 Conclusion

Cette thèse a présenté un ensemble de caractéristiques de la parole de manière
catégorique afin d’évaluer la production imprécise de voyelles et de consonnes et
la parole spontanée pour les troubles parkinsoniens. Comme cette thèse vise à con-
cevoir une méthodologie pour le diagnostic différentiel de la MP, de la PSP et du
MSA, les paramètres de la parole sont considérés comme présentant au moins des
propriétés distinctives pour les groupes de maladies. Des marqueurs vocaux fiables
pour le diagnostic différentiel font en effet défaut à l’heure actuelle. La présente étude
a également analysé le dimorphisme de genre de chaque caractéristique de la parole,
ce qui faciliterait la conclusion finale sur la spécificité de la maladie. Un autre avan-
tage de cette étude est que les caractéristiques vocales sont conçues par une approche
basée sur la connaissance plutôt que par une approche récente basée sur les données,
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ce qui serait plus acceptable dans la pratique clinique.
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Chapter 1

Introduction

Speech is a unique, complex, dynamic motor activity that requires the integrity and in-
tegration of numerous neurocognitive, neuromotor, neuromuscular and musculoskele-
tal activities [69]. The deficit in any of these activities may be the cause of speech
disorder, and disturb day-to-day life to a great extent. Thus analysis of speech dis-
order has immense advantage to identify the indication of neurologic disease as well
as design specific speech therapy to improve quality of life. Naturally, the source
of speech disorder is warranted for unmasking the complex underpinning of speech.
Identification of underlying neurophysiologic bases is valuable for understanding ner-
vous system organization for speech motor control, localization of neurologic disease
and differential diagnosis, prevalence, and management.

Speech disorder due to neurodegenerative disease is commonly known as dysarthria.
Dysarthria reflects abnormalities in the strength, speed, range, steadiness, tone, or
accuracy of movements required for the respiration, phonatory, resonatory, articula-
tory, or prosodic aspects of speech production. The responsible neuropathophysio-
logic disturbances of control or execution are due to one or more sensorimotor abnor-
malities, which most often include weakness, spasticity, incoordination, involuntary
movements, or excessive, reduced, or variable muscle tone [69].

The precise involvement of the brain area for speech production is not well under-
stood. However, several studies were conducted to understand the functions of the
brain in speech production. For instance, the study [234] demonstrated the involve-
ment of the motor and premotor cortex, the cerebellum, the supplementary motor
area (SMA), the superior temporal gyri, the tempoparietal cortices, and the ante-
rior insula with left-lateralized activation in the putamen for speech production. In
speech production strat with motor planning and sequencing, which is mainly accom-
plished by anterior insula [311, 241] and the SMA area [127]. Speech breathing is
primarily attributed to a bilateral region of the sensorimotor cortex [201]. Likewise,
the larynx motor cortex region has a relation with human vocalization [41]. Lobule
VI of the posterior cerebellum is considered as an orofacial part of the cerebellum,
which is activated by lip and tongue movements [97]. Different speech rate is doc-
umented by additional activation, like at the time of low speech rate left putamen
is activated whereas activation of the cerebellum during higher rates [320]. These
somatotopic maps could help elucidate the coupling of particular speech impairment
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to its underlying brain area.
Parkinsonian disorder is an umbrella term. Parkinsonism refers primarily two

subgroups: Parkinson’s Disease (PD) and Atypical Parkinsonian Syndrome (APS).
APS group consists of Multiple System Atrophy (MSA), Progressive Supranuclear
Palsy (PSP), Corticobasal Degeneration (CBD), Neurodegeneration with brain iron
accumulation (NBIA), Dementia with Lewy Bodies (DLB). Differential diagnosis of
PD and APS remain a challenging task, particularly in early stage of the disease.
In clinical domain, neurologists mainly rely on clinical motor signs and brain imag-
ing techniques. However, imaging techniques are very complex and costly methods,
and subjects need to be exposed to radiation. In contrast, speech is an noninvasive
and cost effective mode, and in addition speech motor disorder is established as an
early manifestation of neurological disorder. Analysis of speech disorders thus have
immense scope to design clinical tool to investigate disease specificity.

As speech analysis is an inexpensive, non-invasive medium, it has attracted re-
searchers and clinicians for decades. However, in clinical practice, speech analysis
remains limited to perceptual assessment for a long time, a laborious job, and de-
mands skilled professionals. Recent efforts towards acoustic methods to quantify
perceptual judgments provided confidence to clinical practice. Acoustic methods can
infer speech disorder by the visual display as well as by quantification of speech pa-
rameters. In addition, acoustic methods can detect additional speech abnormalities
which are perceptually not identified. Automatic algorithms are also being developed
to provide end-to-end solutions for assessing speech disorders.

Reduced speech quality naturally comes with aging onset by deformation in the
oral cavity. According to the United Nations, the population of older adults is in-
creasing very fast, and the total older adults 65 years or over will reach 1.5 billion
by 2050. In the aging population, the parkinsonian disorder is becoming prevalent,
which is attributed to unknown etiology. There is no treatment to cure parkinsonian
diseases. Notably, early diagnosis of neurological conditions can improve quality of
life [107, 22, 243]. As speech disorder is an early and prominent manifestation of
neurological disorder, it would serve as a good marker [38] for disease diagnosis. No-
tably, discrimination of healthy subjects from neurological patients is not sufficient
in clinical practice; differential diagnosis is also equally important to identify the
particular type of neurological disease for respective medication and therapy. Like-
wise, getting high accuracy in differential diagnosis using complex speech parameters
(unconventional) would not be accepted in clinical practice because speech markers
must be interpretable. For instance, speech markers need to be explained by their
physiological meaning, reflecting the degree of deficits in any particular part of speech
production subsystems. In addition, it is required to check gender dimorphism, age
dependency of the speech markers. Moreover, speech samples from different neuro-
logical disease groups are invaluable in motor speech disorder analysis and all the
aspect speech parameters.

Automatic speech processing methods have been developed by speech researchers
to compute speech parameters. Speech features design requires to consider different
parameter like quality of speech sound, and mode of speech data acquisition. Acoustic
features computed from speech data collected by uniform recording setup increase the
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reliability in clinical practice. Variability in recording setup may introduce diversity
in acoustic features even in same group of speakers. Furthermore, automatic method
need to be accurate for designing acoustic features. As example, speech features com-
puted from multi-syllable word, diadochokinetic task, reading text, and monologue
particularly demand accurate segmentation of speech class like vowel, consonants,
pause, and respiration. Furthermore, stop consonants analysis require to detect vowel
onset and burst onset accurately. Several methods have been proposed for detecting
speech targets, however those are mainly for healthy speakers. Thus it is required to
evaluate existing methods for pathological speech, and develop additional methods
where necessary.

Speech databases for parkinsonian disorders are limited by disease diversity, num-
ber of patients, and speech protocol (tasks). Discrete existence of speech databases re-
lated to neurological disorder was reported in several languages. Most of the databases
only collected speech samples from PD group. However, to investigate differential
properties, a database comprising all possible parkinsonian disease groups is essen-
tial. Language is another impediment for building global database. Many speech
parameters may show disparity by language difference. Thus analysis of speech dis-
order first need to be restricted to particular language.

1.1 Organization of the thesis

As of now, the thesis is dedicated to abstract and introduction. The next chapter 2
summarized state-of-the-art, and objectives. The state-of-the-art describes clustering
of parkinsonian disorder, types of dysarthria, and acoustic metrics for differential
diagnosis. Chapter 3 presents acoustic parameters used for differential diagnosis of
PD, PSP and MSA.

Speech database development procedure is described in Chapter 4. It describes
different mode of data collection, data processing, and data quality assessment.

First part of the thesis is dedicated to the differential diagnosis of PD and MSA-P.
Chapter 5 presents the methods to measure several speech parameters to assess vowel
impairments for PD and MSA-P. This chapter first consider acoustic features from
sustained vowel /a/ and presents differential properties. Next section is dedicated to
vowel space area computation by three corner vowels. For vowel space area analysis,
reading text speech task is considered. This section also describes manual formant
frequencies measurement, failing of automatic approach, and gender disparity.

Description of consonants distortion for PD and MSA-P patients is presented in
Chapter 6. The latter chapter presents the analysis of voiced and unvoiced obstruents
in two sections. It describes the unique pattern of disorder in stop plosives and
fricatives. Both temporal and spectral properties of obstruents are discussed in this
chapter.

The Chapter 7 presents the pattern of disorder in syllable repetition task. It also
describes automatic evaluation method of abnormality detection in syllable repetition.

The Chapter 8 presents the pattern of disorder in text reading task. It describes
different acoustic components and its differential properties. It also discussed speech
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segmentation procedure followed by automatic acoustic feature computation.
The second part describes the differential diagnosis of PSP and MSA patients.

In Chapter 9, acoustic features from monologue and text reading are described. In
addition, it represents the methodology of designing speech indexes for differential
diagnosis of PSP and MSA. This chapter first analyzed individual acoustic features
to find out group wise statistical difference and gender disparity. Next, individual
acoustic features are combined according to subsystem of speech, and followed by
dysarthria subtypes. After that classification of PSP and MSA was discussed.

In the following chapter, we discuss state-of-the-art of clinical information about
parkinsonism, different dysarthria subtypes related to parkinsonian disorder, clinical
differential diagnosis, speech disorder in different speech subsystems, and existing
acoustic features in differential diagnosis.
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Chapter 2

State of the art

2.1 Parkinsonian disorders

Parkinsonism is a group of neurological diseases. The first clear medical description
was written in 1817 by James Parkinson. In the mid-1800s, Jean-Martin Charcot re-
fined and expanded this early description and disseminated information internation-
ally about Parkinson’s disease. He separated Parkinson’s disease from other disorders
characterized by tremor, and he recognized cases that later would likely be classified
among the Parkinsonism-plus syndromes or Atypical Parkinsonian Syndromes (APS).

(a) Overlap of parkinsonian syndromes (b) Clinicopathologic overlap of neurodegenerative
proteinopathies

Figure 2.1: Clustering of parkinsonian disorder according to parkinsonian syndromes
and proteinopathy [195]

Atypical Parkinsonian Syndromes includes subtypes like Progressive Supranuclear
Palsy (PSP), Multiple System Atrophy (MSA), Huntington’s disease, Corticobasal
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Degeneration (CBD), Neurodegeneration with brain iron accumulation (NBIA), De-
mentia with Lewy Bodies (DLB), Multiple Sclerosis (MS), Amyotrophic Lateral Scle-
rosis (ALS) and few more. Detailed categorization of parkinsonian subtypes and
proteinopathy is presented in Figure 2.1.

In this study, we mainly focus on neurological diseases PD, MSA, and PSP accord-
ing to the availability of speech data. Hence, in the following section, three disease
groups will be discussed.

2.1.1 Parkinson’s disease

Idiopathic Parkinson’s disease (PD) is the most common neurodegenerative disease
after Alzheimer’s disease. The prevalence is 1.5% of the population over 65 years,
and around 170,000 French are affected [298]. Given the general aging of the peo-
ple, the prevalence is likely to increase over the next decade. PD is characterized by
the progressive loss of dopaminergic neurons within the substantia nigra pars com-
pacta (SNpc) due to intra-neuronal aggregation of α-synuclein in the form of Lewy
bodies and Lewy neurites in the majority of cases [118]. The resulting imbalance of
dopamine and acetylcholine disturbs the basal ganglia function, which participates
in the planning, timing, control, and execution of muscle movements. There is no
reliable biomarkers currently available for diagnosis of PD with acceptable sensitivity
and/or specificity. Nonetheless, the clinical diagnosis requires the presence of cardi-
nal motor deficits like bradykinesia (akinesia, hypokinesia), together with additional
motor manifestation among rigidity, resting tremor (4-6 Hz) and postural instability
[122, 51]. The clinical diagnosis is confirmed by a sustained response to dopamine
replacement therapy. Clinical criteria have a sensitivity of 89% and a positive predic-
tive value of 82% for a diagnosis of PD. In contrast, the definitive diagnosis is based
on post-mortem confirmation of alpha-synuclein containing Lewy bodies. Autopsy
studies showed that one-quarter of PD patients are misdiagnosed [123, 237]. Thus
design of a reliable biomarkers is remain an ongoing research.

2.1.2 Multiple system atrophy

Multiple System Atrophy (MSA) is a relentlessly progressing rare neurodegenerative
disease of unknown etiology. As per neurodegenerative proteinopathy clustering in
the Figure 2.1, MSA is belong to synucleinopathies group. Together with PD, synu-
cleinopathies group characterized by progressive cell loss in the brain due to abnormal
aggregation of alpha-synuclein in neurons and glia [319].

MSA usually begins in the sixth decade [266, 299] and has a very poor prognosis;
median survival ranges between 5.8 to 9.5 years [25, 14, 318]. Revised consensus cri-
teria allow the clinical diagnosis of MSA with two degrees of certainty, ”possible” and
”probable”, while the diagnosis of ”definite” MSA requires post-mortem confirmation
of alpha-synuclein containing glial cytoplasmic inclusions [89]. Another clinical diag-
nosis is confirmed by poor response to dopaminergic therapy [46]. Revised consensus
criteria include brain imaging results as additional features for the diagnosis of ”pos-
sible” MSA. However, the sensitivity of these criteria remains relatively low for the
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diagnosis of ”possible” MSA and requires further improvement [324]. Depending on
the leading presentation of the motor impairment, revised consensus diagnosis crite-
ria distinguish between MSA-P where parkinsonism predominates and MSA-C where
cerebellar symptoms are most prominent [244, 236]. MSA-P accounts for two-thirds
of cases in Western populations [153, 167, 90]. MSA group is characterized by a
variable combination of parkinsonism, cerebellar impairment, autonomic failure, and
pyramidal tract signs [90]. Non-motor signs and symptoms of MSA are gastrointesti-
nal, cardiovascular, and urogenital abnormalities [244]. Motor sign and symptoms of
MSA include bilateral rigid-akinetic form, early falls, ataxic gait, limb ataxia, and
cerebellar oculomotor dysfunction [162].

2.1.3 Progressive supranuclear palsy

PSP is also a progressing rare neurodegenerative syndrome characterized by postural
instability, axial rigidity, supranuclear gaze palsy, mild dementia, and pseudobulbar
palsy with consistent pathological findings defined by an accumulation of tau pro-
tein and neuropil threads, mainly in the pallidum, subthalamic nucleus, red nucleus,
substantia nigra, pontine tegmentum, striatum, oculomotor nucleus, medulla, and
dentate nucleus [202]. Symptoms of PSP are most commonly seen in people in their
early 60’s, but may begin in some people who are in their 40’s with prevalence ranges
from 5 to 6.4/100000 [266, 203]. PSP has average survival ranging from 6 to 8.6 years
[50, 10, 29]. PSP phenotypes from recent clinical presentation are Richardson’s syn-
drome (PSP-RS), parkinsonian variant (PSP-P), and pure akinesia with gait freezing
(PSP-PAGF). The heterogeneity of PSP has recently been examined in detail in post-
mortem series to define pathological substitute parameters based on the extent and
pattern of tau pathology to distinguish RS from PSP-P [321, 132].

Early symptoms of this disease may be related to a person’s increased difficulty
with walking and balance, often resulting in frequent falls. It is common for a person
in the early stages of PSP to develop other motor-related symptoms like slowed or
awkward movements while walking [159]. Signs that help to differentiate PSP from
other neurodegenerative diseases, like Parkinson’s, are often related to a person’s
vision and eye movements. People with PSP often experience blurred vision and an
inability to control eye movements. Some cannot look downward or cannot open
their eyelids [159]. Speech and swallowing complaints are seen at an early stage of
the disease. Mental and physical slowness is also observed for this disease but not in
the early stage.

There is neither confirm diagnostic test for this disease nor a specific treatment.
However, it can be differentiated from PD by the inadequate response of levodopa,
lack of tremor, and gait instability leading to falling within the first year of the illness.

2.2 Clinical differential diagnosis

Differential diagnosis is the distinguishing of a particular disease from others that
present similar clinical features. In the early stage of disease, PD, PSP, MSA patients
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manifest similar clinical signs [324]. Thus discrimination of PD patients from Healthy
Control (HC) is not enough in clinical practice. Diagnosed PD patient might be a PSP
or MSA patient. Hence, differential diagnosis is very much crucial for prognosis and
therapeutic planning. Moreover, early diagnosis is essential because disease progres-
sion in the APS group is comparably rapid than PD [218]. Definite diagnosis of PD,
PSP, MSA is only based on a post-mortem pathological confirmation. However, in
clinical practice, a definite diagnosis cannot be reached for apparent reasons, and clin-
icians have to rely on the suggested clinical diagnostic criteria, which include clinical
features and neuroimaging features [89]. Clinical features characterized by bradyki-
nesia, rigidity, tremor and postural instability are predominant in PD patients. PSP
patients differentiate from PD patients by six clinical features, axial rigidity, symme-
try, extended posture, backward falls, absence of postural tremors in the upper limbs,
and lack of response to levodopa [177, 188, 187]. Clinical features for a diagnosis of
MSA consist of autonomic failure in combination with motor symptoms. Autonomic
failure in MSA includes cardiovascular dysfunction, genitourinary dysfunction, ther-
moregulatory and sudomotor dysfunction, fecal incontinence and constipation, and
sleep-disordered breathing [289, 52], among which orthostatic hypotension or urinary
symptoms are required for the diagnosis. Motor symptoms include poorly levodopa-
responsive parkinsonism or cerebellar ataxia. In clinical diagnostic criteria, different
rating-based measures were developed to evaluate cardinal disorders. United Parkin-
son’s Disease Rating Scale (UPDRS) tool assesses PD patients and their response
to treatment. On the other hand, PSP and MSA patients are rated by the nat-
ural history and neuroprotection in Parkinson plus syndromes–Parkinson plus scale
(NNIPPS) [223]. A high value in rating score signifies more severity in cardinal motor
sign.

Finding reliable biomarkers for the differential diagnosis between PD and APS
(PSP and MSA) remains a very challenging task. However, a variety of imaging
techniques such as Magnetic Resonance Imaging, Diffusion Tensor Imaging, Positron
Emission Tomography, Single-photon Emission Computed Tomography, and Tran-
scranial Sonography may be used in the assessment of various parkinsonian syndromes
[28]. In particular, automatic image-based classification based on metabolic patterns
is highly accurate in distinguishing between PD, PSP, and MSA patients at early
stages of the disease, with more than 84 % sensitivity and 94 % specificity [296].
Magnetic resonance imaging (MRI) of the brain may help the clinician reveal distinct
abnormalities in MSA patients [129]. Different patterns of nigro-striatal involvement
in PD and MSA by using multimodal MRI techniques were reported in the study
[20]. Multimodal MRI technique also observed multi-parametric modifications within
the cerebellum and putamen in both MSA-C and MSA-P patients, compared to
PD patients [235]. However, brain MRI can also be expected, especially in patients
where the differential diagnosis between PD and MSA is difficult. Other imaging
techniques such as [18F]-fluorodeoxyglucose positron emission tomography (FDG-
PET) allow identifying distinct metabolic patterns in PD, and MSA [206]. However,
this technique is very costly and not available in clinical routine. Besides imaging
techniques, several studies have compared plasma, and cerebrospinal fluid levels of
alpha-synuclein, markers of axonal degeneration and catecholamines between PD and
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MSA patients [172]. No significant conclusions can be drawn from these, and further
efforts are urgently needed to improve diagnostic accuracy between PD and APS
(and within APS). Furthermore, techniques are preferred to be cost-effective and less
manual intervention.

Speech disorder is also an early and prodromal marker in neurological diseases
[144, 231]. Speech disorders primarily develop in the majority of patients with parkin-
sonian disorder [116, 158]. Speech disorder due to degeneration in neural structure
is called dysarthria. Manifestation of differential dysarthria was observed in previous
studies [160, 158, 247]. Description of dysarthria and its subtypes are summarized in
the following section.

2.3 Dysarthria

Dysarthria is an umbrella term for a group of neurologic speech disorders that reflect
abnormalities in the strength, speed, range, steadiness, tone, or accuracy of move-
ments required for the breathing, phonatory, resonatory, articulatory, or prosodic
aspects of speech production. The responsible neuropathophysiologic disturbances
of control or execution are due to one or more sensorimotor abnormalities, which
most often include weakness, spasticity, incoordination, involuntary movements, or
excessive, reduced or variable muscle tone [69]. According to underlying localiza-
tion, sensory actions (execution, control, coordination), the pattern of physiological
symptoms, a total of seven different types of dysarthrias are defined by Darley, Aron-
son, and Brown (DAB). Table 2.1 shows some differential information about those
dysarthria subtypes [69].

Out of the above mentioned dysarthria subtypes, hypokinetic, spastic, and ataxic
subtypes are frequently analyzed due to their prevalent manifestation. Individual
dysarthria subtypes manifest predominant speech disorder either in speech subsystem
or in speech dimensions.

2.3.1 Hypokinetic dysarthria

Hypokinetic dysarthria is a perceptually distinct motor speech disorder (MSD) asso-
ciated with basal ganglia control circuit pathology. This disorder reflects the effect
of rigidity, reduced force and range of movement, and slow individual but sometimes
fast repetitive movements on speech. Decreased range of movements is a significant
contributor to this disorder. The etiology of hypokinetic dysarthria is related to ab-
normalities with basal ganglia circuit function. This include degenerative, vascular,
traumatic, infectious, inflammatory, neoplastic, and toxic-metabolic diseases. The
exact distribution of causes of hypokinetic dysarthria is unknown.

Respiratory abnormalities frequently occur in hypokinetic dysarthria. Abnormali-
ties in the respiratory system reflected as reduced maximum phonation time, reduced
airflow volume during vowel prolongation, fewer syllables per breath, shorter utter-
ance length, increased breathing at the time of reading. Some of these characteristics
are also related to laryngeal function abnormalities [61, 121]. Other distinctive im-
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Type of
dysarthria

Origin Primary speech level
abnormality

Evident characteristics Cause of dysarthria

Flacid Lower motor neuron Phonatory and articu-
latory

Predominantly neuro-
muscular execution

Weakness

Hypokinetic Basal ganglia circuit Manifest in respiratory,
phonatory, resonatory,
and articulatory

Rigidity, reduced range
of movements. It can
be characterized by re-
duced movements

Control of proper back-
ground tone and sup-
portive neuromuscular
activity, and speech
motor control

Spastic Damage to the direct
and indirect activation
pathways of central
nervous system

Manifest in respiratory,
phonatory, resonatory,
and articulatory

Weakness and spastic-
ity that slows move-
ment and reduces its
range and force

Predominantly neuro-
muscular execution

Ataxic Damage to the cerebel-
lar control circuit

Manifest in respiratory,
phonatory, resonatory,
and articulatory, but
its characteristics are
most evident in articu-
latory and prosody

Timing and coordina-
tion

Problem of motor con-
trol

Hyperkinetic Basal ganglia circuit prosody and rate Predominantly neuro-
muscular control

Involuntary movements

Unilateral
upper motor
neuron

Unilateral upper motor
neuron

Articulation, phona-
tion, and prosody

Execution/control Upper motor neuron
weakness, incoordina-
tion, and spasticity

Mixed mixed Any of the subsystem
of speech production

Execution and/or con-
trol

More than one

Table 2.1: Major types of dysarthria and it’s characteristics

paired speech dimensions are monopitch, reduced stress, monoloudness, inappropriate
silences, short rushes of speech, variable rate, and imprecise consonants [58]. Another
study [183] stated that out of 200 PD patients, 89% of patients had voice abnor-
malities characterized by hoarseness, roughness, tremulousness, and breathiness, and
45% had articulation problems. In addition, 20% of patients had rate abnormali-
ties characterized by syllable repetitions, shortened syllables, lengthened syllables,
and excessive pauses, and 10% percent were hypernasal. Electromyographic (EMG)
study also documented undershooting of articulatory movements [99].

2.3.2 Ataxic dysarthria

Ataxic dysarthria is also a perceptually distinct MSD associated with the cerebellar
control circuit. The disorder reflects the effects of incoordination and perhaps re-
duced muscle tone, resulting in slowness and inaccuracy in the force, range, timing,
and direction of speech movements. It is primarily an abnormality of timing and co-
ordination. Hypotonia can occur in cerebellar disease. It is characterized by excessive
pendulousness. Again, it is due to reduced muscle tone. Overshooting (Dysmetria)
is observed many times in movements. Dysmetria and dysdiadochokinesis are also
common symptoms of ataxia due to poor control, timing and coordination.

Ataxic dysarthria is distinguished from other types of dysarthria groups by irreg-
ular articulatory breakdowns, telescoping, irregular speech AMRs, excess and equal
stress, excess loudness variation, and distorted vowels speech dimensions. The sta-
bility of long-term and short-term phonation are found to be abnormal for cerebel-
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lar disease. It has been speculated that asymmetrically distributed motor deficits
at laryngeal level and altered sensory control of laryngeal and respiratory reflexes
could account for impaired control of tension in intrinsic laryngeal muscle, leading to
phonatory instability. Physiological investigation of nonspeech respiratory function
(spirometry) has shown that some ataxic speakers have reduced vital capacity [3, 200].
Incoordination of respiratory and phonatory section of speech for isolated phonatory
task lead to excessive loudness variation and fundamental frequency variation [194].

2.3.3 Spastic dysarthria

Spastic dysarthria is a perceptually distinct MSD produced by bilateral damage to
the direct and indirect activation pathway of Central Nervous System (CNS). It is
characterized by weakness and spasticity, which slows movements and reduces its
range and force. Spasticity, a hallmark of Upper Motor Neuron (UMN), seems to be
the major contributor to this dysarthria. Spasticity is primarily a problem of neu-
romuscular execution, rather than planning, programming, and control. In general,
damage in direct and indirect activation pathways bilaterally can be the reason for
spastic dysarthria.

Spastic dysarthria is distinguished from other types of dysarthria by strained-
harsh voice quality, monopitch and monoloudness, slow speech rate, and slow and
regular speech Alternate Motion Rates (AMRs) speech dimensions [58, 186]. Phys-
iological investigation showed abnormality in respiration [56], laryngeal [17, 326],
velopharyngeal functions [326].

Above mentioned dysarthrias are commonly observed in any or all of the sub-
system components of speech. To assess the particular deficits in subsystem, a par-
ticular speech task needs to be designed. In previous dacades, several speech tasks
were developed, such as sustained vowel for laryngeal activities, dyadochokinetic task
(/pa-ta-ka/, /ba-da-ga/, /pa-pa-pa/) for evaluating articulatory movements, mono-
logue, and text reading to assess overall prosody and timing of speech. The following
part will discuss the speech task and its related subsystem’s impairment and available
acoustic dimensions.

2.4 Imprecise vowel in parkinsonism

Analysis of vowels can reveal functionalities in laryngeal, articulatory, and velopharyn-
geal activities. Vowels are generated by vocal folds vibration followed by a particular
articulator’s position in the vocal tract. Possible deficits may be found in either vocal
folds vibration, articulators stability, or velopharyngeal control according to neuro-
logical disease and/or other deficits. In the perceptual investigation, several acoustic
features were defined by Mayo clinical dysarthria studies, such as abnormal pitch,
pitch break, monopitch, voice tremor, harsh voice, and distorted vowels. Physiologi-
cal and visual methods also investigated impairment in laryngeal action, and articula-
tory positioning for better explanation. For example, videolaryngostroboscopy studies
have shown that as Parkinson’s disease progresses, glottic competence and vocal fold
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vibration are compromised, with a bowed closure configuration, phase asymmetry,
aperiodicity, voice tremor, and mucosal wave abnormalities [285, 226, 308]. However,
this visual method is an invasive procedure that causes discomfort to the patient.
Another study showed that laryngeal electromyography (LEMG) can better explain
the immobility of vocal folds vibration than laryngostroboscopy. Although, vowel
production depends on normal vocal folds vibration, it also depends on sufficient
airflow from lungs and precision of articulator’s positions. In addition, insufficient
airflow may force to compromise vocal folds vibration. On the other hand, imprecise
articulator position will change the vowel properties (resonance properties).

2.4.1 Laryngeal

Laryngeal activity (mostly related to pitch) was reported normal for untreated PD
patients at early stage [117, 135]. Conversely, the impaired motion of the vocal cord
happens early in the disease process, accounting for the early development of laryngeal
symptoms such as dysphonia, stridor, and sleep apnea for MSA patients [169]. Latter
mentioned, laryngeal symptoms are partly attributed to paralysis and atrophy of
the vocal cord abductor [128]. Another study reported that dystonia, rather than
paralysis, of laryngeal muscles play a more pertinent role in laryngeal pathology of
MSA patients [196] and PSP patients [21]. PD patients manifest laryngeal symptoms
at the later stage of disease [117].

Laryngeal impairment is primarily evaluated by harsh voice, creaky voice, exces-
sive pitch variability, reduced pitch variability perceptually and acoustically. In liter-
ature, sustained vowels (/a/, /i/, and /u/) and/or spontaneous speech (monologue or
reading text) protocols were used to assess deficits in vocal folds vibration. Studies
[275, 197, 160, 158] perceptually evaluated voice distortion by hoarseness, tremulous-
ness, reduced loudness, whispery or scratchy voice. From sustained vowels, harsh
voice is primarily evaluated by conventional acoustic measures like jitter (perturba-
tion in cycle-to-cycle duration), shimmer (perturbation in cycle-to-cycle amplitude),
Harmonic-to-Noise Ratios (HNRs). According to clinical characteristics, harsh voice
speech dimension is classified as hypokinetic dysarthria [58]. Variable vocal folds
vibration results in increased jitter and shimmer, whereas incomplete vocal folds clo-
sure produces reduced HNR. Several studies used harsh voice speech dimension to
assess speech disorder [249, 275, 247, 138, 164]. In those studies, Praat [35] software
toolkit was mostly used to compute jitter, shimmer, and HNR. Deficits in vocal folds
vibration were also evaluated by micro label acoustic measures, Quasi-open quotient
(QOQ), and normalised amplitude quotient (NAQ) [101, 217].

Excessive pitch variability computed as the standard deviation of pitch contour
from sustained vowels can reveal vocal folds control status. Due to more significant
ataxia in patients, excess pitch variability was observed in sustained vowel [247, 255].
On the other hand, reduced intonation is computed by monopitch (reduced pitch vari-
ability), which is computed as the standard deviation of pitch contour from reading
text or monologue [281, 247].

The vocal tremor was also analyzed from sustained vowel, which may reflect the
modulating frequency in pitch and intensity [42, 44]. Latter study proposed six acous-
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tic measures to evaluate vocal tremors. The frequency tremor frequency (FTrF)
is the frequency of the strongest low-frequency modulation of the fundamental fre-
quency (F0), amplitude tremor frequency (ATrF) is the frequency of the strongest
low-frequency modulation of the amplitude (intensity). The frequency tremor in-
tensity index (FTrI) is the magnitude of the strongest low-frequency modulation of
F0 , the amplitude tremor intensity index (ATrI) is the magnitude of the strongest
low-frequency modulation of amplitude (intensity). Similarly, two more acoustic
measures, frequency tremor power index (FTrP) and amplitude tremor power in-
dex (FTrP), were also introduced to assess vocal tremor. Later on, FTRI was used in
the study [247, 88]. Nasolaryngoscopy suggests that Parkinson’s disease voice tremor
is not associated with the vocal folds and may involve the palate, the global larynx,
and the arytenoids tremor in the vertical larynx on /a/, and tremor in the arytenoid
cartilages on /s/ [86]. PD patients did not show significant difference from HC in
speech tremor measures [44].

Spasmodic dysphonia causes involuntary spasms in the muscles of the voice box
or larynx causes the voice to break, and have a tight, strained, or strangled sound is a
predominant characteristic of spastic dysarthria. Strained-strangled voice is evaluated
by Degree of voicelessness (DUV) [247] and Subharmonic to harmonic ratio(S2H)
[112, 164]. A sustained vowel speech task assesses this particular speech disorder.
The capability of vocal folds abduction and adduction was evaluated by gapping in
between voiced interval (GVI) and duration of voice duration (VDI) by exploiting
monologue and reading text [111]. PD patients did not show group difference from
HC in GVI and DVI.

2.4.2 Articulation

Stability and accurate range of articulators movements are essential for particular
vowel production. At the time of sustained vowel, involuntary movements of artic-
ulators may cause variability in resonance characteristics of the speech over time.
The standard deviation of the power spectral density (stdPSD) was designed to cap-
ture the increased variability of the spectrum and thus the severity of involuntary
movements [130].

In general, vowel characteristics are represented by first formant (F1) and second
formant (F2) frequencies. Imprecise movement (reduced range of movement) of ar-
ticulators (tongue, jaw, and lips) may result in imprecise oral shape, changing the F1
and F2 frequencies. Literature [300] stated that the tongue position mainly defines
frequencies of F1 and F2. F1 frequency is inversely related to the height of the tongue,
whereas the F2 frequency is directly related to the advancement of the tongue posi-
tion. For example, F1 increases while the tongue moves forward, and F2 decreases
as the tongue moves backward. F1 decreases with the elevation of the tongue and
increases as the tongue is lowered or downward movement of the jaw. In addition,
F1 and F2 decrease while lips are rounded and increase when the lips are unrounded
[146]. The Vowel Space Area (VSA) is a conventional acoustic proxy for the kinematic
displacements of the articulators [148, 26]. Two different approaches were reported in
literature to measure VSA e.g, triangular VSA (tVSA) [178, 283, 277] and quadrilat-
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eral VSA (qVSA) [92, 170, 77]. For both variants, the VSA is calculated as the area
formed by connecting the corner vowels (triangular vowels: /a/, /i/, /u/ and quadri-
lateral: /a/, /i/, /u/, /ae/) using the Euclidean distance between each coordinate in
F1-F2 space. Besides traditional VSA measures, alternative acoustic measures were
also proposed to analyze imprecise vowel articulation in prior studies. For example,
the Vowel Articulation Index (VAI) was proposed in the study [245, 283, 277]. The
reciprocal measure of VAI, Formant Centralization Ratio (FCR), was proposed in the
study [260]. Those described above acoustic metrics use formant values (F1 and F2)
to examine vowel articulation. In another study, an automated VSA assessment from
connected speech has been proposed to improve the accuracy of vowel space measure-
ment. This method measures the peripheral vowel space area of formant frequency
data using a convex-hull algorithm [259]. Another acoustic measure called F2i /F2u
which represents ratio of second formant frequencies of vowel /i/ to /u/ was pro-
posed to assess articulators movements [262]. Above mentioned vowel space related
acoustic features are belong to hypokinetic dysarthria. Different speaking tasks have
great impact on VSA measure [92, 302]. The study [92, 302] showed that clear speech
provides larger VSA compared to conversational speech tasks. Sustained vowels were
also used for vowel space area measure, which reported contradictory results. The
study [18] stated that VSA from sustained vowels could reveal articulatory deficits.
In converse, another study [250] showed that sustained phonation was not suitable for
VSA analysis. Interestingly, vocal tract length varies with gender, yielding different
formant frequencies for male and female groups. Hence, It is required to consider
gender dimorphism and speaking tasks while using vowel space related features to
assess articulator’s deficits.

2.4.3 Resonance

Hypernasality is another manifestation of palatal immobility, slow movement, and in-
complete velopharyngeal closure. Velopharyngeal assessment comprised of perceptual
speech evaluation and functional imaging, including video nasendoscopy and speech
videofluoroscopy. The slow movement of soft palate or incomplete velopharyngeal
closure allows air emission through the nasal cavity during the sustained vowel pro-
duction, leading to nasalic sound. Irregular nasality including both hyponasality and
hypernasality is attributed to involuntary movements in soft palette [190]. The per-
ceptual analysis found the least frequent resonance (hypernasality) in PD patients
[184]. However, the latter study used text reading tasks and used nasal consonants
(/m/, /n/). Therefore, hypernasality detection in sustained vowels would be suitable
for measuring deficits in velopharyngeal functions. In objective measure, hypernasal-
ity is assessed by two objective measures, voice low tone high tone ratio (VLHR)
and the 1/3-octave spectra analysis [142, 174]. Within these two methods, the 1/3-
octave spectra analysis has been shown to be more sensitive [309] and successfully
used for dysarthria analysis [227, 210, 211]. Average energy over all windows (Efn M)
in 1000 Hz frequency band was used as a marker of nasality [210, 130]. In addition,
fluctuation in nasality was estimated as the standard deviation of values measured
across all windows (Efn SD) [85]. High variability of nasality can be a manifestation
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of cerebellar deficits.

2.5 Imprecise consonants in parkinsonism

The articulatory subsystem of speech production includes mainly lips, jaw, and
tongue, transforming air stream into particular sound by constriction. Consonants
production require precise, rapid movements of articulators [32, 2]. Physiological cor-
relation with dysarthria were studied to find disrupted movements of articulator. Lip
muscle movement disorder was observed by Electromyographic (EMG) analysis which
suggests the presence of increased activity of antagonist muscles in certain motoric
activities that would serve to balance the action of agonist muscles during volun-
tary movements [173]. Deficits in jaw movement as example, decrease in amplitude
and velocity during jaw opening and closing, aberrant patterns and low amplitude of
EMG activity during clenching, and low vertical amplitude and prolonged durations
of occlusion during rhythmic movements was observed for parkinson’s disease patients
[242]. If force and range of motion are excessive, structures may overshoot targets. If
force and range of motion are decreased, target undershooting may occur. If timing
is poor, the direction and smoothness of movements may be faulty. In a recent study
[292], electromagnetic articulography (EMA) was efficiently used to examine both
extra-oral and intra-oral articulatory movements (initiation and coordination) in real
time and 3D manner. The latter study showed physiologically that dopamine medi-
cation improved the articulator’s initiation and coordination. Another similar study
[322] observed a reduced range of movement of the tongue at the time of articulation.

According to the manner of articulation, consonants are clustered as stop plo-
sives, fricatives, africative, glide, lateral, and nasal. The classic study by [182, 58]
perceptually found imprecise consonant articulation to be one of the most deviant
speech dimensions in PD. It was found that the most affected phoneme class are
stop-plosives, affricates, and fricatives. Particularly stop plosives pronunciation re-
quire accurate and rapid (impulsive) complete constriction in the vocal tract by lips
and tongue [32]. On the other hand, precise movement of articulator and it’s steady
position is mandatory for fricative sounds [182]. Voiced stop plosives and fricatives
are complex in characteristics that involve precise coordination of laryngeal and ar-
ticulators activity.

2.5.1 Stop plosives

During the production of stops, acoustic pressure is built up behind a closure at
a place within the vocal tract, resulting in a silent interval or a low level acoustic
signal, with or without voicing. When the pressure is released suddenly, it introduces
a relatively high energy burst or transient in the acoustic signal, spanning a short
interval followed by aspiration. The instant in the acoustic signal corresponding to
the sudden release is referred to as the ”burst-onset” or the closure-burst boundary
or the Closure Burst Transition (CBT) [151, 290].

Impaired stop consonants articulation in various neurological diseases has been
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assessed perceptually in subgroups of dysarthria [47, 57, 182, 106]. Inadequate lip,
tongue elevation may realize stop consonant to fricative (generally called spiranti-
zation). In addition, stop plosive’s place of articulation may also be changed, and
voiced (voiceless) stops may be realized as voiceless (voiced) [67]. Incomplete closure
of stop consonants was visually analyzed in the study [15]. The presence of multiple
transients is observed as another disorder in stop plosives [222].

In the objective measure of imprecise consonant articulation, various measures
of duration, formant transitions, spectral moments, or energy-based measures have
been proposed [151]. To produce the stop consonant-vowel sequence, the release of
vocal tract occlusion and initiation of glottal vibration need to be synchronized. The
time lag between stop consonant burst and vowel onset Time (VOT) is defined as
Voice Onset Time (VOT). VOT is the durational measure of the timing of orofacial
and laryngeal events [143, 6]. Thus, VOT measured from stop plosives perhaps the
most frequently used parameter to evaluate imprecise consonant articulation. In
previous studies, automatic VOT estimation was attempted in time domain [102, 12]
and frequency domain [180, 208, 291, 176, 204]. Plosion Index (PI) and Maximum
Normalized Cross-Correlation (MNCC) methods were proposed for CBT detection in
continuous speech [12]. Spectral domain approaches were mostly based on sudden
band energy transition [180, 208, 291, 176]. Another different approach based on
Single Frequency Filter (SFF) followed by phase reconstructed signal was developed
to detect the burst [204]. PI method provided better CBT detection compared to
TEO based technique [102] and band energy related measures [180, 208, 176]. Very
few studies related to automatic CBT detection or VOT measure are available for
pathological speech [209]. Otherwise, most of the previous studies [75, 73, 306, 16]
computed VOT from manual labeling to analyze neurological disorders. Besides the
durational measure, some of the objective measures, spectral tilt (difference of energy
between lower and upper frequency band) and intensity difference (difference between
maximum energy of stop to a maximum energy of the following vowel), were also
proposed in the study [272, 120]. Study [209] proposed consonant spectral trend
(CST), consonant spectrum moment (CSM) for consonant articulation precision, and
formant trend for tongue movement. The latter study observed significant disorder
in PD patients compared to HC.

2.5.2 Fricatives

Fricatives are produced by partial constriction of articulators and present/absence of
vocal folds vibration for voiced and voiceless fricatives. Fricatives are clustered by
manner of articulation (voice or voiceless) and place of articulation (bilabial, alveolar,
palatal) Labio-dental (/f/, /v/) fricatives show relatively flat spectra below 10 kHz
with no dominating peaks [189]. Alveolar fricatives (/s/, /z/) are characterized by
spectral energy (above 4 kHz) [124] and major peaks (3.5–5 kHz, [23]; 6–8 kHz, [136])
at higher frequencies. Palato-alveolars (/S/, /Z/) are characterized by spectral energy
in 2 – 4 kHz; [124, 23], which display increased relative amplitudes.

Most frequent impairment in fricatives is reduced sharpness, due to reduced range
of movement of articulators. By physiological method, electropalatography (EPG)
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reveals imprecise articulators movement for parkinsonian disorder [192] in /s/ pro-
duction. Peak frequency measures the sharpness of fricatives [305, 79, 268], spectral
moments which describe the central tendency, dispersion, tilt, and peakiness of the
spectrum [110], and fricative’s amplitude to the following vowel [48]. Voicing in voice-
less fricatives is another impairment which manifest deficits in fricatives production
and laryngeal synchronization [15]. Overshooting of articulators result in presence of
burst/transient in fricatives which was visually observed in the study [15].

2.6 Imprecise syllables repetition in parkinsonism

Dysdiadochokinesis is a manifestation of decomposition of movement (dyssynergia),
which refers to errors in the timing and speed of components of a movement, with
resultant poor coordination can elicit by testing alternating repetitive movements
(AMRs). To assess speech AMRs, /pa-ta-ka/ [229, 185] and /ba-da-ga/ syllable
repetition tasks were designed, which was recorded in normal and rapid style. Syllable
rate, irregularity in syllable repetition, and sudden increase in rate are the most
common acoustic measures in syllable repetition. Imprecise articulation was observed
in oral DDK [7]. The perceptual analysis yields greater impairment in syllable /ka/
for PD patients [141]. The authors of the study [265] concluded that cerebellar is
primarily responsible for maintaining the precision of timing interval, whereas basal
ganglia rather serve to maintain rhythm stability over time. The latter study observed
variability in DDK pace for PD and spinocerebellar ataxia.

The syllable rate is computed as a number of syllables per second. Spastic
dysarthria in speaker results in reduced syllable rate [71]. To compute the sylla-
ble rate, the major challenge is to correctly count the number of syllables. In the
study [274], oscillographic acoustic pressure signal was used to identify the number
and duration of a syllable. Automatic syllable detection method in /pa-ta-ka/ was
proposed in the study [209]. The latter method was used to compute rate of DDK
(DDKR) in the study [247, 255]. However, several factors can reduce the accuracy
for vowel onset and offset, and burst onset detection. The latter method was par-
ticularly designed for rhythmic syllable train. It may fail to detect syllable duration
in irregular syllable repetition. In addition, for vowel onset detection accuracy was
81.7% by 5ms threshold using Bayesian Step Changepoint Detector (BSCD) [246].
Burst onset detection accuracy was 79.2%. Both tasks have further scope to improve
the accuracy considering short duration of labial stops.

Irregularity in syllable rate was computed as the standard deviation of syllable
duration [247, 255]. Another study [273, 252] proposed Coefficient of Variance (COV)
of syllable duration to measure instability in syllable repetition. The latter study
observed instability even in mild speech motor disorder of PD patients. Instability
of power in syllables is also regarded as another speech disorder that characterizes
poor respiratory-phonatory coordination and control [82, 69]. The standard deviation
of power was automatically computed from DDK task [130]. Besides the PD, other
disease groups like MSA, PSP, HD, CA showed power instability [130].

Syllable duration and vowel duration also used to assess the prolongation of syl-
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lables of a vowel. Previous studies [278, 130] used vowel duration from DDK task to
evaluate the slowness of repetitive movements with excessive vocal emphasis typical
of ataxic dysarthria. APS group manifested significant vowel prolongation compared
to HC, whereas PD group did not show the trend [112].

2.7 Imprecise words in parkinsonism

The use of single word as recording protocol is very much rare in literature. The study
[306] used ”CVtka” kind of token to assess impaired consonants employing VOT. In
another study [264], simple bi-syllabic (Consonant-Vowel) combination of meaningful
words were used to evaluate articulators movements in five place of articulation (ve-
lars, palatals, retroflexes, dentals, bilabials). The later study analyzed VOT, formant
frequencies, F2 transition, mean intensity of consonants. The latter study did not
show concrete trend for disease groups.

2.8 Imprecise spontaneous speech in parkinsonism

Spontaneous speech requires the involvement of all the subsystems of speech pro-
duction (respiration, phonation, articulation, timing, prosody). In the spontaneous
speech task, two types of speech recording were considered in general: reading text
and monologue. In perceptual analysis, spontaneous speech recordings were mainly
used for analyzing intonation and prosody. Previous studies computed monopitch,
monoloudness, inappropriate silence from spontaneous speech task [281, 247, 125].
On the other hand, net speech rate (words per second) is mostly computed from text
reading tasks because of prior knowledge about the number of words. In a novel
study [114, 306], several acoustic dimensions were proposed to capture deficits in
subsystem of speech production . Respiration features include Rate of Speech Respi-
ration (RSR), Pause Intervals per Respiration (PIR), Relative Loudness of Respira-
tion (RLR), and Latency of Respiratory Exchange (LRE). Phonation features include
Gaping in-between Voiced intervals (GIV), duration of voiced intervals (DVI). The
articulatory subsystem consists Duration of stop consonants (DUS) and decay of un-
voiced fricatives (DUF). Timing and prosodic group consist of Rate of Speech Timing
(RST), Acceleration of Speech Timing (AST), Duration of Pause Intervals (DPI), and
entropy of speech timing (EST). Prosodic parameters also capable to capture overall
abnormality in syllable repetition task. The study [278] used total speech time, total
pause time, and percentage of pause time within polysyllabic words (PRinw) to assess
text reading task. PD patients showed significant abnormalities in net speech rate,
and PRinw using compared to HC.

2.9 Differential diagnosis by acoustic dimensions

This section will discuss differential diagnosis of PD, PSP, and MSA by acoustic
dimensions. Acoustic features computed from vowel, consonants, syllable repetition,
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spontaneous speech will be explored sequentially in this part.

2.9.1 Impaired vowels

Harsh voice parameters (jitter, shimmer, HNR) was used in the differential diagnosis
[225, 126, 247, 175]. Later studies used sustained /a/ for evaluating harsh voice. The
study [225] used Goettingen Hoarseness analysis software [83] for computing jitter,
shimmer, irregularity of voicing, and glottal noise. The latter study observed differ-
ential properties only in shimmer. However, getting very low jitter and shimmer for
PSP compared to PD and MSA can be questionable. Other three studies used Praat
software for the computation of harsh voice parameters. In the early stage of disease,
PD and MSA patients did not show the difference in harsh voice speech parameters
[126]. The study [247] observed that PSP and MSA patients manifest increased jitter,
shimmer, and HNR compared to PD, which was attributed to predominant hypoki-
nesia. It is important to note that harsh voice speech dimensions were not suitable
to discriminate PSP and MSA patients. Vocal folds opening and closing related fea-
tures Quasi-open quotient (QOQ) and normalized amplitude quotient (NAQ) were
not studied for differential diagnosis.

Excessive pitch fluctuation (stdF0) was computed using sustained vowels, which
evaluate vocal folds control. PSP and MSA patients manifest increased pitch fluc-
tuation compared to PD [247]. Another study also used stdF0, but did not analyze
its differential properties [175]. In the study [255], the stdF0 measure did not exhibit
group differences between PD and two phenotypes of MSA (MSA-P and MSA-C).
However, MSA-P patients showed a tendency of increased pitch fluctuation. Another
feature, monopitch did not show differential characteristics [126, 247, 255].

Vocal tremor (by FTRI) was predominant in MSA patients compared to PD [247].
It was computed from a sustained vowel. Study [87] showed that vocal tremor is not
related to vocal folds muscle tremor; rather tremor was found in any of palate, global
larynx, and arytenoids. Another study [175] also used FTRI with other acoustic
features for differentiating PSP and MSA patients, but did not mention clearly which
group manifest more significant vocal tremor.

The degree of voicelessness (DUV) is another manifestation of involuntary squeez-
ing of vocal folds due to spastic dysarthria. Interestingly, MSA patients manifest pre-
dominant DUV while producing sustained phonation compared to PD. On the other
hand, PSP patients also showed increased DUV compared to PD but not significant.
Reliable computation of subharmonics can reveal discriminative characteristics of la-
ryngeal muscle vibration for PD and APS [112]. The latter study showed that APS
patients manifest prominent subharmonics compared to PD. In addition, increased
modulation by laryngeal muscles appears to be a distinctive symptom of multiple
system atrophy. Another study also reported a similar observation of subharmonics
by the measure Proportion of Subharmonics Interval (PSI) [255]. The latter study
showed that subharmonics are prominent for MSA-P patients compared to HC. An-
other vocal folds control related feature, GVI did not show differential properties
among PD, PSP, and MSA [111].

Articulatory feature stdPSD was not used yet for differential diagnosis. Neverthe-
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less, MSA, HD, CA patients showed increased stdPSD compared to HC [130]. Vowel
space related feature, VAI was used in the study [247], which reported that PSP
patients showed prominent impairment compared to PD. More precisely, male PSP
patients manifest greater impairment compared to male PD [281]. Contradictory re-
sults also observed while using sustained vowels for vowel space measure [18, 250].
Hence, a detailed study of vowel space for differential diagnosis is required to under-
stand other aspects of articulatory deficits.

Hypernasality-related features are less explored for differential diagnosis. The
study [211] showed that MSA patients manifest high fluctuation in nasality (Efn SD)
compared to HC. The latter study used sustained /i/ for nasality analysis. Contra-
dictory result is observed in Efn M [211, 130]. It requires further investigation to
analyze hypernasality in parkinsonism.

2.9.2 Impaired consonants

In previous studies, stop plosives are mostly analyzed by Voice Onset Time (VOT).
The study [306, 264] observed prolonged VOT in voiceless plosives for PSP and MSA
compared to PD. MSA patients manifest prominent reduction of negative VOT and
VOT ratio in voiced plosives compared to PD and PSP. Duration of stop consonants
(DUS) computed from monologue also provided encouraging differentiation between
PD and APS groups [306]. This observation was attributed to predominant hypoki-
nesia in PSP and MSA patients. Subjective analysis (visual method) of incomplete
closure in stop plosives showed that Amyotrophic Lateral Sclerosis (ALS) group is
most impaired compared to Cerebellar Ataxia (CA) [15].

Fricatives are less explored in differential diagnosis. Decay in unvoiced fricative
(DUF), developed in the study [306], which did not show differential properties. Ab-
normal closure of articulator in subjective analysis of fricative /s/ did not exhibit its
prevalence. Sharpness of friction was not analyzed for differential diagnosis.

2.9.3 Impaired diadochokinetic task

Rhythmic movements of articulators are examined by syllable repetition task. In
DDK irregularity (DDKI, computed from /pa-ta-ka/), both PSP and MSA patients
manifest increased irregularity in syllable duration compared to PD [247]. The average
DDK rate was low (not significant) for PSP and MSA compared to PD [225, 247].
From the syllable repetition task, vowel duration was also computed. Prolonged vowel
duration was observed for MSA patients compared to PD, which was attributed to
ataxic dysarthria [247].

2.9.4 Impairment in spontaneous speech

Spontaneous speech (monologue and text reading) primarily used for examining a
prosodic aspect of speech production. Monopitch and monoloudness are widely used
acoustic measures. Later mentioned acoustic measures did not show differential
characteristics [247, 255]. Inappropriate pause is another parameter that can reveal
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deficits in the initiation of speech. In the number of pauses and Percent Pause Time
(PPT), PSP and MSA patients exhibit more significant impairment compared to PD
[247]. In total pause duration and Pause ratio within polysyllabic words (PRww)
were more impaired for male MSA-P patients compared to PD, but no discrimination
in female MSA-P and PD [126].

Respiration features (computed from monologue), PIR, RSR, and LRE provided
encouraging discrimination between PD and APS [114]. Overall, PSP patients man-
ifest predominant respiration problems compared to MSA and PD. Particularly in
PIR, PSP patients display more impairment compared to MSA. In timing features,
MSA and PSP patients showed predominant impairment in DPI and RST compared
to PD. Particularly, PSP patients showed prolonged pause duration compared to
MSA. In addition, increased vowel duration and voiceless stop plosives duration were
observed in PSP and MSA patients compared to PD.

2.10 Classification

Several studies were devoted to identifying PD patients from Healthy Control (HC),
whereas studies related to differential diagnosis (quantitative and objective measures)
are more minor in numbers. The study [247] achieved 95% accuracy for PD and APS
disease groups classification by speech rate, speech fluency, pauses and pitch, and
amplitude fluctuations. PSP and MSA classification score was only 75% using voice
quality, fluency, rate, and voice tremor. Important to note that the later study
used Gaussian radial basis kernel in Support Vector Machine (SVM) classifier, which
can introduce model overfitting problems, particularly in small data scenarios. The
latter study objectively showed that PD patients manifest pure hypokinetic dysarthria
whereas PSP patients manifest combination of predominant hypokinetic and spastic
dysarthria. MSA patients manifest combination of hypokinetic and ataxic dysarthria
[247].

Above existing acoustic features need to be validated with other speech databases.
In addition, design of speech markers by combining homogeneous acoustic components
may lead to provide encouraging differential diagnosis.

2.11 Synthetic review of existing objective mea-

sures for Differential diagnosis

This section will present available objective acoustic features for differential diagnosis.
Acoustic features are organized by hypokinetic, ataxic, and spastic dysarthria types.
Table 2.2 presents available objective acoustic measures of hypokinetic dysarthria for
differential diagnosis. The Table 2.3 summarized available acoustic measures from
ataxic and spastic dysarthria for differential diagnosis.

Deviant speech dimen-
sion

Vocal task Acoustic measure Description

49



Hypokinetic:
1. Airflow insuffi-

ciency [247, 126]
Sustained
phonation

Maximum phonation
time (MPT)

Insufficient breath
support for speech
production

2. Harsh voice
Jitter (⇑), Shim-

mer (⇑), HNR (⇓),
NHR (⇑) [247, 126,
225, 175]

Sustained
phonation

Jitter: Frequency per-
turbation; Shimmer:
Amplitude perturba-
tion; Harmonics-to-
noise ratio (HNR):
Amount of noise in
voiced speech; Noise-
to-Harmonics ratio
(NHR)

Harsh, rough and
raspy voice

3. Rapid AMR (⇑)
[247, 225, 175]

Syllable
repetition

Diadochokinetic
(DDK) acceleration

Pace acceleration,
rapid, blurred speech

4. Inappropriate si-
lences

i) Percent pause
time (PPT) (⇑)
[281, 247, 175]

Monologue PPT is measured
as the percentage of
pause time relative to
total speech time

Acceleration

ii) Number
of pauses (⇓)
[247, 126, 253, 175]

Monologue No. of pauses mea-
sured as the average
number of pauses per
second

Inability to start
speech spontaneously

iii) Pause ratio
within polysyllabic
words (PRww) (⇓)
[281, 126]

Monologue Percentual ratio of
pauses within polysyl-
labic words;

Ratio of pause time
within polysyllabic
words to total pause
time; Low PRww val-
ues indicate imprecise
articulation

iv) Duration of
pause interval(DPI)
(⇑) [114, 253]

Monologue DPI is defined as the
median length of pause
interval.

The ability to intermit
and initiate speech was
characterized by dura-
tion of pause intervals

v). Gaping in-
between voiced inter-
vals (GVI) (⇓) [114,
130]

Monologue Clear pauses (i.e.
pauses in-between
voiced speech) were
modelled as a bimodal
distribution of formal
pauses and gaps using
EM-algorithm. GIV
was computed as the
rate of clear gaps
recognized by Bayes
discriminant.

Phonatory aspects
provide information
about disabilities to
control opening and
closing of vocal folds.
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5. Reduced loud-
ness (⇓) [247]

Monologue Mean speech intensity
(Mean Int)

Insufficiently loud, i.e.
hypophonic voice

6. Monopitch (⇓)
[247, 126]

Monologue Pitch variability Monotone voice, lack-
ing normal pitch and
inflection changes

7. Pitch range [225] Sustained
phonation

Pitch maximum and
minimum

8. Imprecise vowels
(⇓) [281, 250, 247]

Monologue Vowel articulation in-
dex (VAI)

Vowel sounds are
distorted throughout
their total duration

9. Dysfluency (⇑)
[247]

Monologue Percent dysfluent
words (PDW)

Involuntary repetition
of speech movements,
prolongation of sounds
and vocal blocks

10. Imprecise con-
sonant articulation;
Voiceless (⇑), Voiced
(⇓) [306, 264]

Syllable
repetition

Voice onset time
(VOT)

Though it is kept in
hypokinetic group,
but it is also evident
in ataxic and spastic
dysarthria

11. Rate of speech
timing (RST) (⇓) [253,
114, 113]

Monologue RST is defined as the
rate of voiced, un-
voiced and pause inter-
vals measured as the
slope of the regres-
sion line of total in-
terval counts per time.
Each interval was de-
scribed as mean time
between onset and off-
set of time.

Decreased rate of
follow-up speech
segment

12. Duration of
stop consonants (DUS)
(⇑) [114, 113]

Monologue Articulatory aspects
were quantified for
unvoiced fricatives
and stop consonants
independently

The stability of supra-
laryngeal movements
and explosion about
its preciseness

13. Relative loud-
ness of respiration
(RLR) (⇑) [114, 113]

Monologue Computed as the dif-
ference between me-
dian loudness of res-
piration and median
loudness of speech.

Measure hypokinesia
and decreased range of
rib cage motion.

14. Rate of speech
respiration (RSR) (⇑)
[114, 113]

Monologue Estimated as the me-
dian duration between
respiration

Respiratory aspects
were measured on in-
spirations represented
by respiratory inter-
vals and expiration
represented by speech
intervals
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15. pause intervals
per respiration (PIR)
(⇓) [114, 113]

Monologue Measured as mean
number of pauses
between respirations

Evaluate breath
groups

16. Latency of
respiratory exchange
(LRE) (⇑) [114, 113]

Monologue Calculated as mean
duration between end
of speech and start
of consequent respira-
tion.

Increased latency of
exchange between ex-
piration and inspira-
tion associated with
rigidity and bradykine-
sia of respiratory mus-
cles

17. Acceleration of
speech timing (AST)
(⇑) [114, 113]

Monologue Computed as the dif-
ference of RST be-
tween two overlapping
halftimes divided by
total time.

The tendency to accel-
erate speech rate

18. Duration of
voiced intervals (DVI)
(⇑) [114, 113]

Monologue Mean duration of
voiced intervals deter-
mines DVI.

Prolonged phoneme
is an example of
ataxic dysarthria,
which might be due to
cerebellar damage.

19. Entropy of
speech timing (EST)
(⇓)

Monologue Shannon entropy com-
puted from the occur-
rence of voiced, un-
voiced, pause, and res-
piratory intervals.

The heterogeneity of
speech; It is probably
mixed dysarthria

20. Decay of
unvoiced fricatives
(DUF) (⇑) [114, 113]

Monologue Measured as difference
of the second MFCC
computed upon un-
voiced fricatives of two
overlapping halftimes.

The stability of supra-
laryngeal movements
and explosion about
its preciseness

21. Rhythm accel-
eration (RA) (⇑) [252]

Syllable
repetition

RA is defined as the
gradient of the re-
gression line obtained
through regression
performed on these
syllable gaps time.

Measure accelerated
speech.

Table 2.2: Available hypokinetic feature list for differential diagnosis; ⇑: High value
means high severity, ⇓: low value means high severity
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Deviant speech dimen-
sion

Vocal task Acoustic measure Description

Spastic:
1. Strained-

strangled voice (⇓)
[247, 175]

Sustained
phonation

Degree of voicelessness
(DUV)

Voice (phonation)
sounds strained or
strangled (effortful
squeezing of voice
through glottis)

2. Strained-
strangled voice (⇓)
[164]

Sustained
phonation

Subharmonic to har-
monic ratio(S2H)

Voice (phonation)
sounds strained or
strangled (effortful
squeezing of voice
through glottis)

3. Slow AMR (⇓)
[281, 247, 126, 175]

Syllable
repetition

DDK rate Abnormally slow mo-
tion rate of articula-
tors

4. Slow rate (⇓)
[247]

Monologue Words count per sec-
ond

Abnormally slow rate
of actual speech

Ataxic:

1. Excess pitch fluc-
tuations (⇑) [281, 247,
175]

Sustained
phonation

Pitch variability Uncontrolled alter-
ations in voice pitch

2. Vocal tremor (⇑)
[247, 175]

Sustained
phonation

Frequency tremor in-
tensity index (FTRI)

Tremulous phonation

3. Irregular AMR
(⇑) [225, 247, 175]

Syllable
repetition

DDK irregularity
(DDKI)

Rate alternates from
slow to fast

4. Prolonged
phonemes (⇑)
[247, 175]

Syllable
repetition

Vowel duration Prolongation of
phonemes

5. Excess intensity
variations (⇑) [247]

Monologue Intensity variations
(Int SD)

Sudden, uncontrolled
alterations of loudness
including both silence
and quiet voice

6. Rhythm instabil-
ity (RI) (⇑) [252]

Syllable
repetition

RI was calculated as
the sum of absolute de-
viations of each obser-
vation in terms of gaps
duration from the re-
gression line, weighted
to the total speech;

Measure irregularity of
rhythm

Table 2.3: Feature list belongs to ataxic and spastic dysarthria in differential diagnosis

Given speech features analysis mainly restricted to specific type of task and
dataset. It requires further validation, particularly for different languages, and differ-
ent age group, and different disease duration.
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2.12 Objective

This thesis targets to design of speech markers for differential diagnosis of parkin-
sonian diseases. Speech markers are designed to measure the degree of deficits in
a particular subsystem of speech production and/or degree of particular dysarthria.
The following objectives summarize the scope of the thesis:

• Database: Develop a speech database from healthy people, PD, and MSA-P
groups in the French language to analyze speech disorders. Speech samples are
recorded by different modes such as microphones for speech, electroglottograph
(EGG) for glottal pulses, aerodynamic data by EVA2 sensors, and video data
by laryngostroboscopy.

• Imprecise vowels: Measure possible impairments in vowels for PD and MSA-P
patients. To do so, speech processing toolkits like Praat, Disvoice, and addi-
tional developments by the authors are exploited to capture deficits in phona-
tion, resonance, and articulation part of speech production. Many of these
speech parameters have never been used for differential diagnosis. To the end,
speech parameters are linearly combined to design an index to measure overall
deficits in particular subsystems and further used for the classification of PD
and MSA-P.

• Imprecise consonants: Consonants are other sound units found frequently im-
paired for the parkinsonian disorder. Mainly, misarticulated stop plosives and
fricatives were observed in consonants. Stop plosives are mostly evaluated by
perceptual analysis or durational measures. Spectral analysis of stop plosives
(voiced and unvoiced) can provide additional information regarding stop plo-
sives impairment. In addition, fricatives were mostly ignored in previous studies.
Manner of friction and devoicing (resp. voicing) of voiced (resp. unvoiced) frica-
tives may give a better measure of imprecise fricatives. Notably, stop plosives
require synchronization and coordination of laryngeal and supralaryngeal activi-
ties which introduce high possibility of misarticulation. Thus, the present thesis
targets to analyze word initial obstruents by temporal and spectral methods. In
addition, an automatic method is developed to segment word initial consonants,
which would lead to assess the consonant automatically. To the end, PD and
MSA-P patients are classified by designed speech markers.

• Imprecise syllable repetition: Syllable repetition task was frequently used to
assess articulator movements. In this thesis, variability of rhythm in temporal
and loudness is automatically investigated. To do so, combination of methods
are implemented to segment vowel, stop plosives with high accuracy.

• Imprecise reading text: Reading text protocol is mainly used to investigate
prosodic abnormality. In this thesis, reading text is manually annotated by
voiced, unvoiced, pause, and respiration segments. Given the four speech seg-
ments, 13 acoustic features are computed following the previous study [130].
In addition, an open-source software, Disvoice is also used to compute other
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prosodic features. Those acoustic features are analyzed towards differential di-
agnosis.

• Differential diagnosis of PSP and MSA: Design speech indexes to capture deficits
in subsystems of speech production as well as in dysarthria to differentiate PSP
and MSA patients. Only statistical analysis of individual speech parameters
is not sufficient for differential diagnosis. Moreover, producing high classifi-
cation accuracy using high dimensional features in linear/non-linear classifiers
may raise the possibility of the curse of dimensionality. Thus, only one or
2-dimensional features would be suitable for a small amount of data.

55



56



Chapter 3

Acoustic Features

Section 2.11 provided a list of acoustic features used for differential diagnosis, par-
ticularly for PD, PSP, and MSA disease groups. This chapter elaborates on all the
acoustic dimensions used in this study by subsystems of speech production. Most
acoustic features are computed by either open source software such as Disvoice (ex-
tended version of Neurospeech toolkit), Praat, or developed tool in Voice4PDMSA
project. In addition, a set of features also provided by the research team SAMI.

Acoustic features are computed from different speech recording task such as, sus-
tained vowel (/a/, /i/), diadochokinetic task (/pa-ta-ka/, /ba-da-ga/, /pa-pa-pa/),
single word, reading text, monologue, and sustained fricatives.

Features computed from reading text and monologue require segmentation of ba-
sic speech clusters like voiced speech, unvoiced speech, pause, and respiration. The
collaborator proposed an automatic method to segment four clusters. Segmentation
was carried out by systematic and sequential processes. In speech segmentation, four
acoustic parameters, such as zero-crossing rate (ZCR), the variance of auto- corre-
lation function (ACR), power (PWR), and Linear-Frequency Cepstral Coefficients
(LFCC) were computed from each window frame as discussed in the study [113].
Acoustic parameters were defined as follows:

PWR =
1

N

N∑
i=1

x2[i].h[i] (3.1)

Rx[k] =
1

N.σ2
x

N∑
i=1

(x[i]− µx).(x[i+ k]− µx) (3.2)

ACR =
1

N − 1

N∑
k=1

(Rx[k]− R̄x)
2 (3.3)

ZCR =
1

N − 1

N−1∑
i=1

|sign(Rx[i+ 1]− sign(Rx[i])| (3.4)

where x is a signal in window of length N , h is hamming window, Rx represents the
autocorrelation function, σx is the standard deviation of the signal, and µx is the
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mean of the signal. Here, ZCR is computed on autocorrelation signal rather than
time series data. The LFCC feature is computed from the spectrum of signal x. Log
magnitude is computed from the spectrum. Next 24 triangular filters are applied on
the log magnitude spectrum and then, Discrete Cosine Transform (DCT) provides
the LFCC feature.

At first, voiced and unvoiced speech segments were detected by three acoustic
parameters (ZCR, PWR, and ACR) in Gaussian Mixture Modelling (GMM). Next,
unvoiced speech segments are clustered as unvoiced consonants and silence by the
first five LFCC coefficients. Silence segments are clustered further by pause and
respiration by the first five LFCC features. Finally, several temporal criteria were
imposed for speech segmentation [113].

After getting segments of voiced, unvoiced consonant, pause, and respiration seg-
ments, speech features were computed for respiration, phonation, articulation, and
timing speech subsystems.

3.1 Respiration

Respiration features were designed by the research team SAMI, Prague [114, 130]. To-
tal four acoustic dimensions were designed to capture different respiration deficits for
speech production. All four acoustic features are clustered as hypokinetic dysarthria
according to their characteristics. Respiration features are computed from either
monologue or text reading speech tasks. A hierarchical methodology was proposed
to detect 4 sound clusters: voiced, unvoiced consonants, pause, and respiration.

Respiration speech rate (RSR)

Decreased air capacity (in lungs) can lead to an increased respiration rate. From the
detected respiration events, duration in consecutive respiration was measured. The
RSR was estimated as an inversion of the median respiratory period and expressed
in respiration per minute [114, 130].

RSR =
1

median(Durrespiration)
∗ 60 (3.5)

Increased respiration rate reflects increased severity of respiration.

Pause intervals per respiration (PIR)

Impaired control and synchronization of respiration with other subsystems can dis-
turb normal speech production. Deficits in airflow control can lead to compromise
pause production in-between respiration. Decreased number of pauses reflect in-
creased severity in respiration control. PIR was calculated as the median number of
pauses over all the in-between respiratory intervals [114, 130].

PIR = median(Npause) (3.6)
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Latency in respiratory exchange (LRE)

Movement disorders become critical at later stages of the disease, leading to delayed
initiation of inspiration followed by end of expiration. Median duration of end of
speech to starting of inspiration was calculated as LRE.

LRE = median(DurSpeech−end−to−starting−of−respiration) (3.7)

Increased LRE reflects impaired initiation of respiration [114, 130].

Relative loudness of respiration (RLR)

Obstruction in respiratory airways and oral cavity results in increased respiration
noise compared to speech. Constriction in the laryngeal muscle is characterized as
hyperkinetic dysarthria. RLR was computed over a power (PWR) envelope. RLR was
defined as the difference of median power of respiratory (PWRrespiration) intervals and
median power of voiced (PWRvoiced) speech [114, 130]. Thus, increased RLR reflects
more significant obstruction in the airways.

RLR = median(PWRrespiration)−median(PWRvoiced) (3.8)

Standard deviation of power (stdPWR)

Impairment of respiratory-phonatory coordination and control can lead to variation
in loudness of voiced segments. Excessive loudness variation is eminent in ataxic and
hyperkinetic dysarthria. Loudness variation is mostly attributed to hyperadduction
of vocal folds vibration or dystonia in respiratory system [82, 69]. stdPWR was
calculated as standard deviation of power in voiced segments.

stdPWR = σ(PWRi
voiced) (3.9)

Maximum phonation time (MPT)

Decreased air capacity in lungs can lead to shortened sustained vowel duration. MPT
is calculated as the duration of sustained vowel. Decreased duration reflects more
severity in the respiration system.

MPT = Durationsustained−vowel (3.10)

3.2 Phonation

Phonation features are related to the larynx. Excessive variation of vocal folds vi-
bration, weakness in laryngeal muscles, tremor in the larynx are evaluated by several
acoustic measures. The phonation subsystem includes several acoustic dimensions,
which will be discussed in the following part.
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Jitter

Jitter is the variation of duration of consecutive periods. In conventional methods,
four parameters were proposed for measuring jitter perturbation. Jitter(absolute) is
the average difference of consecutive periods.

Jitter(absolute) =
1

K − 1

K−1∑
i=1

|Ti − Ti−1| (3.11)

Ti is the glottal period length and K is the number of glottal periods. Jitter(local) is
the average difference of consecutive periods, divided by the average period.

Jitter(local) =
1

K−1
∑K−1

i=1 |Ti − Ti−1|
1
K

∑K
i=1 Ti

∗ 100 (3.12)

Jitter(rap) is the relative average perturbation defined as the average absolute
difference between a period and its average and its two neighbors, divided by the
average period.

Jitter(rap) =
1

K−1
∑K−1

i=1 |Ti − (1
3

∑i+1
n=i−1 Tn)|

1
K

∑K
i=1 Ti

∗ 100 (3.13)

Jitter (ppq5) is the five point period perturbation quotient which is defined as the
average absolute difference between a period and the average of it and it’s four neigh-
bors, divided by the average period.

Jitter(ppq5) =
1

K−1
∑K−2

i=2 |Ti − (1
5

∑i+2
n=i−2 Tn)|

1
K

∑K
i=1 Ti

∗ 100 (3.14)

In conventional methods, glottal pulses were used for measuring jitter perturbation
[35, 297]. However, in the recent study [214], fundamental frequency (F0) contour
instead of glottal pulses was used for measuring jitter.

Shimmer

Shimmer is defined as the variation of amplitude in consecutive periods. Shimmer
is comprised of four acoustic measures: shimmer (absolute), shimmer (local), shim-
mer (rap), and shimmer (ppq5) are defined by replacing Ti by amplitude Ai in the
Equations 3.11, 3.12, 3.13, 3.14. In the recent study [214], frame amplitude contour
instead of glottal pulses amplitude was used for measuring shimmer.

Harmonics-to-noise ratio (HNR)

HNR measures the ratio between periodic and non-periodic components of a speech
sound. It has been used mostly in the vocal acoustic analysis to diagnose pathologic
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voices. Praat toolkit is frequently used for HNR [36, 35]. Periodic and non-periodic
part is computed by the auto-correlation method.

HNR(dB) = 10 ∗ log10

r
′
x(τmax)

1− r′x(τmax)
(3.15)

where r
′
x(τ) = Rx(τ)

Rx(0)
is the normalized autocorrelation. τmax is the maximum value

at lag.

Standard deviation of F0 (StdF0)

Standard deviation of fundamental frequency (F0) is generally computed over pitch
contour. Most of the studies [247, 126, 281] used Praat software for computing pitch
contour followed by stdF0. In the study [214], a robust algorithm for pitch tracking
(RAPT) [295] method is implemented alongside Praat.

stdF0 = σ(F0) (3.16)

Degree of unvoiceless (DUV)

This is the total duration of the breaks between the voiced parts of the speech signal,
divided by the whole duration of the analyzed part of the speech signal [35]. Beginning
and end part of silences are deleted automatically. It is computed by Praat software.
Another study mentioned the voice breaks (or subharmonics) by the proportion of
subharmonic intervals (PSI) [112, 130].

Duration of voiced intervals (DVI)

Duration of voiced intervals (DVI) was computed from the monologue and text read-
ing task. After automatic segmentation of voiced and unvoiced intervals, DVI was
computed by the mean interval of the voiced part.

DV I = µ(DurVoiced intervals) (3.17)

Gaping in between voiced intervals (GVI)

Gaping in between voiced intervals (GVI) was designed to assess vocal folds’ ability
to adduction and abduction [114, 130]. The short pauses are attributed to adduction,
hereby referred to as gaps. In contrast, vocal folds’ abduction naturally produces long
pauses between words or sentences, hereby referred to as formal pauses. Bi-modal
distribution of pauses within voiced segments assists in detecting gaps with a shorter
mean. The GVI was computed as the number of gaps per total speech time.

GV I = median(No. of gaps) (3.18)
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Average Quasi-open quotient (AvgQOQ)

The average Quasi-open quotient (AvgQOQ) is computed by Disvoice software. AvgQOQ
is defined as the average rate of opening phase duration, divided by duration of the
glottal cycle for consecutive glottal cycles [24]. To compute this phonation feature,
Glottal Closure Instants (GCI) first need to be detected, where residual excitation
and a mean-based signal algorithm were used [65].

Standard deviation of Quasi-open quotient (StdQOQ)

The Disvoice toolkit computes the standard deviation of Quasi-open quotient (StdQOQ).
StdQOQ is defined as the standard deviation of the rate of opening phase duration,
divided by duration of the glottal cycle for consecutive glottal cycles [24].

Average normalized amplitude quotient (AvgNAQ)

The average normalized amplitude quotient (AvgNAQ) is computed by the Disvoice
toolkit. AvgNAQ is defined as the average ratio of the amplitude quotient and the
duration of the glottal cycle for consecutive glottal cycles [24].

Standard deviation of normalized amplitude quotient (StdNAQ)

The standard deviation of normalized amplitude quotient (StdNAQ) is computed by
the Disvoice toolkit. StdNAQ is defined as the average ratio of the amplitude quotient
and the duration of the glottal cycle for consecutive glottal cycles [24].

Difference between the first two harmonics (H1H2)

The Disvoice toolkit computes the difference from magnitude of first harmonic (H1)
and second harmonic (H2).

H1H2 = H1−H2

. Average of H1H2 (AvgH1H2) and the standard deviation of H1H2 (StdH1H2) is
computed from H1H2 over time [24].

Average of Harmonic richness factor (AvgHRF)

The average of Harmonic richness factor (HRF) is computed by the Disvoice toolkit.
AvgHRF is defined as the average ratio of the sum of the amplitude of the harmonics
and the amplitude of the fundamental frequency [24].

Standard deviation of Harmonic richness factor (StdHRF)

The standard deviation of the Harmonic richness factor (HRF) is computed by the
Disvoice toolkit. StdHRF is defined as the standard deviation of the ratio of the sum
of the amplitude of the harmonics and the amplitude of the fundamental frequency
[24].
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3.3 Articulation

Voice onset time (VOT)

Voice onset time (VOT) was computed automattically in the study [114, 130]. We’ll
use acoustic features VOT from latter study. In addition, in this thesis, VOT is
computed automatically by a designed method from logatomes (pseudo word) and
/pa-ta-ka/. It uses Plosion Index (PI) and Maximum Normalized Cross-Correlation
(MNCC) on spectrum to robustly detect the burst and vowel onset [12].

Duration of unvoiced stops (DUS)

Duration of unvoiced stops (DUS) was computed from monologue and text reading
speech tasks. This acoustic feature is designed and provided by the research team
SAMI [114].

Decay of unvoiced fricatives (DUF)

Imprecise frication in unvoiced fricatives is computed by Decay of Unvoiced Fricatives
(DUF). DUF is designed by the collaborator [114]. It is computed as the difference
between the mean second MFCCs in the two halftimes divided by the total duration
of the fricatives.

Resonant frequency attenuation (RFA)

Resonant frequency attenuation (RFA) was designed in the study [130] to assess
articulatory decay. Less prominent resonances are surrounded naturally by shallow
valleys. It is computed by the difference of first maxima followed by the first minima
from the cepstral liftered spectrum.

Standard deviation of the power spectral density (StdPSD)

The standard deviation of the power spectral density (StdPSD) was designed to evalu-
ate involuntary movement of articulators [130] at the time of sustained vowel. StdPSD
was also developed in the Voice4PDMSA work.

3.4 Timing

Vowel duration (VD)

Vowel duration (VD) is computed from the syllable repetition task (/pa-ta-ka/) [130].
This acoustic feature is provided by the research team SAMI. It is also computed in
the present study.
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The rate of speech timing (RST)

Speech rate can be disturbed by reduced range of movements. On the other hand,
acceleration or reduced speech rate may be observed because of imprecise speech
production in different subsystems. RST computation includes computation of the
total number of voiced, unvoiced, and pause intervals in a time instant followed by
measuring gradient from the regression line (modeled by the total number of intervals
over time) [114, 130]. This feature was computed from a monologue or text reading
task. The SAMI team provided this acoustic feature.

Acceleration of speech timing (AST)

Speech acceleration was computed by acoustic feature RST. AST can provide insights
into reduced range movements or increased speech rate. AST was also computed
from monologue or text reading. The whole speech was split into two parts by 25%
overlap. The AST was determined as the difference between the RST calculated in
each halftime divided by the total duration of a speech utterance [114, 130]. The
SAMI team provides this acoustic feature.

Duration of pause intervals (DPI)

Duration of pause intervals (DPI) can reflect the speech initiation deficits due to
hypokinesia. DPI was computed from the monologue or text reading task. It is
defined as the median length of the pause interval [114, 130].

Net speech rate (NSR)

Slow speech movement was evaluated by the conventional acoustic dimension, Net
speech rate (NSR). NSR was computed by the number of syllables/words in the text
reading task [130].

3.5 Prosody

Monoloudness

Insufficient airflow from the respiratory system and reduced muscle strength of the
larynx resulting in reduced loudness variation in speech [69]. It is computed as the
standard deviation of Power (stdPWR). This feature was computed by the SAMI
team, and it can be computed also by the Disvoice toolkit.

Monopitch

Reduced melody of the voice is a common manifestation of reduced control over la-
ryngeal muscles. Monopitch was computed as the standard deviation of fundamental
frequency (stdF0). Monopitch was computed from a monologue or text reading task.
Monopitch is computed by the Praat as well as the Disvoice toolkit.
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3.6 Nasalic

Degree of hypernasality (Efn M)

The degree of hypernasality (Efn M) has been developed (by the author of the thesis)
by following the study [211]. Increased energy in 1000 Hz is an important marker for
hypernasality. 1/3 octave spectra analysis, based on the multirate filter bank, was
used for this purpose. Total 18 frequency bands (from 75 to 4000 Hz) was computed.
Average energy around 1000 Hz (890.9 Hz to 1122.5 Hz frequency band) is computed
over all the time intervals.

Variability of hypernasality (Efn SD)

Involuntary movements of the soft palate may result in variations of nasality. The
standard deviation of energy around 1000 Hz (890.9 Hz to 1122.5 Hz frequency band)
was computed as Efn SD.
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Chapter 4

Database

4.1 Speech databases of parkinsonian disorder

Increased interest of speech disorder analysis in Parkinsonism for building predictive
telediagnosis and telemonitoring models has been a new trend. Hence, it is natural
to have a speech database for analyzing speech disorders and develop a tool to serve
initial diagnosis. In previous studies, several speech databases were used to evaluate
speech disorder for PD [258, 270, 276, 248, 249, 91, 11] in different languages such
as Czech, English, French, German, Spanish. In comparison, speech database of
Atypical Parkinsonian Syndromes (APS) is less in number [281, 247, 126, 255, 164].
The most frequently used speech task is sustained vowel in previous studies, probably
due to easy access and effective properties. Other speech tasks are diadochkinetic
task, reading text, and monologue.

Sustained vowel was designed to evaluate particularly laryngeal functions. Ad-
ditionally, it can reveal airflow insufficiency, articulator instability. Diadochokinetic
syllable tasks are used to assess a client’s ability to make rapidly alternating speech
movements. DDK task can infer rhythm and speed of articulators; and also synchro-
nization of laryngeal and supra-laryngeal activities. Text reading and monologue are
used to assess overall speech disorder, which may be attributed to any or all of the
speech subsystem deficits. Latter mentioned speech tasks can provide information
mostly about prosody, timing, and respiration of speech production. Single-word
(multi-syllable) task can precisely identify impairment in first phoneme and following
vowel. Besides these speech protocols, other speech tasks are also warranted to study
specific types of speech deficits. Important note, previous databases are primarily
recorded in a very clean sound treated room. In most of the cases, a high quality
condenser microphone was employed. However, in real life scenario, the availability of
high quality recording room and high quality microphone are not always feasible. Con-
sequently, although speech recording in anechoic chamber provides noise-free speech
quality (preserve actual pathological speech properties), telemedicine framework has
a high chance to introduce multi-dimensional noise from reverberation or other kind
of environment noise.

In this thesis, the project Voice4PD-MSA aims to build a speech database to
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analyze speech disorders and consequently study differential diagnosis for PD and
MSA-P. At present, building Voice4PD-MSA speech corpus is in progress. Another
database of parkinsonian disorders provided by Czech Republic research team is also
considered in this thesis. Details of the databases are described in the following
sections.

4.2 Voice4PD-MSA

Voice4PD-MSA database development involves the department of neurology and ENT
departments of 2 French university hospitals (recruitment is continuing). Each re-
cruitment was first clinically confirmed it’s group (HC, PD, MSA-P). Next, the ENT
specialist conducts the voice recording session by finalized speech protocol. The
author of the thesis was also present at the time of recording to configure all the
recording setup. Several challenges popped up at the time of recording configuration,
such as hardware (microphones, sound card, peripherals) and recording room. In the
following sections, the recording scenario and quality of audio will be discussed.

4.2.1 Recording setup

Recording is conducted in a small room at hospital. The recording room is not
acoustically treated. Figure 4.1 displays the overall recording setup. It consists of
different hardwares for different mode of signal recording. A desktop computer is
used to plugin recording peripheral, EVA2 system.

EVA2

EVA2 is a multipurpose workstation that can handle a variety of phonatory function
tests. It is designed to measure most data currently used to evaluate speech produc-
tion, including sound wave, pitch, intensity, airflow, and pressure. It has proven to be
a valuable tool to assist physicians not only in the diagnosis of speech disorders but
also in follow-up after surgery, medical treatment, and voice therapy. There is two
input slot in EVA2. Connect a microphone to Input1-Left slot. Use the knob to select
“Micro” option. Connect Electroglottograph (EGG) output (analog) to Input2-Right
slot. Use the knob to select EGG. The important task before starting recording is the
gain control. It can be accomplished with the gain control knob both for microphone
and EGG. Check the peak indicator to adjust the gain. Gain should be set such
that the indicator will not be lit up at the time of recording. ENT specialist always
tried to maintain a standard level of gain. Another peripheral responsible to record
aerodynamic data is also plugged-in into EVA2 system. It is designed to measure
intra-oral pressure at the time of speech production [198].

H4n

H4n is usually used as a portable audio recorder. It has two in-built microphone with
phase changing facility. Two other external ports can also be used for voice record-
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Figure 4.1: Recording scenario for database Voice4PD-MSA

ing. In the present task, we have connected a high quality condenser microphone
(Rode NT1) in one of XLR port. In the other XLR port, we connected a head-worn
microphone. As stated earlier, the gain should also be adjusted before recording
starts to avoid clipping. There is a recording button on H4n device. A single click
on this button will help to change the gain. We have to decrease the gain until the
microphone indicator blink while speaking with loud volume. We selected 48000Hz
sampling frequency and 16-bit quantization for the recording voice samples.

Electroglottograph

The electroglottograph is a device for measuring how much electricity flows across
the larynx. The amount of electricity flow between two electrodes depends on the
state of the vocal folds. Maximum electricity flows when vocal folds are closed. This
instrument can capture the vocal folds vibration dynamics (only source information).

Aerodynamic tool

The aerodynamic tool is designed to capture voice sound by sensors. It can measure
subglottic pressure, intra-oral pressure, and laryngeal resistance. It is connected to
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EVA2 system.

Laryngostroboscopy

Laryngostroboscopy is an imaging instrument (by video) commonly used for vocal fold
examination, and evaluation of patients with voice disorders [285]. It is an invasive
method to capture video of vocal folds vibration.

Microphones

Total three microphones are used for capturing voice. Three microphones are NT1
from RØDE (https://cdn1.rode.com/nt_datasheet.pdf), C1000 S from AKG
(https://www.akg.com/on/demandware.static/-/Sites-masterCatalog_Harman/
default/dwea5c5440/pdfs/AKG_C1000S_Manual.pdf), and Head-worn microphone,
hc444 from t.bone (https://www.tbone-mics.com/uploads/tx_ioproducts/Datasheet_
HC-444-TWS_de_web_01.pdf). Table 4.1 presents properties of three microphones.

C1000S AKG NT1 RODE Headset HC-444-
TWS

Polar pattern Cardoid, Hyper-
cardoid

Cardioid Super cardioid

Frequency range 50 to 20000 Hz 20 to 20000 Hz 20 to 18000 Hz
Sensitivity 6 mv/pa (-44

dBV)
-31.9dB re
1V/Pa @ 1kHz

-21.2 dB re 1V/
Pa

Electrical impedance 200 Ohms 100 Ohms 350 Ohms

Table 4.1: Properties of three microphones

The sound absorber

The t.bone Mic Screen XL - Adjustable 5-panel absorber/diffuser (https://www.
thomann.de/gb/the_t.bone_micscreen_xl.htm) which fits behind any microphone
to reduce the transmission of unwanted room reflections, echoes and ambient noise.
It is recommended for vocals and instruments. It is suitable for live and studio
applications. It can be used on desktop or mounted on all stands, depth adjustable
mic mount. Variable 5-panel screen design facilitates to widen or narrow wings to
adjust acoustic behavior to fit the recording situation.

4.2.2 Recording protocol

In this project several recording protocols are considered to capture different speech
production deficits. Recording protocols are listed below:

1. Sustained vowel /a/. It is used in vocal task, aerodynamic task, and laryn-
gostroboscopy task. Participants are asked to repeat sustained /a/ twice for at
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least 5 seconds for vocal task. In aerodynamic data recording, participants are
asked to record /a/ as long as possible twice.

2. Sustained fricative /s/. Each participant repeats this task twice at least 5
seconds.

3. Different diadochokinetic task like /Pa-Ta-Ka/, /Ba-Da-Ga/, and /Pa-Pa-Pa/
in normal and rapid speed. DDK task also repeated twice by each participants.

4. Reading text [1]:
”Monsieur Seguin n’avait jamais eu de bonheur avec ses chèvres. Il les perdait
toutes de la même façon. Un beau matin, elles cassaient leur corde, s’en allaient
dans la montagne, et là-haut le loup les mangeait. Ni les caresses de leur
mâıtre ni la peur du loup rien ne les retenait. C’était, parâıt-il, des chèvres
indépendantes aimant à tout prix le grand air et la liberté.”

5. Monologue for spontaneous speaking for 90 seconds. At first, 10 different im-
ages were selected to describe the scenario in spontaneous fashion. Later on,
observing difficulties by participants to describe image, participants are asked
to speak daily life incidents for spontaneous speech.

6. Logatomes consist of 25 words listed in Table 4.2.

SL. No. Words Phoneme SL. No. Words Phoneme

1) berdo b e R d o 14) nouillo n u j o
2) broto b R o t o 15) perva p e R v a
3) chastu S a s t y 16) psegra p s e g R a
4) crancto k R @ k t o 17) quinsa k cinq s a
5) dirou d i R u 18) roursou R u R s u
6) feju f e Z y 19) sochin s o S cinq
7) frambi f R a m b i 20) spegzi s p e g z i
8) guizant g I z @ 21) touca t u k a
9) granfa g R @ f a 22) tunia t y n j a
10) jinin Z i n cinq 23) vonia v o n j a
11) larni l a R n i 24) yuni j y n i
12) mindou m cinq d u 25) zacu z a k y
13) nianfin n j @ f cinq

Table 4.2: List of logatomes and it’s phonetic representation

4.2.3 Data recording

The recording room is situated in the hospital, which introduces different sources of
noise. The recording room itself has different furniture and walls to reflect sound,
which may introduce reverberation into signal. There is little scope to alter the room
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structure to improve the acoustic quality. Therefore, the portable sound absorber is
employed to mitigate the reverberation noise.

Headset microphone and Rode microphone are connected to H4n recorder. H4n
recorder provides 48V phantom power to operate two microphones. The speech signals
were recorded with 48kHz sampling frequency and 16-bit resolution by a headmount
condenser microphone (t.bone HC 444 TWS) and Rode microphone placed at a dis-
tance of approximately 5cm and 10cm from the speaker’s mouth respectively. AKG
microphone is connected to the EVA2 system. It is also placed with Rode microphone
at a distance of 10cm. One microphone pop filter was placed in-front of microphone
to filter out air burst. Eva2 system records audio with 25kHz sampling frequency
and 16-bit resolution. EVA2 uses Sesane software to record and analyze recordings.
Initially, the EGG device was connected to the EVA2 system to record vocal folds
vibration in parallel. But, Sesane software faced random difficulty in capturing EGG
signals. So, later on, the EGG signal was recorded by separate laptop using another
audio adapter.

All the recordings were conducted after getting ethics committee approval before
recruitment, and all participants gave written informed consent.

4.2.4 Recording details

As discussed, the recording room was not acoustically treated, and there was little
scope to modify the room. Consequently, different kinds of noises, such as room
reverberation, people talking outside, noise of vehicle can easily interrupt speech
sample recording. To reduce reverberation, a sound absorber is used behind the
microphone. It helps to improve the speech quality. Two impulsive sounds (click and
clapping) are used to evaluate the effect of the sound absorber. Figure 4.2 showed
that after applying sound absorber reverberation is reduced significantly for Rode
microphone. Reverberation is measured by reverberation time (RT). Most of the
time, RT is measured by the duration at which reduction of magnitude is 60dB from
the onset of impulse. It is also referred as ”RT60”. RT60 without and with sound
absorber is 0.4 seconds and 0.25 seconds respectively for click sound.

(a) Click sound without sound absorber (b) Click sound with sound absorber

Figure 4.2: Reduced reverberation of click sound after applying sound absorber

Figure 4.3 showed that RT60 of clapping sound is also reduced after applying
sound absorber from 0.6 to 0.35 seconds. Lower value of RT60 is preferred. The
sound absorption material has mitigated the reverberation effect by an average of 0.2
seconds.

Now, it is time to select one of the microphone out of three microphones for
speech analysis. Headset microphone has some extra advantages over the other two

72



(a) Click sound without sound absorber (b) Click sound with sound absorber

Figure 4.3: Reduced reverberation of clapping sound after applying sound absorber

microphones. The distance of microphone from mouth always remains constant.
Conversely, there is a higher chance to vary the distance from mouth to microphone
due to involuntary head movements by participants. In addition, the headset is less
sensitive to the noise. Due to low sensitivity, headset is more capable to filter out
reverberation as well as noise. To measure noise level in three microphones, the silent
part of the recording sample are selected from manually labelled data. The average
power spectrum over frames can display the noise profile of microphones. Figure
4.4 presents the noise properties of three microphones. It is observed that headset
microphone provides lower noise levels than ”Rode” and ”AKG” microphones. The
noise level is higher for ”AKG” microphone probably due to EVA2 system.

Figure 4.4: Comparison of noise properties for three microphones

Signal-to-Noise Ratio (SNR) can also be used to evaluate the recording quality of
microphones. Highest SNR is found for headset microphone, 27 dB, whereas Rode
and AKG microphone provides SNR value 26 dB and 23 dB respectively. Considering
all above observation, headset microphone speech data will be used for further speech
analysis.

4.2.5 Clinical details

From 2018 to the time of writing this thesis, a total of 60 French speakers were
recruited in the framework of a research project involving the neurology and ENT
departments of 2 French university hospitals (recruitment is continuing). 27 patients
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(8 females and 19 males) were diagnosed with idiopathic PD, with a mean age of 60
and a mean symptom duration of 4 years. 13 subjects (8 females and 5 males) were
diagnosed with MSA-P, with a mean age of 67 and a mean symptom duration of 3.5
years. 20 healthy controls (HC) with a mean age of 56 (10 female and 10 male) with
no history of neurological or communication disorders were recruited.

4.3 Czech database (CzechData)

From 2011 to 2018, we enrolled a total of 65 consecutive patients for the present study,
including 20 with a medical diagnosis of probable PSP (13 men and 7 women), 25 with
a medical diagnosis of probable MSA (15 men and 10 women) and 20 with a medical
diagnosis of idiopathic PD (13 men and 7 women). A movement disorders specialist
established the clinical diagnoses of all patients according to the NINDS-PSP clinical
diagnostic criteria for PSP [177], the consensus diagnostic criteria for MSA [89] and
the Movement Disorder Society clinical diagnostic criteria for PD [230]. The PSP
group consisted of 17 subjects diagnosed with PSP-Richardson syndrome, 2 with
PSP-parkinsonism, and 1 with PSP-pure akinesia with gait freezing while the MSA
group was composed of 19 subjects diagnosed with MSA-parkinsonian subtype and
6 patients with MSA-cerebellar subtype. At the time of examination, each treated
PSP or MSA patient was on stable medication for at least 4 weeks consisting of var-
ious doses of levodopa alone or combined with different dopamine agonists and/or
amantadine. PD patients were investigated immediately after the diagnosis was es-
tablished before the initiation of dopaminergic treatment. No PD subject manifested
dyskinesias at the time of the examination. Disease duration was determined based
on the self-reported occurrence of the first motor symptoms. Each PSP and MSA
patient underwent neurological examination including scoring according to the Neu-
roprotection and Natural History in Parkinson Plus Syndromes (NNIPPS) scale [224],
while PD patients were rated by the Movement Disorder Society - Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS) motor subscore. Item 3.1 MDS-UPRDS
III was used for the perceptual description of speech severity. None of the patients
reported a history of speech-language disorders unrelated to possible neurologic dis-
ease manifestations. No statistically significant differences were found between PSP
and MSA groups for disease duration, medication doses, cognitive status, motor or
speech severity (Mann-Whitney U test: p=0.110.59). Patient’s clinical and demo-
graphic characteristics are summarised in Table 4.3. The control group consisted of
150 healthy subjects (95 men and 55 women) of comparable age (mean age 65.5, SD
7.1, range 45–83). No control subject reported a history of neurological disorders
or other disorders that may affect speech, language or hearing. All subjects were
Czech native speakers, and none manifested marked depressive or cognitive deficits
that would interfere with the recording procedure. The study was approved by the
Ethics Committee of the General University Hospital in Prague, Czech Republic and
have therefore been performed in accordance with the ethical standards laid down in
the 1964 Declaration of Helsinki and its later amendments. All participants provided
written, informed consent to the neurological examination and recording procedure.
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Speech recordings were performed in a quiet room with a low ambient noise level
using a head-mounted condenser microphone (Bayerdynamic Opus 55, Heilbronn,
Germany) situated approximately 5 cm from each subject’s mouth. Speech signals
were recorded with 48 kHz sampling frequency and 16-bit resolution. Each participant
was instructed to perform sustained phonation of the vowel /a/ per one breath as long
and steadily as possible, fast /pa/-/ta/-/ka/ syllable repetition at least seven times
per one breath, a reading passage, and a monologue on a given topic for approximately
90 seconds. All participants performed the sustained phonation and syllable repetition
tasks twice.

PD PSP MSA
Mean/SD (range) Mean/SD (range) Mean/SD (range)

General
Age 59.1/13.6 (37-81) 67.1/6.2 (54-84) 62.5/6.7 (45-72)
Symptom duration (years) 3/1.7 (0.3-6.7) 4/1.5 (2-7) 3.9/1.6 (2-7.5)
L-dopa equivalent (mg) 0 545/501 (0-1500) 371.4/457 (0-1500)
Amantadine (mg) 0 155/167 (0-500) 82/119.8 (0-400)
UPDRS III 30.3/11 (10-53)
UPDRS III speech 18 item 0.6/0.5 (0-1)

Subscores
Tremor 8.5/4.5 (3.0-21.0)b 2/2 (0-6)a 7.3/7.5 (0-20)a

Rigidity 4.0/2.1 (1.0-10.0)b 3/3 (0-7)a 7.5/4.6 (0-14)a

Bradykinesia 18.0/6.9 (5.0-28.0)b 11/5 (2-20)a 12.8/3.7 (5-19.5)a

Bulbar/pseudobulbar 9/4 (3-17)a 7.8/2.6 (3-13)a

Pyramidal 1/1 (0-3)a 1/1.2 (0-3)a

Cerebellar 0.1/0.3 (0-1)a 3.7/6.0 (0-22)a

Table 4.3: Clinical characteristics of patients; NNIPPS natural history and neuropro-
tection on Parkinson plus syndromes-Parkinson plus scale, UPDRS unified Parkinson
disease rating scale; a-NNIPPS subscore, b-UPDRS III subscore
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Chapter 5

Vowel distortion in PD and MSA-P

5.1 Vowel distortion

Studies of vowel impairment are most frequent in assessing speech disorders. As an
example, more than 500 studies accounted for vowel quality evaluation [45]. Vowel
distortion mainly was investigated in three subsystems of speech production, like
phonation (larynx), articulation, and nasal (velopharyngeal). Section 2.9.1 described
vowel impairments in neurological disorder and proposed several acoustic measures
for evaluation. In the phonation subsystem, the pattern of vocal folds vibration
can be investigated by fundamental frequency (variability and range), perturbation
measurements, and measurements of the glottal pulse shape. On the other hand,
resonance properties of the vowel can reveal articulator (lips, jaw, and tongue) posi-
tion and velopharyngeal functions. Hypernasality in sustained vowel is described in
the Section 2.4.3. In general, vowel characteristics are represented by first (F1) and
second (F2) formant frequencies. Imprecise movement (reduced range of movement)
of articulators (tongue, jaw, and lips) may result in improper oral shape which in
consequence change the F1 and F2 frequencies.

Hypokinetic dysarthria, a subtype of dysarthria, is a well-recognized clinical man-
ifestation of Parkinsonian disorders. It is one of the common manifestations for
Parkinson’s Disease (PD) [183], Progressive Supranuclear Palsy (PSP) and Multiple
System Atrophy (MSA) during the course of the disease [161, 199, 247]. It is mainly
attributed to rigidity, reduced force and range of movement, and bradykinesia. It
may manifest in any or all respiratory, phonatory, resonatory, and articulatory lev-
els of speech, but its characteristics are more evident in articulation and prosody.
Reduced amplitude (possible cause of articulation undershooting) and velocity of ar-
ticulators (lips, tongue, jaw) in parkinsonian speakers was found in previous studies
[80, 147, 69]. Basal ganglia dysfunction resulting from loss of dopaminergic input
to the sensorimotor region of the striatum frequently results in movement deficits in
parkinsonian disorder [240].

Variable impairment of vowel articulation was observed for PD patients. Impre-
cise vowel articulation was observed even in mild PD [283]. Improvement of vowel
articulation was observed after dopaminergic treatment in PD patients [279, 251]. In
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contrast, vowel articulation degraded even after therapeutic treatment over a time
period for PD [277]. Studies related to differential diagnosis using vowel articulation
measures are very rare. Impaired vowel articulation was partly investigated for PD
and MSA in [247]. In another study [303], vowel impairment was studied for PD and
Multiple sclerosis (MS). The latter study observed larger vowel space for clear speech
and both PD and MS groups exhibited reduced vowel space area compared to HC.

Reduced range of movement may alter resonance properties of the speech signal
(particularly for vowels). Each vowel is characterized by unique harmonic frequencies
(called “formants”). The first and second formants are roughly related to the size
and shape of the cavities created by jaw opening, lip rounding, and tongue position.
Literature [301] stated that the tongue position mainly defines frequencies of F1
and F2. F1 frequency is inversely related to the height of tongue, whereas the F2
frequency is directly related to the advancement of the tongue position. For example,
F1 increases while the tongue moves forward, and F2 decreases as the tongue moves
backward. F1 decreases with elevation of the tongue and increases as the tongue is
lowered or downward movement of the jaw. In addition, F1 and F2 decrease while
lips are rounded and increase when the lips are unrounded [147].

The Vowel Space Area (VSA) is an conventional acoustic proxy for the kinematic
displacements of the articulators [149, 27]. Evidence from acoustic studies also sup-
ports the conclusion that the reduced range of articulator movements in PD leads to
imprecise vowel articulation caused by impaired and less distinctive “formant” gen-
eration [313]. Two different approaches were reported in literature to measure VSA
e.g, triangular VSA (tVSA) [179, 277] and quadrilateral VSA (qVSA) [93, 171, 78].
For both variants, the VSA is calculated as the area formed by connecting the corner
vowels (triangular vowels: /a/, /i/, /u/ and quadrilateral: /a/, /i/, /u/, /ae/) using
the Euclidean distance between each coordinate in F1-F2 space.

Besides traditional VSA measures, alternative acoustic measures were also pro-
posed to analyze imprecise vowel articulation in prior studies. For example, the
Vowel Articulation Index (VAI) was proposed in the study [245, 283]. The reciprocal
measure of VAI, Formant Centralization Ratio (FCR), was proposed in the study
[261]. Both aforesaid acoustic metrics use formant values (F1 and F2) to examine
vowel articulation. In another study, an automated VSA assessment from connected
speech has been proposed to improve the accuracy of vowel space measurement. This
method measures the peripheral vowel space area of formant frequency data using
a convex-hull algorithm [259]. Another sensitive acoustic measure called F2i/F2u
was proposed in [262]. F2i/F2u represents the ratio of second formant frequencies of
vowel /i/ to /u/.

Effects of different speaking conditions on VSA for PD and MS were also studied
in prior studies [93, 303]. The study [303] showed that clear speech provides the
largest VSA. In the study [93], VSA was found to be expanded for clear speech com-
pared to conversational speech tasks. Another study [251] showed that spontaneous
and non-spontaneous speech was suitable for assessing early changes in vowel articu-
lation associated with PD. However, the latter study considered only male speakers
to assess vowel articulation. Vowel articulation impairment in laryngeal and articula-
tory features were analyzed in sustained vowels /a/, /e/, /i/ and /u/ for PD [18]. A
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VSA measure using sustained phonation yielded a group difference between PD and
HC [18]. In converse, study [251] showed that sustained phonation is not suitable to
discriminate against HC and PD.

In this chapter, vowel impairment by laryngeal deficits and imprecise articulator
movements are explored. Two different speech tasks are used for this evaluation.
First, sustained vowel /a/ is used to evaluate laryngeal dysfunction, articulator in-
stability, and velopharyngeal activities. Previous study [211] used sustained /i/ for
measuring abnormal nasality in MSA, PD, and MS patients. The latter study did not
find differential properties in hypernasal speech parameters. In this study, sustained
vowel /a/ is used for capturing nasal abnormalities. Next, the reading text speech
task is used for the assessment of the vowel space area. To the best of our knowledge,
VSA has never been used for differential diagnosis of PD and MSA-P.

5.2 Sustained vowels

Sustained vowel production demands sufficient airflow from the lungs followed by
precise vibration by vocal folds and resonance in the oral cavity and nasal cavity.
Present study targets finding disorders in laryngeal, articulation, and velopharyngeal
functions. In addition, differential diagnosis of PD and MSA-P is given primary
importance.

5.2.1 Methodology

This section will discuss types of data and several acoustic features for measuring
vowel distortion in PD and MSA-P.

Database

Sustained vowel /a/ is used in this study from Voice4PD-MSA database. Total 60
participants recorded sustained /a/ as discussed in the Section 4.2. Each speaker
recorded sustained vowel /a/ twice. In detail, the database consists 20 HC (10 female
and 10 male), 27 PD (8 female and 19 male) and 13 MSA-P (8 female and 5 male).

Acoustic features

Acoustic features are computed by different toolkits, such as Praat, Disvoice, and
Voice4PDMSA toolkit. Table 5.1 presents a description of acoustic features, which
are grouped by phonation, articulation, and nasal. Some of the acoustic features by
name are the same but computed by different methods. As an illustration, jitter is
calculated by glottal pulse information in Praat, whereas Disvoice uses fundamental
frequency (F0) contour. It is also held for computation of shimmer. Extraction of
pitch is another most studied field. Several methods are developed for robust pitch
tracking. Praat software uses auto-correlation and cross-correlation methods, whereas
Disvoice software uses Robust Algorithm for Pitch Tracking (RAPT). Comparison of
different pitch extraction methods showed that auto-correlation (Praat) and RAPT
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perform better in a clean environment, but RAPT method provided better accuracy
in noisy conditions. However, the pitch tracking method specifically for the patho-
logical voice was not found in the literature; rather, existing methods are used for
pathological speech.

Disvoice toolkit is used to measure vocal folds opening and closing pattern [101,
217]. Selected features are described in Table 5.1.

Among different vocal tremor indexes, the frequency tremor intensity index (FTrI)
is considered in this study which is defined as the magnitude of the strongest low-
frequency modulation of F0 [42].

For univariate analysis, each feature is first used for normality tests by the one-
sample Kolmogorov-Smirnov test. If data is normally distributed, the student t-test
is used for group differences, otherwise Kruskal-Wallis test (suitable while pairwise
group difference is computed).

5.2.2 Results

Phonation

Phonation features are designed such that they can investigate laryngeal functions.
Table 5.2 presents the group difference of individual phonation features. Among the
phonation features, encouraging group difference between PD and MSA-P is found
in QOQ, jitter, PPQ, and DF0 by initial investigation. Important to note, irregular
rhythm (in duration) in vocal folds vibration is predominant for MSA-P patients in
jitter, QOQ, PPQ, DF0, and DDF0 acoustic features.

1-dimensional phonation feature (X1 a) is designed by combining 9 acoustic fea-
tures from phonation subsystem acoustic features. All selected features yield group
differences between PD and MSA-P. Other features are ignored for further analysis.
X1 a is defined as follows:

X1 a =
1

2
∗ (std avg QOQ+ avg std QOQ+ avg jitter + std jitter + std DDF0) +

1

4
∗ (avg ppq + std ppq + std DF0 + FTRI)

Dimension X1 a provides encouraging group differences between PD and MSA-P
as shown in Figure 5.1. Important note, selected acoustic features primarily represent
timing variation of vocal fold vibration. Total 7 MSA-P patients showed distinctly
higher severity than PD patients. Furthermore, PD group also yield group difference
w.r.t. HC. Thus it would also serve as hypokinetic index.

Articulation

Articulation features mainly measure the involuntary movements of articulators. Ta-
ble 5.3 presents a group difference of articulation features from sustained vowel. In
both acoustic features, MSA-P patients manifest predominant impairment in articu-
lator stability compared to PD and HC.
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Subsystem Acoustic
features

Definition Description

Phonation

Jitter Variation of consecutive glot-
tal pulse duration or consec-
utive F0; jitter is represented
by local and pitch perturba-
tion quotient (PPQ)

Reduced control of vocal folds
vibration

Shimmer Variation of consecutive glot-
tal pulse amplitude or consec-
utive F0 amplitude; shimmer
is represented by local and
amplitude perturbation quo-
tient (APQ)

Disrupted airflow and reduced
control of vocal folds vibra-
tion

HNR Harmonic to Noise Ratio
which measures amount of
noise in vowel

Reduced airflow and reduced
control of vocal folds cause
improper closure

QOQ Average and standard devia-
tion of Quasi-open Quotient
(QOQ) is measured by the
rate of opening phase dura-
tion /duration of glottal cycle

Reduced control of vocal folds
vibration

NAQ Average and standard devia-
tion of Normalized Amplitude
Quotient (NAQ) is measured
by the ratio of the amplitude
quotient and the duration of
the glottal cycle

Reduced control of vocal folds
vibration

Derivative
of F0

First and second derivative
(DF0 and DDF0) of F0 con-
tour

Variable airflow and variation
in laryngeal vibration

DUV Degree of voiceless; Fraction
of locally unvoiced frames

Voice sounds strained or
strangled (effortful squeezing
of voice through glottis)

FTRI Frequency tremor intensity
index (FTRI)

Vocal tremor

Articulation
stdPSD Variation of power spectral

density in frequency band
Involuntary movements of ar-
ticulators

stdlogE Variation of energy in frames Involuntary movements of ar-
ticulators and airflow varia-
tion.

Nasalic
Efn M Average energy in 1000Hz Improper velopharyngeal

function; Imprecise closure
by soft palate.

Efn SD Variation of energy at 1000Hz
in frames

Involuntary movements of
soft palate

Table 5.1: Acoustic features related to vowel distortion
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Features HC PD MSA P-Value
Mean/SD Mean/SD Mean/SD HC PD HC MSA PD MSA

avg DF0 -0.02 / 0.06 -0.05 / 0.09 -0.08 / 0.15 0.36 0.09 0.34
avg DDF0 0.024 / 0.04 0.008 / 0.11 -0.0097 / 0.0831 0.69 0.28 0.42
avg std QOQ 0.04 / 0.01 0.04 / 0.012 0.06 / 0.015 1 0.03 0.05
std var GCI 0.0003 / 0.0003 0.0004 / 0.0004 0.0008 / 0.0009 0.15 0.03 0.23
std avg QOQ 0.0284 / 0.0141 0.0309 / 0.0172 0.0611 / 0.0321 0.69 0.0004 0.0002
avg Jitter 0.53 / 0.20 0.76 / 0.32 1.21 / 0.66 0.003 0.0001 0.006
std Jitter 0.91 / 0.72 1.27 / 0.65 2.27 / 1.98 0.016 0.0012 0.027
avg Shimmer 1.59 / 0.54 1.92 / 0.7 2.26 / 0.74 0.081 0.0041 0.16
std Shimmer 2.11 / 0.62 2.62 / 0.85 2.88 / 0.76 0.008 0.002 0.26
avg apq 3.31 / 1.45 3.89 / 1.58 4.67 / 1.58 0.17 0.002 0.11
avg ppq 0.40 / 0.20 0.59 / 0.34 1.10 / 0.85 0.016 0.0002 0.008
std ppq 0.53 / 0.57 0.74 / 0.54 1.66 / 1.86 0.015 0.0009 0.012
std DF0 2.0 / 1.86 2.79 / 2.02 5.27 / 3.71 0.05 0.0001 0.006
std DDF0 2.49 / 2.69 3.47 / 2.59 7.26 / 5.74 0.036 0.0001 0.003
FTRI 1.70 / 1.78 2.37 / 1.78 3.97 / 2.69 0.11 0.005 0.04

Table 5.2: Group difference of phonation features from sustained vowel /a/; blue and
red colour represents predominant severity by PD and MSA-P respectively

Figure 5.1: Designed phonation feature (X1 a); * p<0.05, ** p<0.01, *** p<0.001,
**** p<0.0001

Features HC PD MSA P-Value
Mean/SD Mean/SD Mean/SD HC PD HC MSA PD MSA

stdlogE 2.01 / 0.72 2.01 / 0.68 2.73 / 0.82 0.73 0.025 0.006
stdPSD 0.87 / 0.22 0.91 / 0.19 1.12 / 0.17 0.704 0.004 0.003

Table 5.3: Group difference of articulation features from sustained vowel /a/; blue
and red colour represents predominant severity by PD and MSA-P respectively

Combination of stdlogE and stdPSD features also further provide improved group
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difference as presented in the Figure 5.2. It can also serve as an index of involuntary
articulator movements and defined as:

F art =
stdlogE + stdPSD

2

.

Figure 5.2: Combination of articulation features from sustained vowel; ** p<0.001,
ns: not significant

Nasal

Two nasal features (Efn M and Efn SD) provided encouraging distinctive character-
istics. Table 5.4 presents group differences by nasalic features. MSA-P patients man-
ifest predominant hypernasality and variability of hypernasality in sustained vowel
/a/. In accordance with previous study [211], MSA patients manifest greater vari-
ability in nasality compared to HC. Notably, the latter study did not find differential
properties among MSA, MS, and CA groups. Important to note, previous study
computed nasalic features from sustained vowel /i/.

Features HC PD MSA P-Value
Mean/SD Mean/SD Mean/SD HC PD HC MSA PD MSA

Efn M -28.42 / 1.66 -27.72 / 1.62 -26.24 / 2.55 0.07 0.004 0.04
Efn SD 0.19 / 0.05 0.22 / 0.07 0.37 / 0.15 0.28 0.0001 0.0003

Table 5.4: Group difference of nasalic features from sustained vowel /a/; blue and
red colour represents predominant severity by PD and MSA-P respectively

The 1-dimensional nasality feature is designed by combining two nasalic features.
Before feature combination, individual features are transformed by Z-normalization
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(0 mean and unit standard deviation). Overall nasality is defined as:

Fnasal =
Efn M + Efn SD

2

. Designed nasalic feature yield better discrimination compared to individual fea-
tures. Figure 5.3 displays differentiation within HC, PD, and MSA by individual
nasalic feature and combined feature. MSA-P patients showed higher abnormalities
compared to PD and HC groups.

(a) Efn M (b) Efn SD (c) Designed nasalic feature

Figure 5.3: Designed nasalic feature; ”ns” stands for not significant

Classification

Considering the small size of the database, 1-dimensional or 2-dimensional features
would be suitable to avoid overfitting problems. Hence, 2-dimensional features are
adopted in this study. Initial analysis of individual acoustic features provided encour-
aging differentiation between PD and MSA-P, but not enough to yield good accuracy
by logistic regression and LOSO cross-validation. Table 5.5 summarized classification
scores. Hence, feature combinations may aid in getting high accuracy.

Features Threshold Accuracy (%) Specificity (%) Sensitivity (%)

X1 a 0.5 75 85.18 53.84
F art 0.35 75 74 76.92
F nasal 0.5 85 92.59 69.23

Table 5.5: Classification score by logistic regression using X1 a, F art, and F nasal
for PD and MSA-P

Articulation and nasalic features are combined to measure an overall articulation
(jaw, lips, tongue, and soft palate) impairment. Overall articulation feature is defined
as follows:

X2 a = stdPSD + 2 ∗ (Fnasal + std logE)
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Feature X2 a yields encouraging discrimination between PD and MSA-P. Figure 5.4
presents comparably greater impairment for MSA-P patients in X2 a dimension.
Total 8 (out of 13) MSA-P patients manifest predominant disorder than PD. Thus
X2 a index could be used as an important acoustic marker for differentiating PD and
MSA-P.

Figure 5.4: Combination of articulation and nasalic features, X2 a from sustained
vowel; **** p<0.0001, ns: not significant

Individual designed feature did not yield good accuracy by logistic regression.
Hence, we adopted decision tree to classify PD and MSA-P patients. Figure 5.5
showed that 1-dimensional phonation feature (X1 a) and articulation feature (X2 a)
provide high discrimination between PD and MSA-P. In both dimensions, MSA-P
patients manifest higher deficits compared to PD. Soft threshold of ”7” in X1 a
and ”3” in X2 a can serve good discrimination between PD and MSA-P. Total 3
MSA-P patients exhibit impairment in both X1 a and X2 a which can be referred
as ”probable” category. On the other hand, MSA-P patients (total 9) who manifest
impairment either in X1 a or X2 a can be regarded as ”possible” category.

For the classification of PD and MSA-P, the decision tree is exploited using X1 a
and X2 a. Considering the small amount of data, Leave-one-subject-out (LOSO)
cross-validation method is adopted in this experiment. LOSO classification method
yields good accuracy, which is presented in the Table 5.6.

Features Accuracy (%) Specificity (%) Sensitivity (%)

[X1 a,X2 a] 95 96.29 92.30

Table 5.6: Classification score by decision tree and LOSO cross-validation using X1 a
and X2 a feature dimensions for PD and MSA-P

Thus, two acoustic dimensions can be used as acoustic markers for differential
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Figure 5.5: Biplot of phonation feature (X1 a) w.r.t. articulation feature (X2 a)
(dotted line represent decision thresholds)

diagnosis of PD and MSA-P patients.

Discussion

Current study presents quantitative analysis of overall phonation and articulation
disorder in sustained vowel /a/ for PD and MSA-P. As both disease group manifest
parkinsonism, differential diagnosis is an challenging task at early stage. Acoustic fea-
tures are automatically computed by existing speech processing tool and developed
tool by author (inspired by literature). The notable contribution is the designing
speech markers to assess vocal folds vibration variability (temporal) and movement
deficits of articulators. Indeed, two orthogonal features lead us to discriminate two
parkinsonism type disease groups (PD and MSA-P) by good margin. Thus, analysis
can be used as a potential diagnostic screening tool. Some of the individual speech
components yield significant differentiation between PD and MSA-P patients, which
were not analyzed particularly for MSA-P patients. In agreement with previous stud-
ies [247], the present study also observed variability in vocal folds vibration (stdF0)
for MSA patients. It is most probably due to combined deficits in basal ganglia and
cerebellar circuits [293, 40, 94, 265, 288]. In agreement with previous study [247],
a group of MSA-P patients exhibited high vocal tremor compared to PD. Addition-
ally, in agreement with the study [130], the variability in spectral band power was
predominated in MSA-P patient compared to PD. Important to note, previous study
include phenotype of MSA (MSA-C and MSA-P), whereas present study only con-
sidered MSA-P patients. Both disorders are attributed to ataxic dysarthria due to
tremulous arytenoid movements [219] and involuntary movements of articulators pri-
marily the tongue. Notably, predominant involuntary movements of articulators was
also observed in cerebral ataxia and huntington disease [130], but not observed for
PSP.

Quantitative analysis observed high hypernasality and intermittent nasality for
MSA-P patients compared to PD. Previous studies reported controversial results re-
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garding nasality in neurological disease groups. The perceptual investigation found
rare nasality in PD patients [183], whereas other studies [49, 210] found significant
nasality in PD. Previous studies observed nasality in ataxic dysarthria [228] and
one study attributed hypernasality to basal ganglia dysfunction [210]. In addition,
according to [69] intermittent nasality is attributed to hyperkinetic dysarthria. In
agreement with the studies [183, 211], present study also did not observe significant
nasality in PD group. According to the study [130], we also observed hypernasality
in MSA patients. Additionally, MSA-P patients also manifest significant irregular
nasality compared to PD and HC, which was not observed in previous studies.

Designed acoustic indexes was a novel contribution of the present study. Two
acoustic dimensions were designed to represent phonation and articulation deficits.
In the first dimension, X1 a represents the disorder in timing of vocal folds vibration.
MSA patients predominate in dimension X1 a. Notably, MSA patients are diagnosed
as parkinsonian type. It can be hypothesized that patients may have deficits in basal
ganglia control circuit. On the other hand, X2 a measures primarily involuntary
movements of articulator and soft palate. It can be hypothesized as the manifestation
of deficits in cerebellar circuit. It thus confirms previous statement that MSA patients
manifest wide spread clinical symptoms.

Above analysis and findings need to be validated by larger data samples. More-
over, other disease groups are also need to be included in the similar analysis.
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5.3 Vowel space area: Reading text

In the present study, French vowel articulation is analyzed for parkinsonian subtypes
(PD, MSA-P) using three corner vowels (/a/, /i/, and /u/). To the best of our knowl-
edge, no previous study analyzed vowel articulation in detail for MSA-P. Three corner
vowels are extracted from the reading passage speech task, considering spontaneous
speech task is more suitable for capturing early changes in parkinsonism [250]. To
measure F1 and F2 formant frequencies, two methods were adopted. First, F1 and
F2 frequencies were manually measured by analyzing a wide-band spectrogram for
each vowel. Second, the Praat speech analysis tool was used to measure F1 and F2.
Standard acoustic measures such as VSA, VAI, and FR were used to assess French
vowel articulation. Duration of vowels are also assessed to find particular changes in
PD and MSA-P.

5.3.1 Speech database: Voice4PD-MSA

In the Voice4PD-MSA speech database, a total of 60 French speakers are recruited
for the experimental study. 27 subjects (8 females and 19 males) are diagnosed
with idiopathic PD. 13 subjects (8 females and 5 males) are diagnosed with MSA-P
(parkinsonian type). Age matched 20 Healthy Control (HC) subjects are recruited
(10 female and 10 male) for the purpose of comparison. Description of reading text
used in this study is presented in Section 4.2.2.

The paragraph of La chèvre de Monsieur Seguin [1] is considered for reading task.
Second sentence of the reading task is considered to evaluate the impreciseness of
three corner vowels /a/, /i/, and /u/. The second sentence consists of the text, “Il
les perdait toutes de la même façon”. Three corner vowels /i/, /u/, and /a/ are
extracted from words “Il”, “toutes”, and “façon” respectively. Figure 5.6 shows the
time-frequency representation of a sentence.

5.3.2 Methodology

Three corner vowels /a/, /u/, and /i/ were labeled using a wide-band spectrogram
in Praat [35]. Next, First (F1) and second (F2) formant frequencies are measured
separately from each vowel. Speaker’s gender is a sensitive parameter while comput-
ing formant frequencies. Formant frequencies have a direct relation with vocal tract
length. Female speakers have shorter vocal tract (average 14.5 cm) compared to male
speakers (17 to 18 cm). Hence, gender specific formants estimation is mostly consid-
ered in previous studies for evaluation of imprecise vowel articulation. Default setting
in PRAAT was considered for formant measurement. The highest formant frequency
parameter is a sensitive parameter that needs to be chosen precisely according to
gender. In the default setting, the highest formant frequency is fixed to 5500 Hz (for
female) and 5000 (for male). The maximum number of formants is set to 5. The in-
put signal is pre-emphasized (from 50 Hz) to enhance high frequency amplitude. The
pre-emphasis is that vowel spectra tend to fall by 6 dB per octave; the pre-emphasis
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Figure 5.6: Time-frequency representation of the sentence; F1 and F2 represent first
and second formants

creates a flatter spectrum, which is better for formant analysis because it matches
the local peaks the global spectral slope.

Additionally, F1 and F2 frequencies are manually measured using the steady-state
portion of wide-band spectrograms and Linear Predictive Coding (LPC) spectrum
as per guidelines [63]. As a result, F1 and F2 are marked at the middle of the
concentrated energy over the frequency band.

In Praat, formant values are averaged over a 50% time interval around the tem-
poral midpoint of each vowel. Averaged F1 and F2 are used to calculate VSA, VAI,
and FR = F2i/F2u. VSA is computed as follows [179]:

V SA = 0.5× |F1i × (F2a − F2u) + F1a × (F2u − F2i) + F1u × (F2i − F2a)|, (5.1)

where F1i and F2i are first and second formant frequencies of vowel /i/ respectively.
F1a and F2a are first and second formant frequencies of vowel /a/ respectively. First
and second formant frequencies of vowel /u/ are represented by F1u and F2u. The
other measure, VAI is formulated as [245]:

V AI =
F2i + F1a

F1i + F1u + F2u + F2a
. (5.2)

Another two measures related to formant spacing are also adopted to evaluate
tongue elevation and tongue advancement. Compact-diffuse (C-D) and grave-acute
(G-A) are the index of tongue elevation and tongue advancement, respectively [31].
C-D is defined as “F2− F1” of each vowel. G-A is defined as “(F2 + F1)/2”.

Above stated acoustic measures are computed in two different units (Hz and Semi-
tone). Next, gender independence properties of acoustic measurements are evaluated
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for two units. In semitone units, it may be hypothesized that gender difference will
be significantly reduced in acoustic measures compared to Hz units. To assess the
group difference, kruskal-wallis hypothesis test is used while data is not normally
distributed, and Student t-test is used while data is normally distributed.

Weak energy in F2 of vowels /i/, /u/, and /a/ is also computed by average band
energy around F2 frequency (100 Hz bandwidth). F2 computed by visual approach
of vowels is used to compute band energy.

In addition to conventional acoustic measures, prosodic aspects of vowels (du-
ration) are also investigated as secondary investigations. Study [302] showed that
speaking rate (by vowel duration) may affect the vowel space area. Duration of /a/,
/u/ and /i/ are analyzed to find it’s impact on vowel impairment. Duration of vowels
is measured from manually labeled data.

5.4 Result

Manually measured formant frequencies of three corners vowels are first analyzed.
Detailed numerical data of participants are listed in Table 5.7 as average and Coeffi-
cient of Variation (CV). Numerical values exhibit clear differences between male and
female speakers within three groups (HC, PD, MSA-P). Notably, male MSA patients
show increased F2 compared to PD and HC in vowel /u/. In subjective analysis
(while estimating formants), weak energy was observed in F2 of /i/ and /u/ for 50%
of PD and MSA patients. Weak energy may be an indicator of impaired vowel articu-
lation in parkinsonism. To the best of our knowledge, weakness in second formant of
vowels is first time observed in the present study. Additionally, an objective measure
is proposed to capture weak energy in F2.

Female Male
HC PD MSA HC PD MSA

Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV

F1 i 327.9 8.65 308.875 7.92 304 14.66 322.3 11.98 284.36 13.08 249 23.86
F2 i 2451.5 4.25 2434.25 5.91 2333.125 11.38 2044.6 6.66 2098.68 7.12 1982.4 11.69
F1 u 342.9 7.31 323.87 8.24 302 7.73 323.6 10.84 287.68 10.69 299.4 16.62
F2 u 1192.2 17.32 1137.75 12.12 1337.62 15.94 1033.1 8.08 1128.05 12.67 1304 14.72
F1 a 622.9 8.24 655.12 9.64 591.12 9.33 615.9 7.63 552.63 10 483.4 25.38
F2 a 1692.7 5.69 1696.87 4.54 1656.5 8.82 1367.1 4.83 1392.78 7.64 1462 6.22

Table 5.7: Manually computed average/CV of F1 and F2 of three groups (HC, PD,
MSA-P) by gender

Formants are also computed by separate configuration (as discussed in section
5.3.2) for male and female by Praat. Table 5.8 provides Mean Absolute Difference
(MAD) of formants between subjective method and Praat. Second formant frequency
of /u/ show maximum deviation. Overall, absolute MAD is more significant for male
speakers compared to female subjects. It indicates that formant estimation becomes
challenging for male speakers.

Now, gender differences in acoustic measures are assessed for two formant fre-
quency measuring methods. Male and female speakers of only HC groups are consid-
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F1 i (Hz) F2 i (Hz) F1 u (Hz) F2 u (Hz) F1 a (Hz) F2 a (Hz)

Female 47.26 56.11 34.42 88.67 54.89 54.34
Male 71.70 72.41 79.38 158.11 111.43 63.78

Table 5.8: MAD of formants measured by manual method and Praat

ered for group difference (using student t-test hypothesis test). Gender discrimination
can be ignored if statistical significance more than 0.05 (p > 0.05). Individual formant
frequency shows clear gender difference (p < 0.05) for three vowels in both units (Hz,
Semitone). Thus, it is confirmed that a single formant value is not suitable for gen-
der independent scenarios. Table 5.9 presents the group difference (p-value) of male
and female groups for all the acoustic measures of vowel articulation. It is evident
that VSA measure in Hz is gender sensitive. Conversely, VSA measure in semitone
shows gender independence. It confirms that inter-speaker difference (mostly related
to gender) significantly reduced while frequency in Hz is converted to the logarith-
mic domain (semitone). In addition, ratio based acoustic measures (VAI, FR) exhibit
gender independence in both units (Hz, Semitone) as mentioned in the study [260]. In
the formant spacing feature, G-D feature (a measure of tongue advancement) did not
show gender independence in both units (Hz, Semitone). In contrast, C-D features
(measure of tongue elevation) show gender independence in vowels /i/ and /u/.

Manual Praat method
Acoustic Measure Male vs Female Male vs Female

VSA (Hz2) 0.070 0.021
VSA (Semitone2) 0.641 0.737

VAI (Hz) 0.795 0.285
VAI (Semitone) 0.399 0.446

FR (Hz) 0.305 0.862
FR (Semitone) 0.493 0.870

C-D /i/ (Hz) 0.000 0.000
C-D /i/ (Semitone) 0.0010 0.754

C-D /u/ (Hz) 0.048 0.292
C-D /u/ (Semitone) 0.157 0.997

C-D /a/ (Hz) 0.000 0.0005
C-D /a/ (Semitone) 0.000 0.188

G-A /i/ (Hz) 0.000 0.000
G-A /i/ (Semitone) 0.0007 0.000

G-A /u/ (Hz) 0.037 0.069
G-A /u/ (Semitone) 0.047 0.0058

G-A /a/ (Hz) 0.000 0.0005
G-A /a/ (Semitone) 0.000 0.18

Table 5.9: Gender difference (p-value) in acoustic measures related to formant fre-
quencies; gender independent features are marked as bold (p>0.05)

The above analysis suggests that acoustic measures in Semitone are suitable to
examine vowel articulation in gender independent scenarios. Henceforward, we decide
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to use acoustic measures with semitone in the following comparative experiment. For
individual formant measurement, F2 /u/ provide group differences between PD and
MSA-P (p=0.004) in manually computed formants. MSA-P patients show increased
formant in F2 /u/. However, this F2 /u/ formant measure did not show gender
independence. Hence, this parameter can not be considered for the present scenario.
Conversely, individual formant frequencies computed by Praat did not show group
differences between PD and MSA-P patients.

The F1-F2 plot of three corner vowels of three groups may reflect the overall
scenario of vowel space. In general hypothesis, F2 /u/ is increased, and F2 /i/ is
decreased for PD patients. Figure 5.7 shows vowel space for HC, PD and MSA-P by
two different formant estimation methods. The vowel space of the three groups show
encouraging visual discrimination. In average formant value, MSA patients show
dispersion and reduction of vowel space compared to HC.

(a) Manual method (b) Praat

Figure 5.7: Vowel space using three corner vowels (’o’ for /i/, ’+’ for /u/, ’*’ for /a/)
for HC, PD and MSA-P

Now, we proceed to examine other acoustic measures to find specific differences
among groups. Table 5.10 provides pairwise group difference (p-value) among HC,
PD, and MSA-P. In both formant measuring methods (manual and Praat), MSA-P
patients manifest greater impairment than PD. Reduced VSA is observed for MSA-P
patients compared to PD (in manual and Praat method) and HC (in manual method).
In addition, ratio based features, VAI and FR, also show similar trends as VSA. In
FR, Praat method did not provide group difference between PD and MSA-P due to
F2 computation error in /u/. On the other hand, tongue elevation deficits is observed
in acoustic measure C-D for PD and MSA-P. MSA-P patients predominates in C-D
of /u/ and /a/ than PD.

Additionally, we provided analysis of vowel space related features in Figure 5.8.
Though we got very good group differences, however visual analysis showed that
margin of separation is not very much prominent.

Energy in F2 was found weak in subjective analysis for vowel /i/ and /u/. In
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Manual method PRAAT method
Measure HC vs PD HC vs MSA PD vs MSA HC vs PD HC vs MSA PD vs MSA

VSA (Semitone2) 0.71 0.0072 0.0041 0.59 0.016 0.002
VAI (Semitone) 0.6 0.02 0.0037 0.98 0.016 0.006
FR (Semitone) 0.56 0.0006 0.0019 0.37 0.032 0.06

C-D /i/ (Semitone) 0.035 0.047 0.49 0.75 0.5 0.63
C-D /u/ (Semitone) 0.005 1.96e-05 0.0092 0.85 0.047 0.068
C-D /a/ (Semitone) 0.315 0.007 0.007 0.42 0.0048 0.004

Table 5.10: Group difference (p-value) of acoustic measures for HC, PD, MSA-P; Red
color represents higher impairment for MSA-P

(a) VSA (Semitone2) (b) VAI (c) FR

Figure 5.8: VSA, VAI, and FR features computed by Praat method; * p<0.05, **
p<0.01, *** p<0.001, **** p<0.0001, ns: not significant

objective measures, weak energy is observed in all three vowels. Figure 5.9 displays
distinctive weak power in /u/ and /a/ for MSA-P patients. Notably, a group of
MSA-P patients showed weak energy in around F2 of vowels compared to PD and
HC.

(a) F2 energy of /i/ (b) F2 energy of /u/ (c) F2 energy of /a/

Figure 5.9: Power in second formant of three vowels /i/, /u/, and /a/; ; * p<0.05,
** p<0.01, *** p<0.001, **** p<0.0001, ns: not significant

93



Shortening of vowels results in a fast speaking rate which may affect VSA [304].
Table 5.11 details average vowel duration across three groups. Vowel duration of /i/
becomes shorter for PD (p=0.07) and MSA-P (0.03) compared to HC. Vowel duration
of /a/ is shorter for only PD patients (p=0.02) compared to HC. Important to note,
PD patients manifest decreased vowel duration for PD compared to HC. Vowel /u/
did not show any discrimination among groups. In addition, we did not find group
differences between PD and MSA-P. Thus, it is not clear whether vowel duration has
a direct relation with VSA.

HC PD MSA
Vowels Mean (ms) CV (%) Mean (ms) CV (%) Mean (ms) CV (%)

/i/ 65.15 11.65 56.85 26.22 56.25 20.72
/u/ 59.00 34.22 62.70 33.46 62.88 30.43
/a/ 81.52 11.93 69.59 25.92 81.84 29.23

Table 5.11: Mean duration and coefficient of variance (CV) for vowels /i/, /u/, and
/a/; Blue and red color represent higher impairment for PD and MSA respectively

5.5 Discussion

This study analyzed vowel articulation disorder for neurological disorders, particularly
in parkinsonism (PD and MSA-P). Previous studies provided results about impaired
vowel articulation either for general dysarthria or aiming discrimination of PD (early
stage or disease progression) from the control group [93, 277, 251]. In addition to
neurological disorder, other factors like hearing loss [220], people who stutter [31],
hyper-nasality associated with cleft palate [103], and also depression may alter vowel
properties. Hence, it is required to be very cautious while taking any conclusion
regarding the cause of vowel articulation distortion. Moreover, the manner of ar-
ticulation (clear, loud, intelligibility) or speaking task (sustained phonation, reading
passage, monologue) may change the vowel properties [93, 251].

The present study is probably the first time investigated vowel articulation im-
pairment in the differential diagnosis scenario (PD vs MSA-P). As previous study
[251] showed that spontaneous speaking task is more suitable to capture impairment
at even early stages of the disease, reading passage task is adopted to analyze vowel
articulation in the present study. In the present study, discrimination between HC
and PD was not observed (though it is not the primary goal). Important to note, the
present study included male and female speakers together in the discrimination task.
Encouraging discrimination between PD and MSA-P patients achieved in acoustic
measures, VSA, VAI, FR, C-D of /a/ and /u/. Quantitative analysis shows that PD
patients exhibit low impairment in vowel articulation. In contrast, MSA-P patients
manifest more significant impairment in vowel articulation, probably due to higher
deficits in articulators (tongue, jaw, lips) movement. Deficits in tongue elevation
are observed using formant spacing feature C-D in vowels /a/ and /u/ for MSA-P
patients compared to PD.
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Formant frequencies have been estimated through various methods, e.g., visual
inspection of a FFT spectrogram and automatic formant detection through LPC or
cepstral analysis. Spectrum (FFT spectrum or LPC) or cepstrum based methods
generally use a root solving or peak picking procedure [314] to identify formants.
Different factors may introduce inaccurate formant frequencies [104, 150]. Not a
single method is error-free, and sometimes a combination of all methods may ensure
the accurate results. In this study, fusion methods were not employed, but subjective
measures provided comparably reliable results. At the time of subjective analysis,
weak energy was observed in F2 for vowels /i/ and /u/ for a group of PD and MSA
patients. It might be a promising indicator for vowel articulation impairment. The
highest difference in F2 of vowel /u/ was observed while comparing the subjective
method and Praat method. It is probably due to the pathological factors which lead
to inaccurate formant estimation.

The major limitation of this study is the small number of participants in the HC
group and gender imbalance within each disease group. It is evident that the number
of male and female speakers is not balanced across the disease groups. It may influence
all the comparative studies. To avoid this discrepancy, gender independent acoustic
measures could be targeted to analyze group specific vowel impairment, but small
amounts of data is the main impediment. Present observation need to be validated
with additional data.
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Chapter 6

Consonant distortion in PD and
MSA-P

Analysis of consonant distortion is mainly confined to obstruents (where airflow is
partially or completely obstructed) due to its prevalence in speech disorders. Obstru-
ents consist of stop plosives and fricatives. Unvoiced stops are mostly analyzed by
burst (realization of articulator’s closure) properties. On the other hand, manner of
frication is examined for unvoiced fricatives. Properties of obstruents were explored
in previous studies [32, 189].

6.1 Introduction: Consonants

Consonant sound production requires precise articulator’s position and synchroniza-
tion of laryngeal and supralaryngeal functions. Deficits in any of these functions yield
imprecise consonants. In phonology, consonants are clustered by the manner of artic-
ulation and place of articulation. Table 6.1 presents word-inital consonant’s grouping
and respective logatome example.

Manner of articulation

P
la

ce
of

A
rt

ic
u
la

ti
on

Plosive Fricative Liquid Nasal
Voiced Unvoiced Voiced Unvoiced Voiced Voiced

Bilabial /b/- berdo,
broto

/p/- perva,
pataka

/m/ - mindou

Labiodental /v/- vonia /f/-feju,
frambi

Dental /d/ - dirou /t/ - touca /l/ - larni /n/ - nouillo,
nianfin

Alveolar /t/ - tunia /z/ - zacu /s/ - sochin,
spegzi,
psegra

Palatal /Z/ - jinin /S/ - chastu
Velar /g/ - guizant,

granfa
/k/ - quinsa,
crancto

/R/ -
roursou

Table 6.1: List of logatomes (pseudo-words) used for imprecise consonant and vowel
analysis
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Consonant distortion is common in neurological disorder [182, 58] as discussed in
the Section 2.5. Evaluation of consonant distortion can reveal underlying deficits of
articulators movement and synchronization of laryngeal and supralaryngeal activi-
ties. Consonant distortion across various diseases have been typically assessed using
perceptual evaluation [182, 106, 67, 257, 155, 15, 197]. Stop-plosives, affricates, and
fricatives were found to be the most impaired phoneme classes [182] for PD patients.
Particularly, velar stops (/k/, /g/) and alveolar fricatives (/s/, /z/) were mostly im-
paired for PD. In another study [15], Amyotrophic Lateral Sclerosis (ALS) and PD
groups manifest high articulation imprecision and intelligibility deterioration com-
pared to Cerebellar Ataxia (CA) group in perceptual analysis. The latter study also
observed predominant impaired closure in stop plosives for ALS, devoicing in voiced
stop plosives for CA and PD groups, voicing in voiceless consonants for ALS group
in the visual investigation. The presence of abnormal burst/closure in fricative /s/
was rare for ALS, CA, and PD. In study [197], PSP and MSA-P patients also man-
ifest greater articulation impairment compared to PD in perceptual analysis. The
latter study did not find a single speech dimension to differentiate PSP and MSA in
perceptual analysis.

During the last 2 decades, a considerable effort has been produced to develop
objective measures that assess consonant distortions in PD [6, 5, 209, 216, 154, 306,
255, 95]. In these studies, voice onset time (VOT) and Voice Onset Time ratio
(VOTR) have been the most analyzed feature but with rather contradictory outcomes
[75, 73, 209, 306]. Some of the researchers reported increased VOT [80, 209, 264, 255],
and other studies observed no change in VOT [73, 239] for PD. Another study [75]
also observed decreased VOT for PD. Most of the previous studies computed VOT
from manual segmentation of pathological speech. Automatic VOT measurement
for pathological speech is rare [209]. Studies of imprecise fricatives for neurological
disorder are also limited [48, 154, 115]. Frication properties of fricatives were studied
by mostly spectral moments. On the other hand, only a few studies have addressed
consonant distortion in the differential diagnosis between PD and APS [15, 264, 306,
113, 255]. The same statement holds for dysarthria-based differential diagnosis in
general. Indeed, while there exists a large amount of work on comparing PD and
HC speech, there is only few studies on comparison/discrimination between PD and
APS or between APS subgroups [47, 281, 126, 113, 43, 175, 59, 164]. The study [306]
observed contrastive characteristics of VOT for voiced and voiceless stop plosives.
While VOT and VOTR of voiceless stops prolonged for APS group compared to PD,
MSA group distinctively showed reduced VOT (prevoicing) compared to PSP and
PD in voiced stops. Another study [264] also observed prolonged VOT particularly
for PSP patients compared to HC.

Selection of speech task is an important step for any kind of speech disorder
analysis. Previous studies mostly considered reading text (paragraph) speech task
to evaluate impaired consonants production [182, 66, 67, 15]. Important to note, in
continuous speech, effect of co-articulation and speech rate may alter the consonant
characteristics. To avoid effect of speech rate and/or co-articulation effect, single-word
speech task would be more appropriate to observe distinctive patterns of imprecise
articulation. Hence, bi-syllabic words were considered for unbiased analysis of stop
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consonants [264, 306].
In the present study, consonant distortion is evaluated by subjective and objec-

tive analysis from word-initial consonants using pseudo-words, called Logatomes [168].
Among all the consonants, obstruents (plosives and fricatives) yield the most exciting
results. In particular, we show that voiced obstruents manifest appealing, distinctive
impairments in devoicing and VOT duration. In addition, unvoiced obstruents also
exhibit distinguishing impairments, such as VOT duration, presence of burst in frica-
tives, multiple burst in stop plosives, and weak frication in fricatives. For consonants
analysis, recorded logatomes were segmented and annotated by manual process.

6.2 Methodology

6.2.1 Database: Voice4PD-MSA

Total 59 speakers are selected from the Voice4PD-MSA database. It consists of 20
HC (10 male and 10 females), 26 PD (19 male and 7 female), and 13 MSA-P (5 male
and 8 female) participants. Word-initial phoneme from 25 logatomes are considered
for analysis.

6.2.2 Data processing of logatomes

To inspect distortion of particular consonant production, segmentation of that conso-
nant sound need to be done for quantitative analysis. Accurate phoneme segmentation
is a challenging but essential task for finding consonants disorders, particularly for
pathological speech. Manual phoneme segmentation remains the gold standard, but
it is a time consuming process for larger speech data. In the present study, targeted
word-initial consonants and other phoneme were manually segmented, which will also
be used as reference. This reference will be used for evaluating automatic phoneme
segmentation accuracy.

Total 25 logatomes were recorded in continuous fashion in Voice4PD-MSA database.
Each logatome represented by it’s corresponding phonemes. Table 6.2 presents list of
logatomes and it’s phonetic units.

Each logatome was first manually segmented and then each phoneme within the
logatome. Then, all the phonetic units were labeled in Praat toolkit by the criteria
provided in study [73]. This criterion includes fundamental frequency (F0), formant
frequencies transition, change in energy. Figure 6.1 shows the examples of the man-
ually segmented phoneme of two logatomes.

Important to note, logatome ”plerva” was mainly mispronounced as ”klerva”
by pathological speakers and healthy speakers. After observing this phenomenon,
”plerva” was changed to ”perva”. To analyze /p/ homogeneously, ”pataka” was
taken from first part of the normally spoken /pa-ta-ka/ DDK task.

In voiced stop plosives, prevoicing part (e.g. /b prv/ in Figure 6.1) and burst
part are labelled separately. Prevoicing labeling will help to compute negative VOT,
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SL. No. Words Phoneme SL. No. Words Phoneme
1) berdo b e R d o 14) nouillo n u j o
2) broto b R o t o 15) perva p e R v a
3) chastu S a s t y 16) psegra p s e g R a
4) crancto k R @ k t o 17) quinsa k cinq s a
5) dirou d i R u 18) roursou R u R s u
6) feju f e Z y 19) sochin s o S cinq
7) frambi f R a m b i 20) spegzi s p e g z i
8) guizant g I z @ 21) touca t u k a
9) granfa g R @ f a 22) tunia t y n j a
10) jinin Z i n cinq 23) vonia v o n j a
11) larni l a R n i 24) yuni j y n i
12) mindou m cinq d u 25) zacu z a k y
13) nianfin n j @ f cinq

Table 6.2: List of logatomes and it’s phonetic representation

(a) Logatome ”berdo” (b) Logatome ”quinsa”

Figure 6.1: Manually labelling of phonetic unit of logatomes ”berdo” and ”quinsa”

whereas burst labeling will help to evaluate burst strength. In vowels, the steady part
and occlusion part are labeled separately.

6.2.3 Methods to evaluate logatomes

Logatomes are evaluated first by perceptual analysis to get overall distortion in
logatomes. Next, distortion in logatomes is assessed by visual acoustic analysis (by
spectrogram). Initially, consonants and vowels are evaluated by specific criteria. Con-
sonants are evaluated by six criteria as mentioned in Figure 6.2. Voiced stops are
analyzed by prevoicing properties, energy in transient, and energy in high frequency.
Unvoiced stops are evaluated by energy in the closure part, energy in transient, energy
concentration in low and high frequency. Fricatives are assessed by low frequency and
high frequency energy. Nasal consonants are difficult to assess by visual inspection,
however, energy concentration in low frequency band (700-1200 Hz) is considered as
degree of nasality.

Vowel sounds are also analyzed by five acoustic parameters. Five acoustic param-
eters are provided in the Figure 6.3. In formant transition, slow and/or flat transition
are considered to be impaired formant transition. Vowel impairments are also assessed
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Figure 6.2: Acoustic parameters for consonants evaluation

by harmonic richness and/or breaks, pitch disruption, and occlusion part (energy).

Figure 6.3: Acoustic parameters for vowels evaluation

Overall deficits in consonants, later on, are summarized by two different aspects.
The first dimension consists devoicing in voiced obstruents, anti-spirantization in
fricatives, multiple burst in stop plosives, and tentative voicing in voiceless obstruents.
Latter mentioned deficits primarily attributed to reduced synchronization functional-
ity of laryngeal and supralaryngeal activities. Another dimension represents mainly
movements disorder. The second dimension consists weak transient and resonance
energy.

In subjective and visual analysis, stop plosives and fricatives provided encouraging
distinctive deficits for MSA and PD patient groups. In the following sections, voiced
obstruents are first assessed. Next, unvoiced obstruents are investigated for unique
distortion.
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6.3 Voiced obstruents

Voiced obstruents consist of voiced stop plosives and fricatives. Voiced stop plosives
(/b/, /d/, and /g/) are characterized as vocal folds vibration in closure (prevoicing)
followed by a burst. In general, burst is weak for voiced stop plosives compared to
unvoiced stops. Voiced fricatives are characterized by vocal folds vibration along with
frication. Possible impairment in voiced obstruents would be weak voicing, absence of
burst, and weak frication. Figure 6.4 and 6.5 represents spectral properties of voiced
obstruents from healthy speaker. Six voiced obstruents present a prominent voice bar.
In particular, fricatives show voicing bar along with frication in higher frequency.

(a) /b/ from ”berdo” (b) /d/ from ”dirou” (c) /g/ from ”guizant”

Figure 6.4: Voiced stop plosives /b/, /d/, and /g/ from ”berdo”, ”dirou”, and
”guizant” consequently; circled box represents voicing bar

(a) /v/ from ”vonia” (b) /z/ from ”zacu” (c) /Z/ from ”jinin”

Figure 6.5: Voiced fricatives /v/, /z/, and /Z/ from ”vonia”, ”zacu”, and ”jinin”
consequently; circled box represents voicing bar

According to morphology, word-initial voiced obstruents are extracted from either
Consonant-Vowel (CV) syllable or Consonant-Consonant-Vowel (CCV). In this study,
at first voiced obstruents from CV syllable were analyzed. As example, /b/ from
syllable /be/, /d/ from syllable /di/, and /g/ from syllable /gi/, /v/ from syllable
/vo/, /z/ from syllable /za/, /Z/ from syllable /Zi/ were considered for analysis.
In the next step, voiced obstruents from CCV syllable are considered for analyzing
difficulty of neurological patients. In CCV syllable, quick articulators transition are
required in which pathological speaker may manifest prominent deficits. As example,
/b/ from /bRo/ (logatome ”broto”) and /g/ from /gR@/ (logatome ”granfa”) were
considered in this analysis.
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As for the French language, to the best of our knowledge, there exists no study
comparing consonant production between PD and MSA. In [15], a comparison has
been subjectively performed (spectrogram visual inspection) but among PD, Amy-
otrophic Lateral Sclerosis, and Cerebellar Ataxia. In the present study, French conso-
nant distortion was first analyzed for differential diagnosis between PD and MSA-P.
To do so, subjective and objective analyses were carried out of word-initial voiced ob-
struents. Among all the consonants, obstruents (plosives and fricatives) yield the most
encouraging results. In particular, voiced obstruents manifested appealing, distinc-
tive impairments, in term of devoicing and VOT duration. In the following section,
the presence of devoicing in voiced obstruents and change of VOT in voiced stops will
be studied by visual analysis followed by objective/quantitative analysis. Another
possible acoustic cue could be the weak transient/burst in the voiced stop plosives.
However, it is challenging to evaluate degree of weakness in bursts, even in subjective
analysis. Hence, a weak burst for voice stops is not considered in this study.

6.3.1 Devoicing analysis by Visual method

The visual method is mainly performed by looking into spectrograms of voiced ob-
struents. To this purpose, Praat software is used to generate wide-band spectrogram.
Devoicing is assessed by the total or partial absence of voicing bars (due to vocal folds
vibration in closure segment) in the realization of voiced obstruents. In the following
section, obstruents from CV syllable will be explored first, followed by CCV syllable.

Devoicing from CV syllable

Visual inspection of devoicing in voiced obstruents reveals encouraging results, par-
ticularly for the velar place of articulation. Figure 6.6 shows an example of spectro-
grams of the consonant /b/, /d/, and /g/ pronounced commonly by an HC, with a
partial/total devoicing by a PD and with a total devoicing by an MSA-P patient.
Another phenomenon that could be considered as partial devoicing, the occurrence
of voicing bars with weak energy. However, for sake of clarity, reproducibility, and to
reduce subjectivity effects, we did not use this criterion in our assessment of devoicing.

Figure 6.7 presents example of devoicing in fricative /v/, /z/, and /Z/. Complete
devoicing in /v/, /z/, and /Z/ are realized as /f, p/, /s/, /S/ respectively.

The presence of devoicing in individual voiced obstruents by visual analysis is
presented in Table 6.3. Devoicing is more frequent in stop plosives compared to
fricatives. In particular, devoicing is more frequent in velar (/g/) and bilabial (/b/)
compared to alveolar (/d/). MSA-P patients manifest frequent devoicing compared
to PD and HC.

In visual analysis 69.23% (9 out of 13) of MSA-P and 11.5% (3 out of 26) of
PD presented devoicing in at least one obstruent from CV segment. In particular,
devoicing was not observed in any of /b/ nor /d/ in PD, while 30.76% (4 out of 13)
of MSA-P showed devoicing in these consonants. This suggests that devoicing of /b/
or/and /d/ could be a signature of MSA-P. However, recent study [15] reported that
37% of PD presented devoicing in /d/ or /g/. In contrast, analyzing present data,
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(a) HC: syllable /be/ (b) PD: syllable /be/ (c) MSA-P: syllable /be/

(d) HC: syllable /di/ (e) PD: syllable /di/ (f) MSA-P: syllable /di/

(g) HC: syllable /gi/ (h) PD: syllable /gi/ (i) MSA-P: syllable /gi/

Figure 6.6: Example of no/partial/total devoicing of /b/, /d/, and /g/ in a
HC/PD/MSA-P (top). Example of normal/shorter/vanishing VOT of /g/ for the
same HC/PD/MSA-P (bottom)

Obstruents Consonant Devoicing (%)
HC PD MSA-P

Plosives

/b/ (/be/) 0 0 23
/d/ (/di/) 0 0 7.69
/g/ (/gi/) 0 3.8 30.76

Fricatives

/v/ (/vo/) 0 3.8 15.38
/z/ (/za/) 0 3.8 0
/Z/ (/ji/) 0 7.6 23

Table 6.3: Devoicing (%) of individual voiced obstruents in HC, PD, and MSA-P
groups

only 3.8% of PD showed devoicing in /g/ (and thus in /d/ or /g/), while 38.46%
(5 out of 13) of MSA-P showed devoicing in /d/ or /g/. This difference in PD is
might be due to the relatively small size of the dataset as compared to the one of
[15] and different speech tasks. The study [15] used a text reading task for consonant
distortion. As for voiced fricatives, 38.46% (5 out of 13) of MSA-P and 11.53% (3
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(a) HC: syllable /vo/ (b) PD: syllable /vo/ (c) MSA-P: syllable /vo/

(d) HC: syllable /za/ (e) PD: syllable /za/ (f) MSA-P: syllable /za/

(g) HC: syllable /Zi/ (h) PD: syllable /Zi/ (i) MSA-P: syllable /Zi/

Figure 6.7: Example of no/partial/total devoicing of /v/, /z/, and /Z/ in a
HC/PD/MSA-P

out of 26) of PD presented devoicing in at least one of /v/, /z/ and /Z/.

Devoicing from CCV syllable

Table 6.4 summarized presence of devoicing in voiced stop by visual analysis.

POA Consonant Devoicing (%)
HC PD MSA-P

Plosives
/b/ (/bRo/) 0 3.8 7.69
/g/ (/gR@/) 0 15.38 69.23

Table 6.4: Devoicing (%) of individual voiced obstruents from CCV syllables in HC,
PD, and MSA-P groups by visual nalysis

Visual analysis revealed greater impairment for MSA-P patients than PD in velar
consonant /g/ from the CCV segment (from logatome ”granfa”). Total 69.23% (9
out of 13) of MSA-P patients manifest complete devoicing, whereas 15.38% (4 out
of 26) of PD manifests mostly partial devoicing in only /g/. This result indicates
the importance of appropriate logatome selection. Timing and movement deficits
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become predominant in /g-R-@/ syllable. Important to note, MSA-P patients showed
co-occurrence of devoicing in /b/ and in /g/, which is not always valid for PD.

6.3.2 Devoicing analysis by objective analysis

An objective measure to detect devoicing was provided in this section. Given a labeled
consonant, a simple way to assess the total or partial absence of voicing is to consider
the degree of voicing measure:

DV =
number of voiced frames

total number of frames
(%)

Using the very soft threshold 50%, we can fairly consider that an obstruent (or a
consonant in general) is devoiced if DV < 50% (Praat software was used to compute
DV by exploiting fundamental frequency (F0)). Other objective criteria can also be
used to define and detect devoicing, and present measure is, however easy to interpret
and reproduce. Given a speaker, let’s now define the total degree of voicing DV T
as the minimum DV over all devoiced obstruents. DV T is a simple quantification of
the global amount of voicing in the obstruents devoiced by a given speaker (if any).
DV T will be thus always less (resp. higher) than 50% in the presence (resp. absence)
of devoicing. In objective analysis, presence of devoicing mostly matched with visual
analysis. In addition, distortion in prevoicing is also detected in some cases.

Devoicing from CV syllable

Voiced obstruents from CV syllables would infer synchronization of the consonant to
vowel transition. Table 6.5 presents the degree of voicing (DV) of individual voiced
obstruents.

HC PD MSA
Mean/SD (Range) Mean/SD (Range) Mean/SD (Range)

DV

/b/ 89.26 / 10.38 ( 62.5 - 100.0 ) 90.6 / 9.59 ( 53.85 - 100.0 ) 78.07 / 30.56 ( 0.0 - 96.77 )
/d/ 89.28 / 8.9 ( 66.67 - 96.15 ) 90.28 / 12.94 ( 40.0 - 100.0 ) 86.06 / 26.45 ( 0.0 - 100.0 )
/g/ 91.9 / 8.64 ( 66.67 - 100.0 ) 85.27 / 14.85 ( 30.77 - 96.15 ) 66.19 / 39.32 ( 0.0 - 92.31 )
/v/ 89.58 / 14.77 ( 53.57 - 100.0 ) 91.2 / 19.37 ( 0.0 - 100.0 ) 80.4 / 33.54 ( 0.0 - 100.0 )
/z/ 91.56 / 11.51 ( 64.0 - 100.0 ) 87.75 / 18.07 ( 11.76 - 100.0 ) 88.69 / 11.62 ( 57.14 - 100.0 )
/Z/ 93.47 / 8.39 ( 64.0 - 100.0 ) 87.45 / 22.41 ( 4.55 - 100.0 ) 71.86 / 39.68 ( 0.0 - 98.04 )

Table 6.5: Degree of voicing (Average/standard deviation, range) of six obstruents

Table 6.6 presents percentage of impaired obstruents in groups by devoicing.
Using this measure, the assessment of devoicing matched perfectly with the visual

observations, that is, 69.23% of MSA-P and 11.5% of PD presented devoicing. The
value of DV T is shown in Figure 6.8 for each participant (see the projection over the
DVT dimension). Along this dimension, one can note the large margin between sub-
jects manifesting devoicing and the others. This suggests that devoicing is generally
strong when it occurs and thus easy to detect objectively by the standard tool Praat.
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Obstruents Consonant Devoicing (%)
HC PD MSA-P

Plosives

/b/ (/be/) 0 0 23
/d/ (/di/) 0 3.8 7.69
/g/ (/gi/) 0 3.8 30.76

Fricatives

/v/ (/vo/) 0 3.8 15.38
/z/ (/za/) 0 3.8 0
/Z/ (/ji/) 0 7.6 23

Table 6.6: Devoicing (%) of individual voiced obstruents in HC, PD, and MSA-P
groups by objective analysis

Devoicing from CCV syllable

Prevoicing part of /g/ from syllable /gr@/ is most disrupted for MSA-P patients.
Table 6.7 presents DV of stop plosives from CCV syllable.

HC PD MSA
Mean/SD (Range) Mean/SD (Range) Mean/SD (Range)

DV
/b/ (/br/) 85.72 / 24.91 ( 0.0 – 100 ) 90.33 / 9.69 ( 53.85 - 100 ) 71.71 / 37.28 ( 0 – 96 )
/g/ (/gr/) 78.36 / 14.72 ( 41.67 – 92.31 ) 74.06 / 26.3 ( 0 – 100 ) 26.74 / 41.82 ( 0 – 90.91 )

Table 6.7: Degree of voicing (Average/standard deviation, range) of /b/ and /g/ from
CVV syllable

Overall distortion in prevoicing by disease groups is provided in the Table 6.8.
Important to note, 9 out of 13 MSA-P patients manifest complete devoicing.

POA Consonant Devoicing (%)
HC PD MSA-P

Plosives
/b/ (/bRo/) 0 3.8 7.69
/g/ (/gR@/) 0 15.38 69.23

Table 6.8: Devoicing (%) of individual voiced obstruents from CCV syllables in HC,
PD, and MSA-P groups by objective analysis

The objective measure of /g/ from CCV syllable also exactly match the visual
analysis, that is, 69.23% of MSA-P, and 15.38% of PD patients manifest devoicing. It
is an encouraging result where MSA-P patients display predominant devoicing com-
pared to PD in particularly /g/. Another important observation related to devoicing
computation is that only pitch frequency does not always reflect the original scenario.
Hence, sometimes detected devoicing in the visual analysis is not found in objective
analysis. This suggests to use other acoustic parameter like energy in prevoicing could
be helpful for complete devoicing measures.

Overall, these results show that devoicing can be a valuable cue for differential
diagnosis between PD and MSA-P. However, this cue alone is not sufficient to achieve
this diagnosis with a high accuracy.
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6.3.3 VOT analysis of voiced plosives

As mentioned earlier, VOT is among the most studied features in consonant distor-
tion. VOT is generally associated with plosives and is defined as the duration between
the vocal fold vibration starts relative to the release of the plosive (there exist, how-
ever VOT definitions for other consonant types [4]). In the case of voiced plosive,
vibration begins before the release; VOT is thus considered as negative. When nega-
tive VOT tends to 0, it actually corresponds to a total devoicing. In order to avoid a
potential dependency on speaking rate, VOT ratio (VOTR) is sometimes considered.
VOTR is defined as VOT divided by the duration of whole syllable [73].

VOT analysis of CV syllable

The purpose of this section is to determine whether VOT analysis of voiced plo-
sives (/b/, /d/, and /g/) from CV syllables can yield another distinctive cue (hope-
fully complementary to devoicing). Table 6.9 presents VOT of stop plosives and
voiced fricatives. In velar stop /g/, VOT analysis provided encouraging differentia-
tion among groups.

HC PD MSA
Mean/SD (Range) Mean/SD (Range) Mean/SD (Range)

VOT

/b/ 110.18 / 46.81 ( 0.99 - 195.3 ) 100.81 / 34.38 ( 35.52 - 181.59 ) 95.18 / 46.86 ( 3.95 - 167.59 )
/d/ 103.56 / 25.85 ( 63.05 - 145.81 ) 103.29 / 44.44 ( 11.73 - 227.7 ) 80.88 / 48.66 ( 2.23 - 139.42 )
/g/ 103.52 / 27.58 ( 70.14 - 166.33 ) 80.73 / 34.42 ( 19.5 - 148.61 ) 41.96 / 33.49 ( 1.07 - 107.68 )
/v/ 152.1 / 41.99 ( 81.09 - 243.02 ) 140.16 / 38.35 ( 76.76 - 209.57 ) 99.63 / 52.96 ( 8.13 - 162.59 )
/z/ 130.94 / 35.08 ( 91.51 - 216.67 ) 132.77 / 50.13 ( 45.18 - 282.43 ) 122.07 / 25.98 ( 84.29 - 162.06 )
/Z/ 168.02 / 44.96 ( 123.57 - 304.51 ) 150.11 / 30.05 ( 94.44 - 223.48 ) 138.76 / 61.52 ( 43.57 - 254.22 )

Table 6.9: VOT analysis of individual voiced obstruents from CV syllable

Using the manual segmentation, the statistical group difference between HC and
PD, HC and MSA-P, PD and MSA-P were computed using VOT and VOTR. Table
6.10 shows the obtained p-value of each group difference. It is observed that, for
VOT, statistical significance between MSA-P and the other groups was achieved only
for /g/. More interestingly, this impairment was more severe in MSA-P than in
PD. The waveforms of Figure 6.6 show an example of such a distortion. This trend
was confirmed by VOTR with an additional group difference between PD and HC.
Globally, this is in accordance with the findings of [306] which reported shorter VOT
and lower VOTR for MSA averaged on all voiced plosives (with Czech patients). The
present analysis cannot, however confirm the same statement for /b/ and /d/. On
the other hand, VOT/VOTR of /g/ can be confidently considered as a valuable cue
for the differential diagnosis. However, as devoicing, this cue alone is insufficient to
achieve this diagnosis with high accuracy.

VOT analysis of CCV syllable

Negative VOT of /b/ and /g/ are computed from manual segmentation of logatome
”broto” and ”granfa”. Reduced VOT is more frequent for MSA-P patients compared
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Feature Consonant
HC vs PD HC vs MSA-P PD vs MSA-P

p-value

VOT
/b/ 0.36 0.15 0.41
/d/ 0.8 0.9 0.66
/g/ 0.07 0.004 0.03

VOTR
/b/ 0.08 0.001 0.029
/d/ 0.26 0.03 0.161
/g/ 0.002 0.0009 0.014

Table 6.10: Results of acoustic speech analyses for three voiced plosives including
/b/,/d/ and /g/. Bold numbers indicate group difference (p < 0.05)

to PD in /g/ as presented in the Table 6.11. Both PD and MSA-P patients manifest
reduced VOT in /b/ compared to HC.

HC PD MSA
Mean/SD (Range) Mean/SD (Range) Mean/SD (Range)

VOT
/b/ (/br/) 90.55 / 29.3 ( 43.88 - 136.79 ) 68.91 / 35.22 ( 16.88 - 159.25 ) 64.23 / 37.44 ( 5.6 - 134.97 )
/g/ (/gr/) 59.81 / 18.33 ( 30.2 - 97.21 ) 60.24 / 32.0 ( 3.21 - 131.63 ) 22.8 / 33.71 ( 1.43 - 108.14 )

Table 6.11: VOT analysis of individual voiced obstruents from CCV syllables

Table 6.12 presents group differences result for voiced stops from CCV syllables.

Feature Consonant
HC vs PD HC vs MSA-P PD vs MSA-P

p-value

VOT
/b/ 0.047 0.043 0.705
/g/ 0.962 0.0008 0.0019

Table 6.12: VOT analysis of /b/ and /g/ from CCV syllable. Bold numbers indicate
group difference (p < 0.05)

6.3.4 Classification of PD and MSA-P

Given the findings of the previous sections, it is natural to proceed with an analysis
over the 2 deviant speech dimensions, devoicing and VOT of /g/ (V OT/g/).

Classification using CV syllable

Figure 6.8a shows the biplot of DV T w.r.t to V OT/g/. Using our HC data as summa-
rized in Table 6.9, the mean/standard deviation of the VOT of /g/ is −103/22(ms),
which is in accordance with the −109/32(ms) using single word as protocol reported
in [306] and [73] (the latter reported the mean only). As we did for devoicing, we can
set a very soft threshold at −60ms above, which we confidently consider that a VOT
impairment of /g/ is occurring.

It is observed that all but one MSA-P manifested devoicing or/and short VOT.
Thus using the simple decision tree of Figure 6.9, with the soft thresholdsDV T = 50%
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(a) (b)

Figure 6.8: Biplot of DV T (%) w.r.t to V OT/g/ and V OTR/g/ (dotted line represent
decision thresholds); (3) means that 3 MSA-P patients have same coordinates (total
devoicing)

and V OT/g/ = −60ms, we obtain an accuracy of 72%, with a high sensitivity (cor-
rectly classified MSA-P) of 92% but a low specificity of 60%. This means that a
mis-diagnosis of MSA-P presenting devoicing or short VOT of /g/ is unlikely. How-
ever, this statement does not hold for PD.

Figure 6.8b shows the biplot of DV T w.r.t to V OTR/g/. We see now that, along
the V OTR/g/ dimension, a separation appears between the 3 MSA-P and 5 PD,
which were confused using V OT/g/ (right top rectangle of 6.8b). If we target only
classification score and replace the threshold V OT/g/ = −60ms by V OTR/g/ = −0.28
in the decision tree, then the specificity increased to 85% and the accuracy to 87.5%.
However, the threshold −0.28 is likely overfitted to our data. Thus, given the small
amount of instances of /g/ and its following vowels, we cannot confidently claim that
VOTR is a better feature for discrimination than VOT. These results show however
that the prevoicing duration of /g/ (and probably all voiced plosives) could be a
complementary cue to devoicing of obstruents in order to achieve a high accuracy
differential diagnosis between PD and MSA-P.

Overall, the results (along with literature reporting) show that devoicing of voiced
obstruents and VOT of /g/ are 2-distinctive and deviant speech dimensions worth
considering in the differential diagnosis between PD and MSA-P.

Classification using CCV syllable

It was observed in the previous section that devoicing in /g/ alone provided an en-
couraging distinction between PD and MSA-P. DV of /g/ from CCV syllable reveals
9 MSA-P patients manifest complete devoicing whereas only 1 PD showed complete
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Figure 6.9: Decision tree using DV T and V OT/g/ or V OTR/g/ (in green) dimensions
for discrimination between PD and MSA-P

devoicing and 3 PD manifest partial devoicing as shown in Figure 6.10. Interesting
to note, VOTR provided marginally better discrimination than VOT which can be
explained as vowel prolongation.

(a) DV of /g/ from CCV (b) VOT of /g/ from CCV (c) VOTR of /g/

Figure 6.10: DV, VOT, and VOTR of /g/ from CCV syllable /gR@/

However, DV parameter alone is not enough to get high accuracy in classification.

6.3.5 Discussion

This work constitutes the first study that attempts to highlight distinctive cues in
the distortion of French voiced obstruents realization in PD and MSA-P. This work
showed the importance of particular logatome selection for analyzing devoicing in
PD and MSA-P. The present study observed that syllable /gR@/ is more effective
than syllable /gi/ regarding devoicing in /g/. The current results partially confirmed
previous findings on negative VOT with other languages [306]. Indeed, it has been
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found that VOT of the voiced plosive /g/ was significantly reduced in MSA-P while
it was customary for most PD. On the other hand, VOT is not the only factor
in the distortion of voiced plosives (and obviously fricatives). It showed that the
absence of voicing leads was the main factor of voiced obstruents distortions and
is the most distinctive cue between PD and MSA-P (in the production of voiced
obstruents). Moreover, there was a perfect matching in devoicing assessment between
perceptual and objective evaluations. This supports a potential use of devoicing in
clinical practice as an additional tool for examining patients with a suspicion of MSA-
P. The present analysis also showed that the combination of VOT and devoicing could
significantly improve the differential diagnosis accuracy.

VOT impairment can be explained by a difficulty in initiating articulation re-
sulting from a deficit in maintaining the speech motor program [306]. The latter is
a characteristic of hypokinetic dysarthria, a known feature in both PD and MSA.
Accurate production of word-initial voiced plosives requires precise coordination be-
tween glottal opening and articulatory closure. Devoicing is a manifestation of an
impairment of such coordination. This is a characteristic of ataxic dysarthria, which
is known to manifest in MSA. The present results are thus in accordance with the
consensus that PD develops essentially hypokinetic dysarthria while MSA develops
mixed type dysarthria. More importantly, since ataxia seems responsible for devoic-
ing, the latter might manifest in early disease stages. If proven, devoicing would thus
constitute a valuable deviant speech dimension to consider in the early differential
diagnosis.

There are some limitations to our study. The most significant one is the relatively
small dataset size due to the difficulty of recruiting patients, particularly with a rare
disease such as MSA-P. We are, however, continuing the effort of recruitment. More-
over, the dataset is unbalanced in gender, we cannot thus exclude that gender-specific
effects bias our findings. Another limitation is that we used only one consonant in-
stance per speaker. We do not thus know how the results stand to intra-speaker
pronunciation variability. We can expect, however, that the restriction reduces the
effect of such variability to word-initials. From this perspective, our study should be
considered a promising first step in analyzing French voiced obstruents in PD and
MSA-P. Our findings need to be confirmed by additional data. This is the purpose
of our on going research.
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6.4 Unvoiced obstruents

6.4.1 Introduction: unvoiced obstruents

Two types of obstruents (stop plosives and fricatives) are available according to man-
ner of obstruction. Unvoiced stop plosives are produced by complete blocking of
air in oral cavity followed by sudden release. In the occlusion, vocal folds do not
vibrate. On the other hand, fricatives are produced by partial constriction in oral
cavity. Thus manner of constriction is an important landmark to identify obstruents.
In this analysis, we consider to analyze word-initial consonants due to presence of
frequent disorder observed in subjective analysis. Thus segmentation of word-initial
unvoiced obstruents is the major step which can be accomplished by detecting first
vowel onset. Next, analysis of constriction will be analyzed from segmented signal.

Vowel onset detection

In automatic VOT measure or abnormal presence of CBT, it is required to detect
Vowel Onset Point (VOP) for selecting word initial phoneme (from CV or CCV sylla-
ble). Most of the phoneme segmentation task also employed vowel onset detection to
separate vowels from other phonetic units. For vowel onset detection, several meth-
ods were found, consisting of temporal as well as spectral features in unsupervised
and supervised approaches. Periodicity in signal is a very important acoustic cue
for vowel onset detection. Hence, autocorrelation or cross correlation methods were
widely used for F0 frequency estimation [35] which is mostly used for voicing onset
detection. Other pitch tracking methods also proposed in previous studies such as a
robust algorithm for pitch tracking (RAPT) [295], Robust Epoch And Pitch Estima-
tor (REAPER) [https://github.com/google/REAPER], YIN [60]. Both methods,
RAPT and REAPER used Normalized Cross-correlation (NCC). In other studies
[64, 12], Maximum NCC (MNCC) on time series data was adopted for vowel onset.
The recent study [238] used simultaneously zero frequency filtering (ZFF) and YIN
method for vowel onset for phoneme segmentation task. The above methods were
primarily evaluated on TIMIT database. The study [114] exploited ZCR, variance of
auto-correlation function (ACR), power (PWR) in Gaussian Mixture model to detect
voiced regions. The latter method was evaluated on continuous speech tasks from
PD patients. Another study [215] also used Praat toolkit [35] for computing pitch to
detect vowel onset and offset for HC and PD subjects.

The spectral methods based on the appearance of rapidly increasing resonance
peaks in the amplitude spectrum [108]; wavelet transform [134] was also employed for
VOP. Instead of a single acoustic feature, combination of spectral peak, excitation
source, and modulation spectrum rendered improved VOP accuracy compared to
individual feature [233]. Excitation source energy from LP residuals was also exploited
in the study [232] for improved vowel onset and offset point. Bessel features was also
used for emphasizing vowel region in the study [263].

In the study [133], zero-crossing rate, energy, and pitch information was used in
neural network for VOP. Seven acoustic features consisting different spectral band
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energies, Wiener entropy, zero crossing, F0 values by RAPT method were used in
Recurrent Neural Network (RNN) which also yielded very high accuracy for VOP
detection for single word [9], which is implemented in Dr.VOT toolkit.

In this study, we consider unsupervised methods for first vowel onset detection.
We also compare the vowel onset detection accuracy for particularly pathological
speech.

Consonant-consonant (CC) segmentation

The phoneme boundary detection method can be categorized by unsupervised text-
independent and supervised text-dependent methods. Unsupervised context-independent
phoneme segmentation remain an interesting field of research because of its degree
of freedom. In previous research, several speech features and different methods were
adopted to improve the phoneme segmentation or the phoneme boundary detection.
The study [96] used short term frequency features over different frequency bands
and Bayesian Decision Surface (BDS) to yield 80% accuracy for TIMIT database.
Unsupervised phoneme segmentation was implemented using MFCCs features and
Rate Distortion (RD) method in the study [325]. The later study yielded 89% recall
score and also outperform methods proposed in studies [70, 72]. Auditory attention
features was exploited in the study [139] which outperform other text independent
phoneme segmentation [70, 325]. Several studies [140, 269] used different acoustic
features such as cepstral coefficients (CFCC), perceptual linear prediction cepstral
coefficients (PLPCC) and RelAtive SpecTrAl (RASTA)-based PLPCC and Mel fre-
quency cepstral coefficients (MFCC) in Spectral Transition Measure (STM) [] for
phonetic segmentation task. Another study [238] reported 95.4% accuracy (by 10
msec threshold) using a rule based approach. The latter study used Zero Frequency
Filter, power spectrum of autocorrelation signal and peak counting methods. Another
unsupervised training approach was also recently developed in the study [165] which
yield a recall score 83.55% for TIMIT database.

Supervised methods were also developed for improving speech segmentation ac-
curacy. In the study [221], Mel Frequency Cepstral Coefficients (MFCC) and it’s
delta features were used in context-independent HMMs which yield 97% accuracy (20
ms tolerance). MFCCs and Hidden Markov Models (HMMs) yield 94.84% accuracy
using 30 ms tolerance [39]. A bidirectional LSTM network was used in the study
[81] which provided high phoneme boundary detection accuracy. Montreal Focred
Aligner (MFA) also developed using Kaldi speech recognition toolkit, which also can
be used for phoneme segmentation [193]. MFA performs well relative to two exist-
ing open-source aligners with simpler architecture (Prosodylab-Aligner and FAVE).
Above mentioned methods are mostly evaluated by clean, laboratory environment
data. We did not find a study which exploits above mentioned methods over patho-
logical speech.

In the present study, segmentation of CC combination was the major challenge
particularly for fricative-fricative and stop plosives-fricative segmentation. We use
unsupervised STM method for segmentation of CC syllable. We also compare the
accuracy of STM and MFA in this study.
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Burst definition

During the production of stops, acoustic pressure is built up behind a closure at
a place within the vocal tract, resulting in a silent interval or a low level acoustic
signal, with or without voicing. When the pressure is released suddenly, it introduces
a relatively high energy burst or transient in the acoustic signal, spanning a short
interval. The instant in the acoustic signal corresponding to the sudden release is
called the “burst-onset” or the closure-burst boundary or the Closure Burst Transition
(CBT). The burst onset could be a transient speech landmark [151], lasting for only
a few milliseconds (3-5 ms). CBT detection is an essential cue for Voice Onset Time
(VOT) which also remains a crucial acoustic measure for detecting the manner of
stop plosives. Invariant characteristics of burst in stop plosives were explained in the
study [290].

Burst onset detection

The speech landmark detection approach is used for CBT detection in previous stud-
ies. In literature, several learning (modeling) based methods are found to detect stop
plosive landmarks by CBT detection. The study [180] tracked several sub-band energy
trajectories and registered their relative fluctuations at specific locations to detect
burst onsets. Degree of abruptness, i.e., energy difference between two appropriately
located frames, is used as an acoustic measure in [30]. The study [208, 207] detected
stop consonants by tracking total energy, high-band energy, and spectral flatness
around closure-burst transitions. The study [119] proposed intensity discrimination
applied to bark-scale frequency bands. They combine the separate frequency-band
information into a single measurement using Baye’s rule. Then, they use a threshold
to select a number of candidate frames for further spectral-domain artificial neural
network classification. The study [191] also adopted the latter method for burst fea-
tures. A technique using Recurrent Neural Networks (RNNs) to detect burst onsets
with standard frame-based spectral features was proposed in [157]. A set of spectral
and temporal features like energy ratios and zero crossings in neural network classi-
fiers were proposed for burst onset detection in [137]. The study [131] used a Gaussian
mixture model (GMM) of smoothed log magnitude spectrum (256 coefficients) and
the rate of change of the components of the GMM to detect stop consonants. The
study [176] has used a two-dimensional cepstrum as the feature vector (56 dimen-
sional) and a random forest (RF) classifier for detecting burst-onset landmarks. In
another similar study [287], a set of temporal and spectral features such as spectral
energy, low frequency band energy, Wiener entropy, Zero Crossing Rate (ZCR) was
used for Support Vector Machine (SVM) classifier to detect burst onset and vowel
onset for Voice Onset Time (VOT). The latter method yielded marginally better
VOT accuracy than the method proposed in the study [176]. The study [256] also
exploited spectral features in RBF kernel and used a max-margin classifier trained
by Stochastic Gradient Descent. Another recent study computed positive and nega-
tive voice onset time (VOT) by bidirectional Recurrent Neural Network [271]. The
latter method is suitable for only word-initial VOT measurement. Above mentioned
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methods are mainly based on the learning process, which requires labeled training
data.

On the other hand, threshold based methods are also found where multi-dimensional
acoustic features being used for CBT detection. In this category, acoustic features
were computed either in the time domain or in spectral domain. In time domain
approach, the study [102] used a non-linear energy tracking algorithm, Teager En-
ergy Operator (TEO) for closure-burst-transition (CBT) detection of unvoiced stop
plosives [102]. This approach uses the amplitude modulation component (AMC),
derived from the TEO, to detect the initial burst and vowel onset in single words.
The latter method requires additional knowledge about unvoiced stop plosives like
certain band energy. In the study [12], Plosion Index (PI) was proposed to detect
burst onset [12] for both voiced and unvoiced stop plosives. PI was defined as the
peak amplitude ratio (in Hilbert envelop) in the CBT to the average of absolute val-
ues over an appropriate interval excluding the immediate neighborhood. The latter
method explicitly described the CBT detection method by providing a threshold. The
PI method provided better CBT detection compared to the studies [180, 208, 176].
According to the definition of PI, it may fail to detect multiple CBTs while preceding
samples contain high amplitude. The author also mentioned that this method might
fail in bilabial fricative /f/, glottal fricative /h/ because of transient-like properties.
The PI method also adopted in the study [166] for CBT detection.

In spectral domain method, a comparison of spectral power of time-frequency
reassignment was used to detect CBT followed by VOT measure [291]. Studies [209,
212] proposed a rule-based filtering method on spectrogram to enhance transient-like
properties. The envelope of the filtered spectrogram by summing all values in each
time window enhances the noisy burst. The difference of the envelope highlights and
specifies the stop release position. Another approach based on Single Frequency Filter
(SFF) followed by phase reconstructed signal was developed to detect the burst [204].
The phase reconstruction method highlights the burst in stop plosives; however, it
also highlights noise components. Finally, the euclidean distance over magnitude
envelope and Wiener entropy were used for CBT detection by setting a threshold.

In previous studies, very few studies were found related to automatic CBT detect-
tion or VOT measure for pathological speech. The study [209] evaluated the developed
method for PD patients. Otherwise, most of the previous studies [75, 73, 306, 16]
computed VOT from manual labeling to analyze neurological disorders.

In the present study, we thus consider to analyze the burst properties of stop
plosives from pathological speech. Existing automatic burst detection methods are
implemented for comparison. The present study also developed a methodology for
automatic segmentation of first phoneme by detecting first vowel onset. To the best of
our knowledge, analysis of burst in detail was not conducted for neurological disorder.
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6.4.2 Methodology

Database

This study analyzes word initial unvoiced obstruents taken from respective logatomes.
Total 3 unvoiced stop plosives (/p/ from ”pataka”, /t/ from ”touca”, and /k/ from
”quinsa/crancto”) and 3 unvoiced fricatives (/f/ from ”feju”, /s/ from ”sochin”, and
/S/ from ”chastu”) are considered.

Visual method

Imprecise articulation is evaluated first by visual investigation. It is accomplished by
wide-band spectrogram. The visual method mainly consider 3 types of disorder in
unvoiced obstruents.

• (Muti)Burst in fricative

Fricatives are produced by partial obstruction of air with different place of artic-
ulators. Overshooting of articulators results in a burst-like realization in frica-
tives. Detection of burst in fricative may help to elucidate underlying pathology.

• Weak Burst in stop plosives: It targets to identify bursts in fricatives,
the presence of multiple bursts in stop plosives, weak bursts in stop plosives.
Burst/multiple bursts are visually identified as uniform energy distribution in
all the frequency bands. In contrast, a weak burst is characterized by relatively
lower energy in burst compared to the following vowel.

• Muti-Burst in plosive: In general, a single burst is expected for word-initial
unvoiced stop plosives. The presence of multiple burst can be regarded as
disorder for different underlying pathology or linguistic properties.

Objective method

Objective method starts with first phoneme segmentation which is accomplished by
first vowel onset detection followed by segmentation of consonant-consonant combi-
nation. Next, burst detection methods are exploited to find best method.

• First vowel onset:

1. Maximum normalized cross-correlation (MNCC): First vowel onset
is detected by MNCC [295, 64, 12]. Cross correlation method is widely used
in periodicity measure.

z[k] =

∑||x||−1
l=0 xly

∗
l−k+N−1√∑

x2 ∗
∑
y2

k = 0, 1, ..., ||x||+ ||y|| − 2 (6.1)

where ||x|| and ||y|| is length of x and y respectively. N is defined as
max(||x||, ||y||). We use local mean subtraction from each reference window
before cross correlation measure.
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Maximum value from NCC is filtered by setting a threshold (0.5*MNCC).
Less than the threshold is set to zero for MNCC. Next, greater than the
“0” is considered as vowel onset. If the vowel duration is less than 20 msec,
it was not considered as vowel onset.

2. Pitch (F0) method: The pitch is estimated by REAPER method which
out-performed other F0 detection methods.

3. Montreal forced aligner (MFA): MFA is a supervised method. It is a
phoneme aligner. We have used the trained model (for French language)
for vowel detection.

4. Dr.VOT: We also used Dr.VOT toolkit for vowel onset detection and
compare accuracy.

• Phoneme boundary detection in CC combination:

1. Spectral transition measure (STM): STM is implemented [84] using
log-filterbank features. This method was previously used in several studies
using different acoustic features.

2. Montreal phoneme alignment (MFA): MFA [193] is a supervised
method and open-source toolkit. We did not change any parameter or
adapt the acoustic model with our data.

• Burst detection methods:
Several methods were developed in previous studies to detect burst onset in
time domain or spectral domain. Two widely used methods, the Plosion in-
dex (PI) and Teager Energy Operator (TEO) were developed to detect burst
onset. Intuitively, for a signal with a transient characterized by a significant
change in local energy, the ratio of the peak amplitude in the transient to the
average of absolute values over an appropriate interval excluding the immediate
neighborhood of the peak amplitude may be expected to be high, and it was
represented as Plosion Index (PI) [12]. To check the efficacy of PI method, it is
implemented in the present study. The signal is high pass filtered with a cut-off
frequency of 400 Hz to discard glottal influence. Hilbert transform is used to
capture the envelope. PI is measured as mentioned in the study [12].

PI(n0,m1,m2) =
|s(n0)|

|savg(m1,m2)|

where,

savg(m1,m2) =

∑i=n0−(m1+1)
i=n0−(m1+m2)

|s(i)|
m2

where, n0 is current sample and m1 and m2 are previous samples.

The study [102] proposed TEO based burst onset detection. This method per-
forms better than Hilbert Transform (HT), which is another possible method
to decompose speech signals into AM-FM components. Amplitude modulated
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signal is used for burst detection. The study [102] did not describe the criteria
of onset explicitly.

In the spectral domain, we selected two different methods to implement for burst
onset. The spectral magnitude with filtering (SMF) was developed in the study
[209]. Diadochokinetic speech task was clustered by syllable. Each frequency
bin magnitude of the frame was filtered by the conditional filter, which was
developed in latter study. If energy distribution is present in every frequency
bin, we can consider that frame as burst. Another method developed burst onset
detection by instantaneous magnitude and phase, computed by single frequency
filter (SFF) [204, 13]. In the latter method, phase only information is used to
reconstruct the signal. Phase reconstructed signal highlighted the burst signal.
SFF output is used to compute the envelope difference and Weiner entropy of
each sample. We also implemented this method for comparison.

In this study, we compare burst detection accuracy by previously discussed four
methods.

6.4.3 Results

Results of visual analysis

• Burst/clouse in fricatives:
By visual inspection of the spectrograms, the presence of burst/multiple burst
is assessed in unvoiced fricatives. Figure 6.11 shows an example of spectrograms
of the consonant /f/ pronounced commonly by a HC, with a presence of burst
by a PD and with a multiple bursts by an MSA-P patient.

(a) HC: /f/ (b) PD: /f/ (c) MSA: /f/

Figure 6.11: Example of no/burst/multiple burst in /f/ in a HC/PD/MSA-P

It is observed that 46.15% (6 out of 13) of MSA-P and 15.38% (4 out of 26)
of PD presented burst in fricative /f/ from logatome “frambi”. On the other
instance, in /f/ from logatome “feju”, 30.76% (4 out of 13) MSA-P and 3.84%
(1 out of 26) PD patients displays burst/closure. In alveolar fricative /s/ from
logatome “sochin”, burst is not observed in any of the group. Only 1 MSA-P
patient showed burst in /s/ from logatome “spegzi”. In palatal fricative /S/, 2
MSA-P patients showed burst. It may be hypothesized that a particular context
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has a greater influence to produce bursts in fricatives. It indicates that the use
of /f/ from “frambi” is more appropriate than “feju”. Moreover, manifestation
of abnormal burst is most frequent in consonant-consonant cluster. Table 6.13
summarized presence of anti-spirantization in individual fricatives.

Obstruents Consonant Anti-spirantization (%)
HC PD MSA-P

Fricatives

/f/ (/fe/) 0 4 31
/f/ (/fra/) 0 15 46
/s/ (/so/) 0 0 8

/S/ (/Cha/) 0 0 15

Table 6.13: Anti-spirantization (%) of individual unvoiced fricatives in HC, PD, and
MSA-P groups

Considering all instances of burst in unvoiced froicatives, it is observed that
19.23% (5 out of 26) PD and 61.53% (8 out of 13) MSA patients exhibit bursts
in fricatives (anti-spirantization). Thus, anti-spirantization would serve as a
good speech marker for being MSA.

• Weak burst in stop plosives:
In /k/, it is observed only 1 PD and 1 MSA patients exhibit minor weak burst.
A weak burst is frequently observed in dental stop /t/ for PD and MSA. Fig-
ure 6.12 presents example of normal burst energy and weak burst in /t/ from
logatome “touca”.

(a) HC:/t/ in “touca” (b) PD:/t/ in “touca” (c) MSA:/t/ in “touca”

Figure 6.12: Weak burst energy in /t/ for HC, PD and MSA-P subjects

In total, 15% (3 HC) , 35% (9 PD) and 46% (6 MSA) patients produced weak
burst in /t/. Thus, it can be hypothesized that both PD and MSA patients
manifest a reduced range of movements, particularly in pronunciation of /t/ in
”touca”. As both PD and MSA groups manifest weak burst in /t/, it will not
serve as a disease specific speech marker. However, weak burst can be used to
measure the overall speech disorder.

• Multiple burst in stop plosives:
The subjective analysis found Multiple Burst (MB) mostly in stop plosived /k/
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from logatome “quinsa”. On the other hand, presence of MB is rare in stop
plosives /t/ and /p/. In /k/, we observed 6 HC (30%), 13 PD (50%), and 6
MSA (46.15%) exhibit MB. Figure 6.13 displays example of multiple burst in
/k/ for PD and MSA patients. As HC, PD and MSA patients exhibit multiple
bursts, this measure will not help in differential diagnosis. Notably, the presence
of multiple burst in velar stop /k/ probably common.

(a) HC:/k/ in “quinsa” (b) PD:/k/ in “quinsa” (c) MSA:/k/ in “quinsa”

Figure 6.13: Multiple burst in /k/ for HC, PD and MSA subjects

As multiple burst did not exhibit differential properties between disease groups,
we did not measure the MB objectively.

Results of objective analysis

Objective methods are first evaluated to detect vowel onset detection followed by
segmentation of consonant-consonant boundary. Next, we detect the burst (multi) in
unvoiced fricatives.

• First vowel onset detection:
10 logatomes (“chastu”, “crancto”,“feju”,“frambi”,“quinsa”,“spegzi”,“psegra”,
“sochin”, “touca”, “tunia”), starting with unvoiced consonant used in the eval-
uation. In this study, the tolerance is set to 20 msec considering the occurrence
of burst in the initial position of obstruents. In stop plosive and vowel clus-
ter, MNCC method yields better vowel onset detection compared to the pitch
(F0), MFA, and Dr.VOT methods. It is observed that segmentation accuracy
is higher for HC compared to PD and MSA. The latter observation is logical
considering signal is prone to be distorted for PD and MSA. In addition, the
aging effect is another parameter that may distort signal sometimes. All these
parameters may sometimes disturb vowel onset detection.

Figure 6.14 represents vowel onset detection method. MNCC yields better vowel
onset compared to other methods. Vowel onset by pitch estimation is also imple-
mented where REAPER method outperformed other pitch computation meth-
ods like YIN, RAPT, PRAAT (default). This is the reason to keep REAPER
method in comparison.

121



Figure 6.14: Example of vowel onset detection by MNCC method

Time tolerance HC PD MSA Overall
MNCC 5ms 78 79.23 64.62 75.59

10ms 94 94.62 76.92 90.51
20ms 99 99.23 90.77 97.29
30ms 99.00 100 93.85 98.31

REAPER (F0) 5ms 69 56.15 61.54 61.69
10ms 86 85.38 84.62 85.42
20ms 93 96.15 89.23 93.56
30ms 97 98.46 90.77 96.27

MFA 5ms 42.50 26.40 16.92 28.89
10ms 56.25 54.40 40.00 51.48
20ms 83.75 78.40 72.31 78.52
30ms 88.75 88.80 80.00 86.67

Dr.VOT 5ms 65.45 56.00 41.67 54.42
10ms 89.09 79.00 71.67 79.53
20ms 90.91 82.00 81.67 84.19
30ms 90.91 83.00 81.67 84.65

Table 6.14: Vowel onset accuracy for HC, PD and MSA in logatomes starting with
unvoiced stop plosives

Figure 6.15 represents accuracy of vowel onset detection methods for fricatives.
MNCC also provides improved vowel onset detection compared to other meth-
ods.

Vowel onset detection accuracy is comparably better for MNCC method com-
pared to other methods such as REAPER, MFA, and Dr.VOT. Hence, we de-
cided to use MNCC method for rest of the experiment. After detecting first
vowel onset, unvoiced obstruents from CV syllable are directly segmented, but
need to segment CC combination to get word-initial obstruents.

• Phoneme boundary between CC combination:
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Time tolerance HC PD MSA Overall
MNCC 5ms 87 78.21 71.79 76.84

10ms 95 94.23 88.46 91.81
20ms 100 98.08 97.44 98.59
30ms 100 98.72 98.72 99.15

Reaper(F0) 5ms 60 60.26 61.54 60.73
10ms 89 91.03 82.05 88.14
20ms 95 95.51 89.74 94.07
30ms 96 96.15 92.31 95.20

MFA 5ms 31.25 32.67 26.92 29.63
10ms 58.75 51.33 44.87 50.93
20ms 87.50 89.33 82.05 87.35
30ms 96.25 92.67 93.59 93.83

Dr.VOT 5ms 48.48 43.33 31.94 41.47
10ms 89.39 84.17 76.39 83.33
20ms 96.97 91.67 84.72 91.09
30ms 96.97 91.67 86.11 91.47

Table 6.15: Vowel onset accuracy for HC, PD and MSA in logatomes starting with
unvoiced fricatives

In this experiment, STM method has been adopted to segment consonant-
consonant cluster [84]. In this general method, any kind of acoustic parameter
can be used for phoneme discrimination. After exploring several acoustic pa-
rameters (MFCC, LFCC) finally, filterbank feature is selected in the present
study. Figure 6.15 represents an example to discriminate /f/ and /R.

(a) Logatome “frambi” (b) Logatome “crancto” (c) Logatome “spegzi”

Figure 6.15: Example of boundary detection between consonant-consonant (CC) com-
bination using log filterbank feature in STM method

As the occurrence of burst is observed mainly at the beginning of the consonants,
we can permit 20 msec tolerance of the first phoneme ending. Table 6.16 shows
that accuracy is not very high for 5ms and 10ms threshold, but accuracy is
better for 20ms and 30ms thresholds. The STM method using log filter-bank
feature yields first phoneme segmentation accuracy 83.33% by 20 msec tolerance
in CC cluster, which is quite good considering signal complexity. Accuracy is
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always deteriorated due to MSA groups. The proposed method yield marginally
better accuracy compared to MFA method.

Time tolerance HC PD MSA Overall
STM 5ms 27.08 26.67 10.26 22.84

10ms 56.25 62.67 35.90 54.32
20ms 87.50 89.33 66.67 83.33
30ms 95.83 96.00 74.36 90.74

MFA 5ms 25.00 32.00 28.20 29.01
10ms 45.83 54.67 51.28 51.23
20ms 87.50 82.67 71.79 81.48
30ms 95.83 90.67 76.92 88.89

Table 6.16: Segmentation of CC for HC, PD and MSA in logatomes

Important to note, burst detection using automatic segmentation method also
produce the same result compared to manual segmentation in fricatives.

• Burst/closure in fricatives:

Burst is detected in automatically segmented word-initial fricatives. Table 6.17
presents burst detection accuracy in /f/ from ”frambi” by previously developed
burst detection methods. Previous methods either detected false bursts or could
not detect true bursts. However, PI method came up as a good method for burst
detection. In visual investigation, 10 subjects (4PD, 6 MSA) showed burst in
fricative /f/ from logatome “frambi”.

HC PD MSA Accuracy
True False True False True False Precision (%) Recall(%)

Plosion index (PI) 0 0 4 1 6 1 83.33 100
TEO 0 1 3 2 6 0 75 100

Spectral magnitude 0 0 0 0 2 0 100 8
SFF 0 0 4 2 6 1 76.9 100

Table 6.17: Burst detection result using manual segmentation for logatome “frambi”
by different methods

Similarly, Table 6.18 illustrates that PI method exactly match the number of
burst in /f/ from ”feju” by visual method i.e, 4 subjects (1 PD, 3 MSA). On
the other hand, other methods either yield false burst detection or true burst
rejection.

Above burst detection analysis showed that PI method yields comparably better
accuracy than other methods. Hence, we decide to use PI method for burst
detection in fricative as well as for stop plosives. The automatic methodology
also able to detect burst in fricatives which showed that MSA patients manifest
frequent burst in fricatives than PD.
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HC PD MSA Accuracy
True False True False True False Precision (%) Recall(%)

Plosion index (PI) 0 0 1 0 4 0 100 100
TEO 0 2 1 2 4 1 50 100

Spectral magnitude 0 0 1 0 1 0 100 40
SFF 0 0 1 3 3 2 44.44 100

Table 6.18: Burst detection result using manual segmentation for logatome “feju” by
different methods

6.4.4 Voice onset time (VOT)

Voice onset time (VOT) is a frequent measure for analyzing stop plosives analysis
towards the speech disorder. Hence, we consider to use it as another additional
speech feature for unvoiced stop plosives /p/, /t/, and /k/.

Methodology

We measure acoustic features first by manual segmentation of logatomes (/p/ from
”pataka”, /t/ from ”touca”, and /k/ from ”quinsa”).

Next, automatic method is developed to measure VOT from stop plosives. In
this analysis, Dr.VOT tool [271] and combination of Plosion Index and MNCC are
employed to automatically measure the VOT for voiceless stop plosives. For auto-
matic VOT measure, it is required to detect the initial burst and following vowel
onset correctly. Detected onset of burst and vowel by different methods (Dr.VOT
and PI+MNCC) for stop plosives /p/, /t/, and /k/ are evaluated by manual segmen-
tation.

Two temporal measures are considered in this study as follows:

• Voice onset time (VOT):
It is measured as the duration of first burst instance to the following vowel
onset.

• Voice onset time ratio (VOTR):
In conventional method, VOTR is measured as VOT of stop divided by the
syllable duration.

According to presumption, as both VOT and vowel duration increased for patho-
logical voice, VOT Ratio may not reflect actual impairment. Hence, in the
present study, we propose a modified formula to calculate the VOT Ratio as
follows:

ModV OTRatio =
V OTstop

(Maxsyl −DurSyl + ε)
(6.2)

where ε = µsyl, Maxsyl is the possible maximum syllable duration for respective
stop vowel syllable, and DurSyl is the syllable duration. This relative VOT ratio
would be more sensitive towards changes in VOT and vowel duration.
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Result

We start with analyzing speech features from manual segmentation. Next, same
speech features will be automatically computed by segmentation provided by two
methods.

• Analysis by manual segmentation:
Table 6.19 presents group-wise VOT of unvoiced stop plosives and group dif-
ferences. VOT using manual segmentation of /p/ is 14 ms, /t/ is 28 ms, and
for /k/ is 32 ms for HC group. The latter observation mostly matches with
previous studies. In agreement with the previous study [306], MSA-P patients
also show prolonged VOT for unvoiced stops. It is also important to note that
PSP patients also showed prolonged VOT for unvoiced stops. Thus, VOT of
unvoiced stops would discriminate PD and APS disease groups, but not within
APS (PSP and MSA). In contrast, study [264] presented the inconsistent result
of VOT across the different places of articulation and disease groups. The lat-
ter study found prolonged VOT in velar stops only for PD, retroflex (alveolar)
for PD, PSP, MSA, and bilabial for PSP and MSA. Thus it demands to assess
imprecise consonants in differential scenarios.

Plosives Mean/SD of VOT (msec) P-Value
HC PD MSA HC PD HC MSA PD MSA

M
an

u
al

/p/ 14.86/5.26 15.02/5.17 21.43/11.87 0.87 0.035 0.069
/t/ 28.84/8.42 31.33/10.42 46.21/17.13 0.38 0.0072 0.017
/k/ 32.58/9.12 35.48/11.32 44.12/21.65 0.34 0.055 0.29

/ptk/ 25.43/5.67 27.28/6.89 37.25/13.75 0.21 0.0025 0.012

Table 6.19: Analysis of VOT of /p/, /t/, and /k/ from manual segmentation

Vowel duration, conventional VOT ratio (VOTR), and modified VOT ratio are
computed by manual segmentation from stop plosives /p/, /t/, and /k/ and
following vowels /a/, /u/ and /cinq/ respectively. Vowel duration of /a/ in
syllable /pa/ get prolonged for MSA-P patients compared to PD and HC. In
Conventional VOTR measure, only stop /t/ provided group difference between
PD and MSA-P. Interestingly, modified VOTR yields improved group differ-
ences between PD and MSA-P in three unvoiced stop plosives.

The average conventional VOTR of three unvoiced stops did not provide dis-
crimination among groups. Average modified VOTR of /p/, /t/, and /k/ yields
further improvements in group differences between PD and MSA-P. Figure 6.16
presents boxplot of average VOTR for HC, PD and MSA-P. MSA-P patients
manifest increased VOTR compared to PD and HC.

• Analysis by automatic segmentation:
Starting and ending of stop plosives are detected by two methods: Dr.VOT and
PI+MNCC. Table 6.21 presents boundary detection accuracy of phoneme /p/,
/t/, /k/. Plosion index (used for burst starting) and MNCC (used for ending
of stop plosive) yields the highest accuracy.
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Units HC vs PD HC vs MSA PD vs MSA

Vowel Duration a(p) 0.10 0.0008 0.023
u(t) 0.34 0.42 0.86
cinq(k) 0.18 0.21 0.45

VOT Ratio /p/ 0.58 0.88 0.86
/t/ 0.84 0.055 0.029
/k/ 0.82 0.63 0.69

Mod VOT Ratio /p/ 0.74 0.007 0.02
/t/ 0.18 0.0025 0.023
/k/ 0.21 0.015 0.073

Table 6.20: Vowel duration, VOTR, and modified VOTR of unvoiced stop plosives

Figure 6.16: Average modified VOTR of unvoiced stop plosive (/p/, /t/, and /k/

Starting Ending
Tolerance HC PD MSA Overall HC PD MSA Overall

Dr.VOT 5ms 85.00 60.26 64.10 69.49 58.33 46.15 41.03 49.15
10ms 86.67 62.82 71.79 72.88 76.67 67.95 69.23 71.19
20ms 86.67 71.79 76.92 77.97 83.33 70.51 74.36 75.71
30ms 86.67 74.36 76.92 79.10 83.33 70.51 74.36 75.71

PI+MNCC 5ms 98.33 96.15 92.31 96.05 73.33 70.51 64.10 70.06
10ms 98.33 96.15 97.44 97.18 93.33 93.59 79.49 90.40
20ms 98.33 98.72 97.44 98.31 98.33 98.72 84.62 95.48
30ms 98.33 98.72 97.44 98.31 98.33 100.00 87.18 96.61

Table 6.21: Accuracy of burst onset and vowel onset by Dr.VOT and PI+MNCC
methods

Dr.VOT method was originally evaluated on PG-WORDS dataset and claimed
accuracy 98% (using 10 msec threshold) in previous study [271]. However,
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Dr.VOT yields average accuracy of 72.88% for the onset of burst and 78.79%
for following vowel onset for the present database, Voice4PDMSA. Reduced
accuracy can be explained by distorted speech for aging voice and parkinsonian
disorder. Notably, burst onset detection using Dr. VOT was comparably better
for velar stop /k/, whereas it mostly failed for /t/ and /p/, probably due to
weak burst, particularly for patients. In comparison, Plosion index and MNCC
method provide better accuracy than Dr.VOT and previous methods in [102,
209].

VOT analysis using the automatic segmentation is provided in the Table 6.22.
We can not rely on the VOT analysis result of Dr.VOT because of erroneous
burst detection and vowel onset. In comparison, the PI+MNCC yields a similar
result as the manual method. Thus the latter method would be a suitable
automatic method for positive VOT measure.

Plosives Mean/SD of VOT (msec) P-Value
HC PD MSA HC PD HC MSA PD MSA

D
r.

V
O

T /p/ 39.60/51.02 45.08/51.09 54.77/60.28 0.19 0.34 0.50
/t/ 29.20/10.17 33.46/33.62 62.15/61.26 0.77 0.24 0.21
/k/ 32.40/8.60 39.58/24.75 47.15/21.48 0.42 0.015 0.15

/ptk/ 33.73/18.54 39.37/23.76 54.69/30.94 0.39 0.01 0.04

P
I

M
N

C
C /p/ 14.64/26.03 12.87/7.53 23.86/14.30 0.18 0.002 0.01

/t/ 34.55/34.37 39.67/40.11 109.62/104.80 0.101 0.003 0.018
/k/ 31.02/9.35 36.66/11.91 45.64/23.16 0.05 0.029 0.31

/ptk/ 26.74/15.49 29.73/15.74 59.71/37.92 0.10 0.001 0.002

Table 6.22: Group difference of Average VOT of /p/, /t/, and /k/

To analyze overall VOT, we averaged VOT of /p/, /t/, and /k/. Table 6.22
presents significant prolongation of VOT for MSA patients compared to PD. To vi-
sualize the discrimination between PD and MSA, we provided the result as boxplot
in the Figure 6.17.

6.4.5 Discussion on unvoiced obstruents

This work constitutes the first study that attempts to highlight distinctive cues in the
distortion of French unvoiced obstruents. The present study observed the frequent
bursts in fricatives for MSA-P patients compared to PD and HC. In particular, the
presence of burst was most frequent in bilabial fricative /f/, indicating comparably
higher lip movement deficits. The presence of burst can be attributed to overshooting
(dysmetria) of articulators. Dysmetria is a common symptom of ataxia due to poor
control, timing, and coordination. Lesions in the lateral and paravermal cerebellar
hemispheres are associated with intention tremor and incoordination (errors in tim-
ing, direction, and extent of voluntary movements). Incoordination is reflected in
dysmetria [69]. Notably, an automatic algorithm was developed to detect burst in
fricatives which match the visual finding. In a single study [15], the presence of burst

128



(a) By manual segmentation (b) PI+MNCC method

Figure 6.17: Average VOT of unvoiced stop plosive (/p/, /t/, and /k/

was conducted by visual investigation in alveolar fricative /s/ and rarely observed
anti-spirantization in disease groups. In agreement with the latter study, the present
study also did not find burst in fricative /s/ for PD and MSA-P.

Presence of multiple bursts is mainly attributed to stuttering or dysarthria [145].
Occasionally, healthy speakers also produce multiple bursts in stop plosives. The
presence of multiple bursts in stop plosives was studied for the PD patients [222].
The latter study found that PD patients show significantly higher MB in alveolar
stop compared to HC. Surprisingly, HC group also showed frequent MB in velar stop
/k/. In agreement with previous study, the present study also observed MB in velar
stop /k/ for HC, PD and MSA-P groups. In addition, MB was not observed for
bilabial stop /p/ and alveolar stop /t/. Thus it may be hypothesized that multiple
burst is not a suitable marker for speech disorder. As a consequence, MB measure
could be ignored for dysarthria analysis.

The presence of burst in word initial unvoiced stops is natural [152]. The study
[222] observed weak burst (absence of burst) in PD patients. It was justified by
inadequate articulatory closure [312, 182] most probably due to reduced range of
movement (hypokinesia). Another study [8] also observed reduced intensity at the
place of burst onset, which was also attributed to inadequate closure of articulators.
In agreement with previous studies, weak burst is observed for word-initial alveolar
stop /t/ for PD and MSA-P. This result reflects the observation about the inadequate
tongue elevation and subsequent insufficient tongue constriction at alveolar position
[182]. In comparison, weak burst is rarely observed in /p/ and /k/.

VOT is frequently used speech parameter to assess the incoordination of laryngeal
and supra-laryngeal (jaw, lips, tongue, etc.) to produce stop plosives. Previous stud-
ies presented contradictory findings about VOT prolongation. As example, prolonged
VOT was reported in studies [306, 80, 254]; no change in VOT [73, 239] and some
times decreased VOT [76]. Prolongation of positive VOT is attributed to difficulty of
initiating articulation due to a reduced ability to maintain the speech motor program,
which is characteristic for speakers with hypokinetic dysarthria [293]. In agreement
with previous studies [306], prolongation of VOT is observed for MSA-P patients
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compared to PD and HC.
Different speech protocols may provide a different result. For example, in reading

text or monologue, one can not ignore co-articulation effect in targeted phoneme.
Consequently, word initial targeted unit from single-word material may be more suit-
able for investigating this kind of speech impairment.
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Chapter 7

Speech disorder in diadochokinetic
speech production

7.1 Introduction

Dysarthria is a common manifestation of the parkinsonian disorder. Degeneration
in basal ganglia may affect temporal-spatial aspects of the motor speech and speech
rhythm [293, 40, 94]. In contrast, degeneration in cerebellar can affect maintaining
the precision of timing interval [265, 288]. Thus, we can hypothesize that any rhyth-
mic activities require close interaction between the basal ganglia and cerebellar con-
trol circuits. As sustained vowel was considered for assessing vocal folds vibration,
syllable repetition task would serve to check articulatory movements. In addition,
Complex speech tasks can reveal a wide range of speech disorders compared to sim-
ply sustained phonation. Therefore, the Diadochkinetic (DDK) task was designed to
primarily assess deficits in articulatory movements and coordination of respiratory,
phonatory, and articulatory subsystems for pathological speech. Furthermore, the
diadochokinetic task would be suitable for measuring imprecise consonants, syllable
rate, irregularity in syllable repetition [74].

For DDK tasks, /pa-ta-ka/ [229, 185], /ba-da-ga/, and /pa-pa-pa/ syllable repe-
tition [53] tasks were designed, which was recorded in normal and rapid style. The
study [53] observed significant impairment for PD patients compared to HC in the
perceptual and visual method. Notably, PD patients had comparably high disease du-
ration. Another study [274] defined several acoustic measures to assess DDK speech
for PD patients by oscillograph. Irregularity-related acoustic measures predominated
in PD patients compared to HC.

Automatic evaluation of /pa-ta-ka/ was presented in the study [209] by acoustic
measures related to articulatory deficits in vowel quality, coordination of laryngeal
and supralaryngeal activity, precision of consonant articulation, tongue movement,
occlusion weakening, and speech timing were analyzed. PD patients manifest prolon-
gation of Voice Onset Time (VOT) and VOT ratio (VOTR), DDK fluctuation, and
reduced DDK rate compared to PD. However, the segmentation accuracy of conso-
nants and vowels must be improved for robust acoustic feature computation. Study
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[252] proposed an accurate syllable detection method followed by measuring acous-
tic features like rhythm instability (RI) and rhythm acceleration (RA) adopted from
[274]. Dysrhythmia was pronounced in HD, MSA, and PSP than HC. In the differen-
tial aspect, RI yielded a significant difference between PD and HD. Notably, only PD
patients manifested RA compared to HC and HD. The latter method also adopted
methods from [209] to detect the onset of bursts and vowels. In the thesis [112],
four acoustic measures such as DDK Instability (DDKI), DDK Rate (DDKR), Vowel
duration (VD), Standard deviation of power (stdPWR) was automatically computed
from /pa-ta-ka/. Though the accuracy of burst detection and vowel detection was
not provided in the latter study. Notably, the latter method used Gaussian Mixture
Model to detect the speech clusters (voiced, unvoiced, pause). A recent study also
proposed a Convolutional Neural Network (CNN) approach, which yielded better ac-
curacy compared to the method [209]. However, the data-driven approach always
requires a large amount of data plus sometimes annotation.

In the present study, DDK speech tasks like /pa-ta-ka/, and /pa-pa-pa/ with
normal and rapid speed are considered to analyze the pattern of syllable repetition
for PD and MSA-P patients. We adopted an automatic simple unsupervised method
described in Section 6.4.2 for vowel onset and offset detection. Plosion Index (PI)
method is also adopted from the study [12] because it can provide burst location
by sample number rather than frame number (in other methods). Next, acoustic
measures are computed from speech segmentation.

7.2 Methodology

7.2.1 Database

Total 60 participants recorded syllable repetition task. Each participants repeated
syllable repetition task twice in normal and rapid mode. Details of the participants
are described in Section 4.2.5. In perceptual evaluation, 3 HC participant could not
perform the /pa-ta-ka/ task correctly. Therefore, those 3 HC subjects are discarded
from the analysis. Finally, 17 HC, 27 PD, and 13 MSAP-P subjects are analyzed.

Some of the recorded samples from /pa-ta-ka/ task are manually annotated by
Praat toolkit using standard protocol [73] to use it as reference. An example of
manual labelling is presented in the Figure 7.1 In the annotation, stops (/p/,/t/, and
/k/), pre-closure segment of stops, and vowel (/a/) are marked with starting and
ending time stamp.

7.2.2 Automatic speech segmentation

Automatic segmentation of vowel, and consonants are the essential for analyzing
syllable repetition tasks. At first, vowel onset and offset are detected using the MNCC
method described in the Section 6.4.2. MNCC method outperformed fundamental
frequency method (F0) by REAPER for first vowel detection. In unsupervised (rule
based) method, setting a threshold always a challenge. Here, a first level threshold is
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Figure 7.1: Example of manual annotation of /pa-ta-ka/ (part)

computed by following formula:

T = 0.5 ∗ 1

N

N−1∑
i=0

MNCC[i]

where N is the number of frames and MNCC[i] is the maximum normalized cross-
correlation value of ith frame. Next, MNCC values are converted to binary value by
the following conditional equation:

V UV [i] =

{
1 MNCC[i] ≥ T

0 MNCC[i] < T
(7.1)

Important to note, we have used same methodology in word-initial unvoiced obstruent
segmentation task in Section 6.4.2. In previous section, only the first vowel onset is
measured. In the present scenario, we need to detect the vowel onset and offset of all
instances. To find the change, simple differentiation of V UV is enough as follows:

DT = V UV [i+ 1]− V UV [i]

where i = 0....N −1. While DT value is countered as ”1”, it is marked as vowel onset
and ”-1” is labelled as vowel offset. If pause duration within vowel is less than 30 ms,
we consider it as vowel.

Burst detection is carried out on the basis of vowel onset. Bursts are detected in
the 50 ms preceding and 10 ms succeeding interval of each voice onset. This interval
would help to detect burst of stops, particularly for /p/ because of short VOT. To
detect the burst, Plosion Index (PI) method is adopted.

7.2.3 Acoustic features

Irregularity in DDK (DDKI)

Articulatory breakdown and involuntary movements of speech apparatus may disturb
to maintain rhythm and timing of syllable repetition. To compute the irregularity,
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duration of inter-vowel onsets is measured. DDKI is defined as the standard deviation
of duration of inter-vowel onsets.

Rate of DDK (DDKR)

Rate of syllable repetition is frequently used by the speech pathologist. Slow syllable
rate refers to slow movements of articulators, most probably due to spasticity, rigidity
in articulator’s muscle. The DDKR is computed as the inversion of the median
duration between consecutive voice onsets. Median was preferred in order to increase
robustness against wrong detection [112].

Acceleration of DDK (DDKA)

Deficits in Basal ganglia control circuit result in disrupted rhythm and timing. Sudden
acceleration of speech is observed in PD patients. Acceleration of speech production
can be attributed to either reduced range of movements articulator or disrupted timing
sequence. To compute DDKA, the speech task is splitted into two halftimes by 25%
overlap. The DDKA is defined as the ratio of DDKR in two halftimes.

Vowel duration (VD)

Degeneration in cerebellar control circuit result in delay of refining neuromuscular
movements by basal ganglia control circuit [69]. As consequence vowel duration is
prolonged for pathological speech. Vowel duration is measured by the median duration
of vowel segments.

Standard deviation of power (stdPWR)

Variability in syllable to syllable loudness can be atributed to poor respiratory-
phonatory coordination and control. Excessive variation in loudness is commonly
observed in ataxic and hyperkinetic dysarthria [69]. stdPWR is computed as the
standard deviation of maximum power of each vowel segments.

Voice onset time (VOT)

Prolongation of VOT for unvoiced stop plosives is commonly observed in parkinson-
ism. Prolongation of VOT is generally associated with synchronization problem of
laryngeal and supra-laryngeal activities. VOT is defined as the duration between
burst onset to vowel onset. Average VOT is computed from individual VOT of /p/,
/t/, and /k/.

Weak burst (WB)

Reduced range of movement in hypokinetic dysarthria may result in imprecise burst
(weak). It is not always perceptually detectable, but in spectral domain weak burst
can be clearly visible. In /pa-ta-ka/, stop plosive is preceded by vowel. Total number
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of missing burst by burst detection method (PI) is counted for each sample. WB is
computed as the total number of missing burst in each sample.

7.3 Results

7.3.1 Phoneme segmentation accuracy

First, phoneme segmentation accuracy is discussed. Table 7.1 presents vowel onset
and offset accuracy by the MNCC and method proposed in [130]. An example of
vowel detection by MNCC method is presented in Figure 7.2.

Figure 7.2: An example of automatic vowel detection by MNCC method in /pa-ta-ka/
task

Table 7.1 shows that MNCC method yields better vowel detection accuracy com-
pared to method described in [130]. In 10 ms threshold, MNCC method produced
99.19% vowel onset accuracy. Comparably, vowel offset accuracy is less accurate most
probably due to vowel occlusion in end part.

Vowel onset accuracy (%) Vowel offset accuracy (%)
5 ms 10 ms 20 ms 30 ms 5 ms 10 ms 20 ms 30 ms

MNCC 87.7 99.19 100 100 50.3 91.19 98.38 99.19
Method [130] 15.24 63.64 96.41 97.11 22 58.28 95.54 98.54

Table 7.1: Vowel onset and offset accuracy by thresholds

Therefore, segmentation using MNCC method is used for computing rhythmic
features.

7.3.2 Acoustic analysis of DDK features

Given two types of speed mode, both DDK tasks are analyzed separately. We first
start with normal speed /pa-ta-ka/ task. Acoustic features are computed from vowel
segments and stop plosives segments. Table 7.2 presents group wise acoustic feature’s
statistics. MSA-P patients manifested prominent speech disorder in stdPWR, VD,
DDKR, and WB compared to PD and HC. Surprisingly, PD patients also show group
difference compared to HC in stdPWR probably due variable stress in syllables. No-
tably, PD patients also produced significant prolongation of average VOT than HC.
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Present analysis did not observe significant acceleration in normal speed DDK task
for PD patients.

Groups P-Value
HC PD MSA-P HC PD HC MSA PD MSA
Mean/SD Mean/SD Mean/SD

stdPWR (dB) 1.05/0.33 1.30/0.29 1.74/0.56 0.0032 0.0006 0.027
VD (ms) 78.36/13.27 78.94/13.32 96.94/18.72 0.68 0.0089 0.0021
DDKI (ms) 0.030/0.02 0.03/0.01 0.057/0.06 0.6212 0.082 0.075
DDKR (syll/sec) 5.21/0.67 5.33/0.71 4.41/0.70 0.50 0.0054 0.0005
DDKA 1.009/0.04 1.004/0.04 1.001/0.03 0.55 0.36 0.51
VOT 18.68/3.98 23.65/6.49 26.76/6.88 0.01 0.0014 0.16
WB 0.97/1.21 3.07/4.28 6.46/5 0.08 0.0002 0.01

Table 7.2: Group wise mean/standard deviation and group difference (p-value) of
acoustic features from normal speed /pa-ta-ka/ task; blue and red colour represents
predominant severity by PD and MSA-P respectively

Acoustic features from rapid speed /pa-ta-ka/ also produced encouraging differ-
entiation between PD and MSA-P. Rapid style of DDK task may reflect functionality
of timing and quick movements of articulator. MSA-P patients showed predominant
disorder in all stdPWR, VD, DDKI, DDKR, and VOT acoustic features compared to
HC and PD. In VOT and WB, PD patients also displayed significant disorder than
HC probably due to hypokinesia.

Groups P-Value
HC PD MSA-P HC PD HC MSA PD MSA
Mean/SD Mean/SD Mean/SD

stdPWR 1.14/0.4 1.31/0.34 1.73/0.51 0.11 0.0028 0.013
VD 64.8/8 66.27/8.24 84.94/18.56 0.5 0.0028 0.0015
DDKI 0.024/ 0.01 0.028/0.02 0.04/0.02 0.52 0.031 0.039
DDKR 6.28/0.9 6.3/0.7 5.32/0.79 0.74 0.012 0.0016
DDKA 0.99/0.04 0.98/0.04 0.95/0.07 0.17 0.06 0.23
VOT (all) 15.75/4.14 19.3/4.83 23.09/4.96 0.0089 0.0006 0.027
WB 1.20/1.33 4.88/6.1 8.61/7.75 0.0097 0.0003 0.082

Table 7.3: Group wise mean/standard deviation and group difference (p-value) of
acoustic features from rapid speed /pa-ta-ka/ task; blue and red colour represents
predominant severity by PD and MSA-P respectively

Average vowel duration is longer for normal mode of speaking compared to rapid
mode. It is confirmed that speakers compromised phoneme duration to speed up
the syllable repetition. Likewise, VOT duration is longer for comfortable DDK task
compared to rapid task.

After analyzing two different mode of /pa-ta-ka/ task, we may hypothesize that
rapid mode is more appropriate compared to normal DDK to assess quick transition
and timing of articulator.
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7.3.3 Classification

For classification, Logistic regression classifier is employed. Given small amount of
data, Leave-One-Subject-Out (LOSO) cross-validation method is adopted. First,
individual acoustic feature from rapid DDK task is used for classification of PD and
MSA-P. VD and stdPWR yield comparably good accuracy but not enough. We can
proceed to feature combination to design ataxic dimension.

Accuracy(%) Specificity(%) Sensitivity(%)

stdPWR 82.50 88.89 76.92
VD 80.00 88.89 61.54
DDKI 75.00 92.59 46.15
DDKR 67.50 92.59 23.08
VOT 57.50 85.18 7.69

Table 7.4: Classification accuracy by individual acoustic features from rapid /pa-ta-
ka/

Simple average of stdPWR and VD produce an encouraging differentiation be-
tween PD and MSA-P. The combined feature can be regarded as ataxic dimension
and defined as

Addk =
stdPWR + V D

2
. Figure 7.3 shows that 9 MSA-P patients manifest predominant ataxia than PD and
HC.

Figure 7.3: Group difference among HC, PD, and MSA-P using ataxic dimension
(Addk from DDK features

Addk feature also improved the classification accuracy to 87.5%, specificity 96.29%,
and sensitivity 76.92%.
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7.4 Discussion

In the present study, we present a fully unsupervised automatic approach to inves-
tigate rhythm in diadochkinetic task for PD and MSA-P patients. A comparably
accurate vowel detection method is presented, which outperform previously proposed
method [130, 209], particularly for pathological speech. The study [274, 130] observed
instability in duration for PD compared to HC, however present PD patients did not
show variable duration than HC.

Contrasting result is found for two different mode of DDK task. In normal mode
of DDK, PD patients patients showed group difference w.r.t. HC, which is not hold
for rapid task. It can be explained by pattern of speech production by PD in normal
mode, where stress label was not maintained for each syllable. Conversely, in rapid
mode, PD subjects mostly gave equal stress in each syllable. Thus we may hypothesize
that rapid mode DDK task are more suitable to extract speech impairment.

MSA-P patients manifest high variability in syllable to syllable power (stdPWR)
and duration (DDKI), and prolongation of vowel (VD). Both acoustic features are
commonly associated with ataxic dysarthria. In agreement with previous studies
[247, 255], present study also observed that MSA-P patients also manifest ataxia. It
was also observed in the study [130]. Important to note, other disease groups like
PSP, HD, CA, and MS also manifest increased DDKI compared to HC. Thus only
degree of severity can provide disparity among groups. Increased stdPWR variation
can be explained by involuntary movements of respiratory muscles or deficits in co-
ordination of phonation and respiration. Likewise, excess DDKI can be explained by
impaired timing, planning, or involuntary movements of subsystems. On the other
hand, prolonged VD is explained by slow movements and excessive vocal emphasis
[130].

Prolonged voice onset time for unvoiced stops is frequent for both PD and MSA-
P than HC. Deficits in laryngeal and supra-laryngeal coordination leads to increased
VOT. MSA-P patients manifest comparably increased average VOT, probably due to
combination and/or individual lesion in cerebellar and basal ganglia control circuit
[5]. Notably, prolonged VOT is specific to MSA only, it was also frequently observed
in PSP, HD, CA, and MS groups [130]. Thus quantitative disparity analysis may help
to use it in differential diagnosis.

In addition, MSA-P patients also manifest significant spasticity by DDKR com-
pared to PD and HC, which was also observed for PSP, HD, CA, and MS. Reduced
DDKR is attributed to decreased articulator movements. In overall, present analy-
sis observed significant group difference between PD and MSA-P in VD, DDKI, and
DDKR, which was not true for previous studies [247, 255]. Combination of DDK
features to represent ataxic index, also yield improved differentiation between PD
and MSA-P. This approach was only attempted in the study [255].
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Chapter 8

Speech disorder in reading text

8.1 Introduction: Spontaneous speech

Spontaneous speaking is the most complex model of speech production. It includes
cognitive as well as execution of speech motor functions. In the cognitive aspect,
thoughts, feelings, and emotions are first formed according to language for verbal
communication. Next, the intended verbal message must be organized for neuromus-
cular execution. These activities include the selection, sequencing, and regulation of
sensorimotor “programs” that activate speech muscles at appropriate coarticulated
times, durations, and intensities [69]. Thus spontaneous speaking tasks may reveal
deficits in the coordination of phonatory and respiratory function, precise articula-
tor movements, and coordination of laryngeal and supra-laryngeal (lips, jaw, tongue
etc.), which also reflect the prosodic and timing aspect of speech.

The previous study found continuous speech as the most sensitive speech task
for assessing deficits in parkinsonian speech [250, 156]. In general, the prosody and
timing of the speech were commonly analyzed by perceptual investigation. Prosody
demonstrates suprasegmental speech factors like intonation, tone, stress, and rhythm.
Dysprosody is commonly associated with hypokinetic dysarthria [58, 278, 7]. Several
study observed predominant dysprosody by pitch variation, pause duration, loudness
variation, total speech rate for PD patients [181, 105, 249, 33, 275, 34, 113]. Mono-
pitch and monoloudness are common manifestation of PD and several studies found
disparity between PD and HC [249, 279]. In differential diagnosis, Studies [247] did
not find differences among PD, PSP, and MSA with monopitch and monoloudness
acoustic dimensions. In perceptual analysis, the study [126] also did not observe dis-
parity between HC, PD, MSA-P. In contrast, objective measures of monopitch yielded
group differences between HC and parkinsonian disorder (PD and MSA-P) but not
within PD and MSA. Pause-related features showed encouraging differences between
PD and APS [281, 247, 126], but not within APS. Pause duration is prolonged, but
the number of pauses decreases for the APS group (PSP, MSA). The gender-specific
disparity was also observed in the number of pause and monopitch, particularly male
patients displayed greater severity [126]. Speech rate is another parameter, which was
frequently used to assess articulatory speed in reading text. PD and APS groups com-
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monly displayed reduced overall speech rate [281, 126]. Studies related to early-stage
differential diagnosis are very limited. The study [126] observed F0, prolonged pause
time, and reduced speech rate might be used for early-stage differential diagnosis of
PD and MSA.

Automatic analysis is a challenging task. Most of the previous studies mainly
considered voice/unvoice/pause speech segmentation [281, 34, 249]. Automatic seg-
mentation of voiced, unvoiced, pause, and respiration was developed to design sev-
eral speech components for respiratory, phonatory, articulation, timing subsystem of
speech [306, 130]. The latter study achieved pause detection accuracy to 86.2% and
respiration detection accuracy to 81.6%. PSP patient showed predominant speech
respiration and timing deficits compared to PD, and MSA [306, 112].

The present study considers analyzing reading text in the French language for
PD and MSA-P patients. Therefore, this study first attempted to manually segment
speech events (voiced, unvoiced, pause, respiration). Next, we adopted the method-
ology described in [306, 130] to compute several acoustic features to investigate the
disparity between PD and MSA-P. In addition, another open-source software is also
used to extract acoustic parameters.

8.2 Methodology

8.2.1 Database

The Section 4.2.2 describes the recording protocol for reading text. Total 60 subjects
were recruited, which include 20 HC (10 male, 10 female), 27 PD (19 male, 8 female),
13 MSA-P (5 male and 8 female). Each speaker read the text single time in comfort-
able speed. Speech samples from headphone are considered for this analysis due to
better quality than other two microphones.

8.2.2 Manual segmentation

Prosodic features computation requires to segment different speech part like voiced,
unvoiced, pause, and optionally respiration. Automatic segmentation of unvoiced
consonants, pause, and respiration always remain a difficult task, particularly noisy
data or dysarthric speech. In this thesis, reading text is manually annotated by the
author following standard procedure described in the study [73, 113]. An example of
manual annotation is presented in the Figure 8.1.

Voiced segments are annotated by the presence of harmonicity. Unvoiced conso-
nants are labelled by absence of fundamental frequency (F0), high turbulent noise.
Pause is labelled by absence of spectral energy in all frequency bands. Respiration
segment is labelled by the presence of energy in 500–2000 Hz frequency band, and
longer than 100 ms.
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Figure 8.1: Example of manual annotation of reading text (partial); annotation labels
are represented as 0: pause, 1: respiration, 2: unvoiced consonants, 3: voiced speech

8.2.3 Prosodic features

Using four segment, 13 acoustic components described in Chapter 3 are computed.
Respiration group consists of Respiration Speech Rate (RSR), Pause Intervals per
Respiration (PIR), Latency in Respiratory Exchange (LRE), and Relative Loudness
of Respiration (RLR) acoustic components. Phonation group consists of Duration
of Voiced Intervals (DVI), and Gaping in between Voiced Intervals (GVI) features.
Articulation group includes Duration of Unvoiced Stops (DUS), Resonant Frequency
Attenuation (RFA), and Decay of unvoiced fricatives (DUF). Timing group consists of
four acoustic features such as Rate of Speech Timing (RST), Acceleration of Speech
Timing (AST), Duration of pause intervals (DPI), and Entropy of Speech Timing
(EST). Next, these acoustic features are used for differential diagnosis.

Another method is also used to extract prosodic features from reading text by
Disvoice toolkit [62, 307]. The latter toolkit compute high dimensional acoustic
features using different feature statistics (max, min, average, standard deviation,
kurtosis, skewness). However, present study only considers average and standard
deviation for clear explanation of pitch frequency (F0), loudness, voiced duration,
unvoiced duration, and pause duration. In addition, duration ratios related acoustic
features like PVU as Pause/(Voiced+Vnvoiced); PU as Pause/Unvoiced; UVU as Un-
voiced/(Voiced+Unvoiced); VVU as Voiced/(Voiced+Unvoiced); VP as Voiced/Pause;
and UP as Unvoiced/Pause are also considered for computing timing aspect.

8.3 Results

8.3.1 Prosodic features from manual segmentation

Statistical analysis of individual feature is presented in the Table 8.1. In respiration
feature only number of pause within respiration is significantly reduced for PD and
MSA-P patients than HC. Average rate of respiration also increased for both PD
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and MSA-P but not statistically significant. In agreement with the study [112], PD
and MSA-P display significant severity than HC in timing feature RST. In contrast
to previous studies [306, 112], duration of pause did not provide group difference.
Encouraging group difference between PD and MSA-P is observed in vowel duration
and DUS. In addition, reduced gap between vowel interval is observed for PD and
MSA-P than HC.

Groups P-Value
HC PD MSA-P HC PD HC MSA PD MSA
Mean/SD Mean/SD Mean/SD

RSR 18.88/6.11 21.68/6.09 21.43/5.72 0.19 0.33 0.86
PIR 6.55/1.71 4.94/1.03 4.50/1.24 0.0008 0.0009 0.30
LRE 164.83/85.78 175.23/60.01 210.7296/109.30 0.18 0.13 0.39
RLR -52.37/8.50 -54.12/7.36 -51.20/11.09 0.84 0.65 0.29
RST 5.20/0.51 4.85/0.56 4.37/0.89 0.045 0.008 0.075
AST 0.89/1.04 0.51/0.69 1.09/1.64 0.16 0.43 0.87
EST 1.75/0.04 1.77/0.04 1.79/0.04 0.11 0.024 0.29
DPI 81.98/11.28 85.46/16.89 101.13/31.23 0.50 0.31 0.11
DVI 317.49/34.68 324.33/41.50 385.56/93.97 0.36 0.015 0.025
GVI 76.86/20.81 64.80/19.21 52.56/24.97 0.035 0.009 0.091
DUS 38/10.04 37.70/7.18 50.87/12.36 0.45 0.0002 0.001
DUF -39.28/28.15 -32.52/18.11 -29.80/23.52 0.68 0.43 0.53
RFA 118.91/11.09 113.15/9.31 113.10/9.77 0.08 0.14 0.98

Table 8.1: Group difference of acoustic features computed from manual segmentation
of reading text; blue and red colour represents predominant severity by PD and MSA-
P respectively

All the above individual acoustic feature belong to hypokinetic dysarthria. By
exaustive search, combination of simple average of AST, EST, GVI, DVI, and DUS
improved the discrimination of PD and MSA-P and defined as follows:

X1 =
AST + EST +GV I +DV I +DUS

5

This combined feature is represented as ”X1” and plotted in Figure 8.2. In this
dimension, MSA-P patients manifest greater severity than PD and HC.

Using Logistic regression with LOSO cross-validation, dimension ”X1” yields clas-
sification accuracy 87.5%, specificity 92.59%, and sensitivity 76.92%. It can be con-
sidered as good accuracy by only 1-dimensional feature.

8.3.2 Prosodic features from Disvoice tool

Group differences between groups are presented in the Table 8.2. Several acoustic
features yield group differences between HC and PD, and HC and MSA-P. Monopitch
and monoloudness features did not yield group difference between groups, however,
a group of MSA-P patients showed monopitch. In contrast, the thesis [130] showed
predominant monopitch and monoloudness for PD, PSP, and MSA patients. Notably,
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Figure 8.2: Group difference of HC, PD, and MSA-P by X1 designed by AST, EST,
GVI, DVI, and DUS

both PD and MSA patients manifest prolongation of pause duration than HC. In
duration ratio features, PD and MSA-P patients also yield disorder than HC. Again,
those features did not provide differential characteristics between PD and MSA-P. As
duration of voiced segment get prolonged, reduced voice rate is observed for PD and
MSA-P. Interesting to note, a group of MSA-P patients manifest reduced ”Vrate”
compared to PD, which was also observed in the thesis [130].

8.4 Discussion

This chapter explored prosodic acoustic features for PD and MSA-P patients. In
agreement with previous studies [114, 130], the present study also observed predom-
inant dysprosody for PD and MSA-P patients than HC. Manual segmentation helps
to measure the acoustic features accurately compared to the automatic segmentation
method; however, it is time-consuming. In agreement with the study [130], PD and
MSA patients did not show respiration deficits by RSR, LRE, and RLR; however
number of pauses is reduced for both groups. It is explained by high hypokinesia and
rigidity in the chest wall, reducing the vital capacity. As a consequence, the number
of pauses is compromised, and the rate of respiration is increased. Notably, the study
[114, 130] observed predominant respiration deficits in PSP patients.

Deficits in respiration also may affect the vocal folds functions. Reduced air
out at the time of exhalation also force to compromise vocal folds abduction and
adduction. It is reflected in GVI and DVI. Reduced control over vocal folds functions
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P-Value
Acoustic features HC PD HC MSA PD MSA

F0avg 0.62 0.94 0.57
F0std 0.42 0.25 0.82
avgEvoiced 0.31 0.26 0.08
stdEvoiced 0.88 0.42 0.36
avgEunvoiced 0.47 0.76 0.49
stdEunvoiced 0.81 0.46 0.39
avgdurvoiced 0.055 0.029 0.23
stddurvoiced 0.11 0.007 0.10
avgdurunvoiced 0.75 0.60 0.70
stddurunvoiced 0.09 0.65 0.058
avgdurpause 0.007 0.018 0.39
stddurpause 0.003 0.022 0.69
PVU 0.102 0.27 0.94
PU 0.016 0.011 0.24
UVU 0.047 0.065 0.42
VVU 0.047 0.065 0.42
VP 0.19 0.65 0.61
UP 0.016 0.011 0.24
Vrate 0.02 0.003 0.071

Table 8.2: Group difference of prosodic acoustic components from reading text; blue
and red colour represents predominant severity by PD and MSA-P respectively

may prolong vowel duration in the pause segment. In agreement with the study
[130], thus MSA-P patients showed prolonged DVI and reduced number of pauses
compared to PD and HC. Notably, it was observed in the study [130] that PSP, HD,
and CA patients also manifest prolonged vowel duration. Accurate computation of
gap between vowel yields reduced median gap duration in PD and MSA-P compared
to HC, which is attributed to decreased ability of vocal folds to stop voicing by
adduction [130]. Important to note, the study [130] only observed reduced GVI in
MSA, PSP, and HD disease groups.

Unvoiced stop plosives production requires coordinated function between laryngeal
and supra-laryngeal subsystems [32, 6]. Therefore, deficits in timing may result in a
prolongation of voice onset time. The duration of unvoiced stops gets significantly
increased for MSA-P patients, indicating dysfunction of the basal ganglia control
circuit. Notably, increased DUS is not unique for only MSA; instead, it was also
frequent in PSP, HD, and MS groups [130].

Previous studies [284, 276] showed that PD patients manifest predominant mono-
pitch, but the present study did not observe group differences among HC, PD, and
MSA-P in reading text, which in agreement with the study [247]. It may be due to
different languages, different disease duration, etc. In addition, both PD and MSA-P
exhibit impairment in average and standard deviation of pause duration and the ratio
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of voiced, unvoiced, and pause. It is attributed to timing and coordination deficits in
subsystems of speech production.

As the reading text and monologue are the most complex speech protocol, a
precise analysis may help identify early-stage speech disorders in neurological diseases.
Moreover, this speech task can also detect deficits in all the subsystems of speech
production like respiration, phonation, articulation, and prosody. Now, it is the only
challenge to accurately segment the speech clusters from spontaneous speech.
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Chapter 9

Differential diagnosis between PSP
and MSA

9.1 Introduction

As discussed in chapter 2, the parkinsonian syndrome is an umbrella term that refers
to Parkinson’s disease (PD), Atypical Parkinsonian Syndromes (APS) such as Pro-
gressive Supranuclear Palsy (PSP) and multiple system atrophy (MSA). APS differs
from PD by more widespread neuronal involvement, resulting in additional clinical
signs, more rapid disease progression, and poor response to dopamine replacement
therapy [266]. The majority of PSP and MSA patients develop clinical features that
overlap those of PD. Thus the correct diagnosis can be very challenging in the early
stages of the disease. However, an accurate early diagnosis is essential not only in
assessing prognosis and making decisions regarding treatment but also for under-
standing the underlying pathophysiology and for the development of new therapies
[316].

Deficits in vocal functions result in speech impairment which is frequently an
early and prominent clinical feature of PD and APS. Thus, during the last decades,
there has been an increasing interest in PD speech and voice analysis [38]. However,
very few attempts have been done in differential diagnosis between PD and APS, or
within APS [160, 158, 257, 281, 264, 126, 255, 164]. Perceptual evaluation of speech
disorder remains a gold standard in the clinical practice. In perceptual analysis, the
study [158] observed that most of the MSA patients had combination of hypokinetic,
ataxic, and spastic dysarthria. In contrast, PSP patients manifest prominent hypoki-
netic, and spastic components and comparably less ataxic components [160]. Indeed,
studies related to the differential diagnosis of PSP and MSA are very few. In differ-
ential diagnosis perspective, one of the study [106] found eight acoustic dimensions
in perceptual investigation which differentiate PSP and MSA. The latter study also
observed that both groups manifest a combination of dysarthria. Moreover, as both
groups manifest a combination of dysarthria, severity would be more helpful than
specific speech dimensions for differential diagnosis. In contrast, differential diagnosis
between PSP and MSA found to be very much challenging in the recent study [197].
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Although perceptual method remains a gold standard for clinical differential diagno-
sis, judgments of severity, many decisions about management, and the assessment of
meaningful temporal change, it is subject to unreliability among clinicians, difficult to
quantify, and cannot directly test hypotheses about the pathophysiology underlying
perceived speech abnormalities [69].

On the other hand, acoustic methods can visually display and numerically quan-
tify different speech parameters. In objective analysis, the study [281] showed that
PSP patients manifest more significant speech impairment compared to PD by acous-
tic components, speech velocity, intonation variability, and the fraction of intra-word
pauses. In the study [126], male MSA-P exhibited more prominent speech abnor-
malities compared to PD in acoustic components, increased voice pitch, prolonged
pause time, and reduced speech rate. Notably, the latter study considered patients
with disease stage (0-3 years). A pioneer work [247] provides a quantitative and ob-
jective analysis of speech characteristics for the discrimination between PD and APS
and between MSA and PSP. The basic conclusion is that PD speakers manifest pure
hypokinetic dysarthria, ataxic components are more affected in MSA whilst PSP sub-
jects demonstrate severe deficits in hypokinetic and spastic elements of dysarthria.
Using an SVM with a Gaussian radial basis kernel and an exhaustive search, [247]
reported a 95% accuracy in objective discrimination between APS and PD and 75%
in discrimination between PSP and MSA. It was emphasized that classification per-
formance was not the main purpose of [247], but rather a way to seek disease-specific
dysarthric signs. Though univariate feature analysis provided important information,
collective impairment in different subsystems of speech production or in dysarthria
by disease groups was missing in the latter study. Individual subsystem of speech
production related acoustic components were designed from spontaneous speech task
to differentiate PD, PSP, and MSA [115]. The latter study showed that PSP patients
predominate deficits in respiration function over speech production. Particularly, PSP
patients manifest prolonged duration of stop consonants, and pauses. Although, the
latter study devised encouraging acoustic features, it did not examine overall subsys-
tem disorder by any acoustic index which would discriminate PD and APS and within
APS. In addition, gender dimorphism was not analyzed in the study [115] whereas
some prosodic features showed gender dimorphism in the study [282, 126]. Imprecise
stop consonants also found to be a predominate acoustic disorder for PSP and MSA
groups [264, 306]. While PSP patients predominate in unvoiced stops by prolonged
VOT, MSA patients manifest reduced prevoicing of voiced stops. Notably, VOT,
VOT ratio, and following vowel duration were computed by manual segmentation.
Moreover, gender dimorphism was not found in speech parameters [306]. In contrast,
study [267] showed gender dimorphism in speech parameter VOT. In another recent
study [175], standard linear and generalized linear models were explored to address
the curse of dimensionality problem, particularly for small amounts of data. The
later study grouped acoustic features into three subsystems of speech productions
such as phonation, articulation, and prosody. This study led to an 80% accuracy
in classification between MSA and PSP. However, the latter study did not provide
any subsystem wise impairment. The study [255] attempted to design a dysarthria
index to discriminate between phenotypes of MSA (MSA-P and MSA-C). The latter
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study established quantitatively that PD patients are characterized by pure hypoki-
nesia whereas MSA patients manifest combination of ataxic, hypokinetic, and spastic
dysarthria.

Previous studies mentioned that early differential diagnosis is challenging between
PD and APS and within APS. A single study is found [126] where early-stage differ-
ential diagnosis was attempted to differentiate PD and MSA-P. Gender dimorphism
would be an important parameter to consider while performing differential diagnosis.
Gender-related disparity was observed in previous studies [109, 275, 280].

The present study focuses on defining new speech indexes which can objectively
measure deficits in subsystems of speech production and/or particular dysarthria
subtypes for disease groups PSP and MSA. Acoustic dimensions are designed so that
it can show disease specificity. Such features would have a (statistical) behavior
for PSP, which is significantly different from MSA. Moreover, those features will be
designed in such a way that they can be interpretable in order to improve the un-
derstanding of speech impairments in PSP and MSA. Obviously, the first benefit of
such investigation would be accurate and objective discrimination between PSP and
MSA, given that subjective evaluation is quite challenging due to similar perceptual
behavior [197]. The second and more important benefit is to potentially allow draw-
ing hypotheses regarding the early stage of the diseases. Furthermore, participant’s
gender is also considered in this study which can infer additional information regard-
ing pathology. Previous studies also indicated gender dimorphism, but those studies
mostly used less number of acoustic components [126, 282]. Conversely, some studies
found the influence of gender was either independent [247] or ignored [255, 164] in
previous differential diagnosis studies. Hence, a detailed analysis of gender dimor-
phism is warranted for finding gender influence over speech parameters. To the end,
propose a methodology to devise 2-dimensional speech markers which would yield
good discrimination between PSP and MSA.

9.2 Methodology

9.2.1 Database

Acoustic features are computed from different speech tasks. Respiration features are
computed from text reading and monologue. Phonation features are computed from
sustained vowel /a/, text reading, and monologue. Articulation features are measured
from DDK task (/pa-ta-ka/), sustained /a/, reading text, and monologue. Timing
and prosodic features are computed from DDK task (/pa-ta-ka/), reading text, and
monologue. Nasalic features are computed from sustained /i/.

In Section ??, clinical details of participants are summarized. It consist 150 HC,
20 PD, 19 PSP, and 25 MSA.
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9.2.2 Acoustic feature

Individual speech parameters were developed by the collaborator [112]. Previous
studies [114, 112] analyzed only individual speech parameters for different disease
groups. In this thesis, individual features are used to design 1-dimensional speech
index to capture particular deficits in subsystems and dysarthria dimensions. To do
so, individual speech parameters are first grouped according to related subsystems
and dysarthrya subtypes. For a better understanding of speech parameters, a brief
description of those features is essential. Description of all the selected features is
provided in Chapter 3. Detailed categorization of acoustic features according to
subsystems of speech production and it’s dysarthria type are provided in the Figure
9.1.

Figure 9.1: Acoustic features and it’s categorization

9.2.3 Acoustic feature analysis

Univariate analysis

Univariate analysis of acoustic features are first accomplished by data statistics. At
first, individual acoustic parameter’s distribution (normality test) is checked using the
one-sample Kolmogorov-Smirnov test. It is found that several acoustic parameters
are not normally distributed. Hence, Mann-Whitney U test is applied for pairwise
group differences in non-normally distributed data. On the other hand, Student’s
t-Test is used when data is normally distributed. In the following experiments, sta-
tistical significance is represented as follows: * p<0.05, ** p<0.01, *** p<0.001, ****
p<0.0001, ***** p<0.00001.
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Multivariate analysis

In individual acoustic features analysis, HC group is used to find the influence of
gender dimorphism. Additionally, gender disparity is also tested for particular disease
groups. For this purpose, statistical group difference is computed by Student t-test
(resp. Mann-Whitney U test ) if data is normally (resp. non-normally) distributed.
Before acoustic feature combination, individual features are converted to the z-score
using the HC mean and standard deviation. For acoustic features in which lower raw
scores are associated with greater dysarthria, the z-score are reversed. Thus higher
z-scores indicate more speech impairment. List of features reversed (multipy by -1)
as follows:

1. Respiration: RLR (monologue, text) , PIR (monologue, text)

2. Phonation: HNR, GVI (monologue, text)

3. Articulation: RFA (monologue, text)

4. Oral diadochokinesis: DDKR

5. Timing: EST (monologue, text), RST(monologue, text), AST (text), NSR

6. Prosodic: stdF0 (monologue, text), stdPWR(text)

7. Nasalic: Efn m

In the next step, acoustic features from each subsystem (respiration, phonation,
articulation, timing, prosody, diadochokinetic, and nasal) are mostly grouped in two
clusters to manifest greater PSP and MSA patients speech impairments in either clus-
ter. Then, according to group difference value, acoustic features from each cluster are
combined by manual weight (for PSP and MSA). Knowledge based feature combina-
tion using manual weight would serve severity by its value. Thus single-dimensional
index for each subsystem is designed. To the end, 2-dimensional acoustic features (F1,
F2) are computed by combining subsystem indexes. Parallel to this, each respective
acoustic index is used to find correlation with NNIPPS severity subscores.

Another approach also adopted to design dysarthria indexes (hypokinetic, ataxic,
spastic) by regrouping acoustic features. Again, each dysarthria subtypes may have
two groups where either PSP or MSA display prominent severity. Similar to the sub-
system of speech production index, dysarthria indexes are also combined by manual
weight to end up with 2 dimensions (D1, D2).

Correlation analysis

A correlation study is adopted to find the relationship between acoustic dimensions
w.r.t. clinical motor symptoms encountered in parkinsonism. The NNIPPS scale
measured clinical symptoms responsible for speech production. In this study, total
15 motor symptoms such as mental, bulbar/pseudobulbar, ADL / mobility, tremor,
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rigidity, myoclonus, bradykinesia, bradykinesia (axial and limb), oculomotor, dysto-
nia (axial and limb), pyramidal, cerebellar, orthostatic, and urinary were assessed by
neurologist. These motor symptoms like dystonia, urinary, myoclonus, and pyramidal
were found discretely present in disease groups. As a consequence, later motor symp-
toms are ignored. Two bradykinesia subscores were averaged to represent the overall
bradykinesia subscore. Finally, 6 NNIPPS subscores (bradykinesia, rigidity, tremor,
bulbar/pseudobulbar, oculomotor, and overall) are considered for finding relation
with speech disorder. In correlation measure, Pearson(resp. Spearman) method is
used to compute correlation while data is normally (resp. non-normally) distributed.

Gender dimorphism

In individual acoustic features analysis, HC group is mainly used to find influence of
gender dimorphism. Additionally, gender disparity is also tested for individual disease
groups. For this purpose, statistical group difference is computed by Student t-test
(resp. Mann-Whitney U test) if data is normally (resp. non-normally) distributed.
Each designed acoustic index is tested to find gender dimorphism in 4 groups. Group
difference (p < 0.05) value is considered to decide manifestation of gender disparity.

9.2.4 Classification

In this experiment, Logistic Regression (LR) is used for the classification and Leave-
one-sample-out (LOSO) method for training/test. As LR is frequently used in medical
fields, present study adopted it for classification purpose [37].

9.3 Experimental result

9.3.1 Univariate analysis

First step was to analyze individual features statistically to find group difference
between PSP and MSA. Table 9.1 summarized group difference of individual feature
between PSP and MSA. Subscript “ml” stands for monologue and “txt” stands for
text reading. Among all features, only 3 acoustic measures from articulation (RFAml,
RFAtxt, stdPSD) and 1 acoustic measure from phonation (stdF0a) subsystem show
group difference between PSP and MSA. Finding less number of speech parameters
in PSP and MSA discrimination is normal as stated in previous study [197] where
the perceptual investigation was conducted.

Figure 9.2 displays some encouraging individual acoustic features for discrim-
ination of PSP and MSA groups. MSA patients manifest higher impairment in
ataxic component (stdF0a, stdPSD) and hypokinetic component (RFAml, RFAml)
compared to PSP. PSP patients predominantly exhibited in hypokinetic component
(RSRml,DUSml). Notably, low value in ”RFA” implies high impairment, thus MSA
patients exhibit greater impairment in ”RFA”.

Correlation with severity subscore: It is observed in quantitative analysis
that some of the acoustic features strongly correlated with NNIPPS subscore. In over-
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(a) stdF0a (b) stdPSD (c) RFAml

(d) RSRml (e) DUSml (f) RFAtxt

Figure 9.2: Plot of individual speech parameters which provide encouraging discrim-
ination for PSP and MSA patients

all NNIPPS subscore, MSA patients showed significant correlation with DDKRddk

(r = −0.42, p = 0.03), NSRtxt (r = −0.59, p = 0.001), stdF0ml (r = −0.48,
p = 0.01), stdF0txt (r = −0.51, p = 0.007), and DUStxt (r = 0.49, p = 0.01) acous-
tic features. In contrast, PSP patients did not show significant correlation between
individual acoustic features with overall NNIPPS subscore.

In cerebellar subscore, MSA patients exhibited significant correlation withDDKRddk

(r = −0.51, p = 0.008), V Dddk (r = 0.39, p = 0.05), stdPWRml (r = 0.41, p = 0.04),
stdPWRtxt (r = 0.44, p = 0.01) whereas PSP patients did not show correlation in
latter mentioned acoustic features.

Gender diphormism: Analysis of gender dimorphism in individual acoustic
features reveals interesting differences between male and female HC subjects as pre-
sented in Table 9.2. Keeping aside some respiration, two timing, one prosodic, and
one phonation acoustic features, other acoustic measures yield significant group differ-
ences between male and female HC subjects. Important to note, primarily male HC
subjects are characterized by high severity compared to female HC. Notably, gender
dimorphism is less frequent in disease groups (PD, PSP, MSA). Similar to HC sub-
jects, male patients from disease groups also manifest higher impairment compared
to female patients. Thus gender dimorphism would be an important parameter while
acoustic features are being used for differential diagnosis.

In the classification task, individual features did not yield a good classification
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P-Value
HC PD PSP MSA

Hypokinetic:
RLRml 0.35696 0.37563 0.38369 0.44485
RLRtxt 0.24256 0.50000 0.23626 0.18003
RSRml 0.29321 0.37563 0.35185 0.44485
RSRtxt 0.07397 0.31723 0.06957 0.40144
PIRml 0.00039 0.27410 0.09691 0.11738
PIRtxt 0.23492 0.09460 0.09315 0.02661
LREml 0.02980 0.40605 0.41633 0.15240
LREtxt 0.00338 0.34597 0.48315 0.12774
jittera 0.01324 0.37563 0.38369 0.33870

shimmera 0.00000 0.00872 0.14538 0.16584
HNRa 0.00000 0.01968 0.48315 0.13970
DV Iml 0.00003 0.50000 0.03460 0.01422
DV Itxt 0.00188 0.02860 0.44956 0.02447
GV Iml 0.00000 0.02860 0.09510 0.08707
GV Itxt 0.00001 0.01325 0.14538 0.00150
V OTddk 0.00009 0.43704 0.23626 0.26177
DUSml 0.00000 0.45072 0.07405 0.02614
DUStxt 0.00025 0.00202 0.19860 0.05032
DUFml 0.98604 0.46842 0.67013 0.88012
DUFtxt 0.05984 0.40605 0.40140 0.32768
RFAml 0.00309 0.05650 0.01558 0.33870
RFAtxt 0.01645 0.43704 0.00800 0.10600
ESTml 0.08133 0.40605 0.18743 0.09619
ESTtxt 0.40145 0.37563 0.02861 0.07079
RSTml 0.00001 0.31723 0.08158 0.04534
RSTtxt 0.00015 0.01325 0.38369 0.01233
ASTml 0.30745 0.31723 0.02861 0.31864
ASTtxt 0.00324 0.40605 0.29138 0.16584
DPIml 0.00019 0.13363 0.14538 0.06358
DPItxt 0.00023 0.04805 0.12694 0.00791

stdPWRml 0.00006 0.46842 0.08158 0.08707
stdPWRtxt 0.00000 0.07688 0.29138 0.03571
stdF0ml 0.46891 0.07688 0.41633 0.22698
stdF0txt 0.00608 0.08897 0.04967 0.42303

Ataxic:
stdF0a 0.37308 0.10242 0.06957 0.26177
stdPSDa 0.00635 0.02860 0.23626 0.11651
V Dddk 0.13871 0.37563 0.26308 0.07079

DDKIddk 0.00859 0.21406 0.48315 0.03157
EFn SDI 0.01197 0.50000 0.21102 0.08707

Spastic:
PSIa 0.05554 0.18989 0.08957 0.27048

DDKRddk 0.00177 0.40605 0.08158 0.11651
NSRtxt 0.14797 0.08897 0.08158 0.06358
Efn MI 0.02702 0.28955 0.23626 0.13970

Table 9.2: Gender diphormism analysis for individual acoustic features in HC, PD,
PSP, and MSA groups; p− value < 0.05 is marked as bold

score. While individual features are not sufficient to discriminate PSP and MSA
patients, the multivariate analysis may help describe particular deficits. In the fol-
lowing section, subsystem related deficits are first investigated for disease groups.
Next, disease specific dysarthria manifestation is analyzed for understanding under-
lying pathophysiology.
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9.3.2 Speech features by subsystems of speech

1D Respiration feature

Four features (RLR, PIR, RSR, and LRE) are related to the problem of movement and
initiation of inspiration and expiration. Individual respiration speech parameters did
not show group differences (p<0.05) between PSP and MSA. Mainly, RSR features
(from monologue and reading text) individually did not show group difference, but
the average of those two features yield group difference as provided in Table 9.3.
PSP patients manifest a more significant respiration rate (RSR) deficit, probably
due to reduced vital capacity. PIR seems to have an inverse physical relation with
RSR. Reduced inspiratory capacity may lead to compromise in the number of pauses
in-between respiration. Thus PIR is kept though it did not find group differences.
Obstruction (resp. reduced efficiency) in the airways may increase the loudness of
respiration (resp. reduced loudness), which is measured by RLR. RLR is also kept
in the overall respiration feature because it may provide complementary information
compared RSR and PIR. On the other hand, latency in speech exchange (LRE) did
not show any indication to differentiate PSP and MSA. Averaging PIR and RLR
(monologue and text) did not yield group differences as summarized in Table 9.3.

P-Value
HC vs PD HC vs PSP HC vs MSA PD vs PSP PD vs MSA PSP vs MSA

0.5*(RSRml+RSRtxt) 0.89 0.00014 0.039 0.003 0.22 0.045
0.5*(PIRml+PIRtxt) 0.44 3.67e-06 6.16e-08 0.0002 4.75e-05 0.29
0.5*(RLRml+RLRtxt) 0.38 0.011 0.13 0.10 0.64 0.29
0.5*(LREml+LREtxt) 0.63 7.85e-06 1.86e-08 0.0007 7.76e-05 0.84

0.25*(PIRml+PIRtxt+RLRml+RLRtxt) 0.85 1.7e-06 1.2e-05 0.0003 0.0017 0.291

Table 9.3: Combination of respiration components

Till now, it is observed that only RSR measure yields group difference and combi-
nation of PIR, RLR even did not produce discrimination for PSP and MSA. However,
combining PIR, TLR with RSR by giving more importance to RSR (a factor of 2)
improves group difference. Respiration feature (Fr) is defined by the Equation 9.1.

Fr =
µ(RLRml,RLRtxt,P IRml,P IRtxt)

2
+ µ(RSRml,RSRtxt) (9.1)

The designed respiration index (Fr) will represent the measure of overall respi-
ration deficits. More precisely, the developed 1-dimensional respiration index may
capture deficiency in vital capacity. Reduced vital capacity results in increased respi-
ration rate, decreased number of pause, and reduced respiration loudness. Figure 9.3
displays the group difference using respiration index among four groups. Globally,
both PSP and MSA patients exhibit respiration deficits compared to HC and PD.
However, PD patients did not manifest respiration deficits compared to HC. Impor-
tant to note, PSP patients manifest predominant respiration deficits compared to
MSA and PD in Fr.

Correlation with Fr: Significant correlation of designed respiration index w.r.t.
clinical severity (bradykinesia, rigidity, tremor, cerebellar etc.) could provide addi-
tional information. Only PSP patients showed significant correlation between respi-
ration index (Fr) and bulbar NNIPPS subscore (r = 0.52, p − value = 0.02) and

156



Figure 9.3: Respiration index (Fr) for the 4 groups

with oculomotor NNIPPS subscore (r = 0.49, p = 0.03). Fr did not show signifi-
cant correlation with bradykinesia and rigidity for both PSP and MSA while general
presumption was respiration deficits are attributed to rigidity and bradykinesia.

Gender dimorphism with Fr: Important to note, respiration index (Fr) did
not show gender dimorphism in HC (p = 0.88), PD (p = 0.54), PSP (p = 0.14), and
MSA (p = 0.64). Thus Fr can be used for differential diagnosis without considering
gender differences. Notably, a group of PSP male patients displayed higher respiration
disorder compared to female PSP patients. In addition, it is required to consider that
each disease group consists of a small number of male and female patients.

1D Phonation feature

Out of 7 phonation features, DVI and GVI are measured from monologue and text
recording protocol and rest phonation features are measured from sustained /a/. Only
stdF0a yields a group difference between PSP and MSA. While the intention is to
design a phonation index, stdF0a alone is not sufficient to capture laryngeal deficits.
Thus, other phonation features also need to be explored for capturing complementary
laryngeal deficits. Table 9.4 summarizes group differences of homogeneous phonation
components. Average of GVI yields good discrimination between PD and APS, but
not for PSP and MSA. On the other hand, a group of PSP patients (6 out of 19) ex-
hibited prolonged vowel duration by speech parameter DVI compared to MSA. Harsh
voice dimension also did not provide differentiation between PSP and MSA. However,
median value of individual harsh voice component suggest that MSA predominate in
jitter and PSP predominate in shimmer and HNR.

P-Value
HC vs PD HC vs PSP HC vs MSA PD vs PSP PD vs MSA PSP vs MSA

GV Iml+GV Itxt
2

0.94 5.39e-07 7.89e-11 0.001 0.0003 0.95
DV Iml+DV Itxt

2
0.37 0.0001 8.16e-09 0.003 0.0001 0.46

jitter+shimmer+HNR
3

0.61 0.0003 0.0002 0.002 0.002 0.91

Table 9.4: Combination of phonation components
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In the next step, phonation components that manifest a higher impairment in
MSA are considered to combine with stdF0a and remaining speech parameters are
combined to devise another phonation group where PSP predominate. After ana-
lyzing all phonation acoustic features, two phonation groups showed PSP and MSA
patients manifest disparity. One phonation group DVI, shimmer, HNR which mainly
captures decreased control and coordination of the laryngeal muscles, and reduced
range of movement in laryngeal muscles, is severe for PSP patients. Thus, average
DVI (monologue and text), shimmer, and HNR are applied to capture the latter
mentioned phonation deficits. The first phonation index (Fp1) is defined as follows:

Fp1 =
DV Iml +DV Itxt + Shimmer +HNR

4
(9.2)

Figure 9.4 displays group differences among four groups by feature Fp1. A group
of PSP patients manifests relatively high severity compared to MSA (group difference
p=0.1).

Figure 9.4: First phonation index (Fp1) for the 4 groups

Correlation with Fp1: In correlation experiment, Fp1 showed significant correla-
tion with oculomotor NNIPPS subscore for PSP (r = 0.46, p = 0.04). It is observed
that MSA patients hardly show oculomotor severity.

Gender dimorphism with Fp1: Strong gender dimorphism is observed in the
phonation index, Fp1. Distinct gender difference is found for HC (p = 0), PD (p =
0.02), MSA (p = 0.01), but not for PSP (p = 0.52). In all groups most of male
participants manifest greater disorder compared to female participants. Thus it is
important to check influence of gender difference in group difference.

On the other hand, a group of MSA patients shows higher severity in another
phonation group stdF0a, jitter, GVI which mainly captures irregularity in glottal
cycle. Thus, combination by averaging of features mentioned above, giving more im-
portance on stdF0a (factor of 2) come up as second phonation dimension (Fp2) which
is orthogonal to the first phonation impairment (Fp1). This phonation dimension is
defined by Equation 9.3.
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Fp2 = stdF0a +
µ(Jitter,PSI,GV Iml,GV Itxt)

4
(9.3)

A group of MSA patients show comparably higher deficits (irregularity) in vocal
fold vibration from other groups in feature Fp2. Figure 9.5 presents group differences
with Fp2.

Figure 9.5: Second phonation index (Fp2) for the 4 groups

Correlation with Fp2: Figure 9.6 shows the significant correlation of Fp2 w.r.t.
overall NNIPPS score. Phonation index (Fp2) yields correlation with overall NNIPPS
score for PSP patients (r = 0.46, p = 0.04). It is encouraging to observe that PSP
patients present the significant correlation between Fp2 and overall NNIPPS score. In
contrast, irrespective of severity MSA patients mostly manifest high impairment in
Fp2. It would be an important speech marker for the early stage diagnosis. Notably,
it is also required to notice that the MSA group has fewer patients in low severity
subscores. Thus it demands more data to validate the initial indication about early
differential diagnosis.

Gender dimorphism with Fp2: Notably, phonation index, Fp2 did not show
gender dimorphism in HC (p = 0.16), PD (p = 0.27), PSP (p = 0.25), and MSA
(p = 0.48). However, a group of male subjects from HC group showed comparably
greater disorder than female groups.

1D Articulation feature

Total 5 acoustic features are present in the articulation group. Important to note,
RFAml and stdPSD yield group differences (p < 0.05) between PSP and MSA. The
latter mentioned two features capture reduced range of movements and involuntary
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Figure 9.6: Correlation of Fp2 feature w.r.t. overall severity

movements of articulators respectively. Notably, RFA from monologue provides bet-
ter discrimination compared to reading text which opens up another possibility of
speech disorder, but not considered in this thesis. In both features, MSA patients
manifest greater impairment compared to PSP. On the other hand, PSP patients
show prolongation of unvoiced stops (DUSml) compared to MSA. DUSml indirectly
measure the impaired stop consonant articulation or articulatory precision from a
spontaneous speech in the time domain. In both DUStxt and V OT , PSP and MSA
patients exhibit significant prolongation of unvoiced stop consonants compared to PD
and HC. However, DUStxt and V OT are not suitable for discriminating between PSP
and MSA. Table 9.5 presents group differences by the combination of homogeneous
articulation acoustic features. Only the RFA feature yields a group difference between
PSP and MSA. The combination of unvoiced stop consonants duration features even
did not provide a group difference between PSP and MSA.

P-Value
HC vs PD HC vs PSP HC vs MSA PD vs PSP PD vs MSA PSP vs MSA

RFAml+RFAtxt

2
0.001 0.24 0.04 0.003 0.17 0.02

DUSml+DUStxt+V OT
3

0.22 1.77e-09 7.66e-09 0.0001 0.001 0.27
DUFml+DUFtxt

2
0.09 0.31 0.18 0.059 0.76 0.1

Table 9.5: Combination of articulation features

Thus, two groups were finally selected from articulation subsystem. In first group
only DUSml has been considered where PSP patients show greater severity in speech
control and coordination. Figure 9.2 displays group difference among four groups
with the feature DUSml.

The articulation index (Fa) is defined by taking average of RFAml,txt and stdPSD.

Fa =
RFAml +RFAtxt + stdPSD

3
(9.4)

In this articulation index (Fa), MSA patients manifest predominant impairment
compared to HC and PSP groups. Figure 9.7 shows group difference analysis with
Fa.

Correlation with DUSml and Fa: Articulation feature, DUSml did not show
significant correlation with any severity subscore for both PSP and MSA. On the
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Figure 9.7: Articulation feature (Fa) for the 4 groups

other hand, articulation index (Fa) show encouraging correlation with bradykinesia
NNIPPS subscore for PSP patients (r = 0.4, p = 0.09). Important to note, MSA pa-
tients display high impairment in Fa irrespective of severity in bradykinesia NNIPPS
subscore, whereas PSP patients show a strong correlation. Thus a preliminary hy-
pothesis can be drawn about the early stage differential diagnosis. PSP patients
would show low impairment whereas MSA patients would manifest high impairment
at early stage.

Gender dimorphism with Fa: The articulation index, Fa did not show gender
demorphism in HC (p = 0.16), PD (p = 1.0), MSA (p = 0.93), except in PSP
(p = 0.03).

1D Prosodic feature

In the prosodic subsystem group, two acoustic features related to monopitch and
monoloudness are present. First, in monopitch features (both from monologue and
reading text), PD, PSP, and MSA patients manifest significant disorder compared to
HC as provided in Table 9.6.

P-Value
HC vs PD HC vs PSP HC vs MSA PD vs PSP PD vs MSA PSP vs MSA

stdF0ml+stdF0txt
2

3.76e-06 9.55e-08 1.68e-10 0.8 0.14 0.21
stdPWRml+stdPWRtxt

2
0.54 0.008 0.01 0.008 0.02 0.99

Table 9.6: Combination of prosodic features

However, latter acoustic features did not exhibit discrimination between PSP and
MSA as both disease groups manifest impairment. Notably, monoloudness did not

161



show impairment in PSP and MSA compared to HC which is questionable. Con-
versely, PD, PSP, and MSA patients exhibit predominant impairment in monopitch
compared to HC. Hence, prosodic index is designed by only monopitch features (from
monologue and reading text) as follows:

Fpr = µ(stdF0ml, stdF0txt) +
µ(stdPWRml, stdPWRtxt)

2
(9.5)

The prosodic index yields encouraging group difference in pathological groups
compared to HC as illustrated in Figure 9.8. Thus this Fpr index could be used for
measuring overall speech disorder but not for discriminating PSP and MSA.

Figure 9.8: Group differences between groups by prosodic index Fpr

Correlation with Fpr: Monopitch feature show significant correlation w.r.t.
overall (r = 0.51,p = 0.009), bradykinesia (r = 0.51,p = 0.009), rigidity (r =
0.43,p = 0.032), bulbal/pseudobulbar (r = 0.38,p = 0.059) NNIPPS subscore for
MSA patients. Irrespective to severity, PSP patients show greater impairment in
monopitch feature. Prosodic index (Fpr) yields significant correlation w.r.t. over-
all (r = 0.48,p = 0.016), bradykinesia (r = 0.58,p = 0.002), bulbal/pseudobulbar
(r = 0.44,p = 0.02) NNIPPS subscore for MSA patients whereas PSP patients did
not exhibit correlation.

gender dimorphism with Fpr: Prosodic index did not show gender difference
in HC (p = 0.16), PD (p = 0.47), PSP (p = 0.52), and MSA (p = 0.84) groups.

1D Timing feature

In timing subsystem, individual feature analysis did not find discrimination between
PSP and MSA. However, those features are considered to keep for further analysis
as those are presented in the study [114]. Those timing components should capture
timing impairments, particularly in MSA. Thus acoustic features, ESTml, RSTml and
ASTtxt are averaged to capture timing deficits. The timing index is defined by the
Equation 9.6.

Ft =
ESTml +RSTml + ASTtxt

3
(9.6)
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The proposed timing index yields encouraging discrimination between PD and
APS (PSP and MSA). This index also shows marginally higher severity for a group
of MSA patients though it did not show group differences between PSP and MSA.
Figure 9.9 shows group differences among groups with timing feature (Ft).

Figure 9.9: Timing feature (Ft) for the 4 groups

Correlation with Ft: Designed timing index, Ft did now show significant corre-
lation in any severity subscore. However, MSA patients show indicative correlation
w.r.t. bradykinesia (r = 0.36, p = 0.07), rigidity (r = 0.37, p = 0.07), and bul-
bar/pseudobulbar (r = 0.36, p = 0.08) NNIPPS subscore. It can be hypothesized
that there is great influence of aforesaid severity subscores on timing index.

Gender dimorphism with Ft: Timing index (Ft) also manifest gender dimor-
phism in HC group (p = 0.00002) and in MSA (p = 0.06). PD (p = 0.53) and
PSP (p = 0.16) did not show gender difference in timing index. In overall, male
participants manifest high disorder in timing index compared to female participants.

Oral diadochokinetic feature

Features from the oral diadochokinetic group did not yield group differences for PSP
and MSA. In both DDKR (syllable rate) and DDKI (syllable irregularity), PSP and
MSA patients exhibit predominant impairment compared to HC and PD. APS group
manifests predominant deficits in DDK features. Average of DDK features also repli-
cate individual feature. Fddk is defined as follows:

Fddk =
DDKR +DDKI

2
(9.7)

Figure 9.10 displays group difference result for diadochokinetic index (Fddk). Fddk
yield encouraging discrimination between PD and APS, but did not produce group
difference between PSP and MSA. However, a group of PSP (6 PSP) patients manifest
distinctively high disorder compared to MSA in DDK index.

Correlation with Fddk: Fddk yields significant correlation w.r.t. bradykinesia
(r = 0.43, p = 0.032), cerebellar (r = 0.45,p = 0.024) for MSA patients. On the
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Figure 9.10: Group differences with DDK index (Fddk) for the 4 groups

other hand, PSP patients present significant correlation for Fddk w.r.t. oculomotor
NNIPPS subscore (r = 0.67, p = 0.002).

Gender dimorphism with Fddk: In diadochokinetic index, Fddk also yield gender
independence for HC (p = 0.84), PD (p = 0.60), and PSP (p = 0.58). Conversely,
marginal gender difference (p = 0.06) is found in MSA group. A group of malt MSA
patients showed greater disorder than female female patients.

1D Nasalic feature

Two nasalic features did not show group differences for PSP and MSA. However, both
PSP and MSA patients manifest hypernasality by EfnM compared to PD and HC.
The combination of nasalic feature even did not help to differentiate PSP and MSA.

Design two speech dimensions

The previous section illustrates that respiration, phoantion, and articulation indexes
are important for discrimination of PSP and MSA. However, those individual sub-
system indexes are not enough for differential diagnosis of PSP and MSA. Now, it
is required to combine homogeneous subsystem indexes to design two speech dimen-
sions. In that direction, respiration index (Fr) and single articulation feature, DUSml
are found where PSP patients show greater impairment compared to MSA. Thus the
linear combination of Fr and DUSml generate the first dimension (X1) where more
importance is given to respiration impairment (factor of 2). X1 is defined by the
Equation 9.8.

X1 = Fr +
DUSml

2
(9.8)

Figure 9.11 illustrates group differences analysis among four groups with feature
X1. This feature improves group difference between PSP and MSA than individ-
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ual subsystem indexes. However, this feature alone is not sufficient for differential
diagnosis.

Figure 9.11: Feature F1 for the 4 groups

Correlation with X1 dimension: The first dimension X1 shows significant
correlation with bulbar/pseudobulbar (r = 0.52,p = 0.023), oculomotor (r = 0.49,p =
0.032) for PSP patients whereas MSA patients did not show correlation in any of the
NNIPPS subscores.

Gender dimorphism with X1: First dimension comprising of respiration
index and single articulation speech parameter showed gender difference in HC (p =
0.02) and PSP (p = 0.04), but not in PD (p = 0.20) and MSA (p = 0.27). In
agreement to previous observation, male patients manifest greater deficits compared
to female patients.

To design the second speech dimension X2, features Fa, Fp2, and Ft are combined
as in Equation 9.9. More importance is given to articulation impairment (factor of 2)
than phonation and timing impairment for PSP and MSA discrimination task. In this
speech dimension, MSA patients manifest greater deficits in articulation, phonation,
and timing features.

X2 = Fa +
Fp2
2

+
Ft
2

(9.9)

Figure 9.12 presents group differences analysis among four groups with the de-
signed speech dimension, X2. Important to note, MSA patients show specificity with
regards to the severity, which is an encouraging phenomenon. However, this feature
alone did not yield good classification accuracy for PSP and MSA.

Correlation with X2: Second feature dimension, X2 shows significant corre-
lation with overall (r = 0.53, p = 0.02), and bradykinesia (r = 0.5, p = 0.028) for
PSP patients. It can be hypothesized that MSA patients manifest high deficits even
at low NNIPPS severity subscores whereas PSP patients show low impairment in low
severity as presented in Figure 9.13.

Gender dimorphism with X2: Second dimension (X2) did not show gender
difference in HC (p = 0.52), PD (p = 0.27), PSP (p = 0.22), and MSA (p = 0.17).
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Figure 9.12: Feature X2 for the 4 groups

(a) Correlation: F2 w.r.t. overall
NNIPPS subscore

(b) Correlation: F2 w.r.t. bradykinesia
NNIPPS subscore

Figure 9.13: Correlation of X2 w.r.t. overall and bradykinesia NNIPPS subscore

Thus dimension X2 can be consider as a gender independent feature atleast at this
stage. However, it is important to note that more number of male and female patients
are warranted for confirming gender dimorphism.

Table 9.7 presents the percentage of affected patients in individual subsystem
index for PD, PSP, and MSA. The finding reflects previous observations about indi-
vidual subsystem index analysis. PSP patients manifest frequent deficit in respira-
tion index (Fr), one phonation index (Fp1) compared to MSA whereas MSA patients
showed frequent deficit in one phonation index (Fp2), and in articulation index (Fa).
Both PSP and MSA patients showed frequent deficits in timing index (Ft), and di-
adochokinetic index (Fddk.

Finally, in 2-dimensional acoustic dimensions, PSP patients manifest abundant
deficit in X1 whereas MSA patients showed predominant deficits in X2 as summa-
rized in Table 9.8. In X1 = Fr + 0.5 ∗DUSml, the percentage of affected patients in
PSP is distinctively high compared to PD. Inclusion of Fp1 or Fpr in first dimension,
percentage of affected patients in MSA increased from 32% to 52%. Thus discrimi-
nation of PSP and MSA patients could be challenging in modified X1.

Till now, two orthogonal speech dimensions are designed, which are easy to in-
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Subsystem Index PD (%) PSP (%) MSA (%)

Fr Rare (10) Frequent (57.89) Occasional (16)
Fp1 Rare (10) Abundant (73.68) Frequent (52)
Fp2 Rare (5) Common (42.11) Abundant (72)
Fa Occasional (20) Rare (0) Occasional (24)
Ft Rare (5) Frequent (52.63) Frequent (56)
Fpr Common (40) Common (57.89) Frequent (72)
Fddk Rare (10) Abundant (89.47) Abundant (76)

Table 9.7: Impairment for PD, PSP, and MSA groups in Subsystem index; The paren-
theses represent percentage of affected persons according to specific speech dimension:
0–10 % subjects affected are considered rare, 11–25 % occasional, 26–45 % common,
46–70 % frequent, and 71–100 % abundant

Combination of Subsystems PD (%) PSP (%) MSA (%)

X1 = Fr + 0.5 ∗DUSml Ocassional (10) Abundant (73.68) common (32)
X1 = Fr + 0.5 ∗DUSml + 0.5 ∗ Fp1 Ocassional (10) Abundant (78.94) Frequent (52)
X1 = Fr + 0.5 ∗DUSml + 0.5 ∗ Fpr Ocassional (20) Abundant (78.94) Frequent (52)

X2 = Fa + Fp2 Occasional (15) Common (31.57) Abundant (72)
X2 = Fa + Fp2 + Ft Occasional (15) Common (36.84) Abundant (80)

Table 9.8: Impairment for PD, PSP, and MSA groups in combination of subsystem
indexes; The parentheses represent percentage of affected persons according to specific
speech dimension: 0–10 % subjects affected are considered rare, 11–25 % occasional,
26–45 % common, 46–70 % frequent, and 71–100 % abundant

terpret and have physiological relation. The first dimension (X1) shows gender di-
morphism in HC and PSP whereas dimension (X2) did not show gender difference.
Next, these two features are used in 2D linear classifier to discriminate PSP and MSA
patients.

Classification

Logistic Regression (LR) method is used for classification task. Given a small num-
ber of samples, Leave-one-sample-out (LOSO) method is adopted for training/test.
Individual subsystem indexes are first used for classification of PSP and MSA. Table
9.9 presents classification scores with individual subsystem dimensions. Classification
experiment shows that respiration, phonation, and articulation dimensions would be
appropriate for discrimination of PSP and MSA.

Next, designated two speech dimensions (X1, X2) are used as input for classi-
fication. It yields accuracy 84.84%, specificity 84.21, sensitivity 84% which can be
considered good accuracy, while the discrimination of PSP and MSA is even percep-
tually challenging. Table 9.10 provides classification scores between PSP and MSA.

Figure 9.14 displays the grouping of healthy subjects and patients in 2D space.
Figure shows that PD, PSP and MSA patients are clustered in 2D space. While HC
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Feature Threshold Accuracy (%) Sensitivity (%) Specificity (%)

Fr 0.5 70.45 57.89 80
Fp1 0.5 61.36 31.58 84
Fp2 0.6 61.36 57.89 64
Fa 0.6 72.72 73.68 72
Ft 0.45 56.82 0.0 100
Fpr 0.45 56.82 0.0 100
Fddk 0.45 63.63 15.78 100

Table 9.9: Classification score individual subsystem dimension

Feature Threshold Accuracy (%) Sensitivity (%) Specificity (%)

X1 = Fr + DUSml

2
0.55 72.72 63.15 80

X1 = Fr + DUSml

2
+ Fp1

2
0.4 70.45 36.84 96

X1 = Fr + DUSml

2
+ Fpr

2
0.5 68.18 47.36 84

X2 = Fa + Fp2 0.45 70.45 42.10 92.0
X2 = Fa + Fp2 + Ft 0.5 70.45 42.10 92.0
(X1 = Fr + DUSml

2
, X2 =

Fa + Fp2 + Ft)
0.55 84.04 84.21 84

Table 9.10: Classification accuracy using X1 and X2 as 1-dimension and 2-dimensions
for PSP and MSA

subjects present low quantitative value, PSP (resp. MSA) patients show high value
in X1 (resp. X2) dimension.

Figure 9.14: Biplot using X1 and X2 dimensions for four groups

In the next step, prosodic index (Fpr) is included in the first dimension, X1. The
classification score remain same as 84.84%. However, inclusion of first phonation
index in first dimension yields reduced accuracy 81.81%. It suggests that Fp1 did not
provide additional discriminative information in dimension X1.
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Discussion on speech features by subsystems

The current quantitative study attempted to design a single-dimensional index to
measure particular deficits in specific subsystems of speech production (respiration,
phonation, articulation, prosody, timing, nasal, and diadochokinetic). Respiration
index came up as an encouraging measure where PSP manifests major disorder com-
pared to MSA. It is known that the respiratory system (mainly lungs) serves as the
energy source (airflow) for speech production. Amount of air, rhythm, and rate of
respiration are directly controlled by several neurons from the Central Nervous Sys-
tem (CNS). Several widely distributed, bilaterally located groups of neurons in the
medulla and pons mostly control automatic and rhythmic respiration [98, 69]. In
addition, the third, fourth, and fifth cervical segments of the spinal cord, where dam-
age can paralyze the diaphragm bilaterally and seriously affect breathing. Damage
to areas mentioned above can produce severe respiratory abnormalities, which also
compel to compromise other subsystems accordingly.

Rigidity and bradykinesia in rib cage muscle can reduce the excursion for PD
patients [286]. However, In four respiration features, PD patients did not show group
differences with HC. Central hypoventilation is more commonly described in the synu-
cleanopathies, particularly MSA, in which degeneration of the pontomedullary auto-
nomic respiratory center is thought to result in diminished response to hypercapnia
or hypoxemia. Conversely, hypoventilation is described infrequently in patients with
tauopathies [205, 213], but the study found hypoventilation for a PSP patient [163].
Reduced vital capacity can drive to increase the rate of inscription and also to main-
tain speech rate, speakers can compromise the number of pauses within the breath
cycle. PSP patients present predominant respiration deficits by RSR. Both PSP and
MSA patients manifest predominant impairment to produce a sufficient number of
pauses within respiration. Inspiratory stridor (a strained, high-pitched, harsh respi-
ratory sound) was found to be common (9–69 %) for MSA patients [317, 315, 323].
Laryngeal adduction can be another possible reason for Inspiratory stridor [54]. In
contrast to clinical findings, acoustic feature RLR provides decreased inspiration noise
in MSA and PSP patients than HC and PD, probably due to the decreased inspiratory
effort. In addition, the designed respiration index exhibited significant correlation
with bulbar/pseudobulbar NNIPPS subscore. Thus it could be hypothesized that
degeneration in bulbar/pseudobulbar may lead to respiratory impairment in speech
production [100].

Laryngeal deficits are another most common pathology for parkinsonian disorder.
Both PSP and MSA patients showed prominent deficits in phonetion acoustic mea-
sures (GVI,DVI, stdF0a,shimmer,HNR). Impairment in GVI, jitter, and stdF0a can
be explained by laryngeal deficits mostly attributed to paralysis or atrophy of vocal
folds abductor [128], originating from either a selective loss of abductor motor neurons
in the nucleus ambiguous [19, 128] or depletion of medullary serotonergic projection,
exerting tonic drive to abductor motor neurons [294]. Dystonia can be another pos-
sible cause of laryngeal pathology [196]. The current study found that PD, along
with PSP and MSA patients manifest insufficient prosody (particularly pitch varia-
tion) mostly due to reduced range of movement of laryngeal functions, which is also
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a distinct property of hypokinetic dysarthria. A previous study showed that MSA
patients exhibit impaired motion of the vocal cord that occurs early in the disease
process, accounting for early development of laryngeal symptoms such as dysphonia,
stridor, and sleep apnea [169]. Conversely, PD patients manifest high pitch at the
later stage of the disease [117]. In phonation features ( Fp2), both PSP and MSA pa-
tients manifest prevalent laryngeal pathology compared to HC and PD, particularly
in pitch variation. More precisely, MSA patients exhibit higher deficits than other
groups, probably due to cerebellar deficits. In other phonation dimensions, features
related to control, coordination, and reduced range of movement of laryngeal muscles
for which PSP is expected/supposed to show higher impairment. DVI (monologue,
text) captures control of the laryngeal muscles, and coordination of the laryngeal and
supra-laryngeal muscles may manifest via voicing that interferes or continues within
voiceless intervals, including unvoiced speech or pauses. Shimmer captures the per-
turbation of amplitude during sustained vowel phonation. A group of PSP patients
shows higher shimmer compared to MSA, probably due to in-coordination with res-
piration. HNR may capture the reduced range of movement of laryngeal muscles.
Most PSP patients introduced more noise due to incomplete closure of vocal folds.
All these observations help to make the hypothesis that a particular class of laryngeal
deficits is prevalent for PD, PSP and MSA patients.

Articulatory impreciseness is perceptually detected by several studies [47, 55, 106,
182]. Objective analysis also detected imprecise articulation in studies [312, 306,
114, 115]. In agreement with previous studies [306], PSP and MSA patients showed
prolonged VOT and DUS for unvoiced stop consonants from speech task /pa-ta-ka/
and connected speech respectively. It can be explained by high dysarthria severity in
the APS group. Articulatory decay and instability are captured by acoustic feature
RFA and stdPSD where MSA patients showed greater severity compared to PD and
PSP.

Timing of speech is disrupted by the deficits of the basal ganglia circuit, which lead
to hypokinetic dysarthria. Predominant speech-timing disturbances were observed in
the APS (PSP and MSA) group compared to PD and HC.

Designed two-dimensional subsystem features improved the discrimination be-
tween PSP and MSA. By this approach, subsystem specific impairment reveals en-
couraging pathophysiology of disease groups. F1 captures particularly respiration,
articulation, and monopitch impairments. These impairments are more predominant
for PSP patients. X2 captures a particular impairment in articulation (reduced range
of movement and stability), phonation (laryngeal abnormality) and timing subsys-
tems. These impairments are more predominant for MSA patients. Together, these
2 dimensions allow to discriminate between PSP and MSA patients with a good ac-
curacy, sensitivity, and specificity, 84%. The methodology and result are promising
for PD vs APS discrimination (particularly PD vs MSA which is the concern of the
project,Voice4PD-MSA). In the following section, these results are used to proceed
with designing dysarthria-type measures.
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9.3.3 Speech features by dysarthria

Dysarthria type analysis may elucidate impairments more efficiently for voice patholo-
gist. To do so, features used in X1 and X2 are regrouped according to their dysarthria
type. X1 consists in only hypokinetic features. Considering only monopitch speech
parameter from prosodic subsystem in X1 yield group difference between PD and HC.
Thus, it can be considered as an hypokinetic measure and rename it H1. X2 consists
of an hypokinetic feautre H2 and an ataxic one A2.

Hypokinetic measure (H1)

First hypokinetic measure (H1) is defined by the Equation 9.10. Now onward, H1

will be used as one of the hypokinetic measures.

H1 = Fr +
DUSml

2
+
Fpr
2

(9.10)

Figure 9.15 illustrates group wise statistical difference. 7 (out of 19) PSP patients
show clear discrimination in this hypokinetic index from MSA.

Figure 9.15: Hypokinetic feature H1 of 4 groups

Hypokinetic measure (H2)

The articulation, phonation and timing features from hypokinetic dysarthria are
grouped as follows:

• Articulation: Ha = RFAml+RFAtxt

2

• Phonation: Hp = Jitter+GV Iml+GV Itxt
3

• Timing: Ht = ESTml+RSTml+ASTtxt
3
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Next, second hypokinetic measure is defined as in Equation 9.11.

H2 = Ha +
Hp

2
+
Ht

2
(9.11)

Figure 9.16 illustrates group wise statistical difference. In this dimension 9 (out
of 25) MSA patients show clear discrimination from PSP. In addition, PD patients
exhibit statistical group difference w.r.t. HC.

Figure 9.16: Hypokinetic feature H2 of 4 groups

Correlation with H1 and H2: Hypokinetic index H1 show correlation with only
bulbar NNIPPS subscores for PSP patients (r = 0.44, p = 0.06). On the other hand,
hypokinetic index, H2 showed correlation with overall severity (r = 0.42,p = 0.07),
bradykinesia (r = 0.4,p = 0.09) NNIPPS subscore for PSP patients and with rigidity
(r = 0.42,p = 0.03) NNIPPS subscore for MSA patients.

Gender dimorphism in H1 and H2: First hypokinetic index, H1 showed
gender difference in HC (p = 0.03), PSP (p = 0.05), but not for MSA (p = 0.11)
and PD group (p = 0.18). On the other hand, second hypokinetic index, H2 manifest
gender independence for HC (p = 0.38), PD (p = 0.75), PSP (p = 0.08), and MSA
(p = 0.25) groups. Important to note, PSP female patients manifest greater deficits
compared to PSP male patients in H2 index.

Ataxic feature

In the ataxic dysarthria, two groups are found where PSP and MSA manifest or-
thogonal properties. First group consists features from oral diadochokinetic (DDK)
recording protocol. Ataxic feature (A1) is designed from DDK as:

A1 =
V D +DDKI

2

. In ataxic feature A1, PSP and MSA patients are not statistically separable. How-
ever, a small group of PSP patients (7 PSP patients) show distinctively higher severity
as in Figure 9.17. Individual ataxic feature analysis from this dimension reveals that
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5 PSP patients in VD and 3 PSP patients in DDKI manifest distinctly higher impair-
ment compared to MSA.

Another ataxic feature is designed from phonation task as:

A2 =
stdF0a + stdPSD

2

. Figure 9.17 illustrates that MSA patients manifest greater impairment in the ataxic
feature A2. Interesting to observe that in this dimension MSA patients uniquely
exhibit ataxia.

(a) Ataxic feature A1 (b) Ataxic feature A2

Figure 9.17: Group difference of HC, PD, PSP and MSA by ataxic features A1 and
A2

Correlation with A1 and A2: The cross-correlation between ataxic indices
and NNIPPS subscores yield encouraging result. Ataxic dimension, A1 showed sig-
nificant correlation with bradykinesia (r = 0.47,p = 0.01), cerebellar (r = 0.39,
p = 0.05) NNIPPS subscore for MSA patients and with oculomotor NNIPPS sub-
score (r = 0.67,p = 0.001) for PSP patients. Other ataxic index, A2 showed corre-
lation with overall severity (r = 0.51,p = 0.02), bradykinesia (r = 0.49,p = 0.03),
bulbar/pseudobulbar (r = 0.47,p = 0.04) NNIPPS subscore for PSP patients. MSA
patients did not show significant correlation for A2 with NNIPPS subscore rather
MSA patients mostly manifest higher disorder in A2 index.

Gender dimorphism in A1 and A2: Ataxic index, A1 did not show gender
difference in any of the groups such as HC (p = 0.5), PD (p = 0.33), PSP (p = 0.83),
and MSA (p = 0.06). In another ataxic index, A2, did not show gender dimorphism
in HC (p = 0.42), PD (p = 0.14), PSP (p = 0.76), and MSA (p = 0.52). Notably,
male MSA patients manifest greater impairment than female MSA patients in A1.

Spastic feature (S)

Four spastic features are available in the feature set. DDKR and NSR measure
a similar aspect of speech production, like syllable rate, in two different recording
tasks. Inspired by latter observation, two rate-related features are averaged first and
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then combined with other spastic feature generate the spastic feature. The spastic
feature (S) is defined as:

S =
µ(DDKR,NSR) + PSI + Efnm

3

. Figure 9.18 illustrates that both PSP and MSA group manifest predominant
spastisity compared to HC and PD. However, 4 PSP patients exhibit distinctively
higher impairment compared to MSA.

Figure 9.18: Spastic feature S of 4 groups

Correlation with S: Spastic index (S) show correlation with bradykinesia,
rigidity, bulbar/pseudobulbar, and overall NNIPPS subscore for MSA patients as
provided in Table 9.11. PSP patients showed correlation of index S with only oculo-
motor NNIPPS subscore (r = 0.44,p = 0.06).

Disease
group

NNIPPS
subscore

Bradykinesia Rigidity Cerebellar Bulbar /
Pseudobul-
bar

Overall

MSA Spastic
Index
(S)

0.4∗ 0.46∗ 0.25 0.48∗ 0.59∗∗

Table 9.11: The cross-correlations between dysarthric and clinical motor indices: *p
< 0.05, **p < 0.01, ***p < 0.001

Gender dimorphism in S: In spastic index (S), gender dimorphism is observed
in HC (p = 0.0008) and PSP (p = 0.049) disease groups whereas PD and MSA pa-
tients did not manifest gender difference. Interestingly, female HC and PSP patients
showed comparably higher spasticity compared to males.

Table 9.12 summarizes the percentage of affected patients in individual dysarthria
index. In the hypokinetic index (H1), the PSP group showed abundant deficits,
whereas the MSA group manifested frequent deficits. In the hypokinetic index (H2),
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MSA patients showed frequent deficits. Both PSP and MSA groups showed prominent
deficits in ataxic index (A1). MSA patients showed frequent deficits in another ataxic
index (A2). In agreement with previous studies [247], PD patients only manifest
occasional hypokinesia.

Dysarthria Index PD (%) PSP (%) MSA (%)

H1 Occasional (20) Abundant (78.95) Frequent (52)
H2 Occasional (15) Occasional (21.05) Frequent (48)
A1 Rare (5) Abundant (78.95) Abundant (76)
A2 Rare (5) Occasional (21.05) Frequent (48)
S Rare (0) Common (42.10) Common (36)

Table 9.12: Impairment for PD, PSP, and MSA groups in dysarthria index; The
parentheses represent percentage of affected persons according to specific speech di-
mension: 0–10 % subjects affected are considered rare, 11–25 % occasional, 26–45 %
common, 46–70 % frequent, and 71–100 % abundant

Table 9.13 illustrates percentage of affected patients in combination of dysarthric
index. In D2, most of the MSA patients manifest speech disorder whereas in D1 and
D1H1S both PSP and MSA patients show a combination of dysarthria.

Combined dysarthria Index PD (%) PSP (%) MSA (%)

D1H1S = H1 + S
2

Occasional (20) Abundant (84.21) Abundant (72)
D1 = H1 + S

2
+ A1

2
Occasional (15) Abundant (84.21) Abundant (76)

D2 = H2 + A2 Occasional (20) Common (42.10) Abundant (84)

Table 9.13: Impairment for PD, PSP, and MSA groups in dysarthria index; The
parentheses represent percentage of affected persons according to specific speech di-
mension: 0–10 % subjects affected are considered rare, 11–25 % occasional, 26–45 %
common, 46–70 % frequent, and 71–100 % abundant

Though individual dysarthric indexes provide encouraging group differences be-
tween PSP and MSA, it is time to check classification scores. If the classification
score is not satisfactory, combination of dysarthric indexes may yield improved dis-
crimination between PSP and MSA as presented in Table 9.12.

Classification with dysarthria features

Naturally, individual dysarthria feature dimensions are used first for classification
using logistic regression. It is clear from the classification score provided in Table
9.14 that individual dimensions are not sufficient for good classification. However,
H1 and A2 yield an indication to use in two separate dimensions.

As decided previously that two speech dimensions may be suitable for classifica-
tion, two speech dimensions are designed with dysarthria dimensions. First speech
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Feature Threshold Accuracy (%) Sensitivity (%) Specificity (%)

H1 0.55 68.18 57.89 76
H2 0.45 63.63 26.32 92
A1 0.45 68.18 31.58 96
A2 0.55 72.73 63.16 80
S 0.45 56.82 0.0 100.0

Table 9.14: Classification accuracy using individual dysarthria indexes

dimension (D1) is defined as:

D1H1S = H1 +
S

2

. Prevalence of PSP patients in hypokinetic ans spastic dysarthria motivates to
combine H1 and S indexes. PSP patients show higher impairment compared to other
groups in hypokinetic and spastic dysarthria. Other speech dimension (D2) is defined
as:

D2 = H2 + A2

MSA patients show greater severity in hypokinetic and ataxic dysarthria. Figure 9.19
displays boxplot of two speech dimensions.

(a) D1H1S feature (b) D2 feature

Figure 9.19: Group difference of four groups using feature D1H1S and D2

Table 9.15 presents classification accuracy by combining dysarthric dimensions
D1H1S and D2. Although accuracy is little improved, sensitivity is low as many PSP
patients are misclassified as MSA. Next, two dimensions are used in logistic regression,
which yields a comparably good classification score.

Classification by 2-dysarthria dimensions yields good accuracy, 86.36%. In agree-
ment with previous studies, PSP patients manifest predominant hypokinetic and
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Feature Threshold Accuracy (%) Sensitivity (%) Specificity (%)

D1H1S = H1 + S
2

0.5 72.72 57.89 84.0
D2 = H2 + A2 0.45 70.45 42.11 92.0
(D1H1S, D2) 0.5 86.36 84.21 88

Table 9.15: Classification accuracy using D1H1S and D2 as 1-dimension or 2-
dimensions input

spastic dysarthria whereas MSA patients are characterized by ataxic and hypoki-
netic dysarthria. Important to note, PD patients only manifest hypokinesia by H1

and H2.
Designed dimension, D1 did not show gender difference in HC (p = 0.12), PD (p =

0.15), and PSP (p = 0.14) whereas MSA (p = 0.04) disease group manifest gender
dimorphism. On the other hand, dimension D2 did not show gender dimorphism
in HC (p = 0.23), PD (p = 0.10), PSP (p = 0.16), and MSA (p = 0.09). Figure
?? illustrates that male MSA patients manifest higher deficits compared to female
MSA whereas both male and female PSP exhibit comparably high deficits in D1.
Thus it can be hypothesized that classification of male PSP and MSA would be more
challenging.

Now, it is time to decide about the ataxic dimension A1. Interestingly, inclusion
of ataxic feature A 1 in the first dimension further improves the classification score
for PSP and MSA. Modified D1 is defined as:

D1 = H1 +
A1

2
+
S

2

. Classification accuracy improved little in D1 but half of the PSP patients are
misclassified. D2 dimension is kept unchanged with A2 and H2. Table 9.16 shows
that 2D features yield very good classification accuracy 88.63 %.

Feature Threshold Accuracy (%) Sensitivity (%) Specificity (%)

D1 = H1 + A1

2
+ S

2
0.45 75 47.37 96

(D1, D2) 0.6 88.63 89.47 88

Table 9.16: Classification accuracy using D1 as 1-dimension input and D1, D2 as
2-dimensions input

Figure 9.20 presents the boxplot of modified dimension D1 and 2D plot of D1 and
D2.

In the modified first dimension (D1), gender dimorphism is observed in HC (p =
0.04), PD (p = 0.05), and MSA (p = 0.01) groups whereas PSP (p = 0.41) did not
show gender difference.

In addition, proposed dysarthria features are used to classify PD and PSP; and
PD and MSA. Feature D1 consists of H1, A1, and S can discriminate between PD and
PSP by 87%. On the other hand, both D1 and D2 discriminate between PD and MSA

177



(a) D1 feature (b) Biplot of D1 and D2 feature

Figure 9.20: Group difference of four groups using the modified feature D1; Biplot
by D1 and D2

by 87%. It suggests that designed dimensions would be helpful for discrimination of
PD and MSA by good accuracy.

Discussion on speech features by dysarthria

In both hypokinetic indexes (H1, H2), PD, PSP, and MSA patients exhibit pronounced
hypokinesia. It can be justified by degeneration in basal ganglia circuits. PD patients
manifest less severity compared to PSP and MSA in hypokinetic indexes, probably
due to slow disease progression of PD [14]. Furthermore, PD patients did not exhibit
ataxia and spasticity, which was also stated in previous studies [247]. In overall, PSP
and MSA patients manifest hypokinetic, ataxic and spastic dysarthria. However, the
present study reveals that PSP and MSA patients predominate in particular types of
hypokinesia and ataxia.

In differential aspect, PSP patients mostly presents particular type of hypokinetic
dysarthria (H1), spastic (S) and ataxic (A1) components. Only a small group of PSP
exhibit comparably higher spasticity and ataxia from MSA in S and A1. The latter
observation is consistent with widespread neurodegeneration involving the midbrain
as well as the globus pallidus, striatum, hypothalamic nucleus, pons, superior cere-
bellar peduncle and cerebellar dentate nucleus [202]. Relation with neuronal loss and
gliosis in the substantia nigra with severity of hypokinetic dysarthria was confirmed
by the study [159]. Conversely, MSA patients manifest predominant ataxia plus a par-
ticular type of hypokinesia compared to PSP. The latter observation can be attributed
to degeneration of cerebellum, middle cerebellar peduncle, striatum, substantia ni-
gra, inferior olivary nucleus, and pons [89]. In addition, a relationship with spastic
dysarthria and bulbar/pseudobulbar severity was established in the studies [247, 255].
Relation with ataxic dysarthria with cerebellar severity was also confirmed in stud-
ies [247, 255]. Present study observed correlation between H1 w.r.t. bulbar NNIPPS
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subscore and between H2 w.r.t. bradykinesia for PSP patients. MSA patients showed
correlation between H2 w.r.t. rigidity NNIPPS subscore. It confirms that both PSP
and MSA exhibit different degrees of hypokinesia and spasticity. The present study
also observed significant correlation with ataxic index A1 w.r.t. cerebellar NNIPPS
subscore for MSA patients. Both ataxic index (A1 and A2) yield correlation with
bradykinesia NNIPPS subscore for MSA patients. As MSA groups consist of both
parkinsonian and cerebellar subtypes, correlation with bradykinesia and cerebellar is
logical. In addition, it will help to localize underlying pathophysiology.

PSP patients showed mostly respiration deficits (primarily due to bradykinesia,
rigidity), prolonged phoneme (probably due to weak movements, degeneration in cere-
bellar forced to rely on basal ganglia circuit for precise movements). Conversely, MSA
patients showed mostly irregularities in vocal folds vibration, repetitive articulators
movements and instability/desynchronization of articulatory movements.

First hypokinetic index (H1) manifested gender dimorphism in HC, but H2 did not
show gender dimorphism. Ataxic indexes did not show gender difference in groups.
However, spastic index yield significant gender differences in HC and PSP. Overall
male subjects manifest greater severity compared to female subjects. It could be
hypothesized that in the patient group male patients would exhibit high speech dis-
order compared to females. It also suggests devising gender specific speech markers
for better diagnosis. However, small data size is still an impediment towards these
gender-specific speech indexes.
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Chapter 10

Conclusions and future work

This chapter summarizes the contributions towards differential diagnosis of PSP and
MSA; and PD and MSA-P groups by voice analysis. Next, future works are described
towards accurate speech parameter computation and early differential diagnosis.

10.1 Summary and discussion

This thesis presented a set of speech features categorically to assess imprecise vowel,
consonants production and spontaneous speech for parkinsonian disorder. As this
thesis aims to design methodology for differential diagnosis of PD, PSP, and MSA,
speech parameters are considered which alteast show distinctive properties for disease
groups. Reliable speech markers for differential diagnosis is indeed lacking at present
time. Present study also analyzed gender dimorphism of each speech feature which
would facilitate taking final conclusion about disease specificity. Another advantage of
the present study is that speech features are designed by knowledge-driven approach
rather than recent data driven approach which would be more acceptable in clinical
practice.

Vowel distortion was frequently studied in speech disorder by mostly conventional
features. Jitter, shimmer, and HNR computed by Praat tool [35] manifested in-
sensitiveness to mild changes whereas jitter and shimmer computed by fundamental
frequency (F0) showed much more sensitivity to mild distortion [214]. Speech fea-
tures like jitter, Quasi-open Quotient (QOQ), derivative of F0, and vocal tremor
individually show a trend of disease specificity. In agreement with previous stud-
ies [169, 128, 19], present study also observed variability in vocal folds vibration is
predominated for MSA patients. Latter studies also find the laryngeal deficits for
MSA patients even in early stages. Notably, variability in vocal folds vibration also
in other disease groups like PSP, HD, MS, and CA [247, 112]. Combination of those
phonation features using knowledge driven weight yields improved discrimination be-
tween PD and MSA-P. Involuntary movements of articulators (tongue, lips, and jaw)
in sustained vowel /a/ measured by stdPSD and stdLogE also predominate in MSA-
P patients and attributed to hyperkinetic and/or ataxic dysarthria [69]. Deficits
in velopharyngeal function also predominate in MSA-P patients. Hypernasality in

181



MSA-P patients is pronounced compared to PD. Variability in nasality was more fre-
quent in MSA-P patients which could be attributed to involuntary movements of soft
palate which was attributed to cerebellar dysfunction [68]. Notably, hypernasality
also observed for HD and CA disease groups [112]. Speech index is designed to cap-
ture involuntary movements of articulators and soft palate yields encouraging disease
specificity for MSA-P. Though MSA patients are parkinsonian type, predominance
of ataxic dysarthria could be explained by even mild cerebellar deficits [247]. Two
indexes representing variability in vocal folds vibration and involuntary movements
of articulators able to discriminate PD and MSA-P by very high accuracy. Reduced
range of movement due to hypokinesia manifested in MSA-P patients by vowel space
area analysis. To the best of our knowledge, change in formant frequencies was not
studied in differential diagnosis [283, 249, 310]. However, only one study [247] mention
imprecise vowel by VAI computed from monologue where PSP patients show greater
impairment compared to PD. We also developed an automatic method to segment
vowel and unvoiced stop plosives from diadochokinetic task (/pa-ta-ka/). Standard
acoustic features from these speech segments provided encouraging discrimination
between PD and MSA-P. MSA-P patients manifest greater disorder compared to PD
which is in accordance with previous studies. Combination of two DDD features,
represent ataxic dysarthria yield high classification between PD and MSA-P. In ad-
dition, analysis of reading text also provided distinctive disorder in phonation and
articulation features. Manual segmentation (voiced, unvoiced, pause, and respiration)
of reading text reflects accurate speech disorder. In overall, in prosodic features both
PD and MSA-P patients exhibited disorder compared to HC.

This thesis also conducted an exploratory investigation of imprecise consonants
from word initial consonants. In subjective analysis, in agreement with previous study
[182] frequent distortion is observed in stop plosives and fricatives. The thesis also
proposed automatic algorithm to detect abnormalities in stop plosives and fricatives.
Present study objectively measured devoicing in voiced obstruents and predominates
in MSA-P compared to PD. To the best of our knowledge, devoicing never been
investigated for MSA patients. Presence of devoicing mostly attributed to cerebellar
dysfunction. Frequent devoicing observed in velar voiced stop /g/. Furthermore,
devoicing is frequently observed in consonant-consonant (/gR/) syllable for MSA
patients which indicate importance of speech task. In unvoiced consonants, three
speech parameters like multiple burst and weak burst in stop plosives and presence of
burst in fricatives came up as prominent distortion. Among these speech parameters,
burst in unvoiced fricatives yield encouraging discrimination between PD and MSA-P.
Burst in fricatives is the manifestation of overshooting (clinical term ”dysmetria”).
If it is confirmed, it could be attributed to lesions in the lateral and paravermal
cerebellar hemispheres [69]. Reduced range of movement also manifested by weak
burst in both PD and MSA.

Design of speech markers related to subsystem of speech production and subtypes
of dysarthria towards discrimination of PSP and MSA provided encouraging novel
result. In subsystem related speech index captures deficits in respiration, phonation,
articulation, prosodic and timing aspect of speech production. In all these speech
indexes both groups (PSP and MSA) manifest deficits in all subsystems. Speech dis-
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order in particular subsystem is not disease specific, however degree of speech disorder
can serve disease specificity. As example, degree of impairment in respiration system
is severe for PSP patients compared to MSA. Likewise, in a phonation speech index,
MSA patients manifest higher severity compared to PSP. The concept of designing
speech index to capture overall abnormalities is an unique strategy adopted in this
thesis. Moreover, in agreement with previous studies [247, 255], present endeavors
to design dysarthria indexes also brought additional information about neurological
diseases. Present study finds PSP and MSA patinets manifest combination of hypoki-
netic, spastic, and ataxic dysarthrias which confirms widespread neurological lesions
for APS groups. Notably, Subgroups of dysarthrias are observed in hypokinetic and
ataxic dysarthria where either PSP or MSA predominates. As example, PSP patients
manifest prolongation of duration and rate related hypokinetic components whereas
MSA patients predominated in instability and variability related hypokinetic compo-
nents. Likewise, a group of PSP patients manifest greater severity in prolongation
of vowel and articulatory rhythm from ataxic components whereas MSA patients
predominated in irregularity and instability related ataxic components.

Insights of gender dimorphism was explored in this study. Several speech com-
ponents exhibited gender disparity for HC group which indicate to consider gender
at the time of differential diagnosis. Notably, male subjects showed higher speech
disorder compared to female subjects.

10.2 Limitation and future works

Speech data is an invaluable asset for analyzing speech disorder in neurological disor-
der. Voice4PD-MSA project faces several difficulties like administrative to pandemic
situation to collect speech datafrom registered patients and control subjects. There-
fore, more data is required to be recorded to validate initial findings about differential
diagnosis and gender dimorphism. As gender dimorphism can play a crucial role in
acoustic feature disparity, it demands gender balance in each group. Participant’s
age is the another important parameter related to speech disorder. Hence, analysis of
these multidimensional investigation requires sufficient data. Till now, we could not
accommodate clinical data for Voice4PD-MSA database. Particularly, clinical data
is most essential to correlate w.r.t. speech markers which would explain underlying
pathophysiology. In addition, inclusion of other parkinsonian diseases is also essential
for true differential diagnosis.

Presently available methods to analyze vocal folds vibration were developed for
healthy speakers. Thus those methods sometime fails to assess the deficits in vocal
folds vibration. As example, there is no established method to measure pitch fre-
quency (F0) in different condition. Likewise, formant frequency computation mostly
fails for pathological speech due to imprecise movements of articulator. It is thus
demands to at least mention weak formant.

Consonants sound units require further exploration to capture other aspect of
abnormalities. Automatic segmentation of voiced consonant and following vowel is
required to individually analyze voiced obstruents. Realization of voiced and unvoiced
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consonants is thus further demand to explore other abnormalities.
Design accurate speech segmentation from continuous speech task is further es-

sential for developing accurate speech dimensions. Detection of respiration is still
not accurate. Thus, speech segmentation of voiced, unvoiced, pause, and respiration
require more complex methods.
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Ruzicka. Acoustic evaluation of nasality in cerebellar syndromes. In INTER-
SPEECH, pages 3132–3136, 2017.
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S. Skodda, J. Rusz, and E. Nöth. Voiced/unvoiced transitions in speech as a
potential bio-marker to detect parkinson’s disease. In INTERSPEECH, 2015.

[216] J. R. Orozco-Arroyave, F. Hönig, J. D. Arias-Londoño, J. F. V. Bonilla,
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[253] Jan Rusz, Jan Hlavnička, Tereza Tykalova, Michal Novotnỳ, Petr Dušek, Karel
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